Factor tables of this page will be updated in mid-January. Until then, contributions are kept on the web server. You can reserve numbers as usual. If you forgot your reservation keys, tell so by email.
My Pentium 4 processor could not withstand demanding programs and broke down. Take care for your CPU!
I'm afraid that I can't update this page for several days or a week because my computer crashed yesterday.
By Robert Backstrom / GGNFS, Msieve
(38·10145+61)/9 = 4(2)1449<146> = 7 · 89 · 4211 · 240030140333<12> · 6318701319397581967<19> · C110
C110 = P42 · P68
P42 = 959520805192593881541714464704553517162347<42>
P68 = 11059100304528524565462268921955338143239467920276603381903889550329<68>
Number: n N=10611436828906870090522936495968919633890384936146829850407470739275500463086914188108300526561796213920262163 ( 110 digits) SNFS difficulty: 146 digits. Divisors found: Thu Dec 25 11:57:28 2008 prp42 factor: 959520805192593881541714464704553517162347 Thu Dec 25 11:57:28 2008 prp68 factor: 11059100304528524565462268921955338143239467920276603381903889550329 Thu Dec 25 11:57:28 2008 elapsed time 00:35:41 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.47 hours. Scaled time: 13.66 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_2_144_9 n: 10611436828906870090522936495968919633890384936146829850407470739275500463086914188108300526561796213920262163 type: snfs skew: 1.10 deg: 5 c5: 38 c0: 61 m: 100000000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1870001) Primes: RFBsize:114155, AFBsize:114048, largePrimes:12063139 encountered Relations: rels:11157151, finalFF:260073 Max relations in full relation-set: 28 Initial matrix: 228269 x 260073 with sparse part having weight 43425032. Pruned matrix : 222316 x 223521 with weight 33941924. Msieve: found 1169180 hash collisions in 12167702 relations Msieve: matrix is 285178 x 285426 (74.7 MB) Total sieving time: 7.09 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,56,56,2.5,2.5,100000 total time: 7.47 hours. --------- CPU info (if available) ----------
(8·10188+1)/9 = (8)1879<188> = 10867 · C184
C184 = P72 · P113
P72 = 200566861506992331136426364484679792245665453316940240273757774540395067<72>
P113 = 40782949523419614037769977548545749947635754809093559084419918633991991426423339650836469118542851487206338102201<113>
Number: n N=8179708188910360622884778585523961432675889287649663098268969254521844933182008731838491661809964929501140046828829381511814566015357402124679202069466171794321237589848982137562242467 ( 184 digits) SNFS difficulty: 190 digits. Divisors found: Thu Dec 25 21:52:08 2008 prp72 factor: 200566861506992331136426364484679792245665453316940240273757774540395067 Thu Dec 25 21:52:08 2008 prp113 factor: 40782949523419614037769977548545749947635754809093559084419918633991991426423339650836469118542851487206338102201 Thu Dec 25 21:52:08 2008 elapsed time 04:14:57 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.18 hours. Scaled time: 139.12 units (timescale=2.011). Factorization parameters were as follows: name: KA_8_187_9 n: 8179708188910360622884778585523961432675889287649663098268969254521844933182008731838491661809964929501140046828829381511814566015357402124679202069466171794321237589848982137562242467 type: snfs skew: 1.66 deg: 5 c5: 2 c0: 25 m: 100000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 8600001) Primes: RFBsize:602489, AFBsize:602100, largePrimes:34905775 encountered Relations: rels:31238877, finalFF:727045 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3975978 hash collisions in 36541534 relations Msieve: matrix is 1696807 x 1697055 (460.7 MB) Total sieving time: 68.38 hours. Total relation processing time: 0.80 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,29,29,58,58,2.5,2.5,100000 total time: 69.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / Msieve
(38·10143+61)/9 = 4(2)1429<144> = 32 · 23 · 8898879841<10> · 576568337208290100918143<24> · C108
C108 = P51 · P58
P51 = 247067337455777187755752491982412454361833257217269<51>
P58 = 1609049019393037299239339702182176490310075105569308816401<58>
Number: 42229_143 N=397543457057266918884845579618051966809384919381927176588582112286687485108113865531283414443127005287628869 ( 108 digits) SNFS difficulty: 145 digits. Divisors found: r1=247067337455777187755752491982412454361833257217269 r2=1609049019393037299239339702182176490310075105569308816401 Version: Total time: 9.34 hours. Scaled time: 18.43 units (timescale=1.972). Factorization parameters were as follows: name: 42229_143 n: 397543457057266918884845579618051966809384919381927176588582112286687485108113865531283414443127005287628869 m: 50000000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262775 x 263023 Total sieving time: 9.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 9.34 hours. --------- CPU info (if available) ----------
(38·10147+61)/9 = 4(2)1469<148> = 167 · 2369773339<10> · 294392469467<12> · C125
C125 = P39 · P86
P39 = 390767166238674756702854534057738664529<39>
P86 = 92741271271455106967496554922563178454113145520981313433082313450604481966509315597931<86>
Number: 42229_147 N=36240243768118729202943463309695426736944896402283016562377648348010345900851403545823189583259160747606835955616325055489499 ( 125 digits) SNFS difficulty: 149 digits. Divisors found: r1=390767166238674756702854534057738664529 r2=92741271271455106967496554922563178454113145520981313433082313450604481966509315597931 Version: Total time: 11.97 hours. Scaled time: 30.70 units (timescale=2.564). Factorization parameters were as follows: name: 42229_147 n: 36240243768118729202943463309695426736944896402283016562377648348010345900851403545823189583259160747606835955616325055489499 m: 200000000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 357888 x 358136 Total sieving time: 11.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.97 hours. --------- CPU info (if available) ----------
(13·10149-7)/3 = 4(3)1481<150> = 137 · 23119651 · C141
C141 = P57 · P84
P57 = 188970213715321747672299761534754833377917059582227123669<57>
P84 = 723980555610444002576019194415271366760489277242380215274116190741913804171160915877<84>
Number: 43331_149 N=136810760319442984511388306121793604504251223416095814639746515650962970987884593570645608634044828921380847408566690807883000354617384592713 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=188970213715321747672299761534754833377917059582227123669 r2=723980555610444002576019194415271366760489277242380215274116190741913804171160915877 Version: Total time: 17.52 hours. Scaled time: 36.01 units (timescale=2.055). Factorization parameters were as follows: name: 43331_149 n: 136810760319442984511388306121793604504251223416095814639746515650962970987884593570645608634044828921380847408566690807883000354617384592713 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 449125 x 449373 Total sieving time: 17.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(13·10157-7)/3 = 4(3)1561<158> = 173 · 67 · 137 · 769 · C148
C148 = P45 · P104
P45 = 123302230368263597667057025479304489207485833<45>
P104 = 10134041800873407971458001266515153364324752965728397706141656301510332896590942027080433617388959869489<104>
SNFS difficulty: 159 digits. Divisors found: r1=123302230368263597667057025479304489207485833 (pp45) r2=10134041800873407971458001266515153364324752965728397706141656301510332896590942027080433617388959869489 (pp104) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.525). Factorization parameters were as follows: n: 1249549956692905843078530648495289271477668421273383397930121240701021840408969782908108656684854663018608144097023393943249861817083459645496449337 m: 20000000000000000000000000000000 deg: 5 c5: 325 c0: -56 skew: 0.70 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 577511 x 577759 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
(38·10173-11)/9 = 4(2)1721<174> = 383 · C172
C172 = P77 · P95
P77 = 21373934917885229960501801036667767687297501292726057634758836826598560231947<77>
P95 = 51577208181595520712952190859726794005821242274496299179553509825685887968828943498649093422521<95>
SNFS difficulty: 175 digits. Divisors found: r1=21373934917885229960501801036667767687297501292726057634758836826598560231947 (pp77) r2=51577208181595520712952190859726794005821242274496299179553509825685887968828943498649093422521 (pp95) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1102407890919640266898752538439222512329561937917029300841311285175514940527995358282564548883086742094574992747316507107629823034522773426167682042355671598491441833478387 m: 50000000000000000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 8200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1149407 x 1149655 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.5,2.5,200000 total time: 70.00 hours.
(38·10163+43)/9 = 4(2)1627<164> = 1409 · C161
C161 = P52 · P109
P52 = 4810957160735656694134600221951725247720036705800339<52>
P109 = 6228717072530466781791563604942513648430182164800452761903679474999292240561911205887774266569403833476578177<109>
SNFS difficulty: 165 digits. Divisors found: r1=4810957160735656694134600221951725247720036705800339 (pp52) r2=6228717072530466781791563604942513648430182164800452761903679474999292240561911205887774266569403833476578177 (pp109) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 29966091002286885892279788660200299660910022868858922797886602002996609100228688589227978866020029966091002286885892279788660200299660910022868858922797886602003 m: 500000000000000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 813692 x 813940 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,100000 total time: 56.00 hours.
(13·10165-7)/3 = 4(3)1641<166> = 137 · C164
C164 = P79 · P85
P79 = 6085843468199487275442039551130758294656791892404326335166720315393967284370157<79>
P85 = 5197335501903661657599518956480061122136436218334285817046668712234291023306740922759<85>
SNFS difficulty: 166 digits. Divisors found: r1=6085843468199487275442039551130758294656791892404326335166720315393967284370157 (pp79) r2=5197335501903661657599518956480061122136436218334285817046668712234291023306740922759 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 31630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 746923 x 747171 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,200000 total time: 36.00 hours.
By Jo Yeong Uk / GGNFS / Msieve v1.39
(13·10129-7)/3 = 4(3)1281<130> = 103993 · 9537211 · 799114214868023969<18> · C100
C100 = P39 · P62
P39 = 346643489439315219050321521524858945557<39>
P62 = 15772651068440529298755132621651886781971748870337901617836909<62>
Number: 43331_129 N=5467486804072968524263441446230274033369319439416686948461744728066650046424741948248473440936163313 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=346643489439315219050321521524858945557 r2=15772651068440529298755132621651886781971748870337901617836909 Version: Total time: 1.74 hours. Scaled time: 4.16 units (timescale=2.391). Factorization parameters were as follows: n: 5467486804072968524263441446230274033369319439416686948461744728066650046424741948248473440936163313 m: 100000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2953047 Max relations in full relation-set: Initial matrix: Pruned matrix : 157950 x 158195 Total sieving time: 1.54 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(13·10154-7)/3 = 4(3)1531<155> = 4299968837<10> · 5420661282707945028204253<25> · 4248099842885959289351740481<28> · C93
C93 = P43 · P50
P43 = 6196057801656421501364047194416498849394697<43>
P50 = 70630835377785084555386441008655114290296665265803<50>
Tue Dec 23 22:52:12 2008 Msieve v. 1.39 Tue Dec 23 22:52:12 2008 random seeds: 4415d7f4 e16d18f3 Tue Dec 23 22:52:12 2008 factoring 437632738580035654262129319099138766292963493690866696448476387894541006903564451451163646691 (93 digits) Tue Dec 23 22:52:13 2008 searching for 15-digit factors Tue Dec 23 22:52:14 2008 commencing quadratic sieve (93-digit input) Tue Dec 23 22:52:14 2008 using multiplier of 19 Tue Dec 23 22:52:14 2008 using 32kb Intel Core sieve core Tue Dec 23 22:52:14 2008 sieve interval: 36 blocks of size 32768 Tue Dec 23 22:52:14 2008 processing polynomials in batches of 6 Tue Dec 23 22:52:14 2008 using a sieve bound of 1923137 (71699 primes) Tue Dec 23 22:52:14 2008 using large prime bound of 232699577 (27 bits) Tue Dec 23 22:52:14 2008 using double large prime bound of 1148767303677169 (42-51 bits) Tue Dec 23 22:52:14 2008 using trial factoring cutoff of 51 bits Tue Dec 23 22:52:14 2008 polynomial 'A' values have 12 factors Wed Dec 24 01:24:11 2008 71822 relations (18303 full + 53519 combined from 959170 partial), need 71795 Wed Dec 24 01:24:12 2008 begin with 977473 relations Wed Dec 24 01:24:13 2008 reduce to 182815 relations in 10 passes Wed Dec 24 01:24:13 2008 attempting to read 182815 relations Wed Dec 24 01:24:15 2008 recovered 182815 relations Wed Dec 24 01:24:15 2008 recovered 165366 polynomials Wed Dec 24 01:24:15 2008 attempting to build 71822 cycles Wed Dec 24 01:24:15 2008 found 71822 cycles in 5 passes Wed Dec 24 01:24:15 2008 distribution of cycle lengths: Wed Dec 24 01:24:15 2008 length 1 : 18303 Wed Dec 24 01:24:15 2008 length 2 : 13016 Wed Dec 24 01:24:15 2008 length 3 : 12483 Wed Dec 24 01:24:15 2008 length 4 : 9444 Wed Dec 24 01:24:15 2008 length 5 : 7095 Wed Dec 24 01:24:15 2008 length 6 : 4692 Wed Dec 24 01:24:15 2008 length 7 : 2928 Wed Dec 24 01:24:15 2008 length 9+: 3861 Wed Dec 24 01:24:15 2008 largest cycle: 22 relations Wed Dec 24 01:24:16 2008 matrix is 71699 x 71822 (18.6 MB) with weight 4599586 (64.04/col) Wed Dec 24 01:24:16 2008 sparse part has weight 4599586 (64.04/col) Wed Dec 24 01:24:17 2008 filtering completed in 3 passes Wed Dec 24 01:24:17 2008 matrix is 67741 x 67805 (17.7 MB) with weight 4379423 (64.59/col) Wed Dec 24 01:24:17 2008 sparse part has weight 4379423 (64.59/col) Wed Dec 24 01:24:17 2008 saving the first 48 matrix rows for later Wed Dec 24 01:24:17 2008 matrix is 67693 x 67805 (11.6 MB) with weight 3510908 (51.78/col) Wed Dec 24 01:24:17 2008 sparse part has weight 2623737 (38.70/col) Wed Dec 24 01:24:17 2008 matrix includes 64 packed rows Wed Dec 24 01:24:17 2008 using block size 27122 for processor cache size 1024 kB Wed Dec 24 01:24:18 2008 commencing Lanczos iteration Wed Dec 24 01:24:18 2008 memory use: 10.9 MB Wed Dec 24 01:24:47 2008 lanczos halted after 1071 iterations (dim = 67691) Wed Dec 24 01:24:47 2008 recovered 16 nontrivial dependencies Wed Dec 24 01:24:48 2008 prp43 factor: 6196057801656421501364047194416498849394697 Wed Dec 24 01:24:48 2008 prp50 factor: 70630835377785084555386441008655114290296665265803 Wed Dec 24 01:24:48 2008 elapsed time 02:32:36
(38·10136+61)/9 = 4(2)1359<137> = 112 · 507571 · 990643 · C123
C123 = P32 · P46 · P47
P32 = 12994371931234232563572230204953<32>
P46 = 2821341889370461231082316680328888029873454389<46>
P47 = 18929133352137533796090816854860634959299355049<47>
Number: 42229_136 N=693971668979787672360221564933897224316140193326896041334006376981172056648340109892525747331357177578992585148159179582133 ( 123 digits) SNFS difficulty: 137 digits. Divisors found: r1=12994371931234232563572230204953 r2=2821341889370461231082316680328888029873454389 r3=18929133352137533796090816854860634959299355049 Version: Total time: 6.24 hours. Scaled time: 12.28 units (timescale=1.967). Factorization parameters were as follows: name: 42229_136 n: 693971668979787672360221564933897224316140193326896041334006376981172056648340109892525747331357177578992585148159179582133 m: 1000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1360001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 193020 x 193268 Total sieving time: 6.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 6.24 hours. --------- CPU info (if available) ----------
(38·10137+61)/9 = 4(2)1369<138> = 3 · 127 · 151 · C133
C133 = P37 · P47 · P50
P37 = 6456539318974069952317840383913635547<37>
P47 = 84353085074939403498494219218028513808174498829<47>
P50 = 13475298467557402274192836515690867490289089049393<50>
Number: 42229_137 N=7339038470080864615984812053018758968594709325793436968281834527858410634653008329808663541781339142761680176291429354995084775550959 ( 133 digits) SNFS difficulty: 139 digits. Divisors found: r1=6456539318974069952317840383913635547 r2=84353085074939403498494219218028513808174498829 r3=13475298467557402274192836515690867490289089049393 Version: Total time: 5.42 hours. Scaled time: 13.96 units (timescale=2.575). Factorization parameters were as follows: name: 42229_137 n: 7339038470080864615984812053018758968594709325793436968281834527858410634653008329808663541781339142761680176291429354995084775550959 m: 2000000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 1480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 206320 x 206568 Total sieving time: 5.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.3,2.3,75000 total time: 5.42 hours. --------- CPU info (if available) ----------
(38·10132+61)/9 = 4(2)1319<133> = 11 · 776001532639<12> · C120
C120 = P49 · P72
P49 = 2969872220720596372610570814567592219469836109293<49>
P72 = 166551312272968076499268266318802432077753188457365327152386424859382757<72>
Number: 42229_132 N=494636115644049218819442914466771717713015102938955522069569580741406160381239875380518653429265348791970272174371660801 ( 120 digits) SNFS difficulty: 134 digits. Divisors found: r1=2969872220720596372610570814567592219469836109293 r2=166551312272968076499268266318802432077753188457365327152386424859382757 Version: Total time: 4.08 hours. Scaled time: 9.61 units (timescale=2.357). Factorization parameters were as follows: name: 42229_132 n: 494636115644049218819442914466771717713015102938955522069569580741406160381239875380518653429265348791970272174371660801 m: 200000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1130001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 162582 x 162827 Total sieving time: 4.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,75000 total time: 4.08 hours. --------- CPU info (if available) ----------
(38·10133+61)/9 = 4(2)1329<134> = 7 · 17 · 31 · 7446191 · 92316751817<11> · C113
C113 = P52 · P61
P52 = 3454354056951432918786575190491331483927052530924391<52>
P61 = 4820042812404022801199777592890218362440628066520836743662493<61>
Number: 42229_133 N=16650134443707430675722745496325348238405457625575494554061037823950827364147409161145258157135657400068205566763 ( 113 digits) SNFS difficulty: 135 digits. Divisors found: r1=3454354056951432918786575190491331483927052530924391 r2=4820042812404022801199777592890218362440628066520836743662493 Version: Total time: 4.36 hours. Scaled time: 8.73 units (timescale=2.003). Factorization parameters were as follows: name: 42229_133 n: 16650134443707430675722745496325348238405457625575494554061037823950827364147409161145258157135657400068205566763 m: 500000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1095001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149895 x 150143 Total sieving time: 4.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 4.36 hours. --------- CPU info (if available) ----------
(13·10138-7)/3 = 4(3)1371<139> = 1003753 · 217066632061<12> · C122
C122 = P57 · P65
P57 = 272710477884165309368820146712980890078113632640440282561<57>
P65 = 72929015177053713033881917987365982816088025384408340890063152887<65>
Number: 43331_138 N=19888506580555862802074130987443151078615717105176811792365248436258887922009032248563497555435293494812111456084822903607 ( 122 digits) SNFS difficulty: 140 digits. Divisors found: r1=272710477884165309368820146712980890078113632640440282561 r2=72929015177053713033881917987365982816088025384408340890063152887 Version: Total time: 4.53 hours. Scaled time: 11.65 units (timescale=2.575). Factorization parameters were as follows: name: 43331_138 n: 19888506580555862802074130987443151078615717105176811792365248436258887922009032248563497555435293494812111456084822903607 m: 5000000000000000000000000000 deg: 5 c5: 104 c0: -175 skew: 1.11 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1370001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229684 x 229931 Total sieving time: 4.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 4.53 hours. --------- CPU info (if available) ----------
(13·10126-7)/3 = 4(3)1251<127> = 41 · 113 · 612958849049<12> · 3602570233447<13> · C99
C99 = P32 · P68
P32 = 30490364046617984017424864824609<32>
P68 = 13891636547419071980552984173367140215460386040448597016954924515941<68>
Wed Dec 24 06:14:06 2008 Msieve v. 1.39 Wed Dec 24 06:14:06 2008 random seeds: 638a2880 0697d978 Wed Dec 24 06:14:06 2008 factoring 423561055534110855772718836647845940152748087470775841943157918715306066768867674318721107189592069 (99 digits) Wed Dec 24 06:14:07 2008 searching for 15-digit factors Wed Dec 24 06:14:09 2008 commencing quadratic sieve (99-digit input) Wed Dec 24 06:14:09 2008 using multiplier of 1 Wed Dec 24 06:14:09 2008 using 32kb Intel Core sieve core Wed Dec 24 06:14:09 2008 sieve interval: 36 blocks of size 32768 Wed Dec 24 06:14:09 2008 processing polynomials in batches of 6 Wed Dec 24 06:14:09 2008 using a sieve bound of 2612251 (95257 primes) Wed Dec 24 06:14:09 2008 using large prime bound of 391837650 (28 bits) Wed Dec 24 06:14:09 2008 using double large prime bound of 2934884765895450 (43-52 bits) Wed Dec 24 06:14:09 2008 using trial factoring cutoff of 52 bits Wed Dec 24 06:14:09 2008 polynomial 'A' values have 13 factors Wed Dec 24 14:57:37 2008 95665 relations (22800 full + 72865 combined from 1444038 partial), need 95353 Wed Dec 24 14:57:39 2008 begin with 1466838 relations Wed Dec 24 14:57:40 2008 reduce to 252523 relations in 11 passes Wed Dec 24 14:57:40 2008 attempting to read 252523 relations Wed Dec 24 14:57:45 2008 recovered 252523 relations Wed Dec 24 14:57:45 2008 recovered 241794 polynomials Wed Dec 24 14:57:45 2008 attempting to build 95665 cycles Wed Dec 24 14:57:45 2008 found 95665 cycles in 6 passes Wed Dec 24 14:57:45 2008 distribution of cycle lengths: Wed Dec 24 14:57:45 2008 length 1 : 22800 Wed Dec 24 14:57:45 2008 length 2 : 16294 Wed Dec 24 14:57:45 2008 length 3 : 15927 Wed Dec 24 14:57:45 2008 length 4 : 13040 Wed Dec 24 14:57:45 2008 length 5 : 10046 Wed Dec 24 14:57:45 2008 length 6 : 6811 Wed Dec 24 14:57:45 2008 length 7 : 4397 Wed Dec 24 14:57:45 2008 length 9+: 6350 Wed Dec 24 14:57:45 2008 largest cycle: 23 relations Wed Dec 24 14:57:45 2008 matrix is 95257 x 95665 (25.5 MB) with weight 6314404 (66.01/col) Wed Dec 24 14:57:45 2008 sparse part has weight 6314404 (66.01/col) Wed Dec 24 14:57:47 2008 filtering completed in 3 passes Wed Dec 24 14:57:47 2008 matrix is 91395 x 91459 (24.5 MB) with weight 6046936 (66.12/col) Wed Dec 24 14:57:47 2008 sparse part has weight 6046936 (66.12/col) Wed Dec 24 14:57:47 2008 saving the first 48 matrix rows for later Wed Dec 24 14:57:47 2008 matrix is 91347 x 91459 (14.3 MB) with weight 4688883 (51.27/col) Wed Dec 24 14:57:47 2008 sparse part has weight 3211621 (35.12/col) Wed Dec 24 14:57:47 2008 matrix includes 64 packed rows Wed Dec 24 14:57:47 2008 using block size 36583 for processor cache size 1024 kB Wed Dec 24 14:57:48 2008 commencing Lanczos iteration Wed Dec 24 14:57:48 2008 memory use: 14.5 MB Wed Dec 24 14:58:43 2008 lanczos halted after 1447 iterations (dim = 91341) Wed Dec 24 14:58:43 2008 recovered 13 nontrivial dependencies Wed Dec 24 14:58:44 2008 prp32 factor: 30490364046617984017424864824609 Wed Dec 24 14:58:44 2008 prp68 factor: 13891636547419071980552984173367140215460386040448597016954924515941 Wed Dec 24 14:58:44 2008 elapsed time 08:44:38
(38·10139+61)/9 = 4(2)1389<140> = 7 · 43 · 79 · 118751 · 13963483 · C124
C124 = P41 · P83
P41 = 40995216861330514782493424946046859932427<41>
P83 = 26120607663077197279728695742834580519372241488994079940765343709210850548980030161<83>
Number: 42229_139 N=1070819975697581372026915209957136700305843805306366832768537504626396109208627745838362563415637931633490196373116881930747 ( 124 digits) SNFS difficulty: 141 digits. Divisors found: r1=40995216861330514782493424946046859932427 r2=26120607663077197279728695742834580519372241488994079940765343709210850548980030161 Version: Total time: 6.97 hours. Scaled time: 14.00 units (timescale=2.010). Factorization parameters were as follows: name: 42229_139 n: 1070819975697581372026915209957136700305843805306366832768537504626396109208627745838362563415637931633490196373116881930747 m: 10000000000000000000000000000 deg: 5 c5: 19 c0: 305 skew: 1.74 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 208332 x 208580 Total sieving time: 6.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.97 hours. --------- CPU info (if available) ----------
(13·10139-7)/3 = 4(3)1381<140> = 35561357833129779817<20> · 339685932960896082541<21> · C100
C100 = P42 · P58
P42 = 580227981425170480885365056415884167587353<42>
P58 = 6182548491273330202741775652459471890874048806489022017791<58>
Number: 43331_139 N=3587287631154757617814951158449886668895226167431297560934889849904751035171338016447415764312597223 ( 100 digits) SNFS difficulty: 141 digits. Divisors found: r1=580227981425170480885365056415884167587353 r2=6182548491273330202741775652459471890874048806489022017791 Version: Total time: 7.16 hours. Scaled time: 18.36 units (timescale=2.564). Factorization parameters were as follows: name: 43331_139 n: 3587287631154757617814951158449886668895226167431297560934889849904751035171338016447415764312597223 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 267552 x 267800 Total sieving time: 7.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 7.16 hours. --------- CPU info (if available) ----------
(13·10136-7)/3 = 4(3)1351<137> = 41 · 461 · 1097 · 1144019 · 6912769 · C117
C117 = P39 · P79
P39 = 153868017024233492936781291144992798777<39>
P79 = 1717501200001193868071551512936241855900994787663081370386972669289649929323709<79>
Number: 43331_136 N=264268503880925151311871568681403279980594971164576904562485281555967178805595058087289716052263653659523810732303893 ( 117 digits) SNFS difficulty: 138 digits. Divisors found: r1=153868017024233492936781291144992798777 r2=1717501200001193868071551512936241855900994787663081370386972669289649929323709 Version: Total time: 4.87 hours. Scaled time: 12.50 units (timescale=2.564). Factorization parameters were as follows: name: 43331_136 n: 264268503880925151311871568681403279980594971164576904562485281555967178805595058087289716052263653659523810732303893 m: 2000000000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194934 x 195182 Total sieving time: 4.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 4.87 hours. --------- CPU info (if available) ----------
(38·10140+61)/9 = 4(2)1399<141> = 3 · 11 · 132 · 409 · 66376463 · C127
C127 = P61 · P66
P61 = 4363189719756629305373249732984127052389932144242640081636599<61>
P66 = 639144315774237606362299455808713290546585132219180798704818559069<66>
Number: 42229_140 N=2788707908027038368820676356991699645995675322839068899344297739110534039864931465687628595805788445793745961473494234473766331 ( 127 digits) SNFS difficulty: 141 digits. Divisors found: r1=4363189719756629305373249732984127052389932144242640081636599 r2=639144315774237606362299455808713290546585132219180798704818559069 Version: Total time: 6.86 hours. Scaled time: 13.78 units (timescale=2.010). Factorization parameters were as follows: name: 42227_140 n: 2788707908027038368820676356991699645995675322839068899344297739110534039864931465687628595805788445793745961473494234473766331 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 249081 x 249329 Total sieving time: 6.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 6.86 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(13·10124-7)/3 = 4(3)1231<125> = 67 · 1697 · 60793 · C115
C115 = P43 · P73
P43 = 1498047185326462845874791264840983789868623<43>
P73 = 4184912521601170246850918800640022065043403650310690001096570127074950871<73>
Number: n N=6269196423822103232539740936099023112203802212838271361405353100480408276012089605380855071374200647972655269420633 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=1498047185326462845874791264840983789868623 (pp43) r2=4184912521601170246850918800640022065043403650310690001096570127074950871 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.99 hours. Scaled time: 3.64 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_123_1 n: 6269196423822103232539740936099023112203802212838271361405353100480408276012089605380855071374200647972655269420633 type: snfs skew: 1.40 deg: 5 c5: 13 c0: -70 m: 10000000000000000000000000 rlim: 650000 alim: 650000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [325000, 605001) Primes: RFBsize:52831, AFBsize:53207, largePrimes:6633415 encountered Relations: rels:5890129, finalFF:152374 Max relations in full relation-set: 48 Initial matrix: 106103 x 152374 with sparse part having weight 24339461. Pruned matrix : 100481 x 101075 with weight 12235988. Total sieving time: 1.78 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.08 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,650000,650000,28,28,56,56,2.5,2.5,50000 total time: 1.99 hours. --------- CPU info (if available) ----------
(13·10135-7)/3 = 4(3)1341<136> = 21521 · 376824788300183<15> · C117
C117 = P46 · P71
P46 = 7462194341926544919338500194924283255312005077<46>
P71 = 71606695242654519563333342916952318853502485124430637614152778256430721<71>
Number: n N=534343076083794997371281760082808935626601181033359381519995052241174855210527261550171279430169719357538447850770517 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=7462194341926544919338500194924283255312005077 (pp46) r2=71606695242654519563333342916952318853502485124430637614152778256430721 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.56 hours. Scaled time: 6.51 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_134_1 n: 534343076083794997371281760082808935626601181033359381519995052241174855210527261550171279430169719357538447850770517 type: snfs skew: 0.88 deg: 5 c5: 13 c0: -7 m: 1000000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [500000, 1020001) Primes: RFBsize:78498, AFBsize:78306, largePrimes:9031572 encountered Relations: rels:8076284, finalFF:178919 Max relations in full relation-set: 48 Initial matrix: 156869 x 178919 with sparse part having weight 27811347. Pruned matrix : 154011 x 154859 with weight 21176060. Total sieving time: 3.13 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.26 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,56,56,2.5,2.5,75000 total time: 3.56 hours. --------- CPU info (if available) ----------
(34·10185+11)/9 = 3(7)1849<186> = 1039 · C183
C183 = P36 · P56 · P91
P36 = 553108953256060747840665463564358923<36>
P56 = 84899358098754026519470500100735842692276241566795948069<56>
P91 = 7742937698796390773077022171625908268690825320600198553953076059596260413718230752249653803<91>
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 363597476205753395358785156667736071008448294300074858303924713934338573414608063308737033472355897764944925676398246176879478130681210565714896802481018072933376109507004598438669661 (183 digits) Using B1=1830000, B2=1986068894, polynomial Dickson(6), sigma=2182743119 Step 1 took 41688ms Step 2 took 20734ms ********** Factor found in step 2: 553108953256060747840665463564358923 Found probable prime factor of 36 digits: 553108953256060747840665463564358923 Composite cofactor 657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 has 147 digits Number: n N=657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 ( 147 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 24 13:32:23 2008 prp56 factor: 84899358098754026519470500100735842692276241566795948069 Wed Dec 24 13:32:23 2008 prp91 factor: 7742937698796390773077022171625908268690825320600198553953076059596260413718230752249653803 Wed Dec 24 13:32:23 2008 elapsed time 20:34:53 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 70.68 hours. Scaled time: 46.58 units (timescale=0.659). Factorization parameters were as follows: name: KA_3_7_184_9 n: 657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 type: snfs skew: 0.80 deg: 5 c5: 34 c0: 11 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 3150001) Primes: RFBsize:571119, AFBsize:571308, largePrimes:32711526 encountered Relations: rels:29594547, finalFF:1086092 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4539192 hash collisions in 33167915 relations Msieve: matrix is 1455727 x 1455975 (395.1 MB) Total sieving time: 68.38 hours. Total relation processing time: 2.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 70.68 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39, Msieve-1.39+pol51 gnfs
(38·10144+61)/9 = 4(2)1439<145> = 11 · 503 · 919 · 16719328669<11> · 5872408641739<13> · C115
C115 = P33 · P39 · P45
P33 = 185958730996919530697610925218379<33>
P39 = 435936853888932377299397412491753686571<39>
P45 = 104325299889160694313575763049847352543268633<45>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1036791296 Step 1 took 8186ms Step 2 took 9254ms ********** Factor found in step 2: 185958730996919530697610925218379 Found probable prime factor of 33 digits: 185958730996919530697610925218379 Composite cofactor has 83 digits Tue Dec 23 05:15:51 2008 Tue Dec 23 05:15:51 2008 Msieve v. 1.39 Tue Dec 23 05:15:51 2008 random seeds: 90094d45 a7ce150a Tue Dec 23 05:15:51 2008 factoring 45479243014700098733299390696402372968311259821857132401813685792934459068137627443 (83 digits) Tue Dec 23 05:15:52 2008 searching for 15-digit factors Tue Dec 23 05:15:52 2008 commencing quadratic sieve (83-digit input) Tue Dec 23 05:15:52 2008 using multiplier of 3 Tue Dec 23 05:15:52 2008 using 64kb Opteron sieve core Tue Dec 23 05:15:52 2008 sieve interval: 6 blocks of size 65536 Tue Dec 23 05:15:52 2008 processing polynomials in batches of 17 Tue Dec 23 05:15:52 2008 using a sieve bound of 1368329 (52647 primes) Tue Dec 23 05:15:52 2008 using large prime bound of 121781281 (26 bits) Tue Dec 23 05:15:52 2008 using trial factoring cutoff of 27 bits Tue Dec 23 05:15:52 2008 polynomial 'A' values have 11 factors Tue Dec 23 05:38:35 2008 52767 relations (26541 full + 26226 combined from 280810 partial), need 52743 Tue Dec 23 05:38:35 2008 begin with 307351 relations Tue Dec 23 05:38:35 2008 reduce to 75673 relations in 2 passes Tue Dec 23 05:38:35 2008 attempting to read 75673 relations Tue Dec 23 05:38:36 2008 recovered 75673 relations Tue Dec 23 05:38:36 2008 recovered 69585 polynomials Tue Dec 23 05:38:36 2008 attempting to build 52767 cycles Tue Dec 23 05:38:36 2008 found 52767 cycles in 1 passes Tue Dec 23 05:38:36 2008 distribution of cycle lengths: Tue Dec 23 05:38:36 2008 length 1 : 26541 Tue Dec 23 05:38:36 2008 length 2 : 26226 Tue Dec 23 05:38:36 2008 largest cycle: 2 relations Tue Dec 23 05:38:36 2008 matrix is 52647 x 52767 (8.0 MB) with weight 1682549 (31.89/col) Tue Dec 23 05:38:36 2008 sparse part has weight 1682549 (31.89/col) Tue Dec 23 05:38:37 2008 filtering completed in 3 passes Tue Dec 23 05:38:37 2008 matrix is 38828 x 38887 (6.4 MB) with weight 1373197 (35.31/col) Tue Dec 23 05:38:37 2008 sparse part has weight 1373197 (35.31/col) Tue Dec 23 05:38:37 2008 saving the first 48 matrix rows for later Tue Dec 23 05:38:37 2008 matrix is 38780 x 38887 (4.3 MB) with weight 1039749 (26.74/col) Tue Dec 23 05:38:37 2008 sparse part has weight 747149 (19.21/col) Tue Dec 23 05:38:37 2008 matrix includes 64 packed rows Tue Dec 23 05:38:37 2008 using block size 15554 for processor cache size 1024 kB Tue Dec 23 05:38:37 2008 commencing Lanczos iteration Tue Dec 23 05:38:37 2008 memory use: 4.3 MB Tue Dec 23 05:38:42 2008 lanczos halted after 615 iterations (dim = 38778) Tue Dec 23 05:38:42 2008 recovered 17 nontrivial dependencies Tue Dec 23 05:38:42 2008 prp39 factor: 435936853888932377299397412491753686571 Tue Dec 23 05:38:42 2008 prp45 factor: 104325299889160694313575763049847352543268633 Tue Dec 23 05:38:42 2008 elapsed time 00:22:51
(38·10145+43)/9 = 4(2)1447<146> = 1663 · 1723 · C140
C140 = P48 · P93
P48 = 143361658105740544577121897169041849714893542691<48>
P93 = 102785190506482758977581155294308544825255338892896261035565418692162299061389923861016260253<93>
SNFS difficulty: 146 digits. Divisors found: r1=143361658105740544577121897169041849714893542691 (pp48) r2=102785190506482758977581155294308544825255338892896261035565418692162299061389923861016260253 (pp93) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.286). Factorization parameters were as follows: n: 14735455339723790094059125859440585500133569147151785776260491207954850254618973891914116647648234899910001267636934356764995196823221960823 m: 100000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2570001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 336574 x 336822 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 11.00 hours.
(38·10153+43)/9 = 4(2)1527<154> = 32 · C153
C153 = P69 · P85
P69 = 429658841311150490118038632706779529774463197589532158877111287918973<69>
P85 = 1091879783126345287514741812724212614608670024173592287059530931202710184194869602711<85>
SNFS difficulty: 155 digits. Divisors found: r1=429658841311150490118038632706779529774463197589532158877111287918973 (pp69) r2=1091879783126345287514741812724212614608670024173592287059530931202710184194869602711 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 m: 5000000000000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 565118 x 565366 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 12.00 hours.
(38·10146+61)/9 = 4(2)1459<147> = 3 · 11 · 13 · 743 · C142
C142 = P35 · P107
P35 = 29371295975761612541641795908618293<35>
P107 = 45099515002463330270041583910624200505787042854484125648106218811048271349055997284919050293096397504594099<107>
SNFS difficulty: 147 digits. Divisors found: r1=29371295975761612541641795908618293 (pp35) r2=45099515002463330270041583910624200505787042854484125648106218811048271349055997284919050293096397504594099 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1324631203500651683693406439032280216667834433648700135914133222343181966331360678601593810207538336744258682347511418843854913841454891253007 m: 100000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 294682 x 294930 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,200000 total time: 6.00 hours.
(13·10145-7)/3 = 4(3)1441<146> = 3709 · 3847 · 2170109 · 39052045075867533488696837658421<32> · C101
C101 = P35 · P66
P35 = 78208945654866767181969270770471203<35>
P66 = 458206575016335709488301915918886731111651833495759452288453585491<66>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3061227314 Step 1 took 8259ms Step 2 took 8999ms ********** Factor found in step 2: 78208945654866767181969270770471203 Found probable prime factor of 35 digits: 78208945654866767181969270770471203 Probable prime cofactor 458206575016335709488301915918886731111651833495759452288453585491 has 66 digits
(13·10162-7)/3 = 4(3)1611<163> = 97 · 4001 · 239027 · 365699 · 179076571 · 30747058603981<14> · C125
C125 = P32 · P93
P32 = 35369121000324091221140788630633<32>
P93 = 655910323226196685402316639620192425902591627772168768126116843748558306589316695535468462797<93>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3840470679 Step 1 took 9843ms Step 2 took 10386ms ********** Factor found in step 2: 35369121000324091221140788630633 Found probable prime factor of 32 digits: 35369121000324091221140788630633 Probable prime cofactor 655910323226196685402316639620192425902591627772168768126116843748558306589316695535468462797 has 93 digits
(13·10140-7)/3 = 4(3)1391<141> = 4152577859<10> · C132
C132 = P46 · P86
P46 = 1618888627972634184177225680705039794519589281<46>
P86 = 64459560671406830134081826137348849162306203510285790506146547055011181477654430473489<86>
SNFS difficulty: 141 digits. Divisors found: r1=1618888627972634184177225680705039794519589281 (pp46) r2=64459560671406830134081826137348849162306203510285790506146547055011181477654430473489 (pp86) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.673). Factorization parameters were as follows: n: 104352849735052573600242117298572566832474972586259539976354079321149059118299684921894039635232118915300832492670990117450639071409 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [785000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 261172 x 261420 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,49,49,2.3,2.3,100000 total time: 3.90 hours.
(38·10154+61)/9 = 4(2)1539<155> = 11 · 3598943 · C148
C148 = P56 · P92
P56 = 15141979967594079491718919468985969669399230154355609013<56>
P92 = 70435364495469228989127803857011940423160477324626942530227526262722573852534558759089710621<92>
SNFS difficulty: 156 digits. Divisors found: r1=15141979967594079491718919468985969669399230154355609013 (pp56) r2=70435364495469228989127803857011940423160477324626942530227526262722573852534558759089710621 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.307). Factorization parameters were as follows: n: 1066530878200582333156814053010519584177460948501779101207877934822484930669472630820726636637030327622259753443826100714526010508747662406389427073 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: 305 skew: 1.74 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 470528 x 470776 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 17.00 hours.
(13·10194-7)/3 = 4(3)1931<195> = 3881 · 4040009 · 12429749 · 4005775577929<13> · 66007507859850270736596089399561<32> · C133
C133 = P31 · P103
P31 = 4448855391179499901841920088701<31>
P103 = 1890190271245129714956635517993862966113876278013600663354393732491301918077570212567736137795152565619<103>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1699384495 Step 1 took 9871ms Step 2 took 10861ms ********** Factor found in step 2: 4448855391179499901841920088701 Found probable prime factor of 31 digits: 4448855391179499901841920088701 Probable prime cofactor has 103 digits
(38·10174+61)/9 = 4(2)1739<175> = 11 · 557 · 23333 · 59218732301<11> · C156
C156 = P42 · C115
P42 = 262088313569048659823633945899080702035203<42>
C115 = [1902899549437374369035951375932780225773552267114939321874434723505133347794160411662937567103887497100312817310473<115>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=113264461 Step 1 took 13984ms Step 2 took 13062ms ********** Factor found in step 2: 262088313569048659823633945899080702035203 Found probable prime factor of 42 digits: 262088313569048659823633945899080702035203 Composite cofactor has 115 digits
(13·10203-7)/3 = 4(3)2021<204> = 127 · 259042595353901<15> · C188
C188 = P38 · P150
P38 = 63444856538474819856481993655770160539<38>
P150 = 207611197901601014143416821146774403219826219131558291970037945989725439970919940184172631734257013957795695677276118342125803124864277075013790561427<150>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3263277877 Step 1 took 12681ms Step 2 took 11857ms ********** Factor found in step 2: 63444856538474819856481993655770160539 Found probable prime factor of 38 digits: 63444856538474819856481993655770160539 Probable prime cofactor has 150 digits
(13·10152-7)/3 = 4(3)1511<153> = 233 · 40277009 · C143
C143 = P41 · P103
P41 = 20031893966274074423596077442708505693053<41>
P103 = 2305085038050452143230599323022197163476467261349173660893918734016736964140945346920717888247983995591<103>
SNFS difficulty: 154 digits. Divisors found: r1=20031893966274074423596077442708505693053 (pp41) r2=2305085038050452143230599323022197163476467261349173660893918734016736964140945346920717888247983995591 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.689). Factorization parameters were as follows: n: 46175219065471497544696430236163828161418409151702714305658788678833996656676372801075680683544452514045855985835996777599255062948253551329323 m: 2000000000000000000000000000000 deg: 5 c5: 325 c0: -56 skew: 0.70 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 503364 x 503612 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
(16·10220-61)/9 = 1(7)2191<221> = 13 · 353 · 1877 · 16492937 · 1805034167<10> · 937019983238111<15> · 55949358235598934650206505967480781<35> · C148
C148 = P63 · P85
P63 = 502302273034882362079860646223768728379203876736278008316737227<63>
P85 = 2632707497199637986790781217412309087011431749152792902304523313521897147926180843269<85>
Number: 17771_220 N=1322414960079354351709834861520621170706984511895469829631709464819715591749118547779968053941698236864151284187903149814300379387206849149544675063 ( 148 digits) Divisors found: r1=502302273034882362079860646223768728379203876736278008316737227 (pp63) r2=2632707497199637986790781217412309087011431749152792902304523313521897147926180843269 (pp85) Version: Msieve-1.39 Total time: 1400.00 hours. Scaled time: 3830.40 units (timescale=2.736). Factorization parameters were as follows: name: 17771_220 n: 1322414960079354351709834861520621170706984511895469829631709464819715591749118547779968053941698236864151284187903149814300379387206849149544675063 skew: 190966.40 c5: 24166860 c4: -17657193107092 c3: -2881381445141050978 c2: 749005469110315625842208 c1: -28000830886921387321901315893 c0: 8308569654994887332138921957235 Y1: 253242919256012579 Y0: -8864032069059734770877792666 # norm 2.53e+20 # alpha -5.85 # Murphy_E 7.15e-12 type: gnfs rlim: 36000000 alim: 36000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 36000000/36000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [18000000, 19000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3086519 x 3086767 Total sieving time: 1280.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 30.00 hours (4 cpu) Time per square root: 1.50 hours. Prototype def-par.txt line would be: gnfs,147,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,36000000,36000000,29,29,58,58,2.6,2.6,100000 total time: 1400.00 hours.
C148 is the largest number which was factored by GNFS in our tables so far. Congratulations!
By Serge Batalov / GMP-ECM 6.2.1
(38·10205+61)/9 = 4(2)2049<206> = 7 · 996172031694311<15> · C190
C190 = P39 · C152
P39 = 604708101318908926128095438473785832727<39>
C152 = [10012970019827499748751154328820037782074317676296066223065340785954584373285105326974194401949500349014357279371189711576864463523554910181915957776451<152>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3954599440 Step 1 took 16015ms Step 2 took 15053ms ********** Factor found in step 2: 604708101318908926128095438473785832727 Found probable prime factor of 39 digits: 604708101318908926128095438473785832727 Composite cofactor has 152 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10129+61)/9 = 4(2)1289<130> = 113 · 212476189 · 206782920150614243<18> · C102
C102 = P31 · P72
P31 = 6877800995261078438976596986477<31>
P72 = 123648287482431227866137204018035742921025020239320352409776567579513327<72>
Factor found in step 1: 6877800995261078438976596986477
(38·10151+61)/9 = 4(2)1509<152> = 7 · 1117 · 20743 · 192637 · 82137278791<11> · C128
C128 = P29 · P99
P29 = 56185303161233834414804494597<29>
P99 = 292829995865447732444269891383468434429946313251210428873631095088198685156325342448697256025078463<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3917450993 Step 1 took 9731ms Step 2 took 10584ms ********** Factor found in step 2: 56185303161233834414804494597 Found probable prime factor of 29 digits: 56185303161233834414804494597 Probable prime cofactor 292829995865447732444269891383468434429946313251210428873631095088198685156325342448697256025078463 has 99 digits
(13·10145-7)/3 = 4(3)1441<146> = 3709 · 3847 · 2170109 · C133
C133 = P32 · C101
P32 = 39052045075867533488696837658421<32>
C101 = [35835853124155232087376837262708155018312446867976450226551174108265579054212486580985798592914115673<101>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2266195174 Step 1 took 9764ms Step 2 took 10698ms ********** Factor found in step 2: 39052045075867533488696837658421 Found probable prime factor of 32 digits: 39052045075867533488696837658421 Composite cofactor has 101 digits
(13·10186-7)/3 = 4(3)1851<187> = 29 · 41 · 1723 · 2881969280353873<16> · C165
C165 = P34 · C132
P34 = 2267180036234447141280701752917889<34>
C132 = [323727512032728409566065549304498685213258027853771402670265835962965506247762803100126933161757433369766377101984695411470824717509<132>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=980914334 Step 1 took 13664ms Step 2 took 13602ms ********** Factor found in step 2: 2267180036234447141280701752917889 Found probable prime factor of 34 digits: 2267180036234447141280701752917889 Composite cofactor has 132 digits
(13·10194-7)/3 = 4(3)1931<195> = 3881 · 4040009 · 12429749 · 4005775577929<13> · C165
C165 = P32 · C133
P32 = 66007507859850270736596089399561<32>
C133 = [8409183178583936583030174346844415915814492342050749419119294169308338808320971385476178209350780286513505479940764510332776202970919<133>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=230614363 Step 1 took 13630ms Step 2 took 13457ms ********** Factor found in step 2: 66007507859850270736596089399561 Found probable prime factor of 32 digits: 66007507859850270736596089399561 Composite cofactor 8409183178583936583030174346844415915814492342050749419119294169308338808320971385476178209350780286513505479940764510332776202970919 has 133 digits
(38·10180+61)/9 = 4(2)1799<181> = 112 · 193 · 2125621 · 9206214079<10> · 61673945456472526189<20> · C141
C141 = P32 · P109
P32 = 37615930741760579786512667771617<32>
P109 = 3982519964961393426250352239850021980260372565021485335616685544317069003492639457212340339450474841652800179<109>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1328187747 Step 1 took 11835ms Step 2 took 11587ms ********** Factor found in step 2: 37615930741760579786512667771617 Found probable prime factor of 32 digits: 37615930741760579786512667771617 Probable prime cofactor 3982519964961393426250352239850021980260372565021485335616685544317069003492639457212340339450474841652800179 has 109 digits
(38·10175+61)/9 = 4(2)1749<176> = 7 · 48661 · C171
C171 = P31 · C140
P31 = 1740394642983557583386337035393<31>
C140 = [71222018811833964655417651567953033432448526235056638873220031832622185237876237006720634532335848847765089902608605674576837157124980845239<140>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=205899236 Step 1 took 13705ms ********** Factor found in step 1: 1740394642983557583386337035393 Found probable prime factor of 31 digits: 1740394642983557583386337035393 Composite cofactor has 140 digits
(13·10204-7)/3 = 4(3)2031<205> = 119179 · 279991 · 11574691 · 21512664293<11> · C177
C177 = P32 · P146
P32 = 26308325916731982485427287860457<32>
P146 = 19823551780928035006602671905281634246612561791914656475871110593336489297213306083897826212562111916418038463405766923512493202714696938292099769<146>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1594125605 Step 1 took 16110ms Step 2 took 14725ms ********** Factor found in step 2: 26308325916731982485427287860457 Found probable prime factor of 32 digits: 26308325916731982485427287860457 Probable prime cofactor has 146 digits
(13·10193-7)/3 = 4(3)1921<194> = 151 · 10209190744703<14> · C179
C179 = P31 · C148
P31 = 7709568588244219307028066227297<31>
C148 = [3646059534317701069724515171275791765391252664992167269599666190068435969269326867841860958544963686066522189227458537555849678015726858695874479291<148>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2528423854 Step 1 took 15951ms Step 2 took 14697ms ********** Factor found in step 2: 7709568588244219307028066227297 Found probable prime factor of 31 digits: 7709568588244219307028066227297 Composite cofactor has 148 digits
(13·10125-7)/3 = 4(3)1241<126> = 17 · 19 · 137 · 3943 · 80849611 · C110
C110 = P39 · P71
P39 = 756960282992795240590601586497232434921<39>
P71 = 40580855963552503455078830310304821124582047703016518551277824518526757<71>
SNFS difficulty: 126 digits. Divisors found: r1=756960282992795240590601586497232434921 (pp39) r2=40580855963552503455078830310304821124582047703016518551277824518526757 (pp71) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 30718096214260565396870102557694086018037165181434351721059131933001350211212314245444509148935415858799681197 m: 10000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 125763 x 125999 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,49,49,2.3,2.3,50000 total time: 1.30 hours.
By Sinkiti Sibata / Msieve
(38·10155+43)/9 = 4(2)1547<156> = 13 · 648404825447551<15> · C140
C140 = P62 · P78
P62 = 68502326768501726934975760518634987979255867421670311224348881<62>
P78 = 731216821236048149998573343592774757206363666972266538567208965878323259710609<78>
Number: 42227_155 N=50090053626936883206705630949905665484857244831913664200001658149686866574332055065172584204637245327813337676459217261678272501746512978529 ( 140 digits) SNFS difficulty: 156 digits. Divisors found: r1=68502326768501726934975760518634987979255867421670311224348881 r2=731216821236048149998573343592774757206363666972266538567208965878323259710609 Version: Total time: 32.15 hours. Scaled time: 82.43 units (timescale=2.564). Factorization parameters were as follows: name: 42227_155 n: 50090053626936883206705630949905665484857244831913664200001658149686866574332055065172584204637245327813337676459217261678272501746512978529 m: 10000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 560105 x 560353 Total sieving time: 32.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 32.15 hours. --------- CPU info (if available) ----------
(37·10156+17)/9 = 4(1)1553<157> = 33 · 29 · 10189769 · 13778351 · 2556268457<10> · C131
C131 = P34 · P97
P34 = 3797525954125859456188033584306947<34>
P97 = 3852375905322761719761070474805539193083531228124173816698883017752530486655049572263981171562611<97>
Number: 42227_156 N=14629497485512292314226146150939449758591397444048985543210067506643763064342654028641902815319618485210777765254764855395452758617 ( 131 digits) SNFS difficulty: 158 digits. Divisors found: r1=3797525954125859456188033584306947 r2=3852375905322761719761070474805539193083531228124173816698883017752530486655049572263981171562611 Version: Total time: 30.38 hours. Scaled time: 60.50 units (timescale=1.991). Factorization parameters were as follows: name: 42227_156 n: 14629497485512292314226146150939449758591397444048985543210067506643763064342654028641902815319618485210777765254764855395452758617 m: 20000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 579590 x 579838 Total sieving time: 30.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 30.38 hours. --------- CPU info (if available) ----------
(38·10111+61)/9 = 4(2)1109<112> = 11339154493<11> · 7499477233123<13> · C89
C89 = P37 · P52
P37 = 7397064209141958485367330886373433809<37>
P52 = 6712279544020820708812321814113647261175372549034179<52>
Tue Dec 23 17:27:13 2008 Msieve v. 1.39 Tue Dec 23 17:27:13 2008 random seeds: 7cbef738 6f66a5b2 Tue Dec 23 17:27:13 2008 factoring 49651162776832117853392950700141070758766904970016036759288163519498755604332466735157811 (89 digits) Tue Dec 23 17:27:14 2008 searching for 15-digit factors Tue Dec 23 17:27:16 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 17:27:16 2008 using multiplier of 11 Tue Dec 23 17:27:16 2008 using 32kb Intel Core sieve core Tue Dec 23 17:27:16 2008 sieve interval: 32 blocks of size 32768 Tue Dec 23 17:27:16 2008 processing polynomials in batches of 7 Tue Dec 23 17:27:16 2008 using a sieve bound of 1556189 (58842 primes) Tue Dec 23 17:27:16 2008 using large prime bound of 124495120 (26 bits) Tue Dec 23 17:27:16 2008 using double large prime bound of 372626841652480 (42-49 bits) Tue Dec 23 17:27:16 2008 using trial factoring cutoff of 49 bits Tue Dec 23 17:27:16 2008 polynomial 'A' values have 11 factors Tue Dec 23 18:38:03 2008 59083 relations (15371 full + 43712 combined from 629948 partial), need 58938 Tue Dec 23 18:38:04 2008 begin with 645319 relations Tue Dec 23 18:38:04 2008 reduce to 144756 relations in 9 passes Tue Dec 23 18:38:04 2008 attempting to read 144756 relations Tue Dec 23 18:38:06 2008 recovered 144756 relations Tue Dec 23 18:38:06 2008 recovered 124039 polynomials Tue Dec 23 18:38:06 2008 attempting to build 59083 cycles Tue Dec 23 18:38:06 2008 found 59083 cycles in 5 passes Tue Dec 23 18:38:06 2008 distribution of cycle lengths: Tue Dec 23 18:38:06 2008 length 1 : 15371 Tue Dec 23 18:38:06 2008 length 2 : 11272 Tue Dec 23 18:38:06 2008 length 3 : 10572 Tue Dec 23 18:38:06 2008 length 4 : 7903 Tue Dec 23 18:38:06 2008 length 5 : 5658 Tue Dec 23 18:38:06 2008 length 6 : 3490 Tue Dec 23 18:38:06 2008 length 7 : 2178 Tue Dec 23 18:38:06 2008 length 9+: 2639 Tue Dec 23 18:38:06 2008 largest cycle: 20 relations Tue Dec 23 18:38:07 2008 matrix is 58842 x 59083 (14.7 MB) with weight 3621608 (61.30/col) Tue Dec 23 18:38:07 2008 sparse part has weight 3621608 (61.30/col) Tue Dec 23 18:38:07 2008 filtering completed in 3 passes Tue Dec 23 18:38:07 2008 matrix is 55011 x 55075 (13.8 MB) with weight 3403270 (61.79/col) Tue Dec 23 18:38:07 2008 sparse part has weight 3403270 (61.79/col) Tue Dec 23 18:38:08 2008 saving the first 48 matrix rows for later Tue Dec 23 18:38:08 2008 matrix is 54963 x 55075 (10.5 MB) with weight 2875828 (52.22/col) Tue Dec 23 18:38:08 2008 sparse part has weight 2420144 (43.94/col) Tue Dec 23 18:38:08 2008 matrix includes 64 packed rows Tue Dec 23 18:38:08 2008 using block size 22030 for processor cache size 1024 kB Tue Dec 23 18:38:08 2008 commencing Lanczos iteration Tue Dec 23 18:38:08 2008 memory use: 9.3 MB Tue Dec 23 18:38:29 2008 lanczos halted after 871 iterations (dim = 54961) Tue Dec 23 18:38:29 2008 recovered 17 nontrivial dependencies Tue Dec 23 18:38:29 2008 prp37 factor: 7397064209141958485367330886373433809 Tue Dec 23 18:38:29 2008 prp52 factor: 6712279544020820708812321814113647261175372549034179 Tue Dec 23 18:38:29 2008 elapsed time 01:11:16
(38·10157+43)/9 = 4(2)1567<158> = 3833 · 5659 · C151
C151 = P59 · P92
P59 = 91465142275684836616097261496147067070594607462692509039543<59>
P92 = 21281731504266448543814676309892699432806272010865082270499088002856980384586766615972344087<92>
Number: 42227_157 N=1946536599910654994557048257147197041338131628011548883606705701794496211816949357822976664975587383170602105211092084740339931779936681520738685232241 ( 151 digits) SNFS difficulty: 159 digits. Divisors found: r1=91465142275684836616097261496147067070594607462692509039543 r2=21281731504266448543814676309892699432806272010865082270499088002856980384586766615972344087 Version: Total time: 34.06 hours. Scaled time: 85.63 units (timescale=2.514). Factorization parameters were as follows: name:42227_157 n: 1946536599910654994557048257147197041338131628011548883606705701794496211816949357822976664975587383170602105211092084740339931779936681520738685232241 m: 20000000000000000000000000000000 deg: 5 c5: 475 c0: 172 skew: 0.82 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 522055 x 522303 Total sieving time: 34.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 34.06 hours. --------- CPU info (if available) ----------
(13·10116-7)/3 = 4(3)1151<117> = 41 · 105225587 · C108
C108 = P47 · P61
P47 = 20912340313401736804695249831314117167056127139<47>
P61 = 4803018351672359716761183080233491333287524164537900935628787<61>
Number: 43331_116 N=100442354301686248318155650268889154362152020216994424474504576240621884645894815542260238572668695980350393 ( 108 digits) SNFS difficulty: 118 digits. Divisors found: r1=20912340313401736804695249831314117167056127139 r2=4803018351672359716761183080233491333287524164537900935628787 Version: Total time: 1.52 hours. Scaled time: 3.02 units (timescale=1.991). Factorization parameters were as follows: name: 43331_116 n: 100442354301686248318155650268889154362152020216994424474504576240621884645894815542260238572668695980350393 m: 200000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68965 x 69199 Total sieving time: 1.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.52 hours. --------- CPU info (if available) ----------
(38·10122+61)/9 = 4(2)1219<123> = 3 · 11 · 13 · 1447 · 8190245732611<13> · 42734715820119503<17> · C88
C88 = P38 · P51
P38 = 17894098175364997990374216358774504223<38>
P51 = 108599467479248166102092723780312641021472824805237<51>
Tue Dec 23 18:47:15 2008 Msieve v. 1.39 Tue Dec 23 18:47:15 2008 random seeds: 160947d4 cef27f46 Tue Dec 23 18:47:15 2008 factoring 1943289532866025046805189916901455945080339390486360112365850271499631585958241209015851 (88 digits) Tue Dec 23 18:47:16 2008 searching for 15-digit factors Tue Dec 23 18:47:17 2008 commencing quadratic sieve (88-digit input) Tue Dec 23 18:47:17 2008 using multiplier of 19 Tue Dec 23 18:47:17 2008 using 32kb Intel Core sieve core Tue Dec 23 18:47:17 2008 sieve interval: 24 blocks of size 32768 Tue Dec 23 18:47:17 2008 processing polynomials in batches of 9 Tue Dec 23 18:47:17 2008 using a sieve bound of 1506511 (57333 primes) Tue Dec 23 18:47:17 2008 using large prime bound of 120520880 (26 bits) Tue Dec 23 18:47:17 2008 using double large prime bound of 351489263807840 (42-49 bits) Tue Dec 23 18:47:17 2008 using trial factoring cutoff of 49 bits Tue Dec 23 18:47:17 2008 polynomial 'A' values have 11 factors Tue Dec 23 19:37:18 2008 57729 relations (16066 full + 41663 combined from 603363 partial), need 57429 Tue Dec 23 19:37:19 2008 begin with 619429 relations Tue Dec 23 19:37:19 2008 reduce to 138258 relations in 10 passes Tue Dec 23 19:37:19 2008 attempting to read 138258 relations Tue Dec 23 19:37:21 2008 recovered 138258 relations Tue Dec 23 19:37:21 2008 recovered 115980 polynomials Tue Dec 23 19:37:21 2008 attempting to build 57729 cycles Tue Dec 23 19:37:21 2008 found 57729 cycles in 5 passes Tue Dec 23 19:37:21 2008 distribution of cycle lengths: Tue Dec 23 19:37:21 2008 length 1 : 16066 Tue Dec 23 19:37:21 2008 length 2 : 11406 Tue Dec 23 19:37:21 2008 length 3 : 10192 Tue Dec 23 19:37:21 2008 length 4 : 7446 Tue Dec 23 19:37:21 2008 length 5 : 5239 Tue Dec 23 19:37:21 2008 length 6 : 3296 Tue Dec 23 19:37:21 2008 length 7 : 1905 Tue Dec 23 19:37:21 2008 length 9+: 2179 Tue Dec 23 19:37:21 2008 largest cycle: 19 relations Tue Dec 23 19:37:21 2008 matrix is 57333 x 57729 (13.8 MB) with weight 3385288 (58.64/col) Tue Dec 23 19:37:21 2008 sparse part has weight 3385288 (58.64/col) Tue Dec 23 19:37:22 2008 filtering completed in 3 passes Tue Dec 23 19:37:22 2008 matrix is 52973 x 53036 (12.7 MB) with weight 3125748 (58.94/col) Tue Dec 23 19:37:22 2008 sparse part has weight 3125748 (58.94/col) Tue Dec 23 19:37:22 2008 saving the first 48 matrix rows for later Tue Dec 23 19:37:22 2008 matrix is 52925 x 53036 (9.3 MB) with weight 2584488 (48.73/col) Tue Dec 23 19:37:22 2008 sparse part has weight 2112719 (39.84/col) Tue Dec 23 19:37:22 2008 matrix includes 64 packed rows Tue Dec 23 19:37:22 2008 using block size 21214 for processor cache size 1024 kB Tue Dec 23 19:37:23 2008 commencing Lanczos iteration Tue Dec 23 19:37:23 2008 memory use: 8.5 MB Tue Dec 23 19:37:40 2008 lanczos halted after 838 iterations (dim = 52924) Tue Dec 23 19:37:41 2008 recovered 17 nontrivial dependencies Tue Dec 23 19:37:42 2008 prp38 factor: 17894098175364997990374216358774504223 Tue Dec 23 19:37:42 2008 prp51 factor: 108599467479248166102092723780312641021472824805237 Tue Dec 23 19:37:42 2008 elapsed time 00:50:27
(13·10119-7)/3 = 4(3)1181<120> = 23 · 127 · C117
C117 = P48 · P70
P48 = 113514518603811468544415778265029062834435682901<48>
P70 = 1306890282973394626750519136011642653347252960413338529753654668995311<70>
Number: 43331_119 N=148351021339723838867967591007645783407508844003195252767317128837156225037087755334930959716991897751911445851877211 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=113514518603811468544415778265029062834435682901 r2=1306890282973394626750519136011642653347252960413338529753654668995311 Version: Total time: 2.19 hours. Scaled time: 4.38 units (timescale=1.997). Factorization parameters were as follows: name: 43331_119 n: 148351021339723838867967591007645783407508844003195252767317128837156225037087755334930959716991897751911445851877211 m: 1000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 87580 x 87818 Total sieving time: 2.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.19 hours. --------- CPU info (if available) ----------
(38·10124+61)/9 = 4(2)1239<125> = 11 · 472 · 383 · 170711 · 1500390189343255882395007<25> · C89
C89 = P41 · P48
P41 = 63555308651323802072448928885255075100069<41>
P48 = 278699608001282959114888883431789684547614379749<48>
Tue Dec 23 20:12:21 2008 Msieve v. 1.39 Tue Dec 23 20:12:21 2008 random seeds: 7df503ec db120c14 Tue Dec 23 20:12:21 2008 factoring 17712839607524491181194896261236888181051603158412905861666362722760429830774699542102681 (89 digits) Tue Dec 23 20:12:22 2008 searching for 15-digit factors Tue Dec 23 20:12:24 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 20:12:24 2008 using multiplier of 1 Tue Dec 23 20:12:24 2008 using 32kb Intel Core sieve core Tue Dec 23 20:12:24 2008 sieve interval: 30 blocks of size 32768 Tue Dec 23 20:12:24 2008 processing polynomials in batches of 7 Tue Dec 23 20:12:24 2008 using a sieve bound of 1546837 (58547 primes) Tue Dec 23 20:12:24 2008 using large prime bound of 123746960 (26 bits) Tue Dec 23 20:12:24 2008 using double large prime bound of 368605688486800 (42-49 bits) Tue Dec 23 20:12:24 2008 using trial factoring cutoff of 49 bits Tue Dec 23 20:12:24 2008 polynomial 'A' values have 11 factors Tue Dec 23 21:02:17 2008 58671 relations (16518 full + 42153 combined from 614508 partial), need 58643 Tue Dec 23 21:02:18 2008 begin with 631026 relations Tue Dec 23 21:02:19 2008 reduce to 139761 relations in 11 passes Tue Dec 23 21:02:19 2008 attempting to read 139761 relations Tue Dec 23 21:02:20 2008 recovered 139761 relations Tue Dec 23 21:02:20 2008 recovered 112916 polynomials Tue Dec 23 21:02:20 2008 attempting to build 58671 cycles Tue Dec 23 21:02:21 2008 found 58671 cycles in 6 passes Tue Dec 23 21:02:21 2008 distribution of cycle lengths: Tue Dec 23 21:02:21 2008 length 1 : 16518 Tue Dec 23 21:02:21 2008 length 2 : 11650 Tue Dec 23 21:02:21 2008 length 3 : 10419 Tue Dec 23 21:02:21 2008 length 4 : 7564 Tue Dec 23 21:02:21 2008 length 5 : 5203 Tue Dec 23 21:02:21 2008 length 6 : 3267 Tue Dec 23 21:02:21 2008 length 7 : 1916 Tue Dec 23 21:02:21 2008 length 9+: 2134 Tue Dec 23 21:02:21 2008 largest cycle: 19 relations Tue Dec 23 21:02:21 2008 matrix is 58547 x 58671 (13.9 MB) with weight 3403013 (58.00/col) Tue Dec 23 21:02:21 2008 sparse part has weight 3403013 (58.00/col) Tue Dec 23 21:02:21 2008 filtering completed in 3 passes Tue Dec 23 21:02:21 2008 matrix is 53864 x 53928 (12.9 MB) with weight 3170121 (58.78/col) Tue Dec 23 21:02:21 2008 sparse part has weight 3170121 (58.78/col) Tue Dec 23 21:02:22 2008 saving the first 48 matrix rows for later Tue Dec 23 21:02:22 2008 matrix is 53816 x 53928 (9.1 MB) with weight 2584186 (47.92/col) Tue Dec 23 21:02:22 2008 sparse part has weight 2066484 (38.32/col) Tue Dec 23 21:02:22 2008 matrix includes 64 packed rows Tue Dec 23 21:02:22 2008 using block size 21571 for processor cache size 1024 kB Tue Dec 23 21:02:22 2008 commencing Lanczos iteration Tue Dec 23 21:02:22 2008 memory use: 8.4 MB Tue Dec 23 21:02:40 2008 lanczos halted after 853 iterations (dim = 53814) Tue Dec 23 21:02:40 2008 recovered 16 nontrivial dependencies Tue Dec 23 21:02:41 2008 prp41 factor: 63555308651323802072448928885255075100069 Tue Dec 23 21:02:41 2008 prp48 factor: 278699608001282959114888883431789684547614379749 Tue Dec 23 21:02:41 2008 elapsed time 00:50:20
(38·10123+61)/9 = 4(2)1229<124> = 59 · 29050033885209937<17> · C106
C106 = P38 · P68
P38 = 90758930904109184231531507553783048527<38>
P68 = 27142700885477796848302781645863411898017548539507764956042342567569<68>
Number: 42229_123 N=2463442514215982536119131591935078249728878201624727560526653267928776465809352361520806512445821303420863 ( 106 digits) SNFS difficulty: 125 digits. Divisors found: r1=90758930904109184231531507553783048527 r2=27142700885477796848302781645863411898017548539507764956042342567569 Version: Total time: 1.88 hours. Scaled time: 4.84 units (timescale=2.575). Factorization parameters were as follows: name: 42229_123 n: 2463442514215982536119131591935078249728878201624727560526653267928776465809352361520806512445821303420863 m: 5000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111021 x 111261 Total sieving time: 1.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.88 hours. --------- CPU info (if available) ----------
(38·10131+61)/9 = 4(2)1309<132> = 3 · 661 · C129
C129 = P62 · P68
P62 = 18931593415430636447428825920870807172531523070990639092291417<62>
P68 = 11246857801195903571673445644347018389968064581167169333729364888739<68>
Number: 42229_131 N=212920939093405054070712164509441362694010197792346052557852860424721241665265871014736370258306718215946657701574494312769653163 ( 129 digits) SNFS difficulty: 132 digits. Divisors found: r1=18931593415430636447428825920870807172531523070990639092291417 r2=11246857801195903571673445644347018389968064581167169333729364888739 Version: Total time: 3.43 hours. Scaled time: 7.84 units (timescale=2.282). Factorization parameters were as follows: name: 42229_131 n: 212920939093405054070712164509441362694010197792346052557852860424721241665265871014736370258306718215946657701574494312769653163 m: 100000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 1130000 alim: 1130000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1130000/1130000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [565000, 1015001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159415 x 159663 Total sieving time: 3.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1130000,1130000,26,26,47,47,2.3,2.3,50000 total time: 3.43 hours. --------- CPU info (if available) ----------
(38·10125+61)/9 = 4(2)1249<126> = 34 · 23789 · C120
C120 = P48 · P72
P48 = 375555149263134842089555204601763364829365781719<48>
P72 = 583453381194914039518484879886709379205169265358315351203669660340202799<72>
Number: 42229_125 N=219118921662736653480897241240879679435937152310888693873048609053267290890344184505974190904823332197951341875626831481 ( 120 digits) SNFS difficulty: 126 digits. Divisors found: r1=375555149263134842089555204601763364829365781719 r2=583453381194914039518484879886709379205169265358315351203669660340202799 Version: Total time: 2.23 hours. Scaled time: 4.43 units (timescale=1.991). Factorization parameters were as follows: name: 42229_125 n: 219118921662736653480897241240879679435937152310888693873048609053267290890344184505974190904823332197951341875626831481 m: 10000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123791 x 124029 Total sieving time: 2.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
(13·10174-7)/3 = 4(3)1731<175> = 2661733 · 2981915448269<13> · 57373034177700817<17> · 210183647146556081<18> · 1886441303582244311116568671646101<34> · C89
C89 = P37 · P53
P37 = 1154850117862112282943626662349224241<37>
P53 = 20781965619296732780146962236360397468436031673870679<53>
ue Dec 23 21:17:52 2008 Msieve v. 1.39 Tue Dec 23 21:17:52 2008 random seeds: 9d7994a0 f4a4cbfc Tue Dec 23 21:17:52 2008 factoring 24000055444851197132978321002485393490269394924989129370986539182893234062802945405929639 (89 digits) Tue Dec 23 21:17:53 2008 searching for 15-digit factors Tue Dec 23 21:17:54 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 21:17:54 2008 using multiplier of 39 Tue Dec 23 21:17:54 2008 using 32kb Intel Core sieve core Tue Dec 23 21:17:54 2008 sieve interval: 30 blocks of size 32768 Tue Dec 23 21:17:54 2008 processing polynomials in batches of 7 Tue Dec 23 21:17:54 2008 using a sieve bound of 1545007 (58667 primes) Tue Dec 23 21:17:54 2008 using large prime bound of 123600560 (26 bits) Tue Dec 23 21:17:54 2008 using double large prime bound of 367821176096160 (42-49 bits) Tue Dec 23 21:17:54 2008 using trial factoring cutoff of 49 bits Tue Dec 23 21:17:54 2008 polynomial 'A' values have 12 factors Tue Dec 23 22:28:02 2008 58882 relations (15618 full + 43264 combined from 622557 partial), need 58763 Tue Dec 23 22:28:03 2008 begin with 638175 relations Tue Dec 23 22:28:03 2008 reduce to 143131 relations in 9 passes Tue Dec 23 22:28:03 2008 attempting to read 143131 relations Tue Dec 23 22:28:05 2008 recovered 143131 relations Tue Dec 23 22:28:05 2008 recovered 124085 polynomials Tue Dec 23 22:28:05 2008 attempting to build 58882 cycles Tue Dec 23 22:28:05 2008 found 58881 cycles in 5 passes Tue Dec 23 22:28:05 2008 distribution of cycle lengths: Tue Dec 23 22:28:05 2008 length 1 : 15618 Tue Dec 23 22:28:05 2008 length 2 : 11396 Tue Dec 23 22:28:05 2008 length 3 : 10604 Tue Dec 23 22:28:05 2008 length 4 : 7945 Tue Dec 23 22:28:05 2008 length 5 : 5461 Tue Dec 23 22:28:05 2008 length 6 : 3495 Tue Dec 23 22:28:05 2008 length 7 : 2019 Tue Dec 23 22:28:05 2008 length 9+: 2343 Tue Dec 23 22:28:05 2008 largest cycle: 17 relations Tue Dec 23 22:28:06 2008 matrix is 58667 x 58881 (14.2 MB) with weight 3480054 (59.10/col) Tue Dec 23 22:28:06 2008 sparse part has weight 3480054 (59.10/col) Tue Dec 23 22:28:06 2008 filtering completed in 3 passes Tue Dec 23 22:28:06 2008 matrix is 54828 x 54892 (13.3 MB) with weight 3262907 (59.44/col) Tue Dec 23 22:28:06 2008 sparse part has weight 3262907 (59.44/col) Tue Dec 23 22:28:06 2008 saving the first 48 matrix rows for later Tue Dec 23 22:28:06 2008 matrix is 54780 x 54892 (8.1 MB) with weight 2523354 (45.97/col) Tue Dec 23 22:28:06 2008 sparse part has weight 1787841 (32.57/col) Tue Dec 23 22:28:06 2008 matrix includes 64 packed rows Tue Dec 23 22:28:06 2008 using block size 21956 for processor cache size 1024 kB Tue Dec 23 22:28:07 2008 commencing Lanczos iteration Tue Dec 23 22:28:07 2008 memory use: 8.0 MB Tue Dec 23 22:28:24 2008 lanczos halted after 868 iterations (dim = 54778) Tue Dec 23 22:28:24 2008 recovered 17 nontrivial dependencies Tue Dec 23 22:28:24 2008 prp37 factor: 1154850117862112282943626662349224241 Tue Dec 23 22:28:24 2008 prp53 factor: 20781965619296732780146962236360397468436031673870679 Tue Dec 23 22:28:24 2008 elapsed time 01:10:32
By Jo Yeong Uk / GGNFS / Msieve v1.39
(38·10158+7)/9 = 4(2)1573<159> = 3 · 41 · 227 · 457 · 719 · 11692937714243057<17> · C133
C133 = P60 · P74
P60 = 261684502017364426401172993314582377543873715761538550838501<60>
P74 = 15040538615515346545319103996178595611693408558594037216409591162891195973<74>
I've used Greg Childer's x64 binaries that is about 30% faster. Number: 42223_158 N=3935875857674073259892366744726611131660458011927081245662043080032693008432327787653104908465235028172227775906183483719689864556473 ( 133 digits) SNFS difficulty: 161 digits. Divisors found: r1=261684502017364426401172993314582377543873715761538550838501 r2=15040538615515346545319103996178595611693408558594037216409591162891195973 Version: Total time: 16.42 hours. Scaled time: 39.20 units (timescale=2.387). Factorization parameters were as follows: n: 3935875857674073259892366744726611131660458011927081245662043080032693008432327787653104908465235028172227775906183483719689864556473 m: 100000000000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9164673 Max relations in full relation-set: Initial matrix: Pruned matrix : 657541 x 657789 Total sieving time: 14.77 hours. Total relation processing time: 0.62 hours. Matrix solve time: 0.95 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 16.42 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(13·10163-7)/3 = 4(3)1621<164> = 23 · 181 · 201977806379599<15> · 256380435467453624357<21> · 3848836599303511776161<22> · C104
C104 = P40 · P65
P40 = 2484322471920498002597770188046418572961<40>
P65 = 21022759073577810522071683163551125750312379421937000260369560979<65>
Number: 43331_163 N=52227312788259904783285448177771151215979194504591185340103120146351292794322523024425734515127250088819 ( 104 digits) Divisors found: r1=2484322471920498002597770188046418572961 r2=21022759073577810522071683163551125750312379421937000260369560979 Version: Total time: 3.98 hours. Scaled time: 9.53 units (timescale=2.391). Factorization parameters were as follows: name: 43331_163 n: 52227312788259904783285448177771151215979194504591185340103120146351292794322523024425734515127250088819 skew: 22078.67 # norm 5.99e+14 c5: 21240 c4: -1497386772 c3: -38425098620186 c2: 845882405351926079 c1: 8026727642520429063354 c0: 1072508182475386490862336 # alpha -6.69 Y1: 84046748929 Y0: -75536254703912113145 # Murphy_E 2.05e-09 # M 14288233827694019863237397998856850064401035115600452898033582468342007884707128037624699464864009909031 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5069392 Max relations in full relation-set: Initial matrix: Pruned matrix : 241075 x 241323 Total sieving time: 3.46 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.98 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(13·10106-7)/3 = 4(3)1051<107> = 41 · 13774823 · 49522433 · C91
C91 = P32 · P59
P32 = 57847164065344667246749592041001<32>
P59 = 26783551748975471064496580057189581449979924547068814782949<59>
Number: n N=1549352512275633183368088459353775952136320751322520942606357553923121412953602781723691949 ( 91 digits) SNFS difficulty: 107 digits. Divisors found: r1=57847164065344667246749592041001 (pp32) r2=26783551748975471064496580057189581449979924547068814782949 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 1.18 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_105_1 n: 1549352512275633183368088459353775952136320751322520942606357553923121412953602781723691949 type: snfs skew: 0.56 deg: 5 c5: 130 c0: -7 m: 1000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 2000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [225000, 271001) Primes: RFBsize:37706, AFBsize:37704, largePrimes:4143192 encountered Relations: rels:3498691, finalFF:97136 Max relations in full relation-set: 48 Initial matrix: 75477 x 97136 with sparse part having weight 10956977. Pruned matrix : 70519 x 70960 with weight 5601496. Total sieving time: 0.56 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
(38·10116+61)/9 = 4(2)1159<117> = 32 · 11 · 13 · 6271 · 7643257 · 44775959 · 883573237 · C87
C87 = P40 · P47
P40 = 4242755187407345742527427668930198334521<40>
P47 = 40776679208206304454293512576431198414080057327<47>
Tue Dec 23 18:19:00 2008 Tue Dec 23 18:19:00 2008 Tue Dec 23 18:19:00 2008 Msieve v. 1.39 Tue Dec 23 18:19:00 2008 random seeds: 96cc2620 f2dff84d Tue Dec 23 18:19:00 2008 factoring 173005467235862557859424523342614033694193668612191137256544163118007289277935603085367 (87 digits) Tue Dec 23 18:19:01 2008 searching for 15-digit factors Tue Dec 23 18:19:02 2008 commencing quadratic sieve (87-digit input) Tue Dec 23 18:19:02 2008 using multiplier of 7 Tue Dec 23 18:19:02 2008 using 64kb Opteron sieve core Tue Dec 23 18:19:02 2008 sieve interval: 10 blocks of size 65536 Tue Dec 23 18:19:02 2008 processing polynomials in batches of 11 Tue Dec 23 18:19:02 2008 using a sieve bound of 1480243 (56254 primes) Tue Dec 23 18:19:02 2008 using large prime bound of 118419440 (26 bits) Tue Dec 23 18:19:02 2008 using double large prime bound of 340534638927600 (41-49 bits) Tue Dec 23 18:19:02 2008 using trial factoring cutoff of 49 bits Tue Dec 23 18:19:02 2008 polynomial 'A' values have 11 factors Tue Dec 23 18:48:34 2008 56642 relations (16217 full + 40425 combined from 588342 partial), need 56350 Tue Dec 23 18:48:34 2008 begin with 604559 relations Tue Dec 23 18:48:34 2008 reduce to 134247 relations in 11 passes Tue Dec 23 18:48:34 2008 attempting to read 134247 relations Tue Dec 23 18:48:35 2008 recovered 134247 relations Tue Dec 23 18:48:35 2008 recovered 109821 polynomials Tue Dec 23 18:48:35 2008 attempting to build 56642 cycles Tue Dec 23 18:48:36 2008 found 56642 cycles in 5 passes Tue Dec 23 18:48:36 2008 distribution of cycle lengths: Tue Dec 23 18:48:36 2008 length 1 : 16217 Tue Dec 23 18:48:36 2008 length 2 : 11293 Tue Dec 23 18:48:36 2008 length 3 : 10010 Tue Dec 23 18:48:36 2008 length 4 : 7280 Tue Dec 23 18:48:36 2008 length 5 : 5006 Tue Dec 23 18:48:36 2008 length 6 : 3000 Tue Dec 23 18:48:36 2008 length 7 : 1762 Tue Dec 23 18:48:36 2008 length 9+: 2074 Tue Dec 23 18:48:36 2008 largest cycle: 17 relations Tue Dec 23 18:48:36 2008 matrix is 56254 x 56642 (12.9 MB) with weight 3166386 (55.90/col) Tue Dec 23 18:48:36 2008 sparse part has weight 3166386 (55.90/col) Tue Dec 23 18:48:37 2008 filtering completed in 3 passes Tue Dec 23 18:48:37 2008 matrix is 51309 x 51373 (11.8 MB) with weight 2892193 (56.30/col) Tue Dec 23 18:48:37 2008 sparse part has weight 2892193 (56.30/col) Tue Dec 23 18:48:37 2008 saving the first 48 matrix rows for later Tue Dec 23 18:48:37 2008 matrix is 51261 x 51373 (7.7 MB) with weight 2276433 (44.31/col) Tue Dec 23 18:48:37 2008 sparse part has weight 1699820 (33.09/col) Tue Dec 23 18:48:37 2008 matrix includes 64 packed rows Tue Dec 23 18:48:37 2008 using block size 20549 for processor cache size 1024 kB Tue Dec 23 18:48:37 2008 commencing Lanczos iteration Tue Dec 23 18:48:37 2008 memory use: 7.5 MB Tue Dec 23 18:48:51 2008 lanczos halted after 812 iterations (dim = 51259) Tue Dec 23 18:48:51 2008 recovered 16 nontrivial dependencies Tue Dec 23 18:48:52 2008 prp40 factor: 4242755187407345742527427668930198334521 Tue Dec 23 18:48:52 2008 prp47 factor: 40776679208206304454293512576431198414080057327 Tue Dec 23 18:48:52 2008 elapsed time 00:29:52
(13·10134-7)/3 = 4(3)1331<135> = 8849 · 48271117 · 8224435209442541<16> · 423468662193971749903<21> · C87
C87 = P32 · P55
P32 = 69478828398569728593459721798867<32>
P55 = 4192380641004827675507764758323249935285647811508989127<55>
Tue Dec 23 19:41:18 2008 Tue Dec 23 19:41:18 2008 Tue Dec 23 19:41:18 2008 Msieve v. 1.39 Tue Dec 23 19:41:18 2008 random seeds: baed84ac 587f7957 Tue Dec 23 19:41:18 2008 factoring 291281695137860183482012662507685449765126395405237570140944533477572342538205183919109 (87 digits) Tue Dec 23 19:41:18 2008 searching for 15-digit factors Tue Dec 23 19:41:19 2008 commencing quadratic sieve (87-digit input) Tue Dec 23 19:41:19 2008 using multiplier of 29 Tue Dec 23 19:41:19 2008 using 64kb Opteron sieve core Tue Dec 23 19:41:19 2008 sieve interval: 10 blocks of size 65536 Tue Dec 23 19:41:19 2008 processing polynomials in batches of 11 Tue Dec 23 19:41:19 2008 using a sieve bound of 1489667 (56642 primes) Tue Dec 23 19:41:19 2008 using large prime bound of 119173360 (26 bits) Tue Dec 23 19:41:19 2008 using double large prime bound of 344447000754720 (42-49 bits) Tue Dec 23 19:41:19 2008 using trial factoring cutoff of 49 bits Tue Dec 23 19:41:19 2008 polynomial 'A' values have 11 factors Tue Dec 23 20:13:40 2008 56750 relations (16023 full + 40727 combined from 592860 partial), need 56738 Tue Dec 23 20:13:40 2008 begin with 608883 relations Tue Dec 23 20:13:41 2008 reduce to 135001 relations in 8 passes Tue Dec 23 20:13:41 2008 attempting to read 135001 relations Tue Dec 23 20:13:42 2008 recovered 135001 relations Tue Dec 23 20:13:42 2008 recovered 113426 polynomials Tue Dec 23 20:13:42 2008 attempting to build 56750 cycles Tue Dec 23 20:13:42 2008 found 56750 cycles in 6 passes Tue Dec 23 20:13:42 2008 distribution of cycle lengths: Tue Dec 23 20:13:42 2008 length 1 : 16023 Tue Dec 23 20:13:42 2008 length 2 : 11360 Tue Dec 23 20:13:42 2008 length 3 : 9954 Tue Dec 23 20:13:42 2008 length 4 : 7463 Tue Dec 23 20:13:42 2008 length 5 : 5058 Tue Dec 23 20:13:42 2008 length 6 : 3100 Tue Dec 23 20:13:42 2008 length 7 : 1796 Tue Dec 23 20:13:42 2008 length 9+: 1996 Tue Dec 23 20:13:42 2008 largest cycle: 19 relations Tue Dec 23 20:13:42 2008 matrix is 56642 x 56750 (13.3 MB) with weight 3250880 (57.28/col) Tue Dec 23 20:13:42 2008 sparse part has weight 3250880 (57.28/col) Tue Dec 23 20:13:43 2008 filtering completed in 3 passes Tue Dec 23 20:13:43 2008 matrix is 52021 x 52085 (12.3 MB) with weight 3026197 (58.10/col) Tue Dec 23 20:13:43 2008 sparse part has weight 3026197 (58.10/col) Tue Dec 23 20:13:43 2008 saving the first 48 matrix rows for later Tue Dec 23 20:13:43 2008 matrix is 51973 x 52085 (8.6 MB) with weight 2442834 (46.90/col) Tue Dec 23 20:13:43 2008 sparse part has weight 1949032 (37.42/col) Tue Dec 23 20:13:43 2008 matrix includes 64 packed rows Tue Dec 23 20:13:43 2008 using block size 20834 for processor cache size 1024 kB Tue Dec 23 20:13:44 2008 commencing Lanczos iteration Tue Dec 23 20:13:44 2008 memory use: 8.0 MB Tue Dec 23 20:13:59 2008 lanczos halted after 823 iterations (dim = 51967) Tue Dec 23 20:13:59 2008 recovered 13 nontrivial dependencies Tue Dec 23 20:14:00 2008 prp32 factor: 69478828398569728593459721798867 Tue Dec 23 20:14:00 2008 prp55 factor: 4192380641004827675507764758323249935285647811508989127 Tue Dec 23 20:14:00 2008 elapsed time 00:32:42
(13·10109-7)/3 = 4(3)1081<110> = 17 · 137 · 977 · C104
C104 = P31 · P73
P31 = 3407814690944317539762588740159<31>
P73 = 5588330392801960092177439750747650769278886747644606354321657148324217573<73>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 19043994410441148270827281371648092179964575240551285550193450360143908141146468972425614524063478614107 (104 digits) Using B1=714000, B2=696728352, polynomial Dickson(3), sigma=1623556616 Step 1 took 4969ms Step 2 took 2609ms ********** Factor found in step 2: 3407814690944317539762588740159 Found probable prime factor of 31 digits: 3407814690944317539762588740159 Probable prime cofactor 5588330392801960092177439750747650769278886747644606354321657148324217573 has 73 digits
(38·10109+61)/9 = 4(2)1089<110> = 7 · 199 · 881 · 580373 · C98
C98 = P44 · P55
P44 = 26751738096440014307990911916120465357207011<44>
P55 = 2215923985067384009560418171449180919028006614390617771<55>
Number: n N=59279818090142310194468555816137740448324236376809698473858515326593093225915093020485675422392481 ( 98 digits) SNFS difficulty: 111 digits. Divisors found: Wed Dec 24 00:30:23 2008 prp44 factor: 26751738096440014307990911916120465357207011 Wed Dec 24 00:30:23 2008 prp55 factor: 2215923985067384009560418171449180919028006614390617771 Wed Dec 24 00:30:23 2008 elapsed time 00:05:05 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 1.20 units (timescale=1.828). Factorization parameters were as follows: name: KA_4_2_108_9 n: 59279818090142310194468555816137740448324236376809698473858515326593093225915093020485675422392481 type: snfs skew: 1.74 deg: 5 c5: 19 c0: 305 m: 10000000000000000000000 rlim: 450000 alim: 450000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 275001) Primes: RFBsize:37706, AFBsize:37830, largePrimes:4770991 encountered Relations: rels:3870829, finalFF:81071 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 105623 hash collisions in 3950766 relations Msieve: matrix is 89786 x 90033 (23.6 MB) Total sieving time: 0.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,450000,450000,29,29,58,58,2.5,2.5,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10149+43)/9 = 4(2)1487<150> = 13 · 113453640491<12> · C138
C138 = P39 · P47 · P53
P39 = 123132274553465756860058461410327710779<39>
P47 = 27267256871151239064440712042018508774862667557<47>
P53 = 85264047995684401299884905037961478641338880822995323<53>
Number: 42227_149 N=286272281242565584871308935586551398963328947291933211769489506901789407053841847782020315712273819190869798534111037762948452697250984669 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=123132274553465756860058461410327710779 r2=27267256871151239064440712042018508774862667557 r3=85264047995684401299884905037961478641338880822995323 Version: Total time: 17.03 hours. Scaled time: 33.49 units (timescale=1.967). Factorization parameters were as follows: name: 42227_149 n: 286272281242565584871308935586551398963328947291933211769489506901789407053841847782020315712273819190869798534111037762948452697250984669 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 326210 x 326458 Total sieving time: 17.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.03 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(38·10179+43)/9 = 4(2)1787<180> = 13 · 190548791 · C171
C171 = P32 · C139
P32 = 83693711822605989870189783269927<32>
C139 = [2036567026754301909068906536670007279613488322697273803941595712633680899678332169392476463478230146670448373216770032371376154711024549247<139>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=28284232 Step 1 took 50467ms Step 2 took 24270ms ********** Factor found in step 2: 83693711822605989870189783269927 Found probable prime factor of 32 digits: 83693711822605989870189783269927 Composite cofactor has 139 digits
(38·10195+43)/9 = 4(2)1947<196> = 3 · 1409 · 36583 · 2631581 · C182
C182 = P37 · P145
P37 = 1110098676846052025875562910419707159<37>
P145 = 9346547020444687949473270005207416033036409081717352834060726263287081343511433873690747964630107753834169432220989123151666306482271859585653093<145>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3282926492 Step 1 took 58616ms Step 2 took 26203ms ********** Factor found in step 2: 1110098676846052025875562910419707159 Found probable prime factor of 37 digits: 1110098676846052025875562910419707159 Probable prime cofactor has 145 digits
By Robert Backstrom / GMP-ECM
(11·10166-17)/3 = 3(6)1651<167> = 31 · 9645541 · C159
C159 = P40 · P120
P40 = 1116427148631667120168455525371131408601<40>
P120 = 109838035390645973298719203114797829250387790912028941879398460215801086922957023513075842014334465944683742916668887991<120>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 122626164662483025347743472836949508140489448044728201240835654816634849691809178531191224129656978175172463918374192254346624590463586353818380837812123010591 (159 digits) Using B1=2860000, B2=4281671950, polynomial Dickson(6), sigma=2445717877 Step 1 took 37615ms Step 2 took 13651ms ********** Factor found in step 2: 1116427148631667120168455525371131408601 Found probable prime factor of 40 digits: 1116427148631667120168455525371131408601 Probable prime cofactor 109838035390645973298719203114797829250387790912028941879398460215801086922957023513075842014334465944683742916668887991 has 120 digits
Factorizations of 422...229 and Factorizations of 433...331 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GMP-ECM, Msieve
(37·10190+53)/9 = 4(1)1897<191> = 59 · 33366083669<11> · 1038688946123696607997710239<28> · 228822554008790119385212155709949<33> · C119
C119 = P37 · P41 · P42
P37 = 6700559039122072293901319740648826129<37>
P41 = 94122795556702802098640504555138641771009<41>
P42 = 139319457310594504389225773069331905769337<42>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 87865347299839227077677777536365983116150872999131750437968032584396075641901842890425376739301590272179304048017141257 (119 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2495475907 Step 1 took 13322ms Step 2 took 9282ms ********** Factor found in step 2: 6700559039122072293901319740648826129 Found probable prime factor of 37 digits: 6700559039122072293901319740648826129 Composite cofactor 13113136797515870136423584090069674988260781902340888649157796440990324986327751033 has 83 digits Mon Dec 22 22:59:56 2008 Mon Dec 22 22:59:56 2008 Mon Dec 22 22:59:56 2008 Msieve v. 1.39 Mon Dec 22 22:59:56 2008 random seeds: 5344db90 d0343cf0 Mon Dec 22 22:59:56 2008 factoring 13113136797515870136423584090069674988260781902340888649157796440990324986327751033 (83 digits) Mon Dec 22 22:59:57 2008 searching for 15-digit factors Mon Dec 22 22:59:58 2008 commencing quadratic sieve (83-digit input) Mon Dec 22 22:59:58 2008 using multiplier of 1 Mon Dec 22 22:59:58 2008 using VC8 32kb sieve core Mon Dec 22 22:59:58 2008 sieve interval: 12 blocks of size 32768 Mon Dec 22 22:59:58 2008 processing polynomials in batches of 17 Mon Dec 22 22:59:58 2008 using a sieve bound of 1357919 (52059 primes) Mon Dec 22 22:59:58 2008 using large prime bound of 124928548 (26 bits) Mon Dec 22 22:59:58 2008 using trial factoring cutoff of 27 bits Mon Dec 22 22:59:58 2008 polynomial 'A' values have 10 factors Mon Dec 22 23:15:29 2008 52266 relations (26562 full + 25704 combined from 277983 partial), need 52155 Mon Dec 22 23:15:29 2008 begin with 304545 relations Mon Dec 22 23:15:29 2008 reduce to 74683 relations in 2 passes Mon Dec 22 23:15:29 2008 attempting to read 74683 relations Mon Dec 22 23:15:30 2008 recovered 74683 relations Mon Dec 22 23:15:30 2008 recovered 66029 polynomials Mon Dec 22 23:15:30 2008 attempting to build 52266 cycles Mon Dec 22 23:15:30 2008 found 52266 cycles in 1 passes Mon Dec 22 23:15:30 2008 distribution of cycle lengths: Mon Dec 22 23:15:30 2008 length 1 : 26562 Mon Dec 22 23:15:30 2008 length 2 : 25704 Mon Dec 22 23:15:30 2008 largest cycle: 2 relations Mon Dec 22 23:15:30 2008 matrix is 52059 x 52266 (7.7 MB) with weight 1591401 (30.45/col) Mon Dec 22 23:15:30 2008 sparse part has weight 1591401 (30.45/col) Mon Dec 22 23:15:30 2008 filtering completed in 3 passes Mon Dec 22 23:15:30 2008 matrix is 37218 x 37282 (6.0 MB) with weight 1276780 (34.25/col) Mon Dec 22 23:15:30 2008 sparse part has weight 1276780 (34.25/col) Mon Dec 22 23:15:30 2008 saving the first 48 matrix rows for later Mon Dec 22 23:15:30 2008 matrix is 37170 x 37282 (4.8 MB) with weight 1060890 (28.46/col) Mon Dec 22 23:15:30 2008 sparse part has weight 894883 (24.00/col) Mon Dec 22 23:15:30 2008 matrix includes 64 packed rows Mon Dec 22 23:15:30 2008 using block size 14912 for processor cache size 4096 kB Mon Dec 22 23:15:30 2008 commencing Lanczos iteration Mon Dec 22 23:15:30 2008 memory use: 4.5 MB Mon Dec 22 23:15:35 2008 lanczos halted after 589 iterations (dim = 37168) Mon Dec 22 23:15:35 2008 recovered 15 nontrivial dependencies Mon Dec 22 23:15:35 2008 prp41 factor: 94122795556702802098640504555138641771009 Mon Dec 22 23:15:35 2008 prp42 factor: 139319457310594504389225773069331905769337 Mon Dec 22 23:15:35 2008 elapsed time 00:15:39
By Serge Batalov / GMP-ECM 6.2.1
(38·10176+43)/9 = 4(2)1757<177> = 7 · 953 · 18013 · 276447312401475563<18> · C152
C152 = P36 · C116
P36 = 178756426448137413914826142437964919<36>
C116 = [71103349768243348700450905945142994417179643820598258646824953982535526988209326934630523825762360058327976339721717<116>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1342266695 Step 1 took 43401ms Step 2 took 21416ms ********** Factor found in step 2: 178756426448137413914826142437964919 Found probable prime factor of 36 digits: 178756426448137413914826142437964919 Composite cofactor has 116 digits
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v1.39
(38·10156+7)/9 = 4(2)1553<157> = 1571 · 20627 · 161999 · 31370407 · C137
C137 = P40 · P97
P40 = 3151311867708119352908892784260206809733<40>
P97 = 8135888003589561713984004929583919997606982433878122227315798705604256568191678963555861658276451<97>
Number: 42223_156 N=25638720420055904175047718597666401571261026682120717702745767511977789529191792514452212244210202584659272309033290926661594350071497583 ( 137 digits) SNFS difficulty: 157 digits. Divisors found: r1=3151311867708119352908892784260206809733 r2=8135888003589561713984004929583919997606982433878122227315798705604256568191678963555861658276451 Version: Total time: 17.75 hours. Scaled time: 42.36 units (timescale=2.387). Factorization parameters were as follows: n: 25638720420055904175047718597666401571261026682120717702745767511977789529191792514452212244210202584659272309033290926661594350071497583 m: 10000000000000000000000000000000 deg: 5 c5: 380 c0: 7 skew: 0.45 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8115178 Max relations in full relation-set: Initial matrix: Pruned matrix : 565574 x 565822 Total sieving time: 16.58 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.68 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 17.75 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(35·10186-17)/9 = 3(8)1857<187> = 157 · 24359 · 61381 · 8547631 · 741825421 · 12281370259<11> · 1354976246545216979406271187005039<34> · C117
C117 = P43 · P74
P43 = 5120353883635458429190544130895666258719013<43>
P74 = 30662425523328166855980476520758336325858134810791000702868819091594477883<74>
Number: 38887_186 N=157002469610056383002517699709502160585077480848188350871607152214104956824868980051866840757039680270434992140089479 ( 117 digits) Divisors found: r1=5120353883635458429190544130895666258719013 r2=30662425523328166855980476520758336325858134810791000702868819091594477883 Version: Total time: 22.72 hours. Scaled time: 54.15 units (timescale=2.384). Factorization parameters were as follows: name: 38887_186 n: 157002469610056383002517699709502160585077480848188350871607152214104956824868980051866840757039680270434992140089479 skew: 90503.15 # norm 3.19e+16 c5: 7200 c4: -1050000632 c3: 784336535541926 c2: 6556944883925153517 c1: -2168736184919240296891976 c0: 307461253102532191921522760 # alpha -7.15 Y1: 2113994864537 Y0: -29357272872032918557839 # Murphy_E 4.67e-10 # M 22297279247945908317688117096806927032070203219509894621581388695827552723266532914832455914310598281190746054030867 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 2925001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9009334 Max relations in full relation-set: Initial matrix: Pruned matrix : 505641 x 505889 Polynomial selection time: 1.73 hours. Total sieving time: 19.51 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.67 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 22.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(38·10150+43)/9 = 4(2)1497<151> = 3 · 5404033 · 1315507653822793<16> · 1793543806775351758201343<25> · C105
C105 = P46 · P59
P46 = 1474436240860335083889521243713798444857541487<46>
P59 = 74863559958939232893634955690188665701792653148056199268121<59>
Number: 42227_150 N=110381545923280664073717632487428289003590698192574383665984937129689496720053069202801052883676794035927 ( 105 digits) Divisors found: r1=1474436240860335083889521243713798444857541487 (pp46) r2=74863559958939232893634955690188665701792653148056199268121 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 15.61 hours. Scaled time: 7.37 units (timescale=0.472). Factorization parameters were as follows: name: 42227_150 n: 110381545923280664073717632487428289003590698192574383665984937129689496720053069202801052883676794035927 skew: 13420.60 # norm 9.52e+14 c5: 107460 c4: -360905256 c3: -62359547385495 c2: -486725426096074673 c1: 4105199284466708023171 c0: -86832314907525862615335 # alpha -6.88 Y1: 67446069691 Y0: -63435188891743035196 # Murphy_E 1.97e-09 # M 69240885770336502168462731026371669070686911436648784413026709589522938575061457362992740606116577231612 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: RFBsize:183072, AFBsize:182694, largePrimes:4397803 encountered Relations: rels:4492136, finalFF:486116 Max relations in full relation-set: 28 Initial matrix: 365843 x 486116 with sparse part having weight 33668090. Pruned matrix : 267920 x 269813 with weight 16505009. Total sieving time: 13.47 hours. Total relation processing time: 0.27 hours. Matrix solve time: 1.68 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 15.61 hours. --------- CPU info (if available) ----------
(38·10140+43)/9 = 4(2)1397<141> = 7 · 2039 · 16902410577105783452297695849<29> · C109
C109 = P44 · P66
P44 = 12699265945218353733988416402502984096925867<44>
P66 = 137815655861186307456994950037515633314473360940130795156807220753<66>
Number: 42227_140 N=1750157665195895484648268135865022403532332639214085226117860426329641105594587945290563927802167775344917851 ( 109 digits) SNFS difficulty: 141 digits. Divisors found: r1=12699265945218353733988416402502984096925867 r2=137815655861186307456994950037515633314473360940130795156807220753 Version: Total time: 10.29 hours. Scaled time: 20.61 units (timescale=2.003). Factorization parameters were as follows: name: 42227_140 n: 1750157665195895484648268135865022403532332639214085226117860426329641105594587945290563927802167775344917851 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 255864 x 256112 Total sieving time: 10.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 10.29 hours. --------- CPU info (if available) ----------
(38·10144+43)/9 = 4(2)1437<145> = 33 · 31 · 1606157397847<13> · C130
C130 = P59 · P71
P59 = 43754364299985865542408997922500687052406885856436424436163<59>
P71 = 71780445327028706891060593598257035580865296056623661966850183987404811<71>
Number: 42227_144 N=3140707754454032100209047495164969064451607130248949747422702757390517541777485585989335253410516591681046770886049171734308580193 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=43754364299985865542408997922500687052406885856436424436163 r2=71780445327028706891060593598257035580865296056623661966850183987404811 Version: Total time: 10.43 hours. Scaled time: 20.90 units (timescale=2.003). Factorization parameters were as follows: name: 42227_144 n: 3140707754454032100209047495164969064451607130248949747422702757390517541777485585989335253410516591681046770886049171734308580193 m: 100000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 1960001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262590 x 262838 Total sieving time: 10.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 10.43 hours. --------- CPU info (if available) ----------
(38·10146+43)/9 = 4(2)1457<147> = 72 · 9222235349<10> · 81823735257070026169067<23> · C113
C113 = P54 · P59
P54 = 324669516616670697087399863175104643086264125364574157<54>
P59 = 35171265133319275701635037151479684144701079965460533176633<59>
Number: 42227_146 N=11419037649631533302730167351422803394561213724399974201383070218486899102995497193219122768932079190766508073381 ( 113 digits) SNFS difficulty: 148 digits. Divisors found: r1=324669516616670697087399863175104643086264125364574157 r2=35171265133319275701635037151479684144701079965460533176633 Version: Total time: 13.24 hours. Scaled time: 31.31 units (timescale=2.366). Factorization parameters were as follows: name: 42227_146 n: 11419037649631533302730167351422803394561213724399974201383070218486899102995497193219122768932079190766508073381 m: 200000000000000000000000000000 deg: 5 c5: 95 c0: 344 skew: 1.29 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 362115 x 362360 Total sieving time: 13.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 13.24 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(37·10186+71)/9 = 4(1)1859<187> = 32 · 592 · C183
C183 = P47 · P136
P47 = 55044224415250538928921553264661339723266003429<47>
P136 = 2383970764021785908203194996945240916853952320935449385966474798602815965953926289351897727903544055041607935420772339895475891591817859<136>
Number: n N=131223821734211468962019570082387280510425200648316611162536662871815605704334996683938558878710176230045999269402506020336145779026177379141086887902936930994002716687768875837438511 ( 183 digits) SNFS difficulty: 187 digits. Divisors found: Mon Dec 22 05:04:18 2008 prp47 factor: 55044224415250538928921553264661339723266003429 Mon Dec 22 05:04:18 2008 prp136 factor: 2383970764021785908203194996945240916853952320935449385966474798602815965953926289351897727903544055041607935420772339895475891591817859 Mon Dec 22 05:04:19 2008 elapsed time 06:55:19 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 93.76 hours. Scaled time: 192.30 units (timescale=2.051). Factorization parameters were as follows: name: KA_4_1_185_9 n: 131223821734211468962019570082387280510425200648316611162536662871815605704334996683938558878710176230045999269402506020336145779026177379141086887902936930994002716687768875837438511 type: snfs skew: 0.72 deg: 5 c5: 370 c0: 71 m: 10000000000000000000000000000000000000 rlim: 8800000 alim: 8800000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 5700001) Primes: RFBsize:590006, AFBsize:589651, largePrimes:33470457 encountered Relations: rels:31004910, finalFF:1017105 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7398741 hash collisions in 38005293 relations Msieve: matrix is 1645242 x 1645490 (446.2 MB) Total sieving time: 91.92 hours. Total relation processing time: 1.84 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,8800000,8800000,29,29,58,58,2.5,2.5,100000 total time: 93.76 hours. --------- CPU info (if available) ----------
(2·10186+7)/9 = (2)1853<186> = 61 · 7247 · C180
C180 = P64 · P117
P64 = 1000296869048935293617966311639974939939901074399500816397239041<64>
P117 = 502539820663756223904404112395960972646821102101410044844975062438931281776309797410654017639319069448362694337047509<117>
Number: n N=502689009182368786229739433665535365051501745713256638071202379327618261987938982602687425711989861768062809986319318615101833482757641312792455040123379990413720594892227246598869 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: Mon Dec 22 17:13:51 2008 prp64 factor: 1000296869048935293617966311639974939939901074399500816397239041 Mon Dec 22 17:13:51 2008 prp117 factor: 502539820663756223904404112395960972646821102101410044844975062438931281776309797410654017639319069448362694337047509 Mon Dec 22 17:13:51 2008 elapsed time 03:54:27 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.86 hours. Scaled time: 92.19 units (timescale=2.010). Factorization parameters were as follows: name: KA_2_185_3 n: 502689009182368786229739433665535365051501745713256638071202379327618261987938982602687425711989861768062809986319318615101833482757641312792455040123379990413720594892227246598869 type: snfs skew: 0.81 deg: 5 c5: 20 c0: 7 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 6750001) Primes: RFBsize:571119, AFBsize:570202, largePrimes:34438043 encountered Relations: rels:31297614, finalFF:904990 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3087212 hash collisions in 32883378 relations Msieve: matrix is 1657566 x 1657814 (456.2 MB) Total sieving time: 45.11 hours. Total relation processing time: 0.76 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 45.86 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(38·10154-11)/9 = 4(2)1531<155> = 277 · 719 · 6091 · 33053 · 207502704317<12> · 237956979619<12> · C119
C119 = P59 · P60
P59 = 51587834613479025493547275460082123019777651055195321608609<59>
P60 = 413393303095561319836967443404945417817696145003663940983647<60>
Number: n N=21326065350413624233193962291332887661551544452586939041686174287451002112206135225323163185190177586449359373803417023 ( 119 digits) SNFS difficulty: 156 digits. Divisors found: Sun Dec 21 11:31:14 2008 prp59 factor: 51587834613479025493547275460082123019777651055195321608609 Sun Dec 21 11:31:14 2008 prp60 factor: 413393303095561319836967443404945417817696145003663940983647 Sun Dec 21 11:31:14 2008 elapsed time 01:19:32 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.64 hours. Scaled time: 37.54 units (timescale=1.819). Factorization parameters were as follows: name: KA_4_2_153_1 n: 21326065350413624233193962291332887661551544452586939041686174287451002112206135225323163185190177586449359373803417023 type: snfs skew: 1.23 deg: 5 c5: 19 c0: -55 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2550001) Primes: RFBsize:216816, AFBsize:216782, largePrimes:16418732 encountered Relations: rels:15539332, finalFF:525467 Max relations in full relation-set: 28 Initial matrix: 433663 x 525467 with sparse part having weight 80415786. Pruned matrix : 404065 x 406297 with weight 54293410. Msieve: found 1223712 hash collisions in 16391218 relations Msieve: matrix is 523190 x 523438 (139.4 MB) Total sieving time: 20.24 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.5,2.5,100000 total time: 20.64 hours. --------- CPU info (if available) ----------
(38·10141+43)/9 = 4(2)1407<142> = 3 · 173 · 21157 · 180243689 · 173456622431<12> · C116
C116 = P40 · P76
P40 = 1755675497577629798819125718774504104057<40>
P76 = 7005262960181509629676894759365346286335418889322710401815129565027157909263<76>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 12298968533278811763657986664253858669350572760397013486487978589390414885086829887869288821107164783220801116179991 (116 digits) Using B1=2986000, B2=5706890290, polynomial Dickson(6), sigma=3859119621 Step 1 took 23235ms Step 2 took 10750ms ********** Factor found in step 2: 1755675497577629798819125718774504104057 Found probable prime factor of 40 digits: 1755675497577629798819125718774504104057 Probable prime cofactor 7005262960181509629676894759365346286335418889322710401815129565027157909263 has 76 digits
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(38·10155-11)/9 = 4(2)1541<156> = 103 · 2111 · 58267513 · 7551094801<10> · C133
C133 = P58 · P75
P58 = 8170250646439144324324539951122523668008977214876413918613<58>
P75 = 540186647223365813208039585829871641900469751792558202249175396131868628473<75>
Number: 42221_155 N=4413460303674498541861344363652947120119783104812592625476960256960945509230348423050843447267531724857326155033566161392143756467949 ( 133 digits) SNFS difficulty: 156 digits. Divisors found: r1=8170250646439144324324539951122523668008977214876413918613 r2=540186647223365813208039585829871641900469751792558202249175396131868628473 Version: Total time: 13.44 hours. Scaled time: 32.11 units (timescale=2.389). Factorization parameters were as follows: n: 4413460303674498541861344363652947120119783104812592625476960256960945509230348423050843447267531724857326155033566161392143756467949 m: 10000000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7818933 Max relations in full relation-set: Initial matrix: Pruned matrix : 471139 x 471387 Total sieving time: 12.38 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.51 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 13.44 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10173+17)/9 = 4(1)1723<174> = C174
C174 = P82 · P93
P82 = 2309642251320926628434349570227406190719013760451867200648957231633000117723292239<82>
P93 = 177997744402185728430025384772804913156559791188015710518448917566430790426321615278811044967<93>
Number: 41113_173 N=411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=2309642251320926628434349570227406190719013760451867200648957231633000117723292239 (pp82) r2=177997744402185728430025384772804913156559791188015710518448917566430790426321615278811044967 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 135.17 hours. Scaled time: 322.66 units (timescale=2.387). Factorization parameters were as follows: n: 411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 100000000000000000000000000000000000 deg: 5 c5: 37 c0: 1700 skew: 2.15 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5400001) Primes: RFBsize:387202, AFBsize:386654, largePrimes:16029251 encountered Relations: rels:16426603, finalFF:927524 Max relations in full relation-set: 28 Initial matrix: 773923 x 927524 with sparse part having weight 115621215. Pruned matrix : 697149 x 701082 with weight 92001068. Total sieving time: 129.09 hours. Total relation processing time: 0.26 hours. Matrix solve time: 5.71 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,5600000,5600000,28,28,52,52,2.5,2.5,100000 total time: 135.17 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(38·10116+43)/9 = 4(2)1157<117> = 7 · C116
C116 = P49 · P68
P49 = 1259410019485966740729222522666084595106750113901<49>
P68 = 47893425797961438500296126851957768875428420854455429268527512319561<68>
Number: 42227_116 N=60317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 ( 116 digits) SNFS difficulty: 118 digits. Divisors found: r1=1259410019485966740729222522666084595106750113901 r2=47893425797961438500296126851957768875428420854455429268527512319561 Version: Total time: 1.82 hours. Scaled time: 3.62 units (timescale=1.985). Factorization parameters were as follows: name: 42227_116 n: 60317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 m: 200000000000000000000000 deg: 5 c5: 95 c0: 344 skew: 1.29 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 580001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77068 x 77307 Total sieving time: 1.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.82 hours. --------- CPU info (if available) ----------
(38·10122+43)/9 = 4(2)1217<123> = 7 · 17 · 61 · 149 · C117
C117 = P57 · P60
P57 = 421173275667591299966378819510053262339263564370298327557<57>
P60 = 926866564584146824501549658874176921660428292030357582201921<60>
Number: 42227_122 N=390371427112672185902270102305050820709697309077296521718673900043752418633496601046257062255716090668489495772636997 ( 117 digits) SNFS difficulty: 124 digits. Divisors found: r1=421173275667591299966378819510053262339263564370298327557 r2=926866564584146824501549658874176921660428292030357582201921 Version: Total time: 2.34 hours. Scaled time: 4.65 units (timescale=1.985). Factorization parameters were as follows: name: 42227_122 n: 390371427112672185902270102305050820709697309077296521718673900043752418633496601046257062255716090668489495772636997 m: 2000000000000000000000000 deg: 5 c5: 475 c0: 172 skew: 0.82 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 710001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 91077 x 91317 Total sieving time: 2.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
(38·10101+43)/9 = 4(2)1007<102> = 13 · 115879 · C96
C96 = P36 · P61
P36 = 149610333136568974573076601882886309<36>
P61 = 1873403840352829086869098148580338599604466026363314354447189<61>
Sun Dec 21 06:00:54 2008 Msieve v. 1.39 Sun Dec 21 06:00:54 2008 random seeds: 2932d9f0 724ffcd1 Sun Dec 21 06:00:54 2008 factoring 280280572654514438616821274593606077308905258749492821240074840813542390186993609529185431635401 (96 digits) Sun Dec 21 06:00:55 2008 searching for 15-digit factors Sun Dec 21 06:00:56 2008 commencing quadratic sieve (96-digit input) Sun Dec 21 06:00:57 2008 using multiplier of 1 Sun Dec 21 06:00:57 2008 using 32kb Intel Core sieve core Sun Dec 21 06:00:57 2008 sieve interval: 36 blocks of size 32768 Sun Dec 21 06:00:57 2008 processing polynomials in batches of 6 Sun Dec 21 06:00:57 2008 using a sieve bound of 2245951 (83529 primes) Sun Dec 21 06:00:57 2008 using large prime bound of 336892650 (28 bits) Sun Dec 21 06:00:57 2008 using double large prime bound of 2236066681946550 (43-51 bits) Sun Dec 21 06:00:57 2008 using trial factoring cutoff of 51 bits Sun Dec 21 06:00:57 2008 polynomial 'A' values have 12 factors Sun Dec 21 10:26:20 2008 83888 relations (20624 full + 63264 combined from 1250885 partial), need 83625 Sun Dec 21 10:26:21 2008 begin with 1271509 relations Sun Dec 21 10:26:23 2008 reduce to 219257 relations in 14 passes Sun Dec 21 10:26:23 2008 attempting to read 219257 relations Sun Dec 21 10:26:26 2008 recovered 219257 relations Sun Dec 21 10:26:26 2008 recovered 203786 polynomials Sun Dec 21 10:26:26 2008 attempting to build 83888 cycles Sun Dec 21 10:26:26 2008 found 83888 cycles in 5 passes Sun Dec 21 10:26:26 2008 distribution of cycle lengths: Sun Dec 21 10:26:26 2008 length 1 : 20624 Sun Dec 21 10:26:26 2008 length 2 : 14487 Sun Dec 21 10:26:26 2008 length 3 : 14122 Sun Dec 21 10:26:26 2008 length 4 : 11284 Sun Dec 21 10:26:26 2008 length 5 : 8549 Sun Dec 21 10:26:26 2008 length 6 : 5869 Sun Dec 21 10:26:26 2008 length 7 : 3664 Sun Dec 21 10:26:26 2008 length 9+: 5289 Sun Dec 21 10:26:26 2008 largest cycle: 18 relations Sun Dec 21 10:26:27 2008 matrix is 83529 x 83888 (22.8 MB) with weight 5628323 (67.09/col) Sun Dec 21 10:26:27 2008 sparse part has weight 5628323 (67.09/col) Sun Dec 21 10:26:28 2008 filtering completed in 3 passes Sun Dec 21 10:26:28 2008 matrix is 79673 x 79736 (21.7 MB) with weight 5371984 (67.37/col) Sun Dec 21 10:26:28 2008 sparse part has weight 5371984 (67.37/col) Sun Dec 21 10:26:28 2008 saving the first 48 matrix rows for later Sun Dec 21 10:26:28 2008 matrix is 79625 x 79736 (15.2 MB) with weight 4447552 (55.78/col) Sun Dec 21 10:26:28 2008 sparse part has weight 3513534 (44.06/col) Sun Dec 21 10:26:28 2008 matrix includes 64 packed rows Sun Dec 21 10:26:28 2008 using block size 31894 for processor cache size 1024 kB Sun Dec 21 10:26:29 2008 commencing Lanczos iteration Sun Dec 21 10:26:29 2008 memory use: 13.8 MB Sun Dec 21 10:27:14 2008 lanczos halted after 1261 iterations (dim = 79624) Sun Dec 21 10:27:14 2008 recovered 16 nontrivial dependencies Sun Dec 21 10:27:15 2008 prp36 factor: 149610333136568974573076601882886309 Sun Dec 21 10:27:15 2008 prp61 factor: 1873403840352829086869098148580338599604466026363314354447189 Sun Dec 21 10:27:15 2008 elapsed time 04:26:21
(38·10129+43)/9 = 4(2)1287<130> = 3 · 31 · 58189 · C123
C123 = P37 · P87
P37 = 1232507627891317146613035330415084249<37>
P87 = 633034863906915936488414072851613985408624063435282028990273697724896163138531480627299<87>
Number: 42227_129 N=780220298486415738373901401055962471239385898458475638842840492193351812645781852909460998563306448789737672072710454313451 ( 123 digits) SNFS difficulty: 131 digits. Divisors found: r1=1232507627891317146613035330415084249 r2=633034863906915936488414072851613985408624063435282028990273697724896163138531480627299 Version: Total time: 2.82 hours. Scaled time: 5.67 units (timescale=2.010). Factorization parameters were as follows: name: 42227_129 n: 780220298486415738373901401055962471239385898458475638842840492193351812645781852909460998563306448789737672072710454313451 m: 100000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 840001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148817 x 149065 Total sieving time: 2.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 2.82 hours. --------- CPU info (if available) ----------
(38·10134+43)/9 = 4(2)1337<135> = 7 · 179 · 199 · C130
C130 = P36 · P40 · P54
P36 = 976249081765964679035742823768959109<36>
P40 = 2341296925239378772934166687655885634501<40>
P54 = 740832125045200102183124573455647869445175399351741849<54>
Number: 42227_134 N=1693311819361059977550250142260473245004841534978252083330548280998857905738678316651983870759312212387645418722592299976427317041 ( 130 digits) SNFS difficulty: 136 digits. Divisors found: r1=976249081765964679035742823768959109 r2=2341296925239378772934166687655885634501 r3=740832125045200102183124573455647869445175399351741849 Version: Total time: 4.33 hours. Scaled time: 8.49 units (timescale=1.960). Factorization parameters were as follows: name: 42227_134 n: 1693311819361059977550250142260473245004841534978252083330548280998857905738678316651983870759312212387645418722592299976427317041 m: 1000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1105001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 170006 x 170254 Total sieving time: 4.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 4.33 hours. --------- CPU info (if available) ----------
(38·10154+7)/9 = 4(2)1533<155> = 109 · 21407 · 153487 · 1581644833984969930562339<25> · C119
C119 = P57 · P63
P57 = 321166027817848058882563135857714158627714576218012383011<57>
P63 = 232085824426105456188431120454237300232428792761128210394472227<63>
Number: 42223_154 N=74538082343762785448110691159984807842440835697113941110272639034909759506082539134491568195318220352077422549926135497 ( 119 digits) SNFS difficulty: 156 digits. Divisors found: r1=321166027817848058882563135857714158627714576218012383011 r2=232085824426105456188431120454237300232428792761128210394472227 Version: Total time: 21.67 hours. Scaled time: 55.56 units (timescale=2.564). Factorization parameters were as follows: name: 42223_154 n: 74538082343762785448110691159984807842440835697113941110272639034909759506082539134491568195318220352077422549926135497 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 460519 x 460767 Total sieving time: 21.67 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 21.67 hours. --------- CPU info (if available) ----------
(38·10114+43)/9 = 4(2)1137<115> = 3 · 31 · 270737 · 5986022611<10> · C98
C98 = P40 · P58
P40 = 8392236225335848609185007290798128808749<40>
P58 = 3338062573732403028949060455916560045484897247255070478873<58>
Sun Dec 21 14:24:23 2008 Msieve v. 1.39 Sun Dec 21 14:24:23 2008 random seeds: 4496b508 55cd2144 Sun Dec 21 14:24:23 2008 factoring 28013809653714889828606582246638760452158805911349423981945536736639371761734654695622944462059877 (98 digits) Sun Dec 21 14:24:24 2008 searching for 15-digit factors Sun Dec 21 14:24:26 2008 commencing quadratic sieve (98-digit input) Sun Dec 21 14:24:26 2008 using multiplier of 13 Sun Dec 21 14:24:26 2008 using 32kb Intel Core sieve core Sun Dec 21 14:24:26 2008 sieve interval: 36 blocks of size 32768 Sun Dec 21 14:24:26 2008 processing polynomials in batches of 6 Sun Dec 21 14:24:26 2008 using a sieve bound of 2472797 (90588 primes) Sun Dec 21 14:24:26 2008 using large prime bound of 370919550 (28 bits) Sun Dec 21 14:24:26 2008 using double large prime bound of 2658908975208750 (43-52 bits) Sun Dec 21 14:24:26 2008 using trial factoring cutoff of 52 bits Sun Dec 21 14:24:26 2008 polynomial 'A' values have 13 factors Sun Dec 21 21:45:00 2008 90841 relations (22207 full + 68634 combined from 1358298 partial), need 90684 Sun Dec 21 21:45:01 2008 begin with 1380505 relations Sun Dec 21 21:45:03 2008 reduce to 237264 relations in 13 passes Sun Dec 21 21:45:03 2008 attempting to read 237264 relations Sun Dec 21 21:45:07 2008 recovered 237264 relations Sun Dec 21 21:45:07 2008 recovered 225925 polynomials Sun Dec 21 21:45:07 2008 attempting to build 90841 cycles Sun Dec 21 21:45:07 2008 found 90841 cycles in 6 passes Sun Dec 21 21:45:07 2008 distribution of cycle lengths: Sun Dec 21 21:45:07 2008 length 1 : 22207 Sun Dec 21 21:45:07 2008 length 2 : 16089 Sun Dec 21 21:45:07 2008 length 3 : 15123 Sun Dec 21 21:45:07 2008 length 4 : 12342 Sun Dec 21 21:45:07 2008 length 5 : 9156 Sun Dec 21 21:45:07 2008 length 6 : 6348 Sun Dec 21 21:45:07 2008 length 7 : 4061 Sun Dec 21 21:45:07 2008 length 9+: 5515 Sun Dec 21 21:45:07 2008 largest cycle: 24 relations Sun Dec 21 21:45:08 2008 matrix is 90588 x 90841 (24.3 MB) with weight 6018077 (66.25/col) Sun Dec 21 21:45:08 2008 sparse part has weight 6018077 (66.25/col) Sun Dec 21 21:45:09 2008 filtering completed in 3 passes Sun Dec 21 21:45:09 2008 matrix is 86557 x 86621 (23.3 MB) with weight 5762657 (66.53/col) Sun Dec 21 21:45:09 2008 sparse part has weight 5762657 (66.53/col) Sun Dec 21 21:45:09 2008 saving the first 48 matrix rows for later Sun Dec 21 21:45:09 2008 matrix is 86509 x 86621 (14.0 MB) with weight 4514781 (52.12/col) Sun Dec 21 21:45:09 2008 sparse part has weight 3151662 (36.38/col) Sun Dec 21 21:45:09 2008 matrix includes 64 packed rows Sun Dec 21 21:45:09 2008 using block size 34648 for processor cache size 1024 kB Sun Dec 21 21:45:10 2008 commencing Lanczos iteration Sun Dec 21 21:45:10 2008 memory use: 13.8 MB Sun Dec 21 21:45:59 2008 lanczos halted after 1370 iterations (dim = 86505) Sun Dec 21 21:45:59 2008 recovered 16 nontrivial dependencies Sun Dec 21 21:46:00 2008 prp40 factor: 8392236225335848609185007290798128808749 Sun Dec 21 21:46:00 2008 prp58 factor: 3338062573732403028949060455916560045484897247255070478873 Sun Dec 21 21:46:00 2008 elapsed time 07:21:37
(38·10139+43)/9 = 4(2)1387<140> = 23 · 47 · 157 · 1091 · 490913 · 95099288952186151<17> · C109
C109 = P34 · P76
P34 = 1393980093270082701445581996312139<34>
P76 = 3503907362859903751937502287009860162839613179165479888499563514926963907713<76>
Number: 42227_139 N=4884377112489178144273156295792950485073388003515582263988391522853491148860966070259939401017505922337628107 ( 109 digits) SNFS difficulty: 141 digits. Divisors found: r1=1393980093270082701445581996312139 r2=3503907362859903751937502287009860162839613179165479888499563514926963907713 Version: Total time: 6.96 hours. Scaled time: 13.90 units (timescale=1.997). Factorization parameters were as follows: name: 42227_139 n: 4884377112489178144273156295792950485073388003515582263988391522853491148860966070259939401017505922337628107 m: 10000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 200308 x 200556 Total sieving time: 6.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.96 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10123+43)/9 = 4(2)1227<124> = 3 · 523 · 4981091 · 595375639 · C105
C105 = P37 · P69
P37 = 6625236622908351129130519627635150409<37>
P69 = 136962354440508632796329576785523794043541101927468396673154669332863<69>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2291580702 Step 1 took 8167ms Step 2 took 5212ms ********** Factor found in step 2: 6625236622908351129130519627635150409 Found probable prime factor of 37 digits: 6625236622908351129130519627635150409 Probable prime cofactor 136962354440508632796329576785523794043541101927468396673154669332863 has 69 digits
(38·10102+43)/9 = 4(2)1017<103> = 3 · 283 · C100
C100 = P46 · P55
P46 = 2339819275170388413017198578896211823485991939<46>
P55 = 2125450928489942711483795575495927297447161644376716257<55>
SNFS difficulty: 103 digits. Divisors found: r1=2339819275170388413017198578896211823485991939 (pp46) r2=2125450928489942711483795575495927297447161644376716257 (pp55) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.732). Factorization parameters were as follows: n: 4973171050909566810626881298259390132181651616280591545609213453736421934301792959036775291192252323 m: 20000000000000000000000000 deg: 4 c4: 475 c0: 86 skew: 0.65 type: snfs lss: 1 rlim: 380000 alim: 380000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 380000/380000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [190000, 250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37602 x 37840 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,380000,380000,25,25,44,44,2.2,2.2,20000 total time: 0.30 hours.
(38·10152+43)/9 = 4(2)1517<153> = 7 · 113 · 140869 · 549053809 · 611191649 · C128
C128 = P34 · P94
P34 = 3311927853322341988197805383433981<34>
P94 = 3409384512902395854395804534112932958824831083076127506595975133098149114787081693316069646053<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=965743905 Step 1 took 9800ms Step 2 took 5995ms ********** Factor found in step 2: 3311927853322341988197805383433981 Found probable prime factor of 34 digits: 3311927853322341988197805383433981 Probable prime cofactor 3409384512902395854395804534112932958824831083076127506595975133098149114787081693316069646053 has 94 digits
(38·10169+43)/9 = 4(2)1687<170> = 59 · 337 · 977 · 39198743 · 227965993 · C147
C147 = P28 · P119
P28 = 2655820141606970410062410591<28>
P119 = 91584872364486444849043172878832212662987223413797999591678382550522470542734022451786510752287876994744879249741744633<119>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3830038547 Step 1 took 11702ms Step 2 took 6882ms ********** Factor found in step 2: 2655820141606970410062410591 Found probable prime factor of 28 digits: 2655820141606970410062410591 Probable prime cofactor 91584872364486444849043172878832212662987223413797999591678382550522470542734022451786510752287876994744879249741744633 has 119 digits
(38·10113+43)/9 = 4(2)1127<114> = 13 · 25237 · 1575809689<10> · C99
C99 = P41 · P59
P41 = 49735454513288675927478118921779346906991<41>
P59 = 16420642634281376632440806439033280504579372286731350984533<59>
SNFS difficulty: 115 digits. Divisors found: r1=49735454513288675927478118921779346906991 (pp41) r2=16420642634281376632440806439033280504579372286731350984533 (pp59) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.727). Factorization parameters were as follows: n: 816688124816270146188018767143009804753821509031817108709323199602796756189812586828039616230570203 m: 50000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 47 mfba: 47 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved rational special-q in [300000, 550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69513 x 69761 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,47,47,2.2,2.2,50000 total time: 0.90 hours.
(38·10205+43)/9 = 4(2)2047<206> = 23 · 39769717773101<14> · 8283027066071539<16> · C175
C175 = P37 · P138
P37 = 7446927812275566885066367640755661501<37>
P138 = 748332346108083517204496076352281303579644183334234639264171266650967495931706368107585190904256579382948621638256477256434360566405057791<138>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2569832959 Step 1 took 16203ms Step 2 took 8239ms ********** Factor found in step 2: 7446927812275566885066367640755661501 Found probable prime factor of 37 digits: 7446927812275566885066367640755661501 Probable prime cofactor has 138 digits
(38·10191+43)/9 = 4(2)1907<192> = 13 · 717303940796383<15> · C176
C176 = P35 · C142
P35 = 12195699723660604747700062962777713<35>
C142 = [3712682365398479438282243464664815196302016944064203440914178876499906302165494535438255401453384930597328776467752153773796030078075034987601<142>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2348945104 Step 1 took 16054ms Step 2 took 8272ms ********** Factor found in step 2: 12195699723660604747700062962777713 Found probable prime factor of 35 digits: 12195699723660604747700062962777713 Composite cofactor has 142 digits
(38·10172+43)/9 = 4(2)1717<173> = 78904708409084059771<20> · C153
C153 = P33 · C121
P33 = 203557052143526710221580765970953<33>
C121 = [2628766520436983600848734312946145497452786791325720620424489826049404434795255603834058064887550987569889245091927009729<121>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1531914312 Step 1 took 11706ms Step 2 took 6748ms ********** Factor found in step 2: 203557052143526710221580765970953 Found probable prime factor of 33 digits: 203557052143526710221580765970953 Composite cofactor has 121 digits
Factorizations of 422...227 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(37·10186+53)/9 = 4(1)1857<187> = 139 · 2017 · 109199 · 4908232860071<13> · 704264442759638437<18> · 10378488878367712824242152948117<32> · C115
C115 = P49 · P67
P49 = 2689929817698759709554943418445374763129549819167<49>
P67 = 1391502082959891862381969553973756799821963452576981458534155488297<67>
Number: 41117_186 N=3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599 ( 115 digits) Divisors found: r1=2689929817698759709554943418445374763129549819167 r2=1391502082959891862381969553973756799821963452576981458534155488297 Version: Total time: 23.49 hours. Scaled time: 56.17 units (timescale=2.391). Factorization parameters were as follows: name: 41117_186 n: 3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599 skew: 19576.61 # norm 1.71e+15 c5: 71040 c4: 5792275644 c3: -75240063274582 c2: -1887877505352075585 c1: 13052664014638656996786 c0: 93295585212988908690842265 # alpha -4.74 Y1: 612224461663 Y0: -8797188109558810865144 # Murphy_E 5.31e-10 # M 2485795306113775412739937617463062509924090181073194909416249828870954543475074827476885729509114857968585428779381 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2730001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9452756 Max relations in full relation-set: Initial matrix: Pruned matrix : 554579 x 554827 Polynomial selection time: 1.33 hours. Total sieving time: 20.54 hours. Total relation processing time: 0.81 hours. Matrix solve time: 0.69 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 23.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Erik Branger / GGNFS, Msieve
(37·10155+53)/9 = 4(1)1547<156> = 3 · 72 · 6133 · 5060729981<10> · C140
C140 = P66 · P75
P66 = 269367314763042914282201634549081377562001210180121850198455089769<66>
P75 = 334511345691997716865981461494206580384756565786245263349384660653593436903<75>
Number: 41117_155 N=90106422946825408363604857144748861894415378687351286417994381988145740514085075549840680353930716088170577060545290073747118283014102345407 ( 140 digits) SNFS difficulty: 156 digits. Divisors found: r1=269367314763042914282201634549081377562001210180121850198455089769 r2=334511345691997716865981461494206580384756565786245263349384660653593436903 Version: Total time: 23.50 hours. Scaled time: 50.72 units (timescale=2.158). Factorization parameters were as follows: n: 90106422946825408363604857144748861894415378687351286417994381988145740514085075549840680353930716088170577060545290073747118283014102345407 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 464074 x 464322 Total sieving time: 23.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.50 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(29·10184+43)/9 = 3(2)1837<185> = 13 · 37 · C182
C182 = P84 · P99
P84 = 111279443625051066686752583950724085052587338038048389915997789891205474859639594563<84>
P99 = 601998579502120043908560040845175574623627224208589111827646965534334972535100226307763607247653009<99>
Number: n N=66990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990067 ( 182 digits) SNFS difficulty: 186 digits. Divisors found: Sat Dec 20 12:36:23 2008 prp84 factor: 111279443625051066686752583950724085052587338038048389915997789891205474859639594563 Sat Dec 20 12:36:23 2008 prp99 factor: 601998579502120043908560040845175574623627224208589111827646965534334972535100226307763607247653009 Sat Dec 20 12:36:23 2008 elapsed time 02:46:43 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 75.44 hours. Scaled time: 151.78 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_2_183_7 n: 66990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990067 type: snfs skew: 1.71 deg: 5 c5: 29 c0: 430 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 5000001) Primes: RFBsize:571119, AFBsize:570987, largePrimes:30886821 encountered Relations: rels:27632037, finalFF:860192 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7185617 hash collisions in 37455763 relations Msieve: matrix is 1392558 x 1392806 (375.4 MB) Total sieving time: 74.58 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 75.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
(38·10149+7)/9 = 4(2)1483<150> = 3 · 942700533825610283281<21> · 20730491537768293860737<23> · C106
C106 = P52 · P54
P52 = 9200186247536074110725736408181370462425062932285921<52>
P54 = 782780251568680203916999787491470260852006980070718293<54>
Number: 42223_149 N=7201724105325000015271685446739135051345465751365130548241989191456787699852270086959653138717414921052853 ( 106 digits) SNFS difficulty: 151 digits. Divisors found: r1=9200186247536074110725736408181370462425062932285921 (pp52) r2=782780251568680203916999787491470260852006980070718293 (pp54) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 32.37 hours. Scaled time: 15.28 units (timescale=0.472). Factorization parameters were as follows: name: 42223_149 n: 7201724105325000015271685446739135051345465751365130548241989191456787699852270086959653138717414921052853 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: RFBsize:169511, AFBsize:169171, largePrimes:7064924 encountered Relations: rels:7144749, finalFF:554927 Max relations in full relation-set: 28 Initial matrix: 338747 x 554927 with sparse part having weight 60132314. Pruned matrix : 271443 x 273200 with weight 27469857. Total sieving time: 29.50 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.48 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 32.37 hours. --------- CPU info (if available) ----------
(38·10150+7)/9 = 4(2)1493<151> = 863 · 354115717612803949610519013179<30> · C119
C119 = P44 · P75
P44 = 15431000559815206035395680817815150310335313<44>
P75 = 895346212652991183542440571902343530844413019287198941007927920963839486323<75>
Number: 42223_150 N=13816087908676731462588855160525165982813315669594685075162160784517590741668791402353425690447665556919582119807424099 ( 119 digits) SNFS difficulty: 151 digits. Divisors found: r1=15431000559815206035395680817815150310335313 r2=895346212652991183542440571902343530844413019287198941007927920963839486323 Version: Total time: 14.72 hours. Scaled time: 37.91 units (timescale=2.575). Factorization parameters were as follows: name: 42223_150 n: 13816087908676731462588855160525165982813315669594685075162160784517590741668791402353425690447665556919582119807424099 m: 1000000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 390910 x 391158 Total sieving time: 14.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 14.72 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(38·10170+7)/9 = 4(2)1693<171> = 3 · 157 · 2753 · 196771 · C160
C160 = P42 · P55 · P64
P42 = 153476075151060773153342076445236124223591<42>
P55 = 1917702948548351014972144075788906674953668710503672193<55>
P64 = 5622518013204771026946571224850334036846250412736550122129247077<64>
SNFS difficulty: 171 digits. Divisors found: r1=153476075151060773153342076445236124223591 (pp42) r2=1917702948548351014972144075788906674953668710503672193 (pp55) r3=5622518013204771026946571224850334036846250412736550122129247077 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1654828058268818266826261750512835223969607670110340280285501032823035481764827422126230743258275115337701206453136677726673505147628725557203557147602078050851 m: 10000000000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 874715 x 874963 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,200000 total time: 55.00 hours.
(37·10166+53)/9 = 4(1)1657<167> = 173898349349<12> · C156
C156 = P69 · P87
P69 = 538011999070133912246986997440759766268356209654134229710176541138511<69>
P87 = 439411878873081543610582036653852567797126398884022586714170752552913700796583215412903<87>
SNFS difficulty: 167 digits. Divisors found: r1=538011999070133912246986997440759766268356209654134229710176541138511 (pp69) r2=439411878873081543610582036653852567797126398884022586714170752552913700796583215412903 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.309). Factorization parameters were as follows: n: 236408863367670142721103299844704445499417936577501671655105982078525215703490151195127495684341517913294975327058250115806342823270262708415877058579607433 m: 1000000000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2150000, 5650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 954792 x 955039 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,52,52,2.4,2.4,100000 total time: 45.00 hours.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(37·10175+71)/9 = 4(1)1749<176> = 7 · 1277 · 131517606982631<15> · 705741823656784897<18> · 4900621212089152019167274959<28> · C113
C113 = P47 · P66
P47 = 27453836811193533274952439583072078790856233791<47>
P66 = 368286958765672743643689545618535973113755495971514753154648801787<66>
Number: 41119_175 N=10110890065643541273876685037705613811147665442907802879999742534726910408194518400360771008434790950557690584517 ( 113 digits) Divisors found: r1=27453836811193533274952439583072078790856233791 r2=368286958765672743643689545618535973113755495971514753154648801787 Version: Total time: 17.05 hours. Scaled time: 40.67 units (timescale=2.385). Factorization parameters were as follows: name: 41119_175 n: 10110890065643541273876685037705613811147665442907802879999742534726910408194518400360771008434790950557690584517 skew: 31984.13 # norm 1.63e+15 c5: 30360 c4: 1656856535 c3: -70094780515248 c2: -2243626268782858410 c1: 50520317420498134325496 c0: -50669818649517852164082573 # alpha -5.19 Y1: 1865253410543 Y0: -3195175792034622680434 # Murphy_E 7.24e-10 # M 5786324711396589223504645891167661672681231097769903942441373431869606174401351108406813980815335802242941075202 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2160001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8619601 Max relations in full relation-set: Initial matrix: Pruned matrix : 412092 x 412340 Polynomial selection time: 1.04 hours. Total sieving time: 14.87 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.36 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 17.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve
(38·10165-11)/9 = 4(2)1641<166> = 32 · 7 · 29 · 433 · 14103704127121829141<20> · 512830241895585414353418585991<30> · C111
C111 = P46 · P66
P46 = 2929181820706174355164874093534364725713662073<46>
P66 = 251919332497036727931045115049442101193333340434130266632902737037<66>
Number: n N=737917529034754159507563986949881633271119592299813842582578872003532723125311534918896755506803917146199297701 ( 111 digits) Divisors found: Fri Dec 19 10:35:19 2008 prp46 factor: 2929181820706174355164874093534364725713662073 Fri Dec 19 10:35:19 2008 prp66 factor: 251919332497036727931045115049442101193333340434130266632902737037 Fri Dec 19 10:35:19 2008 elapsed time 01:12:51 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 14.05 hours. Scaled time: 25.30 units (timescale=1.801). Factorization parameters were as follows: n: 737917529034754159507563986949881633271119592299813842582578872003532723125311534918896755506803917146199297701 Y0: -2383114440365214673050 Y1: 666243497711 c0: -312209647156954433244650149 c1: 14556975766321877839966 c2: 843009328727785431 c3: -27567575689852 c4: 956954044 c5: 9600 skew: 23510.92 name: KA_4_2_164_1 type: gnfs rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2300001) Primes: RFBsize:243539, AFBsize:244085, largePrimes:15000202 encountered Relations: rels:13799352, finalFF:770852 Max relations in full relation-set: 28 Initial matrix: 487700 x 770852 with sparse part having weight 92119394. Pruned matrix : Msieve: found 810713 hash collisions in 14297157 relations Msieve: matrix is 402030 x 402276 (111.7 MB) Total sieving time: 13.69 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,28,28,56,56,2.5,2.5,100000 total time: 14.05 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10136+7)/9 = 4(2)1353<137> = 409 · 6361 · C131
C131 = P49 · P82
P49 = 8594000668119493432759132571049781552594004445247<49>
P82 = 1888413082581267978490482365718941523363737007376231943020350468156526437976112641<82>
Number: 42223_136 N=16229023293389009133139106090876295081397306947333103820777599984556803097659300782781313782997714996228246862748288574754789067327 ( 131 digits) SNFS difficulty: 138 digits. Divisors found: r1=8594000668119493432759132571049781552594004445247 r2=1888413082581267978490482365718941523363737007376231943020350468156526437976112641 Version: Total time: 4.82 hours. Scaled time: 12.40 units (timescale=2.575). Factorization parameters were as follows: name: 42223_136 n: 16229023293389009133139106090876295081397306947333103820777599984556803097659300782781313782997714996228246862748288574754789067327 m: 2000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 1420000 alim: 1420000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1420000/1420000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [710000, 1385001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 222874 x 223122 Total sieving time: 4.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1420000,1420000,26,26,48,48,2.3,2.3,75000 total time: 4.82 hours. --------- CPU info (if available) ----------
(38·10146+7)/9 = 4(2)1453<147> = 32 · 96157 · 541469 · 22900003348416823<17> · C119
C119 = P53 · P67
P53 = 13474293956396481663403791718049203306600304054932849<53>
P67 = 2920132186621567969038207626747820838665582277038474633583932183017<67>
Number: 42223_146 N=39346719474073836211165386970759767038358231641254866087382141856300037559614084744521490143159896516392312603913225433 ( 119 digits) SNFS difficulty: 148 digits. Divisors found: r1=13474293956396481663403791718049203306600304054932849 r2=2920132186621567969038207626747820838665582277038474633583932183017 Version: Total time: 11.92 hours. Scaled time: 30.69 units (timescale=2.575). Factorization parameters were as follows: 42223_146 n: 39346719474073836211165386970759767038358231641254866087382141856300037559614084744521490143159896516392312603913225433 m: 200000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 332704 x 332952 Total sieving time: 11.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.92 hours. --------- CPU info (if available) ----------
(38·10120+7)/9 = 4(2)1193<121> = 29 · 4924903 · 245566854496031743<18> · C96
C96 = P41 · P55
P41 = 19955093527642430225778981756086814003767<41>
P55 = 6032841192967150543154636232473256336681085904002749509<55>
Fri Dec 19 07:35:03 2008 Msieve v. 1.39 Fri Dec 19 07:35:03 2008 random seeds: 6b80e7dc 791eff7b Fri Dec 19 07:35:03 2008 factoring 120385910243073423257026243810404870767812331654226840017936550483511807178296703100252683400403 (96 digits) Fri Dec 19 07:35:04 2008 searching for 15-digit factors Fri Dec 19 07:35:05 2008 commencing quadratic sieve (96-digit input) Fri Dec 19 07:35:05 2008 using multiplier of 37 Fri Dec 19 07:35:05 2008 using 32kb Intel Core sieve core Fri Dec 19 07:35:05 2008 sieve interval: 36 blocks of size 32768 Fri Dec 19 07:35:05 2008 processing polynomials in batches of 6 Fri Dec 19 07:35:06 2008 using a sieve bound of 2192963 (81176 primes) Fri Dec 19 07:35:06 2008 using large prime bound of 328944450 (28 bits) Fri Dec 19 07:35:06 2008 using double large prime bound of 2142005338065300 (43-51 bits) Fri Dec 19 07:35:06 2008 using trial factoring cutoff of 51 bits Fri Dec 19 07:35:06 2008 polynomial 'A' values have 12 factors Fri Dec 19 07:35:06 2008 restarting with 1596 full and 94647 partial relations Fri Dec 19 11:27:17 2008 81338 relations (20175 full + 61163 combined from 1215310 partial), need 81272 Fri Dec 19 11:27:18 2008 begin with 1235485 relations Fri Dec 19 11:27:20 2008 reduce to 211262 relations in 11 passes Fri Dec 19 11:27:20 2008 attempting to read 211262 relations Fri Dec 19 11:27:23 2008 recovered 211262 relations Fri Dec 19 11:27:23 2008 recovered 196167 polynomials Fri Dec 19 11:27:23 2008 attempting to build 81338 cycles Fri Dec 19 11:27:23 2008 found 81338 cycles in 5 passes Fri Dec 19 11:27:23 2008 distribution of cycle lengths: Fri Dec 19 11:27:23 2008 length 1 : 20175 Fri Dec 19 11:27:23 2008 length 2 : 14340 Fri Dec 19 11:27:23 2008 length 3 : 13606 Fri Dec 19 11:27:23 2008 length 4 : 10935 Fri Dec 19 11:27:23 2008 length 5 : 8292 Fri Dec 19 11:27:23 2008 length 6 : 5597 Fri Dec 19 11:27:23 2008 length 7 : 3511 Fri Dec 19 11:27:23 2008 length 9+: 4882 Fri Dec 19 11:27:23 2008 largest cycle: 19 relations Fri Dec 19 11:27:24 2008 matrix is 81176 x 81338 (22.8 MB) with weight 5643868 (69.39/col) Fri Dec 19 11:27:24 2008 sparse part has weight 5643868 (69.39/col) Fri Dec 19 11:27:25 2008 filtering completed in 3 passes Fri Dec 19 11:27:25 2008 matrix is 77244 x 77308 (21.8 MB) with weight 5404103 (69.90/col) Fri Dec 19 11:27:25 2008 sparse part has weight 5404103 (69.90/col) Fri Dec 19 11:27:25 2008 saving the first 48 matrix rows for later Fri Dec 19 11:27:25 2008 matrix is 77196 x 77308 (16.0 MB) with weight 4523024 (58.51/col) Fri Dec 19 11:27:25 2008 sparse part has weight 3722876 (48.16/col) Fri Dec 19 11:27:25 2008 matrix includes 64 packed rows Fri Dec 19 11:27:25 2008 using block size 30923 for processor cache size 1024 kB Fri Dec 19 11:27:26 2008 commencing Lanczos iteration Fri Dec 19 11:27:26 2008 memory use: 14.0 MB Fri Dec 19 11:28:10 2008 lanczos halted after 1222 iterations (dim = 77195) Fri Dec 19 11:28:11 2008 recovered 18 nontrivial dependencies Fri Dec 19 11:28:12 2008 prp41 factor: 19955093527642430225778981756086814003767 Fri Dec 19 11:28:12 2008 prp55 factor: 6032841192967150543154636232473256336681085904002749509 Fri Dec 19 11:28:12 2008 elapsed time 03:53:09
(38·10151+7)/9 = 4(2)1503<152> = 23 · 1176371562578041651<19> · C133
C133 = P63 · P70
P63 = 485460562826957331754454944330962706119706627186220853762299653<63>
P70 = 3214509981924084416777889458865269747634632549732810562486889213808567<70>
Number: 42223_151 N=1560517825037738459854438489255803864062404112623963858125778119538120217593954522496759798220909008287552424483930190183364432527251 ( 133 digits) SNFS difficulty: 153 digits. Divisors found: r1=485460562826957331754454944330962706119706627186220853762299653 r2=3214509981924084416777889458865269747634632549732810562486889213808567 Version: Total time: 22.29 hours. Scaled time: 43.45 units (timescale=1.949). Factorization parameters were as follows: name: 42223_151 n: 1560517825037738459854438489255803864062404112623963858125778119538120217593954522496759798220909008287552424483930190183364432527251 m: 2000000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 438175 x 438423 Total sieving time: 22.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 22.29 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10162+7)/9 = 4(2)1613<163> = 22666112659648690795351599407939<32> · C132
C132 = P34 · P98
P34 = 5160396681170916091071232604105399<34>
P98 = 36097818491499062140649356899516517790791368456473008648453082759802006328144553713905393610559843<98>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1554662117 Step 1 took 9808ms Step 2 took 5990ms ********** Factor found in step 2: 5160396681170916091071232604105399 Found probable prime factor of 34 digits: 5160396681170916091071232604105399 Probable prime cofactor 36097818491499062140649356899516517790791368456473008648453082759802006328144553713905393610559843 has 98 digits
(38·10191-11)/9 = 4(2)1901<192> = 41 · 2687 · 774334507 · 375832150285823251963801943606447<33> · C146
C146 = P39 · P107
P39 = 956276603516830937978406238709621853569<39>
P107 = 13771571192961589841833862853688482747346196734485423041265570383728431701766189556898870971868907507954463<107>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2975364834 Step 1 took 11760ms Step 2 took 6495ms ********** Factor found in step 2: 956276603516830937978406238709621853569 Found probable prime factor of 39 digits: 956276603516830937978406238709621853569 Probable prime cofactor 13771571192961589841833862853688482747346196734485423041265570383728431701766189556898870971868907507954463 has 107 digits
(38·10157+7)/9 = 4(2)1563<158> = 17 · 937 · C154
C154 = P48 · P107
P48 = 174202237292790959315768467382894756765173949951<48>
P107 = 15215942083033820802184377816467863773879005591771502744651031164528244378458407456255021493967981424428537<107>
SNFS difficulty: 159 digits. Divisors found: r1=174202237292790959315768467382894756765173949951 (pp48) r2=15215942083033820802184377816467863773879005591771502744651031164528244378458407456255021493967981424428537 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: n: 2650651153382021609782297835534071330417617064613109562572805714245854869873954562258912814503247047662892976471983314848529237379761580904151059214151687 m: 20000000000000000000000000000000 deg: 5 c5: 475 c0: 28 skew: 0.57 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1550000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 616516 x 616764 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
By Jo Yeong Uk / GGNFS
(35·10189+1)/9 = 3(8)1889<190> = C190
C190 = P56 · P135
P56 = 20293470058904574878183102843477356409653799265487560509<56>
P135 = 191632524038562972599764005358059709580489479276799676408280772785787623231363395916154199246135197563472355670762941811936146063579821<135>
Number: 38889_189 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 190 digits) SNFS difficulty: 190 digits. Divisors found: r1=20293470058904574878183102843477356409653799265487560509 (pp56) r2=191632524038562972599764005358059709580489479276799676408280772785787623231363395916154199246135197563472355670762941811936146063579821 (pp135) Version: GGNFS-0.77.1-20050930-nocona Total time: 242.97 hours. Scaled time: 568.30 units (timescale=2.339). Factorization parameters were as follows: n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 100000000000000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5500000, 9600001) Primes: RFBsize:726517, AFBsize:725838, largePrimes:19522578 encountered Relations: rels:20498731, finalFF:1670579 Max relations in full relation-set: 28 Initial matrix: 1452420 x 1670579 with sparse part having weight 185962661. Pruned matrix : 1271563 x 1278889 with weight 148415716. Total sieving time: 220.23 hours. Total relation processing time: 0.43 hours. Matrix solve time: 22.12 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,54,54,2.5,2.5,100000 total time: 242.97 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(38·10104+7)/9 = 4(2)1033<105> = 3 · 61 · 236169149 · C94
C94 = P41 · P54
P41 = 43086254634327649365606923085903856891003<41>
P54 = 226739972183122477267800170574550311949755005078106823<54>
Thu Dec 18 13:46:28 2008 Msieve v. 1.39 Thu Dec 18 13:46:28 2008 random seeds: a062d230 7342cb8e Thu Dec 18 13:46:28 2008 factoring 9769376177262383140812846225412865846706679693162836475583025059828022012012145065217901613469 (94 digits) Thu Dec 18 13:46:29 2008 searching for 15-digit factors Thu Dec 18 13:46:31 2008 commencing quadratic sieve (94-digit input) Thu Dec 18 13:46:31 2008 using multiplier of 1 Thu Dec 18 13:46:31 2008 using 32kb Intel Core sieve core Thu Dec 18 13:46:31 2008 sieve interval: 36 blocks of size 32768 Thu Dec 18 13:46:31 2008 processing polynomials in batches of 6 Thu Dec 18 13:46:31 2008 using a sieve bound of 2090227 (77647 primes) Thu Dec 18 13:46:31 2008 using large prime bound of 296812234 (28 bits) Thu Dec 18 13:46:31 2008 using double large prime bound of 1780193407171906 (42-51 bits) Thu Dec 18 13:46:31 2008 using trial factoring cutoff of 51 bits Thu Dec 18 13:46:31 2008 polynomial 'A' values have 12 factors Thu Dec 18 14:13:12 2008 2642 relations (2371 full + 271 combined from 141243 partial), need 77743 Thu Dec 18 14:13:12 2008 elapsed time 00:26:44 Thu Dec 18 14:32:42 2008 Thu Dec 18 14:32:42 2008 Thu Dec 18 14:32:42 2008 Msieve v. 1.39 Thu Dec 18 14:32:42 2008 random seeds: fba8aee8 1a77b463 Thu Dec 18 14:32:42 2008 factoring 9769376177262383140812846225412865846706679693162836475583025059828022012012145065217901613469 (94 digits) Thu Dec 18 14:32:43 2008 searching for 15-digit factors Thu Dec 18 14:32:44 2008 commencing quadratic sieve (94-digit input) Thu Dec 18 14:32:44 2008 using multiplier of 1 Thu Dec 18 14:32:44 2008 using 32kb Intel Core sieve core Thu Dec 18 14:32:44 2008 sieve interval: 36 blocks of size 32768 Thu Dec 18 14:32:44 2008 processing polynomials in batches of 6 Thu Dec 18 14:32:44 2008 using a sieve bound of 2090227 (77647 primes) Thu Dec 18 14:32:44 2008 using large prime bound of 296812234 (28 bits) Thu Dec 18 14:32:44 2008 using double large prime bound of 1780193407171906 (42-51 bits) Thu Dec 18 14:32:44 2008 using trial factoring cutoff of 51 bits Thu Dec 18 14:32:44 2008 polynomial 'A' values have 12 factors Thu Dec 18 14:32:45 2008 restarting with 2371 full and 141243 partial relations Thu Dec 18 17:41:26 2008 77942 relations (18849 full + 59093 combined from 1146357 partial), need 77743 Thu Dec 18 17:41:27 2008 begin with 1165206 relations Thu Dec 18 17:41:29 2008 reduce to 204517 relations in 12 passes Thu Dec 18 17:41:29 2008 attempting to read 204517 relations Thu Dec 18 17:41:32 2008 recovered 204517 relations Thu Dec 18 17:41:32 2008 recovered 188574 polynomials Thu Dec 18 17:41:32 2008 attempting to build 77942 cycles Thu Dec 18 17:41:32 2008 found 77942 cycles in 5 passes Thu Dec 18 17:41:32 2008 distribution of cycle lengths: Thu Dec 18 17:41:32 2008 length 1 : 18849 Thu Dec 18 17:41:32 2008 length 2 : 13493 Thu Dec 18 17:41:32 2008 length 3 : 13130 Thu Dec 18 17:41:32 2008 length 4 : 10465 Thu Dec 18 17:41:32 2008 length 5 : 7976 Thu Dec 18 17:41:32 2008 length 6 : 5543 Thu Dec 18 17:41:32 2008 length 7 : 3515 Thu Dec 18 17:41:32 2008 length 9+: 4971 Thu Dec 18 17:41:32 2008 largest cycle: 19 relations Thu Dec 18 17:41:32 2008 matrix is 77647 x 77942 (20.2 MB) with weight 4982155 (63.92/col) Thu Dec 18 17:41:32 2008 sparse part has weight 4982155 (63.92/col) Thu Dec 18 17:41:34 2008 filtering completed in 3 passes Thu Dec 18 17:41:34 2008 matrix is 74265 x 74329 (19.3 MB) with weight 4766944 (64.13/col) Thu Dec 18 17:41:34 2008 sparse part has weight 4766944 (64.13/col) Thu Dec 18 17:41:34 2008 saving the first 48 matrix rows for later Thu Dec 18 17:41:34 2008 matrix is 74217 x 74329 (12.1 MB) with weight 3736169 (50.27/col) Thu Dec 18 17:41:34 2008 sparse part has weight 2737005 (36.82/col) Thu Dec 18 17:41:34 2008 matrix includes 64 packed rows Thu Dec 18 17:41:34 2008 using block size 29731 for processor cache size 1024 kB Thu Dec 18 17:41:34 2008 commencing Lanczos iteration Thu Dec 18 17:41:34 2008 memory use: 11.8 MB Thu Dec 18 17:42:10 2008 lanczos halted after 1175 iterations (dim = 74213) Thu Dec 18 17:42:10 2008 recovered 15 nontrivial dependencies Thu Dec 18 17:42:11 2008 prp41 factor: 43086254634327649365606923085903856891003 Thu Dec 18 17:42:11 2008 prp54 factor: 226739972183122477267800170574550311949755005078106823 Thu Dec 18 17:42:11 2008 elapsed time 03:09:29
(38·10176+7)/9 = 4(2)1753<177> = 3 · 29 · 54540943 · 4287368772178003<16> · 8965485210842005636106031659<28> · 2471951484413682939511067832881908139<37> · C87
C87 = P43 · P45
P43 = 4366496618391640554655712516621488728265579<43>
P45 = 214467496461094603037698726459970575067475919<45>
Thu Dec 18 17:51:17 2008 Msieve v. 1.39 Thu Dec 18 17:51:17 2008 random seeds: 480a71e4 42ef3d6d Thu Dec 18 17:51:17 2008 factoring 936471598052290722011809167208477610429304981302335238497256676307528852425786219092101 (87 digits) Thu Dec 18 17:51:18 2008 searching for 15-digit factors Thu Dec 18 17:51:20 2008 commencing quadratic sieve (87-digit input) Thu Dec 18 17:51:20 2008 using multiplier of 1 Thu Dec 18 17:51:20 2008 using 32kb Intel Core sieve core Thu Dec 18 17:51:20 2008 sieve interval: 22 blocks of size 32768 Thu Dec 18 17:51:20 2008 processing polynomials in batches of 10 Thu Dec 18 17:51:20 2008 using a sieve bound of 1493299 (57000 primes) Thu Dec 18 17:51:20 2008 using large prime bound of 119463920 (26 bits) Thu Dec 18 17:51:20 2008 using double large prime bound of 345960105556960 (42-49 bits) Thu Dec 18 17:51:20 2008 using trial factoring cutoff of 49 bits Thu Dec 18 17:51:20 2008 polynomial 'A' values have 11 factors Thu Dec 18 18:41:03 2008 57227 relations (15776 full + 41451 combined from 604798 partial), need 57096 Thu Dec 18 18:41:04 2008 begin with 620574 relations Thu Dec 18 18:41:05 2008 reduce to 138470 relations in 12 passes Thu Dec 18 18:41:05 2008 attempting to read 138470 relations Thu Dec 18 18:41:06 2008 recovered 138470 relations Thu Dec 18 18:41:06 2008 recovered 117589 polynomials Thu Dec 18 18:41:07 2008 attempting to build 57227 cycles Thu Dec 18 18:41:07 2008 found 57227 cycles in 5 passes Thu Dec 18 18:41:07 2008 distribution of cycle lengths: Thu Dec 18 18:41:07 2008 length 1 : 15776 Thu Dec 18 18:41:07 2008 length 2 : 11054 Thu Dec 18 18:41:07 2008 length 3 : 9940 Thu Dec 18 18:41:07 2008 length 4 : 7535 Thu Dec 18 18:41:07 2008 length 5 : 5176 Thu Dec 18 18:41:07 2008 length 6 : 3384 Thu Dec 18 18:41:07 2008 length 7 : 2077 Thu Dec 18 18:41:07 2008 length 9+: 2285 Thu Dec 18 18:41:07 2008 largest cycle: 18 relations Thu Dec 18 18:41:07 2008 matrix is 57000 x 57227 (13.2 MB) with weight 3225637 (56.37/col) Thu Dec 18 18:41:07 2008 sparse part has weight 3225637 (56.37/col) Thu Dec 18 18:41:08 2008 filtering completed in 4 passes Thu Dec 18 18:41:08 2008 matrix is 52801 x 52864 (12.3 MB) with weight 3004794 (56.84/col) Thu Dec 18 18:41:08 2008 sparse part has weight 3004794 (56.84/col) Thu Dec 18 18:41:08 2008 saving the first 48 matrix rows for later Thu Dec 18 18:41:08 2008 matrix is 52753 x 52864 (7.8 MB) with weight 2373010 (44.89/col) Thu Dec 18 18:41:08 2008 sparse part has weight 1740382 (32.92/col) Thu Dec 18 18:41:08 2008 matrix includes 64 packed rows Thu Dec 18 18:41:08 2008 using block size 21145 for processor cache size 1024 kB Thu Dec 18 18:41:08 2008 commencing Lanczos iteration Thu Dec 18 18:41:08 2008 memory use: 7.7 MB Thu Dec 18 18:41:24 2008 lanczos halted after 835 iterations (dim = 52753) Thu Dec 18 18:41:24 2008 recovered 17 nontrivial dependencies Thu Dec 18 18:41:25 2008 prp43 factor: 4366496618391640554655712516621488728265579 Thu Dec 18 18:41:25 2008 prp45 factor: 214467496461094603037698726459970575067475919 Thu Dec 18 18:41:25 2008 elapsed time 00:50:08
(38·10130+7)/9 = 4(2)1293<131> = C131
C131 = P33 · P98
P33 = 678551793747462240865698141675319<33>
P98 = 62224022707301452482853572488992317799268371175008642178618762222983732884341974062619005483162217<98>
Number: 42223_130 N=42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 ( 131 digits) SNFS difficulty: 131 digits. Divisors found: r1=678551793747462240865698141675319 (prp33) r2=62224022707301452482853572488992317799268371175008642178618762222983732884341974062619005483162217 (prp98) Version: Total time: 3.60 hours. Scaled time: 7.17 units (timescale=1.991). Factorization parameters were as follows: name: 42223_130 n: 42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 100000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 945001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 154826 x 155074 Total sieving time: 3.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 3.60 hours. --------- CPU info (if available) ----------
(38·10155+7)/9 = 4(2)1543<156> = 34 · 21247 · 405706541 · 8153054611907549<16> · 3631636673976858283592464277485606931<37> · C89
C89 = P34 · P56
P34 = 1420456107051505106563089043040989<34>
P56 = 14377913877137253365446313866748979093357534901514687119<56>
Thu Dec 18 19:12:15 2008 Msieve v. 1.39 Thu Dec 18 19:12:15 2008 random seeds: 766c50d8 0938bf95 Thu Dec 18 19:12:15 2008 factoring 20423195573440195206551390289801512611298882650218935717368875142211566032360322627320691 (89 digits) Thu Dec 18 19:12:16 2008 searching for 15-digit factors Thu Dec 18 19:12:17 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 19:12:17 2008 using multiplier of 1 Thu Dec 18 19:12:17 2008 using 32kb Intel Core sieve core Thu Dec 18 19:12:17 2008 sieve interval: 30 blocks of size 32768 Thu Dec 18 19:12:17 2008 processing polynomials in batches of 7 Thu Dec 18 19:12:17 2008 using a sieve bound of 1546837 (58348 primes) Thu Dec 18 19:12:17 2008 using large prime bound of 123746960 (26 bits) Thu Dec 18 19:12:17 2008 using double large prime bound of 368605688486800 (42-49 bits) Thu Dec 18 19:12:17 2008 using trial factoring cutoff of 49 bits Thu Dec 18 19:12:17 2008 polynomial 'A' values have 11 factors Thu Dec 18 20:18:08 2008 58635 relations (15460 full + 43175 combined from 627841 partial), need 58444 Thu Dec 18 20:18:09 2008 begin with 643301 relations Thu Dec 18 20:18:09 2008 reduce to 144114 relations in 9 passes Thu Dec 18 20:18:09 2008 attempting to read 144114 relations Thu Dec 18 20:18:11 2008 recovered 144114 relations Thu Dec 18 20:18:11 2008 recovered 123018 polynomials Thu Dec 18 20:18:11 2008 attempting to build 58635 cycles Thu Dec 18 20:18:11 2008 found 58635 cycles in 5 passes Thu Dec 18 20:18:11 2008 distribution of cycle lengths: Thu Dec 18 20:18:11 2008 length 1 : 15460 Thu Dec 18 20:18:11 2008 length 2 : 11059 Thu Dec 18 20:18:11 2008 length 3 : 10232 Thu Dec 18 20:18:11 2008 length 4 : 7813 Thu Dec 18 20:18:12 2008 length 5 : 5624 Thu Dec 18 20:18:12 2008 length 6 : 3705 Thu Dec 18 20:18:12 2008 length 7 : 2187 Thu Dec 18 20:18:12 2008 length 9+: 2555 Thu Dec 18 20:18:12 2008 largest cycle: 18 relations Thu Dec 18 20:18:12 2008 matrix is 58348 x 58635 (14.3 MB) with weight 3505595 (59.79/col) Thu Dec 18 20:18:12 2008 sparse part has weight 3505595 (59.79/col) Thu Dec 18 20:18:13 2008 filtering completed in 3 passes Thu Dec 18 20:18:13 2008 matrix is 54671 x 54735 (13.4 MB) with weight 3293020 (60.16/col) Thu Dec 18 20:18:13 2008 sparse part has weight 3293020 (60.16/col) Thu Dec 18 20:18:13 2008 saving the first 48 matrix rows for later Thu Dec 18 20:18:13 2008 matrix is 54623 x 54735 (9.1 MB) with weight 2631716 (48.08/col) Thu Dec 18 20:18:13 2008 sparse part has weight 2059013 (37.62/col) Thu Dec 18 20:18:13 2008 matrix includes 64 packed rows Thu Dec 18 20:18:13 2008 using block size 21894 for processor cache size 1024 kB Thu Dec 18 20:18:13 2008 commencing Lanczos iteration Thu Dec 18 20:18:13 2008 memory use: 8.6 MB Thu Dec 18 20:18:32 2008 lanczos halted after 865 iterations (dim = 54621) Thu Dec 18 20:18:32 2008 recovered 16 nontrivial dependencies Thu Dec 18 20:18:33 2008 prp34 factor: 1420456107051505106563089043040989 Thu Dec 18 20:18:33 2008 prp56 factor: 14377913877137253365446313866748979093357534901514687119 Thu Dec 18 20:18:33 2008 elapsed time 01:06:18
(38·10135+7)/9 = 4(2)1343<136> = 509 · C133
C133 = P38 · P46 · P51
P38 = 15913952422398244721190280306070085331<38>
P46 = 1442361694262586816326270806420410498472186067<46>
P51 = 361385788135949331769346686225100381937997477289411<51>
Number: 42223_135 N=8295132067234228334424798079022047587862912027941497489631084915957214581969002401222440515171359965073128137961143855053481772538747 ( 133 digits) SNFS difficulty: 136 digits. Divisors found: r1=15913952422398244721190280306070085331 (prp38) r2=1442361694262586816326270806420410498472186067 (prp46) r3=361385788135949331769346686225100381937997477289411 (prp51) Version: Total time: 5.58 hours. Scaled time: 11.15 units (timescale=1.997). Factorization parameters were as follows: name: 42223_135 n: 8295132067234228334424798079022047587862912027941497489631084915957214581969002401222440515171359965073128137961143855053481772538747 m: 1000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 183860 x 184108 Total sieving time: 5.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 5.58 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(38·10142+7)/9 = 4(2)1413<143> = 59 · 5563 · 605464278196827737125597251068803<33> · C105
C105 = P36 · P70
P36 = 108086691733104157882816618677785281<36>
P70 = 1965709180424130529255869068846906640336734489270747363351530402366733<70>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=519687493 Step 1 took 8384ms Step 2 took 5062ms ********** Factor found in step 2: 108086691733104157882816618677785281 Found probable prime factor of 36 digits: 108086691733104157882816618677785281 Probable prime cofactor 1965709180424130529255869068846906640336734489270747363351530402366733 has 70 digits
By Serge Batalov / PFGW
(8·1053411+1)/9 = (8)534109<53411> is PRP.
By Tyler Cadigan / GGNFS, Msieve
(43·10185-7)/9 = 4(7)185<186> = 3 · 29 · 47 · 58170373640018484872008409<26> · C157
C157 = P75 · P82
P75 = 711289181722006572964993391864934683586891620256502264874981119795063837321<75>
P82 = 2823974552229371081708878262515141661878349230272684194999664683868033689289786137<82>
Number: 47777_185 N=2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 ( 157 digits) SNFS difficulty: 186 digits. Divisors found: r1=711289181722006572964993391864934683586891620256502264874981119795063837321 r2=2823974552229371081708878262515141661878349230272684194999664683868033689289786137 Version: Total time: 284.19 hours. Scaled time: 728.96 units (timescale=2.565). Factorization parameters were as follows: n: 2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Y0: 10000000000000000000000000000000000000 Y1: -1 qintsize: 1000000Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1277651 x 1277899 Total sieving time: 284.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 284.19 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(38·10108+7)/9 = 4(2)1073<109> = 41 · 499 · C105
C105 = P47 · P59
P47 = 10295641543941343571168747279625193234146247799<47>
P59 = 20044871255305051171624283732903041074399663885329714243003<59>
Number: n N=206374809239074354671402425447100162384389374955873807235066338639338297190587136332285166539040139900397 ( 105 digits) SNFS difficulty: 109 digits. Divisors found: r1=10295641543941343571168747279625193234146247799 (pp47) r2=20044871255305051171624283732903041074399663885329714243003 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.93 hours. Scaled time: 1.70 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_2_107_3 n: 206374809239074354671402425447100162384389374955873807235066338639338297190587136332285166539040139900397 type: snfs skew: 0.36 deg: 5 c5: 2375 c0: 14 m: 2000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [225000, 305001) Primes: RFBsize:37706, AFBsize:38049, largePrimes:4928369 encountered Relations: rels:4458518, finalFF:266912 Max relations in full relation-set: 48 Initial matrix: 75821 x 266912 with sparse part having weight 35358891. Pruned matrix : 56879 x 57322 with weight 4347894. Total sieving time: 0.83 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.93 hours. --------- CPU info (if available) ----------
(38·10116+7)/9 = 4(2)1153<117> = 3 · 352637 · C111
C111 = P43 · P68
P43 = 5573083583773648271800694651315923853073163<43>
P68 = 71613747018533179366658876906680060578395225670235050033207926163611<68>
Number: n N=399109397881506310287181267821416189284563845372835921190177833695104996755135566434437511494088087015091271593 ( 111 digits) SNFS difficulty: 117 digits. Divisors found: r1=5573083583773648271800694651315923853073163 (pp43) r2=71613747018533179366658876906680060578395225670235050033207926163611 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.18 hours. Scaled time: 2.15 units (timescale=1.822). Factorization parameters were as follows: name: KA_4_2_115_3 n: 399109397881506310287181267821416189284563845372835921190177833695104996755135566434437511494088087015091271593 type: snfs skew: 0.45 deg: 5 c5: 380 c0: 7 m: 100000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [250000, 370001) Primes: RFBsize:41538, AFBsize:41837, largePrimes:5004377 encountered Relations: rels:4345290, finalFF:125163 Max relations in full relation-set: 48 Initial matrix: 83442 x 125163 with sparse part having weight 17533216. Pruned matrix : 76901 x 77382 with weight 7526306. Total sieving time: 1.04 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.03 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.18 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(37·10153+53)/9 = 4(1)1527<154> = 29 · 167 · 2259934847<10> · 699672253367<12> · C129
C129 = P34 · P95
P34 = 8719756215598888403735903369151727<34>
P95 = 61567260829717922876129222772484051350518977065235325715293890266317345837386780159662510836353<95>
Number: 41117_153 N=536851505297330833256720241859282105348047475598159487710492234018066473949983864532710775744234875425075826135015294154924331631 ( 129 digits) SNFS difficulty: 155 digits. Divisors found: r1=8719756215598888403735903369151727 (pp34) r2=61567260829717922876129222772484051350518977065235325715293890266317345837386780159662510836353 (pp95) Version: GGNFS-0.77.1-20060513-k8 Total time: 38.61 hours. Scaled time: 75.95 units (timescale=1.967). Factorization parameters were as follows: name: 41117_153 n: 536851505297330833256720241859282105348047475598159487710492234018066473949983864532710775744234875425075826135015294154924331631 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: RFBsize:203362, AFBsize:203817, largePrimes:8308051 encountered Relations: rels:8752937, finalFF:805926 Max relations in full relation-set: 28 Initial matrix: 407246 x 805926 with sparse part having weight 93645918. Pruned matrix : 300178 x 302278 with weight 40667714. Total sieving time: 36.68 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.51 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 38.61 hours. --------- CPU info (if available) ----------
(38·10151-11)/9 = 4(2)1501<152> = 41 · 53 · 26021 · 2914313 · C138
C138 = P46 · P92
P46 = 3159193923314794886124358434419958776363525831<46>
P92 = 81104490278796803941574903528473981354882683238348933245451788515578216046199936350435152579<92>
Number: 42221_151 N=256224812842318717545533857825918618214117908238051230838133636289935308342853369546321111379845635992526213941974521284389129356892768149 ( 138 digits) SNFS difficulty: 153 digits. Divisors found: r1=3159193923314794886124358434419958776363525831 (prp46) r2=81104490278796803941574903528473981354882683238348933245451788515578216046199936350435152579 (prp92) Version: Total time: 15.14 hours. Scaled time: 38.51 units (timescale=2.544). Factorization parameters were as follows: name: 42221_151 n: 256224812842318717545533857825918618214117908238051230838133636289935308342853369546321111379845635992526213941974521284389129356892768149 m: 2000000000000000000000000000000 deg: 5 c5: 95 c0: -88 skew: 0.98 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 458616 x 458864 Total sieving time: 15.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 15.14 hours. --------- CPU info (if available) ----------
(38·10141+7)/9 = 4(2)1403<142> = 17 · 10799 · 14431 · 10551421125799<14> · 3918960185104132736939080334753<31> · C89
C89 = P37 · P53
P37 = 1208319630248751570624525558000988741<37>
P53 = 31896906018545036923695174984522863360635051803331813<53>
Thu Dec 18 08:07:13 2008 Msieve v. 1.39 Thu Dec 18 08:07:13 2008 random seeds: ba6ae35c e186a9eb Thu Dec 18 08:07:13 2008 factoring 38541657686407517624151652150298002272942905139355928279567042796973174434731732100117433 (89 digits) Thu Dec 18 08:07:14 2008 searching for 15-digit factors Thu Dec 18 08:07:16 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 08:07:16 2008 using multiplier of 1 Thu Dec 18 08:07:16 2008 using 32kb Intel Core sieve core Thu Dec 18 08:07:16 2008 sieve interval: 32 blocks of size 32768 Thu Dec 18 08:07:16 2008 processing polynomials in batches of 7 Thu Dec 18 08:07:16 2008 using a sieve bound of 1556189 (58802 primes) Thu Dec 18 08:07:16 2008 using large prime bound of 124495120 (26 bits) Thu Dec 18 08:07:16 2008 using double large prime bound of 372626841652480 (42-49 bits) Thu Dec 18 08:07:16 2008 using trial factoring cutoff of 49 bits Thu Dec 18 08:07:16 2008 polynomial 'A' values have 11 factors Thu Dec 18 09:14:07 2008 59134 relations (15874 full + 43260 combined from 629696 partial), need 58898 Thu Dec 18 09:14:08 2008 begin with 645570 relations Thu Dec 18 09:14:08 2008 reduce to 144306 relations in 11 passes Thu Dec 18 09:14:08 2008 attempting to read 144306 relations Thu Dec 18 09:14:10 2008 recovered 144306 relations Thu Dec 18 09:14:10 2008 recovered 122188 polynomials Thu Dec 18 09:14:10 2008 attempting to build 59134 cycles Thu Dec 18 09:14:10 2008 found 59134 cycles in 5 passes Thu Dec 18 09:14:10 2008 distribution of cycle lengths: Thu Dec 18 09:14:10 2008 length 1 : 15874 Thu Dec 18 09:14:10 2008 length 2 : 11011 Thu Dec 18 09:14:10 2008 length 3 : 10357 Thu Dec 18 09:14:10 2008 length 4 : 8156 Thu Dec 18 09:14:10 2008 length 5 : 5506 Thu Dec 18 09:14:10 2008 length 6 : 3538 Thu Dec 18 09:14:10 2008 length 7 : 2140 Thu Dec 18 09:14:10 2008 length 9+: 2552 Thu Dec 18 09:14:10 2008 largest cycle: 17 relations Thu Dec 18 09:14:11 2008 matrix is 58802 x 59134 (14.2 MB) with weight 3496057 (59.12/col) Thu Dec 18 09:14:11 2008 sparse part has weight 3496057 (59.12/col) Thu Dec 18 09:14:12 2008 filtering completed in 3 passes Thu Dec 18 09:14:12 2008 matrix is 54893 x 54957 (13.3 MB) with weight 3263166 (59.38/col) Thu Dec 18 09:14:12 2008 sparse part has weight 3263166 (59.38/col) Thu Dec 18 09:14:12 2008 saving the first 48 matrix rows for later Thu Dec 18 09:14:12 2008 matrix is 54845 x 54957 (9.1 MB) with weight 2632975 (47.91/col) Thu Dec 18 09:14:12 2008 sparse part has weight 2067716 (37.62/col) Thu Dec 18 09:14:12 2008 matrix includes 64 packed rows Thu Dec 18 09:14:12 2008 using block size 21982 for processor cache size 1024 kB Thu Dec 18 09:14:12 2008 commencing Lanczos iteration Thu Dec 18 09:14:12 2008 memory use: 8.6 MB Thu Dec 18 09:14:31 2008 lanczos halted after 869 iterations (dim = 54843) Thu Dec 18 09:14:31 2008 recovered 16 nontrivial dependencies Thu Dec 18 09:14:32 2008 prp37 factor: 1208319630248751570624525558000988741 Thu Dec 18 09:14:32 2008 prp53 factor: 31896906018545036923695174984522863360635051803331813 Thu Dec 18 09:14:32 2008 elapsed time 01:07:19
(38·10112+7)/9 = 4(2)1113<113> = 11677705261<11> · C103
C103 = P46 · P58
P46 = 1945013057622469055928792403006550216266423129<46>
P58 = 1858921524805644843829335015271915581157210985408240421667<58>
Number: 42223_112 N=3615626638842449735144263478960074279461832207842552622738456544970528368794580610388486685596801536043 ( 103 digits) SNFS difficulty: 114 digits. Divisors found: r1=1945013057622469055928792403006550216266423129 (prp46) r2=1858921524805644843829335015271915581157210985408240421667 (prp58) Version: Total time: 1.45 hours. Scaled time: 2.90 units (timescale=2.003). Factorization parameters were as follows: name: 42223_112 n: 3615626638842449735144263478960074279461832207842552622738456544970528368794580610388486685596801536043 m: 20000000000000000000000 deg: 5 c5: 475 c0: 28 skew: 0.57 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60412 x 60652 Total sieving time: 1.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.45 hours. --------- CPU info (if available) ----------
(38·10115+7)/9 = 4(2)1143<116> = 251 · 15331533874127<14> · C101
C101 = P34 · P67
P34 = 1634864409020671635063265717434331<34>
P67 = 6711197497648071834292573110422804102757555587356032161168057878729<67>
Number: 42223_115 N=10971897930813425274869156495205138122741990801162120520681589565626234907052249695702572980219245299 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=1634864409020671635063265717434331 (prp34) r2=6711197497648071834292573110422804102757555587356032161168057878729 (prp67) Version: Total time: 1.49 hours. Scaled time: 2.96 units (timescale=1.985). Factorization parameters were as follows: name: 42223_115 n: 10971897930813425274869156495205138122741990801162120520681589565626234907052249695702572980219245299 m: 100000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62313 x 62551 Total sieving time: 1.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.49 hours. --------- CPU info (if available) ----------
(38·10123+7)/9 = 4(2)1223<124> = 41 · 16901347 · C115
C115 = P29 · P34 · P53
P29 = 95138006685886098469807972853<29>
P34 = 1360440358306411252248900367385263<34>
P53 = 47076303835257146062311650641289379426604433502131591<53>
Number: 42223_123 N=6093066417149952780747582444056262558825062765883750556112368024929007747021759924212567087284879117048960830224349 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=95138006685886098469807972853 (prp29) r2=1360440358306411252248900367385263 (prp34) r3=47076303835257146062311650641289379426604433502131591 (prp53) Version: Total time: 1.98 hours. Scaled time: 5.07 units (timescale=2.564). Factorization parameters were as follows: name: 42223_123 n: 6093066417149952780747582444056262558825062765883750556112368024929007747021759924212567087284879117048960830224349 m: 10000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 122288 x 122535 Total sieving time: 1.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.98 hours. --------- CPU info (if available) ----------
(37·10148+71)/9 = 4(1)1479<149> = 13 · 263 · 54907 · 83365277 · 4787540677386989927<19> · C114
C114 = P45 · P69
P45 = 624271176245120850697276336102200832129446533<45>
P69 = 878944475221714294164277298235867536498240189330190166674377210066449<69>
Number: 42221_148 N=548699701400810060635961055722374030806191032906197312251591427155898046660410692341082608508184132862882522671317 ( 114 digits) SNFS difficulty: 150 digits. Divisors found: r1=624271176245120850697276336102200832129446533 (pp45) r2=878944475221714294164277298235867536498240189330190166674377210066449 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.14 hours. Scaled time: 17.10 units (timescale=0.473). Factorization parameters were as follows: name: 42221_148 n: 548699701400810060635961055722374030806191032906197312251591427155898046660410692341082608508184132862882522671317 m: 500000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:170002, largePrimes:7101805 encountered Relations: rels:7231912, finalFF:593333 Max relations in full relation-set: 28 Initial matrix: 339580 x 593333 with sparse part having weight 65156158. Pruned matrix : 267308 x 269069 with weight 28342252. Total sieving time: 33.22 hours. Total relation processing time: 0.32 hours. Matrix solve time: 2.48 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 36.14 hours. --------- CPU info (if available) ----------
(38·10117+7)/9 = 4(2)1163<118> = 2657947 · 1142969897<10> · 95220609140821<14> · C89
C89 = P41 · P48
P41 = 69563816005530066987621201677220218900731<41>
P48 = 209819392365296826977778796234537568048688935347<48>
Thu Dec 18 12:29:54 2008 Msieve v. 1.39 Thu Dec 18 12:29:54 2008 random seeds: 83cedefc 8d8bdba6 Thu Dec 18 12:29:54 2008 factoring 14595837604891628552348108255737179313931799325177429616056819579069705362946879070038657 (89 digits) Thu Dec 18 12:29:55 2008 searching for 15-digit factors Thu Dec 18 12:29:56 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 12:29:56 2008 using multiplier of 73 Thu Dec 18 12:29:56 2008 using 32kb Intel Core sieve core Thu Dec 18 12:29:56 2008 sieve interval: 28 blocks of size 32768 Thu Dec 18 12:29:56 2008 processing polynomials in batches of 8 Thu Dec 18 12:29:56 2008 using a sieve bound of 1537153 (58242 primes) Thu Dec 18 12:29:56 2008 using large prime bound of 122972240 (26 bits) Thu Dec 18 12:29:56 2008 using double large prime bound of 364462296550480 (42-49 bits) Thu Dec 18 12:29:56 2008 using trial factoring cutoff of 49 bits Thu Dec 18 12:29:56 2008 polynomial 'A' values have 12 factors Thu Dec 18 13:23:00 2008 58458 relations (16648 full + 41810 combined from 606551 partial), need 58338 Thu Dec 18 13:23:01 2008 begin with 623199 relations Thu Dec 18 13:23:01 2008 reduce to 137918 relations in 9 passes Thu Dec 18 13:23:01 2008 attempting to read 137918 relations Thu Dec 18 13:23:03 2008 recovered 137918 relations Thu Dec 18 13:23:03 2008 recovered 115182 polynomials Thu Dec 18 13:23:03 2008 attempting to build 58458 cycles Thu Dec 18 13:23:03 2008 found 58458 cycles in 5 passes Thu Dec 18 13:23:03 2008 distribution of cycle lengths: Thu Dec 18 13:23:03 2008 length 1 : 16648 Thu Dec 18 13:23:03 2008 length 2 : 11814 Thu Dec 18 13:23:03 2008 length 3 : 10413 Thu Dec 18 13:23:03 2008 length 4 : 7579 Thu Dec 18 13:23:03 2008 length 5 : 5155 Thu Dec 18 13:23:03 2008 length 6 : 3172 Thu Dec 18 13:23:03 2008 length 7 : 1719 Thu Dec 18 13:23:03 2008 length 9+: 1958 Thu Dec 18 13:23:03 2008 largest cycle: 15 relations Thu Dec 18 13:23:04 2008 matrix is 58242 x 58458 (13.7 MB) with weight 3359561 (57.47/col) Thu Dec 18 13:23:04 2008 sparse part has weight 3359561 (57.47/col) Thu Dec 18 13:23:04 2008 filtering completed in 3 passes Thu Dec 18 13:23:04 2008 matrix is 53596 x 53660 (12.7 MB) with weight 3108809 (57.94/col) Thu Dec 18 13:23:04 2008 sparse part has weight 3108809 (57.94/col) Thu Dec 18 13:23:04 2008 saving the first 48 matrix rows for later Thu Dec 18 13:23:04 2008 matrix is 53548 x 53660 (7.8 MB) with weight 2389963 (44.54/col) Thu Dec 18 13:23:04 2008 sparse part has weight 1717555 (32.01/col) Thu Dec 18 13:23:04 2008 matrix includes 64 packed rows Thu Dec 18 13:23:04 2008 using block size 21464 for processor cache size 1024 kB Thu Dec 18 13:23:05 2008 commencing Lanczos iteration Thu Dec 18 13:23:05 2008 memory use: 7.7 MB Thu Dec 18 13:23:21 2008 lanczos halted after 848 iterations (dim = 53545) Thu Dec 18 13:23:21 2008 recovered 15 nontrivial dependencies Thu Dec 18 13:23:22 2008 prp41 factor: 69563816005530066987621201677220218900731 Thu Dec 18 13:23:22 2008 prp48 factor: 209819392365296826977778796234537568048688935347 Thu Dec 18 13:23:22 2008 elapsed time 00:53:28
(38·10119+7)/9 = 4(2)1183<120> = 32 · C119
C119 = P32 · P88
P32 = 17796655303796507065144186379611<32>
P88 = 2636089728439345957807003412593302655340134489266022323067968446022844599735148064148277<88>
Number: 42223_119 N=46913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=17796655303796507065144186379611 (prp32) r2=2636089728439345957807003412593302655340134489266022323067968446022844599735148064148277 (prp88) Version: Total time: 1.91 hours. Scaled time: 3.77 units (timescale=1.978). Factorization parameters were as follows: name: 42223_119 n: 46913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 m: 1000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 620001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 81734 x 81967 Total sieving time: 1.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.91 hours. --------- CPU info (if available) ----------
(37·10153+71)/9 = 4(1)1529<154> = 3 · 47 · 42829 · 3356641 · C141
C141 = P36 · P48 · P58
P36 = 267585967846317503969097730621906439<36>
P48 = 169083349998879656324913041735201585866792484537<48>
P58 = 4482632066041583145692570283513003585998276879951383228217<58>
Number: 41119_153 N=202813692784995100304654547000616001388351317469991900616989696292083774391262123814153905948868605435039400406739699971898527486293769126231 ( 141 digits) SNFS difficulty: 155 digits. Divisors found: r1=267585967846317503969097730621906439 (prp36) r2=169083349998879656324913041735201585866792484537 (prp48) r3=4482632066041583145692570283513003585998276879951383228217 (prp58) Version: Total time: 23.52 hours. Scaled time: 60.31 units (timescale=2.564). Factorization parameters were as follows: name: 41119_152 n: 202813692784995100304654547000616001388351317469991900616989696292083774391262123814153905948868605435039400406739699971898527486293769126231 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 481081 x 481329 Total sieving time: 23.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.52 hours. --------- CPU info (if available) ----------
(38·10125+7)/9 = 4(2)1243<126> = 3 · 17 · 1901 · 32672306313541<14> · C108
C108 = P45 · P64
P45 = 116295998349478982853156680832900513953293021<45>
P64 = 1146157315974285019595546328596583393702116364957884428638802393<64>
Number: 42223_125 N=133293509326788711666710854874444178050766096891403697830905172109269902185821542440145829581270460044999253 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=116295998349478982853156680832900513953293021 (prp45) r2=1146157315974285019595546328596583393702116364957884428638802393 (prp64) Version: Total time: 2.03 hours. Scaled time: 5.24 units (timescale=2.575). Factorization parameters were as follows: name: 42223_125 n: 133293509326788711666710854874444178050766096891403697830905172109269902185821542440145829581270460044999253 m: 10000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112736 x 112984 Total sieving time: 2.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.03 hours. --------- CPU info (if available) ----------
(38·10124+7)/9 = 4(2)1233<125> = 7529 · C121
C121 = P49 · P73
P49 = 2711151477562038629795543684920467598635043008193<49>
P73 = 2068473716730609939247632473759947310004060663074300121852699702217549559<73>
Number: 42223_124 N=5607945573412434881421466625344962441522409645666386269387996044922595593335399418544590546184383347353197266864420536887 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=2711151477562038629795543684920467598635043008193 (prp49) r2=2068473716730609939247632473759947310004060663074300121852699702217549559 (prp73) Version: Total time: 2.63 hours. Scaled time: 5.29 units (timescale=2.010). Factorization parameters were as follows: name: 42223_124 n: 5607945573412434881421466625344962441522409645666386269387996044922595593335399418544590546184383347353197266864420536887 m: 10000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 113109 x 113351 Total sieving time: 2.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 2.63 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10103+7)/9 = 4(2)1023<104> = 41 · 163 · 4120903 · C94
C94 = P35 · P60
P35 = 15228969283328568516002938499690549<35>
P60 = 100671542589360374820010743674518363883167127317682185376623<60>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2296685655 Step 1 took 1812ms Step 2 took 1504ms ********** Factor found in step 2: 15228969283328568516002938499690549 Found probable prime factor of 35 digits: 15228969283328568516002938499690549 Probable prime cofactor 100671542589360374820010743674518363883167127317682185376623 has 60 digits
(38·10143+7)/9 = 4(2)1423<144> = 3 · 413 · 54667 · 84584933 · 2220749942527<13> · C114
C114 = P28 · P86
P28 = 4866734418829920193805385751<28>
P86 = 40861349391788987053960663317374360811603887138536668614277435169890368201323389007843<86>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3725277577 Step 1 took 2220ms Step 2 took 1784ms ********** Factor found in step 2: 4866734418829920193805385751 Found probable prime factor of 28 digits: 4866734418829920193805385751 Probable prime cofactor 40861349391788987053960663317374360811603887138536668614277435169890368201323389007843 has 86 digits
(38·10134+7)/9 = 4(2)1333<135> = 3 · 274355461 · 7475083489<10> · C116
C116 = P29 · P88
P29 = 13297128789458489611981711367<29>
P88 = 5160981478476877174528191139543584005394929170028975707947883782299690148268479826942487<88>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2193296238 Step 1 took 3614ms Step 2 took 2463ms ********** Factor found in step 2: 13297128789458489611981711367 Found probable prime factor of 29 digits: 13297128789458489611981711367 Probable prime cofactor 5160981478476877174528191139543584005394929170028975707947883782299690148268479826942487 has 88 digits
(38·10176+7)/9 = 4(2)1753<177> = 3 · 29 · 54540943 · 4287368772178003<16> · 8965485210842005636106031659<28> · C124
C124 = P37 · C87
P37 = 2471951484413682939511067832881908139<37>
C87 = [936471598052290722011809167208477610429304981302335238497256676307528852425786219092101<87>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1864500341 Step 1 took 3285ms Step 2 took 2524ms ********** Factor found in step 2: 2471951484413682939511067832881908139 Found probable prime factor of 37 digits: 2471951484413682939511067832881908139 Composite cofactor has 87 digits
(38·10188+7)/9 = 4(2)1873<189> = 3 · 41 · 161837827 · C179
C179 = P34 · C145
P34 = 4517407346651943696614538983948377<34>
C145 = [4695336080119231002572034438003134103984773018851208689382346363956946707607387905336610628296559396105847033548036718431918869359857064027844119<145>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2813434907 Step 1 took 5311ms Step 2 took 3484ms ********** Factor found in step 2: 4517407346651943696614538983948377 Found probable prime factor of 34 digits: 4517407346651943696614538983948377
(38·10162+7)/9 = 4(2)1613<163> = C163
C163 = P32 · C132
P32 = 22666112659648690795351599407939<32>
C132 = [186279062741041885017985574573968873226228250750405652759785192197613040280790635024373857044630449303253807700550767095880568892357<132>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4290004477 Step 1 took 4562ms Step 2 took 2074ms ********** Factor found in step 2: 22666112659648690795351599407939 Found probable prime factor of 32 digits: 22666112659648690795351599407939 Composite cofactor has 132 digits
(38·10155+7)/9 = 4(2)1543<156> = 34 · 21247 · 405706541 · 8153054611907549<16> · C125
C125 = P37 · C89
P37 = 3631636673976858283592464277485606931<37>
C89 = [20423195573440195206551390289801512611298882650218935717368875142211566032360322627320691<89>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2443936897 Step 1 took 9742ms Step 2 took 5797ms ********** Factor found in step 2: 3631636673976858283592464277485606931 Found probable prime factor of 37 digits: 3631636673976858283592464277485606931 Composite cofactor has 89 digits
(38·10142+7)/9 = 4(2)1413<143> = 59 · 5563 · C138
C138 = P33 · C105
P33 = 605464278196827737125597251068803<33>
C105 = [212467002221435818816699426054912524005576609275217237202725667730873122816617802499885558317173191456973<105>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=855237390 Step 1 took 11861ms Step 2 took 6523ms ********** Factor found in step 2: 605464278196827737125597251068803 Found probable prime factor of 33 digits: 605464278196827737125597251068803 Composite cofactor has 105 digits
(38·10153+7)/9 = 4(2)1523<154> = 41 · C153
C153 = P29 · P45 · P79
P29 = 56625770021249037961199832163<29>
P45 = 188621649452113576484103965715195827806438457<45>
P79 = 9641654643505460294402314031716939370932298867900541134767060848222202356644933<79>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=485009599 Step 1 took 11845ms Step 2 took 6774ms ********** Factor found in step 2: 56625770021249037961199832163 Found probable prime factor of 29 digits: 56625770021249037961199832163 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1546770427 Step 1 took 11724ms Step 2 took 6721ms ********** Factor found in step 2: 188621649452113576484103965715195827806438457 Found probable prime factor of 45 digits: 188621649452113576484103965715195827806438457
(38·10178+7)/9 = 4(2)1773<179> = 41 · C178
C178 = P31 · C147
P31 = 3831638300420149104517799143979<31>
C147 = [268765007905380748598617247784989569226788294214434773423165473690567346198193202300914071893455165689330378310000725717652182828907168758369414757<147>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1830987632 Step 1 took 15973ms Step 2 took 8310ms ********** Factor found in step 2: 3831638300420149104517799143979 Found probable prime factor of 31 digits: 3831638300420149104517799143979 Composite cofactor has 147 digits
(38·10195+7)/9 = 4(2)1943<196> = 23 · 18553 · 3149252376494183<16> · C175
C175 = P32 · P143
P32 = 42889893988079578415478220866263<32>
P143 = 73254898010487591881808968625718488656302684170273081444857108882017914768115541121202852664845950871593721116081377554264061422226124415883473<143>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=400399179 Step 1 took 16303ms Step 2 took 8309ms ********** Factor found in step 2: 42889893988079578415478220866263 Found probable prime factor of 32 digits: 42889893988079578415478220866263 Probable prime cofactor has 143 digits
(38·10197+7)/9 = 4(2)1963<198> = 3 · 181 · C195
C195 = P32 · C164
P32 = 27947028349698781437164987540699<32>
C164 = [27823106755181784284339819113194093003006848773401981584784546486000626197936927250194729311161601729645412862762131763250467738959280736054302716529829833142273539<164>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4094683216 Step 1 took 18445ms ********** Factor found in step 1: 27947028349698781437164987540699 Found probable prime factor of 32 digits: 27947028349698781437164987540699 Composite cofactor has 164 digits
(38·10128+7)/9 = 4(2)1273<129> = 33 · 41 · 1567 · 9613 · 22153 · C115
C115 = P57 · P58
P57 = 205996789767280236842224092563294819222483899476019914763<57>
P58 = 5548460870468833125139443648463825083675241175547040412381<58>
SNFS difficulty: 131 digits. Divisors found: r1=205996789767280236842224092563294819222483899476019914763 (pp57) r2=5548460870468833125139443648463825083675241175547040412381 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.294). Factorization parameters were as follows: n: 1142965127465948919158699701485164461510638059759591797889499511512820592383071296850919410053462850517519989880703 m: 100000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [540000, 940001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166698 x 166946 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,49,49,2.3,2.3,50000 total time: 2.50 hours.
(38·10161+7)/9 = 4(2)1603<162> = 3 · 71 · 199 · 18133 · 3953923 · 102948767865281369<18> · 223103459630440120241113301<27> · C103
C103 = P36 · P68
P36 = 515054520953638018081451448555001699<36>
P68 = 11744374101790571418852539848321630821275916011828441771173016482301<68>
Number: 42223_161 N=6048992976898055544701500924282843318487253300729386621852067578882185467974673849952876192480058429399 ( 103 digits) Divisors found: r1=515054520953638018081451448555001699 (pp36) r2=11744374101790571418852539848321630821275916011828441771173016482301 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.947). Factorization parameters were as follows: name: 42223_161 n: 6048992976898055544701500924282843318487253300729386621852067578882185467974673849952876192480058429399 skew: 9508.02 # norm 1.32e+14 c5: 65640 c4: 494004046 c3: -12223958194410 c2: -80219580147807645 c1: 377628040081781466140 c0: -5661552501923811834276 # alpha -5.67 Y1: 148027261 Y0: -39165430004865054515 # Murphy_E 2.38e-09 # M 1376237156667498328491122275652318259924145043912891828309343895588198824682229544879829222474450612280 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 251057 x 251305 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.00 hours.
(38·10164+7)/9 = 4(2)1633<165> = 32 · 61 · 7682881 · 40818499 · 4453252165552267529490497<25> · C123
C123 = P36 · P88
P36 = 425438812577715228012820656931311881<36>
P88 = 1294414025611891599260150096076852317064818033104359921919372175404128601450000975774169<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1663009270 Step 1 took 10333ms Step 2 took 5828ms ********** Factor found in step 2: 425438812577715228012820656931311881 Found probable prime factor of 36 digits: 425438812577715228012820656931311881 Probable prime cofactor 1294414025611891599260150096076852317064818033104359921919372175404128601450000975774169 has 88 digits
(38·10186+7)/9 = 4(2)1853<187> = 47 · 2767 · 359878883096258333<18> · C164
C164 = P32 · C133
P32 = 17220926929820735919650444522083<32>
C133 = [5238671693611155393110256636771215165291040871189770033614443601009113065979421595887797051522376438298628830110390256780678267308393<133>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2089980357 Step 1 took 13584ms Step 2 took 7373ms ********** Factor found in step 2: 17220926929820735919650444522083 Found probable prime factor of 32 digits: 17220926929820735919650444522083 Composite cofactor has 133 digits
Factorizations of 422...223 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve
(37·10151+53)/9 = 4(1)1507<152> = 17 · 19 · 5424157 · 3012826135843<13> · C130
C130 = P41 · P90
P41 = 30714188652462505796370832052921572228561<41>
P90 = 253577854611776783427342074390532895866761571131753872950109269776119129811679765690447289<90>
Number: 41117_151 N=7788438064632821574690358496362360897296483820042841122084535900504402571465752730134408241556280290071228582891922842992630821129 ( 130 digits) SNFS difficulty: 152 digits. Divisors found: r1=30714188652462505796370832052921572228561 (prp41) r2=253577854611776783427342074390532895866761571131753872950109269776119129811679765690447289 (prp90) Version: Total time: 28.65 hours. Scaled time: 56.71 units (timescale=1.979). Factorization parameters were as follows: name: 41117_151 n: 7788438064632821574690358496362360897296483820042841122084535900504402571465752730134408241556280290071228582891922842992630821129 m: 1000000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 499116 x 499364 Total sieving time: 28.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 28.65 hours. --------- CPU info (if available) ----------
(38·10138-11)/9 = 4(2)1371<139> = 32 · 53 · 1021 · C133
C133 = P44 · P90
P44 = 51707817722286821429454583067769802912986421<44>
P90 = 167664360523445916239872708231359971038766019984240649261322234707681832432375540040788753<90>
Number: 42221_138 N=8669558192470123675810540950772195266740631686824530195500818702883517869442385424373732790071439440968636048068593544418823618523013 ( 133 digits) SNFS difficulty: 140 digits. Divisors found: r1=51707817722286821429454583067769802912986421 (prp44) r2=167664360523445916239872708231359971038766019984240649261322234707681832432375540040788753 (prp90) Version: Total time: 9.44 hours. Scaled time: 18.50 units (timescale=1.960). Factorization parameters were as follows: name: 42221_138 n: 8669558192470123675810540950772195266740631686824530195500818702883517869442385424373732790071439440968636048068593544418823618523013 m: 5000000000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239659 x 239907 Total sieving time: 9.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 9.44 hours. --------- CPU info (if available) ----------
(38·10142-11)/9 = 4(2)1411<143> = 421 · 2062883 · 364018747 · C126
C126 = P60 · P66
P60 = 226667704464855786266160319294497767450305082964541295658331<60>
P66 = 589211205531103317422879572675077629800058220084069542829565675771<66>
Number: 42221_142 N=133555151402705527771020532470635570480603171803939263654479802422770269818472340168044144200161160806498395618241264340998201 ( 126 digits) SNFS difficulty: 144 digits. Divisors found: r1=226667704464855786266160319294497767450305082964541295658331 (prp60) r2=589211205531103317422879572675077629800058220084069542829565675771 (prp66) Version: Total time: 9.54 hours. Scaled time: 24.47 units (timescale=2.564). Factorization parameters were as follows: name: 42221_142 n: 133555151402705527771020532470635570480603171803939263654479802422770269818472340168044144200161160806498395618241264340998201 m: 20000000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 1770000 alim: 1770000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1770000/1770000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [885000, 2185001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 317247 x 317495 Total sieving time: 9.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1770000,1770000,26,26,49,49,2.3,2.3,100000 total time: 9.54 hours. --------- CPU info (if available) ----------
(38·10149-11)/9 = 4(2)1481<150> = C150
C150 = P34 · P53 · P65
P34 = 2156877309792813337917367804096273<34>
P53 = 10692962417405779727963760437122579230977363713174343<53>
P65 = 18307017852353217144257078631568701474589782475479036325318027739<65>
Number: 42221_149 N=422222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 150 digits) SNFS difficulty: 151 digits. Divisors found: r1=2156877309792813337917367804096273 (prp34) r2=10692962417405779727963760437122579230977363713174343 (prp53) r3=18307017852353217144257078631568701474589782475479036325318027739 (prp65) Version: Total time: 16.63 hours. Scaled time: 42.47 units (timescale=2.554). Factorization parameters were as follows: name: 42221_149 n: 422222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 376776 x 377024 Total sieving time: 16.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 16.63 hours. --------- CPU info (if available) ----------
(38·10140-11)/9 = 4(2)1391<141> = 167 · 569 · 101402387 · C128
C128 = P39 · P89
P39 = 804607420655732570446552759744605618923<39>
P89 = 54460313579417670846316649744291707051749895931971216643706261352702388356635007215995827<89>
Number: 42221_140 N=43819172437237618652820907786713083938238055391217746877124393262556917756829365265010678060634024257185753881011836909120234321 ( 128 digits) SNFS difficulty: 141 digits. Divisors found: r1=804607420655732570446552759744605618923 (prp39) r2=54460313579417670846316649744291707051749895931971216643706261352702388356635007215995827 (prp89) Version: Total time: 5.35 hours. Scaled time: 13.57 units (timescale=2.534). Factorization parameters were as follows: name: 42221_140 n: 43819172437237618652820907786713083938238055391217746877124393262556917756829365265010678060634024257185753881011836909120234321 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 218142 x 218390 Total sieving time: 5.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 5.35 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(38·10152-11)/9 = 4(2)1511<153> = 47 · 740549 · 1388627 · C139
C139 = P55 · P85
P55 = 2244475534182952124033053975047362318980113940838127137<55>
P85 = 3892144435855376728741091997536320056326825112992346851623166566331315178926518146493<85>
SNFS difficulty: 154 digits. Divisors found: r1=2244475534182952124033053975047362318980113940838127137 (pp55) r2=3892144435855376728741091997536320056326825112992346851623166566331315178926518146493 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.280). Factorization parameters were as follows: n: 8735822961783701521595509383320306982142781207790003682501701235482336432672547155076594232653301349910915673274832506173076799918724680541 m: 2000000000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 512153 x 512401 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 18.00 hours.
(38·10162-11)/9 = 4(2)1611<163> = 3 · 151 · 601 · 673 · 28551353 · 10361935027<11> · 15788755231694576119999<23> · C115
C115 = P39 · P77
P39 = 393004019300720895064649178102671858011<39>
P77 = 12552808589729656412640688337363128700026916814005950670291119358728810118951<77>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3477203104 Step 1 took 6473ms Step 2 took 4044ms ********** Factor found in step 2: 393004019300720895064649178102671858011 Found probable prime factor of 39 digits: 393004019300720895064649178102671858011 Probable prime cofactor has 77 digits
(38·10156-11)/9 = 4(2)1551<157> = 32 · 41 · 61 · 205450383023983<15> · 868117700586089<15> · C124
C124 = P36 · P88
P36 = 273415711927335176935345351670676383<36>
P88 = 3846589586178820725082205888583716939157891153434790937819112111477628162272406784535689<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=324217118 Step 1 took 7748ms Step 2 took 4473ms ********** Factor found in step 2: 273415711927335176935345351670676383 Found probable prime factor of 36 digits: 273415711927335176935345351670676383 Probable prime cofactor 3846589586178820725082205888583716939157891153434790937819112111477628162272406784535689 has 88 digits
By Robert Backstrom / GGNFS, Msieve
(31·10185+41)/9 = 3(4)1849<186> = 7 · 188753 · C180
C180 = P59 · P122
P59 = 11462491287896624764009877866815918899950651066846725626897<59>
P122 = 22743026785569236152077669009125297268693301386451793502974838936091495987844715921550687164968936573229303616204234222327<122>
Number: n N=260691746389986947752917035524464280563521370290004430918747512391057129418903801297723513529355025914021002840783188645209381303642057113525116682682390247303122860067650349129319 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 17 02:46:14 2008 prp59 factor: 11462491287896624764009877866815918899950651066846725626897 Wed Dec 17 02:46:14 2008 prp122 factor: 22743026785569236152077669009125297268693301386451793502974838936091495987844715921550687164968936573229303616204234222327 Wed Dec 17 02:46:14 2008 elapsed time 03:13:45 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 58.50 hours. Scaled time: 117.71 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_4_184_9 n: 260691746389986947752917035524464280563521370290004430918747512391057129418903801297723513529355025914021002840783188645209381303642057113525116682682390247303122860067650349129319 type: snfs skew: 1.06 deg: 5 c5: 31 c0: 41 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 4100001) Primes: RFBsize:571119, AFBsize:571584, largePrimes:29344877 encountered Relations: rels:26217521, finalFF:1026972 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5676222 hash collisions in 31554904 relations Msieve: matrix is 1493389 x 1493637 (408.6 MB) Total sieving time: 57.58 hours. Total relation processing time: 0.93 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 58.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(34·10184+11)/9 = 3(7)1839<185> = 3 · 7 · C184
C184 = P70 · P114
P70 = 3153381182245925815602116031604202495320047121667445799461559645437791<70>
P114 = 570480286072025881760890891024077848976969633603699632299856594817956338766406814897528070489702511123803391082489<114>
Number: n N=1798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941799 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 17 12:43:05 2008 prp70 factor: 3153381182245925815602116031604202495320047121667445799461559645437791 Wed Dec 17 12:43:05 2008 prp114 factor: 570480286072025881760890891024077848976969633603699632299856594817956338766406814897528070489702511123803391082489 Wed Dec 17 12:43:05 2008 elapsed time 04:13:42 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.87 hours. Scaled time: 59.05 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_7_183_9 n: 1798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941799 type: snfs skew: 1.26 deg: 5 c5: 17 c0: 55 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 4550001) Primes: RFBsize:571119, AFBsize:571718, largePrimes:31863919 encountered Relations: rels:29900533, finalFF:1289293 Max relations in full relation-set: 28 Initial matrix: 1142902 x 1289291 with sparse part having weight 139239900. Pruned matrix : 1020687 x 1026465 with weight 109219622. Msieve: found 5898080 hash collisions in 35099131 relations Msieve: matrix is 1215906 x 1216154 (330.1 MB) Total sieving time: 27.66 hours. Total relation processing time: 1.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 28.87 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(11·10204-17)/3 = 3(6)2031<205> = C205
C205 = P48 · P71 · P88
P48 = 221505090182582524572671341559157703350533777731<48>
P71 = 13194273781235111004047017055681434596445649290434332958327191748518633<71>
P88 = 1254591174776189824004158294987313249694792007124710608846927570746687005326132416330207<88>
Number: n N=3666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 205 digits) SNFS difficulty: 206 digits. Divisors found: Tue Dec 16 14:36:52 2008 prp48 factor: 221505090182582524572671341559157703350533777731 Tue Dec 16 14:36:52 2008 prp71 factor: 13194273781235111004047017055681434596445649290434332958327191748518633 Tue Dec 16 14:36:52 2008 prp88 factor: 1254591174776189824004158294987313249694792007124710608846927570746687005326132416330207 Tue Dec 16 14:36:52 2008 elapsed time 17:19:44 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 175.28 hours. Scaled time: 352.66 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_6_203_1 n: 3666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 type: snfs skew: 0.98 deg: 5 c5: 11 c0: -170 m: 100000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 29800001) Primes: RFBsize:664579, AFBsize:664171, largePrimes:34554940 encountered Relations: rels:27185260, finalFF:103021 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 13574584 hash collisions in 52206683 relations Msieve: matrix is 3208382 x 3208630 (877.7 MB) Total sieving time: 172.35 hours. Total relation processing time: 2.93 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 175.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(37·10168+53)/9 = 4(1)1677<169> = 61 · 48589 · 101917 · C158
C158 = P49 · P52 · P58
P49 = 1155470698301302268611468354403836671616459816573<49>
P52 = 6382078797307035347345673498114642379600251847737301<52>
P58 = 1845540960763765864183039787801984859962999384752383870553<58>
SNFS difficulty: 170 digits. Divisors found: r1=1155470698301302268611468354403836671616459816573 (pp49) r2=6382078797307035347345673498114642379600251847737301 (pp52) r3=1845540960763765864183039787801984859962999384752383870553 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 13609582016862291049453137524723009045974398678080754559936713443116025299342216519110899671138279626636611560178417519813777040628623124578030888993199988569 m: 5000000000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 919522 x 919770 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,200000 total time: 70.00 hours.
10245+3 = 1(0)2443<246> = 397 · C243
C243 = P37 · C207
P37 = 1523139408975506847609408057356772403<37>
C207 = [165374992782288143099098664420190855135065524201790567845531019468290719579509530782801360420860492125166999904737069490397081057711442662739511913130562317785089919433785439437190546446326948947840039161333<207>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1013441708 Step 1 took 88160ms Step 2 took 36093ms ********** Factor found in step 2: 1523139408975506847609408057356772403 Found probable prime factor of 37 digits: 1523139408975506847609408057356772403 Composite cofactor has 207 digits
(38·10160-11)/9 = 4(2)1591<161> = C161
C161 = P58 · P103
P58 = 4232810193853545342342065250180631557044686896193443565813<58>
P103 = 9974985952248230050213644193474437703849918356907673850080379830337390210326473820200577856401733781817<103>
SNFS difficulty: 161 digits. Divisors found: r1=4232810193853545342342065250180631557044686896193443565813 (pp58) r2=9974985952248230050213644193474437703849918356907673850080379830337390210326473820200577856401733781817 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.883). Factorization parameters were as follows: n: 42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 100000000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 559579 x 559827 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,200000 total time: 20.00 hours.
By Sinkiti Sibata / Msieve, GGNFS
(38·10153-11)/9 = 4(2)1521<154> = 3 · 7 · 17 · 78517 · 4943441 · 129735240245090347741<21> · 3871855789967261077355383<25> · C95
C95 = P41 · P55
P41 = 15061311339269694752966969737951939626793<41>
P55 = 4027540334331000455649132757502438402057856590453203831<55>
Mon Dec 15 21:24:24 2008 Msieve v. 1.39 Mon Dec 15 21:24:24 2008 random seeds: d578aff0 13fce78b Mon Dec 15 21:24:24 2008 factoring 60660038906825554637414355681564907507415461749948153955759950113103673417179000748613297843983 (95 digits) Mon Dec 15 21:24:25 2008 searching for 15-digit factors Mon Dec 15 21:24:27 2008 commencing quadratic sieve (95-digit input) Mon Dec 15 21:24:27 2008 using multiplier of 7 Mon Dec 15 21:24:27 2008 using 64kb Pentium 4 sieve core Mon Dec 15 21:24:27 2008 sieve interval: 18 blocks of size 65536 Mon Dec 15 21:24:27 2008 processing polynomials in batches of 6 Mon Dec 15 21:24:27 2008 using a sieve bound of 2162071 (79904 primes) Mon Dec 15 21:24:27 2008 using large prime bound of 324310650 (28 bits) Mon Dec 15 21:24:27 2008 using double large prime bound of 2087998231332900 (43-51 bits) Mon Dec 15 21:24:27 2008 using trial factoring cutoff of 51 bits Mon Dec 15 21:24:27 2008 polynomial 'A' values have 12 factors Tue Dec 16 03:39:39 2008 80356 relations (19851 full + 60505 combined from 1194222 partial), need 80000 Tue Dec 16 03:39:44 2008 begin with 1214073 relations Tue Dec 16 03:39:45 2008 reduce to 208410 relations in 12 passes Tue Dec 16 03:39:45 2008 attempting to read 208410 relations Tue Dec 16 03:39:52 2008 recovered 208410 relations Tue Dec 16 03:39:52 2008 recovered 191316 polynomials Tue Dec 16 03:39:52 2008 attempting to build 80356 cycles Tue Dec 16 03:39:53 2008 found 80356 cycles in 7 passes Tue Dec 16 03:39:53 2008 distribution of cycle lengths: Tue Dec 16 03:39:53 2008 length 1 : 19851 Tue Dec 16 03:39:53 2008 length 2 : 14166 Tue Dec 16 03:39:53 2008 length 3 : 13601 Tue Dec 16 03:39:53 2008 length 4 : 10899 Tue Dec 16 03:39:53 2008 length 5 : 8038 Tue Dec 16 03:39:53 2008 length 6 : 5507 Tue Dec 16 03:39:53 2008 length 7 : 3514 Tue Dec 16 03:39:53 2008 length 9+: 4780 Tue Dec 16 03:39:53 2008 largest cycle: 22 relations Tue Dec 16 03:39:53 2008 matrix is 79904 x 80356 (21.8 MB) with weight 5402198 (67.23/col) Tue Dec 16 03:39:53 2008 sparse part has weight 5402198 (67.23/col) Tue Dec 16 03:39:56 2008 filtering completed in 4 passes Tue Dec 16 03:39:56 2008 matrix is 75825 x 75889 (20.6 MB) with weight 5108863 (67.32/col) Tue Dec 16 03:39:56 2008 sparse part has weight 5108863 (67.32/col) Tue Dec 16 03:39:56 2008 saving the first 48 matrix rows for later Tue Dec 16 03:39:56 2008 matrix is 75777 x 75889 (14.5 MB) with weight 4195500 (55.28/col) Tue Dec 16 03:39:56 2008 sparse part has weight 3350889 (44.16/col) Tue Dec 16 03:39:56 2008 matrix includes 64 packed rows Tue Dec 16 03:39:56 2008 using block size 21845 for processor cache size 512 kB Tue Dec 16 03:39:57 2008 commencing Lanczos iteration Tue Dec 16 03:39:57 2008 memory use: 13.1 MB Tue Dec 16 03:40:59 2008 lanczos halted after 1200 iterations (dim = 75775) Tue Dec 16 03:40:59 2008 recovered 16 nontrivial dependencies Tue Dec 16 03:41:01 2008 prp41 factor: 15061311339269694752966969737951939626793 Tue Dec 16 03:41:01 2008 prp55 factor: 4027540334331000455649132757502438402057856590453203831 Tue Dec 16 03:41:01 2008 elapsed time 06:16:37
(38·10125-11)/9 = 4(2)1241<126> = 53 · 2801 · 349499 · 1447098722403233<16> · C100
C100 = P47 · P54
P47 = 26028553070102555153152006678575895714988264141<47>
P54 = 216051847743155505973228004187461561967298916530089431<54>
Mon Dec 15 19:29:51 2008 Msieve v. 1.39 Mon Dec 15 19:29:51 2008 random seeds: b14ae2d8 9d6205d9 Mon Dec 15 19:29:51 2008 factoring 5623516984876440046820940447597024505155242882926050220394806682266805082143873407184438266180393771 (100 digits) Mon Dec 15 19:29:52 2008 searching for 15-digit factors Mon Dec 15 19:29:53 2008 commencing quadratic sieve (100-digit input) Mon Dec 15 19:29:53 2008 using multiplier of 19 Mon Dec 15 19:29:53 2008 using 32kb Intel Core sieve core Mon Dec 15 19:29:53 2008 sieve interval: 36 blocks of size 32768 Mon Dec 15 19:29:53 2008 processing polynomials in batches of 6 Mon Dec 15 19:29:53 2008 using a sieve bound of 2747231 (100000 primes) Mon Dec 15 19:29:53 2008 using large prime bound of 412084650 (28 bits) Mon Dec 15 19:29:53 2008 using double large prime bound of 3213479781672900 (43-52 bits) Mon Dec 15 19:29:53 2008 using trial factoring cutoff of 52 bits Mon Dec 15 19:29:53 2008 polynomial 'A' values have 13 factors Tue Dec 16 09:38:14 2008 100131 relations (23083 full + 77048 combined from 1514856 partial), need 100096 Tue Dec 16 09:38:16 2008 begin with 1537939 relations Tue Dec 16 09:38:18 2008 reduce to 266334 relations in 11 passes Tue Dec 16 09:38:18 2008 attempting to read 266334 relations Tue Dec 16 09:38:23 2008 recovered 266334 relations Tue Dec 16 09:38:23 2008 recovered 258695 polynomials Tue Dec 16 09:38:23 2008 attempting to build 100131 cycles Tue Dec 16 09:38:23 2008 found 100131 cycles in 7 passes Tue Dec 16 09:38:23 2008 distribution of cycle lengths: Tue Dec 16 09:38:23 2008 length 1 : 23083 Tue Dec 16 09:38:23 2008 length 2 : 16942 Tue Dec 16 09:38:23 2008 length 3 : 16845 Tue Dec 16 09:38:23 2008 length 4 : 13748 Tue Dec 16 09:38:23 2008 length 5 : 10569 Tue Dec 16 09:38:23 2008 length 6 : 7270 Tue Dec 16 09:38:23 2008 length 7 : 4676 Tue Dec 16 09:38:23 2008 length 9+: 6998 Tue Dec 16 09:38:23 2008 largest cycle: 23 relations Tue Dec 16 09:38:24 2008 matrix is 100000 x 100131 (28.5 MB) with weight 7076937 (70.68/col) Tue Dec 16 09:38:24 2008 sparse part has weight 7076937 (70.68/col) Tue Dec 16 09:38:26 2008 filtering completed in 3 passes Tue Dec 16 09:38:26 2008 matrix is 96437 x 96501 (27.6 MB) with weight 6861401 (71.10/col) Tue Dec 16 09:38:26 2008 sparse part has weight 6861401 (71.10/col) Tue Dec 16 09:38:26 2008 saving the first 48 matrix rows for later Tue Dec 16 09:38:26 2008 matrix is 96389 x 96501 (17.9 MB) with weight 5506767 (57.06/col) Tue Dec 16 09:38:26 2008 sparse part has weight 4110435 (42.59/col) Tue Dec 16 09:38:26 2008 matrix includes 64 packed rows Tue Dec 16 09:38:26 2008 using block size 38600 for processor cache size 1024 kB Tue Dec 16 09:38:27 2008 commencing Lanczos iteration Tue Dec 16 09:38:27 2008 memory use: 16.8 MB Tue Dec 16 09:39:35 2008 lanczos halted after 1525 iterations (dim = 96384) Tue Dec 16 09:39:35 2008 recovered 14 nontrivial dependencies Tue Dec 16 09:39:36 2008 prp47 factor: 26028553070102555153152006678575895714988264141 Tue Dec 16 09:39:36 2008 prp54 factor: 216051847743155505973228004187461561967298916530089431 Tue Dec 16 09:39:36 2008 elapsed time 14:09:45
(37·10150+71)/9 = 4(1)1499<151> = 33 · 883 · 4889 · 1221948250643<13> · C131
C131 = P64 · P67
P64 = 3287070246072146574864034007439682346444251917611909212297051483<64>
P67 = 8781180623418817074662056980380019977887522124119819322642913307399<67>
Number: 41119_150 N=28864357552625256507880498508537587718402715194719806825118503206248327918753286810133287358446407710796717272680968736991307822717 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=3287070246072146574864034007439682346444251917611909212297051483 (prp64) r2=8781180623418817074662056980380019977887522124119819322642913307399 (prp67) Version: Total time: 16.83 hours. Scaled time: 43.33 units (timescale=2.575). Factorization parameters were as follows: name: 41119_150 n: 28864357552625256507880498508537587718402715194719806825118503206248327918753286810133287358446407710796717272680968736991307822717 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 389350 x 389598 Total sieving time: 16.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 16.83 hours. --------- CPU info (if available) ----------
(37·10148+53)/9 = 4(1)1477<149> = 22669 · 107310918012420977<18> · C128
C128 = P39 · P42 · P48
P39 = 244860118170382215335072280041384558599<39>
P42 = 446917873259314622190911021433246558748781<42>
P48 = 154431953041875888316954780441581808091078491811<48>
Number: 41117_148 N=16899853584033955114950120383965912952947644853307839909495057609897055375198928097686899001618067828768496519047079737942880209 ( 128 digits) SNFS difficulty: 150 digits. Divisors found: r1=244860118170382215335072280041384558599 (prp39) r2=446917873259314622190911021433246558748781 (prp42) r3=154431953041875888316954780441581808091078491811 (prp48) Version: Total time: 14.74 hours. Scaled time: 37.79 units (timescale=2.564). Factorization parameters were as follows: name: 41117_148 n: 16899853584033955114950120383965912952947644853307839909495057609897055375198928097686899001618067828768496519047079737942880209 m: 500000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 405122 x 405370 Total sieving time: 14.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 14.74 hours. --------- CPU info (if available) ----------
(38·10108-11)/9 = 4(2)1071<109> = 3 · C109
C109 = P39 · P70
P39 = 247611047803078395531865562134423674323<39>
P70 = 5683944314660381557602633851722612401459653226858370362546598490499509<70>
Number: 42221_108 N=1407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 ( 109 digits) SNFS difficulty: 110 digits. Divisors found: r1=247611047803078395531865562134423674323 (pp39) r2=5683944314660381557602633851722612401459653226858370362546598490499509 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.47 hours. Scaled time: 0.70 units (timescale=0.474). Factorization parameters were as follows: name: 42221_108 n: 1407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 m: 5000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: RFBsize:41538, AFBsize:41548, largePrimes:1113852 encountered Relations: rels:1058520, finalFF:113369 Max relations in full relation-set: 28 Initial matrix: 83153 x 113369 with sparse part having weight 4921853. Pruned matrix : 70547 x 71026 with weight 2259018. Total sieving time: 1.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 1.47 hours. --------- CPU info (if available) ----------
(37·10150+53)/9 = 4(1)1497<151> = 1953649038355327<16> · C136
C136 = P68 · P69
P68 = 15528730282738141460510651909659560854080390256835141132996522651323<68>
P69 = 135511677020391780462271499218014916556072164255270934647592478198377<69>
Number: 41117_150 N=2104324282611188159960451123666380806055558797064658637231912660210061374031014998130279654083126691286869690704509007375842722395502771 ( 136 digits) SNFS difficulty: 151 digits. Divisors found: r1=15528730282738141460510651909659560854080390256835141132996522651323 (prp68) r2=135511677020391780462271499218014916556072164255270934647592478198377 (prp69) Version: Total time: 19.54 hours. Scaled time: 39.28 units (timescale=2.010). Factorization parameters were as follows: name: 41117_150 n: 2104324282611188159960451123666380806055558797064658637231912660210061374031014998130279654083126691286869690704509007375842722395502771 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 350594 x 350842 Total sieving time: 19.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 19.54 hours. --------- CPU info (if available) ----------
(38·10134-11)/9 = 4(2)1331<135> = 1491649 · 2946860149<10> · C119
C119 = P52 · P68
P52 = 4149907820957241490972920909065030923841515609684853<52>
P68 = 23146027777754951736573466939039243760546766431014482234227004890357<68>
Number: 42221_134 N=96053881698998834395407603696803899148417871409640815733762490089278910746043202961580105229793209375622816062588662521 ( 119 digits) SNFS difficulty: 136 digits. Divisors found: r1=4149907820957241490972920909065030923841515609684853 (pp52) r2=23146027777754951736573466939039243760546766431014482234227004890357 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.31 hours. Scaled time: 3.93 units (timescale=0.473). Factorization parameters were as follows: name: 42221_134 n: 96053881698998834395407603696803899148417871409640815733762490089278910746043202961580105229793209375622816062588662521 m: 1000000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1330001) Primes: RFBsize:100730, AFBsize:100660, largePrimes:3230980 encountered Relations: rels:3174985, finalFF:257716 Max relations in full relation-set: 28 Initial matrix: 201455 x 257716 with sparse part having weight 22148514. Pruned matrix : 185025 x 186096 with weight 12827971. Total sieving time: 7.51 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.60 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 8.31 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(38·10120-11)/9 = 4(2)1191<121> = 34 · C119
C119 = P42 · P78
P42 = 509139097395824952151373035566844707911509<42>
P78 = 102381059598382098870388221982891747034455666681264121668445411723287964967049<78>
Number: 42221_120 N=52126200274348422496570644718792866941015089163237311385459533607681755829903978052126200274348422496570644718792866941 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=509139097395824952151373035566844707911509 r2=102381059598382098870388221982891747034455666681264121668445411723287964967049 Version: Total time: 0.90 hours. Scaled time: 2.14 units (timescale=2.383). Factorization parameters were as follows: n: 52126200274348422496570644718792866941015089163237311385459533607681755829903978052126200274348422496570644718792866941 m: 1000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69377 x 69607 Total sieving time: 0.84 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.2,2.2,30000 total time: 0.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(38·10129-11)/9 = 4(2)1281<130> = 32 · 7 · 482513 · 6402719 · 23270251 · C108
C108 = P42 · P67
P42 = 125271917239803673135317586548283560303451<42>
P67 = 7441702172870640836699293639239075973261209560036712761186574811061<67>
Number: 42221_129 N=932236298723118086065258271081642050028750773492236275008624201179184424782920531697686204455679770151271511 ( 108 digits) SNFS difficulty: 131 digits. Divisors found: r1=125271917239803673135317586548283560303451 r2=7441702172870640836699293639239075973261209560036712761186574811061 Version: Total time: 2.16 hours. Scaled time: 5.17 units (timescale=2.393). Factorization parameters were as follows: n: 932236298723118086065258271081642050028750773492236275008624201179184424782920531697686204455679770151271511 m: 100000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147643 x 147891 Total sieving time: 1.98 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 2.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(38·10132-11)/9 = 4(2)1311<133> = 3 · 588953 · 1230907 · C121
C121 = P50 · P71
P50 = 26254955460944566172921225572697038732496864651657<50>
P71 = 73943953476055737169732831407296594260590759605785391982027707547550781<71>
Number: 42221_132 N=1941395205120000513014345070903776490531439352431330068809619602452852526039131860535958662912632755808985780565083294117 ( 121 digits) SNFS difficulty: 134 digits. Divisors found: r1=26254955460944566172921225572697038732496864651657 r2=73943953476055737169732831407296594260590759605785391982027707547550781 Version: Total time: 3.02 hours. Scaled time: 7.21 units (timescale=2.390). Factorization parameters were as follows: n: 1941395205120000513014345070903776490531439352431330068809619602452852526039131860535958662912632755808985780565083294117 m: 200000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [650000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 208908 x 209156 Total sieving time: 2.72 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,47,47,2.3,2.3,50000 total time: 3.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Wataru Sakai / Msieve
(8·10199-17)/9 = (8)1987<199> = 7 · C199
C199 = P60 · P66 · P74
P60 = 165915290595704680698485074656900719922152047067184299154427<60>
P66 = 209149051828140486987606736849824369901235273907179420942848736473<66>
P74 = 36593767584410672419943796220646382293763887819649513105939916736712122971<74>
Number: 88887_199 N=1269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=165915290595704680698485074656900719922152047067184299154427 r2=209149051828140486987606736849824369901235273907179420942848736473 r3=36593767584410672419943796220646382293763887819649513105939916736712122971 Version: Total time: 755.47 hours. Scaled time: 1492.80 units (timescale=1.976). Factorization parameters were as follows: n: 1269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: -85 skew: 1.84 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 15500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2674720 x 2674968 Total sieving time: 755.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 755.47 hours. --------- CPU info (if available) ----------
(34·10194+11)/9 = 3(7)1939<195> = C195
C195 = P49 · P147
P49 = 2691197740780502992199450526686456932840409619277<49>
P147 = 140375332534358627509741440328961748053188124694231767125239461652617980761194328247328425405232588742773325753465604320143168823613280390506804927<147>
Number: 37779_194 N=377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=2691197740780502992199450526686456932840409619277 r2=140375332534358627509741440328961748053188124694231767125239461652617980761194328247328425405232588742773325753465604320143168823613280390506804927 Version: Total time: 658.53 hours. Scaled time: 1313.11 units (timescale=1.994). Factorization parameters were as follows: n: 377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 1000000000000000000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 13600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2061273 x 2061521 Total sieving time: 658.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,55,55,2.5,2.5,100000 total time: 658.53 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10103-11)/9 = 4(2)1021<104> = 733 · 1621 · 6029 · 367134413 · C86
C86 = P41 · P45
P41 = 28306816444502368825148383991347799490833<41>
P45 = 567143149328791314070560484701937139507375317<45>
Mon Dec 15 15:27:04 2008 Msieve v. 1.39 Mon Dec 15 15:27:04 2008 random seeds: 651d427f 9761b85e Mon Dec 15 15:27:04 2008 factoring 16054017025807092569396169499940205222006738243601515768240784071360787770700831969061 (86 digits) Mon Dec 15 15:27:06 2008 searching for 15-digit factors Mon Dec 15 15:27:07 2008 commencing quadratic sieve (86-digit input) Mon Dec 15 15:27:07 2008 using multiplier of 29 Mon Dec 15 15:27:07 2008 using 64kb Pentium 4 sieve core Mon Dec 15 15:27:07 2008 sieve interval: 7 blocks of size 65536 Mon Dec 15 15:27:07 2008 processing polynomials in batches of 15 Mon Dec 15 15:27:07 2008 using a sieve bound of 1451119 (55333 primes) Mon Dec 15 15:27:07 2008 using large prime bound of 116089520 (26 bits) Mon Dec 15 15:27:07 2008 using double large prime bound of 328569561530240 (41-49 bits) Mon Dec 15 15:27:07 2008 using trial factoring cutoff of 49 bits Mon Dec 15 15:27:07 2008 polynomial 'A' values have 11 factors Mon Dec 15 16:19:16 2008 55637 relations (16439 full + 39198 combined from 566957 partial), need 55429 Mon Dec 15 16:19:19 2008 begin with 583396 relations Mon Dec 15 16:19:19 2008 reduce to 129329 relations in 9 passes Mon Dec 15 16:19:19 2008 attempting to read 129329 relations Mon Dec 15 16:19:22 2008 recovered 129329 relations Mon Dec 15 16:19:22 2008 recovered 107195 polynomials Mon Dec 15 16:19:23 2008 attempting to build 55637 cycles Mon Dec 15 16:19:23 2008 found 55637 cycles in 5 passes Mon Dec 15 16:19:23 2008 distribution of cycle lengths: Mon Dec 15 16:19:23 2008 length 1 : 16439 Mon Dec 15 16:19:23 2008 length 2 : 11435 Mon Dec 15 16:19:23 2008 length 3 : 9924 Mon Dec 15 16:19:23 2008 length 4 : 7013 Mon Dec 15 16:19:23 2008 length 5 : 4754 Mon Dec 15 16:19:23 2008 length 6 : 2805 Mon Dec 15 16:19:23 2008 length 7 : 1625 Mon Dec 15 16:19:23 2008 length 9+: 1642 Mon Dec 15 16:19:23 2008 largest cycle: 19 relations Mon Dec 15 16:19:23 2008 matrix is 55333 x 55637 (12.3 MB) with weight 2995743 (53.84/col) Mon Dec 15 16:19:23 2008 sparse part has weight 2995743 (53.84/col) Mon Dec 15 16:19:24 2008 filtering completed in 3 passes Mon Dec 15 16:19:24 2008 matrix is 49885 x 49949 (11.1 MB) with weight 2716273 (54.38/col) Mon Dec 15 16:19:24 2008 sparse part has weight 2716273 (54.38/col) Mon Dec 15 16:19:24 2008 saving the first 48 matrix rows for later Mon Dec 15 16:19:24 2008 matrix is 49837 x 49949 (6.8 MB) with weight 2078163 (41.61/col) Mon Dec 15 16:19:24 2008 sparse part has weight 1495961 (29.95/col) Mon Dec 15 16:19:24 2008 matrix includes 64 packed rows Mon Dec 15 16:19:24 2008 using block size 19979 for processor cache size 512 kB Mon Dec 15 16:19:25 2008 commencing Lanczos iteration Mon Dec 15 16:19:25 2008 memory use: 6.9 MB Mon Dec 15 16:19:48 2008 lanczos halted after 789 iterations (dim = 49837) Mon Dec 15 16:19:48 2008 recovered 18 nontrivial dependencies Mon Dec 15 16:19:49 2008 prp41 factor: 28306816444502368825148383991347799490833 Mon Dec 15 16:19:49 2008 prp45 factor: 567143149328791314070560484701937139507375317 Mon Dec 15 16:19:49 2008 elapsed time 00:52:45
(38·10105-11)/9 = 4(2)1041<106> = 3 · 72 · 17 · 347 · 140986765379<12> · C89
C89 = P41 · P48
P41 = 43871068211571581561965777755726137512439<41>
P48 = 787206733759095811393840080371004503026881448697<48>
Mon Dec 15 15:34:20 2008 Msieve v. 1.39 Mon Dec 15 15:34:20 2008 random seeds: 389128b0 b431d9bf Mon Dec 15 15:34:20 2008 factoring 34535600313353761637815551285629476040788202504999833839791741988242343476339596177841983 (89 digits) Mon Dec 15 15:34:21 2008 searching for 15-digit factors Mon Dec 15 15:34:23 2008 commencing quadratic sieve (89-digit input) Mon Dec 15 15:34:23 2008 using multiplier of 7 Mon Dec 15 15:34:23 2008 using 32kb Intel Core sieve core Mon Dec 15 15:34:23 2008 sieve interval: 32 blocks of size 32768 Mon Dec 15 15:34:23 2008 processing polynomials in batches of 7 Mon Dec 15 15:34:23 2008 using a sieve bound of 1555999 (59000 primes) Mon Dec 15 15:34:23 2008 using large prime bound of 124479920 (26 bits) Mon Dec 15 15:34:23 2008 using double large prime bound of 372544998335040 (42-49 bits) Mon Dec 15 15:34:23 2008 using trial factoring cutoff of 49 bits Mon Dec 15 15:34:23 2008 polynomial 'A' values have 11 factors Mon Dec 15 16:35:25 2008 59266 relations (15945 full + 43321 combined from 625351 partial), need 59096 Mon Dec 15 16:35:26 2008 begin with 641296 relations Mon Dec 15 16:35:27 2008 reduce to 144178 relations in 10 passes Mon Dec 15 16:35:27 2008 attempting to read 144178 relations Mon Dec 15 16:35:29 2008 recovered 144178 relations Mon Dec 15 16:35:29 2008 recovered 120576 polynomials Mon Dec 15 16:35:29 2008 attempting to build 59266 cycles Mon Dec 15 16:35:29 2008 found 59266 cycles in 6 passes Mon Dec 15 16:35:29 2008 distribution of cycle lengths: Mon Dec 15 16:35:29 2008 length 1 : 15945 Mon Dec 15 16:35:29 2008 length 2 : 11323 Mon Dec 15 16:35:29 2008 length 3 : 10530 Mon Dec 15 16:35:29 2008 length 4 : 7966 Mon Dec 15 16:35:29 2008 length 5 : 5549 Mon Dec 15 16:35:29 2008 length 6 : 3419 Mon Dec 15 16:35:29 2008 length 7 : 2034 Mon Dec 15 16:35:29 2008 length 9+: 2500 Mon Dec 15 16:35:29 2008 largest cycle: 21 relations Mon Dec 15 16:35:29 2008 matrix is 59000 x 59266 (14.5 MB) with weight 3552330 (59.94/col) Mon Dec 15 16:35:29 2008 sparse part has weight 3552330 (59.94/col) Mon Dec 15 16:35:30 2008 filtering completed in 4 passes Mon Dec 15 16:35:30 2008 matrix is 54944 x 55008 (13.5 MB) with weight 3325067 (60.45/col) Mon Dec 15 16:35:30 2008 sparse part has weight 3325067 (60.45/col) Mon Dec 15 16:35:30 2008 saving the first 48 matrix rows for later Mon Dec 15 16:35:30 2008 matrix is 54896 x 55008 (9.8 MB) with weight 2725550 (49.55/col) Mon Dec 15 16:35:30 2008 sparse part has weight 2235862 (40.65/col) Mon Dec 15 16:35:30 2008 matrix includes 64 packed rows Mon Dec 15 16:35:30 2008 using block size 22003 for processor cache size 1024 kB Mon Dec 15 16:35:31 2008 commencing Lanczos iteration Mon Dec 15 16:35:31 2008 memory use: 8.9 MB Mon Dec 15 16:35:50 2008 lanczos halted after 870 iterations (dim = 54892) Mon Dec 15 16:35:50 2008 recovered 15 nontrivial dependencies Mon Dec 15 16:35:51 2008 prp41 factor: 43871068211571581561965777755726137512439 Mon Dec 15 16:35:51 2008 prp48 factor: 787206733759095811393840080371004503026881448697 Mon Dec 15 16:35:51 2008 elapsed time 01:01:31
(38·10127-11)/9 = 4(2)1261<128> = 499 · 2386393 · 1606241281<10> · 272625457405895818536527<24> · C86
C86 = P35 · P52
P35 = 17366429354635051553800208947550843<35>
P52 = 4662414176865757064462443642505119553194330890299483<52>
Mon Dec 15 17:43:30 2008 Msieve v. 1.39 Mon Dec 15 17:43:30 2008 random seeds: 68905814 d1f19330 Mon Dec 15 17:43:30 2008 factoring 80969486424588104569192172741595063682559812789268173368043734892383445616679639114169 (86 digits) Mon Dec 15 17:43:31 2008 searching for 15-digit factors Mon Dec 15 17:43:33 2008 commencing quadratic sieve (86-digit input) Mon Dec 15 17:43:33 2008 using multiplier of 1 Mon Dec 15 17:43:33 2008 using 32kb Intel Core sieve core Mon Dec 15 17:43:33 2008 sieve interval: 17 blocks of size 32768 Mon Dec 15 17:43:33 2008 processing polynomials in batches of 12 Mon Dec 15 17:43:33 2008 using a sieve bound of 1469129 (56000 primes) Mon Dec 15 17:43:33 2008 using large prime bound of 117530320 (26 bits) Mon Dec 15 17:43:33 2008 using double large prime bound of 335946198551280 (41-49 bits) Mon Dec 15 17:43:33 2008 using trial factoring cutoff of 49 bits Mon Dec 15 17:43:33 2008 polynomial 'A' values have 11 factors Mon Dec 15 18:13:35 2008 56158 relations (16674 full + 39484 combined from 575315 partial), need 56096 Mon Dec 15 18:13:36 2008 begin with 591989 relations Mon Dec 15 18:13:37 2008 reduce to 130896 relations in 8 passes Mon Dec 15 18:13:37 2008 attempting to read 130896 relations Mon Dec 15 18:13:38 2008 recovered 130896 relations Mon Dec 15 18:13:38 2008 recovered 102453 polynomials Mon Dec 15 18:13:38 2008 attempting to build 56158 cycles Mon Dec 15 18:13:38 2008 found 56158 cycles in 4 passes Mon Dec 15 18:13:38 2008 distribution of cycle lengths: Mon Dec 15 18:13:38 2008 length 1 : 16674 Mon Dec 15 18:13:38 2008 length 2 : 11381 Mon Dec 15 18:13:38 2008 length 3 : 10137 Mon Dec 15 18:13:38 2008 length 4 : 7151 Mon Dec 15 18:13:38 2008 length 5 : 4629 Mon Dec 15 18:13:38 2008 length 6 : 2845 Mon Dec 15 18:13:38 2008 length 7 : 1598 Mon Dec 15 18:13:38 2008 length 9+: 1743 Mon Dec 15 18:13:38 2008 largest cycle: 18 relations Mon Dec 15 18:13:39 2008 matrix is 56000 x 56158 (12.1 MB) with weight 2944603 (52.43/col) Mon Dec 15 18:13:39 2008 sparse part has weight 2944603 (52.43/col) Mon Dec 15 18:13:39 2008 filtering completed in 3 passes Mon Dec 15 18:13:39 2008 matrix is 50465 x 50527 (11.0 MB) with weight 2682817 (53.10/col) Mon Dec 15 18:13:39 2008 sparse part has weight 2682817 (53.10/col) Mon Dec 15 18:13:39 2008 saving the first 48 matrix rows for later Mon Dec 15 18:13:39 2008 matrix is 50417 x 50527 (6.4 MB) with weight 2003995 (39.66/col) Mon Dec 15 18:13:39 2008 sparse part has weight 1381607 (27.34/col) Mon Dec 15 18:13:39 2008 matrix includes 64 packed rows Mon Dec 15 18:13:39 2008 using block size 20210 for processor cache size 1024 kB Mon Dec 15 18:13:40 2008 commencing Lanczos iteration Mon Dec 15 18:13:40 2008 memory use: 6.8 MB Mon Dec 15 18:13:53 2008 lanczos halted after 798 iterations (dim = 50413) Mon Dec 15 18:13:54 2008 recovered 14 nontrivial dependencies Mon Dec 15 18:13:54 2008 prp35 factor: 17366429354635051553800208947550843 Mon Dec 15 18:13:54 2008 prp52 factor: 4662414176865757064462443642505119553194330890299483 Mon Dec 15 18:13:54 2008 elapsed time 00:30:24
(37·10143+71)/9 = 4(1)1429<144> = 31 · 151 · 1282121 · C134
C134 = P40 · P95
P40 = 3615287439291684894508158182767387665977<40>
P95 = 18947360908062300940159800563451894341618031529231267746815252549335160149680738911882646397847<95>
Number: 41119_143 N=68500155898643929386073770112198146916568725842649511299081359558885873252281044837718846546767740555072432009399126924327815887951519 ( 134 digits) SNFS difficulty: 145 digits. Divisors found: r1=3615287439291684894508158182767387665977 (prp40) r2=18947360908062300940159800563451894341618031529231267746815252549335160149680738911882646397847 (prp95) Version: Total time: 9.91 hours. Scaled time: 25.40 units (timescale=2.564). Factorization parameters were as follows: name: 41119_143 n: 68500155898643929386073770112198146916568725842649511299081359558885873252281044837718846546767740555072432009399126924327815887951519 m: 50000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328954 x 329202 Total sieving time: 9.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 9.91 hours. --------- CPU info (if available) ----------
(37·10138+71)/9 = 4(1)1379<139> = 3 · 969010793 · C130
C130 = P61 · P69
P61 = 3476796762562889019061094719588926077162359713038881374966959<61>
P69 = 406752322152161834672358389592055437109529103077857683960073230597779<69>
Number: 41119_138 N=1414195156823573553705887742749187696994382569658716247518999894535096649197353543171908066013017432273708813448035939853943784061 ( 130 digits) SNFS difficulty: 140 digits. Divisors found: r1=3476796762562889019061094719588926077162359713038881374966959 (prp61) r2=406752322152161834672358389592055437109529103077857683960073230597779(prp69)Version: Total time: 9.36 hours. Scaled time: 18.63 units (timescale=1.991). Factorization parameters were as follows: name: 41119_138 n: 1414195156823573553705887742749187696994382569658716247518999894535096649197353543171908066013017432273708813448035939853943784061 m: 5000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237971 x 238219 Total sieving time: 9.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 9.36 hours. --------- CPU info (if available) ----------
(37·10141+53)/9 = 4(1)1407<142> = 43 · C140
C140 = P43 · P98
P43 = 2344853697342225768244701403474970076911147<43>
P98 = 40773219775069496196274797925205475166939330156666714576604063888238857689344930254975648637575477<98>
Number: 41117_141 N=95607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142119 ( 140 digits) SNFS difficulty: 142 digits. Divisors found: r1=2344853697342225768244701403474970076911147 (prp43) r2=40773219775069496196274797925205475166939330156666714576604063888238857689344930254975648637575477 (prp98) Version: Total time: 10.54 hours. Scaled time: 26.09 units (timescale=2.475). Factorization parameters were as follows: name: 41117_141 n: 95607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142119 m: 10000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 2330001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 306636 x 306884 Total sieving time: 10.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 10.54 hours. --------- CPU info (if available) ----------
(37·10145+53)/9 = 4(1)1447<146> = 619 · 4360973 · 23951846117<11> · C126
C126 = P59 · P68
P59 = 38350460235070243587880442271327734428299906979443252142693<59>
P68 = 16579659029211224705104833603108275078319308270761472069498739409211<68>
Number: 41117_145 N=635837554310788391204818689459763367605246338531582846149485015459484002376721164224273149663384689094348905037164216690545223 ( 126 digits) SNFS difficulty: 146 digits. Divisors found: r1=38350460235070243587880442271327734428299906979443252142693 (prp59) r2=16579659029211224705104833603108275078319308270761472069498739409211 (prp68) Version: Total time: 11.28 hours. Scaled time: 22.53 units (timescale=1.997). Factorization parameters were as follows: name: 41117_145 n: 635837554310788391204818689459763367605246338531582846149485015459484002376721164224273149663384689094348905037164216690545223 m: 100000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2070001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 307574 x 307822 Total sieving time: 11.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 11.28 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, msieve-1.39, GMP-ECM 6.2.1+msieve, Msieve-1.39
(38·10145-11)/9 = 4(2)1441<146> = 389 · 785143 · 541988574965639<15> · 11348765752211748977<20> · C104
C104 = P34 · P35 · P36
P34 = 1325404641036859296643530875431267<34>
P35 = 36103065167888294499984392024763463<35>
P36 = 469690089725626719012031234061716021<36>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2865957120 Step 1 took 8207ms Step 2 took 4973ms ********** Factor found in step 2: 36103065167888294499984392024763463 Found probable prime factor of 35 digits: 36103065167888294499984392024763463 Composite cofactor has 69 digits Sun Dec 14 22:43:05 2008 Sun Dec 14 22:43:05 2008 Msieve v. 1.39 Sun Dec 14 22:43:05 2008 random seeds: ecc3aec6 9d478ede Sun Dec 14 22:43:05 2008 factoring 622529424771364516359872641106451889809872987897208805215742458228607 (69 digits) Sun Dec 14 22:43:05 2008 searching for 15-digit factors Sun Dec 14 22:43:05 2008 commencing quadratic sieve (69-digit input) Sun Dec 14 22:43:05 2008 using multiplier of 7 Sun Dec 14 22:43:05 2008 using 64kb Opteron sieve core Sun Dec 14 22:43:05 2008 sieve interval: 6 blocks of size 65536 Sun Dec 14 22:43:05 2008 processing polynomials in batches of 17 Sun Dec 14 22:43:06 2008 using a sieve bound of 204517 (9095 primes) Sun Dec 14 22:43:06 2008 using large prime bound of 18406530 (24 bits) Sun Dec 14 22:43:06 2008 using trial factoring cutoff of 24 bits Sun Dec 14 22:43:06 2008 polynomial 'A' values have 9 factors Sun Dec 14 22:44:53 2008 9225 relations (4203 full + 5022 combined from 51864 partial), need 9191 Sun Dec 14 22:44:53 2008 begin with 56067 relations Sun Dec 14 22:44:53 2008 reduce to 13607 relations in 2 passes Sun Dec 14 22:44:53 2008 attempting to read 13607 relations Sun Dec 14 22:44:53 2008 recovered 13607 relations Sun Dec 14 22:44:53 2008 recovered 11821 polynomials Sun Dec 14 22:44:53 2008 attempting to build 9225 cycles Sun Dec 14 22:44:53 2008 found 9225 cycles in 1 passes Sun Dec 14 22:44:53 2008 distribution of cycle lengths: Sun Dec 14 22:44:53 2008 length 1 : 4203 Sun Dec 14 22:44:53 2008 length 2 : 5022 Sun Dec 14 22:44:53 2008 largest cycle: 2 relations Sun Dec 14 22:44:53 2008 matrix is 9095 x 9225 (1.3 MB) with weight 267721 (29.02/col) Sun Dec 14 22:44:53 2008 sparse part has weight 267721 (29.02/col) Sun Dec 14 22:44:53 2008 filtering completed in 3 passes Sun Dec 14 22:44:53 2008 matrix is 8379 x 8443 (1.2 MB) with weight 242533 (28.73/col) Sun Dec 14 22:44:53 2008 sparse part has weight 242533 (28.73/col) Sun Dec 14 22:44:53 2008 commencing Lanczos iteration Sun Dec 14 22:44:53 2008 memory use: 1.6 MB Sun Dec 14 22:44:54 2008 lanczos halted after 134 iterations (dim = 8375) Sun Dec 14 22:44:54 2008 recovered 63 nontrivial dependencies Sun Dec 14 22:44:54 2008 prp34 factor: 1325404641036859296643530875431267 Sun Dec 14 22:44:54 2008 prp36 factor: 469690089725626719012031234061716021 Sun Dec 14 22:44:54 2008 elapsed time 00:01:49
(38·10163-11)/9 = 4(2)1621<164> = 977 · 1399 · 126913957 · 1065053831<10> · 1894635371<10> · 1451688987955948106334132287<28> · C104
C104 = P32 · P73
P32 = 15325232869025743468160027097037<32>
P73 = 5421775857181523778303366997185264829240061910861849089673960276292566569<73>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1701068307 Step 1 took 8199ms Step 2 took 5108ms ********** Factor found in step 2: 15325232869025743468160027097037 Found probable prime factor of 32 digits: 15325232869025743468160027097037 Probable prime cofactor 5421775857181523778303366997185264829240061910861849089673960276292566569 has 73 digits
(38·10128-11)/9 = 4(2)1271<129> = 83 · 7143462642221693<16> · C111
C111 = P28 · P84
P28 = 3980015878546287994687508077<28>
P84 = 178924335183058703221158270546770884637344930166891465712261296911583661673906338967<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3096623199 Step 1 took 8208ms Step 2 took 5205ms ********** Factor found in step 2: 3980015878546287994687508077 Found probable prime factor of 28 digits: 3980015878546287994687508077 Probable prime cofactor has 84 digits
(38·10147-11)/9 = 4(2)1461<148> = 33 · 72 · 47045659 · C137
C137 = P28 · P29 · P36 · P46
P28 = 2551902873964888480833926621<28>
P29 = 25651567516317837264646215281<29>
P36 = 140164536628756188314004991027646939<36>
P46 = 7393421921628468039493253474311183298582706427<46>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4033410296 Step 1 took 10041ms Step 2 took 5472ms ********** Factor found in step 2: 2551902873964888480833926621 Found probable prime factor of 28 digits: 2551902873964888480833926621 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3869496862 Step 1 took 6981ms Step 2 took 4380ms ********** Factor found in step 2: 25651567516317837264646215281 Found probable prime factor of 29 digits: 25651567516317837264646215281 Sun Dec 14 23:32:12 2008 Msieve v. 1.39 Sun Dec 14 23:32:12 2008 random seeds: c480db8c b034535a Sun Dec 14 23:32:12 2008 factoring 1036295557745942373186723249313381729835841778863922580350252672039512028042176953 (82 digits) Sun Dec 14 23:32:13 2008 searching for 15-digit factors Sun Dec 14 23:32:14 2008 commencing quadratic sieve (82-digit input) Sun Dec 14 23:32:14 2008 using multiplier of 1 Sun Dec 14 23:32:14 2008 using 64kb Opteron sieve core Sun Dec 14 23:32:14 2008 sieve interval: 6 blocks of size 65536 Sun Dec 14 23:32:14 2008 processing polynomials in batches of 17 Sun Dec 14 23:32:14 2008 using a sieve bound of 1334341 (51025 primes) Sun Dec 14 23:32:14 2008 using large prime bound of 126762395 (26 bits) Sun Dec 14 23:32:14 2008 using trial factoring cutoff of 27 bits Sun Dec 14 23:32:14 2008 polynomial 'A' values have 10 factors Sun Dec 14 23:54:47 2008 51205 relations (26457 full + 24748 combined from 273052 partial), need 51121 Sun Dec 14 23:54:47 2008 begin with 299509 relations Sun Dec 14 23:54:47 2008 reduce to 72932 relations in 2 passes Sun Dec 14 23:54:47 2008 attempting to read 72932 relations Sun Dec 14 23:54:48 2008 recovered 72932 relations Sun Dec 14 23:54:48 2008 recovered 63151 polynomials Sun Dec 14 23:54:48 2008 attempting to build 51205 cycles Sun Dec 14 23:54:48 2008 found 51205 cycles in 1 passes Sun Dec 14 23:54:48 2008 distribution of cycle lengths: Sun Dec 14 23:54:48 2008 length 1 : 26457 Sun Dec 14 23:54:48 2008 length 2 : 24748 Sun Dec 14 23:54:48 2008 largest cycle: 2 relations Sun Dec 14 23:54:49 2008 matrix is 51025 x 51205 (7.5 MB) with weight 1547321 (30.22/col) Sun Dec 14 23:54:49 2008 sparse part has weight 1547321 (30.22/col) Sun Dec 14 23:54:49 2008 filtering completed in 4 passes Sun Dec 14 23:54:49 2008 matrix is 36298 x 36362 (5.8 MB) with weight 1237357 (34.03/col) Sun Dec 14 23:54:49 2008 sparse part has weight 1237357 (34.03/col) Sun Dec 14 23:54:49 2008 saving the first 48 matrix rows for later Sun Dec 14 23:54:49 2008 matrix is 36250 x 36362 (4.4 MB) with weight 984802 (27.08/col) Sun Dec 14 23:54:49 2008 sparse part has weight 795660 (21.88/col) Sun Dec 14 23:54:49 2008 matrix includes 64 packed rows Sun Dec 14 23:54:49 2008 using block size 14544 for processor cache size 1024 kB Sun Dec 14 23:54:50 2008 commencing Lanczos iteration Sun Dec 14 23:54:50 2008 memory use: 4.2 MB Sun Dec 14 23:54:58 2008 lanczos halted after 575 iterations (dim = 36249) Sun Dec 14 23:54:59 2008 recovered 16 nontrivial dependencies Sun Dec 14 23:54:59 2008 prp36 factor: 140164536628756188314004991027646939 Sun Dec 14 23:54:59 2008 prp46 factor: 7393421921628468039493253474311183298582706427 Sun Dec 14 23:54:59 2008 elapsed time 00:22:47
(38·10135-11)/9 = 4(2)1341<136> = 3 · 7 · 67 · 10709 · C129
C129 = P30 · P99
P30 = 937437808317976970693932416403<30>
P99 = 298920435195374668796858613681629028190698771165759803331918105970884920720033436834219559330152989<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4218461253 Step 1 took 8577ms Step 2 took 4940ms ********** Factor found in step 2: 937437808317976970693932416403 Found probable prime factor of 30 digits: 937437808317976970693932416403 Probable prime cofactor 298920435195374668796858613681629028190698771165759803331918105970884920720033436834219559330152989 has 99 digits
(38·10133-11)/9 = 4(2)1321<134> = 1259 · C131
C131 = P36 · P96
P36 = 227346354804397997449555013421517819<36>
P96 = 147512003565082160996670532501548152339461769615196128904934077918830260161327461047769915156101<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2551179353 Step 1 took 8385ms Step 2 took 4932ms ********** Factor found in step 2: 227346354804397997449555013421517819 Found probable prime factor of 36 digits: 227346354804397997449555013421517819 Probable prime cofactor 147512003565082160996670532501548152339461769615196128904934077918830260161327461047769915156101 has 96 digits
(38·10191-11)/9 = 4(2)1901<192> = 41 · 2687 · 774334507 · C178
C178 = P33 · C146
P33 = 375832150285823251963801943606447<33>
C146 = [13169431325495540700522931115085114511012173448511242545734463676942758815655542079711578357374161512954053203286078300190494821013860645706028447<146>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3279824311 Step 1 took 15916ms Step 2 took 8379ms ********** Factor found in step 2: 375832150285823251963801943606447 Found probable prime factor of 33 digits: 375832150285823251963801943606447 Composite cofactor has 146 digits
(38·10174-11)/9 = 4(2)1731<175> = 33 · 7629737812981<13> · 31668315658185358241<20> · C141
C141 = P38 · C104
P38 = 64583320974668012969282589628685014327<38>
C104 = [10021260930390560266594511156264428707661578748567959642375971936717369835041789453030241615860197033469<104>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3366280551 Step 1 took 14481ms Step 2 took 6856ms ********** Factor found in step 2: 64583320974668012969282589628685014327 Found probable prime factor of 38 digits: 64583320974668012969282589628685014327 Composite cofactor has 104 digits
(38·10122-11)/9 = 4(2)1211<123> = 23 · C122
C122 = P41 · P81
P41 = 22983221156969608220878678122685099656223<41>
P81 = 798734337425041424415227498048707151445996691869167022100770362401392131327274149<81>
SNFS difficulty: 124 digits. Divisors found: r1=22983221156969608220878678122685099656223 (pp41) r2=798734337425041424415227498048707151445996691869167022100770362401392131327274149 (pp81) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 18357487922705314009661835748792270531400966183574879227053140096618357487922705314009661835748792270531400966183574879227 m: 2000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [410000, 810001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 101881 x 102120 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,48,48,2.2,2.2,50000 total time: 1.20 hours.
(38·10183-11)/9 = 4(2)1821<184> = 32 · 7 · 6514450079635017199<19> · C164
C164 = P35 · P129
P35 = 75782147652784397005420137353528113<35>
P129 = 135755010714898869452949025678199105972122459983334039812159735676716342059338321962469593013630612819204264542435169763895315341<129>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=821134725 Step 1 took 11704ms Step 2 took 6053ms ********** Factor found in step 2: 75782147652784397005420137353528113 Found probable prime factor of 35 digits: 75782147652784397005420137353528113 Probable prime cofactor 135755010714898869452949025678199105972122459983334039812159735676716342059338321962469593013630612819204264542435169763895315341 has 129 digits
(37·10160+71)/9 = 4(1)1599<161> = 13 · 1164433 · 1927633 · C148
C148 = P34 · P49 · P67
P34 = 1302813942596384285247378345758543<34>
P49 = 1023739102807287331415444498937198533190476003389<49>
P67 = 1056343867181512794323328678468277917562204780290353805173030837321<67>
SNFS difficulty: 161 digits. Divisors found: r1=1302813942596384285247378345758543 (pp34) r2=1023739102807287331415444498937198533190476003389 (pp49) r3=1056343867181512794323328678468277917562204780290353805173030837321 (pp67) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.174). Factorization parameters were as follows: n: 1408889734971532832959813943795077767526643347374927297662390319135412350788559621130563324497189583241140762438987075704505540800628177844802413867 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 3250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 662073 x 662321 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,100000 total time: 35.00 hours.
(38·10193-11)/9 = 4(2)1921<194> = 29 · 143251879 · C185
C185 = P32 · C153
P32 = 92238676107852763259816729714369<32>
C153 = [110186833103092390774649090660008487821406637141568965549388610139834253319507062767249752482557653014855888025715777277839734871796910969834280443874599<153>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4093897938 Step 1 took 13765ms Step 2 took 7000ms ********** Factor found in step 2: 92238676107852763259816729714369 Found probable prime factor of 32 digits: 92238676107852763259816729714369 Composite cofactor has 153 digits
By Jo Yeong Uk / GGNFS, Msieve
(11·10191-17)/3 = 3(6)1901<192> = C192
C192 = P50 · P142
P50 = 49192191343990162417715955038848218978279791366327<50>
P142 = 7453757530390289043345066089546327493410373894631714762602742698136076516003603270057275757770990426540518320236664138941399118042301680339843<142>
Number: 36661_191 N=366666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: r1=49192191343990162417715955038848218978279791366327 (pp50) r2=7453757530390289043345066089546327493410373894631714762602742698136076516003603270057275757770990426540518320236664138941399118042301680339843 (pp142) Version: GGNFS-0.77.1-20050930-nocona Total time: 333.93 hours. Scaled time: 792.08 units (timescale=2.372). Factorization parameters were as follows: n: 366666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 100000000000000000000000000000000000000 deg: 5 c5: 110 c0: -17 skew: 0.69 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 11800001) Primes: RFBsize:849252, AFBsize:848849, largePrimes:20997970 encountered Relations: rels:22348036, finalFF:1980622 Max relations in full relation-set: 28 Initial matrix: 1698168 x 1980622 with sparse part having weight 222660520. Pruned matrix : 1459606 x 1468160 with weight 178804439. Total sieving time: 302.57 hours. Total relation processing time: 0.57 hours. Matrix solve time: 30.49 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,55,55,2.5,2.5,100000 total time: 333.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10179+53)/9 = 4(1)1787<180> = 34 · 7 · 23 · 4751018479457<13> · 13962759095755291<17> · 49208248701391080839818523<26> · 2119493083661110697017153309<28> · C94
C94 = P43 · P52
P43 = 1231767907813054570880909901881618539628959<43>
P52 = 3699061547272506851328690176815392273739868519354327<52>
Sun Dec 14 23:07:19 2008 Sun Dec 14 23:07:19 2008 Sun Dec 14 23:07:19 2008 Msieve v. 1.39 Sun Dec 14 23:07:19 2008 random seeds: efc8f9c0 4a2a88b6 Sun Dec 14 23:07:19 2008 factoring 4556385302955576221884023543638349856512194802012137833352589947767890040676035957132831155593 (94 digits) Sun Dec 14 23:07:20 2008 searching for 15-digit factors Sun Dec 14 23:07:21 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 23:07:21 2008 using multiplier of 1 Sun Dec 14 23:07:21 2008 using VC8 32kb sieve core Sun Dec 14 23:07:21 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 23:07:21 2008 processing polynomials in batches of 6 Sun Dec 14 23:07:21 2008 using a sieve bound of 2059511 (76377 primes) Sun Dec 14 23:07:21 2008 using large prime bound of 284212518 (28 bits) Sun Dec 14 23:07:21 2008 using double large prime bound of 1646484896014146 (42-51 bits) Sun Dec 14 23:07:21 2008 using trial factoring cutoff of 51 bits Sun Dec 14 23:07:21 2008 polynomial 'A' values have 12 factors Mon Dec 15 02:09:04 2008 76723 relations (18644 full + 58079 combined from 1105235 partial), need 76473 Mon Dec 15 02:09:06 2008 begin with 1123879 relations Mon Dec 15 02:09:06 2008 reduce to 199758 relations in 11 passes Mon Dec 15 02:09:06 2008 attempting to read 199758 relations Mon Dec 15 02:09:09 2008 recovered 199758 relations Mon Dec 15 02:09:09 2008 recovered 183205 polynomials Mon Dec 15 02:09:09 2008 attempting to build 76723 cycles Mon Dec 15 02:09:09 2008 found 76723 cycles in 5 passes Mon Dec 15 02:09:09 2008 distribution of cycle lengths: Mon Dec 15 02:09:09 2008 length 1 : 18644 Mon Dec 15 02:09:09 2008 length 2 : 13569 Mon Dec 15 02:09:09 2008 length 3 : 12956 Mon Dec 15 02:09:09 2008 length 4 : 10464 Mon Dec 15 02:09:09 2008 length 5 : 7806 Mon Dec 15 02:09:09 2008 length 6 : 5369 Mon Dec 15 02:09:09 2008 length 7 : 3303 Mon Dec 15 02:09:09 2008 length 9+: 4612 Mon Dec 15 02:09:09 2008 largest cycle: 18 relations Mon Dec 15 02:09:10 2008 matrix is 76377 x 76723 (20.7 MB) with weight 4802821 (62.60/col) Mon Dec 15 02:09:10 2008 sparse part has weight 4802821 (62.60/col) Mon Dec 15 02:09:11 2008 filtering completed in 3 passes Mon Dec 15 02:09:11 2008 matrix is 72800 x 72864 (19.7 MB) with weight 4576855 (62.81/col) Mon Dec 15 02:09:11 2008 sparse part has weight 4576855 (62.81/col) Mon Dec 15 02:09:11 2008 saving the first 48 matrix rows for later Mon Dec 15 02:09:11 2008 matrix is 72752 x 72864 (12.2 MB) with weight 3552283 (48.75/col) Mon Dec 15 02:09:11 2008 sparse part has weight 2460376 (33.77/col) Mon Dec 15 02:09:11 2008 matrix includes 64 packed rows Mon Dec 15 02:09:11 2008 using block size 29145 for processor cache size 4096 kB Mon Dec 15 02:09:11 2008 commencing Lanczos iteration Mon Dec 15 02:09:11 2008 memory use: 11.2 MB Mon Dec 15 02:09:41 2008 lanczos halted after 1151 iterations (dim = 72748) Mon Dec 15 02:09:41 2008 recovered 14 nontrivial dependencies Mon Dec 15 02:09:41 2008 prp43 factor: 1231767907813054570880909901881618539628959 Mon Dec 15 02:09:41 2008 prp52 factor: 3699061547272506851328690176815392273739868519354327 Mon Dec 15 02:09:41 2008 elapsed time 03:02:22
(37·10181+71)/9 = 4(1)1809<182> = 7 · 42323 · 33379705157<11> · 24127822888595769062376049807<29> · 47573256735105102134774568941200081<35> · C103
C103 = P38 · P66
P38 = 10427180460429420252723196144751715523<38>
P66 = 347339620026515181041293360623135033853462919353750340536712007667<66>
Number: 41119_181 N=3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841 ( 103 digits) Divisors found: r1=10427180460429420252723196144751715523 (pp38) r2=347339620026515181041293360623135033853462919353750340536712007667 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.29 hours. Scaled time: 10.21 units (timescale=2.382). Factorization parameters were as follows: name: 41119_181 n: 3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841 skew: 9782.55 # norm 4.14e+14 c5: 73080 c4: -2514835704 c3: 8790142461548 c2: 263294977153601755 c1: 196917554526018178456 c0: -2679866085058324682790127 # alpha -6.43 Y1: 7813826537 Y0: -34595945979182260752 # Murphy_E 2.51e-09 # M 1396009132050224762205095102224607140116956259471065740878701764748997185483488045420616203276518767234 type: gnfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:107413, largePrimes:4760133 encountered Relations: rels:4585963, finalFF:244161 Max relations in full relation-set: 28 Initial matrix: 214630 x 244161 with sparse part having weight 22152773. Pruned matrix : 200512 x 201649 with weight 15853660. Polynomial selection time: 0.25 hours. Total sieving time: 3.76 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1400000,1400000,26,26,50,50,2.6,2.6,50000 total time: 4.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.39
(37·10158+71)/9 = 4(1)1579<159> = 31 · C158
C158 = P38 · P47 · P73
P38 = 56252524761237276570987106972917336289<38>
P47 = 37279445348853727722204385871231176114193568127<47>
P73 = 6323915511918555012521989947661747244518565340773117237921653166093351183<73>
SNFS difficulty: 160 digits. Divisors found: r1=56252524761237276570987106972917336289 (pp38) r2=37279445348853727722204385871231176114193568127 (pp47) r3=6323915511918555012521989947661747244518565340773117237921653166093351183 (pp73) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.559). Factorization parameters were as follows: n: 13261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261649 m: 50000000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 646811 x 647059 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 21.00 hours.
(37·10159+53)/9 = 4(1)1587<160> = 8473427 · C153
C153 = P42 · P42 · P70
P42 = 443323695339234757494089624823618634934581<42>
P42 = 452780513252055747543767753370086491619059<42>
P70 = 2417082367680574707369031567295805948468828136719998084989731464459249<70>
SNFS difficulty: 161 digits. Divisors found: r1=443323695339234757494089624823618634934581 (pp42) r2=452780513252055747543767753370086491619059 (pp42) r3=2417082367680574707369031567295805948468828136719998084989731464459249 (pp70) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.692). Factorization parameters were as follows: n: 485176907892298017214417627143198508833688082886783719398433610286736536599785554429289484775299428567816907033141503562975300443505456660110615352101471 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 723565 x 723813 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,100000 total time: 26.00 hours.
By Robert Backstrom / GGNFS, Msieve
(37·10120+71)/9 = 4(1)1199<121> = 3 · 17 · 257 · 169244578693<12> · C106
C106 = P47 · P60
P47 = 15718212115607084073455098063640139764109946061<47>
P60 = 117906569540261494882234034595775781192538671358262630919029<60>
Number: n N=1853280469857407409649560238135051795272682028566957745455654946359544378927120317253367823242200048494769 ( 106 digits) SNFS difficulty: 121 digits. Divisors found: r1=15718212115607084073455098063640139764109946061 (pp47) r2=117906569540261494882234034595775781192538671358262630919029 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.52 hours. Scaled time: 2.79 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_1_119_9 n: 1853280469857407409649560238135051795272682028566957745455654946359544378927120317253367823242200048494769 type: snfs skew: 1.14 deg: 5 c5: 37 c0: 71 m: 1000000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [250000, 450001) Primes: RFBsize:41538, AFBsize:41148, largePrimes:5521859 encountered Relations: rels:4970497, finalFF:209320 Max relations in full relation-set: 48 Initial matrix: 82751 x 209320 with sparse part having weight 32997515. Pruned matrix : 71450 x 71927 with weight 7104504. Total sieving time: 1.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.03 hours. Total square root time: 0.14 hours, sqrts: 10. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.52 hours. --------- CPU info (if available) ----------
(37·10129+71)/9 = 4(1)1289<130> = 3 · 27774323 · 13031386588706799664801<23> · C100
C100 = P42 · P59
P42 = 128123426410502970074948895719212965675887<42>
P59 = 29551212498200826094631393040780112047335950040214922506473<59>
Number: n N=3786202599854369175101763795740950150675265207939197580619648859764781300033378615291421350577516551 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=128123426410502970074948895719212965675887 (pp42) r2=29551212498200826094631393040780112047335950040214922506473 (pp59) Version: GGNFS-0.77.1-20051202-k8 Total time: 3.83 hours. Scaled time: 7.71 units (timescale=2.013). Factorization parameters were as follows: name: KA_4_1_128_9 n: 3786202599854369175101763795740950150675265207939197580619648859764781300033378615291421350577516551 type: snfs skew: 1.81 deg: 5 c5: 37 c0: 710 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:71274, AFBsize:71376, largePrimes:7510334 encountered Relations: rels:6777003, finalFF:229584 Max relations in full relation-set: 28 Initial matrix: 142715 x 229584 with sparse part having weight 24217375. Pruned matrix : 123653 x 124430 with weight 10406862. Total sieving time: 3.63 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.5,2.5,50000 total time: 3.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(37·10131+53)/9 = 4(1)1307<132> = 3 · 7 · 26317 · 3455435628958223<16> · C111
C111 = P49 · P62
P49 = 7972700383759441503881272449579513196474094885429<49>
P62 = 27001959963243168853430820841180310949496723141495794009982343<62>
Number: n N=215278536561205887322108876493270186092609401846280407032882268561731174025745829832628911912346191386897980147 ( 111 digits) SNFS difficulty: 132 digits. Divisors found: r1=7972700383759441503881272449579513196474094885429 (pp49) r2=27001959963243168853430820841180310949496723141495794009982343 (pp62) Version: GGNFS-0.77.1-20051202-k8 Total time: 4.34 hours. Scaled time: 8.72 units (timescale=2.010). Factorization parameters were as follows: name: KA_4_1_130_7 n: 215278536561205887322108876493270186092609401846280407032882268561731174025745829832628911912346191386897980147 type: snfs skew: 0.68 deg: 5 c5: 370 c0: 53 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:71274, AFBsize:70980, largePrimes:7870308 encountered Relations: rels:7124914, finalFF:201480 Max relations in full relation-set: 28 Initial matrix: 142321 x 201480 with sparse part having weight 21993173. Pruned matrix : 129753 x 130528 with weight 11883302. Total sieving time: 4.11 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.5,2.5,50000 total time: 4.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(37·10134+53)/9 = 4(1)1337<135> = 32 · 24986991259982899490059<23> · C112
C112 = P50 · P62
P50 = 26997291767926798159853751308242719224871556251223<50>
P62 = 67714634740461212531416188452742326805525020387462321160332809<62>
Number: n N=1828111751046823473729867845947611785538650552102639379539486366668748152605479610053566238562881946543093275407 ( 112 digits) SNFS difficulty: 136 digits. Divisors found: Mon Dec 15 05:57:05 2008 prp50 factor: 26997291767926798159853751308242719224871556251223 Mon Dec 15 05:57:05 2008 prp62 factor: 67714634740461212531416188452742326805525020387462321160332809 Mon Dec 15 05:57:05 2008 elapsed time 00:12:49 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 4.50 hours. Scaled time: 9.05 units (timescale=2.012). Factorization parameters were as follows: name: KA_4_1_133_7 n: 1828111751046823473729867845947611785538650552102639379539486366668748152605479610053566238562881946543093275407 type: snfs skew: 1.70 deg: 5 c5: 37 c0: 530 m: 1000000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 800001) Primes: RFBsize:78498, AFBsize:78716, largePrimes:7741734 encountered Relations: rels:6703606, finalFF:108763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 4.37 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,56,56,2.5,2.5,75000 total time: 4.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / Msieve
(37·10126+53)/9 = 4(1)1257<127> = 23429971 · C120
C120 = P55 · P65
P55 = 2385657431444900902593170998853579105307250401833124431<55>
P65 = 73549442015086715345246777178084396489992122857979924708529445617<65>
Number: 41117_126 N=175463772921917449710505877754228168319589943628658828092920435587014218289519483874355248289087131653347377643408568927 ( 120 digits) SNFS difficulty: 127 digits. Divisors found: r1=2385657431444900902593170998853579105307250401833124431 (prp55) r2=73549442015086715345246777178084396489992122857979924708529445617 (prp65) Version: Total time: 4.07 hours. Scaled time: 7.96 units (timescale=1.955). Factorization parameters were as follows: name: 41117_126 n: 175463772921917449710505877754228168319589943628658828092920435587014218289519483874355248289087131653347377643408568927 m: 10000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 940000 alim: 940000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 940000/940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [470000, 970001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 156346 x 156594 Total sieving time: 4.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,940000,940000,26,26,46,46,2.3,2.3,50000 total time: 4.07 hours. --------- CPU info (if available) ----------
(37·10121+53)/9 = 4(1)1207<122> = 4133 · 12448496033<11> · 96559317121<11> · C97
C97 = P42 · P56
P42 = 581119780975231635970058042786794126786889<42>
P56 = 14240232483206706578295465829097659023799330370860981537<56>
Sun Dec 14 17:44:52 2008 Msieve v. 1.39 Sun Dec 14 17:44:52 2008 random seeds: 558fa890 5a21134c Sun Dec 14 17:44:52 2008 factoring 8275280781677460242495252428407518810499554171453232349711921873570895749085623666102478562668393 (97 digits) Sun Dec 14 17:44:53 2008 searching for 15-digit factors Sun Dec 14 17:44:55 2008 commencing quadratic sieve (97-digit input) Sun Dec 14 17:44:55 2008 using multiplier of 1 Sun Dec 14 17:44:55 2008 using 32kb Intel Core sieve core Sun Dec 14 17:44:55 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 17:44:55 2008 processing polynomials in batches of 6 Sun Dec 14 17:44:55 2008 using a sieve bound of 2404009 (88075 primes) Sun Dec 14 17:44:55 2008 using large prime bound of 360601350 (28 bits) Sun Dec 14 17:44:55 2008 using double large prime bound of 2527255810204800 (43-52 bits) Sun Dec 14 17:44:55 2008 using trial factoring cutoff of 52 bits Sun Dec 14 17:44:55 2008 polynomial 'A' values have 13 factors Mon Dec 15 00:37:14 2008 88421 relations (20973 full + 67448 combined from 1337165 partial), need 88171 Mon Dec 15 00:37:16 2008 begin with 1358138 relations Mon Dec 15 00:37:17 2008 reduce to 233452 relations in 11 passes Mon Dec 15 00:37:17 2008 attempting to read 233452 relations Mon Dec 15 00:37:21 2008 recovered 233452 relations Mon Dec 15 00:37:21 2008 recovered 221954 polynomials Mon Dec 15 00:37:21 2008 attempting to build 88421 cycles Mon Dec 15 00:37:21 2008 found 88421 cycles in 7 passes Mon Dec 15 00:37:21 2008 distribution of cycle lengths: Mon Dec 15 00:37:21 2008 length 1 : 20973 Mon Dec 15 00:37:21 2008 length 2 : 15237 Mon Dec 15 00:37:21 2008 length 3 : 14842 Mon Dec 15 00:37:21 2008 length 4 : 12145 Mon Dec 15 00:37:21 2008 length 5 : 9070 Mon Dec 15 00:37:21 2008 length 6 : 6180 Mon Dec 15 00:37:21 2008 length 7 : 4123 Mon Dec 15 00:37:21 2008 length 9+: 5851 Mon Dec 15 00:37:21 2008 largest cycle: 21 relations Mon Dec 15 00:37:22 2008 matrix is 88075 x 88421 (23.7 MB) with weight 5862504 (66.30/col) Mon Dec 15 00:37:22 2008 sparse part has weight 5862504 (66.30/col) Mon Dec 15 00:37:23 2008 filtering completed in 3 passes Mon Dec 15 00:37:23 2008 matrix is 84357 x 84421 (22.7 MB) with weight 5613631 (66.50/col) Mon Dec 15 00:37:23 2008 sparse part has weight 5613631 (66.50/col) Mon Dec 15 00:37:23 2008 saving the first 48 matrix rows for later Mon Dec 15 00:37:23 2008 matrix is 84309 x 84421 (13.9 MB) with weight 4399038 (52.11/col) Mon Dec 15 00:37:23 2008 sparse part has weight 3132727 (37.11/col) Mon Dec 15 00:37:23 2008 matrix includes 64 packed rows Mon Dec 15 00:37:23 2008 using block size 33768 for processor cache size 1024 kB Mon Dec 15 00:37:24 2008 commencing Lanczos iteration Mon Dec 15 00:37:24 2008 memory use: 13.6 MB Mon Dec 15 00:38:11 2008 lanczos halted after 1334 iterations (dim = 84309) Mon Dec 15 00:38:11 2008 recovered 17 nontrivial dependencies Mon Dec 15 00:38:12 2008 prp42 factor: 581119780975231635970058042786794126786889 Mon Dec 15 00:38:12 2008 prp56 factor: 14240232483206706578295465829097659023799330370860981537 Mon Dec 15 00:38:12 2008 elapsed time 06:53:20
(37·10135+71)/9 = 4(1)1349<136> = 3 · 157 · 217858747 · C125
C125 = P39 · P86
P39 = 448527358525322314639414749099497098067<39>
P86 = 89325276139362337612461557618510248967981249045371777169481861806222799110277558174761<86>
Number: 41119_135 N=40064830156333189911356119025116378434156345249498865836143135288895502259163405215369647868960104691528229503292492741286987 ( 125 digits) SNFS difficulty: 136 digits. Divisors found: r1=448527358525322314639414749099497098067 (prp39) r2=89325276139362337612461557618510248967981249045371777169481861806222799110277558174761 (prp86) Version: Total time: 4.72 hours. Scaled time: 12.09 units (timescale=2.564). Factorization parameters were as follows: name: 41119_135 n: 40064830156333189911356119025116378434156345249498865836143135288895502259163405215369647868960104691528229503292492741286987 m: 1000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 193544 x 193792 Total sieving time: 4.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 4.72 hours. --------- CPU info (if available) ----------
(37·10136+71)/9 = 4(1)1359<137> = 13 · 17 · 641 · C132
C132 = P56 · P76
P56 = 97340949537081992813353491071448672787822775697068133607<56>
P76 = 2981352535792632774733519282793371700345256565006961199069479457120577812397<76>
Number: 41119_136 N=290207686738842102703715991776925978999944311497950114082994692336713076366191902578063906870000290207686738842102703715991776925979 ( 132 digits) SNFS difficulty: 137 digits. Divisors found: r1=97340949537081992813353491071448672787822775697068133607 (prp56) r2=2981352535792632774733519282793371700345256565006961199069479457120577812397 (prp76) Version: Total time: 6.11 hours. Scaled time: 15.68 units (timescale=2.564). Factorization parameters were as follows: name: 41119_136 n: 290207686738842102703715991776925978999944311497950114082994692336713076366191902578063906870000290207686738842102703715991776925979 m: 1000000000000000000000000000 deg: 5 c5: 370 c0: 71 skew: 0.72 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 235989 x 236237 Total sieving time: 6.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 6.11 hours. --------- CPU info (if available) ----------
(37·10137+53)/9 = 4(1)1367<138> = 3 · 7 · 71 · 349 · 17099 · 19001790168617<14> · C115
C115 = P41 · P75
P41 = 19452637518709047440619598197258467357591<41>
P75 = 125000692705880011030652701485196569731361764165251859204813732182028498671<75>
Number: 41117_137 N=2431593164795021863019909687564068078352019780269255567935109822583356900993305863658209861643608160856750225261561 ( 115 digits) SNFS difficulty: 139 digits. Divisors found: r1=19452637518709047440619598197258467357591 (prp41) r2=125000692705880011030652701485196569731361764165251859204813732182028498671 (prp75) Version: Total time: 8.30 hours. Scaled time: 16.37 units (timescale=1.972). Factorization parameters were as follows: name: 41117_137 n: 2431593164795021863019909687564068078352019780269255567935109822583356900993305863658209861643608160856750225261561 m: 2000000000000000000000000000 deg: 5 c5: 925 c0: 424 skew: 0.86 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 247956 x 248204 Total sieving time: 8.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 8.30 hours. --------- CPU info (if available) ----------
(37·10143+53)/9 = 4(1)1427<144> = 32 · 7 · 1093 · 6362389073<10> · 224734168564901<15> · 3210362852397241<16> · C100
C100 = P42 · P58
P42 = 418741748016711844962144967395757153592003<42>
P58 = 3106052477718236853520927156215139113532043711670312169297<58>
Mon Dec 15 00:48:04 2008 Msieve v. 1.39 Mon Dec 15 00:48:04 2008 random seeds: dc2fd100 c9e6d64e Mon Dec 15 00:48:04 2008 factoring 1300633843951373418973286402129012722051843503962648717536449548299399464906466570381194546601331891 (100 digits) Mon Dec 15 00:48:05 2008 searching for 15-digit factors Mon Dec 15 00:48:06 2008 commencing quadratic sieve (100-digit input) Mon Dec 15 00:48:06 2008 using multiplier of 59 Mon Dec 15 00:48:06 2008 using 32kb Intel Core sieve core Mon Dec 15 00:48:06 2008 sieve interval: 36 blocks of size 32768 Mon Dec 15 00:48:06 2008 processing polynomials in batches of 6 Mon Dec 15 00:48:06 2008 using a sieve bound of 2671787 (97647 primes) Mon Dec 15 00:48:06 2008 using large prime bound of 400768050 (28 bits) Mon Dec 15 00:48:06 2008 using double large prime bound of 3056381387395500 (43-52 bits) Mon Dec 15 00:48:06 2008 using trial factoring cutoff of 52 bits Mon Dec 15 00:48:06 2008 polynomial 'A' values have 13 factors Mon Dec 15 12:57:16 2008 97874 relations (23045 full + 74829 combined from 1471490 partial), need 97743 Mon Dec 15 12:57:18 2008 begin with 1494535 relations Mon Dec 15 12:57:20 2008 reduce to 259594 relations in 11 passes Mon Dec 15 12:57:20 2008 attempting to read 259594 relations Mon Dec 15 12:57:25 2008 recovered 259594 relations Mon Dec 15 12:57:25 2008 recovered 251345 polynomials Mon Dec 15 12:57:25 2008 attempting to build 97874 cycles Mon Dec 15 12:57:25 2008 found 97874 cycles in 6 passes Mon Dec 15 12:57:25 2008 distribution of cycle lengths: Mon Dec 15 12:57:25 2008 length 1 : 23045 Mon Dec 15 12:57:25 2008 length 2 : 16691 Mon Dec 15 12:57:25 2008 length 3 : 16220 Mon Dec 15 12:57:25 2008 length 4 : 13422 Mon Dec 15 12:57:25 2008 length 5 : 10290 Mon Dec 15 12:57:25 2008 length 6 : 7121 Mon Dec 15 12:57:25 2008 length 7 : 4546 Mon Dec 15 12:57:25 2008 length 9+: 6539 Mon Dec 15 12:57:25 2008 largest cycle: 23 relations Mon Dec 15 12:57:25 2008 matrix is 97647 x 97874 (27.4 MB) with weight 6794219 (69.42/col) Mon Dec 15 12:57:25 2008 sparse part has weight 6794219 (69.42/col) Mon Dec 15 12:57:27 2008 filtering completed in 3 passes Mon Dec 15 12:57:27 2008 matrix is 93927 x 93990 (26.4 MB) with weight 6556190 (69.75/col) Mon Dec 15 12:57:27 2008 sparse part has weight 6556190 (69.75/col) Mon Dec 15 12:57:27 2008 saving the first 48 matrix rows for later Mon Dec 15 12:57:27 2008 matrix is 93879 x 93990 (16.5 MB) with weight 5222311 (55.56/col) Mon Dec 15 12:57:27 2008 sparse part has weight 3768024 (40.09/col) Mon Dec 15 12:57:27 2008 matrix includes 64 packed rows Mon Dec 15 12:57:27 2008 using block size 37596 for processor cache size 1024 kB Mon Dec 15 12:57:28 2008 commencing Lanczos iteration Mon Dec 15 12:57:28 2008 memory use: 15.9 MB Mon Dec 15 12:58:34 2008 lanczos halted after 1485 iterations (dim = 93877) Mon Dec 15 12:58:34 2008 recovered 16 nontrivial dependencies Mon Dec 15 12:58:35 2008 prp42 factor: 418741748016711844962144967395757153592003 Mon Dec 15 12:58:35 2008 prp58 factor: 3106052477718236853520927156215139113532043711670312169297 Mon Dec 15 12:58:35 2008 elapsed time 12:10:31
Factorizations of 100...003 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
Factorizations of 422...221 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Serge Batalov / PFGW
(8·1012260+1)/9 = (8)122599<12260> is PRP.
(8·1012341+1)/9 = (8)123409<12341> is PRP.
(8·1013760+1)/9 = (8)137599<13760> is PRP.
By Robert Backstrom / Msieve, GMP-ECM
(37·10165+71)/9 = 4(1)1649<166> = 3 · 5857 · 24499 · 299407691567021461<18> · 64864715580932555437<20> · 214518310799772616827199181657<30> · C91
C91 = P37 · P54
P37 = 2456479326290440166586254085782156353<37>
P54 = 933180006098833852846401252904487652104420827030262863<54>
Sun Dec 14 14:20:07 2008 Sun Dec 14 14:20:07 2008 Sun Dec 14 14:20:07 2008 Msieve v. 1.39 Sun Dec 14 14:20:07 2008 random seeds: a9642068 c7f4fd37 Sun Dec 14 14:20:07 2008 factoring 2292337392689372228652417839233158652643250786585474807666277446662451849304779576555418639 (91 digits) Sun Dec 14 14:20:08 2008 searching for 15-digit factors Sun Dec 14 14:20:09 2008 commencing quadratic sieve (91-digit input) Sun Dec 14 14:20:09 2008 using multiplier of 1 Sun Dec 14 14:20:09 2008 using 64kb Opteron sieve core Sun Dec 14 14:20:09 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 14:20:09 2008 processing polynomials in batches of 6 Sun Dec 14 14:20:09 2008 using a sieve bound of 1682287 (63529 primes) Sun Dec 14 14:20:09 2008 using large prime bound of 154770404 (27 bits) Sun Dec 14 14:20:09 2008 using double large prime bound of 551363682974648 (42-49 bits) Sun Dec 14 14:20:09 2008 using trial factoring cutoff of 49 bits Sun Dec 14 14:20:09 2008 polynomial 'A' values have 12 factors Sun Dec 14 15:25:56 2008 64164 relations (16520 full + 47644 combined from 732118 partial), need 63625 Sun Dec 14 15:25:57 2008 begin with 748638 relations Sun Dec 14 15:25:57 2008 reduce to 159269 relations in 9 passes Sun Dec 14 15:25:57 2008 attempting to read 159269 relations Sun Dec 14 15:25:59 2008 recovered 159269 relations Sun Dec 14 15:25:59 2008 recovered 138487 polynomials Sun Dec 14 15:25:59 2008 attempting to build 64164 cycles Sun Dec 14 15:25:59 2008 found 64164 cycles in 5 passes Sun Dec 14 15:26:00 2008 distribution of cycle lengths: Sun Dec 14 15:26:00 2008 length 1 : 16520 Sun Dec 14 15:26:00 2008 length 2 : 12059 Sun Dec 14 15:26:00 2008 length 3 : 11161 Sun Dec 14 15:26:00 2008 length 4 : 8627 Sun Dec 14 15:26:00 2008 length 5 : 6320 Sun Dec 14 15:26:00 2008 length 6 : 4020 Sun Dec 14 15:26:00 2008 length 7 : 2506 Sun Dec 14 15:26:00 2008 length 9+: 2951 Sun Dec 14 15:26:00 2008 largest cycle: 18 relations Sun Dec 14 15:26:00 2008 matrix is 63529 x 64164 (16.0 MB) with weight 3927565 (61.21/col) Sun Dec 14 15:26:00 2008 sparse part has weight 3927565 (61.21/col) Sun Dec 14 15:26:01 2008 filtering completed in 4 passes Sun Dec 14 15:26:01 2008 matrix is 59617 x 59681 (14.8 MB) with weight 3649747 (61.15/col) Sun Dec 14 15:26:01 2008 sparse part has weight 3649747 (61.15/col) Sun Dec 14 15:26:01 2008 saving the first 48 matrix rows for later Sun Dec 14 15:26:01 2008 matrix is 59569 x 59681 (9.5 MB) with weight 2881639 (48.28/col) Sun Dec 14 15:26:01 2008 sparse part has weight 2126116 (35.62/col) Sun Dec 14 15:26:01 2008 matrix includes 64 packed rows Sun Dec 14 15:26:01 2008 using block size 23872 for processor cache size 1024 kB Sun Dec 14 15:26:01 2008 commencing Lanczos iteration Sun Dec 14 15:26:01 2008 memory use: 9.2 MB Sun Dec 14 15:26:22 2008 lanczos halted after 944 iterations (dim = 59567) Sun Dec 14 15:26:22 2008 recovered 16 nontrivial dependencies Sun Dec 14 15:26:23 2008 prp37 factor: 2456479326290440166586254085782156353 Sun Dec 14 15:26:23 2008 prp54 factor: 933180006098833852846401252904487652104420827030262863 Sun Dec 14 15:26:23 2008 elapsed time 01:06:16
(37·10142+53)/9 = 4(1)1417<143> = 229 · 293 · 311363441 · 4290945583<10> · 247255819459871080939110673<27> · C94
C94 = P44 · P51
P44 = 16862793440103708198532263801272697174262183<44>
P51 = 109991581016708918525866831687260181943473154034893<51>
Sun Dec 14 18:57:25 2008 Sun Dec 14 18:57:25 2008 Sun Dec 14 18:57:25 2008 Msieve v. 1.39 Sun Dec 14 18:57:25 2008 random seeds: 0a9bc040 124024ef Sun Dec 14 18:57:25 2008 factoring 1854765310835194710428440106540308919972924293904205223172756617211856527940960640436712351419 (94 digits) Sun Dec 14 18:57:26 2008 searching for 15-digit factors Sun Dec 14 18:57:26 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 18:57:27 2008 using multiplier of 11 Sun Dec 14 18:57:27 2008 using 64kb Opteron sieve core Sun Dec 14 18:57:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 18:57:27 2008 processing polynomials in batches of 6 Sun Dec 14 18:57:27 2008 using a sieve bound of 1991609 (73982 primes) Sun Dec 14 18:57:27 2008 using large prime bound of 256917561 (27 bits) Sun Dec 14 18:57:27 2008 using double large prime bound of 1372868018887893 (42-51 bits) Sun Dec 14 18:57:27 2008 using trial factoring cutoff of 51 bits Sun Dec 14 18:57:27 2008 polynomial 'A' values have 12 factors Sun Dec 14 21:16:14 2008 74176 relations (17786 full + 56390 combined from 1040543 partial), need 74078 Sun Dec 14 21:16:16 2008 begin with 1058329 relations Sun Dec 14 21:16:17 2008 reduce to 194080 relations in 12 passes Sun Dec 14 21:16:17 2008 attempting to read 194080 relations Sun Dec 14 21:16:20 2008 recovered 194080 relations Sun Dec 14 21:16:20 2008 recovered 179104 polynomials Sun Dec 14 21:16:20 2008 attempting to build 74176 cycles Sun Dec 14 21:16:20 2008 found 74176 cycles in 5 passes Sun Dec 14 21:16:21 2008 distribution of cycle lengths: Sun Dec 14 21:16:21 2008 length 1 : 17786 Sun Dec 14 21:16:21 2008 length 2 : 12925 Sun Dec 14 21:16:21 2008 length 3 : 12410 Sun Dec 14 21:16:21 2008 length 4 : 10031 Sun Dec 14 21:16:21 2008 length 5 : 7751 Sun Dec 14 21:16:21 2008 length 6 : 5177 Sun Dec 14 21:16:21 2008 length 7 : 3373 Sun Dec 14 21:16:21 2008 length 9+: 4723 Sun Dec 14 21:16:21 2008 largest cycle: 20 relations Sun Dec 14 21:16:21 2008 matrix is 73982 x 74176 (19.3 MB) with weight 4766529 (64.26/col) Sun Dec 14 21:16:21 2008 sparse part has weight 4766529 (64.26/col) Sun Dec 14 21:16:22 2008 filtering completed in 3 passes Sun Dec 14 21:16:22 2008 matrix is 70626 x 70690 (18.5 MB) with weight 4567849 (64.62/col) Sun Dec 14 21:16:22 2008 sparse part has weight 4567849 (64.62/col) Sun Dec 14 21:16:22 2008 saving the first 48 matrix rows for later Sun Dec 14 21:16:22 2008 matrix is 70578 x 70690 (11.4 MB) with weight 3550378 (50.22/col) Sun Dec 14 21:16:22 2008 sparse part has weight 2567736 (36.32/col) Sun Dec 14 21:16:22 2008 matrix includes 64 packed rows Sun Dec 14 21:16:22 2008 using block size 28276 for processor cache size 1024 kB Sun Dec 14 21:16:23 2008 commencing Lanczos iteration Sun Dec 14 21:16:23 2008 memory use: 11.2 MB Sun Dec 14 21:16:55 2008 lanczos halted after 1117 iterations (dim = 70576) Sun Dec 14 21:16:55 2008 recovered 17 nontrivial dependencies Sun Dec 14 21:16:56 2008 prp44 factor: 16862793440103708198532263801272697174262183 Sun Dec 14 21:16:56 2008 prp51 factor: 109991581016708918525866831687260181943473154034893 Sun Dec 14 21:16:56 2008 elapsed time 02:19:31
(37·10124+53)/9 = 4(1)1237<125> = 1277 · 47309 · 28722607534355557<17> · C101
C101 = P36 · P66
P36 = 195169974164679173582454440992292441<36>
P66 = 121391333009391162020765580291934643735513437889339216293015715737<66>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 23691943327258839247481664570054627580787232775552733193324809100671477449073888934217058100029844017 (101 digits) Using B1=1752000, B2=2140281790, polynomial Dickson(6), sigma=1759735969 Step 1 took 16760ms Step 2 took 5941ms ********** Factor found in step 2: 195169974164679173582454440992292441 Found probable prime factor of 36 digits: 195169974164679173582454440992292441 Probable prime cofactor 121391333009391162020765580291934643735513437889339216293015715737 has 66 digits
By Justin Card / ggnfs / msieve
(10185+17)/9 = (1)1843<185> = 107 · 42403 · 4463369 · 97950977 · C163
C163 = P47 · P53 · P64
P47 = 15114737110291755253865525542276220443845732191<47>
P53 = 62215924351208704620214741244687970502124398308107141<53>
P64 = 5956668182002404597436168891848003944513400860278422888622352051<64>
Sieve time, ~ Thu Dec 11 06:25:45 2008 Msieve v. 1.39 Thu Dec 11 06:25:45 2008 random seeds: c119b89d 3c60b76b Thu Dec 11 06:25:45 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Thu Dec 11 06:25:47 2008 searching for 15-digit factors Thu Dec 11 06:25:48 2008 commencing number field sieve (163-digit input) Thu Dec 11 06:25:48 2008 R0: -10000000000000000000000000000000000000 Thu Dec 11 06:25:48 2008 R1: 1 Thu Dec 11 06:25:48 2008 A0: 17 Thu Dec 11 06:25:48 2008 A1: 0 Thu Dec 11 06:25:48 2008 A2: 0 Thu Dec 11 06:25:48 2008 A3: 0 Thu Dec 11 06:25:48 2008 A4: 0 Thu Dec 11 06:25:48 2008 A5: 1 Thu Dec 11 06:25:48 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Thu Dec 11 06:25:48 2008 Thu Dec 11 06:25:48 2008 commencing relation filtering Thu Dec 11 06:25:48 2008 commencing duplicate removal, pass 1 Thu Dec 11 06:28:46 2008 error -9 reading relation 14190429 Thu Dec 11 06:28:55 2008 error -9 reading relation 14949426 Thu Dec 11 06:29:13 2008 error -15 reading relation 16595032 Thu Dec 11 06:29:25 2008 error -9 reading relation 17527780 Thu Dec 11 06:29:35 2008 error -15 reading relation 18356803 Thu Dec 11 06:30:11 2008 found 3465609 hash collisions in 21585522 relations Thu Dec 11 06:31:19 2008 added 24327 free relations Thu Dec 11 06:31:19 2008 commencing duplicate removal, pass 2 Thu Dec 11 06:31:37 2008 found 3270865 duplicates and 18338984 unique relations Thu Dec 11 06:31:37 2008 memory use: 94.6 MB Thu Dec 11 06:31:37 2008 reading rational ideals above 8716288 Thu Dec 11 06:31:37 2008 reading algebraic ideals above 8716288 Thu Dec 11 06:31:37 2008 commencing singleton removal, pass 1 Thu Dec 11 06:35:35 2008 relations with 0 large ideals: 230675 Thu Dec 11 06:35:35 2008 relations with 1 large ideals: 1542279 Thu Dec 11 06:35:35 2008 relations with 2 large ideals: 4605346 Thu Dec 11 06:35:35 2008 relations with 3 large ideals: 6337724 Thu Dec 11 06:35:35 2008 relations with 4 large ideals: 3878423 Thu Dec 11 06:35:35 2008 relations with 5 large ideals: 969234 Thu Dec 11 06:35:35 2008 relations with 6 large ideals: 771397 Thu Dec 11 06:35:35 2008 relations with 7+ large ideals: 3906 Thu Dec 11 06:35:35 2008 18338984 relations and about 18219864 large ideals Thu Dec 11 06:35:35 2008 commencing singleton removal, pass 2 Thu Dec 11 06:39:35 2008 found 6773463 singletons Thu Dec 11 06:39:35 2008 current dataset: 11565521 relations and about 9662777 large ideals Thu Dec 11 06:39:35 2008 commencing singleton removal, pass 3 Thu Dec 11 06:41:58 2008 found 1929828 singletons Thu Dec 11 06:41:58 2008 current dataset: 9635693 relations and about 7596307 large ideals Thu Dec 11 06:41:58 2008 commencing singleton removal, pass 4 Thu Dec 11 06:43:59 2008 found 559893 singletons Thu Dec 11 06:43:59 2008 current dataset: 9075800 relations and about 7022668 large ideals Thu Dec 11 06:43:59 2008 commencing singleton removal, pass 5 Thu Dec 11 06:45:52 2008 found 175568 singletons Thu Dec 11 06:45:52 2008 current dataset: 8900232 relations and about 6845659 large ideals Thu Dec 11 06:45:52 2008 commencing singleton removal, final pass Thu Dec 11 06:47:54 2008 memory use: 157.8 MB Thu Dec 11 06:47:55 2008 commencing in-memory singleton removal Thu Dec 11 06:47:56 2008 begin with 8900232 relations and 7598828 unique ideals Thu Dec 11 06:48:16 2008 reduce to 7009060 relations and 5642900 ideals in 18 passes Thu Dec 11 06:48:16 2008 max relations containing the same ideal: 24 Thu Dec 11 06:48:18 2008 reading rational ideals above 720000 Thu Dec 11 06:48:18 2008 reading algebraic ideals above 720000 Thu Dec 11 06:48:18 2008 commencing singleton removal, final pass Thu Dec 11 06:50:15 2008 keeping 6366128 ideals with weight <= 20, new excess is 589025 Thu Dec 11 06:50:21 2008 memory use: 183.7 MB Thu Dec 11 06:50:21 2008 commencing in-memory singleton removal Thu Dec 11 06:50:22 2008 begin with 7033399 relations and 6366128 unique ideals Thu Dec 11 06:50:37 2008 reduce to 7004721 relations and 6218178 ideals in 11 passes Thu Dec 11 06:50:37 2008 max relations containing the same ideal: 20 Thu Dec 11 06:50:43 2008 removing 599456 relations and 547819 ideals in 51637 cliques Thu Dec 11 06:50:44 2008 commencing in-memory singleton removal Thu Dec 11 06:50:45 2008 begin with 6405265 relations and 6218178 unique idealsThu Dec 11 06:50:57 2008 reduce to 6365591 relations and 5630271 ideals in 10 passes Thu Dec 11 06:50:57 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:03 2008 removing 432595 relations and 380958 ideals in 51637 cliques Thu Dec 11 06:51:03 2008 commencing in-memory singleton removal Thu Dec 11 06:51:04 2008 begin with 5932996 relations and 5630271 unique ideals Thu Dec 11 06:51:13 2008 reduce to 5909684 relations and 5225798 ideals in 8 passes Thu Dec 11 06:51:13 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:20 2008 relations with 0 large ideals: 43999 Thu Dec 11 06:51:20 2008 relations with 1 large ideals: 279962 Thu Dec 11 06:51:20 2008 relations with 2 large ideals: 938340 Thu Dec 11 06:51:20 2008 relations with 3 large ideals: 1640855 Thu Dec 11 06:51:20 2008 relations with 4 large ideals: 1630210 Thu Dec 11 06:51:20 2008 relations with 5 large ideals: 952681 Thu Dec 11 06:51:20 2008 relations with 6 large ideals: 358387 Thu Dec 11 06:51:20 2008 relations with 7+ large ideals: 65250 Thu Dec 11 06:51:20 2008 commencing 2-way merge Thu Dec 11 06:51:27 2008 reduce to 3478218 relation sets and 2794332 unique ideals Thu Dec 11 06:51:27 2008 commencing full merge Thu Dec 11 06:52:41 2008 memory use: 269.3 MB Thu Dec 11 06:52:42 2008 found 1701886 cycles, need 1614532 Thu Dec 11 06:52:43 2008 weight of 1614532 cycles is about 113141746 (70.08/cycle) Thu Dec 11 06:52:43 2008 distribution of cycle lengths: Thu Dec 11 06:52:43 2008 1 relations: 209342 Thu Dec 11 06:52:43 2008 2 relations: 191075 Thu Dec 11 06:52:43 2008 3 relations: 185586 Thu Dec 11 06:52:43 2008 4 relations: 165144 Thu Dec 11 06:52:43 2008 5 relations: 146133 Thu Dec 11 06:52:43 2008 6 relations: 126188 Thu Dec 11 06:52:43 2008 7 relations: 106578 Thu Dec 11 06:52:43 2008 8 relations: 93386 Thu Dec 11 06:52:43 2008 9 relations: 78985 Thu Dec 11 06:52:43 2008 10+ relations: 312115 Thu Dec 11 06:52:43 2008 heaviest cycle: 20 relations Thu Dec 11 06:52:44 2008 commencing cycle optimization Thu Dec 11 06:52:48 2008 start with 9412575 relations Thu Dec 11 06:53:15 2008 pruned 235166 relations Thu Dec 11 06:53:15 2008 memory use: 315.3 MB Thu Dec 11 06:53:15 2008 distribution of cycle lengths: Thu Dec 11 06:53:15 2008 1 relations: 209342 Thu Dec 11 06:53:15 2008 2 relations: 195784 Thu Dec 11 06:53:15 2008 3 relations: 192349 Thu Dec 11 06:53:15 2008 4 relations: 169452 Thu Dec 11 06:53:15 2008 5 relations: 149844 Thu Dec 11 06:53:15 2008 6 relations: 127591 Thu Dec 11 06:53:15 2008 7 relations: 107695 Thu Dec 11 06:53:15 2008 8 relations: 93119 Thu Dec 11 06:53:15 2008 9 relations: 78380 Thu Dec 11 06:53:15 2008 10+ relations: 290976 Thu Dec 11 06:53:15 2008 heaviest cycle: 20 relations Thu Dec 11 06:53:21 2008 elapsed time 00:27:36 Fri Dec 12 20:24:42 2008 Msieve v. 1.39 Fri Dec 12 20:24:42 2008 random seeds: 8a67411e b53fa8c3 Fri Dec 12 20:24:42 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Fri Dec 12 20:24:45 2008 searching for 15-digit factors Fri Dec 12 20:24:46 2008 commencing number field sieve (163-digit input) Fri Dec 12 20:24:46 2008 R0: -10000000000000000000000000000000000000 Fri Dec 12 20:24:46 2008 R1: 1 Fri Dec 12 20:24:46 2008 A0: 17 Fri Dec 12 20:24:46 2008 A1: 0 Fri Dec 12 20:24:46 2008 A2: 0 Fri Dec 12 20:24:46 2008 A3: 0 Fri Dec 12 20:24:46 2008 A4: 0 Fri Dec 12 20:24:46 2008 A5: 1 Fri Dec 12 20:24:46 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Fri Dec 12 20:24:46 2008 Fri Dec 12 20:24:46 2008 commencing linear algebra Fri Dec 12 20:24:47 2008 read 1599998 cycles Fri Dec 12 20:24:54 2008 cycles contain 5294098 unique relations Fri Dec 12 20:26:00 2008 read 5294098 relations Fri Dec 12 20:26:14 2008 using 20 quadratic characters above 268434548 Fri Dec 12 20:27:04 2008 building initial matrix Fri Dec 12 20:28:25 2008 memory use: 643.5 MB Fri Dec 12 20:28:27 2008 read 1599998 cycles Fri Dec 12 20:28:29 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:29 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:28:55 2008 filtering completed in 1 passes Fri Dec 12 20:28:55 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:55 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:10 2008 read 1599998 cycles Fri Dec 12 20:29:12 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:29:12 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:12 2008 saving the first 48 matrix rows for later Fri Dec 12 20:29:13 2008 matrix is 1599750 x 1599998 (452.7 MB) with weight 111950279 (69.97/col) Fri Dec 12 20:29:13 2008 sparse part has weight 102665798 (64.17/col) Fri Dec 12 20:29:13 2008 matrix includes 64 packed rows Fri Dec 12 20:29:13 2008 using block size 10922 for processor cache size 256 kB Fri Dec 12 20:29:23 2008 commencing Lanczos iteration (2 threads) Fri Dec 12 20:29:23 2008 memory use: 448.0 MB Sat Dec 13 00:51:35 2008 lanczos error: submatrix is not invertible Sat Dec 13 00:51:35 2008 lanczos halted after 7210 iterations (dim = 455967) Sat Dec 13 00:51:35 2008 linear algebra failed; retrying... Sat Dec 13 00:51:35 2008 commencing Lanczos iteration (2 threads) Sat Dec 13 00:51:35 2008 memory use: 448.0 MB Sat Dec 13 16:07:31 2008 lanczos halted after 25302 iterations (dim = 1599744) Sat Dec 13 16:07:38 2008 recovered 31 nontrivial dependencies Sat Dec 13 16:07:38 2008 elapsed time 19:42:56 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Msieve v. 1.39 Sat Dec 13 18:12:48 2008 random seeds: 595748d8 c5a6942b Sat Dec 13 18:12:48 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Sat Dec 13 18:12:49 2008 searching for 15-digit factors Sat Dec 13 18:12:51 2008 commencing number field sieve (163-digit input) Sat Dec 13 18:12:51 2008 R0: -10000000000000000000000000000000000000 Sat Dec 13 18:12:51 2008 R1: 1 Sat Dec 13 18:12:51 2008 A0: 17 Sat Dec 13 18:12:51 2008 A1: 0 Sat Dec 13 18:12:51 2008 A2: 0 Sat Dec 13 18:12:51 2008 A3: 0 Sat Dec 13 18:12:51 2008 A4: 0 Sat Dec 13 18:12:51 2008 A5: 1 Sat Dec 13 18:12:51 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Sat Dec 13 18:12:51 2008 Sat Dec 13 18:12:51 2008 commencing square root phase Sat Dec 13 18:12:51 2008 reading relations for dependency 1 Sat Dec 13 18:12:51 2008 read 800041 cycles Sat Dec 13 18:12:54 2008 cycles contain 3218627 unique relations Sat Dec 13 18:13:39 2008 read 3218627 relations Sat Dec 13 18:14:03 2008 multiplying 2646900 relations Sat Dec 13 18:18:29 2008 multiply complete, coefficients have about 59.07 million bits Sat Dec 13 18:18:31 2008 initial square root is modulo 301859771 Sat Dec 13 18:27:26 2008 reading relations for dependency 2 Sat Dec 13 18:27:27 2008 read 799909 cycles Sat Dec 13 18:27:30 2008 cycles contain 3215839 unique relations Sat Dec 13 18:28:13 2008 read 3215839 relations Sat Dec 13 18:28:37 2008 multiplying 2645928 relations Sat Dec 13 18:33:02 2008 multiply complete, coefficients have about 59.05 million bits Sat Dec 13 18:33:04 2008 initial square root is modulo 299845591 Sat Dec 13 18:41:52 2008 Newton iteration failed to converge Sat Dec 13 18:41:52 2008 algebraic square root failed Sat Dec 13 18:41:52 2008 reading relations for dependency 3 Sat Dec 13 18:41:53 2008 read 800016 cycles Sat Dec 13 18:41:56 2008 cycles contain 3214264 unique relations Sat Dec 13 18:42:37 2008 read 3214264 relations Sat Dec 13 18:43:02 2008 multiplying 2644520 relations Sat Dec 13 18:47:26 2008 multiply complete, coefficients have about 59.01 million bits Sat Dec 13 18:47:28 2008 initial square root is modulo 296690551 Sat Dec 13 18:56:23 2008 prp47 factor: 15114737110291755253865525542276220443845732191 Sat Dec 13 18:56:23 2008 prp53 factor: 62215924351208704620214741244687970502124398308107141 Sat Dec 13 18:56:23 2008 prp64 factor: 5956668182002404597436168891848003944513400860278422888622352051 Sat Dec 13 18:56:23 2008 elapsed time 00:43:35
By Serge Batalov / GMP-ECM 6.2.1, GMP-ECM 6.2.1; msieve/QS, Msieve-1.39
(37·10191+71)/9 = 4(1)1909<192> = 19 · 163 · 227 · 8221 · 220274727766969<15> · 47092463385596851290407<23> · 256080813541464866622802649<27> · 16242434872628753856635344333<29> · C91
C91 = P31 · P60
P31 = 4636700600036784458682270386851<31>
P60 = 355561060921631143485837742682771800699261664861095825932721<60>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2648465071 Step 1 took 5340ms Step 2 took 3444ms ********** Factor found in step 2: 4636700600036784458682270386851 Found probable prime factor of 31 digits: 4636700600036784458682270386851 Probable prime cofactor 355561060921631143485837742682771800699261664861095825932721 has 60 digits
(37·10144+71)/9 = 4(1)1439<145> = 3 · 23 · 7400711 · 408887911 · 20186612443<11> · 29905721311256110223<20> · C98
C98 = P36 · P62
P36 = 618775808407328473965636674049547033<36>
P62 = 52708584683780887941137184058447905146401641743810396364826463<62>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3429082305 Step 1 took 6624ms Step 2 took 3648ms ********** Factor found in step 2: 618775808407328473965636674049547033 Found probable prime factor of 36 digits: 618775808407328473965636674049547033 Probable prime cofactor 52708584683780887941137184058447905146401641743810396364826463 has 62 digits
(37·10176+53)/9 = 4(1)1757<177> = 3 · 45963274037027449<17> · 218721874752653920697929367<27> · 167559923470916489335366527497<30> · C104
C104 = P32 · P32 · P41
P32 = 15102382275566300653137564378239<32>
P32 = 91977583043394794293256969720219<32>
P41 = 58564869249345584602048726485816313603829<41>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3150125923 Step 1 took 6465ms ********** Factor found in step 1: 91977583043394794293256969720219 Found probable prime factor of 32 digits: 91977583043394794293256969720219 Composite cofactor has 72 digits Sat Dec 13 15:36:47 2008 Msieve v. 1.39 Sat Dec 13 15:36:47 2008 random seeds: ff568006 9809a85b Sat Dec 13 15:36:47 2008 factoring 884469043322174635950314079773456828426465440667479238633610773754677131 (72 digits) Sat Dec 13 15:36:47 2008 searching for 15-digit factors Sat Dec 13 15:36:48 2008 commencing quadratic sieve (72-digit input) Sat Dec 13 15:36:48 2008 using multiplier of 1 Sat Dec 13 15:36:48 2008 using 64kb Opteron sieve core Sat Dec 13 15:36:48 2008 sieve interval: 6 blocks of size 65536 Sat Dec 13 15:36:48 2008 processing polynomials in batches of 17 Sat Dec 13 15:36:48 2008 using a sieve bound of 414311 (17438 primes) Sat Dec 13 15:36:48 2008 using large prime bound of 41431100 (25 bits) Sat Dec 13 15:36:48 2008 using trial factoring cutoff of 25 bits Sat Dec 13 15:36:48 2008 polynomial 'A' values have 9 factors Sat Dec 13 15:39:26 2008 17777 relations (8871 full + 8906 combined from 97264 partial), need 17534 Sat Dec 13 15:39:27 2008 begin with 106135 relations Sat Dec 13 15:39:27 2008 reduce to 25588 relations in 2 passes Sat Dec 13 15:39:27 2008 attempting to read 25588 relations Sat Dec 13 15:39:27 2008 recovered 25588 relations Sat Dec 13 15:39:27 2008 recovered 19369 polynomials Sat Dec 13 15:39:27 2008 attempting to build 17777 cycles Sat Dec 13 15:39:27 2008 found 17777 cycles in 1 passes Sat Dec 13 15:39:27 2008 distribution of cycle lengths: Sat Dec 13 15:39:27 2008 length 1 : 8871 Sat Dec 13 15:39:27 2008 length 2 : 8906 Sat Dec 13 15:39:27 2008 largest cycle: 2 relations Sat Dec 13 15:39:27 2008 matrix is 17438 x 17777 (2.5 MB) with weight 515169 (28.98/col) Sat Dec 13 15:39:27 2008 sparse part has weight 515169 (28.98/col) Sat Dec 13 15:39:27 2008 filtering completed in 3 passes Sat Dec 13 15:39:27 2008 matrix is 12817 x 12880 (2.0 MB) with weight 411137 (31.92/col) Sat Dec 13 15:39:27 2008 sparse part has weight 411137 (31.92/col) Sat Dec 13 15:39:27 2008 saving the first 48 matrix rows for later Sat Dec 13 15:39:27 2008 matrix is 12769 x 12880 (1.4 MB) with weight 303997 (23.60/col) Sat Dec 13 15:39:27 2008 sparse part has weight 226977 (17.62/col) Sat Dec 13 15:39:27 2008 matrix includes 64 packed rows Sat Dec 13 15:39:27 2008 commencing Lanczos iteration Sat Dec 13 15:39:27 2008 memory use: 1.8 MB Sat Dec 13 15:39:31 2008 lanczos halted after 203 iterations (dim = 12764) Sat Dec 13 15:39:31 2008 recovered 15 nontrivial dependencies Sat Dec 13 15:39:31 2008 prp32 factor: 15102382275566300653137564378239 Sat Dec 13 15:39:31 2008 prp41 factor: 58564869249345584602048726485816313603829 Sat Dec 13 15:39:31 2008 elapsed time 00:02:44
(37·10133+53)/9 = 4(1)1327<134> = 192 · 15163783 · 1587776027<10> · C115
C115 = P32 · P84
P32 = 13869327544356415887390661584931<32>
P84 = 341035670790310249149005077592957449976141974679492733387937361436382697840615082307<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3785622199 Step 1 took 6436ms Step 2 took 4048ms ********** Factor found in step 2: 13869327544356415887390661584931 Found probable prime factor of 32 digits: 13869327544356415887390661584931 Probable prime cofactor 341035670790310249149005077592957449976141974679492733387937361436382697840615082307 has 84 digits
(37·10179+53)/9 = 4(1)1787<180> = 34 · 7 · 23 · 4751018479457<13> · 13962759095755291<17> · 49208248701391080839818523<26> · C121
C121 = P28 · C94
P28 = 2119493083661110697017153309<28>
C94 = [4556385302955576221884023543638349856512194802012137833352589947767890040676035957132831155593<94>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1915012220 Step 1 took 7824ms Step 2 took 4376ms ********** Factor found in step 2: 2119493083661110697017153309 Found probable prime factor of 28 digits: 2119493083661110697017153309 Composite cofactor has 94 digits
(37·10181+71)/9 = 4(1)1809<182> = 7 · 42323 · 33379705157<11> · 24127822888595769062376049807<29> · C138
C138 = P35 · C103
P35 = 47573256735105102134774568941200081<35>
C103 = [3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841<103>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=721560188 Step 1 took 9244ms Step 2 took 4985ms ********** Factor found in step 2: 47573256735105102134774568941200081 Found probable prime factor of 35 digits: 47573256735105102134774568941200081 Composite cofactor has 103 digits
(37·10104+53)/9 = 4(1)1037<105> = 3 · 1289213 · C99
C99 = P35 · P64
P35 = 22837832423823428406549535979434663<35>
P64 = 4654343177283332444580397105529579718882636552190002130060404781<64>
SNFS difficulty: 105 digits. Divisors found: r1=22837832423823428406549535979434663 (pp35) r2=4654343177283332444580397105529579718882636552190002130060404781 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 106295109525762645146331162528641145440696794895053832870935242692275859021773001852321561322323803 m: 100000000000000000000000000 deg: 4 c4: 37 c0: 53 skew: 1.09 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [200000, 250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 42219 x 42456 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,45,45,2.2,2.2,50000 total time: 0.50 hours.
(37·10109+53)/9 = 4(1)1087<110> = 151 · C108
C108 = P39 · P69
P39 = 345934149021961984853714355585332061497<39>
P69 = 787025550240151752957429692905459301021394747512814523416460876641811<69>
SNFS difficulty: 111 digits. Divisors found: r1=345934149021961984853714355585332061497 (pp39) r2=787025550240151752957429692905459301021394747512814523416460876641811 (pp69) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 272259013980868285504047093451066961000735835172921265636497424576894775570272259013980868285504047093451067 m: 10000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63238 x 63485 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.50 hours.
(37·10194+71)/9 = 4(1)1939<195> = 116269 · 575551 · 474471463 · 16349135082988589810249<23> · C153
C153 = P31 · C123
P31 = 7590690876337436335686621759791<31>
C123 = [104333861145851641332524267483514811395721107982807617312384858364100696592011759800416745004248697924636939449966193271653<123>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3439223145 Step 1 took 9237ms Step 2 took 5184ms ********** Factor found in step 2: 7590690876337436335686621759791 Found probable prime factor of 31 digits: 7590690876337436335686621759791 Composite cofactor has 123 digits
(37·10186+53)/9 = 4(1)1857<187> = 139 · 2017 · 109199 · 4908232860071<13> · 704264442759638437<18> · C146
C146 = P32 · C115
P32 = 10378488878367712824242152948117<32>
C115 = [3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599<115>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1287780505 Step 1 took 11689ms Step 2 took 6736ms ********** Factor found in step 2: 10378488878367712824242152948117 Found probable prime factor of 32 digits: 10378488878367712824242152948117 Composite cofactor has 115 digits
(37·10182+71)/9 = 4(1)1819<183> = 6554489 · 1825044564102727319125284089<28> · C149
C149 = P37 · P112
P37 = 8755789092289348926356821244998051583<37>
P112 = 3925107994217788084008788634318649563433570976255456089438348678247691568468116466972296949254207197157811247233<112>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3972661220 Step 1 took 11736ms Step 2 took 6719ms ********** Factor found in step 2: 8755789092289348926356821244998051583 Found probable prime factor of 37 digits: 8755789092289348926356821244998051583 Probable prime cofactor has 112 digits
(37·10169+53)/9 = 4(1)1687<170> = 19 · C169
C169 = P33 · C136
P33 = 291511918341504324969778930777933<33>
C136 = [7422484481487542405434963871001284300917097043855519001904556196162796366335291956314614258679614931018465138599301201369883800196508571<136>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=104395819 Step 1 took 10737ms Step 2 took 2968ms ********** Factor found in step 2: 291511918341504324969778930777933 Found probable prime factor of 33 digits: 291511918341504324969778930777933 Composite cofactor has 136 digits
(37·10195+71)/9 = 4(1)1949<196> = 32 · 251 · 2291104455149<13> · C180
C180 = P31 · C150
P31 = 2450016983244960343376200468679<31>
C150 = [324211935613233135510755071528084489947422054060634139633546393659957487226795682741016274539652285925049436071103008421381656621387039362598589743471<150>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=45812530 Step 1 took 12433ms Step 2 took 6316ms ********** Factor found in step 2: 2450016983244960343376200468679 Found probable prime factor of 31 digits: 2450016983244960343376200468679 Composite cofactor has 150 digits
(37·10141+71)/9 = 4(1)1409<142> = 32 · 3816740789<10> · C132
C132 = P39 · P94
P39 = 116328262062925150698065808106966699829<39>
P94 = 1028818580921946643296788098261946277585679831371276345580742344707061170637149919562915568911<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1887761298 Step 1 took 7593ms Step 2 took 4548ms ********** Factor found in step 2: 116328262062925150698065808106966699829 Found probable prime factor of 39 digits: 116328262062925150698065808106966699829 Probable prime cofactor 1028818580921946643296788098261946277585679831371276345580742344707061170637149919562915568911 has 94 digits
(37·10190+53)/9 = 4(1)1897<191> = 59 · 33366083669<11> · 1038688946123696607997710239<28> · C152
C152 = P33 · C119
P33 = 228822554008790119385212155709949<33>
C119 = [87865347299839227077677777536365983116150872999131750437968032584396075641901842890425376739301590272179304048017141257<119>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1937590972 Step 1 took 9284ms Step 2 took 5233ms ********** Factor found in step 2: 228822554008790119385212155709949 Found probable prime factor of 33 digits: 228822554008790119385212155709949 Composite cofactor has 119 digits
(37·10151+71)/9 = 4(1)1509<152> = 7 · 29 · 719 · C147
C147 = P36 · P111
P36 = 493619702531188780719146460090685151<36>
P111 = 570613182110476873637098969632150989726981775506952535058010084196523573240634138994101843197569157770130203517<111>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1976020518 Step 1 took 9117ms Step 2 took 5172ms ********** Factor found in step 2: 493619702531188780719146460090685151 Found probable prime factor of 36 digits: 493619702531188780719146460090685151 Probable prime cofactor 570613182110476873637098969632150989726981775506952535058010084196523573240634138994101843197569157770130203517 has 111 digits
(37·10205+71)/9 = 4(1)2049<206> = 7 · 2136133 · 64219024439<11> · C188
C188 = P33 · P155
P33 = 811192614843691594162179215721103<33>
P155 = 52777059952387829531805686963212177397005658748073113430271392340308625968747192771664150630058513871014711473629321309366475928080999258279957374370363597<155>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2220468459 Step 1 took 15901ms Step 2 took 8896ms ********** Factor found in step 2: 811192614843691594162179215721103 Found probable prime factor of 33 digits: 811192614843691594162179215721103 Probable prime cofactor has 155 digits
(37·10202+71)/9 = 4(1)2019<203> = 13 · 331 · 617 · 385329041 · 13678610652367342939958859931<29> · C160
C160 = P33 · P128
P33 = 240415440947317746742029988668383<33>
P128 = 12219870898197088877898626768426211369986433162099804061070145673200443592688273807744355365435476148474134453244176088463782133<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=939060094 Step 1 took 10797ms Step 2 took 5572ms ********** Factor found in step 2: 240415440947317746742029988668383 Found probable prime factor of 33 digits: 240415440947317746742029988668383 Probable prime cofactor 12219870898197088877898626768426211369986433162099804061070145673200443592688273807744355365435476148474134453244176088463782133 has 128 digits
(37·10112+53)/9 = 4(1)1117<113> = 67619 · 1002388368083<13> · C96
C96 = P37 · P60
P37 = 1809172218365498113906379744251961009<37>
P60 = 335254443186106734337422576507034330357097141008436045500069<60>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1919125461 Step 1 took 6853ms Step 2 took 4585ms ********** Factor found in step 2: 1809172218365498113906379744251961009 Found probable prime factor of 37 digits: 1809172218365498113906379744251961009 Probable prime cofactor 335254443186106734337422576507034330357097141008436045500069 has 60 digits
(37·10202+53)/9 = 4(1)2017<203> = 83 · 103969 · C196
C196 = P35 · C161
P35 = 83073232889032830958318021005925831<35>
C161 = [57347718339390154926339184530294156960878348876030304573157521297170923496818684614574091715773458560271341921644399653208512139175830624309009733603768798562441<161>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2223104446 Step 1 took 14353ms Step 2 took 7001ms ********** Factor found in step 2: 83073232889032830958318021005925831 Found probable prime factor of 35 digits: 83073232889032830958318021005925831 Composite cofactor has 161 digits
(37·10169+71)/9 = 4(1)1689<170> = 72 · 253366636945487563<18> · C151
C151 = P32 · P119
P32 = 37501399965585490651118726058947<32>
P119 = 88301123028773088784112825094403290394334942803635440323854002374944693073141336324975710529936256947568638512598023071<119>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1399304808 Step 1 took 11746ms Step 2 took 6891ms ********** Factor found in step 2: 37501399965585490651118726058947 Found probable prime factor of 32 digits: 37501399965585490651118726058947 Probable prime cofactor 88301123028773088784112825094403290394334942803635440323854002374944693073141336324975710529936256947568638512598023071 has 119 digits
By Sinkiti Sibata / GGNFS, Msieve
(37·10162+17)/9 = 4(1)1613<163> = 3 · 19290329 · 66993539 · 288466127633<12> · 2388806425599695184089<22> · C115
C115 = P57 · P59
P57 = 130111273985304522814275954174641281081665867559899941167<57>
P59 = 11827002600902938664289039732901650255844924476182741339279<59>
Number: 41113_162 N=1538826375830991453057437176484248990299753945815650506175461641309026854092360282091108310398235858496090886198593 ( 115 digits) Divisors found: r1=130111273985304522814275954174641281081665867559899941167 (pp57) r2=11827002600902938664289039732901650255844924476182741339279 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 57.40 hours. Scaled time: 27.15 units (timescale=0.473). Factorization parameters were as follows: name: 41113_162 n: 1538826375830991453057437176484248990299753945815650506175461641309026854092360282091108310398235858496090886198593 skew: 68560.79 # norm 5.34e+15 c5: 16380 c4: -491501907 c3: -284502307743748 c2: 2095670281966397398 c1: 491009361245004074554604 c0: -4355927952840396465531407136 # alpha -5.95 Y1: 2733249033247 Y0: -9875881410257126254633 # Murphy_E 5.70e-10 # M 1019663148516304371654520437573394188902720054438743156392681884195776859271800520987608419626613033809430724205437 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: RFBsize:250150, AFBsize:250583, largePrimes:7640929 encountered Relations: rels:7618928, finalFF:654352 Max relations in full relation-set: 28 Initial matrix: 500815 x 654352 with sparse part having weight 58437435. Pruned matrix : 379734 x 382302 with weight 34243244. Total sieving time: 50.65 hours. Total relation processing time: 0.58 hours. Matrix solve time: 5.82 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 57.40 hours. --------- CPU info (if available) ----------
(37·10103+53)/9 = 4(1)1027<104> = 17 · 113 · 89983 · 4032812257<10> · C86
C86 = P38 · P49
P38 = 35314393767842084307850317582733171637<38>
P49 = 1669981352997280313025282068382464491328210820391<49>
Sun Dec 14 06:13:22 2008 Msieve v. 1.39 Sun Dec 14 06:13:22 2008 random seeds: 1925d00c b04ad9d7 Sun Dec 14 06:13:22 2008 factoring 58974379084699647746013481661671328339377519785913665155065638330419588046029182450067 (86 digits) Sun Dec 14 06:13:22 2008 searching for 15-digit factors Sun Dec 14 06:13:24 2008 commencing quadratic sieve (86-digit input) Sun Dec 14 06:13:24 2008 using multiplier of 23 Sun Dec 14 06:13:24 2008 using 32kb Intel Core sieve core Sun Dec 14 06:13:24 2008 sieve interval: 16 blocks of size 32768 Sun Dec 14 06:13:24 2008 processing polynomials in batches of 13 Sun Dec 14 06:13:24 2008 using a sieve bound of 1452827 (55667 primes) Sun Dec 14 06:13:24 2008 using large prime bound of 116226160 (26 bits) Sun Dec 14 06:13:24 2008 using double large prime bound of 329266038078320 (41-49 bits) Sun Dec 14 06:13:24 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:13:24 2008 polynomial 'A' values have 11 factors Sun Dec 14 06:55:41 2008 55968 relations (15882 full + 40086 combined from 584002 partial), need 55763 Sun Dec 14 06:55:41 2008 begin with 599884 relations Sun Dec 14 06:55:42 2008 reduce to 133031 relations in 9 passes Sun Dec 14 06:55:42 2008 attempting to read 133031 relations Sun Dec 14 06:55:43 2008 recovered 133031 relations Sun Dec 14 06:55:43 2008 recovered 113790 polynomials Sun Dec 14 06:55:44 2008 attempting to build 55968 cycles Sun Dec 14 06:55:44 2008 found 55968 cycles in 5 passes Sun Dec 14 06:55:44 2008 distribution of cycle lengths: Sun Dec 14 06:55:44 2008 length 1 : 15882 Sun Dec 14 06:55:44 2008 length 2 : 10993 Sun Dec 14 06:55:44 2008 length 3 : 9934 Sun Dec 14 06:55:44 2008 length 4 : 7402 Sun Dec 14 06:55:44 2008 length 5 : 4990 Sun Dec 14 06:55:44 2008 length 6 : 3014 Sun Dec 14 06:55:44 2008 length 7 : 1771 Sun Dec 14 06:55:44 2008 length 9+: 1982 Sun Dec 14 06:55:44 2008 largest cycle: 18 relations Sun Dec 14 06:55:44 2008 matrix is 55667 x 55968 (12.8 MB) with weight 3143787 (56.17/col) Sun Dec 14 06:55:44 2008 sparse part has weight 3143787 (56.17/col) Sun Dec 14 06:55:44 2008 filtering completed in 3 passes Sun Dec 14 06:55:44 2008 matrix is 51132 x 51196 (11.9 MB) with weight 2902891 (56.70/col) Sun Dec 14 06:55:44 2008 sparse part has weight 2902891 (56.70/col) Sun Dec 14 06:55:44 2008 saving the first 48 matrix rows for later Sun Dec 14 06:55:45 2008 matrix is 51084 x 51196 (7.8 MB) with weight 2292166 (44.77/col) Sun Dec 14 06:55:45 2008 sparse part has weight 1727978 (33.75/col) Sun Dec 14 06:55:45 2008 matrix includes 64 packed rows Sun Dec 14 06:55:45 2008 using block size 20478 for processor cache size 1024 kB Sun Dec 14 06:55:45 2008 commencing Lanczos iteration Sun Dec 14 06:55:45 2008 memory use: 7.5 MB Sun Dec 14 06:56:00 2008 lanczos halted after 809 iterations (dim = 51081) Sun Dec 14 06:56:00 2008 recovered 15 nontrivial dependencies Sun Dec 14 06:56:01 2008 prp38 factor: 35314393767842084307850317582733171637 Sun Dec 14 06:56:01 2008 prp49 factor: 1669981352997280313025282068382464491328210820391 Sun Dec 14 06:56:01 2008 elapsed time 00:42:39
(37·10102+71)/9 = 4(1)1019<103> = 3 · 1244232153403207<16> · C88
C88 = P34 · P54
P34 = 2649665594353355667701413432585159<34>
P54 = 415666929362892300678012893291131874171779345720654421<54>
Sun Dec 14 06:32:50 2008 Msieve v. 1.39 Sun Dec 14 06:32:50 2008 random seeds: 62e79a6d 45d19e2c Sun Dec 14 06:32:50 2008 factoring 1101378361443362334800454697333708457237190352894806247424401857396076767882135292337939 (88 digits) Sun Dec 14 06:32:51 2008 searching for 15-digit factors Sun Dec 14 06:32:52 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 06:32:53 2008 using multiplier of 11 Sun Dec 14 06:32:53 2008 using 32kb Intel Core sieve core Sun Dec 14 06:32:53 2008 sieve interval: 24 blocks of size 32768 Sun Dec 14 06:32:53 2008 processing polynomials in batches of 9 Sun Dec 14 06:32:53 2008 using a sieve bound of 1508383 (57226 primes) Sun Dec 14 06:32:53 2008 using large prime bound of 120670640 (26 bits) Sun Dec 14 06:32:53 2008 using double large prime bound of 352275850752880 (42-49 bits) Sun Dec 14 06:32:53 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:32:53 2008 polynomial 'A' values have 11 factors Sun Dec 14 07:22:11 2008 57405 relations (15925 full + 41480 combined from 602836 partial), need 57322 Sun Dec 14 07:22:13 2008 begin with 618761 relations Sun Dec 14 07:22:13 2008 reduce to 137376 relations in 9 passes Sun Dec 14 07:22:13 2008 attempting to read 137376 relations Sun Dec 14 07:22:16 2008 recovered 137376 relations Sun Dec 14 07:22:16 2008 recovered 114537 polynomials Sun Dec 14 07:22:16 2008 attempting to build 57405 cycles Sun Dec 14 07:22:16 2008 found 57405 cycles in 6 passes Sun Dec 14 07:22:16 2008 distribution of cycle lengths: Sun Dec 14 07:22:16 2008 length 1 : 15925 Sun Dec 14 07:22:16 2008 length 2 : 11211 Sun Dec 14 07:22:16 2008 length 3 : 10151 Sun Dec 14 07:22:16 2008 length 4 : 7733 Sun Dec 14 07:22:16 2008 length 5 : 5182 Sun Dec 14 07:22:16 2008 length 6 : 3216 Sun Dec 14 07:22:16 2008 length 7 : 1838 Sun Dec 14 07:22:16 2008 length 9+: 2149 Sun Dec 14 07:22:16 2008 largest cycle: 20 relations Sun Dec 14 07:22:16 2008 matrix is 57226 x 57405 (13.5 MB) with weight 3317254 (57.79/col) Sun Dec 14 07:22:16 2008 sparse part has weight 3317254 (57.79/col) Sun Dec 14 07:22:17 2008 filtering completed in 3 passes Sun Dec 14 07:22:17 2008 matrix is 52706 x 52770 (12.6 MB) with weight 3079370 (58.35/col) Sun Dec 14 07:22:17 2008 sparse part has weight 3079370 (58.35/col) Sun Dec 14 07:22:17 2008 saving the first 48 matrix rows for later Sun Dec 14 07:22:17 2008 matrix is 52658 x 52770 (8.6 MB) with weight 2474966 (46.90/col) Sun Dec 14 07:22:17 2008 sparse part has weight 1945695 (36.87/col) Sun Dec 14 07:22:17 2008 matrix includes 64 packed rows Sun Dec 14 07:22:17 2008 using block size 21108 for processor cache size 2048 kB Sun Dec 14 07:22:17 2008 commencing Lanczos iteration Sun Dec 14 07:22:17 2008 memory use: 8.1 MB Sun Dec 14 07:22:33 2008 lanczos halted after 834 iterations (dim = 52656) Sun Dec 14 07:22:33 2008 recovered 17 nontrivial dependencies Sun Dec 14 07:22:33 2008 prp34 factor: 2649665594353355667701413432585159 Sun Dec 14 07:22:33 2008 prp54 factor: 415666929362892300678012893291131874171779345720654421 Sun Dec 14 07:22:33 2008 elapsed time 00:49:43
(37·10110+71)/9 = 4(1)1099<111> = 163 · 3253 · 4993 · 115781 · 322350781 · C88
C88 = P38 · P50
P38 = 43729720990949949880600834845372658547<38>
P50 = 95144404324151060163204535145958036377440540232891<50>
Sun Dec 14 06:38:51 2008 Msieve v. 1.39 Sun Dec 14 06:38:51 2008 random seeds: 706bda11 1a3ccd2d Sun Dec 14 06:38:51 2008 factoring 4160638254945257795077203040399477793071467096507626461078106980750015463188979201669377 (88 digits) Sun Dec 14 06:38:52 2008 searching for 15-digit factors Sun Dec 14 06:38:54 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 06:38:54 2008 using multiplier of 1 Sun Dec 14 06:38:54 2008 using 64kb Pentium 4 sieve core Sun Dec 14 06:38:54 2008 sieve interval: 14 blocks of size 65536 Sun Dec 14 06:38:54 2008 processing polynomials in batches of 8 Sun Dec 14 06:38:54 2008 using a sieve bound of 1518589 (58000 primes) Sun Dec 14 06:38:54 2008 using large prime bound of 121487120 (26 bits) Sun Dec 14 06:38:54 2008 using double large prime bound of 356577817808960 (42-49 bits) Sun Dec 14 06:38:54 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:38:54 2008 polynomial 'A' values have 11 factors Sun Dec 14 08:02:47 2008 58224 relations (16052 full + 42172 combined from 612983 partial), need 58096 Sun Dec 14 08:02:50 2008 begin with 629035 relations Sun Dec 14 08:02:50 2008 reduce to 140474 relations in 9 passes Sun Dec 14 08:02:50 2008 attempting to read 140474 relations Sun Dec 14 08:02:54 2008 recovered 140474 relations Sun Dec 14 08:02:54 2008 recovered 114957 polynomials Sun Dec 14 08:02:54 2008 attempting to build 58224 cycles Sun Dec 14 08:02:54 2008 found 58224 cycles in 6 passes Sun Dec 14 08:02:54 2008 distribution of cycle lengths: Sun Dec 14 08:02:54 2008 length 1 : 16052 Sun Dec 14 08:02:54 2008 length 2 : 11306 Sun Dec 14 08:02:54 2008 length 3 : 10232 Sun Dec 14 08:02:54 2008 length 4 : 7703 Sun Dec 14 08:02:54 2008 length 5 : 5269 Sun Dec 14 08:02:54 2008 length 6 : 3373 Sun Dec 14 08:02:54 2008 length 7 : 1952 Sun Dec 14 08:02:54 2008 length 9+: 2337 Sun Dec 14 08:02:54 2008 largest cycle: 17 relations Sun Dec 14 08:02:54 2008 matrix is 58000 x 58224 (13.7 MB) with weight 3353101 (57.59/col) Sun Dec 14 08:02:54 2008 sparse part has weight 3353101 (57.59/col) Sun Dec 14 08:02:56 2008 filtering completed in 3 passes Sun Dec 14 08:02:56 2008 matrix is 53684 x 53747 (12.7 MB) with weight 3122843 (58.10/col) Sun Dec 14 08:02:56 2008 sparse part has weight 3122843 (58.10/col) Sun Dec 14 08:02:56 2008 saving the first 48 matrix rows for later Sun Dec 14 08:02:56 2008 matrix is 53636 x 53747 (8.7 MB) with weight 2504409 (46.60/col) Sun Dec 14 08:02:56 2008 sparse part has weight 1952885 (36.33/col) Sun Dec 14 08:02:56 2008 matrix includes 64 packed rows Sun Dec 14 08:02:56 2008 using block size 21498 for processor cache size 512 kB Sun Dec 14 08:02:57 2008 commencing Lanczos iteration Sun Dec 14 08:02:57 2008 memory use: 8.2 MB Sun Dec 14 08:03:27 2008 lanczos halted after 849 iterations (dim = 53632) Sun Dec 14 08:03:27 2008 recovered 14 nontrivial dependencies Sun Dec 14 08:03:28 2008 prp38 factor: 43729720990949949880600834845372658547 Sun Dec 14 08:03:28 2008 prp50 factor: 95144404324151060163204535145958036377440540232891 Sun Dec 14 08:03:28 2008 elapsed time 01:24:37
(37·10134+71)/9 = 4(1)1339<135> = 22541 · 25579 · 9712652137<10> · 44720537897489<14> · 275014982787607<15> · C88
C88 = P44 · P44
P44 = 76781171389640257460964238610947216532089199<44>
P44 = 77740357280063944340382379702634468726758129<44>
Sun Dec 14 08:13:01 2008 Msieve v. 1.39 Sun Dec 14 08:13:01 2008 random seeds: 9c481be0 3d650de5 Sun Dec 14 08:13:01 2008 factoring 5968995696212457427044842553502875786013425970251737697198124448731278272530146726348671 (88 digits) Sun Dec 14 08:13:03 2008 searching for 15-digit factors Sun Dec 14 08:13:05 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 08:13:05 2008 using multiplier of 1 Sun Dec 14 08:13:05 2008 using 64kb Pentium 4 sieve core Sun Dec 14 08:13:05 2008 sieve interval: 14 blocks of size 65536 Sun Dec 14 08:13:05 2008 processing polynomials in batches of 8 Sun Dec 14 08:13:05 2008 using a sieve bound of 1527443 (57997 primes) Sun Dec 14 08:13:05 2008 using large prime bound of 122195440 (26 bits) Sun Dec 14 08:13:05 2008 using double large prime bound of 360328813713040 (42-49 bits) Sun Dec 14 08:13:05 2008 using trial factoring cutoff of 49 bits Sun Dec 14 08:13:05 2008 polynomial 'A' values have 11 factors Sun Dec 14 09:46:40 2008 58202 relations (15835 full + 42367 combined from 613321 partial), need 58093 Sun Dec 14 09:46:42 2008 begin with 629156 relations Sun Dec 14 09:46:43 2008 reduce to 141005 relations in 9 passes Sun Dec 14 09:46:43 2008 attempting to read 141005 relations Sun Dec 14 09:46:46 2008 recovered 141005 relations Sun Dec 14 09:46:46 2008 recovered 118767 polynomials Sun Dec 14 09:46:46 2008 attempting to build 58202 cycles Sun Dec 14 09:46:46 2008 found 58202 cycles in 6 passes Sun Dec 14 09:46:46 2008 distribution of cycle lengths: Sun Dec 14 09:46:46 2008 length 1 : 15835 Sun Dec 14 09:46:46 2008 length 2 : 11324 Sun Dec 14 09:46:46 2008 length 3 : 10272 Sun Dec 14 09:46:46 2008 length 4 : 7605 Sun Dec 14 09:46:46 2008 length 5 : 5453 Sun Dec 14 09:46:46 2008 length 6 : 3261 Sun Dec 14 09:46:47 2008 length 7 : 2085 Sun Dec 14 09:46:47 2008 length 9+: 2367 Sun Dec 14 09:46:47 2008 largest cycle: 17 relations Sun Dec 14 09:46:47 2008 matrix is 57997 x 58202 (13.9 MB) with weight 3398010 (58.38/col) Sun Dec 14 09:46:47 2008 sparse part has weight 3398010 (58.38/col) Sun Dec 14 09:46:48 2008 filtering completed in 4 passes Sun Dec 14 09:46:48 2008 matrix is 53933 x 53997 (12.9 MB) with weight 3176190 (58.82/col) Sun Dec 14 09:46:48 2008 sparse part has weight 3176190 (58.82/col) Sun Dec 14 09:46:48 2008 saving the first 48 matrix rows for later Sun Dec 14 09:46:48 2008 matrix is 53885 x 53997 (8.5 MB) with weight 2513844 (46.56/col) Sun Dec 14 09:46:48 2008 sparse part has weight 1912992 (35.43/col) Sun Dec 14 09:46:48 2008 matrix includes 64 packed rows Sun Dec 14 09:46:48 2008 using block size 21598 for processor cache size 512 kB Sun Dec 14 09:46:49 2008 commencing Lanczos iteration Sun Dec 14 09:46:49 2008 memory use: 8.2 MB Sun Dec 14 09:47:17 2008 lanczos halted after 853 iterations (dim = 53880) Sun Dec 14 09:47:17 2008 recovered 14 nontrivial dependencies Sun Dec 14 09:47:18 2008 prp44 factor: 76781171389640257460964238610947216532089199 Sun Dec 14 09:47:18 2008 prp44 factor: 77740357280063944340382379702634468726758129 Sun Dec 14 09:47:18 2008 elapsed time 01:34:17
(37·10102+53)/9 = 4(1)1017<103> = 71 · 11839 · 7469039 · C90
C90 = P34 · P56
P34 = 7516248271660755869850274614285353<34>
P56 = 87120428179153067595948563227353363024319865790575626979<56>
un Dec 14 09:26:56 2008 Msieve v. 1.39 Sun Dec 14 09:26:56 2008 random seeds: 2832f164 98fb12c3 Sun Dec 14 09:26:56 2008 factoring 654818767727904256865639176292309801451437776014272230779785284420421232481315337991338587 (90 digits) Sun Dec 14 09:26:57 2008 searching for 15-digit factors Sun Dec 14 09:26:59 2008 commencing quadratic sieve (90-digit input) Sun Dec 14 09:26:59 2008 using multiplier of 3 Sun Dec 14 09:26:59 2008 using 32kb Intel Core sieve core Sun Dec 14 09:26:59 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 09:26:59 2008 processing polynomials in batches of 6 Sun Dec 14 09:26:59 2008 using a sieve bound of 1613867 (61176 primes) Sun Dec 14 09:26:59 2008 using large prime bound of 135564828 (27 bits) Sun Dec 14 09:26:59 2008 using double large prime bound of 434374788405180 (42-49 bits) Sun Dec 14 09:26:59 2008 using trial factoring cutoff of 49 bits Sun Dec 14 09:26:59 2008 polynomial 'A' values have 12 factors Sun Dec 14 10:29:25 2008 61573 relations (17144 full + 44429 combined from 653984 partial), need 61272 Sun Dec 14 10:29:26 2008 begin with 671128 relations Sun Dec 14 10:29:26 2008 reduce to 146946 relations in 11 passes Sun Dec 14 10:29:26 2008 attempting to read 146946 relations Sun Dec 14 10:29:28 2008 recovered 146946 relations Sun Dec 14 10:29:28 2008 recovered 120493 polynomials Sun Dec 14 10:29:28 2008 attempting to build 61573 cycles Sun Dec 14 10:29:29 2008 found 61573 cycles in 5 passes Sun Dec 14 10:29:29 2008 distribution of cycle lengths: Sun Dec 14 10:29:29 2008 length 1 : 17144 Sun Dec 14 10:29:29 2008 length 2 : 12393 Sun Dec 14 10:29:29 2008 length 3 : 10791 Sun Dec 14 10:29:29 2008 length 4 : 8064 Sun Dec 14 10:29:29 2008 length 5 : 5463 Sun Dec 14 10:29:29 2008 length 6 : 3441 Sun Dec 14 10:29:29 2008 length 7 : 1974 Sun Dec 14 10:29:29 2008 length 9+: 2303 Sun Dec 14 10:29:29 2008 largest cycle: 18 relations Sun Dec 14 10:29:29 2008 matrix is 61176 x 61573 (14.7 MB) with weight 3596232 (58.41/col) Sun Dec 14 10:29:29 2008 sparse part has weight 3596232 (58.41/col) Sun Dec 14 10:29:30 2008 filtering completed in 3 passes Sun Dec 14 10:29:30 2008 matrix is 56580 x 56644 (13.5 MB) with weight 3322339 (58.65/col) Sun Dec 14 10:29:30 2008 sparse part has weight 3322339 (58.65/col) Sun Dec 14 10:29:30 2008 saving the first 48 matrix rows for later Sun Dec 14 10:29:30 2008 matrix is 56532 x 56644 (8.3 MB) with weight 2561002 (45.21/col) Sun Dec 14 10:29:30 2008 sparse part has weight 1840625 (32.49/col) Sun Dec 14 10:29:30 2008 matrix includes 64 packed rows Sun Dec 14 10:29:30 2008 using block size 22657 for processor cache size 1024 kB Sun Dec 14 10:29:30 2008 commencing Lanczos iteration Sun Dec 14 10:29:30 2008 memory use: 8.3 MB Sun Dec 14 10:29:48 2008 lanczos halted after 895 iterations (dim = 56529) Sun Dec 14 10:29:48 2008 recovered 16 nontrivial dependencies Sun Dec 14 10:29:49 2008 prp34 factor: 7516248271660755869850274614285353 Sun Dec 14 10:29:49 2008 prp56 factor: 87120428179153067595948563227353363024319865790575626979 Sun Dec 14 10:29:49 2008 elapsed time 01:02:53
(37·10105+53)/9 = 4(1)1047<106> = 111733 · 546863 · C95
C95 = P45 · P51
P45 = 204636041354677447482853109425426041565256449<45>
P51 = 328788855581546082125121238993357453012048109411927<51>
Sun Dec 14 08:15:04 2008 Msieve v. 1.39 Sun Dec 14 08:15:04 2008 random seeds: 868f8b33 3eb24c1e Sun Dec 14 08:15:04 2008 factoring 67282049847742334963616862975582700215581962408551703345462075578114834596968610334356334267223 (95 digits) Sun Dec 14 08:15:05 2008 searching for 15-digit factors Sun Dec 14 08:15:06 2008 commencing quadratic sieve (95-digit input) Sun Dec 14 08:15:06 2008 using multiplier of 3 Sun Dec 14 08:15:06 2008 using 32kb Intel Core sieve core Sun Dec 14 08:15:06 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 08:15:06 2008 processing polynomials in batches of 6 Sun Dec 14 08:15:06 2008 using a sieve bound of 2196599 (80826 primes) Sun Dec 14 08:15:06 2008 using large prime bound of 329489850 (28 bits) Sun Dec 14 08:15:06 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 14 08:15:06 2008 using trial factoring cutoff of 51 bits Sun Dec 14 08:15:06 2008 polynomial 'A' values have 12 factors Sun Dec 14 13:22:18 2008 81008 relations (19048 full + 61960 combined from 1237185 partial), need 80922 Sun Dec 14 13:22:23 2008 begin with 1256233 relations Sun Dec 14 13:22:23 2008 reduce to 215120 relations in 13 passes Sun Dec 14 13:22:23 2008 attempting to read 215120 relations Sun Dec 14 13:22:29 2008 recovered 215120 relations Sun Dec 14 13:22:29 2008 recovered 202169 polynomials Sun Dec 14 13:22:29 2008 attempting to build 81008 cycles Sun Dec 14 13:22:29 2008 found 81008 cycles in 6 passes Sun Dec 14 13:22:29 2008 distribution of cycle lengths: Sun Dec 14 13:22:29 2008 length 1 : 19048 Sun Dec 14 13:22:29 2008 length 2 : 13883 Sun Dec 14 13:22:29 2008 length 3 : 13540 Sun Dec 14 13:22:29 2008 length 4 : 11060 Sun Dec 14 13:22:29 2008 length 5 : 8465 Sun Dec 14 13:22:29 2008 length 6 : 5764 Sun Dec 14 13:22:29 2008 length 7 : 3725 Sun Dec 14 13:22:29 2008 length 9+: 5523 Sun Dec 14 13:22:29 2008 largest cycle: 20 relations Sun Dec 14 13:22:30 2008 matrix is 80826 x 81008 (22.2 MB) with weight 5506807 (67.98/col) Sun Dec 14 13:22:30 2008 sparse part has weight 5506807 (67.98/col) Sun Dec 14 13:22:30 2008 filtering completed in 3 passes Sun Dec 14 13:22:30 2008 matrix is 77469 x 77533 (21.4 MB) with weight 5302804 (68.39/col) Sun Dec 14 13:22:30 2008 sparse part has weight 5302804 (68.39/col) Sun Dec 14 13:22:31 2008 saving the first 48 matrix rows for later Sun Dec 14 13:22:31 2008 matrix is 77421 x 77533 (14.7 MB) with weight 4320453 (55.72/col) Sun Dec 14 13:22:31 2008 sparse part has weight 3383624 (43.64/col) Sun Dec 14 13:22:31 2008 matrix includes 64 packed rows Sun Dec 14 13:22:31 2008 using block size 31013 for processor cache size 2048 kB Sun Dec 14 13:22:31 2008 commencing Lanczos iteration Sun Dec 14 13:22:31 2008 memory use: 13.5 MB Sun Dec 14 13:23:10 2008 lanczos halted after 1226 iterations (dim = 77418) Sun Dec 14 13:23:10 2008 recovered 15 nontrivial dependencies Sun Dec 14 13:23:11 2008 prp45 factor: 204636041354677447482853109425426041565256449 Sun Dec 14 13:23:11 2008 prp51 factor: 328788855581546082125121238993357453012048109411927 Sun Dec 14 13:23:11 2008 elapsed time 05:08:07
(37·10114+53)/9 = 4(1)1137<115> = C115
C115 = P54 · P62
P54 = 337537008280418766192929438347918809616735002757194727<54>
P62 = 12179734400251853325768968702888321780028003904068045443286571<62>
Number: 41117_114 N=4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: r1=337537008280418766192929438347918809616735002757194727 (prp54) r2=12179734400251853325768968702888321780028003904068045443286571 (prp62) Version: Total time: 1.79 hours. Scaled time: 3.50 units (timescale=1.960). Factorization parameters were as follows: name: 41117_114 n: 4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 100000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 555001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79057 x 79305 Total sieving time: 1.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.79 hours. --------- CPU info (if available) ----------
(37·10123+71)/9 = 4(1)1229<124> = 34 · 29 · 449 · C118
C118 = P41 · P78
P41 = 20695535029248947852717006458822002729677<41>
P78 = 188344610965528230197952413898521617583890420834456669268656909688180223321047<78>
Number: 41119_123 N=3897892493807354986020787987411703517026257784064973021843262793067524455851574153348779522453388316794154088325611819 ( 118 digits) SNFS difficulty: 125 digits. Divisors found: r1=20695535029248947852717006458822002729677 (prp41) r2=188344610965528230197952413898521617583890420834456669268656909688180223321047 (prp78) Version: Total time: 1.94 hours. Scaled time: 5.00 units (timescale=2.575). Factorization parameters were as follows: name: 41119_123 n: 3897892493807354986020787987411703517026257784064973021843262793067524455851574153348779522453388316794154088325611819 m: 5000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123693 x 123934 Total sieving time: 1.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.94 hours. --------- CPU info (if available) ----------
(37·10155+71)/9 = 4(1)1549<156> = 192 · 449 · 203388431 · 434667323 · 21723500418352373<17> · 195139313557545220666189<24> · C94
C94 = P47 · P48
P47 = 14213129565745445748264000298044322650674765341<47>
P48 = 476165733177193357196365532265201544599028821671<48>
Sun Dec 14 10:37:40 2008 Msieve v. 1.39 Sun Dec 14 10:37:40 2008 random seeds: 992e376c 7d2779b2 Sun Dec 14 10:37:40 2008 factoring 6767805260415624010155217671358645841863341122871686405813495731920030225435926539273660504811 (94 digits) Sun Dec 14 10:37:41 2008 searching for 15-digit factors Sun Dec 14 10:37:43 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 10:37:43 2008 using multiplier of 3 Sun Dec 14 10:37:43 2008 using 64kb Pentium 4 sieve core Sun Dec 14 10:37:43 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 10:37:43 2008 processing polynomials in batches of 6 Sun Dec 14 10:37:43 2008 using a sieve bound of 2059517 (76466 primes) Sun Dec 14 10:37:43 2008 using large prime bound of 284213346 (28 bits) Sun Dec 14 10:37:43 2008 using double large prime bound of 1646493387513360 (42-51 bits) Sun Dec 14 10:37:43 2008 using trial factoring cutoff of 51 bits Sun Dec 14 10:37:43 2008 polynomial 'A' values have 12 factors Sun Dec 14 17:31:24 2008 76647 relations (18095 full + 58552 combined from 1115782 partial), need 76562 Sun Dec 14 17:31:28 2008 begin with 1133877 relations Sun Dec 14 17:31:29 2008 reduce to 202780 relations in 11 passes Sun Dec 14 17:31:29 2008 attempting to read 202780 relations Sun Dec 14 17:31:35 2008 recovered 202780 relations Sun Dec 14 17:31:35 2008 recovered 189693 polynomials Sun Dec 14 17:31:36 2008 attempting to build 76647 cycles Sun Dec 14 17:31:36 2008 found 76647 cycles in 6 passes Sun Dec 14 17:31:36 2008 distribution of cycle lengths: Sun Dec 14 17:31:36 2008 length 1 : 18095 Sun Dec 14 17:31:36 2008 length 2 : 12837 Sun Dec 14 17:31:36 2008 length 3 : 13006 Sun Dec 14 17:31:36 2008 length 4 : 10582 Sun Dec 14 17:31:36 2008 length 5 : 8026 Sun Dec 14 17:31:36 2008 length 6 : 5541 Sun Dec 14 17:31:36 2008 length 7 : 3467 Sun Dec 14 17:31:36 2008 length 9+: 5093 Sun Dec 14 17:31:36 2008 largest cycle: 19 relations Sun Dec 14 17:31:36 2008 matrix is 76466 x 76647 (20.3 MB) with weight 5027332 (65.59/col) Sun Dec 14 17:31:36 2008 sparse part has weight 5027332 (65.59/col) Sun Dec 14 17:31:38 2008 filtering completed in 3 passes Sun Dec 14 17:31:38 2008 matrix is 73269 x 73333 (19.6 MB) with weight 4838460 (65.98/col) Sun Dec 14 17:31:38 2008 sparse part has weight 4838460 (65.98/col) Sun Dec 14 17:31:38 2008 saving the first 48 matrix rows for later Sun Dec 14 17:31:38 2008 matrix is 73221 x 73333 (12.3 MB) with weight 3830611 (52.24/col) Sun Dec 14 17:31:38 2008 sparse part has weight 2772583 (37.81/col) Sun Dec 14 17:31:38 2008 matrix includes 64 packed rows Sun Dec 14 17:31:38 2008 using block size 21845 for processor cache size 512 kB Sun Dec 14 17:31:39 2008 commencing Lanczos iteration Sun Dec 14 17:31:39 2008 memory use: 11.9 MB Sun Dec 14 17:32:34 2008 lanczos halted after 1159 iterations (dim = 73221) Sun Dec 14 17:32:34 2008 recovered 18 nontrivial dependencies Sun Dec 14 17:32:35 2008 prp47 factor: 14213129565745445748264000298044322650674765341 Sun Dec 14 17:32:35 2008 prp48 factor: 476165733177193357196365532265201544599028821671 Sun Dec 14 17:32:35 2008 elapsed time 06:54:55
(37·10118+71)/9 = 4(1)1179<119> = 13 · 61 · C116
C116 = P35 · P81
P35 = 69418872032971825675387608033297539<35>
P81 = 746807162673007794573024730772402779877228065547662481262643057695893171999373197<81>
Number: 41119_118 N=51842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=69418872032971825675387608033297539 (prp35) r2=746807162673007794573024730772402779877228065547662481262643057695893171999373197 (prp81) Version: Total time: 2.26 hours. Scaled time: 4.42 units (timescale=1.955). Factorization parameters were as follows: name: 41119_118 n: 51842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183 m: 500000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79104 x 79347 Total sieving time: 2.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.26 hours. --------- CPU info (if available) ----------
(37·10129+53)/9 = 4(1)1287<130> = C130
C130 = P51 · P80
P51 = 145844390655749562788875940659676939529907563875789<51>
P80 = 28188338904407774606901579652067711359624010893822103546405700927331945019978753<80>
Number: 41117_129 N=4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 130 digits) SNFS difficulty: 131 digits. Divisors found: r1=145844390655749562788875940659676939529907563875789 (prp51) r2=28188338904407774606901579652067711359624010893822103546405700927331945019978753 (prp80) Version: Total time: 3.90 hours. Scaled time: 10.05 units (timescale=2.575). Factorization parameters were as follows: name: 41117_129 n: 4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 100000000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 1145001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168454 x 168702 Total sieving time: 3.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 3.90 hours. --------- CPU info (if available) ----------
Factorizations of 411...117 and Factorizations of 411...119 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(37·10160+17)/9 = 4(1)1593<161> = 2211071263<10> · 230520570756165931<18> · C134
C134 = P51 · P84
P51 = 182534298451988745491465996097413122160200468742407<51>
P84 = 441877926343855694297910384601660321631744164035971667970314416322997130688858619603<84>
Number: 41113_160 N=80657877286595255360501423871032632999300536701774910703390394464930393749780818957506729438603944423745442718258274615558035407604421 ( 134 digits) SNFS difficulty: 161 digits. Divisors found: r1=182534298451988745491465996097413122160200468742407 (pp51) r2=441877926343855694297910384601660321631744164035971667970314416322997130688858619603 (pp84) Version: GGNFS-0.77.1-20060513-nocona Total time: 46.00 hours. Scaled time: 117.48 units (timescale=2.554). Factorization parameters were as follows: name: 41113_160 n: 80657877286595255360501423871032632999300536701774910703390394464930393749780818957506729438603944423745442718258274615558035407604421 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3050001) Primes: RFBsize:250150, AFBsize:250081, largePrimes:9043720 encountered Relations: rels:9246377, finalFF:577662 Max relations in full relation-set: 28 Initial matrix: 500296 x 577662 with sparse part having weight 61823295. Pruned matrix : 466400 x 468965 with weight 47236517. Total sieving time: 43.14 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.53 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 46.00 hours. --------- CPU info (if available) ----------
(37·10157+17)/9 = 4(1)1563<158> = 863 · 73607 · 2627737972449370281351927889<28> · C123
C123 = P49 · P75
P49 = 2352669523486813031676403292583158308856321454209<49>
P75 = 104685448438146196434694486111792280502604118654516603864565957058052394593<75>
Number: 41113_157 N=246290264092976747496854725207962020306973824437463180894048095584859846285349289378058603553803801996749502615192448691937 ( 123 digits) SNFS difficulty: 159 digits. Divisors found: r1=2352669523486813031676403292583158308856321454209 (pp49) r2=104685448438146196434694486111792280502604118654516603864565957058052394593 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 51.04 hours. Scaled time: 99.79 units (timescale=1.955). Factorization parameters were as follows: name: 41113_157 n: 246290264092976747496854725207962020306973824437463180894048095584859846285349289378058603553803801996749502615192448691937 m: 20000000000000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 3100001) Primes: RFBsize:230209, AFBsize:229217, largePrimes:8087006 encountered Relations: rels:8152494, finalFF:518868 Max relations in full relation-set: 28 Initial matrix: 459493 x 518868 with sparse part having weight 54487834. Pruned matrix : 437407 x 439768 with weight 42949203. Total sieving time: 47.24 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.31 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 51.04 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(34·10180+11)/9 = 3(7)1799<181> = C181
C181 = P64 · P117
P64 = 5574632468914608146858989470643476643459042798240453257348585029<64>
P117 = 677672976441677150691405869835421581232568399868727814349136619956892166941871909050801747283982312193551902356049751<117>
Number: n N=3777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 181 digits) SNFS difficulty: 181 digits. Divisors found: Sat Dec 13 03:26:24 2008 prp64 factor: 5574632468914608146858989470643476643459042798240453257348585029 Sat Dec 13 03:26:24 2008 prp117 factor: 677672976441677150691405869835421581232568399868727814349136619956892166941871909050801747283982312193551902356049751 Sat Dec 13 03:26:24 2008 elapsed time 03:25:41 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.44 hours. Scaled time: 75.29 units (timescale=2.011). Factorization parameters were as follows: name: KA_3_7_179_9 n: 3777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 type: snfs skew: 0.80 deg: 5 c5: 34 c0: 11 m: 1000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 2900077) Primes: RFBsize:571119, AFBsize:571308, largePrimes:28026071 encountered Relations: rels:25436113, finalFF:1245495 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: 26132343 relations and about 26488749 large ideals Msieve: matrix is 1120238 x 1120486 (303.3 MB) Total sieving time: 36.85 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 37.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(35·10163+1)/9 = 3(8)1629<164> = 3 · 13 · 22027 · C158
C158 = P61 · P98
P61 = 3772305601451741110693896034844369021299802372207123480191799<61>
P98 = 12000482490194027628192717775525574707938989420059163916800025995974556673997774191103348024966187<98>
Number: n N=45269487317882469287563036144322747128394742686293964270992463665092711263320061613065653561408770924365422027382348806056074408550914657057118581611249700413 ( 158 digits) SNFS difficulty: 165 digits. Divisors found: Sat Dec 13 01:50:12 2008 prp61 factor: 3772305601451741110693896034844369021299802372207123480191799 Sat Dec 13 01:50:12 2008 prp98 factor: 12000482490194027628192717775525574707938989420059163916800025995974556673997774191103348024966187 Sat Dec 13 01:50:12 2008 elapsed time 02:21:03 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.93 hours. Scaled time: 54.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_8_162_9 n: 45269487317882469287563036144322747128394742686293964270992463665092711263320061613065653561408770924365422027382348806056074408550914657057118581611249700413 type: snfs skew: 0.62 deg: 5 c5: 56 c0: 5 m: 500000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3850001) Primes: RFBsize:348513, AFBsize:347941, largePrimes:18240387 encountered Relations: rels:17162345, finalFF:870976 Max relations in full relation-set: 28 Initial matrix: 696520 x 870976 with sparse part having weight 111651568. Pruned matrix : 577183 x 580729 with weight 75582274. Msieve: found 1208921 hash collisions in 17899689 relations Msieve: matrix is 725299 x 725547 (195.7 MB) Total sieving time: 29.38 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 29.93 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(37·10150+17)/9 = 4(1)1493<151> = 3 · 35322799 · 301866832776298641101058383<27> · C117
C117 = P55 · P62
P55 = 2594925527914511341596318466274576379113700104320912139<55>
P62 = 49527060558983801304162718190994337266256570404149672188885417<62>
Number: 41113_150 N=128519033767075013780786115315087147448685727330032367627926634125513383045933845733508432136406988335267399195376963 ( 117 digits) SNFS difficulty: 151 digits. Divisors found: r1=2594925527914511341596318466274576379113700104320912139 (pp55) r2=49527060558983801304162718190994337266256570404149672188885417 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.56 hours. Scaled time: 47.36 units (timescale=2.010). Factorization parameters were as follows: name: 41113_146 n: 128519033767075013780786115315087147448685727330032367627926634125513383045933845733508432136406988335267399195376963 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175998, largePrimes:6927169 encountered Relations: rels:6882552, finalFF:472100 Max relations in full relation-set: 28 Initial matrix: 352365 x 472100 with sparse part having weight 48448512. Pruned matrix : 304761 x 306586 with weight 28267595. Total sieving time: 21.83 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.40 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 23.56 hours. --------- CPU info (if available) ----------
(35·10163-17)/9 = 3(8)1627<164> = 37 · 859433 · C157
C157 = P48 · P109
P48 = 307872788703161951907149258898808205952508429619<48>
P109 = 3972285727489072042775156135135899166170668429731548228973478147815338273608566491300580895913110250732250113<109>
Number: 41113_163 N=1222958684447829035016168859062953192454852270102557210452764847348252919135117049323275986669177296020807964147351859948420704174788553675564064971965296947 ( 157 digits) SNFS difficulty: 165 digits. Divisors found: r1=307872788703161951907149258898808205952508429619 (pp48) r2=3972285727489072042775156135135899166170668429731548228973478147815338273608566491300580895913110250732250113 (pp109) Version: GGNFS-0.77.1-20060513-nocona Total time: 64.73 hours. Scaled time: 165.98 units (timescale=2.564). Factorization parameters were as follows: name: 41113_163 n: 1222958684447829035016168859062953192454852270102557210452764847348252919135117049323275986669177296020807964147351859948420704174788553675564064971965296947 m: 500000000000000000000000000000000 deg: 5 c5: 56 c0: -85 skew: 1.09 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:282122, largePrimes:9360953 encountered Relations: rels:9842272, finalFF:670189 Max relations in full relation-set: 28 Initial matrix: 565334 x 670189 with sparse part having weight 77009409. Pruned matrix : 517749 x 520639 with weight 58596730. Total sieving time: 61.13 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.23 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 64.73 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(37·10164+17)/9 = 4(1)1633<165> = 7 · 293 · 76091 · C157
C157 = P77 · P80
P77 = 39322735725815644225314040621429171304048596658405725916552678760370150874401<77>
P80 = 66991011921022211860576233057936764080376246489288267299249722416243173674326393<80>
SNFS difficulty: 166 digits. Divisors found: r1=39322735725815644225314040621429171304048596658405725916552678760370150874401 (pp77) r2=66991011921022211860576233057936764080376246489288267299249722416243173674326393 (pp80) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: n: 2634269857775321840869725580967908335673437123950190687283775436756264499657615758989437524071575279256687134437966554155078736051321283939511898373622365593 m: 1000000000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 805341 x 805588 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,200000 total time: 47.00 hours.
By matsui / GMP-ECM
(31·10189+41)/9 = 3(4)1889<190> = 232 · 97 · C185
C185 = P39 · P147
P39 = 235132531583386114575877377394239306961<39>
P147 = 285482215410488202454571268720246728545289583107834402404220895987309744040548884129366032393397755755971466525084701732853813236763453026420960993<147>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 67126156031501655417622131710179573294183626847863980754281457806880214457241721287869437461158857296288356643432355240279158194696167529562575652260527438357617844297633045123934372273 = 235132531583386114575877377394239306961* 285482215410488202454571268720246728545289583107834402404220895987309744040548884129366032393397755755971466525084701732853813236763453026420960993
By Nechaev Sergey / Msieve v. 1.39
6·10175+1 = 6(0)1741<176> = 31 · 227 · 18229 · 142965322616087752221825023<27> · C142
C142 = P35 · P107
P35 = 78834246190375597401811445588639063<35>
P107 = 41500681309919383885445995508284685803042892144778268185725040022437427106594917277468373401274522948400313<107>
Wed Dec 10 22:56:36 2008 Msieve v. 1.39 Wed Dec 10 22:56:36 2008 random seeds: 37be8f74 a454187c Wed Dec 10 22:56:36 2008 factoring 3271674927454503946351778908731093597432135074118241825266750809997264745464837343269894562027727499605259733648083021004609399100642593226719 (142 digits) Wed Dec 10 22:56:41 2008 searching for 15-digit factors Wed Dec 10 22:56:49 2008 searching for 20-digit factors Wed Dec 10 22:58:23 2008 searching for 25-digit factors Wed Dec 10 23:25:03 2008 searching for 30-digit factors Thu Dec 11 02:28:30 2008 searching for 35-digit factors Thu Dec 11 05:51:33 2008 ECM stage 2 factor found Thu Dec 11 05:51:34 2008 prp35 factor: 78834246190375597401811445588639063 Thu Dec 11 05:51:34 2008 prp107 factor: 41500681309919383885445995508284685803042892144778268185725040022437427106594917277468373401274522948400313 Thu Dec 11 05:51:34 2008 elapsed time 06:54:58
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(34·10161+11)/9 = 3(7)1609<162> = 127 · 5981 · C156
C156 = P36 · P56 · P65
P36 = 452260176298104765469994838125306203<36>
P56 = 39385795018549293522153408826555650505362558093119041313<56>
P65 = 27920996888392742207968069111544861147664525260952212315370251203<65>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 497346291837245473892757219091134758464504760847378612032298838418479749887475401471823211531763679180630760897405797858280589027692387807818956587958690417 (156 digits) Using B1=2720000, B2=4281513610, polynomial Dickson(6), sigma=232161349 Step 1 took 34781ms Step 2 took 14375ms ********** Factor found in step 2: 452260176298104765469994838125306203 Found probable prime factor of 36 digits: 452260176298104765469994838125306203 Composite cofactor 1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 has 121 digits Number: n N=1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 ( 121 digits) SNFS difficulty: 162 digits. Divisors found: Thu Dec 11 11:21:39 2008 prp56 factor: 39385795018549293522153408826555650505362558093119041313 Thu Dec 11 11:21:39 2008 prp65 factor: 27920996888392742207968069111544861147664525260952212315370251203 Thu Dec 11 11:21:39 2008 elapsed time 02:54:48 (Msieve 1.39 - dependency 9) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.55 hours. Scaled time: 57.52 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_7_160_9 n: 1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 type: snfs skew: 0.50 deg: 5 c5: 340 c0: 11 m: 100000000000000000000000000000000 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3350001) Primes: RFBsize:315948, AFBsize:316667, largePrimes:16423876 encountered Relations: rels:14735760, finalFF:661281 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1689980 hash collisions in 16193584 relations Msieve: matrix is 714185 x 714433 (191.3 MB) Total sieving time: 31.04 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.5,2.5,100000 total time: 31.55 hours. --------- CPU info (if available) ----------
(37·10149+17)/9 = 4(1)1483<150> = 127 · 11282083 · 2109610728710016200472049234081<31> · C111
C111 = P34 · P77
P34 = 1422639995218516766085174683074889<34>
P77 = 95602415156372339326148758212848196389050952859263144734499019891465623985877<77>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 136007819440940199626993346046725191626984715365734593965157745676287529081814105333269047742828239066669342653 (111 digits) Using B1=1474000, B2=2140044280, polynomial Dickson(6), sigma=4067917861 Step 1 took 11515ms Step 2 took 6016ms ********** Factor found in step 2: 1422639995218516766085174683074889 Found probable prime factor of 34 digits: 1422639995218516766085174683074889 Probable prime cofactor 95602415156372339326148758212848196389050952859263144734499019891465623985877 has 77 digits
By Sinkiti Sibata / GGNFS
(37·10139+17)/9 = 4(1)1383<140> = 263 · 1129 · C135
C135 = P54 · P81
P54 = 776571400668482335948948936970269317882230994910909567<54>
P81 = 178290470791338198590566039041674126404436054299479729486821730640619604606479657<81>
Number: 41113_139 N=138455280628272643144985505228932064484237240503932317071573521812132649139724952971980019031988034470126027983683232279688647752178519 ( 135 digits) SNFS difficulty: 141 digits. Divisors found: r1=776571400668482335948948936970269317882230994910909567 (pp54) r2=178290470791338198590566039041674126404436054299479729486821730640619604606479657 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.11 hours. Scaled time: 25.69 units (timescale=1.960). Factorization parameters were as follows: name: 4113_139 n: 138455280628272643144985505228932064484237240503932317071573521812132649139724952971980019031988034470126027983683232279688647752178519 m: 10000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: RFBsize:121127, AFBsize:121245, largePrimes:3766307 encountered Relations: rels:3795612, finalFF:280228 Max relations in full relation-set: 28 Initial matrix: 242437 x 280228 with sparse part having weight 27780523. Pruned matrix : 230429 x 231705 with weight 20668622. Total sieving time: 12.18 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.70 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 13.11 hours. --------- CPU info (if available) ----------
(37·10131+17)/9 = 4(1)1303<132> = 23 · 71699265203561<14> · C117
C117 = P51 · P66
P51 = 960213857480717092820466634798010164748470829921701<51>
P66 = 259626312129121757923718106411025688347436635718952611864568981371<66>
Number: 41113_131 N=249296782672996691184964141338283467690861101743854481919392655376932888711640627577602280819968177366623021257632071 ( 117 digits) SNFS difficulty: 133 digits. Divisors found: r1=960213857480717092820466634798010164748470829921701 (pp51) r2=259626312129121757923718106411025688347436635718952611864568981371 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.36 hours. Scaled time: 3.00 units (timescale=0.472). Factorization parameters were as follows: name: 41113_131 n: 249296782672996691184964141338283467690861101743854481919392655376932888711640627577602280819968177366623021257632071 m: 200000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1120001) Primes: RFBsize:92225, AFBsize:92052, largePrimes:3078150 encountered Relations: rels:3091713, finalFF:318832 Max relations in full relation-set: 28 Initial matrix: 184344 x 318832 with sparse part having weight 25571817. Pruned matrix : 147637 x 148622 with weight 8816635. Total sieving time: 5.87 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.32 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 6.36 hours. --------- CPU info (if available) ----------
(37·10153+17)/9 = 4(1)1523<154> = 3 · 23 · 53069057 · 287828909 · C136
C136 = P57 · P80
P57 = 147798446122814265682532579169586489229599427021466891689<57>
P80 = 26391524244025315181901986791051403695472473000891951978687175963298942219564161<80>
Number: 41113_153 N=3900626274079522038818045807979827636445703910575290215266426929996301350563243058786329016398052678670849180356191187091400100973157929 ( 136 digits) SNFS difficulty: 155 digits. Divisors found: r1=147798446122814265682532579169586489229599427021466891689 (pp57) r2=26391524244025315181901986791051403695472473000891951978687175963298942219564161 (pp80) Version: GGNFS-0.77.1-20060513-nocona Total time: 41.73 hours. Scaled time: 106.57 units (timescale=2.554). Factorization parameters were as follows: name: 41113_153 n: 3900626274079522038818045807979827636445703910575290215266426929996301350563243058786329016398052678670849180356191187091400100973157929 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:203142, largePrimes:8729745 encountered Relations: rels:9617308, finalFF:1012297 Max relations in full relation-set: 28 Initial matrix: 406571 x 1012297 with sparse part having weight 128521276. Pruned matrix : 295909 x 298005 with weight 56250693. Total sieving time: 40.10 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.34 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 41.73 hours. --------- CPU info (if available) ----------
(37·10146+17)/9 = 4(1)1453<147> = 7 · 71 · 7717 · 334793 · 627732433 · 356693996625943<15> · C112
C112 = P49 · P63
P49 = 1766069054027965440964145667998262780071429651417<49>
P63 = 809654824638086357101658646633649047759620702589883621852808083<63>
Number: 41113_146 N=1429906330237763419256584585374257947640589473325192065862091090909240113617417060828411324961594265051290003611 ( 112 digits) SNFS difficulty: 148 digits. Divisors found: r1=1766069054027965440964145667998262780071429651417 (pp49) r2=809654824638086357101658646633649047759620702589883621852808083 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.72 hours. Scaled time: 37.16 units (timescale=1.985). Factorization parameters were as follows: name: 41113_146 n: 1429906330237763419256584585374257947640589473325192065862091090909240113617417060828411324961594265051290003611 m: 200000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: RFBsize:155805, AFBsize:155967, largePrimes:4338843 encountered Relations: rels:4571767, finalFF:444860 Max relations in full relation-set: 28 Initial matrix: 311839 x 444860 with sparse part having weight 45290513. Pruned matrix : 265410 x 267033 with weight 24710851. Total sieving time: 17.66 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.78 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 18.72 hours. --------- CPU info (if available) ----------
(37·10154+17)/9 = 4(1)1533<155> = 21089 · 2363861 · 474284206163<12> · C133
C133 = P66 · P68
P66 = 131233336262996763208529705822455103762873856738445745721093470207<66>
P68 = 13249468585707739286382083178667357680893222111820417576063166951417<68>
Number: 41113_154 N=1738771966214195899844411429013914390022469286286495172486315067514102830946952647912317598944637037955520844369709805096681505933319 ( 133 digits) SNFS difficulty: 156 digits. Divisors found: r1=131233336262996763208529705822455103762873856738445745721093470207 (pp66) r2=13249468585707739286382083178667357680893222111820417576063166951417 (pp68) Version: GGNFS-0.77.1-20060513-nocona Total time: 41.45 hours. Scaled time: 106.29 units (timescale=2.564). Factorization parameters were as follows: name: 41113_154 n: 1738771966214195899844411429013914390022469286286495172486315067514102830946952647912317598944637037955520844369709805096681505933319 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:203707, largePrimes:8480197 encountered Relations: rels:8996442, finalFF:695451 Max relations in full relation-set: 28 Initial matrix: 407134 x 695451 with sparse part having weight 87013355. Pruned matrix : 330217 x 332316 with weight 45838888. Total sieving time: 39.80 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.37 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 41.45 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve
8·10190+9 = 8(0)1899<191> = 10979 · 93384737 · 1829065993<10> · 33295915167128085016755403<26> · C145
C145 = P39 · P49 · P57
P39 = 538680813586121424240758361537710132899<39>
P49 = 6350022202664860146059913355300429133521100785097<49>
P57 = 374562434586295016714727912805051180637746786286264130259<57>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1281241420783814236840813769192768768968282355514739105615102519730239311445959678569274101458614659494795859882596971403016242617149021527396577 (145 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=329758939 Step 1 took 13980ms Step 2 took 6087ms ********** Factor found in step 2: 538680813586121424240758361537710132899 Found probable prime factor of 39 digits: 538680813586121424240758361537710132899 Composite cofactor 2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 has 106 digits Number: 80009_190 N=2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 ( 106 digits) Divisors found: r1=6350022202664860146059913355300429133521100785097 (pp49) r2=374562434586295016714727912805051180637746786286264130259 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.41 hours. Scaled time: 19.97 units (timescale=2.376). Factorization parameters were as follows: name: 80009_190 n: 2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 skew: 19335.04 # norm 1.36e+15 c5: 65520 c4: 27471564 c3: -107204221150694 c2: 210564676395091900 c1: 9948647454800704699109 c0: 23207652976387495420816781 # alpha -6.59 Y1: 21237383893 Y0: -129415146671552584386 # Murphy_E 1.68e-09 # M 824103466569355914939858143207610722275937838736571265540824437757076304596016719605159834285168869476384 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113854, largePrimes:5081953 encountered Relations: rels:5214262, finalFF:385976 Max relations in full relation-set: 28 Initial matrix: 228095 x 385976 with sparse part having weight 41605213. Pruned matrix : 170451 x 171655 with weight 16999266. Polynomial selection time: 0.38 hours. Total sieving time: 7.76 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 8.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10152+17)/9 = 4(1)1513<153> = 7 · 19 · 44959 · 203910624271<12> · 507610655507<12> · 14460141021394288398859618298437<32> · C92
C92 = P42 · P51
P42 = 151493134078234480918166746651747002165127<42>
P51 = 303217922469936086150886963014441185305391540464493<51>
Thu Dec 11 00:23:15 2008 Thu Dec 11 00:23:15 2008 Thu Dec 11 00:23:15 2008 Msieve v. 1.39 Thu Dec 11 00:23:15 2008 random seeds: e8ff7218 79ab8c9f Thu Dec 11 00:23:15 2008 factoring 45935433383661735240212241640772496532456843193944056659319372052651886889596389102266335611 (92 digits) Thu Dec 11 00:23:16 2008 searching for 15-digit factors Thu Dec 11 00:23:16 2008 commencing quadratic sieve (92-digit input) Thu Dec 11 00:23:16 2008 using multiplier of 7 Thu Dec 11 00:23:16 2008 using VC8 32kb sieve core Thu Dec 11 00:23:16 2008 sieve interval: 36 blocks of size 32768 Thu Dec 11 00:23:16 2008 processing polynomials in batches of 6 Thu Dec 11 00:23:16 2008 using a sieve bound of 1815199 (68235 primes) Thu Dec 11 00:23:16 2008 using large prime bound of 197856691 (27 bits) Thu Dec 11 00:23:16 2008 using double large prime bound of 857889398643883 (42-50 bits) Thu Dec 11 00:23:16 2008 using trial factoring cutoff of 50 bits Thu Dec 11 00:23:16 2008 polynomial 'A' values have 12 factors Thu Dec 11 02:03:10 2008 68560 relations (18147 full + 50413 combined from 851687 partial), need 68331 Thu Dec 11 02:03:15 2008 begin with 869834 relations Thu Dec 11 02:03:16 2008 reduce to 170582 relations in 12 passes Thu Dec 11 02:03:16 2008 attempting to read 170582 relations Thu Dec 11 02:03:18 2008 recovered 170582 relations Thu Dec 11 02:03:18 2008 recovered 148573 polynomials Thu Dec 11 02:03:18 2008 attempting to build 68560 cycles Thu Dec 11 02:03:18 2008 found 68560 cycles in 5 passes Thu Dec 11 02:03:18 2008 distribution of cycle lengths: Thu Dec 11 02:03:18 2008 length 1 : 18147 Thu Dec 11 02:03:18 2008 length 2 : 12790 Thu Dec 11 02:03:18 2008 length 3 : 11984 Thu Dec 11 02:03:18 2008 length 4 : 9132 Thu Dec 11 02:03:18 2008 length 5 : 6502 Thu Dec 11 02:03:18 2008 length 6 : 4199 Thu Dec 11 02:03:18 2008 length 7 : 2537 Thu Dec 11 02:03:18 2008 length 9+: 3269 Thu Dec 11 02:03:18 2008 largest cycle: 19 relations Thu Dec 11 02:03:18 2008 matrix is 68235 x 68560 (18.0 MB) with weight 4182462 (61.00/col) Thu Dec 11 02:03:18 2008 sparse part has weight 4182462 (61.00/col) Thu Dec 11 02:03:19 2008 filtering completed in 4 passes Thu Dec 11 02:03:19 2008 matrix is 63856 x 63920 (16.9 MB) with weight 3920443 (61.33/col) Thu Dec 11 02:03:19 2008 sparse part has weight 3920443 (61.33/col) Thu Dec 11 02:03:19 2008 saving the first 48 matrix rows for later Thu Dec 11 02:03:19 2008 matrix is 63808 x 63920 (10.8 MB) with weight 3072139 (48.06/col) Thu Dec 11 02:03:19 2008 sparse part has weight 2189768 (34.26/col) Thu Dec 11 02:03:19 2008 matrix includes 64 packed rows Thu Dec 11 02:03:19 2008 using block size 25568 for processor cache size 4096 kB Thu Dec 11 02:03:20 2008 commencing Lanczos iteration Thu Dec 11 02:03:20 2008 memory use: 9.7 MB Thu Dec 11 02:03:46 2008 lanczos halted after 1011 iterations (dim = 63805) Thu Dec 11 02:03:46 2008 recovered 16 nontrivial dependencies Thu Dec 11 02:03:47 2008 prp42 factor: 151493134078234480918166746651747002165127 Thu Dec 11 02:03:47 2008 prp51 factor: 303217922469936086150886963014441185305391540464493 Thu Dec 11 02:03:47 2008 elapsed time 01:40:32
By JMB / GPM-ECM 6.1.3
(10173+11)/3 = (3)1727<173> = 37 · 811 · 242712712761419<15> · C154
C154 = P30 · C125
P30 = 381814249723112484682790856461<30>
C125 = [11987027729406341483972295989694296404186466424267385001709299847430322285161979459109911425907788839466142164158747992679649<125>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1501931023 Step 1 took 18828ms Step 2 took 12468ms ********** Factor found in step 2: 381814249723112484682790856461 Found probable prime factor of 30 digits: 381814249723112484682790856461 Composite cofactor 11987027729406341483972295989694296404186466424267385001709299847430322285161979459109911425907788839466142164158747992679649 has 125 digits
By Serge Batalov / Msieve-1.39
(37·10166+17)/9 = 4(1)1653<167> = 61 · C165
C165 = P79 · P87
P79 = 4188456316799221800062368322618682657246331640966662822479121968077244812718221<79>
P87 = 160907167268914976547336082636897002177991578144842220208538078678074396886300458033073<87>
SNFS difficulty: 168 digits. Divisors found: r1=4188456316799221800062368322618682657246331640966662822479121968077244812718221 (pp79) r2=160907167268914976547336082636897002177991578144842220208538078678074396886300458033073 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 673952641165755919854280510018214936247723132969034608378870673952641165755919854280510018214936247723132969034608378870673952641165755919854280510018214936247723133 m: 2000000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 806657 x 806905 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,200000 total time: 42.00 hours.
(37·10155+17)/9 = 4(1)1543<156> = 457 · 1521973 · C147
C147 = P43 · P51 · P54
P43 = 4812749602630778901982598117461876860320447<43>
P51 = 150708074931584761567153708706295660448302303155627<51>
P54 = 814903676675932977298347920721395104373594560096382057<54>
SNFS difficulty: 156 digits. Divisors found: r1=4812749602630778901982598117461876860320447 (pp43) r2=150708074931584761567153708706295660448302303155627 (pp51) r3=814903676675932977298347920721395104373594560096382057 (pp54) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.730). Factorization parameters were as follows: n: 591066120352941893887663346036595083426801534338445775875833713878874483567579011073947892692959927688804698516989496494173497266774234406515458333 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 506992 x 507240 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 11.00 hours.
(35·10161+1)/9 = 3(8)1609<162> = 157 · 3499 · 2162183 · C150
C150 = P42 · P108
P42 = 571876901252956296758416030882298904111353<42>
P108 = 572515087772493770133642628444432834628357213143562046017527857271537229085382174829411992559101277600579177<108>
SNFS difficulty: 164 digits. Divisors found: r1=571876901252956296758416030882298904111353 (pp42) r2=572515087772493770133642628444432834628357213143562046017527857271537229085382174829411992559101277600579177 (pp108) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.535). Factorization parameters were as follows: n: 327408154315898026747083437461024067322294520449969657609780219617982316838421582776349431696677974649965426793135033707538303180431672196979301096481 m: 500000000000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1950000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 701421 x 701669 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,52,52,2.4,2.4,100000 total time: 22.00 hours.
By Erik Branger / Msieve
(37·10127+17)/9 = 4(1)1263<128> = 43 · 2287 · 5402086163<10> · 1496014728227396684836493981<28> · C86
C86 = P33 · P54
P33 = 192989518424688578863761535141003<33>
P54 = 268036227003025546179556250126925130151642985964735177<54>
Tue Dec 09 17:21:54 2008 Msieve v. 1.38 Tue Dec 09 17:21:54 2008 random seeds: faf2f160 6a6e1ca0 Tue Dec 09 17:21:54 2008 factoring 51728182369684409028798805980087503755843503122413956066416778922363534304002249162531 (86 digits) Tue Dec 09 17:21:55 2008 searching for 15-digit factors Tue Dec 09 17:21:56 2008 commencing quadratic sieve (86-digit input) Tue Dec 09 17:21:56 2008 using multiplier of 19 Tue Dec 09 17:21:56 2008 using 64kb Pentium 4 sieve core Tue Dec 09 17:21:56 2008 sieve interval: 8 blocks of size 65536 Tue Dec 09 17:21:56 2008 processing polynomials in batches of 13 Tue Dec 09 17:21:56 2008 using a sieve bound of 1461403 (55606 primes) Tue Dec 09 17:21:56 2008 using large prime bound of 116912240 (26 bits) Tue Dec 09 17:21:56 2008 using double large prime bound of 332772803587280 (41-49 bits) Tue Dec 09 17:21:56 2008 using trial factoring cutoff of 49 bits Tue Dec 09 17:21:57 2008 polynomial 'A' values have 11 factors Tue Dec 09 18:17:14 2008 55945 relations (16016 full + 39929 combined from 580933 partial), need 55702 Tue Dec 09 18:17:16 2008 begin with 596949 relations Tue Dec 09 18:17:17 2008 reduce to 132179 relations in 10 passes Tue Dec 09 18:17:17 2008 attempting to read 132179 relations Tue Dec 09 18:17:22 2008 recovered 132179 relations Tue Dec 09 18:17:22 2008 recovered 110384 polynomials Tue Dec 09 18:17:22 2008 attempting to build 55945 cycles Tue Dec 09 18:17:22 2008 found 55945 cycles in 5 passes Tue Dec 09 18:17:22 2008 distribution of cycle lengths: Tue Dec 09 18:17:22 2008 length 1 : 16016 Tue Dec 09 18:17:22 2008 length 2 : 11292 Tue Dec 09 18:17:22 2008 length 3 : 9885 Tue Dec 09 18:17:22 2008 length 4 : 7218 Tue Dec 09 18:17:22 2008 length 5 : 4903 Tue Dec 09 18:17:22 2008 length 6 : 2998 Tue Dec 09 18:17:22 2008 length 7 : 1772 Tue Dec 09 18:17:22 2008 length 9+: 1861 Tue Dec 09 18:17:22 2008 largest cycle: 18 relations Tue Dec 09 18:17:22 2008 matrix is 55606 x 55945 (12.6 MB) with weight 3080958 (55.07/col) Tue Dec 09 18:17:22 2008 sparse part has weight 3080958 (55.07/col) Tue Dec 09 18:17:23 2008 filtering completed in 3 passes Tue Dec 09 18:17:23 2008 matrix is 50632 x 50696 (11.5 MB) with weight 2810111 (55.43/col) Tue Dec 09 18:17:23 2008 sparse part has weight 2810111 (55.43/col) Tue Dec 09 18:17:23 2008 saving the first 48 matrix rows for later Tue Dec 09 18:17:23 2008 matrix is 50584 x 50696 (7.2 MB) with weight 2173490 (42.87/col) Tue Dec 09 18:17:23 2008 sparse part has weight 1570727 (30.98/col) Tue Dec 09 18:17:23 2008 matrix includes 64 packed rows Tue Dec 09 18:17:23 2008 using block size 20278 for processor cache size 512 kB Tue Dec 09 18:17:24 2008 commencing Lanczos iteration Tue Dec 09 18:17:24 2008 memory use: 7.2 MB Tue Dec 09 18:17:48 2008 lanczos halted after 802 iterations (dim = 50583) Tue Dec 09 18:17:48 2008 recovered 17 nontrivial dependencies Tue Dec 09 18:17:48 2008 prp33 factor: 192989518424688578863761535141003 Tue Dec 09 18:17:48 2008 prp54 factor: 268036227003025546179556250126925130151642985964735177 Tue Dec 09 18:17:48 2008 elapsed time 00:55:54
(37·10172-1)/9 = 4(1)172<173> = 72 · 49675493159<11> · 581693342027508474141681883<27> · 284058421196271016127648080138696939<36> · C99
C99 = P47 · P52
P47 = 14637743314961305869395629399473422598403387829<47>
P52 = 6983048497779176869298171805227564784303332803867877<52>
Wed Dec 10 23:12:11 2008 Msieve v. 1.39 Wed Dec 10 23:12:11 2008 random seeds: dc7b48e4 819504a7 Wed Dec 10 23:12:12 2008 factoring 102216071466417735574182221688508636681384173985648829721984676231139297698278652475301191705869033 (99 digits) Wed Dec 10 23:12:12 2008 searching for 15-digit factors Wed Dec 10 23:12:13 2008 commencing quadratic sieve (99-digit input) Wed Dec 10 23:12:13 2008 using multiplier of 1 Wed Dec 10 23:12:13 2008 using 64kb Opteron sieve core Wed Dec 10 23:12:13 2008 sieve interval: 18 blocks of size 65536 Wed Dec 10 23:12:13 2008 processing polynomials in batches of 6 Wed Dec 10 23:12:13 2008 using a sieve bound of 2532769 (92941 primes) Wed Dec 10 23:12:13 2008 using large prime bound of 379915350 (28 bits) Wed Dec 10 23:12:13 2008 using double large prime bound of 2776107567720900 (43-52 bits) Wed Dec 10 23:12:13 2008 using trial factoring cutoff of 52 bits Wed Dec 10 23:12:13 2008 polynomial 'A' values have 13 factors Thu Dec 11 05:03:51 2008 93374 relations (22224 full + 71150 combined from 1407528 partial), need 93037 Thu Dec 11 05:03:52 2008 begin with 1429752 relations Thu Dec 11 05:03:53 2008 reduce to 246150 relations in 10 passes Thu Dec 11 05:03:53 2008 attempting to read 246150 relations Thu Dec 11 05:03:56 2008 recovered 246150 relations Thu Dec 11 05:03:56 2008 recovered 235407 polynomials Thu Dec 11 05:03:56 2008 attempting to build 93374 cycles Thu Dec 11 05:03:56 2008 found 93374 cycles in 5 passes Thu Dec 11 05:03:56 2008 distribution of cycle lengths: Thu Dec 11 05:03:56 2008 length 1 : 22224 Thu Dec 11 05:03:56 2008 length 2 : 15847 Thu Dec 11 05:03:56 2008 length 3 : 15723 Thu Dec 11 05:03:56 2008 length 4 : 12743 Thu Dec 11 05:03:56 2008 length 5 : 9757 Thu Dec 11 05:03:56 2008 length 6 : 6633 Thu Dec 11 05:03:56 2008 length 7 : 4390 Thu Dec 11 05:03:56 2008 length 9+: 6057 Thu Dec 11 05:03:56 2008 largest cycle: 19 relations Thu Dec 11 05:03:56 2008 matrix is 92941 x 93374 (25.0 MB) with weight 6190895 (66.30/col) Thu Dec 11 05:03:56 2008 sparse part has weight 6190895 (66.30/col) Thu Dec 11 05:03:58 2008 filtering completed in 3 passes Thu Dec 11 05:03:58 2008 matrix is 89064 x 89128 (23.9 MB) with weight 5921326 (66.44/col) Thu Dec 11 05:03:58 2008 sparse part has weight 5921326 (66.44/col) Thu Dec 11 05:03:58 2008 saving the first 48 matrix rows for later Thu Dec 11 05:03:58 2008 matrix is 89016 x 89128 (14.5 MB) with weight 4633284 (51.98/col) Thu Dec 11 05:03:58 2008 sparse part has weight 3268814 (36.68/col) Thu Dec 11 05:03:58 2008 matrix includes 64 packed rows Thu Dec 11 05:03:58 2008 using block size 21845 for processor cache size 512 kB Thu Dec 11 05:03:59 2008 commencing Lanczos iteration Thu Dec 11 05:03:59 2008 memory use: 14.4 MB Thu Dec 11 05:04:53 2008 lanczos halted after 1409 iterations (dim = 89012) Thu Dec 11 05:04:53 2008 recovered 14 nontrivial dependencies Thu Dec 11 05:04:53 2008 prp47 factor: 14637743314961305869395629399473422598403387829 Thu Dec 11 05:04:53 2008 prp52 factor: 6983048497779176869298171805227564784303332803867877 Thu Dec 11 05:04:53 2008 elapsed time 05:52:42
By matsui / GMP-ECM
(16·10187+11)/9 = 1(7)1869<188> = 61 · 67 · C184
C184 = P37 · P148
P37 = 1951924232335499171056484276290444999<37>
P148 = 2228485844780820932821393203006312484951026177190765804027858301239457423520513255838839227297015998784342612223367264656633254640127530604744244083<148>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 4349835521844330261261996030775086317048636598428621917733735693119103933882500067966180028817660332218687980860723703884946850447217464589620204985998966914063561971562950275942690917 = 1951924232335499171056484276290444999* 2228485844780820932821393203006312484951026177190765804027858301239457423520513255838839227297015998784342612223367264656633254640127530604744244083
By Sinkiti Sibata / GGNFS, Msieve
(35·10160+1)/9 = 3(8)1599<161> = 3 · 48889 · 14158995281<11> · C146
C146 = P52 · P94
P52 = 3104396736833870181492437190327522026318664958142209<52>
P94 = 6032307486523415111941507522986185399490762371629962271727902737700672557187363638130272688123<94>
Number: 38889_160 N=18726675676741815199689758347265826045166743883791788145195661841811544319555874854046399069162508683551760254528733032677079437502130842539283707 ( 146 digits) SNFS difficulty: 161 digits. Divisors found: r1=3104396736833870181492437190327522026318664958142209 (pp52) r2=6032307486523415111941507522986185399490762371629962271727902737700672557187363638130272688123 (pp94) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.77 hours. Scaled time: 117.35 units (timescale=2.564). Factorization parameters were as follows: name: 38889_160 n: 18726675676741815199689758347265826045166743883791788145195661841811544319555874854046399069162508683551760254528733032677079437502130842539283707 m: 100000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:243354, largePrimes:9454508 encountered Relations: rels:10260641, finalFF:981249 Max relations in full relation-set: 28 Initial matrix: 486959 x 981249 with sparse part having weight 118899122. Pruned matrix : 354854 x 357352 with weight 58839652. Total sieving time: 43.59 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.86 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.77 hours. --------- CPU info (if available) ----------
(37·10138+17)/9 = 4(1)1373<139> = 32 · C138
C138 = P45 · P93
P45 = 510775719844408392390465528501098122071849389<45>
P93 = 894306651059953932405219537564294331814846472823973070870460522554892046315226837865094032613<93>
Number: 41113_138 N=456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123457 ( 138 digits) SNFS difficulty: 140 digits. Divisors found: r1=510775719844408392390465528501098122071849389 (pp45) r2=894306651059953932405219537564294331814846472823973070870460522554892046315226837865094032613 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 13.91 hours. Scaled time: 35.81 units (timescale=2.575). Factorization parameters were as follows: name: 41113_138 n: 456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123457 m: 5000000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 2085001) Primes: RFBsize:119057, AFBsize:119140, largePrimes:4269723 encountered Relations: rels:4901265, finalFF:728520 Max relations in full relation-set: 28 Initial matrix: 238264 x 728520 with sparse part having weight 84654973. Pruned matrix : 173166 x 174421 with weight 29237746. Total sieving time: 13.48 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.28 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 13.91 hours. --------- CPU info (if available) ----------
(37·10130+17)/9 = 4(1)1293<131> = 733 · 2755861 · C122
C122 = P43 · P79
P43 = 7976815312434325655010026496828210010899659<43>
P79 = 2551340330232941042791734672815796033637758911848411720302531081819024948523739<79>
Number: 41113_130 N=20351570613433373197016275791874020012092224506120029900085311127306483973869120833832723060768618756333861528591308505001 ( 122 digits) SNFS difficulty: 131 digits. Divisors found: r1=7976815312434325655010026496828210010899659 (pp43) r2=2551340330232941042791734672815796033637758911848411720302531081819024948523739 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.22 hours. Scaled time: 10.40 units (timescale=1.991). Factorization parameters were as follows: name: 41113_130 n: 20351570613433373197016275791874020012092224506120029900085311127306483973869120833832723060768618756333861528591308505001 m: 100000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 995001) Primes: RFBsize:84976, AFBsize:84613, largePrimes:3064841 encountered Relations: rels:3134879, finalFF:357436 Max relations in full relation-set: 28 Initial matrix: 169654 x 357436 with sparse part having weight 29515736. Pruned matrix : 129023 x 129935 with weight 8435848. Total sieving time: 4.95 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 5.22 hours. --------- CPU info (if available) ----------
(37·10140+17)/9 = 4(1)1393<141> = 72 · 463 · 259452516097<12> · 12224976615594643753028840051569<32> · C94
C94 = P42 · P53
P42 = 349677359272427213877770746562063814121121<42>
P53 = 16338369215819639791633317799316136066415149505855783<53>
Wed Dec 10 08:05:54 2008 Msieve v. 1.39 Wed Dec 10 08:05:54 2008 random seeds: 6ad396f0 4eea3e53 Wed Dec 10 08:05:54 2008 factoring 5713157802205729067441731387747770291115643749641748842990579584482566967465904050235120292743 (94 digits) Wed Dec 10 08:05:55 2008 searching for 15-digit factors Wed Dec 10 08:05:56 2008 commencing quadratic sieve (94-digit input) Wed Dec 10 08:05:56 2008 using multiplier of 2 Wed Dec 10 08:05:56 2008 using 32kb Intel Core sieve core Wed Dec 10 08:05:56 2008 sieve interval: 36 blocks of size 32768 Wed Dec 10 08:05:56 2008 processing polynomials in batches of 6 Wed Dec 10 08:05:56 2008 using a sieve bound of 2059517 (76366 primes) Wed Dec 10 08:05:56 2008 using large prime bound of 284213346 (28 bits) Wed Dec 10 08:05:56 2008 using double large prime bound of 1646493387513360 (42-51 bits) Wed Dec 10 08:05:56 2008 using trial factoring cutoff of 51 bits Wed Dec 10 08:05:56 2008 polynomial 'A' values have 12 factors Wed Dec 10 11:37:41 2008 76516 relations (18643 full + 57873 combined from 1110238 partial), need 76462 Wed Dec 10 11:37:42 2008 begin with 1128881 relations Wed Dec 10 11:37:43 2008 reduce to 200010 relations in 10 passes Wed Dec 10 11:37:43 2008 attempting to read 200010 relations Wed Dec 10 11:37:46 2008 recovered 200010 relations Wed Dec 10 11:37:46 2008 recovered 184776 polynomials Wed Dec 10 11:37:46 2008 attempting to build 76516 cycles Wed Dec 10 11:37:46 2008 found 76516 cycles in 5 passes Wed Dec 10 11:37:46 2008 distribution of cycle lengths: Wed Dec 10 11:37:46 2008 length 1 : 18643 Wed Dec 10 11:37:46 2008 length 2 : 13452 Wed Dec 10 11:37:46 2008 length 3 : 12666 Wed Dec 10 11:37:46 2008 length 4 : 10268 Wed Dec 10 11:37:46 2008 length 5 : 7802 Wed Dec 10 11:37:46 2008 length 6 : 5394 Wed Dec 10 11:37:46 2008 length 7 : 3439 Wed Dec 10 11:37:46 2008 length 9+: 4852 Wed Dec 10 11:37:46 2008 largest cycle: 19 relations Wed Dec 10 11:37:46 2008 matrix is 76366 x 76516 (20.2 MB) with weight 4995764 (65.29/col) Wed Dec 10 11:37:46 2008 sparse part has weight 4995764 (65.29/col) Wed Dec 10 11:37:48 2008 filtering completed in 3 passes Wed Dec 10 11:37:48 2008 matrix is 72912 x 72975 (19.4 MB) with weight 4801996 (65.80/col) Wed Dec 10 11:37:48 2008 sparse part has weight 4801996 (65.80/col) Wed Dec 10 11:37:48 2008 saving the first 48 matrix rows for later Wed Dec 10 11:37:48 2008 matrix is 72864 x 72975 (12.3 MB) with weight 3807587 (52.18/col) Wed Dec 10 11:37:48 2008 sparse part has weight 2779634 (38.09/col) Wed Dec 10 11:37:48 2008 matrix includes 64 packed rows Wed Dec 10 11:37:48 2008 using block size 29190 for processor cache size 1024 kB Wed Dec 10 11:37:48 2008 commencing Lanczos iteration Wed Dec 10 11:37:48 2008 memory use: 11.8 MB Wed Dec 10 11:38:25 2008 lanczos halted after 1154 iterations (dim = 72861) Wed Dec 10 11:38:25 2008 recovered 16 nontrivial dependencies Wed Dec 10 11:38:26 2008 prp42 factor: 349677359272427213877770746562063814121121 Wed Dec 10 11:38:26 2008 prp53 factor: 16338369215819639791633317799316136066415149505855783 Wed Dec 10 11:38:26 2008 elapsed time 03:32:32
(35·10145+1)/9 = 3(8)1449<146> = 3 · 13 · 173 · 46301 · 17045617 · 1842706471<10> · 74365896181<11> · C110
C110 = P47 · P63
P47 = 80482065692066908416612753751129845520716852307<47>
P63 = 662190027785962142176186013718138487763144980919115337331166223<63>
Number: 38889_145 N=53294421316901416528304760731530435279940035842458663214979262606185267085546269558410831973396800689958026461 ( 110 digits) SNFS difficulty: 146 digits. Divisors found: r1=80482065692066908416612753751129845520716852307 (pp47) r2=662190027785962142176186013718138487763144980919115337331166223 (pp63) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 16.16 hours. Scaled time: 7.64 units (timescale=0.473). Factorization parameters were as follows: name: 38889_145 n: 53294421316901416528304760731530435279940035842458663214979262606185267085546269558410831973396800689958026461 m: 100000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2170001) Primes: RFBsize:144810, AFBsize:144951, largePrimes:4110184 encountered Relations: rels:4268857, finalFF:420980 Max relations in full relation-set: 28 Initial matrix: 289827 x 420980 with sparse part having weight 39373462. Pruned matrix : 245719 x 247232 with weight 19897514. Total sieving time: 14.30 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.58 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 16.16 hours. --------- CPU info (if available) ----------
(37·10135+17)/9 = 4(1)1343<136> = 3 · 233 · 35533039 · C126
C126 = P38 · P89
P38 = 14641719656254489741568420087470167181<38>
P89 = 11304662450032683330928990275564458178851499064755153440882955206425538566141385065716793<89>
Number: 41113_135 N=165519698401965577994313589899056412124998401475059473398292465613085453691521316341029149043281052537325330258204555309170533 ( 126 digits) SNFS difficulty: 136 digits. Divisors found: r1=14641719656254489741568420087470167181 (pp38) r2=11304662450032683330928990275564458178851499064755153440882955206425538566141385065716793 (pp89) Version: GGNFS-0.77.1-20060513-nocona Total time: 8.28 hours. Scaled time: 21.24 units (timescale=2.564). Factorization parameters were as follows: name: 41113_135 n: 165519698401965577994313589899056412124998401475059473398292465613085453691521316341029149043281052537325330258204555309170533 m: 1000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: RFBsize:101433, AFBsize:100876, largePrimes:3892874 encountered Relations: rels:4437698, finalFF:763666 Max relations in full relation-set: 28 Initial matrix: 202374 x 763666 with sparse part having weight 76985798. Pruned matrix : 137533 x 138608 with weight 18297906. Total sieving time: 8.03 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 8.28 hours. --------- CPU info (if available) ----------
(37·10128+17)/9 = 4(1)1273<129> = 7 · 29 · 139 · 366317336179<12> · C113
C113 = P43 · P70
P43 = 5892987442010330386722922517752335244214957<43>
P70 = 6749248030263033399317509977913277782333557881183738908126529217567863<70>
Number: 41113_128 N=39773233885353014121246197866071226793184898803915251469110066826582204106553428084166597044517372637684307126891 ( 113 digits) SNFS difficulty: 130 digits. Divisors found: r1=5892987442010330386722922517752335244214957 (pp43) r2=6749248030263033399317509977913277782333557881183738908126529217567863 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.06 hours. Scaled time: 9.91 units (timescale=1.960). Factorization parameters were as follows: name: 41113_128 n: 39773233885353014121246197866071226793184898803915251469110066826582204106553428084166597044517372637684307126891 m: 50000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 985001) Primes: RFBsize:83548, AFBsize:83486, largePrimes:2816037 encountered Relations: rels:2727760, finalFF:222088 Max relations in full relation-set: 28 Initial matrix: 167101 x 222088 with sparse part having weight 17817301. Pruned matrix : 151342 x 152241 with weight 9260045. Total sieving time: 4.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 5.06 hours. --------- CPU info (if available) ----------
(37·10124+17)/9 = 4(1)1233<125> = 468623 · C119
C119 = P42 · P78
P42 = 112530124858026319235276321085291537757319<42>
P78 = 779590994951787401614222560214997243616363930234312099703490458459408464798049<78>
Number: 41113_124 N=87727472000117602232735292785695774878977581363081007784746184269895227317291535223646963787759267281185752963706670631 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=112530124858026319235276321085291537757319 (pp42) r2=779590994951787401614222560214997243616363930234312099703490458459408464798049 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.54 hours. Scaled time: 7.10 units (timescale=2.003). Factorization parameters were as follows: name: 41113_124 n: 87727472000117602232735292785695774878977581363081007784746184269895227317291535223646963787759267281185752963706670631 m: 10000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: RFBsize:71274, AFBsize:71110, largePrimes:2584163 encountered Relations: rels:2495928, finalFF:206678 Max relations in full relation-set: 28 Initial matrix: 142449 x 206678 with sparse part having weight 16626795. Pruned matrix : 126344 x 127120 with weight 7462678. Total sieving time: 3.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 3.54 hours. --------- CPU info (if available) ----------
(37·10137+17)/9 = 4(1)1363<138> = 37745119 · C131
C131 = P64 · P67
P64 = 3219321487884923385567438048156219294654507482548165761458705309<64>
P67 = 3383249819657721642586538439401357021436968537987233098257618204803<67>
Number: 41113_137 N=10891768843306895154075712706353134324761596621568767901118846945776250198366340058726827993603917664456458889720578470321185399127 ( 131 digits) SNFS difficulty: 139 digits. Divisors found: r1=3219321487884923385567438048156219294654507482548165761458705309 (pp64) r2=3383249819657721642586538439401357021436968537987233098257618204803 (pp67) Version: GGNFS-0.77.1-20060513-nocona Total time: 10.43 hours. Scaled time: 26.63 units (timescale=2.554). Factorization parameters were as follows: name: 41113_137 n: 10891768843306895154075712706353134324761596621568767901118846945776250198366340058726827993603917664456458889720578470321185399127 m: 2000000000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1715001) Primes: RFBsize:112752, AFBsize:112144, largePrimes:3960082 encountered Relations: rels:4364610, finalFF:588426 Max relations in full relation-set: 28 Initial matrix: 224963 x 588426 with sparse part having weight 63687211. Pruned matrix : 163887 x 165075 with weight 21080585. Total sieving time: 10.11 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 10.43 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
5·10188+9 = 5(0)1879<189> = 89 · 20644698707<11> · 2095779451075181845289<22> · C156
C156 = P35 · C121
P35 = 17069365974029360492115172688628301<35>
C121 = [7606913553087904523289891655928436341384431709516903459521491661869372564112334503851881776661479063881775251744140099647<121>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3476476497 Step 1 took 4752ms Step 2 took 3258ms ********** Factor found in step 2: 17069365974029360492115172688628301 Found probable prime factor of 35 digits: 17069365974029360492115172688628301 Composite cofactor has 121 digits
(37·10169+17)/9 = 4(1)1683<170> = 43 · 4651579 · 1017191121592337384843<22> · 87039115464799111997365977317<29> · C112
C112 = P31 · P81
P31 = 8425498979072827488852800911267<31>
P81 = 275535586632481005658474330785623147493947560810087737672451637475014017044809677<81>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1331634998 Step 1 took 2729ms Step 2 took 2284ms ********** Factor found in step 2: 8425498979072827488852800911267 Found probable prime factor of 31 digits: 8425498979072827488852800911267 Probable prime cofactor 275535586632481005658474330785623147493947560810087737672451637475014017044809677 has 81 digits
(37·10151+17)/9 = 4(1)1503<152> = 8353 · 34386593 · 2039773586951292013<19> · C122
C122 = P36 · P87
P36 = 273368539496778091201031494207412509<36>
P87 = 256682989397362158875629863353292151892741767670591065562820018228860886687460955569841<87>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3498479059 Step 1 took 3272ms Step 2 took 2434ms ********** Factor found in step 2: 273368539496778091201031494207412509 Found probable prime factor of 36 digits: 273368539496778091201031494207412509 Probable prime cofactor 256682989397362158875629863353292151892741767670591065562820018228860886687460955569841 has 87 digits
(37·10149+17)/9 = 4(1)1483<150> = 127 · 11282083 · C141
C141 = P31 · C111
P31 = 2109610728710016200472049234081<31>
C111 = [136007819440940199626993346046725191626984715365734593965157745676287529081814105333269047742828239066669342653<111>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=640405658 Step 1 took 3933ms Step 2 took 2762ms ********** Factor found in step 2: 2109610728710016200472049234081 Found probable prime factor of 31 digits: 2109610728710016200472049234081 Composite cofactor has 111 digits
(37·10152+17)/9 = 4(1)1513<153> = 7 · 19 · 44959 · 203910624271<12> · 507610655507<12> · C123
C123 = P32 · C92
P32 = 14460141021394288398859618298437<32>
C92 = [45935433383661735240212241640772496532456843193944056659319372052651886889596389102266335611<92>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2586452568 Step 1 took 9809ms Step 2 took 5755ms ********** Factor found in step 2: 14460141021394288398859618298437 Found probable prime factor of 32 digits: 14460141021394288398859618298437 Composite cofactor has 92 digits
(37·10203+17)/9 = 4(1)2023<204> = 72317555052941212202437<23> · 14037327305061710827375833007<29> · C153
C153 = P34 · P119
P34 = 6140930812850915255314216030096973<34>
P119 = 65947274112224700593650870901927012395470632038377646836641194000390957486841353488687312767513602066729431644202380359<119>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1350806540 Step 1 took 6113ms Step 2 took 4038ms ********** Factor found in step 2: 6140930812850915255314216030096973 Found probable prime factor of 34 digits: 6140930812850915255314216030096973
(37·10125+17)/9 = 4(1)1243<126> = 223 · 8663 · C120
C120 = P54 · P67
P54 = 126466623195854517098346870112753670547872292270689591<54>
P67 = 1682713250659195660607781542641572535401816555627858765330728147207<67>
SNFS difficulty: 126 digits. Divisors found: r1=126466623195854517098346870112753670547872292270689591 (pp54) r2=1682713250659195660607781542641572535401816555627858765330728147207 (pp67) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 212807062617787990216166538436032583867119589114424114468113766195552090826514448650547279373859505122352270343650622337 m: 10000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 129306 x 129554 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,49,49,2.3,2.3,50000 total time: 1.50 hours.
(37·10145+17)/9 = 4(1)1443<146> = 353 · 2131 · C140
C140 = P45 · P47 · P49
P45 = 527010246557101099424149801137279030430573559<45>
P47 = 31339397888629582441406376485402492357432031637<47>
P49 = 3308958741102845839413788208190473225543080012977<49>
SNFS difficulty: 146 digits. Divisors found: r1=527010246557101099424149801137279030430573559 (pp45) r2=31339397888629582441406376485402492357432031637 (pp47) r3=3308958741102845839413788208190473225543080012977 (pp49) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 54651370781929657186721725707133348015350240694976372144521266546994935294992590308066822969587102985486220690802189068041990568355054299091 m: 100000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2270001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 299480 x 299728 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 8.00 hours.
(37·10161+17)/9 = 4(1)1603<162> = 45293 · C157
C157 = P54 · P104
P54 = 154488738576400451457982464398604103495508054393481467<54>
P104 = 58753169523647679059266422943937672486812220399742768615027955753094899381427335186690263375374322360023<104>
SNFS difficulty: 163 digits. Divisors found: r1=154488738576400451457982464398604103495508054393481467 (pp54) r2=58753169523647679059266422943937672486812220399742768615027955753094899381427335186690263375374322360023 (pp104) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 9076703047073744532512995630916722476124591241717508469545208114081891486788490740536310491932773521539997595900274018305502199260616676111344161594752193741 m: 200000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1900000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 728927 x 729175 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,52,52,2.4,2.4,200000 total time: 28.00 hours.
(37·10172-1)/9 = 4(1)172<173> = 72 · 49675493159<11> · 581693342027508474141681883<27> · C134
C134 = P36 · C99
P36 = 284058421196271016127648080138696939<36>
C99 = [102216071466417735574182221688508636681384173985648829721984676231139297698278652475301191705869033<99>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2130306508 Step 1 took 9769ms Step 2 took 5973ms ********** Factor found in step 2: 284058421196271016127648080138696939 Found probable prime factor of 36 digits: 284058421196271016127648080138696939 Composite cofactor has 99 digits
By Robert Backstrom / GGNFS, Msieve
(37·10108+17)/9 = 4(1)1073<109> = 3 · 279294958181<12> · C97
C97 = P48 · P50
P48 = 104182055552360290276887991646980292952367714049<48>
P50 = 47095774354938298478289361041793337607914469549959<50>
Number: n N=4906534580127606927180094373743665249849469033907932112519677702181464751954187623632870631673991 ( 97 digits) SNFS difficulty: 111 digits. Divisors found: Wed Dec 10 07:21:09 2008 prp48 factor: 104182055552360290276887991646980292952367714049 Wed Dec 10 07:21:09 2008 prp50 factor: 47095774354938298478289361041793337607914469549959 Wed Dec 10 07:21:09 2008 elapsed time 00:06:28 (Msieve 1.39 - dependency 6) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.66 hours. Scaled time: 1.20 units (timescale=1.827). Factorization parameters were as follows: name: KA_4_1_107_3 n: 4906534580127606927180094373743665249849469033907932112519677702181464751954187623632870631673991 type: snfs skew: 2.15 deg: 5 c5: 37 c0: 1700 m: 10000000000000000000000 rlim: 460000 alim: 460000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 460000/460000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 180001) Primes: RFBsize:38458, AFBsize:38218, largePrimes:3390727 encountered Relations: rels:2783996, finalFF:78182 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 0.62 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,460000,460000,28,28,56,56,2.5,2.5,50000 total time: 0.66 hours. --------- CPU info (if available) ----------
(37·10118+17)/9 = 4(1)1173<119> = 59 · 109 · 780433 · C109
C109 = P30 · P80
P30 = 369285778102739495137261341581<30>
P80 = 22181070269155109783562069123105623896282019970639176229640191423908175990898051<80>
Number: n N=8191153793496486080155243826095227511849929831854706641774851002194663429312462621657955270889565525258158631 ( 109 digits) SNFS difficulty: 121 digits. Divisors found: r1=369285778102739495137261341581 (pp30) r2=22181070269155109783562069123105623896282019970639176229640191423908175990898051 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.40 hours. Scaled time: 2.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_1_117_3 n: 8191153793496486080155243826095227511849929831854706641774851002194663429312462621657955270889565525258158631 type: snfs skew: 2.15 deg: 5 c5: 37 c0: 1700 m: 1000000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 280001) Primes: RFBsize:41538, AFBsize:41217, largePrimes:4239950 encountered Relations: rels:3579601, finalFF:93820 Max relations in full relation-set: 48 Initial matrix: 82822 x 93820 with sparse part having weight 11495097. Pruned matrix : 80528 x 81006 with weight 8340084. Total sieving time: 1.29 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.40 hours. --------- CPU info (if available) ----------
(35·10157+1)/9 = 3(8)1569<158> = 32 · 13 · 19 · C155
C155 = P47 · P108
P47 = 48490980049404849877083686413436375909387700361<47>
P108 = 360765592388035467312597513412831108601623865988953111824323565795743335616112041862817403331969655385010463<108>
Number: n N=17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 ( 155 digits) SNFS difficulty: 159 digits. Divisors found: Thu Dec 11 00:28:30 2008 prp47 factor: 48490980049404849877083686413436375909387700361 Thu Dec 11 00:28:30 2008 prp108 factor: 360765592388035467312597513412831108601623865988953111824323565795743335616112041862817403331969655385010463 Thu Dec 11 00:28:30 2008 elapsed time 01:44:59 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.89 hours. Scaled time: 36.05 units (timescale=1.813). Factorization parameters were as follows: name: KA_3_8_156_9 n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 type: snfs skew: 0.98 deg: 5 c5: 28 c0: 25 m: 50000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2650001) Primes: RFBsize:283146, AFBsize:283487, largePrimes:14859643 encountered Relations: rels:13076319, finalFF:601852 Max relations in full relation-set: 28 Msieve: found 1275837 hash collisions in 14147350 relations Msieve: matrix is 569553 x 569801 (153.6 MB) Initial matrix: Pruned matrix : Total sieving time: 19.53 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.5,2.5,100000 total time: 19.89 hours. --------- CPU info (if available) ----------
By Erik Branger / Msieve, GGNFS
(37·10109+17)/9 = 4(1)1083<110> = 23 · 22115353963<11> · 74107818511<11> · C88
C88 = P29 · P59
P29 = 20288855357221307444588716847<29>
P59 = 53754633920485650751518557177632083869545213561233239872861<59>
Tue Dec 09 18:19:49 2008 Msieve v. 1.38 Tue Dec 09 18:19:49 2008 random seeds: 04da1f68 d6132000 Tue Dec 09 18:19:49 2008 factoring 1090619992393115507959322991878114317418422491212703526318350782022189627286829408789267 (88 digits) Tue Dec 09 18:19:50 2008 searching for 15-digit factors Tue Dec 09 18:19:52 2008 commencing quadratic sieve (88-digit input) Tue Dec 09 18:19:52 2008 using multiplier of 3 Tue Dec 09 18:19:52 2008 using 64kb Pentium 4 sieve core Tue Dec 09 18:19:52 2008 sieve interval: 12 blocks of size 65536 Tue Dec 09 18:19:52 2008 processing polynomials in batches of 9 Tue Dec 09 18:19:52 2008 using a sieve bound of 1501873 (57333 primes) Tue Dec 09 18:19:52 2008 using large prime bound of 120149840 (26 bits) Tue Dec 09 18:19:52 2008 using double large prime bound of 349543879472720 (42-49 bits) Tue Dec 09 18:19:52 2008 using trial factoring cutoff of 49 bits Tue Dec 09 18:19:52 2008 polynomial 'A' values have 11 factors Tue Dec 09 19:32:43 2008 57703 relations (15932 full + 41771 combined from 603821 partial), need 57429 Tue Dec 09 19:32:44 2008 begin with 619753 relations Tue Dec 09 19:32:45 2008 reduce to 138230 relations in 10 passes Tue Dec 09 19:32:45 2008 attempting to read 138230 relations Tue Dec 09 19:32:49 2008 recovered 138230 relations Tue Dec 09 19:32:49 2008 recovered 115824 polynomials Tue Dec 09 19:32:49 2008 attempting to build 57703 cycles Tue Dec 09 19:32:49 2008 found 57703 cycles in 5 passes Tue Dec 09 19:32:49 2008 distribution of cycle lengths: Tue Dec 09 19:32:49 2008 length 1 : 15932 Tue Dec 09 19:32:49 2008 length 2 : 11388 Tue Dec 09 19:32:49 2008 length 3 : 10191 Tue Dec 09 19:32:49 2008 length 4 : 7570 Tue Dec 09 19:32:49 2008 length 5 : 5222 Tue Dec 09 19:32:49 2008 length 6 : 3299 Tue Dec 09 19:32:49 2008 length 7 : 1926 Tue Dec 09 19:32:49 2008 length 9+: 2175 Tue Dec 09 19:32:49 2008 largest cycle: 17 relations Tue Dec 09 19:32:50 2008 matrix is 57333 x 57703 (13.6 MB) with weight 3330045 (57.71/col) Tue Dec 09 19:32:50 2008 sparse part has weight 3330045 (57.71/col) Tue Dec 09 19:32:50 2008 filtering completed in 3 passes Tue Dec 09 19:32:50 2008 matrix is 52889 x 52953 (12.6 MB) with weight 3080639 (58.18/col) Tue Dec 09 19:32:50 2008 sparse part has weight 3080639 (58.18/col) Tue Dec 09 19:32:51 2008 saving the first 48 matrix rows for later Tue Dec 09 19:32:51 2008 matrix is 52841 x 52953 (8.5 MB) with weight 2479242 (46.82/col) Tue Dec 09 19:32:51 2008 sparse part has weight 1920939 (36.28/col) Tue Dec 09 19:32:51 2008 matrix includes 64 packed rows Tue Dec 09 19:32:51 2008 using block size 21181 for processor cache size 512 kB Tue Dec 09 19:32:52 2008 commencing Lanczos iteration Tue Dec 09 19:32:52 2008 memory use: 8.1 MB Tue Dec 09 19:33:19 2008 lanczos halted after 837 iterations (dim = 52841) Tue Dec 09 19:33:20 2008 recovered 18 nontrivial dependencies Tue Dec 09 19:33:20 2008 prp29 factor: 20288855357221307444588716847 Tue Dec 09 19:33:20 2008 prp59 factor: 53754633920485650751518557177632083869545213561233239872861 Tue Dec 09 19:33:20 2008 elapsed time 01:13:31
(37·10115+17)/9 = 4(1)1143<116> = 269 · 322463 · C108
C108 = P46 · P62
P46 = 5497749320430187878858053736352893214180573673<46>
P62 = 86206916448515400419165649243334368387994159291444142145800123<62>
Number: 41113_115 N=473944016321207528193875966209651546329520519049447684665186406286999056081568726718516936228666551733961779 ( 108 digits) SNFS difficulty: 116 digits. Divisors found: r1=5497749320430187878858053736352893214180573673 r2=86206916448515400419165649243334368387994159291444142145800123 Version: Total time: 1.75 hours. Scaled time: 1.38 units (timescale=0.788). Factorization parameters were as follows: n: 473944016321207528193875966209651546329520519049447684665186406286999056081568726718516936228666551733961779 m: 100000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63339 x 63557 Total sieving time: 1.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.75 hours. --------- CPU info (if available) ----------
(37·10117+17)/9 = 4(1)1163<118> = 3 · C118
C118 = P39 · P80
P39 = 134559089698345633832840039614067963863<39>
P80 = 10184153099151195348037371312804759219593045915950096947235927280552420123916917<80>
Number: 41113_117 N=1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 ( 118 digits) SNFS difficulty: 119 digits. Divisors found: r1=134559089698345633832840039614067963863 r2=10184153099151195348037371312804759219593045915950096947235927280552420123916917 Version: Total time: 2.12 hours. Scaled time: 1.68 units (timescale=0.790). Factorization parameters were as follows: n: 1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 m: 200000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83361 x 83606 Total sieving time: 2.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 2.12 hours. --------- CPU info (if available) ----------
(34·10169-61)/9 = 3(7)1681<170> = C170
C170 = P56 · P115
P56 = 11317942006879836402511210783641114135063226371491831011<56>
P115 = 3337866350155691145550968735711381661348565396657188332750832547393613263199497115692457216756403748695193991635161<115>
Number: 37771_169 N=37777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 170 digits) SNFS difficulty: 171 digits. Divisors found: r1=11317942006879836402511210783641114135063226371491831011 r2=3337866350155691145550968735711381661348565396657188332750832547393613263199497115692457216756403748695193991635161 Version: Total time: 107.44 hours. Scaled time: 231.85 units (timescale=2.158). Factorization parameters were as follows: n: 37777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 10000000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998386 x 998633 Total sieving time: 107.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 107.44 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / ggnfs, msieve
(43·10189-7)/9 = 4(7)189<190> = 409889 · 10279043 · 23144637364386847695553<23> · C155
C155 = P53 · P103
P53 = 29909335929237981822985403260970890761599739765839699<53>
P103 = 1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833<103>
Number: 47777_189 N=48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 ( 155 digits) SNFS difficulty: 191 digits. Divisors found: r1=29909335929237981822985403260970890761599739765839699 r2=1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833 Version: Total time: 497.51 hours. Scaled time: 1275.61 units (timescale=2.564). Factorization parameters were as follows: n: 48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 m: 100000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 Y0: 100000000000000000000000000000000000000 Y1: -1 skew: 1.10 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5450000, 12450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1711650 x 1711898 Total sieving time: 497.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 497.51 hours. --------- CPU info (if available) ----------
Factorizations of 411...113 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Wataru Sakai / Msieve
10196+3 = 1(0)1953<197> = 7 · C196
C196 = P64 · P132
P64 = 2752508262761669324008667413574517577856587387092720436281875809<64>
P132 = 519007135382076014806320192315848747738324564942772903565586965269516034842355760568492424090789108493561735010406846967181255450181<132>
Number: 10003_196 N=1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: r1=2752508262761669324008667413574517577856587387092720436281875809 r2=519007135382076014806320192315848747738324564942772903565586965269516034842355760568492424090789108493561735010406846967181255450181 Version: Total time: 642.69 hours. Scaled time: 1295.02 units (timescale=2.015). Factorization parameters were as follows: n: 1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000000000000000000 deg: 5 c5: 10 c0: 3 skew: 0.79 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 13550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1916050 x 1916298 Total sieving time: 642.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 642.69 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(35·10151-17)/9 = 3(8)1507<152> = 37 · 7607 · 549302680970858401<18> · C129
C129 = P57 · P73
P57 = 118123717349038913397400950983195020461774566916898370759<57>
P73 = 2129421183757089787810934958106849683297394566265161960072723588038834827<73>
Number: 38887_151 N=251535146027178326982950809546578110289828500616900011712244631703787557941136548834954935449597346585500550412166434897007623693 ( 129 digits) SNFS difficulty: 153 digits. Divisors found: r1=118123717349038913397400950983195020461774566916898370759 (prp 57) r2=2129421183757089787810934958106849683297394566265161960072723588038834827 (prp 73) Version: Total time: 18.97 hours. Scaled time: 48.86 units (timescale=2.575). Factorization parameters were as follows: name: 38887_151 n: 251535146027178326982950809546578110289828500616900011712244631703787557941136548834954935449597346585500550412166434897007623693 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: -272 skew: 1.09 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416757 x 417005 Total sieving time: 18.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 18.97 hours. --------- CPU info (if available) ----------
(35·10152-17)/9 = 3(8)1517<153> = 3 · 32348688376499948062857708229<29> · C124
C124 = P59 · P65
P59 = 42240598854390378377688655800680354702163772637296451470451<59>
P65 = 94867517757021778096754297616255666172836797900280601682198483651<65>
Number: 38887_152 N=4007260761886112998004137793495368715983783239142951653462846839189446808093663647938802239278248752261124422355781433096601 ( 124 digits) SNFS difficulty: 154 digits. Divisors found: r1=42240598854390378377688655800680354702163772637296451470451 (prp 59) r2=94867517757021778096754297616255666172836797900280601682198483651 (prp 65) Version: Total time: 19.04 hours. Scaled time: 48.82 units (timescale=2.564). Factorization parameters were as follows: name: 38887_152 n: 4007260761886112998004137793495368715983783239142951653462846839189446808093663647938802239278248752261124422355781433096601 m: 5000000000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 521934 x 522182 Total sieving time: 19.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 19.04 hours. --------- CPU info (if available) ----------
(35·10156-17)/9 = 3(8)1557<157> = 19 · 58096309927<11> · 1859651820102671746966417186881408253<37> · C109
C109 = P52 · P58
P52 = 1076928618506846748863383858027045833094779104071139<52>
P58 = 1759157919925246744872768718883007727648687170851865993997<58>
Number: 38887_156 N=1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583 ( 109 digits) Divisors found: r1=1076928618506846748863383858027045833094779104071139 (pp52) r2=1759157919925246744872768718883007727648687170851865993997 (pp58) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 25.17 hours. Scaled time: 11.91 units (timescale=0.473). Factorization parameters were as follows: name: 38887_156 n: 1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583 skew: 44524.45 # norm 3.17e+15 c5: 10320 c4: 2068196878 c3: -65703351504663 c2: -745065446135219667 c1: 75575430184751883893503 c0: -677900066464869477272057091 # alpha -7.08 Y1: 258066449773 Y0: -712452811785165984766 # Murphy_E 1.22e-09 # M 409044238670812684725748569170621213081722672516267442206910112806419631766964042691786034651274577905956326 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2700001) Primes: RFBsize:230209, AFBsize:230882, largePrimes:7115195 encountered Relations: rels:6825408, finalFF:526305 Max relations in full relation-set: 28 Initial matrix: 461173 x 526305 with sparse part having weight 38038048. Pruned matrix : 405124 x 407493 with weight 24200477. Polynomial selection time: 1.37 hours. Total sieving time: 17.86 hours. Total relation processing time: 0.49 hours. Matrix solve time: 5.16 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 25.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10169-17)/9 = 3(8)1687<170> = 37 · 9283 · 616717 · 7261187 · 2690791161620814877<19> · 1203662182305387631696435974379<31> · C103
C103 = P45 · P59
P45 = 111228175619580244012703383781260734185184707<45>
P59 = 70184707899453055525548085720106885156447759916870224213803<59>
Number: 38887_169 N=7806517016049305310583814338478114902043743974196109326508338472232780809105051328581261539459413910721 ( 103 digits) Divisors found: r1=111228175619580244012703383781260734185184707 (pp45) r2=70184707899453055525548085720106885156447759916870224213803 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.67 hours. Scaled time: 11.14 units (timescale=2.388). Factorization parameters were as follows: name: 38887_169 n: 7806517016049305310583814338478114902043743974196109326508338472232780809105051328581261539459413910721 skew: 6435.65 # norm 4.25e+14 c5: 327600 c4: 1341580360 c3: -28087535201805 c2: 27505657027816968 c1: -434236182625700756620 c0: -443139871734227666744928 # alpha -6.84 Y1: 24295412119 Y0: -29882876112108691223 # Murphy_E 2.39e-09 # M 5943626666779991075222796907480430371988929735998081121571940013048844424323463430802335138075319426611 type: gnfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [700000, 1400001) Primes: RFBsize:107126, AFBsize:107324, largePrimes:4895616 encountered Relations: rels:4876186, finalFF:317090 Max relations in full relation-set: 28 Initial matrix: 214535 x 317090 with sparse part having weight 31970719. Pruned matrix : 174914 x 176050 with weight 15170674. Polynomial selection time: 0.35 hours. Total sieving time: 4.07 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1400000,1400000,26,26,50,50,2.6,2.6,50000 total time: 4.67 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / GMP-ECM 6.2.1, GMP-ECM 6.2.1+Msieve-1.39/QS
(25·10197-43)/9 = 2(7)1963<198> = 32 · 557 · 69708090293108587957264033909<29> · 295129451897746307965079731115042417503<39> · C127
C127 = P44 · P84
P44 = 10098350951856973961514524512537529605446767<44>
P84 = 266718781518006085466517991346999437292650105384546657225926327572273641244537096069<84>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=510398281 Step 1 took 36142ms Step 2 took 18423ms ********** Factor found in step 2: 10098350951856973961514524512537529605446767 Found probable prime factor of 44 digits: 10098350951856973961514524512537529605446767 Probable prime cofactor 266718781518006085466517991346999437292650105384546657225926327572273641244537096069 has 84 digits
(22·10181+23)/9 = 2(4)1807<182> = 32 · 1858573 · 19707749 · 23468960719226551<17> · 785195612198167577972729<24> · C127
C127 = P38 · P39 · P51
P38 = 17785632801658181817419234383456954573<38>
P39 = 828838352497750545369169782925386115193<39>
P51 = 272966991471668803728822291820565994032634354475909<51>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1242344107 Step 1 took 36137ms Step 2 took 4961ms ********** Factor found in step 2: 828838352497750545369169782925386115193 Found probable prime factor of 39 digits: 828838352497750545369169782925386115193 Composite cofactor has 88 digits Mon Dec 8 10:17:24 2008 Mon Dec 8 10:17:24 2008 Msieve v. 1.39 Mon Dec 8 10:17:24 2008 random seeds: dc424cf8 f5bcfa1e Mon Dec 8 10:17:24 2008 factoring 4854890677288461848350056488138030029095188175960364440787486140231466977493816635881857 (88 digits) Mon Dec 8 10:17:24 2008 searching for 15-digit factors Mon Dec 8 10:17:25 2008 commencing quadratic sieve (88-digit input) Mon Dec 8 10:17:25 2008 using multiplier of 1 Mon Dec 8 10:17:25 2008 using 64kb Opteron sieve core Mon Dec 8 10:17:25 2008 sieve interval: 14 blocks of size 65536 Mon Dec 8 10:17:25 2008 processing polynomials in batches of 8 Mon Dec 8 10:17:25 2008 using a sieve bound of 1524851 (58000 primes) Mon Dec 8 10:17:25 2008 using large prime bound of 121988080 (26 bits) Mon Dec 8 10:17:25 2008 using double large prime bound of 359228912138960 (42-49 bits) Mon Dec 8 10:17:25 2008 using trial factoring cutoff of 49 bits Mon Dec 8 10:17:25 2008 polynomial 'A' values have 11 factors Mon Dec 8 11:03:38 2008 58445 relations (15726 full + 42719 combined from 617079 partial), need 58096 Mon Dec 8 11:03:38 2008 begin with 632805 relations Mon Dec 8 11:03:38 2008 reduce to 141869 relations in 9 passes Mon Dec 8 11:03:38 2008 attempting to read 141869 relations Mon Dec 8 11:03:39 2008 recovered 141869 relations Mon Dec 8 11:03:39 2008 recovered 117476 polynomials Mon Dec 8 11:03:40 2008 attempting to build 58445 cycles Mon Dec 8 11:03:40 2008 found 58445 cycles in 5 passes Mon Dec 8 11:03:40 2008 distribution of cycle lengths: Mon Dec 8 11:03:40 2008 length 1 : 15726 Mon Dec 8 11:03:40 2008 length 2 : 11364 Mon Dec 8 11:03:40 2008 length 3 : 10248 Mon Dec 8 11:03:40 2008 length 4 : 7718 Mon Dec 8 11:03:40 2008 length 5 : 5531 Mon Dec 8 11:03:40 2008 length 6 : 3430 Mon Dec 8 11:03:40 2008 length 7 : 2045 Mon Dec 8 11:03:40 2008 length 9+: 2383 Mon Dec 8 11:03:40 2008 largest cycle: 18 relations Mon Dec 8 11:03:40 2008 matrix is 58000 x 58445 (14.6 MB) with weight 3355288 (57.41/col) Mon Dec 8 11:03:40 2008 sparse part has weight 3355288 (57.41/col) Mon Dec 8 11:03:41 2008 filtering completed in 3 passes Mon Dec 8 11:03:41 2008 matrix is 53938 x 54001 (13.5 MB) with weight 3108334 (57.56/col) Mon Dec 8 11:03:41 2008 sparse part has weight 3108334 (57.56/col) Mon Dec 8 11:03:41 2008 saving the first 48 matrix rows for later Mon Dec 8 11:03:41 2008 matrix is 53890 x 54001 (9.1 MB) with weight 2445936 (45.29/col) Mon Dec 8 11:03:41 2008 sparse part has weight 1852810 (34.31/col) Mon Dec 8 11:03:41 2008 matrix includes 64 packed rows Mon Dec 8 11:03:41 2008 using block size 21600 for processor cache size 1024 kB Mon Dec 8 11:03:41 2008 commencing Lanczos iteration Mon Dec 8 11:03:41 2008 memory use: 8.1 MB Mon Dec 8 11:03:57 2008 lanczos halted after 854 iterations (dim = 53890) Mon Dec 8 11:03:57 2008 recovered 17 nontrivial dependencies Mon Dec 8 11:03:58 2008 prp38 factor: 17785632801658181817419234383456954573 Mon Dec 8 11:03:58 2008 prp51 factor: 272966991471668803728822291820565994032634354475909 Mon Dec 8 11:03:58 2008 elapsed time 00:46:34
(35·10139+1)/9 = 3(8)1389<140> = 32 · 13 · 19 · C137
C137 = P37 · P100
P37 = 4711525053547959827836928818968407243<37>
P100 = 3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301<100>
SNFS difficulty: 140 digits. Divisors found: r1=4711525053547959827836928818968407243 (pp37) r2=3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301 (pp100) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [780000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194565 x 194813 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,49,49,2.3,2.3,100000 total time: 3.00 hours.
(35·10155+1)/9 = 3(8)1549<156> = 17328426330280651<17> · C140
C140 = P55 · P85
P55 = 8737120079789454811139398762185632204595767732620207073<55>
P85 = 2568609627631786308344700400368235052270213245925487584490856911668202549658932772843<85>
SNFS difficulty: 156 digits. Divisors found: r1=8737120079789454811139398762185632204595767732620207073 (pp55) r2=2568609627631786308344700400368235052270213245925487584490856911668202549658932772843 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.733). Factorization parameters were as follows: n: 22442250754722194601748660361573267317561028049968809187627893076057064731116896384383693819340329032336152489251152638084249145424730918539 m: 10000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 485185 x 485433 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 13.00 hours.
(35·10159-17)/9 = 3(8)1587<160> = 132 · 65257 · 14268157 · C146
C146 = P36 · P44 · P66
P36 = 900723308910475183047680333245858277<36>
P44 = 93911989316878837694411058288113772487947233<44>
P66 = 292167163732202035035400549617558221929515408022408002322526037047<66>
SNFS difficulty: 160 digits. Divisors found: r1=900723308910475183047680333245858277 (pp36) r2=93911989316878837694411058288113772487947233 (pp44) r3=292167163732202035035400549617558221929515408022408002322526037047 (pp66) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 24714045752811968491542850976384650377766399465017040896140429801589203784478666528272728610806543632806391272680689057714714781765469735273001427 m: 100000000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 556589 x 556837 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,200000 total time: 20.00 hours.
(10188+71)/9 = (1)1879<188> = 5051 · 11593 · 25889 · C175
C175 = P32 · C143
P32 = 77117398087105878766860647707673<32>
C143 = [95042235417061342709137038769115156978823101279373950507224840278843986985720234251760664055691722544383397021632330291947586450809724093964989<143>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=285739272 Step 1 took 5633ms Step 2 took 3514ms ********** Factor found in step 2: 77117398087105878766860647707673 Found probable prime factor of 32 digits: 77117398087105878766860647707673 Composite cofactor has 143 digits
By Robert Backstrom / GGNFS
(35·10142-17)/9 = 3(8)1417<143> = 37 · 24851 · 1638208606894922829008039249<28> · C110
C110 = P51 · P60
P51 = 226680845566547999740279589713872828602549663480669<51>
P60 = 113892706687805799382922156923032816068749972971507800267021<60>
Number: n N=25817295055854654959004012619776998646132580075897349544869694038625052469240774647237550816394496410471717049 ( 110 digits) SNFS difficulty: 144 digits. Divisors found: r1=226680845566547999740279589713872828602549663480669 (pp51) r2=113892706687805799382922156923032816068749972971507800267021 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.50 hours. Scaled time: 11.85 units (timescale=1.824). Factorization parameters were as follows: name: KA_3_8_141_7 n: 25817295055854654959004012619776998646132580075897349544869694038625052469240774647237550816394496410471717049 type: snfs skew: 1.72 deg: 5 c5: 28 c0: -425 m: 50000000000000000000000000000 rlim: 1400000 alim: 1400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:107126, AFBsize:106958, largePrimes:9584465 encountered Relations: rels:8444842, finalFF:240314 Max relations in full relation-set: 48 Initial matrix: 214151 x 240314 with sparse part having weight 34092867. Pruned matrix : 207603 x 208737 with weight 25906468. Total sieving time: 5.70 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.46 hours. Total square root time: 0.16 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1400000,1400000,28,28,56,56,2.5,2.5,100000 total time: 6.50 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW
(28·1096743+71)/9 = 3(1)967429<96744> is PRP.
It's the largest unprovable PRP in our tables so far. Congratulations!
By Justin Card / msieve 1.39
(29·10102+61)/9 = 3(2)1019<103> = 41232703 · C95
C95 = P35 · P61
P35 = 64818012805041651210696411371692207<35>
P61 = 1205640894111136574747224703848636622066787269446361488487749<61>
Sun Dec 7 16:27:13 2008 Sun Dec 7 16:27:13 2008 Sun Dec 7 16:27:13 2008 Msieve v. 1.39 Sun Dec 7 16:27:13 2008 random seeds: 246e521a 2bff3da1 Sun Dec 7 16:27:13 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 16:27:13 2008 searching for 15-digit factors Sun Dec 7 16:27:14 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 16:27:14 2008 using multiplier of 3 Sun Dec 7 16:27:14 2008 using 64kb Opteron sieve core Sun Dec 7 16:27:14 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 16:27:14 2008 processing polynomials in batches of 6 Sun Dec 7 16:27:14 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 16:27:14 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 16:27:14 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 16:27:14 2008 using trial factoring cutoff of 51 bits Sun Dec 7 16:27:14 2008 polynomial 'A' values have 12 factors Sun Dec 7 16:27:26 2008 Sun Dec 7 16:27:26 2008 Sun Dec 7 16:27:26 2008 Msieve v. 1.39 Sun Dec 7 16:27:26 2008 random seeds: 666dd84d c9507886 Sun Dec 7 16:27:26 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 16:27:26 2008 searching for 15-digit factors Sun Dec 7 16:27:27 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 16:27:27 2008 using multiplier of 3 Sun Dec 7 16:27:27 2008 using 64kb Opteron sieve core Sun Dec 7 16:27:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 16:27:27 2008 processing polynomials in batches of 6 Sun Dec 7 16:27:27 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 16:27:27 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 16:27:27 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 16:27:27 2008 using trial factoring cutoff of 51 bits Sun Dec 7 16:27:27 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:49:22 2008 6019 relations (4845 full + 1174 combined from 298966 partial), need 81242 Sun Dec 7 17:49:22 2008 elapsed time 01:21:56 Sun Dec 7 17:49:42 2008 4760 relations (4760 full + 0 combined from 295056 partial), need 81242 Sun Dec 7 17:49:42 2008 elapsed time 01:22:29 Sun Dec 7 17:50:05 2008 Sun Dec 7 17:50:05 2008 Sun Dec 7 17:50:05 2008 Msieve v. 1.39 Sun Dec 7 17:50:05 2008 random seeds: 70f2f3d1 b7dd4591 Sun Dec 7 17:50:05 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:50:06 2008 searching for 15-digit factors Sun Dec 7 17:50:06 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:50:07 2008 using multiplier of 3 Sun Dec 7 17:50:07 2008 using 64kb Opteron sieve core Sun Dec 7 17:50:07 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:50:07 2008 processing polynomials in batches of 6 Sun Dec 7 17:50:07 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:50:07 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:50:07 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:50:07 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:50:07 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:50:07 2008 restarting with 9605 full and 594022 partial relations Sun Dec 7 17:50:12 2008 Sun Dec 7 17:50:12 2008 Sun Dec 7 17:50:12 2008 Msieve v. 1.39 Sun Dec 7 17:50:12 2008 random seeds: a05eca4c 9a78ecf8 Sun Dec 7 17:50:12 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:50:13 2008 searching for 15-digit factors Sun Dec 7 17:50:13 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:50:13 2008 using multiplier of 3 Sun Dec 7 17:50:13 2008 using 64kb Opteron sieve core Sun Dec 7 17:50:13 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:50:13 2008 processing polynomials in batches of 6 Sun Dec 7 17:50:13 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:50:13 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:50:13 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:50:13 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:50:13 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:50:14 2008 restarting with 4760 full and 295056 partial relations Sun Dec 7 17:53:50 2008 4992 relations (4992 full + 0 combined from 308433 partial), need 81242 Sun Dec 7 17:53:50 2008 elapsed time 00:03:38 Sun Dec 7 17:53:58 2008 Sun Dec 7 17:53:58 2008 Sun Dec 7 17:53:58 2008 Msieve v. 1.39 Sun Dec 7 17:53:58 2008 random seeds: 6485572e dc777515 Sun Dec 7 17:53:58 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:53:59 2008 searching for 15-digit factors Sun Dec 7 17:54:00 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:54:00 2008 using multiplier of 3 Sun Dec 7 17:54:00 2008 using 64kb Opteron sieve core Sun Dec 7 17:54:00 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:54:00 2008 processing polynomials in batches of 6 Sun Dec 7 17:54:00 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:54:00 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:54:00 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:54:00 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:54:00 2008 polynomial 'A' values have 12 factors Sun Dec 7 18:45:27 2008 3104 relations (3104 full + 0 combined from 194276 partial), need 81242 Sun Dec 7 18:45:27 2008 elapsed time 00:51:29 Sun Dec 7 18:45:30 2008 28866 relations (12746 full + 16120 combined from 797473 partial), need 81242 Sun Dec 7 18:45:30 2008 elapsed time 00:55:25 Sun Dec 7 18:46:11 2008 Sun Dec 7 18:46:11 2008 Sun Dec 7 18:46:11 2008 Msieve v. 1.39 Sun Dec 7 18:46:11 2008 random seeds: edef846a 24c3dbe7 Sun Dec 7 18:46:11 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 18:46:11 2008 searching for 15-digit factors Sun Dec 7 18:46:12 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 18:46:12 2008 using multiplier of 3 Sun Dec 7 18:46:12 2008 using 64kb Opteron sieve core Sun Dec 7 18:46:12 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 18:46:12 2008 processing polynomials in batches of 6 Sun Dec 7 18:46:12 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 18:46:12 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 18:46:12 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 18:46:12 2008 using trial factoring cutoff of 51 bits Sun Dec 7 18:46:12 2008 polynomial 'A' values have 12 factors Sun Dec 7 18:46:13 2008 restarting with 15850 full and 991749 partial relations Sun Dec 7 18:49:30 2008 Sun Dec 7 18:49:30 2008 Sun Dec 7 18:49:30 2008 Msieve v. 1.39 Sun Dec 7 18:49:30 2008 random seeds: f2f6d37b b6eddc32 Sun Dec 7 18:49:30 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 18:49:30 2008 searching for 15-digit factors Sun Dec 7 18:49:31 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 18:49:31 2008 using multiplier of 3 Sun Dec 7 18:49:31 2008 using 64kb Opteron sieve core Sun Dec 7 18:49:31 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 18:49:31 2008 processing polynomials in batches of 6 Sun Dec 7 18:49:31 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 18:49:31 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 18:49:31 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 18:49:31 2008 using trial factoring cutoff of 51 bits Sun Dec 7 18:49:31 2008 polynomial 'A' values have 12 factors Sun Dec 7 19:43:14 2008 79041 relations (19345 full + 59696 combined from 1210075 partial), need 81242 Sun Dec 7 19:43:14 2008 elapsed time 00:57:03 Sun Dec 7 19:43:18 2008 3309 relations (3309 full + 0 combined from 204475 partial), need 81242 Sun Dec 7 19:43:18 2008 elapsed time 00:53:48 Sun Dec 7 19:43:26 2008 Sun Dec 7 19:43:26 2008 Sun Dec 7 19:43:26 2008 Msieve v. 1.39 Sun Dec 7 19:43:26 2008 random seeds: 865ca451 35158040 Sun Dec 7 19:43:26 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 19:43:26 2008 searching for 15-digit factors Sun Dec 7 19:43:27 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 19:43:27 2008 using multiplier of 3 Sun Dec 7 19:43:27 2008 using 64kb Opteron sieve core Sun Dec 7 19:43:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 19:43:27 2008 processing polynomials in batches of 6 Sun Dec 7 19:43:27 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 19:43:27 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 19:43:27 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 19:43:27 2008 using trial factoring cutoff of 51 bits Sun Dec 7 19:43:27 2008 polynomial 'A' values have 12 factors Sun Dec 7 19:43:28 2008 restarting with 22654 full and 1414550 partial relations Sun Dec 7 19:43:28 2008 119699 relations (22654 full + 97045 combined from 1414550 partial), need 81242 Sun Dec 7 19:43:29 2008 begin with 1437204 relations Sun Dec 7 19:43:31 2008 reduce to 316559 relations in 11 passes Sun Dec 7 19:43:31 2008 attempting to read 316559 relations Sun Dec 7 19:43:34 2008 recovered 316559 relations Sun Dec 7 19:43:34 2008 recovered 292182 polynomials Sun Dec 7 19:43:34 2008 attempting to build 119699 cycles Sun Dec 7 19:43:34 2008 found 119699 cycles in 6 passes Sun Dec 7 19:43:34 2008 distribution of cycle lengths: Sun Dec 7 19:43:34 2008 length 1 : 22654 Sun Dec 7 19:43:34 2008 length 2 : 18504 Sun Dec 7 19:43:34 2008 length 3 : 20280 Sun Dec 7 19:43:34 2008 length 4 : 17688 Sun Dec 7 19:43:34 2008 length 5 : 14417 Sun Dec 7 19:43:34 2008 length 6 : 10278 Sun Dec 7 19:43:34 2008 length 7 : 6738 Sun Dec 7 19:43:34 2008 length 9+: 9140 Sun Dec 7 19:43:34 2008 largest cycle: 21 relations Sun Dec 7 19:43:35 2008 matrix is 81146 x 119699 (37.0 MB) with weight 8736674 (72.99/col) Sun Dec 7 19:43:35 2008 sparse part has weight 8736674 (72.99/col) Sun Dec 7 19:43:38 2008 filtering completed in 4 passes Sun Dec 7 19:43:38 2008 matrix is 74044 x 74108 (17.5 MB) with weight 4003119 (54.02/col) Sun Dec 7 19:43:38 2008 sparse part has weight 4003119 (54.02/col) Sun Dec 7 19:43:38 2008 saving the first 48 matrix rows for later Sun Dec 7 19:43:38 2008 matrix is 73996 x 74108 (12.4 MB) with weight 3237909 (43.69/col) Sun Dec 7 19:43:38 2008 sparse part has weight 2512684 (33.91/col) Sun Dec 7 19:43:38 2008 matrix includes 64 packed rows Sun Dec 7 19:43:38 2008 using block size 10922 for processor cache size 256 kB Sun Dec 7 19:43:38 2008 commencing Lanczos iteration Sun Dec 7 19:43:38 2008 memory use: 11.0 MB Sun Dec 7 19:44:13 2008 lanczos halted after 1171 iterations (dim = 73996) Sun Dec 7 19:44:13 2008 recovered 18 nontrivial dependencies Sun Dec 7 19:44:15 2008 prp35 factor: 64818012805041651210696411371692207 Sun Dec 7 19:44:15 2008 prp61 factor: 1205640894111136574747224703848636622066787269446361488487749 Sun Dec 7 19:44:15 2008 elapsed time 00:00:49
By Sinkiti Sibata /
(35·10138-17)/9 = 3(8)1377<139> = 19 · 1049 · 309769 · 470663 · C124
C124 = P56 · P68
P56 = 38057395340621219550760269513883685643294306836546403397<56>
P68 = 35164898775576928212777153301681488449949331239308314024794822219503<68>
Number: 38887_138 N=1338284454815058216196354013354479303825956017779159462864869199752050231785163301790065223124319268085524058511255518851691 ( 124 digits) SNFS difficulty: 140 digits. Divisors found: r1=38057395340621219550760269513883685643294306836546403397 (prp56) r2=35164898775576928212777153301681488449949331239308314024794822219503 (prp68) Version: Total time: 5.90 hours. Scaled time: 15.19 units (timescale=2.575). Factorization parameters were as follows: name:38887_138 n: 1338284454815058216196354013354479303825956017779159462864869199752050231785163301790065223124319268085524058511255518851691 m: 5000000000000000000000000000 deg: 5 c5: 56 c0: -85 skew: 1.09 type: snfs lss: 1 rlim: 1520000 alim: 1520000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1520000/1520000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [760000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 251726 x 251974 Total sieving time: 5.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1520000,1520000,26,26,48,48,2.3,2.3,75000 total time: 5.90 hours. --------- CPU info (if available) ----------
(35·10141-17)/9 = 3(8)1407<142> = 13 · 2879 · 24457822001458490363244626531<29> · C109
C109 = P53 · P56
P53 = 73820734517195491206986826554621892806273334976028047<53>
P56 = 57549873803153056003497272592233619822725268242612595233<56>
Number: 38887_141 N=4248373955520665359043123124769657924122696491420890193547031337963357606208311364487248645291710324866499951 ( 109 digits) SNFS difficulty: 143 digits. Divisors found: r1=73820734517195491206986826554621892806273334976028047 (prp 53) r2=57549873803153056003497272592233619822725268242612595233 (prp 56) Version: Total time: 8.16 hours. Scaled time: 20.91 units (timescale=2.564). Factorization parameters were as follows: name: 38887_141 n: 4248373955520665359043123124769657924122696491420890193547031337963357606208311364487248645291710324866499951 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: -272 skew: 1.09 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 1970001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 264690 x 264938 Total sieving time: 8.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 8.16 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(35·10150+1)/9 = 3(8)1499<151> = 449 · 2251 · 670051 · C139
C139 = P49 · P91
P49 = 2672290540824465915914614009423625553247516207069<49>
P91 = 2148880004904170262568464197161540753125392466048489311759094604779127603367722353590597069<91>
SNFS difficulty: 151 digits. Divisors found: r1=2672290540824465915914614009423625553247516207069 (pp49) r2=2148880004904170262568464197161540753125392466048489311759094604779127603367722353590597069 (pp91) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 5742431710472246120644939956303442596465371964729863375287394745063218499520351618003208616411038581580501974256356707777534416781948480761 m: 1000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 419644 x 419892 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,51,51,2.4,2.4,100000 total time: 9.00 hours.
(31·10169+41)/9 = 3(4)1689<170> = 32 · 13 · 211 · 353 · C163
C163 = P48 · P52 · P64
P48 = 272869429905872532325536091824056889627588294853<48>
P52 = 1797604110257900740437824679232652384721954009407117<52>
P64 = 8057999312340717756148290734205967665222488391182536291058446159<64>
SNFS difficulty: 171 digits. Divisors found: r1=272869429905872532325536091824056889627588294853 (pp48) r2=1797604110257900740437824679232652384721954009407117 (pp52) r3=8057999312340717756148290734205967665222488391182536291058446159 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.732). Factorization parameters were as follows: n: 3952538982903853634982438423044556882703394882907881399707274962926140599793200610389320117266986574971842303537679216245690027179315562794566952115206974257585359 m: 10000000000000000000000000000000000 deg: 5 c5: 31 c0: 410 skew: 1.68 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 977723 x 977971 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 49.00 hours.
By Justin Card / GGNFS, msieve
(29·10114+61)/9 = 3(2)1139<115> = 19 · 529043 · 131498189 · C100
C100 = P35 · P66
P35 = 13627837353418736230548561825683197<35>
P66 = 178880994899876454053601851276075491188480810887295136045474447189<66>
Number: 32229_114 N=2437761104113242789158014351988528630173349071448713576584407698125610142992752078271723965821183233 ( 100 digits) SNFS difficulty: 116 digits. Divisors found: r1=13627837353418736230548561825683197 r2=178880994899876454053601851276075491188480810887295136045474447189 Version: Total time: 0.38 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: n: 2437761104113242789158014351988528630173349071448713576584407698125610142992752078271723965821183233 m: 50000000000000000000000 deg: 5 c5: 464 c0: 305 skew: 0.92 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60867 x 61101 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 26.316871] Memory: 3054544k/3111872k available (2523k kernel code, 56940k reserved, 1328k data, 328k init) [ 26.463157] Calibrating delay using timer specific routine.. 3982.78 BogoMIPS (lpj=19913938) [ 27.245296] Calibrating delay using timer specific routine.. 3979.63 BogoMIPS (lpj=19898169)
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10181-17)/9 = 3(8)1807<182> = 37 · 5783 · 8291 · 6221154558239353306655743<25> · 1259634470484335012059329643<28> · C121
C121 = P36 · P86
P36 = 100287270379262073062534543329774973<36>
P86 = 27893458439383066549646630630840407002770488829451805100233906262131129518370132230671<86>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=730062768 Step 1 took 9937ms Step 2 took 5714ms ********** Factor found in step 2: 100287270379262073062534543329774973 Found probable prime factor of 36 digits: 100287270379262073062534543329774973 Probable prime cofactor 27893458439383066549646630630840407002770488829451805100233906262131129518370132230671 has 86 digits
(35·10159+1)/9 = 3(8)1589<160> = 7829 · 1982316236372128463169333701<28> · C129
C129 = P41 · P89
P41 = 20276996658433163995117586251763240946991<41>
P89 = 12357843020120421119265960598992168176546184213774282216299622263920595989161202430965951<89>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=758478317 Step 1 took 9850ms Step 2 took 6023ms ********** Factor found in step 2: 20276996658433163995117586251763240946991 Found probable prime factor of 41 digits: 20276996658433163995117586251763240946991 Probable prime cofactor 12357843020120421119265960598992168176546184213774282216299622263920595989161202430965951 has 89 digits
(35·10187-17)/9 = 3(8)1867<188> = 37 · 293 · 44819 · 22323411871<11> · 23575219891<11> · C159
C159 = P31 · P128
P31 = 5405268658708132199635096286107<31>
P128 = 28135874568677300735640012694914520710640214152856963017290900531616339376629182034845122781934860626430793955513760673461885739<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3147506786 Step 1 took 10865ms Step 2 took 5612ms ********** Factor found in step 2: 5405268658708132199635096286107 Found probable prime factor of 31 digits: 5405268658708132199635096286107 Probable prime cofactor 28135874568677300735640012694914520710640214152856963017290900531616339376629182034845122781934860626430793955513760673461885739 has 128 digits
(35·10164+1)/9 = 3(8)1639<165> = 282833 · 347981 · C154
C154 = P31 · C124
P31 = 1195263561592703068137949500679<31>
C124 = [3305797470684590126516118944166244859718767479459168848484632525243758609790874378955530593175883268566507494694347289345867<124>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1440214857 Step 1 took 9229ms Step 2 took 5176ms ********** Factor found in step 2: 1195263561592703068137949500679 Found probable prime factor of 31 digits: 1195263561592703068137949500679 Composite cofactor has 124 digits
(34·10165+11)/9 = 3(7)1649<166> = 23 · 541 · 11059 · C158
C158 = P45 · P51 · P63
P45 = 132305034338835795699004205791407388620792643<45>
P51 = 547267159590746377431429613203845746240770116543947<51>
P63 = 379157534695536082042970312038325842573501978968316577268679027<63>
SNFS difficulty: 166 digits. Divisors found: r1=132305034338835795699004205791407388620792643 (pp45) r2=547267159590746377431429613203845746240770116543947 (pp51) r3=379157534695536082042970312038325842573501978968316577268679027 (pp63) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 27453356418408572643857693062662714781848689852313239957734007486674021695384722507363682581215084634583871749164999906783743184612421503819077187673614470867 m: 1000000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 732615 x 732863 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,100000 total time: 27.00 hours.
(35·10196+1)/9 = 3(8)1959<197> = 3 · 332179 · C191
C191 = P35 · C157
P35 = 11088048895176551020181292564409681<35>
C157 = [3519467624159191575455544285483961051122934211187407132902172790668680150206026331946662339397093151348832771154819848849822738248941373366285643225728428337<157>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2788871739 Step 1 took 16422ms Step 2 took 8551ms ********** Factor found in step 2: 11088048895176551020181292564409681 Found probable prime factor of 35 digits: 11088048895176551020181292564409681 Composite cofactor has 157 digits
(35·10176-17)/9 = 3(8)1757<177> = 3 · 379 · 577 · 16633 · 8626865492539519<16> · 72485366745861100910529372318687451<35> · C116
C116 = P35 · P82
P35 = 16287071657624667201329691914058751<35>
P82 = 3499228437398053869070314749177548455789874474953667584190158156018462102243163469<82>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1452233116 Step 1 took 10696ms Step 2 took 5610ms ********** Factor found in step 2: 16287071657624667201329691914058751 Found probable prime factor of 35 digits: 16287071657624667201329691914058751 Probable prime cofactor 3499228437398053869070314749177548455789874474953667584190158156018462102243163469 has 82 digits
(35·10158+1)/9 = 3(8)1579<159> = 6479735363<10> · C149
C149 = P43 · P107
P43 = 1930617658092374610982383853322441180442017<43>
P107 = 31086511703887452946743635557423166013615764652218926546381262043929479546241125975302646673487898198639859<107>
SNFS difficulty: 160 digits. Divisors found: r1=1930617658092374610982383853322441180442017 (pp43) r2=31086511703887452946743635557423166013615764652218926546381262043929479546241125975302646673487898198639859 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.698). Factorization parameters were as follows: n: 60016168424020388329073322510144754022555425291507987297549899784215753764400901026255212035406836859255372168644055917579436629361137829061814555603 m: 100000000000000000000000000000000 deg: 5 c5: 7 c0: 20 skew: 1.23 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 555526 x 555774 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
By Robert Backstrom / GGNFS, Msieve
(35·10149-71)/9 = 3(8)1481<150> = 32 · 2203 · 669283 · 3873391 · 825404825109791<15> · C118
C118 = P53 · P66
P53 = 21904388228641440264076699571380925440070866529091293<53>
P66 = 418474754978414314848577390358111307476223571900094192394791077277<66>
Number: n N=9166433496932789469618650418665606801499463302417877899339615168342547900124545005831172681724367567313089423350849161 ( 118 digits) SNFS difficulty: 150 digits. Divisors found: r1=21904388228641440264076699571380925440070866529091293 (pp53) r2=418474754978414314848577390358111307476223571900094192394791077277 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.17 hours. Scaled time: 18.59 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_8_148_1 n: 9166433496932789469618650418665606801499463302417877899339615168342547900124545005831172681724367567313089423350849161 type: snfs skew: 1.83 deg: 5 c5: 7 c0: -142 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:148933, AFBsize:148781, largePrimes:9739262 encountered Relations: rels:8588387, finalFF:411950 Max relations in full relation-set: 48 Initial matrix: 297779 x 411950 with sparse part having weight 46016329. Pruned matrix : 243037 x 244589 with weight 20701272. Total sieving time: 9.51 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.46 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.5,2.5,100000 total time: 10.17 hours. --------- CPU info (if available) ----------
(35·10184+1)/9 = 3(8)1839<185> = 32 · 17 · 227 · 1237 · 3028427 · 6880873 · 106942088993<12> · 938679944328740548919086924469<30> · 8184269571777502631981099728373<31> · C92
C92 = P44 · P48
P44 = 73116907767253706535802059911323219242216637<44>
P48 = 723125958039174656868976766045499019103903811041<48>
Mon Dec 08 04:06:31 2008 Mon Dec 08 04:06:31 2008 Mon Dec 08 04:06:31 2008 Msieve v. 1.39 Mon Dec 08 04:06:31 2008 random seeds: 65016500 55b5b456 Mon Dec 08 04:06:31 2008 factoring 52872733978057307340855511944849149533604403870713397705309533293503411357398195660834489117 (92 digits) Mon Dec 08 04:06:31 2008 searching for 15-digit factors Mon Dec 08 04:06:32 2008 commencing quadratic sieve (92-digit input) Mon Dec 08 04:06:32 2008 using multiplier of 17 Mon Dec 08 04:06:32 2008 using 64kb Opteron sieve core Mon Dec 08 04:06:32 2008 sieve interval: 18 blocks of size 65536 Mon Dec 08 04:06:32 2008 processing polynomials in batches of 6 Mon Dec 08 04:06:32 2008 using a sieve bound of 1821649 (68071 primes) Mon Dec 08 04:06:32 2008 using large prime bound of 198559741 (27 bits) Mon Dec 08 04:06:32 2008 using double large prime bound of 863384216847394 (42-50 bits) Mon Dec 08 04:06:32 2008 using trial factoring cutoff of 50 bits Mon Dec 08 04:06:32 2008 polynomial 'A' values have 12 factors Mon Dec 08 05:39:54 2008 68410 relations (17341 full + 51069 combined from 862287 partial), need 68167 Mon Dec 08 05:39:56 2008 begin with 879628 relations Mon Dec 08 05:39:56 2008 reduce to 173079 relations in 9 passes Mon Dec 08 05:39:56 2008 attempting to read 173079 relations Mon Dec 08 05:39:58 2008 recovered 173079 relations Mon Dec 08 05:39:58 2008 recovered 155795 polynomials Mon Dec 08 05:39:59 2008 attempting to build 68410 cycles Mon Dec 08 05:39:59 2008 found 68410 cycles in 6 passes Mon Dec 08 05:39:59 2008 distribution of cycle lengths: Mon Dec 08 05:39:59 2008 length 1 : 17341 Mon Dec 08 05:39:59 2008 length 2 : 12441 Mon Dec 08 05:39:59 2008 length 3 : 11719 Mon Dec 08 05:39:59 2008 length 4 : 9251 Mon Dec 08 05:39:59 2008 length 5 : 6736 Mon Dec 08 05:39:59 2008 length 6 : 4614 Mon Dec 08 05:39:59 2008 length 7 : 2755 Mon Dec 08 05:39:59 2008 length 9+: 3553 Mon Dec 08 05:39:59 2008 largest cycle: 20 relations Mon Dec 08 05:39:59 2008 matrix is 68071 x 68410 (16.5 MB) with weight 4054670 (59.27/col) Mon Dec 08 05:39:59 2008 sparse part has weight 4054670 (59.27/col) Mon Dec 08 05:40:00 2008 filtering completed in 3 passes Mon Dec 08 05:40:00 2008 matrix is 64574 x 64638 (15.6 MB) with weight 3842697 (59.45/col) Mon Dec 08 05:40:00 2008 sparse part has weight 3842697 (59.45/col) Mon Dec 08 05:40:00 2008 saving the first 48 matrix rows for later Mon Dec 08 05:40:00 2008 matrix is 64526 x 64638 (8.6 MB) with weight 2872762 (44.44/col) Mon Dec 08 05:40:00 2008 sparse part has weight 1861575 (28.80/col) Mon Dec 08 05:40:00 2008 matrix includes 64 packed rows Mon Dec 08 05:40:00 2008 using block size 25855 for processor cache size 1024 kB Mon Dec 08 05:40:01 2008 commencing Lanczos iteration Mon Dec 08 05:40:01 2008 memory use: 9.2 MB Mon Dec 08 05:40:22 2008 lanczos halted after 1022 iterations (dim = 64525) Mon Dec 08 05:40:22 2008 recovered 17 nontrivial dependencies Mon Dec 08 05:40:23 2008 prp44 factor: 73116907767253706535802059911323219242216637 Mon Dec 08 05:40:23 2008 prp48 factor: 723125958039174656868976766045499019103903811041 Mon Dec 08 05:40:23 2008 elapsed time 01:33:52
(35·10187+1)/9 = 3(8)1869<188> = 3 · 13 · 229 · 6803 · 165946619 · 555455585147537219<18> · 4965159428650814398623665321<28> · 38675511208479660394046433269<29> · C98
C98 = P38 · P61
P38 = 29605251527267858956304593927958498437<38>
P61 = 1221431769936255690871056105778224165151337790826816109487361<61>
Number: n N=36160794772358817923915172072137409410750681709608392276080587830286144849317269422486703389754757 ( 98 digits) Divisors found: r1=29605251527267858956304593927958498437 (pp38) r2=1221431769936255690871056105778224165151337790826816109487361 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.53 hours. Scaled time: 6.43 units (timescale=1.822). Factorization parameters were as follows: name: KA_3_8_186_9 n: 36160794772358817923915172072137409410750681709608392276080587830286144849317269422486703389754757 type: gnfs deg: 5 Y0: -7718508806807778569 Y1: 8556960283 c0: -1881440187227872704236700 c1: -245159569682553927924 c2: 9366265390438051 c3: 211495474264 c4: -8181476 c5: 1320 skew: 17788.81 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:135072, AFBsize:135391, largePrimes:6590723 encountered Relations: rels:5511512, finalFF:306759 Max relations in full relation-set: 48 Initial matrix: 270544 x 306759 with sparse part having weight 15239130. Pruned matrix : 219444 x 220860 with weight 8001157. Total sieving time: 3.19 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.16 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,28,28,56,56,2.5,2.5,100000 total time: 3.53 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(35·10126+1)/9 = 3(8)1259<127> = 191 · 67114366454671786121<20> · C105
C105 = P35 · P71
P35 = 11448376571066039089838683423737211<35>
P71 = 26499200218749713130300387657045233622273874435357161710361980927082109<71>
Number: 38889_126 N=303372822936322273777801299985029471666532868396285446603379082502561345006703126181202303899414235657999 ( 105 digits) SNFS difficulty: 129 digits. Divisors found: r1=11448376571066039089838683423737211 r2=26499200218749713130300387657045233622273874435357161710361980927082109 Version: Total time: 3.51 hours. Scaled time: 2.74 units (timescale=0.781). Factorization parameters were as follows: n: 303372822936322273777801299985029471666532868396285446603379082502561345006703126181202303899414235657999 m: 50000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 855001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 146499 x 146741 Total sieving time: 3.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 3.51 hours. --------- CPU info (if available) ----------
(35·10133+1)/9 = 3(8)1329<134> = 3 · 13 · C132
C132 = P40 · P93
P40 = 2447766620080220042610121031721960294871<40>
P93 = 407371760432911602911335890107629294263445550349909740419175681492591667237407264967405890681<93>
Number: 38889_133 N=997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997151 ( 132 digits) SNFS difficulty: 135 digits. Divisors found: r1=2447766620080220042610121031721960294871 r2=407371760432911602911335890107629294263445550349909740419175681492591667237407264967405890681 Version: Total time: 3.86 hours. Scaled time: 8.25 units (timescale=2.137). Factorization parameters were as follows: n: 997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997151 m: 1000000000000000000000000000 deg: 5 c5: 7 c0: 20 skew: 1.23 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 153527 x 153775 Total sieving time: 3.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 3.86 hours. --------- CPU info (if available) ----------
(35·10139+1)/9 = 3(8)1389<140> = 32 · 13 · 19 · C137
C137 = P37 · P100
P37 = 4711525053547959827836928818968407243<37>
P100 = 3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301<100>
Number: 38889_139 N=17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 ( 137 digits) SNFS difficulty: 140 digits. Divisors found: r1=4711525053547959827836928818968407243 r2=3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301 Version: Total time: 6.83 hours. Scaled time: 5.38 units (timescale=0.788). Factorization parameters were as follows: n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194234 x 194482 Total sieving time: 6.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 6.83 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10130-17)/9 = 3(8)1297<131> = 37 · 1613 · 86467 · C121
C121 = P45 · P77
P45 = 127277577316998781516401903357718924380855137<45>
P77 = 59208921733784673577031498471236697681202219803320125271724133270956593801213<77>
Number: 38887_130 N=7535968113827908337130239897584722312102906490692631968995615240726178304140148339589240934436247096730415908026327881181 ( 121 digits) SNFS difficulty: 131 digits. Divisors found: r1=127277577316998781516401903357718924380855137 (pp45) r2=59208921733784673577031498471236697681202219803320125271724133270956593801213 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.96 hours. Scaled time: 4.69 units (timescale=2.390). Factorization parameters were as follows: n: 7535968113827908337130239897584722312102906490692631968995615240726178304140148339589240934436247096730415908026327881181 m: 100000000000000000000000000 deg: 5 c5: 35 c0: -17 skew: 0.87 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: RFBsize:85714, AFBsize:85279, largePrimes:2780587 encountered Relations: rels:2677317, finalFF:215170 Max relations in full relation-set: 28 Initial matrix: 171059 x 215170 with sparse part having weight 16356712. Pruned matrix : 154672 x 155591 with weight 9196114. Total sieving time: 1.85 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 1.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(35·10153+1)/9 = 3(8)1529<154> = 337 · 171847463083151491501<21> · 38559715265314947042590710270001<32> · C100
C100 = P47 · P54
P47 = 17390443877201234143891250701031139775259666719<47>
P54 = 100140100604561495228549337527256127066996322341408163<54>
Number: 38889_153 N=1741480799420912060381633191641537647280854501099135630013427896115275142592545214586443180526027197 ( 100 digits) Divisors found: r1=17390443877201234143891250701031139775259666719 (pp47) r2=100140100604561495228549337527256127066996322341408163 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.09 hours. Scaled time: 7.37 units (timescale=2.384). Factorization parameters were as follows: name: 38889_153 n: 1741480799420912060381633191641537647280854501099135630013427896115275142592545214586443180526027197 skew: 4056.81 # norm 1.30e+14 c5: 257760 c4: 2090628702 c3: -3214280028439 c2: 537488420607485 c1: -74787744966472671293 c0: -1601189094816443285975 # alpha -6.48 Y1: 47075126663 Y0: -5833577188547807742 # Murphy_E 3.59e-09 # M 697301709306757961896643942013299387594224137239616960663069866613643106139141792408406178409303908 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [600000, 1100001) Primes: RFBsize:92938, AFBsize:92632, largePrimes:4255351 encountered Relations: rels:4164335, finalFF:279051 Max relations in full relation-set: 28 Initial matrix: 185648 x 279051 with sparse part having weight 25553704. Pruned matrix : 147853 x 148845 with weight 10911122. Polynomial selection time: 0.25 hours. Total sieving time: 2.67 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,49,49,2.5,2.5,50000 total time: 3.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(35·10127-17)/9 = 3(8)1267<128> = 37 · 1649510569739<13> · C114
C114 = P48 · P67
P48 = 390752729727494409677256101481138223351378730947<48>
P67 = 1630672275638178028977091023427467641772116201128430345768992206347<67>
Number: 38887_127 N=637189642996563245953103567105248123427011935586142479971519211497758129098842890558651615968037793670342418720609 ( 114 digits) SNFS difficulty: 129 digits. Divisors found: r1=390752729727494409677256101481138223351378730947 (pp48) r2=1630672275638178028977091023427467641772116201128430345768992206347 (pp67) Version: Total time: 2.68 hours. Scaled time: 6.87 units (timescale=2.564). Factorization parameters were as follows: name: 38887_127 n: 637189642996563245953103567105248123427011935586142479971519211497758129098842890558651615968037793670342418720609 m: 50000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 915001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137200 x 137448 Total sieving time: 2.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 2.68 hours. --------- CPU info (if available) ----------
(35·10127+1)/9 = 3(8)1269<128> = 3 · 13 · 599 · 7151 · 35509 · 3897717493<10> · 1968303984853<13> · C93
C93 = P45 · P49
P45 = 157350569567152147220378732576837537803910029<45>
P49 = 5430727809728405538160402721839618815472716167071<49>
Mon Dec 08 00:32:03 2008 Msieve v. 1.39 Mon Dec 08 00:32:03 2008 random seeds: e7b531dc ad242115 Mon Dec 08 00:32:03 2008 factoring 854528114024937285149180181082706516562243298748907804692499306233913113780933046705816455059 (93 digits) Mon Dec 08 00:32:04 2008 searching for 15-digit factors Mon Dec 08 00:32:06 2008 commencing quadratic sieve (93-digit input) Mon Dec 08 00:32:06 2008 using multiplier of 1 Mon Dec 08 00:32:06 2008 using 32kb Intel Core sieve core Mon Dec 08 00:32:06 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 00:32:06 2008 processing polynomials in batches of 6 Mon Dec 08 00:32:06 2008 using a sieve bound of 1955507 (72941 primes) Mon Dec 08 00:32:06 2008 using large prime bound of 244438375 (27 bits) Mon Dec 08 00:32:06 2008 using double large prime bound of 1255176633760875 (42-51 bits) Mon Dec 08 00:32:06 2008 using trial factoring cutoff of 51 bits Mon Dec 08 00:32:06 2008 polynomial 'A' values have 12 factors Mon Dec 08 00:32:07 2008 restarting with 18545 full and 992963 partial relations Mon Dec 08 00:32:07 2008 73156 relations (18545 full + 54611 combined from 992963 partial), need 73037 Mon Dec 08 00:32:09 2008 begin with 1011508 relations Mon Dec 08 00:32:09 2008 reduce to 186763 relations in 11 passes Mon Dec 08 00:32:09 2008 attempting to read 186763 relations Mon Dec 08 00:32:12 2008 recovered 186763 relations Mon Dec 08 00:32:12 2008 recovered 167544 polynomials Mon Dec 08 00:32:12 2008 attempting to build 73156 cycles Mon Dec 08 00:32:12 2008 found 73156 cycles in 6 passes Mon Dec 08 00:32:12 2008 distribution of cycle lengths: Mon Dec 08 00:32:12 2008 length 1 : 18545 Mon Dec 08 00:32:12 2008 length 2 : 13105 Mon Dec 08 00:32:12 2008 length 3 : 12618 Mon Dec 08 00:32:12 2008 length 4 : 9872 Mon Dec 08 00:32:12 2008 length 5 : 7239 Mon Dec 08 00:32:12 2008 length 6 : 4869 Mon Dec 08 00:32:12 2008 length 7 : 2996 Mon Dec 08 00:32:12 2008 length 9+: 3912 Mon Dec 08 00:32:12 2008 largest cycle: 20 relations Mon Dec 08 00:32:13 2008 matrix is 72941 x 73156 (17.9 MB) with weight 4398131 (60.12/col) Mon Dec 08 00:32:13 2008 sparse part has weight 4398131 (60.12/col) Mon Dec 08 00:32:14 2008 filtering completed in 3 passes Mon Dec 08 00:32:14 2008 matrix is 69011 x 69075 (17.0 MB) with weight 4177621 (60.48/col) Mon Dec 08 00:32:14 2008 sparse part has weight 4177621 (60.48/col) Mon Dec 08 00:32:14 2008 saving the first 48 matrix rows for later Mon Dec 08 00:32:14 2008 matrix is 68963 x 69075 (9.5 MB) with weight 3140818 (45.47/col) Mon Dec 08 00:32:14 2008 sparse part has weight 2063060 (29.87/col) Mon Dec 08 00:32:14 2008 matrix includes 64 packed rows Mon Dec 08 00:32:14 2008 using block size 27630 for processor cache size 1024 kB Mon Dec 08 00:32:14 2008 commencing Lanczos iteration Mon Dec 08 00:32:14 2008 memory use: 10.0 MB Mon Dec 08 00:32:42 2008 lanczos halted after 1092 iterations (dim = 68963) Mon Dec 08 00:32:42 2008 recovered 18 nontrivial dependencies Mon Dec 08 00:32:46 2008 prp45 factor: 157350569567152147220378732576837537803910029 Mon Dec 08 00:32:46 2008 prp49 factor: 5430727809728405538160402721839618815472716167071 Mon Dec 08 00:32:46 2008 elapsed time 00:00:43
(35·10123+1)/9 = 3(8)1229<124> = 1381587624671<13> · 163716152369726009<18> · C95
C95 = P47 · P49
P47 = 10384299710970978120359331535825259223245131889<47>
P49 = 1655687449944933127582920897860547628511068233359<49>
Mon Dec 08 00:41:26 2008 Msieve v. 1.39 Mon Dec 08 00:41:26 2008 random seeds: 990eccb8 bafb8508 Mon Dec 08 00:41:26 2008 factoring 17193154707921444880778784466587728861787010649828655825384072319952296591978219433508184485151 (95 digits) Mon Dec 08 00:41:27 2008 searching for 15-digit factors Mon Dec 08 00:41:28 2008 commencing quadratic sieve (95-digit input) Mon Dec 08 00:41:29 2008 using multiplier of 1 Mon Dec 08 00:41:29 2008 using 32kb Intel Core sieve core Mon Dec 08 00:41:29 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 00:41:29 2008 processing polynomials in batches of 6 Mon Dec 08 00:41:29 2008 using a sieve bound of 2121809 (78824 primes) Mon Dec 08 00:41:29 2008 using large prime bound of 309784114 (28 bits) Mon Dec 08 00:41:29 2008 using double large prime bound of 1922677272029798 (43-51 bits) Mon Dec 08 00:41:29 2008 using trial factoring cutoff of 51 bits Mon Dec 08 00:41:29 2008 polynomial 'A' values have 12 factors Mon Dec 08 03:57:17 2008 79248 relations (19467 full + 59781 combined from 1165661 partial), need 78920 Mon Dec 08 03:57:18 2008 begin with 1185128 relations Mon Dec 08 03:57:19 2008 reduce to 205915 relations in 10 passes Mon Dec 08 03:57:19 2008 attempting to read 205915 relations Mon Dec 08 03:57:22 2008 recovered 205915 relations Mon Dec 08 03:57:22 2008 recovered 187922 polynomials Mon Dec 08 03:57:22 2008 attempting to build 79248 cycles Mon Dec 08 03:57:23 2008 found 79248 cycles in 6 passes Mon Dec 08 03:57:23 2008 distribution of cycle lengths: Mon Dec 08 03:57:23 2008 length 1 : 19467 Mon Dec 08 03:57:23 2008 length 2 : 14006 Mon Dec 08 03:57:23 2008 length 3 : 13415 Mon Dec 08 03:57:23 2008 length 4 : 10803 Mon Dec 08 03:57:23 2008 length 5 : 7969 Mon Dec 08 03:57:23 2008 length 6 : 5401 Mon Dec 08 03:57:23 2008 length 7 : 3458 Mon Dec 08 03:57:23 2008 length 9+: 4729 Mon Dec 08 03:57:23 2008 largest cycle: 18 relations Mon Dec 08 03:57:23 2008 matrix is 78824 x 79248 (20.8 MB) with weight 5128928 (64.72/col) Mon Dec 08 03:57:23 2008 sparse part has weight 5128928 (64.72/col) Mon Dec 08 03:57:24 2008 filtering completed in 3 passes Mon Dec 08 03:57:24 2008 matrix is 74893 x 74957 (19.7 MB) with weight 4864632 (64.90/col) Mon Dec 08 03:57:24 2008 sparse part has weight 4864632 (64.90/col) Mon Dec 08 03:57:24 2008 saving the first 48 matrix rows for later Mon Dec 08 03:57:25 2008 matrix is 74845 x 74957 (12.3 MB) with weight 3834680 (51.16/col) Mon Dec 08 03:57:25 2008 sparse part has weight 2778669 (37.07/col) Mon Dec 08 03:57:25 2008 matrix includes 64 packed rows Mon Dec 08 03:57:25 2008 using block size 29982 for processor cache size 1024 kB Mon Dec 08 03:57:25 2008 commencing Lanczos iteration Mon Dec 08 03:57:25 2008 memory use: 11.9 MB Mon Dec 08 03:58:03 2008 lanczos halted after 1185 iterations (dim = 74843) Mon Dec 08 03:58:03 2008 recovered 16 nontrivial dependencies Mon Dec 08 03:58:03 2008 prp47 factor: 10384299710970978120359331535825259223245131889 Mon Dec 08 03:58:03 2008 prp49 factor: 1655687449944933127582920897860547628511068233359 Mon Dec 08 03:58:03 2008 elapsed time 03:16:37
(35·10113-17)/9 = 3(8)1127<114> = 3 · 23 · 67 · 2361307315329023<16> · C95
C95 = P39 · P56
P39 = 510712342028689440749924324396136884587<39>
P56 = 69754587631347514921265069039903044640326990855644594869<56>
Sun Dec 07 20:48:43 2008 Msieve v. 1.39 Sun Dec 07 20:48:43 2008 random seeds: 9d53de6c 2ca7d064 Sun Dec 07 20:48:43 2008 factoring 35624528816450942070204177663612725669850609496941878573455438512547059853912180811111425384103 (95 digits) Sun Dec 07 20:48:45 2008 searching for 15-digit factors Sun Dec 07 20:48:46 2008 commencing quadratic sieve (95-digit input) Sun Dec 07 20:48:47 2008 using multiplier of 2 Sun Dec 07 20:48:47 2008 using 64kb Pentium 4 sieve core Sun Dec 07 20:48:47 2008 sieve interval: 18 blocks of size 65536 Sun Dec 07 20:48:47 2008 processing polynomials in batches of 6 Sun Dec 07 20:48:47 2008 using a sieve bound of 2158631 (80000 primes) Sun Dec 07 20:48:47 2008 using large prime bound of 323794650 (28 bits) Sun Dec 07 20:48:47 2008 using double large prime bound of 2082022265125500 (43-51 bits) Sun Dec 07 20:48:47 2008 using trial factoring cutoff of 51 bits Sun Dec 07 20:48:47 2008 polynomial 'A' values have 12 factors Mon Dec 08 03:33:54 2008 80284 relations (19242 full + 61042 combined from 1208021 partial), need 80096 Mon Dec 08 03:33:58 2008 begin with 1227263 relations Mon Dec 08 03:34:00 2008 reduce to 211385 relations in 11 passes Mon Dec 08 03:34:00 2008 attempting to read 211385 relations Mon Dec 08 03:34:03 2008 recovered 211385 relations Mon Dec 08 03:34:03 2008 recovered 196533 polynomials Mon Dec 08 03:34:03 2008 attempting to build 80284 cycles Mon Dec 08 03:34:03 2008 found 80284 cycles in 6 passes Mon Dec 08 03:34:03 2008 distribution of cycle lengths: Mon Dec 08 03:34:03 2008 length 1 : 19242 Mon Dec 08 03:34:03 2008 length 2 : 13846 Mon Dec 08 03:34:03 2008 length 3 : 13272 Mon Dec 08 03:34:03 2008 length 4 : 10949 Mon Dec 08 03:34:03 2008 length 5 : 8330 Mon Dec 08 03:34:03 2008 length 6 : 5672 Mon Dec 08 03:34:03 2008 length 7 : 3678 Mon Dec 08 03:34:03 2008 length 9+: 5295 Mon Dec 08 03:34:03 2008 largest cycle: 19 relations Mon Dec 08 03:34:04 2008 matrix is 80000 x 80284 (21.6 MB) with weight 5346435 (66.59/col) Mon Dec 08 03:34:04 2008 sparse part has weight 5346435 (66.59/col) Mon Dec 08 03:34:06 2008 filtering completed in 3 passes Mon Dec 08 03:34:06 2008 matrix is 76631 x 76695 (20.7 MB) with weight 5129508 (66.88/col) Mon Dec 08 03:34:06 2008 sparse part has weight 5129508 (66.88/col) Mon Dec 08 03:34:06 2008 saving the first 48 matrix rows for later Mon Dec 08 03:34:06 2008 matrix is 76583 x 76695 (13.4 MB) with weight 4075545 (53.14/col) Mon Dec 08 03:34:06 2008 sparse part has weight 3055081 (39.83/col) Mon Dec 08 03:34:06 2008 matrix includes 64 packed rows Mon Dec 08 03:34:06 2008 using block size 21845 for processor cache size 512 kB Mon Dec 08 03:34:08 2008 commencing Lanczos iteration Mon Dec 08 03:34:08 2008 memory use: 12.7 MB Mon Dec 08 03:35:14 2008 lanczos halted after 1213 iterations (dim = 76581) Mon Dec 08 03:35:14 2008 recovered 16 nontrivial dependencies Mon Dec 08 03:35:17 2008 prp39 factor: 510712342028689440749924324396136884587 Mon Dec 08 03:35:17 2008 prp56 factor: 69754587631347514921265069039903044640326990855644594869 Mon Dec 08 03:35:17 2008 elapsed time 06:46:34
(35·10136+1)/9 = 3(8)1359<137> = 3 · 17 · 5417 · 1119871 · 358467107 · C117
C117 = P39 · P78
P39 = 951810720294636454280684312778970536173<39>
P78 = 368407634918623356591770151280494496467035113520864797303587770043237865921507<78>
Number: 38889_136 N=350654336353938357728785501942232737329533148552772496868237294826954356212463033993097425351850866108036592522172711 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=951810720294636454280684312778970536173 (pp39) r2=368407634918623356591770151280494496467035113520864797303587770043237865921507 (pp78) Version: Total time: 5.38 hours. Scaled time: 13.86 units (timescale=2.575). Factorization parameters were as follows: name: 38889_136 n: 350654336353938357728785501942232737329533148552772496868237294826954356212463033993097425351850866108036592522172711 m: 5000000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 1490000 alim: 1490000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1490000/1490000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [745000, 1495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 217203 x 217451 Total sieving time: 5.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1490000,1490000,26,26,48,48,2.3,2.3,75000 total time: 5.38 hours. --------- CPU info (if available) ----------
(35·10144-17)/9 = 3(8)1437<145> = 107590361 · 376107998117<12> · C125
C125 = P59 · P67
P59 = 21426550966873432966355113684930427555362915856005664850821<59>
P67 = 4485257002846199926844351970859416404519415299681016964991792241031<67>
Number: 38887_144 N=96103587771010081120816982038935197024462227340896770922811350265604804162609970300269923694765800293325172370070865890236451 ( 125 digits) SNFS difficulty: 145 digits. Divisors found: r1=21426550966873432966355113684930427555362915856005664850821 (pp59) r2=4485257002846199926844351970859416404519415299681016964991792241031 (pp67) Version: Total time: 7.82 hours. Scaled time: 20.06 units (timescale=2.564). Factorization parameters were as follows: name: 38887_144 n: 96103587771010081120816982038935197024462227340896770922811350265604804162609970300269923694765800293325172370070865890236451 m: 100000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 1945001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 308413 x 308661 Total sieving time: 7.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 7.82 hours. --------- CPU info (if available) ----------
(35·10128-17)/9 = 3(8)1277<129> = 32 · 43 · 2557 · 1744978463<10> · 479702072115780301<18> · C96
C96 = P48 · P48
P48 = 614114184448342236450430905615224850081743454187<48>
P48 = 764492180582182386904576547379784128078297585553<48>
Mon Dec 08 06:06:03 2008 Msieve v. 1.39 Mon Dec 08 06:06:03 2008 random seeds: 44322e90 aab5a9bf Mon Dec 08 06:06:03 2008 factoring 469485491995361715464158650599678862392194433114786077454834953798678154555724651083604368560411 (96 digits) Mon Dec 08 06:06:04 2008 searching for 15-digit factors Mon Dec 08 06:06:05 2008 commencing quadratic sieve (96-digit input) Mon Dec 08 06:06:05 2008 using multiplier of 1 Mon Dec 08 06:06:05 2008 using 32kb Intel Core sieve core Mon Dec 08 06:06:05 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 06:06:05 2008 processing polynomials in batches of 6 Mon Dec 08 06:06:05 2008 using a sieve bound of 2258279 (83529 primes) Mon Dec 08 06:06:05 2008 using large prime bound of 338741850 (28 bits) Mon Dec 08 06:06:05 2008 using double large prime bound of 2258207977125450 (43-52 bits) Mon Dec 08 06:06:05 2008 using trial factoring cutoff of 52 bits Mon Dec 08 06:06:05 2008 polynomial 'A' values have 12 factors Mon Dec 08 10:51:26 2008 83650 relations (19810 full + 63840 combined from 1265744 partial), need 83625 Mon Dec 08 10:51:28 2008 begin with 1285554 relations Mon Dec 08 10:51:29 2008 reduce to 220757 relations in 10 passes Mon Dec 08 10:51:29 2008 attempting to read 220757 relations Mon Dec 08 10:51:32 2008 recovered 220757 relations Mon Dec 08 10:51:32 2008 recovered 206454 polynomials Mon Dec 08 10:51:32 2008 attempting to build 83650 cycles Mon Dec 08 10:51:32 2008 found 83650 cycles in 6 passes Mon Dec 08 10:51:32 2008 distribution of cycle lengths: Mon Dec 08 10:51:32 2008 length 1 : 19810 Mon Dec 08 10:51:33 2008 length 2 : 14243 Mon Dec 08 10:51:33 2008 length 3 : 14030 Mon Dec 08 10:51:33 2008 length 4 : 11306 Mon Dec 08 10:51:33 2008 length 5 : 8908 Mon Dec 08 10:51:33 2008 length 6 : 6070 Mon Dec 08 10:51:33 2008 length 7 : 3862 Mon Dec 08 10:51:33 2008 length 9+: 5421 Mon Dec 08 10:51:33 2008 largest cycle: 21 relations Mon Dec 08 10:51:33 2008 matrix is 83529 x 83650 (23.4 MB) with weight 5791731 (69.24/col) Mon Dec 08 10:51:33 2008 sparse part has weight 5791731 (69.24/col) Mon Dec 08 10:51:34 2008 filtering completed in 3 passes Mon Dec 08 10:51:34 2008 matrix is 80003 x 80067 (22.5 MB) with weight 5587408 (69.78/col) Mon Dec 08 10:51:34 2008 sparse part has weight 5587408 (69.78/col) Mon Dec 08 10:51:34 2008 saving the first 48 matrix rows for later Mon Dec 08 10:51:34 2008 matrix is 79955 x 80067 (16.1 MB) with weight 4638087 (57.93/col) Mon Dec 08 10:51:34 2008 sparse part has weight 3734057 (46.64/col) Mon Dec 08 10:51:34 2008 matrix includes 64 packed rows Mon Dec 08 10:51:34 2008 using block size 32026 for processor cache size 1024 kB Mon Dec 08 10:51:35 2008 commencing Lanczos iteration Mon Dec 08 10:51:35 2008 memory use: 14.4 MB Mon Dec 08 10:52:21 2008 lanczos halted after 1266 iterations (dim = 79955) Mon Dec 08 10:52:22 2008 recovered 18 nontrivial dependencies Mon Dec 08 10:52:22 2008 prp48 factor: 614114184448342236450430905615224850081743454187 Mon Dec 08 10:52:22 2008 prp48 factor: 764492180582182386904576547379784128078297585553 Mon Dec 08 10:52:22 2008 elapsed time 04:46:19
By Erik Branger / GGNFS, Msieve
(35·10134-17)/9 = 3(8)1337<135> = 3 · C135
C135 = P63 · P72
P63 = 969728384217945564797275207754143001546059800826738657962986323<63>
P72 = 133676224950527476034793786904878991749286703030637898637843016107605423<72>
Number: 38887_134 N=129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 ( 135 digits) SNFS difficulty: 135 digits. Divisors found: r1=969728384217945564797275207754143001546059800826738657962986323 r2=133676224950527476034793786904878991749286703030637898637843016107605423 Version: Total time: 5.12 hours. Scaled time: 10.84 units (timescale=2.116). Factorization parameters were as follows: n: 129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 m: 1000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1170001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 169326 x 169574 Total sieving time: 5.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 5.12 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10167+1)/9 = 3(8)1669<168> = 9399905186263<13> · 1641584855370881<16> · 117604162223291467981<21> · 127461987854538798090991<24> · C97
C97 = P39 · P58
P39 = 233497123122207430579337078165623812031<39>
P58 = 7200353378046645802084948687027325444285796669256644994363<58>
Number: 38889_167 N=1681261799237159840181193611414121235472148120751084549550605549646798210799635338358074566581253 ( 97 digits) Divisors found: r1=233497123122207430579337078165623812031 (pp39) r2=7200353378046645802084948687027325444285796669256644994363 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.18 hours. Scaled time: 5.22 units (timescale=2.390). Factorization parameters were as follows: name: 38889_167 n: 1681261799237159840181193611414121235472148120751084549550605549646798210799635338358074566581253 skew: 3433.58 # norm 1.68e+13 c5: 91320 c4: 360438986 c3: -610587742497 c2: -6706059088479814 c1: -187956054008070948 c0: 23649595112677456900133 # alpha -5.65 Y1: 10539400673 Y0: -1790654797890799296 # Murphy_E 5.13e-09 # M 511710912310871436142349479089457306917743183735526473683559315200237212626896620639101168005244 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78521, largePrimes:3968793 encountered Relations: rels:3760914, finalFF:213126 Max relations in full relation-set: 28 Initial matrix: 157102 x 213126 with sparse part having weight 18320617. Pruned matrix : 132960 x 133809 with weight 8773894. Polynomial selection time: 0.18 hours. Total sieving time: 1.87 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(35·10132-17)/9 = 3(8)1317<133> = 61 · 167 · 197 · 1087 · 917117 · 349527261719<12> · 381821911376033779003<21> · C86
C86 = P37 · P49
P37 = 2618098890081871199911145483496466417<37>
P49 = 5563278048469018825873033722128510859501955470983<49>
Sun Dec 07 17:50:29 2008 Msieve v. 1.38 Sun Dec 07 17:50:29 2008 random seeds: 53c431d4 fec442a7 Sun Dec 07 17:50:29 2008 factoring 14565212083913576636674787221762602499347453906972766910220957675632824256961477477911 (86 digits) Sun Dec 07 17:50:32 2008 searching for 15-digit factors Sun Dec 07 17:50:37 2008 commencing quadratic sieve (86-digit input) Sun Dec 07 17:50:38 2008 using multiplier of 11 Sun Dec 07 17:50:38 2008 using 64kb Pentium 2 sieve core Sun Dec 07 17:50:38 2008 sieve interval: 6 blocks of size 65536 Sun Dec 07 17:50:38 2008 processing polynomials in batches of 17 Sun Dec 07 17:50:38 2008 using a sieve bound of 1438057 (55000 primes) Sun Dec 07 17:50:38 2008 using large prime bound of 115044560 (26 bits) Sun Dec 07 17:50:38 2008 using double large prime bound of 323265089678720 (41-49 bits) Sun Dec 07 17:50:38 2008 using trial factoring cutoff of 49 bits Sun Dec 07 17:50:38 2008 polynomial 'A' values have 11 factors Sun Dec 07 22:58:04 2008 55301 relations (15869 full + 39432 combined from 573043 partial), need 55096 Sun Dec 07 22:58:09 2008 begin with 588912 relations Sun Dec 07 22:58:10 2008 reduce to 130015 relations in 9 passes Sun Dec 07 22:58:10 2008 attempting to read 130015 relations Sun Dec 07 22:58:16 2008 recovered 130015 relations Sun Dec 07 22:58:16 2008 recovered 112568 polynomials Sun Dec 07 22:58:17 2008 attempting to build 55301 cycles Sun Dec 07 22:58:17 2008 found 55301 cycles in 5 passes Sun Dec 07 22:58:20 2008 distribution of cycle lengths: Sun Dec 07 22:58:20 2008 length 1 : 15869 Sun Dec 07 22:58:20 2008 length 2 : 11102 Sun Dec 07 22:58:20 2008 length 3 : 9828 Sun Dec 07 22:58:20 2008 length 4 : 7335 Sun Dec 07 22:58:20 2008 length 5 : 4744 Sun Dec 07 22:58:20 2008 length 6 : 2982 Sun Dec 07 22:58:20 2008 length 7 : 1670 Sun Dec 07 22:58:20 2008 length 9+: 1771 Sun Dec 07 22:58:20 2008 largest cycle: 19 relations Sun Dec 07 22:58:21 2008 matrix is 55000 x 55301 (12.5 MB) with weight 3043221 (55.03/col) Sun Dec 07 22:58:21 2008 sparse part has weight 3043221 (55.03/col) Sun Dec 07 22:58:25 2008 filtering completed in 3 passes Sun Dec 07 22:58:25 2008 matrix is 49878 x 49941 (11.3 MB) with weight 2772025 (55.51/col) Sun Dec 07 22:58:26 2008 sparse part has weight 2772025 (55.51/col) Sun Dec 07 22:58:28 2008 saving the first 48 matrix rows for later Sun Dec 07 22:58:28 2008 matrix is 49830 x 49941 (7.3 MB) with weight 2195446 (43.96/col) Sun Dec 07 22:58:28 2008 sparse part has weight 1610296 (32.24/col) Sun Dec 07 22:58:28 2008 matrix includes 64 packed rows Sun Dec 07 22:58:28 2008 using block size 5461 for processor cache size 128 kB Sun Dec 07 22:58:29 2008 commencing Lanczos iteration Sun Dec 07 22:58:29 2008 memory use: 7.3 MB Sun Dec 07 23:00:40 2008 lanczos halted after 789 iterations (dim = 49826) Sun Dec 07 23:00:41 2008 recovered 15 nontrivial dependencies Sun Dec 07 23:00:44 2008 prp37 factor: 2618098890081871199911145483496466417 Sun Dec 07 23:00:44 2008 prp49 factor: 5563278048469018825873033722128510859501955470983 Sun Dec 07 23:00:44 2008 elapsed time 05:10:15
By Erik Branger / GGNFS, Msieve
(23·10177+31)/9 = 2(5)1769<178> = 33 · 53 · 20521 · 25177684816667351<17> · C154
C154 = P42 · P112
P42 = 519620774710320798463766416667482050915119<42>
P112 = 6651887165827614470553363180110159612057894005166560172816585853798701521249789037346745006909602267998822481361<112>
Number: 25559_177 N=3456458762392985184684090100084040703301574082824617112870666857245245353646180549347304821656855905830979532981615933356972470985629517509741500370596959 ( 154 digits) SNFS difficulty: 179 digits. Divisors found: r1=519620774710320798463766416667482050915119 r2=6651887165827614470553363180110159612057894005166560172816585853798701521249789037346745006909602267998822481361 Version: Total time: 210.17 hours. Scaled time: 444.73 units (timescale=2.116). Factorization parameters were as follows: n: 3456458762392985184684090100084040703301574082824617112870666857245245353646180549347304821656855905830979532981615933356972470985629517509741500370596959 m: 200000000000000000000000000000000000 deg: 5 c5: 575 c0: 248 skew: 0.85 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 9900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1532523 x 1532771 Total sieving time: 210.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 210.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10168-71)/9 = 3(8)1671<169> = 10873724311<11> · 14303299735272000932427365334907044020341<41> · C119
C119 = P49 · P70
P49 = 9393326677884059649378589506343491190606750272193<49>
P70 = 2661898864995912156338864781434885655844161180750727978984078940447867<70>
Number: 38881_168 N=25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331 ( 119 digits) Divisors found: r1=9393326677884059649378589506343491190606750272193 (pp49) r2=2661898864995912156338864781434885655844161180750727978984078940447867 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 33.72 hours. Scaled time: 80.17 units (timescale=2.378). Factorization parameters were as follows: name: 38881_168 n: 25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331 skew: 55789.87 # norm 2.91e+16 c5: 50400 c4: -22670790084 c3: -576283113585857 c2: 77180010939996291587 c1: 1122099080230336208850255 c0: 321885631905066599984363475 # alpha -6.81 Y1: 3012571527971 Y0: -54842625079834511542186 # Murphy_E 3.61e-10 # M 11373750039980250020583137353018721562472880609089940211327385554674139944690464666740219551261430950451632264704464388 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:282457, largePrimes:9377636 encountered Relations: rels:9555591, finalFF:780301 Max relations in full relation-set: 28 Initial matrix: 565684 x 780301 with sparse part having weight 80887021. Pruned matrix : 416351 x 419243 with weight 55103470. Polynomial selection time: 2.27 hours. Total sieving time: 29.64 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.49 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 33.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(35·10165-71)/9 = 3(8)1641<166> = 347 · 683 · C161
C161 = P59 · P103
P59 = 13731007978254981814404167377815346660212103899723511183019<59>
P103 = 1195013845155755906706283527067698572345276426831342688089512781690087911568759714098174429125702367099<103>
Number: 38881_165 N=16408744641958847806080518178779367550722945847860932607410470373073906392331209104134112889350209023965674781494124028543714536600642566440179108480086113091881 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: r1=13731007978254981814404167377815346660212103899723511183019 (pp59) r2=1195013845155755906706283527067698572345276426831342688089512781690087911568759714098174429125702367099 (pp103) Version: GGNFS-0.77.1-20060513-nocona Total time: 84.76 hours. Scaled time: 218.25 units (timescale=2.575). Factorization parameters were as follows: name: 38881_165 n: 16408744641958847806080518178779367550722945847860932607410470373073906392331209104134112889350209023965674781494124028543714536600642566440179108480086113091881 m: 1000000000000000000000000000000000 deg: 5 c5: 35 c0: -71 skew: 1.15 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 5000001) Primes: RFBsize:296314, AFBsize:295812, largePrimes:9820806 encountered Relations: rels:10979704, finalFF:994308 Max relations in full relation-set: 28 Initial matrix: 592192 x 994308 with sparse part having weight 129937602. Pruned matrix : 457177 x 460201 with weight 81941478. Total sieving time: 81.00 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.38 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 84.76 hours. --------- CPU info (if available) ----------
(35·10117+1)/9 = 3(8)1169<118> = 23671 · 27783859669<11> · 586508325901909<15> · C89
C89 = P43 · P46
P43 = 2220068530298034077903598290054113895052823<43>
P46 = 4541253968601200953821721286835487419928638673<46>
Sun Dec 07 17:46:57 2008 Msieve v. 1.39 Sun Dec 07 17:46:57 2008 random seeds: 3fb265a8 0d06a882 Sun Dec 07 17:46:57 2008 factoring 10081895023782582796843701887427849048952509971025379579156894880001019382626551815623879 (89 digits) Sun Dec 07 17:46:58 2008 searching for 15-digit factors Sun Dec 07 17:46:59 2008 commencing quadratic sieve (89-digit input) Sun Dec 07 17:46:59 2008 using multiplier of 1 Sun Dec 07 17:46:59 2008 using 32kb Intel Core sieve core Sun Dec 07 17:46:59 2008 sieve interval: 28 blocks of size 32768 Sun Dec 07 17:46:59 2008 processing polynomials in batches of 8 Sun Dec 07 17:46:59 2008 using a sieve bound of 1531987 (58333 primes) Sun Dec 07 17:46:59 2008 using large prime bound of 122558960 (26 bits) Sun Dec 07 17:46:59 2008 using double large prime bound of 362260509321760 (42-49 bits) Sun Dec 07 17:46:59 2008 using trial factoring cutoff of 49 bits Sun Dec 07 17:46:59 2008 polynomial 'A' values have 11 factors Sun Dec 07 18:41:15 2008 58459 relations (15782 full + 42677 combined from 616373 partial), need 58429 Sun Dec 07 18:41:16 2008 begin with 632155 relations Sun Dec 07 18:41:16 2008 reduce to 141998 relations in 9 passes Sun Dec 07 18:41:16 2008 attempting to read 141998 relations Sun Dec 07 18:41:18 2008 recovered 141998 relations Sun Dec 07 18:41:18 2008 recovered 118175 polynomials Sun Dec 07 18:41:18 2008 attempting to build 58459 cycles Sun Dec 07 18:41:18 2008 found 58459 cycles in 5 passes Sun Dec 07 18:41:18 2008 distribution of cycle lengths: Sun Dec 07 18:41:18 2008 length 1 : 15782 Sun Dec 07 18:41:18 2008 length 2 : 11280 Sun Dec 07 18:41:18 2008 length 3 : 10154 Sun Dec 07 18:41:18 2008 length 4 : 7755 Sun Dec 07 18:41:18 2008 length 5 : 5534 Sun Dec 07 18:41:18 2008 length 6 : 3408 Sun Dec 07 18:41:18 2008 length 7 : 2047 Sun Dec 07 18:41:18 2008 length 9+: 2499 Sun Dec 07 18:41:18 2008 largest cycle: 19 relations Sun Dec 07 18:41:18 2008 matrix is 58333 x 58459 (13.8 MB) with weight 3395424 (58.08/col) Sun Dec 07 18:41:18 2008 sparse part has weight 3395424 (58.08/col) Sun Dec 07 18:41:19 2008 filtering completed in 3 passes Sun Dec 07 18:41:19 2008 matrix is 54314 x 54378 (13.0 MB) with weight 3193846 (58.73/col) Sun Dec 07 18:41:19 2008 sparse part has weight 3193846 (58.73/col) Sun Dec 07 18:41:19 2008 saving the first 48 matrix rows for later Sun Dec 07 18:41:19 2008 matrix is 54266 x 54378 (8.4 MB) with weight 2474532 (45.51/col) Sun Dec 07 18:41:19 2008 sparse part has weight 1876656 (34.51/col) Sun Dec 07 18:41:19 2008 matrix includes 64 packed rows Sun Dec 07 18:41:19 2008 using block size 21751 for processor cache size 1024 kB Sun Dec 07 18:41:20 2008 commencing Lanczos iteration Sun Dec 07 18:41:20 2008 memory use: 8.2 MB Sun Dec 07 18:41:37 2008 lanczos halted after 859 iterations (dim = 54264) Sun Dec 07 18:41:37 2008 recovered 16 nontrivial dependencies Sun Dec 07 18:41:38 2008 prp43 factor: 2220068530298034077903598290054113895052823 Sun Dec 07 18:41:38 2008 prp46 factor: 4541253968601200953821721286835487419928638673 Sun Dec 07 18:41:38 2008 elapsed time 00:54:41
(35·10161-17)/9 = 3(8)1607<162> = 3 · 192799 · 242197863343<12> · 13253282881361993<17> · 186251389998046129<18> · 2113037716029191144429<22> · C90
C90 = P32 · P59
P32 = 28742297975313337803187625016407<32>
P59 = 18517291741272127549515342256010461522539595944240811661567<59>
Sun Dec 07 18:48:52 2008 Msieve v. 1.39 Sun Dec 07 18:48:52 2008 random seeds: 798680a8 b317973b Sun Dec 07 18:48:52 2008 factoring 532229516923452263105571093994631719385926239719641669143819829745142516262461505306329769 (90 digits) Sun Dec 07 18:48:53 2008 searching for 15-digit factors Sun Dec 07 18:48:54 2008 commencing quadratic sieve (90-digit input) Sun Dec 07 18:48:54 2008 using multiplier of 1 Sun Dec 07 18:48:54 2008 using 32kb Intel Core sieve core Sun Dec 07 18:48:54 2008 sieve interval: 36 blocks of size 32768 Sun Dec 07 18:48:54 2008 processing polynomials in batches of 6 Sun Dec 07 18:48:54 2008 using a sieve bound of 1617079 (61176 primes) Sun Dec 07 18:48:54 2008 using large prime bound of 135834636 (27 bits) Sun Dec 07 18:48:54 2008 using double large prime bound of 435932059795260 (42-49 bits) Sun Dec 07 18:48:54 2008 using trial factoring cutoff of 49 bits Sun Dec 07 18:48:54 2008 polynomial 'A' values have 11 factors Sun Dec 07 20:08:01 2008 61571 relations (16101 full + 45470 combined from 671969 partial), need 61272 Sun Dec 07 20:08:02 2008 begin with 688070 relations Sun Dec 07 20:08:03 2008 reduce to 151577 relations in 10 passes Sun Dec 07 20:08:03 2008 attempting to read 151577 relations Sun Dec 07 20:08:05 2008 recovered 151577 relations Sun Dec 07 20:08:05 2008 recovered 129782 polynomials Sun Dec 07 20:08:05 2008 attempting to build 61571 cycles Sun Dec 07 20:08:05 2008 found 61571 cycles in 5 passes Sun Dec 07 20:08:05 2008 distribution of cycle lengths: Sun Dec 07 20:08:05 2008 length 1 : 16101 Sun Dec 07 20:08:05 2008 length 2 : 11543 Sun Dec 07 20:08:05 2008 length 3 : 10855 Sun Dec 07 20:08:05 2008 length 4 : 8134 Sun Dec 07 20:08:05 2008 length 5 : 5893 Sun Dec 07 20:08:05 2008 length 6 : 3892 Sun Dec 07 20:08:05 2008 length 7 : 2429 Sun Dec 07 20:08:05 2008 length 9+: 2724 Sun Dec 07 20:08:05 2008 largest cycle: 16 relations Sun Dec 07 20:08:05 2008 matrix is 61176 x 61571 (15.3 MB) with weight 3752165 (60.94/col) Sun Dec 07 20:08:05 2008 sparse part has weight 3752165 (60.94/col) Sun Dec 07 20:08:06 2008 filtering completed in 3 passes Sun Dec 07 20:08:06 2008 matrix is 57444 x 57508 (14.3 MB) with weight 3515270 (61.13/col) Sun Dec 07 20:08:06 2008 sparse part has weight 3515270 (61.13/col) Sun Dec 07 20:08:06 2008 saving the first 48 matrix rows for later Sun Dec 07 20:08:06 2008 matrix is 57396 x 57508 (10.7 MB) with weight 2954201 (51.37/col) Sun Dec 07 20:08:06 2008 sparse part has weight 2467234 (42.90/col) Sun Dec 07 20:08:06 2008 matrix includes 64 packed rows Sun Dec 07 20:08:06 2008 using block size 23003 for processor cache size 1024 kB Sun Dec 07 20:08:07 2008 commencing Lanczos iteration Sun Dec 07 20:08:07 2008 memory use: 9.6 MB Sun Dec 07 20:08:29 2008 lanczos halted after 909 iterations (dim = 57394) Sun Dec 07 20:08:29 2008 recovered 16 nontrivial dependencies Sun Dec 07 20:08:30 2008 prp32 factor: 28742297975313337803187625016407 Sun Dec 07 20:08:30 2008 prp59 factor: 18517291741272127549515342256010461522539595944240811661567 Sun Dec 07 20:08:30 2008 elapsed time 01:19:38
(35·10103+1)/9 = 3(8)1029<104> = 32 · 13 · 19 · 7549 · 11351 · 167597 · C88
C88 = P42 · P47
P42 = 100755942974597228137872420680604757516957<42>
P47 = 12089980789218005875422642451041062453834791133<47>
Sun Dec 07 18:38:53 2008 Msieve v. 1.39 Sun Dec 07 18:38:53 2008 random seeds: e1c72794 2f91d1cc Sun Dec 07 18:38:53 2008 factoring 1218137414962425390751738719549946610485828619899062995091669939678138120168291800742281 (88 digits) Sun Dec 07 18:38:54 2008 searching for 15-digit factors Sun Dec 07 18:38:56 2008 commencing quadratic sieve (88-digit input) Sun Dec 07 18:38:57 2008 using multiplier of 29 Sun Dec 07 18:38:57 2008 using 64kb Pentium 4 sieve core Sun Dec 07 18:38:57 2008 sieve interval: 12 blocks of size 65536 Sun Dec 07 18:38:57 2008 processing polynomials in batches of 9 Sun Dec 07 18:38:57 2008 using a sieve bound of 1505519 (57333 primes) Sun Dec 07 18:38:57 2008 using large prime bound of 120441520 (26 bits) Sun Dec 07 18:38:57 2008 using double large prime bound of 351072818700640 (42-49 bits) Sun Dec 07 18:38:57 2008 using trial factoring cutoff of 49 bits Sun Dec 07 18:38:57 2008 polynomial 'A' values have 11 factors Sun Dec 07 20:11:02 2008 57705 relations (16284 full + 41421 combined from 602881 partial), need 57429 Sun Dec 07 20:11:03 2008 begin with 619165 relations Sun Dec 07 20:11:04 2008 reduce to 137443 relations in 10 passes Sun Dec 07 20:11:04 2008 attempting to read 137443 relations Sun Dec 07 20:11:05 2008 recovered 137443 relations Sun Dec 07 20:11:05 2008 recovered 114473 polynomials Sun Dec 07 20:11:06 2008 attempting to build 57705 cycles Sun Dec 07 20:11:06 2008 found 57705 cycles in 5 passes Sun Dec 07 20:11:06 2008 distribution of cycle lengths: Sun Dec 07 20:11:06 2008 length 1 : 16284 Sun Dec 07 20:11:06 2008 length 2 : 11518 Sun Dec 07 20:11:06 2008 length 3 : 10106 Sun Dec 07 20:11:06 2008 length 4 : 7429 Sun Dec 07 20:11:06 2008 length 5 : 5198 Sun Dec 07 20:11:06 2008 length 6 : 3293 Sun Dec 07 20:11:06 2008 length 7 : 1795 Sun Dec 07 20:11:06 2008 length 9+: 2082 Sun Dec 07 20:11:06 2008 largest cycle: 17 relations Sun Dec 07 20:11:06 2008 matrix is 57333 x 57705 (13.6 MB) with weight 3344070 (57.95/col) Sun Dec 07 20:11:06 2008 sparse part has weight 3344070 (57.95/col) Sun Dec 07 20:11:07 2008 filtering completed in 3 passes Sun Dec 07 20:11:07 2008 matrix is 52715 x 52779 (12.5 MB) with weight 3076848 (58.30/col) Sun Dec 07 20:11:07 2008 sparse part has weight 3076848 (58.30/col) Sun Dec 07 20:11:07 2008 saving the first 48 matrix rows for later Sun Dec 07 20:11:07 2008 matrix is 52667 x 52779 (8.8 MB) with weight 2504264 (47.45/col) Sun Dec 07 20:11:07 2008 sparse part has weight 1986421 (37.64/col) Sun Dec 07 20:11:07 2008 matrix includes 64 packed rows Sun Dec 07 20:11:07 2008 using block size 21111 for processor cache size 512 kB Sun Dec 07 20:11:08 2008 commencing Lanczos iteration Sun Dec 07 20:11:08 2008 memory use: 8.2 MB Sun Dec 07 20:11:36 2008 lanczos halted after 834 iterations (dim = 52667) Sun Dec 07 20:11:36 2008 recovered 18 nontrivial dependencies Sun Dec 07 20:11:37 2008 prp42 factor: 100755942974597228137872420680604757516957 Sun Dec 07 20:11:37 2008 prp47 factor: 12089980789218005875422642451041062453834791133 Sun Dec 07 20:11:37 2008 elapsed time 01:32:44
(35·10114-17)/9 = 3(8)1137<115> = C115
C115 = P49 · P66
P49 = 4110160586637253424951061483322223671294257236029<49>
P66 = 946164707416116073991311909742053789197323995598219236310578275203<66>
Number: 38887_114 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 115 digits) SNFS difficulty: 115 digits. Divisors found: r1=4110160586637253424951061483322223671294257236029 r2=946164707416116073991311909742053789197323995598219236310578275203 Version: Total time: 0.88 hours. Scaled time: 2.25 units (timescale=2.554). Factorization parameters were as follows: name: 38887_114 n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 100000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60810 x 61046 Total sieving time: 0.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.88 hours. --------- CPU info (if available) ----------
(35·10123-17)/9 = 3(8)1227<124> = 13 · 32514646135566929765652027227651<32> · C91
C91 = P38 · P54
P38 = 11000509236102085663313836629757193677<38>
P54 = 836354428344066072261132208793124499586090114853277237<54>
Sun Dec 07 20:37:42 2008 Msieve v. 1.39 Sun Dec 07 20:37:42 2008 random seeds: 812bc180 6e8de99a Sun Dec 07 20:37:42 2008 factoring 9200324613653778810285796898822436094804743580470879018126211975558105040781619379584430449 (91 digits) Sun Dec 07 20:37:43 2008 searching for 15-digit factors Sun Dec 07 20:37:44 2008 commencing quadratic sieve (91-digit input) Sun Dec 07 20:37:44 2008 using multiplier of 1 Sun Dec 07 20:37:44 2008 using 32kb Intel Core sieve core Sun Dec 07 20:37:44 2008 sieve interval: 36 blocks of size 32768 Sun Dec 07 20:37:44 2008 processing polynomials in batches of 6 Sun Dec 07 20:37:44 2008 using a sieve bound of 1748993 (65882 primes) Sun Dec 07 20:37:44 2008 using large prime bound of 176648293 (27 bits) Sun Dec 07 20:37:44 2008 using double large prime bound of 699514874899490 (42-50 bits) Sun Dec 07 20:37:44 2008 using trial factoring cutoff of 50 bits Sun Dec 07 20:37:44 2008 polynomial 'A' values have 12 factors Sun Dec 07 21:34:58 2008 66992 relations (19108 full + 47884 combined from 769023 partial), need 65978 Sun Dec 07 21:34:59 2008 begin with 788131 relations Sun Dec 07 21:35:00 2008 reduce to 159524 relations in 11 passes Sun Dec 07 21:35:00 2008 attempting to read 159524 relations Sun Dec 07 21:35:02 2008 recovered 159524 relations Sun Dec 07 21:35:02 2008 recovered 122737 polynomials Sun Dec 07 21:35:02 2008 attempting to build 66992 cycles Sun Dec 07 21:35:02 2008 found 66992 cycles in 5 passes Sun Dec 07 21:35:02 2008 distribution of cycle lengths: Sun Dec 07 21:35:02 2008 length 1 : 19108 Sun Dec 07 21:35:02 2008 length 2 : 13518 Sun Dec 07 21:35:02 2008 length 3 : 11776 Sun Dec 07 21:35:02 2008 length 4 : 8599 Sun Dec 07 21:35:02 2008 length 5 : 5743 Sun Dec 07 21:35:02 2008 length 6 : 3648 Sun Dec 07 21:35:02 2008 length 7 : 2110 Sun Dec 07 21:35:02 2008 length 9+: 2490 Sun Dec 07 21:35:02 2008 largest cycle: 18 relations Sun Dec 07 21:35:03 2008 matrix is 65882 x 66992 (15.8 MB) with weight 3873042 (57.81/col) Sun Dec 07 21:35:03 2008 sparse part has weight 3873042 (57.81/col) Sun Dec 07 21:35:04 2008 filtering completed in 4 passes Sun Dec 07 21:35:04 2008 matrix is 60137 x 60201 (14.1 MB) with weight 3450170 (57.31/col) Sun Dec 07 21:35:04 2008 sparse part has weight 3450170 (57.31/col) Sun Dec 07 21:35:04 2008 saving the first 48 matrix rows for later Sun Dec 07 21:35:04 2008 matrix is 60089 x 60201 (8.5 MB) with weight 2622071 (43.56/col) Sun Dec 07 21:35:04 2008 sparse part has weight 1870073 (31.06/col) Sun Dec 07 21:35:04 2008 matrix includes 64 packed rows Sun Dec 07 21:35:04 2008 using block size 24080 for processor cache size 1024 kB Sun Dec 07 21:35:04 2008 commencing Lanczos iteration Sun Dec 07 21:35:04 2008 memory use: 8.6 MB Sun Dec 07 21:35:24 2008 lanczos halted after 952 iterations (dim = 60088) Sun Dec 07 21:35:25 2008 recovered 16 nontrivial dependencies Sun Dec 07 21:35:28 2008 prp38 factor: 11000509236102085663313836629757193677 Sun Dec 07 21:35:28 2008 prp54 factor: 836354428344066072261132208793124499586090114853277237 Sun Dec 07 21:35:28 2008 elapsed time 00:57:46
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10139-17)/9 = 3(8)1387<140> = 37 · 23957 · 13997909 · 531167603 · 5324940143<10> · 3808548267229<13> · C96
C96 = P34 · P63
P34 = 1234471249886739306632069758085923<34>
P63 = 235690164383998395752830997318697209446208726758860398731520089<63>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1486614879 Step 1 took 6831ms Step 2 took 4506ms ********** Factor found in step 2: 1234471249886739306632069758085923 Found probable prime factor of 34 digits: 1234471249886739306632069758085923 Probable prime cofactor 235690164383998395752830997318697209446208726758860398731520089 has 63 digits
(35·10199+1)/9 = 3(8)1989<200> = 3 · 132 · 4861 · 152840603 · 1156566239497<13> · 2515923827839<13> · 217505594603821<15> · 6497775628529706959<19> · 24582654665588546304875938307<29> · C100
C100 = P33 · P67
P33 = 521482237316465123045134535692157<33>
P67 = 1958311477916142932716389871913675734578597034889255207588628076663<67>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1731595855 Step 1 took 6408ms Step 2 took 3796ms ********** Factor found in step 2: 521482237316465123045134535692157 Found probable prime factor of 33 digits: 521482237316465123045134535692157 Probable prime cofactor 1958311477916142932716389871913675734578597034889255207588628076663 has 67 digits
(35·10103-17)/9 = 3(8)1027<104> = 37 · 131 · 1481 · 38299 · C93
C93 = P45 · P48
P45 = 202254561854416559848922039163312240405477011<45>
P48 = 699377564266339266150223417648152119745082832369<48>
SNFS difficulty: 104 digits. Divisors found: r1=202254561854416559848922039163312240405477011 (pp45) r2=699377564266339266150223417648152119745082832369 (pp48) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 141452302831497507848239580701056914824087857520121014274963999456081757918276165376396169059 m: 100000000000000000000000000 deg: 4 c4: 7 c0: -34 skew: 1.48 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [195000, 235001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 35012 x 35253 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,104,4,0,0,0,0,0,0,0,0,390000,390000,25,25,48,48,2.2,2.2,20000 total time: 0.20 hours.
(35·10204+1)/9 = 3(8)2039<205> = 71 · 359 · 10399 · 114531542096417446468313<24> · C174
C174 = P32 · P142
P32 = 84236514375392918434791697369357<32>
P142 = 1520742429925480309249157950965972233006436876279608768273203997250036059628029585673421815262936750036842572532516227046661639296824396080139<142>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1498511238 Step 1 took 14159ms Step 2 took 7539ms ********** Factor found in step 2: 84236514375392918434791697369357 Found probable prime factor of 32 digits: 84236514375392918434791697369357 Probable prime cofactor 1520742429925480309249157950965972233006436876279608768273203997250036059628029585673421815262936750036842572532516227046661639296824396080139 has 142 digits
(35·10185-17)/9 = 3(8)1847<186> = 3 · 3242017 · 78781626947123<14> · C165
C165 = P31 · C134
P31 = 5308091521661172993909954169669<31>
C134 = [95614915315976341449915814671226342958300199565786370767219809757828964280275892186523976522697083942736597836961138778025419700393251<134>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2815757366 Step 1 took 13757ms Step 2 took 7741ms ********** Factor found in step 2: 5308091521661172993909954169669 Found probable prime factor of 31 digits: 5308091521661172993909954169669 Composite cofactor has 134 digits
(35·10166-17)/9 = 3(8)1657<167> = 37 · 9967 · 37307 · 2354535121<10> · 132127952267<12> · 141133482721793<15> · C122
C122 = P28 · P94
P28 = 8226444157972988141710931167<28>
P94 = 7825767400812519208912071922939339970412517548592436550077410265971108080505948124839410842387<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3714132238 Step 1 took 7741ms Step 2 took 4408ms ********** Factor found in step 2: 8226444157972988141710931167 Found probable prime factor of 28 digits: 8226444157972988141710931167 Probable prime cofactor 7825767400812519208912071922939339970412517548592436550077410265971108080505948124839410842387 has 94 digits
(35·10178-17)/9 = 3(8)1777<179> = 37 · 32969 · 189583 · 517981 · 3942871 · 10985291 · 22070273 · C141
C141 = P28 · P113
P28 = 6669335981879766458758192517<28>
P113 = 50920232656772421298875597231096960594307229219521852623019622483583930275126623970795438847629543847126898487473<113>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4196366601 Step 1 took 11768ms Step 2 took 6458ms ********** Factor found in step 2: 6669335981879766458758192517 Found probable prime factor of 28 digits: 6669335981879766458758192517 Probable prime cofactor 50920232656772421298875597231096960594307229219521852623019622483583930275126623970795438847629543847126898487473 has 113 digits
(35·10114+1)/9 = 3(8)1139<115> = 832687381 · 15259609591<11> · C96
C96 = P39 · P57
P39 = 690449786536111858913383994784646317701<39>
P57 = 443269683332469302110610036873532000388386015468986749559<57>
SNFS difficulty: 115 digits. Divisors found: r1=690449786536111858913383994784646317701 (pp39) r2=443269683332469302110610036873532000388386015468986749559 (pp57) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.701). Factorization parameters were as follows: n: 306055458234833330425157231700400712933522790705374343481284656815000659951581236253030435643859 m: 100000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 51956 x 52170 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,48,48,2.2,2.2,50000 total time: 0.50 hours.
(35·10156+1)/9 = 3(8)1559<157> = 42879765185315430497<20> · C137
C137 = P39 · P99
P39 = 292878855232275740887814418726995651773<39>
P99 = 309660006169512256602650575144116413031660682773563091399663989195394753951491151864966823095355469<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2088941172 Step 1 took 12424ms Step 2 took 6633ms ********** Factor found in step 2: 292878855232275740887814418726995651773 Found probable prime factor of 39 digits: 292878855232275740887814418726995651773 Probable prime cofactor 309660006169512256602650575144116413031660682773563091399663989195394753951491151864966823095355469 has 99 digits
(35·10194+1)/9 = 3(8)1939<195> = 1089969148057409<16> · 10219198755552835523723<23> · 9323979225759446991275928931<28> · C130
C130 = P35 · P96
P35 = 12643344099626450719036094127714479<35>
P96 = 296163291907625435082616666878492839479545213079224774475849163360422699627509912557439311446423<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1697095651 Step 1 took 7693ms Step 2 took 4596ms ********** Factor found in step 2: 12643344099626450719036094127714479 Found probable prime factor of 35 digits: 12643344099626450719036094127714479 Probable prime cofactor 296163291907625435082616666878492839479545213079224774475849163360422699627509912557439311446423 has 96 digits
(35·10122-17)/9 = 3(8)1217<123> = 3 · 1667 · 200131 · 19180783 · C107
C107 = P49 · P59
P49 = 1127206542851648414760167029508360310343210538429<49>
P59 = 17971506403106683410565933523865358418769645819039526418711<59>
SNFS difficulty: 124 digits. Divisors found: r1=1127206542851648414760167029508360310343210538429 (pp49) r2=17971506403106683410565933523865358418769645819039526418711 (pp59) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: n: 20257599602482147603370790428086817735513085831236870307396235699167569456996686633362298322208972410145019 m: 5000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 850000 alim: 850000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 850000/850000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [425000, 775001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 99712 x 99953 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,850000,850000,25,25,48,48,2.2,2.2,50000 total time: 1.10 hours.
(35·10149+1)/9 = 3(8)1489<150> = 26091809 · 11465034896004908807461<23> · C121
C121 = P34 · P88
P34 = 1088707817387439431350379964842563<34>
P88 = 1194083292946011325405761931527911769362936033665647008316544335094461381186494573304247<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2177793751 Step 1 took 9949ms Step 2 took 5702ms ********** Factor found in step 2: 1088707817387439431350379964842563 Found probable prime factor of 34 digits: 1088707817387439431350379964842563 Probable prime cofactor 1194083292946011325405761931527911769362936033665647008316544335094461381186494573304247 has 88 digits
(35·10142+1)/9 = 3(8)1419<143> = 3 · 1061 · C140
C140 = P41 · P99
P41 = 15860642001115756856472209121303190876727<41>
P99 = 770314607968882846559673942076146333468438492173211262631406081919930865891145617675420812966181729<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4239433639 Step 1 took 9320ms Step 2 took 5009ms ********** Factor found in step 2: 15860642001115756856472209121303190876727 Found probable prime factor of 41 digits: 15860642001115756856472209121303190876727 Probable prime cofactor 770314607968882846559673942076146333468438492173211262631406081919930865891145617675420812966181729 has 99 digits
(35·10156-17)/9 = 3(8)1557<157> = 19 · 58096309927<11> · C145
C145 = P37 · C109
P37 = 1859651820102671746966417186881408253<37>
C109 = [1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583<109>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3652731674 Step 1 took 9300ms Step 2 took 4985ms ********** Factor found in step 2: 1859651820102671746966417186881408253 Found probable prime factor of 37 digits: 1859651820102671746966417186881408253 Composite cofactor has 109 digits
(35·10157-17)/9 = 3(8)1567<158> = 23 · 37 · 2069 · 1151733944305984141<19> · 53292721252355927483<20> · C114
C114 = P45 · P69
P45 = 951140256289141598794249013986046916487726837<45>
P69 = 378330066980404354259155145077482265252602731240864591664915709201643<69>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2131351972 Step 1 took 8217ms Step 2 took 5288ms ********** Factor found in step 2: 951140256289141598794249013986046916487726837 Found probable prime factor of 45 digits: 951140256289141598794249013986046916487726837 Probable prime cofactor 378330066980404354259155145077482265252602731240864591664915709201643 has 69 digits
Factorizations of 388...887 and Factorizations of 388...889 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(34·10156+11)/9 = 3(7)1559<157> = 431 · 20428085369379755054381161567133<32> · C123
C123 = P40 · P84
P40 = 1641290498119364233612216509348496842037<40>
P84 = 261424338685306378465746420265055797130828604401971263690053114734342542603363295229<84>
Number: 37779_156 N=429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 ( 123 digits) SNFS difficulty: 158 digits. Divisors found: r1=1641290498119364233612216509348496842037 (pp40) r2=261424338685306378465746420265055797130828604401971263690053114734342542603363295229 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 50.25 hours. Scaled time: 98.85 units (timescale=1.967). Factorization parameters were as follows: name: 37779_156 n: 429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 m: 20000000000000000000000000000000 deg: 5 c5: 85 c0: 88 skew: 1.01 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 3050001) Primes: RFBsize:223492, AFBsize:224096, largePrimes:8479610 encountered Relations: rels:9014923, finalFF:825935 Max relations in full relation-set: 28 Initial matrix: 447655 x 825935 with sparse part having weight 98632766. Pruned matrix : 343747 x 346049 with weight 49427794. Total sieving time: 47.33 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.44 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 50.25 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10167-71)/9 = 3(8)1661<168> = 34 · 146222004002926974466791407216706971<36> · C131
C131 = P38 · P41 · P52
P38 = 81341906412392977262829851074413415931<38>
P41 = 41635795095299879483137183719197356361501<41>
P52 = 9694972354607531461319586026968019249490464567538301<52>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4289341784 Step 1 took 36615ms Step 2 took 19160ms ********** Factor found in step 2: 41635795095299879483137183719197356361501 Found probable prime factor of 41 digits: 41635795095299879483137183719197356361501 Msieve v. 1.39 Sat Dec 6 12:40:47 2008 random seeds: 55056cf5 fb864dee factoring 788607533939223004816128108651343184586583380585738621712061138366496488305796633086073231 (90 digits) searching for 15-digit factors commencing quadratic sieve (90-digit input) using multiplier of 1 using 64kb Opteron sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 1608661 (61176 primes) using large prime bound of 135127524 (27 bits) using double large prime bound of 431855810609412 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors sieving in progress (press Ctrl-C to pause) 61329 relations (15844 full + 45485 combined from 667610 partial), need 61272 61329 relations (15844 full + 45485 combined from 667610 partial), need 61272 sieving complete, commencing postprocessing begin with 683454 relations reduce to 151862 relations in 10 passes attempting to read 151862 relations recovered 151862 relations recovered 132888 polynomials attempting to build 61329 cycles found 61329 cycles in 6 passes distribution of cycle lengths: length 1 : 15844 length 2 : 11503 length 3 : 10595 length 4 : 8174 length 5 : 5986 length 6 : 4006 length 7 : 2285 length 9+: 2936 largest cycle: 20 relations matrix is 61176 x 61329 (16.5 MB) with weight 3840633 (62.62/col) sparse part has weight 3840633 (62.62/col) filtering completed in 3 passes matrix is 57546 x 57610 (15.6 MB) with weight 3639842 (63.18/col) sparse part has weight 3639842 (63.18/col) saving the first 48 matrix rows for later matrix is 57498 x 57610 (12.1 MB) with weight 3077780 (53.42/col) sparse part has weight 2589368 (44.95/col) matrix includes 64 packed rows using block size 23044 for processor cache size 1024 kB commencing Lanczos iteration memory use: 9.9 MB lanczos halted after 911 iterations (dim = 57497) recovered 17 nontrivial dependencies prp38 factor: 81341906412392977262829851074413415931 prp52 factor: 9694972354607531461319586026968019249490464567538301 elapsed time 01:13:27
(16·10172-7)/9 = 1(7)172<173> = 29 · 13646237777<11> · 38365512482221<14> · C148
C148 = P74 · P75
P74 = 11028341891571566346970754072658129784323506979873488661401005556161967581<74>
P75 = 106173299975901986267593348697479150345163312613129043156754080131224341469<75>
# a quasi-nice split (when factors r2/10<r1<r2) :-) # i.e. within 1 order of magnitude, BUT not the same length # SNFS difficulty: 173 digits. Divisors found: r1=11028341891571566346970754072658129784323506979873488661401005556161967581 (pp74) r2=106173299975901986267593348697479150345163312613129043156754080131224341469 (pp75) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.699). Factorization parameters were as follows: n: 1170915451890634250878062812897650274435783395035731292758702557401427814481884711786286345110790218975486899180727931490597815191244770920051916489 m: 20000000000000000000000000000000000 deg: 5 c5: 50 c0: -7 skew: 0.67 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1012460 x 1012702 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours.
By Robert Backstrom / GGNFS, Msieve
(32·10204-41)/9 = 3(5)2031<205> = 73 · 863 · C200
C200 = P47 · P62 · P92
P47 = 14248427654041308826650517475730475139675651291<47>
P62 = 39913387700709211382964131171098547802886843448472175066153267<62>
P92 = 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817<92>
Number: n N=56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 ( 200 digits) SNFS difficulty: 206 digits. Divisors found: Sun Dec 07 04:22:58 2008 prp47 factor: 14248427654041308826650517475730475139675651291 Sun Dec 07 04:22:58 2008 prp62 factor: 39913387700709211382964131171098547802886843448472175066153267 Sun Dec 07 04:22:58 2008 prp92 factor: 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817 Sun Dec 07 04:22:59 2008 elapsed time 28:19:21 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 153.01 hours. Scaled time: 312.90 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_203_1 n: 56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 type: snfs skew: 3.33 deg: 5 c5: 1 c0: -410 m: 200000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 25400001) Primes: RFBsize:664579, AFBsize:665006, largePrimes:36354193 encountered Relations: rels:27543760, finalFF:133156 Max relations in full relation-set: 28 Msieve: found 9558761 hash collisions in 45411678 relations Msieve: matrix is 2874359 x 2874607 (781.1 MB) Initial matrix: Pruned matrix : Total sieving time: 150.52 hours. Total relation processing time: 2.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 153.01 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(34·10159-61)/9 = 3(7)1581<160> = 3 · 461 · 1424499695196759996786287319127759813<37> · C121
C121 = P44 · P77
P44 = 70223475270970631308833714247375703978882183<44>
P77 = 27306720714056958176389348613507388851630448512655938025187958253361469703103<77>
Number: 37771_159 N=1917572826794880301937743521661713539970375827079494046314123580541938102384192570367828862969420055823648457470826513849 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: r1=70223475270970631308833714247375703978882183 (pp44) r2=27306720714056958176389348613507388851630448512655938025187958253361469703103 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.67 hours. Scaled time: 70.50 units (timescale=2.376). Factorization parameters were as follows: n: 1917572826794880301937743521661713539970375827079494046314123580541938102384192570367828862969420055823648457470826513849 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3600001) Primes: RFBsize:256726, AFBsize:257467, largePrimes:9103348 encountered Relations: rels:9343195, finalFF:597134 Max relations in full relation-set: 28 Initial matrix: 514258 x 597134 with sparse part having weight 64218803. Pruned matrix : 481231 x 483866 with weight 48798972. Total sieving time: 27.66 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.83 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 29.67 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(35·10164-71)/9 = 3(8)1631<165> = 3 · 40639 · C160
C160 = P64 · P96
P64 = 6729192217450863728598048618087237613653798990636162581422405139<64>
P96 = 474021820032276344490729878036508269662859504739325818203395008676857889810899763775201694993287<96>
SNFS difficulty: 165 digits. Divisors found: r1=6729192217450863728598048618087237613653798990636162581422405139 (pp64) r2=474021820032276344490729878036508269662859504739325818203395008676857889810899763775201694993287 (pp96) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 3189783942263087911356815611349433539940196107916770334644790217023785763174035523256714723040173961702542622348719939703969822821172509895165472320421999301893 m: 500000000000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 717162 x 717410 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.4,2.4,200000 total time: 33.00 hours.
(35·10153-71)/9 = 3(8)1521<154> = 97 · 29683 · C148
C148 = P71 · P77
P71 = 27062252094015893891367821833925557921914470068002173930604051639604273<71>
P77 = 49909368320669392065207112067360020697367464724002460386090056808636455973147<77>
SNFS difficulty: 155 digits. Divisors found: r1=27062252094015893891367821833925557921914470068002173930604051639604273 (pp71) r2=49909368320669392065207112067360020697367464724002460386090056808636455973147 (pp77) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.568). Factorization parameters were as follows: n: 1350659907347045772976683480838901814704202200116936275749800517179255608103944007969047814479838294365058443633045152676473460941365962498194457131 m: 5000000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1350000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 594251 x 594499 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,52,52,2.4,2.4,100000 total time: 16.00 hours.
(35·10200-71)/9 = 3(8)1991<201> = 3 · 16553 · 7927223 · 22704073853<11> · 3979963552476295781<19> · C161
C161 = P36 · P125
P36 = 395164945190857945350101909540564167<36>
P125 = 27665924809055869339926234061280855054857483038403980884226624743443037940825917222475596589660592881576057076851168755649043<125>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3549987951 Step 1 took 50820ms Step 2 took 23819ms ********** Factor found in step 2: 395164945190857945350101909540564167 Found probable prime factor of 36 digits: 395164945190857945350101909540564167 Probable prime cofactor has 125 digits
(35·10199-71)/9 = 3(8)1981<200> = 433 · 5039 · 140389427623<12> · 8357290475369752537<19> · C164
C164 = P40 · P124
P40 = 1861468120897201492992872990658651081937<40>
P124 = 8160894744665296943921251395162584241097643099470088044534647763466723548653244079777378652912656058510639793059446322808049<124>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=449619090 Step 1 took 40186ms Step 2 took 18013ms ********** Factor found in step 2: 1861468120897201492992872990658651081937 Found probable prime factor of 40 digits: 1861468120897201492992872990658651081937 Probable prime cofactor has 124 digits
(35·10177-71)/9 = 3(8)1761<178> = 19 · 431 · 14192094360547<14> · C161
C161 = P41 · P121
P41 = 16344822089886294631376367252687044228611<41>
P121 = 2047236311811775237853370064349460550471296836642857788077745439397058049721082870618229704024096730530929819770762123837<121>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3439074722 Step 1 took 39858ms Step 2 took 17981ms ********** Factor found in step 2: 16344822089886294631376367252687044228611 Found probable prime factor of 41 digits: 16344822089886294631376367252687044228611 Probable prime cofactor 2047236311811775237853370064349460550471296836642857788077745439397058049721082870618229704024096730530929819770762123837 has 121 digits
(35·10179-71)/9 = 3(8)1781<180> = 3 · 26269883 · 8834314133<10> · C162
C162 = P36 · P127
P36 = 160020693433359773518143219603912809<36>
P127 = 3490576460850053450847907349976182625659172933180934406601688040579959555205761204584348481290922830235197726475366791229889077<127>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1303534847 Step 1 took 51179ms Step 2 took 23917ms ********** Factor found in step 2: 160020693433359773518143219603912809 Found probable prime factor of 36 digits: 160020693433359773518143219603912809 Probable prime cofactor 3490576460850053450847907349976182625659172933180934406601688040579959555205761204584348481290922830235197726475366791229889077 has 127 digits
By Sinkiti Sibata / GGNFS, Msieve
(35·10157-71)/9 = 3(8)1561<158> = 2389 · 333630907000621<15> · 589449675624851<15> · 17403193705595170453363<23> · C103
C103 = P42 · P62
P42 = 316077293436539492798483427174028217764847<42>
P62 = 15047838586998004833845001684573837704128871608268602161556759<62>
Number: 38881_157 N=4756280092648250188764199475728532994664874904397340967740470473080958604184638935560577270528905450873 ( 103 digits) Divisors found: r1=316077293436539492798483427174028217764847 (pp42) r2=15047838586998004833845001684573837704128871608268602161556759 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 12.31 hours. Scaled time: 5.82 units (timescale=0.473). Factorization parameters were as follows: name: 38881_157 n: 4756280092648250188764199475728532994664874904397340967740470473080958604184638935560577270528905450873 skew: 3602.91 # norm 2.89e+13 c5: 124320 c4: 635767801 c3: -5358051732169 c2: -6064988245481505 c1: 20352909303228765418 c0: -12588858375220797134080 # alpha -5.28 Y1: 10112432209 Y0: -32850739271467085601 # Murphy_E 2.80e-09 # M 4222018691528632760447361348847040396549466575631545691946562696264792403080906743535614308110637954375 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: RFBsize:169511, AFBsize:168817, largePrimes:4255453 encountered Relations: rels:4207348, finalFF:391895 Max relations in full relation-set: 28 Initial matrix: 338411 x 391895 with sparse part having weight 26409720. Pruned matrix : 291880 x 293636 with weight 15689274. Polynomial selection time: 0.70 hours. Total sieving time: 9.38 hours. Total relation processing time: 0.28 hours. Matrix solve time: 1.77 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 12.31 hours. --------- CPU info (if available) ----------
(35·10148-71)/9 = 3(8)1471<149> = 23 · 139 · 167 · 359 · 24859 · 1899647 · C130
C130 = P47 · P84
P47 = 11005429562821160352220822132656618449470600567<47>
P84 = 390398751300760287606065533166549932446704337286288865468217757117600799730398985751<84>
Number: 38881_148 N=4296505958853853198420117289707372789332643113650127011567313181181692972509393851525932474511053618295318863339773930029645520817 ( 130 digits) SNFS difficulty: 150 digits. Divisors found: r1=11005429562821160352220822132656618449470600567 (pp47) r2=390398751300760287606065533166549932446704337286288865468217757117600799730398985751 (pp84) Version: GGNFS-0.77.1-20060513-nocona Total time: 31.44 hours. Scaled time: 80.61 units (timescale=2.564). Factorization parameters were as follows: name: 38881_148 n: 4296505958853853198420117289707372789332643113650127011567313181181692972509393851525932474511053618295318863339773930029645520817 m: 500000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2000001) Primes: RFBsize:162662, AFBsize:162346, largePrimes:8114482 encountered Relations: rels:9417140, finalFF:1578049 Max relations in full relation-set: 28 Initial matrix: 325074 x 1578049 with sparse part having weight 192518771. Pruned matrix : 222168 x 223857 with weight 36995244. Total sieving time: 30.70 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.50 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 31.44 hours. --------- CPU info (if available) ----------
(35·10105-71)/9 = 3(8)1041<106> = 19 · 67 · C103
C103 = P49 · P55
P49 = 1562267463406113328722074385809274805765951155247<49>
P55 = 1955427611138011473211547323006830547632965613911300951<55>
Fri Dec 05 17:00:31 2008 Msieve v. 1.39 Fri Dec 05 17:00:31 2008 random seeds: fc5576e8 64ab5ee6 Fri Dec 05 17:00:31 2008 factoring 3054900933926856943353408396613424107532512874225364406039975560792528585144453172732827092607139739897 (103 digits) Fri Dec 05 17:00:32 2008 searching for 15-digit factors Fri Dec 05 17:00:34 2008 commencing quadratic sieve (103-digit input) Fri Dec 05 17:00:34 2008 using multiplier of 2 Fri Dec 05 17:00:34 2008 using 32kb Intel Core sieve core Fri Dec 05 17:00:34 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 17:00:34 2008 processing polynomials in batches of 6 Fri Dec 05 17:00:34 2008 using a sieve bound of 3415309 (122500 primes) Fri Dec 05 17:00:34 2008 using large prime bound of 512296350 (28 bits) Fri Dec 05 17:00:34 2008 using double large prime bound of 4754865765116250 (44-53 bits) Fri Dec 05 17:00:34 2008 using trial factoring cutoff of 53 bits Fri Dec 05 17:00:34 2008 polynomial 'A' values have 13 factors Sat Dec 06 10:39:04 2008 122696 relations (29594 full + 93102 combined from 1817556 partial), need 122596 Sat Dec 06 10:39:06 2008 begin with 1847150 relations Sat Dec 06 10:39:09 2008 reduce to 320816 relations in 14 passes Sat Dec 06 10:39:09 2008 attempting to read 320816 relations Sat Dec 06 10:39:15 2008 recovered 320816 relations Sat Dec 06 10:39:15 2008 recovered 311130 polynomials Sat Dec 06 10:39:15 2008 attempting to build 122696 cycles Sat Dec 06 10:39:15 2008 found 122696 cycles in 6 passes Sat Dec 06 10:39:15 2008 distribution of cycle lengths: Sat Dec 06 10:39:15 2008 length 1 : 29594 Sat Dec 06 10:39:15 2008 length 2 : 21278 Sat Dec 06 10:39:15 2008 length 3 : 20624 Sat Dec 06 10:39:15 2008 length 4 : 16624 Sat Dec 06 10:39:15 2008 length 5 : 12623 Sat Dec 06 10:39:15 2008 length 6 : 8645 Sat Dec 06 10:39:15 2008 length 7 : 5696 Sat Dec 06 10:39:15 2008 length 9+: 7612 Sat Dec 06 10:39:15 2008 largest cycle: 21 relations Sat Dec 06 10:39:16 2008 matrix is 122500 x 122696 (36.3 MB) with weight 9015392 (73.48/col) Sat Dec 06 10:39:16 2008 sparse part has weight 9015392 (73.48/col) Sat Dec 06 10:39:18 2008 filtering completed in 3 passes Sat Dec 06 10:39:18 2008 matrix is 117311 x 117374 (34.9 MB) with weight 8688006 (74.02/col) Sat Dec 06 10:39:18 2008 sparse part has weight 8688006 (74.02/col) Sat Dec 06 10:39:18 2008 saving the first 48 matrix rows for later Sat Dec 06 10:39:18 2008 matrix is 117263 x 117374 (25.5 MB) with weight 7294140 (62.14/col) Sat Dec 06 10:39:18 2008 sparse part has weight 5973790 (50.90/col) Sat Dec 06 10:39:18 2008 matrix includes 64 packed rows Sat Dec 06 10:39:18 2008 using block size 43690 for processor cache size 1024 kB Sat Dec 06 10:39:20 2008 commencing Lanczos iteration Sat Dec 06 10:39:20 2008 memory use: 22.3 MB Sat Dec 06 10:41:08 2008 lanczos halted after 1856 iterations (dim = 117263) Sat Dec 06 10:41:08 2008 recovered 18 nontrivial dependencies Sat Dec 06 10:41:10 2008 prp49 factor: 1562267463406113328722074385809274805765951155247 Sat Dec 06 10:41:10 2008 prp55 factor: 1955427611138011473211547323006830547632965613911300951 Sat Dec 06 10:41:10 2008 elapsed time 17:40:39
(35·10151-71)/9 = 3(8)1501<152> = 31 · 1210922113<10> · 4834258445689<13> · C129
C129 = P53 · P77
P53 = 12358500842512959654534882662579877414220284948569179<53>
P77 = 17340115058960026817035095906197024842383922831776749394279438959223915036517<77>
Number: 38881_151 N=214297826565429150492910064568361695812555353202466228632291289065314164253707324199225375072353391618673584558585674182685709543 ( 129 digits) SNFS difficulty: 152 digits. Divisors found: r1=12358500842512959654534882662579877414220284948569179 (pp53) r2=17340115058960026817035095906197024842383922831776749394279438959223915036517 (pp77) Version: GGNFS-0.77.1-20060513-nocona Total time: 32.66 hours. Scaled time: 83.74 units (timescale=2.564). Factorization parameters were as follows: name: 38881_151 n: 214297826565429150492910064568361695812555353202466228632291289065314164253707324199225375072353391618673584558585674182685709543 m: 1000000000000000000000000000000 deg: 5 c5: 350 c0: -71 skew: 0.73 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176209, largePrimes:8615759 encountered Relations: rels:9485023, finalFF:1053292 Max relations in full relation-set: 28 Initial matrix: 352578 x 1053292 with sparse part having weight 135303276. Pruned matrix : 253374 x 255200 with weight 47792421. Total sieving time: 31.55 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.85 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 32.66 hours. --------- CPU info (if available) ----------
(35·10158-71)/9 = 3(8)1571<159> = 32 · 872731 · 11263537857560226125063933208259<32> · C121
C121 = P52 · P69
P52 = 5021903696133745830067411705044711834566746760809363<52>
P69 = 875305020815140943837780270287316610643722751592004225362380010464867<69>
Number: 38881_158 N=4395697519275981635190971269779667210646649147252567630493794524731924375810616348513154465968256408807779438490796149721 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=5021903696133745830067411705044711834566746760809363 (pp52) r2=875305020815140943837780270287316610643722751592004225362380010464867 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 57.95 hours. Scaled time: 113.58 units (timescale=1.960). Factorization parameters were as follows: name: 38881_158 n: 4395697519275981635190971269779667210646649147252567630493794524731924375810616348513154465968256408807779438490796149721 m: 50000000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3350001) Primes: RFBsize:236900, AFBsize:236893, largePrimes:9198456 encountered Relations: rels:9588051, finalFF:598468 Max relations in full relation-set: 28 Initial matrix: 473859 x 598468 with sparse part having weight 69907364. Pruned matrix : 429011 x 431444 with weight 48235210. Total sieving time: 54.00 hours. Total relation processing time: 0.29 hours. Matrix solve time: 3.41 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 57.95 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
4·10200-3 = 3(9)1997<201> = 397 · C199
C199 = P55 · P144
P55 = 1591080945026496112917339112958930463606304590528911569<55>
P144 = 633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729<144>
Number: 39997_200 N=1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=1591080945026496112917339112958930463606304590528911569 r2=633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729 Version: Total time: 626.57 hours. Scaled time: 1243.74 units (timescale=1.985). Factorization parameters were as follows: n: 1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: -3 skew: 0.94 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 14100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2802786 x 2803034 Total sieving time: 626.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 626.57 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
10172+3 = 1(0)1713<173> = 7 · 103 · 4840357 · C163
C163 = P58 · P105
P58 = 6217133466469352588076049198728375528009389334759580516393<58>
P105 = 460889856884875870260428947472281235450995348075280309946390712729504236795643811044642178283027609350143<105>
Number: 10003_172 N=2865413753595232129398903356928690817897991056612143717989082187335148180002496503194474860373667312145337549589856896300037556662872859812044497192419895088394199 ( 163 digits) SNFS difficulty: 172 digits. Divisors found: r1=6217133466469352588076049198728375528009389334759580516393 (pp58) r2=460889856884875870260428947472281235450995348075280309946390712729504236795643811044642178283027609350143 (pp105) Version: GGNFS-0.77.1-20060722-nocona Total time: 103.49 hours. Scaled time: 208.53 units (timescale=2.015). Factorization parameters were as follows: n: 2865413753595232129398903356928690817897991056612143717989082187335148180002496503194474860373667312145337549589856896300037556662872859812044497192419895088394199 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: 24 skew: 0.99 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5550001) Primes: RFBsize:367900, AFBsize:368047, largePrimes:10352551 encountered Relations: rels:11115160, finalFF:896590 Max relations in full relation-set: 32 Initial matrix: 736012 x 896590 with sparse part having weight 113714104. Pruned matrix : 642276 x 646020 with weight 89259004. Total sieving time: 98.38 hours. Total relation processing time: 0.16 hours. Matrix solve time: 4.75 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 103.49 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(32·10164+31)/9 = 3(5)1639<165> = 26711 · C161
C161 = P55 · P106
P55 = 9750124430174322079990785274701676614927947079446672633<55>
P106 = 1365234213461941186730471721006005384005878692179369864168580091088793810524096380552387838598296089911993<106>
Number: n N=13311203457585098107729233482668397123116152729420671467019413558292671766521491353957379190429244713996314460542681125961422468479486187546537215213041651587569 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: Fri Dec 05 18:46:41 2008 prp55 factor: 9750124430174322079990785274701676614927947079446672633 Fri Dec 05 18:46:41 2008 prp106 factor: 1365234213461941186730471721006005384005878692179369864168580091088793810524096380552387838598296089911993 Fri Dec 05 18:46:41 2008 elapsed time 02:08:47 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.27 hours. Scaled time: 57.00 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_5_163_9 n: 13311203457585098107729233482668397123116152729420671467019413558292671766521491353957379190429244713996314460542681125961422468479486187546537215213041651587569 type: snfs skew: 3.15 deg: 5 c5: 1 c0: 310 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1900001) Primes: RFBsize:348513, AFBsize:349532, largePrimes:14897284 encountered Relations: rels:13440474, finalFF:731215 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 30.82 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 31.27 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(35·10117-71)/9 = 3(8)1161<118> = 375643 · C113
C113 = P49 · P64
P49 = 2407192503767726283938093397877279814867330840593<49>
P64 = 4300702608253451422223050521702143454051375448060420057356800819<64>
Number: 38881_117 N=10352619079522016619207302914972164765186330875029985621691044126707775438085865805802021836927318994068540845667 ( 113 digits) SNFS difficulty: 119 digits. Divisors found: r1=2407192503767726283938093397877279814867330840593 (pp49) r2=4300702608253451422223050521702143454051375448060420057356800819 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.98 hours. Scaled time: 5.99 units (timescale=2.010). Factorization parameters were as follows: name: 38881_117 n: 10352619079522016619207302914972164765186330875029985621691044126707775438085865805802021836927318994068540845667 m: 200000000000000000000000 deg: 5 c5: 875 c0: -568 skew: 0.92 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 695001) Primes: RFBsize:55815, AFBsize:56064, largePrimes:1490570 encountered Relations: rels:1555639, finalFF:231675 Max relations in full relation-set: 28 Initial matrix: 111946 x 231675 with sparse part having weight 13074136. Pruned matrix : 84612 x 85235 with weight 3834904. Total sieving time: 2.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 2.98 hours. --------- CPU info (if available) ----------
(35·10133-71)/9 = 3(8)1321<134> = 626636045531<12> · C122
C122 = P57 · P65
P57 = 664661136625342072710172593992343671372176190170793922127<57>
P65 = 93370541208729459632002309204427506540981356824207695672872397613<65>
Number: 38881_133 N=62059770047117463525210261016827144517283034923743649863583909877584256653942798017061503606657721825998117614322502682851 ( 122 digits) SNFS difficulty: 135 digits. Divisors found: r1=664661136625342072710172593992343671372176190170793922127 (pp57) r2=93370541208729459632002309204427506540981356824207695672872397613 (pp65) Version: GGNFS-0.77.1-20060513-nocona Total time: 6.39 hours. Scaled time: 16.46 units (timescale=2.575). Factorization parameters were as follows: name: 38881_133 n: 62059770047117463525210261016827144517283034923743649863583909877584256653942798017061503606657721825998117614322502682851 m: 500000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 1260000 alim: 1260000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1260000/1260000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [630000, 1305001) Primes: RFBsize:97182, AFBsize:96764, largePrimes:3257937 encountered Relations: rels:3274946, finalFF:296830 Max relations in full relation-set: 28 Initial matrix: 194012 x 296830 with sparse part having weight 27557581. Pruned matrix : 168007 x 169041 with weight 12453978. Total sieving time: 6.15 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1260000,1260000,26,26,47,47,2.3,2.3,75000 total time: 6.39 hours. --------- CPU info (if available) ----------
(35·10125-71)/9 = 3(8)1241<126> = 3 · 55061 · C121
C121 = P42 · P80
P42 = 193777002671305679513189401385663005139429<42>
P80 = 12149487304698154777013912556623553448883532470722295647430245883133644361392483<80>
Number: 38881_125 N=2354291233897488778438997287183843911836501873006840225016429589539413189546677859639847253584744730928054877856007512207 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=193777002671305679513189401385663005139429 (pp42) r2=12149487304698154777013912556623553448883532470722295647430245883133644361392483 (pp80) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.60 hours. Scaled time: 7.20 units (timescale=1.997). Factorization parameters were as follows: name: 38881_125 n: 2354291233897488778438997287183843911836501873006840225016429589539413189546677859639847253584744730928054877856007512207 m: 10000000000000000000000000 deg: 5 c5: 35 c0: -71 skew: 1.15 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: RFBsize:71274, AFBsize:71106, largePrimes:2741634 encountered Relations: rels:2774104, finalFF:312654 Max relations in full relation-set: 28 Initial matrix: 142446 x 312654 with sparse part having weight 25875141. Pruned matrix : 108667 x 109443 with weight 6866036. Total sieving time: 3.42 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 3.60 hours. --------- CPU info (if available) ----------
(35·10143-71)/9 = 3(8)1421<144> = 3 · 24877 · 2449308294863<13> · 738760692290080903<18> · 3043277453107840967<19> · C90
C90 = P43 · P48
P43 = 6518639221073681222625258143211300772137541<43>
P48 = 145164541708841951682791434372335409586197147397<48>
Fri Dec 05 08:27:47 2008 Msieve v. 1.39 Fri Dec 05 08:27:47 2008 random seeds: 46401fa0 55a4e33b Fri Dec 05 08:27:47 2008 factoring 946275275092443409644573949876196092691119058392272946735399730110850546130079032334130777 (90 digits) Fri Dec 05 08:27:48 2008 searching for 15-digit factors Fri Dec 05 08:27:50 2008 commencing quadratic sieve (90-digit input) Fri Dec 05 08:27:50 2008 using multiplier of 1 Fri Dec 05 08:27:50 2008 using 32kb Intel Core sieve core Fri Dec 05 08:27:50 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 08:27:50 2008 processing polynomials in batches of 6 Fri Dec 05 08:27:50 2008 using a sieve bound of 1616401 (61176 primes) Fri Dec 05 08:27:50 2008 using large prime bound of 135777684 (27 bits) Fri Dec 05 08:27:50 2008 using double large prime bound of 435603187807956 (42-49 bits) Fri Dec 05 08:27:50 2008 using trial factoring cutoff of 49 bits Fri Dec 05 08:27:50 2008 polynomial 'A' values have 11 factors Fri Dec 05 10:03:38 2008 61574 relations (15651 full + 45923 combined from 675984 partial), need 61272 Fri Dec 05 10:03:39 2008 begin with 691635 relations Fri Dec 05 10:03:39 2008 reduce to 153317 relations in 10 passes Fri Dec 05 10:03:39 2008 attempting to read 153317 relations Fri Dec 05 10:03:41 2008 recovered 153317 relations Fri Dec 05 10:03:41 2008 recovered 135213 polynomials Fri Dec 05 10:03:41 2008 attempting to build 61574 cycles Fri Dec 05 10:03:42 2008 found 61574 cycles in 6 passes Fri Dec 05 10:03:42 2008 distribution of cycle lengths: Fri Dec 05 10:03:42 2008 length 1 : 15651 Fri Dec 05 10:03:42 2008 length 2 : 11589 Fri Dec 05 10:03:42 2008 length 3 : 10729 Fri Dec 05 10:03:42 2008 length 4 : 8341 Fri Dec 05 10:03:42 2008 length 5 : 5978 Fri Dec 05 10:03:42 2008 length 6 : 3884 Fri Dec 05 10:03:42 2008 length 7 : 2496 Fri Dec 05 10:03:42 2008 length 9+: 2906 Fri Dec 05 10:03:42 2008 largest cycle: 18 relations Fri Dec 05 10:03:42 2008 matrix is 61176 x 61574 (15.5 MB) with weight 3815112 (61.96/col) Fri Dec 05 10:03:42 2008 sparse part has weight 3815112 (61.96/col) Fri Dec 05 10:03:43 2008 filtering completed in 3 passes Fri Dec 05 10:03:43 2008 matrix is 57748 x 57812 (14.6 MB) with weight 3596094 (62.20/col) Fri Dec 05 10:03:43 2008 sparse part has weight 3596094 (62.20/col) Fri Dec 05 10:03:43 2008 saving the first 48 matrix rows for later Fri Dec 05 10:03:43 2008 matrix is 57700 x 57812 (11.1 MB) with weight 3052248 (52.80/col) Fri Dec 05 10:03:43 2008 sparse part has weight 2564465 (44.36/col) Fri Dec 05 10:03:43 2008 matrix includes 64 packed rows Fri Dec 05 10:03:43 2008 using block size 23124 for processor cache size 1024 kB Fri Dec 05 10:03:43 2008 commencing Lanczos iteration Fri Dec 05 10:03:43 2008 memory use: 9.9 MB Fri Dec 05 10:04:06 2008 lanczos halted after 914 iterations (dim = 57697) Fri Dec 05 10:04:06 2008 recovered 15 nontrivial dependencies Fri Dec 05 10:04:07 2008 prp43 factor: 6518639221073681222625258143211300772137541 Fri Dec 05 10:04:07 2008 prp48 factor: 145164541708841951682791434372335409586197147397 Fri Dec 05 10:04:07 2008 elapsed time 01:36:20
(35·10134-71)/9 = 3(8)1331<135> = 3 · 212281 · 552762764247593<15> · C115
C115 = P50 · P65
P50 = 11472041308740830128226004319952938850730656734007<50>
P65 = 96297203056272637468217470840571551206356271026255352522783960317<65>
Number: 38881_134 N=1104725491377763414833483395718902424741972769207169290516839727448955235136688880837880013087427391950464312400219 ( 115 digits) SNFS difficulty: 135 digits. Divisors found: r1=11472041308740830128226004319952938850730656734007 (pp50) r2=96297203056272637468217470840571551206356271026255352522783960317 (pp65) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.67 hours. Scaled time: 29.93 units (timescale=2.564). Factorization parameters were as follows: name: 38881_134 n: 1104725491377763414833483395718902424741972769207169290516839727448955235136688880837880013087427391950464312400219 m: 500000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1270000 alim: 1270000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1270000/1270000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [635000, 1310001) Primes: RFBsize:97900, AFBsize:97920, largePrimes:4211322 encountered Relations: rels:5361963, finalFF:1360672 Max relations in full relation-set: 28 Initial matrix: 195886 x 1360672 with sparse part having weight 120458970. Pruned matrix : 121778 x 122821 with weight 12755672. Total sieving time: 11.47 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1270000,1270000,26,26,47,47,2.3,2.3,75000 total time: 11.67 hours. --------- CPU info (if available) ----------
(35·10129-71)/9 = 3(8)1281<130> = C130
C130 = P52 · P79
P52 = 3049419765225815668983930609536436633389526100014187<52>
P79 = 1275288149318107683447556329379955502544080854576860051786719622599998534897363<79>
Number: 38881_129 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=3049419765225815668983930609536436633389526100014187 (pp52) r2=1275288149318107683447556329379955502544080854576860051786719622599998534897363 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.90 hours. Scaled time: 7.81 units (timescale=2.003). Factorization parameters were as follows: name: 38881_129 n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 m: 50000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1050000 alim: 1050000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1050000/1050000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [525000, 875001) Primes: RFBsize:82134, AFBsize:82218, largePrimes:2996541 encountered Relations: rels:3114289, finalFF:403967 Max relations in full relation-set: 28 Initial matrix: 164418 x 403967 with sparse part having weight 31259082. Pruned matrix : 111762 x 112648 with weight 7375178. Total sieving time: 3.70 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1050000,1050000,26,26,47,47,2.3,2.3,50000 total time: 3.90 hours. --------- CPU info (if available) ----------
(35·10124-71)/9 = 3(8)1231<125> = 126337 · 401536283195568182048119<24> · C96
C96 = P40 · P57
P40 = 1569021033248296412077580593368762358459<40>
P57 = 488586445919016114840133096706351415288180507783714125653<57>
Fri Dec 05 16:43:00 2008 Msieve v. 1.39 Fri Dec 05 16:43:00 2008 random seeds: dc481b30 e523ea48 Fri Dec 05 16:43:00 2008 factoring 766602410206967560361540831523005387065159711107124604251139731533780707843870880275433353448727 (96 digits) Fri Dec 05 16:43:01 2008 searching for 15-digit factors Fri Dec 05 16:43:02 2008 commencing quadratic sieve (96-digit input) Fri Dec 05 16:43:02 2008 using multiplier of 7 Fri Dec 05 16:43:02 2008 using 32kb Intel Core sieve core Fri Dec 05 16:43:02 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 16:43:02 2008 processing polynomials in batches of 6 Fri Dec 05 16:43:02 2008 using a sieve bound of 2293831 (84706 primes) Fri Dec 05 16:43:02 2008 using large prime bound of 344074650 (28 bits) Fri Dec 05 16:43:02 2008 using double large prime bound of 2322601948775250 (43-52 bits) Fri Dec 05 16:43:02 2008 using trial factoring cutoff of 52 bits Fri Dec 05 16:43:02 2008 polynomial 'A' values have 12 factors Fri Dec 05 16:43:04 2008 restarting with 20411 full and 1277790 partial relations Fri Dec 05 16:43:04 2008 84995 relations (20411 full + 64584 combined from 1277790 partial), need 84802 Fri Dec 05 16:43:06 2008 begin with 1298201 relations Fri Dec 05 16:43:07 2008 reduce to 223514 relations in 11 passes Fri Dec 05 16:43:07 2008 attempting to read 223514 relations Fri Dec 05 16:43:11 2008 recovered 223514 relations Fri Dec 05 16:43:11 2008 recovered 209788 polynomials Fri Dec 05 16:43:11 2008 attempting to build 84995 cycles Fri Dec 05 16:43:11 2008 found 84995 cycles in 6 passes Fri Dec 05 16:43:11 2008 distribution of cycle lengths: Fri Dec 05 16:43:11 2008 length 1 : 20411 Fri Dec 05 16:43:11 2008 length 2 : 14457 Fri Dec 05 16:43:11 2008 length 3 : 14369 Fri Dec 05 16:43:11 2008 length 4 : 11606 Fri Dec 05 16:43:11 2008 length 5 : 8770 Fri Dec 05 16:43:11 2008 length 6 : 6098 Fri Dec 05 16:43:11 2008 length 7 : 3874 Fri Dec 05 16:43:11 2008 length 9+: 5410 Fri Dec 05 16:43:11 2008 largest cycle: 21 relations Fri Dec 05 16:43:12 2008 matrix is 84706 x 84995 (23.8 MB) with weight 5903429 (69.46/col) Fri Dec 05 16:43:12 2008 sparse part has weight 5903429 (69.46/col) Fri Dec 05 16:43:13 2008 filtering completed in 3 passes Fri Dec 05 16:43:13 2008 matrix is 80930 x 80994 (22.8 MB) with weight 5650897 (69.77/col) Fri Dec 05 16:43:13 2008 sparse part has weight 5650897 (69.77/col) Fri Dec 05 16:43:13 2008 saving the first 48 matrix rows for later Fri Dec 05 16:43:13 2008 matrix is 80882 x 80994 (16.9 MB) with weight 4765904 (58.84/col) Fri Dec 05 16:43:13 2008 sparse part has weight 3953034 (48.81/col) Fri Dec 05 16:43:13 2008 matrix includes 64 packed rows Fri Dec 05 16:43:13 2008 using block size 32397 for processor cache size 1024 kB Fri Dec 05 16:43:14 2008 commencing Lanczos iteration Fri Dec 05 16:43:14 2008 memory use: 14.8 MB Fri Dec 05 16:44:03 2008 lanczos halted after 1280 iterations (dim = 80882) Fri Dec 05 16:44:04 2008 recovered 18 nontrivial dependencies Fri Dec 05 16:44:04 2008 prp40 factor: 1569021033248296412077580593368762358459 Fri Dec 05 16:44:04 2008 prp57 factor: 488586445919016114840133096706351415288180507783714125653 Fri Dec 05 16:44:04 2008 elapsed time 00:01:04 注、画面表示ミスしたので再演算したため分解時間は関係ありません。
(35·10144-71)/9 = 3(8)1431<145> = 61 · 769207 · 7871627 · C131
C131 = P62 · P69
P62 = 28629087949393447456111133198620160036169315533071244148235903<62>
P69 = 367773516809964708948000502851903761346423796515465049591887880180663<69>
Number: 38881_144 N=10529020358210209126672419361319625913663990406421937265557556732693143120642454411467186326888174670644236643467251548108382943689 ( 131 digits) SNFS difficulty: 145 digits. Divisors found: r1=28629087949393447456111133198620160036169315533071244148235903 (pp62) r2=367773516809964708948000502851903761346423796515465049591887880180663 (pp69) Version: GGNFS-0.77.1-20060513-nocona Total time: 10.01 hours. Scaled time: 25.68 units (timescale=2.564). Factorization parameters were as follows: name: 38881_144 n: 10529020358210209126672419361319625913663990406421937265557556732693143120642454411467186326888174670644236643467251548108382943689 m: 50000000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1870000 alim: 1870000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1870000/1870000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [935000, 1835001) Primes: RFBsize:139952, AFBsize:139833, largePrimes:3814117 encountered Relations: rels:3832358, finalFF:342129 Max relations in full relation-set: 28 Initial matrix: 279851 x 342129 with sparse part having weight 28183205. Pruned matrix : 255762 x 257225 with weight 17674466. Total sieving time: 9.48 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.39 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1870000,1870000,26,26,49,49,2.3,2.3,100000 total time: 10.01 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(32·10167+13)/9 = 3(5)1667<168> = 3 · 119293 · C162
C162 = P73 · P90
P73 = 4322911474401221003739959855382863867332867253351618140261790579201053693<73>
P90 = 229823752646895330304729197086763575243943550018744050858962781324833714898204771186252031<90>
Number: 35557_167 N=993507737407211810571605362582201122601649036561395207753334382725880969700808249591497560783269081325128201307021522792775087545107579812046964352631910661300483 ( 162 digits) SNFS difficulty: 168 digits. Divisors found: r1=4322911474401221003739959855382863867332867253351618140261790579201053693 r2=229823752646895330304729197086763575243943550018744050858962781324833714898204771186252031 Version: Total time: 84.94 hours. Scaled time: 66.94 units (timescale=0.788). Factorization parameters were as follows: n: 993507737407211810571605362582201122601649036561395207753334382725880969700808249591497560783269081325128201307021522792775087545107579812046964352631910661300483 m: 2000000000000000000000000000000000 deg: 5 c5: 100 c0: 13 skew: 0.66 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 883748 x 883996 Total sieving time: 84.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 84.94 hours. --------- CPU info (if available) ----------
(35·10178-71)/9 = 3(8)1771<179> = 59 · 30319 · 8784667 · 299262034171<12> · 16932239622943<14> · 2859919899229312168589<22> · 3539940740859270898078487443<28> · C92
C92 = P45 · P47
P45 = 852617991092640531706382587775687981367372409<45>
P47 = 56580002638170283553528616716073383101107780277<47>
Fri Dec 05 00:21:57 2008 Msieve v. 1.39 Fri Dec 05 00:21:57 2008 random seeds: 87820f18 cf45edda Fri Dec 05 00:21:57 2008 factoring 48241128185373048607658534762192941159740389848374666344381904643854197316091606546004177293 (92 digits) Fri Dec 05 00:21:58 2008 searching for 15-digit factors Fri Dec 05 00:21:59 2008 commencing quadratic sieve (92-digit input) Fri Dec 05 00:21:59 2008 using multiplier of 1 Fri Dec 05 00:21:59 2008 using 32kb Intel Core sieve core Fri Dec 05 00:21:59 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 00:21:59 2008 processing polynomials in batches of 6 Fri Dec 05 00:21:59 2008 using a sieve bound of 1818667 (68235 primes) Fri Dec 05 00:21:59 2008 using large prime bound of 198234703 (27 bits) Fri Dec 05 00:21:59 2008 using double large prime bound of 860841928930917 (42-50 bits) Fri Dec 05 00:21:59 2008 using trial factoring cutoff of 50 bits Fri Dec 05 00:21:59 2008 polynomial 'A' values have 12 factors Fri Dec 05 02:26:40 2008 68377 relations (17338 full + 51039 combined from 866466 partial), need 68331 Fri Dec 05 02:26:43 2008 begin with 883804 relations Fri Dec 05 02:26:43 2008 reduce to 173971 relations in 11 passes Fri Dec 05 02:26:43 2008 attempting to read 173971 relations Fri Dec 05 02:26:47 2008 recovered 173971 relations Fri Dec 05 02:26:47 2008 recovered 156247 polynomials Fri Dec 05 02:26:48 2008 attempting to build 68377 cycles Fri Dec 05 02:26:48 2008 found 68377 cycles in 5 passes Fri Dec 05 02:26:48 2008 distribution of cycle lengths: Fri Dec 05 02:26:48 2008 length 1 : 17338 Fri Dec 05 02:26:48 2008 length 2 : 12123 Fri Dec 05 02:26:48 2008 length 3 : 11729 Fri Dec 05 02:26:48 2008 length 4 : 9447 Fri Dec 05 02:26:48 2008 length 5 : 6839 Fri Dec 05 02:26:48 2008 length 6 : 4403 Fri Dec 05 02:26:48 2008 length 7 : 2764 Fri Dec 05 02:26:48 2008 length 9+: 3734 Fri Dec 05 02:26:48 2008 largest cycle: 21 relations Fri Dec 05 02:26:48 2008 matrix is 68235 x 68377 (17.0 MB) with weight 4182839 (61.17/col) Fri Dec 05 02:26:48 2008 sparse part has weight 4182839 (61.17/col) Fri Dec 05 02:26:49 2008 filtering completed in 3 passes Fri Dec 05 02:26:49 2008 matrix is 64604 x 64668 (16.2 MB) with weight 3981649 (61.57/col) Fri Dec 05 02:26:49 2008 sparse part has weight 3981649 (61.57/col) Fri Dec 05 02:26:49 2008 saving the first 48 matrix rows for later Fri Dec 05 02:26:49 2008 matrix is 64556 x 64668 (10.0 MB) with weight 3102626 (47.98/col) Fri Dec 05 02:26:49 2008 sparse part has weight 2234604 (34.56/col) Fri Dec 05 02:26:49 2008 matrix includes 64 packed rows Fri Dec 05 02:26:49 2008 using block size 25867 for processor cache size 2048 kB Fri Dec 05 02:26:49 2008 commencing Lanczos iteration Fri Dec 05 02:26:49 2008 memory use: 9.9 MB Fri Dec 05 02:27:11 2008 lanczos halted after 1022 iterations (dim = 64554) Fri Dec 05 02:27:12 2008 recovered 15 nontrivial dependencies Fri Dec 05 02:27:12 2008 prp45 factor: 852617991092640531706382587775687981367372409 Fri Dec 05 02:27:12 2008 prp47 factor: 56580002638170283553528616716073383101107780277 Fri Dec 05 02:27:12 2008 elapsed time 02:05:15
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10102-71)/9 = 3(8)1011<103> = 139 · 2053 · 3421577921<10> · C88
C88 = P36 · P53
P36 = 189655237882485713626855383164734829<36>
P53 = 21000542262980580332387674910609858745830341198993427<53>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3315921847 Step 1 took 9500ms Step 2 took 7561ms ********** Factor found in step 2: 189655237882485713626855383164734829 Found probable prime factor of 36 digits: 189655237882485713626855383164734829 Probable prime cofactor 21000542262980580332387674910609858745830341198993427 has 53 digits
(35·10139-71)/9 = 3(8)1381<140> = 17 · 813311 · 8018110624369<13> · 6511228337017966632813877<25> · C95
C95 = P35 · P61
P35 = 15649167451664818524155508294784231<35>
P61 = 3442657041560301536979260219834848760144132407114779732793621<61>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=344597253 Step 1 took 9148ms Step 2 took 7897ms ********** Factor found in step 2: 15649167451664818524155508294784231 Found probable prime factor of 35 digits: 15649167451664818524155508294784231 Probable prime cofactor 3442657041560301536979260219834848760144132407114779732793621 has 61 digits
(35·10120-71)/9 = 3(8)1191<121> = 59 · 83 · 1603184392344227670937<22> · C96
C96 = P31 · P66
P31 = 2715369083178513050346546575239<31>
P66 = 182424466924139797820704781550258524766594314753551564628143605311<66>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1516650998 Step 1 took 10824ms Step 2 took 9665ms ********** Factor found in step 2: 2715369083178513050346546575239 Found probable prime factor of 31 digits: 2715369083178513050346546575239 Probable prime cofactor 182424466924139797820704781550258524766594314753551564628143605311 has 66 digits
(35·10114-71)/9 = 3(8)1131<115> = 43284926261085623<17> · C98
C98 = P31 · P68
P31 = 2076816267013609977133570087451<31>
P68 = 43260424438253424573969100498590711648381570067561111971769414772597<68>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4182817904 Step 1 took 14192ms Step 2 took 10071ms ********** Factor found in step 2: 2076816267013609977133570087451 Found probable prime factor of 31 digits: 2076816267013609977133570087451 Probable prime cofactor 43260424438253424573969100498590711648381570067561111971769414772597 has 68 digits
(35·10142-71)/9 = 3(8)1411<143> = 163 · 150313247296939<15> · 490610474282534410031115979<27> · C100
C100 = P43 · P58
P43 = 1223607960764791633345625934073632017268917<43>
P58 = 2644000686310157989135261085141315838217069079769040285031<58>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3800258058 Step 1 took 14387ms Step 2 took 10768ms ********** Factor found in step 2: 1223607960764791633345625934073632017268917 Found probable prime factor of 43 digits: 1223607960764791633345625934073632017268917 Probable prime cofactor 2644000686310157989135261085141315838217069079769040285031 has 58 digits
(35·10189-71)/9 = 3(8)1881<190> = 131 · 260207 · 616657957 · 11531893397<11> · C164
C164 = P29 · P135
P29 = 17905448426118827495647659859<29>
P135 = 895994002891375498633567347569959074995539442743484179100848856679581645115282341184169133920282804468223980864525066718672772643026463<135>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=85049247 Step 1 took 20781ms ********** Factor found in step 1: 17905448426118827495647659859 Found probable prime factor of 29 digits: 17905448426118827495647659859 Probable prime cofactor has 135 digits
(35·10173-71)/9 = 3(8)1721<174> = 3 · 29030340373<11> · C163
C163 = P34 · C130
P34 = 1251570369921303065533447516226851<34>
C130 = [3567770246554798335164904445667700393306498994538845244740178159103393362348826080981445946352887328882491821739754257930971069349<130>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3008931572 Step 1 took 20686ms ********** Factor found in step 1: 1251570369921303065533447516226851 Found probable prime factor of 34 digits: 1251570369921303065533447516226851 Composite cofactor has 130 digits
(35·10167-71)/9 = 3(8)1661<168> = 34 · C166
C166 = P36 · C131
P36 = 146222004002926974466791407216706971<36>
C131 = [32834301693703234431710291345676026682577433328676387101190552058950862612556701138015292983135095332969771365288049814825795079731<131>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4195115374 Step 1 took 20989ms Step 2 took 13929ms ********** Factor found in step 2: 146222004002926974466791407216706971 Found probable prime factor of 36 digits: 146222004002926974466791407216706971 Composite cofactor has 131 digits
(35·10193-71)/9 = 3(8)1921<194> = 233 · 439 · 93332017 · 12287897372633<14> · C168
C168 = P34 · P36 · P99
P34 = 1336274913064414490088424457113547<34>
P36 = 305963866293796696968288607697488003<36>
P99 = 810832058305497998180067142835268854471352451027447649649815204031597101164875882584961155023721063<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1031670139 Step 1 took 21226ms Step 2 took 13893ms ********** Factor found in step 2: 1336274913064414490088424457113547 Found probable prime factor of 34 digits: 1336274913064414490088424457113547 Composite cofactor 248085311474107357104588422474489869701555555453866907191475948275891744402980997431744271055640501443588456969084801898897862860907189 has 135 digits Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4250334491 Step 1 took 12049ms Step 2 took 9732ms ********** Factor found in step 2: 305963866293796696968288607697488003 Found probable prime factor of 36 digits: 305963866293796696968288607697488003 Probable prime cofactor 810832058305497998180067142835268854471352451027447649649815204031597101164875882584961155023721063 has 99 digits
(35·10197-71)/9 = 3(8)1961<198> = 3 · 41113 · 75642877643<11> · C182
C182 = P27 · C155
P27 = 760313831104560253254183673<27>
C155 = [54823174425482750926246594909658135020132072477274295276824574265817217975244637290064755167295711456097792543538115601269727309476437989059777953016700161<155>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3978802356 Step 1 took 25553ms Step 2 took 15409ms ********** Factor found in step 2: 760313831104560253254183673 Found probable prime factor of 27 digits: 760313831104560253254183673 Composite cofactor has 155 digits
(35·10194-71)/9 = 3(8)1931<195> = 33 · 139 · 10499 · C187
C187 = P28 · C160
P28 = 2695648747855838052012777127<28>
C160 = [3661303521046606546298585518347392024070683888179286291517871209385493946781642011240660743528557012706441362886380290894705288545269001778754040289321222095749<160>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=316825665 Step 1 took 25690ms Step 2 took 15681ms ********** Factor found in step 2: 2695648747855838052012777127 Found probable prime factor of 28 digits: 2695648747855838052012777127 Composite cofactor has 160 digits
(35·10141-71)/9 = 3(8)1401<142> = 19 · C141
C141 = P55 · P87
P55 = 1319010200979302625048260303049985266255243144258099089<55>
P87 = 155175723751897765150475110029731564711269841858076385450258470490538595269383272804091<87>
SNFS difficulty: 142 digits. Divisors found: r1=1319010200979302625048260303049985266255243144258099089 (pp55) r2=155175723751897765150475110029731564711269841858076385450258470490538595269383272804091 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099 m: 10000000000000000000000000000 deg: 5 c5: 350 c0: -71 skew: 0.73 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 1930001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 268312 x 268560 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 6.00 hours.
(35·10119-71)/9 = 3(8)1181<120> = 3 · C120
C120 = P52 · P68
P52 = 9108048653773274900975019699685290610509871744551301<52>
P68 = 14232426127404004736307046465996489398097073385511086633106988894527<68>
SNFS difficulty: 120 digits. Divisors found: r1=9108048653773274900975019699685290610509871744551301 (pp52) r2=14232426127404004736307046465996489398097073385511086633106988894527 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.739). Factorization parameters were as follows: n: 129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629627 m: 500000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 710000 alim: 710000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 710000/710000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [355000, 555001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73362 x 73605 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,710000,710000,25,25,46,46,2.2,2.2,50000 total time: 1.00 hours.
(35·10201-71)/9 = 3(8)2001<202> = 57690799 · 188013277 · C186
C186 = P31 · C156
P31 = 2417025011202852553830152157173<31>
C156 = [148336940573693026676931953360768681251898110248037176988146673580884095938488249642040714732420381075108148432925737985713043549619431873238226401551617439<156>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2143623369 Step 1 took 24053ms Step 2 took 14537ms ********** Factor found in step 2: 2417025011202852553830152157173 Found probable prime factor of 31 digits: 2417025011202852553830152157173 Composite cofactor has 156 digits
(11·10158+1)/3 = 3(6)1577<159> = 31 · 59 · 97 · 1237 · 2333 · C147
C147 = P68 · P80
P68 = 15611366323089686328149847587593711715540807434474824383064092790761<68>
P80 = 45873369125111275439706510098906208237069667903072673179163397331530328855542839<80>
SNFS difficulty: 160 digits. Divisors found: r1=15611366323089686328149847587593711715540807434474824383064092790761 (pp68) r2=45873369125111275439706510098906208237069667903072673179163397331530328855542839 (pp80) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.939). Factorization parameters were as follows: n: 716145969886424353063705045345701423108319336840934696165230955448572566883712214497732483274991819051353486705377955571485029773507164775098910479 m: 50000000000000000000000000000000 deg: 5 c5: 88 c0: 25 skew: 0.78 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1650000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 479736 x 479984 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,52,52,2.4,2.4,200000 total time: 21.00 hours.
(35·10152-71)/9 = 3(8)1511<153> = 3 · 593 · C150
C150 = P33 · P50 · P68
P33 = 196877064555228798257051976037937<33>
P50 = 36533076470534038295304648507983428931265801937723<50>
P68 = 30392625276083080315139642232573944572961068830522941570127555167489<68>
SNFS difficulty: 154 digits. Divisors found: r1=196877064555228798257051976037937 (pp33) r2=36533076470534038295304648507983428931265801937723 (pp50) r3=30392625276083080315139642232573944572961068830522941570127555167489 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.737). Factorization parameters were as follows: n: 218599712697520454687402410842545749797014552495159577790269189931921803759915058397351820623321466491786896508650302916744737992630066829055024670539 m: 2000000000000000000000000000000 deg: 5 c5: 875 c0: -568 skew: 0.92 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 547354 x 547602 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 16.00 hours.
(35·10168-71)/9 = 3(8)1671<169> = 10873724311<11> · C159
C159 = P41 · C119
P41 = 14303299735272000932427365334907044020341<41>
C119 = [25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331<119>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2451661041 Step 1 took 25935ms Step 2 took 16777ms ********** Factor found in step 2: 14303299735272000932427365334907044020341 Found probable prime factor of 41 digits: 14303299735272000932427365334907044020341 Composite cofactor has 119 digits
Factorizations of 388...881 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS
(14·10170-23)/9 = 1(5)1693<171> = 3 · 691 · 22263472690475736337<20> · 4140183215192466077295603949<28> · C120
C120 = P51 · P70
P51 = 630117766017269648087725009336287261566800724122723<51>
P70 = 1291968818028846496792599442959506376604417781810432273538694583529439<70>
Number: 15553_170 N=814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 ( 120 digits) Divisors found: r1=630117766017269648087725009336287261566800724122723 (pp51) r2=1291968818028846496792599442959506376604417781810432273538694583529439 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.54 hours. Scaled time: 103.89 units (timescale=2.386). Factorization parameters were as follows: name: 15553_170 n: 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 skew: 28185.42 # norm 3.42e+15 c5: 95760 c4: 4567223691 c3: -133520678204283 c2: -3909924647066575861 c1: 67745503802752554587296 c0: -3003949084757309352275677 # alpha -3.63 Y1: 11054423741099 Y0: -96804924543965338047558 # Murphy_E 2.60e-10 # M 275705184235830591348662618029168213759719931670795570142473149118975745695546772170490093024576973858091779254759836679 type: gnfs rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2400000, 4800001) Primes: RFBsize:335439, AFBsize:334032, largePrimes:10062010 encountered Relations: rels:10266008, finalFF:849385 Max relations in full relation-set: 28 Initial matrix: 669551 x 849385 with sparse part having weight 84446630. Pruned matrix : 532692 x 536103 with weight 58093567. Polynomial selection time: 2.60 hours. Total sieving time: 38.10 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.48 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 43.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve
(32·10164+13)/9 = 3(5)1637<165> = 3 · 7 · 43 · 1001485577<10> · 6949169419<10> · 603730695926738492922339797<27> · C116
C116 = P57 · P60
P57 = 135668168107915602062507621783920751448705463501108031083<57>
P60 = 690750012084541731056403382306042079849402924714875383489863<60>
Number: n N=93712788760030341200758687850157434280544815854859669843832571475209729383133361618332274540247415803878813219411629 ( 116 digits) Divisors found: Thu Dec 04 13:22:30 2008 prp57 factor: 135668168107915602062507621783920751448705463501108031083 Thu Dec 04 13:22:30 2008 prp60 factor: 690750012084541731056403382306042079849402924714875383489863 Thu Dec 04 13:22:30 2008 elapsed time 01:13:36 (Msieve 1.39) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.16 hours. Scaled time: 58.59 units (timescale=1.822). Factorization parameters were as follows: name: KA_3_5_163_7 n: 93712788760030341200758687850157434280544815854859669843832571475209729383133361618332274540247415803878813219411629 # Msieve 1.39 selections: skew: 102302.32 Y0: -24003768776778299772686 Y1: 2470048358657 c0: -166645603175821687540475229795 c1: 4424225278037915341357178 c2: 33473491889923939705 c3: -767528885982384 c4: -1482191564 c5: 11760 # Ggnfs selections: # skew: 46755.21 # norm 7.66e+15 # # c5: 57960 # c4: -4378786561 # c3: -355222018770405 # c2: 6585478902930367520 # c1: 226574327938287993311037 # c0: 1873860926445465809121007730 # # alpha -5.71 # Y1: 45119695357 # Y0: -17447536439140996067493 # Murphy_E 4.39e-10 # M 37118574491776789170758160355679680988337008512699570564323659979502457549970503778172089484588830310691125311224565 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1900001) Primes: RFBsize:348513, AFBsize:348931, largePrimes:10449792 encountered Relations: rels:9357171, finalFF:742303 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 31.83 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,28,28,56,56,2.4,2.4,60000 total time: 32.16 hours. --------- CPU info (if available) ----------
(11·10151-17)/3 = 3(6)1501<152> = 31 · 349 · 2861 · 8017 · 39843953 · 56011094759891<14> · C119
C119 = P45 · P75
P45 = 112799423974289196481994738738050346143074439<45>
P75 = 586963649074040777743311527397388588098323753426545891645978911779023424471<75>
Number: n N=66209161509398626028403506902594758492010827988105228259159168846744076206483165238543451191977366979540685390047196769 ( 119 digits) SNFS difficulty: 152 digits. Divisors found: Fri Dec 05 01:08:52 2008 prp45 factor: 112799423974289196481994738738050346143074439 Fri Dec 05 01:08:52 2008 prp75 factor: 586963649074040777743311527397388588098323753426545891645978911779023424471 Fri Dec 05 01:08:52 2008 elapsed time 00:49:53 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.52 hours. Scaled time: 19.24 units (timescale=1.828). Factorization parameters were as follows: name: KA_3_6_150_1 n: 66209161509398626028403506902594758492010827988105228259159168846744076206483165238543451191977366979540685390047196769 type: snfs skew: 0.69 deg: 5 c5: 110 c0: -17 m: 1000000000000000000000000000000 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 700001) Primes: RFBsize:176302, AFBsize:176664, largePrimes:10025374 encountered Relations: rels:8593859, finalFF:356069 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 10.34 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.5,2.5,100000 total time: 10.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(34·10150+11)/9 = 3(7)1499<151> = 613 · C148
C148 = P46 · P103
P46 = 5474723484518379372701766368967546866644000693<46>
P103 = 1125676874566949097792931739812198215757230882784080543645476831099365405414404627756124731207967774331<103>
SNFS difficulty: 151 digits. Divisors found: r1=5474723484518379372701766368967546866644000693 (pp46) r2=1125676874566949097792931739812198215757230882784080543645476831099365405414404627756124731207967774331 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.530). Factorization parameters were as follows: n: 6162769621170926228022475983324270436831611382998006162769621170926228022475983324270436831611382998006162769621170926228022475983324270436831611383 m: 1000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 475351 x 475599 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,100000 total time: 9.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(34·10136+11)/9 = 3(7)1359<137> = 3 · 7 · 163 · 526424108506853<15> · 53655775625396912603<20> · C99
C99 = P33 · P67
P33 = 129875636537331934293962710004963<33>
P67 = 3008496924078089501053188927281925523873777858397632239079606003769<67>
Wed Dec 03 13:56:27 2008 Msieve v. 1.38 Wed Dec 03 13:56:27 2008 random seeds: 2557077c 08d5cfb5 Wed Dec 03 13:56:27 2008 factoring 390730453035247059146522489228493483467865317468685394145951389981862136141644394648757538586705547 (99 digits) Wed Dec 03 13:56:28 2008 searching for 15-digit factors Wed Dec 03 13:56:29 2008 commencing quadratic sieve (99-digit input) Wed Dec 03 13:56:30 2008 using multiplier of 3 Wed Dec 03 13:56:30 2008 using 32kb Intel Core sieve core Wed Dec 03 13:56:30 2008 sieve interval: 36 blocks of size 32768 Wed Dec 03 13:56:30 2008 processing polynomials in batches of 6 Wed Dec 03 13:56:30 2008 using a sieve bound of 2612039 (95294 primes) Wed Dec 03 13:56:30 2008 using large prime bound of 391805850 (28 bits) Wed Dec 03 13:56:30 2008 using double large prime bound of 2934456164566950 (43-52 bits) Wed Dec 03 13:56:30 2008 using trial factoring cutoff of 52 bits Wed Dec 03 13:56:30 2008 polynomial 'A' values have 13 factors Thu Dec 04 00:07:06 2008 95638 relations (22183 full + 73455 combined from 1444910 partial), need 95390 Thu Dec 04 00:07:08 2008 begin with 1467093 relations Thu Dec 04 00:07:10 2008 reduce to 254155 relations in 10 passes Thu Dec 04 00:07:10 2008 attempting to read 254155 relations Thu Dec 04 00:07:14 2008 recovered 254155 relations Thu Dec 04 00:07:14 2008 recovered 244846 polynomials Thu Dec 04 00:07:14 2008 attempting to build 95638 cycles Thu Dec 04 00:07:15 2008 found 95638 cycles in 6 passes Thu Dec 04 00:07:15 2008 distribution of cycle lengths: Thu Dec 04 00:07:15 2008 length 1 : 22183 Thu Dec 04 00:07:15 2008 length 2 : 16132 Thu Dec 04 00:07:15 2008 length 3 : 16184 Thu Dec 04 00:07:15 2008 length 4 : 13158 Thu Dec 04 00:07:15 2008 length 5 : 10093 Thu Dec 04 00:07:15 2008 length 6 : 6935 Thu Dec 04 00:07:15 2008 length 7 : 4505 Thu Dec 04 00:07:15 2008 length 9+: 6448 Thu Dec 04 00:07:15 2008 largest cycle: 20 relations Thu Dec 04 00:07:15 2008 matrix is 95294 x 95638 (25.8 MB) with weight 6383703 (66.75/col) Thu Dec 04 00:07:15 2008 sparse part has weight 6383703 (66.75/col) Thu Dec 04 00:07:16 2008 filtering completed in 3 passes Thu Dec 04 00:07:16 2008 matrix is 91652 x 91716 (24.8 MB) with weight 6140115 (66.95/col) Thu Dec 04 00:07:16 2008 sparse part has weight 6140115 (66.95/col) Thu Dec 04 00:07:17 2008 saving the first 48 matrix rows for later Thu Dec 04 00:07:17 2008 matrix is 91604 x 91716 (14.6 MB) with weight 4748001 (51.77/col) Thu Dec 04 00:07:17 2008 sparse part has weight 3267205 (35.62/col) Thu Dec 04 00:07:17 2008 matrix includes 64 packed rows Thu Dec 04 00:07:17 2008 using block size 36686 for processor cache size 1024 kB Thu Dec 04 00:07:18 2008 commencing Lanczos iteration Thu Dec 04 00:07:18 2008 memory use: 14.7 MB Thu Dec 04 00:08:20 2008 lanczos halted after 1450 iterations (dim = 91602) Thu Dec 04 00:08:21 2008 recovered 16 nontrivial dependencies Thu Dec 04 00:08:21 2008 prp33 factor: 129875636537331934293962710004963 Thu Dec 04 00:08:21 2008 prp67 factor: 3008496924078089501053188927281925523873777858397632239079606003769 Thu Dec 04 00:08:21 2008 elapsed time 10:11:54
(34·10152-61)/9 = 3(7)1511<153> = 72 · 1156845484056134377<19> · C133
C133 = P56 · P78
P56 = 18140064527049332303648755303293357509352299892563197159<56>
P78 = 367388996167468745630067954460328243858151569259818255011945437791324718164453<78>
Number: 37771_152 N=6664460097005762889501326931842972589120882959363472910276971278563908576252337593941653650382664001497951582800929546255771624389027 ( 133 digits) SNFS difficulty: 154 digits. Divisors found: r1=18140064527049332303648755303293357509352299892563197159 (pp56) r2=367388996167468745630067954460328243858151569259818255011945437791324718164453 (pp78) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 48.81 hours. Scaled time: 23.09 units (timescale=0.473). Factorization parameters were as follows: name: 37771_152 n: 6664460097005762889501326931842972589120882959363472910276971278563908576252337593941653650382664001497951582800929546255771624389027 m: 2000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2500001) Primes: RFBsize:189880, AFBsize:190596, largePrimes:8108679 encountered Relations: rels:8328593, finalFF:587648 Max relations in full relation-set: 28 Initial matrix: 380543 x 587648 with sparse part having weight 67736918. Pruned matrix : 319755 x 321721 with weight 35454744. Total sieving time: 44.15 hours. Total relation processing time: 0.40 hours. Matrix solve time: 4.12 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 48.81 hours. --------- CPU info (if available) ----------
(34·10159+11)/9 = 3(7)1589<160> = 29 · 61 · 11092973448917077<17> · C141
C141 = P32 · P36 · P73
P32 = 56960796213499206995819411589421<32>
P36 = 653999055531658257880633332837128587<36>
P73 = 5167820598800979524424252379458124776983707013484074238580352480196575329<73>
Number: 37779_159 N=192513239084831126427408014469396118890961735454762306318816343869393433862102152227064049739804890063922442679003515268166854827647928928783 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: r1=56960796213499206995819411589421 (pp32) r2=653999055531658257880633332837128587 (pp36) r3=5167820598800979524424252379458124776983707013484074238580352480196575329 (pp73) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.26 hours. Scaled time: 116.53 units (timescale=2.575). Factorization parameters were as follows: name: 37779_159 n: 192513239084831126427408014469396118890961735454762306318816343869393433862102152227064049739804890063922442679003515268166854827647928928783 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:243460, largePrimes:9425000 encountered Relations: rels:10213711, finalFF:981172 Max relations in full relation-set: 28 Initial matrix: 487064 x 981172 with sparse part having weight 116904325. Pruned matrix : 354614 x 357113 with weight 57238682. Total sieving time: 43.30 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.64 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.26 hours. --------- CPU info (if available) ----------
(11·10157+1)/3 = 3(6)1567<158> = 37 · 1955047 · 25264817 · C143
C143 = P64 · P79
P64 = 8094731531159257114384118790068783897387029934394005132192109889<64>
P79 = 2478528387941507389257903805559758966512411806020490482897963327234349291725481<79>
Number: 36667_157 N=20063021892743443326478130818979587624195871689987254647969629230342545976216225090108921757143590322301830787962129778289720168589102773381609 ( 143 digits) SNFS difficulty: 160 digits. Divisors found: r1=8094731531159257114384118790068783897387029934394005132192109889 (pp64) r2=2478528387941507389257903805559758966512411806020490482897963327234349291725481 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 51.97 hours. Scaled time: 103.16 units (timescale=1.985). Factorization parameters were as follows: name: 36667_157 n: 20063021892743443326478130818979587624195871689987254647969629230342545976216225090108921757143590322301830787962129778289720168589102773381609 m: 50000000000000000000000000000000 deg: 5 c5: 44 c0: 125 skew: 1.23 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3150001) Primes: RFBsize:236900, AFBsize:236813, largePrimes:9295256 encountered Relations: rels:9908058, finalFF:836964 Max relations in full relation-set: 28 Initial matrix: 473780 x 836964 with sparse part having weight 98632399. Pruned matrix : 366694 x 369126 with weight 50531157. Total sieving time: 48.93 hours. Total relation processing time: 0.30 hours. Matrix solve time: 2.51 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 51.97 hours. --------- CPU info (if available) ----------
(34·10134+11)/9 = 3(7)1339<135> = 19 · 374047 · 2174281046333862930037878901<28> · C101
C101 = P30 · P71
P30 = 881826597797799257233689206803<30>
P71 = 27724119158394433966044807026838624228049298969437410695567232496220401<71>
Thu Dec 04 00:18:05 2008 Msieve v. 1.38 Thu Dec 04 00:18:05 2008 random seeds: c33abc40 4e1f0ddc Thu Dec 04 00:18:05 2008 factoring 24447865674387749360043877876481953138437871115753646983888106437925276699437543296241688205156588003 (101 digits) Thu Dec 04 00:18:06 2008 searching for 15-digit factors Thu Dec 04 00:18:07 2008 commencing quadratic sieve (101-digit input) Thu Dec 04 00:18:07 2008 using multiplier of 3 Thu Dec 04 00:18:07 2008 using 32kb Intel Core sieve core Thu Dec 04 00:18:07 2008 sieve interval: 36 blocks of size 32768 Thu Dec 04 00:18:07 2008 processing polynomials in batches of 6 Thu Dec 04 00:18:07 2008 using a sieve bound of 2899627 (105000 primes) Thu Dec 04 00:18:07 2008 using large prime bound of 434944050 (28 bits) Thu Dec 04 00:18:07 2008 using double large prime bound of 3541441458762600 (43-52 bits) Thu Dec 04 00:18:07 2008 using trial factoring cutoff of 52 bits Thu Dec 04 00:18:07 2008 polynomial 'A' values have 13 factors Thu Dec 04 15:35:22 2008 105169 relations (24457 full + 80712 combined from 1588835 partial), need 105096 Thu Dec 04 15:35:24 2008 begin with 1613292 relations Thu Dec 04 15:35:26 2008 reduce to 279532 relations in 11 passes Thu Dec 04 15:35:26 2008 attempting to read 279532 relations Thu Dec 04 15:35:31 2008 recovered 279532 relations Thu Dec 04 15:35:31 2008 recovered 271621 polynomials Thu Dec 04 15:35:31 2008 attempting to build 105169 cycles Thu Dec 04 15:35:32 2008 found 105169 cycles in 6 passes Thu Dec 04 15:35:32 2008 distribution of cycle lengths: Thu Dec 04 15:35:32 2008 length 1 : 24457 Thu Dec 04 15:35:32 2008 length 2 : 17837 Thu Dec 04 15:35:32 2008 length 3 : 17389 Thu Dec 04 15:35:32 2008 length 4 : 14579 Thu Dec 04 15:35:32 2008 length 5 : 11211 Thu Dec 04 15:35:32 2008 length 6 : 7688 Thu Dec 04 15:35:32 2008 length 7 : 4891 Thu Dec 04 15:35:32 2008 length 9+: 7117 Thu Dec 04 15:35:32 2008 largest cycle: 20 relations Thu Dec 04 15:35:32 2008 matrix is 105000 x 105169 (29.4 MB) with weight 7290438 (69.32/col) Thu Dec 04 15:35:32 2008 sparse part has weight 7290438 (69.32/col) Thu Dec 04 15:35:33 2008 filtering completed in 3 passes Thu Dec 04 15:35:33 2008 matrix is 101030 x 101094 (28.4 MB) with weight 7048029 (69.72/col) Thu Dec 04 15:35:33 2008 sparse part has weight 7048029 (69.72/col) Thu Dec 04 15:35:34 2008 saving the first 48 matrix rows for later Thu Dec 04 15:35:34 2008 matrix is 100982 x 101094 (17.7 MB) with weight 5595506 (55.35/col) Thu Dec 04 15:35:34 2008 sparse part has weight 4029442 (39.86/col) Thu Dec 04 15:35:34 2008 matrix includes 64 packed rows Thu Dec 04 15:35:34 2008 using block size 40437 for processor cache size 1024 kB Thu Dec 04 15:35:35 2008 commencing Lanczos iteration Thu Dec 04 15:35:35 2008 memory use: 17.1 MB Thu Dec 04 15:37:01 2008 lanczos halted after 1598 iterations (dim = 100980) Thu Dec 04 15:37:02 2008 recovered 16 nontrivial dependencies Thu Dec 04 15:37:03 2008 prp30 factor: 881826597797799257233689206803 Thu Dec 04 15:37:03 2008 prp71 factor: 27724119158394433966044807026838624228049298969437410695567232496220401 Thu Dec 04 15:37:03 2008 elapsed time 15:18:58
(34·10160+11)/9 = 3(7)1599<161> = 32 · 7 · 22543 · C155
C155 = P56 · P100
P56 = 15640944141321185099322247466507075594820802996029162961<56>
P100 = 1700674430149138207643706969225336809928813149676112024635548084053368737429115806131547880354595571<100>
Number: 37779_160 N=26600153764535908290806337502281549953406701251560705345324369707400655662495997263626535092917857708110410353530908322491814780625793652749544452807845731 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=15640944141321185099322247466507075594820802996029162961 (pp56) r2=1700674430149138207643706969225336809928813149676112024635548084053368737429115806131547880354595571 (pp100) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.26 hours. Scaled time: 116.05 units (timescale=2.564). Factorization parameters were as follows: name: 37779_160 n: 26600153764535908290806337502281549953406701251560705345324369707400655662495997263626535092917857708110410353530908322491814780625793652749544452807845731 m: 100000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:244010, largePrimes:9375477 encountered Relations: rels:10101428, finalFF:940436 Max relations in full relation-set: 28 Initial matrix: 487615 x 940436 with sparse part having weight 112572943. Pruned matrix : 359368 x 361870 with weight 55395426. Total sieving time: 43.31 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.63 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.26 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS, Msieve
10185+3 = 1(0)1843<186> = 23 · 503 · 1129 · C178
C178 = P47 · P132
P47 = 14664279305141722711057404987986284967512862293<47>
P132 = 522094974805393808120588312898179627396251001923170837778218768489811574700366797020490210824166469329055959469753995440922219261071<132>
Number: 10003_185 N=7656146534357225538056752104923507057167910241787998086882103994816482550378784021714056554882588782015038049899853775257340311349448654091548065938715150082292091024538638695803 ( 178 digits) SNFS difficulty: 185 digits. Divisors found: r1=14664279305141722711057404987986284967512862293 r2=522094974805393808120588312898179627396251001923170837778218768489811574700366797020490210824166469329055959469753995440922219261071 Version: Total time: 236.49 hours. Scaled time: 475.81 units (timescale=2.012). Factorization parameters were as follows: n: 7656146534357225538056752104923507057167910241787998086882103994816482550378784021714056554882588782015038049899853775257340311349448654091548065938715150082292091024538638695803 m: 10000000000000000000000000000000000000 deg: 5 c5: 1 c0: 3 skew: 1.25 type: snfs lss: 1 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4250000, 6450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1408605 x 1408853 Total sieving time: 236.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,54,54,2.5,2.5,100000 total time: 236.49 hours. --------- CPU info (if available) ----------
10174+3 = 1(0)1733<175> = 9701827 · 2365502310860023<16> · 27679823238177256411<20> · C133
C133 = P60 · P73
P60 = 291422925891151054317621660625168167319857245759119095307699<60>
P73 = 5401769776185501645973607904479822156071281325941785500003058562905410087<73>
Number: 10003_174 N=1574199553166367063490716266281627928450579326253662047596012772199672959419105319917606262631145066135089965093226907594743043359813 ( 133 digits) SNFS difficulty: 174 digits. Divisors found: r1=291422925891151054317621660625168167319857245759119095307699 (pp60) r2=5401769776185501645973607904479822156071281325941785500003058562905410087 (pp73) Version: GGNFS-0.77.1-20060722-nocona Total time: 123.13 hours. Scaled time: 229.88 units (timescale=1.867). Factorization parameters were as follows: n: 1574199553166367063490716266281627928450579326253662047596012772199672959419105319917606262631145066135089965093226907594743043359813 m: 50000000000000000000000000000000000 deg: 5 c5: 16 c0: 15 skew: 0.99 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 6150001) Primes: RFBsize:393606, AFBsize:392152, largePrimes:10860781 encountered Relations: rels:12760960, finalFF:1797557 Max relations in full relation-set: 32 Initial matrix: 785822 x 1797557 with sparse part having weight 242784055. Pruned matrix : 532971 x 536964 with weight 124499580. Total sieving time: 117.44 hours. Total relation processing time: 0.19 hours. Matrix solve time: 5.32 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 123.13 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(34·10117+11)/9 = 3(7)1169<118> = 358289 · 10166759834121798343<20> · C94
C94 = P43 · P51
P43 = 3169840304725009685413906056034592944278811<43>
P51 = 327177165093027581456207742002827740502041351113407<51>
Wed Dec 03 08:05:31 2008 Msieve v. 1.38 Wed Dec 03 08:05:31 2008 random seeds: f67d6428 21c1cf72 Wed Dec 03 08:05:31 2008 factoring 1037099364697547350622239844153508010917775411986117641986882008559440553594657077145488119077 (94 digits) Wed Dec 03 08:05:32 2008 searching for 15-digit factors Wed Dec 03 08:05:33 2008 commencing quadratic sieve (94-digit input) Wed Dec 03 08:05:33 2008 using multiplier of 13 Wed Dec 03 08:05:33 2008 using 32kb Intel Core sieve core Wed Dec 03 08:05:33 2008 sieve interval: 36 blocks of size 32768 Wed Dec 03 08:05:33 2008 processing polynomials in batches of 6 Wed Dec 03 08:05:33 2008 using a sieve bound of 1956883 (72881 primes) Wed Dec 03 08:05:33 2008 using large prime bound of 244610375 (27 bits) Wed Dec 03 08:05:33 2008 using double large prime bound of 1256766767596625 (42-51 bits) Wed Dec 03 08:05:33 2008 using trial factoring cutoff of 51 bits Wed Dec 03 08:05:33 2008 polynomial 'A' values have 12 factors Wed Dec 03 10:37:52 2008 73001 relations (18382 full + 54619 combined from 986077 partial), need 72977 Wed Dec 03 10:37:55 2008 begin with 1004459 relations Wed Dec 03 10:37:56 2008 reduce to 185777 relations in 10 passes Wed Dec 03 10:37:56 2008 attempting to read 185777 relations Wed Dec 03 10:37:59 2008 recovered 185777 relations Wed Dec 03 10:37:59 2008 recovered 167454 polynomials Wed Dec 03 10:37:59 2008 attempting to build 73001 cycles Wed Dec 03 10:37:59 2008 found 73001 cycles in 6 passes Wed Dec 03 10:37:59 2008 distribution of cycle lengths: Wed Dec 03 10:37:59 2008 length 1 : 18382 Wed Dec 03 10:37:59 2008 length 2 : 13268 Wed Dec 03 10:37:59 2008 length 3 : 12616 Wed Dec 03 10:37:59 2008 length 4 : 9675 Wed Dec 03 10:37:59 2008 length 5 : 7349 Wed Dec 03 10:37:59 2008 length 6 : 4767 Wed Dec 03 10:37:59 2008 length 7 : 3037 Wed Dec 03 10:37:59 2008 length 9+: 3907 Wed Dec 03 10:37:59 2008 largest cycle: 18 relations Wed Dec 03 10:38:00 2008 matrix is 72881 x 73001 (18.7 MB) with weight 4622762 (63.32/col) Wed Dec 03 10:38:00 2008 sparse part has weight 4622762 (63.32/col) Wed Dec 03 10:38:00 2008 filtering completed in 3 passes Wed Dec 03 10:38:00 2008 matrix is 69106 x 69170 (17.9 MB) with weight 4413229 (63.80/col) Wed Dec 03 10:38:00 2008 sparse part has weight 4413229 (63.80/col) Wed Dec 03 10:38:01 2008 saving the first 48 matrix rows for later Wed Dec 03 10:38:01 2008 matrix is 69058 x 69170 (11.1 MB) with weight 3457078 (49.98/col) Wed Dec 03 10:38:01 2008 sparse part has weight 2486624 (35.95/col) Wed Dec 03 10:38:01 2008 matrix includes 64 packed rows Wed Dec 03 10:38:01 2008 using block size 27668 for processor cache size 1024 kB Wed Dec 03 10:38:02 2008 commencing Lanczos iteration Wed Dec 03 10:38:02 2008 memory use: 10.8 MB Wed Dec 03 10:38:33 2008 lanczos halted after 1093 iterations (dim = 69054) Wed Dec 03 10:38:33 2008 recovered 15 nontrivial dependencies Wed Dec 03 10:38:34 2008 prp43 factor: 3169840304725009685413906056034592944278811 Wed Dec 03 10:38:34 2008 prp51 factor: 327177165093027581456207742002827740502041351113407 Wed Dec 03 10:38:34 2008 elapsed time 02:33:03
(34·10158-61)/9 = 3(7)1571<159> = 7 · 53 · 3733 · 51058354870221649438611241<26> · C127
C127 = P35 · P93
P35 = 15773686940889973900202381054990761<35>
P93 = 338691637215285484915002611423828098986479112377345144665570421220398830743417389565760881397<93>
Number: 37771_158 N=5342415854931393339113761235361305698914154448906483996879306276590440389544165947946307257339371354072751784092656669051773117 ( 127 digits) SNFS difficulty: 160 digits. Divisors found: r1=15773686940889973900202381054990761 (pp35) r2=338691637215285484915002611423828098986479112377345144665570421220398830743417389565760881397 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 60.61 hours. Scaled time: 155.40 units (timescale=2.564). Factorization parameters were as follows: name: 37771_158 n: 5342415854931393339113761235361305698914154448906483996879306276590440389544165947946307257339371354072751784092656669051773117 m: 50000000000000000000000000000000 deg: 5 c5: 272 c0: -1525 skew: 1.41 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3800001) Primes: RFBsize:243539, AFBsize:243735, largePrimes:9779798 encountered Relations: rels:10966987, finalFF:958393 Max relations in full relation-set: 28 Initial matrix: 487341 x 958393 with sparse part having weight 125995401. Pruned matrix : 367954 x 370454 with weight 71973244. Total sieving time: 58.31 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.94 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 60.61 hours. --------- CPU info (if available) ----------
(34·10138+11)/9 = 3(7)1379<139> = 140076367 · C131
C131 = P42 · P89
P42 = 334616317985480536983994258642411534504181<42>
P89 = 80598029134143922014930835608991813141358557739630559737319918330172366613804758172608777<89>
Number: 37779_138 N=26969415745753727163539141315520967057760555553084681142378412611013660696795325779528375245324414915599415694281803994657983796637 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=334616317985480536983994258642411534504181 (pp42) r2=80598029134143922014930835608991813141358557739630559737319918330172366613804758172608777 (pp89) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.59 hours. Scaled time: 29.73 units (timescale=2.564). Factorization parameters were as follows: name: 37779_138 n: 26969415745753727163539141315520967057760555553084681142378412611013660696795325779528375245324414915599415694281803994657983796637 m: 5000000000000000000000000000 deg: 5 c5: 272 c0: 275 skew: 1.00 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1680001) Primes: RFBsize:118376, AFBsize:118390, largePrimes:4197288 encountered Relations: rels:4867657, finalFF:874717 Max relations in full relation-set: 28 Initial matrix: 236833 x 874717 with sparse part having weight 87846157. Pruned matrix : 157212 x 158460 with weight 21375811. Total sieving time: 11.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 11.59 hours. --------- CPU info (if available) ----------
(34·10132+11)/9 = 3(7)1319<133> = 10018907 · 2005869806923<13> · C114
C114 = P42 · P72
P42 = 704443609565155929330823351494758617941251<42>
P72 = 266849926365080321478332525760082425809629672857355064497940552907853289<72>
Number: 37779_132 N=187980725340813251363795528979449026243397065229977082464549401564536900145928473447874479402007304069611129124539 ( 114 digits) SNFS difficulty: 134 digits. Divisors found: r1=704443609565155929330823351494758617941251 (pp42) r2=266849926365080321478332525760082425809629672857355064497940552907853289 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.58 hours. Scaled time: 15.14 units (timescale=1.997). Factorization parameters were as follows: name: 37779_132 n: 187980725340813251363795528979449026243397065229977082464549401564536900145928473447874479402007304069611129124539 m: 200000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1275001) Primes: RFBsize:92938, AFBsize:93250, largePrimes:3205408 encountered Relations: rels:3226583, finalFF:291905 Max relations in full relation-set: 28 Initial matrix: 186255 x 291905 with sparse part having weight 27574321. Pruned matrix : 161015 x 162010 with weight 12254657. Total sieving time: 7.17 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 7.58 hours. --------- CPU info (if available) ----------
(34·10125+11)/9 = 3(7)1249<126> = 14872 · 255487 · 1876151531<10> · C105
C105 = P49 · P56
P49 = 5443398684485062745608459470540440836230952784999<49>
P56 = 65479839726556724918536912328130937246647388805273851297<56>
Number: 37779_125 N=356432873427831627112679318770660365172752354788089110074530458749791280922615989414199535547912738293703 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=5443398684485062745608459470540440836230952784999 (pp49) r2=65479839726556724918536912328130937246647388805273851297 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.85 hours. Scaled time: 5.70 units (timescale=2.003). Factorization parameters were as follows: name: 37779_125 n: 356432873427831627112679318770660365172752354788089110074530458749791280922615989414199535547912738293703 m: 10000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: RFBsize:71274, AFBsize:71741, largePrimes:2573592 encountered Relations: rels:2543913, finalFF:259396 Max relations in full relation-set: 28 Initial matrix: 143081 x 259396 with sparse part having weight 19576840. Pruned matrix : 111447 x 112226 with weight 6001097. Total sieving time: 2.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.85 hours. --------- CPU info (if available) ----------
(34·10140+11)/9 = 3(7)1399<141> = 461 · 1667 · 33013 · C131
C131 = P43 · P88
P43 = 5286853178190512842446697555047849243640583<43>
P88 = 2816551137745142953027574742897451096765053262076789526378442459821368042472899695804823<88>
Number: 37779_140 N=14890692334124013938426445413695471439527746160882064829320446619056609555256489725739314484031578937209695694518373562136729931809 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=5286853178190512842446697555047849243640583 (pp43) r2=2816551137745142953027574742897451096765053262076789526378442459821368042472899695804823 (pp88) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.70 hours. Scaled time: 30.12 units (timescale=2.575). Factorization parameters were as follows: name: 37779_140 n: 14890692334124013938426445413695471439527746160882064829320446619056609555256489725739314484031578937209695694518373562136729931809 m: 10000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1700001) Primes: RFBsize:121127, AFBsize:121741, largePrimes:4134768 encountered Relations: rels:4641289, finalFF:712757 Max relations in full relation-set: 28 Initial matrix: 242934 x 712757 with sparse part having weight 74251615. Pruned matrix : 167601 x 168879 with weight 21800021. Total sieving time: 11.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 11.70 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS
(34·10115+11)/9 = 3(7)1149<116> = 33 · 13 · 1648813801501245593<19> · C95
C95 = P35 · P61
P35 = 29415027840806636275258180245178147<35>
P61 = 2219158965639345523025597599430986517293980929370944685537799<61>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 65276622757457006081426432091868980663147198002143596564155708560164105572476967585475257278453 (95 digits) Using B1=1164000, B2=1426247560, polynomial Dickson(6), sigma=3694281782 Step 1 took 7140ms Step 2 took 4016ms ********** Factor found in step 2: 29415027840806636275258180245178147 Found probable prime factor of 35 digits: 29415027840806636275258180245178147 Probable prime cofactor 2219158965639345523025597599430986517293980929370944685537799 has 61 digits
(11·10164+1)/3 = 3(6)1637<165> = 53 · 85121 · C158
C158 = P43 · P116
P43 = 1266188042683552938501666231379202970184373<43>
P116 = 64189003840718731051789445749630286944004145691347328068960743453391971858994738506501705251623397446227743373324483<116>
Number: n N=81275349134886712138007907204830652096508713936557496878841876517770965918364527181764708012027865031790852814110937452781792903169509567549383456284464904159 ( 158 digits) SNFS difficulty: 166 digits. Divisors found: Wed Dec 03 09:12:58 2008 prp43 factor: 1266188042683552938501666231379202970184373 Wed Dec 03 09:12:58 2008 prp116 factor: 64189003840718731051789445749630286944004145691347328068960743453391971858994738506501705251623397446227743373324483 Wed Dec 03 09:12:58 2008 elapsed time 01:58:53 (Msiev 1.39) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.81 hours. Scaled time: 49.04 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_6_163_7 n: 81275349134886712138007907204830652096508713936557496878841876517770965918364527181764708012027865031790852814110937452781792903169509567549383456284464904159 type: snfs skew: 0.98 deg: 5 c5: 11 c0: 10 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1500001) Primes: RFBsize:348513, AFBsize:348432, largePrimes:14090709 encountered Relations: rels:12617715, finalFF:733115 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 26.54 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 26.81 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38, Msieve
(34·10135+11)/9 = 3(7)1349<136> = 83 · 1271659 · 38820576214206694652531103157<29> · C99
C99 = P31 · P69
P31 = 1841221420817442296175794794789<31>
P69 = 500748491627872924290376533581931521233778005915252163983598241292459<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=327529411 Step 1 took 12949ms Step 2 took 10136ms ********** Factor found in step 2: 1841221420817442296175794794789 Found probable prime factor of 31 digits: 1841221420817442296175794794789 Probable prime cofactor 500748491627872924290376533581931521233778005915252163983598241292459 has 69 digits
(34·10163+11)/9 = 3(7)1629<164> = 3 · 13 · 2995517639<10> · 1786997605439027<16> · 19883035843764619<17> · 2414031517419368222581<22> · C100
C100 = P30 · P70
P30 = 538538060804192975491860866957<30>
P70 = 7000578264100615505009002316587714144643825814097360015482214397616419<70>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=384210140 Step 1 took 12933ms Step 2 took 10623ms ********** Factor found in step 2: 538538060804192975491860866957 Found probable prime factor of 30 digits: 538538060804192975491860866957 Probable prime cofactor 7000578264100615505009002316587714144643825814097360015482214397616419 has 70 digits
(34·10148+11)/9 = 3(7)1479<149> = 3 · 7 · 126227 · 23834221709387491<17> · C126
C126 = P30 · P97
P30 = 136061100348900004453193777393<30>
P97 = 4394706727315139875544870349149726531886612053921328903129416402633146507216189846137880348388399<97>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=452164895 Step 1 took 12205ms Step 2 took 4977ms ********** Factor found in step 2: 136061100348900004453193777393 Found probable prime factor of 30 digits: 136061100348900004453193777393 Probable prime cofactor 4394706727315139875544870349149726531886612053921328903129416402633146507216189846137880348388399 has 97 digits
(34·10162-61)/9 = 3(7)1611<163> = 3 · 521 · 7163179 · C153
C153 = P48 · P50 · P55
P48 = 508482292810519141237018117535724632563288268983<48>
P50 = 69697565335453954183157841146626227272181807013267<50>
P55 = 9520903958691570180369995997915148223742970595209791943<55>
SNFS difficulty: 164 digits. Divisors found: r1=508482292810519141237018117535724632563288268983 (pp48) r2=69697565335453954183157841146626227272181807013267 (pp50) r3=9520903958691570180369995997915148223742970595209791943 (pp55) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.537). Factorization parameters were as follows: n: 337420625170770259299467660561244960872840414723192999695679851875816615851259950059949419759282795573495720737496191936943879016272865401591826039056723 m: 200000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1900000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 768687 x 768929 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,52,52,2.4,2.4,100000 total time: 26.00 hours.
(34·10170+11)/9 = 3(7)1699<171> = 19 · 601 · 673 · 8663 · 70439611822049<14> · C146
C146 = P31 · P33 · P83
P31 = 5949365760417332575874777487329<31>
P33 = 338927312633634574452868348574459<33>
P83 = 39951286071499425676165028250701904891033092637792693030891274330699036140072514381<83>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1331521538 Step 1 took 15177ms Step 2 took 11309ms ********** Factor found in step 2: 338927312633634574452868348574459 Found probable prime factor of 33 digits: 338927312633634574452868348574459 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1686472867 Step 1 took 14489ms Step 2 took 11065ms ********** Factor found in step 2: 5949365760417332575874777487329 Found probable prime factor of 31 digits: 5949365760417332575874777487329
(34·10162+11)/9 = 3(7)1619<163> = 47 · 459443 · C156
C156 = P35 · C121
P35 = 67124546794083294248340603185287579<35>
C121 = [2606306841918308784669025209898688038053573715705451307168694698444179234703434235423308619590868129220762915004730308381<121>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2188203815 Step 1 took 24769ms Step 2 took 16445ms ********** Factor found in step 2: 67124546794083294248340603185287579 Found probable prime factor of 35 digits: 67124546794083294248340603185287579 Composite cofactor has 121 digits
(34·10155+11)/9 = 3(7)1549<156> = 109 · 38431 · 26314325321<11> · C139
C139 = P31 · P109
P31 = 1367414235817844393835674902661<31>
P109 = 2506316354241965358478287885021487172210327240182297461454627912939386465253844371489098898542813986043072421<109>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=415686968 Step 1 took 6275ms Step 2 took 4400ms ********** Factor found in step 2: 1367414235817844393835674902661 Found probable prime factor of 31 digits: 1367414235817844393835674902661 Probable prime cofactor 2506316354241965358478287885021487172210327240182297461454627912939386465253844371489098898542813986043072421 has 109 digits
(34·10156+11)/9 = 3(7)1559<157> = 431 · C154
C154 = P32 · C123
P32 = 20428085369379755054381161567133<32>
C123 = [429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473<123>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2478402618 Step 1 took 6442ms Step 2 took 4452ms ********** Factor found in step 2: 20428085369379755054381161567133 Found probable prime factor of 32 digits: 20428085369379755054381161567133 Composite cofactor 429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 has 123 digits
(34·10188+11)/9 = 3(7)1879<189> = 19 · 3167 · 54673 · 6828917458921<13> · C167
C167 = P30 · C138
P30 = 141522473677954575496709305193<30>
C138 = [118818636354373834678341129976690275885036383831189369268516472576592786183983394505260652754963952768044196554737946327636300583734935967<138>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2017253979 Step 1 took 8272ms Step 2 took 192ms ********** Factor found in step 2: 141522473677954575496709305193 Found probable prime factor of 30 digits: 141522473677954575496709305193 Composite cofactor 118818636354373834678341129976690275885036383831189369268516472576592786183983394505260652754963952768044196554737946327636300583734935967 has 138 digits
(34·10119+11)/9 = 3(7)1189<120> = 127 · 3467 · 1614479767<10> · C105
C105 = P42 · P64
P42 = 134550578004032969503029919091315931135151<42>
P64 = 3949668719875040095385887177491447940304626316925380622724998143<64>
SNFS difficulty: 121 digits. Divisors found: r1=134550578004032969503029919091315931135151 (pp42) r2=3949668719875040095385887177491447940304626316925380622724998143 (pp64) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 531430209183635626101673509948954022583701742093667870559637533214565867046554682600715495943222357024593 m: 1000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [365000, 615001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77656 x 77874 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,48,48,2.2,2.2,50000 total time: 1.00 hours.
(34·10203+11)/9 = 3(7)2029<204> = 127 · 4157 · 1084987 · 1576097849<10> · 267522701219<12> · C172
C172 = P33 · C139
P33 = 241852534709016633483041799377417<33>
C139 = [6467458742747490908426758718543314878516214661999799045633580159444730768422463131124826108330789481076500407954611602955238945601019157889<139>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1984248884 Step 1 took 8287ms Step 2 took 5223ms ********** Factor found in step 2: 241852534709016633483041799377417 Found probable prime factor of 33 digits: 241852534709016633483041799377417 Composite cofactor 6467458742747490908426758718543314878516214661999799045633580159444730768422463131124826108330789481076500407954611602955238945601019157889 has 139 digits
(34·10137+11)/9 = 3(7)1369<138> = 313 · C136
C136 = P68 · P68
P68 = 24601879358045760753375775352802939606580539840588556396176557740009<68>
P68 = 49059575445962897342059554987416196312658920843681835646967035583187<68>
# Yes, Virginia, there is a Santa Claus. A Nice split for me, too, finally :-) # SNFS difficulty: 139 digits. Divisors found: r1=24601879358045760753375775352802939606580539840588556396176557740009 (pp68) r2=49059575445962897342059554987416196312658920843681835646967035583187 (pp68) Version: Msieve-1.38 Total time: 5.50 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 1206957756478523251686190983315583954561590344337948171813986510472133475328363507277245296414625488107916222932197373091941782037628683 m: 2000000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 1630001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240114 x 240356 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.4,2.4,150000 total time: 5.50 hours.
(34·10173+11)/9 = 3(7)1729<174> = 1451 · 23175336529<11> · 6061403725747<13> · C148
C148 = P38 · P110
P38 = 33356516879350872097959604347349217261<38>
P110 = 55563428979535597429283367913886066893955421083855121284705414022229840742979307014569462000972114986360128703<110>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=158554100 Step 1 took 6232ms Step 2 took 4523ms ********** Factor found in step 2: 33356516879350872097959604347349217261 Found probable prime factor of 38 digits: 33356516879350872097959604347349217261 Probable prime cofactor 55563428979535597429283367913886066893955421083855121284705414022229840742979307014569462000972114986360128703 has 110 digits
(34·10201+11)/9 = 3(7)2009<202> = 613 · 10463 · C195
C195 = P33 · C162
P33 = 947638487444381399137523776727917<33>
C162 = [621551354039585113776369048662467374494877397995276706501347037287825921109330099815375691340299939198266932712737822293439082110528073781426306264610059081985773<162>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3942574903 Step 1 took 35263ms Step 2 took 21016ms ********** Factor found in step 2: 947638487444381399137523776727917 Found probable prime factor of 33 digits: 947638487444381399137523776727917 Composite cofactor 621551354039585113776369048662467374494877397995276706501347037287825921109330099815375691340299939198266932712737822293439082110528073781426306264610059081985773 has 162 digits
(34·10141+11)/9 = 3(7)1409<142> = 829 · C139
C139 = P38 · P102
P38 = 39514398764869549287206850885745348933<38>
P102 = 115325806065567829009781861388333198225804023813540351062894513229056794230954742920893255484355270947<102>
SNFS difficulty: 143 digits. Divisors found: r1=39514398764869549287206850885745348933 (pp38) r2=115325806065567829009781861388333198225804023813540351062894513229056794230954742920893255484355270947 (pp102) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 4557029888754858598043157753652325425546173435196354376088996113121565473797078139659563061251842916499128803109502747620962337488272349551 m: 20000000000000000000000000000 deg: 5 c5: 85 c0: 88 skew: 1 type: snfs lss: 1 rlim: 1720000 alim: 1720000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1720000/1720000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [860000, 1860001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 322040 x 322288 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1720000,1720000,26,26,48,48,2.4,2.4,200000 total time: 6.00 hours.
(34·10198+11)/9 = 3(7)1979<199> = 110501 · 345944962629092687143<21> · C173
C173 = P36 · P138
P36 = 487431470528644422733146459735402767<36>
P138 = 202744752573318372422323054839304128700408443189463262974309331874473226300108176768945751786926898861429679103905594441113327049733804159<138>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4272672805 Step 1 took 27411ms Step 2 took 16584ms ********** Factor found in step 2: 487431470528644422733146459735402767 Found probable prime factor of 36 digits: 487431470528644422733146459735402767 Probable prime cofactor 202744752573318372422323054839304128700408443189463262974309331874473226300108176768945751786926898861429679103905594441113327049733804159 has 138 digits
By Erik Branger / Msieve
(34·10122+11)/9 = 3(7)1219<123> = 5351 · 89620398463348176243456330223<29> · C90
C90 = P42 · P49
P42 = 125930051109900781050517676232507094612633<42>
P49 = 6255545776522447969252532683162886614264007977331<49>
Tue Dec 02 17:23:35 2008 Msieve v. 1.38 Tue Dec 02 17:23:35 2008 random seeds: 8794fe44 d9316f60 Tue Dec 02 17:23:35 2008 factoring 787761199357795842149902004718574687702229628244577845033345679589374961514450685290222523 (90 digits) Tue Dec 02 17:23:37 2008 searching for 15-digit factors Tue Dec 02 17:23:38 2008 commencing quadratic sieve (90-digit input) Tue Dec 02 17:23:38 2008 using multiplier of 35 Tue Dec 02 17:23:38 2008 using 32kb Intel Core sieve core Tue Dec 02 17:23:38 2008 sieve interval: 36 blocks of size 32768 Tue Dec 02 17:23:38 2008 processing polynomials in batches of 6 Tue Dec 02 17:23:38 2008 using a sieve bound of 1613669 (61176 primes) Tue Dec 02 17:23:38 2008 using large prime bound of 135548196 (27 bits) Tue Dec 02 17:23:38 2008 using double large prime bound of 434278798718520 (42-49 bits) Tue Dec 02 17:23:38 2008 using trial factoring cutoff of 49 bits Tue Dec 02 17:23:38 2008 polynomial 'A' values have 12 factors Tue Dec 02 18:51:53 2008 61673 relations (16166 full + 45507 combined from 667782 partial), need 61272 Tue Dec 02 18:51:54 2008 begin with 683948 relations Tue Dec 02 18:51:54 2008 reduce to 151269 relations in 9 passes Tue Dec 02 18:51:54 2008 attempting to read 151269 relations Tue Dec 02 18:51:57 2008 recovered 151269 relations Tue Dec 02 18:51:57 2008 recovered 131708 polynomials Tue Dec 02 18:51:57 2008 attempting to build 61673 cycles Tue Dec 02 18:51:57 2008 found 61673 cycles in 6 passes Tue Dec 02 18:51:57 2008 distribution of cycle lengths: Tue Dec 02 18:51:57 2008 length 1 : 16166 Tue Dec 02 18:51:57 2008 length 2 : 11786 Tue Dec 02 18:51:57 2008 length 3 : 10982 Tue Dec 02 18:51:57 2008 length 4 : 8304 Tue Dec 02 18:51:57 2008 length 5 : 5824 Tue Dec 02 18:51:57 2008 length 6 : 3724 Tue Dec 02 18:51:57 2008 length 7 : 2254 Tue Dec 02 18:51:57 2008 length 9+: 2633 Tue Dec 02 18:51:57 2008 largest cycle: 20 relations Tue Dec 02 18:51:57 2008 matrix is 61176 x 61673 (15.1 MB) with weight 3720091 (60.32/col) Tue Dec 02 18:51:57 2008 sparse part has weight 3720091 (60.32/col) Tue Dec 02 18:51:57 2008 filtering completed in 3 passes Tue Dec 02 18:51:57 2008 matrix is 57401 x 57465 (14.1 MB) with weight 3463249 (60.27/col) Tue Dec 02 18:51:57 2008 sparse part has weight 3463249 (60.27/col) Tue Dec 02 18:51:58 2008 saving the first 48 matrix rows for later Tue Dec 02 18:51:58 2008 matrix is 57353 x 57465 (8.6 MB) with weight 2677561 (46.59/col) Tue Dec 02 18:51:58 2008 sparse part has weight 1902579 (33.11/col) Tue Dec 02 18:51:58 2008 matrix includes 64 packed rows Tue Dec 02 18:51:58 2008 using block size 22986 for processor cache size 2048 kB Tue Dec 02 18:51:58 2008 commencing Lanczos iteration Tue Dec 02 18:51:58 2008 memory use: 8.5 MB Tue Dec 02 18:52:16 2008 lanczos halted after 908 iterations (dim = 57350) Tue Dec 02 18:52:17 2008 recovered 17 nontrivial dependencies Tue Dec 02 18:52:17 2008 prp42 factor: 125930051109900781050517676232507094612633 Tue Dec 02 18:52:17 2008 prp49 factor: 6255545776522447969252532683162886614264007977331 Tue Dec 02 18:52:17 2008 elapsed time 01:28:42
(34·10133+11)/9 = 3(7)1329<134> = 32 · 13 · 43 · 3041 · 7157041348997849<16> · 3858971354503959667<19> · C92
C92 = P40 · P53
P40 = 1611364825756490385391657092199601092037<40>
P53 = 55483865437642055596519639266633036099126609006735619<53>
Tue Dec 02 18:59:21 2008 Msieve v. 1.38 Tue Dec 02 18:59:21 2008 random seeds: db3297c8 282ae7cc Tue Dec 02 18:59:21 2008 factoring 89404749163222650076866820667644652085586696566770446146303782255448909690029097440945165903 (92 digits) Tue Dec 02 18:59:22 2008 searching for 15-digit factors Tue Dec 02 18:59:24 2008 commencing quadratic sieve (92-digit input) Tue Dec 02 18:59:24 2008 using multiplier of 3 Tue Dec 02 18:59:24 2008 using 32kb Intel Core sieve core Tue Dec 02 18:59:24 2008 sieve interval: 36 blocks of size 32768 Tue Dec 02 18:59:24 2008 processing polynomials in batches of 6 Tue Dec 02 18:59:24 2008 using a sieve bound of 1853669 (69412 primes) Tue Dec 02 18:59:24 2008 using large prime bound of 209464597 (27 bits) Tue Dec 02 18:59:24 2008 using double large prime bound of 950602707335250 (42-50 bits) Tue Dec 02 18:59:24 2008 using trial factoring cutoff of 50 bits Tue Dec 02 18:59:24 2008 polynomial 'A' values have 12 factors Tue Dec 02 21:27:12 2008 69578 relations (17573 full + 52005 combined from 892740 partial), need 69508 Tue Dec 02 21:27:16 2008 begin with 910313 relations Tue Dec 02 21:27:16 2008 reduce to 176228 relations in 11 passes Tue Dec 02 21:27:16 2008 attempting to read 176228 relations Tue Dec 02 21:27:19 2008 recovered 176228 relations Tue Dec 02 21:27:19 2008 recovered 158671 polynomials Tue Dec 02 21:27:19 2008 attempting to build 69578 cycles Tue Dec 02 21:27:19 2008 found 69578 cycles in 5 passes Tue Dec 02 21:27:19 2008 distribution of cycle lengths: Tue Dec 02 21:27:19 2008 length 1 : 17573 Tue Dec 02 21:27:19 2008 length 2 : 12601 Tue Dec 02 21:27:19 2008 length 3 : 11959 Tue Dec 02 21:27:19 2008 length 4 : 9471 Tue Dec 02 21:27:19 2008 length 5 : 6955 Tue Dec 02 21:27:19 2008 length 6 : 4600 Tue Dec 02 21:27:19 2008 length 7 : 2814 Tue Dec 02 21:27:19 2008 length 9+: 3605 Tue Dec 02 21:27:19 2008 largest cycle: 18 relations Tue Dec 02 21:27:20 2008 matrix is 69412 x 69578 (17.6 MB) with weight 4325156 (62.16/col) Tue Dec 02 21:27:20 2008 sparse part has weight 4325156 (62.16/col) Tue Dec 02 21:27:20 2008 filtering completed in 3 passes Tue Dec 02 21:27:20 2008 matrix is 65648 x 65712 (16.7 MB) with weight 4116478 (62.64/col) Tue Dec 02 21:27:20 2008 sparse part has weight 4116478 (62.64/col) Tue Dec 02 21:27:20 2008 saving the first 48 matrix rows for later Tue Dec 02 21:27:21 2008 matrix is 65600 x 65712 (10.3 MB) with weight 3244072 (49.37/col) Tue Dec 02 21:27:21 2008 sparse part has weight 2314877 (35.23/col) Tue Dec 02 21:27:21 2008 matrix includes 64 packed rows Tue Dec 02 21:27:21 2008 using block size 26284 for processor cache size 2048 kB Tue Dec 02 21:27:21 2008 commencing Lanczos iteration Tue Dec 02 21:27:21 2008 memory use: 10.1 MB Tue Dec 02 21:27:47 2008 lanczos halted after 1039 iterations (dim = 65598) Tue Dec 02 21:27:47 2008 recovered 17 nontrivial dependencies Tue Dec 02 21:27:47 2008 prp40 factor: 1611364825756490385391657092199601092037 Tue Dec 02 21:27:47 2008 prp53 factor: 55483865437642055596519639266633036099126609006735619 Tue Dec 02 21:27:47 2008 elapsed time 02:28:26
Factorizations of 377...779 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS
7·10182-9 = 6(9)1811<183> = 47 · 2909 · 8412983 · 197529555280333365899<21> · 551024823684035448740408536106657207<36> · C115
C115 = P54 · P62
P54 = 120505114541548280042487841757872247892709036654778083<54>
P62 = 46397835349507535301741903585430930023363737967949935765765821<62>
Number: 69991_182 N=5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 ( 115 digits) Divisors found: r1=120505114541548280042487841757872247892709036654778083 (pp54) r2=46397835349507535301741903585430930023363737967949935765765821 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.15 hours. Scaled time: 52.61 units (timescale=2.375). Factorization parameters were as follows: name: 69991_182 n: 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 skew: 17333.97 # norm 9.01e+15 c5: 97740 c4: 18416313678 c3: -212611237858754 c2: 202852738603153717 c1: 15507418452815452722844 c0: 58012158724999932663752355 # alpha -6.24 Y1: 2422555194829 Y0: -8942969295094779062108 # Murphy_E 5.46e-10 # M 2950275471248039864803529724056229443825261945017915189784971355597025064217620201603167612787728815854960471712106 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2660001) Primes: RFBsize:203362, AFBsize:203456, largePrimes:9573195 encountered Relations: rels:9505229, finalFF:506003 Max relations in full relation-set: 28 Initial matrix: 406897 x 506003 with sparse part having weight 54243052. Pruned matrix : 348124 x 350222 with weight 36935690. Polynomial selection time: 1.31 hours. Total sieving time: 19.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.76 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 22.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS
(11·10147+1)/3 = 3(6)1467<148> = 19 · 83791 · 753120798308864203<18> · C124
C124 = P36 · P39 · P51
P36 = 153288443336301868304649866120256611<36>
P39 = 170668247510580321448805603064473607653<39>
P51 = 116894390737140603747245738094441350205229565084827<51>
Number: 36667_147 N=3058129095015556371371520145905654136299614131214743883131326477092954523068559314933344152325533809154730720048680367745941 ( 124 digits) SNFS difficulty: 150 digits. Divisors found: r1=153288443336301868304649866120256611 (pp36) r2=170668247510580321448805603064473607653 (pp39) r3=116894390737140603747245738094441350205229565084827 (pp51) Version: GGNFS-0.77.1-20060513-k8 Total time: 22.62 hours. Scaled time: 44.91 units (timescale=1.985). Factorization parameters were as follows: name: 36667_147 n: 3058129095015556371371520145905654136299614131214743883131326477092954523068559314933344152325533809154730720048680367745941 m: 500000000000000000000000000000 deg: 5 c5: 44 c0: 125 skew: 1.23 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1800001) Primes: RFBsize:162662, AFBsize:162521, largePrimes:7150630 encountered Relations: rels:7348652, finalFF:640645 Max relations in full relation-set: 28 Initial matrix: 325250 x 640645 with sparse part having weight 71451844. Pruned matrix : 244711 x 246401 with weight 28421597. Total sieving time: 21.33 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.97 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 22.62 hours. --------- CPU info (if available) ----------
(34·10156-61)/9 = 3(7)1551<157> = 32 · 43 · 6028933 · 1402421333<10> · C139
C139 = P46 · P93
P46 = 9966402979697060305647496423630143597597319309<46>
P93 = 115842529545143837157184112972896281967285587268931776950834834580235894383922902897517477333<93>
Number: 37771_156 N=1154533331634366282678567732766953021488942489574034118414499319512603715875752034778388732687905581793683555211026274464001824176970722897 ( 139 digits) SNFS difficulty: 157 digits. Divisors found: r1=9966402979697060305647496423630143597597319309 (pp46) r2=115842529545143837157184112972896281967285587268931776950834834580235894383922902897517477333 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 42.40 hours. Scaled time: 108.71 units (timescale=2.564). Factorization parameters were as follows: name: 37771_156 n: 1154533331634366282678567732766953021488942489574034118414499319512603715875752034778388732687905581793683555211026274464001824176970722897 m: 10000000000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216657, largePrimes:8653599 encountered Relations: rels:9425471, finalFF:991033 Max relations in full relation-set: 28 Initial matrix: 433540 x 991033 with sparse part having weight 122448345. Pruned matrix : 315934 x 318165 with weight 56320413. Total sieving time: 40.85 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.25 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 42.40 hours. --------- CPU info (if available) ----------
(34·10157-61)/9 = 3(7)1561<158> = 108685226485233581851<21> · C138
C138 = P51 · P87
P51 = 525635717350307831412930905071935105423234178396363<51>
P87 = 661273356310180256351138419233820506936333700070566891354943514978567534279994118905267<87>
Number: 37771_157 N=347588895008747308866544061102726069403307881613424404847414945687730332029210319944189517278502930044633182335397963047561247567174343921 ( 138 digits) SNFS difficulty: 159 digits. Divisors found: r1=525635717350307831412930905071935105423234178396363 (pp51) r2=661273356310180256351138419233820506936333700070566891354943514978567534279994118905267 (pp87) Version: GGNFS-0.77.1-20060513-nocona Total time: 50.62 hours. Scaled time: 129.79 units (timescale=2.564). Factorization parameters were as follows: name:37771_157 n: 347588895008747308866544061102726069403307881613424404847414945687730332029210319944189517278502930044633182335397963047561247567174343921 m: 20000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 3250001) Primes: RFBsize:223492, AFBsize:224441, largePrimes:8630791 encountered Relations: rels:9318143, finalFF:799748 Max relations in full relation-set: 28 Initial matrix: 448000 x 799748 with sparse part having weight 101059944. Pruned matrix : 351450 x 353754 with weight 55059506. Total sieving time: 48.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.60 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 50.62 hours. --------- CPU info (if available) ----------
(34·10149-61)/9 = 3(7)1481<150> = 29 · 67 · C147
C147 = P39 · P108
P39 = 948232092733249950554056411032673040477<39>
P108 = 205044893122722355563983803137691979462044995543930554941591189105064744137537173790203999128478533860189361<108>
Number: 37771_149 N=194430148110024589695202150168696746154286041059072453822839823869159947389489334934522788357065248470292217075541831074512494996282953050837765197 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=948232092733249950554056411032673040477 (pp39) r2=205044893122722355563983803137691979462044995543930554941591189105064744137537173790203999128478533860189361 (pp108) Version: GGNFS-0.77.1-20060513-k8 Total time: 28.30 hours. Scaled time: 54.82 units (timescale=1.937). Factorization parameters were as follows: name: 37771_149 n: 194430148110024589695202150168696746154286041059072453822839823869159947389489334934522788357065248470292217075541831074512494996282953050837765197 m: 1000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:170222, largePrimes:7316415 encountered Relations: rels:7619094, finalFF:707261 Max relations in full relation-set: 28 Initial matrix: 339798 x 707261 with sparse part having weight 82041141. Pruned matrix : 254976 x 256738 with weight 33834665. Total sieving time: 26.68 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.29 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 28.30 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(11·10160+1)/3 = 3(6)1597<161> = 37 · 4999 · C156
C156 = P63 · P94
P63 = 107806408315392186042834496039127146847357843939914262271423059<63>
P94 = 1838831743539757907265990383385558921051444574734351440522190333306312386979892415634452042051<94>
SNFS difficulty: 161 digits. Divisors found: r1=107806408315392186042834496039127146847357843939914262271423059 (pp63) r2=1838831743539757907265990383385558921051444574734351440522190333306312386979892415634452042051 (pp94) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 198237845767351668531904579114021002398677933784955189236045407279654129024002998797957789756149428083814961190436285455289256049408079814161030404279054009 m: 100000000000000000000000000000000 deg: 5 c5: 11 c0: 1 skew: 0.62 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 589731 x 589973 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
(11·10161+1)/3 = 3(6)1607<162> = 7 · 3583 · C158
C158 = P55 · P104
P55 = 1396874562526488259237574101449859344602907037597516643<55>
P104 = 10465721494555841361661330014966716334135064147047311164221578603816109473930419270673010543406762793249<104>
SNFS difficulty: 163 digits. Divisors found: r1=1396874562526488259237574101449859344602907037597516643 (pp55) r2=10465721494555841361661330014966716334135064147047311164221578603816109473930419270673010543406762793249 (pp104) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 14619300134231755777946121233868931329160187658652632138537804181119838390282152492590672886514360139813670374652791621811995800273779620695612880932445543107 m: 200000000000000000000000000000000 deg: 5 c5: 55 c0: 16 skew: 0.78 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1850000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705916 x 706158 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,52,52,2.4,2.4,100000 total time: 25.00 hours.
(34·10161-61)/9 = 3(7)1601<162> = 71 · C160
C160 = P61 · P100
P61 = 5248339198924568488090626332597551156263673436410591970891881<61>
P100 = 1013809048890795600319731355237825745864782625364859636226664234782284012321457252955340518891623221<100>
SNFS difficulty: 162 digits. Divisors found: r1=5248339198924568488090626332597551156263673436410591970891881 (pp61) r2=1013809048890795600319731355237825745864782625364859636226664234782284012321457252955340518891623221 (pp100) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.722). Factorization parameters were as follows: n: 5320813771517996870109546165884194053208137715179968701095461658841940532081377151799687010954616588419405320813771517996870109546165884194053208137715179968701 m: 100000000000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1800000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705065 x 705307 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,52,52,2.4,2.4,100000 total time: 24.00 hours.
(64·10247-1)/9 = 7(1)247<248> = 10477 · 16879 · C240
C240 = P38 · P202
P38 = 63209533607698633158751402340598745883<38>
P202 = 6361671236848233496152449269521854211349654871561806001705536258426388234147009847277835322217606481274315381488581580847083208285386176738103763445869615774430972147572743203317058290174392113785190999<202>
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=2337050584 Step 1 took 491939ms Step 2 took 244339ms ********** Factor found in step 2: 63209533607698633158751402340598745883 Found probable prime factor of 38 digits: 63209533607698633158751402340598745883 Probable prime cofactor has 202 digits
Msieve-1.39 has been released.
By Robert Backstrom / GMP-ECM
(34·10140-61)/9 = 3(7)1391<141> = 7 · 38729 · 1227075583<10> · 113910217004608229<18> · C109
C109 = P35 · P75
P35 = 19307640926740728658468249492603981<35>
P75 = 516343693603233874370126179965698886505664770083775458430131775655309376971<75>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 9969378630878273330209454988851072949503239070360101125655163488996390662293101007126290937779576661544321551 (109 digits) Using B1=1040000, B2=1045563762, polynomial Dickson(6), sigma=3595781433 Step 1 took 8125ms Step 2 took 4390ms ********** Factor found in step 2: 19307640926740728658468249492603981 Found probable prime factor of 35 digits: 19307640926740728658468249492603981 Probable prime cofactor 516343693603233874370126179965698886505664770083775458430131775655309376971 has 75 digits
By Serge Batalov / GMP-ECM 6.2.1, pol51; Msieve-1.38 gnfs
(34·10147-61)/9 = 3(7)1461<148> = 35 · 136621 · C141
C141 = P36 · P105
P36 = 229396003666241020967296200838396591<36>
P105 = 496051567622998067919651156246881008431154204658997849229474790386382145887920573758035262566826859064227<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2648012166 Step 1 took 14589ms Step 2 took 10677ms ********** Factor found in step 2: 229396003666241020967296200838396591 Found probable prime factor of 36 digits: 229396003666241020967296200838396591 Probable prime cofactor 496051567622998067919651156246881008431154204658997849229474790386382145887920573758035262566826859064227 has 105 digits
(11·10142+1)/3 = 3(6)1417<143> = 37 · C141
C141 = P34 · P108
P34 = 2693334827130149692684600382468941<34>
P108 = 367941995554607460375664696351964697590458986146034785229665363826072986598682216567858356117973188884575051<108>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3012302675 Step 1 took 27684ms Step 2 took 12805ms ********** Factor found in step 2: 2693334827130149692684600382468941 Found probable prime factor of 34 digits: 2693334827130149692684600382468941 Probable prime cofactor 367941995554607460375664696351964697590458986146034785229665363826072986598682216567858356117973188884575051 has 108 digits
(11·10159+1)/3 = 3(6)1587<160> = 29 · C159
C159 = P34 · P125
P34 = 4579115157252350396251705660558469<34>
P125 = 27611618678981302453420401159665729376211279209581066750141573274195794009038548402268649023166636612159131984086746695721467<125>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2518271257 Step 1 took 20041ms Step 2 took 12929ms ********** Factor found in step 2: 4579115157252350396251705660558469 Found probable prime factor of 34 digits: 4579115157252350396251705660558469 Probable prime cofactor 27611618678981302453420401159665729376211279209581066750141573274195794009038548402268649023166636612159131984086746695721467 has 125 digits
(11·10174+1)/3 = 3(6)1737<175> = 25105507078193<14> · C162
C162 = P34 · P129
P34 = 1431643137143289612013395042921649<34>
P129 = 102015851080330394950115333716070269018964607525472741780280632981612360170145484208680248953025985904139335171265173737731269131<129>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1752658758 Step 1 took 19541ms Step 2 took 12577ms ********** Factor found in step 2: 1431643137143289612013395042921649 Found probable prime factor of 34 digits: 1431643137143289612013395042921649 Probable prime cofactor 102015851080330394950115333716070269018964607525472741780280632981612360170145484208680248953025985904139335171265173737731269131 has 129 digits
(34·10203-61)/9 = 3(7)2021<204> = 8831 · 72901 · 112501 · 10440322124787126683053<23> · C168
C168 = P33 · P136
P33 = 194878783642531137396506518706737<33>
P136 = 2563646825834120049987006706226367115513825431483244228135665471944472805150771543742942888716968688007800024055831525531246269818486481<136>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=802463135 Step 1 took 20061ms Step 2 took 12845ms ********** Factor found in step 2: 194878783642531137396506518706737 Found probable prime factor of 33 digits: 194878783642531137396506518706737 Probable prime cofactor 2563646825834120049987006706226367115513825431483244228135665471944472805150771543742942888716968688007800024055831525531246269818486481 has 136 digits
(34·10192-61)/9 = 3(7)1911<193> = 32 · 3533 · 797439971587867<15> · C174
C174 = P28 · C146
P28 = 5639483166306901179798816719<28>
C146 = [26418791978814970831542819583891294783385354615760421669709934150784142724787661482579399836080971964830225870407234821376836573766640098403040291<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4250593911 Step 1 took 25267ms ********** Factor found in step 1: 5639483166306901179798816719 Found probable prime factor of 28 digits: 5639483166306901179798816719 Composite cofactor
(11·10186+1)/3 = 3(6)1857<187> = 184793114142475822975073<24> · C164
C164 = P37 · C128
P37 = 1774927193533712492005677033453671123<37>
C128 = [11179055258894793670224353164464161111390294918481458753128549105128717218169765741212056666252299726580644182426721221367136873<128>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3358102994 Step 1 took 24726ms Step 2 took 16644ms ********** Factor found in step 2: 1774927193533712492005677033453671123 Found probable prime factor of 37 digits: 1774927193533712492005677033453671123 Composite cofactor 11179055258894793670224353164464161111390294918481458753128549105128717218169765741212056666252299726580644182426721221367136873 has 128 digits
(34·10198-61)/9 = 3(7)1971<199> = 3 · 43 · 2687 · 5968939 · C187
C187 = P32 · P155
P32 = 38105528752723700919153806322731<32>
P155 = 47917472025515084936253091068040645829165545942645244660993199310349576589419386240479483830592013034148549763083512771249504720351602315724197904591349053<155>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4028002106 Step 1 took 22017ms Step 2 took 14649ms ********** Factor found in step 2: 38105528752723700919153806322731 Found probable prime factor of 32 digits: 38105528752723700919153806322731 Probable prime cofactor 47917472025515084936253091068040645829165545942645244660993199310349576589419386240479483830592013034148549763083512771249504720351602315724197904591349053 has 155 digits
(34·10204-61)/9 = 3(7)2031<205> = 3 · 456944495438603<15> · C190
C190 = P31 · C160
P31 = 1512768834429399909066535514857<31>
C160 = [1821709546286074516473557552513973715632831422256577038778502292556731957589880120180743562987930254113335165727299848149500511188794201681110980467838132947667<160>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2899500130 Step 1 took 23289ms Step 2 took 14553ms ********** Factor found in step 2: 1512768834429399909066535514857 Found probable prime factor of 31 digits: 1512768834429399909066535514857 Composite cofactor 1821709546286074516473557552513973715632831422256577038778502292556731957589880120180743562987930254113335165727299848149500511188794201681110980467838132947667 has 160 digits
(11·10205+1)/3 = 3(6)2047<206> = 37 · 967 · 193189 · 175495747251253477<18> · C179
C179 = P34 · C145
P34 = 4216628214594391516805899817350621<34>
C145 = [7168510581489893362061172533665932426911604966642096584491850386790355732112303191835701796670060964330568232485809019473596273412036396814696021<145>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3119795829 Step 1 took 28545ms Step 2 took 18593ms ********** Factor found in step 2: 4216628214594391516805899817350621 Found probable prime factor of 34 digits: 4216628214594391516805899817350621 Composite cofactor 7168510581489893362061172533665932426911604966642096584491850386790355732112303191835701796670060964330568232485809019473596273412036396814696021 has 145 digits
(34·10189-61)/9 = 3(7)1881<190> = 3 · 19 · 1951 · 9199 · 140177 · 43664787877<11> · 17268776936283601<17> · 124302643102278005093<21> · 3329405600056896389444381<25> · C104
C104 = P44 · P61
P44 = 69966787580143993614754142851314738917569579<44>
P61 = 1206576783959699309894410254281895913576361725987222092406549<61>
Number: 37771_189 N=84420301542441572248655580080885734293394610747358405506554776579780343085112125886659786128138262772871 ( 104 digits) Divisors found: r1=69966787580143993614754142851314738917569579 (pp44) r2=1206576783959699309894410254281895913576361725987222092406549 (pp61) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.730). Factorization parameters were as follows: name: 37771_189 n: 84420301542441572248655580080885734293394610747358405506554776579780343085112125886659786128138262772871 skew: 9787.26 # norm 1.05e+14 c5: 46080 c4: -602871736 c3: -7091880767194 c2: 80954041951701947 c1: 389451520411831702630 c0: -1537021221256345910714200 # alpha -5.48 Y1: 105296616953 Y0: -71217802010343892173 # Murphy_E 2.16e-09 # M 70169906179187845525575282802550724568150340856160222103856566810958666723249156632950463472826442865883 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 250586 x 250828 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 2.50 hours.
(11·10169+1)/3 = 3(6)1687<170> = 37 · C168
C168 = P41 · P128
P41 = 11030812224377842345662744222070095528811<41>
P128 = 89838442612677568783127992344632191440505401986005659153984016763066092470526608932676002858732238476800246754010447349587574381<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1370658292 Step 1 took 24924ms Step 2 took 16947ms ********** Factor found in step 2: 11030812224377842345662744222070095528811 Found probable prime factor of 41 digits: 11030812224377842345662744222070095528811 Probable prime cofactor 89838442612677568783127992344632191440505401986005659153984016763066092470526608932676002858732238476800246754010447349587574381 has 128 digits
(34·10154-61)/9 = 3(7)1531<155> = 6379 · C151
C151 = P60 · P92
P60 = 183454113598076963373718986643971415060501020624289499571323<60>
P92 = 32281696568612383429921930458932642651082130545296673862354073357067506441085413828479488563<92>
SNFS difficulty: 156 digits. Divisors found: r1=183454113598076963373718986643971415060501020624289499571323 (pp60) r2=32281696568612383429921930458932642651082130545296673862354073357067506441085413828479488563 (pp92) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 5922210029436867499259723746320391562592534531709951054675933183536256118165508352057967985229311455992754001846336068000905749769207991499886781278849 m: 10000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 558486 x 558728 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
By Luigi Morelli / msieve 1.38
(34·10174-43)/9 = 3(7)1733<175> = 23279 · 344848243 · 80308935953<11> · 685748829763<12> · 41268157890120643<17> · C123
C123 = P53 · P70
P53 = 20911043547722046862836516832845716851816899295541089<53>
P70 = 9902032167234716303717452177033910330401475786201296097689113927382553<70>
Sat Nov 29 15:51:53 2008 Msieve v. 1.38 Sat Nov 29 15:51:53 2008 random seeds: be9f0478 86d8f760 Sat Nov 29 15:51:53 2008 factoring 207061825859989670459284623169677072047648707250318568804646243101328743888471612901950056737246672796156596706853633220217 (123 digits) Sat Nov 29 15:51:55 2008 searching for 15-digit factors Sat Nov 29 15:51:59 2008 commencing number field sieve (123-digit input) Sat Nov 29 15:51:59 2008 R0: -679056770268448866920 Sat Nov 29 15:51:59 2008 R1: 1 Sat Nov 29 15:51:59 2008 A0: -9197281393885594503 Sat Nov 29 15:51:59 2008 A1: 11143000227051575216 Sat Nov 29 15:51:59 2008 A2: -1674590562615344430 Sat Nov 29 15:51:59 2008 A3: -13223622027949449591 Sat Nov 29 15:51:59 2008 A4: 3275463102756217972 Sat Nov 29 15:51:59 2008 A5: 1434067592525568000 Sat Nov 29 15:51:59 2008 size score = 4.498991e-013, Murphy alpha = -3.957239, combined = 1.682613e-012 Sat Nov 29 15:52:00 2008 Sat Nov 29 15:52:00 2008 commencing relation filtering Sat Nov 29 15:52:00 2008 commencing duplicate removal, pass 1 Sat Nov 29 15:59:48 2008 found 712206 hash collisions in 11479955 relations Sat Nov 29 16:02:01 2008 added 60587 free relations Sat Nov 29 16:02:01 2008 commencing duplicate removal, pass 2 Sat Nov 29 16:03:20 2008 found 615164 duplicates and 10925378 unique relations Sat Nov 29 16:03:20 2008 memory use: 50.6 MB Sat Nov 29 16:03:21 2008 reading rational ideals above 5046272 Sat Nov 29 16:03:21 2008 reading algebraic ideals above 5046272 Sat Nov 29 16:03:21 2008 commencing singleton removal, pass 1 Sat Nov 29 16:10:45 2008 relations with 0 large ideals: 68092 Sat Nov 29 16:10:45 2008 relations with 1 large ideals: 567434 Sat Nov 29 16:10:45 2008 relations with 2 large ideals: 1842955 Sat Nov 29 16:10:45 2008 relations with 3 large ideals: 3416912 Sat Nov 29 16:10:45 2008 relations with 4 large ideals: 3551459 Sat Nov 29 16:10:45 2008 relations with 5 large ideals: 1415110 Sat Nov 29 16:10:45 2008 relations with 6 large ideals: 63414 Sat Nov 29 16:10:45 2008 relations with 7+ large ideals: 2 Sat Nov 29 16:10:45 2008 10925378 relations and about 10213646 large ideals Sat Nov 29 16:10:45 2008 commencing singleton removal, pass 2 Sat Nov 29 16:16:06 2008 found 3509153 singletons Sat Nov 29 16:16:06 2008 current dataset: 7416225 relations and about 6209799 large ideals Sat Nov 29 16:16:06 2008 commencing singleton removal, pass 3 Sat Nov 29 16:20:27 2008 found 810977 singletons Sat Nov 29 16:20:27 2008 current dataset: 6605248 relations and about 5363239 large ideals Sat Nov 29 16:20:27 2008 commencing singleton removal, pass 4 Sat Nov 29 16:24:50 2008 found 213706 singletons Sat Nov 29 16:24:51 2008 current dataset: 6391542 relations and about 5146716 large ideals Sat Nov 29 16:24:51 2008 commencing singleton removal, final pass Sat Nov 29 16:28:04 2008 memory use: 125.2 MB Sat Nov 29 16:28:05 2008 commencing in-memory singleton removal Sat Nov 29 16:28:06 2008 begin with 6391542 relations and 5450488 unique ideals Sat Nov 29 16:28:31 2008 reduce to 5793438 relations and 4842225 ideals in 13 passes Sat Nov 29 16:28:31 2008 max relations containing the same ideal: 35 Sat Nov 29 16:28:36 2008 reading rational ideals above 720000 Sat Nov 29 16:28:36 2008 reading algebraic ideals above 720000 Sat Nov 29 16:28:36 2008 commencing singleton removal, final pass Sat Nov 29 16:32:06 2008 keeping 5147907 ideals with weight <= 20, new excess is 399479 Sat Nov 29 16:32:22 2008 memory use: 178.3 MB Sat Nov 29 16:32:22 2008 commencing in-memory singleton removal Sat Nov 29 16:32:24 2008 begin with 5793911 relations and 5147907 unique ideals Sat Nov 29 16:32:37 2008 reduce to 5793049 relations and 5144932 ideals in 6 passes Sat Nov 29 16:32:37 2008 max relations containing the same ideal: 20 Sat Nov 29 16:32:48 2008 removing 653414 relations and 561053 ideals in 92361 cliques Sat Nov 29 16:32:49 2008 commencing in-memory singleton removal Sat Nov 29 16:32:51 2008 begin with 5139635 relations and 5144932 unique ideals Sat Nov 29 16:33:07 2008 reduce to 5086560 relations and 4529693 ideals in 8 passes Sat Nov 29 16:33:07 2008 max relations containing the same ideal: 20 Sat Nov 29 16:33:16 2008 removing 500648 relations and 408287 ideals in 92361 cliques Sat Nov 29 16:33:16 2008 commencing in-memory singleton removal Sat Nov 29 16:33:18 2008 begin with 4585912 relations and 4529693 unique ideals Sat Nov 29 16:33:34 2008 reduce to 4547587 relations and 4082371 ideals in 9 passes Sat Nov 29 16:33:34 2008 max relations containing the same ideal: 20 Sat Nov 29 16:33:43 2008 relations with 0 large ideals: 21617 Sat Nov 29 16:33:43 2008 relations with 1 large ideals: 179916 Sat Nov 29 16:33:44 2008 relations with 2 large ideals: 635257 Sat Nov 29 16:33:44 2008 relations with 3 large ideals: 1238278 Sat Nov 29 16:33:44 2008 relations with 4 large ideals: 1392824 Sat Nov 29 16:33:44 2008 relations with 5 large ideals: 824915 Sat Nov 29 16:33:44 2008 relations with 6 large ideals: 226256 Sat Nov 29 16:33:44 2008 relations with 7+ large ideals: 28524 Sat Nov 29 16:33:44 2008 commencing 2-way merge Sat Nov 29 16:33:56 2008 reduce to 2954553 relation sets and 2489337 unique ideals Sat Nov 29 16:33:56 2008 commencing full merge Sat Nov 29 16:35:53 2008 memory use: 189.8 MB Sat Nov 29 16:35:55 2008 found 1421189 cycles, need 1357537 Sat Nov 29 16:35:55 2008 weight of 1357537 cycles is about 95182674 (70.11/cycle) Sat Nov 29 16:35:55 2008 distribution of cycle lengths: Sat Nov 29 16:35:55 2008 1 relations: 127090 Sat Nov 29 16:35:55 2008 2 relations: 154422 Sat Nov 29 16:35:55 2008 3 relations: 165581 Sat Nov 29 16:35:56 2008 4 relations: 152485 Sat Nov 29 16:35:56 2008 5 relations: 139651 Sat Nov 29 16:35:56 2008 6 relations: 119549 Sat Nov 29 16:35:56 2008 7 relations: 103127 Sat Nov 29 16:35:56 2008 8 relations: 88323 Sat Nov 29 16:35:56 2008 9 relations: 74428 Sat Nov 29 16:35:56 2008 10+ relations: 232881 Sat Nov 29 16:35:56 2008 heaviest cycle: 17 relations Sat Nov 29 16:35:57 2008 commencing cycle optimization Sat Nov 29 16:36:07 2008 start with 7829053 relations Sat Nov 29 16:37:04 2008 pruned 207954 relations Sat Nov 29 16:37:04 2008 memory use: 204.9 MB Sat Nov 29 16:37:04 2008 distribution of cycle lengths: Sat Nov 29 16:37:04 2008 1 relations: 127090 Sat Nov 29 16:37:04 2008 2 relations: 158585 Sat Nov 29 16:37:04 2008 3 relations: 172435 Sat Nov 29 16:37:04 2008 4 relations: 156946 Sat Nov 29 16:37:04 2008 5 relations: 143689 Sat Nov 29 16:37:04 2008 6 relations: 121118 Sat Nov 29 16:37:04 2008 7 relations: 104106 Sat Nov 29 16:37:04 2008 8 relations: 88124 Sat Nov 29 16:37:05 2008 9 relations: 73703 Sat Nov 29 16:37:05 2008 10+ relations: 211741 Sat Nov 29 16:37:05 2008 heaviest cycle: 17 relations Sat Nov 29 16:37:17 2008 Sat Nov 29 16:37:17 2008 commencing linear algebra Sat Nov 29 16:37:21 2008 read 1357537 cycles Sat Nov 29 16:37:31 2008 cycles contain 4227276 unique relations Sat Nov 29 16:41:02 2008 read 4227276 relations Sat Nov 29 16:41:19 2008 using 32 quadratic characters above 134217650 Sat Nov 29 16:43:11 2008 building initial matrix Sat Nov 29 16:45:39 2008 memory use: 491.8 MB Sat Nov 29 16:45:52 2008 read 1357537 cycles Sat Nov 29 16:47:00 2008 matrix is 1357304 x 1357537 (389.6 MB) with weight 134250650 (98.89/col) Sat Nov 29 16:47:00 2008 sparse part has weight 91279211 (67.24/col) Sat Nov 29 16:48:02 2008 filtering completed in 3 passes Sat Nov 29 16:48:03 2008 matrix is 1350940 x 1351140 (388.9 MB) with weight 133898506 (99.10/col) Sat Nov 29 16:48:03 2008 sparse part has weight 91134928 (67.45/col) Sat Nov 29 16:48:56 2008 read 1351140 cycles Sat Nov 29 16:53:10 2008 matrix is 1350940 x 1351140 (388.9 MB) with weight 133898506 (99.10/col) Sat Nov 29 16:53:10 2008 sparse part has weight 91134928 (67.45/col) Sat Nov 29 16:53:11 2008 saving the first 48 matrix rows for later Sat Nov 29 16:53:12 2008 matrix is 1350892 x 1351140 (372.6 MB) with weight 103872555 (76.88/col) Sat Nov 29 16:53:12 2008 sparse part has weight 89563605 (66.29/col) Sat Nov 29 16:53:12 2008 matrix includes 64 packed rows Sat Nov 29 16:53:12 2008 using block size 21845 for processor cache size 512 kB Sat Nov 29 16:53:33 2008 commencing Lanczos iteration Sat Nov 29 16:53:33 2008 memory use: 369.3 MB Sun Nov 30 12:40:26 2008 lanczos halted after 21363 iterations (dim = 1350890) Sun Nov 30 12:40:49 2008 recovered 42 nontrivial dependencies Sun Nov 30 12:40:55 2008 Sun Nov 30 12:40:55 2008 commencing square root phase Sun Nov 30 12:40:55 2008 reading relations for dependency 1 Sun Nov 30 12:41:00 2008 read 675475 cycles Sun Nov 30 12:41:07 2008 cycles contain 2624155 unique relations Sun Nov 30 12:49:57 2008 read 2624155 relations Sun Nov 30 12:51:04 2008 multiplying 2111948 relations Sun Nov 30 14:03:49 2008 multiply complete, coefficients have about 174.29 million bits Sun Nov 30 14:04:20 2008 initial square root is modulo 1797947 Sun Nov 30 15:42:24 2008 prp53 factor: 20911043547722046862836516832845716851816899295541089 Sun Nov 30 15:42:24 2008 prp70 factor: 9902032167234716303717452177033910330401475786201296097689113927382553 Sun Nov 30 15:42:24 2008 elapsed time 23:50:31
By Erik Branger / GGNFS, Msieve
(34·10124-61)/9 = 3(7)1231<125> = 109 · 42875453 · C115
C115 = P48 · P68
P48 = 183902059423947183572586572945500757182382783851<48>
P68 = 43955638737725434720351420594271267744658778646152810611533781011273<68>
Number: 37771_124 N=8083532487162737666735497874469570726462998842225146757259227985958224006965198781856265773866351743424771753352323 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=183902059423947183572586572945500757182382783851 r2=43955638737725434720351420594271267744658778646152810611533781011273 Version: Total time: 3.40 hours. Scaled time: 2.68 units (timescale=0.789). Factorization parameters were as follows: n: 8083532487162737666735497874469570726462998842225146757259227985958224006965198781856265773866351743424771753352323 m: 10000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 795001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123139 x 123376 Total sieving time: 3.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 3.40 hours. --------- CPU info (if available) ----------
(34·10126-61)/9 = 3(7)1251<127> = 3 · 71 · 88852876601<11> · C114
C114 = P56 · P58
P56 = 34432799348899478768254695087862221172954561711851166729<56>
P58 = 5797129202738537298544666505195713087675830414976894319423<58>
Number: 37771_126 N=199611386637541661542495056276037532975243649578791299977706603174046948493474101255739752477445195161194956077367 ( 114 digits) SNFS difficulty: 127 digits. Divisors found: r1=34432799348899478768254695087862221172954561711851166729 r2=5797129202738537298544666505195713087675830414976894319423 Version: Total time: 3.47 hours. Scaled time: 2.72 units (timescale=0.783). Factorization parameters were as follows: n: 199611386637541661542495056276037532975243649578791299977706603174046948493474101255739752477445195161194956077367 m: 10000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 815001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135078 x 135315 Total sieving time: 3.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 3.47 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM, Msieve
(5·10198-17)/3 = 1(6)1971<199> = C199
C199 = P90 · P110
P90 = 119210534379624869888380873328590164795408717116498507216021846495878475022485775217297333<90>
P110 = 13980867339787117486389823283545379889344751436236630206822306072817458470959671454043114394014893486370164017<110>
Number: 16661_198 N=1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=119210534379624869888380873328590164795408717116498507216021846495878475022485775217297333 (pp90) r2=13980867339787117486389823283545379889344751436236630206822306072817458470959671454043114394014893486370164017 (pp110) Version: GGNFS-0.77.1-20050930-nocona Total time: 630.31 hours. Scaled time: 1499.51 units (timescale=2.379). Factorization parameters were as follows: n: 1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 10000000000000000000000000000000000000000 deg: 5 c5: 1 c0: -340 skew: 3.21 type: snfs rlim: 16000000 alim: 16000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.7 alambda: 2.7 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [8000000, 18400001) Primes: RFBsize:1031130, AFBsize:1030468, largePrimes:21021002 encountered Relations: rels:22530215, finalFF:2351886 Max relations in full relation-set: 28 Initial matrix: 2061662 x 2351886 with sparse part having weight 253898488. Pruned matrix : 1821824 x 1832196 with weight 219935642. Total sieving time: 576.62 hours. Total relation processing time: 0.76 hours. Matrix solve time: 52.69 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,16000000,16000000,28,28,56,56,2.7,2.7,100000 total time: 630.31 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(11·10128+1)/3 = 3(6)1277<129> = 31 · 23902624069<11> · C117
C117 = P45 · P73
P45 = 244685778733831624295445245539835854200298513<45>
P73 = 2022345843767010726344409071701555602423554182366854872110064185709664481<73>
Number: 36667_128 N=494839267651258805728615052976501211817190602021008465421943955351632370071553416982673598514685194886303419273216753 ( 117 digits) SNFS difficulty: 131 digits. Divisors found: r1=244685778733831624295445245539835854200298513 (pp45) r2=2022345843767010726344409071701555602423554182366854872110064185709664481 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.68 hours. Scaled time: 4.01 units (timescale=2.391). Factorization parameters were as follows: n: 494839267651258805728615052976501211817190602021008465421943955351632370071553416982673598514685194886303419273216753 m: 100000000000000000000000000 deg: 5 c5: 11 c0: 100 skew: 1.55 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [450000, 800001) Primes: RFBsize:71274, AFBsize:71561, largePrimes:2504135 encountered Relations: rels:2386893, finalFF:184196 Max relations in full relation-set: 28 Initial matrix: 142902 x 184196 with sparse part having weight 14054047. Pruned matrix : 129821 x 130599 with weight 7540241. Total sieving time: 1.59 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,900000,900000,26,26,47,47,2.3,2.3,50000 total time: 1.68 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
7·10182-9 = 6(9)1811<183> = 47 · 2909 · 8412983 · 197529555280333365899<21> · C151
C151 = P36 · C115
P36 = 551024823684035448740408536106657207<36>
C115 = [5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143<115>]
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 3080877024860949836881803991296662808651953686327894352408272117230457204223004198843440055196469778697272230530749827753879009022633410147845378287601 (151 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=820661537 Step 1 took 14820ms Step 2 took 10654ms ********** Factor found in step 2: 551024823684035448740408536106657207 Found probable prime factor of 36 digits: 551024823684035448740408536106657207 Composite cofactor 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 has 115 digits
(34·10144-61)/9 = 3(7)1431<145> = 3 · 56150330479<11> · 372942956963322243857<21> · C113
C113 = P50 · P64
P50 = 21661518727678594480814735512079782966721573328871<50>
P64 = 2776077101002108005261699224078097855558784029617067090671671489<64>
Number: 37771_144 N=60134046112836863621509113837401397903316783755784689699386716316543124790819035195276732807581757561615471258919 ( 113 digits) SNFS difficulty: 146 digits. Divisors found: r1=21661518727678594480814735512079782966721573328871 (pp50) r2=2776077101002108005261699224078097855558784029617067090671671489 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.83 hours. Scaled time: 25.86 units (timescale=2.387). Factorization parameters were as follows: n: 60134046112836863621509113837401397903316783755784689699386716316543124790819035195276732807581757561615471258919 m: 100000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [750000, 1575001) Primes: RFBsize:114155, AFBsize:114578, largePrimes:3725607 encountered Relations: rels:3841660, finalFF:345565 Max relations in full relation-set: 28 Initial matrix: 228798 x 345565 with sparse part having weight 37940559. Pruned matrix : 201967 x 203174 with weight 19049916. Total sieving time: 10.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.18 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,49,49,2.3,2.3,75000 total time: 10.83 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(11·10161-17)/3 = 3(6)1601<162> = 1051 · 504111899 · 17405943367<11> · 1435787357971<13> · 1964614032373<13> · C116
C116 = P35 · P39 · P43
P35 = 17664047353579579308310273713784361<35>
P39 = 592554862419818603822736166692925446317<39>
P43 = 1346660266522921163024397070941814596274577<43>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 14095381438054049848194620343238446310043569438223828676882516142860471211671212343670224405889272698639578460886149 (116 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=702813065 Step 1 took 10671ms Step 2 took 2620ms ********** Factor found in step 2: 17664047353579579308310273713784361 Found probable prime factor of 35 digits: 17664047353579579308310273713784361 Composite cofactor 797970088955725802508007644661910266369870917643959528519898754913208433205382909 has 81 digits Mon Dec 01 21:34:18 2008 Mon Dec 01 21:34:18 2008 Mon Dec 01 21:34:18 2008 Msieve v. 1.32 Mon Dec 01 21:34:18 2008 random seeds: fa5ac99c bc59bc96 Mon Dec 01 21:34:18 2008 factoring 797970088955725802508007644661910266369870917643959528519898754913208433205382909 (81 digits) Mon Dec 01 21:34:18 2008 no P-1/P+1/ECM available, skipping Mon Dec 01 21:34:18 2008 commencing quadratic sieve (81-digit input) Mon Dec 01 21:34:18 2008 using multiplier of 1 Mon Dec 01 21:34:18 2008 using VC8 32kb sieve core Mon Dec 01 21:34:18 2008 sieve interval: 12 blocks of size 32768 Mon Dec 01 21:34:18 2008 processing polynomials in batches of 17 Mon Dec 01 21:34:18 2008 using a sieve bound of 1325659 (50882 primes) Mon Dec 01 21:34:18 2008 using large prime bound of 127263264 (26 bits) Mon Dec 01 21:34:18 2008 using trial factoring cutoff of 27 bits Mon Dec 01 21:34:18 2008 polynomial 'A' values have 10 factors Mon Dec 01 21:50:13 2008 51000 relations (25458 full + 25542 combined from 278893 partial), need 50978 Mon Dec 01 21:50:13 2008 begin with 304351 relations Mon Dec 01 21:50:13 2008 reduce to 73391 relations in 2 passes Mon Dec 01 21:50:13 2008 attempting to read 73391 relations Mon Dec 01 21:50:14 2008 recovered 73391 relations Mon Dec 01 21:50:14 2008 recovered 65369 polynomials Mon Dec 01 21:50:14 2008 attempting to build 51000 cycles Mon Dec 01 21:50:14 2008 found 51000 cycles in 1 passes Mon Dec 01 21:50:14 2008 distribution of cycle lengths: Mon Dec 01 21:50:14 2008 length 1 : 25458 Mon Dec 01 21:50:14 2008 length 2 : 25542 Mon Dec 01 21:50:14 2008 largest cycle: 2 relations Mon Dec 01 21:50:14 2008 matrix is 50882 x 51000 with weight 1538386 (avg 30.16/col) Mon Dec 01 21:50:14 2008 filtering completed in 4 passes Mon Dec 01 21:50:14 2008 matrix is 44142 x 44206 with weight 1309465 (avg 29.62/col) Mon Dec 01 21:50:14 2008 saving the first 48 matrix rows for later Mon Dec 01 21:50:14 2008 matrix is 44094 x 44206 with weight 1037487 (avg 23.47/col) Mon Dec 01 21:50:14 2008 matrix includes 64 packed rows Mon Dec 01 21:50:14 2008 commencing Lanczos iteration Mon Dec 01 21:50:36 2008 lanczos halted after 699 iterations (dim = 44084) Mon Dec 01 21:50:36 2008 recovered 12 nontrivial dependencies Mon Dec 01 21:50:37 2008 prp39 factor: 592554862419818603822736166692925446317 Mon Dec 01 21:50:37 2008 prp43 factor: 1346660266522921163024397070941814596274577 Mon Dec 01 21:50:37 2008 elapsed time 00:16:19
By Sinkiti Sibata / GGNFS, Msieve
(11·10152-17)/3 = 3(6)1511<153> = 29 · 43 · 21289871 · C143
C143 = P35 · P108
P35 = 57368638108951067897882258416206337<35>
P108 = 240745072480524105689094125373155362261200698502908150928447721048171065449125833957091710221823664394074069<108>
Number: 36661_152 N=13811216939648382207457548841893009925631655326532384482575247278999696345718024918999933772590643167474122621636368843057734710342694765175253 ( 143 digits) SNFS difficulty: 153 digits. Divisors found: r1=57368638108951067897882258416206337 (pp35) r2=240745072480524105689094125373155362261200698502908150928447721048171065449125833957091710221823664394074069 (pp108) Version: GGNFS-0.77.1-20060513-nocona Total time: 33.82 hours. Scaled time: 86.38 units (timescale=2.554). Factorization parameters were as follows: name: 36661_152 n: 13811216939648382207457548841893009925631655326532384482575247278999696345718024918999933772590643167474122621636368843057734710342694765175253 m: 2000000000000000000000000000000 deg: 5 c5: 275 c0: -136 skew: 0.87 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: RFBsize:189880, AFBsize:189686, largePrimes:8729313 encountered Relations: rels:9832054, finalFF:1374167 Max relations in full relation-set: 28 Initial matrix: 379633 x 1374167 with sparse part having weight 163279689. Pruned matrix : 248100 x 250062 with weight 43412506. Total sieving time: 32.92 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.65 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 33.82 hours. --------- CPU info (if available) ----------
(34·10122-61)/9 = 3(7)1211<123> = 7 · C122
C122 = P54 · P68
P54 = 815245101135505697874744698170121827541490300092074703<54>
P68 = 66198808055497474948864240487892379026886542832166295547558599332851<68>
Number: 37771_122 N=53968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253 ( 122 digits) SNFS difficulty: 124 digits. Divisors found: r1=815245101135505697874744698170121827541490300092074703 (pp54) r2=66198808055497474948864240487892379026886542832166295547558599332851 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.14 hours. Scaled time: 6.24 units (timescale=1.985). Factorization parameters were as follows: name: 37771_122 n: 53968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253968253 m: 2000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 760001) Primes: RFBsize:65416, AFBsize:65749, largePrimes:1414200 encountered Relations: rels:1399246, finalFF:162662 Max relations in full relation-set: 28 Initial matrix: 131232 x 162662 with sparse part having weight 8216881. Pruned matrix : 120160 x 120880 with weight 4687522. Total sieving time: 3.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 3.14 hours. --------- CPU info (if available) ----------
(34·10119-61)/9 = 3(7)1181<120> = 53 · 97 · 569 · 409705573822798716046313501<27> · C87
C87 = P36 · P51
P36 = 792246144585103935358792782500741713<36>
P51 = 397873056847156620893313883848623187566975367724723<51>
Sun Nov 30 18:04:40 2008 Msieve v. 1.38 Sun Nov 30 18:04:40 2008 random seeds: 93e01718 060378a8 Sun Nov 30 18:04:40 2008 factoring 315213395321449721601301773454983877531110347311256178703824935230238923212668707470499 (87 digits) Sun Nov 30 18:04:43 2008 searching for 15-digit factors Sun Nov 30 18:04:49 2008 commencing quadratic sieve (87-digit input) Sun Nov 30 18:04:49 2008 using multiplier of 1 Sun Nov 30 18:04:49 2008 using 64kb Pentium 2 sieve core Sun Nov 30 18:04:49 2008 sieve interval: 10 blocks of size 65536 Sun Nov 30 18:04:49 2008 processing polynomials in batches of 11 Sun Nov 30 18:04:49 2008 using a sieve bound of 1489661 (56508 primes) Sun Nov 30 18:04:49 2008 using large prime bound of 119172880 (26 bits) Sun Nov 30 18:04:49 2008 using double large prime bound of 344444540853840 (42-49 bits) Sun Nov 30 18:04:49 2008 using trial factoring cutoff of 49 bits Sun Nov 30 18:04:49 2008 polynomial 'A' values have 11 factors Sun Nov 30 23:55:52 2008 56804 relations (15980 full + 40824 combined from 595193 partial), need 56604 Sun Nov 30 23:56:05 2008 begin with 611173 relations Sun Nov 30 23:56:07 2008 reduce to 136055 relations in 11 passes Sun Nov 30 23:56:07 2008 attempting to read 136055 relations Sun Nov 30 23:56:18 2008 recovered 136055 relations Sun Nov 30 23:56:18 2008 recovered 112570 polynomials Sun Nov 30 23:56:18 2008 attempting to build 56804 cycles Sun Nov 30 23:56:19 2008 found 56804 cycles in 6 passes Sun Nov 30 23:56:22 2008 distribution of cycle lengths: Sun Nov 30 23:56:22 2008 length 1 : 15980 Sun Nov 30 23:56:22 2008 length 2 : 11206 Sun Nov 30 23:56:22 2008 length 3 : 10018 Sun Nov 30 23:56:22 2008 length 4 : 7371 Sun Nov 30 23:56:22 2008 length 5 : 5154 Sun Nov 30 23:56:22 2008 length 6 : 3102 Sun Nov 30 23:56:22 2008 length 7 : 1843 Sun Nov 30 23:56:22 2008 length 9+: 2130 Sun Nov 30 23:56:22 2008 largest cycle: 18 relations Sun Nov 30 23:56:23 2008 matrix is 56508 x 56804 (12.9 MB) with weight 3150716 (55.47/col) Sun Nov 30 23:56:23 2008 sparse part has weight 3150716 (55.47/col) Sun Nov 30 23:56:28 2008 filtering completed in 3 passes Sun Nov 30 23:56:28 2008 matrix is 51954 x 52017 (11.9 MB) with weight 2910454 (55.95/col) Sun Nov 30 23:56:28 2008 sparse part has weight 2910454 (55.95/col) Sun Nov 30 23:56:30 2008 saving the first 48 matrix rows for later Sun Nov 30 23:56:30 2008 matrix is 51906 x 52017 (7.2 MB) with weight 2240425 (43.07/col) Sun Nov 30 23:56:30 2008 sparse part has weight 1578266 (30.34/col) Sun Nov 30 23:56:30 2008 matrix includes 64 packed rows Sun Nov 30 23:56:30 2008 using block size 5461 for processor cache size 128 kB Sun Nov 30 23:56:32 2008 commencing Lanczos iteration Sun Nov 30 23:56:32 2008 memory use: 7.4 MB Sun Nov 30 23:58:53 2008 lanczos halted after 822 iterations (dim = 51905) Sun Nov 30 23:58:54 2008 recovered 17 nontrivial dependencies Sun Nov 30 23:58:55 2008 prp36 factor: 792246144585103935358792782500741713 Sun Nov 30 23:58:55 2008 prp51 factor: 397873056847156620893313883848623187566975367724723 Sun Nov 30 23:58:55 2008 elapsed time 05:54:15
(11·10105+1)/3 = 3(6)1047<106> = 61 · 5807 · 3560329 · C94
C94 = P40 · P54
P40 = 5104021191531172673556798659086373586713<40>
P54 = 569622543579183307943262520347190758832026542885980873<54>
Sun Nov 30 21:45:06 2008 Msieve v. 1.38 Sun Nov 30 21:45:06 2008 random seeds: 942d4ef0 97db9756 Sun Nov 30 21:45:06 2008 factoring 2907365533602040519607069382815593864011076918018858165324571130743533984189529189206124940449 (94 digits) Sun Nov 30 21:45:07 2008 searching for 15-digit factors Sun Nov 30 21:45:09 2008 commencing quadratic sieve (94-digit input) Sun Nov 30 21:45:09 2008 using multiplier of 1 Sun Nov 30 21:45:09 2008 using 32kb Intel Core sieve core Sun Nov 30 21:45:09 2008 sieve interval: 36 blocks of size 32768 Sun Nov 30 21:45:09 2008 processing polynomials in batches of 6 Sun Nov 30 21:45:09 2008 using a sieve bound of 2019013 (75294 primes) Sun Nov 30 21:45:09 2008 using large prime bound of 270547742 (28 bits) Sun Nov 30 21:45:09 2008 using double large prime bound of 1506742330630918 (42-51 bits) Sun Nov 30 21:45:09 2008 using trial factoring cutoff of 51 bits Sun Nov 30 21:45:09 2008 polynomial 'A' values have 12 factors Mon Dec 01 00:51:47 2008 75444 relations (18548 full + 56896 combined from 1064784 partial), need 75390 Mon Dec 01 00:51:48 2008 begin with 1083332 relations Mon Dec 01 00:51:49 2008 reduce to 194974 relations in 10 passes Mon Dec 01 00:51:49 2008 attempting to read 194974 relations Mon Dec 01 00:51:52 2008 recovered 194974 relations Mon Dec 01 00:51:52 2008 recovered 178130 polynomials Mon Dec 01 00:51:53 2008 attempting to build 75444 cycles Mon Dec 01 00:51:53 2008 found 75444 cycles in 5 passes Mon Dec 01 00:51:53 2008 distribution of cycle lengths: Mon Dec 01 00:51:53 2008 length 1 : 18548 Mon Dec 01 00:51:53 2008 length 2 : 13427 Mon Dec 01 00:51:53 2008 length 3 : 12752 Mon Dec 01 00:51:53 2008 length 4 : 10138 Mon Dec 01 00:51:53 2008 length 5 : 7733 Mon Dec 01 00:51:53 2008 length 6 : 5171 Mon Dec 01 00:51:53 2008 length 7 : 3285 Mon Dec 01 00:51:53 2008 length 9+: 4390 Mon Dec 01 00:51:53 2008 largest cycle: 24 relations Mon Dec 01 00:51:53 2008 matrix is 75294 x 75444 (19.2 MB) with weight 4735552 (62.77/col) Mon Dec 01 00:51:53 2008 sparse part has weight 4735552 (62.77/col) Mon Dec 01 00:51:54 2008 filtering completed in 3 passes Mon Dec 01 00:51:54 2008 matrix is 71559 x 71623 (18.4 MB) with weight 4532182 (63.28/col) Mon Dec 01 00:51:54 2008 sparse part has weight 4532182 (63.28/col) Mon Dec 01 00:51:54 2008 saving the first 48 matrix rows for later Mon Dec 01 00:51:54 2008 matrix is 71511 x 71623 (11.2 MB) with weight 3557733 (49.67/col) Mon Dec 01 00:51:54 2008 sparse part has weight 2500748 (34.92/col) Mon Dec 01 00:51:54 2008 matrix includes 64 packed rows Mon Dec 01 00:51:54 2008 using block size 28649 for processor cache size 1024 kB Mon Dec 01 00:51:55 2008 commencing Lanczos iteration Mon Dec 01 00:51:55 2008 memory use: 11.1 MB Mon Dec 01 00:52:29 2008 lanczos halted after 1132 iterations (dim = 71510) Mon Dec 01 00:52:29 2008 recovered 16 nontrivial dependencies Mon Dec 01 00:52:30 2008 prp40 factor: 5104021191531172673556798659086373586713 Mon Dec 01 00:52:30 2008 prp54 factor: 569622543579183307943262520347190758832026542885980873 Mon Dec 01 00:52:30 2008 elapsed time 03:07:24
(34·10132-61)/9 = 3(7)1311<133> = 3 · 53 · 103 · 353 · 1871 · 154959011 · C115
C115 = P37 · P79
P37 = 1467803989071718082013470577567538313<37>
P79 = 1535566631427295729877492951417765852836324576562696402832211952890951456321847<79>
Number: 37771_132 N=2253910827094405329406702177022748716235771695323783467639242509859558351198186072436492569535265639281513231424111 ( 115 digits) SNFS difficulty: 134 digits. Divisors found: r1=1467803989071718082013470577567538313 (pp37) r2=1535566631427295729877492951417765852836324576562696402832211952890951456321847 (pp79) Version: GGNFS-0.77.1-20060513-nocona Total time: 6.28 hours. Scaled time: 15.99 units (timescale=2.544). Factorization parameters were as follows: name: 37771_132 n: 2253910827094405329406702177022748716235771695323783467639242509859558351198186072436492569535265639281513231424111 m: 200000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1275001) Primes: RFBsize:92938, AFBsize:93360, largePrimes:3445412 encountered Relations: rels:3691453, finalFF:487779 Max relations in full relation-set: 28 Initial matrix: 186365 x 487779 with sparse part having weight 48352330. Pruned matrix : 135700 x 136695 with weight 13604336. Total sieving time: 6.07 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 6.28 hours. --------- CPU info (if available) ----------
(34·10125-61)/9 = 3(7)1241<126> = C126
C126 = P32 · P95
P32 = 19740494857472588967332701859237<32>
P95 = 19137198966153239867624204437561859299473983704016534407164186992343276916354282103061304370383<95>
Number: 37771_125 N=377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: r1=19740494857472588967332701859237 (pp32) r2=19137198966153239867624204437561859299473983704016534407164186992343276916354282103061304370383 (pp95) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.62 hours. Scaled time: 1.71 units (timescale=0.473). Factorization parameters were as follows: name: 37771_125 n: 377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 10000000000000000000000000 deg: 5 c5: 34 c0: -61 skew: 1.12 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: RFBsize:71274, AFBsize:71141, largePrimes:2435547 encountered Relations: rels:2300446, finalFF:171358 Max relations in full relation-set: 28 Initial matrix: 142481 x 171358 with sparse part having weight 12544260. Pruned matrix : 131947 x 132723 with weight 7646839. Total sieving time: 3.26 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 3.62 hours. --------- CPU info (if available) ----------
(34·10129-61)/9 = 3(7)1281<130> = 32 · 13693 · 349397 · C119
C119 = P36 · P84
P36 = 263963331926553076873883111669446861<36>
P84 = 332378188548304164888481711164765467046216478192033437865048279353333268196436141599<84>
Number: 37771_129 N=87735654108922455050335760232311461340278754717995692475831705299846130899251205478083642362964049338345940869402070739 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=263963331926553076873883111669446861 (pp36) r2=332378188548304164888481711164765467046216478192033437865048279353333268196436141599 (pp84) Version: GGNFS-0.77.1-20060513-nocona Total time: 4.21 hours. Scaled time: 10.85 units (timescale=2.575). Factorization parameters were as follows: name: 37771_129 n: 87735654108922455050335760232311461340278754717995692475831705299846130899251205478083642362964049338345940869402070739 m: 100000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 990001) Primes: RFBsize:84270, AFBsize:84409, largePrimes:2848172 encountered Relations: rels:2753101, finalFF:215201 Max relations in full relation-set: 28 Initial matrix: 168744 x 215201 with sparse part having weight 17637208. Pruned matrix : 155362 x 156269 with weight 10004219. Total sieving time: 4.02 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 4.21 hours. --------- CPU info (if available) ----------
(11·10146+1)/3 = 3(6)1457<147> = 113 · 487 · 971 · 18871213290191<14> · C126
C126 = P41 · P85
P41 = 55671965294353905409642364426584816346789<41>
P85 = 6531432152866276879383268065912542982993709987799702322249068920766859531294563886133<85>
Number: 36667_146 N=363617664136798578223631373800740555034454045808713398946590948965991187042710405434412718122742744048505165576401272036176937 ( 126 digits) SNFS difficulty: 148 digits. Divisors found: r1=55671965294353905409642364426584816346789 (pp41) r2=6531432152866276879383268065912542982993709987799702322249068920766859531294563886133 (pp85) Version: GGNFS-0.77.1-20060513-k8 Total time: 16.88 hours. Scaled time: 33.09 units (timescale=1.960). Factorization parameters were as follows: name: 36667_146 n: 363617664136798578223631373800740555034454045808713398946590948965991187042710405434412718122742744048505165576401272036176937 m: 200000000000000000000000000000 deg: 5 c5: 55 c0: 16 skew: 0.78 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2350001) Primes: RFBsize:155805, AFBsize:156098, largePrimes:4366036 encountered Relations: rels:4680252, finalFF:535408 Max relations in full relation-set: 28 Initial matrix: 311970 x 535408 with sparse part having weight 52657743. Pruned matrix : 242588 x 244211 with weight 22870955. Total sieving time: 15.97 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.65 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 16.88 hours. --------- CPU info (if available) ----------
(34·10143-61)/9 = 3(7)1421<144> = 163 · 60077 · 1387821481<10> · C128
C128 = P38 · P90
P38 = 28217205843890219947899894994855070009<38>
P90 = 985128659698187157995681645130669968509955434063183873242657897532139829137743789608925949<90>
Number: 37771_143 N=27797578173419426475214525843686671620570526121700523721521450635809718455545362591787531239138156070259435426642397723691763541 ( 128 digits) SNFS difficulty: 145 digits. Divisors found: r1=28217205843890219947899894994855070009 (pp38) r2=985128659698187157995681645130669968509955434063183873242657897532139829137743789608925949 (pp90) Version: GGNFS-0.77.1-20060513-nocona Total time: 17.77 hours. Scaled time: 45.57 units (timescale=2.564). Factorization parameters were as follows: name: 37771_143 n: 27797578173419426475214525843686671620570526121700523721521450635809718455545362591787531239138156070259435426642397723691763541 m: 50000000000000000000000000000 deg: 5 c5: 272 c0: -1525 skew: 1.41 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 2645001) Primes: RFBsize:141338, AFBsize:141460, largePrimes:4295234 encountered Relations: rels:4538118, finalFF:359878 Max relations in full relation-set: 28 Initial matrix: 282865 x 359878 with sparse part having weight 41888561. Pruned matrix : 258253 x 259731 with weight 28460136. Total sieving time: 17.03 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.57 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 17.77 hours. --------- CPU info (if available) ----------
(11·10136+1)/3 = 3(6)1357<137> = 37 · 71 · 121993 · 47965921 · C121
C121 = P58 · P63
P58 = 8152366823116473223458206514088212059435658063000673614923<58>
P63 = 292590314321289835234488595489015334328963631781252268897642259<63>
Number: 36667_136 N=2385303571238103952394431723844548405578681842196340537735382861159899807041700551384403237187595381422841377585177831057 ( 121 digits) SNFS difficulty: 138 digits. Divisors found: r1=8152366823116473223458206514088212059435658063000673614923 (pp58) r2=292590314321289835234488595489015334328963631781252268897642259 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.16 hours. Scaled time: 12.35 units (timescale=2.003). Factorization parameters were as follows: name: 36667_136 n: 2385303571238103952394431723844548405578681842196340537735382861159899807041700551384403237187595381422841377585177831057 m: 2000000000000000000000000000 deg: 5 c5: 55 c0: 16 skew: 0.78 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1230001) Primes: RFBsize:107805, AFBsize:107895, largePrimes:3299822 encountered Relations: rels:3294429, finalFF:313145 Max relations in full relation-set: 28 Initial matrix: 215767 x 313145 with sparse part having weight 25210536. Pruned matrix : 182684 x 183826 with weight 11270363. Total sieving time: 5.71 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.28 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 6.16 hours. --------- CPU info (if available) ----------
(34·10136-61)/9 = 3(7)1351<137> = 31 · 523 · 5657 · 2879993487954253543<19> · C111
C111 = P50 · P62
P50 = 12216635234419646814532430479735488014714813815991<50>
P62 = 11706949192302675700783525796475048637254599157547420427413687<62>
Number: 37771_136 N=143019527990245493495110490408170713644089509066703498854071034514709908212689381811169162212305619831252868817 ( 111 digits) SNFS difficulty: 137 digits. Divisors found: r1=12216635234419646814532430479735488014714813815991 (pp50) r2=11706949192302675700783525796475048637254599157547420427413687 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.39 hours. Scaled time: 4.44 units (timescale=0.473). Factorization parameters were as follows: name: 37771_136 n: 143019527990245493495110490408170713644089509066703498854071034514709908212689381811169162212305619831252868817 m: 1000000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1435001) Primes: RFBsize:104967, AFBsize:104789, largePrimes:3267455 encountered Relations: rels:3187437, finalFF:238347 Max relations in full relation-set: 28 Initial matrix: 209823 x 238347 with sparse part having weight 20087998. Pruned matrix : 201317 x 202430 with weight 14747372. Total sieving time: 8.33 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.85 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 9.39 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(11·10139+1)/3 = 3(6)1387<140> = 17 · 37 · 167 · 3550454911<10> · 577793052509<12> · 18481830371284369<17> · C97
C97 = P48 · P50
P48 = 186684117639574787528989733088753211050056946911<48>
P50 = 49316885889471914935083459467994951356728795737709<50>
Number: 36667_139 N=9206679327007660850305599792616297445143259412106374422712579360327352603261588284466462493766899 ( 97 digits) Divisors found: r1=186684117639574787528989733088753211050056946911 (pp48) r2=49316885889471914935083459467994951356728795737709 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.36 hours. Scaled time: 5.62 units (timescale=2.385). Factorization parameters were as follows: name: 36667_139 n: 9206679327007660850305599792616297445143259412106374422712579360327352603261588284466462493766899 skew: 1735.67 # norm 2.03e+13 c5: 592440 c4: -2146536287 c3: -4150159948542 c2: 6245351775971518 c1: 7030137616889093286 c0: -19054775817785412320 # alpha -5.87 Y1: 13808501069 Y0: -1730988725850774993 # Murphy_E 5.15e-09 # M 9026319937559876238802573127597355132016530503268299678618003208170456302899329542892731471298988 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:79035, largePrimes:4094354 encountered Relations: rels:3942403, finalFF:241663 Max relations in full relation-set: 28 Initial matrix: 157611 x 241663 with sparse part having weight 21027438. Pruned matrix : 125329 x 126181 with weight 8294614. Polynomial selection time: 0.18 hours. Total sieving time: 2.04 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Erik Branger / GGNFS, Msieve
(11·10119+1)/3 = 3(6)1187<120> = 7 · 157 · 401 · 22478800580953<14> · C101
C101 = P50 · P52
P50 = 12991913767799353249814912229358520152908976070653<50>
P52 = 2848938679148128690045374612108836831282623299109037<52>
Number: 36667_119 N=37013165649240677352188638468717285587168893121133951533421728005342231052746388846355743968062791161 ( 101 digits) SNFS difficulty: 121 digits. Divisors found: r1=12991913767799353249814912229358520152908976070653 r2=2848938679148128690045374612108836831282623299109037 Version: Total time: 1.93 hours. Scaled time: 1.52 units (timescale=0.788). Factorization parameters were as follows: n: 37013165649240677352188638468717285587168893121133951533421728005342231052746388846355743968062791161 m: 1000000000000000000000000 deg: 5 c5: 11 c0: 10 skew: 0.98 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 565001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69857 x 70095 Total sieving time: 1.93 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 1.93 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(11·10114+1)/3 = 3(6)1137<115> = 4084686562950884396339324671<28> · C87
C87 = P44 · P44
P44 = 21099559767919706148965388700117758588600401<44>
P44 = 42544095972337002803163257909814208720366277<44>
Sun Nov 30 17:56:41 2008 Msieve v. 1.38 Sun Nov 30 17:56:41 2008 random seeds: 43c7e764 2d8bf80a Sun Nov 30 17:56:41 2008 factoring 897661695740436635978921665840942462701571152708113448971815635450427880352253509077077 (87 digits) Sun Nov 30 17:56:42 2008 searching for 15-digit factors Sun Nov 30 17:56:43 2008 commencing quadratic sieve (87-digit input) Sun Nov 30 17:56:43 2008 using multiplier of 1 Sun Nov 30 17:56:43 2008 using 32kb Intel Core sieve core Sun Nov 30 17:56:43 2008 sieve interval: 22 blocks of size 32768 Sun Nov 30 17:56:43 2008 processing polynomials in batches of 10 Sun Nov 30 17:56:43 2008 using a sieve bound of 1499123 (56997 primes) Sun Nov 30 17:56:43 2008 using large prime bound of 119929840 (26 bits) Sun Nov 30 17:56:43 2008 using double large prime bound of 348392707234640 (42-49 bits) Sun Nov 30 17:56:43 2008 using trial factoring cutoff of 49 bits Sun Nov 30 17:56:43 2008 polynomial 'A' values have 11 factors Sun Nov 30 18:50:59 2008 57411 relations (15553 full + 41858 combined from 607010 partial), need 57093 Sun Nov 30 18:50:59 2008 begin with 622563 relations Sun Nov 30 18:51:00 2008 reduce to 138886 relations in 10 passes Sun Nov 30 18:51:00 2008 attempting to read 138886 relations Sun Nov 30 18:51:01 2008 recovered 138886 relations Sun Nov 30 18:51:01 2008 recovered 118621 polynomials Sun Nov 30 18:51:02 2008 attempting to build 57411 cycles Sun Nov 30 18:51:02 2008 found 57411 cycles in 5 passes Sun Nov 30 18:51:02 2008 distribution of cycle lengths: Sun Nov 30 18:51:02 2008 length 1 : 15553 Sun Nov 30 18:51:02 2008 length 2 : 11104 Sun Nov 30 18:51:02 2008 length 3 : 10158 Sun Nov 30 18:51:02 2008 length 4 : 7663 Sun Nov 30 18:51:02 2008 length 5 : 5261 Sun Nov 30 18:51:02 2008 length 6 : 3377 Sun Nov 30 18:51:02 2008 length 7 : 1937 Sun Nov 30 18:51:02 2008 length 9+: 2358 Sun Nov 30 18:51:02 2008 largest cycle: 17 relations Sun Nov 30 18:51:02 2008 matrix is 56997 x 57411 (13.3 MB) with weight 3247632 (56.57/col) Sun Nov 30 18:51:02 2008 sparse part has weight 3247632 (56.57/col) Sun Nov 30 18:51:02 2008 filtering completed in 4 passes Sun Nov 30 18:51:02 2008 matrix is 52859 x 52923 (12.3 MB) with weight 3006031 (56.80/col) Sun Nov 30 18:51:02 2008 sparse part has weight 3006031 (56.80/col) Sun Nov 30 18:51:03 2008 saving the first 48 matrix rows for later Sun Nov 30 18:51:03 2008 matrix is 52811 x 52923 (7.8 MB) with weight 2373089 (44.84/col) Sun Nov 30 18:51:03 2008 sparse part has weight 1733530 (32.76/col) Sun Nov 30 18:51:03 2008 matrix includes 64 packed rows Sun Nov 30 18:51:03 2008 using block size 21169 for processor cache size 1024 kB Sun Nov 30 18:51:03 2008 commencing Lanczos iteration Sun Nov 30 18:51:03 2008 memory use: 7.7 MB Sun Nov 30 18:51:20 2008 lanczos halted after 837 iterations (dim = 52811) Sun Nov 30 18:51:20 2008 recovered 17 nontrivial dependencies Sun Nov 30 18:51:21 2008 prp44 factor: 21099559767919706148965388700117758588600401 Sun Nov 30 18:51:21 2008 prp44 factor: 42544095972337002803163257909814208720366277 Sun Nov 30 18:51:21 2008 elapsed time 00:54:40
(11·10112+1)/3 = 3(6)1117<113> = 37 · 53 · 6053 · 121254179151355849<18> · C89
C89 = P37 · P53
P37 = 2344658050851003644637589698792718697<37>
P53 = 10865430383019248585841901328692422403234007461482983<53>
Sun Nov 30 18:57:49 2008 Msieve v. 1.38 Sun Nov 30 18:57:49 2008 random seeds: 1760b75c 1e4aa34b Sun Nov 30 18:57:49 2008 factoring 25475718823507185358250712731480185849953749457460003767658389018952004744064201971433151 (89 digits) Sun Nov 30 18:57:50 2008 searching for 15-digit factors Sun Nov 30 18:57:52 2008 commencing quadratic sieve (89-digit input) Sun Nov 30 18:57:52 2008 using multiplier of 31 Sun Nov 30 18:57:52 2008 using 32kb Intel Core sieve core Sun Nov 30 18:57:52 2008 sieve interval: 30 blocks of size 32768 Sun Nov 30 18:57:52 2008 processing polynomials in batches of 7 Sun Nov 30 18:57:52 2008 using a sieve bound of 1544489 (58667 primes) Sun Nov 30 18:57:52 2008 using large prime bound of 123559120 (26 bits) Sun Nov 30 18:57:52 2008 using double large prime bound of 367599255202560 (42-49 bits) Sun Nov 30 18:57:52 2008 using trial factoring cutoff of 49 bits Sun Nov 30 18:57:52 2008 polynomial 'A' values have 11 factors Sun Nov 30 20:01:08 2008 59023 relations (16122 full + 42901 combined from 619206 partial), need 58763 Sun Nov 30 20:01:09 2008 begin with 635328 relations Sun Nov 30 20:01:10 2008 reduce to 142320 relations in 10 passes Sun Nov 30 20:01:10 2008 attempting to read 142320 relations Sun Nov 30 20:01:12 2008 recovered 142320 relations Sun Nov 30 20:01:12 2008 recovered 120307 polynomials Sun Nov 30 20:01:12 2008 attempting to build 59023 cycles Sun Nov 30 20:01:12 2008 found 59023 cycles in 6 passes Sun Nov 30 20:01:12 2008 distribution of cycle lengths: Sun Nov 30 20:01:12 2008 length 1 : 16122 Sun Nov 30 20:01:12 2008 length 2 : 11639 Sun Nov 30 20:01:12 2008 length 3 : 10383 Sun Nov 30 20:01:12 2008 length 4 : 7676 Sun Nov 30 20:01:12 2008 length 5 : 5403 Sun Nov 30 20:01:12 2008 length 6 : 3358 Sun Nov 30 20:01:12 2008 length 7 : 2090 Sun Nov 30 20:01:12 2008 length 9+: 2352 Sun Nov 30 20:01:12 2008 largest cycle: 20 relations Sun Nov 30 20:01:12 2008 matrix is 58667 x 59023 (14.4 MB) with weight 3551446 (60.17/col) Sun Nov 30 20:01:12 2008 sparse part has weight 3551446 (60.17/col) Sun Nov 30 20:01:13 2008 filtering completed in 3 passes Sun Nov 30 20:01:13 2008 matrix is 54455 x 54518 (13.4 MB) with weight 3299267 (60.52/col) Sun Nov 30 20:01:13 2008 sparse part has weight 3299267 (60.52/col) Sun Nov 30 20:01:13 2008 saving the first 48 matrix rows for later Sun Nov 30 20:01:13 2008 matrix is 54407 x 54518 (10.2 MB) with weight 2772385 (50.85/col) Sun Nov 30 20:01:13 2008 sparse part has weight 2337636 (42.88/col) Sun Nov 30 20:01:13 2008 matrix includes 64 packed rows Sun Nov 30 20:01:13 2008 using block size 21807 for processor cache size 1024 kB Sun Nov 30 20:01:14 2008 commencing Lanczos iteration Sun Nov 30 20:01:14 2008 memory use: 9.0 MB Sun Nov 30 20:01:35 2008 lanczos halted after 862 iterations (dim = 54404) Sun Nov 30 20:01:36 2008 recovered 15 nontrivial dependencies Sun Nov 30 20:01:36 2008 prp37 factor: 2344658050851003644637589698792718697 Sun Nov 30 20:01:36 2008 prp53 factor: 10865430383019248585841901328692422403234007461482983 Sun Nov 30 20:01:36 2008 elapsed time 01:03:47
(11·10116+1)/3 = 3(6)1157<117> = 5923 · C113
C113 = P43 · P71
P43 = 1306986629179934599512414769208909338753123<43>
P71 = 47365110316386599844519000083508998721829561294653165381499167296421523<71>
Number: 36667_116 N=61905565873149867747200180088918903708706173673251167764083516236141594912488040970229050593730654510664640666329 ( 113 digits) SNFS difficulty: 118 digits. Divisors found: r1=1306986629179934599512414769208909338753123 (pp43) r2=47365110316386599844519000083508998721829561294653165381499167296421523 (pp71) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.39 hours. Scaled time: 4.79 units (timescale=2.003). Factorization parameters were as follows: name: 36667_116 n: 61905565873149867747200180088918903708706173673251167764083516236141594912488040970229050593730654510664640666329 m: 200000000000000000000000 deg: 5 c5: 55 c0: 16 skew: 0.78 type: snfs lss: 1 rlim: 650000 alim: 650000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [325000, 575001) Primes: RFBsize:52831, AFBsize:52923, largePrimes:1703942 encountered Relations: rels:1982042, finalFF:430957 Max relations in full relation-set: 28 Initial matrix: 105821 x 430957 with sparse part having weight 20615305. Pruned matrix : 61853 x 62446 with weight 3879059. Total sieving time: 2.30 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.01 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,650000,650000,25,25,45,45,2.2,2.2,50000 total time: 2.39 hours. --------- CPU info (if available) ----------
(34·10150-61)/9 = 3(7)1491<151> = 3 · 389 · 30137 · 38659272836953<14> · 67606737734777<14> · 100407816699053448695811907<27> · C90
C90 = P43 · P48
P43 = 1973252236706869812819161804219996164666783<43>
P48 = 207430084791366627386951998914230244772682187809<48>
Sun Nov 30 20:11:43 2008 Msieve v. 1.38 Sun Nov 30 20:11:43 2008 random seeds: d7427efc dffe20ca Sun Nov 30 20:11:43 2008 factoring 409311878774859856196618058713465886648346234120836517657865266347085566045370911909848447 (90 digits) Sun Nov 30 20:11:43 2008 searching for 15-digit factors Sun Nov 30 20:11:45 2008 commencing quadratic sieve (90-digit input) Sun Nov 30 20:11:45 2008 using multiplier of 7 Sun Nov 30 20:11:45 2008 using 32kb Intel Core sieve core Sun Nov 30 20:11:45 2008 sieve interval: 36 blocks of size 32768 Sun Nov 30 20:11:45 2008 processing polynomials in batches of 6 Sun Nov 30 20:11:45 2008 using a sieve bound of 1573717 (60000 primes) Sun Nov 30 20:11:45 2008 using large prime bound of 125897360 (26 bits) Sun Nov 30 20:11:45 2008 using double large prime bound of 380215566683840 (42-49 bits) Sun Nov 30 20:11:45 2008 using trial factoring cutoff of 49 bits Sun Nov 30 20:11:45 2008 polynomial 'A' values have 12 factors Sun Nov 30 21:34:45 2008 60440 relations (16042 full + 44398 combined from 633475 partial), need 60096 Sun Nov 30 21:34:45 2008 begin with 649517 relations Sun Nov 30 21:34:46 2008 reduce to 147373 relations in 10 passes Sun Nov 30 21:34:46 2008 attempting to read 147373 relations Sun Nov 30 21:34:48 2008 recovered 147373 relations Sun Nov 30 21:34:48 2008 recovered 127487 polynomials Sun Nov 30 21:34:48 2008 attempting to build 60440 cycles Sun Nov 30 21:34:48 2008 found 60439 cycles in 5 passes Sun Nov 30 21:34:48 2008 distribution of cycle lengths: Sun Nov 30 21:34:48 2008 length 1 : 16042 Sun Nov 30 21:34:48 2008 length 2 : 11565 Sun Nov 30 21:34:48 2008 length 3 : 10681 Sun Nov 30 21:34:48 2008 length 4 : 8203 Sun Nov 30 21:34:48 2008 length 5 : 5747 Sun Nov 30 21:34:48 2008 length 6 : 3601 Sun Nov 30 21:34:48 2008 length 7 : 2155 Sun Nov 30 21:34:48 2008 length 9+: 2445 Sun Nov 30 21:34:48 2008 largest cycle: 20 relations Sun Nov 30 21:34:48 2008 matrix is 60000 x 60439 (14.8 MB) with weight 3629462 (60.05/col) Sun Nov 30 21:34:48 2008 sparse part has weight 3629462 (60.05/col) Sun Nov 30 21:34:49 2008 filtering completed in 3 passes Sun Nov 30 21:34:49 2008 matrix is 56097 x 56161 (13.7 MB) with weight 3376905 (60.13/col) Sun Nov 30 21:34:49 2008 sparse part has weight 3376905 (60.13/col) Sun Nov 30 21:34:49 2008 saving the first 48 matrix rows for later Sun Nov 30 21:34:49 2008 matrix is 56049 x 56161 (8.8 MB) with weight 2662129 (47.40/col) Sun Nov 30 21:34:49 2008 sparse part has weight 1959855 (34.90/col) Sun Nov 30 21:34:49 2008 matrix includes 64 packed rows Sun Nov 30 21:34:49 2008 using block size 22464 for processor cache size 1024 kB Sun Nov 30 21:34:50 2008 commencing Lanczos iteration Sun Nov 30 21:34:50 2008 memory use: 8.5 MB Sun Nov 30 21:35:10 2008 lanczos halted after 888 iterations (dim = 56047) Sun Nov 30 21:35:10 2008 recovered 16 nontrivial dependencies Sun Nov 30 21:35:10 2008 prp43 factor: 1973252236706869812819161804219996164666783 Sun Nov 30 21:35:10 2008 prp48 factor: 207430084791366627386951998914230244772682187809 Sun Nov 30 21:35:10 2008 elapsed time 01:23:27
(11·10143-17)/3 = 3(6)1421<144> = 59 · 103 · 197 · 219076802827792599331905203<27> · C112
C112 = P37 · P75
P37 = 5820795363380476217942633647955613143<37>
P75 = 240180222166092282236882706207457733262537991553564219984716625310194297761<75>
Number: 36661_143 N=1398039923560082634828910420072859904457691715505441275759702220737789195249611934079696273591083487191067072823 ( 112 digits) SNFS difficulty: 145 digits. Divisors found: r1=5820795363380476217942633647955613143 (pp37) r2=240180222166092282236882706207457733262537991553564219984716625310194297761 (pp75) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 22.85 hours. Scaled time: 10.81 units (timescale=0.473). Factorization parameters were as follows: name: 36661_143 n: 1398039923560082634828910420072859904457691715505441275759702220737789195249611934079696273591083487191067072823 m: 50000000000000000000000000000 deg: 5 c5: 88 c0: -425 skew: 1.37 type: snfs lss: 1 rlim: 1860000 alim: 1860000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1860000/1860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [930000, 2730001) Primes: RFBsize:139249, AFBsize:139409, largePrimes:4151418 encountered Relations: rels:4312026, finalFF:326401 Max relations in full relation-set: 28 Initial matrix: 278725 x 326401 with sparse part having weight 36068468. Pruned matrix : 262731 x 264188 with weight 27157932. Total sieving time: 20.04 hours. Total relation processing time: 0.25 hours. Matrix solve time: 2.47 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1860000,1860000,26,26,49,49,2.3,2.3,100000 total time: 22.85 hours. --------- CPU info (if available) ----------
(11·10123+1)/3 = 3(6)1227<124> = 17 · 233 · 420319 · C115
C115 = P49 · P66
P49 = 9794999209502002672388914985834215568969898339847<49>
P66 = 224844961786526402678113350024342711554948949791525830477913909179<66>
Number: 36667_123 N=2202356222959534112779755467971839504883156015757536029981701961576441194628114329686083870245406553784502034755613 ( 115 digits) SNFS difficulty: 125 digits. Divisors found: r1=9794999209502002672388914985834215568969898339847 (pp49) r2=224844961786526402678113350024342711554948949791525830477913909179 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.84 hours. Scaled time: 5.64 units (timescale=1.985). Factorization parameters were as follows: name: 36667_123 n: 2202356222959534112779755467971839504883156015757536029981701961576441194628114329686083870245406553784502034755613 m: 5000000000000000000000000 deg: 5 c5: 88 c0: 25 skew: 0.78 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 680001) Primes: RFBsize:68342, AFBsize:68636, largePrimes:2725883 encountered Relations: rels:2864348, finalFF:412312 Max relations in full relation-set: 28 Initial matrix: 137045 x 412312 with sparse part having weight 29982948. Pruned matrix : 86555 x 87304 with weight 5897482. Total sieving time: 2.70 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 2.84 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GGNFS
(11·10111+1)/3 = 3(6)1107<112> = 19 · 4479173856329141155090247729<28> · C83
C83 = P40 · P43
P40 = 5224631191091294072933327702528080958339<40>
P43 = 8246397610153091399492664950103852314306803<43>
Sun Nov 30 20:26:18 2008 Sun Nov 30 20:26:18 2008 Sun Nov 30 20:26:18 2008 Msieve v. 1.38 Sun Nov 30 20:26:18 2008 random seeds: 2bc1f670 7511cf85 Sun Nov 30 20:26:18 2008 factoring 43084386168146546835721754466890151824910052764435983250283044114671565568707280217 (83 digits) Sun Nov 30 20:26:18 2008 searching for 15-digit factors Sun Nov 30 20:26:19 2008 commencing quadratic sieve (83-digit input) Sun Nov 30 20:26:19 2008 using multiplier of 5 Sun Nov 30 20:26:19 2008 using 64kb Opteron sieve core Sun Nov 30 20:26:19 2008 sieve interval: 6 blocks of size 65536 Sun Nov 30 20:26:19 2008 processing polynomials in batches of 17 Sun Nov 30 20:26:19 2008 using a sieve bound of 1368167 (52647 primes) Sun Nov 30 20:26:19 2008 using large prime bound of 121766863 (26 bits) Sun Nov 30 20:26:19 2008 using trial factoring cutoff of 27 bits Sun Nov 30 20:26:19 2008 polynomial 'A' values have 11 factors Sun Nov 30 20:42:41 2008 52814 relations (27081 full + 25733 combined from 279284 partial), need 52743 Sun Nov 30 20:42:41 2008 begin with 306365 relations Sun Nov 30 20:42:41 2008 reduce to 75332 relations in 2 passes Sun Nov 30 20:42:41 2008 attempting to read 75332 relations Sun Nov 30 20:42:42 2008 recovered 75332 relations Sun Nov 30 20:42:42 2008 recovered 68175 polynomials Sun Nov 30 20:42:42 2008 attempting to build 52814 cycles Sun Nov 30 20:42:42 2008 found 52814 cycles in 1 passes Sun Nov 30 20:42:42 2008 distribution of cycle lengths: Sun Nov 30 20:42:42 2008 length 1 : 27081 Sun Nov 30 20:42:42 2008 length 2 : 25733 Sun Nov 30 20:42:42 2008 largest cycle: 2 relations Sun Nov 30 20:42:42 2008 matrix is 52647 x 52814 (7.2 MB) with weight 1683721 (31.88/col) Sun Nov 30 20:42:42 2008 sparse part has weight 1683721 (31.88/col) Sun Nov 30 20:42:42 2008 filtering completed in 3 passes Sun Nov 30 20:42:42 2008 matrix is 37904 x 37965 (5.7 MB) with weight 1347008 (35.48/col) Sun Nov 30 20:42:42 2008 sparse part has weight 1347008 (35.48/col) Sun Nov 30 20:42:43 2008 saving the first 48 matrix rows for later Sun Nov 30 20:42:43 2008 matrix is 37856 x 37965 (3.8 MB) with weight 1039465 (27.38/col) Sun Nov 30 20:42:43 2008 sparse part has weight 762472 (20.08/col) Sun Nov 30 20:42:43 2008 matrix includes 64 packed rows Sun Nov 30 20:42:43 2008 using block size 15186 for processor cache size 1024 kB Sun Nov 30 20:42:43 2008 commencing Lanczos iteration Sun Nov 30 20:42:43 2008 memory use: 4.3 MB Sun Nov 30 20:42:49 2008 lanczos halted after 600 iterations (dim = 37854) Sun Nov 30 20:42:49 2008 recovered 17 nontrivial dependencies Sun Nov 30 20:42:49 2008 prp40 factor: 5224631191091294072933327702528080958339 Sun Nov 30 20:42:49 2008 prp43 factor: 8246397610153091399492664950103852314306803 Sun Nov 30 20:42:49 2008 elapsed time 00:16:31
(34·10133-61)/9 = 3(7)1321<134> = 153962383 · 105954652313<12> · 242858635321<12> · 161803335731828507203<21> · C83
C83 = P41 · P43
P41 = 26799939804329649021518979639474619438057<41>
P43 = 2199008524395165291774974383767263037749039<43>
Sun Nov 30 21:30:16 2008 Sun Nov 30 21:30:16 2008 Sun Nov 30 21:30:16 2008 Msieve v. 1.38 Sun Nov 30 21:30:16 2008 random seeds: e4438188 325b217a Sun Nov 30 21:30:16 2008 factoring 58933296082998196336578171305363661582019073412603463167509046878466276668371777223 (83 digits) Sun Nov 30 21:30:16 2008 searching for 15-digit factors Sun Nov 30 21:30:17 2008 commencing quadratic sieve (83-digit input) Sun Nov 30 21:30:17 2008 using multiplier of 23 Sun Nov 30 21:30:17 2008 using 64kb Opteron sieve core Sun Nov 30 21:30:17 2008 sieve interval: 6 blocks of size 65536 Sun Nov 30 21:30:17 2008 processing polynomials in batches of 17 Sun Nov 30 21:30:17 2008 using a sieve bound of 1375981 (52647 primes) Sun Nov 30 21:30:17 2008 using large prime bound of 122462309 (26 bits) Sun Nov 30 21:30:17 2008 using trial factoring cutoff of 27 bits Sun Nov 30 21:30:17 2008 polynomial 'A' values have 11 factors Sun Nov 30 21:46:50 2008 52756 relations (27452 full + 25304 combined from 276041 partial), need 52743 Sun Nov 30 21:46:51 2008 begin with 303493 relations Sun Nov 30 21:46:51 2008 reduce to 74861 relations in 2 passes Sun Nov 30 21:46:51 2008 attempting to read 74861 relations Sun Nov 30 21:46:51 2008 recovered 74861 relations Sun Nov 30 21:46:51 2008 recovered 68059 polynomials Sun Nov 30 21:46:51 2008 attempting to build 52756 cycles Sun Nov 30 21:46:51 2008 found 52756 cycles in 1 passes Sun Nov 30 21:46:51 2008 distribution of cycle lengths: Sun Nov 30 21:46:51 2008 length 1 : 27452 Sun Nov 30 21:46:51 2008 length 2 : 25304 Sun Nov 30 21:46:51 2008 largest cycle: 2 relations Sun Nov 30 21:46:51 2008 matrix is 52647 x 52756 (7.3 MB) with weight 1691578 (32.06/col) Sun Nov 30 21:46:51 2008 sparse part has weight 1691578 (32.06/col) Sun Nov 30 21:46:52 2008 filtering completed in 3 passes Sun Nov 30 21:46:52 2008 matrix is 37816 x 37879 (5.7 MB) with weight 1347132 (35.56/col) Sun Nov 30 21:46:52 2008 sparse part has weight 1347132 (35.56/col) Sun Nov 30 21:46:52 2008 saving the first 48 matrix rows for later Sun Nov 30 21:46:52 2008 matrix is 37768 x 37879 (3.6 MB) with weight 1000452 (26.41/col) Sun Nov 30 21:46:52 2008 sparse part has weight 712309 (18.80/col) Sun Nov 30 21:46:52 2008 matrix includes 64 packed rows Sun Nov 30 21:46:52 2008 using block size 15151 for processor cache size 1024 kB Sun Nov 30 21:46:53 2008 commencing Lanczos iteration Sun Nov 30 21:46:53 2008 memory use: 4.2 MB Sun Nov 30 21:46:58 2008 lanczos halted after 599 iterations (dim = 37768) Sun Nov 30 21:46:58 2008 recovered 18 nontrivial dependencies Sun Nov 30 21:46:58 2008 prp41 factor: 26799939804329649021518979639474619438057 Sun Nov 30 21:46:58 2008 prp43 factor: 2199008524395165291774974383767263037749039 Sun Nov 30 21:46:58 2008 elapsed time 00:16:42
(34·10109-61)/9 = 3(7)1081<110> = 355457 · C105
C105 = P33 · P73
P33 = 102274718124055259233175468223737<33>
P73 = 1039156707415436687110020687405007603981945643618063760550394061953391619<73>
Number: n N=106279459337635150743346671405480206544751623340594721099254699662062577970831289798140922186868672660203 ( 105 digits) SNFS difficulty: 111 digits. Divisors found: r1=102274718124055259233175468223737 (pp33) r2=1039156707415436687110020687405007603981945643618063760550394061953391619 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.91 hours. Scaled time: 1.65 units (timescale=1.817). Factorization parameters were as follows: name: KA_3_7_108_1 n: 106279459337635150743346671405480206544751623340594721099254699662062577970831289798140922186868672660203 type: snfs skew: 1.78 deg: 5 c5: 17 c0: -305 m: 10000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:41538, AFBsize:41418, largePrimes:4212687 encountered Relations: rels:3752838, finalFF:255574 Max relations in full relation-set: 48 Initial matrix: 83021 x 255574 with sparse part having weight 23447240. Pruned matrix : 53378 x 53857 with weight 2927628. Total sieving time: 0.84 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 0.91 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(34·10151-61)/9 = 3(7)1501<152> = 31 · 85413659 · 2512923666807739522019<22> · 552414667069372497692778901<27> · C95
C95 = P40 · P55
P40 = 4219687194429644317151362254455770822763<40>
P55 = 2435693468651238851330439053636574682409976561582029267<55>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2347407703 Step 1 took 8636ms Step 2 took 404ms ********** Factor found in step 2: 4219687194429644317151362254455770822763 Found probable prime factor of 40 digits: 4219687194429644317151362254455770822763 Probable prime cofactor 2435693468651238851330439053636574682409976561582029267 has 55 digits
(11·10110+1)/3 = 3(6)1097<111> = 1730988986761<13> · C99
C99 = P39 · P61
P39 = 190853932462516980462149362837947703859<39>
P61 = 1109879967768032011225337624689665807633302433866174800966433<61>
SNFS difficulty: 111 digits. Divisors found: r1=190853932462516980462149362837947703859 (pp39) r2=1109879967768032011225337624689665807633302433866174800966433 (pp61) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.403). Factorization parameters were as follows: n: 211824956409900504611721650005430185338299024638751288343886051876340119698931368923094866483564947 m: 10000000000000000000000 deg: 5 c5: 11 c0: 1 skew: 0.62 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 54411 x 54621 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,25,25,46,46,2.3,2.3,50000 total time: 0.30 hours.
Factorizations of 366...667 and Factorizations of 377...771 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve, GGNFS
(11·10148-17)/3 = 3(6)1471<149> = 127 · 6053 · 3527767 · 12713377 · 33380182777<11> · 55504775997620393<17> · C102
C102 = P43 · P60
P43 = 2948246018368709645486068483619884355791607<43>
P60 = 194694387041111373270642545173578018166065623787751820262767<60>
Sat Nov 29 19:58:25 2008 Msieve v. 1.38 Sat Nov 29 19:58:25 2008 random seeds: 0bb27454 e6c455c6 Sat Nov 29 19:58:25 2008 factoring 574006951392693106963739100431843481150210144630008572838701316332226314859054721325873107493033196569 (102 digits) Sat Nov 29 19:58:26 2008 searching for 15-digit factors Sat Nov 29 19:58:28 2008 commencing quadratic sieve (102-digit input) Sat Nov 29 19:58:28 2008 using multiplier of 1 Sat Nov 29 19:58:28 2008 using 32kb Intel Core sieve core Sat Nov 29 19:58:28 2008 sieve interval: 36 blocks of size 32768 Sat Nov 29 19:58:28 2008 processing polynomials in batches of 6 Sat Nov 29 19:58:28 2008 using a sieve bound of 3272219 (117500 primes) Sat Nov 29 19:58:28 2008 using large prime bound of 490832850 (28 bits) Sat Nov 29 19:58:28 2008 using double large prime bound of 4402308790788150 (44-52 bits) Sat Nov 29 19:58:28 2008 using trial factoring cutoff of 52 bits Sat Nov 29 19:58:28 2008 polynomial 'A' values have 13 factors Sun Nov 30 09:52:49 2008 117762 relations (28907 full + 88855 combined from 1739700 partial), need 117596 Sun Nov 30 09:52:52 2008 begin with 1768607 relations Sun Nov 30 09:52:53 2008 reduce to 305866 relations in 11 passes Sun Nov 30 09:52:53 2008 attempting to read 305866 relations Sun Nov 30 09:52:59 2008 recovered 305866 relations Sun Nov 30 09:52:59 2008 recovered 294831 polynomials Sun Nov 30 09:52:59 2008 attempting to build 117762 cycles Sun Nov 30 09:52:59 2008 found 117762 cycles in 6 passes Sun Nov 30 09:52:59 2008 distribution of cycle lengths: Sun Nov 30 09:52:59 2008 length 1 : 28907 Sun Nov 30 09:53:00 2008 length 2 : 20776 Sun Nov 30 09:53:00 2008 length 3 : 19574 Sun Nov 30 09:53:00 2008 length 4 : 16039 Sun Nov 30 09:53:00 2008 length 5 : 12143 Sun Nov 30 09:53:00 2008 length 6 : 7941 Sun Nov 30 09:53:00 2008 length 7 : 5284 Sun Nov 30 09:53:00 2008 length 9+: 7098 Sun Nov 30 09:53:00 2008 largest cycle: 19 relations Sun Nov 30 09:53:00 2008 matrix is 117500 x 117762 (33.6 MB) with weight 8326328 (70.70/col) Sun Nov 30 09:53:00 2008 sparse part has weight 8326328 (70.70/col) Sun Nov 30 09:53:02 2008 filtering completed in 4 passes Sun Nov 30 09:53:02 2008 matrix is 112064 x 112128 (32.2 MB) with weight 7980133 (71.17/col) Sun Nov 30 09:53:02 2008 sparse part has weight 7980133 (71.17/col) Sun Nov 30 09:53:03 2008 saving the first 48 matrix rows for later Sun Nov 30 09:53:03 2008 matrix is 112016 x 112128 (22.2 MB) with weight 6586527 (58.74/col) Sun Nov 30 09:53:03 2008 sparse part has weight 5144383 (45.88/col) Sun Nov 30 09:53:03 2008 matrix includes 64 packed rows Sun Nov 30 09:53:03 2008 using block size 43690 for processor cache size 1024 kB Sun Nov 30 09:53:04 2008 commencing Lanczos iteration Sun Nov 30 09:53:04 2008 memory use: 20.1 MB Sun Nov 30 09:54:49 2008 lanczos halted after 1774 iterations (dim = 112012) Sun Nov 30 09:54:49 2008 recovered 14 nontrivial dependencies Sun Nov 30 09:54:50 2008 prp43 factor: 2948246018368709645486068483619884355791607 Sun Nov 30 09:54:50 2008 prp60 factor: 194694387041111373270642545173578018166065623787751820262767 Sun Nov 30 09:54:50 2008 elapsed time 13:56:25
(11·10147-17)/3 = 3(6)1461<148> = 7 · 20753 · 36857 · C138
C138 = P55 · P83
P55 = 8842698700184589568599008652313694532003883719628427533<55>
P83 = 77443985378298208181284593151571674690130665279220978504034704045989491535203645511<83>
Number: 36661_147 N=684813828841791925548542636326045013960593236516865610758561616214614337734306773754040675593517862354982976147348950128332745010084254363 ( 138 digits) SNFS difficulty: 148 digits. Divisors found: r1=8842698700184589568599008652313694532003883719628427533 (pp55) r2=77443985378298208181284593151571674690130665279220978504034704045989491535203645511 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.10 hours. Scaled time: 37.43 units (timescale=1.960). Factorization parameters were as follows: name: 36661_147 n: 684813828841791925548542636326045013960593236516865610758561616214614337734306773754040675593517862354982976147348950128332745010084254363 m: 200000000000000000000000000000 deg: 5 c5: 275 c0: -136 skew: 0.87 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: RFBsize:155805, AFBsize:155548, largePrimes:4285623 encountered Relations: rels:4471418, finalFF:407942 Max relations in full relation-set: 28 Initial matrix: 311420 x 407942 with sparse part having weight 41248728. Pruned matrix : 275681 x 277302 with weight 25234510. Total sieving time: 17.84 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.96 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 19.10 hours. --------- CPU info (if available) ----------
By Wataru Sakai /
(29·10198+61)/9 = 3(2)1979<199> = C199
C199 = P34 · P80 · P86
P34 = 2095371728411637326523016514560361<34>
P80 = 74843311724277390714103497997979276379695056502313658840857218754233651055714689<80>
P86 = 20546668414495269636043870873401510005927188389041146706716965258195301264107264535501<86>
Number: 32229_198 N=3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=2095371728411637326523016514560361 r2=74843311724277390714103497997979276379695056502313658840857218754233651055714689 r3=20546668414495269636043870873401510005927188389041146706716965258195301264107264535501 Version: Total time: 1037.76 hours. Scaled time: 2075.52 units (timescale=2.000). Factorization parameters were as follows: n: 3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 m: 5000000000000000000000000000000000000000 deg: 5 c5: 232 c0: 1525 skew: 1.46 type: snfs lss: 1 rlim: 15600000 alim: 15600000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6Factor base limits: 15600000/15600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7800000, 19100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3123383 x 3123631 Total sieving time: 1037.76 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15600000,15600000,29,29,56,56,2.6,2.6,100000 total time: 1037.76 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(11·10149-17)/3 = 3(6)1481<150> = 113 · 2789 · C145
C145 = P52 · P93
P52 = 1749531190763715955891758353574118748596593649502417<52>
P93 = 665001742324150244386503948550084957227608454300070908441392564284028975306968875042947440769<93>
Number: n N=1163441290108316384109084255360555744174067739782605706573760591282017111048355793038601924331893839155299316425358366359200863908041600429838673 ( 145 digits) SNFS difficulty: 151 digits. Divisors found: r1=1749531190763715955891758353574118748596593649502417 (pp52) r2=665001742324150244386503948550084957227608454300070908441392564284028975306968875042947440769 (pp93) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.50 hours. Scaled time: 22.78 units (timescale=1.822). Factorization parameters were as follows: name: KA_3_6_148_1 n: 1163441290108316384109084255360555744174067739782605706573760591282017111048355793038601924331893839155299316425358366359200863908041600429838673 type: snfs skew: 1.73 deg: 5 c5: 11 c0: -170 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:148933, AFBsize:149101, largePrimes:9843134 encountered Relations: rels:8711625, finalFF:409868 Max relations in full relation-set: 48 Initial matrix: 298099 x 409868 with sparse part having weight 47976057. Pruned matrix : 244058 x 245612 with weight 21718722. Total sieving time: 11.67 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.50 hours. Total square root time: 0.13 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.5,2.5,100000 total time: 12.50 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(11·10159-17)/3 = 3(6)1581<160> = 7 · C159
C159 = P43 · P116
P43 = 9605698962417846290315464856568118961559197<43>
P116 = 54531120104733736426800532979622712211483081760295270849348053571911942643371024243440985426930821251996580938007759<116>
SNFS difficulty: 161 digits. Divisors found: r1=9605698962417846290315464856568118961559197 (pp43) r2=54531120104733736426800532979622712211483081760295270849348053571911942643371024243440985426930821251996580938007759 (pp116) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.552). Factorization parameters were as follows: n: 523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523809523 m: 100000000000000000000000000000000 deg: 5 c5: 11 c0: -170 skew: 1.73 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 617903 x 618145 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 17.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(29·10161-11)/9 = 3(2)1601<162> = 32 · 107 · 12829059953513<14> · 378530381329301986746325121<27> · C119
C119 = P40 · P80
P40 = 2546623150563877412685398371793679334001<40>
P80 = 27056333382115000182457185576833611392251799115728017548960989369903042621465479<80>
Number: 32221_161 N=68902284960268310691160272909882658392427741164950225050125505847630985571103442660751760239191044441082947519332451479 ( 119 digits) SNFS difficulty: 163 digits. Divisors found: r1=2546623150563877412685398371793679334001 (pp40) r2=27056333382115000182457185576833611392251799115728017548960989369903042621465479 (pp80) Version: GGNFS-0.77.1-20060513-nocona Total time: 55.10 hours. Scaled time: 141.29 units (timescale=2.564). Factorization parameters were as follows: name: 32221_161 n: 68902284960268310691160272909882658392427741164950225050125505847630985571103442660751760239191044441082947519332451479 m: 200000000000000000000000000000000 deg: 5 c5: 145 c0: -176 skew: 1.04 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1850000, 3550001) Primes: RFBsize:263397, AFBsize:262673, largePrimes:9228731 encountered Relations: rels:9590220, finalFF:635440 Max relations in full relation-set: 28 Initial matrix: 526137 x 635440 with sparse part having weight 70868979. Pruned matrix : 480579 x 483273 with weight 51758556. Total sieving time: 52.00 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.75 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,51,51,2.4,2.4,100000 total time: 55.10 hours. --------- CPU info (if available) ----------
(11·10135-17)/3 = 3(6)1341<136> = 7 · 643 · 98953 · 1598539 · C121
C121 = P54 · P68
P54 = 463899733528641667300807588409536956588227985148592021<54>
P68 = 11101613225813972447215283066867552276042114840195309698943540163023<68>
Number: 36661_135 N=5150035417193145851355521736539756677829975768640092551076918709929398652640501243150621028631411539736512996373257039483 ( 121 digits) SNFS difficulty: 136 digits. Divisors found: r1=463899733528641667300807588409536956588227985148592021 (pp54) r2=11101613225813972447215283066867552276042114840195309698943540163023 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.75 hours. Scaled time: 13.32 units (timescale=1.972). Factorization parameters were as follows: name: 36661_135 n: 5150035417193145851355521736539756677829975768640092551076918709929398652640501243150621028631411539736512996373257039483 m: 1000000000000000000000000000 deg: 5 c5: 11 c0: -17 skew: 1.09 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: RFBsize:100021, AFBsize:100129, largePrimes:3397345 encountered Relations: rels:3539165, finalFF:431299 Max relations in full relation-set: 28 Initial matrix: 200215 x 431299 with sparse part having weight 37332250. Pruned matrix : 146610 x 147675 with weight 10914158. Total sieving time: 6.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 6.75 hours. --------- CPU info (if available) ----------
(11·10120-17)/3 = 3(6)1191<121> = 277 · 6048409 · 233162350530541<15> · C97
C97 = P49 · P49
P49 = 2105127696207944911022798679968833991726314291117<49>
P49 = 4458755319605430079360836851668789221417006597841<49>
Sat Nov 29 07:45:04 2008 Msieve v. 1.38 Sat Nov 29 07:45:04 2008 random seeds: 3c84e488 28be6288 Sat Nov 29 07:45:04 2008 factoring 9386249313915898130261757082745844486257562853489685991325229137610986951325811514789997817678397 (97 digits) Sat Nov 29 07:45:05 2008 searching for 15-digit factors Sat Nov 29 07:45:07 2008 commencing quadratic sieve (97-digit input) Sat Nov 29 07:45:07 2008 using multiplier of 13 Sat Nov 29 07:45:07 2008 using 32kb Intel Core sieve core Sat Nov 29 07:45:07 2008 sieve interval: 36 blocks of size 32768 Sat Nov 29 07:45:07 2008 processing polynomials in batches of 6 Sat Nov 29 07:45:07 2008 using a sieve bound of 2433061 (89412 primes) Sat Nov 29 07:45:07 2008 using large prime bound of 364959150 (28 bits) Sat Nov 29 07:45:07 2008 using double large prime bound of 2582495835375450 (43-52 bits) Sat Nov 29 07:45:07 2008 using trial factoring cutoff of 52 bits Sat Nov 29 07:45:07 2008 polynomial 'A' values have 13 factors Sat Nov 29 13:54:17 2008 89905 relations (21674 full + 68231 combined from 1343247 partial), need 89508 Sat Nov 29 13:54:22 2008 begin with 1364921 relations Sat Nov 29 13:54:23 2008 reduce to 235606 relations in 10 passes Sat Nov 29 13:54:23 2008 attempting to read 235606 relations Sat Nov 29 13:54:27 2008 recovered 235606 relations Sat Nov 29 13:54:27 2008 recovered 222456 polynomials Sat Nov 29 13:54:27 2008 attempting to build 89905 cycles Sat Nov 29 13:54:28 2008 found 89905 cycles in 6 passes Sat Nov 29 13:54:28 2008 distribution of cycle lengths: Sat Nov 29 13:54:28 2008 length 1 : 21674 Sat Nov 29 13:54:28 2008 length 2 : 15506 Sat Nov 29 13:54:28 2008 length 3 : 15138 Sat Nov 29 13:54:28 2008 length 4 : 12293 Sat Nov 29 13:54:28 2008 length 5 : 9307 Sat Nov 29 13:54:28 2008 length 6 : 6256 Sat Nov 29 13:54:28 2008 length 7 : 4136 Sat Nov 29 13:54:28 2008 length 9+: 5595 Sat Nov 29 13:54:28 2008 largest cycle: 20 relations Sat Nov 29 13:54:28 2008 matrix is 89412 x 89905 (24.4 MB) with weight 6028665 (67.06/col) Sat Nov 29 13:54:28 2008 sparse part has weight 6028665 (67.06/col) Sat Nov 29 13:54:29 2008 filtering completed in 3 passes Sat Nov 29 13:54:29 2008 matrix is 85386 x 85449 (23.2 MB) with weight 5736383 (67.13/col) Sat Nov 29 13:54:29 2008 sparse part has weight 5736383 (67.13/col) Sat Nov 29 13:54:30 2008 saving the first 48 matrix rows for later Sat Nov 29 13:54:30 2008 matrix is 85338 x 85449 (14.2 MB) with weight 4515452 (52.84/col) Sat Nov 29 13:54:30 2008 sparse part has weight 3212893 (37.60/col) Sat Nov 29 13:54:30 2008 matrix includes 64 packed rows Sat Nov 29 13:54:30 2008 using block size 34179 for processor cache size 1024 kB Sat Nov 29 13:54:30 2008 commencing Lanczos iteration Sat Nov 29 13:54:30 2008 memory use: 13.8 MB Sat Nov 29 13:55:24 2008 lanczos halted after 1350 iterations (dim = 85336) Sat Nov 29 13:55:24 2008 recovered 17 nontrivial dependencies Sat Nov 29 13:55:24 2008 prp49 factor: 2105127696207944911022798679968833991726314291117 Sat Nov 29 13:55:24 2008 prp49 factor: 4458755319605430079360836851668789221417006597841 Sat Nov 29 13:55:24 2008 elapsed time 06:10:20
(11·10134-17)/3 = 3(6)1331<135> = 10093 · 24133 · 8598394367382957958478995153<28> · C99
C99 = P42 · P58
P42 = 108612463794649131001183112199859161618563<42>
P58 = 1611917530744212293292156513540070557954192544839381684071<58>
Number: 36661_134 N=175074334447915985220800658956999547881339884018263365077774518425860165827877515202679577075009973 ( 99 digits) SNFS difficulty: 136 digits. Divisors found: r1=108612463794649131001183112199859161618563 (pp42) r2=1611917530744212293292156513540070557954192544839381684071 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.99 hours. Scaled time: 12.03 units (timescale=2.010). Factorization parameters were as follows: name: 36661_134 n: 175074334447915985220800658956999547881339884018263365077774518425860165827877515202679577075009973 m: 1000000000000000000000000000 deg: 5 c5: 11 c0: -170 skew: 1.73 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: RFBsize:100021, AFBsize:99724, largePrimes:3190511 encountered Relations: rels:3153954, finalFF:278438 Max relations in full relation-set: 28 Initial matrix: 199810 x 278438 with sparse part having weight 23194464. Pruned matrix : 175657 x 176720 with weight 11268879. Total sieving time: 5.57 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.26 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 5.99 hours. --------- CPU info (if available) ----------
(11·10144-17)/3 = 3(6)1431<145> = 157 · 10136260877<11> · C133
C133 = P61 · P72
P61 = 5065705850886976495988343132418566289486969861509620415150181<61>
P72 = 454835161040530031250813026453337616614594591416830701515656087243041929<72>
Number: 36661_144 N=2304061136472133163799949453218864216324962170621676146520944921910783356238101620691422131265770593846200318144699849557627814939149 ( 133 digits) SNFS difficulty: 146 digits. Divisors found: r1=5065705850886976495988343132418566289486969861509620415150181 (pp61) r2=454835161040530031250813026453337616614594591416830701515656087243041929 (pp72) Version: GGNFS-0.77.1-20060513-nocona Total time: 15.29 hours. Scaled time: 39.21 units (timescale=2.564). Factorization parameters were as follows: name: 36661_144 n: 2304061136472133163799949453218864216324962170621676146520944921910783356238101620691422131265770593846200318144699849557627814939149 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: -170 skew: 1.73 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2250001) Primes: RFBsize:142029, AFBsize:142163, largePrimes:4461462 encountered Relations: rels:5018508, finalFF:688348 Max relations in full relation-set: 28 Initial matrix: 284257 x 688348 with sparse part having weight 77522317. Pruned matrix : 203776 x 205261 with weight 29271991. Total sieving time: 14.79 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.35 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 15.29 hours. --------- CPU info (if available) ----------
(11·10160-17)/3 = 3(6)1591<161> = 21766998733<11> · 629345781923007387639337<24> · 146878709199615825406227598069<30> · C98
C98 = P45 · P53
P45 = 957664442926109750412572273548012986189861349<45>
P53 = 19028797420494901463586438810592233217404823016337961<53>
Sat Nov 29 14:03:27 2008 Msieve v. 1.38 Sat Nov 29 14:03:27 2008 random seeds: 27020444 ac7423e9 Sat Nov 29 14:03:27 2008 factoring 18223202681252044003716422527687772043697950467962637572786101774796419825519335769749720315369389 (98 digits) Sat Nov 29 14:03:28 2008 searching for 15-digit factors Sat Nov 29 14:03:29 2008 commencing quadratic sieve (98-digit input) Sat Nov 29 14:03:30 2008 using multiplier of 13 Sat Nov 29 14:03:30 2008 using 32kb Intel Core sieve core Sat Nov 29 14:03:30 2008 sieve interval: 36 blocks of size 32768 Sat Nov 29 14:03:30 2008 processing polynomials in batches of 6 Sat Nov 29 14:03:30 2008 using a sieve bound of 2457703 (90588 primes) Sat Nov 29 14:03:30 2008 using large prime bound of 368655450 (28 bits) Sat Nov 29 14:03:30 2008 using double large prime bound of 2629766418374550 (43-52 bits) Sat Nov 29 14:03:30 2008 using trial factoring cutoff of 52 bits Sat Nov 29 14:03:30 2008 polynomial 'A' values have 13 factors Sat Nov 29 19:47:07 2008 91084 relations (22967 full + 68117 combined from 1341174 partial), need 90684 Sat Nov 29 19:47:09 2008 begin with 1364141 relations Sat Nov 29 19:47:11 2008 reduce to 234288 relations in 10 passes Sat Nov 29 19:47:11 2008 attempting to read 234288 relations Sat Nov 29 19:47:14 2008 recovered 234288 relations Sat Nov 29 19:47:14 2008 recovered 219976 polynomials Sat Nov 29 19:47:15 2008 attempting to build 91084 cycles Sat Nov 29 19:47:15 2008 found 91084 cycles in 6 passes Sat Nov 29 19:47:15 2008 distribution of cycle lengths: Sat Nov 29 19:47:15 2008 length 1 : 22967 Sat Nov 29 19:47:15 2008 length 2 : 16339 Sat Nov 29 19:47:15 2008 length 3 : 15478 Sat Nov 29 19:47:15 2008 length 4 : 12139 Sat Nov 29 19:47:15 2008 length 5 : 8966 Sat Nov 29 19:47:15 2008 length 6 : 6133 Sat Nov 29 19:47:15 2008 length 7 : 3870 Sat Nov 29 19:47:15 2008 length 9+: 5192 Sat Nov 29 19:47:15 2008 largest cycle: 20 relations Sat Nov 29 19:47:15 2008 matrix is 90588 x 91084 (24.4 MB) with weight 6028326 (66.18/col) Sat Nov 29 19:47:15 2008 sparse part has weight 6028326 (66.18/col) Sat Nov 29 19:47:16 2008 filtering completed in 3 passes Sat Nov 29 19:47:16 2008 matrix is 85968 x 86032 (23.1 MB) with weight 5709069 (66.36/col) Sat Nov 29 19:47:16 2008 sparse part has weight 5709069 (66.36/col) Sat Nov 29 19:47:17 2008 saving the first 48 matrix rows for later Sat Nov 29 19:47:17 2008 matrix is 85920 x 86032 (14.3 MB) with weight 4507429 (52.39/col) Sat Nov 29 19:47:17 2008 sparse part has weight 3219825 (37.43/col) Sat Nov 29 19:47:17 2008 matrix includes 64 packed rows Sat Nov 29 19:47:17 2008 using block size 34412 for processor cache size 1024 kB Sat Nov 29 19:47:18 2008 commencing Lanczos iteration Sat Nov 29 19:47:18 2008 memory use: 13.8 MB Sat Nov 29 19:48:11 2008 lanczos halted after 1360 iterations (dim = 85918) Sat Nov 29 19:48:11 2008 recovered 17 nontrivial dependencies Sat Nov 29 19:48:12 2008 prp45 factor: 957664442926109750412572273548012986189861349 Sat Nov 29 19:48:12 2008 prp53 factor: 19028797420494901463586438810592233217404823016337961 Sat Nov 29 19:48:12 2008 elapsed time 05:44:45
(11·10142-17)/3 = 3(6)1411<143> = 53 · 7852775608472349923<19> · 2209134768103327026461<22> · C101
C101 = P36 · P65
P36 = 485358917513402248806445046758915291<36>
P65 = 82165054748679947348480555740015151916804192014196841159896556469<65>
Number: 36661_142 N=39879542030248730305952505549511479412491993196918291201620186809045469006365085989027975256569067479 ( 101 digits) Divisors found: r1=485358917513402248806445046758915291 (pp36) r2=82165054748679947348480555740015151916804192014196841159896556469 (pp65) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 9.38 hours. Scaled time: 4.44 units (timescale=0.473). Factorization parameters were as follows: name: 36661_142 n: 39879542030248730305952505549511479412491993196918291201620186809045469006365085989027975256569067479 skew: 2082.32 # norm 1.23e+14 c5: 694260 c4: 3381224247 c3: -23801353228510 c2: -9926089970119084 c1: 21900716397827144332 c0: 6005824574800108133350 # alpha -5.93 Y1: 18094922549 Y0: -8950447478689257681 # Murphy_E 3.20e-09 # M 22311532077896101791765456491507583033848276516459723976941369835133769069388259434247533295035075598 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135291, largePrimes:4019335 encountered Relations: rels:4151080, finalFF:480080 Max relations in full relation-set: 28 Initial matrix: 270451 x 480080 with sparse part having weight 37267957. Pruned matrix : 158606 x 160022 with weight 13822330. Total sieving time: 8.40 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.52 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 9.38 hours. --------- CPU info (if available) ----------
(11·10140-17)/3 = 3(6)1391<141> = 19937 · 85087 · 38421740169819971<17> · C115
C115 = P46 · P70
P46 = 4310159630862946677025293676143401052048035549<46>
P70 = 1305202882733129400361734021700020844652399098566959423983108286773661<70>
Number: 36661_140 N=5625632775242278895503641449999420022802034367450748010214474861781619745325974560260325834412849046572994244874889 ( 115 digits) SNFS difficulty: 141 digits. Divisors found: r1=4310159630862946677025293676143401052048035549 (pp46) r2=1305202882733129400361734021700020844652399098566959423983108286773661 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.34 hours. Scaled time: 16.51 units (timescale=1.979). Factorization parameters were as follows: name: 36661_140 n: 5625632775242278895503641449999420022802034367450748010214474861781619745325974560260325834412849046572994244874889 m: 10000000000000000000000000000 deg: 5 c5: 11 c0: -17 skew: 1.09 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1485001) Primes: RFBsize:119057, AFBsize:119011, largePrimes:3601073 encountered Relations: rels:3633049, finalFF:338910 Max relations in full relation-set: 28 Initial matrix: 238133 x 338910 with sparse part having weight 29665582. Pruned matrix : 207023 x 208277 with weight 14398096. Total sieving time: 7.81 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.35 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 8.34 hours. --------- CPU info (if available) ----------
(11·10145-17)/3 = 3(6)1441<146> = 64879 · 184043 · 5941489091849<13> · C123
C123 = P55 · P69
P55 = 2408472121547289871373542292920092592599029191777402247<55>
P69 = 214590776583004188735108491680326897863212133273819137444936868883071<69>
Number: 36661_145 N=516835902941348589508791970092043654132499949138794905474603269728655539745759808332443712734409744644426855368404775660537 ( 123 digits) SNFS difficulty: 146 digits. Divisors found: r1=2408472121547289871373542292920092592599029191777402247 (pp55) r2=214590776583004188735108491680326897863212133273819137444936868883071 (pp69) Version: GGNFS-0.77.1-20060513-nocona Total time: 16.26 hours. Scaled time: 41.87 units (timescale=2.575). Factorization parameters were as follows: name: 36661_145 n: 516835902941348589508791970092043654132499949138794905474603269728655539745759808332443712734409744644426855368404775660537 m: 100000000000000000000000000000 deg: 5 c5: 11 c0: -17 skew: 1.09 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2250001) Primes: RFBsize:142029, AFBsize:142108, largePrimes:4619974 encountered Relations: rels:5424522, finalFF:914310 Max relations in full relation-set: 28 Initial matrix: 284202 x 914310 with sparse part having weight 103851334. Pruned matrix : 196007 x 197492 with weight 31950170. Total sieving time: 15.71 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.38 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 16.26 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM, GMP-ECM 6.2.1
(34·10171-7)/9 = 3(7)171<172> = 3 · 117917 · 471774240006282373987<21> · C146
C146 = P67 · P80
P67 = 1872405935270522689357066301818617011650603001455113126945903699221<67>
P80 = 12089393077978057072487459330648278729512042675916075725904232034926240219356201<80>
SNFS difficulty: 173 digits. Divisors found: r1=1872405935270522689357066301818617011650603001455113126945903699221 (pp67) r2=12089393077978057072487459330648278729512042675916075725904232034926240219356201 (pp80) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.561). Factorization parameters were as follows: n: 22636251353024486990443569623606952139781589234140446733973661409451373214880172157489920365589050835529237199414251961233190439964627012965219421 m: 20000000000000000000000000000000000 deg: 5 c5: 85 c0: -56 skew: 0.92 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1025183 x 1025425 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 60.00 hours.
(11·10137-17)/3 = 3(6)1361<138> = 457 · 25282613101<11> · 70540502984696358345035712479<29> · C96
C96 = P30 · P67
P30 = 225068055414946500455101512413<30>
P67 = 1998853021220465571838973633604944432837054563410179737705368297499<67>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3848341359 Step 1 took 20041ms Step 2 took 8402ms ********** Factor found in step 2: 225068055414946500455101512413 Found probable prime factor of 30 digits: 225068055414946500455101512413 Probable prime cofactor 1998853021220465571838973633604944432837054563410179737705368297499 has 67 digits
(11·10178-17)/3 = 3(6)1771<179> = 419 · 875323 · 160850805730055940026013323<27> · C144
C144 = P32 · P113
P32 = 25564389165499286775537881549053<32>
P113 = 24312544101470344889522583008595898850613862866972797747589406600656397524145120318815543370098395903890481926987<113>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4102962534 Step 1 took 19473ms Step 2 took 13973ms ********** Factor found in step 2: 25564389165499286775537881549053 Found probable prime factor of 32 digits: 25564389165499286775537881549053 Probable prime cofactor 24312544101470344889522583008595898850613862866972797747589406600656397524145120318815543370098395903890481926987 has 113 digits
(11·10119-17)/3 = 3(6)1181<120> = 95339 · 106454485737497<15> · C101
C101 = P33 · P69
P33 = 201591097540583059899592638756229<33>
P69 = 179211354572697613407122682853275301429002320329115019253778195188123<69>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1995292405 Step 1 took 17977ms Step 2 took 8827ms ********** Factor found in step 2: 201591097540583059899592638756229 Found probable prime factor of 33 digits: 201591097540583059899592638756229 Probable prime cofactor 179211354572697613407122682853275301429002320329115019253778195188123 has 69 digits
(11·10199-17)/3 = 3(6)1981<200> = 47 · 167 · 809 · 897231271 · C184
C184 = P33 · P152
P33 = 620849510886121014996653223133973<33>
P152 = 10366158259157309433389410520769455172640438054800073452130936958194069123240087142681724227125048990871767365225139184688088979862324552054539230787287<152>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3437716281 Step 1 took 29551ms Step 2 took 19011ms ********** Factor found in step 2: 620849510886121014996653223133973 Found probable prime factor of 33 digits: 620849510886121014996653223133973 Probable prime cofactor 10366158259157309433389410520769455172640438054800073452130936958194069123240087142681724227125048990871767365225139184688088979862324552054539230787287 has 152 digits
(11·10126-17)/3 = 3(6)1251<127> = 2387939232349009<16> · C112
C112 = P53 · P60
P53 = 14087763858732627321101608034056487645098264034924687<53>
P60 = 108994879691177420849768695576009997842287982075496976611867<60>
SNFS difficulty: 127 digits. Divisors found: r1=14087763858732627321101608034056487645098264034924687 (pp53) r2=108994879691177420849768695576009997842287982075496976611867 (pp60) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.554). Factorization parameters were as follows: n: 1535494126900280097634966453816017651318018197457135481071718189164248955722438293136152218641345776503775460629 m: 10000000000000000000000000 deg: 5 c5: 110 c0: -17 skew: 0.69 type: snfs lss: 1 rlim: 980000 alim: 980000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 980000/980000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [490000, 740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 130283 x 130515 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,980000,980000,26,26,49,49,2.4,2.4,50000 total time: 2.00 hours.
(11·10183-17)/3 = 3(6)1821<184> = 72 · C182
C182 = P31 · P152
P31 = 3223571118646144467773535158267<31>
P152 = 23213364687364694423071285117959366924827885485071481831459700304705661130344587728525748337616731300987146031291571492942419541892201351763828235946767<152>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1551405898 Step 1 took 28124ms Step 2 took 18519ms ********** Factor found in step 2: 3223571118646144467773535158267 Found probable prime factor of 31 digits: 3223571118646144467773535158267 Probable prime cofactor 23213364687364694423071285117959366924827885485071481831459700304705661130344587728525748337616731300987146031291571492942419541892201351763828235946767 has 152 digits
(11·10197-17)/3 = 3(6)1961<198> = 155539 · 23359738123<11> · C183
C183 = P38 · P145
P38 = 27255285980819546400270342287438245231<38>
P145 = 3702656423765222191449953291983165896174333193450106467327364998558250919653147210340654247030518342692904270634997845089652018632377252248552123<145>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2963924375 Step 1 took 30017ms Step 2 took 18759ms ********** Factor found in step 2: 27255285980819546400270342287438245231 Found probable prime factor of 38 digits: 27255285980819546400270342287438245231 Probable prime cofactor 3702656423765222191449953291983165896174333193450106467327364998558250919653147210340654247030518342692904270634997845089652018632377252248552123 has 145 digits
(11·10162-17)/3 = 3(6)1611<163> = 229 · 6461041 · 6240128181383599<16> · 87674584682570693<17> · C121
C121 = P33 · P88
P33 = 731052435518075457940546324433539<33>
P88 = 6196089676534327845925392116638898810470739385870543386025115721853192452315915758888913<88>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2785932908 Step 1 took 22539ms Step 2 took 10481ms ********** Factor found in step 2: 731052435518075457940546324433539 Found probable prime factor of 33 digits: 731052435518075457940546324433539 Probable prime cofactor 6196089676534327845925392116638898810470739385870543386025115721853192452315915758888913 has 88 digits
(11·10136-17)/3 = 3(6)1351<137> = 31 · C136
C136 = P36 · P45 · P56
P36 = 110448053390064403764987276605352253<36>
P45 = 169097178743797369834770845207818629319141307<45>
P56 = 63330848811647738103769089974633221625010035821186883861<56>
SNFS difficulty: 137 digits. Divisors found: r1=110448053390064403764987276605352253 (pp36) r2=169097178743797369834770845207818629319141307 (pp45) r3=63330848811647738103769089974633221625010035821186883861 (pp56) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.558). Factorization parameters were as follows: n: 1182795698924731182795698924731182795698924731182795698924731182795698924731182795698924731182795698924731182795698924731182795698924731 m: 1000000000000000000000000000 deg: 5 c5: 110 c0: -17 skew: 0.69 type: snfs lss: 1 rlim: 1350000 alim: 1350000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1350000/1350000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [675000, 1200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 204242 x 204484 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1350000,1350000,26,26,49,49,2.3,2.3,75000 total time: 2.40 hours.
(11·10177-17)/3 = 3(6)1761<178> = 7 · 103 · 151 · C173
C173 = P31 · P142
P31 = 5556832887851812076162476070701<31>
P142 = 6060826921814296872914390472209730923182376228115283211788582114118810150036488088797677147810237162263095022865241892934485730623618870717791<142>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3024729889 Step 1 took 24813ms Step 2 took 17166ms ********** Factor found in step 2: 5556832887851812076162476070701 Found probable prime factor of 31 digits: 5556832887851812076162476070701 Probable prime cofactor 6060826921814296872914390472209730923182376228115283211788582114118810150036488088797677147810237162263095022865241892934485730623618870717791 has 142 digits
(11·10171-17)/3 = 3(6)1701<172> = 7 · 83 · 89 · 37879493 · C160
C160 = P38 · C122
P38 = 83385999899891719865878511313987222461<38>
C122 = [22449568247593753184083167533291975290884854540034547605076554357224725377782546501707146485392713868517979960233913402073<122>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=718240080 Step 1 took 24841ms Step 2 took 16811ms ********** Factor found in step 2: 83385999899891719865878511313987222461 Found probable prime factor of 38 digits: 83385999899891719865878511313987222461 Composite cofactor 22449568247593753184083167533291975290884854540034547605076554357224725377782546501707146485392713868517979960233913402073 has 122 digits
(11·10175-17)/3 = 3(6)1741<176> = 29201 · 2933501 · 588474961 · 32750153572057<14> · C143
C143 = P40 · P104
P40 = 1109870810744795934280775949391017001109<40>
P104 = 20011226434218264569802564557860035959581832711691655219245543666648061801344742292178573885646208347277<104>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2854008978 Step 1 took 19162ms Step 2 took 13841ms ********** Factor found in step 2: 1109870810744795934280775949391017001109 Found probable prime factor of 40 digits: 1109870810744795934280775949391017001109 Probable prime cofactor 20011226434218264569802564557860035959581832711691655219245543666648061801344742292178573885646208347277 has 104 digits
(11·10165-17)/3 = 3(6)1641<166> = 7 · 179 · 649915076007329393<18> · 2371711292610209065707512288131<31> · C115
C115 = P32 · P83
P32 = 26297757323118614671519055263267<32>
P83 = 72191025851228490858060062036302772473383497526433611076929831488505843922709835817<83>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2265542806 Step 1 took 12957ms Step 2 took 11043ms ********** Factor found in step 2: 26297757323118614671519055263267 Found probable prime factor of 32 digits: 26297757323118614671519055263267 Probable prime cofactor 72191025851228490858060062036302772473383497526433611076929831488505843922709835817 has 83 digits
(11·10156-17)/3 = 3(6)1551<157> = 1619 · 2520183811697<13> · C141
C141 = P39 · P103
P39 = 384665774755265922540245230014640845803<39>
P103 = 2336193530902535449760773143184500147895336647884600817095444483766385399109723704479196726601653355909<103>
SNFS difficulty: 157 digits. Divisors found: r1=384665774755265922540245230014640845803 (pp39) r2=2336193530902535449760773143184500147895336647884600817095444483766385399109723704479196726601653355909 (pp103) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 898653694542864079694322256023889802504426131617625176516182040256382815496843564561485283796472486632464351154376228436806719058721147899927 m: 10000000000000000000000000000000 deg: 5 c5: 110 c0: -17 skew: 0.69 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1450000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 538024 x 538266 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,52,52,2.4,2.4,100000 total time: 16.00 hours.
By Erik Branger / GGNFS, Msieve
(11·10109-17)/3 = 3(6)1081<110> = 103 · C108
C108 = P32 · P76
P32 = 55686128876513198408165347351459<32>
P76 = 6392742002332402976749775654819971481286309835724565111795563996899029411793<76>
Number: 36661_109 N=355987055016181229773462783171521035598705501618122977346278317152103559870550161812297734627831715210355987 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=55686128876513198408165347351459 r2=6392742002332402976749775654819971481286309835724565111795563996899029411793 Version: Total time: 1.33 hours. Scaled time: 1.04 units (timescale=0.784). Factorization parameters were as follows: n: 355987055016181229773462783171521035598705501618122977346278317152103559870550161812297734627831715210355987 m: 10000000000000000000000 deg: 5 c5: 11 c0: -170 skew: 1.73 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46578 x 46805 Total sieving time: 1.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 1.33 hours. --------- CPU info (if available) ----------
(11·10110-17)/3 = 3(6)1091<111> = 19 · 43 · 359 · 3413 · 6037 · C98
C98 = P32 · P66
P32 = 80031387200864474276826335774639<32>
P66 = 758118538179302738564118749660544653553657027889141216006719903893<66>
Number: 36661_110 N=60673278273181134471086551243482531992281681325714658104638326655668739103398066074480921786769627 ( 98 digits) SNFS difficulty: 111 digits. Divisors found: r1=80031387200864474276826335774639 r2=758118538179302738564118749660544653553657027889141216006719903893 Version: Total time: 0.92 hours. Scaled time: 0.72 units (timescale=0.792). Factorization parameters were as follows: n: 60673278273181134471086551243482531992281681325714658104638326655668739103398066074480921786769627 m: 10000000000000000000000 deg: 5 c5: 11 c0: -17 skew: 1.09 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 49726 x 49945 Total sieving time: 0.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 0.92 hours. --------- CPU info (if available) ----------
(11·10123-17)/3 = 3(6)1221<124> = 7 · 23070065599136107<17> · C107
C107 = P42 · P65
P42 = 668886617714639215408779843398589318361601<42>
P65 = 33944706176884080583579775103068072235776993030794292237369985689<65>
Number: 36661_123 N=22705159703973214452236063687756023515217752056680576539032965607066094137200662015975910403773494297128089 ( 107 digits) SNFS difficulty: 125 digits. Divisors found: r1=668886617714639215408779843398589318361601 r2=33944706176884080583579775103068072235776993030794292237369985689 Version: Total time: 3.21 hours. Scaled time: 2.53 units (timescale=0.787). Factorization parameters were as follows: n: 22705159703973214452236063687756023515217752056680576539032965607066094137200662015975910403773494297128089 m: 5000000000000000000000000 deg: 5 c5: 88 c0: -425 skew: 1.37 type: snfs lss: 1 rlim: 860000 alim: 860000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 860000/860000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [430000, 780001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 136821 x 137069 Total sieving time: 3.21 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,860000,860000,26,26,46,46,2.3,2.3,50000 total time: 3.21 hours. --------- CPU info (if available) ----------
(11·10132-17)/3 = 3(6)1311<133> = 199 · C131
C131 = P59 · P72
P59 = 23458969553533159486261373436846041377784456048254245377789<59>
P72 = 785433503141268669465977030069961182458200542220187279043681975728135151<72>
Number: 36661_132 N=18425460636515912897822445561139028475711892797319932998324958123953098827470686767169179229480737018425460636515912897822445561139 ( 131 digits) SNFS difficulty: 133 digits. Divisors found: r1=23458969553533159486261373436846041377784456048254245377789 r2=785433503141268669465977030069961182458200542220187279043681975728135151 Version: Total time: 4.67 hours. Scaled time: 3.69 units (timescale=0.789). Factorization parameters were as follows: n: 18425460636515912897822445561139028475711892797319932998324958123953098827470686767169179229480737018425460636515912897822445561139 m: 200000000000000000000000000 deg: 5 c5: 275 c0: -136 skew: 0.87 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 181650 x 181898 Total sieving time: 4.67 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 4.67 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve, GGNFS
(11·10101-17)/3 = 3(6)1001<102> = 138913373 · C94
C94 = P32 · P63
P32 = 15362996616432738906443983605163<32>
P63 = 171811187227657721764594149916169855418000979165505985718980539<63>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2639534688043797386351468599547047688969921324037439265596600743879904684674719306302256922857 (94 digits) Using B1=1200000, B2=1426326730, polynomial Dickson(6), sigma=1460276515 Step 1 took 7406ms Step 2 took 3875ms ********** Factor found in step 2: 15362996616432738906443983605163 Found probable prime factor of 32 digits: 15362996616432738906443983605163 Probable prime cofactor 171811187227657721764594149916169855418000979165505985718980539 has 63 digits
(11·10116-17)/3 = 3(6)1151<117> = 53 · 3461 · 84201513116637056621653<23> · C89
C89 = P35 · P54
P35 = 73977684816291194925607695803441513<35>
P54 = 320902669571158779992693858038181395877039064352464353<54>
Sat Nov 29 04:02:03 2008 Sat Nov 29 04:02:03 2008 Sat Nov 29 04:02:03 2008 Msieve v. 1.38 Sat Nov 29 04:02:03 2008 random seeds: 46a032e0 bae8cfdf Sat Nov 29 04:02:03 2008 factoring 23739636546241623339183677581442267087364438127319553630046719804948907173444660052886089 (89 digits) Sat Nov 29 04:02:04 2008 searching for 15-digit factors Sat Nov 29 04:02:04 2008 commencing quadratic sieve (89-digit input) Sat Nov 29 04:02:05 2008 using multiplier of 1 Sat Nov 29 04:02:05 2008 using 64kb Opteron sieve core Sat Nov 29 04:02:05 2008 sieve interval: 15 blocks of size 65536 Sat Nov 29 04:02:05 2008 processing polynomials in batches of 7 Sat Nov 29 04:02:05 2008 using a sieve bound of 1542239 (58667 primes) Sat Nov 29 04:02:05 2008 using large prime bound of 123379120 (26 bits) Sat Nov 29 04:02:05 2008 using double large prime bound of 366635860574400 (42-49 bits) Sat Nov 29 04:02:05 2008 using trial factoring cutoff of 49 bits Sat Nov 29 04:02:05 2008 polynomial 'A' values have 11 factors Sat Nov 29 04:46:12 2008 58992 relations (15923 full + 43069 combined from 620929 partial), need 58763 Sat Nov 29 04:46:12 2008 begin with 636852 relations Sat Nov 29 04:46:13 2008 reduce to 142375 relations in 12 passes Sat Nov 29 04:46:13 2008 attempting to read 142375 relations Sat Nov 29 04:46:14 2008 recovered 142375 relations Sat Nov 29 04:46:14 2008 recovered 117564 polynomials Sat Nov 29 04:46:14 2008 attempting to build 58992 cycles Sat Nov 29 04:46:14 2008 found 58992 cycles in 5 passes Sat Nov 29 04:46:14 2008 distribution of cycle lengths: Sat Nov 29 04:46:14 2008 length 1 : 15923 Sat Nov 29 04:46:14 2008 length 2 : 11484 Sat Nov 29 04:46:14 2008 length 3 : 10494 Sat Nov 29 04:46:14 2008 length 4 : 7817 Sat Nov 29 04:46:14 2008 length 5 : 5387 Sat Nov 29 04:46:14 2008 length 6 : 3465 Sat Nov 29 04:46:14 2008 length 7 : 2026 Sat Nov 29 04:46:14 2008 length 9+: 2396 Sat Nov 29 04:46:14 2008 largest cycle: 16 relations Sat Nov 29 04:46:14 2008 matrix is 58667 x 58992 (14.0 MB) with weight 3438927 (58.29/col) Sat Nov 29 04:46:14 2008 sparse part has weight 3438927 (58.29/col) Sat Nov 29 04:46:15 2008 filtering completed in 3 passes Sat Nov 29 04:46:15 2008 matrix is 54349 x 54413 (13.0 MB) with weight 3197994 (58.77/col) Sat Nov 29 04:46:15 2008 sparse part has weight 3197994 (58.77/col) Sat Nov 29 04:46:15 2008 saving the first 48 matrix rows for later Sat Nov 29 04:46:15 2008 matrix is 54301 x 54413 (8.9 MB) with weight 2565338 (47.15/col) Sat Nov 29 04:46:15 2008 sparse part has weight 2018746 (37.10/col) Sat Nov 29 04:46:15 2008 matrix includes 64 packed rows Sat Nov 29 04:46:15 2008 using block size 21765 for processor cache size 1024 kB Sat Nov 29 04:46:16 2008 commencing Lanczos iteration Sat Nov 29 04:46:16 2008 memory use: 8.4 MB Sat Nov 29 04:46:35 2008 lanczos halted after 860 iterations (dim = 54297) Sat Nov 29 04:46:35 2008 recovered 13 nontrivial dependencies Sat Nov 29 04:46:35 2008 prp35 factor: 73977684816291194925607695803441513 Sat Nov 29 04:46:35 2008 prp54 factor: 320902669571158779992693858038181395877039064352464353 Sat Nov 29 04:46:35 2008 elapsed time 00:44:32
(11·10130-17)/3 = 3(6)1291<131> = 83 · 109 · 26529247 · 80947637321<11> · 381304712411819489<18> · C91
C91 = P35 · P57
P35 = 26119835504853257224991747510790013<35>
P57 = 189493854350681751333427226811128589700254398242977884057<57>
Sat Nov 29 04:56:17 2008 Sat Nov 29 04:56:17 2008 Sat Nov 29 04:56:17 2008 Msieve v. 1.38 Sat Nov 29 04:56:17 2008 random seeds: c7f8ab60 3c0d8e28 Sat Nov 29 04:56:17 2008 factoring 4949548304820429075400004912874089555561546276186079877477197022930758447185728135187522741 (91 digits) Sat Nov 29 04:56:17 2008 searching for 15-digit factors Sat Nov 29 04:56:18 2008 commencing quadratic sieve (91-digit input) Sat Nov 29 04:56:18 2008 using multiplier of 29 Sat Nov 29 04:56:18 2008 using 64kb Opteron sieve core Sat Nov 29 04:56:18 2008 sieve interval: 18 blocks of size 65536 Sat Nov 29 04:56:18 2008 processing polynomials in batches of 6 Sat Nov 29 04:56:18 2008 using a sieve bound of 1716263 (64706 primes) Sat Nov 29 04:56:18 2008 using large prime bound of 164761248 (27 bits) Sat Nov 29 04:56:18 2008 using double large prime bound of 617076512625696 (42-50 bits) Sat Nov 29 04:56:18 2008 using trial factoring cutoff of 50 bits Sat Nov 29 04:56:18 2008 polynomial 'A' values have 12 factors Sat Nov 29 06:06:22 2008 65132 relations (17203 full + 47929 combined from 761920 partial), need 64802 Sat Nov 29 06:06:23 2008 begin with 779123 relations Sat Nov 29 06:06:24 2008 reduce to 162114 relations in 10 passes Sat Nov 29 06:06:24 2008 attempting to read 162114 relations Sat Nov 29 06:06:26 2008 recovered 162114 relations Sat Nov 29 06:06:26 2008 recovered 141428 polynomials Sat Nov 29 06:06:27 2008 attempting to build 65132 cycles Sat Nov 29 06:06:27 2008 found 65132 cycles in 5 passes Sat Nov 29 06:06:27 2008 distribution of cycle lengths: Sat Nov 29 06:06:27 2008 length 1 : 17203 Sat Nov 29 06:06:27 2008 length 2 : 12059 Sat Nov 29 06:06:27 2008 length 3 : 11019 Sat Nov 29 06:06:27 2008 length 4 : 8801 Sat Nov 29 06:06:27 2008 length 5 : 6314 Sat Nov 29 06:06:27 2008 length 6 : 4210 Sat Nov 29 06:06:27 2008 length 7 : 2421 Sat Nov 29 06:06:27 2008 length 9+: 3105 Sat Nov 29 06:06:27 2008 largest cycle: 19 relations Sat Nov 29 06:06:27 2008 matrix is 64706 x 65132 (15.8 MB) with weight 3894254 (59.79/col) Sat Nov 29 06:06:27 2008 sparse part has weight 3894254 (59.79/col) Sat Nov 29 06:06:28 2008 filtering completed in 3 passes Sat Nov 29 06:06:28 2008 matrix is 60808 x 60872 (14.9 MB) with weight 3650160 (59.96/col) Sat Nov 29 06:06:28 2008 sparse part has weight 3650160 (59.96/col) Sat Nov 29 06:06:28 2008 saving the first 48 matrix rows for later Sat Nov 29 06:06:28 2008 matrix is 60760 x 60872 (8.7 MB) with weight 2777885 (45.63/col) Sat Nov 29 06:06:28 2008 sparse part has weight 1912037 (31.41/col) Sat Nov 29 06:06:28 2008 matrix includes 64 packed rows Sat Nov 29 06:06:28 2008 using block size 24348 for processor cache size 1024 kB Sat Nov 29 06:06:29 2008 commencing Lanczos iteration Sat Nov 29 06:06:29 2008 memory use: 8.9 MB Sat Nov 29 06:06:50 2008 lanczos halted after 962 iterations (dim = 60758) Sat Nov 29 06:06:50 2008 recovered 16 nontrivial dependencies Sat Nov 29 06:06:51 2008 prp35 factor: 26119835504853257224991747510790013 Sat Nov 29 06:06:51 2008 prp57 factor: 189493854350681751333427226811128589700254398242977884057 Sat Nov 29 06:06:51 2008 elapsed time 01:10:34
(11·10128-17)/3 = 3(6)1271<129> = 19 · C128
C128 = P64 · P65
P64 = 1090272986019580928374762912685367956622743722256057747557165627<64>
P65 = 17700379502650997404470878861782680291067945187883910993616729797<65>
Number: n N=19298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719 ( 128 digits) SNFS difficulty: 131 digits. Divisors found: r1=1090272986019580928374762912685367956622743722256057747557165627 (pp64) r2=17700379502650997404470878861782680291067945187883910993616729797 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.84 hours. Scaled time: 5.16 units (timescale=1.816). Factorization parameters were as follows: name: KA_3_6_127_1 n: 19298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719298245614035087719 type: snfs skew: 2.74 deg: 5 c5: 11 c0: -1700 m: 100000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:63951, AFBsize:63749, largePrimes:6492214 encountered Relations: rels:5659445, finalFF:184434 Max relations in full relation-set: 48 Initial matrix: 127767 x 184434 with sparse part having weight 26352058. Pruned matrix : 116709 x 117411 with weight 12205227. Total sieving time: 2.63 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.09 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,28,28,56,56,2.5,2.5,50000 total time: 2.84 hours. --------- CPU info (if available) ----------
(10170+11)/3 = (3)1697<170> = 37 · 163 · 1291 · 23038909286259871<17> · C147
C147 = P47 · P101
P47 = 11678389683627973847213584321368447993233911399<47>
P101 = 15911762839346654192692129977862432931562688321822699857420110352345615549508686305420162237407946893<101>
Number: n N=185823766991360923710679129196544755596402591828367442331733798414239140090653102165527343177897437971975078078955898882605783639735498740459333307 ( 147 digits) SNFS difficulty: 170 digits. Divisors found: Sat Nov 29 17:02:34 2008 prp47 factor: 11678389683627973847213584321368447993233911399 Sat Nov 29 17:02:34 2008 prp101 factor: 15911762839346654192692129977862432931562688321822699857420110352345615549508686305420162237407946893 Sat Nov 29 17:02:34 2008 elapsed time 05:16:03 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 46.56 hours. Scaled time: 60.72 units (timescale=1.304). Factorization parameters were as follows: name: KA_3_169_7 n: 185823766991360923710679129196544755596402591828367442331733798414239140090653102165527343177897437971975078078955898882605783639735498740459333307 type: snfs skew: 1.62 deg: 5 c5: 1 c0: 11 m: 10000000000000000000000000000000000 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1900001) Primes: RFBsize:412849, AFBsize:412887, largePrimes:14693738 encountered Relations: rels:13330852, finalFF:847863 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 46.08 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.5,2.5,100000 total time: 46.56 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS; Msieve
(32·10149+31)/9 = 3(5)1489<150> = 23 · 1192127 · 3454681 · 5814839 · C129
C129 = P44 · P86
P44 = 36079668826573699943490114729420937250109313<44>
P86 = 17891589284599087776495371368847733054140180147919739353006755447057290876475925057937<86>
Number: 35559_149 N=645522616169409752919180544786267715281071636514574448021532325578189047306661052443515232321172943154564141276747304249108267281 ( 129 digits) SNFS difficulty: 151 digits. Divisors found: r1=36079668826573699943490114729420937250109313 r2=17891589284599087776495371368847733054140180147919739353006755447057290876475925057937 Version: Total time: 24.26 hours. Scaled time: 19.26 units (timescale=0.794). Factorization parameters were as follows: n: 645522616169409752919180544786267715281071636514574448021532325578189047306661052443515232321172943154564141276747304249108267281 m: 1000000000000000000000000000000 deg: 5 c5: 16 c0: 155 skew: 1.57 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 332704 x 332952 Total sieving time: 24.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 24.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(32·10158+31)/9 = 3(5)1579<159> = 1847 · 3271 · 782689767414187<15> · C137
C137 = P57 · P81
P57 = 728383830613617901512898035711531200163111814922121405509<57>
P81 = 103230986344316631452156190293703543504210710933180145720843938503614168819071729<81>
Number: 35559_158 N=75191781271495427961526192435963176611571086648507863294028382067951511505660654447069167461791164580416202384221687140995631470166755061 ( 137 digits) SNFS difficulty: 160 digits. Divisors found: r1=728383830613617901512898035711531200163111814922121405509 (pp57) r2=103230986344316631452156190293703543504210710933180145720843938503614168819071729 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 61.27 hours. Scaled time: 61.94 units (timescale=1.011). Factorization parameters were as follows: name: 35559_158 n: 75191781271495427961526192435963176611571086648507863294028382067951511505660654447069167461791164580416202384221687140995631470166755061 m: 40000000000000000000000000000000 deg: 5 c5: 125 c0: 124 skew: 1.00 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3350001) Primes: RFBsize:236900, AFBsize:237133, largePrimes:10009512 encountered Relations: rels:11723424, finalFF:1603464 Max relations in full relation-set: 28 Initial matrix: 474099 x 1603464 with sparse part having weight 209003057. Pruned matrix : 327083 x 329517 with weight 65552425. Total sieving time: 59.47 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.51 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 61.27 hours. --------- CPU info (if available) ----------
(32·10155+13)/9 = 3(5)1547<156> = 3 · 9745711663<10> · 836420183209442561075511309839<30> · C116
C116 = P41 · P75
P41 = 23094872044969571779279121773911112181383<41>
P75 = 629553425817664516608346615262883641525165764299729025538826136158686426449<75>
Number: 35557_155 N=14539455814731205321210177525875969087182313619367490212466311977932541637996102085909142345349193136322821376598967 ( 116 digits) SNFS difficulty: 156 digits. Divisors found: r1=23094872044969571779279121773911112181383 (pp41) r2=629553425817664516608346615262883641525165764299729025538826136158686426449 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 25.53 hours. Scaled time: 50.99 units (timescale=1.997). Factorization parameters were as follows: name: 35557_155 n: 14539455814731205321210177525875969087182313619367490212466311977932541637996102085909142345349193136322821376598967 m: 20000000000000000000000000000000 deg: 5 c5: 1 c0: 13 skew: 1.67 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2100001) Primes: RFBsize:203362, AFBsize:202632, largePrimes:7931710 encountered Relations: rels:8033044, finalFF:597631 Max relations in full relation-set: 28 Initial matrix: 406058 x 597631 with sparse part having weight 61275731. Pruned matrix : 323038 x 325132 with weight 32326940. Total sieving time: 23.64 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.53 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 25.53 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(32·10157+31)/9 = 3(5)1569<158> = 32 · 13 · 3343 · 314771 · 107802232591<12> · 11902574766281436363312409<26> · C111
C111 = P47 · P64
P47 = 34721041154083197424198540840683236213110001909<47>
P64 = 6482299664938003634923870800254260917289099912150023501829586029<64>
Number: 35559_157 N=225072193439412145701799215959772861124655915684613894776517073007926147419114083683529204169407787632869729361 ( 111 digits) Divisors found: r1=34721041154083197424198540840683236213110001909 (pp47) r2=6482299664938003634923870800254260917289099912150023501829586029 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.38 hours. Scaled time: 36.67 units (timescale=2.384). Factorization parameters were as follows: name: 35559_157 n: 225072193439412145701799215959772861124655915684613894776517073007926147419114083683529204169407787632869729361 skew: 28795.49 # norm 1.13e+16 c5: 46800 c4: 1274979120 c3: -523803857097587 c2: -954455472874104530 c1: 68225153952563267555272 c0: 198863934818240337723728640 # alpha -6.89 Y1: 444567509023 Y0: -1369034617122522968939 # Murphy_E 9.23e-10 # M 11475828137743923857118331731015828543479728004221583302539558888654103715022607496554975749211705474898107198 type: gnfs rlim: 2100000 alim: 2100000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1050000, 1950001) Primes: RFBsize:155805, AFBsize:155375, largePrimes:8686731 encountered Relations: rels:8631688, finalFF:456376 Max relations in full relation-set: 28 Initial matrix: 311259 x 456376 with sparse part having weight 50491100. Pruned matrix : 250053 x 251673 with weight 27602004. Polynomial selection time: 0.84 hours. Total sieving time: 13.96 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.35 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2100000,2100000,27,27,51,51,2.6,2.6,50000 total time: 15.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Tyler Cadigan / GGNFS, Msieve
(43·10192-7)/9 = 4(7)192<193> = 4451 · 5827 · 940903127 · 12835951153<11> · 2701303725402363678544195517<28> · C139
C139 = P54 · P86
P54 = 135427060717739009170914297860127597169429975010164729<54>
P86 = 41693801642367404962648784775123910677444951042004634952791915483103489484160391387347<86>
Number: 47777_192 N=5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963 ( 139 digits) SNFS difficulty: 195 digits. Divisors found: r1=135427060717739009170914297860127597169429975010164729 r2=41693801642367404962648784775123910677444951042004634952791915483103489484160391387347 Version: Total time: 593.99 hours. Scaled time: 1495.67 units (timescale=2.518). Factorization parameters were as follows: n: 5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963 m: 500000000000000000000000000000000000000 deg: 5 c5: 172 c0: -875 Y0: 500000000000000000000000000000000000000 Y1: -1 skew: 1.38 type: snfs lss: 1 rlim: 12800000 alim: 12800000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 12800000/12800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6400000, 1 ) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2014456 x 2014704 Total sieving time: 593.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,12800000,12800000,28,28,55,55,2.5,2.5,100000 total time: 593.99 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38+pol51 gnfs
8·10185+9 = 8(0)1849<186> = 7 · 24329 · 53381 · 25502165263849<14> · 1303028394848660857467715486468010946754987<43> · C121
C121 = P38 · P84
P38 = 11958203612381011725704592874030579567<38>
P84 = 221454293090384742218717863326746087344454398748013997486958446978047338608032823703<84>
Number: 80009_185 N=2648195527610722149244619035624215921962390457850886740531905304699190651782516458062408766925167070534368118892625076601 ( 121 digits) Divisors found: r1=11958203612381011725704592874030579567 (pp38) r2=221454293090384742218717863326746087344454398748013997486958446978047338608032823703 (pp84) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: name: 80009_185 n: 2648195527610722149244619035624215921962390457850886740531905304699190651782516458062408766925167070534368118892625076601 skew: 97324.20 # norm 6.02e+16 c5: 31560 c4: -20257094952 c3: -869302950855308 c2: 173746730595733330327 c1: 2705646423516967148423142 c0: -146634980995403207875729446336 # alpha -6.61 Y1: 4019354345677 Y0: -153025594366465211457007 # Murphy_E 2.66e-10 # M 2084414786921268954617093831981252894697800350894014333202808952118001393556414218128011869192530578591410857486809023958 type: gnfs rlim: 5200000 alim: 5200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2600000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 699597 x 699839 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.70 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5200000,5200000,27,27,52,52,2.5,2.5,100000 total time: 70.00 hours.
(32·10163+31)/9 = 3(5)1629<164> = 3 · 13 · 33533 · 13815635357301430349027<23> · C136
C136 = P52 · P84
P52 = 7298831326676946646025396317875694511838180349179983<52>
P84 = 269616373803723615329708115913185862970918638097728700348675818639575345943982545577<84>
SNFS difficulty: 165 digits. Divisors found: r1=7298831326676946646025396317875694511838180349179983 (pp52) r2=269616373803723615329708115913185862970918638097728700348675818639575345943982545577 (pp84) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: n: 1967884435303659598974407641705651605895826214331689001349496161987105599499654836345057185351290971556047757091915941837674076873585191 m: 400000000000000000000000000000000 deg: 5 c5: 125 c0: 124 skew: 1.00 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 751201 x 751443 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 32.00 hours.
(32·10172+13)/9 = 3(5)1717<173> = 37 · 2987983 · 15505397 · C158
C158 = P46 · P112
P46 = 3223320654117369921102155773727518551111001831<46>
P112 = 6434891389908080526697096790304309578136358069732443055338000019495154297132988986043062674697587170436074188981<112>
SNFS difficulty: 173 digits. Divisors found: r1=3223320654117369921102155773727518551111001831 (pp46) r2=6434891389908080526697096790304309578136358069732443055338000019495154297132988986043062674697587170436074188981 (pp112) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 20741718324092745817932403403493671875317896729662839811155637583900644726621173514191415102199691204642649327958919643967405329532734416609470589959731024211 m: 20000000000000000000000000000000000 deg: 5 c5: 100 c0: 13 skew: 0.66 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 6150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1033757 x 1033999 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.4,2.4,100000 total time: 52.00 hours.
By Markus Tervooren / GGNFS
(32·10160+31)/9 = 3(5)1599<161> = 3 · 43 · 139 · 20629781705287<14> · 2019091759073720141<19> · C125
C125 = P41 · P84
P41 = 49505366525422020814016668476770343965501<41>
P84 = 961612254795298853587706824117737416378847326019848732349508624487390819019261139067<84>
N=47604967128978778980308853599287784927336120234905235004022738211686430159655031390012816340428481995268348789459939011327567 ( 125 digits) SNFS difficulty: 161 digits. Divisors found: r1=49505366525422020814016668476770343965501 (pp41) r2=961612254795298853587706824117737416378847326019848732349508624487390819019261139067 (pp84) Version: GGNFS-0.77.1-20060722-nocona Total time: 30.26 hours. Scaled time: 46.29 units (timescale=1.530). Factorization parameters were as follows: n: 47604967128978778980308853599287784927336120234905235004022738211686430159655031390012816340428481995268348789459939011327567 m: 200000000000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 qintsize: 5000 type: snfs rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 1985001) Primes: RFBsize:243539, AFBsize:243245, largePrimes:10208774 encountered Relations: rels:12323629, finalFF:1513653 Max relations in full relation-set: 32 Initial matrix: 486848 x 1513653 with sparse part having weight 217147940. Pruned matrix : 344986 x 347484 with weight 86395308. Total sieving time: 27.94 hours. Total relation processing time: 0.09 hours. Matrix solve time: 2.14 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 30.26 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU E5335 @ 2.00GHz stepping 0b Intel(R) Xeon(R) CPU E5335 @ 2.00GHz stepping 0b Intel(R) Xeon(R) CPU E5335 @ 2.00GHz stepping 0b Memory: 16428772k/17825792k available (1928k kernel code, 343260k reserved, 867k data, 176k init) Calibrating delay using timer specific routine.. 3993.74 BogoMIPS (lpj=7987498) Calibrating delay using timer specific routine.. 3990.12 BogoMIPS (lpj=7980241) Calibrating delay using timer specific routine.. 3990.13 BogoMIPS (lpj=7980276) Calibrating delay using timer specific routine.. 3990.04 BogoMIPS (lpj=7980080)
By Robert Backstrom / GGNFS, Msieve
(29·10166-11)/9 = 3(2)1651<167> = 7 · 31 · 53 · 35251 · 497346601 · 213701737408337603<18> · C132
C132 = P62 · P71
P62 = 18906556686684146433835881345695559366409569958898328591881699<62>
P71 = 39552031510187221770337793580470173334223496149600838342975909506856043<71>
Number: n N=747792725820872276182403763957411243471551527733257813413020576660548430228202239146613462924753798426754801343957204384310879257057 ( 132 digits) SNFS difficulty: 167 digits. Divisors found: Fri Nov 28 03:42:05 2008 prp62 factor: 18906556686684146433835881345695559366409569958898328591881699 Fri Nov 28 03:42:05 2008 prp71 factor: 39552031510187221770337793580470173334223496149600838342975909506856043 Fri Nov 28 03:42:05 2008 elapsed time 02:47:08 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 44.06 hours. Scaled time: 36.96 units (timescale=0.839). Factorization parameters were as follows: name: KA_3_2_165_1 n: 747792725820872276182403763957411243471551527733257813413020576660548430228202239146613462924753798426754801343957204384310879257057 type: snfs skew: 0.52 deg: 5 c5: 290 c0: -11 m: 1000000000000000000000000000000000 rlim: 5400000 alim: 5400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2200001) Primes: RFBsize:374362, AFBsize:373593, largePrimes:15524089 encountered Relations: rels:14102407, finalFF:767427 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.53 hours. Total relation processing time: 0.53 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,56,56,2.5,2.5,100000 total time: 44.06 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(32·10151+13)/9 = 3(5)1507<152> = 37 · 2137 · 10781 · 158906947 · C135
C135 = P56 · P79
P56 = 35286918260832971119796069080905050350002961841266080149<56>
P79 = 7438503322170209816946556791363220387621438800981627959820246469138811695379971<79>
Number: n N=262481858712354698059517611967957792929674054710118423170194967391373575737986775226844972214369983360318353897435684826276256295295679 ( 135 digits) SNFS difficulty: 152 digits. Divisors found: Fri Nov 28 13:16:03 2008 prp56 factor: 35286918260832971119796069080905050350002961841266080149 Fri Nov 28 13:16:03 2008 prp79 factor: 7438503322170209816946556791363220387621438800981627959820246469138811695379971 Fri Nov 28 13:16:03 2008 elapsed time 00:30:14 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 12.47 hours. Scaled time: 10.43 units (timescale=0.836). Factorization parameters were as follows: name: KA_3_5_150_7 n: 262481858712354698059517611967957792929674054710118423170194967391373575737986775226844972214369983360318353897435684826276256295295679 type: snfs skew: 1.05 deg: 5 c5: 10 c0: 13 m: 2000000000000000000000000000000 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 700001) Primes: RFBsize:176302, AFBsize:176888, largePrimes:10574079 encountered Relations: rels:9335262, finalFF:404813 Max relations in full relation-set: 28 Initial matrix: 353256 x 404813 with sparse part having weight 34304116. Pruned matrix : 315684 x 317514 with weight 23782300. Total sieving time: 12.27 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.5,2.5,100000 total time: 12.47 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(28·10179+71)/9 = 3(1)1789<180> = 41 · C178
C178 = P78 · P101
P78 = 463075775995206321032650596711128078474740747807397760979408995670133078825749<78>
P101 = 16386250963897014588548079794123952353280585186116441103459154761169411054261602389191949558824062491<101>
Number: n N=7588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880759 ( 178 digits) SNFS difficulty: 181 digits. Divisors found: Fri Nov 28 18:24:07 2008 prp78 factor: 463075775995206321032650596711128078474740747807397760979408995670133078825749 Fri Nov 28 18:24:08 2008 prp101 factor: 16386250963897014588548079794123952353280585186116441103459154761169411054261602389191949558824062491 Fri Nov 28 18:24:08 2008 elapsed time 04:22:22 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.62 hours. Scaled time: 64.66 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_1_178_9 n: 7588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880758807588075880759 type: snfs skew: 1.91 deg: 5 c5: 14 c0: 355 m: 1000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2100001) Primes: RFBsize:539777, AFBsize:539736, largePrimes:16473243 encountered Relations: rels:15646828, finalFF:1184593 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 31.20 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,56,56,2.5,2.5,100000 total time: 31.62 hours. --------- CPU info (if available) ----------
Factorizations of 366...661 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS
(32·10150+31)/9 = 3(5)1499<151> = 7 · 15073 · 920219 · 4319202413<10> · 265240094732112281<18> · C113
C113 = P43 · P70
P43 = 9328504925290444441822005205016085050202529<43>
P70 = 3426602734277911210608358720760753470015484796145599102726577084452023<70>
Number: 35559_150 N=31965080483725198765375891316094958518982027309305547961910175720694233352383936555933314648188090942893133766167 ( 113 digits) SNFS difficulty: 151 digits. Divisors found: r1=9328504925290444441822005205016085050202529 (pp43) r2=3426602734277911210608358720760753470015484796145599102726577084452023 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.37 hours. Scaled time: 22.29 units (timescale=2.379). Factorization parameters were as follows: n: 31965080483725198765375891316094958518982027309305547961910175720694233352383936555933314648188090942893133766167 m: 2000000000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 1600001) Primes: RFBsize:148933, AFBsize:148876, largePrimes:6640709 encountered Relations: rels:6470040, finalFF:365507 Max relations in full relation-set: 28 Initial matrix: 297873 x 365507 with sparse part having weight 36847502. Pruned matrix : 270279 x 271832 with weight 24272165. Total sieving time: 8.90 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.37 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,49,49,2.4,2.4,100000 total time: 9.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(32·10159+31)/9 = 3(5)1589<160> = 71 · 4099 · 2686673839<10> · 2236273950894083539<19> · 142399011313204411709<21> · C107
C107 = P42 · P65
P42 = 691801292122926124619142949686718950073469<42>
P65 = 20641578597385298121235556805106391775954256529093190003746261231<65>
Number: 35559_159 N=14279870745128086325073949925715343467378244321563381991867004239842949568432183034744786374363261516380339 ( 107 digits) Divisors found: r1=691801292122926124619142949686718950073469 (pp42) r2=20641578597385298121235556805106391775954256529093190003746261231 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.48 hours. Scaled time: 22.54 units (timescale=2.378). Factorization parameters were as follows: name: 35559_159 n: 14279870745128086325073949925715343467378244321563381991867004239842949568432183034744786374363261516380339 skew: 6610.55 # norm 1.46e+14 c5: 25440 c4: -137352764 c3: 14140130325568 c2: 11186446944255427 c1: -256581559691255668326 c0: 88625683951583427259919 # alpha -5.09 Y1: 6223772741 Y0: -223790397110437034630 # Murphy_E 1.59e-09 # M 11583433849997306632283936826464805133153048936625287091066066575029620600574454972810926420293069935986582 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 51/51 Sieved algebraic special-q in [900000, 1450001) Primes: RFBsize:135072, AFBsize:134928, largePrimes:5377820 encountered Relations: rels:5449762, finalFF:384816 Max relations in full relation-set: 28 Initial matrix: 270076 x 384816 with sparse part having weight 38468322. Pruned matrix : 215248 x 216662 with weight 19235135. Polynomial selection time: 0.55 hours. Total sieving time: 8.62 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,51,51,2.6,2.6,50000 total time: 9.48 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS
(32·10142+31)/9 = 3(5)1419<143> = 3 · 64561841 · 104257759 · 377994599 · C118
C118 = P37 · P82
P37 = 1213740532142468235120515988563847529<37>
P82 = 3837871883887678543854926447937643139346902671587478192888671244047886126346297597<82>
Number: 35559_142 N=4658180662644448017979591182199206192957275439326873380189147999176379892124261928899928390307204730058222534367087813 ( 118 digits) SNFS difficulty: 143 digits. Divisors found: r1=1213740532142468235120515988563847529 (pp37) r2=3837871883887678543854926447937643139346902671587478192888671244047886126346297597 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.65 hours. Scaled time: 21.34 units (timescale=2.003). Factorization parameters were as follows: name: 35559_142 n: 4658180662644448017979591182199206192957275439326873380189147999176379892124261928899928390307204730058222534367087813 m: 20000000000000000000000000000 deg: 5 c5: 100 c0: 31 skew: 0.79 type: snfs lss: 1 rlim: 1730000 alim: 1730000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1730000/1730000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [865000, 1765001) Primes: RFBsize:130213, AFBsize:130606, largePrimes:3697321 encountered Relations: rels:3696975, finalFF:308074 Max relations in full relation-set: 28 Initial matrix: 260883 x 308074 with sparse part having weight 26725119. Pruned matrix : 243807 x 245175 with weight 18265017. Total sieving time: 9.84 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.61 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1730000,1730000,26,26,48,48,2.3,2.3,100000 total time: 10.65 hours. --------- CPU info (if available) ----------
(32·10147+13)/9 = 3(5)1467<148> = 577 · 3003359 · 455596076143783<15> · C124
C124 = P38 · P42 · P45
P38 = 72519105901762960424586887146043201269<38>
P42 = 237393285754289721684399278650422527285701<42>
P45 = 261591459190022276610663797779771133402539237<45>
Number: 35557_147 N=4503440539192284694080254631636649733208049606510396053663091715437410543570581827078424255488049582122601901054604325523853 ( 124 digits) SNFS difficulty: 148 digits. Divisors found: r1=72519105901762960424586887146043201269 (pp38) r2=237393285754289721684399278650422527285701 (pp42) r3=261591459190022276610663797779771133402539237 (pp45) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.05 hours. Scaled time: 19.22 units (timescale=1.009). Factorization parameters were as follows: name: 35557_147 n: 4503440539192284694080254631636649733208049606510396053663091715437410543570581827078424255488049582122601901054604325523853 m: 200000000000000000000000000000 deg: 5 c5: 100 c0: 13 skew: 0.66 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2750001) Primes: RFBsize:155805, AFBsize:156147, largePrimes:4692420 encountered Relations: rels:5382227, finalFF:751102 Max relations in full relation-set: 28 Initial matrix: 312016 x 751102 with sparse part having weight 87947570. Pruned matrix : 224954 x 226578 with weight 36935309. Total sieving time: 18.48 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.43 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 19.05 hours. --------- CPU info (if available) ----------
(32·10138+13)/9 = 3(5)1377<139> = 151 · 239070938762608352011<21> · C116
C116 = P35 · P82
P35 = 38286075216383022257640191847520543<35>
P82 = 2572544443884594548631930409137038593963600087065351749783286536175566198407004759<82>
Number: 35557_138 N=98492630076053819893362066775404397948947703796013667845436549228724048750081144551122623075631307653019377351264137 ( 116 digits) SNFS difficulty: 140 digits. Divisors found: r1=38286075216383022257640191847520543 (pp35) r2=2572544443884594548631930409137038593963600087065351749783286536175566198407004759 (pp82) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 11.96 hours. Scaled time: 5.64 units (timescale=0.472). Factorization parameters were as follows: name: 35557_138 n: 98492630076053819893362066775404397948947703796013667845436549228724048750081144551122623075631307653019377351264137 m: 4000000000000000000000000000 deg: 5 c5: 125 c0: 52 skew: 0.84 type: snfs lss: 1 rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [755000, 1730001) Primes: RFBsize:114886, AFBsize:114462, largePrimes:3597792 encountered Relations: rels:3646300, finalFF:319530 Max relations in full relation-set: 28 Initial matrix: 229414 x 319530 with sparse part having weight 29910094. Pruned matrix : 203028 x 204239 with weight 15985370. Total sieving time: 10.78 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.94 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 11.96 hours. --------- CPU info (if available) ----------
(32·10143+13)/9 = 3(5)1427<144> = 32 · 43 · 136300339079<12> · C130
C130 = P54 · P77
P54 = 129540884783737232563732791036117978164375414441872727<54>
P77 = 52034658491669865443373273867237919313125763903812941156376897881115098465367<77>
Number: 35557_143 N=6740615700430520249355904501258211265810098697425404834449623922044888793184621364778853022916598827039769466350315646703231345809 ( 130 digits) SNFS difficulty: 145 digits. Divisors found: r1=129540884783737232563732791036117978164375414441872727 (pp54) r2=52034658491669865443373273867237919313125763903812941156376897881115098465367 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.48 hours. Scaled time: 34.27 units (timescale=1.960). Factorization parameters were as follows: name: 35557_143 n: 6740615700430520249355904501258211265810098697425404834449623922044888793184621364778853022916598827039769466350315646703231345809 m: 40000000000000000000000000000 deg: 5 c5: 125 c0: 52 skew: 0.84 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [915000, 2415001) Primes: RFBsize:137166, AFBsize:136949, largePrimes:4152822 encountered Relations: rels:4421422, finalFF:440986 Max relations in full relation-set: 28 Initial matrix: 274181 x 440986 with sparse part having weight 48070702. Pruned matrix : 226240 x 227674 with weight 23821835. Total sieving time: 16.49 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.74 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1830000,1830000,26,26,49,49,2.3,2.3,100000 total time: 17.48 hours. --------- CPU info (if available) ----------
(32·10144+13)/9 = 3(5)1437<145> = 1562829649<10> · C136
C136 = P53 · P84
P53 = 21343091280175666099265930659020264876344915006263847<53>
P84 = 106595410233811335107263401150127469936167809467849002202851268941550486159081360419<84>
Number: 35557_144 N=2275075570668006667408416664582715217962668403122646130164091579475502742753222207109250686832570806669892884503086078549022687216471893 ( 136 digits) SNFS difficulty: 146 digits. Divisors found: r1=21343091280175666099265930659020264876344915006263847 (pp53) r2=106595410233811335107263401150127469936167809467849002202851268941550486159081360419 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.18 hours. Scaled time: 27.80 units (timescale=1.960). Factorization parameters were as follows: name: 35557_144 n: 2275075570668006667408416664582715217962668403122646130164091579475502742753222207109250686832570806669892884503086078549022687216471893 m: 100000000000000000000000000000 deg: 5 c5: 16 c0: 65 skew: 1.32 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 2055001) Primes: RFBsize:142718, AFBsize:142665, largePrimes:4190102 encountered Relations: rels:4488048, finalFF:534806 Max relations in full relation-set: 28 Initial matrix: 285447 x 534806 with sparse part having weight 51597395. Pruned matrix : 216011 x 217502 with weight 20112430. Total sieving time: 13.43 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.53 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 14.18 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(32·10201+13)/9 = 3(5)2007<202> = 71 · C200
C200 = P35 · P165
P35 = 64499300335345945772569335465848633<35>
P165 = 776415356460893542572148430011329803890783961378327293176367619348587721447168535503721077213200924311601722917814388070780548658836862919766647808745906924624959499<165>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2420471301 Step 1 took 35354ms Step 2 took 21406ms ********** Factor found in step 2: 64499300335345945772569335465848633 Found probable prime factor of 35 digits: 64499300335345945772569335465848633 Probable prime cofactor 776415356460893542572148430011329803890783961378327293176367619348587721447168535503721077213200924311601722917814388070780548658836862919766647808745906924624959499 has 165 digits
(32·10189+13)/9 = 3(5)1887<190> = 19 · 107 · C187
C187 = P39 · P148
P39 = 843460198256475257121613143362568122851<39>
P148 = 2073506955858448830349465499436664370903520495707406284060409753621333767261713347013056871399165319114052676049692680217196117332798366844122275079<148>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3643605157 Step 1 took 28189ms Step 2 took 19369ms ********** Factor found in step 2: 843460198256475257121613143362568122851 Found probable prime factor of 39 digits: 843460198256475257121613143362568122851 Probable prime cofactor 2073506955858448830349465499436664370903520495707406284060409753621333767261713347013056871399165319114052676049692680217196117332798366844122275079 has 148 digits
(32·10168+13)/9 = 3(5)1677<169> = 2293 · C166
C166 = P68 · P98
P68 = 34830569746839257317899826291328772117731947319522284446012964814699<68>
P98 = 44518737073861990630104024619714585669202122565337947057601576528643764758484259563116570090807251<98>
SNFS difficulty: 170 digits. Divisors found: r1=34830569746839257317899826291328772117731947319522284446012964814699 (pp68) r2=44518737073861990630104024619714585669202122565337947057601576528643764758484259563116570090807251 (pp98) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 1550612976692348694093133691912584193438968842370499588118428066094878131511363085719823617773901245336046906042544943547996317294180355671851528807481707612540582449 m: 4000000000000000000000000000000000 deg: 5 c5: 125 c0: 52 skew: 0.84 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2400000, 5400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 924774 x 925016 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,53,53,2.5,2.5,200000 total time: 60.00 hours.
(32·10161+31)/9 = 3(5)1609<162> = 19 · 47692016535428836243<20> · C141
C141 = P66 · P76
P66 = 110241649022448520071238394292360412717056973196080358021493292843<66>
P76 = 3559282679293368344699238534100485608179773689995381905642703269366099354989<76>
SNFS difficulty: 162 digits. Divisors found: r1=110241649022448520071238394292360412717056973196080358021493292843 (pp66) r2=3559282679293368344699238534100485608179773689995381905642703269366099354989 (pp76) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 392381191902339709749372813102397984185725242296439646480483642273917995502467744884092300496990794306058047534341998381451290475411990043727 m: 200000000000000000000000000000000 deg: 5 c5: 10 c0: 31 skew: 1.25 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1800000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 689147 x 689389 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,52,52,2.4,2.4,100000 total time: 19.00 hours.
By Robert Backstrom / GGNFS, Msieve
(14·10175-23)/9 = 1(5)1743<176> = 13 · 7573 · C171
C171 = P43 · P128
P43 = 2038700949876497258819164740062522064954709<43>
P128 = 77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333<128>
Number: n N=158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097 ( 171 digits) SNFS difficulty: 176 digits. Divisors found: Thu Nov 27 04:51:58 2008 prp43 factor: 2038700949876497258819164740062522064954709 Thu Nov 27 04:51:58 2008 prp128 factor: 77503388727423169575714188322817654539111949909475491882640338731051584806905658501368959790339414055676600291226770718963064333 Thu Nov 27 04:51:59 2008 elapsed time 03:36:08 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.92 hours. Scaled time: 40.86 units (timescale=2.051). Factorization parameters were as follows: name: KA_1_5_174_3 n: 158006232217245025907379003906139783599178819038848089422498507405413519238951696366195243786687072042941579452869562469456831004434332045582540762786372188194451498294097 type: snfs skew: 1.10 deg: 5 c5: 14 c0: -23 m: 100000000000000000000000000000000000 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3800001) Primes: RFBsize:508261, AFBsize:508901, largePrimes:18196504 encountered Relations: rels:17583392, finalFF:1197106 Max relations in full relation-set: 28 Initial matrix: 1017230 x 1197106 with sparse part having weight 109758757. Pruned matrix : Total sieving time: 19.33 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,56,56,2.5,2.5,100000 total time: 19.92 hours. --------- CPU info (if available) ----------
9·10167+1 = 9(0)1661<168> = 65011 · 331853765402124003677<21> · C143
C143 = P55 · P88
P55 = 7113900758268929663283411570479354669535798745893423331<55>
P88 = 5864096533496964606518020454924687639490103035820928855353490102504942263905443892896093<88>
Number: n N=41716600776206258411222477166102973461160042517623071486739187464549952517470294390048761365003310345273758999726780709270940796628119644945783 ( 143 digits) SNFS difficulty: 167 digits. Divisors found: Thu Nov 27 10:01:19 2008 prp55 factor: 7113900758268929663283411570479354669535798745893423331 Thu Nov 27 10:01:19 2008 prp88 factor: 5864096533496964606518020454924687639490103035820928855353490102504942263905443892896093 Thu Nov 27 10:01:19 2008 elapsed time 02:38:18 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.92 hours. Scaled time: 57.87 units (timescale=1.813). Factorization parameters were as follows: name: KA_9_0_166_1 n: 41716600776206258411222477166102973461160042517623071486739187464549952517470294390048761365003310345273758999726780709270940796628119644945783 type: snfs skew: 0.26 deg: 5 c5: 900 c0: 1 m: 1000000000000000000000000000000000 rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1850001) Primes: RFBsize:380800, AFBsize:379512, largePrimes:14682360 encountered Relations: rels:13224417, finalFF:760889 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 31.46 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,56,56,2.5,2.5,100000 total time: 31.92 hours. --------- CPU info (if available) ----------
(29·10162-11)/9 = 3(2)1611<163> = 893147 · 19471057 · 746734138448512777471322756059<30> · C120
C120 = P53 · P67
P53 = 46463222638182568129303288420608644739547623874362397<53>
P67 = 5340324918609786317635870057618451405996157273164823665163903114313<67>
Number: n N=248128705653600704252183940981166727591290446648117130564206869724052667609229038959837362742059371119512152905479688261 ( 120 digits) SNFS difficulty: 163 digits. Divisors found: Thu Nov 27 22:04:17 2008 prp53 factor: 46463222638182568129303288420608644739547623874362397 Thu Nov 27 22:04:17 2008 prp67 factor: 5340324918609786317635870057618451405996157273164823665163903114313 Thu Nov 27 22:04:17 2008 elapsed time 02:32:33 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.18 hours. Scaled time: 61.20 units (timescale=1.451). Factorization parameters were as follows: name: KA_3_2_161_1 n: 248128705653600704252183940981166727591290446648117130564206869724052667609229038959837362742059371119512152905479688261 type: snfs skew: 0.33 deg: 5 c5: 2900 c0: -11 m: 100000000000000000000000000000000 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1800001) Primes: RFBsize:315948, AFBsize:316467, largePrimes:14976512 encountered Relations: rels:13784661, finalFF:723023 Max relations in full relation-set: 28 Initial matrix: 632482 x 723023 with sparse part having weight 64151002. Pruned matrix : 558893 x 562119 with weight 45340058. Total sieving time: 41.44 hours. Total relation processing time: 0.73 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.5,2.5,100000 total time: 42.18 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(31·10162+41)/9 = 3(4)1619<163> = 4829107 · 227519218577615844600233<24> · C133
C133 = P64 · P69
P64 = 4497256276942913708784333111919888344610032022987466112890666921<64>
P69 = 697086435613153702704174629418486140293389147332010155586147216393899<69>
Number: n N=3134976348133017753986237508264591675227397506931118169753747860898160990515607185310712968530556574409882478282528797528962745514979 ( 133 digits) SNFS difficulty: 163 digits. Divisors found: Thu Nov 27 01:18:58 2008 prp64 factor: 4497256276942913708784333111919888344610032022987466112890666921 Thu Nov 27 01:18:58 2008 prp69 factor: 697086435613153702704174629418486140293389147332010155586147216393899 Thu Nov 27 01:18:58 2008 elapsed time 02:47:55 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 46.31 hours. Scaled time: 93.82 units (timescale=2.026). Factorization parameters were as follows: name: KA_3_4_161_9 n: 3134976348133017753986237508264591675227397506931118169753747860898160990515607185310712968530556574409882478282528797528962745514979 type: snfs skew: 0.42 deg: 5 c5: 3100 c0: 41 m: 100000000000000000000000000000000 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2400001) Primes: RFBsize:315948, AFBsize:316018, largePrimes:15816324 encountered Relations: rels:14466655, finalFF:677553 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 45.67 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.5,2.5,100000 total time: 46.31 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(28·10165+71)/9 = 3(1)1649<166> = 1753 · 6055958639980063027<19> · 965316807436900108524947<24> · C120
C120 = P35 · P85
P35 = 70439990548456091885222669101231123<35>
P85 = 4309843978488043509530024860013260980329590471359429014805762306586306512837214055029<85>
Number: 31119_165 N=303585369110018185007471879360898991168929903700924426959244422935273048194869215246139424974107724672809347382969467567 ( 120 digits) Divisors found: r1=70439990548456091885222669101231123 (pp35) r2=4309843978488043509530024860013260980329590471359429014805762306586306512837214055029 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 40.96 hours. Scaled time: 97.08 units (timescale=2.370). Factorization parameters were as follows: name: 31119_165 n: 303585369110018185007471879360898991168929903700924426959244422935273048194869215246139424974107724672809347382969467567 skew: 33667.21 # norm 1.82e+16 c5: 32340 c4: -23522374526 c3: 310860150727100 c2: 20865714667004567049 c1: -32102243520844357032692 c0: -2872046884747467271572696700 # alpha -5.20 Y1: 976166667797 Y0: -98743561855902881885457 # Murphy_E 2.75e-10 # M 153187704591743685195168053080016067196268183713315786138378510697769178895803432423620387704969606083977056054982934738 type: gnfs rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2100000, 4400001) Primes: RFBsize:296314, AFBsize:297542, largePrimes:9896798 encountered Relations: rels:10038568, finalFF:728716 Max relations in full relation-set: 28 Initial matrix: 593938 x 728716 with sparse part having weight 78608378. Pruned matrix : 495863 x 498896 with weight 56165481. Polynomial selection time: 2.65 hours. Total sieving time: 35.87 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.08 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4200000,4200000,27,27,53,53,2.4,2.4,100000 total time: 40.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(32·10105+13)/9 = 3(5)1047<106> = 6943591 · 11775493 · C92
C92 = P35 · P58
P35 = 16322666212462824649542261200640023<35>
P58 = 2664116050279468052227828533131936012933075971887327880993<58>
SNFS difficulty: 106 digits. Divisors found: r1=16322666212462824649542261200640023 (pp35) r2=2664116050279468052227828533131936012933075971887327880993 (pp58) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.565). Factorization parameters were as follows: n: 43485477039976584910743136045130133133538428294391933903186090881596753760752964623976782839 m: 200000000000000000000000000 deg: 4 c4: 20 c0: 13 skew: 0.90 type: snfs lss: 1 rlim: 420000 alim: 420000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 420000/420000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [210000, 270001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38130 x 38343 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106,4,0,0,0,0,0,0,0,0,420000,420000,25,25,46,46,2.2,2.2,20000 total time: 0.50 hours.
(32·10170+13)/9 = 3(5)1697<171> = 32 · 7 · 5540993 · 12984208595306517726286012309466401<35> · C128
C128 = P29 · P99
P29 = 79463930140396661143010131997<29>
P99 = 987174192828764409699802414185584254672009061795451677369777853855095127393439210182651571314227959<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4231249235 Step 1 took 27069ms Step 2 took 20682ms ********** Factor found in step 2: 79463930140396661143010131997 Found probable prime factor of 29 digits: 79463930140396661143010131997
(32·10150+13)/9 = 3(5)1497<151> = 34178423 · C144
C144 = P52 · P92
P52 = 2431428001729590940164509177974037642037881794664501<52>
P92 = 42785246111212653779850385352873604265492028686791920253084903971196032603178702127108172759<92>
SNFS difficulty: 151 digits. Divisors found: r1=2431428001729590940164509177974037642037881794664501 (pp52) r2=42785246111212653779850385352873604265492028686791920253084903971196032603178702127108172759 (pp92) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 104029245455694534401296266815925227315360792262286517887485784688063447384788805368684083392482899388177024889520372416116318636338357552528259 m: 2000000000000000000000000000000 deg: 5 c5: 1 c0: 13 skew: 1.67 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 289384 x 289626 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,200000 total time: 10.00 hours.
(32·10176+31)/9 = 3(5)1759<177> = 857 · 1303 · C171
C171 = P40 · P131
P40 = 3660718354755801093405249716097352669909<40>
P131 = 86979301255766846910552733876279826203666396318195941678536718624178967053141838401347217342937724437358746417149543025182392182581<131>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3906121173 Step 1 took 24827ms Step 2 took 17271ms ********** Factor found in step 2: 3660718354755801093405249716097352669909 Found probable prime factor of 40 digits: 3660718354755801093405249716097352669909 Probable prime cofactor 86979301255766846910552733876279826203666396318195941678536718624178967053141838401347217342937724437358746417149543025182392182581 has 131 digits
(32·10159+13)/9 = 3(5)1587<160> = 23 · 59 · 489677 · C151
C151 = P61 · P91
P61 = 1232966069094936177518596294215111397980392397178880244356891<61>
P91 = 4339770769793435292184566514528285478018485043899804024027687412872122711201864678555927143<91>
SNFS difficulty: 161 digits. Divisors found: r1=1232966069094936177518596294215111397980392397178880244356891 (pp61) r2=4339770769793435292184566514528285478018485043899804024027687412872122711201864678555927143 (pp91) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 5350790106805317102401796263181789103694200689326538071352094150203217297960148837249875002658694735842746643525823775285104514761742272980566285992413 m: 100000000000000000000000000000000 deg: 5 c5: 16 c0: 65 skew: 1.32 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 503048 x 503290 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.5,2.5,200000 total time: 22.00 hours.
(32·10153+13)/9 = 3(5)1527<154> = 19 · 218143 · 70572269 · C140
C140 = P42 · P98
P42 = 403967241451444975239778660111155267040127<42>
P98 = 30090704578648225872257958579041618055553664570878690395590884572436070064354330906165968391395267<98>
SNFS difficulty: 155 digits. Divisors found: r1=403967241451444975239778660111155267040127 (pp42) r2=30090704578648225872257958579041618055553664570878690395590884572436070064354330906165968391395267 (pp98) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 12155658921966888698616208655832446688236837622138948118055634331019789700340514206626868868857159960301790182378014050733043219562806878909 m: 4000000000000000000000000000000 deg: 5 c5: 125 c0: 52 skew: 0.84 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1350000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 563951 x 564193 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,52,52,2.5,2.5,100000 total time: 13.00 hours.
(32·10200+31)/9 = 3(5)1999<201> = 47 · 18951629 · 486479627 · 3127490721447603892747013<25> · C159
C159 = P31 · P128
P31 = 4028141074602949806622803794063<31>
P128 = 65132493605364354978645976959047691248910542452002211669809096765307018582702503470064768992992787394098368670588376753466133461<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=251454589 Step 1 took 24715ms Step 2 took 16344ms ********** Factor found in step 2: 4028141074602949806622803794063 Found probable prime factor of 31 digits: 4028141074602949806622803794063 Probable prime cofactor 65132493605364354978645976959047691248910542452002211669809096765307018582702503470064768992992787394098368670588376753466133461 has 128 digits
By Erik Branger / GGNFS, Msieve
8·10168+3 = 8(0)1673<169> = 11 · 7508952959070127<16> · 67190157772167649<17> · C136
C136 = P50 · P87
P50 = 13469805809745432155725685004278020183984235651737<50>
P87 = 107016544227351834704803055140285312688017262106116130497648324056315093035478326557023<87>
Number: 80003_168 N=1441492069172462733055271981772212297398850822494070561575278242939498872337270030684777421160455311668790312909413094797598647699498951 ( 136 digits) SNFS difficulty: 170 digits. Divisors found: r1=13469805809745432155725685004278020183984235651737 r2=107016544227351834704803055140285312688017262106116130497648324056315093035478326557023 Version: Total time: 78.19 hours. Scaled time: 61.54 units (timescale=0.787). Factorization parameters were as follows: n: 1441492069172462733055271981772212297398850822494070561575278242939498872337270030684777421160455311668790312909413094797598647699498951 m: 10000000000000000000000000000000000 deg: 5 c5: 2 c0: 75 skew: 2.06 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 4400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 809243 x 809491 Total sieving time: 78.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.4,2.4,100000 total time: 78.19 hours. --------- CPU info (if available) ----------
(32·10136+31)/9 = 3(5)1359<137> = 3 · 496891 · 1122571 · 4761415135792806704700849085613258322433<40> · C85
C85 = P35 · P50
P35 = 92123373788344372285635615769596739<35>
P50 = 48440139168210650866664274877353596332333457620279<50>
Tue Nov 25 20:57:27 2008 Msieve v. 1.38 Tue Nov 25 20:57:27 2008 random seeds: cf745a60 a52fd4cc Tue Nov 25 20:57:27 2008 factoring 4462469046952490638354343160769488971248707524461871437573226959519017881746418670181 (85 digits) Tue Nov 25 20:57:28 2008 searching for 15-digit factors Tue Nov 25 20:57:30 2008 commencing quadratic sieve (85-digit input) Tue Nov 25 20:57:30 2008 using multiplier of 1 Tue Nov 25 20:57:30 2008 using 64kb Pentium 4 sieve core Tue Nov 25 20:57:30 2008 sieve interval: 6 blocks of size 65536 Tue Nov 25 20:57:30 2008 processing polynomials in batches of 17 Tue Nov 25 20:57:30 2008 using a sieve bound of 1434241 (54676 primes) Tue Nov 25 20:57:30 2008 using large prime bound of 116173521 (26 bits) Tue Nov 25 20:57:30 2008 using double large prime bound of 328997602795950 (41-49 bits) Tue Nov 25 20:57:30 2008 using trial factoring cutoff of 49 bits Tue Nov 25 20:57:30 2008 polynomial 'A' values have 11 factors Tue Nov 25 21:50:59 2008 54899 relations (15846 full + 39053 combined from 576302 partial), need 54772 Tue Nov 25 21:51:02 2008 begin with 592148 relations Tue Nov 25 21:51:02 2008 reduce to 130381 relations in 10 passes Tue Nov 25 21:51:02 2008 attempting to read 130381 relations Tue Nov 25 21:51:06 2008 recovered 130381 relations Tue Nov 25 21:51:06 2008 recovered 111038 polynomials Tue Nov 25 21:51:07 2008 attempting to build 54899 cycles Tue Nov 25 21:51:07 2008 found 54899 cycles in 5 passes Tue Nov 25 21:51:07 2008 distribution of cycle lengths: Tue Nov 25 21:51:07 2008 length 1 : 15846 Tue Nov 25 21:51:07 2008 length 2 : 10901 Tue Nov 25 21:51:07 2008 length 3 : 9452 Tue Nov 25 21:51:07 2008 length 4 : 7155 Tue Nov 25 21:51:07 2008 length 5 : 4909 Tue Nov 25 21:51:07 2008 length 6 : 2926 Tue Nov 25 21:51:07 2008 length 7 : 1730 Tue Nov 25 21:51:07 2008 length 9+: 1980 Tue Nov 25 21:51:07 2008 largest cycle: 16 relations Tue Nov 25 21:51:07 2008 matrix is 54676 x 54899 (11.8 MB) with weight 2881914 (52.49/col) Tue Nov 25 21:51:07 2008 sparse part has weight 2881914 (52.49/col) Tue Nov 25 21:51:08 2008 filtering completed in 3 passes Tue Nov 25 21:51:08 2008 matrix is 49850 x 49914 (10.9 MB) with weight 2649803 (53.09/col) Tue Nov 25 21:51:08 2008 sparse part has weight 2649803 (53.09/col) Tue Nov 25 21:51:08 2008 saving the first 48 matrix rows for later Tue Nov 25 21:51:08 2008 matrix is 49802 x 49914 (6.4 MB) with weight 2011559 (40.30/col) Tue Nov 25 21:51:08 2008 sparse part has weight 1389929 (27.85/col) Tue Nov 25 21:51:08 2008 matrix includes 64 packed rows Tue Nov 25 21:51:08 2008 using block size 19965 for processor cache size 512 kB Tue Nov 25 21:51:09 2008 commencing Lanczos iteration Tue Nov 25 21:51:09 2008 memory use: 6.8 MB Tue Nov 25 21:51:32 2008 lanczos halted after 790 iterations (dim = 49799) Tue Nov 25 21:51:32 2008 recovered 15 nontrivial dependencies Tue Nov 25 21:51:34 2008 prp35 factor: 92123373788344372285635615769596739 Tue Nov 25 21:51:34 2008 prp50 factor: 48440139168210650866664274877353596332333457620279 Tue Nov 25 21:51:34 2008 elapsed time 00:54:07
(32·10148+13)/9 = 3(5)1477<149> = 37 · 1015690043<10> · 21788482138371211<17> · 331676232498798305313287633537<30> · C93
C93 = P38 · P55
P38 = 94903203682704040124208587387626991143<38>
P55 = 1379502043103630182118926944969415246125508853045791327<55>
Wed Nov 26 12:04:05 2008 Msieve v. 1.38 Wed Nov 26 12:04:05 2008 random seeds: ba40a840 d9ff2749 Wed Nov 26 12:04:05 2008 factoring 130919163377370183397007958071376655425247437752619741439878676248451252269473992284455216761 (93 digits) Wed Nov 26 12:04:06 2008 searching for 15-digit factors Wed Nov 26 12:04:07 2008 commencing quadratic sieve (93-digit input) Wed Nov 26 12:04:07 2008 using multiplier of 1 Wed Nov 26 12:04:07 2008 using 32kb Intel Core sieve core Wed Nov 26 12:04:07 2008 sieve interval: 36 blocks of size 32768 Wed Nov 26 12:04:07 2008 processing polynomials in batches of 6 Wed Nov 26 12:04:07 2008 using a sieve bound of 1885753 (70588 primes) Wed Nov 26 12:04:07 2008 using large prime bound of 220633101 (27 bits) Wed Nov 26 12:04:07 2008 using double large prime bound of 1043775707505921 (42-50 bits) Wed Nov 26 12:04:07 2008 using trial factoring cutoff of 50 bits Wed Nov 26 12:04:07 2008 polynomial 'A' values have 12 factors Wed Nov 26 13:42:50 2008 70721 relations (18727 full + 51994 combined from 909015 partial), need 70684 Wed Nov 26 13:42:51 2008 begin with 927742 relations Wed Nov 26 13:42:52 2008 reduce to 175950 relations in 10 passes Wed Nov 26 13:42:52 2008 attempting to read 175950 relations Wed Nov 26 13:42:54 2008 recovered 175950 relations Wed Nov 26 13:42:54 2008 recovered 151728 polynomials Wed Nov 26 13:42:54 2008 attempting to build 70721 cycles Wed Nov 26 13:42:54 2008 found 70721 cycles in 6 passes Wed Nov 26 13:42:54 2008 distribution of cycle lengths: Wed Nov 26 13:42:54 2008 length 1 : 18727 Wed Nov 26 13:42:54 2008 length 2 : 13332 Wed Nov 26 13:42:54 2008 length 3 : 12178 Wed Nov 26 13:42:54 2008 length 4 : 9387 Wed Nov 26 13:42:54 2008 length 5 : 6780 Wed Nov 26 13:42:54 2008 length 6 : 4296 Wed Nov 26 13:42:54 2008 length 7 : 2643 Wed Nov 26 13:42:54 2008 length 9+: 3378 Wed Nov 26 13:42:54 2008 largest cycle: 19 relations Wed Nov 26 13:42:55 2008 matrix is 70588 x 70721 (17.1 MB) with weight 4196924 (59.34/col) Wed Nov 26 13:42:55 2008 sparse part has weight 4196924 (59.34/col) Wed Nov 26 13:42:55 2008 filtering completed in 3 passes Wed Nov 26 13:42:55 2008 matrix is 66187 x 66251 (16.1 MB) with weight 3964446 (59.84/col) Wed Nov 26 13:42:55 2008 sparse part has weight 3964446 (59.84/col) Wed Nov 26 13:42:56 2008 saving the first 48 matrix rows for later Wed Nov 26 13:42:56 2008 matrix is 66139 x 66251 (9.5 MB) with weight 3022847 (45.63/col) Wed Nov 26 13:42:56 2008 sparse part has weight 2093712 (31.60/col) Wed Nov 26 13:42:56 2008 matrix includes 64 packed rows Wed Nov 26 13:42:56 2008 using block size 26500 for processor cache size 2048 kB Wed Nov 26 13:42:56 2008 commencing Lanczos iteration Wed Nov 26 13:42:56 2008 memory use: 9.7 MB Wed Nov 26 13:43:19 2008 lanczos halted after 1047 iterations (dim = 66133) Wed Nov 26 13:43:20 2008 recovered 13 nontrivial dependencies Wed Nov 26 13:43:20 2008 prp38 factor: 94903203682704040124208587387626991143 Wed Nov 26 13:43:20 2008 prp55 factor: 1379502043103630182118926944969415246125508853045791327 Wed Nov 26 13:43:20 2008 elapsed time 01:39:15
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(32·10145+13)/9 = 3(5)1447<146> = 37 · 3197004779<10> · 254681218216645409818996342939<30> · C106
C106 = P34 · P72
P34 = 5229918696886448659761231433046467<34>
P72 = 225668323907862446214856345291670054173175166345927281111241519005977043<72>
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 1180226986500756972134059759800332242451110673451530099017680638918163275649167707645548036671643354257081 (106 digits) Using B1=882000, B2=702018447, polynomial Dickson(3), sigma=923708382 Step 1 took 8610ms Step 2 took 6406ms ********** Factor found in step 2: 5229918696886448659761231433046467 Found probable prime factor of 34 digits: 5229918696886448659761231433046467 Probable prime cofactor 225668323907862446214856345291670054173175166345927281111241519005977043 has 72 digits
(32·10166-41)/9 = 3(5)1651<167> = 31 · 10531 · 5788583 · C155
C155 = P40 · P115
P40 = 9792135022795704973814420716717552208387<40>
P115 = 1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671<115>
Number: n N=18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677 ( 155 digits) SNFS difficulty: 167 digits. Divisors found: Wed Nov 26 09:08:30 2008 prp40 factor: 9792135022795704973814420716717552208387 Wed Nov 26 09:08:30 2008 prp115 factor: 1921438569531190489372181741560709835825907604892997957330053823094539017344979860619343704918741149830171856900671 Wed Nov 26 09:08:30 2008 elapsed time 02:15:55 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.41 hours. Scaled time: 68.08 units (timescale=1.820). Factorization parameters were as follows: name: KA_3_5_165_1 n: 18814985910856850738989493552015668813724344381955732627780744427450386269838098108337739752472791134671475386080902144478651310281628482623249021352127677 type: snfs skew: 1.33 deg: 5 c5: 10 c0: -41 m: 2000000000000000000000000000000000 rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2150001) Primes: RFBsize:361407, AFBsize:361403, largePrimes:15647474 encountered Relations: rels:14410609, finalFF:836059 Max relations in full relation-set: 28 Initial matrix: 722876 x 836059 with sparse part having weight 94388964. Pruned matrix : 631595 x 635273 with weight 62761233. Total sieving time: 36.91 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,56,56,2.5,2.5,100000 total time: 37.41 hours. --------- CPU info (if available) ----------
(32·10158+13)/9 = 3(5)1577<159> = 3 · 7 · 4889 · 6761 · 1812937883<10> · 5326454155007<13> · 29917160077671362567875821596807351<35> · C94
C94 = P40 · P54
P40 = 6043839649643906935863300584811449219393<40>
P54 = 293361275238573998016222754474394638893197836210505131<54>
Number: n N=1773028506956992823270714966016153997533707382744774221590296026068158413217827561776171205483 ( 94 digits) Divisors found: r1=6043839649643906935863300584811449219393 (pp40) r2=293361275238573998016222754474394638893197836210505131 (pp54) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 6.60 hours. Scaled time: 8.65 units (timescale=1.310). Factorization parameters were as follows: name: KA_3_5_157_7 n: 1773028506956992823270714966016153997533707382744774221590296026068158413217827561776171205483 m: 3101524404745634812660 deg: 4 c4: 19160856 c3: 80284134 c2: -135811583081129561 c1: -160852531582126458026 c0: 1407163380862846602243 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.938 # E(F1,F2) = 5.489594e-05 # GGNFS version 0.77.1-20060513-athlon-xp polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1227641341. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 880001) Primes: RFBsize:92938, AFBsize:93100, largePrimes:1766464 encountered Relations: rels:1793660, finalFF:209859 Max relations in full relation-set: 28 Initial matrix: 186117 x 209859 with sparse part having weight 12840070. Pruned matrix : 168779 x 169773 with weight 8560939. Polynomial selection time: 0.17 hours. Total sieving time: 5.89 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.40 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.60 hours. --------- CPU info (if available) ----------
(31·10167+41)/9 = 3(4)1669<168> = 74 · 23 · 107 · 443 · C159
C159 = P47 · P112
P47 = 82428469360546100817236547386728121355817832071<47>
P112 = 1596373276554398260694282851868805545175066253459654053153617203305739262457720934111478909609962402182895680953<112>
Number: n N=131586605714458804155816928144361334942782011803697417116828042223841300323604186069384933706935671232760809125303351106872422993136724453506518546845747243663 ( 159 digits) SNFS difficulty: 168 digits. Divisors found: Wed Nov 26 13:09:28 2008 prp47 factor: 82428469360546100817236547386728121355817832071 Wed Nov 26 13:09:28 2008 prp112 factor: 1596373276554398260694282851868805545175066253459654053153617203305739262457720934111478909609962402182895680953 Wed Nov 26 13:09:28 2008 elapsed time 03:20:59 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 64.94 hours. Scaled time: 54.35 units (timescale=0.837). Factorization parameters were as follows: name: KA_3_4_166_9 n: 131586605714458804155816928144361334942782011803697417116828042223841300323604186069384933706935671232760809125303351106872422993136724453506518546845747243663 type: snfs skew: 0.42 deg: 5 c5: 3100 c0: 41 m: 1000000000000000000000000000000000 rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3250001) Primes: RFBsize:380800, AFBsize:380784, largePrimes:16898141 encountered Relations: rels:15611597, finalFF:778444 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 64.09 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,56,56,2.5,2.5,100000 total time: 64.94 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
(32·10125+31)/9 = 3(5)1249<126> = 19 · 3067 · 134807213061289<15> · C107
C107 = P42 · P65
P42 = 855863039493258726374436148063275096378011<42>
P65 = 52883804346368337523551464619943154719770857071655107899081988477<65>
Number: 35559_125 N=45261293527849611944009007470516564747912317071464403030095643688236704332954890087226456720792950338179247 ( 107 digits) SNFS difficulty: 126 digits. Divisors found: r1=855863039493258726374436148063275096378011 (pp42) r2=52883804346368337523551464619943154719770857071655107899081988477 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.93 hours. Scaled time: 5.68 units (timescale=1.937). Factorization parameters were as follows: name: 35559_125 n: 45261293527849611944009007470516564747912317071464403030095643688236704332954890087226456720792950338179247 m: 20000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: RFBsize:71274, AFBsize:71376, largePrimes:2868761 encountered Relations: rels:3072916, finalFF:475953 Max relations in full relation-set: 28 Initial matrix: 142714 x 475953 with sparse part having weight 34254737. Pruned matrix : 85856 x 86633 with weight 6376451. Total sieving time: 2.80 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.93 hours. --------- CPU info (if available) ----------
(32·10128+31)/9 = 3(5)1279<129> = 25000147 · 4170310365607<13> · 3288676168058609<16> · C94
C94 = P46 · P48
P46 = 8411554247231991338364718226661881690595399127<46>
P48 = 123281857069967884883915224017233748896454151597<48>
Wed Nov 26 00:36:44 2008 Msieve v. 1.38 Wed Nov 26 00:36:44 2008 random seeds: 7e6bef0c f76e70b4 Wed Nov 26 00:36:44 2008 factoring 1036992028443535661266653954091510658049072752976818609735661966213284022836424574186379455819 (94 digits) Wed Nov 26 00:36:45 2008 searching for 15-digit factors Wed Nov 26 00:36:46 2008 commencing quadratic sieve (94-digit input) Wed Nov 26 00:36:47 2008 using multiplier of 3 Wed Nov 26 00:36:47 2008 using 32kb Intel Core sieve core Wed Nov 26 00:36:47 2008 sieve interval: 36 blocks of size 32768 Wed Nov 26 00:36:47 2008 processing polynomials in batches of 6 Wed Nov 26 00:36:47 2008 using a sieve bound of 1956287 (72941 primes) Wed Nov 26 00:36:47 2008 using large prime bound of 244535875 (27 bits) Wed Nov 26 00:36:47 2008 using double large prime bound of 1256078084807500 (42-51 bits) Wed Nov 26 00:36:47 2008 using trial factoring cutoff of 51 bits Wed Nov 26 00:36:47 2008 polynomial 'A' values have 12 factors Wed Nov 26 00:36:47 2008 restarting with 10856 full and 592550 partial relations Wed Nov 26 01:45:42 2008 73117 relations (18244 full + 54873 combined from 1001025 partial), need 73037 Wed Nov 26 01:45:44 2008 begin with 1019269 relations Wed Nov 26 01:45:45 2008 reduce to 187744 relations in 12 passes Wed Nov 26 01:45:45 2008 attempting to read 187744 relations Wed Nov 26 01:45:47 2008 recovered 187744 relations Wed Nov 26 01:45:47 2008 recovered 170550 polynomials Wed Nov 26 01:45:48 2008 attempting to build 73117 cycles Wed Nov 26 01:45:48 2008 found 73117 cycles in 5 passes Wed Nov 26 01:45:48 2008 distribution of cycle lengths: Wed Nov 26 01:45:48 2008 length 1 : 18244 Wed Nov 26 01:45:48 2008 length 2 : 13033 Wed Nov 26 01:45:48 2008 length 3 : 12520 Wed Nov 26 01:45:48 2008 length 4 : 10040 Wed Nov 26 01:45:48 2008 length 5 : 7217 Wed Nov 26 01:45:48 2008 length 6 : 4975 Wed Nov 26 01:45:48 2008 length 7 : 3133 Wed Nov 26 01:45:48 2008 length 9+: 3955 Wed Nov 26 01:45:48 2008 largest cycle: 18 relations Wed Nov 26 01:45:48 2008 matrix is 72941 x 73117 (18.6 MB) with weight 4579830 (62.64/col) Wed Nov 26 01:45:48 2008 sparse part has weight 4579830 (62.64/col) Wed Nov 26 01:45:49 2008 filtering completed in 3 passes Wed Nov 26 01:45:49 2008 matrix is 69223 x 69287 (17.7 MB) with weight 4366954 (63.03/col) Wed Nov 26 01:45:49 2008 sparse part has weight 4366954 (63.03/col) Wed Nov 26 01:45:49 2008 saving the first 48 matrix rows for later Wed Nov 26 01:45:49 2008 matrix is 69175 x 69287 (10.6 MB) with weight 3397331 (49.03/col) Wed Nov 26 01:45:49 2008 sparse part has weight 2369792 (34.20/col) Wed Nov 26 01:45:49 2008 matrix includes 64 packed rows Wed Nov 26 01:45:49 2008 using block size 27714 for processor cache size 1024 kB Wed Nov 26 01:45:50 2008 commencing Lanczos iteration Wed Nov 26 01:45:50 2008 memory use: 10.6 MB Wed Nov 26 01:46:21 2008 lanczos halted after 1096 iterations (dim = 69175) Wed Nov 26 01:46:21 2008 recovered 18 nontrivial dependencies Wed Nov 26 01:46:22 2008 prp46 factor: 8411554247231991338364718226661881690595399127 Wed Nov 26 01:46:22 2008 prp48 factor: 123281857069967884883915224017233748896454151597 Wed Nov 26 01:46:22 2008 elapsed time 01:09:38
(32·10127+31)/9 = 3(5)1269<128> = 3 · 13 · 23 · 1857797 · 42403008773<11> · C108
C108 = P50 · P58
P50 = 93598957773679097998335210590339756869624650269513<50>
P58 = 5375874010147014698096140847150062199888070164109434270599<58>
Number: 35559_127 N=503176204472369347528704149914346319811344140205384244788935122030122608807740644710994427251286623921948287 ( 108 digits) SNFS difficulty: 128 digits. Divisors found: r1=93598957773679097998335210590339756869624650269513 (pp50) r2=5375874010147014698096140847150062199888070164109434270599 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.91 hours. Scaled time: 5.49 units (timescale=1.885). Factorization parameters were as follows: name: 35559_127 n: 503176204472369347528704149914346319811344140205384244788935122030122608807740644710994427251286623921948287 m: 20000000000000000000000000 deg: 5 c5: 100 c0: 31 skew: 0.79 type: snfs lss: 1 rlim: 970000 alim: 970000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 970000/970000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [485000, 735001) Primes: RFBsize:76350, AFBsize:76308, largePrimes:2524019 encountered Relations: rels:2393135, finalFF:184054 Max relations in full relation-set: 28 Initial matrix: 152722 x 184054 with sparse part having weight 12789703. Pruned matrix : 140139 x 140966 with weight 7598605. Total sieving time: 2.69 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,970000,970000,26,26,47,47,2.3,2.3,50000 total time: 2.91 hours. --------- CPU info (if available) ----------
(32·10126+13)/9 = 3(5)1257<127> = 380191666015952176443593<24> · C103
C103 = P32 · P72
P32 = 11501538774057476031056012458627<32>
P72 = 813109299918853671165561790980638470245413633332066936422499433992993087<72>
Number: 35557_126 N=9352008140563424847917023294566006210147916989237119692496652400268872388438878951389661139693484511549 ( 103 digits) SNFS difficulty: 127 digits. Divisors found: r1=11501538774057476031056012458627 (pp32) r2=813109299918853671165561790980638470245413633332066936422499433992993087 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.65 hours. Scaled time: 1.73 units (timescale=0.473). Factorization parameters were as follows: name: 35557_126 n: 9352008140563424847917023294566006210147916989237119692496652400268872388438878951389661139693484511549 m: 20000000000000000000000000 deg: 5 c5: 10 c0: 13 skew: 1.05 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 765001) Primes: RFBsize:73474, AFBsize:73352, largePrimes:2549493 encountered Relations: rels:2483110, finalFF:230404 Max relations in full relation-set: 28 Initial matrix: 146892 x 230404 with sparse part having weight 17391688. Pruned matrix : 120843 x 121641 with weight 6495539. Total sieving time: 3.35 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 3.65 hours. --------- CPU info (if available) ----------
(32·10130+13)/9 = 3(5)1297<131> = 17 · 37 · 1777 · 100591304997342587<18> · C108
C108 = P37 · P72
P37 = 1050271947861286918310443412512133053<37>
P72 = 301097526163687219478040228435943897480969623432826469142619137934601839<72>
Number: 35557_130 N=316234285300150577120637906765190725260228622770227425697921490435194156409281796327578461287310422146484467 ( 108 digits) SNFS difficulty: 131 digits. Divisors found: r1=1050271947861286918310443412512133053 (pp37) r2=301097526163687219478040228435943897480969623432826469142619137934601839 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.12 hours. Scaled time: 6.11 units (timescale=1.955). Factorization parameters were as follows: name: 35557_130 n: 316234285300150577120637906765190725260228622770227425697921490435194156409281796327578461287310422146484467 m: 200000000000000000000000000 deg: 5 c5: 1 c0: 13 skew: 1.67 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 795001) Primes: RFBsize:84976, AFBsize:85103, largePrimes:2811907 encountered Relations: rels:2795363, finalFF:289791 Max relations in full relation-set: 28 Initial matrix: 170143 x 289791 with sparse part having weight 20768407. Pruned matrix : 128435 x 129349 with weight 6660177. Total sieving time: 2.93 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 3.12 hours. --------- CPU info (if available) ----------
(32·10134+13)/9 = 3(5)1337<135> = 32 · 7 · 88560727 · 2289483979<10> · C116
C116 = P49 · P67
P49 = 3196374879110325254657478673654847444267746688383<49>
P67 = 8708240782305831710840887083343494810399416878830148384579837357001<67>
Number: 35557_134 N=27834802077806407057659935627871990894848877408888265744552298958093842386798039849894726455952568910653769070419383 ( 116 digits) SNFS difficulty: 136 digits. Divisors found: r1=3196374879110325254657478673654847444267746688383 (pp49) r2=8708240782305831710840887083343494810399416878830148384579837357001 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.00 hours. Scaled time: 12.05 units (timescale=2.010). Factorization parameters were as follows: name: 35557_134 n: 27834802077806407057659935627871990894848877408888265744552298958093842386798039849894726455952568910653769070419383 m: 1000000000000000000000000000 deg: 5 c5: 16 c0: 65 skew: 1.32 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [650000, 1175001) Primes: RFBsize:100021, AFBsize:100193, largePrimes:3501357 encountered Relations: rels:3766590, finalFF:544316 Max relations in full relation-set: 28 Initial matrix: 200278 x 544316 with sparse part having weight 44663294. Pruned matrix : 133071 x 134136 with weight 11084208. Total sieving time: 5.73 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,48,48,2.3,2.3,75000 total time: 6.00 hours. --------- CPU info (if available) ----------
(32·10137+13)/9 = 3(5)1367<138> = 3 · 23 · 45337 · 145847851 · 159472373 · 9568191913142298047<19> · C96
C96 = P44 · P52
P44 = 88546528817072023971206079968369863534097279<44>
P52 = 5767912849452179312919971545551350229311180122030031<52>
Wed Nov 26 05:14:00 2008 Msieve v. 1.38 Wed Nov 26 05:14:00 2008 random seeds: cf0e7240 51db047a Wed Nov 26 05:14:00 2008 factoring 510728661338377406183907643299278443750079883884964732152000041361727719148120748810880513385649 (96 digits) Wed Nov 26 05:14:00 2008 searching for 15-digit factors Wed Nov 26 05:14:02 2008 commencing quadratic sieve (96-digit input) Wed Nov 26 05:14:02 2008 using multiplier of 1 Wed Nov 26 05:14:02 2008 using 32kb Intel Core sieve core Wed Nov 26 05:14:02 2008 sieve interval: 36 blocks of size 32768 Wed Nov 26 05:14:02 2008 processing polynomials in batches of 6 Wed Nov 26 05:14:02 2008 using a sieve bound of 2265611 (83418 primes) Wed Nov 26 05:14:02 2008 using large prime bound of 339841650 (28 bits) Wed Nov 26 05:14:02 2008 using double large prime bound of 2271422065653900 (43-52 bits) Wed Nov 26 05:14:02 2008 using trial factoring cutoff of 52 bits Wed Nov 26 05:14:02 2008 polynomial 'A' values have 12 factors Wed Nov 26 09:51:26 2008 83756 relations (20168 full + 63588 combined from 1271970 partial), need 83514 Wed Nov 26 09:51:28 2008 begin with 1292138 relations Wed Nov 26 09:51:29 2008 reduce to 221157 relations in 13 passes Wed Nov 26 09:51:29 2008 attempting to read 221157 relations Wed Nov 26 09:51:33 2008 recovered 221157 relations Wed Nov 26 09:51:33 2008 recovered 206126 polynomials Wed Nov 26 09:51:33 2008 attempting to build 83756 cycles Wed Nov 26 09:51:33 2008 found 83756 cycles in 7 passes Wed Nov 26 09:51:33 2008 distribution of cycle lengths: Wed Nov 26 09:51:33 2008 length 1 : 20168 Wed Nov 26 09:51:33 2008 length 2 : 14206 Wed Nov 26 09:51:33 2008 length 3 : 13951 Wed Nov 26 09:51:33 2008 length 4 : 11416 Wed Nov 26 09:51:33 2008 length 5 : 8719 Wed Nov 26 09:51:33 2008 length 6 : 6047 Wed Nov 26 09:51:33 2008 length 7 : 3746 Wed Nov 26 09:51:33 2008 length 9+: 5503 Wed Nov 26 09:51:33 2008 largest cycle: 20 relations Wed Nov 26 09:51:34 2008 matrix is 83418 x 83756 (23.2 MB) with weight 5751541 (68.67/col) Wed Nov 26 09:51:34 2008 sparse part has weight 5751541 (68.67/col) Wed Nov 26 09:51:34 2008 filtering completed in 3 passes Wed Nov 26 09:51:34 2008 matrix is 79674 x 79736 (22.2 MB) with weight 5495801 (68.92/col) Wed Nov 26 09:51:34 2008 sparse part has weight 5495801 (68.92/col) Wed Nov 26 09:51:35 2008 saving the first 48 matrix rows for later Wed Nov 26 09:51:35 2008 matrix is 79626 x 79736 (16.3 MB) with weight 4608485 (57.80/col) Wed Nov 26 09:51:35 2008 sparse part has weight 3785457 (47.47/col) Wed Nov 26 09:51:35 2008 matrix includes 64 packed rows Wed Nov 26 09:51:35 2008 using block size 31894 for processor cache size 1024 kB Wed Nov 26 09:51:36 2008 commencing Lanczos iteration Wed Nov 26 09:51:36 2008 memory use: 14.4 MB Wed Nov 26 09:52:30 2008 lanczos halted after 1261 iterations (dim = 79624) Wed Nov 26 09:52:30 2008 recovered 16 nontrivial dependencies Wed Nov 26 09:52:32 2008 prp44 factor: 88546528817072023971206079968369863534097279 Wed Nov 26 09:52:32 2008 prp52 factor: 5767912849452179312919971545551350229311180122030031 Wed Nov 26 09:52:32 2008 elapsed time 04:38:32
(32·10126+31)/9 = 3(5)1259<127> = 7 · 16476983 · C119
C119 = P51 · P68
P51 = 680997224473041479842187137587524564706549553049407<51>
P68 = 45267487816196178055544763426310297914032845214592067327606904162777<68>
Number: 35559_126 N=30827033561696818920547317912296682985467455294243365821760968493838218835810931402703270162258254920607002902651323239 ( 119 digits) SNFS difficulty: 127 digits. Divisors found: r1=680997224473041479842187137587524564706549553049407 (pp51) r2=45267487816196178055544763426310297914032845214592067327606904162777 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.64 hours. Scaled time: 1.72 units (timescale=0.472). Factorization parameters were as follows: name: 35559_126 n: 30827033561696818920547317912296682985467455294243365821760968493838218835810931402703270162258254920607002902651323239 m: 20000000000000000000000000 deg: 5 c5: 10 c0: 31 skew: 1.25 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 765001) Primes: RFBsize:73474, AFBsize:73628, largePrimes:2612797 encountered Relations: rels:2582628, finalFF:264069 Max relations in full relation-set: 28 Initial matrix: 147168 x 264069 with sparse part having weight 19890177. Pruned matrix : 113591 x 114390 with weight 6088730. Total sieving time: 3.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.15 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 3.64 hours. --------- CPU info (if available) ----------
(32·10137+31)/9 = 3(5)1369<138> = 172 · 167 · 370663 · C128
C128 = P44 · P85
P44 = 13381285655013871857765308443020945443852381<44>
P85 = 1485306483235108080529520897277681421570533714769036651190820055852516640157660621731<85>
Number: 35559_137 N=19875310337413053710637590695530793527882282744921895395807157800777667144452785946358436075296632143126961352653038140244691511 ( 128 digits) SNFS difficulty: 138 digits. Divisors found: r1=13381285655013871857765308443020945443852381 (pp44) r2=1485306483235108080529520897277681421570533714769036651190820055852516640157660621731 (pp85) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.53 hours. Scaled time: 14.94 units (timescale=1.985). Factorization parameters were as follows: name: 35559_137 n: 19875310337413053710637590695530793527882282744921895395807157800777667144452785946358436075296632143126961352653038140244691511 m: 2000000000000000000000000000 deg: 5 c5: 100 c0: 31 skew: 0.79 type: snfs lss: 1 rlim: 1420000 alim: 1420000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1420000/1420000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [710000, 1385001) Primes: RFBsize:108487, AFBsize:108634, largePrimes:3522102 encountered Relations: rels:3644702, finalFF:410418 Max relations in full relation-set: 28 Initial matrix: 217185 x 410418 with sparse part having weight 36113840. Pruned matrix : 168501 x 169650 with weight 12265564. Total sieving time: 7.10 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.26 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1420000,1420000,26,26,48,48,2.3,2.3,75000 total time: 7.53 hours. --------- CPU info (if available) ----------
(32·10131+31)/9 = 3(5)1309<132> = 266066510143035541<18> · C115
C115 = P42 · P73
P42 = 844138519262383556289425467818988709704541<42>
P73 = 1583082461247132173875334710522972730177912267910497115891734314149580039<73>
Number: 35559_131 N=1336340884707403852333814649696063832094289430719468240561408485925328779819885140490430012885296587458038921257099 ( 115 digits) SNFS difficulty: 132 digits. Divisors found: r1=844138519262383556289425467818988709704541 (pp42) r2=1583082461247132173875334710522972730177912267910497115891734314149580039 (pp73) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.16 hours. Scaled time: 2.43 units (timescale=0.471). Factorization parameters were as follows: name: 35559_131 n: 1336340884707403852333814649696063832094289430719468240561408485925328779819885140490430012885296587458038921257099 m: 200000000000000000000000000 deg: 5 c5: 10 c0: 31 skew: 1.25 type: snfs lss: 1 rlim: 1130000 alim: 1130000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1130000/1130000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [565000, 965001) Primes: RFBsize:87884, AFBsize:88119, largePrimes:2834235 encountered Relations: rels:2738680, finalFF:224186 Max relations in full relation-set: 28 Initial matrix: 176069 x 224186 with sparse part having weight 17121575. Pruned matrix : 157598 x 158542 with weight 9354096. Total sieving time: 4.65 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.36 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1130000,1130000,26,26,47,47,2.3,2.3,50000 total time: 5.16 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(32·10111+31)/9 = 3(5)1109<112> = 83 · 479 · 221059673 · 213133327019<12> · C88
C88 = P36 · P52
P36 = 487569966093755841400317894390408449<36>
P52 = 3893104217967748849798424193291740807807864809580849<52>
Tue Nov 25 16:11:38 2008 Msieve v. 1.38 Tue Nov 25 16:11:38 2008 random seeds: 4901283c 27d5cc06 Tue Nov 25 16:11:38 2008 factoring 1898160691553993157407449678245732393464881155578512112540299285983401084722145598193201 (88 digits) Tue Nov 25 16:11:39 2008 searching for 15-digit factors Tue Nov 25 16:11:41 2008 commencing quadratic sieve (88-digit input) Tue Nov 25 16:11:41 2008 using multiplier of 1 Tue Nov 25 16:11:41 2008 using 32kb Intel Core sieve core Tue Nov 25 16:11:41 2008 sieve interval: 24 blocks of size 32768 Tue Nov 25 16:11:41 2008 processing polynomials in batches of 9 Tue Nov 25 16:11:41 2008 using a sieve bound of 1508383 (57034 primes) Tue Nov 25 16:11:41 2008 using large prime bound of 120670640 (26 bits) Tue Nov 25 16:11:41 2008 using double large prime bound of 352275850752880 (42-49 bits) Tue Nov 25 16:11:41 2008 using trial factoring cutoff of 49 bits Tue Nov 25 16:11:41 2008 polynomial 'A' values have 11 factors Tue Nov 25 17:12:53 2008 57299 relations (14815 full + 42484 combined from 613221 partial), need 57130 Tue Nov 25 17:12:56 2008 begin with 628036 relations Tue Nov 25 17:12:56 2008 reduce to 140932 relations in 10 passes Tue Nov 25 17:12:56 2008 attempting to read 140932 relations Tue Nov 25 17:12:59 2008 recovered 140932 relations Tue Nov 25 17:12:59 2008 recovered 122059 polynomials Tue Nov 25 17:12:59 2008 attempting to build 57299 cycles Tue Nov 25 17:12:59 2008 found 57299 cycles in 5 passes Tue Nov 25 17:12:59 2008 distribution of cycle lengths: Tue Nov 25 17:12:59 2008 length 1 : 14815 Tue Nov 25 17:12:59 2008 length 2 : 11055 Tue Nov 25 17:12:59 2008 length 3 : 10130 Tue Nov 25 17:12:59 2008 length 4 : 7717 Tue Nov 25 17:12:59 2008 length 5 : 5412 Tue Nov 25 17:12:59 2008 length 6 : 3622 Tue Nov 25 17:12:59 2008 length 7 : 2122 Tue Nov 25 17:12:59 2008 length 9+: 2426 Tue Nov 25 17:12:59 2008 largest cycle: 20 relations Tue Nov 25 17:12:59 2008 matrix is 57034 x 57299 (13.4 MB) with weight 3274244 (57.14/col) Tue Nov 25 17:12:59 2008 sparse part has weight 3274244 (57.14/col) Tue Nov 25 17:13:00 2008 filtering completed in 3 passes Tue Nov 25 17:13:00 2008 matrix is 53372 x 53436 (12.5 MB) with weight 3072775 (57.50/col) Tue Nov 25 17:13:00 2008 sparse part has weight 3072775 (57.50/col) Tue Nov 25 17:13:00 2008 saving the first 48 matrix rows for later Tue Nov 25 17:13:00 2008 matrix is 53324 x 53436 (8.0 MB) with weight 2417387 (45.24/col) Tue Nov 25 17:13:00 2008 sparse part has weight 1766360 (33.06/col) Tue Nov 25 17:13:00 2008 matrix includes 64 packed rows Tue Nov 25 17:13:00 2008 using block size 21374 for processor cache size 2048 kB Tue Nov 25 17:13:00 2008 commencing Lanczos iteration Tue Nov 25 17:13:00 2008 memory use: 7.9 MB Tue Nov 25 17:13:17 2008 lanczos halted after 845 iterations (dim = 53320) Tue Nov 25 17:13:17 2008 recovered 14 nontrivial dependencies Tue Nov 25 17:13:18 2008 prp36 factor: 487569966093755841400317894390408449 Tue Nov 25 17:13:18 2008 prp52 factor: 3893104217967748849798424193291740807807864809580849 Tue Nov 25 17:13:18 2008 elapsed time 01:01:40
(32·10113+13)/9 = 3(5)1127<114> = 3 · 367 · 8039 · 260363 · 4472974792621<13> · C89
C89 = P42 · P47
P42 = 722805190445538559579755657850210987340009<42>
P47 = 47722275212804886755544319503545804388116823209<47>
Tue Nov 25 17:21:51 2008 Msieve v. 1.38 Tue Nov 25 17:21:51 2008 random seeds: 73861c22 a47e1017 Tue Nov 25 17:21:51 2008 factoring 34493908223685840362451462065513046847262683445436352847040664541897484049027610225468881 (89 digits) Tue Nov 25 17:21:52 2008 searching for 15-digit factors Tue Nov 25 17:21:53 2008 commencing quadratic sieve (89-digit input) Tue Nov 25 17:21:53 2008 using multiplier of 1 Tue Nov 25 17:21:53 2008 using 32kb Intel Core sieve core Tue Nov 25 17:21:53 2008 sieve interval: 32 blocks of size 32768 Tue Nov 25 17:21:53 2008 processing polynomials in batches of 7 Tue Nov 25 17:21:53 2008 using a sieve bound of 1556083 (58841 primes) Tue Nov 25 17:21:53 2008 using large prime bound of 124486640 (26 bits) Tue Nov 25 17:21:53 2008 using double large prime bound of 372581168808240 (42-49 bits) Tue Nov 25 17:21:53 2008 using trial factoring cutoff of 49 bits Tue Nov 25 17:21:53 2008 polynomial 'A' values have 11 factors Tue Nov 25 18:01:21 2008 59297 relations (17170 full + 42127 combined from 608482 partial), need 58937 Tue Nov 25 18:01:23 2008 begin with 625652 relations Tue Nov 25 18:01:23 2008 reduce to 138778 relations in 10 passes Tue Nov 25 18:01:23 2008 attempting to read 138778 relations Tue Nov 25 18:01:26 2008 recovered 138778 relations Tue Nov 25 18:01:26 2008 recovered 102781 polynomials Tue Nov 25 18:01:26 2008 attempting to build 59297 cycles Tue Nov 25 18:01:26 2008 found 59297 cycles in 5 passes Tue Nov 25 18:01:26 2008 distribution of cycle lengths: Tue Nov 25 18:01:26 2008 length 1 : 17170 Tue Nov 25 18:01:26 2008 length 2 : 12193 Tue Nov 25 18:01:26 2008 length 3 : 10649 Tue Nov 25 18:01:26 2008 length 4 : 7548 Tue Nov 25 18:01:26 2008 length 5 : 4978 Tue Nov 25 18:01:26 2008 length 6 : 3084 Tue Nov 25 18:01:26 2008 length 7 : 1791 Tue Nov 25 18:01:26 2008 length 9+: 1884 Tue Nov 25 18:01:26 2008 largest cycle: 16 relations Tue Nov 25 18:01:26 2008 matrix is 58841 x 59297 (13.8 MB) with weight 3372407 (56.87/col) Tue Nov 25 18:01:26 2008 sparse part has weight 3372407 (56.87/col) Tue Nov 25 18:01:26 2008 filtering completed in 3 passes Tue Nov 25 18:01:26 2008 matrix is 53403 x 53467 (12.5 MB) with weight 3061639 (57.26/col) Tue Nov 25 18:01:26 2008 sparse part has weight 3061639 (57.26/col) Tue Nov 25 18:01:27 2008 saving the first 48 matrix rows for later Tue Nov 25 18:01:27 2008 matrix is 53355 x 53467 (8.5 MB) with weight 2428743 (45.43/col) Tue Nov 25 18:01:27 2008 sparse part has weight 1915838 (35.83/col) Tue Nov 25 18:01:27 2008 matrix includes 64 packed rows Tue Nov 25 18:01:27 2008 using block size 21386 for processor cache size 2048 kB Tue Nov 25 18:01:27 2008 commencing Lanczos iteration Tue Nov 25 18:01:27 2008 memory use: 8.0 MB Tue Nov 25 18:01:45 2008 lanczos halted after 846 iterations (dim = 53348) Tue Nov 25 18:01:45 2008 recovered 13 nontrivial dependencies Tue Nov 25 18:01:46 2008 prp42 factor: 722805190445538559579755657850210987340009 Tue Nov 25 18:01:46 2008 prp47 factor: 47722275212804886755544319503545804388116823209 Tue Nov 25 18:01:46 2008 elapsed time 00:39:55
(31·10147+41)/9 = 3(4)1469<148> = 30619519171<11> · C138
C138 = P38 · P50 · P50
P38 = 52645699521864232841037910835053332133<38>
P50 = 26284555383594257254292409604368589956841814276767<50>
P50 = 81293773300248697922814898301342394783351214050929<50>
Number: 34449_147 N=112491787516595175094248525044692787688858788070759429119202756420202848274323231189071647765374520630627849399171887618027300225120326219 ( 138 digits) SNFS difficulty: 149 digits. Divisors found: r1=52645699521864232841037910835053332133 (pp38) r2=26284555383594257254292409604368589956841814276767 (pp50) r3=81293773300248697922814898301342394783351214050929 (pp50) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 39.23 hours. Scaled time: 18.52 units (timescale=0.472). Factorization parameters were as follows: name: 34449_147 n: 112491787516595175094248525044692787688858788070759429119202756420202848274323231189071647765374520630627849399171887618027300225120326219 m: 200000000000000000000000000000 deg: 5 c5: 775 c0: 328 skew: 0.84 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 4100001) Primes: RFBsize:162662, AFBsize:163207, largePrimes:4709465 encountered Relations: rels:5141491, finalFF:384765 Max relations in full relation-set: 28 Initial matrix: 325936 x 384765 with sparse part having weight 47733275. Pruned matrix : 306013 x 307706 with weight 36858857. Total sieving time: 34.63 hours. Total relation processing time: 0.38 hours. Matrix solve time: 4.11 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,49,49,2.3,2.3,100000 total time: 39.23 hours. --------- CPU info (if available) ----------
(32·10122+31)/9 = 3(5)1219<123> = 328781 · 2504008107923036641496791213<28> · C90
C90 = P35 · P56
P35 = 42723292270746693182558544322045801<35>
P56 = 10108816517969606422105778729319311803504197245858958103<56>
Tue Nov 25 18:15:00 2008 Msieve v. 1.38 Tue Nov 25 18:15:00 2008 random seeds: d1551f0c 1ce83f3a Tue Nov 25 18:15:00 2008 factoring 431881922608567386526197281175982703937335426667558565328396228433888608545324127306075503 (90 digits) Tue Nov 25 18:15:01 2008 searching for 15-digit factors Tue Nov 25 18:15:03 2008 commencing quadratic sieve (90-digit input) Tue Nov 25 18:15:03 2008 using multiplier of 7 Tue Nov 25 18:15:03 2008 using 32kb Intel Core sieve core Tue Nov 25 18:15:03 2008 sieve interval: 36 blocks of size 32768 Tue Nov 25 18:15:03 2008 processing polynomials in batches of 6 Tue Nov 25 18:15:03 2008 using a sieve bound of 1584929 (59679 primes) Tue Nov 25 18:15:03 2008 using large prime bound of 126794320 (26 bits) Tue Nov 25 18:15:03 2008 using double large prime bound of 385105414448400 (42-49 bits) Tue Nov 25 18:15:03 2008 using trial factoring cutoff of 49 bits Tue Nov 25 18:15:03 2008 polynomial 'A' values have 12 factors Tue Nov 25 19:31:03 2008 60194 relations (15958 full + 44236 combined from 638107 partial), need 59775 Tue Nov 25 19:31:05 2008 begin with 654065 relations Tue Nov 25 19:31:05 2008 reduce to 146856 relations in 10 passes Tue Nov 25 19:31:05 2008 attempting to read 146856 relations Tue Nov 25 19:31:08 2008 recovered 146856 relations Tue Nov 25 19:31:08 2008 recovered 125328 polynomials Tue Nov 25 19:31:08 2008 attempting to build 60194 cycles Tue Nov 25 19:31:08 2008 found 60194 cycles in 5 passes Tue Nov 25 19:31:08 2008 distribution of cycle lengths: Tue Nov 25 19:31:08 2008 length 1 : 15958 Tue Nov 25 19:31:08 2008 length 2 : 11650 Tue Nov 25 19:31:08 2008 length 3 : 10547 Tue Nov 25 19:31:08 2008 length 4 : 8074 Tue Nov 25 19:31:08 2008 length 5 : 5654 Tue Nov 25 19:31:08 2008 length 6 : 3590 Tue Nov 25 19:31:08 2008 length 7 : 2148 Tue Nov 25 19:31:08 2008 length 9+: 2573 Tue Nov 25 19:31:08 2008 largest cycle: 20 relations Tue Nov 25 19:31:09 2008 matrix is 59679 x 60194 (14.7 MB) with weight 3625687 (60.23/col) Tue Nov 25 19:31:09 2008 sparse part has weight 3625687 (60.23/col) Tue Nov 25 19:31:09 2008 filtering completed in 3 passes Tue Nov 25 19:31:09 2008 matrix is 55677 x 55741 (13.7 MB) with weight 3363925 (60.35/col) Tue Nov 25 19:31:09 2008 sparse part has weight 3363925 (60.35/col) Tue Nov 25 19:31:09 2008 saving the first 48 matrix rows for later Tue Nov 25 19:31:09 2008 matrix is 55629 x 55741 (8.7 MB) with weight 2647142 (47.49/col) Tue Nov 25 19:31:09 2008 sparse part has weight 1945354 (34.90/col) Tue Nov 25 19:31:09 2008 matrix includes 64 packed rows Tue Nov 25 19:31:09 2008 using block size 22296 for processor cache size 2048 kB Tue Nov 25 19:31:10 2008 commencing Lanczos iteration Tue Nov 25 19:31:10 2008 memory use: 8.4 MB Tue Nov 25 19:31:28 2008 lanczos halted after 881 iterations (dim = 55626) Tue Nov 25 19:31:29 2008 recovered 16 nontrivial dependencies Tue Nov 25 19:31:29 2008 prp35 factor: 42723292270746693182558544322045801 Tue Nov 25 19:31:29 2008 prp56 factor: 10108816517969606422105778729319311803504197245858958103 Tue Nov 25 19:31:29 2008 elapsed time 01:16:29
(32·10119+13)/9 = 3(5)1187<120> = 3 · 207637403 · 1000206492930416143935716239<28> · C84
C84 = P33 · P51
P33 = 640277981563769011474718630122289<33>
P51 = 891296885887495874319183654447578766973756482284363<51>
Tue Nov 25 16:25:35 2008 Msieve v. 1.38 Tue Nov 25 16:25:35 2008 random seeds: ac2b7704 f677277a Tue Nov 25 16:25:35 2008 factoring 570677771070118815842205302870178050917454543396455013477008232333098780244762466907 (84 digits) Tue Nov 25 16:25:38 2008 searching for 15-digit factors Tue Nov 25 16:25:42 2008 commencing quadratic sieve (84-digit input) Tue Nov 25 16:25:43 2008 using multiplier of 43 Tue Nov 25 16:25:43 2008 using 64kb Pentium 2 sieve core Tue Nov 25 16:25:43 2008 sieve interval: 6 blocks of size 65536 Tue Nov 25 16:25:43 2008 processing polynomials in batches of 17 Tue Nov 25 16:25:43 2008 using a sieve bound of 1407293 (53824 primes) Tue Nov 25 16:25:43 2008 using large prime bound of 119619905 (26 bits) Tue Nov 25 16:25:43 2008 using double large prime bound of 346773678658515 (41-49 bits) Tue Nov 25 16:25:43 2008 using trial factoring cutoff of 49 bits Tue Nov 25 16:25:43 2008 polynomial 'A' values have 11 factors Tue Nov 25 20:30:12 2008 53931 relations (16424 full + 37507 combined from 568412 partial), need 53920 Tue Nov 25 20:30:18 2008 begin with 584836 relations Tue Nov 25 20:30:20 2008 reduce to 124724 relations in 10 passes Tue Nov 25 20:30:20 2008 attempting to read 124724 relations Tue Nov 25 20:30:26 2008 recovered 124724 relations Tue Nov 25 20:30:26 2008 recovered 100563 polynomials Tue Nov 25 20:30:26 2008 attempting to build 53931 cycles Tue Nov 25 20:30:26 2008 found 53931 cycles in 4 passes Tue Nov 25 20:30:30 2008 distribution of cycle lengths: Tue Nov 25 20:30:30 2008 length 1 : 16424 Tue Nov 25 20:30:30 2008 length 2 : 11082 Tue Nov 25 20:30:30 2008 length 3 : 9630 Tue Nov 25 20:30:30 2008 length 4 : 6837 Tue Nov 25 20:30:30 2008 length 5 : 4320 Tue Nov 25 20:30:30 2008 length 6 : 2598 Tue Nov 25 20:30:30 2008 length 7 : 1463 Tue Nov 25 20:30:30 2008 length 9+: 1577 Tue Nov 25 20:30:30 2008 largest cycle: 18 relations Tue Nov 25 20:30:31 2008 matrix is 53824 x 53931 (11.3 MB) with weight 2739791 (50.80/col) Tue Nov 25 20:30:31 2008 sparse part has weight 2739791 (50.80/col) Tue Nov 25 20:30:35 2008 filtering completed in 3 passes Tue Nov 25 20:30:35 2008 matrix is 48144 x 48208 (10.2 MB) with weight 2482659 (51.50/col) Tue Nov 25 20:30:35 2008 sparse part has weight 2482659 (51.50/col) Tue Nov 25 20:30:37 2008 saving the first 48 matrix rows for later Tue Nov 25 20:30:37 2008 matrix is 48096 x 48208 (5.6 MB) with weight 1823977 (37.84/col) Tue Nov 25 20:30:37 2008 sparse part has weight 1189151 (24.67/col) Tue Nov 25 20:30:37 2008 matrix includes 64 packed rows Tue Nov 25 20:30:38 2008 using block size 5461 for processor cache size 128 kB Tue Nov 25 20:30:39 2008 commencing Lanczos iteration Tue Nov 25 20:30:39 2008 memory use: 6.2 MB Tue Nov 25 20:32:29 2008 lanczos halted after 762 iterations (dim = 48096) Tue Nov 25 20:32:30 2008 recovered 18 nontrivial dependencies Tue Nov 25 20:32:32 2008 prp33 factor: 640277981563769011474718630122289 Tue Nov 25 20:32:32 2008 prp51 factor: 891296885887495874319183654447578766973756482284363 Tue Nov 25 20:32:32 2008 elapsed time 04:06:57
(32·10120+31)/9 = 3(5)1199<121> = 7 · 5807 · C116
C116 = P31 · P86
P31 = 3113032816097266174778764676807<31>
P86 = 28097902683758787473437650239350518110448549347179343214543208493496692074850718804313<86>
Number: 35559_120 N=87469693118048551146536336823920774325458327524799024712921733758654716119844413283366271139648098490874450922668591 ( 116 digits) SNFS difficulty: 121 digits. Divisors found: r1=3113032816097266174778764676807 (pp31) r2=28097902683758787473437650239350518110448549347179343214543208493496692074850718804313 (pp86) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.50 hours. Scaled time: 5.00 units (timescale=2.003). Factorization parameters were as follows: name: 35559_120 n: 87469693118048551146536336823920774325458327524799024712921733758654716119844413283366271139648098490874450922668591 m: 2000000000000000000000000 deg: 5 c5: 1 c0: 31 skew: 1.99 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 620001) Primes: RFBsize:59531, AFBsize:59539, largePrimes:1702979 encountered Relations: rels:1960859, finalFF:410760 Max relations in full relation-set: 28 Initial matrix: 119134 x 410760 with sparse part having weight 19379073. Pruned matrix : 67073 x 67732 with weight 3827093. Total sieving time: 2.41 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 2.50 hours. --------- CPU info (if available) ----------
(32·10124+13)/9 = 3(5)1237<125> = 31 · 37 · 111150343 · 3992206561597<13> · C101
C101 = P41 · P61
P41 = 10402125562044091642484846822078823468091<41>
P61 = 6715806088535023166394807724616174297101621140015673344377671<61>
Number: 35557_124 N=69858658183281510532470852601943169332228650358787493281055371585330045221451803823211994604321396061 ( 101 digits) SNFS difficulty: 126 digits. Divisors found: r1=10402125562044091642484846822078823468091 (pp41) r2=6715806088535023166394807724616174297101621140015673344377671 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.20 hours. Scaled time: 1.51 units (timescale=0.472). Factorization parameters were as follows: name: 35557_124 n: 69858658183281510532470852601943169332228650358787493281055371585330045221451803823211994604321396061 m: 10000000000000000000000000 deg: 5 c5: 16 c0: 65 skew: 1.32 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 695001) Primes: RFBsize:70555, AFBsize:70488, largePrimes:2519735 encountered Relations: rels:2495783, finalFF:266363 Max relations in full relation-set: 28 Initial matrix: 141107 x 266363 with sparse part having weight 18696002. Pruned matrix : 104070 x 104839 with weight 5169750. Total sieving time: 2.97 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 3.20 hours. --------- CPU info (if available) ----------
(32·10113+31)/9 = 3(5)1129<114> = 6871 · 5101787 · C104
C104 = P31 · P73
P31 = 2169685434607141957872712202903<31>
P73 = 4674858004238930698030761281227982249602384821440497976576836629122533589<73>
Number: 35559_113 N=10142971320653820632723339542539382492089008306725584839857993969919889375979466051668360765372800808867 ( 104 digits) SNFS difficulty: 115 digits. Divisors found: r1=2169685434607141957872712202903 (pp31) r2=4674858004238930698030761281227982249602384821440497976576836629122533589 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.57 hours. Scaled time: 3.08 units (timescale=1.967). Factorization parameters were as follows: name: 35559_113 n: 10142971320653820632723339542539382492089008306725584839857993969919889375979466051668360765372800808867 m: 40000000000000000000000 deg: 5 c5: 125 c0: 124 skew: 1.00 type: snfs lss: 1 rlim: 580000 alim: 580000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 580000/580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [290000, 440001) Primes: RFBsize:47588, AFBsize:47780, largePrimes:1340429 encountered Relations: rels:1372204, finalFF:195899 Max relations in full relation-set: 28 Initial matrix: 95434 x 195899 with sparse part having weight 9478162. Pruned matrix : 67455 x 67996 with weight 2513133. Total sieving time: 1.49 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,580000,580000,25,25,45,45,2.2,2.2,50000 total time: 1.57 hours. --------- CPU info (if available) ----------
9·10213-1 = 8(9)213<214> = 293 · 31517 · 297630677 · 653240602737601<15> · 2763180643414756163<19> · 1880839632718006855987957867<28> · 179481389251375241524195452694409<33> · C106
C106 = P30 · P77
P30 = 240517498236320119968635920027<30>
P77 = 22343541377353884509643293353805591669647127166940550303134256458298751571009<77>
Mon Nov 24 00:11:51 2008 Msieve v. 1.38 Mon Nov 24 00:11:51 2008 random seeds: a24e6aa0 3eb03746 Mon Nov 24 00:11:51 2008 factoring 5374012673820858541660812441083032124477051306670520962378248708789456585274457770479061617280814335697243 (106 digits) Mon Nov 24 00:11:52 2008 searching for 15-digit factors Mon Nov 24 00:11:54 2008 commencing quadratic sieve (106-digit input) Mon Nov 24 00:11:54 2008 using multiplier of 3 Mon Nov 24 00:11:54 2008 using 32kb Intel Core sieve core Mon Nov 24 00:11:54 2008 sieve interval: 41 blocks of size 32768 Mon Nov 24 00:11:54 2008 processing polynomials in batches of 5 Mon Nov 24 00:11:54 2008 using a sieve bound of 4519019 (158667 primes) Mon Nov 24 00:11:54 2008 using large prime bound of 677852850 (29 bits) Mon Nov 24 00:11:54 2008 using double large prime bound of 7871251019049750 (45-53 bits) Mon Nov 24 00:11:54 2008 using trial factoring cutoff of 53 bits Mon Nov 24 00:11:54 2008 polynomial 'A' values have 14 factors Tue Nov 25 22:27:00 2008 158913 relations (37698 full + 121215 combined from 2331858 partial), need 158763 Tue Nov 25 22:27:03 2008 begin with 2369556 relations Tue Nov 25 22:27:06 2008 reduce to 417220 relations in 11 passes Tue Nov 25 22:27:06 2008 attempting to read 417220 relations Tue Nov 25 22:27:16 2008 recovered 417220 relations Tue Nov 25 22:27:16 2008 recovered 409284 polynomials Tue Nov 25 22:27:16 2008 attempting to build 158913 cycles Tue Nov 25 22:27:16 2008 found 158913 cycles in 6 passes Tue Nov 25 22:27:16 2008 distribution of cycle lengths: Tue Nov 25 22:27:16 2008 length 1 : 37698 Tue Nov 25 22:27:16 2008 length 2 : 27255 Tue Nov 25 22:27:16 2008 length 3 : 26726 Tue Nov 25 22:27:16 2008 length 4 : 21725 Tue Nov 25 22:27:16 2008 length 5 : 16730 Tue Nov 25 22:27:16 2008 length 6 : 11228 Tue Nov 25 22:27:16 2008 length 7 : 7302 Tue Nov 25 22:27:16 2008 length 9+: 10249 Tue Nov 25 22:27:16 2008 largest cycle: 20 relations Tue Nov 25 22:27:17 2008 matrix is 158667 x 158913 (42.9 MB) with weight 10612023 (66.78/col) Tue Nov 25 22:27:17 2008 sparse part has weight 10612023 (66.78/col) Tue Nov 25 22:27:20 2008 filtering completed in 3 passes Tue Nov 25 22:27:20 2008 matrix is 152562 x 152626 (41.4 MB) with weight 10241543 (67.10/col) Tue Nov 25 22:27:20 2008 sparse part has weight 10241543 (67.10/col) Tue Nov 25 22:27:21 2008 saving the first 48 matrix rows for later Tue Nov 25 22:27:21 2008 matrix is 152514 x 152626 (22.7 MB) with weight 7745078 (50.75/col) Tue Nov 25 22:27:21 2008 sparse part has weight 5042413 (33.04/col) Tue Nov 25 22:27:21 2008 matrix includes 64 packed rows Tue Nov 25 22:27:21 2008 using block size 43690 for processor cache size 1024 kB Tue Nov 25 22:27:22 2008 commencing Lanczos iteration Tue Nov 25 22:27:22 2008 memory use: 24.2 MB Tue Nov 25 22:30:07 2008 lanczos halted after 2415 iterations (dim = 152514) Tue Nov 25 22:30:08 2008 recovered 18 nontrivial dependencies Tue Nov 25 22:30:09 2008 prp30 factor: 240517498236320119968635920027 Tue Nov 25 22:30:09 2008 prp77 factor: 22343541377353884509643293353805591669647127166940550303134256458298751571009 Tue Nov 25 22:30:09 2008 elapsed time 46:18:18
By Serge Batalov / Msieve, GMP-ECM 6.2.1, Msieve-1.39, Msieve-1.39/QS, Msieve-1.38
(32·10133+13)/9 = 3(5)1327<134> = 37 · 28229087 · 26252902873<11> · 1807579431701<13> · 672131425700807858561<21> · C82
C82 = P40 · P42
P40 = 3701932676318776884096888982145290362881<40>
P42 = 288304533842512763257586489293524587911771<42>
Mon Nov 24 21:44:24 2008 Msieve v. 1.39 Mon Nov 24 21:44:24 2008 random seeds: 53b7fae1 4fe02420 Mon Nov 24 21:44:24 2008 factoring 1067283974562450657219633927845179417913759582844266707522004006708319194601372251 (82 digits) Mon Nov 24 21:44:25 2008 searching for 15-digit factors Mon Nov 24 21:44:25 2008 commencing quadratic sieve (82-digit input) Mon Nov 24 21:44:26 2008 using multiplier of 11 Mon Nov 24 21:44:26 2008 using 64kb Opteron sieve core Mon Nov 24 21:44:26 2008 sieve interval: 6 blocks of size 65536 Mon Nov 24 21:44:26 2008 processing polynomials in batches of 17 Mon Nov 24 21:44:26 2008 using a sieve bound of 1334341 (51074 primes) Mon Nov 24 21:44:26 2008 using large prime bound of 126762395 (26 bits) Mon Nov 24 21:44:26 2008 using trial factoring cutoff of 27 bits Mon Nov 24 21:44:26 2008 polynomial 'A' values have 10 factors Mon Nov 24 21:57:27 2008 51230 relations (26672 full + 24558 combined from 272144 partial), need 51170 Mon Nov 24 21:57:28 2008 begin with 298816 relations Mon Nov 24 21:57:28 2008 reduce to 72630 relations in 2 passes Mon Nov 24 21:57:28 2008 attempting to read 72630 relations Mon Nov 24 21:57:28 2008 recovered 72630 relations Mon Nov 24 21:57:28 2008 recovered 62674 polynomials Mon Nov 24 21:57:28 2008 attempting to build 51230 cycles Mon Nov 24 21:57:28 2008 found 51230 cycles in 1 passes Mon Nov 24 21:57:28 2008 distribution of cycle lengths: Mon Nov 24 21:57:28 2008 length 1 : 26672 Mon Nov 24 21:57:28 2008 length 2 : 24558 Mon Nov 24 21:57:28 2008 largest cycle: 2 relations Mon Nov 24 21:57:28 2008 matrix is 51074 x 51230 (7.6 MB) with weight 1577987 (30.80/col) Mon Nov 24 21:57:28 2008 sparse part has weight 1577987 (30.80/col) Mon Nov 24 21:57:29 2008 filtering completed in 3 passes Mon Nov 24 21:57:29 2008 matrix is 36236 x 36299 (5.9 MB) with weight 1256664 (34.62/col) Mon Nov 24 21:57:29 2008 sparse part has weight 1256664 (34.62/col) Mon Nov 24 21:57:29 2008 saving the first 48 matrix rows for later Mon Nov 24 21:57:29 2008 matrix is 36188 x 36299 (4.6 MB) with weight 1006135 (27.72/col) Mon Nov 24 21:57:29 2008 sparse part has weight 834315 (22.98/col) Mon Nov 24 21:57:29 2008 matrix includes 64 packed rows Mon Nov 24 21:57:29 2008 using block size 14519 for processor cache size 1024 kB Mon Nov 24 21:57:29 2008 commencing Lanczos iteration Mon Nov 24 21:57:29 2008 memory use: 4.3 MB Mon Nov 24 21:57:34 2008 lanczos halted after 573 iterations (dim = 36186) Mon Nov 24 21:57:34 2008 recovered 16 nontrivial dependencies Mon Nov 24 21:57:34 2008 prp40 factor: 3701932676318776884096888982145290362881 Mon Nov 24 21:57:34 2008 prp42 factor: 288304533842512763257586489293524587911771 Mon Nov 24 21:57:34 2008 elapsed time 00:13:10
(32·10120+13)/9 = 3(5)1197<121> = 4937 · 12451 · 1016780899<10> · 666585174041787950087<21> · C83
C83 = P30 · P54
P30 = 750956733862170017094819057059<30>
P54 = 113642862248618823692705891243347504507404736593836833<54>
Factor found in step 2: 750956733862170017094819057059
(32·10157+13)/9 = 3(5)1567<158> = 29 · 37 · 4001 · 10345641860816323<17> · 1998968244836228509<19> · 1730927190715608520160070713867<31> · C87
C87 = P31 · P57
P31 = 1037983176934327212428494372699<31>
P57 = 222898294402775465729776596045681470561860226927431308539<57>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1740884508 Step 1 took 9068ms Step 2 took 7069ms ********** Factor found in step 2: 1037983176934327212428494372699 Found probable prime factor of 31 digits: 1037983176934327212428494372699 Probable prime cofactor 222898294402775465729776596045681470561860226927431308539 has 57 digits
(32·10112+31)/9 = 3(5)1119<113> = 33 · C112
C112 = P36 · P76
P36 = 779171800996810039027022481680618939<36>
P76 = 1690092513998630224825837674006645536944911498054409463644922048126340665503<76>
SNFS difficulty: 113 digits. Divisors found: r1=779171800996810039027022481680618939 (pp36) r2=1690092513998630224825837674006645536944911498054409463644922048126340665503 (pp76) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.530). Factorization parameters were as follows: n: 1316872427983539094650205761316872427983539094650205761316872427983539094650205761316872427983539094650205761317 m: 20000000000000000000000 deg: 5 c5: 100 c0: 31 skew: 0.79 type: snfs lss: 1 rlim: 550000 alim: 550000 lpbr: 25 lpba: 25 mfbr: 47 mfba: 47 rlambda: 2.4 alambda: 2.4 Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved rational special-q in [275000, 375001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 70160 x 70392 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,550000,550000,25,25,47,47,2.4,2.4,50000 total time: 0.40 hours.
(32·10204+31)/9 = 3(5)2039<205> = 7 · C204
C204 = P32 · P173
P32 = 14637538698830902307625620189239<32>
P173 = 34700950643913702365065874534902278676298261512243498500603317994747009402362554449670858232087763450045141503365706972462373562457470861965763765551899124491831749801274983<173>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3260985831 Step 1 took 27673ms Step 2 took 17877ms ********** Factor found in step 2: 14637538698830902307625620189239 Found probable prime factor of 32 digits: 14637538698830902307625620189239 Probable prime cofactor 34700950643913702365065874534902278676298261512243498500603317994747009402362554449670858232087763450045141503365706972462373562457470861965763765551899124491831749801274983 has 173 digits
(32·10110+13)/9 = 3(5)1097<111> = 3 · 7 · 9887 · 1530281 · 20230061 · C92
C92 = P31 · P61
P31 = 7606386568876402013092015181731<31>
P61 = 7272385101382534798671686555514012222568303439645131667835121<61>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2507754419 Step 1 took 12573ms Step 2 took 9527ms ********** Factor found in step 2: 7606386568876402013092015181731 Found probable prime factor of 31 digits: 7606386568876402013092015181731 Probable prime cofactor 7272385101382534798671686555514012222568303439645131667835121 has 61 digits
(32·10191+13)/9 = 3(5)1907<192> = 3 · 397 · 11399 · 9912175103<10> · 1107141154793<13> · 34670318910569<14> · 2487293749934501<16> · 6876334367075809644387659601569<31> · C103
C103 = P32 · P72
P32 = 29910520760937869999189622935359<32>
P72 = 134552297455318840469145844020671821216847923472351025231267535414587713<72>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3521872813 Step 1 took 10297ms Step 2 took 8073ms ********** Factor found in step 2: 29910520760937869999189622935359 Found probable prime factor of 32 digits: 29910520760937869999189622935359 Probable prime cofactor 134552297455318840469145844020671821216847923472351025231267535414587713 has 72 digits
(32·10107+13)/9 = 3(5)1067<108> = 32 · 848868677 · C98
C98 = P27 · P72
P27 = 238802620593963929748934177<27>
P72 = 194888118356224715493353351777762026261476308030109023440212914292340537<72>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4219071836 Step 1 took 11769ms Step 2 took 7820ms ********** Factor found in step 2: 238802620593963929748934177 Found probable prime factor of 27 digits: 238802620593963929748934177 Probable prime cofactor 194888118356224715493353351777762026261476308030109023440212914292340537 has 72 digits
(32·10138+31)/9 = 3(5)1379<139> = 7 · 29 · 28547 · 6549012698471<13> · 318047692355660734589<21> · C99
C99 = P35 · P65
P35 = 12106920853579459070424999289438561<35>
P65 = 24330395648365789996989790128333355913417874067772163713318487061<65>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1141709438 Step 1 took 10100ms Step 2 took 8013ms ********** Factor found in step 2: 12106920853579459070424999289438561 Found probable prime factor of 35 digits: 12106920853579459070424999289438561 Probable prime cofactor 24330395648365789996989790128333355913417874067772163713318487061 has 65 digits
(32·10106+31)/9 = 3(5)1059<107> = 3 · 1821487 · C100
C100 = P28 · P73
P28 = 3571013824957159595463095741<28>
P73 = 1822084889737849498179943594910491438357264930935924835236634397925820159<73>
Factor found in step 2: 3571013824957159595463095741
(32·10116+31)/9 = 3(5)1159<117> = 491 · 175661008871473<15> · C100
C100 = P43 · P58
P43 = 1726129193205343241018771466495207041016209<43>
P58 = 2388236362175239596226223470142158679479256151585078511157<58>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2138698920 Step 1 took 11101ms Step 2 took 8108ms ********** Factor found in step 2: 1726129193205343241018771466495207041016209 Found probable prime factor of 43 digits: 1726129193205343241018771466495207041016209 Probable prime cofactor 2388236362175239596226223470142158679479256151585078511157 has 58 digits
(32·10132+13)/9 = 3(5)1317<133> = 148794791 · 2833366320968183379087743<25> · C100
C100 = P30 · P71
P30 = 661868311318946194599394724447<30>
P71 = 12742229569126623063338124721065029231175785715234648227686968662772787<71>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3096332453 Step 1 took 10644ms Step 2 took 8337ms ********** Factor found in step 2: 661868311318946194599394724447 Found probable prime factor of 30 digits: 661868311318946194599394724447 Probable prime cofactor 12742229569126623063338124721065029231175785715234648227686968662772787 has 71 digits
(32·10149+13)/9 = 3(5)1487<150> = 3 · 9234772121<10> · 100360203094699379549<21> · C120
C120 = P32 · P34 · P55
P32 = 25145039467698927171165751342183<32>
P34 = 3767430535319777861990133738332443<34>
P55 = 1349897908339817126731715201675741182458631650813620119<55>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2310493951 Step 1 took 16384ms ********** Factor found in step 1: 25145039467698927171165751342183 Found probable prime factor of 32 digits: 25145039467698927171165751342183 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=169416394 Step 1 took 15265ms Step 2 took 12202ms ********** Factor found in step 2: 3767430535319777861990133738332443 Found probable prime factor of 34 digits: 3767430535319777861990133738332443
(32·10141+31)/9 = 3(5)1409<142> = 383 · 5477 · 16602920627<11> · 6586700235426342488768387<25> · C101
C101 = P31 · P35 · P36
P31 = 3688852328182643226043829314643<31>
P35 = 17459840163246399172064730922660979<35>
P36 = 240647874318475240136761574757014533<36>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1536110132 Step 1 took 10029ms Step 2 took 8096ms ********** Factor found in step 2: 3688852328182643226043829314643 Found probable prime factor of 31 digits: 3688852328182643226043829314643 Mon Nov 24 22:45:24 2008 Msieve v. 1.39 Mon Nov 24 22:45:24 2008 random seeds: 5e5c56b8 b847632e Mon Nov 24 22:45:25 2008 factoring 4201673421225585687652109078110886743277008789701716681609806135007807 (70 digits) Mon Nov 24 22:45:25 2008 searching for 15-digit factors Mon Nov 24 22:45:25 2008 commencing quadratic sieve (70-digit input) Mon Nov 24 22:45:25 2008 using multiplier of 23 Mon Nov 24 22:45:25 2008 using 64kb Opteron sieve core Mon Nov 24 22:45:25 2008 sieve interval: 6 blocks of size 65536 Mon Nov 24 22:45:25 2008 processing polynomials in batches of 17 Mon Nov 24 22:45:25 2008 using a sieve bound of 218287 (9781 primes) Mon Nov 24 22:45:25 2008 using large prime bound of 21392126 (24 bits) Mon Nov 24 22:45:25 2008 using trial factoring cutoff of 24 bits Mon Nov 24 22:45:25 2008 polynomial 'A' values have 9 factors Mon Nov 24 22:46:20 2008 10026 relations (4844 full + 5182 combined from 54427 partial), need 9877 Mon Nov 24 22:46:20 2008 begin with 59271 relations Mon Nov 24 22:46:20 2008 reduce to 14536 relations in 2 passes Mon Nov 24 22:46:20 2008 attempting to read 14536 relations Mon Nov 24 22:46:20 2008 recovered 14536 relations Mon Nov 24 22:46:20 2008 recovered 11729 polynomials Mon Nov 24 22:46:20 2008 attempting to build 10026 cycles Mon Nov 24 22:46:20 2008 found 10026 cycles in 1 passes Mon Nov 24 22:46:20 2008 distribution of cycle lengths: Mon Nov 24 22:46:20 2008 length 1 : 4844 Mon Nov 24 22:46:20 2008 length 2 : 5182 Mon Nov 24 22:46:20 2008 largest cycle: 2 relations Mon Nov 24 22:46:20 2008 matrix is 9781 x 10026 (1.4 MB) with weight 292831 (29.21/col) Mon Nov 24 22:46:20 2008 sparse part has weight 292831 (29.21/col) Mon Nov 24 22:46:20 2008 filtering completed in 3 passes Mon Nov 24 22:46:20 2008 matrix is 7725 x 7789 (1.2 MB) with weight 243518 (31.26/col) Mon Nov 24 22:46:20 2008 sparse part has weight 243518 (31.26/col) Mon Nov 24 22:46:20 2008 commencing Lanczos iteration Mon Nov 24 22:46:20 2008 memory use: 1.5 MB Mon Nov 24 22:46:20 2008 lanczos halted after 123 iterations (dim = 7717) Mon Nov 24 22:46:20 2008 recovered 59 nontrivial dependencies Mon Nov 24 22:46:20 2008 prp35 factor: 17459840163246399172064730922660979 Mon Nov 24 22:46:20 2008 prp36 factor: 240647874318475240136761574757014533 Mon Nov 24 22:46:20 2008 elapsed time 00:00:56
(32·10148+13)/9 = 3(5)1477<149> = 37 · 1015690043<10> · 21788482138371211<17> · C122
C122 = P30 · C93
P30 = 331676232498798305313287633537<30>
C93 = [130919163377370183397007958071376655425247437752619741439878676248451252269473992284455216761<93>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1788152846 Step 1 took 15351ms Step 2 took 12352ms ********** Factor found in step 2: 331676232498798305313287633537 Found probable prime factor of 30 digits: 331676232498798305313287633537 Composite cofactor 130919163377370183397007958071376655425247437752619741439878676248451252269473992284455216761 has 93 digits
(32·10145+13)/9 = 3(5)1447<146> = 37 · 3197004779<10> · C135
C135 = P30 · C106
P30 = 254681218216645409818996342939<30>
C106 = [1180226986500756972134059759800332242451110673451530099017680638918163275649167707645548036671643354257081<106>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=905853048 Step 1 took 15690ms Step 2 took 12502ms ********** Factor found in step 2: 254681218216645409818996342939 Found probable prime factor of 30 digits: 254681218216645409818996342939 Composite cofactor 1180226986500756972134059759800332242451110673451530099017680638918163275649167707645548036671643354257081 has 106 digits
(32·10176+13)/9 = 3(5)1757<177> = 3 · 7 · 9925220777<10> · 2226740461727<13> · 12954658312101283688035155697<29> · C125
C125 = P36 · P89
P36 = 670617771284617422568164672853882771<36>
P89 = 88181478626904046575951572845551494672796981698068302152918697596211551701623415862806429<89>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=447520435 Step 1 took 13533ms ********** Factor found in step 1: 670617771284617422568164672853882771 Found probable prime factor of 36 digits: 670617771284617422568164672853882771 Probable prime cofactor 88181478626904046575951572845551494672796981698068302152918697596211551701623415862806429 has 89 digits
(32·10158+13)/9 = 3(5)1577<159> = 3 · 7 · 4889 · 6761 · 1812937883<10> · 5326454155007<13> · C128
C128 = P35 · C94
P35 = 29917160077671362567875821596807351<35>
C94 = [1773028506956992823270714966016153997533707382744774221590296026068158413217827561776171205483<94>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2227927754 Step 1 took 13273ms Step 2 took 9689ms ********** Factor found in step 2: 29917160077671362567875821596807351 Found probable prime factor of 35 digits: 29917160077671362567875821596807351 Composite cofactor 1773028506956992823270714966016153997533707382744774221590296026068158413217827561776171205483 has 94 digits
(32·10136+31)/9 = 3(5)1359<137> = 3 · 496891 · 1122571 · C125
C125 = P40 · C85
P40 = 4761415135792806704700849085613258322433<40>
C85 = [4462469046952490638354343160769488971248707524461871437573226959519017881746418670181<85>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1947702416 Step 1 took 15638ms Step 2 took 12168ms ********** Factor found in step 2: 4761415135792806704700849085613258322433 Found probable prime factor of 40 digits: 4761415135792806704700849085613258322433 Composite cofactor 4462469046952490638354343160769488971248707524461871437573226959519017881746418670181 has 85 digits
(32·10205+13)/9 = 3(5)2047<206> = 37 · 967379807683<12> · 1184417920426891<16> · C177
C177 = P33 · C145
P33 = 795593320256493401773149644687597<33>
C145 = [1054174796839763600251173148992151267392532166265351897868569865399104713716754192260199669134941216435023948497548183846373245867966030763646021<145>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3026039895 Step 1 took 31370ms Step 2 took 23237ms ********** Factor found in step 2: 795593320256493401773149644687597 Found probable prime factor of 33 digits: 795593320256493401773149644687597 Composite cofactor 1054174796839763600251173148992151267392532166265351897868569865399104713716754192260199669134941216435023948497548183846373245867966030763646021 has 145 digits
(32·10166+13)/9 = 3(5)1657<167> = 37 · 71 · 1061 · 522009982599416239<18> · C143
C143 = P33 · P110
P33 = 245652995118526324744360953023587<33>
P110 = 99478938010092014586431984516395488503049535368699230296313702892077298924404182342090564617201312578520899767<110>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3389241046 Step 1 took 18884ms Step 2 took 13969ms ********** Factor found in step 2: 245652995118526324744360953023587 Found probable prime factor of 33 digits: 245652995118526324744360953023587 Probable prime cofactor 99478938010092014586431984516395488503049535368699230296313702892077298924404182342090564617201312578520899767 has 110 digits
(32·10155+13)/9 = 3(5)1547<156> = 3 · 9745711663<10> · C146
C146 = P30 · C116
P30 = 836420183209442561075511309839<30>
C116 = [14539455814731205321210177525875969087182313619367490212466311977932541637996102085909142345349193136322821376598967<116>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3636140472 Step 1 took 19495ms Step 2 took 14178ms ********** Factor found in step 2: 836420183209442561075511309839 Found probable prime factor of 30 digits: 836420183209442561075511309839 Composite cofactor 14539455814731205321210177525875969087182313619367490212466311977932541637996102085909142345349193136322821376598967 has 116 digits
(32·10202+31)/9 = 3(5)2019<203> = 32 · 43 · 389 · 10429 · 1464390643<10> · 164985366343084789<18> · C167
C167 = P33 · P135
P33 = 466182519781633765887136567956083<33>
P135 = 201069352542540042650344508717518021638710606851507419933772379949081681365191326619697562625614660401936804153516374403184966817798817<135>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=430933424 Step 1 took 20917ms Step 2 took 13093ms ********** Factor found in step 2: 466182519781633765887136567956083 Found probable prime factor of 33 digits: 466182519781633765887136567956083 Probable prime cofactor 201069352542540042650344508717518021638710606851507419933772379949081681365191326619697562625614660401936804153516374403184966817798817 has 135 digits
(32·10189+31)/9 = 3(5)1889<190> = 701 · 2383 · 2376873324384917<16> · 4759383136642136198432852719<28> · C141
C141 = P33 · P108
P33 = 333814150829410815649737373435823<33>
P108 = 563642797085802332383830652856064364475273552193519508492141508999800002809776410596006504633051870472710537<108>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1257938415 Step 1 took 14609ms Step 2 took 10712ms ********** Factor found in step 2: 333814150829410815649737373435823 Found probable prime factor of 33 digits: 333814150829410815649737373435823 Probable prime cofactor 563642797085802332383830652856064364475273552193519508492141508999800002809776410596006504633051870472710537 has 108 digits
(32·10170+13)/9 = 3(5)1697<171> = 32 · 7 · 5540993 · C163
C163 = P35 · C128
P35 = 12984208595306517726286012309466401<35>
C128 = [78444741095347397678580999552636074583338295133502838361927571852405256534421658239002539572952571276956284929552098180737904123<128>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2815647174 Step 1 took 22088ms Step 2 took 13643ms ********** Factor found in step 2: 12984208595306517726286012309466401 Found probable prime factor of 35 digits: 12984208595306517726286012309466401 Composite cofactor 78444741095347397678580999552636074583338295133502838361927571852405256534421658239002539572952571276956284929552098180737904123 has 128 digits
(32·10171+31)/9 = 3(5)1709<172> = 23 · 769 · 17417 · 159589 · C158
C158 = P33 · P126
P33 = 107987834546806140945454007205523<33>
P126 = 669733704346118779197931924293208612028416461194287929094971953976142368895751217073718031774189697036538650671648735737179543<126>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3083652194 Step 1 took 19369ms Step 2 took 12661ms ********** Factor found in step 2: 107987834546806140945454007205523 Found probable prime factor of 33 digits: 107987834546806140945454007205523 Probable prime cofactor 669733704346118779197931924293208612028416461194287929094971953976142368895751217073718031774189697036538650671648735737179543 has 126 digits
(32·10190+13)/9 = 3(5)1897<191> = 37 · 113 · 485964719904233782920111577<27> · C161
C161 = P36 · C125
P36 = 699056118054564041970473612040807401<36>
C125 = [25032862789153365018478740251724706852131249447149089422041868395151290097102441153373002551131680579832018686146524928049361<125>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4191816949 Step 1 took 27021ms Step 2 took 20674ms ********** Factor found in step 2: 699056118054564041970473612040807401 Found probable prime factor of 36 digits: 699056118054564041970473612040807401 Composite cofactor 25032862789153365018478740251724706852131249447149089422041868395151290097102441153373002551131680579832018686146524928049361 has 125 digits
(32·10143+31)/9 = 3(5)1429<144> = 19 · 59 · 1747 · 10253 · C134
C134 = P53 · P81
P53 = 23079352820141598249619821678406829423352705026772569<53>
P81 = 767245531149285575267317899340707869952195439658557920669800614699184607306931801<81>
SNFS difficulty: 145 digits. Divisors found: r1=23079352820141598249619821678406829423352705026772569 (pp53) r2=767245531149285575267317899340707869952195439658557920669800614699184607306931801 (pp81) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 17707530313071302506770464821911341751421185586262790520373820609700536492625271455568848575873804968724781806697706346734440820566769 m: 40000000000000000000000000000 deg: 5 c5: 125 c0: 124 skew: 1.00 type: snfs lss: 1 rlim: 1830000 alim: 1830000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.3 alambda: 2.3 Factor base limits: 1830000/1830000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved rational special-q in [915000, 2015001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 280603 x 280845 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1830000,1830000,26,26,50,50,2.3,2.3,100000 total time: 8.00 hours.
(32·10185+31)/9 = 3(5)1849<186> = 17 · 347 · 4323883 · C176
C176 = P31 · P145
P31 = 3568420194938534766279266855287<31>
P145 = 3906421938835330886237170731851398038761864173604013154645274793931398036626799143927453920469689066686149317964345952393979283699104118805078521<145>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2825353847 Step 1 took 22174ms Step 2 took 14393ms ********** Factor found in step 2: 3568420194938534766279266855287 Found probable prime factor of 31 digits: 3568420194938534766279266855287 Probable prime cofactor 3906421938835330886237170731851398038761864173604013154645274793931398036626799143927453920469689066686149317964345952393979283699104118805078521 has 145 digits
(32·10186+31)/9 = 3(5)1859<187> = 72 · 11888401325164912805825621<26> · 6024171809472740969693719777<28> · C133
C133 = P36 · P97
P36 = 426892186754019709687986691410122407<36>
P97 = 2373407857358874412233536608360417319692140812876644426471548027819447985400508358165919646993389<97>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4039017758 Step 1 took 13817ms Step 2 took 10652ms ********** Factor found in step 2: 426892186754019709687986691410122407 Found probable prime factor of 36 digits: 426892186754019709687986691410122407 Probable prime cofactor 2373407857358874412233536608360417319692140812876644426471548027819447985400508358165919646993389 has 97 digits
(32·10181+31)/9 = 3(5)1809<182> = 3 · 132 · 43 · 359 · 40039 · C171
C171 = P39 · P132
P39 = 372638789975169574957214534210894523011<39>
P132 = 304484593113223482635726534234166940008636199680134144356572163201145489184394894990238818475119649638851178460186072715697294579669<132>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=742742276 Step 1 took 24819ms Step 2 took 16777ms ********** Factor found in step 2: 372638789975169574957214534210894523011 Found probable prime factor of 39 digits: 372638789975169574957214534210894523011 Probable prime cofactor 304484593113223482635726534234166940008636199680134144356572163201145489184394894990238818475119649638851178460186072715697294579669 has 132 digits
(32·10185+13)/9 = 3(5)1847<186> = 3 · 29 · 43 · 168832608157<12> · C171
C171 = P33 · C139
P33 = 290495865583715280417753050377727<33>
C139 = [1937864805353253318005736959102344995714626766253850408250067765460602155724470008087217876606783341886236558661754693541740125223893701443<139>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3377039204 Step 1 took 24625ms Step 2 took 16884ms ********** Factor found in step 2: 290495865583715280417753050377727 Found probable prime factor of 33 digits: 290495865583715280417753050377727 Composite cofactor 1937864805353253318005736959102344995714626766253850408250067765460602155724470008087217876606783341886236558661754693541740125223893701443 has 139 digits
By Sinkiti Sibata / GGNFS
(31·10151+41)/9 = 3(4)1509<152> = 32 · 13 · 5813021873<10> · C140
C140 = P50 · P91
P50 = 25159023166929253852356966287189982699044095992221<50>
P91 = 2012971334982969607587578984544165589319626732300682305366828685278214905844400647139065009<91>
Number: 34449_151 N=50644392451201039940486898811919837806947292225271785123798546055054166195530666819430997570993822590013111807604058720118930867542077294989 ( 140 digits) SNFS difficulty: 152 digits. Divisors found: r1=25159023166929253852356966287189982699044095992221 (pp50) r2=2012971334982969607587578984544165589319626732300682305366828685278214905844400647139065009 (pp91) Version: GGNFS-0.77.1-20060513-k8 Total time: 29.07 hours. Scaled time: 53.88 units (timescale=1.853). Factorization parameters were as follows: name: 34449_151 n: 50644392451201039940486898811919837806947292225271785123798546055054166195530666819430997570993822590013111807604058720118930867542077294989 m: 1000000000000000000000000000000 deg: 5 c5: 310 c0: 41 skew: 0.67 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176735, largePrimes:7906736 encountered Relations: rels:7966289, finalFF:469567 Max relations in full relation-set: 28 Initial matrix: 353104 x 469567 with sparse part having weight 52765137. Pruned matrix : 314785 x 316614 with weight 32293031. Total sieving time: 27.06 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.63 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 29.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(32·10165-41)/9 = 3(5)1641<166> = 28933 · 77017 · 1481692160913415043336153<25> · C133
C133 = P45 · P88
P45 = 952732027174124881625503241681651225883485593<45>
P88 = 1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379<88>
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 1076885231038767992413352754329605253167257680508027092947125535368173098885445945137010069761323421743188297144152194724878946519747 (133 digits) Using B1=2114000, B2=2439300909, polynomial Dickson(6), sigma=2117395774 Step 1 took 28031ms Step 2 took 15469ms ********** Factor found in step 2: 952732027174124881625503241681651225883485593 Found probable prime factor of 45 digits: 952732027174124881625503241681651225883485593 Probable prime cofactor 1130312827031637517531129402173147614032500164417042066514785305877661651415227444360379 has 88 digits
(31·10165+41)/9 = 3(4)1649<166> = 3571 · 21693282270189289<17> · 1201928900749666965658298861489<31> · C116
C116 = P44 · P72
P44 = 52360156332128908550551752115093402369791409<44>
P72 = 706519827658752527682749389034573409857980191378297593467378048714187971<72>
Number: n N=36993488627961056344488479201846311208466483880832964717932506627895049398002594345347037447623735419557550086941139 ( 116 digits) Divisors found: Tue Nov 25 04:40:41 2008 prp44 factor: 52360156332128908550551752115093402369791409 Tue Nov 25 04:40:41 2008 prp72 factor: 706519827658752527682749389034573409857980191378297593467378048714187971 Tue Nov 25 04:40:41 2008 elapsed time 00:49:14 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 34.13 hours. Scaled time: 28.63 units (timescale=0.839). Factorization parameters were as follows: name: KA_3_4_164_9 n: 36993488627961056344488479201846311208466483880832964717932506627895049398002594345347037447623735419557550086941139 skew: 27554.71 # norm 2.12e+15 c5: 73080 c4: -270741138 c3: -118636966223308 c2: -1515144755494934221 c1: 37855017221866213730472 c0: 462963681614409640635618000 # alpha -5.09 Y1: 2124809634343 Y0: -13831376378547203326429 # Murphy_E 4.86e-10 # M 9599321862410283898123100379616895623818960450150469167051830326877405946979609366726360656345165674977990457946100 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 2020001) Primes: RFBsize:315948, AFBsize:315804, largePrimes:6353259 encountered Relations: rels:6186586, finalFF:669899 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 33.85 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 34.13 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(31·10158+41)/9 = 3(4)1579<159> = 17 · 341656622449638885049<21> · C137
C137 = P51 · P87
P51 = 403369120592280214906680606143906456903218042215967<51>
P87 = 147020458057331909160593920488882803957838848951345662283367806977244326092173137116359<87>
Number: n N=59303512875660190239903873838592225362043522656415163955070689963128025148740225659345164492560895282613090072407941118087658052686704153 ( 137 digits) SNFS difficulty: 159 digits. Divisors found: Tue Nov 25 07:05:02 2008 prp51 factor: 403369120592280214906680606143906456903218042215967 Tue Nov 25 07:05:03 2008 prp87 factor: 147020458057331909160593920488882803957838848951345662283367806977244326092173137116359 Tue Nov 25 07:05:03 2008 elapsed time 01:23:00 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.75 hours. Scaled time: 67.17 units (timescale=2.051). Factorization parameters were as follows: name: KA_3_4_157_9 n: 59303512875660190239903873838592225362043522656415163955070689963128025148740225659345164492560895282613090072407941118087658052686704153 type: snfs skew: 0.27 deg: 5 c5: 31000 c0: 41 m: 10000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1750001) Primes: RFBsize:283146, AFBsize:283059, largePrimes:14395021 encountered Relations: rels:12895344, finalFF:596990 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 32.42 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.5,2.5,100000 total time: 32.75 hours. --------- CPU info (if available) ----------
By Serge Batalov / ***Msieve-1.39-beta (and it's own poly. select!)***, GMP-ECM 6.2.1
(29·10193+43)/9 = 3(2)1927<194> = 37 · 376545742538947<15> · 5277015119215697866479228169<28> · 12855017410089438631794603630041<32> · C119
C119 = P55 · P64
P55 = 5149427821374870752051649514844128520721202945360567979<55>
P64 = 6620884931864348748165073996244706685224112510911662888370567223<64>
Number: 32227_193 N=34093769070263942955503177408570636568154822681818558606509181335014782811074308996491335063579593027737149761680752317 ( 119 digits) Divisors found: r1=5149427821374870752051649514844128520721202945360567979 (pp55) r2=6620884931864348748165073996244706685224112510911662888370567223 (pp64) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: name: 32227_193 n: 34093769070263942955503177408570636568154822681818558606509181335014782811074308996491335063579593027737149761680752317 Y0: -78144654374057956235581 Y1: 3845840165363 c0: -1871596898878390306911020084352 c1: -15959543399998484701121224 c2: 195713673571504411046 c3: 1015716197615315 c4: -3952249560 c5: 11700 skew: 142699.88 # norm 6.915e+16 # alpha -7.327632 # Murphy_E 2.169e-11 # M type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 618901 x 619149 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.5,2.5,100000 total time: 50.00 hours.
7·10174+9 = 7(0)1739<175> = 2417 · 62141 · 24597884160931<14> · 238162287627716653181<21> · C133
C133 = P34 · P100
P34 = 1927956018365591441032402945607921<34>
P100 = 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387<100>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3558391417 Step 1 took 12353ms Step 2 took 9712ms ********** Factor found in step 2: 1927956018365591441032402945607921 Found probable prime factor of 34 digits: 1927956018365591441032402945607921 Probable prime cofactor 4126437621140930568054372656781264192663859088452172703723803757169122245662645278492526385498425387 has 100 digits
Factorizations of 355...557 and Factorizations of 355...559 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Wataru Sakai / GGNFS
(13·10181+41)/9 = 1(4)1809<182> = 17 · 19 · C179
C179 = P50 · P130
P50 = 27562524394914669598711172166617269924884888204961<50>
P130 = 1622479915196479736876798893912635377625993367732178502949268365993143847383362621642915177047839771381675513828189657496747215083<130>
Number: 14449_181 N=44719642242862057103543171654626762985896112831097351221190230478156174750601995184038527691778465772273821809425524595803233574131406948744410044719642242862057103543171654626763 ( 179 digits) SNFS difficulty: 182 digits. Divisors found: r1=27562524394914669598711172166617269924884888204961 (pp50) r2=1622479915196479736876798893912635377625993367732178502949268365993143847383362621642915177047839771381675513828189657496747215083 (pp130) Version: GGNFS-0.77.1-20060722-nocona Total time: 351.70 hours. Scaled time: 697.77 units (timescale=1.984). Factorization parameters were as follows: n: 44719642242862057103543171654626762985896112831097351221190230478156174750601995184038527691778465772273821809425524595803233574131406948744410044719642242862057103543171654626763 m: 1000000000000000000000000000000000000 deg: 5 c5: 130 c0: 41 skew: 0.79 type: snfs lss: 1 rlim: 7600000 alim: 7600000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 7600000/7600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3800000, 7100001) Primes: RFBsize:514565, AFBsize:513133, largePrimes:19008871 encountered Relations: rels:21296485, finalFF:2344194 Max relations in full relation-set: 32 Initial matrix: 1027765 x 2344193 with sparse part having weight 350900025. Pruned matrix : 721846 x 727048 with weight 202326012. Total sieving time: 336.70 hours. Total relation processing time: 0.39 hours. Matrix solve time: 14.25 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7600000,7600000,28,28,53,53,2.5,2.5,100000 total time: 351.70 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve
(32·10147-41)/9 = 3(5)1461<148> = 1559 · 4523 · 6029 · 59237052585780701417<20> · C118
C118 = P36 · P82
P36 = 577085991676888579048591258886894351<36>
P82 = 2446557956931734686843641738363522287338694689153264217316360714289132931884914001<82>
Number: 35551_147 N=1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351 ( 118 digits) SNFS difficulty: 148 digits. Divisors found: r1=577085991676888579048591258886894351 (pp36) r2=2446557956931734686843641738363522287338694689153264217316360714289132931884914001 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.61 hours. Scaled time: 27.56 units (timescale=2.374). Factorization parameters were as follows: n: 1411874324770932570133784077882139868858237151608737458865903660716993942523655638259947462944967839507201267607708351 m: 200000000000000000000000000000 deg: 5 c5: 100 c0: -41 skew: 0.84 type: snfs lss: 1 rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:134269, largePrimes:3907862 encountered Relations: rels:3974260, finalFF:333414 Max relations in full relation-set: 28 Initial matrix: 269405 x 333414 with sparse part having weight 32597540. Pruned matrix : 250682 x 252093 with weight 21205303. Total sieving time: 11.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.52 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,49,49,2.3,2.3,75000 total time: 11.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(29·10161+43)/9 = 3(2)1607<162> = 3 · 127 · 1303 · 81017 · 2764441 · 723581991738401<15> · C130
C130 = P41 · P44 · P46
P41 = 65731665480805222595720071261961910422471<41>
P44 = 19465377701474799653076880016239617879270773<44>
P46 = 3130238241711695725511513679546855990923798339<46>
I used Serge Batalov's ECM result.Thanks for him to prevent wasting my resources. Mon Nov 24 20:15:36 2008 Mon Nov 24 20:15:36 2008 Mon Nov 24 20:15:36 2008 Msieve v. 1.34 Mon Nov 24 20:15:36 2008 random seeds: ab854081 b2e8a7f3 Mon Nov 24 20:15:36 2008 factoring 205755772979417104595082042547315417057596909369989234543823785687942743680835498075669 (87 digits) Mon Nov 24 20:15:37 2008 no P-1/P+1/ECM available, skipping Mon Nov 24 20:15:37 2008 commencing quadratic sieve (87-digit input) Mon Nov 24 20:15:37 2008 using multiplier of 13 Mon Nov 24 20:15:37 2008 using 32kb Intel Core sieve core Mon Nov 24 20:15:37 2008 sieve interval: 19 blocks of size 32768 Mon Nov 24 20:15:37 2008 processing polynomials in batches of 11 Mon Nov 24 20:15:37 2008 using a sieve bound of 1480243 (56155 primes) Mon Nov 24 20:15:37 2008 using large prime bound of 118419440 (26 bits) Mon Nov 24 20:15:37 2008 using double large prime bound of 340534638927600 (41-49 bits) Mon Nov 24 20:15:37 2008 using trial factoring cutoff of 49 bits Mon Nov 24 20:15:37 2008 polynomial 'A' values have 11 factors Mon Nov 24 20:51:07 2008 56540 relations (15918 full + 40622 combined from 591093 partial), need 56251 Mon Nov 24 20:51:07 2008 begin with 607011 relations Mon Nov 24 20:51:08 2008 reduce to 134507 relations in 10 passes Mon Nov 24 20:51:08 2008 attempting to read 134507 relations Mon Nov 24 20:51:09 2008 recovered 134507 relations Mon Nov 24 20:51:09 2008 recovered 112909 polynomials Mon Nov 24 20:51:09 2008 attempting to build 56540 cycles Mon Nov 24 20:51:09 2008 found 56540 cycles in 6 passes Mon Nov 24 20:51:09 2008 distribution of cycle lengths: Mon Nov 24 20:51:09 2008 length 1 : 15918 Mon Nov 24 20:51:09 2008 length 2 : 11285 Mon Nov 24 20:51:09 2008 length 3 : 10098 Mon Nov 24 20:51:09 2008 length 4 : 7501 Mon Nov 24 20:51:09 2008 length 5 : 4854 Mon Nov 24 20:51:09 2008 length 6 : 3068 Mon Nov 24 20:51:09 2008 length 7 : 1807 Mon Nov 24 20:51:09 2008 length 9+: 2009 Mon Nov 24 20:51:09 2008 largest cycle: 19 relations Mon Nov 24 20:51:09 2008 matrix is 56155 x 56540 (13.9 MB) with weight 3179419 (56.23/col) Mon Nov 24 20:51:09 2008 sparse part has weight 3179419 (56.23/col) Mon Nov 24 20:51:09 2008 filtering completed in 3 passes Mon Nov 24 20:51:09 2008 matrix is 51433 x 51497 (12.7 MB) with weight 2910899 (56.53/col) Mon Nov 24 20:51:09 2008 sparse part has weight 2910899 (56.53/col) Mon Nov 24 20:51:09 2008 saving the first 48 matrix rows for later Mon Nov 24 20:51:09 2008 matrix is 51385 x 51497 (8.4 MB) with weight 2277388 (44.22/col) Mon Nov 24 20:51:09 2008 sparse part has weight 1697155 (32.96/col) Mon Nov 24 20:51:09 2008 matrix includes 64 packed rows Mon Nov 24 20:51:09 2008 using block size 20598 for processor cache size 4096 kB Mon Nov 24 20:51:10 2008 commencing Lanczos iteration Mon Nov 24 20:51:10 2008 memory use: 7.5 MB Mon Nov 24 20:51:19 2008 lanczos halted after 814 iterations (dim = 51385) Mon Nov 24 20:51:19 2008 recovered 18 nontrivial dependencies Mon Nov 24 20:51:20 2008 prp41 factor: 65731665480805222595720071261961910422471 Mon Nov 24 20:51:20 2008 prp46 factor: 3130238241711695725511513679546855990923798339 Mon Nov 24 20:51:20 2008 elapsed time 00:35:44
By Erik Branger / GGNFS, Msieve
(31·10129+23)/9 = 3(4)1287<130> = 32 · 113 · 1307 · 2023778357<10> · C115
C115 = P40 · P75
P40 = 1808155721885738375046960285070261414171<40>
P75 = 708147729052792909331890541107232260936223443052897711922138946192172196179<75>
Number: 34447_129 N=1280441368227199028861108069600156146599223949765701089268336067031998884839311050344612389229259445048883382652609 ( 115 digits) SNFS difficulty: 131 digits. Divisors found: r1=1808155721885738375046960285070261414171 r2=708147729052792909331890541107232260936223443052897711922138946192172196179 Version: Total time: 5.59 hours. Scaled time: 11.52 units (timescale=2.061). Factorization parameters were as follows: n: 1280441368227199028861108069600156146599223949765701089268336067031998884839311050344612389229259445048883382652609 m: 100000000000000000000000000 deg: 5 c5: 31 c0: 230 skew: 1.49 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 1095001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 179344 x 179592 Total sieving time: 5.59 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 5.59 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(32·10180-41)/9 = 3(5)1791<181> = 73 · 227 · 1693 · C174
C174 = P37 · C137
P37 = 1782454901553614650304098655062208111<37>
C137 = [71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047<137>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1778025856 Step 1 took 25039ms Step 2 took 16297ms ********** Factor found in step 2: 1782454901553614650304098655062208111 Found probable prime factor of 37 digits: 1782454901553614650304098655062208111 Composite cofactor 71102233465445408409612382583042372098046406252784713936200060362115527942842424757820993742113288336936350920262904289486346645532474047 has 137 digits
(31·10173+41)/9 = 3(4)1729<174> = 7 · 19 · 4691 · 7782742866519634973<19> · C149
C149 = P32 · P117
P32 = 83377522136045683392304271789693<32>
P117 = 850786214026242067189873714302933069285863191449712790626418410523447559037456956822189265479193369646179402708251047<117>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=526494384 Step 1 took 20116ms Step 2 took 14285ms ********** Factor found in step 2: 83377522136045683392304271789693 Found probable prime factor of 32 digits: 83377522136045683392304271789693 Probable prime cofactor 850786214026242067189873714302933069285863191449712790626418410523447559037456956822189265479193369646179402708251047 has 117 digits
(32·10178-41)/9 = 3(5)1771<179> = 28156920554652720527<20> · 5210329393120129261464619<25> · C135
C135 = P33 · P103
P33 = 125024948769124296559864649242229<33>
P103 = 1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863<103>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3121908314 Step 1 took 11952ms Step 2 took 9541ms ********** Factor found in step 2: 125024948769124296559864649242229 Found probable prime factor of 33 digits: 125024948769124296559864649242229 Probable prime cofactor 1938476088265407267608468946830297300218344442829662873259342913111548879306471757099239916369185285863 has 103 digits
(31·10191+41)/9 = 3(4)1909<192> = 7 · 19 · C190
C190 = P32 · P159
P32 = 16352608158325280068530540592321<32>
P159 = 158372770134973853451453319258450143367925711568851708222095631882900541087769377379856401740310931607028215689622351972876314002803779729804456699654096482093<159>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3712999241 Step 1 took 30616ms Step 2 took 19179ms ********** Factor found in step 2: 16352608158325280068530540592321 Found probable prime factor of 32 digits: 16352608158325280068530540592321 Probable prime cofactor 158372770134973853451453319258450143367925711568851708222095631882900541087769377379856401740310931607028215689622351972876314002803779729804456699654096482093 has 159 digits
(31·10199+23)/9 = 3(4)1987<200> = 37 · 269 · 1171 · 2131 · 5335974706151<13> · C177
C177 = P36 · P141
P36 = 587694556997297870644186569026808713<36>
P141 = 442241408781365201047390169107407138612743617495375426139753485106195550727452708337636024716855229535778626601983057531826393257778505615673<141>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1953325660 Step 1 took 28043ms Step 2 took 4695ms ********** Factor found in step 2: 587694556997297870644186569026808713 Found probable prime factor of 36 digits: 587694556997297870644186569026808713 Probable prime cofactor 442241408781365201047390169107407138612743617495375426139753485106195550727452708337636024716855229535778626601983057531826393257778505615673 has 141 digits
(32·10187-41)/9 = 3(5)1861<188> = 3533 · 3739 · C181
C181 = P36 · P145
P36 = 827294513452956265618762024603598903<36>
P145 = 3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191<145>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3710936791 Step 1 took 28301ms Step 2 took 18753ms ********** Factor found in step 2: 827294513452956265618762024603598903 Found probable prime factor of 36 digits: 827294513452956265618762024603598903 Probable prime cofactor 3253480605332184680921640377891870384597854099985062122053939956180523797724675112907904366651740113627813901481730040593855626571502160884709191 has 145 digits
(31·10192+23)/9 = 3(4)1917<193> = 32 · 232982699 · 5557520236851780468690203<25> · C159
C159 = P41 · P118
P41 = 68847142672712911758410719469952112423811<41>
P118 = 4293248525452453558473029420197389416256988299456207145251790401469095489360510382530193461098608464957750681137104549<118>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1102381511 Step 1 took 24753ms Step 2 took 16493ms ********** Factor found in step 2: 68847142672712911758410719469952112423811 Found probable prime factor of 41 digits: 68847142672712911758410719469952112423811 Probable prime cofactor 4293248525452453558473029420197389416256988299456207145251790401469095489360510382530193461098608464957750681137104549 has 118 digits
(32·10194-41)/9 = 3(5)1931<195> = 3 · 13 · 10067 · 157427 · 172969 · 6254734808027557837<19> · 1569299852534710883524631<25> · C136
C136 = P35 · P102
P35 = 10833599953333206062513961588376283<35>
P102 = 312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929<102>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2633261084 Step 1 took 18932ms Step 2 took 13679ms ********** Factor found in step 2: 10833599953333206062513961588376283 Found probable prime factor of 35 digits: 10833599953333206062513961588376283 Probable prime cofactor 312757454475848459879503203836292897307277646250554042188313990627705705745444626647351015419658382929 has 102 digits
(31·10194+23)/9 = 3(4)1937<195> = 67939 · 3215447 · 4483159 · C177
C177 = P35 · C143
P35 = 19142262145430902451199177266387881<35>
C143 = [18373050867731199376514309341207865522577073846536752888979846972728248598440480445014355515199596125693843553423683088903672752641169831356221<143>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2790789935 Step 1 took 28016ms Step 2 took 18710ms ********** Factor found in step 2: 19142262145430902451199177266387881 Found probable prime factor of 35 digits: 19142262145430902451199177266387881 Composite cofactor 18373050867731199376514309341207865522577073846536752888979846972728248598440480445014355515199596125693843553423683088903672752641169831356221 has 143 digits
(32·10203-41)/9 = 3(5)2021<204> = 3 · 7 · 61 · 22739 · 379837 · 536563509683722190583327839<27> · C164
C164 = P33 · P132
P33 = 354102979541164110880003592212481<33>
P132 = 169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383<132>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4180862736 Step 1 took 24856ms Step 2 took 16720ms ********** Factor found in step 2: 354102979541164110880003592212481 Found probable prime factor of 33 digits: 354102979541164110880003592212481 Probable prime cofactor 169137144852597308225618316511538561476577202292669595418051665587776733341784913636767253699943916968786779942651786094067252427383 has 132 digits
(32·10170-41)/9 = 3(5)1691<171> = 3 · 13 · C169
C169 = P60 · P109
P60 = 998043704380098602044869755178934572557337371599512013922099<60>
P109 = 9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291<109>
SNFS difficulty: 171 digits. Divisors found: r1=998043704380098602044869755178934572557337371599512013922099 (pp60) r2=9134679249814733560138714436517929988836887392421258951330673846471491717924198918470826456585941620511614291 (pp109) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 9116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809116809 m: 20000000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2550000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 962406 x 962647 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,54,54,2.5,2.5,200000 total time: 42.00 hours.
(26·10175-71)/9 = 2(8)1741<176> = 32 · 72 · 51396937 · C166
C166 = P34 · C132
P34 = 5485541467765331185793932059381071<34>
C132 = [232346165013524035407277568756740617921650712557593860807267789156818500888584376591986045173426639312451934844830078298810503320383<132>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1753223694 Step 1 took 19425ms Step 2 took 12913ms ********** Factor found in step 2: 5485541467765331185793932059381071 Found probable prime factor of 34 digits: 5485541467765331185793932059381071 Composite cofactor 232346165013524035407277568756740617921650712557593860807267789156818500888584376591986045173426639312451934844830078298810503320383 has 132 digits
(29·10166+43)/9 = 3(2)1657<167> = 13 · 37 · 61 · 139 · 577 · 52967429 · 80517401 · 84663716459138949752951<23> · C119
C119 = P33 · P86
P33 = 761702925310844258565528121716823<33>
P86 = 49786130187401782926117076264729435237188242647832592699115744065130471304676109804097<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1084544580 Step 1 took 11941ms Step 2 took 9369ms ********** Factor found in step 2: 761702925310844258565528121716823 Found probable prime factor of 33 digits: 761702925310844258565528121716823 Probable prime cofactor 49786130187401782926117076264729435237188242647832592699115744065130471304676109804097 has 86 digits
(17·10168+1)/9 = 1(8)1679<169> = 1722973771<10> · 441744465139454537703640231879<30> · C130
C130 = P38 · P92
P38 = 62067659878874716493548893843727505309<38>
P92 = 39984462054234271226059897447734856516947654297265965031547710425930629429688197202520858369<92>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3404844789 Step 1 took 14129ms Step 2 took 9713ms ********** Factor found in step 2: 62067659878874716493548893843727505309 Found probable prime factor of 38 digits: 62067659878874716493548893843727505309 Probable prime cofactor 39984462054234271226059897447734856516947654297265965031547710425930629429688197202520858369 has 92 digits
(22·10198-13)/9 = 2(4)1973<199> = 761 · C196
C196 = P40 · C157
P40 = 1116164463888701212766808462545049455171<40>
C157 = [2877844495788575168113607192129997691026661911215134817394216371163195475768528619368913071644015537645015736907890065295017724885610399161647249281604057553<157>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2917915214 Step 1 took 32189ms Step 2 took 20917ms ********** Factor found in step 2: 1116164463888701212766808462545049455171 Found probable prime factor of 40 digits: 1116164463888701212766808462545049455171 Composite cofactor 2877844495788575168113607192129997691026661911215134817394216371163195475768528619368913071644015537645015736907890065295017724885610399161647249281604057553 has 157 digits
7·10168+3 = 7(0)1673<169> = 341870677521159820404771314461<30> · C140
C140 = P67 · P73
P67 = 5749965473293729696597801765242916256625281553550128309455278186337<67>
P73 = 3560991610105122471722990488660298925687905168583791168409158735294004479<73>
SNFS difficulty: 170 digits. Divisors found: r1=5749965473293729696597801765242916256625281553550128309455278186337 (pp67) r2=3560991610105122471722990488660298925687905168583791168409158735294004479 (pp73) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 20475578808793101098067109352302136241947465332363736170498450833112663592480281217974216315890803341249803045346825107415291040669074603423 m: 5000000000000000000000000000000000 deg: 5 c5: 56 c0: 75 skew: 1.06 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2400000, 4800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 917860 x 918102 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 36.00 hours.
(17·10170+1)/9 = 1(8)1699<171> = 3 · 7 · 23 · 37501 · 1307923 · 46512393772229041<17> · C141
C141 = P37 · P104
P37 = 4807025903651954567691869159809598947<37>
P104 = 35660637429904587067911820002302375560227157892722747763245437688750495106878532185673868322404000400823<104>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3211483261 Step 1 took 14620ms Step 2 took 10677ms ********** Factor found in step 2: 4807025903651954567691869159809598947 Found probable prime factor of 37 digits: 4807025903651954567691869159809598947 Probable prime cofactor 35660637429904587067911820002302375560227157892722747763245437688750495106878532185673868322404000400823 has 104 digits
(26·10198-71)/9 = 2(8)1971<199> = 281 · 7743557 · 15794094665352108651876851<26> · 56141214127490815204720556917<29> · C136
C136 = P34 · P102
P34 = 6672158345324570924911004640070319<34>
P102 = 224409447889967492996585171782030978009865301467761627115443269401396865659446660091646883625181321541<102>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=234056921 Step 1 took 16085ms Step 2 took 11441ms ********** Factor found in step 2: 6672158345324570924911004640070319 Found probable prime factor of 34 digits: 6672158345324570924911004640070319 Probable prime cofactor 224409447889967492996585171782030978009865301467761627115443269401396865659446660091646883625181321541 has 102 digits
4·10172+7 = 4(0)1717<173> = 11 · 107 · 109 · 28109 · 4110437 · 37009237580533<14> · C143
C143 = P45 · P99
P45 = 100305578557150326645901431665213886002442319<45>
P99 = 726923004900429115307541442670226086141573640361924923419646985297364567603919585356657165361801089<99>
SNFS difficulty: 172 digits. Divisors found: r1=100305578557150326645901431665213886002442319 (pp45) r2=726923004900429115307541442670226086141573640361924923419646985297364567603919585356657165361801089 (pp99) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.538). Factorization parameters were as follows: n: 72914432573039764485645880875045651008927003853729473970414449958165524809692232914487279677657403075526865507092416340315342944171122673885391 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: 14 skew: 0.89 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2650000, 4950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 965179 x 965421 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,53,53,2.5,2.5,100000 total time: 37.00 hours.
(14·10170-23)/9 = 1(5)1693<171> = 3 · 691 · 22263472690475736337<20> · C148
C148 = P28 · C120
P28 = 4140183215192466077295603949<28>
C120 = [814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397<120>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2712233381 Step 1 took 14573ms ********** Factor found in step 1: 4140183215192466077295603949 Found probable prime factor of 28 digits: 4140183215192466077295603949 Composite cofactor 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 has 120 digits
(67·10169+23)/9 = 7(4)1687<170> = 7 · 113 · 47 · 9634504347070848704094689<25> · C140
C140 = P44 · P96
P44 = 36355850834570118053133951458400315996827161<44>
P96 = 485349570832950084927284102664391171870708737358204755442100584286328162153818832105814831878757<96>
SNFS difficulty: 171 digits. Divisors found: r1=36355850834570118053133951458400315996827161 (pp44) r2=485349570832950084927284102664391171870708737358204755442100584286328162153818832105814831878757 (pp96) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 17645296599825356972196652946718116402721679125350513178441215898893463560972287693021794077117749728905327359821616360176301061848636518877 m: 10000000000000000000000000000000000 deg: 5 c5: 67 c0: 230 skew: 1.28 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2550000, 5150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 954924 x 955166 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,53,53,2.5,2.5,100000 total time: 40.00 hours.
(8·10209+1)/9 = (8)2089<209> = 47 · 103 · 2237941 · 4609345901<10> · 30497201569<11> · 6734479233509927143<19> · 20018060180487237540114636047<29> · C132
C132 = P33 · P100
P33 = 287944218227248700481818032174301<33>
P100 = 1503592325881574908416447589270613098491254186484255698064601081514562926755107233101700906147750381<100>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1801430418 Step 1 took 15665ms Step 2 took 12740ms ********** Factor found in step 2: 287944218227248700481818032174301 Found probable prime factor of 33 digits: 287944218227248700481818032174301 Probable prime cofactor 1503592325881574908416447589270613098491254186484255698064601081514562926755107233101700906147750381 has 100 digits
(25·10176-43)/9 = 2(7)1753<177> = 3 · 7 · 13 · 281 · C172
C172 = P35 · P138
P35 = 17117031548021844777195855517637263<35>
P138 = 211543692732147083754486058627421714563422861284785083503461250666691057398802310212309971774486900777685438889359113718536082788821389067<138>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=387572664 Step 1 took 24831ms Step 2 took 16880ms ********** Factor found in step 2: 17117031548021844777195855517637263 Found probable prime factor of 35 digits: 17117031548021844777195855517637263 Probable prime cofactor 211543692732147083754486058627421714563422861284785083503461250666691057398802310212309971774486900777685438889359113718536082788821389067 has 138 digits
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(32·10155-41)/9 = 3(5)1541<156> = 32 · 7 · 577 · 1458547 · 44654861 · 168236298229207179798289<24> · C114
C114 = P49 · P66
P49 = 6589889674901733654324033821990327559794316422291<49>
P66 = 135457821999390469099670401531267201792965530673937169973854234797<66>
Number: n N=892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927 ( 114 digits) Divisors found: r1=6589889674901733654324033821990327559794316422291 (pp49) r2=135457821999390469099670401531267201792965530673937169973854234797 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.44 hours. Scaled time: 64.30 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_154_1 n: 892652102578460163452218925109299370287832470891244205426080081902444565148626159311884218437879316318892518659927 skew: 17881.72 # norm 1.65e+15 c5: 124740 c4: -3305249242 c3: -66180629234238 c2: 941123426736639434 c1: 18068018182754986939935 c0: 56736548028175370430747650 # alpha -4.71 Y1: 627207758323 Y0: -5901134905459535117853 # Murphy_E 5.87e-10 # M 875948648962425620048330212363563760145461037216438232018025505669232687984754761478672507962506218253364299892481 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:250601, largePrimes:7261061 encountered Relations: rels:7091857, finalFF:612715 Max relations in full relation-set: 28 Initial matrix: 500833 x 612715 with sparse part having weight 46311257. Pruned matrix : 402233 x 404801 with weight 24686433. Total sieving time: 29.94 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.71 hours. Total square root time: 0.58 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 31.44 hours. --------- CPU info (if available) ----------
(29·10156+61)/9 = 3(2)1559<157> = 1583 · 13954570914080293172207179192384157<35> · C120
C120 = P40 · P80
P40 = 1891857657521508354844909719281960503397<40>
P80 = 77102707610175432125304673350243785044485094386824629693426617726158095364091947<80>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 145867347807952268579412120037241313649196025306635310236169952952796714365773755203936139204221987693598990373913843959 (120 digits) Using B1=4516000, B2=8562077170, polynomial Dickson(6), sigma=3701885376 Step 1 took 59297ms Step 2 took 18375ms ********** Factor found in step 2: 1891857657521508354844909719281960503397 Found probable prime factor of 40 digits: 1891857657521508354844909719281960503397 Probable prime cofactor 77102707610175432125304673350243785044485094386824629693426617726158095364091947 has 80 digits
(31·10152+23)/9 = 3(4)1517<153> = 107 · 677 · 487387 · C142
C142 = P62 · P81
P62 = 73614591348542831536038340486350437160072591338127130900413721<62>
P81 = 132528380627864005990141182168512501174418120784716384110004695241628977470486099<81>
Number: n N=9756022582004349047507364507499921946225366500848674640456733416082136242417803225035612096644979843850061570187862543328775065391426079364379 ( 142 digits) SNFS difficulty: 153 digits. Divisors found: r1=73614591348542831536038340486350437160072591338127130900413721 (pp62) r2=132528380627864005990141182168512501174418120784716384110004695241628977470486099 (pp81) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 29.59 hours. Scaled time: 38.64 units (timescale=1.306). Factorization parameters were as follows: name: KA_3_4_151_7 n: 9756022582004349047507364507499921946225366500848674640456733416082136242417803225035612096644979843850061570187862543328775065391426079364379 type: snfs skew: 0.38 deg: 5 c5: 3100 c0: 23 m: 1000000000000000000000000000000 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:176302, AFBsize:176014, largePrimes:12206874 encountered Relations: rels:11170380, finalFF:458117 Max relations in full relation-set: 28 Initial matrix: 352383 x 458117 with sparse part having weight 46424684. Pruned matrix : 296745 x 298570 with weight 28529175. Total sieving time: 26.27 hours. Total relation processing time: 0.42 hours. Matrix solve time: 2.66 hours. Total square root time: 0.25 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.5,2.5,100000 total time: 29.59 hours. --------- CPU info (if available) ----------
(32·10160-41)/9 = 3(5)1591<161> = 47527409 · 1059981455713<13> · 24745675942864343054205647<26> · C116
C116 = P57 · P60
P57 = 163875404876858976588551599658128966517628862360417550081<57>
P60 = 174041157702382505971591718344739887639052132484582251616929<60>
Number: n N=28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249 ( 116 digits) Divisors found: Mon Nov 24 21:52:43 2008 prp57 factor: 163875404876858976588551599658128966517628862360417550081 Mon Nov 24 21:52:43 2008 prp60 factor: 174041157702382505971591718344739887639052132484582251616929 Mon Nov 24 21:52:43 2008 elapsed time 00:43:19 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.70 hours. Scaled time: 53.17 units (timescale=1.449). Factorization parameters were as follows: name: KA_3_5_159_1 n: 28521065183715196355824844085452176849021322513407806760569274498363666847451583590806239126414388837306251084921249 skew: 115436.32 # norm 1.36e+16 c5: 4800 c4: -783522220 c3: -300581098722771 c2: 10441071344211345536 c1: -17790501904306421094330 c0: -14839347986275999951931807367 # alpha -6.62 Y1: 1602120061993 Y0: -22635281731215525167408 # Murphy_E 5.30e-10 # M 3583062506374066250087638677111738450689527918815593869953971918521088312084087884886850189552142664315250577447483 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1720001) Primes: RFBsize:315948, AFBsize:316284, largePrimes:6170251 encountered Relations: rels:6123996, finalFF:749005 Max relations in full relation-set: 28 Initial matrix: 632311 x 749005 with sparse part having weight 34439405. Pruned matrix : 499348 x 502573 with weight 16557018. Total sieving time: 36.45 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 36.70 hours. --------- CPU info (if available) ----------
(31·10161+41)/9 = 3(4)1609<162> = 7 · 174672715331411159<18> · C144
C144 = P50 · P95
P50 = 19271833543064282432963298327790989181455280173613<50>
P95 = 14617497794949856808550674252675297489036964937095681265244845906085208668384217430630196277221<95>
Number: n N=281705984320382834768168838574043320101246180179813501104002009710698781848409531013928771698738236445365657545494019832461744291094443157169473 ( 144 digits) SNFS difficulty: 162 digits. Divisors found: Mon Nov 24 23:56:29 2008 prp50 factor: 19271833543064282432963298327790989181455280173613 Mon Nov 24 23:56:29 2008 prp95 factor: 14617497794949856808550674252675297489036964937095681265244845906085208668384217430630196277221 Mon Nov 24 23:56:29 2008 elapsed time 01:55:56 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.90 hours. Scaled time: 56.45 units (timescale=1.827). Factorization parameters were as follows: name: KA_3_4_160_9 n: 281705984320382834768168838574043320101246180179813501104002009710698781848409531013928771698738236445365657545494019832461744291094443157169473 type: snfs skew: 0.67 deg: 5 c5: 310 c0: 41 m: 100000000000000000000000000000000 rlim: 4400000 alim: 4400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1800001) Primes: RFBsize:309335, AFBsize:309440, largePrimes:14840002 encountered Relations: rels:13480228, finalFF:698255 Max relations in full relation-set: 28 Initial matrix: 618842 x 698255 with sparse part having weight 80958662. Pruned matrix : 558849 x 562007 with weight 56988131. Total sieving time: 30.47 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4400000,4400000,28,28,56,56,2.5,2.5,100000 total time: 30.90 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(31·10146+41)/9 = 3(4)1459<147> = 587 · 3001 · 10030451 · C134
C134 = P30 · P50 · P55
P30 = 224989048861303607305990760947<30>
P50 = 10690526136524945934822924019667842419697205995921<50>
P55 = 8104648192327214100807766498210552641603797424899038771<55>
Number: 34449_146 N=19493715659669137717634283501866598231174008195488279686946974479242646515513142646151978243163268222141919758885399329471406009037177 ( 134 digits) SNFS difficulty: 147 digits. Divisors found: r1=224989048861303607305990760947 (pp30) r2=10690526136524945934822924019667842419697205995921 (pp50) r3=8104648192327214100807766498210552641603797424899038771 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 22.19 hours. Scaled time: 43.77 units (timescale=1.972). Factorization parameters were as follows: name: 34449_146 n: 19493715659669137717634283501866598231174008195488279686946974479242646515513142646151978243163268222141919758885399329471406009037177 m: 100000000000000000000000000000 deg: 5 c5: 310 c0: 41 skew: 0.67 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2900001) Primes: RFBsize:148933, AFBsize:149232, largePrimes:4381484 encountered Relations: rels:4654922, finalFF:390109 Max relations in full relation-set: 28 Initial matrix: 298232 x 390109 with sparse part having weight 45287677. Pruned matrix : 267944 x 269499 with weight 29530201. Total sieving time: 20.88 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.02 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,100000 total time: 22.19 hours. --------- CPU info (if available) ----------
(32·10148-41)/9 = 3(5)1471<149> = 73 · 7883 · 9419 · 16411 · 77309956598999<14> · C121
C121 = P52 · P70
P52 = 4843514337760459572815534254707218514959785263884641<52>
P70 = 1067473790535875080479232281288764753614270973659955842797287456129819<70>
Number: 35551_148 N=5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979 ( 121 digits) SNFS difficulty: 150 digits. Divisors found: r1=4843514337760459572815534254707218514959785263884641 (pp52) r2=1067473790535875080479232281288764753614270973659955842797287456129819 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.00 hours. Scaled time: 45.79 units (timescale=1.991). Factorization parameters were as follows: name: 35551_148 n: 5170324609644016527884881041706215829565526794526256285437584956636903529022585551794141982832094977765160463535536209979 m: 400000000000000000000000000000 deg: 5 c5: 125 c0: -164 skew: 1.06 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1800001) Primes: RFBsize:162662, AFBsize:162616, largePrimes:7413483 encountered Relations: rels:7905348, finalFF:907301 Max relations in full relation-set: 28 Initial matrix: 325344 x 907301 with sparse part having weight 102751201. Pruned matrix : 217844 x 219534 with weight 33552730. Total sieving time: 21.78 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.91 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 23.00 hours. --------- CPU info (if available) ----------
By Markus Tervooren / GGNFS
(79·10168-7)/9 = 8(7)168<169> = 67 · 503 · 557 · 1205760657098941451<19> · C144
C144 = P61 · P83
P61 = 7759395761065552324116951099007858595802868200287671942463351<61>
P83 = 49980153610709556948637712835820984645682617068092949162535061366397670901309487461<83>
N=387815792064344895618351800343352262605326578940255711093416077885722827353065727386705918821842903745588255225110877887373958010723171586541811 ( 144 digits) SNFS difficulty: 171 digits. Divisors found: r1=7759395761065552324116951099007858595802868200287671942463351 (pp61) r2=49980153610709556948637712835820984645682617068092949162535061366397670901309487461 (pp83) Version: GGNFS-0.77.1-20060722-nocona Total time: 67.86 hours. Scaled time: 137.82 units (timescale=2.031). Factorization parameters were as follows: n: 387815792064344895618351800343352262605326578940255711093416077885722827353065727386705918821842903745588255225110877887373958010723171586541811 m: 5000000000000000000000000000000000 deg: 5 c5: 632 c0: -175 skew: 0.77 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 7400001) Primes: RFBsize:348513, AFBsize:348556, largePrimes:10510580 encountered Relations: rels:11477264, finalFF:824020 Max relations in full relation-set: 32 Initial matrix: 697136 x 824020 with sparse part having weight 113502940. Pruned matrix : 630588 x 634137 with weight 91303413. Total sieving time: 61.15 hours. Total relation processing time: 0.30 hours. Matrix solve time: 6.27 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 67.86 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve
(7·10199-61)/9 = (7)1981<199> = C199
C199 = P54 · P73 · P74
P54 = 162977242689074237420617781730238377969785419608250633<54>
P73 = 1078499033126045544619923456125343966895163031786125650645190344488551801<73>
P74 = 44249544503388844859222475426113422020799712625769378619900612613079145387<74>
Number: 77771_199 N=7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=162977242689074237420617781730238377969785419608250633 r2=1078499033126045544619923456125343966895163031786125650645190344488551801 r3=44249544503388844859222475426113422020799712625769378619900612613079145387 Version: Total time: 931.32 hours. Scaled time: 1842.15 units (timescale=1.978). Factorization parameters were as follows: n: 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 5000000000000000000000000000000000000000 deg: 5 c5: 112 c0: -305 skew: 1.22 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 17600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3166635 x 3166882 Total sieving time: 931.32 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 931.32 hours. --------- CPU info (if available) ----------
By Kenji Ibusuki / GGNFS-0.77.1
(29·10191-11)/9 = 3(2)1901<192> = 3 · C192
C192 = P78 · P114
P78 = 234962048155245284311390320134874392608349302915475444887775014352507137133437<78>
P114 = 457126622153211121929472840043706090744226808049801534743653872091775669361431051141638973630223980189775046870811<114>
Number: 32221_191 N=107407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 ( 192 digits) SNFS difficulty: 193 digits. Divisors found: r1=234962048155245284311390320134874392608349302915475444887775014352507137133437 (pp78) r2=457126622153211121929472840043706090744226808049801534743653872091775669361431051141638973630223980189775046870811 (pp114) Version: GGNFS-0.77.1 Total time: 665.59 hours. Scaled time: 1474.28 units (timescale=2.215). Factorization parameters were as follows: number: 32221_191 n: 107407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 m: 200000000000000000000000000000000000000 type: snfs deg: 5 skew: 1.040 c0: -176 c5: 145 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 10000 q0: 10000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Sieved special-q in [10000, 10420001) Relations: rels:16881690, finalFF:1351631 Initial matrix: 1203472 x 1351631 with sparse part having weight 178964056. Pruned matrix : 1169451 x 1175532 with weight 141697409. Total sieving time: 641.10 hours. Total relation processing time: 5.50 hours. Matrix solve time: 18.74 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.6,2.6,100000 total time: 665.59 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(31·10143+41)/9 = 3(4)1429<144> = 7 · 233 · 1506781 · 512151545029<12> · C123
C123 = P46 · P77
P46 = 2763241941388641272813974675010137882804144873<46>
P77 = 99037048435115939648404395098604147324333042396077440279511597887787486342327<77>
Number: 34449_143 N=273663325987250666193658535831565708877585280399160212059319626415796731264203768483627142893257335731842059187153779939471 ( 123 digits) SNFS difficulty: 145 digits. Divisors found: r1=2763241941388641272813974675010137882804144873 (pp46) r2=99037048435115939648404395098604147324333042396077440279511597887787486342327 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.55 hours. Scaled time: 42.13 units (timescale=1.955). Factorization parameters were as follows: name: 34449_143 n: 273663325987250666193658535831565708877585280399160212059319626415796731264203768483627142893257335731842059187153779939471 m: 50000000000000000000000000000 deg: 5 c5: 248 c0: 1025 skew: 1.33 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 2845001) Primes: RFBsize:141338, AFBsize:141131, largePrimes:4261266 encountered Relations: rels:4491050, finalFF:353932 Max relations in full relation-set: 28 Initial matrix: 282536 x 353932 with sparse part having weight 41049959. Pruned matrix : 259250 x 260726 with weight 28392947. Total sieving time: 20.22 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.03 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 21.55 hours. --------- CPU info (if available) ----------
(31·10142+41)/9 = 3(4)1419<143> = 32 · 17 · 809 · 3037 · C134
C134 = P51 · P84
P51 = 249013338986204435097585192153943981947080710065557<51>
P84 = 367969504790916776725533016892666807229583043626074786102746866272342615210332238593<84>
Number: 34449_142 N=91629315033086336258089934120092012703910322193113037170545087138342097380259920272842329508498424035340485686522479420891591595441301 ( 134 digits) SNFS difficulty: 144 digits. Divisors found: r1=249013338986204435097585192153943981947080710065557 (pp51) r2=367969504790916776725533016892666807229583043626074786102746866272342615210332238593 (pp84) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 22.54 hours. Scaled time: 10.66 units (timescale=0.473). Factorization parameters were as follows: name: 34449_142 n: 91629315033086336258089934120092012703910322193113037170545087138342097380259920272842329508498424035340485686522479420891591595441301 m: 20000000000000000000000000000 deg: 5 c5: 775 c0: 328 skew: 0.84 type: snfs lss: 1 rlim: 1790000 alim: 1790000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1790000/1790000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [895000, 2695001) Primes: RFBsize:134359, AFBsize:134584, largePrimes:4106423 encountered Relations: rels:4251420, finalFF:308391 Max relations in full relation-set: 28 Initial matrix: 269010 x 308391 with sparse part having weight 34555699. Pruned matrix : 256408 x 257817 with weight 26898094. Total sieving time: 20.05 hours. Total relation processing time: 0.26 hours. Matrix solve time: 2.15 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1790000,1790000,26,26,49,49,2.3,2.3,100000 total time: 22.54 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM
(26·10194-71)/9 = 2(8)1931<195> = 127 · C193
C193 = P32 · P162
P32 = 11413826722781612615066149463171<32>
P162 = 199294742752855759616595652474247599588531861457327919786234813849577319328816218083242071052288301464688708144297554003022214681904207255725793885068388792538693<162>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 2274715660542432195975503062117235345581802274715660542432195975503062117235345581802274715660542432195975503062117235345581802274715660542432195975503062117235345581802274715660542432195975503 = 11413826722781612615066149463171* 199294742752855759616595652474247599588531861457327919786234813849577319328816218083242071052288301464688708144297554003022214681904207255725793885068388792538693
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(31·10166+41)/9 = 3(4)1659<167> = 3 · 1669 · C163
C163 = P69 · P95
P69 = 181349445677364300441878201566985382903693854106708508967491099295051<69>
P95 = 37933713566617419532751041365089999565596259225341362011623253271472207437090733501918061961357<95>
SNFS difficulty: 167 digits. Divisors found: r1=181349445677364300441878201566985382903693854106708508967491099295051 (pp69) r2=37933713566617419532751041365089999565596259225341362011623253271472207437090733501918061961357 (pp95) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.953). Factorization parameters were as follows: n: 6879257927789982912810953553913410114728269311852295674943967334620420300468233362181834320839713290282493398131504782193817544326831325033841510773805561103344207 m: 1000000000000000000000000000000000 deg: 5 c5: 310 c0: 41 skew: 0.67 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2150000, 4750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 888968 x 889210 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,53,53,2.5,2.5,200000 total time: 50.00 hours.
9·10213-1 = 8(9)213<214> = 293 · 31517 · 297630677 · 653240602737601<15> · 2763180643414756163<19> · 1880839632718006855987957867<28> · C138
C138 = P33 · C106
P33 = 179481389251375241524195452694409<33>
C106 = [5374012673820858541660812441083032124477051306670520962378248708789456585274457770479061617280814335697243<106>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3144849970 Step 1 took 21095ms Step 2 took 13861ms ********** Factor found in step 2: 179481389251375241524195452694409 Found probable prime factor of 33 digits: 179481389251375241524195452694409 Composite cofactor 5374012673820858541660812441083032124477051306670520962378248708789456585274457770479061617280814335697243 has 106 digits
(32·10196-41)/9 = 3(5)1951<197> = 31 · 73 · 11463757430011<14> · 155869784726978437957<21> · 84293380190754159708341<23> · C138
C138 = P43 · P95
P43 = 2621005805007976677279163475247999795539713<43>
P95 = 39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947<95>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=983927123 Step 1 took 18737ms Step 2 took 14050ms ********** Factor found in step 2: 2621005805007976677279163475247999795539713 Found probable prime factor of 43 digits: 2621005805007976677279163475247999795539713 Probable prime cofactor 39799034734136717395774185493040870102947697545992386055866170111726118412127304962406603538947 has 95 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(29·10163+61)/9 = 3(2)1629<164> = 3 · 13 · 11518110473<11> · C152
C152 = P59 · P94
P59 = 28968902095765974876176251537052725076837212300626871212011<59>
P94 = 2476153740130391749632672210156842557311791559372719993391286077470404443761638984392106323937<94>
Number: n N=71731455271902062683594372416193981301312252677751010734398503646894671594995286707459435462753685485581660198251757661434457299653547628447564971207307 ( 152 digits) SNFS difficulty: 164 digits. Divisors found: Sun Nov 23 02:19:40 2008 prp59 factor: 28968902095765974876176251537052725076837212300626871212011 Sun Nov 23 02:19:40 2008 prp94 factor: 2476153740130391749632672210156842557311791559372719993391286077470404443761638984392106323937 Sun Nov 23 02:19:40 2008 elapsed time 02:27:09 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.02 hours. Scaled time: 37.68 units (timescale=0.837). Factorization parameters were as follows: name: KA_3_2_162_9 n: 71731455271902062683594372416193981301312252677751010734398503646894671594995286707459435462753685485581660198251757661434457299653547628447564971207307 type: snfs skew: 0.29 deg: 5 c5: 29000 c0: 61 m: 100000000000000000000000000000000 rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2350001) Primes: RFBsize:322441, AFBsize:321512, largePrimes:15532518 encountered Relations: rels:14047608, finalFF:643166 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 44.42 hours. Total relation processing time: 0.60 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,56,56,2.5,2.5,100000 total time: 45.02 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(31·10131+41)/9 = 3(4)1309<132> = 7 · 347 · 9920299856931027199537861<25> · C104
C104 = P46 · P59
P46 = 1248935601417172450982864120557249528038055829<46>
P59 = 11445290611232355952658107212384022849920784550095471386349<59>
Number: n N=14294430912933799768877945621994775259320155089090998487296732530834015369018161723244761086025290478321 ( 104 digits) Divisors found: r1=1248935601417172450982864120557249528038055829 (pp46) r2=11445290611232355952658107212384022849920784550095471386349 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.75 hours. Scaled time: 15.85 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_4_130_9 n: 14294430912933799768877945621994775259320155089090998487296732530834015369018161723244761086025290478321 skew: 3390.65 # norm 2.31e+13 c5: 91800 c4: 6859206 c3: -4725006547371 c2: -2699552177629954 c1: 27385722727592109576 c0: -21567600773132452286336 # alpha -4.55 Y1: 91767493427 Y0: -43497552812811424329 # Murphy_E 2.47e-09 # M 7075543479495724653964217112395499653546303942025095148589176977474698349047121752729839508576224373702 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:169511, AFBsize:169506, largePrimes:4076820 encountered Relations: rels:4026657, finalFF:415113 Max relations in full relation-set: 28 Initial matrix: 339097 x 415113 with sparse part having weight 23662065. Pruned matrix : 265650 x 267409 with weight 11101962. Polynomial selection time: 0.98 hours. Total sieving time: 6.36 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.20 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 7.75 hours. --------- CPU info (if available) ----------
(31·10159+41)/9 = 3(4)1589<160> = 89 · 283 · 67447 · 110291 · 162901069 · C138
C138 = P33 · P105
P33 = 519200074012305510805012666334819<33>
P105 = 217360863393650894273483985147045926746949619702827516312957917248727025467082747527790644449593568212041<105>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 112853776361362171890036514539513706755461921707305238431624689696835446173126379474301045848075084708611487263335709392706447626493355579 (138 digits) Using B1=1428000, B2=2140044280, polynomial Dickson(6), sigma=3811119449 Step 1 took 15585ms Step 2 took 7162ms ********** Factor found in step 2: 519200074012305510805012666334819 Found probable prime factor of 33 digits: 519200074012305510805012666334819 Probable prime cofactor 217360863393650894273483985147045926746949619702827516312957917248727025467082747527790644449593568212041 has 105 digits
(32·10168-41)/9 = 3(5)1671<169> = 67 · 91159 · C162
C162 = P40 · P123
P40 = 2071061672414038887327862478162760144139<40>
P123 = 281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753<123>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 582147603270119562384365247265284317160054042945065077461924499567273313587978157167009251435134830933511703358975297967247902845095416448111173892091701273067667 (162 digits) Using B1=2658000, B2=4281434440, polynomial Dickson(6), sigma=79681721 Step 1 took 53859ms Step 2 took 19406ms ********** Factor found in step 2: 2071061672414038887327862478162760144139 Found probable prime factor of 40 digits: 2071061672414038887327862478162760144139 Probable prime cofactor 281086561073560727550682470459751650208883734024290695333856539193174433441099866200434115946299221513714137236518465529753 has 123 digits
(32·10162-41)/9 = 3(5)1611<163> = 23 · 29 · 1213 · 22133 · 16724402733491<14> · 147843987594734310011684362061<30> · C110
C110 = P47 · P64
P47 = 22564381405754882879509950206984140408804091429<47>
P64 = 3558793866027322837892334872232527090837570341500904949191061183<64>
Number: n N=80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507 ( 110 digits) Divisors found: r1=22564381405754882879509950206984140408804091429 (pp47) r2=3558793866027322837892334872232527090837570341500904949191061183 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.19 hours. Scaled time: 35.03 units (timescale=2.038). Factorization parameters were as follows: name: KA_3_5_161_1 n: 80301982137501457226438683808161823698010328552916864791826396744849000596280781712481044585978795444664900507 skew: 20941.36 # norm 3.03e+15 c5: 80160 c4: -178494500 c3: -208866880738614 c2: 1010698957953137416 c1: 26388170788187158703673 c0: 67057988088281024513967838 # alpha -6.73 Y1: 2999771929 Y0: -1000353997470729914547 # Murphy_E 1.09e-09 # M 51387382130815976307384603189548897007283674985944576533889534954907903830011786739793269560296316131041848063 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:230209, AFBsize:229814, largePrimes:6650753 encountered Relations: rels:6415890, finalFF:611905 Max relations in full relation-set: 28 Initial matrix: 460107 x 611905 with sparse part having weight 37008769. Pruned matrix : 312942 x 315306 with weight 13812048. Total sieving time: 16.59 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.29 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 17.19 hours. --------- CPU info (if available) ----------
(29·10168+43)/9 = 3(2)1677<169> = 23 · 701 · C165
C165 = P51 · P114
P51 = 977639558746409933281005872314517859936176961237157<51>
P114 = 204423522793514430218662211232552454622248740088943549859241400069576142068391696971781870504041640804809998425557<114>
Number: n N=199852522621238120834970056578938300702240415693247052175291336737717684191665460660064641953868524605980414452783118664158172934455264046531180439262061788886821449 ( 165 digits) SNFS difficulty: 169 digits. Divisors found: Sun Nov 23 17:05:15 2008 prp51 factor: 977639558746409933281005872314517859936176961237157 Sun Nov 23 17:05:15 2008 prp114 factor: 204423522793514430218662211232552454622248740088943549859241400069576142068391696971781870504041640804809998425557 Sun Nov 23 17:05:15 2008 elapsed time 03:41:45 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 60.15 hours. Scaled time: 110.02 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_2_167_7 n: 199852522621238120834970056578938300702240415693247052175291336737717684191665460660064641953868524605980414452783118664158172934455264046531180439262061788886821449 type: snfs skew: 0.27 deg: 5 c5: 29000 c0: 43 m: 1000000000000000000000000000000000 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3400001) Primes: RFBsize:412849, AFBsize:412761, largePrimes:17173952 encountered Relations: rels:16036227, finalFF:897904 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 59.30 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,56,56,2.5,2.5,100000 total time: 60.15 hours. --------- CPU info (if available) ----------
(32·10156-41)/9 = 3(5)1551<157> = 73 · 4871 · 7159 · 8814419 · 380665371239696891267261<24> · C117
C117 = P36 · P82
P36 = 277097866660463929160851656157857587<36>
P82 = 1502255740059705391542146623564628296144683429311981707835983561439257940088530651<82>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 416271860748980805269299319690524959322893202639117708912412035001294381766873523256418067451244226313074070942399137 (117 digits) Using B1=2456000, B2=3567875230, polynomial Dickson(6), sigma=3741657175 Step 1 took 32438ms Step 2 took 11703ms ********** Factor found in step 2: 277097866660463929160851656157857587 Found probable prime factor of 36 digits: 277097866660463929160851656157857587 Probable prime cofactor 1502255740059705391542146623564628296144683429311981707835983561439257940088530651 has 82 digits
By Markus Tervooren / GGNFS
7·10167-9 = 6(9)1661<168> = 1315096889<10> · 2924704534089087990741564307<28> · C132
C132 = P44 · P88
P44 = 32171713835165356860545627602731658117138163<44>
P88 = 5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559<88>
N=181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117 ( 132 digits) SNFS difficulty: 168 digits. Divisors found: r1=32171713835165356860545627602731658117138163 (pp44) r2=5656972847387801199256068528668241589373474506207018297434013731023661520263653791197559 (pp88) Version: GGNFS-0.77.1-20060722-nocona Total time: 76.94 hours. Scaled time: 157.33 units (timescale=2.045). Factorization parameters were as follows: n: 181994511619460886722571958133515667928438683353276929634860147537918477950452863619794044389350713131234957248455222391689631344117 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: -72 skew: 0.84 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 5150001) Primes: RFBsize:315948, AFBsize:315881, largePrimes:10450786 encountered Relations: rels:11438283, finalFF:947465 Max relations in full relation-set: 32 Initial matrix: 631897 x 947465 with sparse part having weight 126994170. Pruned matrix : 515741 x 518964 with weight 79936325. Total sieving time: 72.97 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.65 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 76.94 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(31·10139+41)/9 = 3(4)1389<140> = 3 · 132 · 151 · 211 · 263887980827<12> · 65802951844819631490175873<26> · C96
C96 = P41 · P55
P41 = 17751030558599310472733314763851239959047<41>
P55 = 6917724541519043115256611096093267885584506550050379251<55>
Number: n N=122796739732476938843056250443218226969682997756544001036135289144535313607829770602408058533797 ( 96 digits) Divisors found: r1=17751030558599310472733314763851239959047 (pp41) r2=6917724541519043115256611096093267885584506550050379251 (pp55) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 9.83 hours. Scaled time: 12.88 units (timescale=1.310). Factorization parameters were as follows: name: KA_3_4_138_9 n: 122796739732476938843056250443218226969682997756544001036135289144535313607829770602408058533797 m: 7243743645372881631714 deg: 4 c4: 44599968 c3: 106520161388 c2: -859752888831163147 c1: -226792341741364904 c0: 453710617209311880093505 skew: 1635.250 type: gnfs # adj. I(F,S) = 56.152 # E(F1,F2) = 2.818535e-05 # GGNFS version 0.77.1-20060513-athlon-xp polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1227291941. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:92938, AFBsize:92030, largePrimes:1875231 encountered Relations: rels:1947293, finalFF:232210 Max relations in full relation-set: 28 Initial matrix: 185049 x 232210 with sparse part having weight 18482100. Pruned matrix : 164303 x 165292 with weight 10782603. Polynomial selection time: 0.17 hours. Total sieving time: 8.95 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.51 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 9.83 hours. --------- CPU info (if available) ----------
(31·10148+41)/9 = 3(4)1479<149> = 3 · 5101 · 75389 · 4525837 · C133
C133 = P28 · P33 · P73
P28 = 7423689621961529739231158597<28>
P33 = 702766731950884884431830689726431<33>
P73 = 1264458890754132592520292456614107767172350023484547611212032793438177533<73>
GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 6596836416721928663206667563446461274548082634185610745446412601130224788147677008292567890044088794576244499948181477445864362643631 (133 digits) Using B1=68000, B2=20337252, polynomial x^2, sigma=1865824268 Step 1 took 906ms ********** Factor found in step 1: 7423689621961529739231158597 Found probable prime factor of 28 digits: 7423689621961529739231158597 Composite cofactor 888619642341522732989585178583008347765811867881469147602770976994452953369611679679482249149798980474723 has 105 digits GMP-ECM 6.2.1 [powered by GMP 4.1.4] [ECM] Input number is 888619642341522732989585178583008347765811867881469147602770976994452953369611679679482249149798980474723 (105 digits) Using B1=2118000, B2=2854078510, polynomial Dickson(6), sigma=2632614283 Step 1 took 20141ms Step 2 took 10594ms ********** Factor found in step 2: 702766731950884884431830689726431 Found probable prime factor of 33 digits: 702766731950884884431830689726431 Probable prime cofactor 1264458890754132592520292456614107767172350023484547611212032793438177533 has 73 digits
(31·10176+23)/9 = 3(4)1757<177> = 61 · 127 · 6269 · 93623059 · 328309320318647<15> · 202720502544193253155472756683183303<36> · C112
C112 = P52 · P60
P52 = 2266172878279014315730607731434242315087398795693843<52>
P60 = 502262330982835789656318035407776239301869911590546746313137<60>
Number: n N=1138213272254499930643296820016032059483757432491990061526260841951018280753405751022578969878813592572060915491 ( 112 digits) Divisors found: r1=2266172878279014315730607731434242315087398795693843 (pp52) r2=502262330982835789656318035407776239301869911590546746313137 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.91 hours. Scaled time: 39.61 units (timescale=1.808). Factorization parameters were as follows: name: KA_3_4_175_7 n: 1138213272254499930643296820016032059483757432491990061526260841951018280753405751022578969878813592572060915491 skew: 53039.99 # norm 7.36e+15 c5: 17460 c4: 5859327786 c3: -118467216522632 c2: -13760853615378600227 c1: 187861473514694524755838 c0: 4487634284275327949310944367 # alpha -6.95 Y1: 227078131093 Y0: -2305860398873277449270 # Murphy_E 8.45e-10 # M 2024995312728739307273871443214848386906755758974582669400508108420435202603172697573663281195273174673215143 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:250150, AFBsize:249691, largePrimes:7037075 encountered Relations: rels:6984182, finalFF:754863 Max relations in full relation-set: 48 Initial matrix: 499918 x 754863 with sparse part having weight 51708575. Pruned matrix : 264371 x 266934 with weight 16537923. Polynomial selection time: 1.90 hours. Total sieving time: 19.21 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.46 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 21.91 hours. --------- CPU info (if available) ----------
(31·10127+41)/9 = 3(4)1269<128> = 3 · 13 · 5082719021<10> · C117
C117 = P43 · P74
P43 = 9973580693615855217576522026614909705580359<43>
P74 = 17422375492504637407894128118367596750344220464668292825505166710628246069<74>
Number: n N=173763467848970278713974750561149146568806736167382405237857999467581269407965348000471968423452003995969697905358771 ( 117 digits) SNFS difficulty: 128 digits. Divisors found: Sat Nov 22 21:21:13 2008 prp43 factor: 9973580693615855217576522026614909705580359 Sat Nov 22 21:21:13 2008 prp74 factor: 17422375492504637407894128118367596750344220464668292825505166710628246069 Sat Nov 22 21:21:13 2008 elapsed time 00:09:04 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.73 hours. Scaled time: 2.28 units (timescale=0.836). Factorization parameters were as follows: name: KA_3_4_126_9 n: 173763467848970278713974750561149146568806736167382405237857999467581269407965348000471968423452003995969697905358771 type: snfs skew: 0.42 deg: 5 c5: 3100 c0: 41 m: 10000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 550001) Primes: RFBsize:63951, AFBsize:63920, largePrimes:5985205 encountered Relations: rels:5100087, finalFF:107496 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 2.62 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,28,28,56,56,2.5,2.5,50000 total time: 2.73 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(31·10157+23)/9 = 3(4)1567<158> = 37 · 5003 · C153
C153 = P39 · P115
P39 = 137062009031584687162325943108145597979<39>
P115 = 1357593856795359123077509588134425961575969533810088621185776166177182280010278618966059027685150731758000076456763<115>
Number: n N=186074541461309400545858670983596028569044759330587833486094529468505083136304403544059750335984595428928828888852874461509280617815496888053354173681977 ( 153 digits) SNFS difficulty: 158 digits. Divisors found: Sat Nov 22 22:31:01 2008 prp39 factor: 137062009031584687162325943108145597979 Sat Nov 22 22:31:01 2008 prp115 factor: 1357593856795359123077509588134425961575969533810088621185776166177182280010278618966059027685150731758000076456763 Sat Nov 22 22:31:01 2008 elapsed time 01:49:31 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.37 hours. Scaled time: 51.88 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_4_156_7 n: 186074541461309400545858670983596028569044759330587833486094529468505083136304403544059750335984595428928828888852874461509280617815496888053354173681977 type: snfs skew: 0.38 deg: 5 c5: 3100 c0: 23 m: 10000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:249137, largePrimes:13233651 encountered Relations: rels:11691766, finalFF:516629 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 25.07 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,56,56,2.5,2.5,100000 total time: 25.37 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(32·10152-41)/9 = 3(5)1511<153> = 3 · 13 · 1069 · 4057 · C145
C145 = P30 · P30 · P86
P30 = 177032885146535852618476212619<30>
P30 = 183767390539545233362133693209<30>
P86 = 64615655324137978437197139681674314373675816817502284960654218102416791281648499460663<86>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=524982478 Step 1 took 18886ms Step 2 took 14066ms ********** Factor found in step 2: 183767390539545233362133693209 Found probable prime factor of 30 digits: 183767390539545233362133693209 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1337943101 Step 1 took 19191ms Step 2 took 14563ms ********** Factor found in step 2: 177032885146535852618476212619 Found probable prime factor of 30 digits: 177032885146535852618476212619
By Sinkiti Sibata / GGNFS
(32·10115-41)/9 = 3(5)1141<116> = 1553881626764981<16> · C101
C101 = P40 · P62
P40 = 1874364695456994437787812330948654894281<40>
P62 = 12207744796954647002836007977637501893348342131034571999208491<62>
Number: 35551_115 N=22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=1874364695456994437787812330948654894281 (pp40) r2=12207744796954647002836007977637501893348342131034571999208491 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.63 hours. Scaled time: 0.77 units (timescale=0.473). Factorization parameters were as follows: name: 35551_115 n: 22881765858560605328444758333732016135351937111017680153991433819602314108836986599559243845282539971 m: 200000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 455001) Primes: RFBsize:49861, AFBsize:49970, largePrimes:1339209 encountered Relations: rels:1376013, finalFF:204044 Max relations in full relation-set: 28 Initial matrix: 99895 x 204044 with sparse part having weight 8657884. Pruned matrix : 64281 x 64844 with weight 2194412. Total sieving time: 1.55 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.63 hours. --------- CPU info (if available) ----------
(32·10138-41)/9 = 3(5)1371<139> = 157 · 1854331 · C131
C131 = P43 · P88
P43 = 3614408098329054255724340417243253779450081<43>
P88 = 3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913<88>
Number: 35551_138 N=12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=3614408098329054255724340417243253779450081 (pp43) r2=3378962493146452219447414756610095654554526360880050718178161743928515403049413915028913 (pp88) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.53 hours. Scaled time: 16.67 units (timescale=1.955). Factorization parameters were as follows: name: 35551_138 n: 12212949399178668390243576524554600576571890847483782236527906299510402361140498997671220687341868711013028609162572245802355191953 m: 4000000000000000000000000000 deg: 5 c5: 125 c0: -164 skew: 1.06 type: snfs lss: 1 rlim: 1510000 alim: 1510000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1510000/1510000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [755000, 1430001) Primes: RFBsize:114886, AFBsize:114908, largePrimes:3334696 encountered Relations: rels:3259503, finalFF:260977 Max relations in full relation-set: 28 Initial matrix: 229860 x 260977 with sparse part having weight 20373065. Pruned matrix : 219199 x 220412 with weight 14602189. Total sieving time: 7.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.48 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1510000,1510000,26,26,48,48,2.3,2.3,75000 total time: 8.53 hours. --------- CPU info (if available) ----------
(31·10141+41)/9 = 3(4)1409<142> = 2143 · 21736275811319<14> · C125
C125 = P36 · P90
P36 = 250844864487752569642988214862325027<36>
P90 = 294785870231812031961140657885418584096523225421107367822479810640014905616838732440253811<90>
Number: 34449_141 N=73945521671203103330866766193284634285998509123366560370612765483356140853530412183713691765269584991516030247771197457427897 ( 125 digits) SNFS difficulty: 142 digits. Divisors found: r1=250844864487752569642988214862325027 (pp36) r2=294785870231812031961140657885418584096523225421107367822479810640014905616838732440253811 (pp90) Version: GGNFS-0.77.1-20060513-k8 Total time: 15.03 hours. Scaled time: 29.39 units (timescale=1.955). Factorization parameters were as follows: name: 34449_141 n: 73945521671203103330866766193284634285998509123366560370612765483356140853530412183713691765269584991516030247771197457427897 m: 10000000000000000000000000000 deg: 5 c5: 310 c0: 41 skew: 0.67 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 2130001) Primes: RFBsize:125335, AFBsize:125478, largePrimes:4027860 encountered Relations: rels:4257982, finalFF:408568 Max relations in full relation-set: 28 Initial matrix: 250880 x 408568 with sparse part having weight 45738650. Pruned matrix : 209515 x 210833 with weight 22135631. Total sieving time: 14.18 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.62 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 15.03 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
9·10185+7 = 9(0)1847<186> = 3260111 · C180
C180 = P89 · P92
P89 = 16002389063807038301896669024272082879641164981792275113754829766261058133472766404528443<89>
P92 = 17251437819596683036560616627382651350704560527929204910892350271133158669382239777179811659<92>
Number: 90007_185 N=276064219899261098778538522154613753948868612142347300444678110653287572110274772852826176777416474469734312727388730015634436986961486894157898304689625598637592400994935448516937 ( 180 digits) SNFS difficulty: 185 digits. Divisors found: r1=16002389063807038301896669024272082879641164981792275113754829766261058133472766404528443 r2=17251437819596683036560616627382651350704560527929204910892350271133158669382239777179811659 Version: Total time: 307.81 hours. Scaled time: 612.84 units (timescale=1.991). Factorization parameters were as follows: n: 276064219899261098778538522154613753948868612142347300444678110653287572110274772852826176777416474469734312727388730015634436986961486894157898304689625598637592400994935448516937 m: 10000000000000000000000000000000000000 deg: 5 c5: 9 c0: 7 skew: 0.95 type: snfs lss: 1 rlim: 10500000 alim: 10500000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.7 alambda: 2.7 Factor base limits: 10500000/10500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [5250000, 8150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1277949 x 1278197 Total sieving time: 307.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,10500000,10500000,28,28,55,55,2.7,2.7,100000 total time: 307.81 hours. --------- CPU info (if available) ----------
(29·10177-11)/9 = 3(2)1761<178> = C178
C178 = P46 · P52 · P80
P46 = 4238791109846768319832989175973237807031692293<46>
P52 = 9122678024342822606413342521202266190898888619350609<52>
P80 = 83328032289291372193606565637887001304378576354453021528093000914205072237905433<80>
Number: 32221_177 N=3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 178 digits) SNFS difficulty: 179 digits. Divisors found: r1=4238791109846768319832989175973237807031692293 (pp46) r2=9122678024342822606413342521202266190898888619350609 (pp52) r3=83328032289291372193606565637887001304378576354453021528093000914205072237905433 (pp80) Version: GGNFS-0.77.1-20060722-nocona Total time: 216.80 hours. Scaled time: 436.41 units (timescale=2.013). Factorization parameters were as follows: n: 3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 200000000000000000000000000000000000 deg: 5 c5: 725 c0: -88 skew: 0.66 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 9900001) Primes: RFBsize:463872, AFBsize:464782, largePrimes:18589630 encountered Relations: rels:20197980, finalFF:1175338 Max relations in full relation-set: 32 Initial matrix: 928721 x 1175338 with sparse part having weight 172348679. Pruned matrix : 767940 x 772647 with weight 161025116. Total sieving time: 204.87 hours. Total relation processing time: 0.41 hours. Matrix solve time: 11.23 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 216.80 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(29·10157+43)/9 = 3(2)1567<158> = 37 · 18143 · 198323 · 120011103804224805681823546153<30> · C118
C118 = P52 · P66
P52 = 3779316950432087251769608243853000617761392165509961<52>
P66 = 533625819775685716703761578486849254082415913206193590187082495683<66>
Number: 32227_157 N=2016741105866467140951604570336781152331001527925371904341000515480857002518308891930313959772708022278077300275998363 ( 118 digits) SNFS difficulty: 158 digits. Divisors found: r1=3779316950432087251769608243853000617761392165509961 (pp52) r2=533625819775685716703761578486849254082415913206193590187082495683 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 28.09 hours. Scaled time: 66.75 units (timescale=2.376). Factorization parameters were as follows: n: 2016741105866467140951604570336781152331001527925371904341000515480857002518308891930313959772708022278077300275998363 m: 10000000000000000000000000000000 deg: 5 c5: 2900 c0: 43 skew: 0.43 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 3400001) Primes: RFBsize:230209, AFBsize:230182, largePrimes:8236119 encountered Relations: rels:8439376, finalFF:550147 Max relations in full relation-set: 28 Initial matrix: 460458 x 550147 with sparse part having weight 61945056. Pruned matrix : 427466 x 429832 with weight 45595021. Total sieving time: 26.52 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.40 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 28.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(32·10125-41)/9 = 3(5)1241<126> = 3 · 7 · C125
C125 = P49 · P76
P49 = 4101642359788017039736531885784855474095010630123<49>
P76 = 4127911564696239905743837315670797719255008130849857537912706158500072765097<76>
Number: 35551_125 N=16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931 ( 125 digits) SNFS difficulty: 126 digits. Divisors found: r1=4101642359788017039736531885784855474095010630123 (pp49) r2=4127911564696239905743837315670797719255008130849857537912706158500072765097 (pp76) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.61 hours. Scaled time: 1.23 units (timescale=0.473). Factorization parameters were as follows: name: 35551_125 n: 16931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931 m: 20000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 650001) Primes: RFBsize:71274, AFBsize:71351, largePrimes:2368602 encountered Relations: rels:2262222, finalFF:197699 Max relations in full relation-set: 28 Initial matrix: 142689 x 197699 with sparse part having weight 12662606. Pruned matrix : 119300 x 120077 with weight 5455752. Total sieving time: 2.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.61 hours. --------- CPU info (if available) ----------
(32·10132-41)/9 = 3(5)1311<133> = 73 · C131
C131 = P32 · P35 · P65
P32 = 53253233532503110182693787985653<32>
P35 = 20444379394590998327962375579649849<35>
P65 = 44736777108005239501416276185226616696706068766867655030020027971<65>
Number: 35551_132 N=48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487 ( 131 digits) SNFS difficulty: 133 digits. Divisors found: r1=53253233532503110182693787985653 (pp32) r2=20444379394590998327962375579649849 (pp35) r3=44736777108005239501416276185226616696706068766867655030020027971 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.33 hours. Scaled time: 12.59 units (timescale=1.991). Factorization parameters were as follows: name: 35551_132 n: 48706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487062404870624048706240487 m: 200000000000000000000000000 deg: 5 c5: 100 c0: -41 skew: 0.84 type: snfs lss: 1 rlim: 1180000 alim: 1180000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1180000/1180000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [590000, 1115001) Primes: RFBsize:91490, AFBsize:90768, largePrimes:3152382 encountered Relations: rels:3171737, finalFF:314254 Max relations in full relation-set: 28 Initial matrix: 182322 x 314254 with sparse part having weight 26946203. Pruned matrix : 151286 x 152261 with weight 9842261. Total sieving time: 6.01 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1180000,1180000,26,26,47,47,2.3,2.3,75000 total time: 6.33 hours. --------- CPU info (if available) ----------
(32·10121-41)/9 = 3(5)1201<122> = 31 · 97 · 624613195527409379246773<24> · C95
C95 = P46 · P49
P46 = 7302277230608177321336738676050278849209010349<46>
P49 = 2592415258819787071229728638616500578052858667409<49>
Fri Nov 21 23:38:37 2008 Msieve v. 1.38 Fri Nov 21 23:38:37 2008 random seeds: 0d4af2ec 94d26f7d Fri Nov 21 23:38:37 2008 factoring 18930534916760935971590741741646619489241142175356386448608577960372293068418528062763830015741 (95 digits) Fri Nov 21 23:38:37 2008 searching for 15-digit factors Fri Nov 21 23:38:39 2008 commencing quadratic sieve (95-digit input) Fri Nov 21 23:38:39 2008 using multiplier of 1 Fri Nov 21 23:38:39 2008 using 32kb Intel Core sieve core Fri Nov 21 23:38:39 2008 sieve interval: 36 blocks of size 32768 Fri Nov 21 23:38:39 2008 processing polynomials in batches of 6 Fri Nov 21 23:38:39 2008 using a sieve bound of 2125181 (78824 primes) Fri Nov 21 23:38:39 2008 using large prime bound of 310276426 (28 bits) Fri Nov 21 23:38:39 2008 using double large prime bound of 1928180890905122 (43-51 bits) Fri Nov 21 23:38:39 2008 using trial factoring cutoff of 51 bits Fri Nov 21 23:38:39 2008 polynomial 'A' values have 12 factors Sat Nov 22 02:33:35 2008 78924 relations (20057 full + 58867 combined from 1153943 partial), need 78920 Sat Nov 22 02:33:36 2008 begin with 1174000 relations Sat Nov 22 02:33:37 2008 reduce to 202550 relations in 9 passes Sat Nov 22 02:33:37 2008 attempting to read 202550 relations Sat Nov 22 02:33:40 2008 recovered 202550 relations Sat Nov 22 02:33:40 2008 recovered 182655 polynomials Sat Nov 22 02:33:40 2008 attempting to build 78924 cycles Sat Nov 22 02:33:40 2008 found 78924 cycles in 6 passes Sat Nov 22 02:33:40 2008 distribution of cycle lengths: Sat Nov 22 02:33:40 2008 length 1 : 20057 Sat Nov 22 02:33:40 2008 length 2 : 14148 Sat Nov 22 02:33:40 2008 length 3 : 13467 Sat Nov 22 02:33:40 2008 length 4 : 10622 Sat Nov 22 02:33:40 2008 length 5 : 7732 Sat Nov 22 02:33:40 2008 length 6 : 5123 Sat Nov 22 02:33:40 2008 length 7 : 3320 Sat Nov 22 02:33:40 2008 length 9+: 4455 Sat Nov 22 02:33:40 2008 largest cycle: 20 relations Sat Nov 22 02:33:40 2008 matrix is 78824 x 78924 (20.4 MB) with weight 5044100 (63.91/col) Sat Nov 22 02:33:40 2008 sparse part has weight 5044100 (63.91/col) Sat Nov 22 02:33:41 2008 filtering completed in 3 passes Sat Nov 22 02:33:41 2008 matrix is 74614 x 74678 (19.5 MB) with weight 4821220 (64.56/col) Sat Nov 22 02:33:41 2008 sparse part has weight 4821220 (64.56/col) Sat Nov 22 02:33:42 2008 saving the first 48 matrix rows for later Sat Nov 22 02:33:42 2008 matrix is 74566 x 74678 (12.6 MB) with weight 3859562 (51.68/col) Sat Nov 22 02:33:42 2008 sparse part has weight 2866657 (38.39/col) Sat Nov 22 02:33:42 2008 matrix includes 64 packed rows Sat Nov 22 02:33:42 2008 using block size 29871 for processor cache size 1024 kB Sat Nov 22 02:33:43 2008 commencing Lanczos iteration Sat Nov 22 02:33:43 2008 memory use: 12.1 MB Sat Nov 22 02:34:22 2008 lanczos halted after 1180 iterations (dim = 74564) Sat Nov 22 02:34:22 2008 recovered 16 nontrivial dependencies Sat Nov 22 02:34:23 2008 prp46 factor: 7302277230608177321336738676050278849209010349 Sat Nov 22 02:34:23 2008 prp49 factor: 2592415258819787071229728638616500578052858667409 Sat Nov 22 02:34:23 2008 elapsed time 02:55:46
(32·10123-41)/9 = 3(5)1221<124> = 167 · 293 · 2268001 · 259137899539<12> · 260503293345466609<18> · C84
C84 = P42 · P43
P42 = 167982103839853336193445278263392698635919<42>
P43 = 2825354631611978018062501736888645582464009<43>
Fri Nov 21 21:28:02 2008 Msieve v. 1.38 Fri Nov 21 21:28:02 2008 random seeds: b8cb3a44 4d4e9d2a Fri Nov 21 21:28:02 2008 factoring 474609015111853860752833336137112158853448747727127472704320673550969428561212139271 (84 digits) Fri Nov 21 21:28:04 2008 searching for 15-digit factors Fri Nov 21 21:28:09 2008 commencing quadratic sieve (84-digit input) Fri Nov 21 21:28:10 2008 using multiplier of 15 Fri Nov 21 21:28:10 2008 using 64kb Pentium 2 sieve core Fri Nov 21 21:28:10 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 21:28:10 2008 processing polynomials in batches of 17 Fri Nov 21 21:28:10 2008 using a sieve bound of 1390619 (53529 primes) Fri Nov 21 21:28:10 2008 using large prime bound of 119593234 (26 bits) Fri Nov 21 21:28:10 2008 using double large prime bound of 346634530714364 (41-49 bits) Fri Nov 21 21:28:10 2008 using trial factoring cutoff of 49 bits Fri Nov 21 21:28:10 2008 polynomial 'A' values have 11 factors Sat Nov 22 01:02:21 2008 53629 relations (17104 full + 36525 combined from 561999 partial), need 53625 Sat Nov 22 01:02:31 2008 begin with 579103 relations Sat Nov 22 01:02:32 2008 reduce to 121584 relations in 10 passes Sat Nov 22 01:02:32 2008 attempting to read 121584 relations Sat Nov 22 01:02:37 2008 recovered 121584 relations Sat Nov 22 01:02:37 2008 recovered 93293 polynomials Sat Nov 22 01:02:38 2008 attempting to build 53629 cycles Sat Nov 22 01:02:38 2008 found 53629 cycles in 4 passes Sat Nov 22 01:02:41 2008 distribution of cycle lengths: Sat Nov 22 01:02:41 2008 length 1 : 17104 Sat Nov 22 01:02:41 2008 length 2 : 11333 Sat Nov 22 01:02:41 2008 length 3 : 9269 Sat Nov 22 01:02:41 2008 length 4 : 6572 Sat Nov 22 01:02:41 2008 length 5 : 4225 Sat Nov 22 01:02:41 2008 length 6 : 2400 Sat Nov 22 01:02:41 2008 length 7 : 1329 Sat Nov 22 01:02:41 2008 length 9+: 1397 Sat Nov 22 01:02:41 2008 largest cycle: 16 relations Sat Nov 22 01:02:42 2008 matrix is 53529 x 53629 (11.4 MB) with weight 2782077 (51.88/col) Sat Nov 22 01:02:42 2008 sparse part has weight 2782077 (51.88/col) Sat Nov 22 01:02:46 2008 filtering completed in 3 passes Sat Nov 22 01:02:46 2008 matrix is 47011 x 47075 (10.2 MB) with weight 2486567 (52.82/col) Sat Nov 22 01:02:46 2008 sparse part has weight 2486567 (52.82/col) Sat Nov 22 01:02:48 2008 saving the first 48 matrix rows for later Sat Nov 22 01:02:48 2008 matrix is 46963 x 47075 (6.2 MB) with weight 1901594 (40.39/col) Sat Nov 22 01:02:48 2008 sparse part has weight 1340469 (28.48/col) Sat Nov 22 01:02:48 2008 matrix includes 64 packed rows Sat Nov 22 01:02:48 2008 using block size 5461 for processor cache size 128 kB Sat Nov 22 01:02:49 2008 commencing Lanczos iteration Sat Nov 22 01:02:49 2008 memory use: 6.4 MB Sat Nov 22 01:04:39 2008 lanczos halted after 744 iterations (dim = 46954) Sat Nov 22 01:04:40 2008 recovered 14 nontrivial dependencies Sat Nov 22 01:04:41 2008 prp42 factor: 167982103839853336193445278263392698635919 Sat Nov 22 01:04:41 2008 prp43 factor: 2825354631611978018062501736888645582464009 Sat Nov 22 01:04:41 2008 elapsed time 03:36:39
(32·10111-41)/9 = 3(5)1101<112> = 46560268009<11> · C101
C101 = P51 · P51
P51 = 250725206151227572491375889110383529086023607868659<51>
P51 = 304574822852910071162849414423941486520137105717021<51>
Number: 35551_111 N=76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839 ( 101 digits) SNFS difficulty: 112 digits. Divisors found: r1=250725206151227572491375889110383529086023607868659 (pp51) r2=304574822852910071162849414423941486520137105717021 (pp51) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.54 hours. Scaled time: 0.73 units (timescale=0.473). Factorization parameters were as follows: name: 35551_111 n: 76364585248269496393816506554713280356615130143710070231171455531033722911050513054523245829788744839 m: 20000000000000000000000 deg: 5 c5: 10 c0: -41 skew: 1.33 type: snfs lss: 1 rlim: 530000 alim: 530000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 530000/530000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [265000, 415001) Primes: RFBsize:43825, AFBsize:43507, largePrimes:1230717 encountered Relations: rels:1219885, finalFF:156266 Max relations in full relation-set: 28 Initial matrix: 87398 x 156266 with sparse part having weight 7026889. Pruned matrix : 64055 x 64555 with weight 2168146. Total sieving time: 1.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,530000,530000,25,25,45,45,2.2,2.2,50000 total time: 1.54 hours. --------- CPU info (if available) ----------
(31·10116+41)/9 = 3(4)1159<117> = 4159 · 5309 · 1265569807591063802657<22> · C89
C89 = P38 · P51
P38 = 24351976690366456440494140268150735011<38>
P51 = 506170946785176908374198765538995513913432276329177<51>
Sat Nov 22 05:22:34 2008 Msieve v. 1.38 Sat Nov 22 05:22:34 2008 random seeds: 1a24b790 2ab2abb3 Sat Nov 22 05:22:34 2008 factoring 12326263097453348113695198957819947847469270526475883181784504535093721446219669534715947 (89 digits) Sat Nov 22 05:22:35 2008 searching for 15-digit factors Sat Nov 22 05:22:36 2008 commencing quadratic sieve (89-digit input) Sat Nov 22 05:22:36 2008 using multiplier of 3 Sat Nov 22 05:22:36 2008 using 32kb Intel Core sieve core Sat Nov 22 05:22:36 2008 sieve interval: 28 blocks of size 32768 Sat Nov 22 05:22:36 2008 processing polynomials in batches of 8 Sat Nov 22 05:22:36 2008 using a sieve bound of 1533107 (58333 primes) Sat Nov 22 05:22:36 2008 using large prime bound of 122648560 (26 bits) Sat Nov 22 05:22:36 2008 using double large prime bound of 362737408899600 (42-49 bits) Sat Nov 22 05:22:36 2008 using trial factoring cutoff of 49 bits Sat Nov 22 05:22:36 2008 polynomial 'A' values have 11 factors Sat Nov 22 06:30:13 2008 58550 relations (15565 full + 42985 combined from 620271 partial), need 58429 Sat Nov 22 06:30:14 2008 begin with 635836 relations Sat Nov 22 06:30:14 2008 reduce to 142791 relations in 11 passes Sat Nov 22 06:30:14 2008 attempting to read 142791 relations Sat Nov 22 06:30:16 2008 recovered 142791 relations Sat Nov 22 06:30:16 2008 recovered 123483 polynomials Sat Nov 22 06:30:16 2008 attempting to build 58550 cycles Sat Nov 22 06:30:16 2008 found 58550 cycles in 5 passes Sat Nov 22 06:30:16 2008 distribution of cycle lengths: Sat Nov 22 06:30:16 2008 length 1 : 15565 Sat Nov 22 06:30:16 2008 length 2 : 11170 Sat Nov 22 06:30:16 2008 length 3 : 10250 Sat Nov 22 06:30:16 2008 length 4 : 7878 Sat Nov 22 06:30:16 2008 length 5 : 5508 Sat Nov 22 06:30:16 2008 length 6 : 3522 Sat Nov 22 06:30:16 2008 length 7 : 2079 Sat Nov 22 06:30:16 2008 length 9+: 2578 Sat Nov 22 06:30:16 2008 largest cycle: 18 relations Sat Nov 22 06:30:17 2008 matrix is 58333 x 58550 (14.2 MB) with weight 3493391 (59.67/col) Sat Nov 22 06:30:17 2008 sparse part has weight 3493391 (59.67/col) Sat Nov 22 06:30:17 2008 filtering completed in 3 passes Sat Nov 22 06:30:17 2008 matrix is 54459 x 54523 (13.4 MB) with weight 3283171 (60.22/col) Sat Nov 22 06:30:17 2008 sparse part has weight 3283171 (60.22/col) Sat Nov 22 06:30:17 2008 saving the first 48 matrix rows for later Sat Nov 22 06:30:18 2008 matrix is 54411 x 54523 (9.4 MB) with weight 2678963 (49.13/col) Sat Nov 22 06:30:18 2008 sparse part has weight 2139290 (39.24/col) Sat Nov 22 06:30:18 2008 matrix includes 64 packed rows Sat Nov 22 06:30:18 2008 using block size 21809 for processor cache size 1024 kB Sat Nov 22 06:30:18 2008 commencing Lanczos iteration Sat Nov 22 06:30:18 2008 memory use: 8.7 MB Sat Nov 22 06:30:38 2008 lanczos halted after 861 iterations (dim = 54411) Sat Nov 22 06:30:38 2008 recovered 18 nontrivial dependencies Sat Nov 22 06:30:38 2008 prp38 factor: 24351976690366456440494140268150735011 Sat Nov 22 06:30:38 2008 prp51 factor: 506170946785176908374198765538995513913432276329177 Sat Nov 22 06:30:38 2008 elapsed time 01:08:04
By Serge Batalov / GMP-ECM 6.2.1, GMP-ECM 6.2.1; Msieve-1.38
(31·10199+41)/9 = 3(4)1989<200> = 3 · 13 · 211 · 4933314511<10> · 108886162810849<15> · C172
C172 = P30 · P143
P30 = 142018885622971503634552823639<30>
P143 = 54867418150082322617178305566660740301855900348368997744658055286701238044662021541391733259709740789882218697925348449694048592355472049447861<143>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1592717021 Step 1 took 24586ms Step 2 took 16761ms ********** Factor found in step 2: 142018885622971503634552823639 Found probable prime factor of 30 digits: 142018885622971503634552823639 Probable prime cofactor 54867418150082322617178305566660740301855900348368997744658055286701238044662021541391733259709740789882218697925348449694048592355472049447861 has 143 digits
(32·10135-41)/9 = 3(5)1341<136> = 17 · 67 · 541 · 631 · 646855311531991<15> · C113
C113 = P30 · P31 · P52
P30 = 395238694440067346506321051229<30>
P31 = 4607584230616385795106992439653<31>
P52 = 7762779182268771788520111353675163478851612794868937<52>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=978761011 Step 1 took 56903ms Step 2 took 20658ms ********** Factor found in step 2: 4607584230616385795106992439653 Found probable prime factor of 31 digits: 4607584230616385795106992439653 Composite cofactor 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 has 82 digits Fri Nov 21 11:32:35 2008 Msieve v. 1.38 Fri Nov 21 11:32:35 2008 random seeds: f61d4527 abcf05c9 Fri Nov 21 11:32:35 2008 factoring 3068150709226442954934260179839783913836305853892991916706470823431308919117773573 (82 digits) Fri Nov 21 11:32:35 2008 no P-1/P+1/ECM available, skipping Fri Nov 21 11:32:35 2008 commencing quadratic sieve (82-digit input) Fri Nov 21 11:32:35 2008 using multiplier of 13 Fri Nov 21 11:32:35 2008 using 64kb Opteron sieve core Fri Nov 21 11:32:35 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 11:32:35 2008 processing polynomials in batches of 17 Fri Nov 21 11:32:35 2008 using a sieve bound of 1339157 (51471 primes) Fri Nov 21 11:32:35 2008 using large prime bound of 125880758 (26 bits) Fri Nov 21 11:32:35 2008 using trial factoring cutoff of 27 bits Fri Nov 21 11:32:35 2008 polynomial 'A' values have 11 factors Fri Nov 21 11:46:18 2008 51761 relations (27110 full + 24651 combined from 267857 partial), need 51567 Fri Nov 21 11:46:18 2008 begin with 294967 relations Fri Nov 21 11:46:18 2008 reduce to 73333 relations in 2 passes Fri Nov 21 11:46:18 2008 attempting to read 73333 relations Fri Nov 21 11:46:18 2008 recovered 73333 relations Fri Nov 21 11:46:18 2008 recovered 64668 polynomials Fri Nov 21 11:46:19 2008 attempting to build 51761 cycles Fri Nov 21 11:46:19 2008 found 51761 cycles in 1 passes Fri Nov 21 11:46:19 2008 distribution of cycle lengths: Fri Nov 21 11:46:19 2008 length 1 : 27110 Fri Nov 21 11:46:19 2008 length 2 : 24651 Fri Nov 21 11:46:19 2008 largest cycle: 2 relations Fri Nov 21 11:46:19 2008 matrix is 51471 x 51761 (7.9 MB) with weight 1651481 (31.91/col) Fri Nov 21 11:46:19 2008 sparse part has weight 1651481 (31.91/col) Fri Nov 21 11:46:19 2008 filtering completed in 3 passes Fri Nov 21 11:46:19 2008 matrix is 36514 x 36576 (6.1 MB) with weight 1302933 (35.62/col) Fri Nov 21 11:46:19 2008 sparse part has weight 1302933 (35.62/col) Fri Nov 21 11:46:19 2008 saving the first 48 matrix rows for later Fri Nov 21 11:46:19 2008 matrix is 36466 x 36576 (4.2 MB) with weight 993167 (27.15/col) Fri Nov 21 11:46:19 2008 sparse part has weight 731232 (19.99/col) Fri Nov 21 11:46:19 2008 matrix includes 64 packed rows Fri Nov 21 11:46:19 2008 using block size 14630 for processor cache size 1024 kB Fri Nov 21 11:46:19 2008 commencing Lanczos iteration Fri Nov 21 11:46:19 2008 memory use: 4.1 MB Fri Nov 21 11:46:24 2008 lanczos halted after 578 iterations (dim = 36464) Fri Nov 21 11:46:24 2008 recovered 17 nontrivial dependencies Fri Nov 21 11:46:24 2008 prp30 factor: 395238694440067346506321051229 Fri Nov 21 11:46:24 2008 prp52 factor: 7762779182268771788520111353675163478851612794868937 Fri Nov 21 11:46:24 2008 elapsed time 00:13:49
(32·10139-41)/9 = 3(5)1381<140> = C140
C140 = P51 · P89
P51 = 464526285610532197573410910418540500603849191853171<51>
P89 = 76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781<89>
SNFS difficulty: 141 digits. Divisors found: r1=464526285610532197573410910418540500603849191853171 (pp51) r2=76541536306873319748687998204768071820486616615213271404046353568746662919813194493399781 (pp89) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 35555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 m: 10000000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1590001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220033 x 220275 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,25,25,48,48,2.4,2.4,200000 total time: 4.50 hours.
(32·10157-41)/9 = 3(5)1561<158> = 254050733 · C150
C150 = P29 · P121
P29 = 82152423305033592348298831619<29>
P121 = 1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313<121>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1517652325 Step 1 took 18518ms Step 2 took 14281ms ********** Factor found in step 2: 82152423305033592348298831619 Found probable prime factor of 29 digits: 82152423305033592348298831619 Probable prime cofactor 1703596103003294419723782049965196114125342318793393470606475103127644906981867365346338961594764303306093223734477470313 has 121 digits
(32·10150-41)/9 = 3(5)1491<151> = 7229 · C147
C147 = P57 · P91
P57 = 151630060370265312596023804982270143882259787233401865167<57>
P91 = 3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957<91>
SNFS difficulty: 151 digits. Divisors found: r1=151630060370265312596023804982270143882259787233401865167 (pp57) r2=3243724314599321778834666368665223817246547329724430342376155329768224196716824187092053957 (pp91) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 491846113647192634604448133290296798389203977805444121670432363474277985275356972687170501529334009621739598223205914449516607491431118488802815819 m: 2000000000000000000000000000000 deg: 5 c5: 1 c0: -41 skew: 2.10 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 350251 x 350493 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,53,53,2.5,2.5,200000 total time: 10.00 hours.
By Erik Branger / GGNFS, Msieve
(31·10125+41)/9 = 3(4)1249<126> = 72 · 487 · 1133565895591<13> · C110
C110 = P42 · P68
P42 = 874649588582602018285507418779006331185511<42>
P68 = 14558387529805029615527432457618027810773080096835070639069566035223<68>
Number: 34449_125 N=12733487663370052831395840247528589876745259188248257431076297252867117599646478553622394464399720261573253953 ( 110 digits) SNFS difficulty: 126 digits. Divisors found: r1=874649588582602018285507418779006331185511 r2=14558387529805029615527432457618027810773080096835070639069566035223 Version: Total time: 2.26 hours. Scaled time: 4.52 units (timescale=1.997). Factorization parameters were as follows: n: 12733487663370052831395840247528589876745259188248257431076297252867117599646478553622394464399720261573253953 m: 10000000000000000000000000 deg: 5 c5: 31 c0: 41 skew: 1.06 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121472 x 121697 Total sieving time: 2.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.26 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(32·10154-41)/9 = 3(5)1531<155> = 19 · 1997 · 5903 · 48647 · 8841960503<10> · 12814998923<11> · 1194009122626689491<19> · C104
C104 = P37 · P67
P37 = 7152201341862591428684838599721619649<37>
P67 = 3372348398945690607950846917414070323884300578481012329068619483687<67>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 24119714744167530175826743896080551920044617404588160851068750109106326746284237447175478123245774165863 (104 digits) Using B1=1766000, B2=2140281790, polynomial Dickson(6), sigma=647106178 Step 1 took 12632ms Step 2 took 5157ms ********** Factor found in step 2: 7152201341862591428684838599721619649 Found probable prime factor of 37 digits: 7152201341862591428684838599721619649 Probable prime cofactor 3372348398945690607950846917414070323884300578481012329068619483687 has 67 digits
(29·10160+61)/9 = 3(2)1599<161> = 3 · 18658042499<11> · 173087931043<12> · 68198980432302694162763<23> · C116
C116 = P46 · P71
P46 = 3392334564486724377686000326486270997623824929<46>
P71 = 14375561255610661870862903525731472575001154792532546013717693189769037<71>
Number: n N=48766713331304223297469209004162040855423177792331628693848084378802536364064355176272991837831834801871342032923373 ( 116 digits) Divisors found: Sat Nov 22 06:14:15 2008 prp46 factor: 3392334564486724377686000326486270997623824929 Sat Nov 22 06:14:15 2008 prp71 factor: 14375561255610661870862903525731472575001154792532546013717693189769037 Sat Nov 22 06:14:16 2008 elapsed time 00:37:16 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.08 hours. Scaled time: 67.65 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_2_159_9 n: 48766713331304223297469209004162040855423177792331628693848084378802536364064355176272991837831834801871342032923373 skew: 40631.40 # norm 1.28e+16 c5: 48960 c4: -3677136100 c3: -580854246872754 c2: 4669045965929046074 c1: 201689939828851083322901 c0: -1049108959979503795077868296 # alpha -6.13 Y1: 3663644112433 Y0: -15836453313678855586037 # Murphy_E 4.96e-10 # M 5020676239017025116654576699585057370287755122455090683803015253454311247305124917305425540222722612575777110676580 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1900001) Primes: RFBsize:315948, AFBsize:316550, largePrimes:6201115 encountered Relations: rels:6010949, finalFF:652204 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 32.85 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 33.08 hours. --------- CPU info (if available) ----------
(32·10128-41)/9 = 3(5)1271<129> = 32 · 13 · 2383 · 17203 · 44439431 · 12342097267987<14> · C99
C99 = P45 · P54
P45 = 401832657422981661467753981794828719551127827<45>
P54 = 336349426550456762380413783163560600207935723362612513<54>
Number: n N=135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251 ( 99 digits) SNFS difficulty: 131 digits. Divisors found: r1=401832657422981661467753981794828719551127827 (pp45) r2=336349426550456762380413783163560600207935723362612513 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.24 hours. Scaled time: 4.58 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_127_1 n: 135156183893466024666977800451768589430551510931312422361412184461027826326223292573670614332699251 type: snfs skew: 5.28 deg: 5 c5: 1 c0: -4100 m: 200000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 380001) Primes: RFBsize:63951, AFBsize:64074, largePrimes:5795056 encountered Relations: rels:4973051, finalFF:148600 Max relations in full relation-set: 28 Initial matrix: 128089 x 148600 with sparse part having weight 12143336. Pruned matrix : 120774 x 121478 with weight 8312350. Total sieving time: 2.07 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.04 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,28,28,56,56,2.5,2.5,50000 total time: 2.24 hours. --------- CPU info (if available) ----------
(32·10140-41)/9 = 3(5)1391<141> = 3 · 13 · 23 · 73 · 1301 · 3109 · 2055125448574067128165337723<28> · C102
C102 = P47 · P55
P47 = 81534190191088785562703437179631417594742467373<47>
P55 = 8011540784187013965767181696517537757246380887244496561<55>
Number: n N=653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253 ( 102 digits) SNFS difficulty: 141 digits. Divisors found: r1=81534190191088785562703437179631417594742467373 (pp47) r2=8011540784187013965767181696517537757246380887244496561 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.74 hours. Scaled time: 6.86 units (timescale=1.448). Factorization parameters were as follows: name: KA_3_5_139_1 n: 653214490021568591153880136071698042579076844847058983336996288582169963418227578858397724804353204253 type: snfs skew: 2.10 deg: 5 c5: 1 c0: -41 m: 20000000000000000000000000000 rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:92938, AFBsize:93090, largePrimes:7573396 encountered Relations: rels:6550842, finalFF:211514 Max relations in full relation-set: 28 Initial matrix: 186092 x 211514 with sparse part having weight 17096091. Pruned matrix : 174635 x 175629 with weight 12149381. Total sieving time: 3.84 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.64 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,56,56,2.5,2.5,100000 total time: 4.74 hours. --------- CPU info (if available) ----------
(31·10140+41)/9 = 3(4)1399<141> = 59 · 10228703 · 221997037441<12> · 247948902336703103<18> · C104
C104 = P37 · P67
P37 = 1788847380174561304042465308411568243<37>
P67 = 5796474718390466137267505980824046764103166906082630165666673013633<67>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 10369008614240863352321120069636994460028391623281167738181012372516588639848686662393445079840448856819 (104 digits) Using B1=2156000, B2=2854157680, polynomial Dickson(6), sigma=3161595063 Step 1 took 22047ms Step 2 took 8375ms ********** Factor found in step 2: 1788847380174561304042465308411568243 Found probable prime factor of 37 digits: 1788847380174561304042465308411568243 Probable prime cofactor 5796474718390466137267505980824046764103166906082630165666673013633 has 67 digits
By Sinkiti Sibata / Msieve
(32·10149-41)/9 = 3(5)1481<150> = 3 · 7 · 419 · 34729 · 533793222600156067<18> · 1324836958983859085546653940413<31> · C94
C94 = P41 · P53
P41 = 80114216324581510271381545232553255062473<41>
P53 = 20536990094074404442694620736817421850163590286243607<53>
Fri Nov 21 20:27:25 2008 Msieve v. 1.38 Fri Nov 21 20:27:25 2008 random seeds: 57771344 631fd988 Fri Nov 21 20:27:25 2008 factoring 1645304867052464418756468820263549672476733372189469658647398655789212312830417506743281860111 (94 digits) Fri Nov 21 20:27:25 2008 searching for 15-digit factors Fri Nov 21 20:27:27 2008 commencing quadratic sieve (94-digit input) Fri Nov 21 20:27:27 2008 using multiplier of 31 Fri Nov 21 20:27:27 2008 using 32kb Intel Core sieve core Fri Nov 21 20:27:27 2008 sieve interval: 36 blocks of size 32768 Fri Nov 21 20:27:27 2008 processing polynomials in batches of 6 Fri Nov 21 20:27:27 2008 using a sieve bound of 1986293 (74118 primes) Fri Nov 21 20:27:27 2008 using large prime bound of 256231797 (27 bits) Fri Nov 21 20:27:27 2008 using double large prime bound of 1366278931731603 (42-51 bits) Fri Nov 21 20:27:27 2008 using trial factoring cutoff of 51 bits Fri Nov 21 20:27:27 2008 polynomial 'A' values have 12 factors Fri Nov 21 20:27:27 2008 restarting with 338 full and 17985 partial relations Fri Nov 21 23:26:19 2008 74250 relations (18366 full + 55884 combined from 1032480 partial), need 74214 Fri Nov 21 23:26:20 2008 begin with 1050846 relations Fri Nov 21 23:26:21 2008 reduce to 191860 relations in 12 passes Fri Nov 21 23:26:21 2008 attempting to read 191860 relations Fri Nov 21 23:26:24 2008 recovered 191860 relations Fri Nov 21 23:26:24 2008 recovered 175246 polynomials Fri Nov 21 23:26:24 2008 attempting to build 74250 cycles Fri Nov 21 23:26:24 2008 found 74250 cycles in 5 passes Fri Nov 21 23:26:24 2008 distribution of cycle lengths: Fri Nov 21 23:26:24 2008 length 1 : 18366 Fri Nov 21 23:26:24 2008 length 2 : 13089 Fri Nov 21 23:26:24 2008 length 3 : 12660 Fri Nov 21 23:26:24 2008 length 4 : 10071 Fri Nov 21 23:26:24 2008 length 5 : 7558 Fri Nov 21 23:26:24 2008 length 6 : 5099 Fri Nov 21 23:26:24 2008 length 7 : 3181 Fri Nov 21 23:26:24 2008 length 9+: 4226 Fri Nov 21 23:26:24 2008 largest cycle: 21 relations Fri Nov 21 23:26:24 2008 matrix is 74118 x 74250 (19.6 MB) with weight 4844671 (65.25/col) Fri Nov 21 23:26:24 2008 sparse part has weight 4844671 (65.25/col) Fri Nov 21 23:26:25 2008 filtering completed in 3 passes Fri Nov 21 23:26:25 2008 matrix is 70475 x 70539 (18.8 MB) with weight 4640189 (65.78/col) Fri Nov 21 23:26:25 2008 sparse part has weight 4640189 (65.78/col) Fri Nov 21 23:26:25 2008 saving the first 48 matrix rows for later Fri Nov 21 23:26:26 2008 matrix is 70427 x 70539 (12.2 MB) with weight 3705494 (52.53/col) Fri Nov 21 23:26:26 2008 sparse part has weight 2781041 (39.43/col) Fri Nov 21 23:26:26 2008 matrix includes 64 packed rows Fri Nov 21 23:26:26 2008 using block size 28215 for processor cache size 1024 kB Fri Nov 21 23:26:26 2008 commencing Lanczos iteration Fri Nov 21 23:26:26 2008 memory use: 11.5 MB Fri Nov 21 23:27:02 2008 lanczos halted after 1116 iterations (dim = 70427) Fri Nov 21 23:27:02 2008 recovered 18 nontrivial dependencies Fri Nov 21 23:27:02 2008 prp41 factor: 80114216324581510271381545232553255062473 Fri Nov 21 23:27:02 2008 prp53 factor: 20536990094074404442694620736817421850163590286243607 Fri Nov 21 23:27:02 2008 elapsed time 02:59:37
By Robert Backstrom / GGNFS
(31·10105+41)/9 = 3(4)1049<106> = 353 · 5431 · 128291 · C95
C95 = P36 · P59
P36 = 594693148785308211822209674660147831<36>
P59 = 23549167060302104560864919762949010499061378501200898045083<59>
Number: n N=14004528310362318666354244575991794858089633112257439635385050554676123620105734472655682664973 ( 95 digits) SNFS difficulty: 106 digits. Divisors found: r1=594693148785308211822209674660147831 (pp36) r2=23549167060302104560864919762949010499061378501200898045083 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.64 hours. Scaled time: 1.30 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_4_104_9 n: 14004528310362318666354244575991794858089633112257439635385050554676123620105734472655682664973 type: snfs skew: 1.06 deg: 5 c5: 31 c0: 41 m: 1000000000000000000000 rlim: 400000 alim: 400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:33860, AFBsize:34095, largePrimes:3193883 encountered Relations: rels:2701320, finalFF:112185 Max relations in full relation-set: 28 Initial matrix: 68020 x 112185 with sparse part having weight 7919858. Pruned matrix : 55163 x 55567 with weight 2392508. Total sieving time: 0.51 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Total square root time: 0.08 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,400000,400000,28,28,56,56,2.5,2.5,50000 total time: 0.64 hours. --------- CPU info (if available) ----------
(32·10107-41)/9 = 3(5)1061<108> = 3 · 7 · 53 · 323093 · C99
C99 = P43 · P57
P43 = 4969113507692915159830820858462998480110977<43>
P57 = 198978356029457891142388803820629371983665753967882940507<57>
Number: n N=988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339 ( 99 digits) SNFS difficulty: 108 digits. Divisors found: r1=4969113507692915159830820858462998480110977 (pp43) r2=198978356029457891142388803820629371983665753967882940507 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.88 hours. Scaled time: 1.27 units (timescale=1.447). Factorization parameters were as follows: name: KA_3_5_106_1 n: 988746036684509216134405657207346002014562016183139466236470434514002669418403739656765174448645339 type: snfs skew: 0.84 deg: 5 c5: 100 c0: -41 m: 2000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:37706, AFBsize:37550, largePrimes:3672853 encountered Relations: rels:3166359, finalFF:149304 Max relations in full relation-set: 28 Initial matrix: 75320 x 149304 with sparse part having weight 10857343. Pruned matrix : 56531 x 56971 with weight 2447010. Total sieving time: 0.79 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.88 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(31·10112+41)/9 = 3(4)1119<113> = 3 · 163 · 21187 · C106
C106 = P48 · P59
P48 = 258792217686256918312919174969009069760596232037<48>
P59 = 12846642731570680842788982699578386236853374596065485513239<59>
Number: 34449_112 N=3324611162326209839139546875017259826094737883741500671780583556556842641231117669818215731165592479437843 ( 106 digits) SNFS difficulty: 114 digits. Divisors found: r1=258792217686256918312919174969009069760596232037 r2=12846642731570680842788982699578386236853374596065485513239 Version: Total time: 1.68 hours. Scaled time: 3.69 units (timescale=2.195). Factorization parameters were as follows: n: 3324611162326209839139546875017259826094737883741500671780583556556842641231117669818215731165592479437843 m: 20000000000000000000000 deg: 5 c5: 775 c0: 328 skew: 0.84 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 66642 x 66860 Total sieving time: 1.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.68 hours. --------- CPU info (if available) ----------
(31·10153+41)/9 = 3(4)1529<154> = 5835739554532332869<19> · 50158851041600162665093<23> · 4032687920589908329955267<25> · C88
C88 = P41 · P47
P41 = 44486831924067687045714216542322079414577<41>
P47 = 65591809150534983525158372279246902373496543283<47>
Fri Nov 21 12:35:16 2008 Msieve v. 1.36 Fri Nov 21 12:35:16 2008 random seeds: 21ecf6b8 72b652fe Fri Nov 21 12:35:16 2008 factoring 2917971789275374742550279961408364217439585732684651363096861229810434025847121781636291 (88 digits) Fri Nov 21 12:35:17 2008 searching for 15-digit factors Fri Nov 21 12:35:18 2008 commencing quadratic sieve (88-digit input) Fri Nov 21 12:35:19 2008 using multiplier of 19 Fri Nov 21 12:35:19 2008 using 64kb Pentium 4 sieve core Fri Nov 21 12:35:19 2008 sieve interval: 13 blocks of size 65536 Fri Nov 21 12:35:19 2008 processing polynomials in batches of 8 Fri Nov 21 12:35:19 2008 using a sieve bound of 1517699 (57619 primes) Fri Nov 21 12:35:19 2008 using large prime bound of 121415920 (26 bits) Fri Nov 21 12:35:19 2008 using double large prime bound of 356201769813440 (42-49 bits) Fri Nov 21 12:35:19 2008 using trial factoring cutoff of 49 bits Fri Nov 21 12:35:19 2008 polynomial 'A' values have 11 factors Fri Nov 21 13:46:13 2008 58029 relations (16470 full + 41559 combined from 601969 partial), need 57715 Fri Nov 21 13:46:15 2008 begin with 618438 relations Fri Nov 21 13:46:16 2008 reduce to 137673 relations in 12 passes Fri Nov 21 13:46:16 2008 attempting to read 137673 relations Fri Nov 21 13:46:21 2008 recovered 137673 relations Fri Nov 21 13:46:21 2008 recovered 112399 polynomials Fri Nov 21 13:46:22 2008 attempting to build 58029 cycles Fri Nov 21 13:46:22 2008 found 58029 cycles in 5 passes Fri Nov 21 13:46:22 2008 distribution of cycle lengths: Fri Nov 21 13:46:22 2008 length 1 : 16470 Fri Nov 21 13:46:22 2008 length 2 : 11704 Fri Nov 21 13:46:22 2008 length 3 : 10218 Fri Nov 21 13:46:22 2008 length 4 : 7559 Fri Nov 21 13:46:22 2008 length 5 : 5181 Fri Nov 21 13:46:22 2008 length 6 : 3198 Fri Nov 21 13:46:22 2008 length 7 : 1770 Fri Nov 21 13:46:22 2008 length 9+: 1929 Fri Nov 21 13:46:22 2008 largest cycle: 19 relations Fri Nov 21 13:46:22 2008 matrix is 57619 x 58029 (13.8 MB) with weight 3380613 (58.26/col) Fri Nov 21 13:46:22 2008 sparse part has weight 3380613 (58.26/col) Fri Nov 21 13:46:23 2008 filtering completed in 3 passes Fri Nov 21 13:46:23 2008 matrix is 52792 x 52855 (12.6 MB) with weight 3099871 (58.65/col) Fri Nov 21 13:46:23 2008 sparse part has weight 3099871 (58.65/col) Fri Nov 21 13:46:23 2008 saving the first 48 matrix rows for later Fri Nov 21 13:46:23 2008 matrix is 52744 x 52855 (9.0 MB) with weight 2535635 (47.97/col) Fri Nov 21 13:46:23 2008 sparse part has weight 2054683 (38.87/col) Fri Nov 21 13:46:23 2008 matrix includes 64 packed rows Fri Nov 21 13:46:23 2008 using block size 21142 for processor cache size 512 kB Fri Nov 21 13:46:24 2008 commencing Lanczos iteration Fri Nov 21 13:46:24 2008 memory use: 8.3 MB Fri Nov 21 13:46:52 2008 lanczos halted after 836 iterations (dim = 52742) Fri Nov 21 13:46:53 2008 recovered 16 nontrivial dependencies Fri Nov 21 13:46:53 2008 prp41 factor: 44486831924067687045714216542322079414577 Fri Nov 21 13:46:53 2008 prp47 factor: 65591809150534983525158372279246902373496543283 Fri Nov 21 13:46:53 2008 elapsed time 01:11:37
By Sinkiti Sibata / GGNFS
(31·10144+23)/9 = 3(4)1437<145> = 3 · 28081 · 12198479 · 74631544459542509715103237<26> · C107
C107 = P45 · P63
P45 = 159211005704693000085823595910997363902059699<45>
P63 = 282087708148123545945056068424813008842460110880541912155624277<63>
Number: 34447_144 N=44911467711194671956311458873486555830635215692557289809449257051105516413906070946575439201768427467712623 ( 107 digits) SNFS difficulty: 146 digits. Divisors found: r1=159211005704693000085823595910997363902059699 (pp45) r2=282087708148123545945056068424813008842460110880541912155624277 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.60 hours. Scaled time: 42.60 units (timescale=1.972). Factorization parameters were as follows: name: 34447_144 n: 44911467711194671956311458873486555830635215692557289809449257051105516413906070946575439201768427467712623 m: 100000000000000000000000000000 deg: 5 c5: 31 c0: 230 skew: 1.49 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2865001) Primes: RFBsize:144125, AFBsize:144048, largePrimes:4340864 encountered Relations: rels:4606753, finalFF:371261 Max relations in full relation-set: 28 Initial matrix: 288238 x 371261 with sparse part having weight 43229078. Pruned matrix : 261658 x 263163 with weight 28833069. Total sieving time: 20.36 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.96 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 21.60 hours. --------- CPU info (if available) ----------
(32·10126-41)/9 = 3(5)1251<127> = 409 · C124
C124 = P57 · P68
P57 = 171194598333615048222366566893522206348126341433869776357<57>
P68 = 50780164511633549798402123157855699628021684842890883339859369480427<68>
Number: 35551_126 N=8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439 ( 124 digits) SNFS difficulty: 127 digits. Divisors found: r1=171194598333615048222366566893522206348126341433869776357 (pp57) r2=50780164511633549798402123157855699628021684842890883339859369480427 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.84 hours. Scaled time: 5.41 units (timescale=1.902). Factorization parameters were as follows: name: 35551_126 n: 8693289866883998913338766639500135832654170062483020918228742189622385221407226297201847324096712849769084487910893778864439 m: 20000000000000000000000000 deg: 5 c5: 10 c0: -41 skew: 1.33 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 715001) Primes: RFBsize:73474, AFBsize:72978, largePrimes:2463207 encountered Relations: rels:2336543, finalFF:179494 Max relations in full relation-set: 28 Initial matrix: 146518 x 179494 with sparse part having weight 13010167. Pruned matrix : 134193 x 134989 with weight 7615669. Total sieving time: 2.63 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 2.84 hours. --------- CPU info (if available) ----------
(32·10119-41)/9 = 3(5)1181<120> = 32 · 7 · 17 · 317 · 1109 · 1223 · 4241 · C105
C105 = P34 · P71
P34 = 5146035129801747950200491709940393<34>
P71 = 35380153561359894771496352426470646393927511422671498242115915382113823<71>
Number: 35551_119 N=182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439 ( 105 digits) SNFS difficulty: 121 digits. Divisors found: r1=5146035129801747950200491709940393 (pp34) r2=35380153561359894771496352426470646393927511422671498242115915382113823 (pp71) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.15 hours. Scaled time: 1.02 units (timescale=0.473). Factorization parameters were as follows: name: 35551_119 n: 182067513124538441101462579812715985235713896251223737793957929646967334531924025154370350419725671352439 m: 1000000000000000000000000 deg: 5 c5: 16 c0: -205 skew: 1.67 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 565001) Primes: RFBsize:58789, AFBsize:58897, largePrimes:1264545 encountered Relations: rels:1228338, finalFF:140700 Max relations in full relation-set: 28 Initial matrix: 117750 x 140700 with sparse part having weight 5817576. Pruned matrix : 103103 x 103755 with weight 3356003. Total sieving time: 2.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.15 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(32·10127-41)/9 = 3(5)1261<128> = 401 · 2917 · 17987 · 3229901922977237<16> · 2071025562653464453843<22> · C81
C81 = P33 · P48
P33 = 400338547831239941807329391891749<33>
P48 = 631052844269568196604006040863340283212860511491<48>
Fri Nov 21 00:20:47 2008 Msieve v. 1.38 Fri Nov 21 00:20:47 2008 random seeds: b84c8010 b8809f02 Fri Nov 21 00:20:47 2008 factoring 252634779279652537693843677634751731140715269848712613595857696355762680242587759 (81 digits) Fri Nov 21 00:20:48 2008 no P-1/P+1/ECM available, skipping Fri Nov 21 00:20:48 2008 commencing quadratic sieve (81-digit input) Fri Nov 21 00:20:48 2008 using multiplier of 39 Fri Nov 21 00:20:48 2008 using 64kb Opteron sieve core Fri Nov 21 00:20:48 2008 sieve interval: 6 blocks of size 65536 Fri Nov 21 00:20:48 2008 processing polynomials in batches of 17 Fri Nov 21 00:20:48 2008 using a sieve bound of 1315507 (50588 primes) Fri Nov 21 00:20:48 2008 using large prime bound of 128919686 (26 bits) Fri Nov 21 00:20:48 2008 using trial factoring cutoff of 27 bits Fri Nov 21 00:20:48 2008 polynomial 'A' values have 10 factors Fri Nov 21 00:38:56 2008 50811 relations (26310 full + 24501 combined from 269737 partial), need 50684 Fri Nov 21 00:38:56 2008 begin with 296047 relations Fri Nov 21 00:38:57 2008 reduce to 72222 relations in 2 passes Fri Nov 21 00:38:57 2008 attempting to read 72222 relations Fri Nov 21 00:38:57 2008 recovered 72222 relations Fri Nov 21 00:38:57 2008 recovered 62442 polynomials Fri Nov 21 00:38:57 2008 attempting to build 50811 cycles Fri Nov 21 00:38:57 2008 found 50811 cycles in 1 passes Fri Nov 21 00:38:57 2008 distribution of cycle lengths: Fri Nov 21 00:38:57 2008 length 1 : 26310 Fri Nov 21 00:38:57 2008 length 2 : 24501 Fri Nov 21 00:38:57 2008 largest cycle: 2 relations Fri Nov 21 00:38:57 2008 matrix is 50588 x 50811 (7.6 MB) with weight 1577942 (31.06/col) Fri Nov 21 00:38:57 2008 sparse part has weight 1577942 (31.06/col) Fri Nov 21 00:38:58 2008 filtering completed in 3 passes Fri Nov 21 00:38:58 2008 matrix is 35841 x 35905 (5.9 MB) with weight 1254482 (34.94/col) Fri Nov 21 00:38:58 2008 sparse part has weight 1254482 (34.94/col) Fri Nov 21 00:38:58 2008 saving the first 48 matrix rows for later Fri Nov 21 00:38:58 2008 matrix is 35793 x 35905 (4.6 MB) with weight 1006660 (28.04/col) Fri Nov 21 00:38:58 2008 sparse part has weight 834359 (23.24/col) Fri Nov 21 00:38:58 2008 matrix includes 64 packed rows Fri Nov 21 00:38:58 2008 using block size 14362 for processor cache size 1024 kB Fri Nov 21 00:38:58 2008 commencing Lanczos iteration Fri Nov 21 00:38:58 2008 memory use: 4.2 MB Fri Nov 21 00:39:06 2008 lanczos halted after 567 iterations (dim = 35789) Fri Nov 21 00:39:06 2008 recovered 16 nontrivial dependencies Fri Nov 21 00:39:06 2008 prp33 factor: 400338547831239941807329391891749 Fri Nov 21 00:39:06 2008 prp48 factor: 631052844269568196604006040863340283212860511491 Fri Nov 21 00:39:06 2008 elapsed time 00:18:19
(31·10111+41)/9 = 3(4)1109<112> = 88327 · C107
C107 = P50 · P57
P50 = 41454123728155760979248725791099159638505634915673<50>
P57 = 940714774807484928843711276649544526402883573778713355119<57>
SNFS difficulty: 112 digits. Divisors found: r1=41454123728155760979248725791099159638505634915673 (pp50) r2=940714774807484928843711276649544526402883573778713355119 (pp57) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 38996506667773664275300241652546157397448622102465208197317291931622770437628861440380002088200034467880087 m: 10000000000000000000000 deg: 5 c5: 310 c0: 41 skew: 0.67 type: snfs lss: 1 rlim: 520000 alim: 520000 lpbr: 25 lpba: 25 mfbr: 47 mfba: 47 rlambda: 2.4 alambda: 2.4 Factor base limits: 520000/520000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved rational special-q in [260000, 360001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 90705 x 90947 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,520000,520000,25,25,47,47,2.4,2.4,50000 total time: 0.50 hours.
(31·10124+41)/9 = 3(4)1239<125> = 32 · 95544360543089<14> · 2649780403203617373383<22> · C89
C89 = P29 · P60
P29 = 48404523956151107959172206679<29>
P60 = 312302729254556267292136300344926518307355113530119444922057<60>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2358009462 Step 1 took 11056ms ********** Factor found in step 1: 48404523956151107959172206679 Found probable prime factor of 29 digits: 48404523956151107959172206679 Probable prime cofactor 312302729254556267292136300344926518307355113530119444922057 has 60 digits
(32·10197-41)/9 = 3(5)1961<198> = 3 · 7 · 47 · 139 · 1283 · 69001 · 7465399 · 52789594305359<14> · 5704587641284886551<19> · C146
C146 = P32 · P114
P32 = 25381539827219968939889818942099<32>
P114 = 513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681<114>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2785240796 Step 1 took 83890ms Step 2 took 28611ms ********** Factor found in step 2: 25381539827219968939889818942099 Found probable prime factor of 32 digits: 25381539827219968939889818942099 Probable prime cofactor 513038436540897283961126919502212025962143546345330531503056737906022207414185764428308211340282304133292693358681 has 114 digits
(31·10118+41)/9 = 3(4)1179<119> = 3 · 349 · 7559 · 25033 · 142330839643<12> · C97
C97 = P39 · P58
P39 = 667275628520032946456406704929974171499<39>
P58 = 1830589570099598722655453913313123714527630752671977509873<58>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4183339842 Step 1 took 11372ms Step 2 took 9026ms ********** Factor found in step 2: 667275628520032946456406704929974171499 Found probable prime factor of 39 digits: 667275628520032946456406704929974171499 Probable prime cofactor 1830589570099598722655453913313123714527630752671977509873 has 58 digits
(31·10117+41)/9 = 3(4)1169<118> = 2939 · 15300092001869737<17> · C98
C98 = P35 · P64
P35 = 39060798498707080488288532923358921<35>
P64 = 1961030909115423998982595692229352015289040401796279581247674883<64>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=406823575 Step 1 took 13031ms ********** Factor found in step 1: 39060798498707080488288532923358921 Found probable prime factor of 35 digits: 39060798498707080488288532923358921 Probable prime cofactor 1961030909115423998982595692229352015289040401796279581247674883 has 64 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(29·10152+43)/9 = 3(2)1517<153> = 3 · 40296437249<11> · 17122663123552071584377558151<29> · C114
C114 = P39 · P75
P39 = 220220544173356641441005461809174158519<39>
P75 = 706868192209211965355505466528845063936170712012029710240294391113595495089<75>
Number: n N=155666897947149516564762656348434456049373366190782014151391987567686593948726747795044131944426787108190772013191 ( 114 digits) Divisors found: r1=220220544173356641441005461809174158519 (pp39) r2=706868192209211965355505466528845063936170712012029710240294391113595495089 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.06 hours. Scaled time: 53.11 units (timescale=2.038). Factorization parameters were as follows: name: KA_3_2_151_7 n: 155666897947149516564762656348434456049373366190782014151391987567686593948726747795044131944426787108190772013191 skew: 40305.29 # norm 4.06e+15 c5: 33600 c4: 662166430 c3: -119500018998054 c2: -5194326731023833722 c1: 90592809296439845948331 c0: -5694511903865148553261982 # alpha -6.17 Y1: 1852807172777 Y0: -5409670490352917931165 # Murphy_E 6.68e-10 # M 23888537930743219166264097391624569843008903802972367072493419719091397771460949961003863560930060113166770635755 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:250862, largePrimes:6935471 encountered Relations: rels:6699692, finalFF:603533 Max relations in full relation-set: 28 Initial matrix: 501089 x 603533 with sparse part having weight 37743944. Pruned matrix : 402062 x 404631 with weight 18813363. Polynomial selection time: 2.34 hours. Total sieving time: 22.66 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.69 hours. Total square root time: 0.16 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 26.06 hours. --------- CPU info (if available) ----------
(29·10151+43)/9 = 3(2)1507<152> = 37 · 1759 · 15563627912986965137034736448411<32> · C116
C116 = P54 · P62
P54 = 975096392303048933102454301118670269267371089773626501<54>
P62 = 32623423650910648679172594020763946317343258487506521412621679<62>
Number: n N=31810982706576934772998608605741160071516082639197877089858403102494412714121865479732665846484350034366517761515179 ( 116 digits) SNFS difficulty: 152 digits. Divisors found: Fri Nov 21 20:16:11 2008 prp54 factor: 975096392303048933102454301118670269267371089773626501 Fri Nov 21 20:16:11 2008 prp62 factor: 32623423650910648679172594020763946317343258487506521412621679 Fri Nov 21 20:16:11 2008 elapsed time 00:07:22 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.51 hours. Scaled time: 28.33 units (timescale=1.452). Factorization parameters were as follows: name: KA_3_2_150_7 n: 31810982706576934772998608605741160071516082639197877089858403102494412714121865479732665846484350034366517761515179 type: snfs skew: 0.68 deg: 5 c5: 290 c0: 43 m: 1000000000000000000000000000000 rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1000001) Primes: RFBsize:162662, AFBsize:162100, largePrimes:10824027 encountered Relations: rels:9422016, finalFF:331070 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 19.24 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,56,56,2.5,2.5,100000 total time: 19.51 hours. --------- CPU info (if available) ----------
(31·10166+23)/9 = 3(4)1657<167> = 7 · 19 · 37 · 3191371129640080919489<22> · 30931033777436558908625985247<29> · C113
C113 = P38 · P76
P38 = 61798914931319480887285014377816703853<38>
P76 = 1147395711679263505648383683460557746640664861931176587561400962806755863693<76>
Number: n N=70907809978627579542331612890992534418293146708040921479541278492523484270210998457654446469974744522569415909129 ( 113 digits) Divisors found: Fri Nov 21 22:03:23 2008 prp38 factor: 61798914931319480887285014377816703853 Fri Nov 21 22:03:23 2008 prp76 factor: 1147395711679263505648383683460557746640664861931176587561400962806755863693 Fri Nov 21 22:03:23 2008 elapsed time 00:56:46 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.47 hours. Scaled time: 50.05 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_4_165_7 n: 70907809978627579542331612890992534418293146708040921479541278492523484270210998457654446469974744522569415909129 skew: 32881.19 # norm 7.28e+15 c5: 83160 c4: -668967376 c3: -458058952759210 c2: 3172828514069222313 c1: 170324935437936606139530 c0: 758285338230349101156775464 # alpha -6.22 Y1: 1248999244049 Y0: -3856169760807240084551 # Murphy_E 6.59e-10 # M 31637108997680505828204905949716122300136356195570654326165134163816097965750691160478327792426738914491526610890 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:250251, largePrimes:6877052 encountered Relations: rels:6547858, finalFF:553182 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 24.23 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 24.47 hours. --------- CPU info (if available) ----------
(29·10154+61)/9 = 3(2)1539<155> = 3 · 17 · 139 · 1155721321<10> · C142
C142 = P66 · P76
P66 = 986372713677326998182527307992767279549974733724897913803676371177<66>
P76 = 3987276352659791668600404809219191996642277325038493061533106729035862222933<76>
Number: n N=3932940596154473397043411029640516430303803401489513592173945327232225973966600528391700714282673182011623756607136363687254410051134029602141 ( 142 digits) SNFS difficulty: 156 digits. Divisors found: Fri Nov 21 22:18:20 2008 prp66 factor: 986372713677326998182527307992767279549974733724897913803676371177 Fri Nov 21 22:18:20 2008 prp76 factor: 3987276352659791668600404809219191996642277325038493061533106729035862222933 Fri Nov 21 22:18:20 2008 elapsed time 01:37:29 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 21.20 hours. Scaled time: 27.66 units (timescale=1.305). Factorization parameters were as follows: name: KA_3_2_153_9 n: 3932940596154473397043411029640516430303803401489513592173945327232225973966600528391700714282673182011623756607136363687254410051134029602141 type: snfs skew: 1.84 deg: 5 c5: 29 c0: 610 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 900001) Primes: RFBsize:216816, AFBsize:216747, largePrimes:11290316 encountered Relations: rels:9758502, finalFF:438402 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 20.89 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.5,2.5,100000 total time: 21.20 hours. --------- CPU info (if available) ----------
(32·10151-41)/9 = 3(5)1501<152> = 17 · 31 · 47 · 139 · 4091 · 32293129663<11> · 4851519655528868117<19> · 29189954590458934457859397<26> · C87
C87 = P39 · P49
P39 = 180480728295344801238466336014947707069<39>
P49 = 3058458065007834303252286311493510914433449868357<49>
Fri Nov 21 22:15:27 2008 Fri Nov 21 22:15:27 2008 Fri Nov 21 22:15:28 2008 Msieve v. 1.38 Fri Nov 21 22:15:28 2008 random seeds: a89c3cd0 547fa8f3 Fri Nov 21 22:15:28 2008 factoring 551992739033384950060268575515588763406213000287167928339052156947081662679297048315633 (87 digits) Fri Nov 21 22:15:29 2008 searching for 15-digit factors Fri Nov 21 22:15:31 2008 commencing quadratic sieve (87-digit input) Fri Nov 21 22:15:31 2008 using multiplier of 1 Fri Nov 21 22:15:31 2008 using 32kb Intel Core sieve core Fri Nov 21 22:15:31 2008 sieve interval: 22 blocks of size 32768 Fri Nov 21 22:15:31 2008 processing polynomials in batches of 10 Fri Nov 21 22:15:32 2008 using a sieve bound of 1499123 (56843 primes) Fri Nov 21 22:15:32 2008 using large prime bound of 119929840 (26 bits) Fri Nov 21 22:15:32 2008 using double large prime bound of 348392707234640 (42-49 bits) Fri Nov 21 22:15:32 2008 using trial factoring cutoff of 49 bits Fri Nov 21 22:15:32 2008 polynomial 'A' values have 11 factors Fri Nov 21 22:48:17 2008 56958 relations (16178 full + 40780 combined from 596856 partial), need 56939 Fri Nov 21 22:48:17 2008 begin with 613034 relations Fri Nov 21 22:48:18 2008 reduce to 135437 relations in 9 passes Fri Nov 21 22:48:18 2008 attempting to read 135437 relations Fri Nov 21 22:48:20 2008 recovered 135437 relations Fri Nov 21 22:48:20 2008 recovered 110021 polynomials Fri Nov 21 22:48:20 2008 attempting to build 56958 cycles Fri Nov 21 22:48:20 2008 found 56958 cycles in 5 passes Fri Nov 21 22:48:20 2008 distribution of cycle lengths: Fri Nov 21 22:48:21 2008 length 1 : 16178 Fri Nov 21 22:48:21 2008 length 2 : 11310 Fri Nov 21 22:48:21 2008 length 3 : 9937 Fri Nov 21 22:48:21 2008 length 4 : 7424 Fri Nov 21 22:48:21 2008 length 5 : 5053 Fri Nov 21 22:48:21 2008 length 6 : 3174 Fri Nov 21 22:48:22 2008 length 7 : 1914 Fri Nov 21 22:48:22 2008 length 9+: 1968 Fri Nov 21 22:48:22 2008 largest cycle: 17 relations Fri Nov 21 22:48:22 2008 matrix is 56843 x 56958 (12.9 MB) with weight 3155406 (55.40/col) Fri Nov 21 22:48:22 2008 sparse part has weight 3155406 (55.40/col) Fri Nov 21 22:48:23 2008 filtering completed in 4 passes Fri Nov 21 22:48:23 2008 matrix is 52253 x 52317 (12.0 MB) with weight 2938923 (56.18/col) Fri Nov 21 22:48:23 2008 sparse part has weight 2938923 (56.18/col) Fri Nov 21 22:48:24 2008 saving the first 48 matrix rows for later Fri Nov 21 22:48:24 2008 matrix is 52205 x 52317 (7.7 MB) with weight 2303617 (44.03/col) Fri Nov 21 22:48:24 2008 sparse part has weight 1692532 (32.35/col) Fri Nov 21 22:48:24 2008 matrix includes 64 packed rows Fri Nov 21 22:48:24 2008 using block size 20926 for processor cache size 4096 kB Fri Nov 21 22:48:25 2008 commencing Lanczos iteration Fri Nov 21 22:48:25 2008 memory use: 7.6 MB Fri Nov 21 22:48:37 2008 lanczos halted after 828 iterations (dim = 52203) Fri Nov 21 22:48:38 2008 recovered 16 nontrivial dependencies Fri Nov 21 22:48:38 2008 prp39 factor: 180480728295344801238466336014947707069 Fri Nov 21 22:48:38 2008 prp49 factor: 3058458065007834303252286311493510914433449868357 Fri Nov 21 22:48:38 2008 elapsed time 00:33:10
(28·10159+71)/9 = 3(1)1589<160> = 41 · 91084690499731<14> · C144
C144 = P68 · P77
P68 = 23171439760163422371111675724153326581658778372287070365863549514077<68>
P77 = 35952844688261045591447954066332986440191163322054061900169489973005924718257<77>
Number: n N=833079174900552296204015274726708994720787603658384837712899528402125685009777275008418875429543491560512280381394998443766749291297875480403789 ( 144 digits) SNFS difficulty: 161 digits. Divisors found: Sat Nov 22 00:10:35 2008 prp68 factor: 23171439760163422371111675724153326581658778372287070365863549514077 Sat Nov 22 00:10:35 2008 prp77 factor: 35952844688261045591447954066332986440191163322054061900169489973005924718257 Sat Nov 22 00:10:35 2008 elapsed time 01:06:10 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.41 hours. Scaled time: 17.94 units (timescale=0.838). Factorization parameters were as follows: name: KA_3_1_158_9 n: 833079174900552296204015274726708994720787603658384837712899528402125685009777275008418875429543491560512280381394998443766749291297875480403789 type: snfs skew: 1.91 deg: 5 c5: 14 c0: 355 m: 100000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1150001) Primes: RFBsize:283146, AFBsize:282603, largePrimes:13023992 encountered Relations: rels:11576174, finalFF:592990 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 21.08 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.5,2.5,100000 total time: 21.41 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(31·10149+41)/9 = 3(4)1489<150> = 7 · 42824491 · 9158260301<10> · 22224985260767827<17> · 1112929878226468993<19> · C97
C97 = P38 · P60
P38 = 22521545757000487584780938305372935523<38>
P60 = 225220787774420230975891805254681225718909593400875653913409<60>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 5072320277289301240298525799177849702522387783534603072805642037340932334501433151881909182127907 (97 digits) Using B1=1328000, B2=1426405900, polynomial Dickson(6), sigma=4224044251 Step 1 took 13875ms Step 2 took 5313ms ********** Factor found in step 2: 22521545757000487584780938305372935523 Found probable prime factor of 38 digits: 22521545757000487584780938305372935523 Probable prime cofactor 225220787774420230975891805254681225718909593400875653913409 has 60 digits
Factorizations of 344...449 and Factorizations of 355...551 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve
(31·10132+23)/9 = 3(4)1317<133> = 3 · 2297 · 193937 · 113221838034086314271<21> · C104
C104 = P42 · P63
P42 = 128001041209174255487204192912085552014267<42>
P63 = 177841272808507424123091401292295891898695805385853038162258313<63>
Thu Nov 20 05:27:39 2008 Msieve v. 1.38 Thu Nov 20 05:27:39 2008 random seeds: 06aef7d0 3491eb82 Thu Nov 20 05:27:39 2008 factoring 22763868089453759778600523391606177381637960434520514072517380420776039653079075638988500274654715351571 (104 digits) Thu Nov 20 05:27:40 2008 searching for 15-digit factors Thu Nov 20 05:27:42 2008 commencing quadratic sieve (104-digit input) Thu Nov 20 05:27:42 2008 using multiplier of 11 Thu Nov 20 05:27:42 2008 using 32kb Intel Core sieve core Thu Nov 20 05:27:42 2008 sieve interval: 36 blocks of size 32768 Thu Nov 20 05:27:42 2008 processing polynomials in batches of 6 Thu Nov 20 05:27:42 2008 using a sieve bound of 3650509 (129768 primes) Thu Nov 20 05:27:42 2008 using large prime bound of 547576350 (29 bits) Thu Nov 20 05:27:42 2008 using double large prime bound of 5360439540079200 (44-53 bits) Thu Nov 20 05:27:42 2008 using trial factoring cutoff of 53 bits Thu Nov 20 05:27:42 2008 polynomial 'A' values have 14 factors Fri Nov 21 11:27:11 2008 130009 relations (30765 full + 99244 combined from 1944400 partial), need 129864 Fri Nov 21 11:27:14 2008 begin with 1975165 relations Fri Nov 21 11:27:16 2008 reduce to 343309 relations in 13 passes Fri Nov 21 11:27:16 2008 attempting to read 343309 relations Fri Nov 21 11:27:24 2008 recovered 343309 relations Fri Nov 21 11:27:24 2008 recovered 336630 polynomials Fri Nov 21 11:27:25 2008 attempting to build 130009 cycles Fri Nov 21 11:27:25 2008 found 130009 cycles in 6 passes Fri Nov 21 11:27:25 2008 distribution of cycle lengths: Fri Nov 21 11:27:25 2008 length 1 : 30765 Fri Nov 21 11:27:25 2008 length 2 : 22047 Fri Nov 21 11:27:25 2008 length 3 : 21707 Fri Nov 21 11:27:25 2008 length 4 : 17738 Fri Nov 21 11:27:25 2008 length 5 : 13868 Fri Nov 21 11:27:25 2008 length 6 : 9322 Fri Nov 21 11:27:25 2008 length 7 : 6050 Fri Nov 21 11:27:25 2008 length 9+: 8512 Fri Nov 21 11:27:25 2008 largest cycle: 21 relations Fri Nov 21 11:27:26 2008 matrix is 129768 x 130009 (36.9 MB) with weight 9152557 (70.40/col) Fri Nov 21 11:27:26 2008 sparse part has weight 9152557 (70.40/col) Fri Nov 21 11:27:28 2008 filtering completed in 3 passes Fri Nov 21 11:27:28 2008 matrix is 124950 x 125013 (35.6 MB) with weight 8843121 (70.74/col) Fri Nov 21 11:27:28 2008 sparse part has weight 8843121 (70.74/col) Fri Nov 21 11:27:29 2008 saving the first 48 matrix rows for later Fri Nov 21 11:27:29 2008 matrix is 124902 x 125013 (22.0 MB) with weight 7005702 (56.04/col) Fri Nov 21 11:27:29 2008 sparse part has weight 5022897 (40.18/col) Fri Nov 21 11:27:29 2008 matrix includes 64 packed rows Fri Nov 21 11:27:29 2008 using block size 43690 for processor cache size 1024 kB Fri Nov 21 11:27:30 2008 commencing Lanczos iteration Fri Nov 21 11:27:30 2008 memory use: 21.4 MB Fri Nov 21 11:29:34 2008 lanczos halted after 1976 iterations (dim = 124902) Fri Nov 21 11:29:34 2008 recovered 18 nontrivial dependencies Fri Nov 21 11:29:35 2008 prp42 factor: 128001041209174255487204192912085552014267 Fri Nov 21 11:29:35 2008 prp63 factor: 177841272808507424123091401292295891898695805385853038162258313 Fri Nov 21 11:29:35 2008 elapsed time 30:01:56
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(29·10158-11)/9 = 3(2)1571<159> = 3 · 17 · 599 · 3320365643961975314499641<25> · C130
C130 = P37 · P94
P37 = 3113310324647811275855004400415874517<37>
P94 = 1020352344078143226664091214916101776213040500244838288298165298571081699060386378588779843357<94>
Run 58 out of 100: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2684999099 Step 1 took 33625ms ********** Factor found in step 1: 3113310324647811275855004400415874517 Found probable prime factor of 37 digits: 3113310324647811275855004400415874517 Probable prime cofactor 1020352344078143226664091214916101776213040500244838288298165298571081699060386378588779843357 has 94 digits
(8·10241+1)/9 = (8)2409<241> = 3 · 240542009 · 36048817474529<14> · 2236835197411007<16> · 619328809218826631987<21> · 2307994439692107818518677103<28> · C156
C156 = P30 · P126
P30 = 139271372194463204233517633963<30>
P126 = 767348030659914881516899932516529213904508061822198690776663718238208342560952835364792234120627533932150190654837531132325483<126>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3302111522 Step 1 took 26889ms Step 2 took 16389ms ********** Factor found in step 2: 139271372194463204233517633963 Found probable prime factor of 30 digits: 139271372194463204233517633963 Probable prime cofactor 767348030659914881516899932516529213904508061822198690776663718238208342560952835364792234120627533932150190654837531132325483 has 126 digits
4·10234+1 = 4(0)2331<235> = 101844481261409<15> · 15083067110761453<17> · 166470474810555341081321<24> · 281722440676563078737805904561<30> · C152
C152 = P35 · P117
P35 = 59520510316289955705069974366831129<35>
P117 = 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437<117>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3553856087 Step 1 took 14589ms Step 2 took 10980ms ********** Factor found in step 2: 59520510316289955705069974366831129 Found probable prime factor of 35 digits: 59520510316289955705069974366831129 Probable prime cofactor 932840774605491827367365884272243625937825837089740051536226422913469229092335449597657018460854220557450573143028437 has 117 digits
(31·10153+23)/9 = 3(4)1527<154> = 3 · 33179 · 20826677 · C142
C142 = P43 · P99
P43 = 8057751421933845833175419115668072017469321<43>
P99 = 206205758933494869507949855300183014699121320329094444631862433555090877799400218997532783562912443<99>
SNFS difficulty: 155 digits. Divisors found: r1=8057751421933845833175419115668072017469321 (pp43) r2=206205758933494869507949855300183014699121320329094444631862433555090877799400218997532783562912443 (pp99) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.948). Factorization parameters were as follows: n: 1661554747257316118030711657236449112247555007148199909420522176066246632447220815227217524487168894168556200871108421492188390703937161661203 m: 5000000000000000000000000000000 deg: 5 c5: 248 c0: 575 skew: 1.18 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 625976 x 626218 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,53,53,2.5,2.5,100000 total time: 20.00 hours.
By Robert Backstrom / GGNFS, GMP-ECM
(28·10155+71)/9 = 3(1)1549<156> = 3911 · 17762298559<11> · 1654368234481259210641757<25> · C118
C118 = P58 · P60
P58 = 5207543179028634894163598836860089001918725016663488946821<58>
P60 = 519832559697601779512517512681427527642437186726029598257623<60>
Number: n N=2707050500490241799888406019421296662760926921905251579321279923412603805121355417444843351066830762011792020904866483 ( 118 digits) SNFS difficulty: 156 digits. Divisors found: r1=5207543179028634894163598836860089001918725016663488946821 (pp58) r2=519832559697601779512517512681427527642437186726029598257623 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.17 hours. Scaled time: 27.73 units (timescale=1.828). Factorization parameters were as follows: name: KA_3_1_154_9 n: 2707050500490241799888406019421296662760926921905251579321279923412603805121355417444843351066830762011792020904866483 type: snfs skew: 1.20 deg: 5 c5: 28 c0: 71 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:216816, AFBsize:216157, largePrimes:11660197 encountered Relations: rels:10375245, finalFF:578312 Max relations in full relation-set: 48 Initial matrix: 433041 x 578312 with sparse part having weight 56231987. Pruned matrix : 323328 x 325557 with weight 28767447. Total sieving time: 13.85 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.02 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.5,2.5,100000 total time: 15.17 hours. --------- CPU info (if available) ----------
(29·10159-11)/9 = 3(2)1581<160> = 113 · 127 · 439 · 647 · 2930064630617<13> · C138
C138 = P32 · P107
P32 = 19376489485924470209262041162989<32>
P107 = 13923622050520029560513560197456375374993934656664684892227903781263511730077220792928335238140859671738599<107>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 269790916267887465351909992767559683801135115291189777213727431952734734185276613939457571274588620565285534217037470149479822257561512411 (138 digits) Using B1=800000, B2=696806892, polynomial Dickson(3), sigma=2305516098 Step 1 took 8563ms Step 2 took 3640ms ********** Factor found in step 2: 19376489485924470209262041162989 Found probable prime factor of 32 digits: 19376489485924470209262041162989 Probable prime cofactor 13923622050520029560513560197456375374993934656664684892227903781263511730077220792928335238140859671738599 has 107 digits
By Jo Yeong Uk / GGNFS
(31·10151+23)/9 = 3(4)1507<152> = 37 · 813097 · C145
C145 = P51 · P94
P51 = 661308922236046130574180250788845131268232439494137<51>
P94 = 1731293583610207200485057312737901737674537238871160790344877979353997153175128440849742800979<94>
Number: 34447_151 N=1144919893851448143248506550793977755336609200293360977756566474763688626241310607382552058279554506941891226915030963010478369654458116228360123 ( 145 digits) SNFS difficulty: 152 digits. Divisors found: r1=661308922236046130574180250788845131268232439494137 (pp51) r2=1731293583610207200485057312737901737674537238871160790344877979353997153175128440849742800979 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.38 hours. Scaled time: 27.00 units (timescale=2.373). Factorization parameters were as follows: n: 1144919893851448143248506550793977755336609200293360977756566474763688626241310607382552058279554506941891226915030963010478369654458116228360123 m: 1000000000000000000000000000000 deg: 5 c5: 310 c0: 23 skew: 0.59 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176064, largePrimes:7721639 encountered Relations: rels:7779627, finalFF:545693 Max relations in full relation-set: 28 Initial matrix: 352433 x 545693 with sparse part having weight 57523083. Pruned matrix : 282021 x 283847 with weight 27602538. Total sieving time: 10.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.45 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 11.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / Msieve
(31·10141+23)/9 = 3(4)1407<142> = 3 · 89 · 151 · 26064697 · 2350566219110645571032862479372843<34> · C97
C97 = P43 · P54
P43 = 1549081274511290351303642137676399869628903<43>
P54 = 900184644644614901232675640022748801919586985760172207<54>
Thu Nov 20 16:38:07 2008 Thu Nov 20 16:38:07 2008 Thu Nov 20 16:38:07 2008 Msieve v. 1.38 Thu Nov 20 16:38:08 2008 random seeds: 9bc7b380 5b2b56c3 Thu Nov 20 16:38:08 2008 factoring 1394459176621573051639386763789651414147839796257994686093167116726624290897405719337770464498921 (97 digits) Thu Nov 20 16:38:09 2008 searching for 15-digit factors Thu Nov 20 16:38:10 2008 commencing quadratic sieve (97-digit input) Thu Nov 20 16:38:11 2008 using multiplier of 13 Thu Nov 20 16:38:11 2008 using 32kb Intel Core sieve core Thu Nov 20 16:38:11 2008 sieve interval: 36 blocks of size 32768 Thu Nov 20 16:38:11 2008 processing polynomials in batches of 6 Thu Nov 20 16:38:11 2008 using a sieve bound of 2334863 (85703 primes) Thu Nov 20 16:38:12 2008 using large prime bound of 350229450 (28 bits) Thu Nov 20 16:38:12 2008 using double large prime bound of 2397920528297850 (43-52 bits) Thu Nov 20 16:38:12 2008 using trial factoring cutoff of 52 bits Thu Nov 20 16:38:12 2008 polynomial 'A' values have 13 factors Thu Nov 20 20:11:57 2008 85990 relations (22065 full + 63925 combined from 1278641 partial), need 85799 Thu Nov 20 20:11:58 2008 begin with 1300706 relations Thu Nov 20 20:11:59 2008 reduce to 220755 relations in 11 passes Thu Nov 20 20:11:59 2008 attempting to read 220755 relations Thu Nov 20 20:12:02 2008 recovered 220755 relations Thu Nov 20 20:12:02 2008 recovered 205400 polynomials Thu Nov 20 20:12:03 2008 attempting to build 85990 cycles Thu Nov 20 20:12:03 2008 found 85990 cycles in 6 passes Thu Nov 20 20:12:03 2008 distribution of cycle lengths: Thu Nov 20 20:12:03 2008 length 1 : 22065 Thu Nov 20 20:12:04 2008 length 2 : 15290 Thu Nov 20 20:12:04 2008 length 3 : 14451 Thu Nov 20 20:12:04 2008 length 4 : 11510 Thu Nov 20 20:12:04 2008 length 5 : 8566 Thu Nov 20 20:12:04 2008 length 6 : 5640 Thu Nov 20 20:12:05 2008 length 7 : 3598 Thu Nov 20 20:12:05 2008 length 9+: 4870 Thu Nov 20 20:12:05 2008 largest cycle: 24 relations Thu Nov 20 20:12:05 2008 matrix is 85703 x 85990 (23.2 MB) with weight 5738545 (66.74/col) Thu Nov 20 20:12:05 2008 sparse part has weight 5738545 (66.74/col) Thu Nov 20 20:12:06 2008 filtering completed in 3 passes Thu Nov 20 20:12:06 2008 matrix is 81042 x 81106 (22.0 MB) with weight 5441103 (67.09/col) Thu Nov 20 20:12:07 2008 sparse part has weight 5441103 (67.09/col) Thu Nov 20 20:12:07 2008 saving the first 48 matrix rows for later Thu Nov 20 20:12:07 2008 matrix is 80994 x 81106 (14.4 MB) with weight 4384075 (54.05/col) Thu Nov 20 20:12:08 2008 sparse part has weight 3281672 (40.46/col) Thu Nov 20 20:12:08 2008 matrix includes 64 packed rows Thu Nov 20 20:12:08 2008 using block size 32442 for processor cache size 4096 kB Thu Nov 20 20:12:09 2008 commencing Lanczos iteration Thu Nov 20 20:12:09 2008 memory use: 13.4 MB Thu Nov 20 20:12:46 2008 lanczos halted after 1283 iterations (dim = 80993) Thu Nov 20 20:12:46 2008 recovered 17 nontrivial dependencies Thu Nov 20 20:12:47 2008 prp43 factor: 1549081274511290351303642137676399869628903 Thu Nov 20 20:12:47 2008 prp54 factor: 900184644644614901232675640022748801919586985760172207 Thu Nov 20 20:12:47 2008 elapsed time 03:34:39
By Serge Batalov / GMP-ECM 6.2.1
(31·10176+23)/9 = 3(4)1757<177> = 61 · 127 · 6269 · 93623059 · 328309320318647<15> · C147
C147 = P36 · C112
P36 = 202720502544193253155472756683183303<36>
C112 = [1138213272254499930643296820016032059483757432491990061526260841951018280753405751022578969878813592572060915491<112>]
Factor found in step 2: 202720502544193253155472756683183303
By Sinkiti Sibata / GGNFS
(31·10135+23)/9 = 3(4)1347<136> = 3 · 53 · 14827 · 80153 · 175333 · C120
C120 = P55 · P65
P55 = 5320146285913004033923822786340081282766713399367469351<55>
P65 = 19541673492807033009504105677720911572680933743819569639669768521<65>
Number: 34447_135 N=103964561653281937615940698397888792368105511524925163767455307432152372393741558475751641975328714898867866571732099871 ( 120 digits) SNFS difficulty: 136 digits. Divisors found: r1=5320146285913004033923822786340081282766713399367469351 (pp55) r2=19541673492807033009504105677720911572680933743819569639669768521 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.27 hours. Scaled time: 14.60 units (timescale=2.010). Factorization parameters were as follows: name: 34447_135 n: 103964561653281937615940698397888792368105511524925163767455307432152372393741558475751641975328714898867866571732099871 m: 1000000000000000000000000000 deg: 5 c5: 31 c0: 23 skew: 0.94 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: RFBsize:101433, AFBsize:101212, largePrimes:3455437 encountered Relations: rels:3558281, finalFF:377834 Max relations in full relation-set: 28 Initial matrix: 202710 x 377834 with sparse part having weight 34651730. Pruned matrix : 162371 x 163448 with weight 12239877. Total sieving time: 6.87 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.23 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 7.27 hours. --------- CPU info (if available) ----------
(31·10136+23)/9 = 3(4)1357<137> = 7 · 37 · 191 · 76280803889<11> · C121
C121 = P48 · P74
P48 = 230857778558202023809686931408875980413732116091<48>
P74 = 39539054474929483767587850106894599968633750590814267323704018007244123137<74>
Number: 34447_136 N=9127898282373957556699495805501989405108267715924648355714034125424503203800344076649701860823029148177829292694783097467 ( 121 digits) SNFS difficulty: 137 digits. Divisors found: r1=230857778558202023809686931408875980413732116091 (pp48) r2=39539054474929483767587850106894599968633750590814267323704018007244123137 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.15 hours. Scaled time: 12.09 units (timescale=1.967). Factorization parameters were as follows: name: 34447_136 n: 9127898282373957556699495805501989405108267715924648355714034125424503203800344076649701860823029148177829292694783097467 m: 1000000000000000000000000000 deg: 5 c5: 310 c0: 23 skew: 0.59 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1210001) Primes: RFBsize:104967, AFBsize:104854, largePrimes:3408938 encountered Relations: rels:3538159, finalFF:429663 Max relations in full relation-set: 28 Initial matrix: 209888 x 429663 with sparse part having weight 35074190. Pruned matrix : 151114 x 152227 with weight 10313401. Total sieving time: 5.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.18 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 6.15 hours. --------- CPU info (if available) ----------
(29·10186+61)/9 = 3(2)1859<187> = 17 · 193 · 47 · 3718068359279171<16> · 113058097714385228025180839<27> · 181946415457142894948928977<27> · C112
C112 = P39 · P74
P39 = 234409202006688255034232774122567068593<39>
P74 = 32795231563991643406708561831148438339108461899856497446365159781924774941<74>
Number: 32229_186 N=7687504060539835938241812108807707610084134351196074491195907286991355483346098423276905938072695145759634528013 ( 112 digits) Divisors found: r1=234409202006688255034232774122567068593 (pp39) r2=32795231563991643406708561831148438339108461899856497446365159781924774941 (pp74) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 40.91 hours. Scaled time: 19.31 units (timescale=0.472). Factorization parameters were as follows: name: 32229_186 n: 7687504060539835938241812108807707610084134351196074491195907286991355483346098423276905938072695145759634528013 skew: 133187.17 # norm 2.88e+15 c5: 1320 c4: -514310512 c3: -50979482068505 c2: 8010119441520019056 c1: 457410820682172058593724 c0: -16837277770970666611448064400 # alpha -6.23 Y1: 25966459357 Y0: -5662946263637765414111 # Murphy_E 8.13e-10 # M 4200585395635473684294363244070652105637947337899380732823859960862627643749087323514256470378064353059671242202 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2550001) Primes: RFBsize:250150, AFBsize:250898, largePrimes:7476257 encountered Relations: rels:7404514, finalFF:659120 Max relations in full relation-set: 28 Initial matrix: 501131 x 659120 with sparse part having weight 54630815. Pruned matrix : 365685 x 368254 with weight 28525788. Total sieving time: 35.12 hours. Total relation processing time: 0.53 hours. Matrix solve time: 4.97 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 40.91 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(25·10205-43)/9 = 2(7)2043<206> = C206
C206 = P68 · P139
P68 = 12466231636846188520451920609929604004464475715294728532343200023149<68>
P139 = 2228241748346433917452944401867292639290089338373380648762414423835950014659934220490400787972385728917030277626747350491446963613906059777<139>
Number: n N=27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 206 digits) SNFS difficulty: 206 digits. Divisors found: Thu Nov 20 11:21:24 2008 prp68 factor: 12466231636846188520451920609929604004464475715294728532343200023149 Thu Nov 20 11:21:24 2008 prp139 factor: 2228241748346433917452944401867292639290089338373380648762414423835950014659934220490400787972385728917030277626747350491446963613906059777 Thu Nov 20 11:21:24 2008 elapsed time 32:26:42 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 163.61 hours. Scaled time: 335.55 units (timescale=2.051). Factorization parameters were as follows: name: KA_2_7_204_3 n: 27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 type: snfs skew: 1.11 deg: 5 c5: 25 c0: -43 m: 100000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 26500001) Primes: RFBsize:664579, AFBsize:663590, largePrimes:35068129 encountered Relations: rels:27426805, finalFF:95765 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 160.78 hours. Total relation processing time: 2.82 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 163.61 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(29·10158+43)/9 = 3(2)1577<159> = 32 · 977 · 279212959 · 583872380142192551079643634844427<33> · C114
C114 = P44 · P70
P44 = 33962717422558397652469099314595771182277901<44>
P70 = 6618544311658850749222168864793307787858976179228968556878226516680923<70>
Number: 32227_158 N=224783750205550827667498520536546643814178594317883134181700329233660310038101302061860511369018574239773131182623 ( 114 digits) Divisors found: r1=33962717422558397652469099314595771182277901 (pp44) r2=6618544311658850749222168864793307787858976179228968556878226516680923 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.70 hours. Scaled time: 44.51 units (timescale=2.380). Factorization parameters were as follows: name: 32227_158 n: 224783750205550827667498520536546643814178594317883134181700329233660310038101302061860511369018574239773131182623 skew: 43507.31 # norm 7.70e+15 c5: 46800 c4: 3439852684 c3: 141662054244854 c2: -10328543654556641841 c1: -230815965196408801245766 c0: 3056223806377708494279690880 # alpha -6.76 Y1: 513516312733 Y0: -5448829395459177655763 # Murphy_E 6.35e-10 # M 56906511998489966154066701174603629338226874494165166046143718999847722194005330214456027652359019840763477811026 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2450001) Primes: RFBsize:203362, AFBsize:203841, largePrimes:7664084 encountered Relations: rels:7562037, finalFF:540171 Max relations in full relation-set: 28 Initial matrix: 407282 x 540171 with sparse part having weight 53460198. Pruned matrix : 315279 x 317379 with weight 32717958. Polynomial selection time: 1.20 hours. Total sieving time: 16.65 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.61 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 18.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(31·10139+23)/9 = 3(4)1387<140> = 29 · 37 · 359 · 331313810704688044833753059<27> · C108
C108 = P52 · P57
P52 = 2473477119213667851398376330277761733597789180593671<52>
P57 = 109113271405889587593078488061443066335576018058528503189<57>
Number: 34447_139 N=269889180225018855012170244562663159435434265133670879679303009495874480796357848143053362681804370036716819 ( 108 digits) SNFS difficulty: 141 digits. Divisors found: r1=2473477119213667851398376330277761733597789180593671 r2=109113271405889587593078488061443066335576018058528503189 Version: Total time: 10.22 hours. Scaled time: 20.28 units (timescale=1.985). Factorization parameters were as follows: name: 34447_139 n: 269889180225018855012170244562663159435434265133670879679303009495874480796357848143053362681804370036716819 m: 10000000000000000000000000000 deg: 5 c5: 31 c0: 230 skew: 1.49 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 258735 x 258983 Total sieving time: 10.22 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 10.22 hours. --------- CPU info (if available) ----------
(31·10128+23)/9 = 3(4)1277<129> = 16843 · C125
C125 = P56 · P69
P56 = 85379477275895844315105998660497969913412719107941553679<56>
P69 = 239522460420870238976438445828349706474920058303140588513872318793651<69>
Number: 34447_128 N=20450302466570352338920883716941426375612684465026684346282992604906753217624202603125597841503559012316359582286079940892029 ( 125 digits) SNFS difficulty: 130 digits. Divisors found: r1=85379477275895844315105998660497969913412719107941553679 (pp56) r2=239522460420870238976438445828349706474920058303140588513872318793651 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.36 hours. Scaled time: 3.01 units (timescale=0.473). Factorization parameters were as follows: name: 34447_128 n: 20450302466570352338920883716941426375612684465026684346282992604906753217624202603125597841503559012316359582286079940892029 m: 50000000000000000000000000 deg: 5 c5: 248 c0: 575 skew: 1.18 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 1080001) Primes: RFBsize:82832, AFBsize:82914, largePrimes:2809394 encountered Relations: rels:2710118, finalFF:206536 Max relations in full relation-set: 28 Initial matrix: 165813 x 206536 with sparse part having weight 16995812. Pruned matrix : 155210 x 156103 with weight 10273925. Total sieving time: 5.81 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.37 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 6.36 hours. --------- CPU info (if available) ----------
(31·10142+23)/9 = 3(4)1417<143> = 7 · 37 · 173 · 32031673 · 12736060439<11> · 372546828293<12> · 35106681140227<14> · C96
C96 = P32 · P64
P32 = 63064060992753333563442403816667<32>
P64 = 2284578076622266880180728159657091165236588456548603773699038939<64>
Wed Nov 19 23:30:19 2008 Msieve v. 1.38 Wed Nov 19 23:30:19 2008 random seeds: 53c0fa20 5250e793 Wed Nov 19 23:30:19 2008 factoring 144074771166813737220443242018141597913702894796079291182385820547606367181066983636203450196313 (96 digits) Wed Nov 19 23:30:20 2008 searching for 15-digit factors Wed Nov 19 23:30:21 2008 commencing quadratic sieve (96-digit input) Wed Nov 19 23:30:21 2008 using multiplier of 33 Wed Nov 19 23:30:21 2008 using 32kb Intel Core sieve core Wed Nov 19 23:30:21 2008 sieve interval: 36 blocks of size 32768 Wed Nov 19 23:30:21 2008 processing polynomials in batches of 6 Wed Nov 19 23:30:21 2008 using a sieve bound of 2231371 (82274 primes) Wed Nov 19 23:30:21 2008 using large prime bound of 334705650 (28 bits) Wed Nov 19 23:30:21 2008 using double large prime bound of 2210005845812100 (43-51 bits) Wed Nov 19 23:30:21 2008 using trial factoring cutoff of 51 bits Wed Nov 19 23:30:21 2008 polynomial 'A' values have 12 factors Thu Nov 20 04:17:48 2008 82540 relations (19965 full + 62575 combined from 1229050 partial), need 82370 Thu Nov 20 04:17:50 2008 begin with 1249015 relations Thu Nov 20 04:17:51 2008 reduce to 216101 relations in 11 passes Thu Nov 20 04:17:51 2008 attempting to read 216101 relations Thu Nov 20 04:17:54 2008 recovered 216101 relations Thu Nov 20 04:17:54 2008 recovered 202340 polynomials Thu Nov 20 04:17:55 2008 attempting to build 82540 cycles Thu Nov 20 04:17:55 2008 found 82540 cycles in 7 passes Thu Nov 20 04:17:55 2008 distribution of cycle lengths: Thu Nov 20 04:17:55 2008 length 1 : 19965 Thu Nov 20 04:17:55 2008 length 2 : 14267 Thu Nov 20 04:17:55 2008 length 3 : 13826 Thu Nov 20 04:17:55 2008 length 4 : 11224 Thu Nov 20 04:17:55 2008 length 5 : 8457 Thu Nov 20 04:17:55 2008 length 6 : 5889 Thu Nov 20 04:17:55 2008 length 7 : 3845 Thu Nov 20 04:17:55 2008 length 9+: 5067 Thu Nov 20 04:17:55 2008 largest cycle: 20 relations Thu Nov 20 04:17:55 2008 matrix is 82274 x 82540 (23.3 MB) with weight 5769700 (69.90/col) Thu Nov 20 04:17:55 2008 sparse part has weight 5769700 (69.90/col) Thu Nov 20 04:17:56 2008 filtering completed in 3 passes Thu Nov 20 04:17:56 2008 matrix is 78492 x 78556 (22.3 MB) with weight 5524149 (70.32/col) Thu Nov 20 04:17:56 2008 sparse part has weight 5524149 (70.32/col) Thu Nov 20 04:17:57 2008 saving the first 48 matrix rows for later Thu Nov 20 04:17:57 2008 matrix is 78444 x 78556 (16.6 MB) with weight 4648272 (59.17/col) Thu Nov 20 04:17:57 2008 sparse part has weight 3874818 (49.33/col) Thu Nov 20 04:17:57 2008 matrix includes 64 packed rows Thu Nov 20 04:17:57 2008 using block size 31422 for processor cache size 1024 kB Thu Nov 20 04:17:58 2008 commencing Lanczos iteration Thu Nov 20 04:17:58 2008 memory use: 14.4 MB Thu Nov 20 04:18:49 2008 lanczos halted after 1242 iterations (dim = 78439) Thu Nov 20 04:18:49 2008 recovered 15 nontrivial dependencies Thu Nov 20 04:18:51 2008 prp32 factor: 63064060992753333563442403816667 Thu Nov 20 04:18:51 2008 prp64 factor: 2284578076622266880180728159657091165236588456548603773699038939 Thu Nov 20 04:18:51 2008 elapsed time 04:48:32
(31·10116+23)/9 = 3(4)1157<117> = 61 · 103 · 1539511135911716295637<22> · C92
C92 = P44 · P49
P44 = 16577521209685874321282377576121847403429763<44>
P49 = 2148076271608348625324510255199205373704302291139<49>
Wed Nov 19 13:44:43 2008 Msieve v. 1.38 Wed Nov 19 13:44:43 2008 random seeds: 127574c0 4e76b20c Wed Nov 19 13:44:43 2008 factoring 35609779952610354232635219525330182100718764866412978203425728886616766922185519127563770057 (92 digits) Wed Nov 19 13:44:47 2008 searching for 15-digit factors Wed Nov 19 13:44:52 2008 commencing quadratic sieve (92-digit input) Wed Nov 19 13:44:52 2008 using multiplier of 1 Wed Nov 19 13:44:52 2008 using 64kb Pentium 2 sieve core Wed Nov 19 13:44:52 2008 sieve interval: 18 blocks of size 65536 Wed Nov 19 13:44:52 2008 processing polynomials in batches of 6 Wed Nov 19 13:44:52 2008 using a sieve bound of 1815629 (68235 primes) Wed Nov 19 13:44:52 2008 using large prime bound of 197903561 (27 bits) Wed Nov 19 13:44:52 2008 using double large prime bound of 858255299613335 (42-50 bits) Wed Nov 19 13:44:52 2008 using trial factoring cutoff of 50 bits Wed Nov 19 13:44:53 2008 polynomial 'A' values have 12 factors Thu Nov 20 04:07:44 2008 68500 relations (17925 full + 50575 combined from 860511 partial), need 68331 Thu Nov 20 04:08:43 2008 begin with 878436 relations Thu Nov 20 04:12:02 2008 reduce to 171780 relations in 10 passes Thu Nov 20 04:12:03 2008 attempting to read 171780 relations Thu Nov 20 04:12:22 2008 recovered 171780 relations Thu Nov 20 04:12:22 2008 recovered 152027 polynomials Thu Nov 20 04:12:23 2008 attempting to build 68500 cycles Thu Nov 20 04:12:23 2008 found 68500 cycles in 5 passes Thu Nov 20 04:12:29 2008 distribution of cycle lengths: Thu Nov 20 04:12:29 2008 length 1 : 17925 Thu Nov 20 04:12:29 2008 length 2 : 12533 Thu Nov 20 04:12:29 2008 length 3 : 11759 Thu Nov 20 04:12:29 2008 length 4 : 9188 Thu Nov 20 04:12:29 2008 length 5 : 6726 Thu Nov 20 04:12:29 2008 length 6 : 4359 Thu Nov 20 04:12:29 2008 length 7 : 2639 Thu Nov 20 04:12:29 2008 length 9+: 3371 Thu Nov 20 04:12:29 2008 largest cycle: 20 relations Thu Nov 20 04:12:32 2008 matrix is 68235 x 68500 (16.8 MB) with weight 4127308 (60.25/col) Thu Nov 20 04:12:32 2008 sparse part has weight 4127308 (60.25/col) Thu Nov 20 04:12:38 2008 filtering completed in 3 passes Thu Nov 20 04:12:38 2008 matrix is 64376 x 64440 (15.9 MB) with weight 3905357 (60.60/col) Thu Nov 20 04:12:38 2008 sparse part has weight 3905357 (60.60/col) Thu Nov 20 04:12:41 2008 saving the first 48 matrix rows for later Thu Nov 20 04:12:41 2008 matrix is 64328 x 64440 (9.6 MB) with weight 3020114 (46.87/col) Thu Nov 20 04:12:41 2008 sparse part has weight 2138073 (33.18/col) Thu Nov 20 04:12:41 2008 matrix includes 64 packed rows Thu Nov 20 04:12:41 2008 using block size 5461 for processor cache size 128 kB Thu Nov 20 04:12:43 2008 commencing Lanczos iteration Thu Nov 20 04:12:43 2008 memory use: 9.8 MB Thu Nov 20 04:16:45 2008 lanczos halted after 1019 iterations (dim = 64327) Thu Nov 20 04:16:46 2008 recovered 16 nontrivial dependencies Thu Nov 20 04:16:48 2008 prp44 factor: 16577521209685874321282377576121847403429763 Thu Nov 20 04:16:48 2008 prp49 factor: 2148076271608348625324510255199205373704302291139 Thu Nov 20 04:16:48 2008 elapsed time 14:32:05
(31·10131+23)/9 = 3(4)1307<132> = 7176048337<10> · C122
C122 = P47 · P75
P47 = 58814456815850728043978098245622984007914608133<47>
P75 = 816111952757307914009314203227325907496851007454861051529854391178893476707<75>
Number: 34447_131 N=47999181202344295809394914398337119847140801727914063860415220673623570722116283376484793101867374509638067456685868258031 ( 122 digits) SNFS difficulty: 132 digits. Divisors found: r1=58814456815850728043978098245622984007914608133 (pp47) r2=816111952757307914009314203227325907496851007454861051529854391178893476707 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.01 hours. Scaled time: 8.02 units (timescale=2.003). Factorization parameters were as follows: name: 34447_131 n: 47999181202344295809394914398337119847140801727914063860415220673623570722116283376484793101867374509638067456685868258031 m: 100000000000000000000000000 deg: 5 c5: 310 c0: 23 skew: 0.59 type: snfs lss: 1 rlim: 1130000 alim: 1130000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1130000/1130000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [565000, 915001) Primes: RFBsize:87884, AFBsize:87884, largePrimes:2901244 encountered Relations: rels:2868121, finalFF:277844 Max relations in full relation-set: 28 Initial matrix: 175835 x 277844 with sparse part having weight 21171464. Pruned matrix : 142532 x 143475 with weight 7923435. Total sieving time: 3.74 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1130000,1130000,26,26,47,47,2.3,2.3,50000 total time: 4.01 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(31·10164+23)/9 = 3(4)1637<165> = 1187 · 19751765838087181<17> · 77076343049421473843<20> · 97197921667542870019<20> · C106
C106 = P29 · P77
P29 = 26225390858497213055695898321<29>
P77 = 74776044450002424378739770286018531603258310157404917007158902194661257092993<77>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1882111869 Step 1 took 12978ms Step 2 took 10583ms ********** Factor found in step 2: 26225390858497213055695898321 Found probable prime factor of 29 digits: 26225390858497213055695898321 Probable prime cofactor 74776044450002424378739770286018531603258310157404917007158902194661257092993 has 77 digits
(31·10184+23)/9 = 3(4)1837<185> = 7 · 19 · 37 · 103 · 355441 · C174
C174 = P33 · P141
P33 = 237349828833458037266370999935411<33>
P141 = 805512250524160053024218670593153283285936169981890369660778171822088933584384586054521660133841097184028353756005935093638355078054636670619<141>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3841333516 Step 1 took 25970ms Step 2 took 16530ms ********** Factor found in step 2: 237349828833458037266370999935411 Found probable prime factor of 33 digits: 237349828833458037266370999935411 Probable prime cofactor 805512250524160053024218670593153283285936169981890369660778171822088933584384586054521660133841097184028353756005935093638355078054636670619 has 141 digits
(31·10190+23)/9 = 3(4)1897<191> = 7 · 37 · 18679 · 196277 · 212561 · C174
C174 = P39 · P135
P39 = 938939424276220156588067577227983963633<39>
P135 = 181750338188017966926585180534245271074438087656727304705093140750638388807143161919233728286312335186618226569058027162361635240453127<135>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2726623914 Step 1 took 26296ms Step 2 took 16438ms ********** Factor found in step 2: 938939424276220156588067577227983963633 Found probable prime factor of 39 digits: 938939424276220156588067577227983963633 Probable prime cofactor 181750338188017966926585180534245271074438087656727304705093140750638388807143161919233728286312335186618226569058027162361635240453127 has 135 digits
(28·10171+71)/9 = 3(1)1709<172> = 47 · 1033 · C167
C167 = P67 · P101
P67 = 1031742911944581497755340763716442950404686881912645644675482631607<67>
P101 = 62107757478836297627513604933143884731071612237300177074100586545875135390795675774103399514937355567<101>
SNFS difficulty: 172 digits. Divisors found: r1=1031742911944581497755340763716442950404686881912645644675482631607 (pp67) r2=62107757478836297627513604933143884731071612237300177074100586545875135390795675774103399514937355567 (pp101) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.947). Factorization parameters were as follows: n: 64079238555562421188257937243540011763117363413958746701635622564130730800830283848141358800253570701141297009559249265949436903691192995223808183376472392146631606169 m: 10000000000000000000000000000000000 deg: 5 c5: 280 c0: 71 skew: 0.76 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2700000, 5700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 888418 x 888659 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,54,54,2.4,2.4,200000 total time: 63.00 hours.
By Erik Branger / GGNFS, Msieve
(29·10155+43)/9 = 3(2)1547<156> = 3 · 47 · 382091287 · 296664877073318110962662865089<30> · C116
C116 = P53 · P63
P53 = 29920707085237350653801260567698459993581560517223127<53>
P63 = 673800388051418068178170290945972346896872151144996313704183727<63>
Number: 32227_155 N=20160584044805740899471140024147275272088678695425246681184859208290589691014527207371887769660562776824980261454329 ( 116 digits) SNFS difficulty: 156 digits. Divisors found: r1=29920707085237350653801260567698459993581560517223127 r2=673800388051418068178170290945972346896872151144996313704183727 Version: Total time: 23.30 hours. Scaled time: 48.98 units (timescale=2.102). Factorization parameters were as follows: n: 20160584044805740899471140024147275272088678695425246681184859208290589691014527207371887769660562776824980261454329 m: 10000000000000000000000000000000 deg: 5 c5: 29 c0: 43 skew: 1.08 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 501993 x 502241 Total sieving time: 23.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.30 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM
5·10185-7 = 4(9)1843<186> = 13 · 67867 · C180
C180 = P37 · C144
P37 = 3447997960776944762766553717092214661<37>
C144 = [164361841986391913741776198251558299154755901642009269837282938194472792768129370249771101946669967081043628829357623935904923280758172290316603<144>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 566719295998621738672131351931549376552102471916225286788299740102530855032070644960562004191455913205806379219083478885739188979349882292402221086264877798318203817194490128316583 = 3447997960776944762766553717092214661* 164361841986391913741776198251558299154755901642009269837282938194472792768129370249771101946669967081043628829357623935904923280758172290316603
By Serge Batalov / GMP-ECM 6.2.1, Msieve, Msieve-1.38
(31·10156+23)/9 = 3(4)1557<157> = 32 · 4289 · 7215659571846059<16> · 303956505946913182950607<24> · 51649903737974328420181129<26> · C87
C87 = P32 · P56
P32 = 30062121943635127503267133496219<32>
P56 = 26202576715893157235293141992702086950253009011391537369<56>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1420406366 Step 1 took 11306ms Step 2 took 9180ms ********** Factor found in step 2: 30062121943635127503267133496219 Found probable prime factor of 32 digits: 30062121943635127503267133496219 Probable prime cofactor 26202576715893157235293141992702086950253009011391537369 has 56 digits
(31·10105+23)/9 = 3(4)1047<106> = 3 · 87415901 · C98
C98 = P49 · P49
P49 = 3198714675065427922561621520496084003147464052427<49>
P49 = 4106123321616776594835801868588745437723505467787<49>
Tue Nov 18 21:23:34 2008 Msieve v. 1.38 Tue Nov 18 21:23:34 2008 random seeds: 88f8d981 9b86cb57 Tue Nov 18 21:23:34 2008 factoring 131343169264839831388130192486164290424478739645793749600332798508608650976227785851 92963327669049 (98 digits) Tue Nov 18 21:23:35 2008 searching for 15-digit factors Tue Nov 18 21:23:35 2008 commencing number field sieve (98-digit input) Tue Nov 18 21:23:35 2008 R0: -200000000000000000000000000 Tue Nov 18 21:23:35 2008 R1: 1 Tue Nov 18 21:23:35 2008 A0: 184 Tue Nov 18 21:23:35 2008 A1: 0 Tue Nov 18 21:23:35 2008 A2: 0 Tue Nov 18 21:23:35 2008 A3: 0 Tue Nov 18 21:23:35 2008 A4: 155 Tue Nov 18 21:23:35 2008 size score = 1.988154e-11, Murphy alpha = -0.372646, combined = 2.307732e-11 Tue Nov 18 21:23:35 2008 Tue Nov 18 21:23:35 2008 commencing linear algebra Tue Nov 18 21:23:35 2008 read 61369 cycles Tue Nov 18 21:23:35 2008 cycles contain 223451 unique relations Tue Nov 18 21:23:37 2008 read 223451 relations Tue Nov 18 21:23:37 2008 using 32 quadratic characters above 33553800 Tue Nov 18 21:23:40 2008 building initial matrix Tue Nov 18 21:23:41 2008 memory use: 33.2 MB Tue Nov 18 21:23:42 2008 read 61369 cycles Tue Nov 18 21:23:42 2008 matrix is 61200 x 61369 (18.8 MB) with weight 6127987 (99.85/col) Tue Nov 18 21:23:42 2008 sparse part has weight 4258924 (69.40/col) Tue Nov 18 21:23:42 2008 filtering completed in 2 passes Tue Nov 18 21:23:42 2008 matrix is 60983 x 61152 (18.8 MB) with weight 6114373 (99.99/col) Tue Nov 18 21:23:42 2008 sparse part has weight 4252319 (69.54/col) Tue Nov 18 21:23:43 2008 read 61152 cycles Tue Nov 18 21:23:43 2008 matrix is 60983 x 61152 (18.8 MB) with weight 6114373 (99.99/col) Tue Nov 18 21:23:43 2008 sparse part has weight 4252319 (69.54/col) Tue Nov 18 21:23:43 2008 saving the first 42 matrix rows for later Tue Nov 18 21:23:43 2008 matrix is 60941 x 61152 (18.1 MB) with weight 4859342 (79.46/col) Tue Nov 18 21:23:43 2008 sparse part has weight 4127287 (67.49/col) Tue Nov 18 21:23:43 2008 matrix includes 64 packed rows Tue Nov 18 21:23:43 2008 using block size 24460 for processor cache size 1024 kB Tue Nov 18 21:23:44 2008 commencing Lanczos iteration Tue Nov 18 21:23:44 2008 memory use: 15.9 MB Tue Nov 18 21:24:21 2008 lanczos halted after 965 iterations (dim = 60941) Tue Nov 18 21:24:22 2008 recovered 56 nontrivial dependencies Tue Nov 18 21:24:22 2008 elapsed time 00:00:48 ... Tue Nov 18 21:26:26 2008 reading relations for dependency 9 Tue Nov 18 21:26:26 2008 read 30637 cycles Tue Nov 18 21:26:26 2008 cycles contain 142049 unique relations Tue Nov 18 21:26:27 2008 read 142049 relations Tue Nov 18 21:26:28 2008 multiplying 112056 relations Tue Nov 18 21:26:32 2008 multiply complete, coefficients have about 2.92 million bits Tue Nov 18 21:26:32 2008 initial square root is modulo 5340481 Tue Nov 18 21:26:40 2008 prp49 factor: 3198714675065427922561621520496084003147464052427 Tue Nov 18 21:26:40 2008 prp49 factor: 4106123321616776594835801868588745437723505467787 Tue Nov 18 21:26:40 2008 elapsed time 00:02:14 Total time: 0.20 hr
(31·10109+23)/9 = 3(4)1087<110> = 37 · 53 · 1260520284383<13> · C95
C95 = P41 · P54
P41 = 69802549992863458713524079329578454901797<41>
P54 = 199627543953063622202577954734848009773487912524010277<54>
SNFS difficulty: 111 digits. Divisors found: r1=69802549992863458713524079329578454901797 (pp41) r2=199627543953063622202577954734848009773487912524010277 (pp54) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 13934511616736270932637732753690812614764701004280694412608764883229631350012507024186653767769 m: 10000000000000000000000 deg: 5 c5: 31 c0: 230 skew: 1.49 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.4 alambda: 2.4 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85464 x 85706 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,500000,500000,25,25,46,46,2.4,2.4,50000 total time: 0.44 hours.
(31·10138+23)/9 = 3(4)1377<139> = 32 · 17 · 35449 · 76597193 · C124
C124 = P33 · P92
P33 = 425331164615134287079987318339223<33>
P92 = 19493225429670552729857527935947134128408399799387896828008900400424185200391198127920568609<92>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2764368724 Step 1 took 15565ms Step 2 took 12189ms ********** Factor found in step 2: 425331164615134287079987318339223 Found probable prime factor of 33 digits: 425331164615134287079987318339223 Probable prime cofactor 19493225429670552729857527935947134128408399799387896828008900400424185200391198127920568609 has 92 digits
(31·10141+23)/9 = 3(4)1407<142> = 3 · 89 · 151 · 26064697 · C130
C130 = P34 · C97
P34 = 2350566219110645571032862479372843<34>
C97 = [1394459176621573051639386763789651414147839796257994686093167116726624290897405719337770464498921<97>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2830981924 Step 1 took 15701ms Step 2 took 12881ms ********** Factor found in step 2: 2350566219110645571032862479372843 Found probable prime factor of 34 digits: 2350566219110645571032862479372843 Composite cofactor 1394459176621573051639386763789651414147839796257994686093167116726624290897405719337770464498921 has 97 digits
(31·10155+23)/9 = 3(4)1547<156> = 743 · 3877 · 320293 · 87542518061<11> · C133
C133 = P29 · P105
P29 = 23516095857499575558307056793<29>
P105 = 181343864352268877571212976251901069010084878705008449185231497922778887753953648570248794590546447878493<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=980145216 Step 1 took 15599ms ********** Factor found in step 1: 23516095857499575558307056793 Found probable prime factor of 29 digits: 23516095857499575558307056793 Probable prime cofactor 181343864352268877571212976251901069010084878705008449185231497922778887753953648570248794590546447878493 has 105 digits
(31·10127+23)/9 = 3(4)1267<128> = 37 · C126
C126 = P32 · P94
P32 = 97270187898068637736016992651793<32>
P94 = 9570567828104454237196160316745951642829132145921976310013121355514932688368360314674485545667<94>
SNFS difficulty: 129 digits. Divisors found: r1=97270187898068637736016992651793 (pp32) r2=9570567828104454237196160316745951642829132145921976310013121355514932688368360314674485545667 (pp94) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930930931 m: 20000000000000000000000000 deg: 5 c5: 775 c0: 184 skew: 0.75 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 25 lpba: 25 mfbr: 47 mfba: 47 rlambda: 2.5 alambda: 2.5 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 154652 x 154894 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,47,47,2.5,2.5,50000 total time: 2.40 hours.
(31·10177+23)/9 = 3(4)1767<178> = 3 · 111581 · 886833227724343<15> · C158
C158 = P35 · P123
P35 = 13254045645043572257091523693520891<35>
P123 = 875421607153306863297223929188753906423199002422805403873143557144062180284928718909392945416795016973639695922753727364733<123>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3001664386 Step 1 took 25730ms Step 2 took 16394ms ********** Factor found in step 2: 13254045645043572257091523693520891 Found probable prime factor of 35 digits: 13254045645043572257091523693520891 Probable prime cofactor
(31·10173+23)/9 = 3(4)1727<174> = 9492103471<10> · 27069297163<11> · C154
C154 = P32 · C122
P32 = 92908475405229428506788810564397<32>
C122 = [14428607099022432673306409823918546390880687001008211285748959062244918989746704433598578584157419146708891361260189029887<122>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=205771521 Step 1 took 19722ms Step 2 took 14238ms ********** Factor found in step 2: 92908475405229428506788810564397 Found probable prime factor of 32 digits: 92908475405229428506788810564397 Composite cofactor 14428607099022432673306409823918546390880687001008211285748959062244918989746704433598578584157419146708891361260189029887 has 122 digits
(31·10154+23)/9 = 3(4)1537<155> = 7 · 17 · 37 · 917585479980913<15> · C136
C136 = P32 · P105
P32 = 67709218824799436689325098690159<32>
P105 = 125914621130509991249162570949745545096358619356950620399456369625999088541498055440116472305188849960347<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=145261113 Step 1 took 19260ms Step 2 took 13617ms ********** Factor found in step 2: 67709218824799436689325098690159 Found probable prime factor of 32 digits: 67709218824799436689325098690159 Probable prime cofactor 125914621130509991249162570949745545096358619356950620399456369625999088541498055440116472305188849960347 has 105 digits
By Sinkiti Sibata / GGNFS, Msieve
(29·10153+61)/9 = 3(2)1529<154> = 85365372191133803232236248682377<32> · C122
C122 = P43 · P79
P43 = 4471016885284892094064428969844082669284823<43>
P79 = 8442429452871492723847244029989852385037808762793079404839902174013864671881499<79>
Number: 32229_153 N=37746244636614937109295441126432534233511429209331063518631294297155763315859691710659339462548995062900226905080135189677 ( 122 digits) SNFS difficulty: 155 digits. Divisors found: r1=4471016885284892094064428969844082669284823 (pp43) r2=8442429452871492723847244029989852385037808762793079404839902174013864671881499 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 43.51 hours. Scaled time: 85.59 units (timescale=1.967). Factorization parameters were as follows: name: 32229_153 n: 37746244636614937109295441126432534233511429209331063518631294297155763315859691710659339462548995062900226905080135189677 m: 5000000000000000000000000000000 deg: 5 c5: 232 c0: 1525 skew: 1.46 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:202463, largePrimes:8126931 encountered Relations: rels:8269642, finalFF:531820 Max relations in full relation-set: 28 Initial matrix: 405892 x 531820 with sparse part having weight 59695479. Pruned matrix : 365508 x 367601 with weight 38014697. Total sieving time: 40.79 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.27 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 43.51 hours. --------- CPU info (if available) ----------
(31·10115+23)/9 = 3(4)1147<116> = 37 · 47807 · 139312449151957889<18> · C93
C93 = P43 · P50
P43 = 3975100330099347670994035324751549335101971<43>
P50 = 35163164054974719903847065656342696717857873144607<50>
Wed Nov 19 13:41:10 2008 Msieve v. 1.38 Wed Nov 19 13:41:10 2008 random seeds: bfad5480 388ed57c Wed Nov 19 13:41:10 2008 factoring 139777105042267525685082956492088152402569060014210488994392747415396006411028434868773720397 (93 digits) Wed Nov 19 13:41:11 2008 searching for 15-digit factors Wed Nov 19 13:41:12 2008 commencing quadratic sieve (93-digit input) Wed Nov 19 13:41:12 2008 using multiplier of 13 Wed Nov 19 13:41:12 2008 using 32kb Intel Core sieve core Wed Nov 19 13:41:12 2008 sieve interval: 36 blocks of size 32768 Wed Nov 19 13:41:12 2008 processing polynomials in batches of 6 Wed Nov 19 13:41:12 2008 using a sieve bound of 1883459 (70588 primes) Wed Nov 19 13:41:12 2008 using large prime bound of 220364703 (27 bits) Wed Nov 19 13:41:12 2008 using double large prime bound of 1041491185153848 (42-50 bits) Wed Nov 19 13:41:12 2008 using trial factoring cutoff of 50 bits Wed Nov 19 13:41:12 2008 polynomial 'A' values have 12 factors Wed Nov 19 15:56:38 2008 70878 relations (17907 full + 52971 combined from 923444 partial), need 70684 Wed Nov 19 15:56:39 2008 begin with 941351 relations Wed Nov 19 15:56:40 2008 reduce to 179498 relations in 11 passes Wed Nov 19 15:56:40 2008 attempting to read 179498 relations Wed Nov 19 15:56:42 2008 recovered 179498 relations Wed Nov 19 15:56:42 2008 recovered 160366 polynomials Wed Nov 19 15:56:42 2008 attempting to build 70878 cycles Wed Nov 19 15:56:42 2008 found 70878 cycles in 6 passes Wed Nov 19 15:56:42 2008 distribution of cycle lengths: Wed Nov 19 15:56:42 2008 length 1 : 17907 Wed Nov 19 15:56:42 2008 length 2 : 13088 Wed Nov 19 15:56:42 2008 length 3 : 12320 Wed Nov 19 15:56:42 2008 length 4 : 9634 Wed Nov 19 15:56:42 2008 length 5 : 6870 Wed Nov 19 15:56:42 2008 length 6 : 4475 Wed Nov 19 15:56:42 2008 length 7 : 2898 Wed Nov 19 15:56:42 2008 length 9+: 3686 Wed Nov 19 15:56:42 2008 largest cycle: 18 relations Wed Nov 19 15:56:43 2008 matrix is 70588 x 70878 (17.4 MB) with weight 4284487 (60.45/col) Wed Nov 19 15:56:43 2008 sparse part has weight 4284487 (60.45/col) Wed Nov 19 15:56:43 2008 filtering completed in 3 passes Wed Nov 19 15:56:43 2008 matrix is 66684 x 66747 (16.5 MB) with weight 4055106 (60.75/col) Wed Nov 19 15:56:43 2008 sparse part has weight 4055106 (60.75/col) Wed Nov 19 15:56:44 2008 saving the first 48 matrix rows for later Wed Nov 19 15:56:44 2008 matrix is 66636 x 66747 (9.6 MB) with weight 3057518 (45.81/col) Wed Nov 19 15:56:44 2008 sparse part has weight 2109132 (31.60/col) Wed Nov 19 15:56:44 2008 matrix includes 64 packed rows Wed Nov 19 15:56:44 2008 using block size 26698 for processor cache size 1024 kB Wed Nov 19 15:56:44 2008 commencing Lanczos iteration Wed Nov 19 15:56:44 2008 memory use: 9.8 MB Wed Nov 19 15:57:12 2008 lanczos halted after 1056 iterations (dim = 66632) Wed Nov 19 15:57:12 2008 recovered 14 nontrivial dependencies Wed Nov 19 15:57:13 2008 prp43 factor: 3975100330099347670994035324751549335101971 Wed Nov 19 15:57:13 2008 prp50 factor: 35163164054974719903847065656342696717857873144607 Wed Nov 19 15:57:13 2008 elapsed time 02:16:03
(31·10167+23)/9 = 3(4)1667<168> = 29 · 446166146755871<15> · 35859278686887841<17> · 17261346807760160851<20> · 166754940289037004609267911<27> · C90
C90 = P43 · P47
P43 = 2903916704097012988465468787854787906046359<43>
P47 = 88814828170411516711524534020787854062092569687<47>
Wed Nov 19 16:04:44 2008 Msieve v. 1.38 Wed Nov 19 16:04:44 2008 random seeds: f2d00950 012536f3 Wed Nov 19 16:04:44 2008 factoring 257910863095563953833429968486591780704085942063711414587033921966560265416374354860119633 (90 digits) Wed Nov 19 16:04:44 2008 searching for 15-digit factors Wed Nov 19 16:04:46 2008 commencing quadratic sieve (90-digit input) Wed Nov 19 16:04:46 2008 using multiplier of 1 Wed Nov 19 16:04:46 2008 using 32kb Intel Core sieve core Wed Nov 19 16:04:46 2008 sieve interval: 36 blocks of size 32768 Wed Nov 19 16:04:46 2008 processing polynomials in batches of 6 Wed Nov 19 16:04:46 2008 using a sieve bound of 1584943 (59970 primes) Wed Nov 19 16:04:46 2008 using large prime bound of 126795440 (26 bits) Wed Nov 19 16:04:46 2008 using double large prime bound of 385111478867040 (42-49 bits) Wed Nov 19 16:04:46 2008 using trial factoring cutoff of 49 bits Wed Nov 19 16:04:46 2008 polynomial 'A' values have 11 factors Wed Nov 19 17:18:57 2008 60222 relations (15932 full + 44290 combined from 639005 partial), need 60066 Wed Nov 19 17:18:58 2008 begin with 654937 relations Wed Nov 19 17:18:58 2008 reduce to 147348 relations in 11 passes Wed Nov 19 17:18:58 2008 attempting to read 147348 relations Wed Nov 19 17:19:00 2008 recovered 147348 relations Wed Nov 19 17:19:00 2008 recovered 125152 polynomials Wed Nov 19 17:19:00 2008 attempting to build 60222 cycles Wed Nov 19 17:19:00 2008 found 60222 cycles in 5 passes Wed Nov 19 17:19:00 2008 distribution of cycle lengths: Wed Nov 19 17:19:00 2008 length 1 : 15932 Wed Nov 19 17:19:00 2008 length 2 : 11294 Wed Nov 19 17:19:00 2008 length 3 : 10744 Wed Nov 19 17:19:00 2008 length 4 : 8003 Wed Nov 19 17:19:00 2008 length 5 : 5793 Wed Nov 19 17:19:00 2008 length 6 : 3669 Wed Nov 19 17:19:00 2008 length 7 : 2184 Wed Nov 19 17:19:00 2008 length 9+: 2603 Wed Nov 19 17:19:00 2008 largest cycle: 19 relations Wed Nov 19 17:19:01 2008 matrix is 59970 x 60222 (14.9 MB) with weight 3652250 (60.65/col) Wed Nov 19 17:19:01 2008 sparse part has weight 3652250 (60.65/col) Wed Nov 19 17:19:01 2008 filtering completed in 4 passes Wed Nov 19 17:19:01 2008 matrix is 56279 x 56343 (14.0 MB) with weight 3444010 (61.13/col) Wed Nov 19 17:19:01 2008 sparse part has weight 3444010 (61.13/col) Wed Nov 19 17:19:02 2008 saving the first 48 matrix rows for later Wed Nov 19 17:19:02 2008 matrix is 56231 x 56343 (10.5 MB) with weight 2895002 (51.38/col) Wed Nov 19 17:19:02 2008 sparse part has weight 2407788 (42.73/col) Wed Nov 19 17:19:02 2008 matrix includes 64 packed rows Wed Nov 19 17:19:02 2008 using block size 22537 for processor cache size 1024 kB Wed Nov 19 17:19:02 2008 commencing Lanczos iteration Wed Nov 19 17:19:02 2008 memory use: 9.4 MB Wed Nov 19 17:19:25 2008 lanczos halted after 891 iterations (dim = 56227) Wed Nov 19 17:19:25 2008 recovered 15 nontrivial dependencies Wed Nov 19 17:19:26 2008 prp43 factor: 2903916704097012988465468787854787906046359 Wed Nov 19 17:19:26 2008 prp47 factor: 88814828170411516711524534020787854062092569687 Wed Nov 19 17:19:26 2008 elapsed time 01:14:42
(31·10123+23)/9 = 3(4)1227<124> = 3 · 84606897082627201<17> · C107
C107 = P52 · P55
P52 = 6319917590226352894125890044416029503902005597444263<52>
P55 = 2147240780066801934686523205080673857557725977524797123<55>
Number: 34447_123 N=13570384776395537087024643508148141126686711527749785820838572030632082729852778921557351096188596375255349 ( 107 digits) SNFS difficulty: 125 digits. Divisors found: r1=6319917590226352894125890044416029503902005597444263 (pp52) r2=2147240780066801934686523205080673857557725977524797123 (pp55) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 4.46 hours. Scaled time: 2.00 units (timescale=0.449). Factorization parameters were as follows: name: 34447_123 n: 13570384776395537087024643508148141126686711527749785820838572030632082729852778921557351096188596375255349 m: 5000000000000000000000000 deg: 5 c5: 248 c0: 575 skew: 1.18 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 840001) Primes: RFBsize:69823, AFBsize:69924, largePrimes:2526981 encountered Relations: rels:2448972, finalFF:213919 Max relations in full relation-set: 28 Initial matrix: 139814 x 213919 with sparse part having weight 16840551. Pruned matrix : 121656 x 122419 with weight 6886973. Total sieving time: 4.10 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.21 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 4.46 hours. --------- CPU info (if available) ----------
(31·10108+23)/9 = 3(4)1077<109> = 3 · 223 · 613 · 26321 · 32363 · C94
C94 = P38 · P57
P38 = 66660839637703797959802996348497475557<38>
P57 = 147914467409319341807551757070456364919452883686409154841<57>
Wed Nov 19 17:28:28 2008 Msieve v. 1.38 Wed Nov 19 17:28:28 2008 random seeds: a1a1aef0 7bf371c4 Wed Nov 19 17:28:28 2008 factoring 9860102592069001383943623141214283234414689376330949043038392340073766181537242128302425721437 (94 digits) Wed Nov 19 17:28:29 2008 searching for 15-digit factors Wed Nov 19 17:28:30 2008 commencing quadratic sieve (94-digit input) Wed Nov 19 17:28:31 2008 using multiplier of 5 Wed Nov 19 17:28:31 2008 using 32kb Intel Core sieve core Wed Nov 19 17:28:31 2008 sieve interval: 36 blocks of size 32768 Wed Nov 19 17:28:31 2008 processing polynomials in batches of 6 Wed Nov 19 17:28:31 2008 using a sieve bound of 2090159 (77647 primes) Wed Nov 19 17:28:31 2008 using large prime bound of 296802578 (28 bits) Wed Nov 19 17:28:31 2008 using double large prime bound of 1780089192091634 (42-51 bits) Wed Nov 19 17:28:31 2008 using trial factoring cutoff of 51 bits Wed Nov 19 17:28:31 2008 polynomial 'A' values have 12 factors Wed Nov 19 20:37:28 2008 78136 relations (19584 full + 58552 combined from 1130179 partial), need 77743 Wed Nov 19 20:37:29 2008 begin with 1149763 relations Wed Nov 19 20:37:30 2008 reduce to 201982 relations in 10 passes Wed Nov 19 20:37:30 2008 attempting to read 201982 relations Wed Nov 19 20:37:33 2008 recovered 201982 relations Wed Nov 19 20:37:33 2008 recovered 183781 polynomials Wed Nov 19 20:37:33 2008 attempting to build 78136 cycles Wed Nov 19 20:37:33 2008 found 78136 cycles in 5 passes Wed Nov 19 20:37:33 2008 distribution of cycle lengths: Wed Nov 19 20:37:33 2008 length 1 : 19584 Wed Nov 19 20:37:33 2008 length 2 : 13798 Wed Nov 19 20:37:33 2008 length 3 : 13098 Wed Nov 19 20:37:33 2008 length 4 : 10641 Wed Nov 19 20:37:33 2008 length 5 : 7922 Wed Nov 19 20:37:33 2008 length 6 : 5134 Wed Nov 19 20:37:33 2008 length 7 : 3396 Wed Nov 19 20:37:33 2008 length 9+: 4563 Wed Nov 19 20:37:33 2008 largest cycle: 20 relations Wed Nov 19 20:37:33 2008 matrix is 77647 x 78136 (20.8 MB) with weight 5127022 (65.62/col) Wed Nov 19 20:37:33 2008 sparse part has weight 5127022 (65.62/col) Wed Nov 19 20:37:34 2008 filtering completed in 3 passes Wed Nov 19 20:37:34 2008 matrix is 73700 x 73764 (19.6 MB) with weight 4846871 (65.71/col) Wed Nov 19 20:37:34 2008 sparse part has weight 4846871 (65.71/col) Wed Nov 19 20:37:35 2008 saving the first 48 matrix rows for later Wed Nov 19 20:37:35 2008 matrix is 73652 x 73764 (13.0 MB) with weight 3892828 (52.77/col) Wed Nov 19 20:37:35 2008 sparse part has weight 2964524 (40.19/col) Wed Nov 19 20:37:35 2008 matrix includes 64 packed rows Wed Nov 19 20:37:35 2008 using block size 29505 for processor cache size 1024 kB Wed Nov 19 20:37:36 2008 commencing Lanczos iteration Wed Nov 19 20:37:36 2008 memory use: 12.2 MB Wed Nov 19 20:38:15 2008 lanczos halted after 1166 iterations (dim = 73647) Wed Nov 19 20:38:15 2008 recovered 14 nontrivial dependencies Wed Nov 19 20:38:16 2008 prp38 factor: 66660839637703797959802996348497475557 Wed Nov 19 20:38:16 2008 prp57 factor: 147914467409319341807551757070456364919452883686409154841 Wed Nov 19 20:38:16 2008 elapsed time 03:09:48
(31·10120+23)/9 = 3(4)1197<121> = 33 · 19725851 · 157137530004674651<18> · C95
C95 = P44 · P51
P44 = 54204446176358550691331299450593801518802911<44>
P51 = 759285031162886117655652650922885658998240238735051<51>
Wed Nov 19 20:58:35 2008 Msieve v. 1.38 Wed Nov 19 20:58:35 2008 random seeds: eee04af0 6d939a12 Wed Nov 19 20:58:35 2008 factoring 41156624604183385426124387483809375623717575938202142871748189374889762552463441751930416533461 (95 digits) Wed Nov 19 20:58:36 2008 searching for 15-digit factors Wed Nov 19 20:58:37 2008 commencing quadratic sieve (95-digit input) Wed Nov 19 20:58:37 2008 using multiplier of 1 Wed Nov 19 20:58:37 2008 using 32kb Intel Core sieve core Wed Nov 19 20:58:37 2008 sieve interval: 36 blocks of size 32768 Wed Nov 19 20:58:37 2008 processing polynomials in batches of 6 Wed Nov 19 20:58:37 2008 using a sieve bound of 2154077 (80000 primes) Wed Nov 19 20:58:37 2008 using large prime bound of 323111550 (28 bits) Wed Nov 19 20:58:37 2008 using double large prime bound of 2074122508433250 (43-51 bits) Wed Nov 19 20:58:37 2008 using trial factoring cutoff of 51 bits Wed Nov 19 20:58:37 2008 polynomial 'A' values have 12 factors Wed Nov 19 23:22:16 2008 80202 relations (21178 full + 59024 combined from 1172046 partial), need 80096 Wed Nov 19 23:22:17 2008 begin with 1193224 relations Wed Nov 19 23:22:18 2008 reduce to 202098 relations in 12 passes Wed Nov 19 23:22:18 2008 attempting to read 202098 relations Wed Nov 19 23:22:21 2008 recovered 202098 relations Wed Nov 19 23:22:21 2008 recovered 177771 polynomials Wed Nov 19 23:22:21 2008 attempting to build 80202 cycles Wed Nov 19 23:22:22 2008 found 80202 cycles in 5 passes Wed Nov 19 23:22:22 2008 distribution of cycle lengths: Wed Nov 19 23:22:22 2008 length 1 : 21178 Wed Nov 19 23:22:22 2008 length 2 : 14727 Wed Nov 19 23:22:22 2008 length 3 : 13766 Wed Nov 19 23:22:22 2008 length 4 : 10752 Wed Nov 19 23:22:22 2008 length 5 : 7658 Wed Nov 19 23:22:22 2008 length 6 : 5080 Wed Nov 19 23:22:22 2008 length 7 : 3122 Wed Nov 19 23:22:22 2008 length 9+: 3919 Wed Nov 19 23:22:22 2008 largest cycle: 21 relations Wed Nov 19 23:22:22 2008 matrix is 80000 x 80202 (20.8 MB) with weight 5124249 (63.89/col) Wed Nov 19 23:22:22 2008 sparse part has weight 5124249 (63.89/col) Wed Nov 19 23:22:23 2008 filtering completed in 3 passes Wed Nov 19 23:22:23 2008 matrix is 75017 x 75080 (19.6 MB) with weight 4833095 (64.37/col) Wed Nov 19 23:22:23 2008 sparse part has weight 4833095 (64.37/col) Wed Nov 19 23:22:23 2008 saving the first 48 matrix rows for later Wed Nov 19 23:22:23 2008 matrix is 74969 x 75080 (12.9 MB) with weight 3879732 (51.67/col) Wed Nov 19 23:22:23 2008 sparse part has weight 2943325 (39.20/col) Wed Nov 19 23:22:23 2008 matrix includes 64 packed rows Wed Nov 19 23:22:23 2008 using block size 30032 for processor cache size 1024 kB Wed Nov 19 23:22:24 2008 commencing Lanczos iteration Wed Nov 19 23:22:24 2008 memory use: 12.1 MB Wed Nov 19 23:23:04 2008 lanczos halted after 1187 iterations (dim = 74969) Wed Nov 19 23:23:04 2008 recovered 17 nontrivial dependencies Wed Nov 19 23:23:05 2008 prp44 factor: 54204446176358550691331299450593801518802911 Wed Nov 19 23:23:05 2008 prp51 factor: 759285031162886117655652650922885658998240238735051 Wed Nov 19 23:23:05 2008 elapsed time 02:24:30
Factorizations of 344...447 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GMP-ECM, GGNFS
8·10172+9 = 8(0)1719<173> = 4201 · 31121 · 5041411 · 346459071611<12> · C147
C147 = P42 · P42 · P64
P42 = 122454245483536330061045540807347553945459<42>
P42 = 608296663654957875693373827303732266946233<42>
P64 = 4703167420425903988646488862192041281322859917358747628829697267<64>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 350331928621527728761081949351918869573565424827174645006780581369818827638825443432238620811811976063345620759127952586071954864671857213232146849 (147 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2462122556 Step 1 took 13971ms Step 2 took 6377ms ********** Factor found in step 2: 122454245483536330061045540807347553945459 Found probable prime factor of 42 digits: 122454245483536330061045540807347553945459 Composite cofactor 2860921050455771977764483927646944768955414366666151492991326927020143373266369210679921533070327956045211 has 106 digits Number: 80009_172 N=2860921050455771977764483927646944768955414366666151492991326927020143373266369210679921533070327956045211 ( 106 digits) Divisors found: r1=608296663654957875693373827303732266946233 (pp42) r2=4703167420425903988646488862192041281322859917358747628829697267 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.72 hours. Scaled time: 18.45 units (timescale=2.390). Factorization parameters were as follows: name: 80009_172 n: 2860921050455771977764483927646944768955414366666151492991326927020143373266369210679921533070327956045211 skew: 11678.31 # norm 1.72e+15 c5: 120600 c4: 6819803985 c3: 37057788054551 c2: -1151675053026808358 c1: 2909342933569088464627 c0: 324963623916431255748839 # alpha -6.59 Y1: 10640649107 Y0: -118858781408249484738 # Murphy_E 1.72e-09 # M 541327409357061061008302996406796774326480382613132409656102290302813857792902919658625814147961415995838 type: gnfs rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [800000, 1250001) Primes: RFBsize:121127, AFBsize:121169, largePrimes:4551667 encountered Relations: rels:4587757, finalFF:357886 Max relations in full relation-set: 28 Initial matrix: 242379 x 357886 with sparse part having weight 34663704. Pruned matrix : 188093 x 189368 with weight 15680682. Polynomial selection time: 0.49 hours. Total sieving time: 6.98 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1600000,1600000,26,26,49,49,2.6,2.6,50000 total time: 7.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.38
(29·10162+43)/9 = 3(2)1617<163> = 2281 · 1380524160241<13> · C148
C148 = P47 · P101
P47 = 24338504945142473597830485802111060049232775711<47>
P101 = 42042864161506593485661228298579117459637482156761211650372648834901725871855061061337359033326914517<101>
SNFS difficulty: 164 digits. Divisors found: r1=24338504945142473597830485802111060049232775711 (pp47) r2=42042864161506593485661228298579117459637482156761211650372648834901725871855061061337359033326914517 (pp101) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 1023260457302781502321058826619075853267150618701104376101655793590908734618042775416104799906803554891849404419821230807109285753121776555130896587 m: 200000000000000000000000000000000 deg: 5 c5: 725 c0: 344 skew: 0.86 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1900000, 4100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 872891 x 873133 Total sieving time: 20.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 6.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,54,54,2.5,2.5,200000 total time: 27.00 hours.
By Erik Branger / GGNFS, Msieve
(35·10181-53)/9 = 3(8)1803<182> = 3 · 11 · 71 · 881 · 208945537457941<15> · 791365109293020169<18> · 21778263350111446027<20> · C124
C124 = P43 · P82
P43 = 1252919402408328755421374091254262320800303<43>
P82 = 4175619906214193298947641749972535268213753641612635366469178981999800565253855349<82>
Number: 38883_181 N=5231715197578208831447042887178669531402910572998083330570601096456072639171819460414476215122280855020505800755505877370747 ( 124 digits) Divisors found: r1=1252919402408328755421374091254262320800303 r2=4175619906214193298947641749972535268213753641612635366469178981999800565253855349 Version: Total time: 107.58 hours. Scaled time: 197.62 units (timescale=1.837). Factorization parameters were as follows: name: 38883_181 n: 5231715197578208831447042887178669531402910572998083330570601096456072639171819460414476215122280855020505800755505877370747 skew: 66716.52 # norm 3.33e+017 c5: 1075020 c4: -78698768752 c3: -17021611594094501 c2: 281519712989601017903 c1: 28582653678799695610438785 c0: 160056945615395880888497141625 # alpha -7.11 Y1: 54913199080289 Y0: -344704158686954209701182 # Murphy_E 1.72e-010 # M 1136309453548721671272440661601553980613918152128772920480184792812545192504107872685614962152046899738781232436031973902978 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 6040001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 744744 x 744992 Total sieving time: 107.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 107.58 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
(28·10152+71)/9 = 3(1)1519<153> = 11 · 2141 · C149
C149 = P46 · P47 · P57
P46 = 1226316957498029579045870019792441755337618589<46>
P47 = 80940410630738976725326885455402605922641740003<47>
P57 = 133087734524800559082620074043187468597248350842161192407<57>
Number: n N=13210101953679721078133035162460664562486141187682523506904637217575097070659891771521850923999452724347633268698191631400412343896697002722224581169 ( 149 digits) SNFS difficulty: 153 digits. Divisors found: r1=1226316957498029579045870019792441755337618589 (pp46) r2=80940410630738976725326885455402605922641740003 (pp47) r3=133087734524800559082620074043187468597248350842161192407 (pp57) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 16.33 hours. Scaled time: 29.77 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_1_151_9 n: 13210101953679721078133035162460664562486141187682523506904637217575097070659891771521850923999452724347633268698191631400412343896697002722224581169 type: snfs skew: 0.96 deg: 5 c5: 175 c0: 142 m: 2000000000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [1250000, 2200000) Primes: rational ideals reading, algebraic ideals reading, Relations: 10053756 Max relations in full relation-set: Initial matrix: Pruned matrix : 533108 x 533356 Total sieving time: 16.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,54,54,2.5,2.5,100000 total time: 16.33 hours. --------- CPU info (if available) ----------
(29·10157+61)/9 = 3(2)1569<158> = 33 · 13 · 2531 · 111491 · C147
C147 = P37 · P110
P37 = 3790426175780289902379082348729368317<37>
P110 = 85827877663886217686624927713596100146431875154647473222853714845318268952376104728527063396257347348391319247<110>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 325324234108862798024888672602227669818231185557939007019477225308521689758051408804150529854512300441954587776525928341252624651350941132594097299 (147 digits) Using B1=2790000, B2=4281592780, polynomial Dickson(6), sigma=4021036377 Step 1 took 33667ms Step 2 took 12747ms ********** Factor found in step 2: 3790426175780289902379082348729368317 Found probable prime factor of 37 digits: 3790426175780289902379082348729368317 Probable prime cofactor 85827877663886217686624927713596100146431875154647473222853714845318268952376104728527063396257347348391319247 has 110 digits
By Serge Batalov / PFGW
(28·1059135+53)/9 = 3(1)591347<59136> is PRP.
It's the largest unprovable quasi-repdigit PRP (except Plateau and Depression PRPs) in our tables so far. Congratulations!
By Jo Yeong Uk / GGNFS, GMP-ECM
(29·10146+61)/9 = 3(2)1459<147> = 7 · 3467 · 259507 · 13624175111<11> · 138313582440049<15> · C113
C113 = P40 · P73
P40 = 3169810222981727600466968272956709187527<40>
P73 = 8565371832817375392513756344491664934115448215655694538143590743210533971<73>
Number: 32229_146 N=27150603199304253514940527210781393490679512341427106122393417249589472947324497432458764591434516158903242979717 ( 113 digits) SNFS difficulty: 147 digits. Divisors found: r1=3169810222981727600466968272956709187527 (pp40) r2=8565371832817375392513756344491664934115448215655694538143590743210533971 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.07 hours. Scaled time: 26.45 units (timescale=2.390). Factorization parameters were as follows: n: 27150603199304253514940527210781393490679512341427106122393417249589472947324497432458764591434516158903242979717 m: 100000000000000000000000000000 deg: 5 c5: 290 c0: 61 skew: 0.73 type: snfs rlim: 1950000 alim: 1950000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1950000/1950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [975000, 1725001) Primes: RFBsize:145502, AFBsize:145972, largePrimes:3960898 encountered Relations: rels:4039693, finalFF:373641 Max relations in full relation-set: 28 Initial matrix: 291541 x 373641 with sparse part having weight 34601105. Pruned matrix : 260365 x 261886 with weight 20668004. Total sieving time: 10.41 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.58 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1950000,1950000,26,26,49,49,2.3,2.3,75000 total time: 11.07 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
8·10185+9 = 8(0)1849<186> = 7 · 24329 · 53381 · 25502165263849<14> · C163
C163 = P43 · C121
P43 = 1303028394848660857467715486468010946754987<43>
C121 = [2648195527610722149244619035624215921962390457850886740531905304699190651782516458062408766925167070534368118892625076601<121>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 3450673967588001826514728936156930978629571495727208135592960907082200888074468826445788854167633653862786053882083856937104121316034686491932860587742803253759187 (163 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=927156312 Step 1 took 16545ms Step 2 took 6975ms ********** Factor found in step 2: 1303028394848660857467715486468010946754987 Found probable prime factor of 43 digits: 1303028394848660857467715486468010946754987 Composite cofactor 2648195527610722149244619035624215921962390457850886740531905304699190651782516458062408766925167070534368118892625076601 has 121 digits
By Sinkiti Sibata / GGNFS, Msieve
(29·10141+61)/9 = 3(2)1409<142> = 13183 · 387197 · 71847667 · 133889624761<12> · C113
C113 = P35 · P37 · P42
P35 = 23326022163441896017355332795484893<35>
P37 = 8095744849338993975408132622174877891<37>
P42 = 347497881729904362093602551567166189462659<42>
Number: 32229_141 N=65622029498022402511370121818645478725599093924522418761938954240567698309562351507030435140498203033268335542917 ( 113 digits) SNFS difficulty: 142 digits. Divisors found: r1=23326022163441896017355332795484893 (pp35) r2=8095744849338993975408132622174877891 (pp37) r3=347497881729904362093602551567166189462659 (pp42) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.27 hours. Scaled time: 26.42 units (timescale=1.991). Factorization parameters were as follows: name: 32229_141 n: 65622029498022402511370121818645478725599093924522418761938954240567698309562351507030435140498203033268335542917 m: 10000000000000000000000000000 deg: 5 c5: 290 c0: 61 skew: 0.73 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 1930001) Primes: RFBsize:125335, AFBsize:125722, largePrimes:3887765 encountered Relations: rels:4017215, finalFF:365741 Max relations in full relation-set: 28 Initial matrix: 251124 x 365741 with sparse part having weight 37586099. Pruned matrix : 216769 x 218088 with weight 19575455. Total sieving time: 12.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.52 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 13.27 hours. --------- CPU info (if available) ----------
(29·10137+61)/9 = 3(2)1369<138> = 36865611488038198486792207<26> · C112
C112 = P43 · P70
P43 = 1876509566605769011012478535021817151398357<43>
P70 = 4657826031403067538249012839543823016247868013413400768902393511194671<70>
Number: 32229_137 N=8740455107513239305779557493730510918834594330157676536378650217243444178655936857371578307479790099541296555547 ( 112 digits) SNFS difficulty: 139 digits. Divisors found: r1=1876509566605769011012478535021817151398357 (pp43) r2=4657826031403067538249012839543823016247868013413400768902393511194671 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.97 hours. Scaled time: 21.91 units (timescale=1.997). Factorization parameters were as follows: name: 32229_137 n: 8740455107513239305779557493730510918834594330157676536378650217243444178655936857371578307479790099541296555547 m: 2000000000000000000000000000 deg: 5 c5: 725 c0: 488 skew: 0.92 type: snfs lss: 1 rlim: 1470000 alim: 1470000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1470000/1470000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [735000, 1710001) Primes: RFBsize:112047, AFBsize:112565, largePrimes:3586545 encountered Relations: rels:3620639, finalFF:294457 Max relations in full relation-set: 28 Initial matrix: 224679 x 294457 with sparse part having weight 29193083. Pruned matrix : 204167 x 205354 with weight 17484458. Total sieving time: 10.30 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.47 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1470000,1470000,26,26,48,48,2.3,2.3,75000 total time: 10.97 hours. --------- CPU info (if available) ----------
(29·10142+43)/9 = 3(2)1417<143> = 13 · 37 · 90071 · 271177 · 83701033319<11> · 2639074956201911<16> · C104
C104 = P35 · P70
P35 = 11669805408573726208797777707700553<35>
P70 = 1063962733182911001767833547303540722494502663962209251203781021064213<70>
Mon Nov 17 14:13:57 2008 Msieve v. 1.38 Mon Nov 17 14:13:57 2008 random seeds: 514256f8 8e3d4afb Mon Nov 17 14:13:57 2008 factoring 12416238058218819166824114540569901613579126526613903387203375857785433658967700039267592952549188609789 (104 digits) Mon Nov 17 14:13:58 2008 searching for 15-digit factors Mon Nov 17 14:13:59 2008 commencing quadratic sieve (104-digit input) Mon Nov 17 14:14:00 2008 using multiplier of 1 Mon Nov 17 14:14:00 2008 using 32kb Intel Core sieve core Mon Nov 17 14:14:00 2008 sieve interval: 36 blocks of size 32768 Mon Nov 17 14:14:00 2008 processing polynomials in batches of 6 Mon Nov 17 14:14:00 2008 using a sieve bound of 3575519 (127357 primes) Mon Nov 17 14:14:00 2008 using large prime bound of 536327850 (28 bits) Mon Nov 17 14:14:00 2008 using double large prime bound of 5163861615140850 (44-53 bits) Mon Nov 17 14:14:00 2008 using trial factoring cutoff of 53 bits Mon Nov 17 14:14:00 2008 polynomial 'A' values have 13 factors Tue Nov 18 16:04:28 2008 127591 relations (30004 full + 97587 combined from 1915668 partial), need 127453 Tue Nov 18 16:04:31 2008 begin with 1945672 relations Tue Nov 18 16:04:33 2008 reduce to 338988 relations in 12 passes Tue Nov 18 16:04:33 2008 attempting to read 338988 relations Tue Nov 18 16:04:39 2008 recovered 338988 relations Tue Nov 18 16:04:39 2008 recovered 331435 polynomials Tue Nov 18 16:04:40 2008 attempting to build 127591 cycles Tue Nov 18 16:04:40 2008 found 127591 cycles in 6 passes Tue Nov 18 16:04:40 2008 distribution of cycle lengths: Tue Nov 18 16:04:40 2008 length 1 : 30004 Tue Nov 18 16:04:40 2008 length 2 : 21534 Tue Nov 18 16:04:40 2008 length 3 : 21139 Tue Nov 18 16:04:40 2008 length 4 : 17316 Tue Nov 18 16:04:40 2008 length 5 : 13424 Tue Nov 18 16:04:40 2008 length 6 : 9343 Tue Nov 18 16:04:40 2008 length 7 : 6168 Tue Nov 18 16:04:40 2008 length 9+: 8663 Tue Nov 18 16:04:40 2008 largest cycle: 22 relations Tue Nov 18 16:04:41 2008 matrix is 127357 x 127591 (37.6 MB) with weight 9357482 (73.34/col) Tue Nov 18 16:04:41 2008 sparse part has weight 9357482 (73.34/col) Tue Nov 18 16:04:42 2008 filtering completed in 3 passes Tue Nov 18 16:04:42 2008 matrix is 122629 x 122693 (36.4 MB) with weight 9050763 (73.77/col) Tue Nov 18 16:04:42 2008 sparse part has weight 9050763 (73.77/col) Tue Nov 18 16:04:43 2008 saving the first 48 matrix rows for later Tue Nov 18 16:04:44 2008 matrix is 122581 x 122693 (26.3 MB) with weight 7597616 (61.92/col) Tue Nov 18 16:04:44 2008 sparse part has weight 6160501 (50.21/col) Tue Nov 18 16:04:44 2008 matrix includes 64 packed rows Tue Nov 18 16:04:44 2008 using block size 43690 for processor cache size 1024 kB Tue Nov 18 16:04:45 2008 commencing Lanczos iteration Tue Nov 18 16:04:45 2008 memory use: 23.3 MB Tue Nov 18 16:06:57 2008 lanczos halted after 1940 iterations (dim = 122581) Tue Nov 18 16:06:57 2008 recovered 17 nontrivial dependencies Tue Nov 18 16:06:58 2008 prp35 factor: 11669805408573726208797777707700553 Tue Nov 18 16:06:58 2008 prp70 factor: 1063962733182911001767833547303540722494502663962209251203781021064213 Tue Nov 18 16:06:58 2008 elapsed time 25:53:01
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(29·10156+43)/9 = 3(2)1557<157> = 30859 · 1534343971<10> · C143
C143 = P37 · P107
P37 = 1377552754580720316751868668303903781<37>
P107 = 49401788191707908150553066353759600516135856958908205391836521851420399804418285516707499280068724331113303<107>
SNFS difficulty: 157 digits. Divisors found: r1=1377552754580720316751868668303903781 (pp37) r2=49401788191707908150553066353759600516135856958908205391836521851420399804418285516707499280068724331113303 (pp107) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 68053569404700530923170764879185371978510877788928882861160627284981640913973139213450909040663507340468157232348646363524761347762432721098643 m: 10000000000000000000000000000000 deg: 5 c5: 290 c0: 43 skew: 0.68 type: snfs lss: 1 rlim: 2900000 alim: 2900000 lpbr: 27 lpba: 27 Factor base limits: 2900000/2900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1450000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 633376 x 633618 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2900000,2900000,27,27,54,54,2.5,2.5,100000 total time: 28.00 hours.
(29·10167+61)/9 = 3(2)1669<168> = 1110413 · C162
C162 = P45 · P118
P45 = 126809889244639021357268589157526459258405033<45>
P118 = 2288325644641308471859080040799162906181921781791384079876889249717810058558308565164012974877788941034747528288278401<118>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1566598641 Step 1 took 25314ms Step 2 took 16576ms ********** Factor found in step 2: 126809889244639021357268589157526459258405033 Found probable prime factor of 45 digits: 126809889244639021357268589157526459258405033 Probable prime cofactor 2288325644641308471859080040799162906181921781791384079876889249717810058558308565164012974877788941034747528288278401 has 118 digits
(28·10170+71)/9 = 3(1)1699<171> = 11 · 29 · 331 · C166
C166 = P41 · C126
P41 = 19859450154315389409262513980231995152171<41>
C126 = [148364372806478843118018056613754483141353836691388837731243793211133214062412958758919222671776635993740297014703909886184601<126>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3158295896 Step 1 took 20529ms Step 2 took 13133ms ********** Factor found in step 2: 19859450154315389409262513980231995152171 Found probable prime factor of 41 digits: 19859450154315389409262513980231995152171 Composite cofactor 148364372806478843118018056613754483141353836691388837731243793211133214062412958758919222671776635993740297014703909886184601 has 126 digits
(29·10164+61)/9 = 3(2)1639<165> = 7 · 18296071169<11> · C154
C154 = P39 · P52 · P64
P39 = 529139710257486136769165693925353727749<39>
P52 = 3543247599221912697675370851675835652468863948412567<52>
P64 = 1341923476483577207953314651919037091986443271975979972818618161<64>
SNFS difficulty: 166 digits. Divisors found: r1=529139710257486136769165693925353727749 (pp39) r2=3543247599221912697675370851675835652468863948412567 (pp52) r3=1341923476483577207953314651919037091986443271975979972818618161 (pp64) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.946). Factorization parameters were as follows: n: 2515936104891199319210067619722540648914314792789491894987050267728767367587831338728546445895809907785893339078962457426043899864092512251094629857784963 m: 1000000000000000000000000000000000 deg: 5 c5: 29 c0: 610 skew: 1.84 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 3850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 712823 x 713065 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.5,2.5,200000 total time: 23.00 hours.
By Robert Backstrom / GMP-ECM, GGNFS+Msieve
(29·10172+43)/9 = 3(2)1717<173> = 132 · 19 · 37 · 3119131 · 307874741 · 39577769389383443<17> · 185683336923165787<18> · 5188305348860178155851<22> · C97
C97 = P36 · P62
P36 = 242134544099255329284789632330728687<36>
P62 = 30591393340298415649850547843758728559625979373492486617641223<62>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 7407233079814152516570865935671655828908744097439146872132648689700405980714588309617488719864201 (97 digits) Using B1=3346000, B2=5707365310, polynomial Dickson(6), sigma=1782536042 Step 1 took 23719ms Step 2 took 9297ms ********** Factor found in step 2: 242134544099255329284789632330728687 Found probable prime factor of 36 digits: 242134544099255329284789632330728687 Probable prime cofactor 30591393340298415649850547843758728559625979373492486617641223 has 62 digits
(29·10140+43)/9 = 3(2)1397<141> = 32 · 82219597700479507<17> · C123
C123 = P58 · P65
P58 = 7543301094605391045064977941022620892585184652931249322841<58>
P65 = 57726627832506193799633496599134618772751262475665405484205686369<65>
Number: n N=435449334916822004002149338747365465555272793113051889143398338029024260586100943664452029185844079320320641739892874054329 ( 123 digits) SNFS difficulty: 141 digits. Divisors found: r1=7543301094605391045064977941022620892585184652931249322841 (pp58) r2=57726627832506193799633496599134618772751262475665405484205686369 (pp65) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 3.64 hours. Scaled time: 6.64 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_2_139_7 n: 435449334916822004002149338747365465555272793113051889143398338029024260586100943664452029185844079320320641739892874054329 type: snfs skew: 1.08 deg: 5 c5: 29 c0: 43 m: 10000000000000000000000000000 rlim: 1200000 alim: 1200000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [600000, 1220000) Primes: rational ideals reading, algebraic ideals reading, Relations: 7001824 Max relations in full relation-set: Initial matrix: Pruned matrix : 293297 x 293545 Total sieving time: 3.64 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,27,27,54,54,2.5,2.5,100000 total time: 3.64 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38+pol51
(29·10192+61)/9 = 3(2)1919<193> = 482527 · 3278369 · 187750647274994433763849699<27> · C155
C155 = P37 · P118
P37 = 2316834160594153819667107946835624439<37>
P118 = 4682735670925414078866118621047739953536644987195349759769350594785717948649737367633121436688424842703068559636997103<118>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=114559045 Step 1 took 54535ms Step 2 took 19111ms ********** Factor found in step 2: 2316834160594153819667107946835624439 Found probable prime factor of 37 digits: 2316834160594153819667107946835624439 Probable prime cofactor 4682735670925414078866118621047739953536644987195349759769350594785717948649737367633121436688424842703068559636997103 has 118 digits
(29·10184+61)/9 = 3(2)1839<185> = 33 · 255256602685706526999458973095231<33> · C151
C151 = P32 · P120
P32 = 37296769389789298779684908001329<32>
P120 = 125355537759404243933982601729318974211996976487902842604447040165178893665367161257179742437444317012524654252728521473<120>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2120548678 Step 1 took 15802ms Step 2 took 12328ms ********** Factor found in step 2: 37296769389789298779684908001329 Found probable prime factor of 32 digits: 37296769389789298779684908001329 Probable prime cofactor 125355537759404243933982601729318974211996976487902842604447040165178893665367161257179742437444317012524654252728521473 has 120 digits
(29·10173+43)/9 = 3(2)1727<174> = 3 · 1279 · 13627 · 13236833 · 148688385509304503<18> · C142
C142 = P39 · P104
P39 = 278125250251433947903850622262669172867<39>
P104 = 11258016445427235313011794263716183664680139091861609109861704266670446050131750455666720671537249609881<104>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=54860734 Step 1 took 18960ms Step 2 took 13876ms ********** Factor found in step 2: 278125250251433947903850622262669172867 Found probable prime factor of 39 digits: 278125250251433947903850622262669172867 Probable prime cofactor 11258016445427235313011794263716183664680139091861609109861704266670446050131750455666720671537249609881 has 104 digits
(29·10158+43)/9 = 3(2)1577<159> = 32 · 977 · 279212959 · C147
C147 = P33 · C114
P33 = 583872380142192551079643634844427<33>
C114 = [224783750205550827667498520536546643814178594317883134181700329233660310038101302061860511369018574239773131182623<114>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2559564766 Step 1 took 15907ms Step 2 took 12072ms ********** Factor found in step 2: 583872380142192551079643634844427 Found probable prime factor of 33 digits: 583872380142192551079643634844427 Composite cofactor 224783750205550827667498520536546643814178594317883134181700329233660310038101302061860511369018574239773131182623 has 114 digits
(29·10158+61)/9 = 3(2)1579<159> = 7 · 607 · 21379 · 2095201 · C145
C145 = P32 · P113
P32 = 21190175341877706602064263755067<32>
P113 = 79895280719012847910673786448020987976586641161452917808757752436610586187445750827143161492493875865710083529997<113>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1456372488 Step 1 took 71098ms Step 2 took 27177ms ********** Factor found in step 2: 21190175341877706602064263755067 Found probable prime factor of 32 digits: 21190175341877706602064263755067 Probable prime cofactor 79895280719012847910673786448020987976586641161452917808757752436610586187445750827143161492493875865710083529997 has 113 digits
(29·10187+43)/9 = 3(2)1867<188> = 37 · 397 · 1223 · 9093324433<10> · C171
C171 = P30 · C141
P30 = 225672697957802240071355869943<30>
C141 = [874047617631760391195304292247147019956812512118441877235264029120636815503492744210942204168382928019415331396254518104266298927433445990339<141>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3637906633 Step 1 took 66450ms Step 2 took 22651ms ********** Factor found in step 2: 225672697957802240071355869943 Found probable prime factor of 30 digits: 225672697957802240071355869943 Composite cofactor 874047617631760391195304292247147019956812512118441877235264029120636815503492744210942204168382928019415331396254518104266298927433445990339 has 141 digits
(29·10164+43)/9 = 3(2)1637<165> = 3 · 11491 · 473869683961<12> · C149
C149 = P31 · P119
P31 = 1942716736615818038402338174021<31>
P119 = 10153318318372036964823232567936373358103425158864543912265807365285383606461019955365281439089858072132176984882382679<119>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=940592037 Step 1 took 16658ms Step 2 took 12377ms ********** Factor found in step 2: 1942716736615818038402338174021 Found probable prime factor of 31 digits: 1942716736615818038402338174021 Probable prime cofactor 10153318318372036964823232567936373358103425158864543912265807365285383606461019955365281439089858072132176984882382679 has 119 digits
(29·10179+43)/9 = 3(2)1787<180> = 3 · 42594067205378886809<20> · 248608775267040116745474127<27> · C134
C134 = P31 · P103
P31 = 2769319232990930018823920363173<31>
P103 = 3662651907484122160682225291966783394252544467675339129918900995332581468906429399627651838257437808331<103>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2974743075 Step 1 took 43872ms Step 2 took 16146ms ********** Factor found in step 2: 2769319232990930018823920363173 Found probable prime factor of 31 digits: 2769319232990930018823920363173 Probable prime cofactor 3662651907484122160682225291966783394252544467675339129918900995332581468906429399627651838257437808331 has 103 digits
(29·10181+43)/9 = 3(2)1807<182> = 37 · 647 · 3104071 · 11680004471<11> · 53808065626583<14> · 10907159084372867669<20> · 82972673688786008924639<23> · C105
C105 = P43 · P63
P43 = 3601458746009011119542948899535711107790437<43>
P63 = 211690940233967989813862201243570845426363639153268518613816993<63>
Number: 32227_181 N=762396188156494875567780473147586708249017071732373530428771402196001592862502726153090821862990913495941 ( 105 digits) Divisors found: r1=3601458746009011119542948899535711107790437 (pp43) r2=211690940233967989813862201243570845426363639153268518613816993 (pp63) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.733). Factorization parameters were as follows: name: 32227_181 n: 762396188156494875567780473147586708249017071732373530428771402196001592862502726153090821862990913495941 skew: 9844.65 # norm 3.11e+14 c5: 29640 c4: 1117679122 c3: 19394260346651 c2: -117325550455593525 c1: -630322423049171911239 c0: 2106398969892741411195903 # alpha -5.82 Y1: 24663503227 Y0: -120798025239544098128 # Murphy_E 1.83e-09 # M 584676753022640349010774396889405223318803062446763465583310243513069604242056769938892601179638601221218 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 273203 x 273445 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.50 hours.
By Sinkiti Sibata / GGNFS
(29·10126+61)/9 = 3(2)1259<127> = 22246373 · 8154448405163<13> · C107
C107 = P37 · P70
P37 = 5260246663870249816139402148927464621<37>
P70 = 3376724080941819078597386914245768715629794334600094008745661189453951<70>
Number: 32229_126 N=17762401581584539215934748989254245111000743713326681417675537217984098385505054330098797056958065861167571 ( 107 digits) SNFS difficulty: 127 digits. Divisors found: r1=5260246663870249816139402148927464621 (pp37) r2=3376724080941819078597386914245768715629794334600094008745661189453951 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.66 hours. Scaled time: 7.29 units (timescale=1.991). Factorization parameters were as follows: name: 32229_126 n: 17762401581584539215934748989254245111000743713326681417675537217984098385505054330098797056958065861167571 m: 10000000000000000000000000 deg: 5 c5: 290 c0: 61 skew: 0.73 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 815001) Primes: RFBsize:73474, AFBsize:73758, largePrimes:2693813 encountered Relations: rels:2675287, finalFF:270666 Max relations in full relation-set: 28 Initial matrix: 147299 x 270666 with sparse part having weight 22074441. Pruned matrix : 118461 x 119261 with weight 6932569. Total sieving time: 3.45 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 3.66 hours. --------- CPU info (if available) ----------
(29·10127+43)/9 = 3(2)1267<128> = 17 · 37 · 12823747462269174161<20> · C106
C106 = P52 · P54
P52 = 6579167382533500938426829892675558224130541575894473<52>
P54 = 607182087000918396013785605242613558361173964633582271<54>
Number: 32227_127 N=3994752582055060728308608112517264856218214939170946070765465949859566855109944727334903191216111059688183 ( 106 digits) SNFS difficulty: 129 digits. Divisors found: r1=6579167382533500938426829892675558224130541575894473 (pp52) r2=607182087000918396013785605242613558361173964633582271 (pp54) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.72 hours. Scaled time: 2.71 units (timescale=0.473). Factorization parameters were as follows: name: 32227_127 n: 3994752582055060728308608112517264856218214939170946070765465949859566855109944727334903191216111059688183 m: 20000000000000000000000000 deg: 5 c5: 725 c0: 344 skew: 0.86 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78406, largePrimes:2713685 encountered Relations: rels:2627655, finalFF:216772 Max relations in full relation-set: 28 Initial matrix: 156971 x 216772 with sparse part having weight 17221769. Pruned matrix : 142113 x 142961 with weight 8478682. Total sieving time: 5.27 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 5.72 hours. --------- CPU info (if available) ----------
(29·10119+61)/9 = 3(2)1189<120> = 197 · 36736277 · C110
C110 = P55 · P56
P55 = 3039594091840195741412652558969397930858942438694303563<55>
P56 = 14648006686402284380989446730512633636716046580374198407<56>
Number: 32229_119 N=44523994581224066491456374407948378951798095334630452372072088876207730565761711381108873202032068093249024141 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=3039594091840195741412652558969397930858942438694303563 (pp55) r2=14648006686402284380989446730512633636716046580374198407 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.47 hours. Scaled time: 2.49 units (timescale=1.009). Factorization parameters were as follows: name: 32229_119 n: 44523994581224066491456374407948378951798095334630452372072088876207730565761711381108873202032068093249024141 m: 500000000000000000000000 deg: 5 c5: 464 c0: 305 skew: 0.92 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 615001) Primes: RFBsize:58789, AFBsize:58572, largePrimes:1393640 encountered Relations: rels:1416113, finalFF:193824 Max relations in full relation-set: 28 Initial matrix: 117427 x 193824 with sparse part having weight 8753871. Pruned matrix : 87703 x 88354 with weight 3029773. Total sieving time: 2.42 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.47 hours. --------- CPU info (if available) ----------
(28·10153+71)/9 = 3(1)1529<154> = 857 · 85103 · 3976032114275161<16> · 1086768939743010205380688859<28> · C103
C103 = P38 · P66
P38 = 11186157647009820408220827313507101889<38>
P66 = 882514385602616930882416082547517692492045139519424234560724804899<66>
Number: 31119_153 N=9871945043104886736129379424657667897317895638682689885689875888250427703761523754328418040160439354211 ( 103 digits) Divisors found: r1=11186157647009820408220827313507101889 (pp38) r2=882514385602616930882416082547517692492045139519424234560724804899 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 12.56 hours. Scaled time: 5.94 units (timescale=0.473). Factorization parameters were as follows: name: 31119_153 n: 9871945043104886736129379424657667897317895638682689885689875888250427703761523754328418040160439354211 skew: 3705.13 # norm 8.60e+13 c5: 129720 c4: 263511244 c3: -12960973898930 c2: -3893806066263409 c1: 35118915354322524346 c0: -4785904810680555345056 # alpha -5.01 Y1: 55039345009 Y0: -37694579262082979205 # Murphy_E 2.40e-09 # M 2829306139617020241602336734220383744679524675451341332199799705151743481356617341779517768513448671065 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: RFBsize:169511, AFBsize:169312, largePrimes:4329475 encountered Relations: rels:4333401, finalFF:422619 Max relations in full relation-set: 28 Initial matrix: 338906 x 422619 with sparse part having weight 29252220. Pruned matrix : 269922 x 271680 with weight 15139323. Total sieving time: 10.49 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.61 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 12.56 hours. --------- CPU info (if available) ----------
(29·10149+61)/9 = 3(2)1489<150> = 89 · 829 · 138445203817<12> · 175012803491<12> · C123
C123 = P51 · P72
P51 = 635113194319765417239064874330432842193149404260779<51>
P72 = 283799796263498656912659353956895657512659811644817238669954795620677593<72>
Number: 32229_149 N=180244995152209257871068513860892740771751549462287974955233441702277009188183769637702407052589249184897134811269254024947 ( 123 digits) SNFS difficulty: 151 digits. Divisors found: r1=635113194319765417239064874330432842193149404260779 (pp51) r2=283799796263498656912659353956895657512659811644817238669954795620677593 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.35 hours. Scaled time: 46.77 units (timescale=2.003). Factorization parameters were as follows: name: 32229_149 n: 180244995152209257871068513860892740771751549462287974955233441702277009188183769637702407052589249184897134811269254024947 m: 500000000000000000000000000000 deg: 5 c5: 464 c0: 305 skew: 0.92 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: RFBsize:169511, AFBsize:169392, largePrimes:7334238 encountered Relations: rels:7738710, finalFF:851885 Max relations in full relation-set: 28 Initial matrix: 338969 x 851885 with sparse part having weight 94817796. Pruned matrix : 226765 x 228523 with weight 32842570. Total sieving time: 22.25 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.76 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 23.35 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(29·10129+43)/9 = 3(2)1287<130> = 7 · 306239 · 718373555133336532322597<24> · C100
C100 = P42 · P59
P42 = 197169997628234206028002430469013231337207<42>
P59 = 10612208709773598061794748776121946417518003303981281232681<59>
Number: 32227_129 N=2092409166136386713511344885436572573281938920501205545052096177131300751195392629414994502939661967 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=197169997628234206028002430469013231337207 (pp42) r2=10612208709773598061794748776121946417518003303981281232681 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.60 hours. Scaled time: 6.17 units (timescale=2.374). Factorization parameters were as follows: n: 2092409166136386713511344885436572573281938920501205545052096177131300751195392629414994502939661967 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 430 skew: 1.71 type: snfs rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [550000, 1100001) Primes: RFBsize:85714, AFBsize:85644, largePrimes:2923915 encountered Relations: rels:2858952, finalFF:236548 Max relations in full relation-set: 28 Initial matrix: 171423 x 236548 with sparse part having weight 19778267. Pruned matrix : 153220 x 154141 with weight 10177188. Total sieving time: 2.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.60 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(29·10145+43)/9 = 3(2)1447<146> = 37 · 1213 · 478417 · 503297 · 2951288533<10> · C121
C121 = P32 · P89
P32 = 10247291001622018635859955972609<32>
P89 = 98591909628755490844286807124291083231007250711599438141935321983826363535987763218040039<89>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 1010299988371477397292104639607664043256850275108263217380788857381139510032913034000182354177943480725818782472949291751 (121 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1291799851 Step 1 took 4555ms Step 2 took 4149ms ********** Factor found in step 2: 10247291001622018635859955972609 Found probable prime factor of 32 digits: 10247291001622018635859955972609 Probable prime cofactor 98591909628755490844286807124291083231007250711599438141935321983826363535987763218040039 has 89 digits
(29·10131+61)/9 = 3(2)1309<132> = 241 · 338610521 · C121
C121 = P41 · P81
P41 = 14968664333421247762182979421624958274117<41>
P81 = 263787947249239008750674692352237210954998800730439204974507833660087043354398217<81>
Number: 32229_131 N=3948553237576089494148082911757301899278468894475833811454137708324984302175421052876280537476334555392850421077462049389 ( 121 digits) SNFS difficulty: 132 digits. Divisors found: r1=14968664333421247762182979421624958274117 (pp41) r2=263787947249239008750674692352237210954998800730439204974507833660087043354398217 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.55 hours. Scaled time: 6.09 units (timescale=2.388). Factorization parameters were as follows: n: 3948553237576089494148082911757301899278468894475833811454137708324984302175421052876280537476334555392850421077462049389 m: 100000000000000000000000000 deg: 5 c5: 290 c0: 61 skew: 0.73 type: snfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [600000, 1100001) Primes: RFBsize:92938, AFBsize:93085, largePrimes:2913374 encountered Relations: rels:2807722, finalFF:218137 Max relations in full relation-set: 28 Initial matrix: 186090 x 218137 with sparse part having weight 17086563. Pruned matrix : 174542 x 175536 with weight 11234838. Total sieving time: 2.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,50000 total time: 2.55 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(29·10134+43)/9 = 3(2)1337<135> = 3 · C135
C135 = P41 · P94
P41 = 24372631993284051383227862131227688564753<41>
P94 = 4406885864317149925873449272788362430802606540713671318887298946932319069202758466259102283553<94>
Number: 32227_134 N=107407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 ( 135 digits) SNFS difficulty: 136 digits. Divisors found: r1=24372631993284051383227862131227688564753 (pp41) r2=4406885864317149925873449272788362430802606540713671318887298946932319069202758466259102283553 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.94 hours. Scaled time: 9.40 units (timescale=2.385). Factorization parameters were as follows: n: 107407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407409 m: 1000000000000000000000000000 deg: 5 c5: 29 c0: 430 skew: 1.71 type: snfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1500001) Primes: RFBsize:107126, AFBsize:107158, largePrimes:3362035 encountered Relations: rels:3311708, finalFF:255252 Max relations in full relation-set: 28 Initial matrix: 214349 x 255252 with sparse part having weight 22476192. Pruned matrix : 201959 x 203094 with weight 15236621. Total sieving time: 3.69 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.18 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.3,2.3,50000 total time: 3.94 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / PFGW
(28·1018791+71)/9 = 3(1)187909<18792> is PRP.
(28·1020763+71)/9 = 3(1)207629<20764> is PRP.
By Robert Backstrom / GMP-ECM
(29·10131+43)/9 = 3(2)1307<132> = 32 · C131
C131 = P31 · P37 · P63
P31 = 7584921469716321237382514976833<31>
P37 = 8330184288131855349587745711089547313<37>
P63 = 566640068052964565594590690160024017167002613447500354812611307<63>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 35802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 (131 digits) Using B1=472000, B2=348010752, polynomial Dickson(3), sigma=3433028033 Step 1 took 4547ms Step 2 took 2187ms ********** Factor found in step 2: 7584921469716321237382514976833 Found probable prime factor of 31 digits: 7584921469716321237382514976833 Composite cofactor 4720216191920770700400352407972835561265887236702533952800013993816315322996122970739370238055268091 has 100 digits Number: n N=4720216191920770700400352407972835561265887236702533952800013993816315322996122970739370238055268091 ( 100 digits) Divisors found: r1=8330184288131855349587745711089547313 (pp37) r2=566640068052964565594590690160024017167002613447500354812611307 (pp63) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 3.78 hours. Scaled time: 6.91 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_2_130_7 n: 4720216191920770700400352407972835561265887236702533952800013993816315322996122970739370238055268091 skew: 2650.89 # norm 7.14e+12 c5: 61800 c4: 170288854 c3: -1889121659039 c2: -933543355282307 c1: 5169234448736335351 c0: 141071289371110253349 # alpha -3.69 Y1: 14551090609 Y0: -9475329373998954166 # Murphy_E 3.22e-09 # M 2632774819720813873582616960242094899627781404542663414337763497216335352857576220471051099846799530 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500000) Primes: rational ideals reading, algebraic ideals reading, Relations: 4318987 Max relations in full relation-set: Initial matrix: Pruned matrix : 195671 x 195919 Total sieving time: 3.78 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.78 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(29·10130+61)/9 = 3(2)1299<131> = 34 · 9677 · 23747 · C121
C121 = P29 · P92
P29 = 79670731472298078269193701411<29>
P92 = 21728121032288311484210768531278542120403106435158017147982447424462035210929072787288822001<92>
Number: 32229_130 N=1731095296161034186652985668204719951318539695468105962876040531421889024048732585255272712583375416756926743955121543411 ( 121 digits) SNFS difficulty: 131 digits. Divisors found: r1=79670731472298078269193701411 (pp29) r2=21728121032288311484210768531278542120403106435158017147982447424462035210929072787288822001 (pp92) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.36 hours. Scaled time: 5.59 units (timescale=2.369). Factorization parameters were as follows: n: 1731095296161034186652985668204719951318539695468105962876040531421889024048732585255272712583375416756926743955121543411 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 61 skew: 1.16 type: snfs rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [550000, 1050001) Primes: RFBsize:85714, AFBsize:85120, largePrimes:2938526 encountered Relations: rels:2911673, finalFF:271253 Max relations in full relation-set: 28 Initial matrix: 170899 x 271253 with sparse part having weight 22254580. Pruned matrix : 141772 x 142690 with weight 9219822. Total sieving time: 2.21 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata /
(29·10152-11)/9 = 3(2)1511<153> = 33 · 977 · 1307 · 94219 · 548062798963<12> · 22854258046007<14> · C115
C115 = P40 · P76
P40 = 4717553768781855497144740383059502295079<40>
P76 = 1678683310635184185657719324978438526481246512191333254586664692875578138677<76>
Number: 32221_152 N=7919278778678215402808835942419335646076742583669425379121773732292567486392354026273870461341449652731280436670483 ( 115 digits) SNFS difficulty: 154 digits. Divisors found: r1=4717553768781855497144740383059502295079 r2=1678683310635184185657719324978438526481246512191333254586664692875578138677 Version: Total time: 27.99 hours. Scaled time: 55.20 units (timescale=1.972). Factorization parameters were as follows: name: 32221_152 n: 7919278778678215402808835942419335646076742583669425379121773732292567486392354026273870461341449652731280436670483 m: 2000000000000000000000000000000 deg: 5 c5: 725 c0: -88 skew: 0.66 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 421269 x 421517 Total sieving time: 27.99 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 27.99 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(29·10159+61)/9 = 3(2)1589<160> = 284253271 · 8753968849<10> · C142
C142 = P33 · P109
P33 = 923043599565278593919200163621863<33>
P109 = 1402887370268419205442411169734934628646967237570845327816811121807097837271907420111192258792588754204879877<109>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3890356734 Step 1 took 48566ms Step 2 took 17644ms ********** Factor found in step 2: 923043599565278593919200163621863 Found probable prime factor of 33 digits: 923043599565278593919200163621863 Probable prime cofactor 1402887370268419205442411169734934628646967237570845327816811121807097837271907420111192258792588754204879877 has 109 digits
(29·10150+43)/9 = 3(2)1497<151> = 83 · C149
C149 = P68 · P82
P68 = 13184528625225371145509156973829622318872182632582330804323609162489<68>
P82 = 2944508339139919747974481716312002253485663596863910707778125382058769232843539721<82>
SNFS difficulty: 151 digits. Divisors found: r1=13184528625225371145509156973829622318872182632582330804323609162489 (pp68) r2=2944508339139919747974481716312002253485663596863910707778125382058769232843539721 (pp82) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 38821954484605087014725568942436412315930388219544846050870147255689424364123159303882195448460508701472556894243641231593038821954484605087014725569 m: 1000000000000000000000000000000 deg: 5 c5: 29 c0: 43 skew: 1.08 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1150000, 1650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 515146 x 515385 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,54,54,2.5,2.5,100000 total time: 13.00 hours.
By Robert Backstrom /
(29·10116+43)/9 = 3(2)1157<117> = 3 · 3037 · 4339 · 29873118019<11> · C99
C99 = P41 · P58
P41 = 99874899971989533339685090697244290059031<41>
P58 = 2731887932168763902826965323517225176982061431632091727067<58>
Number: n N=272847033960040622074723079272278317230415122000585289300524483935019799965138736854378204170492077 ( 99 digits) SNFS difficulty: 117 digits. Divisors found: r1=99874899971989533339685090697244290059031 (pp41) r2=2731887932168763902826965323517225176982061431632091727067 (pp58) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 1.15 hours. Scaled time: 2.10 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_2_115_7 n: 272847033960040622074723079272278317230415122000585289300524483935019799965138736854378204170492077 type: snfs skew: 0.68 deg: 5 c5: 290 c0: 43 m: 100000000000000000000000 rlim: 500000 alim: 500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [250000, 390000) Primes: rational ideals reading, algebraic ideals reading, Relations: 4115193 Max relations in full relation-set: Initial matrix: Pruned matrix : 98798 x 99046 Total sieving time: 1.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,500000,500000,27,27,54,54,2.5,2.5,50000 total time: 1.15 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(29·10145+61)/9 = 3(2)1449<146> = 3 · 13 · 163 · 96893 · 145056683 · C129
C129 = P34 · P34 · P62
P34 = 1598708070484988358112518328305521<34>
P34 = 3121609285825117168137150203040509<34>
P62 = 72264569656054347511539909116190943810928844213628642438944667<62>
Number: 32229_145 N=360639366956156084287866810171610783624733976547008333737357618447101472770979423032269917976079514554428256628648259060290992063 ( 129 digits) SNFS difficulty: 146 digits. Divisors found: r1=1598708070484988358112518328305521 (pp34) r2=3121609285825117168137150203040509 (pp34) r3=72264569656054347511539909116190943810928844213628642438944667 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.90 hours. Scaled time: 12.94 units (timescale=1.003). Factorization parameters were as follows: name: 32229_145 n: 360639366956156084287866810171610783624733976547008333737357618447101472770979423032269917976079514554428256628648259060290992063 m: 100000000000000000000000000000 deg: 5 c5: 29 c0: 61 skew: 1.16 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2265001) Primes: RFBsize:144125, AFBsize:143518, largePrimes:4161349 encountered Relations: rels:4324735, finalFF:378250 Max relations in full relation-set: 28 Initial matrix: 287708 x 378250 with sparse part having weight 38595962. Pruned matrix : 256620 x 258122 with weight 23578229. Total sieving time: 12.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.42 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 12.90 hours. --------- CPU info (if available) ----------
(29·10125+43)/9 = 3(2)1247<126> = 3 · 89 · 6620287 · 441521601703305421777<21> · C96
C96 = P38 · P58
P38 = 56859860542308708942407652168957800861<38>
P58 = 7261221136568621182260260341158450281310685998983145054179<58>
Sun Nov 16 13:04:27 2008 Msieve v. 1.38 Sun Nov 16 13:04:27 2008 random seeds: c8c1a59c 298fb242 Sun Nov 16 13:04:27 2008 factoring 412872021192156140734203756448061606220965801339505983006757502536443923903739248267452537848119 (96 digits) Sun Nov 16 13:04:28 2008 searching for 15-digit factors Sun Nov 16 13:04:30 2008 commencing quadratic sieve (96-digit input) Sun Nov 16 13:04:30 2008 using multiplier of 1 Sun Nov 16 13:04:30 2008 using 32kb Intel Core sieve core Sun Nov 16 13:04:30 2008 sieve interval: 36 blocks of size 32768 Sun Nov 16 13:04:30 2008 processing polynomials in batches of 6 Sun Nov 16 13:04:30 2008 using a sieve bound of 2259407 (83529 primes) Sun Nov 16 13:04:30 2008 using large prime bound of 338911050 (28 bits) Sun Nov 16 13:04:30 2008 using double large prime bound of 2260238461776000 (43-52 bits) Sun Nov 16 13:04:30 2008 using trial factoring cutoff of 52 bits Sun Nov 16 13:04:30 2008 polynomial 'A' values have 12 factors Sun Nov 16 18:14:23 2008 83838 relations (19958 full + 63880 combined from 1275546 partial), need 83625 Sun Nov 16 18:14:25 2008 begin with 1295504 relations Sun Nov 16 18:14:26 2008 reduce to 223204 relations in 10 passes Sun Nov 16 18:14:26 2008 attempting to read 223204 relations Sun Nov 16 18:14:29 2008 recovered 223204 relations Sun Nov 16 18:14:29 2008 recovered 209662 polynomials Sun Nov 16 18:14:30 2008 attempting to build 83838 cycles Sun Nov 16 18:14:30 2008 found 83838 cycles in 7 passes Sun Nov 16 18:14:30 2008 distribution of cycle lengths: Sun Nov 16 18:14:30 2008 length 1 : 19958 Sun Nov 16 18:14:30 2008 length 2 : 14066 Sun Nov 16 18:14:30 2008 length 3 : 13727 Sun Nov 16 18:14:30 2008 length 4 : 11385 Sun Nov 16 18:14:30 2008 length 5 : 8736 Sun Nov 16 18:14:30 2008 length 6 : 6200 Sun Nov 16 18:14:30 2008 length 7 : 3978 Sun Nov 16 18:14:30 2008 length 9+: 5788 Sun Nov 16 18:14:30 2008 largest cycle: 21 relations Sun Nov 16 18:14:30 2008 matrix is 83529 x 83838 (23.5 MB) with weight 5822185 (69.45/col) Sun Nov 16 18:14:30 2008 sparse part has weight 5822185 (69.45/col) Sun Nov 16 18:14:31 2008 filtering completed in 3 passes Sun Nov 16 18:14:31 2008 matrix is 80047 x 80111 (22.5 MB) with weight 5581828 (69.68/col) Sun Nov 16 18:14:31 2008 sparse part has weight 5581828 (69.68/col) Sun Nov 16 18:14:31 2008 saving the first 48 matrix rows for later Sun Nov 16 18:14:32 2008 matrix is 79999 x 80111 (16.0 MB) with weight 4614078 (57.60/col) Sun Nov 16 18:14:32 2008 sparse part has weight 3704461 (46.24/col) Sun Nov 16 18:14:32 2008 matrix includes 64 packed rows Sun Nov 16 18:14:32 2008 using block size 32044 for processor cache size 1024 kB Sun Nov 16 18:14:32 2008 commencing Lanczos iteration Sun Nov 16 18:14:32 2008 memory use: 14.3 MB Sun Nov 16 18:15:26 2008 lanczos halted after 1267 iterations (dim = 79997) Sun Nov 16 18:15:26 2008 recovered 17 nontrivial dependencies Sun Nov 16 18:15:29 2008 prp38 factor: 56859860542308708942407652168957800861 Sun Nov 16 18:15:29 2008 prp58 factor: 7261221136568621182260260341158450281310685998983145054179 Sun Nov 16 18:15:29 2008 elapsed time 05:11:02
(29·10132+61)/9 = 3(2)1319<133> = 19 · 47903 · 2492909802066469<16> · C112
C112 = P46 · P67
P46 = 1160506834037004778363069891034036545878599561<46>
P67 = 1223728028587715881592422848454136462283332040500297843381391947533<67>
Number: 32229_132 N=1420144740178675433512906399968811958294246897026011140899170620946895100478122156953533633651982314156428833013 ( 112 digits) SNFS difficulty: 134 digits. Divisors found: r1=1160506834037004778363069891034036545878599561 (pp46) r2=1223728028587715881592422848454136462283332040500297843381391947533 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.34 hours. Scaled time: 6.41 units (timescale=1.011). Factorization parameters were as follows: name: 32229_132 n: 1420144740178675433512906399968811958294246897026011140899170620946895100478122156953533633651982314156428833013 m: 200000000000000000000000000 deg: 5 c5: 725 c0: 488 skew: 0.92 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1280001) Primes: RFBsize:93614, AFBsize:94015, largePrimes:3067360 encountered Relations: rels:3002294, finalFF:240316 Max relations in full relation-set: 28 Initial matrix: 187696 x 240316 with sparse part having weight 20724710. Pruned matrix : 172796 x 173798 with weight 12064795. Total sieving time: 6.13 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,75000 total time: 6.34 hours. --------- CPU info (if available) ----------
(29·10133+43)/9 = 3(2)1327<134> = 37 · 2081 · 103963 · 2134514597004855986172183061829<31> · C94
C94 = P43 · P51
P43 = 3775743651125883485686895208096141403943177<43>
P51 = 499460619014383808795366865959525045010382778481929<51>
Sun Nov 16 13:14:08 2008 Msieve v. 1.38 Sun Nov 16 13:14:08 2008 random seeds: 1ebe208c e5af2b58 Sun Nov 16 13:14:08 2008 factoring 1885835261230963387421169407174891911074651744191347548716932886403570847964280662066637348433 (94 digits) Sun Nov 16 13:14:10 2008 searching for 15-digit factors Sun Nov 16 13:14:11 2008 commencing quadratic sieve (94-digit input) Sun Nov 16 13:14:12 2008 using multiplier of 1 Sun Nov 16 13:14:12 2008 using 64kb Pentium 4 sieve core Sun Nov 16 13:14:12 2008 sieve interval: 18 blocks of size 65536 Sun Nov 16 13:14:12 2008 processing polynomials in batches of 6 Sun Nov 16 13:14:12 2008 using a sieve bound of 1984331 (74118 primes) Sun Nov 16 13:14:12 2008 using large prime bound of 255978699 (27 bits) Sun Nov 16 13:14:12 2008 using double large prime bound of 1363850668591515 (42-51 bits) Sun Nov 16 13:14:12 2008 using trial factoring cutoff of 51 bits Sun Nov 16 13:14:12 2008 polynomial 'A' values have 12 factors Sun Nov 16 18:51:29 2008 74241 relations (17907 full + 56334 combined from 1041351 partial), need 74214 Sun Nov 16 18:51:33 2008 begin with 1059258 relations Sun Nov 16 18:51:34 2008 reduce to 194588 relations in 11 passes Sun Nov 16 18:51:34 2008 attempting to read 194588 relations Sun Nov 16 18:51:41 2008 recovered 194588 relations Sun Nov 16 18:51:41 2008 recovered 179574 polynomials Sun Nov 16 18:51:41 2008 attempting to build 74241 cycles Sun Nov 16 18:51:42 2008 found 74241 cycles in 6 passes Sun Nov 16 18:51:42 2008 distribution of cycle lengths: Sun Nov 16 18:51:42 2008 length 1 : 17907 Sun Nov 16 18:51:42 2008 length 2 : 12882 Sun Nov 16 18:51:42 2008 length 3 : 12370 Sun Nov 16 18:51:42 2008 length 4 : 10061 Sun Nov 16 18:51:42 2008 length 5 : 7799 Sun Nov 16 18:51:42 2008 length 6 : 5175 Sun Nov 16 18:51:42 2008 length 7 : 3426 Sun Nov 16 18:51:42 2008 length 9+: 4621 Sun Nov 16 18:51:42 2008 largest cycle: 23 relations Sun Nov 16 18:51:42 2008 matrix is 74118 x 74241 (18.5 MB) with weight 4540294 (61.16/col) Sun Nov 16 18:51:42 2008 sparse part has weight 4540294 (61.16/col) Sun Nov 16 18:51:43 2008 filtering completed in 3 passes Sun Nov 16 18:51:43 2008 matrix is 70904 x 70968 (17.8 MB) with weight 4369985 (61.58/col) Sun Nov 16 18:51:43 2008 sparse part has weight 4369985 (61.58/col) Sun Nov 16 18:51:44 2008 saving the first 48 matrix rows for later Sun Nov 16 18:51:44 2008 matrix is 70856 x 70968 (10.5 MB) with weight 3286505 (46.31/col) Sun Nov 16 18:51:44 2008 sparse part has weight 2322199 (32.72/col) Sun Nov 16 18:51:44 2008 matrix includes 64 packed rows Sun Nov 16 18:51:44 2008 using block size 21845 for processor cache size 512 kB Sun Nov 16 18:51:45 2008 commencing Lanczos iteration Sun Nov 16 18:51:45 2008 memory use: 10.8 MB Sun Nov 16 18:52:43 2008 lanczos halted after 1122 iterations (dim = 70852) Sun Nov 16 18:52:44 2008 recovered 13 nontrivial dependencies Sun Nov 16 18:52:46 2008 prp43 factor: 3775743651125883485686895208096141403943177 Sun Nov 16 18:52:46 2008 prp51 factor: 499460619014383808795366865959525045010382778481929 Sun Nov 16 18:52:46 2008 elapsed time 05:38:38
(29·10133+61)/9 = 3(2)1329<134> = 3 · 13 · 582167 · 1731979 · 5736235911224029<16> · C105
C105 = P26 · P37 · P43
P26 = 82102399405226866715133641<26>
P37 = 1695378156926123401429032448812952661<37>
P43 = 1026245436017454986714853921405601157067463<43>
Number: 32229_133 N=142847837933854366350820670655655652951557243538670005984715501589767377406377382448365027428597346275563 ( 105 digits) SNFS difficulty: 135 digits. Divisors found: r1=82102399405226866715133641 (pp26) r2=1695378156926123401429032448812952661 (pp37) r3=1026245436017454986714853921405601157067463 (pp43) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.46 hours. Scaled time: 6.46 units (timescale=1.000). Factorization parameters were as follows: name: 32229_133 n: 142847837933854366350820670655655652951557243538670005984715501589767377406377382448365027428597346275563 m: 500000000000000000000000000 deg: 5 c5: 232 c0: 1525 skew: 1.46 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1320001) Primes: RFBsize:99332, AFBsize:99274, largePrimes:3176509 encountered Relations: rels:3103563, finalFF:236151 Max relations in full relation-set: 28 Initial matrix: 198673 x 236151 with sparse part having weight 20552066. Pruned matrix : 187588 x 188645 with weight 13829174. Total sieving time: 6.20 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 6.46 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, Msieve
(29·10115+61)/9 = 3(2)1149<116> = 3 · 13 · 151 · 229 · 673 · C107
C107 = P43 · P65
P43 = 1063452127633539612140587509270470321829037<43>
P65 = 33384543579129404191599943967015786740223790494495006249744297909<65>
Number: 32229_115 N=35502863899299788486411859804062433981468144340963035042836030019285950199708977711430221600636122294583633 ( 107 digits) SNFS difficulty: 116 digits. Divisors found: r1=1063452127633539612140587509270470321829037 (pp43) r2=33384543579129404191599943967015786740223790494495006249744297909 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.85 hours. Scaled time: 2.01 units (timescale=2.375). Factorization parameters were as follows: n: 35502863899299788486411859804062433981468144340963035042836030019285950199708977711430221600636122294583633 m: 100000000000000000000000 deg: 5 c5: 29 c0: 61 skew: 1.16 type: snfs rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [250000, 450001) Primes: RFBsize:41538, AFBsize:41313, largePrimes:1204513 encountered Relations: rels:1160406, finalFF:127665 Max relations in full relation-set: 28 Initial matrix: 82916 x 127665 with sparse part having weight 5990211. Pruned matrix : 68199 x 68677 with weight 2335623. Total sieving time: 0.82 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,500000,500000,25,25,45,45,2.2,2.2,25000 total time: 0.85 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(29·10128+43)/9 = 3(2)1277<129> = 3 · 18439 · 3095474729470628159<19> · C106
C106 = P39 · P68
P39 = 185807551282157802207924187206548772493<39>
P68 = 10127593155997007580574631471356904823047086838039899837659475915613<68>
Number: 32227_128 N=1881783284697744368427137799251912955332064804310096537998332492135742752227798084851148356130562403633209 ( 106 digits) SNFS difficulty: 131 digits. Divisors found: r1=185807551282157802207924187206548772493 (pp39) r2=10127593155997007580574631471356904823047086838039899837659475915613 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.50 hours. Scaled time: 5.99 units (timescale=2.393). Factorization parameters were as follows: n: 1881783284697744368427137799251912955332064804310096537998332492135742752227798084851148356130562403633209 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 4300 skew: 2.72 type: snfs rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [550000, 1100001) Primes: RFBsize:85714, AFBsize:85364, largePrimes:2902642 encountered Relations: rels:2851314, finalFF:251074 Max relations in full relation-set: 28 Initial matrix: 171145 x 251074 with sparse part having weight 20525122. Pruned matrix : 148506 x 149425 with weight 9532221. Total sieving time: 2.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 2.50 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(29·10143+61)/9 = 3(2)1429<144> = 251 · 11633 · 681557 · 33617387310889<14> · 25135555715017400562491<23> · C96
C96 = P47 · P49
P47 = 53090111509500046699970834294540168315452678951<47>
P49 = 3609289928327873103344992856542781257387147830791<49>
Sun Nov 16 15:51:06 2008 Sun Nov 16 15:51:06 2008 Sun Nov 16 15:51:06 2008 Msieve v. 1.32 Sun Nov 16 15:51:06 2008 random seeds: 9ccb8280 d7bc4d77 Sun Nov 16 15:51:06 2008 factoring 191617604765042214487285873627042372065144419378891933069732010892507288599184754668089395380241 (96 digits) Sun Nov 16 15:51:07 2008 no P-1/P+1/ECM available, skipping Sun Nov 16 15:51:07 2008 commencing quadratic sieve (95-digit input) Sun Nov 16 15:51:07 2008 using multiplier of 1 Sun Nov 16 15:51:07 2008 using VC8 32kb sieve core Sun Nov 16 15:51:07 2008 sieve interval: 36 blocks of size 32768 Sun Nov 16 15:51:07 2008 processing polynomials in batches of 6 Sun Nov 16 15:51:07 2008 using a sieve bound of 2231357 (82229 primes) Sun Nov 16 15:51:07 2008 using large prime bound of 334703550 (28 bits) Sun Nov 16 15:51:07 2008 using double large prime bound of 2209980934643550 (43-51 bits) Sun Nov 16 15:51:07 2008 using trial factoring cutoff of 51 bits Sun Nov 16 15:51:07 2008 polynomial 'A' values have 12 factors Sun Nov 16 19:33:07 2008 82402 relations (19628 full + 62774 combined from 1248672 partial), need 82325 Sun Nov 16 19:33:14 2008 begin with 1268300 relations Sun Nov 16 19:33:15 2008 reduce to 217896 relations in 11 passes Sun Nov 16 19:33:15 2008 attempting to read 217896 relations Sun Nov 16 19:33:17 2008 recovered 217896 relations Sun Nov 16 19:33:17 2008 recovered 204851 polynomials Sun Nov 16 19:33:18 2008 attempting to build 82402 cycles Sun Nov 16 19:33:18 2008 found 82402 cycles in 6 passes Sun Nov 16 19:33:18 2008 distribution of cycle lengths: Sun Nov 16 19:33:18 2008 length 1 : 19628 Sun Nov 16 19:33:18 2008 length 2 : 14107 Sun Nov 16 19:33:18 2008 length 3 : 13863 Sun Nov 16 19:33:18 2008 length 4 : 11127 Sun Nov 16 19:33:18 2008 length 5 : 8442 Sun Nov 16 19:33:18 2008 length 6 : 5983 Sun Nov 16 19:33:18 2008 length 7 : 3779 Sun Nov 16 19:33:18 2008 length 9+: 5473 Sun Nov 16 19:33:18 2008 largest cycle: 26 relations Sun Nov 16 19:33:18 2008 matrix is 82229 x 82402 with weight 5568133 (avg 67.57/col) Sun Nov 16 19:33:18 2008 filtering completed in 3 passes Sun Nov 16 19:33:18 2008 matrix is 78797 x 78861 with weight 5364790 (avg 68.03/col) Sun Nov 16 19:33:19 2008 saving the first 48 matrix rows for later Sun Nov 16 19:33:19 2008 matrix is 78749 x 78861 with weight 4403567 (avg 55.84/col) Sun Nov 16 19:33:19 2008 matrix includes 64 packed rows Sun Nov 16 19:33:19 2008 using block size 31544 for processor cache size 4096 kB Sun Nov 16 19:33:19 2008 commencing Lanczos iteration Sun Nov 16 19:33:53 2008 lanczos halted after 1247 iterations (dim = 78749) Sun Nov 16 19:33:53 2008 recovered 17 nontrivial dependencies Sun Nov 16 19:33:55 2008 prp47 factor: 53090111509500046699970834294540168315452678951 Sun Nov 16 19:33:55 2008 prp49 factor: 3609289928327873103344992856542781257387147830791 Sun Nov 16 19:33:55 2008 elapsed time 03:42:49
By matsui / GMP-ECM
(5·10177-41)/9 = (5)1761<177> = 149 · 1019 · C172
C172 = P38 · P134
P38 = 45582849447613703454457875647438960999<38>
P134 = 80272275170111359836295192620380467552432000219410208483930158874634645594592204074048358771739052488635823849168122734568346120654879<134>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 3659039033896605802211376830525752682624467701296543891270923299955579266128495205561153885277417362432938962106259957159970991138539267709200068204487591832732153220064121 = 45582849447613703454457875647438960999* 80272275170111359836295192620380467552432000219410208483930158874634645594592204074048358771739052488635823849168122734568346120654879
By Justin Card / ggnfs/msieve
(29·10112+61)/9 = 3(2)1119<113> = 32 · 306034303429<12> · C101
C101 = P44 · P57
P44 = 21348808706404288248596941574025542992564873<44>
P57 = 547985698001970931910634724148480216575854589619614950593<57>
Sat Nov 15 18:09:25 2008 Sat Nov 15 18:09:25 2008 Sat Nov 15 18:09:25 2008 Msieve v. 1.38 Sat Nov 15 18:09:25 2008 random seeds: 218a7e97 15c2ba48 Sat Nov 15 18:09:25 2008 factoring 11698841840489508014434081186604843067304024535141148500613325712108587327498587470710278150242319689 (101 digits) Sat Nov 15 18:09:26 2008 no P-1/P+1/ECM available, skipping Sat Nov 15 18:09:26 2008 commencing number field sieve (101-digit input) Sat Nov 15 18:09:26 2008 R0: -20000000000000000000000 Sat Nov 15 18:09:26 2008 R1: 1 Sat Nov 15 18:09:26 2008 A0: 488 Sat Nov 15 18:09:26 2008 A1: 0 Sat Nov 15 18:09:26 2008 A2: 0 Sat Nov 15 18:09:26 2008 A3: 0 Sat Nov 15 18:09:26 2008 A4: 0 Sat Nov 15 18:09:26 2008 A5: 725 Sat Nov 15 18:09:26 2008 size score = 2.241186e-08, Murphy alpha = 0.280014, combined = 2.041464e-08 Sat Nov 15 18:09:26 2008 generating factor base Sat Nov 15 18:09:26 2008 factor base complete: Sat Nov 15 18:09:26 2008 46072 rational roots (max prime = 559991) Sat Nov 15 18:09:26 2008 46427 algebraic roots (max prime = 559973) Sat Nov 15 18:09:26 2008 a range: [-2000000, 2000000] Sat Nov 15 18:09:26 2008 b range: [1, 200] Sat Nov 15 18:09:26 2008 number of hash buckets: 9 Sat Nov 15 18:09:26 2008 sieve block size: 65536 Sat Nov 15 18:09:26 2008 Sat Nov 15 18:09:26 2008 maximum RFB prime: 559991 Sat Nov 15 18:09:26 2008 RFB entries: 46072 Sat Nov 15 18:09:26 2008 medium RFB entries: 6542 Sat Nov 15 18:09:26 2008 resieved RFB entries: 6374 Sat Nov 15 18:09:26 2008 small RFB prime powers: 28 Sat Nov 15 18:09:26 2008 projective RFB roots: 0 Sat Nov 15 18:09:26 2008 RFB trial factoring cutoff: 52 or 77 bits Sat Nov 15 18:09:26 2008 single large prime RFB range: 19 - 25 bits Sat Nov 15 18:09:26 2008 double large prime RFB range: 39 - 48 bits Sat Nov 15 18:09:26 2008 triple large prime RFB range: 60 - 73 bits Sat Nov 15 18:09:26 2008 Sat Nov 15 18:09:26 2008 maximum AFB prime: 559973 Sat Nov 15 18:09:26 2008 AFB entries: 46427 Sat Nov 15 18:09:26 2008 medium AFB entries: 6538 Sat Nov 15 18:09:26 2008 resieved AFB entries: 6349 Sat Nov 15 18:09:26 2008 small AFB prime powers: 18 Sat Nov 15 18:09:26 2008 projective AFB roots: 2 Sat Nov 15 18:09:26 2008 AFB trial factoring cutoff: 52 or 77 bits Sat Nov 15 18:09:26 2008 single large prime AFB range: 19 - 25 bits Sat Nov 15 18:09:26 2008 double large prime AFB range: 39 - 48 bits Sat Nov 15 18:09:26 2008 triple large prime AFB range: 60 - 73 bits Sat Nov 15 18:09:26 2008 Sat Nov 15 18:09:26 2008 multiplying 518093 primes from 559973 to 8388608 Sat Nov 15 18:09:28 2008 multiply complete, product has 11290805 bits Sat Nov 15 18:10:25 2008 completed b = 200, found 22538 relations Sat Nov 15 18:10:25 2008 elapsed time 00:01:00 -> makeJobFile(): Adjusted to q0=280000, q1=330000. -> client 1 q0: 280000 -> makeJobFile(): Adjusted to q0=330001, q1=380000. -> client 1 q0: 330001 -> makeJobFile(): Adjusted to q0=380001, q1=430000. -> client 1 q0: 380001 ... Sat Nov 15 18:32:28 2008 Sat Nov 15 18:32:28 2008 Sat Nov 15 18:32:28 2008 Msieve v. 1.38 Sat Nov 15 18:32:28 2008 random seeds: f76655f8 ef663562 Sat Nov 15 18:32:28 2008 factoring 11698841840489508014434081186604843067304024535141148500613325712108587327498587470710278150242319689 (101 digits) Sat Nov 15 18:32:29 2008 no P-1/P+1/ECM available, skipping Sat Nov 15 18:32:29 2008 commencing number field sieve (101-digit input) Sat Nov 15 18:32:29 2008 R0: -20000000000000000000000 Sat Nov 15 18:32:29 2008 R1: 1 Sat Nov 15 18:32:29 2008 A0: 488 Sat Nov 15 18:32:29 2008 A1: 0 Sat Nov 15 18:32:29 2008 A2: 0 Sat Nov 15 18:32:29 2008 A3: 0 Sat Nov 15 18:32:29 2008 A4: 0 Sat Nov 15 18:32:29 2008 A5: 725 Sat Nov 15 18:32:29 2008 size score = 2.241186e-08, Murphy alpha = 0.280014, combined = 2.041464e-08 Sat Nov 15 18:32:29 2008 Sat Nov 15 18:32:29 2008 commencing relation filtering Sat Nov 15 18:32:29 2008 commencing duplicate removal, pass 1 Sat Nov 15 18:32:29 2008 error -9 reading relation 59 Sat Nov 15 18:32:44 2008 found 63675 hash collisions in 1248000 relations Sat Nov 15 18:32:48 2008 added 7620 free relations Sat Nov 15 18:32:48 2008 commencing duplicate removal, pass 2 Sat Nov 15 18:32:49 2008 found 63659 duplicates and 1191961 unique relations Sat Nov 15 18:32:49 2008 memory use: 36.9 MB Sat Nov 15 18:32:49 2008 reading rational ideals above 458752 Sat Nov 15 18:32:49 2008 reading algebraic ideals above 458752 Sat Nov 15 18:32:49 2008 commencing singleton removal, pass 1 Sat Nov 15 18:33:04 2008 relations with 0 large ideals: 17696 Sat Nov 15 18:33:04 2008 relations with 1 large ideals: 173887 Sat Nov 15 18:33:04 2008 relations with 2 large ideals: 515230 Sat Nov 15 18:33:04 2008 relations with 3 large ideals: 324501 Sat Nov 15 18:33:04 2008 relations with 4 large ideals: 79115 Sat Nov 15 18:33:04 2008 relations with 5 large ideals: 9087 Sat Nov 15 18:33:04 2008 relations with 6 large ideals: 72432 Sat Nov 15 18:33:04 2008 relations with 7+ large ideals: 13 Sat Nov 15 18:33:04 2008 1191961 relations and about 1443170 large ideals Sat Nov 15 18:33:04 2008 commencing singleton removal, pass 2 Sat Nov 15 18:33:19 2008 found 685993 singletons Sat Nov 15 18:33:19 2008 current dataset: 505968 relations and about 411140 large ideals Sat Nov 15 18:33:19 2008 commencing singleton removal, pass 3 Sat Nov 15 18:33:25 2008 found 143942 singletons Sat Nov 15 18:33:25 2008 current dataset: 362026 relations and about 255076 large ideals Sat Nov 15 18:33:25 2008 commencing singleton removal, final pass Sat Nov 15 18:33:29 2008 memory use: 11.7 MB Sat Nov 15 18:33:29 2008 commencing in-memory singleton removal Sat Nov 15 18:33:29 2008 begin with 362026 relations and 257434 unique ideals Sat Nov 15 18:33:30 2008 reduce to 320101 relations and 214542 ideals in 9 passes Sat Nov 15 18:33:30 2008 max relations containing the same ideal: 41 Sat Nov 15 18:33:30 2008 reading rational ideals above 229376 Sat Nov 15 18:33:30 2008 reading algebraic ideals above 229376 Sat Nov 15 18:33:30 2008 commencing singleton removal, final pass Sat Nov 15 18:33:34 2008 keeping 285136 ideals with weight <= 20, new excess is 52070 Sat Nov 15 18:33:34 2008 memory use: 11.7 MB Sat Nov 15 18:33:34 2008 commencing in-memory singleton removal Sat Nov 15 18:33:34 2008 begin with 327721 relations and 285136 unique ideals Sat Nov 15 18:33:34 2008 reduce to 320027 relations and 239459 ideals in 4 passes Sat Nov 15 18:33:34 2008 max relations containing the same ideal: 20 Sat Nov 15 18:33:35 2008 removing 51059 relations and 40976 ideals in 10083 cliques Sat Nov 15 18:33:35 2008 commencing in-memory singleton removal Sat Nov 15 18:33:35 2008 begin with 268968 relations and 239459 unique ideals Sat Nov 15 18:33:35 2008 reduce to 265294 relations and 194677 ideals in 6 passes Sat Nov 15 18:33:35 2008 max relations containing the same ideal: 20 Sat Nov 15 18:33:35 2008 removing 38841 relations and 28758 ideals in 10083 cliques Sat Nov 15 18:33:35 2008 commencing in-memory singleton removal Sat Nov 15 18:33:35 2008 begin with 226453 relations and 194677 unique ideals Sat Nov 15 18:33:35 2008 reduce to 223585 relations and 162960 ideals in 6 passes Sat Nov 15 18:33:35 2008 max relations containing the same ideal: 20 Sat Nov 15 18:33:35 2008 relations with 0 large ideals: 5758 Sat Nov 15 18:33:35 2008 relations with 1 large ideals: 30159 Sat Nov 15 18:33:35 2008 relations with 2 large ideals: 65781 Sat Nov 15 18:33:35 2008 relations with 3 large ideals: 67806 Sat Nov 15 18:33:35 2008 relations with 4 large ideals: 37624 Sat Nov 15 18:33:35 2008 relations with 5 large ideals: 12603 Sat Nov 15 18:33:35 2008 relations with 6 large ideals: 3578 Sat Nov 15 18:33:35 2008 relations with 7+ large ideals: 276 Sat Nov 15 18:33:35 2008 commencing 2-way merge Sat Nov 15 18:33:36 2008 reduce to 148691 relation sets and 88066 unique ideals Sat Nov 15 18:33:36 2008 commencing full merge Sat Nov 15 18:33:38 2008 memory use: 8.5 MB Sat Nov 15 18:33:38 2008 found 71214 cycles, need 64266 Sat Nov 15 18:33:38 2008 weight of 64266 cycles is about 4962297 (77.21/cycle) Sat Nov 15 18:33:38 2008 distribution of cycle lengths: Sat Nov 15 18:33:38 2008 1 relations: 6680 Sat Nov 15 18:33:38 2008 2 relations: 4853 Sat Nov 15 18:33:38 2008 3 relations: 4936 Sat Nov 15 18:33:38 2008 4 relations: 4889 Sat Nov 15 18:33:38 2008 5 relations: 4903 Sat Nov 15 18:33:38 2008 6 relations: 4875 Sat Nov 15 18:33:38 2008 7 relations: 4593 Sat Nov 15 18:33:38 2008 8 relations: 4278 Sat Nov 15 18:33:38 2008 9 relations: 3838 Sat Nov 15 18:33:38 2008 10+ relations: 20421 Sat Nov 15 18:33:38 2008 heaviest cycle: 21 relations Sat Nov 15 18:33:38 2008 commencing cycle optimization Sat Nov 15 18:33:38 2008 start with 472140 relations Sat Nov 15 18:33:39 2008 pruned 29547 relations Sat Nov 15 18:33:39 2008 memory use: 12.9 MB Sat Nov 15 18:33:39 2008 distribution of cycle lengths: Sat Nov 15 18:33:39 2008 1 relations: 6680 Sat Nov 15 18:33:39 2008 2 relations: 5031 Sat Nov 15 18:33:39 2008 3 relations: 5275 Sat Nov 15 18:33:39 2008 4 relations: 5267 Sat Nov 15 18:33:39 2008 5 relations: 5379 Sat Nov 15 18:33:39 2008 6 relations: 5261 Sat Nov 15 18:33:39 2008 7 relations: 4932 Sat Nov 15 18:33:39 2008 8 relations: 4655 Sat Nov 15 18:33:39 2008 9 relations: 4114 Sat Nov 15 18:33:39 2008 10+ relations: 17672 Sat Nov 15 18:33:39 2008 heaviest cycle: 21 relations Sat Nov 15 18:33:39 2008 elapsed time 00:01:11 Sat Nov 15 18:33:39 2008 Sat Nov 15 18:33:39 2008 Sat Nov 15 18:33:39 2008 Msieve v. 1.38 Sat Nov 15 18:33:39 2008 random seeds: bb1f69ce 1efc98ad Sat Nov 15 18:33:39 2008 factoring 11698841840489508014434081186604843067304024535141148500613325712108587327498587470710278150242319689 (101 digits) Sat Nov 15 18:33:40 2008 no P-1/P+1/ECM available, skipping Sat Nov 15 18:33:40 2008 commencing number field sieve (101-digit input) Sat Nov 15 18:33:40 2008 R0: -20000000000000000000000 Sat Nov 15 18:33:40 2008 R1: 1 Sat Nov 15 18:33:40 2008 A0: 488 Sat Nov 15 18:33:40 2008 A1: 0 Sat Nov 15 18:33:40 2008 A2: 0 Sat Nov 15 18:33:40 2008 A3: 0 Sat Nov 15 18:33:40 2008 A4: 0 Sat Nov 15 18:33:40 2008 A5: 725 Sat Nov 15 18:33:40 2008 size score = 2.241186e-08, Murphy alpha = 0.280014, combined = 2.041464e-08 Sat Nov 15 18:33:40 2008 Sat Nov 15 18:33:40 2008 commencing linear algebra Sat Nov 15 18:33:40 2008 read 64266 cycles Sat Nov 15 18:33:40 2008 cycles contain 194789 unique relations Sat Nov 15 18:33:43 2008 read 194789 relations Sat Nov 15 18:33:43 2008 using 32 quadratic characters above 33549128 Sat Nov 15 18:33:46 2008 building initial matrix Sat Nov 15 18:33:49 2008 memory use: 30.8 MB Sat Nov 15 18:33:49 2008 read 64266 cycles Sat Nov 15 18:33:49 2008 matrix is 64090 x 64266 (19.8 MB) with weight 6291711 (97.90/col) Sat Nov 15 18:33:49 2008 sparse part has weight 4485523 (69.80/col) Sat Nov 15 18:33:50 2008 filtering completed in 2 passes Sat Nov 15 18:33:50 2008 matrix is 63969 x 64145 (19.8 MB) with weight 6283910 (97.96/col) Sat Nov 15 18:33:50 2008 sparse part has weight 4481088 (69.86/col) Sat Nov 15 18:33:50 2008 read 64145 cycles Sat Nov 15 18:33:50 2008 matrix is 63969 x 64145 (19.8 MB) with weight 6283910 (97.96/col) Sat Nov 15 18:33:50 2008 sparse part has weight 4481088 (69.86/col) Sat Nov 15 18:33:50 2008 saving the first 48 matrix rows for later Sat Nov 15 18:33:50 2008 matrix is 63921 x 64145 (18.7 MB) with weight 4867505 (75.88/col) Sat Nov 15 18:33:50 2008 sparse part has weight 4263391 (66.46/col) Sat Nov 15 18:33:50 2008 matrix includes 64 packed rows Sat Nov 15 18:33:50 2008 using block size 10922 for processor cache size 256 kB Sat Nov 15 18:33:51 2008 commencing Lanczos iteration Sat Nov 15 18:33:51 2008 memory use: 16.6 MB Sat Nov 15 18:34:31 2008 lanczos halted after 1012 iterations (dim = 63917) Sat Nov 15 18:34:32 2008 recovered 47 nontrivial dependencies Sat Nov 15 18:34:32 2008 elapsed time 00:00:53 Sat Nov 15 18:34:32 2008 Sat Nov 15 18:34:32 2008 Sat Nov 15 18:34:32 2008 Msieve v. 1.38 Sat Nov 15 18:34:32 2008 random seeds: cb8bea23 c471f78a Sat Nov 15 18:34:32 2008 factoring 11698841840489508014434081186604843067304024535141148500613325712108587327498587470710278150242319689 (101 digits) Sat Nov 15 18:34:32 2008 no P-1/P+1/ECM available, skipping Sat Nov 15 18:34:32 2008 commencing number field sieve (101-digit input) Sat Nov 15 18:34:32 2008 R0: -20000000000000000000000 Sat Nov 15 18:34:32 2008 R1: 1 Sat Nov 15 18:34:32 2008 A0: 488 Sat Nov 15 18:34:32 2008 A1: 0 Sat Nov 15 18:34:32 2008 A2: 0 Sat Nov 15 18:34:32 2008 A3: 0 Sat Nov 15 18:34:32 2008 A4: 0 Sat Nov 15 18:34:32 2008 A5: 725 Sat Nov 15 18:34:32 2008 size score = 2.241186e-08, Murphy alpha = 0.280014, combined = 2.041464e-08 Sat Nov 15 18:34:32 2008 Sat Nov 15 18:34:32 2008 commencing square root phase Sat Nov 15 18:34:32 2008 reading relations for dependency 1 Sat Nov 15 18:34:32 2008 read 32049 cycles Sat Nov 15 18:34:33 2008 cycles contain 123676 unique relations Sat Nov 15 18:34:34 2008 read 123676 relations Sat Nov 15 18:34:35 2008 multiplying 97168 relations Sat Nov 15 18:34:44 2008 multiply complete, coefficients have about 2.74 million bits Sat Nov 15 18:34:44 2008 initial square root is modulo 2061551 Sat Nov 15 18:35:00 2008 prp44 factor: 21348808706404288248596941574025542992564873 Sat Nov 15 18:35:00 2008 prp57 factor: 547985698001970931910634724148480216575854589619614950593 Sat Nov 15 18:35:00 2008 elapsed time 00:00:28
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(29·10176+61)/9 = 3(2)1759<177> = 7 · 134835929 · 318777664839839039<18> · 2973592313226154031<19> · 44151885111614554195911529<26> · C106
C106 = P29 · P78
P29 = 13242551548213967681766393163<29>
P78 = 615972868251949379864943710198946868352151531886241396399834277242076818280601<78>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3363816077 Step 1 took 13026ms Step 2 took 10539ms ********** Factor found in step 2: 13242551548213967681766393163 Found probable prime factor of 29 digits: 13242551548213967681766393163 Probable prime cofactor 615972868251949379864943710198946868352151531886241396399834277242076818280601 has 78 digits
(29·10104+61)/9 = 3(2)1039<105> = 7 · 71 · C102
C102 = P29 · P35 · P40
P29 = 14751591942611498717745397159<29>
P35 = 41209480987075384610005546822286843<35>
P40 = 1066505413986600338073968613179955167561<40>
SNFS difficulty: 105 digits. Divisors found: r1=14751591942611498717745397159 (pp29) r2=41209480987075384610005546822286843 (pp35) r3=1066505413986600338073968613179955167561 (pp40) Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.712). Factorization parameters were as follows: n: 648334451151352559803264028616141292197630225799239883746926000447127207690587972278113123183545718757 m: 100000000000000000000000000 deg: 4 c4: 29 c0: 61 skew: 1.20 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [200000, 260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 33864 x 34074 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,44,44,2.2,2.2,20000 total time: 0.20 hours.
(29·10170+43)/9 = 3(2)1697<171> = 3 · C171
C171 = P34 · C137
P34 = 1954336561162450967604444406439339<34>
C137 = [54958500773030027645652315828411893842541871854764460247889669905548548420516193561916002544292592741336996889228227378146037689161386131<137>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2151013859 Step 1 took 25368ms Step 2 took 16923ms ********** Factor found in step 2: 1954336561162450967604444406439339 Found probable prime factor of 34 digits: 1954336561162450967604444406439339 Composite cofactor 54958500773030027645652315828411893842541871854764460247889669905548548420516193561916002544292592741336996889228227378146037689161386131 has 137 digits
(29·10200+43)/9 = 3(2)1997<201> = 3 · 221317 · C195
C195 = P35 · C161
P35 = 16654256710134409897367986445675537<35>
C161 = [29140312477557268243815160436071115345823312713892485599178823150597069361988015232115946254249741167966868789607546618400348250638379344509930808316538620381421<161>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1534676880 Step 1 took 155712ms Step 2 took 48401ms ********** Factor found in step 2: 16654256710134409897367986445675537 Found probable prime factor of 35 digits: 16654256710134409897367986445675537 Composite cofactor 29140312477557268243815160436071115345823312713892485599178823150597069361988015232115946254249741167966868789607546618400348250638379344509930808316538620381421 has 161 digits
(29·10151+43)/9 = 3(2)1507<152> = 37 · 1759 · C147
C147 = P32 · C116
P32 = 15563627912986965137034736448411<32>
C116 = [31810982706576934772998608605741160071516082639197877089858403102494412714121865479732665846484350034366517761515179<116>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1187595953 Step 1 took 18643ms Step 2 took 14422ms ********** Factor found in step 2: 15563627912986965137034736448411 Found probable prime factor of 32 digits: 15563627912986965137034736448411 Composite cofactor 31810982706576934772998608605741160071516082639197877089858403102494412714121865479732665846484350034366517761515179 has 116 digits
(29·10154+43)/9 = 3(2)1537<155> = 13 · 19 · 37 · 59 · 197 · C147
C147 = P29 · P118
P29 = 39419331049028519665646376229<29>
P118 = 7695366765062327363947327794059688249986301193294977945234544298004013084172419459774322031488971864398013417772286379<118>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=39788821 Step 1 took 18634ms Step 2 took 14366ms ********** Factor found in step 2: 39419331049028519665646376229 Found probable prime factor of 29 digits: 39419331049028519665646376229 Probable prime cofactor 7695366765062327363947327794059688249986301193294977945234544298004013084172419459774322031488971864398013417772286379 has 118 digits
(29·10157+43)/9 = 3(2)1567<158> = 37 · 18143 · 198323 · C147
C147 = P30 · C118
P30 = 120011103804224805681823546153<30>
C118 = [2016741105866467140951604570336781152331001527925371904341000515480857002518308891930313959772708022278077300275998363<118>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3866990487 Step 1 took 18482ms Step 2 took 14415ms ********** Factor found in step 2: 120011103804224805681823546153 Found probable prime factor of 30 digits: 120011103804224805681823546153 Composite cofactor 2016741105866467140951604570336781152331001527925371904341000515480857002518308891930313959772708022278077300275998363 has 118 digits
(29·10152+43)/9 = 3(2)1517<153> = 3 · 40296437249<11> · C142
C142 = P29 · C114
P29 = 17122663123552071584377558151<29>
C114 = [155666897947149516564762656348434456049373366190782014151391987567686593948726747795044131944426787108190772013191<114>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3087136349 Step 1 took 18829ms Step 2 took 13886ms ********** Factor found in step 2: 17122663123552071584377558151 Found probable prime factor of 29 digits: 17122663123552071584377558151 Composite cofactor 155666897947149516564762656348434456049373366190782014151391987567686593948726747795044131944426787108190772013191 has 114 digits
By Sinkiti Sibata / GGNFS, Msieve
(29·10153-11)/9 = 3(2)1521<154> = 53 · 1916921 · 794286653 · C137
C137 = P60 · P78
P60 = 179960253364535182856090133804477727808273167171138429030663<60>
P78 = 221881729778503414210444550530112268200498799466442770208768757814706434720003<78>
Number: 32221_153 N=39929892307900805319907718077544036658921544690767565938858130177962346727983580345761301594137429455745885939198391814545711703106451989 ( 137 digits) SNFS difficulty: 155 digits. Divisors found: r1=179960253364535182856090133804477727808273167171138429030663 (pp60) r2=221881729778503414210444550530112268200498799466442770208768757814706434720003 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 42.37 hours. Scaled time: 42.76 units (timescale=1.009). Factorization parameters were as follows: name: 32221_153 n: 39929892307900805319907718077544036658921544690767565938858130177962346727983580345761301594137429455745885939198391814545711703106451989 m: 5000000000000000000000000000000 deg: 5 c5: 232 c0: -275 skew: 1.03 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:202388, largePrimes:8891593 encountered Relations: rels:10028067, finalFF:1233699 Max relations in full relation-set: 28 Initial matrix: 405817 x 1233699 with sparse part having weight 157935020. Pruned matrix : 286415 x 288508 with weight 58412974. Total sieving time: 41.14 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.99 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 42.37 hours. --------- CPU info (if available) ----------
(29·10103+61)/9 = 3(2)1029<104> = 33 · 13 · 4003 · 5901160009<10> · C88
C88 = P32 · P57
P32 = 13955405739252974791819323206909<32>
P57 = 278472891040044154124888430675886431365951225649379875653<57>
Sun Nov 16 07:43:35 2008 Msieve v. 1.38 Sun Nov 16 07:43:35 2008 random seeds: 55ae4f0c d5804962 Sun Nov 16 07:43:35 2008 factoring 3886202181846600488926048772833634100539737551849176875626859169440252679270183610486577 (88 digits) Sun Nov 16 07:43:37 2008 searching for 15-digit factors Sun Nov 16 07:43:39 2008 commencing quadratic sieve (88-digit input) Sun Nov 16 07:43:39 2008 using multiplier of 1 Sun Nov 16 07:43:39 2008 using 64kb Pentium 4 sieve core Sun Nov 16 07:43:39 2008 sieve interval: 13 blocks of size 65536 Sun Nov 16 07:43:39 2008 processing polynomials in batches of 8 Sun Nov 16 07:43:39 2008 using a sieve bound of 1517707 (57413 primes) Sun Nov 16 07:43:39 2008 using large prime bound of 121416560 (26 bits) Sun Nov 16 07:43:39 2008 using double large prime bound of 356205104400640 (42-49 bits) Sun Nov 16 07:43:39 2008 using trial factoring cutoff of 49 bits Sun Nov 16 07:43:39 2008 polynomial 'A' values have 11 factors Sun Nov 16 09:12:50 2008 57725 relations (15367 full + 42358 combined from 612926 partial), need 57509 Sun Nov 16 09:12:53 2008 begin with 628293 relations Sun Nov 16 09:12:53 2008 reduce to 140381 relations in 11 passes Sun Nov 16 09:12:53 2008 attempting to read 140381 relations Sun Nov 16 09:12:57 2008 recovered 140381 relations Sun Nov 16 09:12:57 2008 recovered 118548 polynomials Sun Nov 16 09:12:57 2008 attempting to build 57725 cycles Sun Nov 16 09:12:57 2008 found 57725 cycles in 6 passes Sun Nov 16 09:12:57 2008 distribution of cycle lengths: Sun Nov 16 09:12:57 2008 length 1 : 15367 Sun Nov 16 09:12:57 2008 length 2 : 11258 Sun Nov 16 09:12:57 2008 length 3 : 10201 Sun Nov 16 09:12:57 2008 length 4 : 7596 Sun Nov 16 09:12:57 2008 length 5 : 5450 Sun Nov 16 09:12:57 2008 length 6 : 3418 Sun Nov 16 09:12:57 2008 length 7 : 2045 Sun Nov 16 09:12:57 2008 length 9+: 2390 Sun Nov 16 09:12:57 2008 largest cycle: 20 relations Sun Nov 16 09:12:58 2008 matrix is 57413 x 57725 (13.7 MB) with weight 3348390 (58.01/col) Sun Nov 16 09:12:58 2008 sparse part has weight 3348390 (58.01/col) Sun Nov 16 09:12:59 2008 filtering completed in 3 passes Sun Nov 16 09:12:59 2008 matrix is 53477 x 53540 (12.7 MB) with weight 3122622 (58.32/col) Sun Nov 16 09:12:59 2008 sparse part has weight 3122622 (58.32/col) Sun Nov 16 09:12:59 2008 saving the first 48 matrix rows for later Sun Nov 16 09:12:59 2008 matrix is 53429 x 53540 (8.5 MB) with weight 2501947 (46.73/col) Sun Nov 16 09:12:59 2008 sparse part has weight 1919087 (35.84/col) Sun Nov 16 09:12:59 2008 matrix includes 64 packed rows Sun Nov 16 09:12:59 2008 using block size 21416 for processor cache size 512 kB Sun Nov 16 09:13:00 2008 commencing Lanczos iteration Sun Nov 16 09:13:00 2008 memory use: 8.2 MB Sun Nov 16 09:13:30 2008 lanczos halted after 846 iterations (dim = 53429) Sun Nov 16 09:13:30 2008 recovered 17 nontrivial dependencies Sun Nov 16 09:13:31 2008 prp32 factor: 13955405739252974791819323206909 Sun Nov 16 09:13:31 2008 prp57 factor: 278472891040044154124888430675886431365951225649379875653 Sun Nov 16 09:13:31 2008 elapsed time 01:29:56
(29·10122+43)/9 = 3(2)1217<123> = 35 · 22709 · 1871960749<10> · 220404736035126967<18> · C90
C90 = P37 · P53
P37 = 9577067301489216188060274467072296429<37>
P53 = 14777501242913200839830140856588531939556504474729203<53>
Sun Nov 16 08:29:56 2008 Msieve v. 1.38 Sun Nov 16 08:29:56 2008 random seeds: 4209dae2 8044089e Sun Nov 16 08:29:56 2008 factoring 141525123951220266571496944533675051004574403815120627762290662529117960797405243118916087 (90 digits) Sun Nov 16 08:29:57 2008 searching for 15-digit factors Sun Nov 16 08:29:58 2008 commencing quadratic sieve (90-digit input) Sun Nov 16 08:29:58 2008 using multiplier of 23 Sun Nov 16 08:29:58 2008 using 32kb Intel Core sieve core Sun Nov 16 08:29:58 2008 sieve interval: 35 blocks of size 32768 Sun Nov 16 08:29:58 2008 processing polynomials in batches of 6 Sun Nov 16 08:29:58 2008 using a sieve bound of 1569301 (59667 primes) Sun Nov 16 08:29:58 2008 using large prime bound of 125544080 (26 bits) Sun Nov 16 08:29:58 2008 using double large prime bound of 378297205588960 (42-49 bits) Sun Nov 16 08:29:58 2008 using trial factoring cutoff of 49 bits Sun Nov 16 08:29:58 2008 polynomial 'A' values have 12 factors Sun Nov 16 09:47:59 2008 60278 relations (15890 full + 44388 combined from 633235 partial), need 59763 Sun Nov 16 09:48:02 2008 begin with 649125 relations Sun Nov 16 09:48:02 2008 reduce to 146863 relations in 9 passes Sun Nov 16 09:48:02 2008 attempting to read 146863 relations Sun Nov 16 09:48:05 2008 recovered 146863 relations Sun Nov 16 09:48:05 2008 recovered 126298 polynomials Sun Nov 16 09:48:05 2008 attempting to build 60278 cycles Sun Nov 16 09:48:05 2008 found 60278 cycles in 5 passes Sun Nov 16 09:48:05 2008 distribution of cycle lengths: Sun Nov 16 09:48:05 2008 length 1 : 15890 Sun Nov 16 09:48:05 2008 length 2 : 11426 Sun Nov 16 09:48:05 2008 length 3 : 10906 Sun Nov 16 09:48:05 2008 length 4 : 7999 Sun Nov 16 09:48:05 2008 length 5 : 5805 Sun Nov 16 09:48:05 2008 length 6 : 3659 Sun Nov 16 09:48:05 2008 length 7 : 2092 Sun Nov 16 09:48:05 2008 length 9+: 2501 Sun Nov 16 09:48:05 2008 largest cycle: 18 relations Sun Nov 16 09:48:05 2008 matrix is 59667 x 60278 (14.6 MB) with weight 3598260 (59.69/col) Sun Nov 16 09:48:05 2008 sparse part has weight 3598260 (59.69/col) Sun Nov 16 09:48:06 2008 filtering completed in 3 passes Sun Nov 16 09:48:06 2008 matrix is 55839 x 55903 (13.6 MB) with weight 3338960 (59.73/col) Sun Nov 16 09:48:06 2008 sparse part has weight 3338960 (59.73/col) Sun Nov 16 09:48:06 2008 saving the first 48 matrix rows for later Sun Nov 16 09:48:06 2008 matrix is 55791 x 55903 (8.5 MB) with weight 2604416 (46.59/col) Sun Nov 16 09:48:06 2008 sparse part has weight 1900399 (33.99/col) Sun Nov 16 09:48:06 2008 matrix includes 64 packed rows Sun Nov 16 09:48:06 2008 using block size 22361 for processor cache size 2048 kB Sun Nov 16 09:48:07 2008 commencing Lanczos iteration Sun Nov 16 09:48:07 2008 memory use: 8.4 MB Sun Nov 16 09:48:25 2008 lanczos halted after 884 iterations (dim = 55787) Sun Nov 16 09:48:25 2008 recovered 16 nontrivial dependencies Sun Nov 16 09:48:26 2008 prp37 factor: 9577067301489216188060274467072296429 Sun Nov 16 09:48:26 2008 prp53 factor: 14777501242913200839830140856588531939556504474729203 Sun Nov 16 09:48:26 2008 elapsed time 01:18:30
(29·10130+43)/9 = 3(2)1297<131> = 13 · 37 · 13397 · C124
C124 = P37 · P87
P37 = 6563660505566349382251069574930863659<37>
P87 = 761827674362837670889483686123403408305860263945563318952163418498829415650821416567029<87>
Number: 32227_130 N=5000378218262819292900654399497424055160861908641262227886098901997983881987763453763304476150635738603194003656793833699111 ( 124 digits) SNFS difficulty: 131 digits. Divisors found: r1=6563660505566349382251069574930863659 (pp37) r2=761827674362837670889483686123403408305860263945563318952163418498829415650821416567029 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.65 hours. Scaled time: 5.68 units (timescale=1.006). Factorization parameters were as follows: name: 32227_130 n: 5000378218262819292900654399497424055160861908641262227886098901997983881987763453763304476150635738603194003656793833699111 m: 100000000000000000000000000 deg: 5 c5: 29 c0: 43 skew: 1.08 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 995001) Primes: RFBsize:84976, AFBsize:85268, largePrimes:3648337 encountered Relations: rels:4312746, finalFF:913559 Max relations in full relation-set: 28 Initial matrix: 170309 x 913559 with sparse part having weight 70893609. Pruned matrix : 105040 x 105955 with weight 10185065. Total sieving time: 5.52 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 5.65 hours. --------- CPU info (if available) ----------
(29·10103+43)/9 = 3(2)1027<104> = 37 · 67 · 937 · 180623 · C92
C92 = P46 · P47
P46 = 5903435180099898704490423374514522415338172223<46>
P47 = 13009527410669058115242501966183259978431586981<47>
Sun Nov 16 08:45:25 2008 Msieve v. 1.38 Sun Nov 16 08:45:25 2008 random seeds: b2d53890 b00bac8c Sun Nov 16 08:45:25 2008 factoring 76800901792617659949345571350578332419923141299538313055437365070058025792039820937782628763 (92 digits) Sun Nov 16 08:45:26 2008 searching for 15-digit factors Sun Nov 16 08:45:27 2008 commencing quadratic sieve (92-digit input) Sun Nov 16 08:45:28 2008 using multiplier of 2 Sun Nov 16 08:45:28 2008 using 32kb Intel Core sieve core Sun Nov 16 08:45:28 2008 sieve interval: 36 blocks of size 32768 Sun Nov 16 08:45:28 2008 processing polynomials in batches of 6 Sun Nov 16 08:45:28 2008 using a sieve bound of 1853281 (69412 primes) Sun Nov 16 08:45:28 2008 using large prime bound of 209420753 (27 bits) Sun Nov 16 08:45:28 2008 using double large prime bound of 950244572529970 (42-50 bits) Sun Nov 16 08:45:28 2008 using trial factoring cutoff of 50 bits Sun Nov 16 08:45:28 2008 polynomial 'A' values have 12 factors Sun Nov 16 10:49:37 2008 69959 relations (17732 full + 52227 combined from 892618 partial), need 69508 Sun Nov 16 10:49:38 2008 begin with 910350 relations Sun Nov 16 10:49:38 2008 reduce to 177464 relations in 10 passes Sun Nov 16 10:49:38 2008 attempting to read 177464 relations Sun Nov 16 10:49:41 2008 recovered 177464 relations Sun Nov 16 10:49:41 2008 recovered 157168 polynomials Sun Nov 16 10:49:41 2008 attempting to build 69959 cycles Sun Nov 16 10:49:41 2008 found 69959 cycles in 6 passes Sun Nov 16 10:49:41 2008 distribution of cycle lengths: Sun Nov 16 10:49:41 2008 length 1 : 17732 Sun Nov 16 10:49:41 2008 length 2 : 12853 Sun Nov 16 10:49:41 2008 length 3 : 11981 Sun Nov 16 10:49:41 2008 length 4 : 9439 Sun Nov 16 10:49:41 2008 length 5 : 6861 Sun Nov 16 10:49:41 2008 length 6 : 4532 Sun Nov 16 10:49:41 2008 length 7 : 2862 Sun Nov 16 10:49:41 2008 length 9+: 3699 Sun Nov 16 10:49:41 2008 largest cycle: 19 relations Sun Nov 16 10:49:41 2008 matrix is 69412 x 69959 (17.5 MB) with weight 4316157 (61.70/col) Sun Nov 16 10:49:41 2008 sparse part has weight 4316157 (61.70/col) Sun Nov 16 10:49:42 2008 filtering completed in 3 passes Sun Nov 16 10:49:42 2008 matrix is 65468 x 65532 (16.4 MB) with weight 4042304 (61.68/col) Sun Nov 16 10:49:42 2008 sparse part has weight 4042304 (61.68/col) Sun Nov 16 10:49:42 2008 saving the first 48 matrix rows for later Sun Nov 16 10:49:42 2008 matrix is 65420 x 65532 (9.8 MB) with weight 3128711 (47.74/col) Sun Nov 16 10:49:42 2008 sparse part has weight 2186706 (33.37/col) Sun Nov 16 10:49:42 2008 matrix includes 64 packed rows Sun Nov 16 10:49:42 2008 using block size 26212 for processor cache size 1024 kB Sun Nov 16 10:49:43 2008 commencing Lanczos iteration Sun Nov 16 10:49:43 2008 memory use: 9.8 MB Sun Nov 16 10:50:10 2008 lanczos halted after 1036 iterations (dim = 65419) Sun Nov 16 10:50:10 2008 recovered 17 nontrivial dependencies Sun Nov 16 10:50:11 2008 prp46 factor: 5903435180099898704490423374514522415338172223 Sun Nov 16 10:50:11 2008 prp47 factor: 13009527410669058115242501966183259978431586981 Sun Nov 16 10:50:11 2008 elapsed time 02:04:46
(29·10129+61)/9 = 3(2)1289<130> = 97 · 91035070031<11> · C117
C117 = P33 · P84
P33 = 702397047936012971295827907183563<33>
P84 = 519508127036019215068898992290694168510514114774183232879983195042107161939072988369<84>
Number: 32229_129 N=364900974808867104898967325221905613343552291848563833088459135235478973892663263256448468989776474935458668646978747 ( 117 digits) SNFS difficulty: 131 digits. Divisors found: r1=702397047936012971295827907183563 (pp33) r2=519508127036019215068898992290694168510514114774183232879983195042107161939072988369 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.40 hours. Scaled time: 4.45 units (timescale=1.011). Factorization parameters were as follows: name: 32229_129 n: 364900974808867104898967325221905613343552291848563833088459135235478973892663263256448468989776474935458668646978747 m: 50000000000000000000000000 deg: 5 c5: 464 c0: 305 skew: 0.92 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 985001) Primes: RFBsize:83548, AFBsize:83187, largePrimes:2867311 encountered Relations: rels:2842564, finalFF:280905 Max relations in full relation-set: 28 Initial matrix: 166801 x 280905 with sparse part having weight 21547482. Pruned matrix : 133491 x 134389 with weight 7371408. Total sieving time: 4.27 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 4.40 hours. --------- CPU info (if available) ----------
(29·10113+43)/9 = 3(2)1127<114> = 32 · 20797883 · 269631728192171<15> · C91
C91 = P37 · P55
P37 = 1230125378660460641412156544039754279<37>
P55 = 5190073096884926489334879139819915251892446474164708549<55>
Sun Nov 16 11:02:01 2008 Msieve v. 1.38 Sun Nov 16 11:02:01 2008 random seeds: 4a2d7900 8d9ddbb5 Sun Nov 16 11:02:01 2008 factoring 6384440633581039826739877413765078122967424829684569361832030989027519066449604771610631171 (91 digits) Sun Nov 16 11:02:02 2008 searching for 15-digit factors Sun Nov 16 11:02:03 2008 commencing quadratic sieve (91-digit input) Sun Nov 16 11:02:04 2008 using multiplier of 1 Sun Nov 16 11:02:04 2008 using 32kb Intel Core sieve core Sun Nov 16 11:02:04 2008 sieve interval: 36 blocks of size 32768 Sun Nov 16 11:02:04 2008 processing polynomials in batches of 6 Sun Nov 16 11:02:04 2008 using a sieve bound of 1710419 (64706 primes) Sun Nov 16 11:02:04 2008 using large prime bound of 164200224 (27 bits) Sun Nov 16 11:02:04 2008 using double large prime bound of 613299659056128 (42-50 bits) Sun Nov 16 11:02:04 2008 using trial factoring cutoff of 50 bits Sun Nov 16 11:02:04 2008 polynomial 'A' values have 12 factors Sun Nov 16 12:49:14 2008 65008 relations (16520 full + 48488 combined from 767657 partial), need 64802 Sun Nov 16 12:49:15 2008 begin with 784177 relations Sun Nov 16 12:49:15 2008 reduce to 163114 relations in 10 passes Sun Nov 16 12:49:15 2008 attempting to read 163114 relations Sun Nov 16 12:49:18 2008 recovered 163114 relations Sun Nov 16 12:49:18 2008 recovered 143897 polynomials Sun Nov 16 12:49:18 2008 attempting to build 65008 cycles Sun Nov 16 12:49:18 2008 found 65008 cycles in 5 passes Sun Nov 16 12:49:18 2008 distribution of cycle lengths: Sun Nov 16 12:49:18 2008 length 1 : 16520 Sun Nov 16 12:49:18 2008 length 2 : 11927 Sun Nov 16 12:49:18 2008 length 3 : 11315 Sun Nov 16 12:49:18 2008 length 4 : 8818 Sun Nov 16 12:49:18 2008 length 5 : 6414 Sun Nov 16 12:49:18 2008 length 6 : 4171 Sun Nov 16 12:49:18 2008 length 7 : 2538 Sun Nov 16 12:49:18 2008 length 9+: 3305 Sun Nov 16 12:49:18 2008 largest cycle: 18 relations Sun Nov 16 12:49:18 2008 matrix is 64706 x 65008 (16.3 MB) with weight 4013865 (61.74/col) Sun Nov 16 12:49:18 2008 sparse part has weight 4013865 (61.74/col) Sun Nov 16 12:49:19 2008 filtering completed in 3 passes Sun Nov 16 12:49:19 2008 matrix is 61072 x 61136 (15.4 MB) with weight 3794033 (62.06/col) Sun Nov 16 12:49:19 2008 sparse part has weight 3794033 (62.06/col) Sun Nov 16 12:49:19 2008 saving the first 48 matrix rows for later Sun Nov 16 12:49:19 2008 matrix is 61024 x 61136 (9.7 MB) with weight 2988624 (48.88/col) Sun Nov 16 12:49:19 2008 sparse part has weight 2182842 (35.70/col) Sun Nov 16 12:49:19 2008 matrix includes 64 packed rows Sun Nov 16 12:49:19 2008 using block size 24454 for processor cache size 1024 kB Sun Nov 16 12:49:20 2008 commencing Lanczos iteration Sun Nov 16 12:49:20 2008 memory use: 9.4 MB Sun Nov 16 12:49:44 2008 lanczos halted after 966 iterations (dim = 61020) Sun Nov 16 12:49:45 2008 recovered 15 nontrivial dependencies Sun Nov 16 12:49:45 2008 prp37 factor: 1230125378660460641412156544039754279 Sun Nov 16 12:49:45 2008 prp55 factor: 5190073096884926489334879139819915251892446474164708549 Sun Nov 16 12:49:45 2008 elapsed time 01:47:44
(29·10123+61)/9 = 3(2)1229<124> = 1093 · 20197097 · 945337638045691432687<21> · C93
C93 = P35 · P58
P35 = 23784786456749368257820483421526223<35>
P58 = 6491725823707635239534358637976596616815241340171667425449<58>
Sun Nov 16 09:29:45 2008 Msieve v. 1.38 Sun Nov 16 09:29:45 2008 random seeds: eb06c0eb dee408f7 Sun Nov 16 09:29:45 2008 factoring 154404312452651499619825162391679781184038198256602725705528105359351435732648813328651049127 (93 digits) Sun Nov 16 09:29:46 2008 searching for 15-digit factors Sun Nov 16 09:29:48 2008 commencing quadratic sieve (93-digit input) Sun Nov 16 09:29:48 2008 using multiplier of 2 Sun Nov 16 09:29:48 2008 using 64kb Pentium 4 sieve core Sun Nov 16 09:29:48 2008 sieve interval: 18 blocks of size 65536 Sun Nov 16 09:29:48 2008 processing polynomials in batches of 6 Sun Nov 16 09:29:48 2008 using a sieve bound of 1889117 (70571 primes) Sun Nov 16 09:29:48 2008 using large prime bound of 221026689 (27 bits) Sun Nov 16 09:29:48 2008 using double large prime bound of 1047129632032419 (42-50 bits) Sun Nov 16 09:29:48 2008 using trial factoring cutoff of 50 bits Sun Nov 16 09:29:48 2008 polynomial 'A' values have 12 factors Sun Nov 16 12:59:39 2008 71078 relations (18371 full + 52707 combined from 918971 partial), need 70667 Sun Nov 16 12:59:42 2008 begin with 937342 relations Sun Nov 16 12:59:43 2008 reduce to 178871 relations in 11 passes Sun Nov 16 12:59:43 2008 attempting to read 178871 relations Sun Nov 16 12:59:49 2008 recovered 178871 relations Sun Nov 16 12:59:49 2008 recovered 158299 polynomials Sun Nov 16 12:59:49 2008 attempting to build 71078 cycles Sun Nov 16 12:59:49 2008 found 71078 cycles in 6 passes Sun Nov 16 12:59:49 2008 distribution of cycle lengths: Sun Nov 16 12:59:49 2008 length 1 : 18371 Sun Nov 16 12:59:49 2008 length 2 : 13084 Sun Nov 16 12:59:49 2008 length 3 : 12391 Sun Nov 16 12:59:49 2008 length 4 : 9547 Sun Nov 16 12:59:49 2008 length 5 : 6908 Sun Nov 16 12:59:49 2008 length 6 : 4395 Sun Nov 16 12:59:49 2008 length 7 : 2773 Sun Nov 16 12:59:49 2008 length 9+: 3609 Sun Nov 16 12:59:49 2008 largest cycle: 21 relations Sun Nov 16 12:59:49 2008 matrix is 70571 x 71078 (17.7 MB) with weight 4345835 (61.14/col) Sun Nov 16 12:59:49 2008 sparse part has weight 4345835 (61.14/col) Sun Nov 16 12:59:51 2008 filtering completed in 3 passes Sun Nov 16 12:59:51 2008 matrix is 66437 x 66501 (16.6 MB) with weight 4076816 (61.30/col) Sun Nov 16 12:59:51 2008 sparse part has weight 4076816 (61.30/col) Sun Nov 16 12:59:51 2008 saving the first 48 matrix rows for later Sun Nov 16 12:59:51 2008 matrix is 66389 x 66501 (9.8 MB) with weight 3136378 (47.16/col) Sun Nov 16 12:59:51 2008 sparse part has weight 2167002 (32.59/col) Sun Nov 16 12:59:51 2008 matrix includes 64 packed rows Sun Nov 16 12:59:51 2008 using block size 21845 for processor cache size 512 kB Sun Nov 16 12:59:52 2008 commencing Lanczos iteration Sun Nov 16 12:59:52 2008 memory use: 9.9 MB Sun Nov 16 13:00:36 2008 lanczos halted after 1051 iterations (dim = 66389) Sun Nov 16 13:00:36 2008 recovered 18 nontrivial dependencies Sun Nov 16 13:00:37 2008 prp35 factor: 23784786456749368257820483421526223 Sun Nov 16 13:00:37 2008 prp58 factor: 6491725823707635239534358637976596616815241340171667425449 Sun Nov 16 13:00:37 2008 elapsed time 03:30:52
By Erik Branger / Msieve
(29·10109+61)/9 = 3(2)1089<110> = 3 · 13 · 157 · 1181 · 157201157 · 574932409 · C86
C86 = P42 · P44
P42 = 650901737212776005468142288693299353882937<42>
P44 = 75744895730524561665714325673543185447690943<44>
Sat Nov 15 19:25:48 2008 Msieve v. 1.38 Sat Nov 15 19:25:48 2008 random seeds: f6a352b0 53563743 Sat Nov 15 19:25:48 2008 factoring 49302484215999017457519029556422881048788318162661963404252646628561929655487777139591 (86 digits) Sat Nov 15 19:25:49 2008 searching for 15-digit factors Sat Nov 15 19:25:50 2008 commencing quadratic sieve (86-digit input) Sat Nov 15 19:25:50 2008 using multiplier of 1 Sat Nov 15 19:25:50 2008 using 32kb Intel Core sieve core Sat Nov 15 19:25:50 2008 sieve interval: 16 blocks of size 32768 Sat Nov 15 19:25:50 2008 processing polynomials in batches of 13 Sat Nov 15 19:25:50 2008 using a sieve bound of 1457683 (55667 primes) Sat Nov 15 19:25:50 2008 using large prime bound of 116614640 (26 bits) Sat Nov 15 19:25:50 2008 using double large prime bound of 331249715652000 (41-49 bits) Sat Nov 15 19:25:50 2008 using trial factoring cutoff of 49 bits Sat Nov 15 19:25:50 2008 polynomial 'A' values have 11 factors Sat Nov 15 20:02:11 2008 55832 relations (16024 full + 39808 combined from 583767 partial), need 55763 Sat Nov 15 20:02:12 2008 begin with 599791 relations Sat Nov 15 20:02:12 2008 reduce to 132574 relations in 9 passes Sat Nov 15 20:02:12 2008 attempting to read 132574 relations Sat Nov 15 20:02:14 2008 recovered 132574 relations Sat Nov 15 20:02:14 2008 recovered 109344 polynomials Sat Nov 15 20:02:14 2008 attempting to build 55832 cycles Sat Nov 15 20:02:14 2008 found 55832 cycles in 5 passes Sat Nov 15 20:02:14 2008 distribution of cycle lengths: Sat Nov 15 20:02:14 2008 length 1 : 16024 Sat Nov 15 20:02:14 2008 length 2 : 11211 Sat Nov 15 20:02:14 2008 length 3 : 9906 Sat Nov 15 20:02:14 2008 length 4 : 7001 Sat Nov 15 20:02:14 2008 length 5 : 4890 Sat Nov 15 20:02:14 2008 length 6 : 3061 Sat Nov 15 20:02:14 2008 length 7 : 1767 Sat Nov 15 20:02:14 2008 length 9+: 1972 Sat Nov 15 20:02:14 2008 largest cycle: 16 relations Sat Nov 15 20:02:14 2008 matrix is 55667 x 55832 (12.0 MB) with weight 2931997 (52.51/col) Sat Nov 15 20:02:14 2008 sparse part has weight 2931997 (52.51/col) Sat Nov 15 20:02:14 2008 filtering completed in 3 passes Sat Nov 15 20:02:14 2008 matrix is 50974 x 51038 (11.1 MB) with weight 2709335 (53.08/col) Sat Nov 15 20:02:14 2008 sparse part has weight 2709335 (53.08/col) Sat Nov 15 20:02:15 2008 saving the first 48 matrix rows for later Sat Nov 15 20:02:15 2008 matrix is 50926 x 51038 (6.1 MB) with weight 1988059 (38.95/col) Sat Nov 15 20:02:15 2008 sparse part has weight 1294362 (25.36/col) Sat Nov 15 20:02:15 2008 matrix includes 64 packed rows Sat Nov 15 20:02:15 2008 using block size 20415 for processor cache size 2048 kB Sat Nov 15 20:02:15 2008 commencing Lanczos iteration Sat Nov 15 20:02:15 2008 memory use: 6.7 MB Sat Nov 15 20:02:28 2008 lanczos halted after 807 iterations (dim = 50918) Sat Nov 15 20:02:28 2008 recovered 13 nontrivial dependencies Sat Nov 15 20:02:29 2008 prp42 factor: 650901737212776005468142288693299353882937 Sat Nov 15 20:02:29 2008 prp44 factor: 75744895730524561665714325673543185447690943 Sat Nov 15 20:02:29 2008 elapsed time 00:36:41
(29·10121+43)/9 = 3(2)1207<122> = 37 · 1409 · 116273 · 49986259 · 268484505653234917<18> · C87
C87 = P39 · P48
P39 = 532697136187481881341266254372747070933<39>
P48 = 743555976503052776395768756045694514223915261397<48>
Sat Nov 15 20:07:42 2008 Msieve v. 1.38 Sat Nov 15 20:07:42 2008 random seeds: a4ecc3a8 54553869 Sat Nov 15 20:07:42 2008 factoring 396090139278262782600209118642442432563590971291144371671691191910055716222928795673401 (87 digits) Sat Nov 15 20:07:43 2008 searching for 15-digit factors Sat Nov 15 20:07:44 2008 commencing quadratic sieve (87-digit input) Sat Nov 15 20:07:44 2008 using multiplier of 19 Sat Nov 15 20:07:44 2008 using 32kb Intel Core sieve core Sat Nov 15 20:07:44 2008 sieve interval: 20 blocks of size 32768 Sat Nov 15 20:07:44 2008 processing polynomials in batches of 11 Sat Nov 15 20:07:44 2008 using a sieve bound of 1485751 (56667 primes) Sat Nov 15 20:07:44 2008 using large prime bound of 118860080 (26 bits) Sat Nov 15 20:07:44 2008 using double large prime bound of 342818857657760 (42-49 bits) Sat Nov 15 20:07:44 2008 using trial factoring cutoff of 49 bits Sat Nov 15 20:07:44 2008 polynomial 'A' values have 11 factors Sat Nov 15 20:59:12 2008 56965 relations (15586 full + 41379 combined from 598785 partial), need 56763 Sat Nov 15 20:59:12 2008 begin with 614371 relations Sat Nov 15 20:59:13 2008 reduce to 137532 relations in 9 passes Sat Nov 15 20:59:13 2008 attempting to read 137532 relations Sat Nov 15 20:59:14 2008 recovered 137532 relations Sat Nov 15 20:59:14 2008 recovered 118192 polynomials Sat Nov 15 20:59:15 2008 attempting to build 56965 cycles Sat Nov 15 20:59:15 2008 found 56965 cycles in 5 passes Sat Nov 15 20:59:15 2008 distribution of cycle lengths: Sat Nov 15 20:59:15 2008 length 1 : 15586 Sat Nov 15 20:59:15 2008 length 2 : 11049 Sat Nov 15 20:59:15 2008 length 3 : 9917 Sat Nov 15 20:59:15 2008 length 4 : 7588 Sat Nov 15 20:59:15 2008 length 5 : 5204 Sat Nov 15 20:59:15 2008 length 6 : 3481 Sat Nov 15 20:59:15 2008 length 7 : 1910 Sat Nov 15 20:59:15 2008 length 9+: 2230 Sat Nov 15 20:59:15 2008 largest cycle: 19 relations Sat Nov 15 20:59:15 2008 matrix is 56667 x 56965 (13.6 MB) with weight 3346291 (58.74/col) Sat Nov 15 20:59:15 2008 sparse part has weight 3346291 (58.74/col) Sat Nov 15 20:59:15 2008 filtering completed in 3 passes Sat Nov 15 20:59:15 2008 matrix is 52509 x 52573 (12.7 MB) with weight 3107546 (59.11/col) Sat Nov 15 20:59:15 2008 sparse part has weight 3107546 (59.11/col) Sat Nov 15 20:59:15 2008 saving the first 48 matrix rows for later Sat Nov 15 20:59:15 2008 matrix is 52461 x 52573 (8.5 MB) with weight 2464123 (46.87/col) Sat Nov 15 20:59:15 2008 sparse part has weight 1915121 (36.43/col) Sat Nov 15 20:59:15 2008 matrix includes 64 packed rows Sat Nov 15 20:59:15 2008 using block size 21029 for processor cache size 2048 kB Sat Nov 15 20:59:16 2008 commencing Lanczos iteration Sat Nov 15 20:59:16 2008 memory use: 8.1 MB Sat Nov 15 20:59:32 2008 lanczos halted after 831 iterations (dim = 52457) Sat Nov 15 20:59:33 2008 recovered 16 nontrivial dependencies Sat Nov 15 20:59:34 2008 prp39 factor: 532697136187481881341266254372747070933 Sat Nov 15 20:59:34 2008 prp48 factor: 743555976503052776395768756045694514223915261397 Sat Nov 15 20:59:34 2008 elapsed time 00:51:52
(29·10139+61)/9 = 3(2)1389<140> = 32 · 13 · 71 · 2069 · 2051849603<10> · 76632406965209<14> · 45612363410902054681<20> · C90
C90 = P36 · P54
P36 = 526346512135981262865057629649851747<36>
P54 = 496636312759644324545696307974594420148439259761254067<54>
Sat Nov 15 21:31:02 2008 Msieve v. 1.38 Sat Nov 15 21:31:02 2008 random seeds: 52e51600 39bdff75 Sat Nov 15 21:31:02 2008 factoring 261402791021113117578925405750467260032219345544353197182924360382793355544864901350805049 (90 digits) Sat Nov 15 21:31:03 2008 searching for 15-digit factors Sat Nov 15 21:31:05 2008 commencing quadratic sieve (90-digit input) Sat Nov 15 21:31:05 2008 using multiplier of 1 Sat Nov 15 21:31:05 2008 using 32kb Intel Core sieve core Sat Nov 15 21:31:05 2008 sieve interval: 36 blocks of size 32768 Sat Nov 15 21:31:05 2008 processing polynomials in batches of 6 Sat Nov 15 21:31:05 2008 using a sieve bound of 1577909 (60000 primes) Sat Nov 15 21:31:05 2008 using large prime bound of 126232720 (26 bits) Sat Nov 15 21:31:05 2008 using double large prime bound of 382040549960160 (42-49 bits) Sat Nov 15 21:31:05 2008 using trial factoring cutoff of 49 bits Sat Nov 15 21:31:05 2008 polynomial 'A' values have 11 factors Sat Nov 15 22:47:12 2008 60109 relations (15701 full + 44408 combined from 638898 partial), need 60096 Sat Nov 15 22:47:12 2008 begin with 654599 relations Sat Nov 15 22:47:13 2008 reduce to 147530 relations in 10 passes Sat Nov 15 22:47:13 2008 attempting to read 147530 relations Sat Nov 15 22:47:15 2008 recovered 147530 relations Sat Nov 15 22:47:15 2008 recovered 127332 polynomials Sat Nov 15 22:47:15 2008 attempting to build 60109 cycles Sat Nov 15 22:47:15 2008 found 60109 cycles in 5 passes Sat Nov 15 22:47:15 2008 distribution of cycle lengths: Sat Nov 15 22:47:15 2008 length 1 : 15701 Sat Nov 15 22:47:15 2008 length 2 : 11329 Sat Nov 15 22:47:15 2008 length 3 : 10720 Sat Nov 15 22:47:15 2008 length 4 : 8056 Sat Nov 15 22:47:15 2008 length 5 : 5760 Sat Nov 15 22:47:15 2008 length 6 : 3736 Sat Nov 15 22:47:15 2008 length 7 : 2134 Sat Nov 15 22:47:15 2008 length 9+: 2673 Sat Nov 15 22:47:15 2008 largest cycle: 19 relations Sat Nov 15 22:47:15 2008 matrix is 60000 x 60109 (14.8 MB) with weight 3640661 (60.57/col) Sat Nov 15 22:47:15 2008 sparse part has weight 3640661 (60.57/col) Sat Nov 15 22:47:15 2008 filtering completed in 3 passes Sat Nov 15 22:47:15 2008 matrix is 56304 x 56368 (14.0 MB) with weight 3451440 (61.23/col) Sat Nov 15 22:47:15 2008 sparse part has weight 3451440 (61.23/col) Sat Nov 15 22:47:16 2008 saving the first 48 matrix rows for later Sat Nov 15 22:47:16 2008 matrix is 56256 x 56368 (10.3 MB) with weight 2869705 (50.91/col) Sat Nov 15 22:47:16 2008 sparse part has weight 2356081 (41.80/col) Sat Nov 15 22:47:16 2008 matrix includes 64 packed rows Sat Nov 15 22:47:16 2008 using block size 22547 for processor cache size 2048 kB Sat Nov 15 22:47:16 2008 commencing Lanczos iteration Sat Nov 15 22:47:16 2008 memory use: 9.3 MB Sat Nov 15 22:47:37 2008 lanczos halted after 891 iterations (dim = 56255) Sat Nov 15 22:47:38 2008 recovered 16 nontrivial dependencies Sat Nov 15 22:47:38 2008 prp36 factor: 526346512135981262865057629649851747 Sat Nov 15 22:47:38 2008 prp54 factor: 496636312759644324545696307974594420148439259761254067 Sat Nov 15 22:47:38 2008 elapsed time 01:16:36
By Robert Backstrom / Msieve, GMP-ECM
(29·10116+61)/9 = 3(2)1159<117> = 7 · 257 · 491747 · 247097692151858136343213913<27> · C82
C82 = P34 · P48
P34 = 2178729077434916503736133330125321<34>
P48 = 676566807283536166402708627290220286482051675841<48>
Sun Nov 16 04:52:04 2008 Sun Nov 16 04:52:04 2008 Sun Nov 16 04:52:04 2008 Msieve v. 1.38 Sun Nov 16 04:52:04 2008 random seeds: b5630310 0b7d1da0 Sun Nov 16 04:52:04 2008 factoring 1474055775855945699490365633699736543007749056604429799681281685914133078598069961 (82 digits) Sun Nov 16 04:52:04 2008 searching for 15-digit factors Sun Nov 16 04:52:05 2008 commencing quadratic sieve (82-digit input) Sun Nov 16 04:52:05 2008 using multiplier of 1 Sun Nov 16 04:52:05 2008 using 64kb Opteron sieve core Sun Nov 16 04:52:05 2008 sieve interval: 6 blocks of size 65536 Sun Nov 16 04:52:05 2008 processing polynomials in batches of 17 Sun Nov 16 04:52:05 2008 using a sieve bound of 1325183 (51176 primes) Sun Nov 16 04:52:05 2008 using large prime bound of 125892385 (26 bits) Sun Nov 16 04:52:05 2008 using trial factoring cutoff of 27 bits Sun Nov 16 04:52:05 2008 polynomial 'A' values have 10 factors Sun Nov 16 05:03:43 2008 51289 relations (25932 full + 25357 combined from 276904 partial), need 51272 Sun Nov 16 05:03:43 2008 begin with 302836 relations Sun Nov 16 05:03:43 2008 reduce to 73495 relations in 2 passes Sun Nov 16 05:03:43 2008 attempting to read 73495 relations Sun Nov 16 05:03:44 2008 recovered 73495 relations Sun Nov 16 05:03:44 2008 recovered 64316 polynomials Sun Nov 16 05:03:44 2008 attempting to build 51289 cycles Sun Nov 16 05:03:44 2008 found 51289 cycles in 1 passes Sun Nov 16 05:03:44 2008 distribution of cycle lengths: Sun Nov 16 05:03:44 2008 length 1 : 25932 Sun Nov 16 05:03:44 2008 length 2 : 25357 Sun Nov 16 05:03:44 2008 largest cycle: 2 relations Sun Nov 16 05:03:44 2008 matrix is 51176 x 51289 (6.7 MB) with weight 1557069 (30.36/col) Sun Nov 16 05:03:44 2008 sparse part has weight 1557069 (30.36/col) Sun Nov 16 05:03:45 2008 filtering completed in 3 passes Sun Nov 16 05:03:45 2008 matrix is 37092 x 37156 (5.4 MB) with weight 1261642 (33.96/col) Sun Nov 16 05:03:45 2008 sparse part has weight 1261642 (33.96/col) Sun Nov 16 05:03:45 2008 saving the first 48 matrix rows for later Sun Nov 16 05:03:45 2008 matrix is 37044 x 37156 (4.0 MB) with weight 1002066 (26.97/col) Sun Nov 16 05:03:45 2008 sparse part has weight 813973 (21.91/col) Sun Nov 16 05:03:45 2008 matrix includes 64 packed rows Sun Nov 16 05:03:45 2008 using block size 14862 for processor cache size 1024 kB Sun Nov 16 05:03:45 2008 commencing Lanczos iteration Sun Nov 16 05:03:45 2008 memory use: 4.3 MB Sun Nov 16 05:03:51 2008 lanczos halted after 587 iterations (dim = 37042) Sun Nov 16 05:03:51 2008 recovered 15 nontrivial dependencies Sun Nov 16 05:03:51 2008 prp34 factor: 2178729077434916503736133330125321 Sun Nov 16 05:03:51 2008 prp48 factor: 676566807283536166402708627290220286482051675841 Sun Nov 16 05:03:51 2008 elapsed time 00:11:47
(29·10107+43)/9 = 3(2)1067<108> = 3 · 157 · 2411 · 3499 · 3685209051242203<16> · C83
C83 = P40 · P44
P40 = 1425282736544390826810125421049919685529<40>
P44 = 15439394862943373275259839417275417587690959<44>
Sun Nov 16 06:01:28 2008 Sun Nov 16 06:01:28 2008 Sun Nov 16 06:01:28 2008 Msieve v. 1.38 Sun Nov 16 06:01:28 2008 random seeds: ce7c0a8c 72132a61 Sun Nov 16 06:01:28 2008 factoring 22005502960845341009717371068217949500020830757589908888394504033728427454516432311 (83 digits) Sun Nov 16 06:01:29 2008 searching for 15-digit factors Sun Nov 16 06:01:30 2008 commencing quadratic sieve (83-digit input) Sun Nov 16 06:01:30 2008 using multiplier of 19 Sun Nov 16 06:01:30 2008 using 64kb Opteron sieve core Sun Nov 16 06:01:30 2008 sieve interval: 6 blocks of size 65536 Sun Nov 16 06:01:30 2008 processing polynomials in batches of 17 Sun Nov 16 06:01:30 2008 using a sieve bound of 1362629 (52353 primes) Sun Nov 16 06:01:30 2008 using large prime bound of 123999239 (26 bits) Sun Nov 16 06:01:30 2008 using trial factoring cutoff of 27 bits Sun Nov 16 06:01:30 2008 polynomial 'A' values have 11 factors Sun Nov 16 06:17:11 2008 52512 relations (26925 full + 25587 combined from 276907 partial), need 52449 Sun Nov 16 06:17:11 2008 begin with 303832 relations Sun Nov 16 06:17:11 2008 reduce to 74921 relations in 2 passes Sun Nov 16 06:17:11 2008 attempting to read 74921 relations Sun Nov 16 06:17:12 2008 recovered 74921 relations Sun Nov 16 06:17:12 2008 recovered 67669 polynomials Sun Nov 16 06:17:12 2008 attempting to build 52512 cycles Sun Nov 16 06:17:12 2008 found 52512 cycles in 1 passes Sun Nov 16 06:17:12 2008 distribution of cycle lengths: Sun Nov 16 06:17:12 2008 length 1 : 26925 Sun Nov 16 06:17:12 2008 length 2 : 25587 Sun Nov 16 06:17:12 2008 largest cycle: 2 relations Sun Nov 16 06:17:12 2008 matrix is 52353 x 52512 (7.2 MB) with weight 1681244 (32.02/col) Sun Nov 16 06:17:12 2008 sparse part has weight 1681244 (32.02/col) Sun Nov 16 06:17:13 2008 filtering completed in 4 passes Sun Nov 16 06:17:13 2008 matrix is 37946 x 38010 (5.7 MB) with weight 1348944 (35.49/col) Sun Nov 16 06:17:13 2008 sparse part has weight 1348944 (35.49/col) Sun Nov 16 06:17:14 2008 saving the first 48 matrix rows for later Sun Nov 16 06:17:14 2008 matrix is 37898 x 38010 (3.5 MB) with weight 1001632 (26.35/col) Sun Nov 16 06:17:14 2008 sparse part has weight 694996 (18.28/col) Sun Nov 16 06:17:14 2008 matrix includes 64 packed rows Sun Nov 16 06:17:14 2008 using block size 15204 for processor cache size 1024 kB Sun Nov 16 06:17:14 2008 commencing Lanczos iteration Sun Nov 16 06:17:14 2008 memory use: 4.1 MB Sun Nov 16 06:17:19 2008 lanczos halted after 601 iterations (dim = 37896) Sun Nov 16 06:17:19 2008 recovered 17 nontrivial dependencies Sun Nov 16 06:17:19 2008 prp40 factor: 1425282736544390826810125421049919685529 Sun Nov 16 06:17:19 2008 prp44 factor: 15439394862943373275259839417275417587690959 Sun Nov 16 06:17:19 2008 elapsed time 00:15:51
(29·10111+61)/9 = 3(2)1109<112> = 227 · 1229 · 2531 · 4517 · 553355006146379<15> · C85
C85 = P36 · P49
P36 = 276993852075149363427098229130204721<36>
P49 = 6591155221914261426440632501639332054792978851191<49>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1825709474543267205420856555959842362192321944249866230555968943131807164817224672711 (85 digits) Using B1=2950000, B2=4281751120, polynomial Dickson(6), sigma=4015980292 Step 1 took 15688ms Step 2 took 7359ms ********** Factor found in step 2: 276993852075149363427098229130204721 Found probable prime factor of 36 digits: 276993852075149363427098229130204721 Probable prime cofactor 6591155221914261426440632501639332054792978851191 has 49 digits
(29·10136+61)/9 = 3(2)1359<137> = 3 · 421 · 62099 · 19123277 · 5872671531578717594595674662340908259<37> · C85
C85 = P35 · P50
P35 = 44422204522463800558090885913108389<35>
P50 = 82351098639585552850344538095782597161862158898771<50>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 3658217346417259879542882504552540988176513141181323018991027486329660954453801889919 (85 digits) Using B1=1160000, B2=1426247560, polynomial Dickson(6), sigma=2802654316 Step 1 took 6094ms Step 2 took 3515ms ********** Factor found in step 2: 44422204522463800558090885913108389 Found probable prime factor of 35 digits: 44422204522463800558090885913108389 Probable prime cofactor 82351098639585552850344538095782597161862158898771 has 50 digits
Factorizations of 322...227 and Factorizations of 322...229 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve, GGNFS
(29·10167-11)/9 = 3(2)1661<168> = 3 · 19 · 1217 · 545375959 · 20778919487<11> · 45602021140493<14> · 14614344872681959582619366399806329959<38> · C93
C93 = P33 · P61
P33 = 227175975763318381887575509543877<33>
P61 = 2707355331188622324443371660128309350699561584856921482876427<61>
Fri Nov 14 23:43:08 2008 Msieve v. 1.38 Fri Nov 14 23:43:08 2008 random seeds: 4e9568c4 8f996ae3 Fri Nov 14 23:43:08 2008 factoring 615046089100797276059789575087661813724676267821413765385904915681332714128994363968725487479 (93 digits) Fri Nov 14 23:43:09 2008 searching for 15-digit factors Fri Nov 14 23:43:10 2008 commencing quadratic sieve (93-digit input) Fri Nov 14 23:43:10 2008 using multiplier of 31 Fri Nov 14 23:43:10 2008 using 32kb Intel Core sieve core Fri Nov 14 23:43:10 2008 sieve interval: 36 blocks of size 32768 Fri Nov 14 23:43:10 2008 processing polynomials in batches of 6 Fri Nov 14 23:43:10 2008 using a sieve bound of 1954087 (72941 primes) Fri Nov 14 23:43:10 2008 using large prime bound of 244260875 (27 bits) Fri Nov 14 23:43:10 2008 using double large prime bound of 1253536551543250 (42-51 bits) Fri Nov 14 23:43:10 2008 using trial factoring cutoff of 51 bits Fri Nov 14 23:43:10 2008 polynomial 'A' values have 12 factors Sat Nov 15 02:11:46 2008 73182 relations (18600 full + 54582 combined from 987308 partial), need 73037 Sat Nov 15 02:11:47 2008 begin with 1005908 relations Sat Nov 15 02:11:48 2008 reduce to 185908 relations in 10 passes Sat Nov 15 02:11:48 2008 attempting to read 185908 relations Sat Nov 15 02:11:50 2008 recovered 185908 relations Sat Nov 15 02:11:50 2008 recovered 166941 polynomials Sat Nov 15 02:11:51 2008 attempting to build 73182 cycles Sat Nov 15 02:11:51 2008 found 73182 cycles in 5 passes Sat Nov 15 02:11:51 2008 distribution of cycle lengths: Sat Nov 15 02:11:51 2008 length 1 : 18600 Sat Nov 15 02:11:51 2008 length 2 : 13208 Sat Nov 15 02:11:51 2008 length 3 : 12719 Sat Nov 15 02:11:51 2008 length 4 : 9789 Sat Nov 15 02:11:51 2008 length 5 : 7149 Sat Nov 15 02:11:51 2008 length 6 : 4812 Sat Nov 15 02:11:51 2008 length 7 : 3000 Sat Nov 15 02:11:51 2008 length 9+: 3905 Sat Nov 15 02:11:51 2008 largest cycle: 18 relations Sat Nov 15 02:11:51 2008 matrix is 72941 x 73182 (18.6 MB) with weight 4581116 (62.60/col) Sat Nov 15 02:11:51 2008 sparse part has weight 4581116 (62.60/col) Sat Nov 15 02:11:52 2008 filtering completed in 3 passes Sat Nov 15 02:11:52 2008 matrix is 69064 x 69128 (17.7 MB) with weight 4355016 (63.00/col) Sat Nov 15 02:11:52 2008 sparse part has weight 4355016 (63.00/col) Sat Nov 15 02:11:52 2008 saving the first 48 matrix rows for later Sat Nov 15 02:11:52 2008 matrix is 69016 x 69128 (10.7 MB) with weight 3362251 (48.64/col) Sat Nov 15 02:11:52 2008 sparse part has weight 2402551 (34.76/col) Sat Nov 15 02:11:52 2008 matrix includes 64 packed rows Sat Nov 15 02:11:52 2008 using block size 27651 for processor cache size 1024 kB Sat Nov 15 02:11:53 2008 commencing Lanczos iteration Sat Nov 15 02:11:53 2008 memory use: 10.6 MB Sat Nov 15 02:12:24 2008 lanczos halted after 1093 iterations (dim = 69012) Sat Nov 15 02:12:24 2008 recovered 15 nontrivial dependencies Sat Nov 15 02:12:26 2008 prp33 factor: 227175975763318381887575509543877 Sat Nov 15 02:12:26 2008 prp61 factor: 2707355331188622324443371660128309350699561584856921482876427 Sat Nov 15 02:12:26 2008 elapsed time 02:29:18
(28·10133+71)/9 = 3(1)1329<134> = 32 · 13 · 59 · 179 · 6307979 · 13229898216989522059<20> · C102
C102 = P49 · P54
P49 = 1839668211284057814365396705452504160370049234991<49>
P54 = 163997932016769164501097073245953747850978841901913637<54>
Thu Nov 13 21:43:44 2008 Msieve v. 1.38 Thu Nov 13 21:43:44 2008 random seeds: 521c9724 bf061dcd Thu Nov 13 21:43:44 2008 factoring 301701782247574244986826324546458933509775232068798905009039077203737957765388348419560196830800472267 (102 digits) Thu Nov 13 21:43:45 2008 searching for 15-digit factors Thu Nov 13 21:43:47 2008 commencing quadratic sieve (102-digit input) Thu Nov 13 21:43:48 2008 using multiplier of 11 Thu Nov 13 21:43:48 2008 using 64kb Pentium 4 sieve core Thu Nov 13 21:43:48 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 21:43:48 2008 processing polynomials in batches of 6 Thu Nov 13 21:43:48 2008 using a sieve bound of 3198409 (114807 primes) Thu Nov 13 21:43:48 2008 using large prime bound of 479761350 (28 bits) Thu Nov 13 21:43:48 2008 using double large prime bound of 4225182407156700 (44-52 bits) Thu Nov 13 21:43:48 2008 using trial factoring cutoff of 52 bits Thu Nov 13 21:43:48 2008 polynomial 'A' values have 13 factors Thu Nov 13 21:43:48 2008 restarting with 107 full and 6750 partial relations Sat Nov 15 03:49:44 2008 114918 relations (27221 full + 87697 combined from 1725189 partial), need 114903 Sat Nov 15 03:49:51 2008 begin with 1752410 relations Sat Nov 15 03:49:53 2008 reduce to 304089 relations in 12 passes Sat Nov 15 03:49:53 2008 attempting to read 304089 relations Sat Nov 15 03:50:04 2008 recovered 304089 relations Sat Nov 15 03:50:04 2008 recovered 296040 polynomials Sat Nov 15 03:50:05 2008 attempting to build 114918 cycles Sat Nov 15 03:50:05 2008 found 114918 cycles in 6 passes Sat Nov 15 03:50:05 2008 distribution of cycle lengths: Sat Nov 15 03:50:05 2008 length 1 : 27221 Sat Nov 15 03:50:05 2008 length 2 : 19398 Sat Nov 15 03:50:05 2008 length 3 : 19281 Sat Nov 15 03:50:05 2008 length 4 : 15830 Sat Nov 15 03:50:05 2008 length 5 : 11903 Sat Nov 15 03:50:05 2008 length 6 : 8287 Sat Nov 15 03:50:05 2008 length 7 : 5303 Sat Nov 15 03:50:05 2008 length 9+: 7695 Sat Nov 15 03:50:05 2008 largest cycle: 22 relations Sat Nov 15 03:50:06 2008 matrix is 114807 x 114918 (33.9 MB) with weight 8425186 (73.31/col) Sat Nov 15 03:50:06 2008 sparse part has weight 8425186 (73.31/col) Sat Nov 15 03:50:08 2008 filtering completed in 3 passes Sat Nov 15 03:50:08 2008 matrix is 110420 x 110484 (32.8 MB) with weight 8161255 (73.87/col) Sat Nov 15 03:50:08 2008 sparse part has weight 8161255 (73.87/col) Sat Nov 15 03:50:09 2008 saving the first 48 matrix rows for later Sat Nov 15 03:50:10 2008 matrix is 110372 x 110484 (23.4 MB) with weight 6834160 (61.86/col) Sat Nov 15 03:50:10 2008 sparse part has weight 5464671 (49.46/col) Sat Nov 15 03:50:10 2008 matrix includes 64 packed rows Sat Nov 15 03:50:10 2008 using block size 21845 for processor cache size 512 kB Sat Nov 15 03:50:11 2008 commencing Lanczos iteration Sat Nov 15 03:50:11 2008 memory use: 20.8 MB Sat Nov 15 03:52:44 2008 lanczos halted after 1746 iterations (dim = 110372) Sat Nov 15 03:52:45 2008 recovered 18 nontrivial dependencies Sat Nov 15 03:52:49 2008 prp49 factor: 1839668211284057814365396705452504160370049234991 Sat Nov 15 03:52:49 2008 prp54 factor: 163997932016769164501097073245953747850978841901913637 Sat Nov 15 03:52:49 2008 elapsed time 30:09:05
(28·10147+71)/9 = 3(1)1469<148> = 186701 · 588820003 · 659034703250019414229<21> · C113
C113 = P33 · P36 · P45
P33 = 303971445136473294348591356602429<33>
P36 = 208410345381267237307086484257560467<36>
P45 = 677838101450885656471927399373596982235245059<45>
Number: 31119_147 N=42941581840169851306496911799165463946002022848074130658861492367490343781164497312063584313924117589654966921237 ( 113 digits) SNFS difficulty: 148 digits. Divisors found: r1=303971445136473294348591356602429 (pp33) r2=208410345381267237307086484257560467 (pp36) r3=677838101450885656471927399373596982235245059 (pp45) Version: GGNFS-0.77.1-20060513-k8 Total time: 24.69 hours. Scaled time: 48.56 units (timescale=1.967). Factorization parameters were as follows: name: 31119_147 n: 42941581840169851306496911799165463946002022848074130658861492367490343781164497312063584313924117589654966921237 m: 200000000000000000000000000000 deg: 5 c5: 175 c0: 142 skew: 0.96 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 3150001) Primes: RFBsize:155805, AFBsize:155838, largePrimes:4543525 encountered Relations: rels:4873763, finalFF:401796 Max relations in full relation-set: 28 Initial matrix: 311709 x 401796 with sparse part having weight 47172161. Pruned matrix : 281859 x 283481 with weight 31778198. Total sieving time: 23.36 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.03 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 24.69 hours. --------- CPU info (if available) ----------
(28·10172+53)/9 = 3(1)1717<173> = 29 · 37 · 397 · 953 · 1249 · 152441 · 760164647237041<15> · C141
C141 = P41 · P101
P41 = 14515566495965381484432908137188917611379<41>
P101 = 36477621053825863236530826318706660402494626746122190956217533559432562151205757871210576748577472619<101>
Number: 31117_172 N=529493334021436111922162637254840759809513964430346448697227563102473589227446184240143681531113116238112526127602307738122013166310255331601 ( 141 digits) SNFS difficulty: 173 digits. Divisors found: r1=14515566495965381484432908137188917611379 (pp41) r2=36477621053825863236530826318706660402494626746122190956217533559432562151205757871210576748577472619 (pp101) Version: GGNFS-0.77.1-20050930-nocona Total time: 164.10 hours. Scaled time: 164.92 units (timescale=1.005). Factorization parameters were as follows: name: 31117_172 n: 529493334021436111922162637254840759809513964430346448697227563102473589227446184240143681531113116238112526127602307738122013166310255331601 m: 20000000000000000000000000000000000 deg: 5 c5: 175 c0: 106 skew: 0.90 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [3000000, 7900001) Primes: RFBsize:412849, AFBsize:412611, largePrimes:11459526 encountered Relations: rels:13076347, finalFF:1093514 Max relations in full relation-set: 28 Initial matrix: 825526 x 1093514 with sparse part having weight 138828364. Pruned matrix : 651933 x 656124 with weight 130144864. Total sieving time: 155.40 hours. Total relation processing time: 0.32 hours. Matrix solve time: 8.23 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,53,53,2.6,2.6,100000 total time: 164.10 hours. --------- CPU info (if available) ----------
(29·10142-11)/9 = 3(2)1411<143> = 7 · 17 · 351229883 · 5178567259<10> · 255467237901787825132567<24> · C99
C99 = P35 · P65
P35 = 45143496014853321725780216738462753<35>
P65 = 12908537643623924412394518260364827954583231327679114647926028197<65>
Sat Nov 15 05:00:32 2008 Msieve v. 1.38 Sat Nov 15 05:00:32 2008 random seeds: bade0d0f 2d3a8c11 Sat Nov 15 05:00:32 2008 factoring 582736517672520719845325286851715855979999310291647305857501595762410574799373037350831074712246341 (99 digits) Sat Nov 15 05:00:34 2008 searching for 15-digit factors Sat Nov 15 05:00:36 2008 commencing quadratic sieve (99-digit input) Sat Nov 15 05:00:36 2008 using multiplier of 19 Sat Nov 15 05:00:36 2008 using 64kb Pentium 4 sieve core Sat Nov 15 05:00:36 2008 sieve interval: 18 blocks of size 65536 Sat Nov 15 05:00:36 2008 processing polynomials in batches of 6 Sat Nov 15 05:00:36 2008 using a sieve bound of 2644451 (96471 primes) Sat Nov 15 05:00:36 2008 using large prime bound of 396667650 (28 bits) Sat Nov 15 05:00:36 2008 using double large prime bound of 3000324291093600 (43-52 bits) Sat Nov 15 05:00:36 2008 using trial factoring cutoff of 52 bits Sat Nov 15 05:00:36 2008 polynomial 'A' values have 13 factors Sat Nov 15 20:32:14 2008 96672 relations (23219 full + 73453 combined from 1449879 partial), need 96567 Sat Nov 15 20:32:20 2008 begin with 1473098 relations Sat Nov 15 20:32:22 2008 reduce to 254199 relations in 11 passes Sat Nov 15 20:32:22 2008 attempting to read 254199 relations Sat Nov 15 20:32:31 2008 recovered 254199 relations Sat Nov 15 20:32:31 2008 recovered 243572 polynomials Sat Nov 15 20:32:31 2008 attempting to build 96672 cycles Sat Nov 15 20:32:31 2008 found 96672 cycles in 6 passes Sat Nov 15 20:32:31 2008 distribution of cycle lengths: Sat Nov 15 20:32:31 2008 length 1 : 23219 Sat Nov 15 20:32:31 2008 length 2 : 16773 Sat Nov 15 20:32:31 2008 length 3 : 16143 Sat Nov 15 20:32:31 2008 length 4 : 13311 Sat Nov 15 20:32:31 2008 length 5 : 9835 Sat Nov 15 20:32:31 2008 length 6 : 6818 Sat Nov 15 20:32:31 2008 length 7 : 4392 Sat Nov 15 20:32:31 2008 length 9+: 6181 Sat Nov 15 20:32:31 2008 largest cycle: 20 relations Sat Nov 15 20:32:32 2008 matrix is 96471 x 96672 (26.5 MB) with weight 6549247 (67.75/col) Sat Nov 15 20:32:32 2008 sparse part has weight 6549247 (67.75/col) Sat Nov 15 20:32:34 2008 filtering completed in 3 passes Sat Nov 15 20:32:34 2008 matrix is 92288 x 92352 (25.4 MB) with weight 6297598 (68.19/col) Sat Nov 15 20:32:34 2008 sparse part has weight 6297598 (68.19/col) Sat Nov 15 20:32:35 2008 saving the first 48 matrix rows for later Sat Nov 15 20:32:35 2008 matrix is 92240 x 92352 (15.0 MB) with weight 4898487 (53.04/col) Sat Nov 15 20:32:35 2008 sparse part has weight 3376150 (36.56/col) Sat Nov 15 20:32:35 2008 matrix includes 64 packed rows Sat Nov 15 20:32:35 2008 using block size 21845 for processor cache size 512 kB Sat Nov 15 20:32:36 2008 commencing Lanczos iteration Sat Nov 15 20:32:36 2008 memory use: 14.9 MB Sat Nov 15 20:34:08 2008 lanczos halted after 1460 iterations (dim = 92240) Sat Nov 15 20:34:08 2008 recovered 19 nontrivial dependencies Sat Nov 15 20:34:09 2008 prp35 factor: 45143496014853321725780216738462753 Sat Nov 15 20:34:09 2008 prp65 factor: 12908537643623924412394518260364827954583231327679114647926028197 Sat Nov 15 20:34:09 2008 elapsed time 15:33:37
By Tyler Cadigan / GGNFS, Msieve 1.38
(71·10171-17)/9 = 7(8)1707<172> = 3 · 112 · 107 · 239 · 41617 · C161
C161 = P51 · P53 · P57
P51 = 743770934175463115201037183333790751921305348910579<51>
P53 = 82351698218466862057837603678567544986836853816071383<53>
P57 = 333384192006290094571037308928858215235936225349216967277<57>
Number: 78887_171 N=20420048306009174199433788969740439342448980838301017872131156786256424455380537910470509179869439410058419671254422931255136857208344475008636852033785021448689 ( 161 digits) SNFS difficulty: 174 digits. Divisors found: r1=743770934175463115201037183333790751921305348910579 r2=82351698218466862057837603678567544986836853816071383 r3=333384192006290094571037308928858215235936225349216967277 Version: Total time: 98.26 hours. Scaled time: 248.98 units (timescale=2.534). Factorization parameters were as follows: n: 20420048306009174199433788969740439342448980838301017872131156786256424455380537910470509179869439410058419671254422931255136857208344475008636852033785021448689 m: 20000000000000000000000000000000000 deg: 5 c5: 355 c0: -272 skew: 0.95 Y0: 20000000000000000000000000000000000 Y1: -1 type: snfs lss: 1 rlim: 6100000 alim: 6100000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 qintsize: 1000000 Factor base limits: 6100000/6100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [3050000, 7050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 996316 x 996564 Total sieving time: 98.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,6100000,6100000,27,27,53,53,2.6,2.6,100000 total time: 98.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(28·10144+71)/9 = 3(1)1439<145> = 11 · 41 · 18269 · 154083203 · C130
C130 = P64 · P66
P64 = 8988041621249801554077485816065408422877758581642567645054836559<64>
P66 = 272648951321970616039365589773091933223612684510617694429149896013<66>
Number: 31119_144 N=2450580122471983000458653136037293800989706180239195005066168357353833426832036294754567817490052925818651778913076348977560739267 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=8988041621249801554077485816065408422877758581642567645054836559 (pp64) r2=272648951321970616039365589773091933223612684510617694429149896013 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.25 hours. Scaled time: 22.40 units (timescale=1.991). Factorization parameters were as follows: name: 31119_144 n: 2450580122471983000458653136037293800989706180239195005066168357353833426832036294754567817490052925818651778913076348977560739267 m: 100000000000000000000000000000 deg: 5 c5: 14 c0: 355 skew: 1.91 type: snfs lss: 1 rlim: 1910000 alim: 1910000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1910000/1910000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [955000, 1855001) Primes: RFBsize:142718, AFBsize:142781, largePrimes:3919763 encountered Relations: rels:3994994, finalFF:387236 Max relations in full relation-set: 28 Initial matrix: 285565 x 387236 with sparse part having weight 32964282. Pruned matrix : 247981 x 249472 with weight 17297811. Total sieving time: 10.41 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.63 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1910000,1910000,26,26,49,49,2.3,2.3,100000 total time: 11.25 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(29·10145-11)/9 = 3(2)1441<146> = 503 · 5701 · 17491 · 33713 · 221709130896523847<18> · C113
C113 = P39 · P75
P39 = 135401502323718758207541890954286813529<39>
P75 = 634771412258360352784225937469269688580613867062470480811701781026293841083<75>
Number: 32221_145 N=85949002851930617146158121584271921387063936434731256105680849591756257694871998711424728459121527841533980411907 ( 113 digits) SNFS difficulty: 146 digits. Divisors found: r1=135401502323718758207541890954286813529 (pp39) r2=634771412258360352784225937469269688580613867062470480811701781026293841083 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.25 hours. Scaled time: 18.45 units (timescale=1.011). Factorization parameters were as follows: name: 32221_145 n: 85949002851930617146158121584271921387063936434731256105680849591756257694871998711424728459121527841533980411907 m: 100000000000000000000000000000 deg: 5 c5: 29 c0: -11 skew: 0.82 type: snfs lss: 1 rlim: 1930000 alim: 1930000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1930000/1930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [965000, 2265001) Primes: RFBsize:144125, AFBsize:143858, largePrimes:4789852 encountered Relations: rels:5894049, finalFF:1229568 Max relations in full relation-set: 28 Initial matrix: 288048 x 1229568 with sparse part having weight 133674564. Pruned matrix : 187931 x 189435 with weight 30832138. Total sieving time: 17.83 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.28 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1930000,1930000,26,26,49,49,2.3,2.3,100000 total time: 18.25 hours. --------- CPU info (if available) ----------
(29·10141-11)/9 = 3(2)1401<142> = 83 · 263 · 397 · C135
C135 = P41 · P95
P41 = 12804731909514238216319764752004572447961<41>
P95 = 29037595469567804574615307737073820889361614690525154000942625597804357574692524096735208662997<95>
Number: 32221_141 N=371818625284740946976138232010385996838746762501506987298945008243283029222238646348394282675776581983436198238151547553352030168799117 ( 135 digits) SNFS difficulty: 143 digits. Divisors found: r1=12804731909514238216319764752004572447961 (pp41) r2=29037595469567804574615307737073820889361614690525154000942625597804357574692524096735208662997 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.98 hours. Scaled time: 17.13 units (timescale=1.009). Factorization parameters were as follows: name: 32221_141 n: 371818625284740946976138232010385996838746762501506987298945008243283029222238646348394282675776581983436198238151547553352030168799117 m: 20000000000000000000000000000 deg: 5 c5: 145 c0: -176 skew: 1.04 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 2170001) Primes: RFBsize:130902, AFBsize:129901, largePrimes:4460730 encountered Relations: rels:5208342, finalFF:863036 Max relations in full relation-set: 28 Initial matrix: 260870 x 863036 with sparse part having weight 99152444. Pruned matrix : 181833 x 183201 with weight 30124554. Total sieving time: 16.57 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 16.98 hours. --------- CPU info (if available) ----------
(29·10129-11)/9 = 3(2)1281<130> = 23 · 1213 · 1447 · 723389347 · C114
C114 = P35 · P79
P35 = 14136908388814870635901620792537073<35>
P79 = 7804979522579487282216412714267347177075015773931605314775746515999118728496747<79>
Number: 32221_129 N=110338280487282237783468003594113762991473241073633009146320341846348322084077083770113293431200809692433557401531 ( 114 digits) SNFS difficulty: 131 digits. Divisors found: r1=14136908388814870635901620792537073 (pp35) r2=7804979522579487282216412714267347177075015773931605314775746515999118728496747 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.61 hours. Scaled time: 9.24 units (timescale=2.003). Factorization parameters were as follows: name: 32221_129 n: 110338280487282237783468003594113762991473241073633009146320341846348322084077083770113293431200809692433557401531 m: 100000000000000000000000000 deg: 5 c5: 29 c0: -110 skew: 1.31 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 995001) Primes: RFBsize:84976, AFBsize:84869, largePrimes:2838036 encountered Relations: rels:2727089, finalFF:203434 Max relations in full relation-set: 28 Initial matrix: 169910 x 203434 with sparse part having weight 16356166. Pruned matrix : 159952 x 160865 with weight 10455858. Total sieving time: 4.32 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 4.61 hours. --------- CPU info (if available) ----------
(29·10130-11)/9 = 3(2)1291<131> = 7 · 661 · 12490000153<11> · C117
C117 = P50 · P67
P50 = 84078455171865397847467760865288765955666013538007<50>
P67 = 6631454921038865667129918457268982086762167608648817336351681684513<67>
Number: 32221_130 N=557562485302812458556720381686020624493646449535865520700068302534868504103654261098408140968189266407221764708785591 ( 117 digits) SNFS difficulty: 131 digits. Divisors found: r1=84078455171865397847467760865288765955666013538007 (pp50) r2=6631454921038865667129918457268982086762167608648817336351681684513 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.00 hours. Scaled time: 8.03 units (timescale=2.010). Factorization parameters were as follows: name: 32221_130 n: 557562485302812458556720381686020624493646449535865520700068302534868504103654261098408140968189266407221764708785591 m: 100000000000000000000000000 deg: 5 c5: 29 c0: -11 skew: 0.82 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 895001) Primes: RFBsize:84976, AFBsize:84739, largePrimes:3093783 encountered Relations: rels:3249328, finalFF:441711 Max relations in full relation-set: 28 Initial matrix: 169780 x 441711 with sparse part having weight 34736385. Pruned matrix : 110817 x 111729 with weight 7836212. Total sieving time: 3.80 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 4.00 hours. --------- CPU info (if available) ----------
(29·10139-11)/9 = 3(2)1381<140> = 60577859 · C132
C132 = P54 · P79
P54 = 281767272770529021750867390333886008734104756792620853<54>
P79 = 1887778432180578846158888755050078279456816964415040725088239206457139407989523<79>
Number: 32221_139 N=531914180430546781493585341506080996065282238222090718363325158491029242585516636073622579203768529063105749944418177971958735323119 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=281767272770529021750867390333886008734104756792620853 (pp54) r2=1887778432180578846158888755050078279456816964415040725088239206457139407989523 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.17 hours. Scaled time: 14.30 units (timescale=1.009). Factorization parameters were as follows: name: 32221_139 n: 531914180430546781493585341506080996065282238222090718363325158491029242585516636073622579203768529063105749944418177971958735323119 m: 10000000000000000000000000000 deg: 5 c5: 29 c0: -110 skew: 1.31 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 2100001) Primes: RFBsize:121127, AFBsize:121406, largePrimes:4348465 encountered Relations: rels:5015081, finalFF:747625 Max relations in full relation-set: 28 Initial matrix: 242598 x 747625 with sparse part having weight 87264402. Pruned matrix : 176117 x 177393 with weight 29807612. Total sieving time: 13.78 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 14.17 hours. --------- CPU info (if available) ----------
(29·10131-11)/9 = 3(2)1301<132> = 3 · 192 · 97 · 269 · 1523 · 56817259 · C114
C114 = P47 · P67
P47 = 17995042551372841939533353574619370418923120791<47>
P67 = 7322678345243243790674472867484716011829823748915723894088465209557<67>
Number: 32221_131 N=131771908412668642055273055352670569886186700122328238744264724206595060935364524814258713765988320913048238599587 ( 114 digits) SNFS difficulty: 133 digits. Divisors found: r1=17995042551372841939533353574619370418923120791 (pp47) r2=7322678345243243790674472867484716011829823748915723894088465209557 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.68 hours. Scaled time: 11.38 units (timescale=2.003). Factorization parameters were as follows: name: 32221_131 n: 131771908412668642055273055352670569886186700122328238744264724206595060935364524814258713765988320913048238599587 m: 200000000000000000000000000 deg: 5 c5: 145 c0: -176 skew: 1.04 type: snfs lss: 1 rlim: 1180000 alim: 1180000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1180000/1180000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [590000, 1115001) Primes: RFBsize:91490, AFBsize:90773, largePrimes:3248433 encountered Relations: rels:3371748, finalFF:409329 Max relations in full relation-set: 28 Initial matrix: 182330 x 409329 with sparse part having weight 35732054. Pruned matrix : 135105 x 136080 with weight 9984945. Total sieving time: 5.40 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1180000,1180000,26,26,47,47,2.3,2.3,75000 total time: 5.68 hours. --------- CPU info (if available) ----------
(29·10138-11)/9 = 3(2)1371<139> = 163 · 191 · 53591 · 15463122908501011867111<23> · C108
C108 = P53 · P55
P53 = 37790779259699711501744662535598103375993317541545193<53>
P55 = 3304909721696979379133654104517864011655110436713126409<55>
Number: 32221_138 N=124895113765886153948413921083715265507933979125035450661884648697806100529531289100210133846332979795301937 ( 108 digits) SNFS difficulty: 140 digits. Divisors found: r1=37790779259699711501744662535598103375993317541545193 (pp53) r2=3304909721696979379133654104517864011655110436713126409 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.18 hours. Scaled time: 16.27 units (timescale=1.006). Factorization parameters were as follows: name: 32221_138 n: 124895113765886153948413921083715265507933979125035450661884648697806100529531289100210133846332979795301937 m: 5000000000000000000000000000 deg: 5 c5: 232 c0: -275 skew: 1.03 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 2080001) Primes: RFBsize:118376, AFBsize:117850, largePrimes:4386409 encountered Relations: rels:5202691, finalFF:916162 Max relations in full relation-set: 28 Initial matrix: 236293 x 916162 with sparse part having weight 106553532. Pruned matrix : 166193 x 167438 with weight 30853001. Total sieving time: 15.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 16.18 hours. --------- CPU info (if available) ----------
By Robert Backstrom /
(29·10118-11)/9 = 3(2)1171<119> = 72 · 1783 · 8791755381953<13> · C101
C101 = P50 · P52
P50 = 16265156725388180254811666957299274188190461943863<50>
P52 = 2579135842593250281246313099668077876980060807295117<52>
Number: n N=41950048695845315860193362149200760634222247656007637390076886198570583579181328177989365034928016971 ( 101 digits) SNFS difficulty: 119 digits. Divisors found: r1=16265156725388180254811666957299274188190461943863 (pp50) r2=2579135842593250281246313099668077876980060807295117 (pp52) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 1.25 hours. Scaled time: 1.62 units (timescale=1.298). Factorization parameters were as follows: name: KA_3_2_117_1 n: 41950048695845315860193362149200760634222247656007637390076886198570583579181328177989365034928016971 type: snfs skew: 0.21 deg: 5 c5: 29000 c0: -11 m: 100000000000000000000000 rlim: 500000 alim: 500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [250000, 410000) Primes: rational ideals reading, algebraic ideals reading, Relations: 3902474 Max relations in full relation-set: Initial matrix: Pruned matrix : 114032 x 114276 Total sieving time: 1.25 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,500000,500000,27,27,54,54,2.5,2.5,50000 total time: 1.25 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(29·10172-11)/9 = 3(2)1711<173> = 7 · 911 · 2137 · 51674677 · C158
C158 = P30 · P128
P30 = 686837002770721101814315002743<30>
P128 = 66619764671176635087249126590613431344175126180553448850764036499467766258915040323962972670825895791557302195078744381102836239<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=321248721 Step 1 took 19977ms Step 2 took 12745ms ********** Factor found in step 2: 686837002770721101814315002743 Found probable prime factor of 30 digits: 686837002770721101814315002743 Probable prime cofactor 66619764671176635087249126590613431344175126180553448850764036499467766258915040323962972670825895791557302195078744381102836239 has 128 digits
(29·10167-11)/9 = 3(2)1661<168> = 3 · 19 · 1217 · 545375959 · 20778919487<11> · 45602021140493<14> · C130
C130 = P38 · C93
P38 = 14614344872681959582619366399806329959<38>
C93 = [615046089100797276059789575087661813724676267821413765385904915681332714128994363968725487479<93>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2608115933 Step 1 took 14061ms Step 2 took 9717ms ********** Factor found in step 2: 14614344872681959582619366399806329959 Found probable prime factor of 38 digits: 14614344872681959582619366399806329959 Composite cofactor 615046089100797276059789575087661813724676267821413765385904915681332714128994363968725487479 has 93 digits
(29·10179-11)/9 = 3(2)1781<180> = 33 · 53 · 3549619 · C170
C170 = P35 · P136
P35 = 13310355728458018191436051090311587<35>
P136 = 4765894801948423367811395504889628582659434826497324644479808786421859894569556486917950969689887532292510529531422667771365530802998547<136>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4238845314 Step 1 took 19462ms Step 2 took 12928ms ********** Factor found in step 2: 13310355728458018191436051090311587 Found probable prime factor of 35 digits: 13310355728458018191436051090311587 Probable prime cofactor 4765894801948423367811395504889628582659434826497324644479808786421859894569556486917950969689887532292510529531422667771365530802998547 has 136 digits
(29·10117-11)/9 = 3(2)1161<118> = 127 · 1782527232461<13> · C104
C104 = P37 · P67
P37 = 4553468733578991760986408024122748403<37>
P67 = 3125886718200121590683661018583279104542738986002111542287194104581<67>
SNFS difficulty: 118 digits. Divisors found: r1=4553468733578991760986408024122748403 r2=3125886718200121590683661018583279104542738986002111542287194104581 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 14233627436034098355590986715425150232984508544339962709686067006412690267978679376207813601632332734143 m: 100000000000000000000000 deg: 5 c5: 2900 c0: -11 skew: 0.33 type: snfs lss: 1 rlim: 680000 alim: 680000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.4 alambda: 2.4 Factor base limits: 680000/680000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [340000, 490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 92898 x 93126 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,680000,680000,25,25,46,46,2.4,2.4,50000 total time: 0.90 hours.
(28·10157+71)/9 = 3(1)1569<158> = 3 · 13 · 1997 · C153
C153 = P44 · P110
P44 = 36350485135267436326923615816470359590281339<44>
P110 = 10989112985873334669406170921657814512909467293608141635001759927342856073118693439074001322936654769906256487<110>
SNFS difficulty: 158 digits. Divisors found: r1=36350485135267436326923615816470359590281339 r2=10989112985873334669406170921657814512909467293608141635001759927342856073118693439074001322936654769906256487 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 399459588242763004906219728453078478116034450536203165146580269264295303353891235713969815121542712929793550724947820591285789082484125047970816623796093 m: 20000000000000000000000000000000 deg: 5 c5: 175 c0: 142 skew: 0.96 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1550000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 600523 x 600765 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,54,54,2.5,2.5,100000 total time: 20.00 hours.
(8·10182-17)/9 = (8)1817<182> = 3 · 47 · 29443147 · 245690237799029<15> · C158
C158 = P31 · C128
P31 = 1409781315068910934903369464751<31>
C128 = [61816510636424402556322751316069604684810286368811027148055645738587135263914950492193568745510518427867118128501016167399497339<128>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=109125358 Step 1 took 19337ms Step 2 took 12585ms ********** Factor found in step 2: 1409781315068910934903369464751 Found probable prime factor of 31 digits: 1409781315068910934903369464751 Composite cofactor 61816510636424402556322751316069604684810286368811027148055645738587135263914950492193568745510518427867118128501016167399497339 has 128 digits
(10186+11)/3 = (3)1857<186> = 4931 · 73081788083755769363<20> · C162
C162 = P33 · C130
P33 = 119082595147331902970137026564983<33>
C130 = [7767589884898905584453846627616528735466833665717627569798152437068183984890392285268361811654098469581336926528022496076374393063<130>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3868127526 Step 1 took 25004ms Step 2 took 16416ms ********** Factor found in step 2: 119082595147331902970137026564983 Found probable prime factor of 33 digits: 119082595147331902970137026564983 Composite cofactor 7767589884898905584453846627616528735466833665717627569798152437068183984890392285268361811654098469581336926528022496076374393063 has 130 digits
8·10185-3 = 7(9)1847<186> = 11 · 1380647833218789973997<22> · C164
C164 = P31 · P134
P31 = 3200915410197558946108301126563<31>
P134 = 16456602869353096430189233547034000220094751192335801441349696122224558115436230108977366054340110982446113898104412344324225790271057<134>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3050675837 Step 1 took 20201ms ********** Factor found in step 1: 3200915410197558946108301126563 Found probable prime factor of 31 digits: 3200915410197558946108301126563 Probable prime cofactor 16456602869353096430189233547034000220094751192335801441349696122224558115436230108977366054340110982446113898104412344324225790271057 has 134 digits
(14·10186-41)/9 = 1(5)1851<187> = 32 · 29 · 449 · 7534276176716793611<19> · C163
C163 = P29 · P134
P29 = 32588984944879249360239874831<29>
P134 = 54061278057400452561143167961063501861872785250750941089820142488320368986133543167855544550220331678923941602572569248399536665621399<134>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=319754870 Step 1 took 19249ms Step 2 took 12557ms ********** Factor found in step 2: 32588984944879249360239874831 Found probable prime factor of 29 digits: 32588984944879249360239874831 Probable prime cofactor 54061278057400452561143167961063501861872785250750941089820142488320368986133543167855544550220331678923941602572569248399536665621399 has 134 digits
By Jo Yeong Uk / GGNFS, Msieve
(28·10119+71)/9 = 3(1)1189<120> = 41 · 46716180536895694963<20> · C99
C99 = P35 · P65
P35 = 15752862529566178334162706383037239<35>
P65 = 10311096562260032607624715134869831170912033798303420229926003387<65>
Number: 31119_119 N=162429286674364702693980728505753820793032235270959101041564195163550081532685326692686733661128493 ( 99 digits) SNFS difficulty: 121 digits. Divisors found: r1=15752862529566178334162706383037239 (pp35) r2=10311096562260032607624715134869831170912033798303420229926003387 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.88 hours. Scaled time: 2.10 units (timescale=2.386). Factorization parameters were as follows: n: 162429286674364702693980728505753820793032235270959101041564195163550081532685326692686733661128493 m: 1000000000000000000000000 deg: 5 c5: 14 c0: 355 skew: 1.91 type: snfs rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 510001) Primes: RFBsize:49098, AFBsize:49132, largePrimes:1240702 encountered Relations: rels:1201057, finalFF:133899 Max relations in full relation-set: 28 Initial matrix: 98296 x 133899 with sparse part having weight 6510018. Pruned matrix : 84104 x 84659 with weight 3043212. Total sieving time: 0.85 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.2,2.2,30000 total time: 0.88 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673810) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.36 BogoMIPS (lpj=2672182) Calibrating delay using timer specific routine.. 5344.67 BogoMIPS (lpj=2672336)
(29·10156-11)/9 = 3(2)1551<157> = 595877 · 33067975599667<14> · 583036481857549<15> · 44705744025044195944187429<26> · C97
C97 = P46 · P52
P46 = 1841104617768553066539921824820814632819354673<46>
P52 = 3407640197035790755600685336333428103580485026012643<52>
Thu Nov 13 23:11:53 2008 Thu Nov 13 23:11:53 2008 Thu Nov 13 23:11:53 2008 Msieve v. 1.32 Thu Nov 13 23:11:53 2008 random seeds: 09471290 f9ff2327 Thu Nov 13 23:11:53 2008 factoring 6273822102456336397478900791555360195036548821463081823181815408929116357407108429062361599130739 (97 digits) Thu Nov 13 23:11:54 2008 no P-1/P+1/ECM available, skipping Thu Nov 13 23:11:54 2008 commencing quadratic sieve (97-digit input) Thu Nov 13 23:11:54 2008 using multiplier of 11 Thu Nov 13 23:11:54 2008 using VC8 32kb sieve core Thu Nov 13 23:11:54 2008 sieve interval: 36 blocks of size 32768 Thu Nov 13 23:11:54 2008 processing polynomials in batches of 6 Thu Nov 13 23:11:54 2008 using a sieve bound of 2404009 (88134 primes) Thu Nov 13 23:11:54 2008 using large prime bound of 360601350 (28 bits) Thu Nov 13 23:11:54 2008 using double large prime bound of 2527255810204800 (43-52 bits) Thu Nov 13 23:11:54 2008 using trial factoring cutoff of 52 bits Thu Nov 13 23:11:54 2008 polynomial 'A' values have 13 factors Fri Nov 14 03:12:20 2008 88297 relations (21728 full + 66569 combined from 1312671 partial), need 88230 Fri Nov 14 03:12:26 2008 begin with 1334399 relations Fri Nov 14 03:12:27 2008 reduce to 228127 relations in 11 passes Fri Nov 14 03:12:27 2008 attempting to read 228127 relations Fri Nov 14 03:12:30 2008 recovered 228127 relations Fri Nov 14 03:12:30 2008 recovered 213806 polynomials Fri Nov 14 03:12:30 2008 attempting to build 88297 cycles Fri Nov 14 03:12:30 2008 found 88297 cycles in 5 passes Fri Nov 14 03:12:30 2008 distribution of cycle lengths: Fri Nov 14 03:12:30 2008 length 1 : 21728 Fri Nov 14 03:12:30 2008 length 2 : 15697 Fri Nov 14 03:12:30 2008 length 3 : 15092 Fri Nov 14 03:12:30 2008 length 4 : 11939 Fri Nov 14 03:12:30 2008 length 5 : 8880 Fri Nov 14 03:12:30 2008 length 6 : 6119 Fri Nov 14 03:12:30 2008 length 7 : 3766 Fri Nov 14 03:12:30 2008 length 9+: 5076 Fri Nov 14 03:12:30 2008 largest cycle: 21 relations Fri Nov 14 03:12:30 2008 matrix is 88134 x 88297 with weight 5871621 (avg 66.50/col) Fri Nov 14 03:12:30 2008 filtering completed in 3 passes Fri Nov 14 03:12:30 2008 matrix is 83870 x 83934 with weight 5623519 (avg 67.00/col) Fri Nov 14 03:12:31 2008 saving the first 48 matrix rows for later Fri Nov 14 03:12:31 2008 matrix is 83822 x 83934 with weight 4447168 (avg 52.98/col) Fri Nov 14 03:12:31 2008 matrix includes 64 packed rows Fri Nov 14 03:12:31 2008 using block size 33573 for processor cache size 4096 kB Fri Nov 14 03:12:32 2008 commencing Lanczos iteration Fri Nov 14 03:13:05 2008 lanczos halted after 1328 iterations (dim = 83821) Fri Nov 14 03:13:05 2008 recovered 17 nontrivial dependencies Fri Nov 14 03:13:05 2008 prp46 factor: 1841104617768553066539921824820814632819354673 Fri Nov 14 03:13:05 2008 prp52 factor: 3407640197035790755600685336333428103580485026012643 Fri Nov 14 03:13:05 2008 elapsed time 04:01:12
By Wataru Sakai / Msieve
(23·10198-41)/9 = 2(5)1971<199> = C199
C199 = P48 · P69 · P83
P48 = 330048488040326643281297069715026424433630199177<48>
P69 = 515268873558507774234780986872212218799351367544094804445562015097943<69>
P83 = 15027047896934639118130321753833927516048042040409791293930953426741283723690424241<83>
Number: 25551_198 N=2555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=330048488040326643281297069715026424433630199177 r2=515268873558507774234780986872212218799351367544094804445562015097943 r3=15027047896934639118130321753833927516048042040409791293930953426741283723690424241 Version: Total time: 993.45 hours. Scaled time: 2000.80 units (timescale=2.014). Factorization parameters were as follows: n: 2555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 m: 5000000000000000000000000000000000000000 deg: 5 c5: 184 c0: -1025 skew: 1.41 type: snfs lss: 1 rlim: 21000000 alim: 21000000 lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.8 alambda: 2.8 Factor base limits: 21000000/21000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [10500000, 19700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3481118 x 3481365 Total sieving time: 993.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,21000000,21000000,29,29,57,57,2.8,2.8,100000 total time: 993.45 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(28·10156+71)/9 = 3(1)1559<157> = 11 · 373 · 3461 · 2009315225524317079<19> · 43732513694910445326617<23> · 87679139790976199399319247097<29> · C80
C80 = P37 · P44
P37 = 1163077854391997881426801097760029323<37>
P44 = 24448646588930130118660551617391962100587321<44>
Wed Nov 12 23:31:56 2008 factoring 28435679417441093560965677996084063055357095027467175103552861928042176482013683 (80 digits) Wed Nov 12 23:31:56 2008 no P-1/P+1/ECM available, skipping Wed Nov 12 23:31:56 2008 commencing quadratic sieve (80-digit input) Wed Nov 12 23:31:56 2008 using multiplier of 11 Wed Nov 12 23:31:56 2008 using 64kb Opteron sieve core Wed Nov 12 23:31:56 2008 sieve interval: 6 blocks of size 65536 Wed Nov 12 23:31:56 2008 processing polynomials in batches of 17 Wed Nov 12 23:31:56 2008 using a sieve bound of 1224919 (47235 primes) Wed Nov 12 23:31:56 2008 using large prime bound of 122491900 (26 bits) Wed Nov 12 23:31:56 2008 using trial factoring cutoff of 27 bits Wed Nov 12 23:31:56 2008 polynomial 'A' values have 10 factors Wed Nov 12 23:42:08 2008 47423 relations (24196 full + 23227 combined from 259919 partial), need 47331 Wed Nov 12 23:42:08 2008 begin with 284115 relations Wed Nov 12 23:42:08 2008 reduce to 67756 relations in 2 passes Wed Nov 12 23:42:08 2008 attempting to read 67756 relations Wed Nov 12 23:42:08 2008 recovered 67756 relations Wed Nov 12 23:42:08 2008 recovered 58044 polynomials Wed Nov 12 23:42:08 2008 attempting to build 47423 cycles Wed Nov 12 23:42:08 2008 found 47423 cycles in 1 passes Wed Nov 12 23:42:08 2008 distribution of cycle lengths: Wed Nov 12 23:42:08 2008 length 1 : 24196 Wed Nov 12 23:42:08 2008 length 2 : 23227 Wed Nov 12 23:42:08 2008 largest cycle: 2 relations Wed Nov 12 23:42:08 2008 matrix is 47235 x 47423 (6.9 MB) with weight 1438142 (30.33/col) Wed Nov 12 23:42:09 2008 sparse part has weight 1438142 (30.33/col) Wed Nov 12 23:42:09 2008 filtering completed in 3 passes Wed Nov 12 23:42:09 2008 matrix is 33614 x 33676 (5.4 MB) with weight 1147203 (34.07/col) Wed Nov 12 23:42:09 2008 sparse part has weight 1147203 (34.07/col) Wed Nov 12 23:42:09 2008 saving the first 48 matrix rows for later Wed Nov 12 23:42:09 2008 matrix is 33566 x 33676 (3.9 MB) with weight 886098 (26.31/col) Wed Nov 12 23:42:09 2008 sparse part has weight 683492 (20.30/col) Wed Nov 12 23:42:09 2008 matrix includes 64 packed rows Wed Nov 12 23:42:09 2008 using block size 13470 for processor cache size 1024 kB Wed Nov 12 23:42:09 2008 commencing Lanczos iteration Wed Nov 12 23:42:09 2008 memory use: 3.8 MB Wed Nov 12 23:42:13 2008 lanczos halted after 532 iterations (dim = 33562) Wed Nov 12 23:42:13 2008 recovered 16 nontrivial dependencies Wed Nov 12 23:42:13 2008 prp37 factor: 1163077854391997881426801097760029323 Wed Nov 12 23:42:13 2008 prp44 factor: 24448646588930130118660551617391962100587321 Wed Nov 12 23:42:13 2008 elapsed time 00:10:17
(29·10120-11)/9 = 3(2)1191<121> = 929 · 3529 · 93603969731<11> · C104
C104 = P47 · P57
P47 = 15773947874373735667035781810915813703050741501<47>
P57 = 665661512203010225589354648368830774478561194130089746851<57>
SNFS difficulty: 121 digits. Divisors found: r1=15773947874373735667035781810915813703050741501 r2=665661512203010225589354648368830774478561194130089746851 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 10500109995467079653618700393101576418348639811018615193020274232640086317642184622406460042272929763351 m: 1000000000000000000000000 deg: 5 c5: 29 c0: -11 skew: 0.82 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 520001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 93804 x 94038 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.4,2.4,50000 total time: 1.10 hours.
(28·10150+71)/9 = 3(1)1499<151> = 112 · 17 · 78658003 · C140
C140 = P43 · P46 · P52
P43 = 1505435896944076504911748169972217944553047<43>
P46 = 1471581719349738533115955225275854247106676533<46>
P52 = 8679439141512810986119574471702663143711519334849039<52>
SNFS difficulty: 151 digits. Divisors found: r1=1505435896944076504911748169972217944553047 r2=1471581719349738533115955225275854247106676533 r3=8679439141512810986119574471702663143711519334849039 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 19228185977613401633369694166969387451300507364563153637761353934453891234971683412314329153263211485477792708635663610248791317482884594989 m: 1000000000000000000000000000000 deg: 5 c5: 28 c0: 71 skew: 1.20 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 343246 x 343488 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,54,54,2.5,2.5,100000 total time: 10.00 hours.
(28·10121+71)/9 = 3(1)1209<122> = 3 · 13 · C120
C120 = P32 · P88
P32 = 88250508996934421910237303503471<32>
P88 = 9039277017070896785066121746411140231987821216816813125338426885493714376603735640821751<88>
SNFS difficulty: 123 digits. Divisors found: r1=88250508996934421910237303503471 r2=9039277017070896785066121746411140231987821216816813125338426885493714376603735640821751 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 797720797720797720797720797720797720797720797720797720797720797720797720797720797720797720797720797720797720797720797721 m: 2000000000000000000000000 deg: 5 c5: 35 c0: 284 skew: 1.52 type: snfs lss: 1 rlim: 790000 alim: 790000 lpbr: 25 lpba: 25 Factor base limits: 790000/790000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [395000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 95126 x 95352 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,790000,790000,25,25,46,46,2.4,2.4,50000 total time: 1.20 hours.
(28·10120+71)/9 = 3(1)1199<121> = 11 · 435181 · 18265558777<11> · C104
C104 = P36 · P68
P36 = 442460566136144594370009127235877449<36>
P68 = 80416538963720077560264003230693394349183018398367267759796577012833<68>
SNFS difficulty: 121 digits. Divisors found: r1=442460566136144594370009127235877449 r2=80416538963720077560264003230693394349183018398367267759796577012833 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 35581147356596916060734014065265079727475129640192670336805045603048589526584395617189367471510088303017 m: 1000000000000000000000000 deg: 5 c5: 28 c0: 71 skew: 1.20 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 520001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 86191 x 86420 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.4,2.4,50000 total time: 1.00 hours.
(28·10189+71)/9 = 3(1)1889<190> = 41 · C188
C188 = P36 · P153
P36 = 154404198802585779625548736654848061<36>
P153 = 491442327320423324677368836487922152089885148164851026168352045646964403454221159385528666500912510299956883818830016131844263490242213578840344716671619<153>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2777304898 Step 1 took 22057ms Step 2 took 14793ms ********** Factor found in step 2: 154404198802585779625548736654848061 Found probable prime factor of 36 digits: 154404198802585779625548736654848061 Probable prime cofactor 491442327320423324677368836487922152089885148164851026168352045646964403454221159385528666500912510299956883818830016131844263490242213578840344716671619 has 153 digits To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles, And by opposing end them? To die: to sleep; No more; and by a sleep to say we end The heart-ache and the thousand natural shocks That flesh is heir to, 'tis a consummation Devoutly to be wish'd. To die, to sleep; To sleep: perchance to dream: ay, there's the rub!
By Robert Backstrom / Msieve, GGNFS
(28·10182+71)/9 = 3(1)1819<183> = 11 · 17 · 17937235419397613597<20> · 1240051552825565617766747<25> · 3209888690684034869163037<25> · 4136832651683704203599999<25> · C88
C88 = P40 · P49
P40 = 1769146270425716073999738991617358320203<40>
P49 = 3183882267929421411122992492160640617807896639987<49>
Thu Nov 13 17:49:42 2008 Thu Nov 13 17:49:42 2008 Thu Nov 13 17:49:42 2008 Msieve v. 1.38 Thu Nov 13 17:49:42 2008 random seeds: 51185410 c757fac6 Thu Nov 13 17:49:42 2008 factoring 5632753439781906371926677051017548102999369398501852290406917367586148830928022159757361 (88 digits) Thu Nov 13 17:49:42 2008 searching for 15-digit factors Thu Nov 13 17:49:43 2008 commencing quadratic sieve (88-digit input) Thu Nov 13 17:49:43 2008 using multiplier of 15 Thu Nov 13 17:49:43 2008 using 64kb Opteron sieve core Thu Nov 13 17:49:43 2008 sieve interval: 14 blocks of size 65536 Thu Nov 13 17:49:43 2008 processing polynomials in batches of 8 Thu Nov 13 17:49:43 2008 using a sieve bound of 1518311 (58000 primes) Thu Nov 13 17:49:43 2008 using large prime bound of 121464880 (26 bits) Thu Nov 13 17:49:43 2008 using double large prime bound of 356460311108640 (42-49 bits) Thu Nov 13 17:49:43 2008 using trial factoring cutoff of 49 bits Thu Nov 13 17:49:43 2008 polynomial 'A' values have 11 factors Thu Nov 13 18:29:52 2008 58287 relations (16307 full + 41980 combined from 608396 partial), need 58096 Thu Nov 13 18:29:53 2008 begin with 624703 relations Thu Nov 13 18:29:53 2008 reduce to 139184 relations in 10 passes Thu Nov 13 18:29:53 2008 attempting to read 139184 relations Thu Nov 13 18:29:54 2008 recovered 139184 relations Thu Nov 13 18:29:54 2008 recovered 116779 polynomials Thu Nov 13 18:29:54 2008 attempting to build 58287 cycles Thu Nov 13 18:29:54 2008 found 58287 cycles in 6 passes Thu Nov 13 18:29:55 2008 distribution of cycle lengths: Thu Nov 13 18:29:55 2008 length 1 : 16307 Thu Nov 13 18:29:55 2008 length 2 : 11401 Thu Nov 13 18:29:55 2008 length 3 : 10285 Thu Nov 13 18:29:55 2008 length 4 : 7674 Thu Nov 13 18:29:55 2008 length 5 : 5269 Thu Nov 13 18:29:55 2008 length 6 : 3307 Thu Nov 13 18:29:55 2008 length 7 : 1957 Thu Nov 13 18:29:55 2008 length 9+: 2087 Thu Nov 13 18:29:55 2008 largest cycle: 21 relations Thu Nov 13 18:29:55 2008 matrix is 58000 x 58287 (14.3 MB) with weight 3515841 (60.32/col) Thu Nov 13 18:29:55 2008 sparse part has weight 3515841 (60.32/col) Thu Nov 13 18:29:55 2008 filtering completed in 3 passes Thu Nov 13 18:29:55 2008 matrix is 53538 x 53602 (13.3 MB) with weight 3259658 (60.81/col) Thu Nov 13 18:29:55 2008 sparse part has weight 3259658 (60.81/col) Thu Nov 13 18:29:56 2008 saving the first 48 matrix rows for later Thu Nov 13 18:29:56 2008 matrix is 53490 x 53602 (9.6 MB) with weight 2670563 (49.82/col) Thu Nov 13 18:29:56 2008 sparse part has weight 2192693 (40.91/col) Thu Nov 13 18:29:56 2008 matrix includes 64 packed rows Thu Nov 13 18:29:56 2008 using block size 21440 for processor cache size 1024 kB Thu Nov 13 18:29:56 2008 commencing Lanczos iteration Thu Nov 13 18:29:56 2008 memory use: 8.7 MB Thu Nov 13 18:30:16 2008 lanczos halted after 847 iterations (dim = 53484) Thu Nov 13 18:30:17 2008 recovered 16 nontrivial dependencies Thu Nov 13 18:30:17 2008 prp40 factor: 1769146270425716073999738991617358320203 Thu Nov 13 18:30:17 2008 prp49 factor: 3183882267929421411122992492160640617807896639987 Thu Nov 13 18:30:17 2008 elapsed time 00:40:35
(29·10115-11)/9 = 3(2)1141<116> = 491 · 49464953330747879<17> · C97
C97 = P42 · P55
P42 = 521485095599320202335987001799276507049523<42>
P55 = 2544101840587878969578582280072469936142006701535179643<55>
Number: n N=1326711191553376550163673662779438743163331933916517632567212608197880091269011163554673702460289 ( 97 digits) SNFS difficulty: 116 digits. Divisors found: r1=521485095599320202335987001799276507049523 (pp42) r2=2544101840587878969578582280072469936142006701535179643 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.82 hours. Scaled time: 1.50 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_2_114_1 n: 1326711191553376550163673662779438743163331933916517632567212608197880091269011163554673702460289 type: snfs skew: 0.82 deg: 5 c5: 29 c0: -11 m: 100000000000000000000000 rlim: 500000 alim: 500000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [100000, 180001) Primes: RFBsize:41538, AFBsize:41708, largePrimes:3125611 encountered Relations: rels:2743279, finalFF:139616 Max relations in full relation-set: 48 Initial matrix: 83311 x 139616 with sparse part having weight 13302111. Pruned matrix : 68753 x 69233 with weight 3681833. Total sieving time: 0.74 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,500000,500000,27,27,54,54,2.5,2.5,50000 total time: 0.82 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(28·10128+71)/9 = 3(1)1279<129> = 112 · 40591 · 2076617 · C116
C116 = P49 · P68
P49 = 1759361168535800593722424780888255616232128643859<49>
P68 = 17337600581458520378695677885782595812103597467631586975360877316443<68>
Number: 31119_128 N=30503101218601838242281562486678231891968486574615790895383405789704114369495831474670624493780031992478388791673537 ( 116 digits) SNFS difficulty: 129 digits. Divisors found: r1=1759361168535800593722424780888255616232128643859 (pp49) r2=17337600581458520378695677885782595812103597467631586975360877316443 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.81 hours. Scaled time: 7.58 units (timescale=1.991). Factorization parameters were as follows: name: 31119_128 n: 30503101218601838242281562486678231891968486574615790895383405789704114369495831474670624493780031992478388791673537 m: 20000000000000000000000000 deg: 5 c5: 875 c0: 71 skew: 0.61 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 855001) Primes: RFBsize:79251, AFBsize:79577, largePrimes:2837693 encountered Relations: rels:2869586, finalFF:323357 Max relations in full relation-set: 28 Initial matrix: 158894 x 323357 with sparse part having weight 25840052. Pruned matrix : 119292 x 120150 with weight 7146188. Total sieving time: 3.60 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 3.81 hours. --------- CPU info (if available) ----------
(28·10124+71)/9 = 3(1)1239<125> = 33 · 11 · 41 · 21023 · 426161 · 711317 · 463869692723597<15> · C90
C90 = P32 · P59
P32 = 61034350822028682568383479322877<32>
P59 = 14160327778718875019797795731954549923748306637725290915413<59>
Thu Nov 13 13:19:25 2008 Msieve v. 1.38 Thu Nov 13 13:19:25 2008 random seeds: 12c89b69 9a9ad8a5 Thu Nov 13 13:19:25 2008 factoring 864266413401245958241356446200346615110630641383201062809846268652697374724364416722803201 (90 digits) Thu Nov 13 13:19:27 2008 searching for 15-digit factors Thu Nov 13 13:19:28 2008 commencing quadratic sieve (90-digit input) Thu Nov 13 13:19:28 2008 using multiplier of 1 Thu Nov 13 13:19:28 2008 using 64kb Pentium 4 sieve core Thu Nov 13 13:19:28 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 13:19:28 2008 processing polynomials in batches of 6 Thu Nov 13 13:19:28 2008 using a sieve bound of 1613099 (61176 primes) Thu Nov 13 13:19:28 2008 using large prime bound of 135500316 (27 bits) Thu Nov 13 13:19:28 2008 using double large prime bound of 434002769636940 (42-49 bits) Thu Nov 13 13:19:28 2008 using trial factoring cutoff of 49 bits Thu Nov 13 13:19:28 2008 polynomial 'A' values have 11 factors Thu Nov 13 14:59:16 2008 61273 relations (16965 full + 44308 combined from 655697 partial), need 61272 Thu Nov 13 14:59:18 2008 begin with 672662 relations Thu Nov 13 14:59:19 2008 reduce to 146911 relations in 12 passes Thu Nov 13 14:59:19 2008 attempting to read 146911 relations Thu Nov 13 14:59:23 2008 recovered 146911 relations Thu Nov 13 14:59:23 2008 recovered 118929 polynomials Thu Nov 13 14:59:23 2008 attempting to build 61273 cycles Thu Nov 13 14:59:23 2008 found 61273 cycles in 5 passes Thu Nov 13 14:59:23 2008 distribution of cycle lengths: Thu Nov 13 14:59:23 2008 length 1 : 16965 Thu Nov 13 14:59:23 2008 length 2 : 12014 Thu Nov 13 14:59:23 2008 length 3 : 10823 Thu Nov 13 14:59:23 2008 length 4 : 8074 Thu Nov 13 14:59:23 2008 length 5 : 5686 Thu Nov 13 14:59:23 2008 length 6 : 3488 Thu Nov 13 14:59:23 2008 length 7 : 1983 Thu Nov 13 14:59:23 2008 length 9+: 2240 Thu Nov 13 14:59:23 2008 largest cycle: 18 relations Thu Nov 13 14:59:24 2008 matrix is 61176 x 61273 (14.8 MB) with weight 3641345 (59.43/col) Thu Nov 13 14:59:24 2008 sparse part has weight 3641345 (59.43/col) Thu Nov 13 14:59:25 2008 filtering completed in 3 passes Thu Nov 13 14:59:25 2008 matrix is 56752 x 56816 (13.9 MB) with weight 3427126 (60.32/col) Thu Nov 13 14:59:25 2008 sparse part has weight 3427126 (60.32/col) Thu Nov 13 14:59:25 2008 saving the first 48 matrix rows for later Thu Nov 13 14:59:25 2008 matrix is 56704 x 56816 (10.4 MB) with weight 2857107 (50.29/col) Thu Nov 13 14:59:25 2008 sparse part has weight 2375998 (41.82/col) Thu Nov 13 14:59:25 2008 matrix includes 64 packed rows Thu Nov 13 14:59:25 2008 using block size 21845 for processor cache size 512 kB Thu Nov 13 14:59:26 2008 commencing Lanczos iteration Thu Nov 13 14:59:26 2008 memory use: 9.3 MB Thu Nov 13 15:00:03 2008 lanczos halted after 898 iterations (dim = 56700) Thu Nov 13 15:00:03 2008 recovered 15 nontrivial dependencies Thu Nov 13 15:00:04 2008 prp32 factor: 61034350822028682568383479322877 Thu Nov 13 15:00:04 2008 prp59 factor: 14160327778718875019797795731954549923748306637725290915413 Thu Nov 13 15:00:04 2008 elapsed time 01:40:39
(28·10142+71)/9 = 3(1)1419<143> = 32 · 11 · 29 · 173 · 1170549383<10> · C128
C128 = P53 · P75
P53 = 98956011461166233106158495680143819212663834594612911<53>
P75 = 540759681615055896653927742171404547325622441779817255231447555411397200261<75>
Number: 31119_142 N=53511421251636074461001855116575692241530928222593843976577478578526658990658578980492834986144528791340522330374752498443169771 ( 128 digits) SNFS difficulty: 143 digits. Divisors found: r1=98956011461166233106158495680143819212663834594612911 (pp53) r2=540759681615055896653927742171404547325622441779817255231447555411397200261 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.53 hours. Scaled time: 14.69 units (timescale=1.011). Factorization parameters were as follows: name: 31119_142 n: 53511421251636074461001855116575692241530928222593843976577478578526658990658578980492834986144528791340522330374752498443169771 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: 142 skew: 0.96 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 2170001) Primes: RFBsize:130902, AFBsize:130971, largePrimes:4300379 encountered Relations: rels:4782240, finalFF:601062 Max relations in full relation-set: 28 Initial matrix: 261939 x 601062 with sparse part having weight 69303084. Pruned matrix : 195615 x 196988 with weight 27282474. Total sieving time: 14.12 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.28 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 14.53 hours. --------- CPU info (if available) ----------
(29·10124-11)/9 = 3(2)1231<125> = 7 · 50091271 · 40363075974930714377108729<26> · C91
C91 = P41 · P51
P41 = 18249620940906744369260499117790083340667<41>
P51 = 124754808339746480688040731128208190032343004178751<51>
Thu Nov 13 15:18:50 2008 Msieve v. 1.38 Thu Nov 13 15:18:50 2008 random seeds: d4f311d8 1a1720a9 Thu Nov 13 15:18:50 2008 factoring 2276727962755844728256011612134281078047322333991346968381899355391434077181621330895566917 (91 digits) Thu Nov 13 15:18:52 2008 searching for 15-digit factors Thu Nov 13 15:18:53 2008 commencing quadratic sieve (91-digit input) Thu Nov 13 15:18:53 2008 using multiplier of 2 Thu Nov 13 15:18:53 2008 using 64kb Pentium 4 sieve core Thu Nov 13 15:18:53 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 15:18:53 2008 processing polynomials in batches of 6 Thu Nov 13 15:18:54 2008 using a sieve bound of 1680377 (63529 primes) Thu Nov 13 15:18:54 2008 using large prime bound of 154594684 (27 bits) Thu Nov 13 15:18:54 2008 using double large prime bound of 550237418754584 (42-49 bits) Thu Nov 13 15:18:54 2008 using trial factoring cutoff of 49 bits Thu Nov 13 15:18:54 2008 polynomial 'A' values have 12 factors Thu Nov 13 16:23:57 2008 10634 relations (6786 full + 3848 combined from 305664 partial), need 63625 Thu Nov 13 16:23:57 2008 elapsed time 01:05:07 Thu Nov 13 16:33:29 2008 Thu Nov 13 16:33:29 2008 Thu Nov 13 16:33:29 2008 Msieve v. 1.38 Thu Nov 13 16:33:29 2008 random seeds: 2f4d82cd b2c5050e Thu Nov 13 16:33:29 2008 factoring 2276727962755844728256011612134281078047322333991346968381899355391434077181621330895566917 (91 digits) Thu Nov 13 16:33:30 2008 searching for 15-digit factors Thu Nov 13 16:33:32 2008 commencing quadratic sieve (91-digit input) Thu Nov 13 16:33:32 2008 using multiplier of 2 Thu Nov 13 16:33:32 2008 using 64kb Pentium 4 sieve core Thu Nov 13 16:33:32 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 16:33:32 2008 processing polynomials in batches of 6 Thu Nov 13 16:33:32 2008 using a sieve bound of 1680377 (63529 primes) Thu Nov 13 16:33:32 2008 using large prime bound of 154594684 (27 bits) Thu Nov 13 16:33:32 2008 using double large prime bound of 550237418754584 (42-49 bits) Thu Nov 13 16:33:32 2008 using trial factoring cutoff of 49 bits Thu Nov 13 16:33:32 2008 polynomial 'A' values have 12 factors Thu Nov 13 16:33:33 2008 restarting with 6786 full and 305664 partial relations Thu Nov 13 18:03:34 2008 63740 relations (16320 full + 47420 combined from 728152 partial), need 63625 Thu Nov 13 18:03:37 2008 begin with 744472 relations Thu Nov 13 18:03:38 2008 reduce to 158551 relations in 10 passes Thu Nov 13 18:03:38 2008 attempting to read 158551 relations Thu Nov 13 18:03:42 2008 recovered 158551 relations Thu Nov 13 18:03:42 2008 recovered 138092 polynomials Thu Nov 13 18:03:42 2008 attempting to build 63740 cycles Thu Nov 13 18:03:42 2008 found 63740 cycles in 6 passes Thu Nov 13 18:03:42 2008 distribution of cycle lengths: Thu Nov 13 18:03:42 2008 length 1 : 16320 Thu Nov 13 18:03:42 2008 length 2 : 11921 Thu Nov 13 18:03:42 2008 length 3 : 11266 Thu Nov 13 18:03:42 2008 length 4 : 8632 Thu Nov 13 18:03:42 2008 length 5 : 6259 Thu Nov 13 18:03:42 2008 length 6 : 4000 Thu Nov 13 18:03:42 2008 length 7 : 2396 Thu Nov 13 18:03:42 2008 length 9+: 2946 Thu Nov 13 18:03:42 2008 largest cycle: 16 relations Thu Nov 13 18:03:42 2008 matrix is 63529 x 63740 (15.8 MB) with weight 3885568 (60.96/col) Thu Nov 13 18:03:42 2008 sparse part has weight 3885568 (60.96/col) Thu Nov 13 18:03:44 2008 filtering completed in 3 passes Thu Nov 13 18:03:44 2008 matrix is 59875 x 59938 (14.9 MB) with weight 3676757 (61.34/col) Thu Nov 13 18:03:44 2008 sparse part has weight 3676757 (61.34/col) Thu Nov 13 18:03:44 2008 saving the first 48 matrix rows for later Thu Nov 13 18:03:44 2008 matrix is 59827 x 59938 (9.3 MB) with weight 2874020 (47.95/col) Thu Nov 13 18:03:44 2008 sparse part has weight 2084673 (34.78/col) Thu Nov 13 18:03:44 2008 matrix includes 64 packed rows Thu Nov 13 18:03:44 2008 using block size 21845 for processor cache size 512 kB Thu Nov 13 18:03:45 2008 commencing Lanczos iteration Thu Nov 13 18:03:45 2008 memory use: 9.1 MB Thu Nov 13 18:04:21 2008 lanczos halted after 948 iterations (dim = 59824) Thu Nov 13 18:04:22 2008 recovered 15 nontrivial dependencies Thu Nov 13 18:04:22 2008 prp41 factor: 18249620940906744369260499117790083340667 Thu Nov 13 18:04:22 2008 prp51 factor: 124754808339746480688040731128208190032343004178751 Thu Nov 13 18:04:22 2008 elapsed time 01:30:53
(29·10116-11)/9 = 3(2)1151<117> = 32 · C116
C116 = P37 · P79
P37 = 9688360407028247869586928337915901923<37>
P79 = 3695410537146224236337805119314202453465253249831680260806032183583448457242903<79>
Number: 32221_116 N=35802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469 ( 116 digits) SNFS difficulty: 118 digits. Divisors found: r1=9688360407028247869586928337915901923 (pp37) r2=3695410537146224236337805119314202453465253249831680260806032183583448457242903 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.34 hours. Scaled time: 4.67 units (timescale=1.997). Factorization parameters were as follows: name: 32221_116 n: 35802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469 m: 200000000000000000000000 deg: 5 c5: 145 c0: -176 skew: 1.04 type: snfs lss: 1 rlim: 670000 alim: 670000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 670000/670000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [335000, 585001) Primes: RFBsize:54309, AFBsize:53853, largePrimes:1347054 encountered Relations: rels:1350498, finalFF:174389 Max relations in full relation-set: 28 Initial matrix: 108229 x 174389 with sparse part having weight 8537228. Pruned matrix : 85073 x 85678 with weight 3131755. Total sieving time: 2.25 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,670000,670000,25,25,45,45,2.2,2.2,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
(28·10129+71)/9 = 3(1)1289<130> = 41 · 773 · 445141 · C120
C120 = P57 · P63
P57 = 998661353734226691201162008429721923263380151711856352253<57>
P63 = 220818944841654637670697572402532957665466840826897976978866571<63>
Number: 31119_129 N=220523346385730354440563592134768481002827585182170729750542538185950859037739379422434695266187802376393347502462234463 ( 120 digits) SNFS difficulty: 131 digits. Divisors found: r1=998661353734226691201162008429721923263380151711856352253 (pp57) r2=220818944841654637670697572402532957665466840826897976978866571 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.54 hours. Scaled time: 4.55 units (timescale=1.002). Factorization parameters were as follows: name: 31119_129 n: 220523346385730354440563592134768481002827585182170729750542538185950859037739379422434695266187802376393347502462234463 m: 100000000000000000000000000 deg: 5 c5: 14 c0: 355 skew: 1.91 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 985001) Primes: RFBsize:83548, AFBsize:83662, largePrimes:3295145 encountered Relations: rels:3630249, finalFF:604759 Max relations in full relation-set: 28 Initial matrix: 167276 x 604759 with sparse part having weight 47640109. Pruned matrix : 104073 x 104973 with weight 9222543. Total sieving time: 4.42 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 4.54 hours. --------- CPU info (if available) ----------
(28·10126+71)/9 = 3(1)1259<127> = 11 · 367 · 27521237 · C116
C116 = P33 · P84
P33 = 260219561015023904073125637011407<33>
P84 = 107609071054194816684961875836184239251131272684730456080520869226989494139859803993<84>
Number: 31119_126 N=28001985230957090767152638224044590284972366033375119079078864782444846527652567332098129248206933089336649325148151 ( 116 digits) SNFS difficulty: 128 digits. Divisors found: r1=260219561015023904073125637011407 (pp33) r2=107609071054194816684961875836184239251131272684730456080520869226989494139859803993 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.93 hours. Scaled time: 5.83 units (timescale=1.991). Factorization parameters were as follows: name: 31119_126 n: 28001985230957090767152638224044590284972366033375119079078864782444846527652567332098129248206933089336649325148151 m: 20000000000000000000000000 deg: 5 c5: 35 c0: 284 skew: 1.52 type: snfs lss: 1 rlim: 950000 alim: 950000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 950000/950000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [475000, 725001) Primes: RFBsize:74907, AFBsize:74969, largePrimes:2608741 encountered Relations: rels:2550505, finalFF:242470 Max relations in full relation-set: 28 Initial matrix: 149943 x 242470 with sparse part having weight 18053980. Pruned matrix : 120623 x 121436 with weight 6350642. Total sieving time: 2.74 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,950000,950000,26,26,47,47,2.3,2.3,50000 total time: 2.93 hours. --------- CPU info (if available) ----------
(29·10137-11)/9 = 3(2)1361<138> = 3 · 720703 · 175418193893329959997<21> · 833113457520160415741<21> · C91
C91 = P37 · P54
P37 = 4775676152509569129014103327365320999<37>
P54 = 213532630462205808407077683016256587935549400085341903<54>
Thu Nov 13 18:23:32 2008 Msieve v. 1.38 Thu Nov 13 18:23:32 2008 random seeds: c41d1ad7 11a0be03 Thu Nov 13 18:23:32 2008 factoring 1019762691080994653046278600591474071223441368709160737667020953237916146217839070260521097 (91 digits) Thu Nov 13 18:23:33 2008 searching for 15-digit factors Thu Nov 13 18:23:35 2008 commencing quadratic sieve (91-digit input) Thu Nov 13 18:23:35 2008 using multiplier of 1 Thu Nov 13 18:23:35 2008 using 64kb Pentium 4 sieve core Thu Nov 13 18:23:35 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 18:23:35 2008 processing polynomials in batches of 6 Thu Nov 13 18:23:35 2008 using a sieve bound of 1652503 (62230 primes) Thu Nov 13 18:23:35 2008 using large prime bound of 145420264 (27 bits) Thu Nov 13 18:23:35 2008 using double large prime bound of 492861412574344 (42-49 bits) Thu Nov 13 18:23:35 2008 using trial factoring cutoff of 49 bits Thu Nov 13 18:23:35 2008 polynomial 'A' values have 11 factors Thu Nov 13 21:02:39 2008 62350 relations (16199 full + 46151 combined from 703587 partial), need 62326 Thu Nov 13 21:02:42 2008 begin with 719786 relations Thu Nov 13 21:02:43 2008 reduce to 154720 relations in 9 passes Thu Nov 13 21:02:43 2008 attempting to read 154720 relations Thu Nov 13 21:02:47 2008 recovered 154720 relations Thu Nov 13 21:02:47 2008 recovered 134659 polynomials Thu Nov 13 21:02:47 2008 attempting to build 62350 cycles Thu Nov 13 21:02:47 2008 found 62350 cycles in 5 passes Thu Nov 13 21:02:47 2008 distribution of cycle lengths: Thu Nov 13 21:02:47 2008 length 1 : 16199 Thu Nov 13 21:02:47 2008 length 2 : 11735 Thu Nov 13 21:02:47 2008 length 3 : 10711 Thu Nov 13 21:02:47 2008 length 4 : 8301 Thu Nov 13 21:02:47 2008 length 5 : 6078 Thu Nov 13 21:02:47 2008 length 6 : 3919 Thu Nov 13 21:02:47 2008 length 7 : 2405 Thu Nov 13 21:02:47 2008 length 9+: 3002 Thu Nov 13 21:02:47 2008 largest cycle: 17 relations Thu Nov 13 21:02:48 2008 matrix is 62230 x 62350 (15.6 MB) with weight 3828185 (61.40/col) Thu Nov 13 21:02:48 2008 sparse part has weight 3828185 (61.40/col) Thu Nov 13 21:02:49 2008 filtering completed in 3 passes Thu Nov 13 21:02:49 2008 matrix is 58550 x 58614 (14.8 MB) with weight 3635067 (62.02/col) Thu Nov 13 21:02:49 2008 sparse part has weight 3635067 (62.02/col) Thu Nov 13 21:02:49 2008 saving the first 48 matrix rows for later Thu Nov 13 21:02:49 2008 matrix is 58502 x 58614 (11.3 MB) with weight 3100494 (52.90/col) Thu Nov 13 21:02:49 2008 sparse part has weight 2605874 (44.46/col) Thu Nov 13 21:02:49 2008 matrix includes 64 packed rows Thu Nov 13 21:02:49 2008 using block size 21845 for processor cache size 512 kB Thu Nov 13 21:02:50 2008 commencing Lanczos iteration Thu Nov 13 21:02:50 2008 memory use: 10.0 MB Thu Nov 13 21:03:30 2008 lanczos halted after 926 iterations (dim = 58500) Thu Nov 13 21:03:31 2008 recovered 15 nontrivial dependencies Thu Nov 13 21:03:31 2008 prp37 factor: 4775676152509569129014103327365320999 Thu Nov 13 21:03:31 2008 prp54 factor: 213532630462205808407077683016256587935549400085341903 Thu Nov 13 21:03:31 2008 elapsed time 02:39:59
(29·10128-11)/9 = 3(2)1271<129> = 3 · 2560764391879<13> · C116
C116 = P57 · P60
P57 = 195630407555737641475441597959544100446483683136103342557<57>
P60 = 214401713467205088259322269652181056024814754718303452106669<60>
Number: 32221_128 N=41943494586237815139200117024764776394705485795105030962417067283970524902850117778680933664992870761876614211212633 ( 116 digits) SNFS difficulty: 130 digits. Divisors found: r1=195630407555737641475441597959544100446483683136103342557 (pp57) r2=214401713467205088259322269652181056024814754718303452106669 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.51 hours. Scaled time: 7.60 units (timescale=1.011). Factorization parameters were as follows: name: 32221_128 n: 41943494586237815139200117024764776394705485795105030962417067283970524902850117778680933664992870761876614211212633 m: 50000000000000000000000000 deg: 5 c5: 232 c0: -275 skew: 1.03 type: snfs lss: 1 rlim: 1060000 alim: 1060000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1060000/1060000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [530000, 1180001) Primes: RFBsize:82832, AFBsize:82349, largePrimes:3595337 encountered Relations: rels:4154092, finalFF:780966 Max relations in full relation-set: 28 Initial matrix: 165248 x 780966 with sparse part having weight 77798435. Pruned matrix : 113944 x 114834 with weight 15153460. Total sieving time: 7.34 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1060000,1060000,26,26,47,47,2.3,2.3,50000 total time: 7.51 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(28·10134+71)/9 = 3(1)1339<135> = 11 · 17 · 41 · 21157 · 707563 · 53267801 · 62076811 · 977221428389<12> · C93
C93 = P45 · P49
P45 = 139170240895771901265496748581032926011617269<45>
P49 = 6027501546530032936138143435351272065230728470777<49>
Thu Nov 13 07:24:34 2008 Msieve v. 1.38 Thu Nov 13 07:24:34 2008 random seeds: c0092a71 e53f1a57 Thu Nov 13 07:24:34 2008 factoring 838848842230222371146179714520208650316197768760776722992556595071439398757036723212975048013 (93 digits) Thu Nov 13 07:24:35 2008 searching for 15-digit factors Thu Nov 13 07:24:37 2008 commencing quadratic sieve (93-digit input) Thu Nov 13 07:24:37 2008 using multiplier of 5 Thu Nov 13 07:24:37 2008 using 64kb Pentium 4 sieve core Thu Nov 13 07:24:37 2008 sieve interval: 18 blocks of size 65536 Thu Nov 13 07:24:37 2008 processing polynomials in batches of 6 Thu Nov 13 07:24:37 2008 using a sieve bound of 1951709 (72941 primes) Thu Nov 13 07:24:37 2008 using large prime bound of 243963625 (27 bits) Thu Nov 13 07:24:37 2008 using double large prime bound of 1250791990793625 (42-51 bits) Thu Nov 13 07:24:37 2008 using trial factoring cutoff of 51 bits Thu Nov 13 07:24:37 2008 polynomial 'A' values have 12 factors Thu Nov 13 12:49:08 2008 73213 relations (17770 full + 55443 combined from 1006720 partial), need 73037 Thu Nov 13 12:49:12 2008 begin with 1024490 relations Thu Nov 13 12:49:13 2008 reduce to 190804 relations in 10 passes Thu Nov 13 12:49:13 2008 attempting to read 190804 relations Thu Nov 13 12:49:19 2008 recovered 190804 relations Thu Nov 13 12:49:19 2008 recovered 175954 polynomials Thu Nov 13 12:49:19 2008 attempting to build 73213 cycles Thu Nov 13 12:49:19 2008 found 73213 cycles in 5 passes Thu Nov 13 12:49:19 2008 distribution of cycle lengths: Thu Nov 13 12:49:19 2008 length 1 : 17770 Thu Nov 13 12:49:19 2008 length 2 : 12760 Thu Nov 13 12:49:19 2008 length 3 : 12259 Thu Nov 13 12:49:19 2008 length 4 : 9947 Thu Nov 13 12:49:19 2008 length 5 : 7382 Thu Nov 13 12:49:19 2008 length 6 : 5192 Thu Nov 13 12:49:19 2008 length 7 : 3351 Thu Nov 13 12:49:19 2008 length 9+: 4552 Thu Nov 13 12:49:19 2008 largest cycle: 18 relations Thu Nov 13 12:49:20 2008 matrix is 72941 x 73213 (18.6 MB) with weight 4591029 (62.71/col) Thu Nov 13 12:49:20 2008 sparse part has weight 4591029 (62.71/col) Thu Nov 13 12:49:21 2008 filtering completed in 3 passes Thu Nov 13 12:49:21 2008 matrix is 69751 x 69815 (17.8 MB) with weight 4396443 (62.97/col) Thu Nov 13 12:49:21 2008 sparse part has weight 4396443 (62.97/col) Thu Nov 13 12:49:22 2008 saving the first 48 matrix rows for later Thu Nov 13 12:49:22 2008 matrix is 69703 x 69815 (10.6 MB) with weight 3385564 (48.49/col) Thu Nov 13 12:49:22 2008 sparse part has weight 2353687 (33.71/col) Thu Nov 13 12:49:22 2008 matrix includes 64 packed rows Thu Nov 13 12:49:22 2008 using block size 21845 for processor cache size 512 kB Thu Nov 13 12:49:23 2008 commencing Lanczos iteration Thu Nov 13 12:49:23 2008 memory use: 10.7 MB Thu Nov 13 12:50:13 2008 lanczos halted after 1104 iterations (dim = 69703) Thu Nov 13 12:50:13 2008 recovered 18 nontrivial dependencies Thu Nov 13 12:50:14 2008 prp45 factor: 139170240895771901265496748581032926011617269 Thu Nov 13 12:50:14 2008 prp49 factor: 6027501546530032936138143435351272065230728470777 Thu Nov 13 12:50:14 2008 elapsed time 05:25:40
By Robert Backstrom / Msieve
(29·10127-11)/9 = 3(2)1261<128> = 53 · 2070737 · 87683177 · 110869756429<12> · 84607104219193<14> · C87
C87 = P41 · P46
P41 = 95070682214954468326311130551196839108947<41>
P46 = 3754670784430775196082684395797432868827232127<46>
Thu Nov 13 11:10:56 2008 Thu Nov 13 11:10:56 2008 Thu Nov 13 11:10:56 2008 Msieve v. 1.38 Thu Nov 13 11:10:56 2008 random seeds: 43f61fc0 27f42988 Thu Nov 13 11:10:56 2008 factoring 356959112968392041887915367515924314281826255548460137183739424614888414281767011540269 (87 digits) Thu Nov 13 11:10:56 2008 searching for 15-digit factors Thu Nov 13 11:10:57 2008 commencing quadratic sieve (87-digit input) Thu Nov 13 11:10:57 2008 using multiplier of 5 Thu Nov 13 11:10:57 2008 using 64kb Opteron sieve core Thu Nov 13 11:10:57 2008 sieve interval: 10 blocks of size 65536 Thu Nov 13 11:10:57 2008 processing polynomials in batches of 11 Thu Nov 13 11:10:57 2008 using a sieve bound of 1489637 (56536 primes) Thu Nov 13 11:10:57 2008 using large prime bound of 119170960 (26 bits) Thu Nov 13 11:10:57 2008 using double large prime bound of 344434582165760 (42-49 bits) Thu Nov 13 11:10:57 2008 using trial factoring cutoff of 49 bits Thu Nov 13 11:10:57 2008 polynomial 'A' values have 11 factors Thu Nov 13 11:13:36 2008 Thu Nov 13 11:13:36 2008 Thu Nov 13 11:13:36 2008 Msieve v. 1.38 Thu Nov 13 11:13:36 2008 random seeds: 1e468de8 f26209d1 Thu Nov 13 11:13:36 2008 factoring 356959112968392041887915367515924314281826255548460137183739424614888414281767011540269 (87 digits) Thu Nov 13 11:13:37 2008 searching for 15-digit factors Thu Nov 13 11:13:37 2008 commencing quadratic sieve (87-digit input) Thu Nov 13 11:13:37 2008 using multiplier of 5 Thu Nov 13 11:13:37 2008 using 64kb Opteron sieve core Thu Nov 13 11:13:37 2008 sieve interval: 10 blocks of size 65536 Thu Nov 13 11:13:37 2008 processing polynomials in batches of 11 Thu Nov 13 11:13:37 2008 using a sieve bound of 1489637 (56536 primes) Thu Nov 13 11:13:37 2008 using large prime bound of 119170960 (26 bits) Thu Nov 13 11:13:37 2008 using double large prime bound of 344434582165760 (42-49 bits) Thu Nov 13 11:13:37 2008 using trial factoring cutoff of 49 bits Thu Nov 13 11:13:37 2008 polynomial 'A' values have 11 factors Thu Nov 13 11:13:37 2008 restarting with 1035 full and 38221 partial relations Thu Nov 13 11:41:13 2008 56955 relations (16306 full + 40649 combined from 591487 partial), need 56632 Thu Nov 13 11:41:14 2008 begin with 607793 relations Thu Nov 13 11:41:14 2008 reduce to 135178 relations in 9 passes Thu Nov 13 11:41:14 2008 attempting to read 135178 relations Thu Nov 13 11:41:15 2008 recovered 135178 relations Thu Nov 13 11:41:15 2008 recovered 110766 polynomials Thu Nov 13 11:41:15 2008 attempting to build 56955 cycles Thu Nov 13 11:41:15 2008 found 56955 cycles in 6 passes Thu Nov 13 11:41:16 2008 distribution of cycle lengths: Thu Nov 13 11:41:16 2008 length 1 : 16306 Thu Nov 13 11:41:16 2008 length 2 : 11296 Thu Nov 13 11:41:16 2008 length 3 : 10050 Thu Nov 13 11:41:16 2008 length 4 : 7430 Thu Nov 13 11:41:16 2008 length 5 : 4980 Thu Nov 13 11:41:16 2008 length 6 : 3050 Thu Nov 13 11:41:16 2008 length 7 : 1794 Thu Nov 13 11:41:16 2008 length 9+: 2049 Thu Nov 13 11:41:16 2008 largest cycle: 20 relations Thu Nov 13 11:41:16 2008 matrix is 56536 x 56955 (13.2 MB) with weight 3235569 (56.81/col) Thu Nov 13 11:41:16 2008 sparse part has weight 3235569 (56.81/col) Thu Nov 13 11:41:16 2008 filtering completed in 3 passes Thu Nov 13 11:41:16 2008 matrix is 51499 x 51562 (12.0 MB) with weight 2951835 (57.25/col) Thu Nov 13 11:41:16 2008 sparse part has weight 2951835 (57.25/col) Thu Nov 13 11:41:17 2008 saving the first 48 matrix rows for later Thu Nov 13 11:41:17 2008 matrix is 51451 x 51562 (8.2 MB) with weight 2368789 (45.94/col) Thu Nov 13 11:41:17 2008 sparse part has weight 1827722 (35.45/col) Thu Nov 13 11:41:17 2008 matrix includes 64 packed rows Thu Nov 13 11:41:17 2008 using block size 20624 for processor cache size 1024 kB Thu Nov 13 11:41:17 2008 commencing Lanczos iteration Thu Nov 13 11:41:17 2008 memory use: 7.7 MB Thu Nov 13 11:41:33 2008 lanczos halted after 816 iterations (dim = 51445) Thu Nov 13 11:41:34 2008 recovered 14 nontrivial dependencies Thu Nov 13 11:41:34 2008 prp41 factor: 95070682214954468326311130551196839108947 Thu Nov 13 11:41:34 2008 prp46 factor: 3754670784430775196082684395797432868827232127 Thu Nov 13 11:41:34 2008 elapsed time 00:27:58
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(29·10132-11)/9 = 3(2)1311<133> = 1104974417<10> · 832689448153946153171357026481<30> · C94
C94 = P32 · P62
P32 = 80414506743700883354190522171791<32>
P62 = 43549763580334770575095184643964731287732358444855048847732003<62>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1855890600 Step 1 took 8644ms Step 2 took 7541ms ********** Factor found in step 2: 80414506743700883354190522171791 Found probable prime factor of 32 digits: 80414506743700883354190522171791 Probable prime cofactor 43549763580334770575095184643964731287732358444855048847732003 has 62 digits Input number is 1326711191553376550163673662779438743163331933916517632567212608197880091269011163554673702460289 (97 digits)
(79·10179-7)/9 = 8(7)179<180> = 69191 · C176
C176 = P55 · P121
P55 = 1323486772291042062347767853173796187473215598039738449<55>
P121 = 9585513195744228583885902560617274532350803556151073635205582699852643964350412161988989141326678149345407852327055036503<121>
SNFS difficulty: 181 digits. Divisors found: r1=1323486772291042062347767853173796187473215598039738449 r2=9585513195744228583885902560617274532350803556151073635205582699852643964350412161988989141326678149345407852327055036503 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.946). Factorization parameters were as follows: n: 12686299920188720755268427653564448812385682787902729802687889722330617822806113190700781572426728588657163182751770862941390900229477501087970657712387128062577181682267603847 m: 1000000000000000000000000000000000000 deg: 5 c5: 79 c0: -70 skew: 0.98 type: snfs lss: 1 rlim: 8600000 alim: 8600000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 8600000/8600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4300000, 7100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1428957 x 1429196 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8600000,8600000,27,27,54,54,2.6,2.6,200000 total time: 110.00 hours.
(28·10125+71)/9 = 3(1)1249<126> = 47 · 7013 · 865807 · 637454432903<12> · C103
C103 = P33 · P70
P33 = 948155035316114812542048781151683<33>
P70 = 1803699691397314578497043401639521953896001046423413462657696894175703<70>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2536211752 Step 1 took 10052ms Step 2 took 8101ms ********** Factor found in step 2: 948155035316114812542048781151683 Found probable prime factor of 33 digits: 948155035316114812542048781151683 Probable prime cofactor 1803699691397314578497043401639521953896001046423413462657696894175703 has 70 digits
(28·10156+71)/9 = 3(1)1559<157> = 11 · 373 · 3461 · 2009315225524317079<19> · 43732513694910445326617<23> · C109
C109 = P29 · C80
P29 = 87679139790976199399319247097<29>
C80 = [28435679417441093560965677996084063055357095027467175103552861928042176482013683<80>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3986050529 Step 1 took 10257ms Step 2 took 8464ms ********** Factor found in step 2: 87679139790976199399319247097 Found probable prime factor of 29 digits: 87679139790976199399319247097 Composite cofactor 28435679417441093560965677996084063055357095027467175103552861928042176482013683 has 80 digits
(28·10154+71)/9 = 3(1)1539<155> = 3 · 11 · 19 · 41 · 61 · 10665502717136462501<20> · C130
C130 = P34 · P96
P34 = 3425426951621600515042987227307069<34>
P96 = 543048037030329582597213809565029194214444433430756712726409932533669420532810099590456505890913<96>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1358792107 Step 1 took 13989ms Step 2 took 9636ms ********** Factor found in step 2: 3425426951621600515042987227307069 Found probable prime factor of 34 digits: 3425426951621600515042987227307069 Probable prime cofactor 543048037030329582597213809565029194214444433430756712726409932533669420532810099590456505890913 has 96 digits
(28·10109+71)/9 = 3(1)1089<110> = 3 · 13 · 41 · 4729 · C103
C103 = P34 · P70
P34 = 1316470743289074900325002514828393<34>
P70 = 3125262725179705400651545045523261800581464400858076755340556648062673<70>
SNFS difficulty: 110 digits. Divisors found: r1=1316470743289074900325002514828393 r2=3125262725179705400651545045523261800581464400858076755340556648062673 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 4114316942790966588087621256083623726966051698243828792751114285600512255969760005574311697918503874489 m: 2000000000000000000000000000 c4: 35 c0: 142 skew: 1.42 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 52229 x 52471 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,4,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.40 hours.
(29·10112-11)/9 = 3(2)1111<113> = 7 · 25183 · C108
C108 = P32 · P76
P32 = 42623589369304135120774617930199<32>
P76 = 4288446176859474104734338555208678726328744931833395919458818562976729123059<76>
SNFS difficulty: 114 digits. Divisors found: r1=42623589369304135120774617930199 r2=4288446176859474104734338555208678726328744931833395919458818562976729123059 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 182788968874820441353419950092308429281784322883477074796615756787301083056155922772290957177587046943358741 m: 20000000000000000000000 deg: 5 c5: 725 c0: -88 skew: 0.66 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [280000, 380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83409 x 83622 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,46,46,2.4,2.4,100000 total time: 0.40 hours.
(29·10151-11)/9 = 3(2)1501<152> = 23 · 31 · 5783540629<10> · C139
C139 = P34 · P106
P34 = 6030710732056972996146796583655799<34>
P106 = 1295697647062495140482578388904535513056221855990277044863111841403601357591160208257520544152967493582327<106>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1393290503 Step 1 took 16349ms Step 2 took 10892ms ********** Factor found in step 2: 6030710732056972996146796583655799 Found probable prime factor of 34 digits: 6030710732056972996146796583655799 Probable prime cofactor 1295697647062495140482578388904535513056221855990277044863111841403601357591160208257520544152967493582327 has 106 digits
(29·10162-11)/9 = 3(2)1611<163> = 893147 · 19471057 · C150
C150 = P30 · C120
P30 = 746734138448512777471322756059<30>
C120 = [248128705653600704252183940981166727591290446648117130564206869724052667609229038959837362742059371119512152905479688261<120>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3179040063 Step 1 took 17441ms Step 2 took 12113ms ********** Factor found in step 2: 746734138448512777471322756059 Found probable prime factor of 30 digits: 746734138448512777471322756059 Composite cofactor 248128705653600704252183940981166727591290446648117130564206869724052667609229038959837362742059371119512152905479688261 has 120 digits
(29·10147-11)/9 = 3(2)1461<148> = 15227 · 1590949 · C138
C138 = P59 · P79
P59 = 16431167000761097086608455694019255023550612169609099680183<59>
P79 = 8094992916345143796027360708747750051847185126894636439636003383767537995429069<79>
SNFS difficulty: 149 digits. Divisors found: r1=16431167000761097086608455694019255023550612169609099680183 r2=8094992916345143796027360708747750051847185126894636439636003383767537995429069 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 133010180478445162876285875621075782279046451208838555303715084293857993803205185778981738891730353497872177551901811974373807843761439627 m: 200000000000000000000000000000 deg: 5 c5: 725 c0: -88 skew: 0.66 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 26 lpba: 26 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [1100000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 293099 x 293332 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2200000,2200000,26,26,45,45,2.3,2.3,200000 total time: 10.00 hours.
By Jo Yeong Uk / GMP-ECM, GGNFS
(28·10167+71)/9 = 3(1)1669<168> = C168
C168 = P46 · P122
P46 = 6361593299461195600022136270359902423389375773<46>
P122 = 48904589851328773139603224038629125897433045861866521152439579001132682680657170685564747035658736348401899828271484240603<122>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 (168 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3590283382 Step 1 took 16371ms Step 2 took 7173ms ********** Factor found in step 2: 6361593299461195600022136270359902423389375773 Found probable prime factor of 46 digits: 6361593299461195600022136270359902423389375773 Probable prime cofactor 48904589851328773139603224038629125897433045861866521152439579001132682680657170685564747035658736348401899828271484240603 has 122 digits
(29·10102-11)/9 = 3(2)1011<103> = C103
C103 = P46 · P58
P46 = 2086989367377430338068718358517067554766449659<46>
P58 = 1543957181857307441236327584868144774614328996585231159319<58>
Number: 32221_102 N=3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 103 digits) SNFS difficulty: 103 digits. Divisors found: r1=2086989367377430338068718358517067554766449659 (pp46) r2=1543957181857307441236327584868144774614328996585231159319 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.32 hours. Scaled time: 0.77 units (timescale=2.389). Factorization parameters were as follows: n: 3222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 100000000000000000000 deg: 5 c5: 2900 c0: -11 skew: 0.33 type: snfs rlim: 210000 alim: 210000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 210000/210000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [105000, 180001) Primes: RFBsize:18807, AFBsize:18986, largePrimes:788369 encountered Relations: rels:676681, finalFF:44263 Max relations in full relation-set: 28 Initial matrix: 37860 x 44263 with sparse part having weight 1931482. Pruned matrix : 35761 x 36014 with weight 1237693. Total sieving time: 0.30 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,210000,210000,25,25,44,44,2.2,2.2,15000 total time: 0.32 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047212k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673807) Calibrating delay using timer specific routine.. 5344.58 BogoMIPS (lpj=2672293) Calibrating delay using timer specific routine.. 5344.06 BogoMIPS (lpj=2672032) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672362)
(29·10103-11)/9 = 3(2)1021<104> = C104
C104 = P38 · P67
P38 = 26042266802856807831656958190462844209<38>
P67 = 1237304819359560517371280897725082910678283633399794566410902570269<67>
Number: 32221_103 N=32222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 104 digits) SNFS difficulty: 106 digits. Divisors found: r1=26042266802856807831656958190462844209 (pp38) r2=1237304819359560517371280897725082910678283633399794566410902570269 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.49 hours. Scaled time: 1.16 units (timescale=2.386). Factorization parameters were as follows: n: 32222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 1000000000000000000000 deg: 5 c5: 29 c0: -1100 skew: 2.07 type: snfs rlim: 240000 alim: 240000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 240000/240000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [120000, 240001) Primes: RFBsize:21221, AFBsize:21040, largePrimes:923530 encountered Relations: rels:825591, finalFF:66348 Max relations in full relation-set: 28 Initial matrix: 42328 x 66348 with sparse part having weight 3320261. Pruned matrix : 37600 x 37875 with weight 1286928. Total sieving time: 0.47 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,240000,240000,25,25,44,44,2.2,2.2,20000 total time: 0.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047212k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673807) Calibrating delay using timer specific routine.. 5344.58 BogoMIPS (lpj=2672293) Calibrating delay using timer specific routine.. 5344.06 BogoMIPS (lpj=2672032) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672362)
(28·10101+71)/9 = 3(1)1009<102> = 769 · C99
C99 = P40 · P60
P40 = 1695778772641719924507116262361629971059<40>
P60 = 238572283552329116530644795001097412229139123623034647675189<60>
Number: 31119_101 N=404565814188701054760872706256321340846698453980638636035255020950729663343447478688050859702355151 ( 99 digits) SNFS difficulty: 103 digits. Divisors found: r1=1695778772641719924507116262361629971059 (pp40) r2=238572283552329116530644795001097412229139123623034647675189 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.27 hours. Scaled time: 0.64 units (timescale=2.375). Factorization parameters were as follows: n: 404565814188701054760872706256321340846698453980638636035255020950729663343447478688050859702355151 m: 200000000000000000000 deg: 5 c5: 35 c0: 284 skew: 1.52 type: snfs rlim: 210000 alim: 210000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 210000/210000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [105000, 165001) Primes: RFBsize:18807, AFBsize:18956, largePrimes:778541 encountered Relations: rels:667610, finalFF:45305 Max relations in full relation-set: 28 Initial matrix: 37830 x 45305 with sparse part having weight 1882153. Pruned matrix : 34902 x 35155 with weight 1133450. Total sieving time: 0.25 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,210000,210000,25,25,43,43,2.2,2.2,15000 total time: 0.27 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047212k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673807) Calibrating delay using timer specific routine.. 5344.58 BogoMIPS (lpj=2672293) Calibrating delay using timer specific routine.. 5344.06 BogoMIPS (lpj=2672032) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672362)
(28·10102+71)/9 = 3(1)1019<103> = 11 · 17 · C101
C101 = P42 · P59
P42 = 463851615188877878495082182287898341551647<42>
P59 = 35866982605318560939327970256787851946906520438716252355171<59>
Number: 31119_102 N=16636957813428401663695781342840166369578134284016636957813428401663695781342840166369578134284016637 ( 101 digits) SNFS difficulty: 103 digits. Divisors found: r1=463851615188877878495082182287898341551647 (pp42) r2=35866982605318560939327970256787851946906520438716252355171 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.38 hours. Scaled time: 0.90 units (timescale=2.388). Factorization parameters were as follows: n: 16636957813428401663695781342840166369578134284016636957813428401663695781342840166369578134284016637 m: 200000000000000000000 deg: 5 c5: 175 c0: 142 skew: 0.96 type: snfs rlim: 210000 alim: 210000 lpbr: 25 lpba: 25 mfbr: 43 mfba: 43 rlambda: 2.2 alambda: 2.2 Factor base limits: 210000/210000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [105000, 195001) Primes: RFBsize:18807, AFBsize:18966, largePrimes:830664 encountered Relations: rels:719934, finalFF:49081 Max relations in full relation-set: 28 Initial matrix: 37839 x 49081 with sparse part having weight 2309008. Pruned matrix : 35235 x 35488 with weight 1202455. Total sieving time: 0.36 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,210000,210000,25,25,43,43,2.2,2.2,15000 total time: 0.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047212k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673807) Calibrating delay using timer specific routine.. 5344.58 BogoMIPS (lpj=2672293) Calibrating delay using timer specific routine.. 5344.06 BogoMIPS (lpj=2672032) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672362)
(28·10106+71)/9 = 3(1)1059<107> = 32 · 113 · 249973 · C98
C98 = P47 · P51
P47 = 27460086117550751749087163860396849317232970491<47>
P51 = 378355420066750802279410132926190270342218870699227<51>
Number: 31119_106 N=10389672418075066828349813766233229893431917013549229277563750358988553253478769015714223427510457 ( 98 digits) SNFS difficulty: 108 digits. Divisors found: r1=27460086117550751749087163860396849317232970491 (pp47) r2=378355420066750802279410132926190270342218870699227 (pp51) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.38 hours. Scaled time: 0.91 units (timescale=2.377). Factorization parameters were as follows: n: 10389672418075066828349813766233229893431917013549229277563750358988553253478769015714223427510457 m: 2000000000000000000000 deg: 5 c5: 35 c0: 284 skew: 1.52 type: snfs rlim: 320000 alim: 320000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 320000/320000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [160000, 240001) Primes: RFBsize:27608, AFBsize:27871, largePrimes:930525 encountered Relations: rels:840330, finalFF:73159 Max relations in full relation-set: 28 Initial matrix: 55546 x 73159 with sparse part having weight 3198123. Pruned matrix : 48492 x 48833 with weight 1561054. Total sieving time: 0.36 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,320000,320000,25,25,44,44,2.2,2.2,20000 total time: 0.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047212k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673807) Calibrating delay using timer specific routine.. 5344.58 BogoMIPS (lpj=2672293) Calibrating delay using timer specific routine.. 5344.06 BogoMIPS (lpj=2672032) Calibrating delay using timer specific routine.. 5344.72 BogoMIPS (lpj=2672362)
Factorizations of 311...119 and Factorizations of 322...221 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(28·10169+53)/9 = 3(1)1687<170> = 37 · 1559 · 11087 · C161
C161 = P34 · P127
P34 = 6576167450442864942395733867530623<34>
P127 = 7397428427374041743927780007395203806290373475751794436242704677858412169289099564434772924989179618665154751237931963740230799<127>
Number: 31117_169 N=48646728041077924005724671205968957561369156107673263345588005301636479110713015476859754027802663836764184743803402759019577727848826228525699147956502220257777 ( 161 digits) SNFS difficulty: 171 digits. Divisors found: r1=6576167450442864942395733867530623 (pp34) r2=7397428427374041743927780007395203806290373475751794436242704677858412169289099564434772924989179618665154751237931963740230799 (pp127) Version: GGNFS-0.77.1-20050930-nocona Total time: 88.61 hours. Scaled time: 88.88 units (timescale=1.003). Factorization parameters were as follows: name: 31117_169 n: 48646728041077924005724671205968957561369156107673263345588005301636479110713015476859754027802663836764184743803402759019577727848826228525699147956502220257777 m: 10000000000000000000000000000000000 deg: 5 c5: 14 c0: 265 skew: 1.80 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5150001) Primes: RFBsize:367900, AFBsize:368397, largePrimes:10227866 encountered Relations: rels:10849454, finalFF:903116 Max relations in full relation-set: 28 Initial matrix: 736363 x 903116 with sparse part having weight 95364440. Pruned matrix : 628184 x 631929 with weight 73827870. Total sieving time: 83.40 hours. Total relation processing time: 0.19 hours. Matrix solve time: 4.88 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.6,2.6,100000 total time: 88.61 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
4·10183-9 = 3(9)1821<184> = 13 · 291521 · C178
C178 = P84 · P94
P84 = 175760151760128614736111330301882810113296736746728352650439858811633452129329386893<84>
P94 = 6005184777904143133368396782495819629853737419435935288123825152255604348922994197853024855519<94>
SNFS difficulty: 183 digits. Divisors found: r1=175760151760128614736111330301882810113296736746728352650439858811633452129329386893 r2=6005184777904143133368396782495819629853737419435935288123825152255604348922994197853024855519 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.621). Factorization parameters were as follows: n: 1055472187912046447109101257515951483109938246960965735942495764258175885468601945288015931297204344429072664774380945771686061407899628816818316031065712906815263077762177312467 m: 2000000000000000000000000000000000000 deg: 5 c5: 125 c0: -9 skew: 0.59 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4700000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1611547 x 1611789 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 6.00 hours (4 threads) Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,9400000,9400000,28,28,54,54,2.6,2.6,100000 total time: 120.00 hours.
By Sinkiti Sibata / GGNFS
4·10187-9 = 3(9)1861<188> = 53 · 10684013423190202598370871<26> · 1626349888286077666713489931346081<34> · C128
C128 = P46 · P83
P46 = 1156412510086878791154526581085081807094186719<46>
P83 = 37559770618664727055350154373325301900026821932736805523253002218736318566782328163<83>
Number: 39991_187 N=43434588619417477329933277408700569125776242676471321059204704968470235596379158309505822359339758001320385530719040417854267197 ( 128 digits) Divisors found: r1=1156412510086878791154526581085081807094186719 (pp46) r2=37559770618664727055350154373325301900026821932736805523253002218736318566782328163 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 246.89 hours. Scaled time: 485.63 units (timescale=1.967). Factorization parameters were as follows: name: 39991_187 n: 43434588619417477329933277408700569125776242676471321059204704968470235596379158309505822359339758001320385530719040417854267197 skew: 41234.70 # norm 4.47e+17 c5: 179760 c4: -468322242646 c3: 7158562425476123 c2: 706920016882918004321 c1: -8997659448553333649363 c0: -81193830374116964234607252355 # alpha -6.59 Y1: 69625650657497 Y0: -2996634592095948845052744 # Murphy_E 1.05e-10 # M 27377686138790807889789438251685435821041056178393248572664212912808568040467964210247533237064438040348735126973249238361678525 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 9840001) Primes: RFBsize:374362, AFBsize:374718, largePrimes:9599165 encountered Relations: rels:10656209, finalFF:859521 Max relations in full relation-set: 28 Initial matrix: 749166 x 859521 with sparse part having weight 120586918. Pruned matrix : 668643 x 672452 with weight 99995938. Total sieving time: 233.91 hours. Total relation processing time: 1.48 hours. Matrix solve time: 10.85 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: gnfs,127,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 246.89 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(26·10173+1)/9 = 2(8)1729<174> = 458557838989194890719<21> · C153
C153 = P35 · P118
P35 = 73305096001558563409944288559304387<35>
P118 = 8594142483414908579347938546811251556448886758055864089876219871162756829401458004039178884223538718178148112968531213<118>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=512132224 Step 1 took 14765ms Step 2 took 11009ms ********** Factor found in step 2: 73305096001558563409944288559304387 Found probable prime factor of 35 digits: 73305096001558563409944288559304387 Probable prime cofactor 8594142483414908579347938546811251556448886758055864089876219871162756829401458004039178884223538718178148112968531213 has 118 digits
By Serge Batalov / Msieve-1.38
(7·10182+11)/9 = (7)1819<182> = 7162907 · C176
C176 = P74 · P102
P74 = 21099773409773806293781644425845956947197905609054762376378049489953181671<74>
P102 = 514622092833430760457080826490332986070853295140251661480075572933304449397750105423250483183378081807<102>
SNFS difficulty: 182 digits. Divisors found: r1=21099773409773806293781644425845956947197905609054762376378049489953181671 r2=514622092833430760457080826490332986070853295140251661480075572933304449397750105423250483183378081807 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 10858409550448969640088553122046367177149972459195376650538360721111942089681993327259139030812179716667796716860595534435638739659439635022174345943312928365226266064570959497 m: 1000000000000000000000000000000000000 c5: 700 c0: 11 skew: 0.44 type: snfs lss: 1 rlim: 9400000 alim: 9400000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 9400000/9400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4700000, 8300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1465939 x 1466181 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,9400000,9400000,27,27,54,54,2.6,2.6,400000 total time: 160.00 hours.
By Tyler Cadigan / GGNFS, msieve 1.38
(64·10193-1)/9 = 7(1)193<194> = 48841603 · 4147149761<10> · 6136607557<10> · 31737283837445080249<20> · C148
C148 = P72 · P77
P72 = 106827244682461422181234170696232476853829433128839704733530965299009843<72>
P77 = 16873986719788660126221030932544026486472905100620508524512200329945569875883<77>
Number: 71111_193 N=1802601508083467798391112388078070476447733455722798735220424812749725790627450776795649250070797201074189953860549742051929399404960264228305316369 ( 148 digits) SNFS difficulty: 195 digits. Divisors found: r1=106827244682461422181234170696232476853829433128839704733530965299009843 r2=16873986719788660126221030932544026486472905100620508524512200329945569875883 Version: Total time: 989.65 hours. Scaled time: 2544.40 units (timescale=2.571). Factorization parameters were as follows: n: 1802601508083467798391112388078070476447733455722798735220424812749725790627450776795649250070797201074189953860549742051929399404960264228305316369 m: 400000000000000000000000000000000000000 c5: 125 c0: -2 skew: 0.44 type: snfs Y0: 400000000000000000000000000000000000000 Y1: -1 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 qintsize: 1000000Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [10000000, 24000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1589990 x 1590207 Total sieving time: 989.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,48,48,2.6,2.6,100000 total time: 989.65 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(16·10205-1)/3 = 5(3)205<206> = C206
C206 = P67 · P139
P67 = 7253816360547696746337226052876346580763518857600573480425639193467<67>
P139 = 7352451548595092851587671278219896892562021515468240661156973439665968776976024454455251948173889966313752479891086480528562516539317420399<139>
Number: n N=53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 ( 206 digits) SNFS difficulty: 206 digits. Divisors found: Mon Nov 10 22:35:48 2008 prp67 factor: 7253816360547696746337226052876346580763518857600573480425639193467 Mon Nov 10 22:35:48 2008 prp139 factor: 7352451548595092851587671278219896892562021515468240661156973439665968776976024454455251948173889966313752479891086480528562516539317420399 Mon Nov 10 22:35:48 2008 elapsed time 35:33:32 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 120.07 hours. Scaled time: 243.98 units (timescale=2.032). Factorization parameters were as follows: name: KA_5_3_205 n: 53333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 type: snfs skew: 1.15 deg: 5 c5: 1 c0: -2 m: 200000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 18900001) Primes: RFBsize:664579, AFBsize:664630, largePrimes:35868282 encountered Relations: rels:27817726, finalFF:172962 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 117.89 hours. Total relation processing time: 2.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 120.07 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(28·10167+53)/9 = 3(1)1667<168> = 173 · 1033 · 861933138290293<15> · 396782411899824648671<21> · C127
C127 = P48 · P80
P48 = 130895819870043557515711359581289161373022640261<48>
P80 = 38888154047693150598352587316342929490928032042224238309930286093662401799559311<80>
Number: 31117_167 N=5090296807305347901135661154211531213234907790899800177923121847419165500383051328464658675418849569729412119386322895486020171 ( 127 digits) SNFS difficulty: 168 digits. Divisors found: r1=130895819870043557515711359581289161373022640261 (pp48) r2=38888154047693150598352587316342929490928032042224238309930286093662401799559311 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 102.72 hours. Scaled time: 103.65 units (timescale=1.009). Factorization parameters were as follows: name: 31117_167 n: 5090296807305347901135661154211531213234907790899800177923121847419165500383051328464658675418849569729412119386322895486020171 m: 2000000000000000000000000000000000 deg: 5 c5: 175 c0: 106 skew: 0.90 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 5650001) Primes: RFBsize:328964, AFBsize:328714, largePrimes:10621873 encountered Relations: rels:11700619, finalFF:787911 Max relations in full relation-set: 28 Initial matrix: 657744 x 787911 with sparse part having weight 98221720. Pruned matrix : 589848 x 593200 with weight 78569950. Total sieving time: 97.88 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.48 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.6,2.6,100000 total time: 102.72 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS,Msieve
(26·10167+1)/9 = 2(8)1669<168> = 23 · 97 · 7440716741<10> · C155
C155 = P33 · P40 · P82
P33 = 994429931053939659460376462395301<33>
P40 = 8171083938783497384303320933326590394457<40>
P82 = 2141719727669073859289699777557563993829652102083579639846097856848841724268160287<82>
Number: 28889_167 N=17402694505373145372496501874332254808264964601515213995881884682345882922122957369781299658358690100048182317099152378155908918093570308072669512206881859 ( 155 digits) SNFS difficulty: 170 digits. Divisors found: r1=994429931053939659460376462395301 r2=8171083938783497384303320933326590394457 r3=2141719727669073859289699777557563993829652102083579639846097856848841724268160287 Version: Total time: 72.08 hours. Scaled time: 158.51 units (timescale=2.199). Factorization parameters were as follows: n: 17402694505373145372496501874332254808264964601515213995881884682345882922122957369781299658358690100048182317099152378155908918093570308072669512206881859 m: 5000000000000000000000000000000000 deg: 5 c5: 104 c0: 125 skew: 1.04 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 947021 x 947269 Total sieving time: 72.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.6,2.6,100000 total time: 72.08 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(28·10153+53)/9 = 3(1)1527<154> = 34 · 56249 · 730095898313<12> · 9965171834443050233424291971<28> · C107
C107 = P52 · P56
P52 = 1714948088665204519589713916720465015747178714196217<52>
P56 = 54726795393356620267708850472075073689756000982100900023<56>
Number: 31117_153 N=93853613158608655468571700499385796554488640891821409187467158885149908174643438256355936087132602721812991 ( 107 digits) Divisors found: r1=1714948088665204519589713916720465015747178714196217 (pp52) r2=54726795393356620267708850472075073689756000982100900023 (pp56) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 21.87 hours. Scaled time: 10.35 units (timescale=0.473). Factorization parameters were as follows: name: 31117_153 n: 93853613158608655468571700499385796554488640891821409187467158885149908174643438256355936087132602721812991 skew: 16073.92 # norm 2.25e+15 c5: 178800 c4: 1666354780 c3: -225587937339236 c2: -156790534487345883 c1: 20270929971815814767584 c0: 3054437511647271308857872 # alpha -6.78 Y1: 145494130243 Y0: -220808690967853528205 # Murphy_E 1.36e-09 # M 9503772141216026415551950007863591962513804742151124620315633056092138605998778437390332844898982587770367 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:183884, largePrimes:4470428 encountered Relations: rels:4574255, finalFF:472428 Max relations in full relation-set: 28 Initial matrix: 367035 x 472428 with sparse part having weight 35488964. Pruned matrix : 288904 x 290803 with weight 19736749. Polynomial selection time: 1.08 hours. Total sieving time: 18.07 hours. Total relation processing time: 0.31 hours. Matrix solve time: 2.19 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 21.87 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(5·10181-11)/3 = 1(6)1803<182> = 132 · 10463 · C175
C175 = P41 · P135
P41 = 19735873762848979923788343262746910415597<41>
P135 = 477583661777319114348974410080105808146987308682331423638268730772140428005311952962423539714530787220806113863148497059834874873525557<135>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2126843982 Step 1 took 25957ms Step 2 took 15589ms ********** Factor found in step 2: 19735873762848979923788343262746910415597 Found probable prime factor of 41 digits: 19735873762848979923788343262746910415597 Probable prime cofactor 477583661777319114348974410080105808146987308682331423638268730772140428005311952962423539714530787220806113863148497059834874873525557 has 135 digits
(34·10173-43)/9 = 3(7)1723<174> = 11 · 4090017086037300067260361867<28> · C145
C145 = P60 · P86
P60 = 107626043102279955648663040733162113867786338310868288276113<60>
P86 = 78019152169372766771630568934861109861574756452212059302706443287700884816615566155333<86>
SNFS difficulty: 175 digits. Divisors found: r1=107626043102279955648663040733162113867786338310868288276113 r2=7801915216937276677163056893486110986157475645221205930270644328770088481661 5566155333 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 83968926341842521032222222375343161902382575858720800562857080406878660082583 64078713992722606690854088987379490701900885592654783285597751460629 m: 50000000000000000000000000000000000 deg: 5 c5: 272 c0: -1075 skew: 1.32 type: snfs lss: 1 rlim: 6600000 alim: 6600000 lpbr: 27 lpba: 27 Factor base limits: 6600000/6600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3300000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1186854 x 1187096 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6600000,6600000,27,27,54,54,2.6,2.6,100000 total time: 96.00 hours.
By matsui / GMP-ECM
2·10193-9 = 1(9)1921<194> = 112 · 229 · 751 · C186
C186 = P34 · C153
P34 = 1389008490432229693915637396036821<34>
C153 = [691933417297017957104478334368940847492681960800916503025598061193956200601528866970042838166170253705478669766997332550958436576230148828520831637814969<153>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 961101391439344963268867297318974030031246847887780263773315779136785824177360881895103568045666155953405612322742268311732659652516675229279146565030835256216896364292795886716708973549 = 1389008490432229693915637396036821* 691933417297017957104478334368940847492681960800916503025598061193956200601528866970042838166170253705478669766997332550958436576230148828520831637814969
By Justin Card / GGNFS / msieve 1.38
(10183+17)/9 = (1)1823<183> = 109 · 233 · 107149391 · C170
C170 = P63 · P108
P63 = 168065510093738558138055116999214544462198890554682324748107419<63>
P108 = 242944329426849970997180630477373752133478580556976677728940298344363173643729480362319651902123233317150001<108>
Fri Nov 7 17:54:24 2008 Msieve v. 1.38 Fri Nov 7 17:54:24 2008 random seeds: e74a4bc0 27e1dda1 Fri Nov 7 17:54:24 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Fri Nov 7 17:54:26 2008 no P-1/P+1/ECM available, skipping Fri Nov 7 17:54:26 2008 commencing number field sieve (170-digit input) Fri Nov 7 17:54:26 2008 R0: -2000000000000000000000000000000000000 Fri Nov 7 17:54:26 2008 R1: 1 Fri Nov 7 17:54:26 2008 A0: 68 Fri Nov 7 17:54:26 2008 A1: 0 Fri Nov 7 17:54:26 2008 A2: 0 Fri Nov 7 17:54:26 2008 A3: 0 Fri Nov 7 17:54:26 2008 A4: 0 Fri Nov 7 17:54:26 2008 A5: 125 Fri Nov 7 17:54:26 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Fri Nov 7 17:54:26 2008 Fri Nov 7 17:54:26 2008 commencing relation filtering Fri Nov 7 17:54:26 2008 commencing duplicate removal, pass 1 Fri Nov 7 17:59:19 2008 found 2177390 hash collisions in 23154021 relations Fri Nov 7 18:00:40 2008 added 3465 free relations Fri Nov 7 18:00:40 2008 commencing duplicate removal, pass 2 Fri Nov 7 18:00:57 2008 found 1506103 duplicates and 21651383 unique relations Fri Nov 7 18:00:57 2008 memory use: 94.6 MB Fri Nov 7 18:00:57 2008 reading rational ideals above 10944512 Fri Nov 7 18:00:57 2008 reading algebraic ideals above 10944512 Fri Nov 7 18:00:57 2008 commencing singleton removal, pass 1 Fri Nov 7 18:05:37 2008 relations with 0 large ideals: 392628 Fri Nov 7 18:05:37 2008 relations with 1 large ideals: 2450350 Fri Nov 7 18:05:37 2008 relations with 2 large ideals: 6519546 Fri Nov 7 18:05:37 2008 relations with 3 large ideals: 7895436 Fri Nov 7 18:05:37 2008 relations with 4 large ideals: 3690112 Fri Nov 7 18:05:37 2008 relations with 5 large ideals: 19077 Fri Nov 7 18:05:37 2008 relations with 6 large ideals: 684234 Fri Nov 7 18:05:37 2008 relations with 7+ large ideals: 0 Fri Nov 7 18:05:37 2008 21651383 relations and about 19194176 large ideals Fri Nov 7 18:05:37 2008 commencing singleton removal, pass 2 Fri Nov 7 18:10:16 2008 found 6735403 singletons Fri Nov 7 18:10:16 2008 current dataset: 14915980 relations and about 11124611 large ideals Fri Nov 7 18:10:16 2008 commencing singleton removal, pass 3 Fri Nov 7 18:13:22 2008 found 1602906 singletons Fri Nov 7 18:13:22 2008 current dataset: 13313074 relations and about 9447761 large ideals Fri Nov 7 18:13:22 2008 commencing singleton removal, pass 4 Fri Nov 7 18:16:08 2008 found 370857 singletons Fri Nov 7 18:16:08 2008 current dataset: 12942217 relations and about 9072150 large ideals Fri Nov 7 18:16:08 2008 commencing singleton removal, final pass Fri Nov 7 18:19:10 2008 memory use: 219.5 MB Fri Nov 7 18:19:10 2008 commencing in-memory singleton removal Fri Nov 7 18:19:12 2008 begin with 12942217 relations and 10108568 unique ideals Fri Nov 7 18:19:38 2008 reduce to 11020221 relations and 8131732 ideals in 15 passes Fri Nov 7 18:19:38 2008 max relations containing the same ideal: 43 Fri Nov 7 18:19:40 2008 reading rational ideals above 720000 Fri Nov 7 18:19:40 2008 reading algebraic ideals above 720000 Fri Nov 7 18:19:40 2008 commencing singleton removal, final pass Fri Nov 7 18:23:19 2008 keeping 8734777 ideals with weight <= 20, new excess is 864903 Fri Nov 7 18:23:29 2008 memory use: 256.8 MB Fri Nov 7 18:23:29 2008 commencing in-memory singleton removal Fri Nov 7 18:23:31 2008 begin with 11023686 relations and 8734777 unique ideals Fri Nov 7 18:23:45 2008 reduce to 11019203 relations and 8713341 ideals in 7 passes Fri Nov 7 18:23:45 2008 max relations containing the same ideal: 20 Fri Nov 7 18:23:56 2008 removing 2136396 relations and 1736396 ideals in 400000 cliques Fri Nov 7 18:23:57 2008 commencing in-memory singleton removal Fri Nov 7 18:23:58 2008 begin with 8882807 relations and 8713341 unique ideals Fri Nov 7 18:24:12 2008 reduce to 8621173 relations and 6704103 ideals in 9 passes Fri Nov 7 18:24:12 2008 max relations containing the same ideal: 20 Fri Nov 7 18:24:20 2008 removing 1619607 relations and 1219607 ideals in 400000 cliques Fri Nov 7 18:24:21 2008 commencing in-memory singleton removal Fri Nov 7 18:24:22 2008 begin with 7001566 relations and 6704103 unique ideals Fri Nov 7 18:24:33 2008 reduce to 6797292 relations and 5271165 ideals in 9 passes Fri Nov 7 18:24:33 2008 max relations containing the same ideal: 20 Fri Nov 7 18:24:39 2008 removing 1463385 relations and 1063385 ideals in 400000 cliques Fri Nov 7 18:24:40 2008 commencing in-memory singleton removal Fri Nov 7 18:24:40 2008 begin with 5333907 relations and 5271165 unique ideals Fri Nov 7 18:24:48 2008 reduce to 5118087 relations and 3980297 ideals in 9 passes Fri Nov 7 18:24:48 2008 max relations containing the same ideal: 19 Fri Nov 7 18:24:52 2008 removing 616616 relations and 482114 ideals in 134502 cliques Fri Nov 7 18:24:53 2008 commencing in-memory singleton removal Fri Nov 7 18:24:54 2008 begin with 4501471 relations and 3980297 unique ideals Fri Nov 7 18:24:59 2008 reduce to 4451213 relations and 3446730 ideals in 7 passes Fri Nov 7 18:24:59 2008 max relations containing the same ideal: 19 Fri Nov 7 18:25:03 2008 relations with 0 large ideals: 128141 Fri Nov 7 18:25:03 2008 relations with 1 large ideals: 644668 Fri Nov 7 18:25:03 2008 relations with 2 large ideals: 1377524 Fri Nov 7 18:25:03 2008 relations with 3 large ideals: 1403644 Fri Nov 7 18:25:03 2008 relations with 4 large ideals: 700436 Fri Nov 7 18:25:03 2008 relations with 5 large ideals: 159255 Fri Nov 7 18:25:03 2008 relations with 6 large ideals: 36585 Fri Nov 7 18:25:03 2008 relations with 7+ large ideals: 960 Fri Nov 7 18:25:03 2008 commencing 2-way merge Fri Nov 7 18:25:08 2008 reduce to 2874971 relation sets and 1870488 unique ideals Fri Nov 7 18:25:08 2008 commencing full merge Fri Nov 7 18:25:42 2008 memory use: 163.5 MB Fri Nov 7 18:25:43 2008 found 1409399 cycles, need 1272688 Fri Nov 7 18:25:44 2008 weight of 1272688 cycles is about 89474158 (70.30/cycle) Fri Nov 7 18:25:44 2008 distribution of cycle lengths: Fri Nov 7 18:25:44 2008 1 relations: 165517 Fri Nov 7 18:25:44 2008 2 relations: 128117 Fri Nov 7 18:25:44 2008 3 relations: 131193 Fri Nov 7 18:25:44 2008 4 relations: 129223 Fri Nov 7 18:25:44 2008 5 relations: 124960 Fri Nov 7 18:25:44 2008 6 relations: 114579 Fri Nov 7 18:25:44 2008 7 relations: 104913 Fri Nov 7 18:25:44 2008 8 relations: 91673 Fri Nov 7 18:25:44 2008 9 relations: 79160 Fri Nov 7 18:25:44 2008 10+ relations: 203353 Fri Nov 7 18:25:44 2008 heaviest cycle: 16 relations Fri Nov 7 18:25:44 2008 commencing cycle optimization Fri Nov 7 18:25:47 2008 start with 7122735 relations Fri Nov 7 18:26:05 2008 pruned 235546 relations Fri Nov 7 18:26:06 2008 memory use: 233.5 MB Fri Nov 7 18:26:06 2008 distribution of cycle lengths: Fri Nov 7 18:26:06 2008 1 relations: 165517 Fri Nov 7 18:26:06 2008 2 relations: 132065 Fri Nov 7 18:26:06 2008 3 relations: 137489 Fri Nov 7 18:26:06 2008 4 relations: 134742 Fri Nov 7 18:26:06 2008 5 relations: 130671 Fri Nov 7 18:26:06 2008 6 relations: 119077 Fri Nov 7 18:26:06 2008 7 relations: 108667 Fri Nov 7 18:26:06 2008 8 relations: 93246 Fri Nov 7 18:26:06 2008 9 relations: 78451 Fri Nov 7 18:26:06 2008 10+ relations: 172763 Fri Nov 7 18:26:06 2008 heaviest cycle: 16 relations Fri Nov 7 18:26:07 2008 Sat Nov 8 11:39:25 2008 Msieve v. 1.38 Sat Nov 8 11:39:25 2008 random seeds: 51fa03ca 0994addc Sat Nov 8 11:39:25 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Sat Nov 8 11:39:27 2008 no P-1/P+1/ECM available, skipping Sat Nov 8 11:39:27 2008 commencing number field sieve (170-digit input) Sat Nov 8 11:39:27 2008 R0: -2000000000000000000000000000000000000 Sat Nov 8 11:39:27 2008 R1: 1 Sat Nov 8 11:39:27 2008 A0: 68 Sat Nov 8 11:39:27 2008 A1: 0 Sat Nov 8 11:39:27 2008 A2: 0 Sat Nov 8 11:39:27 2008 A3: 0 Sat Nov 8 11:39:27 2008 A4: 0 Sat Nov 8 11:39:27 2008 A5: 125 Sat Nov 8 11:39:27 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Sat Nov 8 11:39:27 2008 Sat Nov 8 11:39:27 2008 commencing linear algebra Sat Nov 8 11:39:28 2008 read 1266783 cycles Sat Nov 8 11:39:35 2008 matrix is 1266583 x 1266783 (376.6 MB) with weight 119213116 (94.11/col) Sat Nov 8 11:39:35 2008 sparse part has weight 84786181 (66.93/col) Sat Nov 8 11:39:35 2008 saving the first 48 matrix rows for later Sat Nov 8 11:39:36 2008 matrix is 1266535 x 1266783 (359.5 MB) with weight 91770370 (72.44/col) Sat Nov 8 11:39:36 2008 sparse part has weight 81564776 (64.39/col) Sat Nov 8 11:39:36 2008 matrix includes 64 packed rows Sat Nov 8 11:39:36 2008 using block size 10922 for processor cache size 256 kB Sat Nov 8 11:39:44 2008 commencing Lanczos iteration (2 threads) Sat Nov 8 11:39:44 2008 memory use: 354.5 MB Sat Nov 8 11:39:45 2008 restarting at iteration 7907 (dim = 500003) Sat Nov 8 16:25:01 2008 lanczos halted after 20032 iterations (dim = 1266533) Sat Nov 8 16:25:05 2008 recovered 49 nontrivial dependencies Sat Nov 8 16:25:05 2008 elapsed time 04:45:40 Sat Nov 8 17:55:09 2008 Msieve v. 1.38 Sat Nov 8 17:55:09 2008 random seeds: a64a7e10 af28163f Sat Nov 8 17:55:09 2008 factoring 40830562649504799217415961810238391197943215134935430982426238285068266711842023010787621084797361781299076622938184082903429550547622347219167653925734308110219683957419 (170 digits) Sat Nov 8 17:55:11 2008 no P-1/P+1/ECM available, skipping Sat Nov 8 17:55:11 2008 commencing number field sieve (170-digit input) Sat Nov 8 17:55:11 2008 R0: -2000000000000000000000000000000000000 Sat Nov 8 17:55:11 2008 R1: 1 Sat Nov 8 17:55:11 2008 A0: 68 Sat Nov 8 17:55:11 2008 A1: 0 Sat Nov 8 17:55:11 2008 A2: 0 Sat Nov 8 17:55:11 2008 A3: 0 Sat Nov 8 17:55:11 2008 A4: 0 Sat Nov 8 17:55:11 2008 A5: 125 Sat Nov 8 17:55:11 2008 size score = 8.925208e-13, Murphy alpha = 0.098689, combined = 8.636379e-13 Sat Nov 8 17:55:11 2008 Sat Nov 8 17:55:11 2008 commencing square root phase Sat Nov 8 17:55:11 2008 reading relations for dependency 1 Sat Nov 8 17:55:14 2008 read 633249 cycles Sat Nov 8 17:55:16 2008 cycles contain 2386887 unique relations Sat Nov 8 17:56:05 2008 read 2386887 relations Sat Nov 8 17:56:22 2008 multiplying 1941296 relations Sat Nov 8 18:00:50 2008 multiply complete, coefficients have about 58.10 million bits Sat Nov 8 18:00:52 2008 initial square root is modulo 219677771 Sat Nov 8 18:09:53 2008 reading relations for dependency 2 Sat Nov 8 18:09:53 2008 read 633768 cycles Sat Nov 8 18:09:55 2008 cycles contain 2389302 unique relations Sat Nov 8 18:10:28 2008 read 2389302 relations Sat Nov 8 18:10:46 2008 multiplying 1944182 relations Sat Nov 8 18:15:13 2008 multiply complete, coefficients have about 58.19 million bits Sat Nov 8 18:15:14 2008 initial square root is modulo 225957161 Sat Nov 8 18:24:15 2008 prp63 factor: 168065510093738558138055116999214544462198890554682324748107419 Sat Nov 8 18:24:15 2008 prp108 factor: 242944329426849970997180630477373752133478580556976677728940298344363173643729480362319651902123233317150001 Sat Nov 8 18:24:15 2008 elapsed time 00:29:06
By Sinkiti Sibata / GGNFS, Msieve
(28·10154+53)/9 = 3(1)1537<155> = 37 · 118253 · 2590601425843<13> · 104351236022329<15> · C122
C122 = P59 · P63
P59 = 31380690453138880931657560889514420126566353542603767728673<59>
P63 = 838187032860531496732431247159491568872050528936039746282768087<63>
Number: 31117_154 N=26302887820031286216044163151544987536670418340903126268617853632435901087122766307269609832111146982541812236687199258551 ( 122 digits) SNFS difficulty: 156 digits. Divisors found: r1=31380690453138880931657560889514420126566353542603767728673 (pp59) r2=838187032860531496732431247159491568872050528936039746282768087 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 35.76 hours. Scaled time: 36.08 units (timescale=1.009). Factorization parameters were as follows: name: 31117_154 n: 26302887820031286216044163151544987536670418340903126268617853632435901087122766307269609832111146982541812236687199258551 m: 10000000000000000000000000000000 deg: 5 c5: 14 c0: 265 skew: 1.80 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2250001) Primes: RFBsize:196645, AFBsize:196555, largePrimes:8974694 encountered Relations: rels:10185021, finalFF:1418892 Max relations in full relation-set: 28 Initial matrix: 393266 x 1418892 with sparse part having weight 172397834. Pruned matrix : 261743 x 263773 with weight 46680093. Total sieving time: 34.83 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.70 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.5,2.5,100000 total time: 35.76 hours. --------- CPU info (if available) ----------
(28·10157+53)/9 = 3(1)1567<158> = 37 · 47 · 26331439648529<14> · 21571218020531989<17> · 918246836096301808177139<24> · C101
C101 = P44 · P57
P44 = 39831015768787321623763565201624873814103751<44>
P57 = 861163957056282450067185221723079940753436194438560270367<57>
Sat Nov 8 08:51:48 2008 Msieve v. 1.38 Sat Nov 8 08:51:48 2008 random seeds: 31e6e1ba bd1041bd Sat Nov 8 08:51:48 2008 factoring 34301035153020074137083936657263640461196013812649453311158553740296304575991971202189293536348846617 (101 digits) Sat Nov 8 08:51:50 2008 searching for 15-digit factors Sat Nov 8 08:51:52 2008 commencing quadratic sieve (101-digit input) Sat Nov 8 08:51:52 2008 using multiplier of 65 Sat Nov 8 08:51:52 2008 using 64kb Pentium 4 sieve core Sat Nov 8 08:51:52 2008 sieve interval: 18 blocks of size 65536 Sat Nov 8 08:51:52 2008 processing polynomials in batches of 6 Sat Nov 8 08:51:52 2008 using a sieve bound of 2893831 (105000 primes) Sat Nov 8 08:51:52 2008 using large prime bound of 434074650 (28 bits) Sat Nov 8 08:51:52 2008 using double large prime bound of 3528709595930850 (43-52 bits) Sat Nov 8 08:51:52 2008 using trial factoring cutoff of 52 bits Sat Nov 8 08:51:52 2008 polynomial 'A' values have 13 factors Sun Nov 9 06:18:37 2008 105394 relations (26049 full + 79345 combined from 1560756 partial), need 105096 Sun Nov 9 06:18:44 2008 begin with 1586805 relations Sun Nov 9 06:18:46 2008 reduce to 274428 relations in 11 passes Sun Nov 9 06:18:46 2008 attempting to read 274428 relations Sun Nov 9 06:18:56 2008 recovered 274428 relations Sun Nov 9 06:18:56 2008 recovered 265233 polynomials Sun Nov 9 06:18:57 2008 attempting to build 105394 cycles Sun Nov 9 06:18:57 2008 found 105394 cycles in 6 passes Sun Nov 9 06:18:57 2008 distribution of cycle lengths: Sun Nov 9 06:18:57 2008 length 1 : 26049 Sun Nov 9 06:18:57 2008 length 2 : 18219 Sun Nov 9 06:18:57 2008 length 3 : 17760 Sun Nov 9 06:18:57 2008 length 4 : 14238 Sun Nov 9 06:18:57 2008 length 5 : 10838 Sun Nov 9 06:18:57 2008 length 6 : 7183 Sun Nov 9 06:18:57 2008 length 7 : 4587 Sun Nov 9 06:18:57 2008 length 9+: 6520 Sun Nov 9 06:18:57 2008 largest cycle: 19 relations Sun Nov 9 06:18:58 2008 matrix is 105000 x 105394 (31.0 MB) with weight 7696930 (73.03/col) Sun Nov 9 06:18:58 2008 sparse part has weight 7696930 (73.03/col) Sun Nov 9 06:19:00 2008 filtering completed in 3 passes Sun Nov 9 06:19:00 2008 matrix is 100434 x 100498 (29.6 MB) with weight 7363818 (73.27/col) Sun Nov 9 06:19:00 2008 sparse part has weight 7363818 (73.27/col) Sun Nov 9 06:19:01 2008 saving the first 48 matrix rows for later Sun Nov 9 06:19:02 2008 matrix is 100386 x 100498 (21.3 MB) with weight 6154040 (61.24/col) Sun Nov 9 06:19:02 2008 sparse part has weight 4981615 (49.57/col) Sun Nov 9 06:19:02 2008 matrix includes 64 packed rows Sun Nov 9 06:19:02 2008 using block size 21845 for processor cache size 512 kB Sun Nov 9 06:19:03 2008 commencing Lanczos iteration Sun Nov 9 06:19:03 2008 memory use: 18.7 MB Sun Nov 9 06:21:11 2008 lanczos halted after 1589 iterations (dim = 100386) Sun Nov 9 06:21:11 2008 recovered 19 nontrivial dependencies Sun Nov 9 06:21:15 2008 prp44 factor: 39831015768787321623763565201624873814103751 Sun Nov 9 06:21:15 2008 prp57 factor: 861163957056282450067185221723079940753436194438560270367 Sun Nov 9 06:21:15 2008 elapsed time 21:29:27
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38, Msieve-1.38+pol51
(28·10194+53)/9 = 3(1)1937<195> = 31 · C194
C194 = P33 · P161
P33 = 472354746844406776569684827121259<33>
P161 = 21246409316201086781223560802188507623529576386381183964277856707558320818501394634593007351163955614343818211309876908233391721201139215075947346247649789438073<161>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1052466718 Step 1 took 34838ms Step 2 took 20685ms ********** Factor found in step 2: 472354746844406776569684827121259 Found probable prime factor of 33 digits: 472354746844406776569684827121259 Probable prime cofactor 21246409316201086781223560802188507623529576386381183964277856707558320818501394634593007351163955614343818211309876908233391721201139215075947346247649789438073 has 161 digits
(28·10200+53)/9 = 3(1)1997<201> = 29 · 43 · 107 · 1823 · 21328421210758970543<20> · C173
C173 = P38 · P136
P38 = 45942003104423641964369130794226732463<38>
P136 = 1305298942936638231265444090741388866280605981251391488376841472424640754825434217341481496796729350040386008942938650151794702274016839<136>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2885641489 Step 1 took 26947ms Step 2 took 16809ms ********** Factor found in step 2: 45942003104423641964369130794226732463 Found probable prime factor of 38 digits: 45942003104423641964369130794226732463 Probable prime cofactor 1305298942936638231265444090741388866280605981251391488376841472424640754825434217341481496796729350040386008942938650151794702274016839 has 136 digits
(82·10172+71)/9 = 9(1)1719<173> = 33 · 7 · 896417753761291537<18> · C153
C153 = P75 · P78
P75 = 579334939143750224236552153827979527517295282518316257376055224005179129017<75>
P78 = 928259426815593672223170317132445806904486312024907035248560376926499575246499<78>
SNFS difficulty: 174 digits. Divisors found: r1=579334939143750224236552153827979527517295282518316257376055224005179129017 r2=928259426815593672223170317132445806904486312024907035248560376926499575246499 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.947). Factorization parameters were as follows: n: 537773118543824425100631333861953876307574301213434419754952037963832301306473338612108363514158650784044233408704123947175704195086527887173317898561483 m: 20000000000000000000000000000000000 deg: 5 c5: 1025 c0: 284 skew: 0.77 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 7500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1165120 x 1165362 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,53,53,2.6,2.6,200000 total time: 75.00 hours.
6·10173-1 = 5(9)173<174> = 446221 · 13201045994383692917<20> · 20546681584297179439544553169075952341<38> · C112
C112 = P53 · P59
P53 = 53428999410989900919046470530953734472804557616368781<53>
P59 = 92784230298861313197303857948581192121788284162444016808767<59>
Number: 59999_173 N=4957368585987012421336435230959147904107104720246843895074059519403671637558839501911510239834859772382225903027 ( 112 digits) Divisors found: r1=53428999410989900919046470530953734472804557616368781 r2=92784230298861313197303857948581192121788284162444016808767 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: name: 59999_173 n: 4957368585987012421336435230959147904107104720246843895074059519403671637558839501911510239834859772382225903027 skew: 12484.82 # norm 9.97e+14 c5: 50400 c4: -5841185348 c3: -54516924114116 c2: 799289440818286359 c1: 1836172894286450032140 c0: -11508237231544326150287190 # alpha -5.31 Y1: 359724270407 Y0: -2503603679782615335551 # Murphy_E 8.14e-10 # M 2940404575292636002365519038296432669014495572869498409424791177403342616136593791228801633381886273626809455453 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 447391 x 447633 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.61 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.00 hours.
(28·10166+53)/9 = 3(1)1657<167> = 37 · 26380692011<11> · C155
C155 = P38 · P118
P38 = 31871524461533362268482655663519284247<38>
P118 = 1000057053409639797383976464291592486851338028888291608314213688558051361960864430945141648685927217381257608105340573<118>
SNFS difficulty: 168 digits. Divisors found: r1=31871524461533362268482655663519284247 r2=1000057053409639797383976464291592486851338028888291608314213688558051361960864430945141648685927217381257608105340573 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.533). Factorization parameters were as follows: n: 31873342840674310954141135507184131116113838051086325646002434611450452479217977434763390174088062167810918568584961174877682053116208561040117775128853531 m: 2000000000000000000000000000000000 deg: 5 c5: 35 c0: 212 skew: 1.43 type: snfs lss: 1 rlim: 4600000 alim: 4600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2300000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 888006 x 888248 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4600000,4600000,27,27,52,52,2.6,2.6,100000 total time: 36.00 hours.
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(28·10147+53)/9 = 3(1)1467<148> = 3 · 107 · C145
C145 = P69 · P77
P69 = 617019353343065071168771290868633532184628741719601748697702907156201<69>
P77 = 15707667633224193663795893478004311722269116087274668192009165707756038371077<77>
SNFS difficulty: 148 digits. Divisors found: r1=617019353343065071168771290868633532184628741719601748697702907156201 r2=15707667633224193663795893478004311722269116087274668192009165707756038371077 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.514). Factorization parameters were as follows: n: 9691934925579785392869505019037729318103149878850813430252682589131187262028383523710626514364832121841467635860159224645205953617168570439598477 m: 200000000000000000000000000000 deg: 5 c5: 175 c0: 106 skew: 0.90 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [945000, 3945001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 301855 x 302082 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,45,45,2.3,2.3,100000 total time: 10.00 hours. --------- CPU info (if available) ---------- Intel(R) Xeon(R) CPU 3060 @ 2.40GHz stepping 06 Memory: 2056692k/2095936k available (1918k kernel code, 38852k reserved, 886k data, 196k init) Calibrating delay using timer specific routine.. 4807.99 BogoMIPS
(28·10161+53)/9 = 3(1)1607<162> = C162
C162 = P71 · P91
P71 = 63139457581438896942328825069550851208784856399796968332441478404066551<71>
P91 = 4927364330139073419051913860536580547607886284960417140375152137364545183145321257120242267<91>
SNFS difficulty: 163 digits. Divisors found: r1=63139457581438896942328825069550851208784856399796968332441478404066551 r2=4927364330139073419051913860536580547607886284960417140375152137364545183145321257120242267 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: n: 311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 200000000000000000000000000000000 deg: 5 c5: 35 c0: 212 skew: 1.43 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1800000, 3400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 719458 x 719700 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,54,54,2.5,2.5,200000 total time: 40.00 hours.
(28·10195+53)/9 = 3(1)1947<196> = 3 · 59 · 395953 · 42767503850028819725441309<26> · C163
C163 = P33 · C130
P33 = 352426542677057137608275426464363<33>
C130 = [2945208906366052236932459156515487535676983279100897646113232542808115418940071695405800723228208432134601112336948955530984723571<130>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3148797574 Step 1 took 26541ms Step 2 took 16432ms ********** Factor found in step 2: 352426542677057137608275426464363 Found probable prime factor of 33 digits: 352426542677057137608275426464363 Composite cofactor 2945208906366052236932459156515487535676983279100897646113232542808115418940071695405800723228208432134601112336948955530984723571 has 130 digits
By Sinkiti Sibata / GGNFS
(28·10140+53)/9 = 3(1)1397<141> = 719 · 59073839760124597826003<23> · C115
C115 = P46 · P70
P46 = 2325698751206860496055539668188983558068752811<46>
P70 = 3149473592196775785669922329386782368714203572482622242212803781186771<70>
Number: 31117_140 N=7324726800331026460555229546626895219469339431616719423307207640327309385610323420792409886859810566259237422263281 ( 115 digits) SNFS difficulty: 141 digits. Divisors found: r1=2325698751206860496055539668188983558068752811 (pp46) r2=3149473592196775785669922329386782368714203572482622242212803781186771 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.49 hours. Scaled time: 17.00 units (timescale=2.003). Factorization parameters were as follows: name: 31117_140 n: 7324726800331026460555229546626895219469339431616719423307207640327309385610323420792409886859810566259237422263281 m: 10000000000000000000000000000 deg: 5 c5: 28 c0: 53 skew: 1.14 type: snfs lss: 1 rlim: 1350000 alim: 1350000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1350000/1350000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [675000, 1375001) Primes: RFBsize:103544, AFBsize:103270, largePrimes:4313541 encountered Relations: rels:4578665, finalFF:422100 Max relations in full relation-set: 28 Initial matrix: 206882 x 422100 with sparse part having weight 46272349. Pruned matrix : 164150 x 165248 with weight 16293575. Total sieving time: 8.06 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.23 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1350000,1350000,26,26,48,48,2.4,2.4,100000 total time: 8.49 hours. --------- CPU info (if available) ----------
(28·10152+53)/9 = 3(1)1517<153> = 872135881 · 136844792064663015857067456487<30> · C115
C115 = P36 · P38 · P42
P36 = 114533644517486766460031592704008207<36>
P38 = 56375440480817404918936792134365039519<38>
P42 = 403719814376655975729160398310593574509667<42>
Number: 31117_152 N=2606772276203660697254409655413048199786310727961846805755009726182143624168623495955434049796287923822321057129811 ( 115 digits) SNFS difficulty: 153 digits. Divisors found: r1=114533644517486766460031592704008207 (pp36) r2=56375440480817404918936792134365039519 (pp38) r3=403719814376655975729160398310593574509667 (pp42) Version: GGNFS-0.77.1-20050930-nocona Total time: 26.92 hours. Scaled time: 26.70 units (timescale=0.992). Factorization parameters were as follows: name: 31117_152 n: 2606772276203660697254409655413048199786310727961846805755009726182143624168623495955434049796287923822321057129811 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: 106 skew: 0.90 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176208, largePrimes:8391475 encountered Relations: rels:8688664, finalFF:539001 Max relations in full relation-set: 28 Initial matrix: 352576 x 539001 with sparse part having weight 65291586. Pruned matrix : 304897 x 306723 with weight 35556743. Total sieving time: 25.88 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.83 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.5,2.5,100000 total time: 26.92 hours. --------- CPU info (if available) ----------
(28·10142+53)/9 = 3(1)1417<143> = 37 · 21761759 · 3427015200061<13> · 7239626494033<13> · C109
C109 = P43 · P66
P43 = 4073940241111780673209337589037246877679337<43>
P66 = 382272411123968825071696930766321451979064764499216758783281040379<66>
Number: 31117_142 N=1557354958744763303553869743002788354621146330435429684510646550677472783934229634700695460059986438510948723 ( 109 digits) SNFS difficulty: 143 digits. Divisors found: r1=4073940241111780673209337589037246877679337 (pp43) r2=382272411123968825071696930766321451979064764499216758783281040379 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.26 hours. Scaled time: 35.79 units (timescale=1.960). Factorization parameters were as follows: name: 31117_142 n: 1557354958744763303553869743002788354621146330435429684510646550677472783934229634700695460059986438510948723 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: 106 skew: 0.90 type: snfs lss: 1 rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [750000, 2250001) Primes: RFBsize:114155, AFBsize:114057, largePrimes:5047803 encountered Relations: rels:5660295, finalFF:369277 Max relations in full relation-set: 28 Initial matrix: 228278 x 369277 with sparse part having weight 46453510. Pruned matrix : 197234 x 198439 with weight 24900215. Total sieving time: 17.33 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.64 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,49,49,2.4,2.4,100000 total time: 18.26 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(28·10128+53)/9 = 3(1)1277<129> = 823 · 1975073 · C120
C120 = P50 · P70
P50 = 30607483775884291734596015945273931066369402323623<50>
P70 = 6253237255550603811574584544677820651991885965657489332025148605514701<70>
Number: 31117_128 N=191395857846020320873773527336765612421294401257995866913221361603843495576689394582324007362426924566750274741286081723 ( 120 digits) SNFS difficulty: 129 digits. Divisors found: r1=30607483775884291734596015945273931066369402323623 (pp50) r2=6253237255550603811574584544677820651991885965657489332025148605514701 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.79 hours. Scaled time: 9.57 units (timescale=1.997). Factorization parameters were as follows: name: 31117_128 n: 191395857846020320873773527336765612421294401257995866913221361603843495576689394582324007362426924566750274741286081723 m: 20000000000000000000000000 deg: 5 c5: 875 c0: 53 skew: 0.57 type: snfs lss: 1 rlim: 780000 alim: 780000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 780000/780000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [390000, 940001) Primes: RFBsize:62468, AFBsize:62810, largePrimes:2579675 encountered Relations: rels:2521660, finalFF:182401 Max relations in full relation-set: 28 Initial matrix: 125344 x 182401 with sparse part having weight 18617405. Pruned matrix : 114418 x 115108 with weight 9577816. Total sieving time: 4.58 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,780000,780000,26,26,47,47,2.3,2.3,50000 total time: 4.79 hours. --------- CPU info (if available) ----------
(28·10108+53)/9 = 3(1)1077<109> = 32 · 4907921 · 37050317 · C94
C94 = P46 · P48
P46 = 1931237577332861098630296640300992774105967417<46>
P48 = 984346083423077363780925917466614052933358283377<48>
Fri Nov 7 22:53:20 2008 Msieve v. 1.38 Fri Nov 7 22:53:20 2008 random seeds: 03d23b23 6279e046 Fri Nov 7 22:53:20 2008 factoring 1901006145407074312672458086786796553506794510767066812919746527396777575054770568223014727209 (94 digits) Fri Nov 7 22:53:21 2008 searching for 15-digit factors Fri Nov 7 22:53:23 2008 commencing quadratic sieve (94-digit input) Fri Nov 7 22:53:23 2008 using multiplier of 1 Fri Nov 7 22:53:23 2008 using 64kb Pentium 4 sieve core Fri Nov 7 22:53:23 2008 sieve interval: 18 blocks of size 65536 Fri Nov 7 22:53:23 2008 processing polynomials in batches of 6 Fri Nov 7 22:53:23 2008 using a sieve bound of 1991603 (74066 primes) Fri Nov 7 22:53:23 2008 using large prime bound of 256916787 (27 bits) Fri Nov 7 22:53:23 2008 using double large prime bound of 1372860543013200 (42-51 bits) Fri Nov 7 22:53:23 2008 using trial factoring cutoff of 51 bits Fri Nov 7 22:53:23 2008 polynomial 'A' values have 12 factors Sat Nov 8 03:09:08 2008 74573 relations (19040 full + 55533 combined from 1026486 partial), need 74162 Sat Nov 8 03:09:12 2008 begin with 1045526 relations Sat Nov 8 03:09:13 2008 reduce to 189639 relations in 11 passes Sat Nov 8 03:09:13 2008 attempting to read 189639 relations Sat Nov 8 03:09:19 2008 recovered 189639 relations Sat Nov 8 03:09:19 2008 recovered 169450 polynomials Sat Nov 8 03:09:19 2008 attempting to build 74573 cycles Sat Nov 8 03:09:19 2008 found 74573 cycles in 6 passes Sat Nov 8 03:09:19 2008 distribution of cycle lengths: Sat Nov 8 03:09:19 2008 length 1 : 19040 Sat Nov 8 03:09:19 2008 length 2 : 13395 Sat Nov 8 03:09:19 2008 length 3 : 12886 Sat Nov 8 03:09:19 2008 length 4 : 10012 Sat Nov 8 03:09:19 2008 length 5 : 7431 Sat Nov 8 03:09:19 2008 length 6 : 4891 Sat Nov 8 03:09:19 2008 length 7 : 3036 Sat Nov 8 03:09:19 2008 length 9+: 3882 Sat Nov 8 03:09:19 2008 largest cycle: 19 relations Sat Nov 8 03:09:19 2008 matrix is 74066 x 74573 (18.4 MB) with weight 4517834 (60.58/col) Sat Nov 8 03:09:19 2008 sparse part has weight 4517834 (60.58/col) Sat Nov 8 03:09:21 2008 filtering completed in 3 passes Sat Nov 8 03:09:21 2008 matrix is 69972 x 70036 (17.3 MB) with weight 4245086 (60.61/col) Sat Nov 8 03:09:21 2008 sparse part has weight 4245086 (60.61/col) Sat Nov 8 03:09:21 2008 saving the first 48 matrix rows for later Sat Nov 8 03:09:21 2008 matrix is 69924 x 70036 (10.1 MB) with weight 3230928 (46.13/col) Sat Nov 8 03:09:21 2008 sparse part has weight 2236863 (31.94/col) Sat Nov 8 03:09:21 2008 matrix includes 64 packed rows Sat Nov 8 03:09:21 2008 using block size 21845 for processor cache size 512 kB Sat Nov 8 03:09:22 2008 commencing Lanczos iteration Sat Nov 8 03:09:22 2008 memory use: 10.4 MB Sat Nov 8 03:10:12 2008 lanczos halted after 1107 iterations (dim = 69924) Sat Nov 8 03:10:13 2008 recovered 17 nontrivial dependencies Sat Nov 8 03:10:14 2008 prp46 factor: 1931237577332861098630296640300992774105967417 Sat Nov 8 03:10:14 2008 prp48 factor: 984346083423077363780925917466614052933358283377 Sat Nov 8 03:10:14 2008 elapsed time 04:16:54
(28·10143+53)/9 = 3(1)1427<144> = 1243709 · 11719818916387<14> · C125
C125 = P51 · P75
P51 = 139558811476406019376315978192641107859922180202419<51>
P75 = 152939117966647388107012028728804903280976039746938346857297256825895223321<75>
Number: 31117_143 N=21344001531675163537885430218438044701516671558893408325921998331850660509258825767152980916233004254820610666222044989413499 ( 125 digits) SNFS difficulty: 144 digits. Divisors found: r1=139558811476406019376315978192641107859922180202419 (pp51) r2=152939117966647388107012028728804903280976039746938346857297256825895223321 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.54 hours. Scaled time: 19.75 units (timescale=1.011). Factorization parameters were as follows: name: 31117_143 n: 21344001531675163537885430218438044701516671558893408325921998331850660509258825767152980916233004254820610666222044989413499 m: 20000000000000000000000000000 deg: 5 c5: 875 c0: 53 skew: 0.57 type: snfs lss: 1 rlim: 1550000 alim: 1550000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 1550000/1550000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [775000, 2475001) Primes: RFBsize:117663, AFBsize:118152, largePrimes:5232574 encountered Relations: rels:6112263, finalFF:427100 Max relations in full relation-set: 28 Initial matrix: 235881 x 427100 with sparse part having weight 56912828. Pruned matrix : 198063 x 199306 with weight 29198534. Total sieving time: 19.06 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.32 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1550000,1550000,26,26,49,49,2.4,2.4,100000 total time: 19.54 hours. --------- CPU info (if available) ----------
(28·10138+53)/9 = 3(1)1377<139> = 3 · 40163749 · 1067050114723<13> · C119
C119 = P39 · P81
P39 = 173513712361751799126894410308232788697<39>
P81 = 139457348692700593839066377349755448264601276654137754769730514781494124225439881<81>
Number: 31117_138 N=24197762287797774132671833763509209261000805563687269801999221277019703970067711180492955984427133208292289632149825057 ( 119 digits) SNFS difficulty: 139 digits. Divisors found: r1=173513712361751799126894410308232788697 (pp39) r2=139457348692700593839066377349755448264601276654137754769730514781494124225439881 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.27 hours. Scaled time: 10.36 units (timescale=1.009). Factorization parameters were as follows: name: 31117_138 n: 24197762287797774132671833763509209261000805563687269801999221277019703970067711180492955984427133208292289632149825057 m: 2000000000000000000000000000 deg: 5 c5: 875 c0: 53 skew: 0.57 type: snfs lss: 1 rlim: 1230000 alim: 1230000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1230000/1230000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [615000, 1590001) Primes: RFBsize:95051, AFBsize:95403, largePrimes:4440909 encountered Relations: rels:4779332, finalFF:277914 Max relations in full relation-set: 28 Initial matrix: 190520 x 277914 with sparse part having weight 34069845. Pruned matrix : 171927 x 172943 with weight 19626049. Total sieving time: 9.97 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1230000,1230000,26,26,48,48,2.4,2.4,75000 total time: 10.27 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(28·10202+53)/9 = 3(1)2017<203> = 37 · C201
C201 = P38 · C163
P38 = 91866284775493228069434109183838987923<38>
C163 = [9152877390173378596782581355965337582944051950902417469327670863123664533552791783821206064629832232208439415653989500470516623203715818866856565652662067477550067<163>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4095180192 Step 1 took 25202ms Step 2 took 15917ms ********** Factor found in step 2: 91866284775493228069434109183838987923 Found probable prime factor of 38 digits: 91866284775493228069434109183838987923 Composite cofactor 9152877390173378596782581355965337582944051950902417469327670863123664533552791783821206064629832232208439415653989500470516623203715818866856565652662067477550067 has 163 digits
(28·10170+53)/9 = 3(1)1697<171> = 149417 · 235813 · 4601871629<10> · 111482586841<12> · 194134469367409<15> · C125
C125 = P32 · P94
P32 = 12769617743782569896315990123137<32>
P94 = 6942656510920124686297865042790016163877551842396123531581415155016514192117788659172759034621<94>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=340735920 Step 1 took 14909ms Step 2 took 10265ms ********** Factor found in step 2: 12769617743782569896315990123137 Found probable prime factor of 32 digits: 12769617743782569896315990123137 Probable prime cofactor 6942656510920124686297865042790016163877551842396123531581415155016514192117788659172759034621 has 94 digits
9·10171+1 = 9(0)1701<172> = 47 · 53 · 3036861280810645404931<22> · C148
C148 = P71 · P77
P71 = 51385746424530178231491293825778690117107805206225197788441809802689717<71>
P77 = 23152674067043755161598533865974421832973091656998852143841113795270050798893<77>
SNFS difficulty: 173 digits. Divisors found: r1=51385746424530178231491293825778690117107805206225197788441809802689717 r2=23152674067043755161598533865974421832973091656998852143841113795270050798893 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 1189717438658906221837803003057716463192750863131280020458027692162119895901034234571473853525200925763890756580925220048957727612205131776046083281 m: 30000000000000000000000000000000000 deg: 5 c5: 10 c0: 27 skew: 1.22 type: snfs lss: 1 rlim: 5900000 alim: 5900000 lpbr: 27 lpba: 27 Factor base limits: 5900000/5900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2950000, 5950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 925788 x 926024 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5900000,5900000,27,27,54,54,2.6,2.6,200000 total time: 57.00 hours.
(28·10165+53)/9 = 3(1)1647<166> = 3 · 17 · 20599 · 42307735637<11> · C149
C149 = P36 · P114
P36 = 208720416688403262065547116196411199<36>
P114 = 335362495860118079509073756035043621112786235039869783125073326414207323154348853911331252003615499742569012909291<114>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3789916067 Step 1 took 15833ms Step 2 took 11917ms ********** Factor found in step 2: 208720416688403262065547116196411199 Found probable prime factor of 36 digits: 208720416688403262065547116196411199 Probable prime cofactor 335362495860118079509073756035043621112786235039869783125073326414207323154348853911331252003615499742569012909291 has 114 digits
By Jo Yeong Uk / GMP-ECM, GGNFS
(28·10152+53)/9 = 3(1)1517<153> = 872135881 · C144
C144 = P30 · C115
P30 = 136844792064663015857067456487<30>
C115 = [2606772276203660697254409655413048199786310727961846805755009726182143624168623495955434049796287923822321057129811<115>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 356723210097018254786275799505961515544056730663408069448654080901312110000335040808980442705935534271535275947568898511023548991113130353033957 (144 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2746676296 Step 1 took 4682ms Step 2 took 2686ms ********** Factor found in step 2: 136844792064663015857067456487 Found probable prime factor of 30 digits: 136844792064663015857067456487 Composite cofactor 2606772276203660697254409655413048199786310727961846805755009726182143624168623495955434049796287923822321057129811 has 115 digits
(28·10135+53)/9 = 3(1)1347<136> = 32 · 83 · 431 · 8087 · 15161227190718442273135561<26> · C101
C101 = P49 · P53
P49 = 2922137826713607622269773183748540216869810114279<49>
P53 = 26970882371737256355684501901258381151689194528523777<53>
Number: 31117_135 N=78812635598296657370217757450351375173358243975867836682922680479192841333176715123460559997538711783 ( 101 digits) SNFS difficulty: 136 digits. Divisors found: r1=2922137826713607622269773183748540216869810114279 (pp49) r2=26970882371737256355684501901258381151689194528523777 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.68 hours. Scaled time: 6.40 units (timescale=2.389). Factorization parameters were as follows: n: 78812635598296657370217757450351375173358243975867836682922680479192841333176715123460559997538711783 m: 1000000000000000000000000000 deg: 5 c5: 28 c0: 53 skew: 1.14 type: snfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:106993, largePrimes:4037153 encountered Relations: rels:4104975, finalFF:363639 Max relations in full relation-set: 28 Initial matrix: 214187 x 363639 with sparse part having weight 32434851. Pruned matrix : 166326 x 167460 with weight 12502137. Total sieving time: 2.52 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,26,26,48,48,2.4,2.4,50000 total time: 2.68 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(28·10120+53)/9 = 3(1)1197<121> = 3 · 281 · C118
C118 = P52 · P66
P52 = 4105934781114179790682630177253734108415115748517159<52>
P66 = 898826566961578901544842173483989959828342532935837448597526095841<66>
Number: 31117_120 N=3690523263477000131804402267035718993014366679847106893370238565968103334651377356003690523263477000131804402267035719 ( 118 digits) SNFS difficulty: 121 digits. Divisors found: r1=4105934781114179790682630177253734108415115748517159 (pp52) r2=898826566961578901544842173483989959828342532935837448597526095841 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.54 hours. Scaled time: 5.04 units (timescale=1.985). Factorization parameters were as follows: name: 31117_120 n: 3690523263477000131804402267035718993014366679847106893370238565968103334651377356003690523263477000131804402267035719 m: 1000000000000000000000000 deg: 5 c5: 28 c0: 53 skew: 1.14 type: snfs lss: 1 rlim: 540000 alim: 540000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 540000/540000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [270000, 520001) Primes: RFBsize:44572, AFBsize:44410, largePrimes:1875081 encountered Relations: rels:2235457, finalFF:487174 Max relations in full relation-set: 28 Initial matrix: 89050 x 487174 with sparse part having weight 37948118. Pruned matrix : 60589 x 61098 with weight 5269980. Total sieving time: 2.44 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,540000,540000,25,25,46,46,2.3,2.3,50000 total time: 2.54 hours. --------- CPU info (if available) ----------
(28·10136+53)/9 = 3(1)1357<137> = 37 · 347 · 102337 · 17903296250182927<17> · C112
C112 = P49 · P63
P49 = 8262742876604125785993929334225872346805456960693<49>
P63 = 160064272475974357804672783623195800906136858641291346710222129<63>
Number: 31117_136 N=1322569927199678960528329520717663211682527542022221236361147165058047340734026215153086442092281054219251775397 ( 112 digits) SNFS difficulty: 138 digits. Divisors found: r1=8262742876604125785993929334225872346805456960693 (pp49) r2=160064272475974357804672783623195800906136858641291346710222129 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.17 hours. Scaled time: 11.29 units (timescale=1.011). Factorization parameters were as follows: name: 31117_136 n: 1322569927199678960528329520717663211682527542022221236361147165058047340734026215153086442092281054219251775397 m: 2000000000000000000000000000 deg: 5 c5: 35 c0: 212 skew: 1.43 type: snfs lss: 1 rlim: 1150000 alim: 1150000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1150000/1150000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [575000, 1250001) Primes: RFBsize:89302, AFBsize:88935, largePrimes:4501050 encountered Relations: rels:5029597, finalFF:512488 Max relations in full relation-set: 28 Initial matrix: 178304 x 512488 with sparse part having weight 62033230. Pruned matrix : 136367 x 137322 with weight 19496822. Total sieving time: 10.84 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.20 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1150000,1150000,26,26,48,48,2.4,2.4,75000 total time: 11.17 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(28·10112+53)/9 = 3(1)1117<113> = 37 · 16633 · 44383 · 2469734135509<13> · C90
C90 = P33 · P58
P33 = 395435569143484867490894919534871<33>
P58 = 1166274071028520668668288925686227131278424555746468179621<58>
Fri Nov 7 20:01:38 2008 Msieve v. 1.38 Fri Nov 7 20:01:38 2008 random seeds: d2743c6c 67763d3d Fri Nov 7 20:01:38 2008 factoring 461186251054452166382699161188904523720824103903067004694882992496446997534797427401063891 (90 digits) Fri Nov 7 20:01:39 2008 searching for 15-digit factors Fri Nov 7 20:01:41 2008 commencing quadratic sieve (90-digit input) Fri Nov 7 20:01:41 2008 using multiplier of 1 Fri Nov 7 20:01:41 2008 using 64kb Pentium 4 sieve core Fri Nov 7 20:01:41 2008 sieve interval: 18 blocks of size 65536 Fri Nov 7 20:01:41 2008 processing polynomials in batches of 6 Fri Nov 7 20:01:41 2008 using a sieve bound of 1584943 (59901 primes) Fri Nov 7 20:01:41 2008 using large prime bound of 126795440 (26 bits) Fri Nov 7 20:01:41 2008 using double large prime bound of 385111478867040 (42-49 bits) Fri Nov 7 20:01:41 2008 using trial factoring cutoff of 49 bits Fri Nov 7 20:01:41 2008 polynomial 'A' values have 11 factors Fri Nov 7 22:45:19 2008 60002 relations (15224 full + 44778 combined from 645399 partial), need 59997 Fri Nov 7 22:45:22 2008 begin with 660623 relations Fri Nov 7 22:45:22 2008 reduce to 149497 relations in 9 passes Fri Nov 7 22:45:22 2008 attempting to read 149497 relations Fri Nov 7 22:45:26 2008 recovered 149497 relations Fri Nov 7 22:45:26 2008 recovered 132340 polynomials Fri Nov 7 22:45:26 2008 attempting to build 60002 cycles Fri Nov 7 22:45:27 2008 found 60002 cycles in 5 passes Fri Nov 7 22:45:27 2008 distribution of cycle lengths: Fri Nov 7 22:45:27 2008 length 1 : 15224 Fri Nov 7 22:45:27 2008 length 2 : 11087 Fri Nov 7 22:45:27 2008 length 3 : 10502 Fri Nov 7 22:45:27 2008 length 4 : 8273 Fri Nov 7 22:45:27 2008 length 5 : 5908 Fri Nov 7 22:45:27 2008 length 6 : 3771 Fri Nov 7 22:45:27 2008 length 7 : 2323 Fri Nov 7 22:45:27 2008 length 9+: 2914 Fri Nov 7 22:45:27 2008 largest cycle: 19 relations Fri Nov 7 22:45:27 2008 matrix is 59901 x 60002 (15.2 MB) with weight 3754339 (62.57/col) Fri Nov 7 22:45:27 2008 sparse part has weight 3754339 (62.57/col) Fri Nov 7 22:45:28 2008 filtering completed in 3 passes Fri Nov 7 22:45:28 2008 matrix is 56596 x 56660 (14.5 MB) with weight 3580652 (63.20/col) Fri Nov 7 22:45:28 2008 sparse part has weight 3580652 (63.20/col) Fri Nov 7 22:45:28 2008 saving the first 48 matrix rows for later Fri Nov 7 22:45:28 2008 matrix is 56548 x 56660 (11.1 MB) with weight 3044810 (53.74/col) Fri Nov 7 22:45:28 2008 sparse part has weight 2569359 (45.35/col) Fri Nov 7 22:45:28 2008 matrix includes 64 packed rows Fri Nov 7 22:45:28 2008 using block size 21845 for processor cache size 512 kB Fri Nov 7 22:45:29 2008 commencing Lanczos iteration Fri Nov 7 22:45:29 2008 memory use: 9.8 MB Fri Nov 7 22:46:08 2008 lanczos halted after 896 iterations (dim = 56548) Fri Nov 7 22:46:08 2008 recovered 18 nontrivial dependencies Fri Nov 7 22:46:09 2008 prp33 factor: 395435569143484867490894919534871 Fri Nov 7 22:46:09 2008 prp58 factor: 1166274071028520668668288925686227131278424555746468179621 Fri Nov 7 22:46:09 2008 elapsed time 02:44:31
By Jo Yeong Uk / GGNFS
(28·10115+53)/9 = 3(1)1147<116> = 37 · 205256992907<12> · C103
C103 = P31 · P72
P31 = 4787445483439776346028961749113<31>
P72 = 855681207848006406767942996887982170459469817221116001387245364253552851<72>
Number: 31117_115 N=4096527133776230777589294135068251708248440771554837269760844186821928888996635683528346142189547871163 ( 103 digits) SNFS difficulty: 116 digits. Divisors found: r1=4787445483439776346028961749113 (pp31) r2=855681207848006406767942996887982170459469817221116001387245364253552851 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.62 hours. Scaled time: 1.48 units (timescale=2.391). Factorization parameters were as follows: n: 4096527133776230777589294135068251708248440771554837269760844186821928888996635683528346142189547871163 m: 100000000000000000000000 deg: 5 c5: 28 c0: 53 skew: 1.14 type: snfs rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [200000, 350001) Primes: RFBsize:33860, AFBsize:33683, largePrimes:1016983 encountered Relations: rels:927514, finalFF:78875 Max relations in full relation-set: 28 Initial matrix: 67611 x 78875 with sparse part having weight 3665373. Pruned matrix : 63462 x 63864 with weight 2334000. Total sieving time: 0.59 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,400000,400000,25,25,45,45,2.2,2.2,25000 total time: 0.62 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.36, Msieve-1.38
6·10173-1 = 5(9)173<174> = 446221 · 13201045994383692917<20> · C150
C150 = P38 · C112
P38 = 20546681584297179439544553169075952341<38>
C112 = [4957368585987012421336435230959147904107104720246843895074059519403671637558839501911510239834859772382225903027<112>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1624081815 Step 1 took 14453ms Step 2 took 10996ms ********** Factor found in step 2: 20546681584297179439544553169075952341 Found probable prime factor of 38 digits: 20546681584297179439544553169075952341 Composite cofactor 4957368585987012421336435230959147904107104720246843895074059519403671637558839501911510239834859772382225903027 has 112 digits
(28·10133+53)/9 = 3(1)1327<134> = 17 · 37 · 749600825894593<15> · 13929457418707948000477141189<29> · C88
C88 = P35 · P53
P35 = 55835930141245976683222796488170859<35>
P53 = 84837305159319719171718948795925775107018829665616111<53>
Thu Nov 6 23:40:27 2008 Msieve v. 1.36 Thu Nov 6 23:40:27 2008 random seeds: 54cf9356 c494cfbf Thu Nov 6 23:40:27 2008 factoring 4736969844247342713692487312568994509752670296668692844534636602543519427104855671109349 (88 digits) Thu Nov 6 23:40:28 2008 no P-1/P+1/ECM available, skipping Thu Nov 6 23:40:28 2008 commencing quadratic sieve (88-digit input) Thu Nov 6 23:40:28 2008 using multiplier of 5 Thu Nov 6 23:40:28 2008 using 64kb Opteron sieve core Thu Nov 6 23:40:28 2008 sieve interval: 14 blocks of size 65536 Thu Nov 6 23:40:28 2008 processing polynomials in batches of 8 Thu Nov 6 23:40:28 2008 using a sieve bound of 1525877 (58000 primes) Thu Nov 6 23:40:28 2008 using large prime bound of 122070160 (26 bits) Thu Nov 6 23:40:28 2008 using double large prime bound of 359664101459520 (42-49 bits) Thu Nov 6 23:40:28 2008 using trial factoring cutoff of 49 bits Thu Nov 6 23:40:28 2008 polynomial 'A' values have 11 factors Fri Nov 7 00:30:10 2008 58354 relations (15926 full + 42428 combined from 613752 partial), need 58096 Fri Nov 7 00:30:10 2008 begin with 629678 relations Fri Nov 7 00:30:11 2008 reduce to 141165 relations in 10 passes Fri Nov 7 00:30:11 2008 attempting to read 141165 relations Fri Nov 7 00:30:12 2008 recovered 141165 relations Fri Nov 7 00:30:12 2008 recovered 118180 polynomials Fri Nov 7 00:30:12 2008 attempting to build 58354 cycles Fri Nov 7 00:30:12 2008 found 58354 cycles in 5 passes Fri Nov 7 00:30:12 2008 distribution of cycle lengths: Fri Nov 7 00:30:12 2008 length 1 : 15926 Fri Nov 7 00:30:12 2008 length 2 : 11392 Fri Nov 7 00:30:12 2008 length 3 : 10319 Fri Nov 7 00:30:12 2008 length 4 : 7680 Fri Nov 7 00:30:12 2008 length 5 : 5293 Fri Nov 7 00:30:12 2008 length 6 : 3351 Fri Nov 7 00:30:12 2008 length 7 : 1984 Fri Nov 7 00:30:12 2008 length 9+: 2409 Fri Nov 7 00:30:12 2008 largest cycle: 18 relations Fri Nov 7 00:30:12 2008 matrix is 58000 x 58354 (14.9 MB) with weight 3436843 (58.90/col) Fri Nov 7 00:30:12 2008 sparse part has weight 3436843 (58.90/col) Fri Nov 7 00:30:13 2008 filtering completed in 3 passes Fri Nov 7 00:30:13 2008 matrix is 53777 x 53841 (13.8 MB) with weight 3192836 (59.30/col) Fri Nov 7 00:30:13 2008 sparse part has weight 3192836 (59.30/col) Fri Nov 7 00:30:13 2008 saving the first 48 matrix rows for later Fri Nov 7 00:30:13 2008 matrix is 53729 x 53841 (10.0 MB) with weight 2609810 (48.47/col) Fri Nov 7 00:30:13 2008 sparse part has weight 2070838 (38.46/col) Fri Nov 7 00:30:13 2008 matrix includes 64 packed rows Fri Nov 7 00:30:13 2008 using block size 21536 for processor cache size 1024 kB Fri Nov 7 00:30:13 2008 commencing Lanczos iteration Fri Nov 7 00:30:13 2008 memory use: 8.5 MB Fri Nov 7 00:30:31 2008 lanczos halted after 851 iterations (dim = 53729) Fri Nov 7 00:30:31 2008 recovered 18 nontrivial dependencies Fri Nov 7 00:30:31 2008 prp35 factor: 55835930141245976683222796488170859 Fri Nov 7 00:30:31 2008 prp53 factor: 84837305159319719171718948795925775107018829665616111 Fri Nov 7 00:30:31 2008 elapsed time 00:50:04
(28·10107+53)/9 = 3(1)1067<108> = C108
C108 = P40 · P69
P40 = 1345714267619735241622083592355939803453<40>
P69 = 231186603721900367868902363880488891351271265076613106810523648244689<69>
SNFS difficulty: 109 digits. Divisors found: r1=1345714267619735241622083592355939803453 r2=231186603721900367868902363880488891351271265076613106810523648244689 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 311111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 1000000000000000000000000000 c4: 14 c0: 265 skew: 4 type: snfs lss: 1 rlim: 300000 alim: 300000 lpbr: 25 lpba: 25 Factor base limits: 300000/300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [150000, 250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 38073 x 38309 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109,4,0,0,0,0,0,0,0,0,300000,300000,25,25,44,44,2.2,2.2,20000 total time: 0.40 hours.
(28·10179+53)/9 = 3(1)1787<180> = 31 · 43 · 229 · 7104109 · 74812941392011<14> · 16507413285958541278577807<26> · 910115883072350972734038341<27> · C102
C102 = P33 · P69
P33 = 251657724546775776918487145183357<33>
P69 = 507198032429569287477765065713930617795719443082782575395300656664341<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1657388960 Step 1 took 10353ms ********** Factor found in step 1: 251657724546775776918487145183357 Found probable prime factor of 33 digits: 251657724546775776918487145183357 Probable prime cofactor 507198032429569287477765065713930617795719443082782575395300656664341 has 69 digits
Factorizations of 311...117 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
4·10222+1 = 4(0)2211<223> = C223
C223 = P46 · C177
P46 = 6097015972179447612468707229921763686040066157<46>
C177 = [656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293<177>]
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2238052366 Step 1 took 107815ms Step 2 took 45211ms ********** Factor found in step 2: 6097015972179447612468707229921763686040066157 Found probable prime factor of 46 digits: 6097015972179447612468707229921763686040066157 Composite cofactor 656058638890223304734304814532016364046521353594428916682596906758480771159191063541717990626390717402033424938857168466764328812593445093132882486910603381621639064614968488293 has 177 digits
(19·10170+53)/9 = 2(1)1697<171> = 7 · 67 · 1813327 · 272195657 · 8028230032164739<16> · C138
C138 = P54 · P84
P54 = 134974717201857773930368940820113637270129245125087339<54>
P84 = 841605752110865393463396741998699499596686714405178738438815370274632079228373494047<84>
SNFS difficulty: 171 digits. Divisors found: r1=134974717201857773930368940820113637270129245125087339 r2=841605752110865393463396741998699499596686714405178738438815370274632079228373494047 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 113595498386620872755908814716787455791745380513425714228053550210917871632865906879922244374810697121827475171977159458642518183471570933 m: 10000000000000000000000000000000000 deg: 5 c5: 19 c0: 53 skew: 1.23 type: snfs lss: 1 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1001530 x 1001766 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 49.00 hours.
(25·10223-1)/3 = 8(3)223<224> = 157 · C222
C222 = P55 · P55 · P114
P55 = 1306957603596747155756205207527556392595787608690473329<55>
P55 = 3610883731712362153383889046706233893569388374490811951<55>
P114 = 112471916936323581687912526226250477697448549238152945555808403830365255115368282256825791178690625431891025219111<114>
SNFS difficulty: 224.398 digits. Divisors found: r1=1306957603596747155756205207527556392595787608690473329 (p55) r2=3610883731712362153383889046706233893569388374490811951 (p55) r3=112471916936323581687912526226250477697448549238152945555808403830365255115368282256825791178690625431891025219111 (p114) Version: Msieve v. 1.38 Total time: 4000.00 hours. (~ 1/2 year) Scaled time: 10936.00 units (timescale=2.734). Factorization parameters were as follows: m: 10000000000000000000000000000000000000 c0: -1 c6: 250 skew: 0.40 type: snfs lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved R and A special-q in [5000000, 39000001) # found 25418178 duplicates and 44624814 unique relations in 70042435 relations Relations: 44624814 unique relations Max relations in full relation-set: 18 Initial matrix: 5093347 x 5093664 (1562.6 MB) with weight 492190544 (96.63/col) sparse part has weight 353583836 (69.42/col) Pruned matrix : 5072806 x 5073054 (1502.9 MB) with weight 379638576 (74.83/col) Total sieving time: 3600.00 hours. Total relation processing time: 2.00 hours. Matrix solve time: 79.90 hours * 4 threads Time per square root: 1.50 hours * 7 Prototype def-par.txt line would be: snfs,224,6,0,0,0,0,0,0,0,0,20000000,20000000,29,29,58,58,2.6,2.6,200000 total time: 4000.00 hours. --------- CPU info (if available) ---------- Memory: 4050412k/4718592k available (1919k kernel code, 143268k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5208.19 BogoMIPS Msieve v. 1.38 random seeds: 275aa104 d1ec624c factoring 530785562...492569 (222 digits) commencing number field sieve (222-digit input) R0: -10000000000000000000000000000000000000 R1: 1 A0: -1 A6: 250 size score = 5.526797e-11, Murphy alpha = 0.888228, combined = 4.288037e-11 commencing relation filtering commencing duplicate removal, pass 1 found 20690166 hash collisions in 70042435 relations added 557 free relations commencing duplicate removal, pass 2 found 25418178 duplicates and 44624814 unique relations memory use: 504.8 MB reading rational ideals above 20000000 reading algebraic ideals above 20000000 commencing singleton removal, pass 1 relations with 0 large ideals: 300151 relations with 1 large ideals: 1709036 relations with 2 large ideals: 6485441 relations with 3 large ideals: 13135534 relations with 4 large ideals: 14398569 relations with 5 large ideals: 7482640 relations with 6 large ideals: 0 relations with 7+ large ideals: 1113443 44624814 relations and about 37264844 large ideals commencing singleton removal, pass 2 found 10269225 singletons current dataset: 34355589 relations and about 25836557 large ideals commencing singleton removal, pass 3 found 2285083 singletons current dataset: 32070506 relations and about 23483970 large ideals commencing singleton removal, pass 4 found 506556 singletons current dataset: 31563950 relations and about 22973862 large ideals commencing singleton removal, pass 5 found 105787 singletons current dataset: 31458163 relations and about 22867923 large ideals commencing singleton removal, final pass memory use: 646.6 MB commencing in-memory singleton removal begin with 31458163 relations and 28073717 unique ideals reduce to 23820147 relations and 20055302 ideals in 17 passes max relations containing the same ideal: 34 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 20738892 ideals with weight <= 20, new excess is 1857987 memory use: 691.1 MB commencing in-memory singleton removal begin with 23820560 relations and 20738892 unique ideals reduce to 23820146 relations and 20736293 ideals in 2 passes max relations containing the same ideal: 20 removing 3105558 relations and 2705558 ideals in 400000 cliques commencing in-memory singleton removal begin with 20714588 relations and 20736293 unique ideals reduce to 20388570 relations and 17697237 ideals in 9 passes max relations containing the same ideal: 20 removing 2311009 relations and 1911009 ideals in 400000 cliques commencing in-memory singleton removal begin with 18077561 relations and 17697237 unique ideals reduce to 17874198 relations and 15578752 ideals in 9 passes max relations containing the same ideal: 20 removing 1258394 relations and 1043894 ideals in 214500 cliques commencing in-memory singleton removal begin with 16615804 relations and 15578752 unique ideals reduce to 16547775 relations and 14466038 ideals in 8 passes max relations containing the same ideal: 20 relations with 0 large ideals: 143138 relations with 1 large ideals: 715795 relations with 2 large ideals: 2446351 relations with 3 large ideals: 4567315 relations with 4 large ideals: 4875853 relations with 5 large ideals: 2857270 relations with 6 large ideals: 666675 relations with 7+ large ideals: 275378 commencing 2-way merge reduce to 10525201 relation sets and 8443464 unique ideals commencing full merge memory use: 831.4 MB found 5312709 cycles, need 5093664 weight of 5093664 cycles is about 366772863 (72.01/cycle) distribution of cycle lengths: 1 relations: 649763 2 relations: 609230 3 relations: 607283 4 relations: 549747 5 relations: 496237 6 relations: 424834 7 relations: 367364 8 relations: 314101 9 relations: 265067 10+ relations: 810038 heaviest cycle: 18 relations commencing cycle optimization start with 27980174 relations pruned 708656 relations memory use: 928.6 MB distribution of cycle lengths: 1 relations: 649763 2 relations: 623356 3 relations: 630091 4 relations: 564773 5 relations: 509179 6 relations: 431489 7 relations: 371358 8 relations: 314199 9 relations: 262906 10+ relations: 736550 heaviest cycle: 18 relations elapsed time 01:10:33 Msieve v. 1.38 random seeds: 64904535 aade4bbb factoring 530785562...492569 (222 digits) commencing number field sieve (222-digit input) R0: -10000000000000000000000000000000000000 R1: 1 A0: -1 A6: 250 size score = 5.526797e-11, Murphy alpha = 0.888228, combined = 4.288037e-11 commencing linear algebra read 5093664 cycles cycles contain 15477814 unique relations read 15477814 relations using 32 quadratic characters above 536870600 building initial matrix memory use: 1946.3 MB read 5093664 cycles matrix is 5093347 x 5093664 (1562.6 MB) with weight 492190544 (96.63/col) sparse part has weight 353583836 (69.42/col) filtering completed in 3 passes matrix is 5072854 x 5073054 (1560.0 MB) with weight 491181101 (96.82/col) sparse part has weight 353137144 (69.61/col) read 5073054 cycles matrix is 5072854 x 5073054 (1560.0 MB) with weight 491181101 (96.82/col) sparse part has weight 353137144 (69.61/col) saving the first 48 matrix rows for later matrix is 5072806 x 5073054 (1502.9 MB) with weight 379638576 (74.83/col) sparse part has weight 343236700 (67.66/col) matrix includes 64 packed rows using block size 43690 for processor cache size 1024 kB commencing Lanczos iteration (4 threads) memory use: 1649.6 MB lanczos halted after 80220 iterations (dim = 5072803) recovered 47 nontrivial dependencies elapsed time 79:55:38 Msieve v. 1.38 random seeds: 8e04b69d de095e6b ... commencing square root phase reading relations for dependency 1, 6, 7, 8, 9, 10, 11, 12 read 2537586 cycles cycles contain 9477386 unique relations read 9477386 relations multiplying 7731564 relations multiply complete, coefficients have about 241.77 million bits initial square root is modulo 474860731 commencing number field sieve (168-digit input) prp55 factor: 1306957603596747155756205207527556392595787608690473329 prp55 factor: 3610883731712362153383889046706233893569388374490811951 prp114 factor: 112471916936323581687912526226250477697448549238152945555808403830365255115368282256825791178690625431891025219111 Thu Nov 6 21:53:18 2008 elapsed time 01:24:31
C205 is the largest snfs-factored composite number in our tables so far.
By Jo Yeong Uk / GGNFS
7·10171+3 = 7(0)1703<172> = 193663 · 1870021 · 5209480256572103393851<22> · 2894880042580604713105118836471073339<37> · C103
C103 = P41 · P62
P41 = 80382204556821276120047494428888590479349<41>
P62 = 15944834639689281626909755621895853382079436807483057371958301<62>
Number: 70003_171 N=1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 ( 103 digits) Divisors found: r1=80382204556821276120047494428888590479349 (pp41) r2=15944834639689281626909755621895853382079436807483057371958301 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.35 hours. Scaled time: 10.35 units (timescale=2.380). Factorization parameters were as follows: name: 70003_171 n: 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 skew: 12451.75 # norm 3.14e+14 c5: 28800 c4: -1396556640 c3: -21383349502937 c2: 102977721717798824 c1: 1369617770306240302888 c0: -3004456949011618764265560 # alpha -6.63 Y1: 66033646709 Y0: -33859902537347602823 # Murphy_E 2.62e-09 # M 353806601918654332315014283607060409901318680890166882125174584860899677165461883132592572648288552241 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [750000, 1400001) Primes: RFBsize:114155, AFBsize:114273, largePrimes:4440046 encountered Relations: rels:4417859, finalFF:331596 Max relations in full relation-set: 28 Initial matrix: 228507 x 331596 with sparse part having weight 29476847. Pruned matrix : 180731 x 181937 with weight 13703494. Polynomial selection time: 0.35 hours. Total sieving time: 3.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,49,49,2.6,2.6,50000 total time: 4.35 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(89·10166+1)/9 = 9(8)1659<167> = 3 · 7 · 2145267415169671460471822733293<31> · C136
C136 = P51 · P85
P51 = 787295564822051341879920685703659778682875348470397<51>
P85 = 2788103947756805820487521573803396169483071780461221984528675501647444463826993994429<85>
Number: 98889_166 N=2195061872331785564833392556541334193678898931031362398283536977263473924321435784902869096812578999064592069887228245952439930289418313 ( 136 digits) SNFS difficulty: 169 digits. Divisors found: r1=787295564822051341879920685703659778682875348470397 r2=2788103947756805820487521573803396169483071780461221984528675501647444463826993994429 Version: Total time: 57.30 hours. Scaled time: 127.08 units (timescale=2.218). Factorization parameters were as follows: n: 2195061872331785564833392556541334193678898931031362398283536977263473924321435784902869096812578999064592069887228245952439930289418313 m: 2000000000000000000000000000000000 deg: 5 c5: 445 c0: 16 skew: 0.51 type: snfs lss: 1 rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2400000, 4300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 821410 x 821658 Total sieving time: 57.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,4800000,4800000,27,27,52,52,2.6,2.6,100000 total time: 57.30 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(10174-7)/3 = (3)1731<174> = 19 · 88547903 · 65493648547<11> · 473223671792563487<18> · C136
C136 = P58 · P79
P58 = 2729972876973264473407668709958466870137231132087382318011<58>
P79 = 2341654867528510756347386808613808840739845101672864629948634132731214827586577<79>
Number: 33331_174 N=6392654275585257013050251073760484734035868446531489738443496605400817805956429239525447040560721507485657356110288987765692807048938347 ( 136 digits) SNFS difficulty: 174 digits. Divisors found: r1=2729972876973264473407668709958466870137231132087382318011 (pp58) r2=2341654867528510756347386808613808840739845101672864629948634132731214827586577 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 128.43 hours. Scaled time: 128.81 units (timescale=1.003). Factorization parameters were as follows: name: 33331_174 n: 6392654275585257013050251073760484734035868446531489738443496605400817805956429239525447040560721507485657356110288987765692807048938347 m: 50000000000000000000000000000000000 deg: 5 c5: 16 c0: -35 skew: 1.17 type: snfs lss: 1 rlim: 6200000 alim: 6200000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [3100000, 6800001) Primes: RFBsize:425648, AFBsize:427427, largePrimes:11270398 encountered Relations: rels:12623695, finalFF:1249159 Max relations in full relation-set: 28 Initial matrix: 853139 x 1249159 with sparse part having weight 145713480. Pruned matrix : 624977 x 629306 with weight 130223134. Total sieving time: 120.48 hours. Total relation processing time: 0.26 hours. Matrix solve time: 7.55 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,6200000,6200000,27,27,53,53,2.6,2.6,100000 total time: 128.43 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
8·10194+9 = 8(0)1939<195> = 36288787236817<14> · 1733287778383420857881<22> · C161
C161 = P34 · P127
P34 = 4640813787596588296684196149207787<34>
P127 = 2740644562907019485541894329504307053275818363204588691032659775150280382696305597977509234141114088628824622335852067596963491<127>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=636370792 Step 1 took 20942ms Step 2 took 13761ms ********** Factor found in step 2: 4640813787596588296684196149207787 Found probable prime factor of 34 digits: 4640813787596588296684196149207787 Probable prime cofactor 2740644562907019485541894329504307053275818363204588691032659775150280382696305597977509234141114088628824622335852067596963491 has 127 digits
(13·10192-1)/3 = 4(3)192<193> = 2009095013<10> · C184
C184 = P33 · C151
P33 = 453354899999051385638164148236283<33>
C151 = [4757549415156671793718885360940066592028321069345124332444285713214129510247713968209634548850809460784818990083255411472660105494008435800994319257027<151>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1455303559 Step 1 took 28365ms Step 2 took 18987ms ********** Factor found in step 2: 453354899999051385638164148236283 Found probable prime factor of 33 digits: 453354899999051385638164148236283 Composite cofactor 4757549415156671793718885360940066592028321069345124332444285713214129510247713968209634548850809460784818990083255411472660105494008435800994319257027 has 151 digits
(13·10193-1)/3 = 4(3)193<194> = 1283 · 211241938696927<15> · C177
C177 = P28 · C150
P28 = 1179454721985069238526884189<28>
C150 = [135560768795315666479420567155372787318773966104575598566882947784980396196359198484042923902019314266173918223948245743345587089475901721819107886317<150>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3284095331 Step 1 took 28060ms Step 2 took 18525ms ********** Factor found in step 2: 1179454721985069238526884189 Found probable prime factor of 28 digits: 1179454721985069238526884189 Composite cofactor 135560768795315666479420567155372787318773966104575598566882947784980396196359198484042923902019314266173918223948245743345587089475901721819107886317 has 150 digits
(23·10167+13)/9 = 2(5)1667<168> = 277 · 48691157895576045683<20> · C146
C146 = P44 · P102
P44 = 27443969039133904169298446115216292040204117<44>
P102 = 690412323075362557285027197597598433223412453613402784609440766686898486315079882183222803599157306431<102>
SNFS difficulty: 169 digits. Divisors found: r1=27443969039133904169298446115216292040204117 r2=690412323075362557285027197597598433223412453613402784609440766686898486315079882183222803599157306431 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 18947654418716764374424967132467690542553161009686042491058061789733340248529530439004902748518528032044865890752042000493770430656115301156776427 m: 2000000000000000000000000000000000 deg: 5 c5: 575 c0: 104 skew: 0.71 type: snfs lss: 1 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1107113 x 1107361 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 24.00 hours.
(8·10173+7)/3 = 2(6)1729<174> = 13 · 73 · 281 · 6326603 · C162
C162 = P74 · P88
P74 = 42814776790459658722187417517510814215270667144107978173935095857975270761<74>
P88 = 3691747018154731514901278255388629875677249064619370992864317356367999540966374768013547<88>
SNFS difficulty: 173 digits. Divisors found: r1=42814776790459658722187417517510814215270667144107978173935095857975270761 r2=3691747018154731514901278255388629875677249064619370992864317356367999540966374768013547 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 158061324549139851209881000137957958908466176625143650125935232571582776824866705772982079747177766026516809926412204131385899417709255574554361914986549440999267 m: 20000000000000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs lpbr: 27 lpba: 27 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1270477 x 1270725 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 8.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,200000 total time: 80.00 hours.
3·10170+7 = 3(0)1697<171> = 11900149 · 116810359621<12> · 333724949161<12> · C141
C141 = P69 · P73
P69 = 351770377281652245322691967098920378125785292375511986421626711343961<69>
P73 = 1838398065903311066272707877014113500727599586799929165989126913413817423<73>
SNFS difficulty: 170 digits. Divisors found: r1=351770377281652245322691967098920378125785292375511986421626711343961 r2=1838398065903311066272707877014113500727599586799929165989126913413817423 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.529). Factorization parameters were as follows: n: 646693981236667522389584237654366407875221788717974285764394693434647990177604896070899093925014128846041367813074214479167782278715807632503 m: 10000000000000000000000000000000000 deg: 5 c5: 3 c0: 7 skew: 1.18 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 944170 x 944418 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.6,2.6,100000 total time: 35.00 hours.
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(8·10246+1)/9 = (8)2459<246> = 19 · 43 · 1123 · 1201 · 54049 · 374953 · 238863187 · 254423276921041<15> · 249878855847304998235057<24> · 1140131831316969859162651<25> · C157
C157 = P49 · P108
P49 = 8415713706200900127931199895379743806544075670969<49>
P108 = 273184820763160944148394055954587276134525002594293166787252148081315618120301142706791530493734100974000787<108>
SNFS difficulty: 164 digits. Divisors found: r1=8415713706200900127931199895379743806544075670969 r2=273184820763160944148394055954587276134525002594293166787252148081315618120301142706791530493734100974000787 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.507). Factorization parameters were as follows: n: 2299045240422569802993721301700792860811599639640751880445141369355142007512624617692485421768499513237520278081936673408099549026757535740080796611359052603 m: 1000000000000000000000000000 deg: 6 c6: 400 c3: -20 c0: 1 skew: 0.37 type: snfs lss: 0 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1950000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 837829 x 838077 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,6,0,0,0,0,0,0,0,0,3900000,3900000,27,27,52,52,2.5,2.5,100000 total time: 20.00 hours.
(26·10164+1)/9 = 2(8)1639<165> = 1297 · 411676655521<12> · C150
C150 = P46 · P105
P46 = 4990807523509232364418465886288926752428403251<46>
P105 = 108408616165558846036225029730435357616003437405601641863437365460786398813070202087637446096562159822547<105>
SNFS difficulty: 166 digits. Divisors found: r1=4990807523509232364418465886288926752428403251 r2=108408616165558846036225029730435357616003437405601641863437365460786398813070202087637446096562159822547 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.467). Factorization parameters were as follows: n: 541046537172295678230112063092771000976403890919093220360728609248413825135794521816996517561591797000086121973304077595149385152379890268904717900297 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: 5 skew: 0.83 type: snfs lss: 1 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2500000, 4200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 822500 x 822748 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,54,54,2.5,2.5,100000 total time: 22.00 hours.
7·10171+3 = 7(0)1703<172> = 193663 · 1870021 · 5209480256572103393851<22> · C139
C139 = P37 · C103
P37 = 2894880042580604713105118836471073339<37>
C103 = [1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049<103>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=799800686 Step 1 took 14613ms Step 2 took 10661ms ********** Factor found in step 2: 2894880042580604713105118836471073339 Found probable prime factor of 37 digits: 2894880042580604713105118836471073339 Composite cofactor 1281680959632193503942635352586274267558015554322256712727649413867069609775801786926191322876429626049 has 103 digits
(17·10197-71)/9 = 1(8)1961<198> = 72 · 11 · 154740857 · C187
C187 = P31 · C156
P31 = 6484318817072200664220252344377<31>
C156 = [349259549226120898816318561825819172354659038159561997366757349200839837492502651538230943161399611740470482506153445896948591808813671085174887996739488211<156>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1746000186 Step 1 took 23750ms Step 2 took 15893ms ********** Factor found in step 2: 6484318817072200664220252344377 Found probable prime factor of 31 digits: 6484318817072200664220252344377 Composite cofactor 349259549226120898816318561825819172354659038159561997366757349200839837492502651538230943161399611740470482506153445896948591808813671085174887996739488211 has 156 digits
(11·10196+43)/9 = 1(2)1957<197> = 275729 · 459212683 · C182
C182 = P31 · P152
P31 = 6008741759849951709826487049587<31>
P152 = 16064614786695207086436049790472937530349258514440848160108671782788638591989327765703152163679992909068260214239814718499452514400361031807712665514003<152>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1330018205 Step 1 took 23833ms Step 2 took 15449ms ********** Factor found in step 2: 6008741759849951709826487049587 Found probable prime factor of 31 digits: 6008741759849951709826487049587 Probable prime cofactor 16064614786695207086436049790472937530349258514440848160108671782788638591989327765703152163679992909068260214239814718499452514400361031807712665514003 has 152 digits
By matsui / GMP-ECM
(26·10194-53)/9 = 2(8)1933<195> = 9181 · C191
C191 = P38 · C153
P38 = 33131310762757534463314113982209864083<38>
C153 = [949734540734059667011737519492193550057699281014965411093905490630203178374931330861533970341294050228827482597677330651031537089155308322620878537348821<153>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 31465950211184935071221968074162824190054339275557007830180687167943458107928209224364327294291350494378486971886383715160536857519756986046061310193757639569642619419332195718210313570296143 = 33131310762757534463314113982209864083* 949734540734059667011737519492193550057699281014965411093905490630203178374931330861533970341294050228827482597677330651031537089155308322620878537348821
(5·10195-23)/9 = (5)1943<195> = 7 · 1423 · C191
C191 = P33 · P159
P33 = 129336462421879849754069060926489<33>
P159 = 431224648380284309612865232874969422125228889747146931488227823268960765271677558591003604362740223454092783275191554461980340501715000408162796413157813991457<159>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 55773070530624993028366183671875871454227041015516068221619873060491472297515867438565962810516570179254648685428727593168914321409050853885709823868643264286272016419591964215997947551004473 = 129336462421879849754069060926489* 431224648380284309612865232874969422125228889747146931488227823268960765271677558591003604362740223454092783275191554461980340501715000408162796413157813991457
By Wataru Sakai / GGNFS, Msieve
(23·10188+13)/9 = 2(5)1877<189> = 29 · C187
C187 = P82 · P106
P82 = 4202259808550773907971885337983361678177345697627240201969519646276349756458518887<82>
P106 = 2097028964860108572050467604009417142331875365403029617600254671056087250436376223344983146072314679901359<106>
Number: 25557_188 N=8812260536398467432950191570881226053639846743295019157088122605363984674329501915708812260536398467432950191570881226053639846743295019157088122605363984674329501915708812260536398467433 ( 187 digits) SNFS difficulty: 190 digits. Divisors found: r1=4202259808550773907971885337983361678177345697627240201969519646276349756458518887 (pp82) r2=2097028964860108572050467604009417142331875365403029617600254671056087250436376223344983146072314679901359 (pp106) Version: GGNFS-0.77.1-20060722-nocona Total time: 617.09 hours. Scaled time: 1241.59 units (timescale=2.012). Factorization parameters were as follows: n: 8812260536398467432950191570881226053639846743295019157088122605363984674329501915708812260536398467432950191570881226053639846743295019157088122605363984674329501915708812260536398467433 m: 50000000000000000000000000000000000000 deg: 5 c5: 184 c0: 325 skew: 1.12 type: snfs lss: 1 rlim: 13100000 alim: 13100000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.7 alambda: 2.7Factor base limits: 13100000/13100000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6550000, 12250001) Primes: RFBsize:855281, AFBsize:852904, largePrimes:21516523 encountered Relations: rels:23769795, finalFF:2632176 Max relations in full relation-set: 32 Initial matrix: 1708252 x 2632176 with sparse part having weight 341771835. Pruned matrix : 1206863 x 1215468 with weight 293848552. Total sieving time: 578.38 hours. Total relation processing time: 0.51 hours. Matrix solve time: 37.66 hours. Time per square root: 0.54 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,13100000,13100000,28,28,55,55,2.7,2.7,100000 total time: 617.09 hours. --------- CPU info (if available) ----------
(8·10197+1)/9 = (8)1969<197> = C197
C197 = P54 · P144
P54 = 106311392897166500371783359424653869114814020003048227<54>
P144 = 836118185140042779513129418862402364113623638373731957714431877766932382409809916330540749485034097969436866621225052370275032773495280814961907<144>
Number: 88889_197 N=88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: r1=106311392897166500371783359424653869114814020003048227 r2=836118185140042779513129418862402364113623638373731957714431877766932382409809916330540749485034097969436866621225052370275032773495280814961907 Version: Total time: 624.61 hours. Scaled time: 1221.73 units (timescale=1.956). Factorization parameters were as follows: n: 88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 2000000000000000000000000000000000000000 deg: 5 c5: 25 c0: 1 skew: 0.53 type: snfs lss: 1 rlim: 18200000 alim: 18200000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.7 alambda: 2.7 Factor base limits: 18200000/18200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [9100000, 14800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2170422 x 2170670 Total sieving time: 624.61 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,18200000,18200000,28,28,56,56,2.7,2.7,100000 total time: 624.61 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
4·10171-9 = 3(9)1701<172> = 13 · 1481551 · 2094373 · 35330951 · C151
C151 = P41 · P41 · P70
P41 = 23561463756765050201124699355493115971879<41>
P41 = 28941009474935683843948897020903479139997<41>
P70 = 4115993992441463544706180751361765698756507413749483861195184714376893<70>
Number: 39991_171 N=2806665622118214847710924039293177763744010593873768497634226553742291244426872708427320284461062478088337028837972880775444239881356186539391699404159 ( 151 digits) SNFS difficulty: 172 digits. Divisors found: r1=23561463756765050201124699355493115971879 (pp41) r2=28941009474935683843948897020903479139997 (pp41) r3=4115993992441463544706180751361765698756507413749483861195184714376893 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 96.52 hours. Scaled time: 97.29 units (timescale=1.008). Factorization parameters were as follows: name: 39991_171 n: 2806665622118214847710924039293177763744010593873768497634226553742291244426872708427320284461062478088337028837972880775444239881356186539391699404159 m: 20000000000000000000000000000000000 deg: 5 c5: 5 c0: -36 skew: 1.48 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2800000, 4900001) Primes: RFBsize:387202, AFBsize:386584, largePrimes:10808797 encountered Relations: rels:11331818, finalFF:919917 Max relations in full relation-set: 28 Initial matrix: 773853 x 919917 with sparse part having weight 94060144. Pruned matrix : 669033 x 672966 with weight 71217464. Total sieving time: 90.71 hours. Total relation processing time: 0.25 hours. Matrix solve time: 5.41 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5600000,5600000,27,27,53,53,2.6,2.6,100000 total time: 96.52 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
4·10201+1 = 4(0)2001<202> = 41 · 5121931 · 103849329299<12> · 13503675809573<14> · 587861201947289<15> · 1860750042755447209<19> · 2795453108496978738236562037<28> · C109
C109 = P40 · P70
P40 = 1684776046154235009517333610464790582051<40>
P70 = 2636510377862930365366650606354695539107142487471106263373162893880619<70>
Number: n N=4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569 ( 109 digits) Divisors found: r1=1684776046154235009517333610464790582051 (pp40) r2=2636510377862930365366650606354695539107142487471106263373162893880619 (pp70) Ggnfs : 0.77.1-20051202-athlon Msieve : 1.38 Total time: 13.15 hours. Scaled time: 17.22 units (timescale=1.310). Factorization parameters were as follows: name: KA_4_0_200_1 n: 4441929530060515954157998847314184112685903495876036134220205683443732187676153908597962620364198451118169569 skew: 31421.32 # norm 1.12e+15 c5: 33300 c4: 67891188 c3: -92107347697813 c2: -71140811831309675 c1: 45923596748289206796281 c0: 99335048402119309697832255 # alpha -6.17 Y1: 260512343659 Y0: -668383033680763864204 # Murphy_E 1.16e-09 # M 59806822586170241890647397341851243665361596419283843288752444232521072743104971604544561288048719651220781 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800000) Primes: rational ideals reading, algebraic ideals reading, Relations: 7320359 Max relations in full relation-set: Initial matrix: Pruned matrix : 422921 x 423169 Total sieving time: 13.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 13.15 hours. --------- CPU info (if available) ----------
(64·10203-1)/9 = 7(1)203<204> = 3 · C204
C204 = P66 · P138
P66 = 792832704173552914410162539337802386344011510373910197870659268159<66>
P138 = 298974847769585802645309063405649477128051560575355074174346983441282122866725297765250335898742915030739786008659822640863906581190981843<138>
Number: n N=237037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 ( 204 digits) SNFS difficulty: 205 digits. Divisors found: Tue Nov 04 22:50:14 2008 prp66 factor: 792832704173552914410162539337802386344011510373910197870659268159 Tue Nov 04 22:50:15 2008 prp138 factor: 298974847769585802645309063405649477128051560575355074174346983441282122866725297765250335898742915030739786008659822640863906581190981843 Tue Nov 04 22:50:15 2008 elapsed time 32:38:00 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 86.80 hours. Scaled time: 176.89 units (timescale=2.038). Factorization parameters were as follows: name: KA_7_1_203 n: 237037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 type: snfs skew: 0.44 deg: 5 c5: 125 c0: -2 m: 40000000000000000000000000000000000000000 rlim: 9800000 alim: 9800000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9800000/9800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 14400001) Primes: RFBsize:652265, AFBsize:651935, largePrimes:34202822 encountered Relations: rels:29031060, finalFF:202074 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 84.55 hours. Total relation processing time: 2.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,205,5,0,0,0,0,0,0,0,0,9800000,9800000,29,29,58,58,2.5,2.5,100000 total time: 86.80 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
7·10176-9 = 6(9)1751<177> = 31 · 284227 · C170
C170 = P34 · P137
P34 = 1471607402359269526317161020368119<34>
P137 = 53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397<137>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 79445813245364875893722838753259122620867441596261597811926110399944978099626638725952461668246314253362004949020189110543968888111580963739001436493797495118905981214243 (170 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3920796782 Step 1 took 5865ms Step 2 took 5148ms ********** Factor found in step 2: 1471607402359269526317161020368119 Found probable prime factor of 34 digits: 1471607402359269526317161020368119 Probable prime cofactor 53985739075515634697915501772688348506596820268762244897523775610785131164014476184599853349601190834688415144297768454969091079778009397 has 137 digits
7·10187-9 = 6(9)1861<188> = 461 · 923371 · 473554153625182489683337<24> · C156
C156 = P34 · C122
P34 = 4690476648547345168326374837406127<34>
C122 = [74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039<122>]
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 347257179668169708309514689892335853744363566614245519657579625393249342784866390835895774677123656675961762660717974357244997314882524228703848091151563953 (156 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=603318502 Step 1 took 5912ms Step 2 took 4961ms ********** Factor found in step 2: 4690476648547345168326374837406127 Found probable prime factor of 34 digits: 4690476648547345168326374837406127 Composite cofactor 74034518384334417089817067969336107865932654799596895823511091185372389129149571176376292605794361402236374912345491675039 has 122 digits
By Serge Batalov / GMP-ECM 6.2.1
4·10209-9 = 3(9)2081<210> = 43 · 157 · 1344799 · 43219643 · 456637813 · C184
C184 = P35 · C149
P35 = 52186574700410202710543580507939239<35>
C149 = [42778215758823271283365202134828897965312572658602223157505026013428737320090590105223875557676570260944693618416666386090018930911972785693795598359<149>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1610337776 Step 1 took 22446ms Step 2 took 14608ms ********** Factor found in step 2: 52186574700410202710543580507939239 Found probable prime factor of 35 digits: 52186574700410202710543580507939239 Composite cofactor 42778215758823271283365202134828897965312572658602223157505026013428737320090590105223875557676570260944693618416666386090018930911972785693795598359 has 149 digits
4·10221-9 = 3(9)2201<222> = 151 · 1481 · 43987 · C212
C212 = P37 · C175
P37 = 4520901491708664102216490947309660917<37>
C175 = [8994532558579486158422478107666038614484587159727739139328919647030809782442864806400623275472680285761731651257616798378038630894161355548480113921301545753585088558529303159<175>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3686803269 Step 1 took 27678ms Step 2 took 16249ms ********** Factor found in step 2: 4520901491708664102216490947309660917 Found probable prime factor of 37 digits: 4520901491708664102216490947309660917 Composite cofactor 8994532558579486158422478107666038614484587159727739139328919647030809782442864806400623275472680285761731651257616798378038630894161355548480113921301545753585088558529303159 has 175 digits
By Jo Yeong Uk / GGNFS
(26·10165+1)/9 = 2(8)1649<166> = 33 · 117851 · 518327 · 58366361 · 17084746139318579<17> · C130
C130 = P49 · P82
P49 = 1461695095426919438797142366846476947894188853677<49>
P82 = 1201716525739254573467518321801984231101319213539948807673545053111692159046723257<82>
Number: 28889_165 N=1756543151766545803755642925450589171778542028876884396660299422169027097780703495647142664349931068706672888482955013259885865989 ( 130 digits) SNFS difficulty: 166 digits. Divisors found: r1=1461695095426919438797142366846476947894188853677 (pp49) r2=1201716525739254573467518321801984231101319213539948807673545053111692159046723257 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.99 hours. Scaled time: 75.89 units (timescale=2.372). Factorization parameters were as follows: n: 1756543151766545803755642925450589171778542028876884396660299422169027097780703495647142664349931068706672888482955013259885865989 m: 1000000000000000000000000000000000 deg: 5 c5: 26 c0: 1 skew: 0.52 type: snfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:283472, largePrimes:9788810 encountered Relations: rels:9959778, finalFF:681236 Max relations in full relation-set: 28 Initial matrix: 566686 x 681236 with sparse part having weight 69626447. Pruned matrix : 514482 x 517379 with weight 50794316. Total sieving time: 29.63 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.6,2.6,100000 total time: 31.99 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(10168-7)/3 = (3)1671<168> = 131 · 49129598861427367631541486362214571<35> · C131
C131 = P61 · P71
P61 = 1228202233579388080561140656681357992984908574006806994870721<61>
P71 = 42169101600404796800299427212024531725642501882767388509831772835550611<71>
Number: 33331_168 N=51792184773653319969285271375059174848183340563143297361801486678007691346322178986782793210838274087534397894208901070916797560531 ( 131 digits) SNFS difficulty: 168 digits. Divisors found: r1=1228202233579388080561140656681357992984908574006806994870721 (pp61) r2=42169101600404796800299427212024531725642501882767388509831772835550611 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 77.82 hours. Scaled time: 78.52 units (timescale=1.009). Factorization parameters were as follows: name: 33331_168 n: 51792184773653319969285271375059174848183340563143297361801486678007691346322178986782793210838274087534397894208901070916797560531 m: 2000000000000000000000000000000000 deg: 5 c5: 125 c0: -28 skew: 0.74 type: snfs lss: 1 rlim: 4700000 alim: 4700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 Factor base limits: 4700000/4700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2350000, 4050001) Primes: RFBsize:328964, AFBsize:328714, largePrimes:10042513 encountered Relations: rels:10368230, finalFF:738492 Max relations in full relation-set: 28 Initial matrix: 657744 x 738492 with sparse part having weight 74336497. Pruned matrix : 605532 x 608884 with weight 58986195. Total sieving time: 73.14 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.31 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4700000,4700000,27,27,52,52,2.6,2.6,100000 total time: 77.82 hours. --------- CPU info (if available) ----------
4·10248+1 = 4(0)2471<249> = 317 · 4349 · 25633 · 1115580458177<13> · C109 · 2461338222207399496484039883032285004259961128085456678539752052171509493196922687274302976705525864295840055350573941<118>
C109 = P54 · P56
P54 = 234046722213975127327184686613228150778995773714719821<54>
P56 = 17613153769512112517578753541630628864236833323216296297<56>
Number: 40001_248 N=4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837 ( 109 digits) SNFS difficulty: 124 digits. Divisors found: r1=234046722213975127327184686613228150778995773714719821 r2=17613153769512112517578753541630628864236833323216296297 Version: Total time: 6.26 hours. Scaled time: 6.52 units (timescale=1.041). Factorization parameters were as follows: name: 40001_248 n: 4122300907605030294499111843600161364770012937047971593160000464298405090920832309716980944454539014674802837 m: 10000000000000000000000000000000 deg: 4 c4: 2 c2: -2 c0: 1 skew: 0.84 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [305000, 680001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85089 x 85326 Total sieving time: 6.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,610000,610000,25,25,46,46,2.3,2.3,75000 total time: 6.26 hours. --------- CPU info (if available) ----------
Factorizations of 399...991 and Factorizations of 400...001 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(8·10172+1)/9 = (8)1719<172> = 36 · 735571 · 301300931 · 2921457841539294443<19> · C137
C137 = P44 · P46 · P48
P44 = 14123871181080477763897946609418072128713121<44>
P46 = 2956392197812963543895136286012007490917219747<46>
P48 = 451003028266667406944543619427456332464089161001<48>
Number: 88889_172 N=18831948303162667244590918998815998979388665461180031905468570772382957770384992951626941042510712833480481908158471365601449643984507387 ( 137 digits) SNFS difficulty: 172 digits. Divisors found: r1=14123871181080477763897946609418072128713121 (pp44) r2=2956392197812963543895136286012007490917219747 (pp46) r3=451003028266667406944543619427456332464089161001 (pp48) Version: GGNFS-0.77.1-20050930-nocona Total time: 100.01 hours. Scaled time: 100.61 units (timescale=1.006). Factorization parameters were as follows: name: 88889_172 n: 18831948303162667244590918998815998979388665461180031905468570772382957770384992951626941042510712833480481908158471365601449643984507387 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: 1 skew: 0.53 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.6 alambda: 2.6 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved rational special-q in [2850000, 5350001) Primes: RFBsize:393606, AFBsize:392982, largePrimes:11092016 encountered Relations: rels:12144422, finalFF:1245359 Max relations in full relation-set: 28 Initial matrix: 786652 x 1245359 with sparse part having weight 133842613. Pruned matrix : 559260 x 563257 with weight 95031013. Total sieving time: 94.74 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.90 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,53,53,2.6,2.6,100000 total time: 100.01 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW
(13·1067038-31)/9 = 1(4)670371<67039> is PRP.
This is the new record of the largest known Plateau and Depression PRPs. Congratulations!
See also Patrick De Geest's Plateau and Depression Primes and Henri & Renaud Lifchitz's PRP Top records.
By Serge Batalov / GMP-ECM 6.2.1
9·10249-1 = 8(9)249<250> = 1239961 · 17567289930891241<17> · 2211131180516999698877<22> · 132852679081112049264025722783994751<36> · C172
C172 = P36 · C136
P36 = 173971508153106043979381596158458837<36>
C136 = [8084753086520734729835410115388355154353484488692121661133313572891265091227154991684283911329904836521257457036748584838069340122707201<136>]
# ain't no such thing as a GNFS-172 :-) # Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2491863350 Step 1 took 21203ms Step 2 took 14217ms ********** Factor found in step 2: 173971508153106043979381596158458837 Found probable prime factor of 36 digits: 173971508153106043979381596158458837 Composite cofactor 8084753086520734729835410115388355154353484488692121661133313572891265091227154991684283911329904836521257457036748584838069340122707201 has 136 digits
By Serge Batalov / PFGW
(58·1026263-31)/9 = 6(4)262621<26264> is PRP.
By Jo Yeong Uk / GGNFS
(8·10237+1)/9 = (8)2369<237> = 7 · 67 · 79843 · 810282229 · 25235288443<11> · 65577779623<11> · 207290260327<12> · 2316545454492717520441<22> · 583350087044270793536476261956509179115137398672510361<54> · C113
C113 = P43 · P71
P43 = 1487191291700791041015131345158905072042727<43>
P71 = 42493320513341915820527305465165793249803276165861201738045955147117383<71>
Number: 88889_237 N=63195696222892684832277844391928328946821188206823261379133646682788995464468527739880731086293082863637460423441 ( 113 digits) Divisors found: r1=1487191291700791041015131345158905072042727 (pp43) r2=42493320513341915820527305465165793249803276165861201738045955147117383 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.14 hours. Scaled time: 48.09 units (timescale=2.388). Factorization parameters were as follows: name: 88889_237 n: 63195696222892684832277844391928328946821188206823261379133646682788995464468527739880731086293082863637460423441 skew: 27018.80 # norm 7.50e+15 c5: 123120 c4: 15962790444 c3: -173345636186388 c2: -9974465700677868059 c1: 72237218500103757733458 c0: 896261119410555873154720925 # alpha -6.43 Y1: 402453350621 Y0: -3483938486140772011098 # Murphy_E 6.73e-10 # M 16365498609173863858154545566911789076320402775766839248454106356650596401781867323838807040660698237825956707642 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2400001) Primes: RFBsize:176302, AFBsize:176053, largePrimes:7835106 encountered Relations: rels:7790839, finalFF:486106 Max relations in full relation-set: 28 Initial matrix: 352440 x 486106 with sparse part having weight 54607869. Pruned matrix : 287389 x 289215 with weight 33631177. Polynomial selection time: 1.05 hours. Total sieving time: 18.36 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.49 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 20.14 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, Msieve
(8·10243+1)/9 = (8)2429<243> = 7 · 103 · 10987 · 2208760504147<13> · 17177677368619642846441<23> · 2399421520626029861918272171940676301643<40> · 277844747550954514120814179402028087323169<42> · C121
C121 = P36 · P42 · P44
P36 = 570594377243591599388686219119749929<36>
P42 = 485954209612491624876956921153428347098089<42>
P44 = 15998838028061921724000945081009795138974083<44>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 4436201638881531080820121090024595020987461248035884770887711417896929274628629764144793641653411786281356411430875505523 (121 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2085848685 Step 1 took 12792ms Step 2 took 9578ms ********** Factor found in step 2: 570594377243591599388686219119749929 Found probable prime factor of 36 digits: 570594377243591599388686219119749929 Composite cofactor 7774702688645105274357691330510344294773167446766755376698913587511041625917629827387 has 85 digits Sat Nov 01 20:06:03 2008 Sat Nov 01 20:06:03 2008 Sat Nov 01 20:06:03 2008 Msieve v. 1.32 Sat Nov 01 20:06:03 2008 random seeds: f05f1888 7a2ed8fe Sat Nov 01 20:06:03 2008 factoring 7774702688645105274357691330510344294773167446766755376698913587511041625917629827387 (85 digits) Sat Nov 01 20:06:04 2008 no P-1/P+1/ECM available, skipping Sat Nov 01 20:06:04 2008 commencing quadratic sieve (85-digit input) Sat Nov 01 20:06:04 2008 using multiplier of 67 Sat Nov 01 20:06:04 2008 using VC8 32kb sieve core Sat Nov 01 20:06:04 2008 sieve interval: 12 blocks of size 32768 Sat Nov 01 20:06:04 2008 processing polynomials in batches of 17 Sat Nov 01 20:06:04 2008 using a sieve bound of 1442509 (54745 primes) Sat Nov 01 20:06:04 2008 using large prime bound of 115400720 (26 bits) Sat Nov 01 20:06:04 2008 using double large prime bound of 325068826146400 (41-49 bits) Sat Nov 01 20:06:04 2008 using trial factoring cutoff of 49 bits Sat Nov 01 20:06:04 2008 polynomial 'A' values have 11 factors Sat Nov 01 20:32:05 2008 55096 relations (16088 full + 39008 combined from 569882 partial), need 54841 Sat Nov 01 20:32:05 2008 begin with 585970 relations Sat Nov 01 20:32:05 2008 reduce to 129381 relations in 9 passes Sat Nov 01 20:32:05 2008 attempting to read 129381 relations Sat Nov 01 20:32:07 2008 recovered 129381 relations Sat Nov 01 20:32:07 2008 recovered 111770 polynomials Sat Nov 01 20:32:07 2008 attempting to build 55096 cycles Sat Nov 01 20:32:07 2008 found 55096 cycles in 5 passes Sat Nov 01 20:32:07 2008 distribution of cycle lengths: Sat Nov 01 20:32:07 2008 length 1 : 16088 Sat Nov 01 20:32:07 2008 length 2 : 11156 Sat Nov 01 20:32:07 2008 length 3 : 9817 Sat Nov 01 20:32:07 2008 length 4 : 6949 Sat Nov 01 20:32:07 2008 length 5 : 4796 Sat Nov 01 20:32:07 2008 length 6 : 2849 Sat Nov 01 20:32:07 2008 length 7 : 1602 Sat Nov 01 20:32:07 2008 length 9+: 1839 Sat Nov 01 20:32:07 2008 largest cycle: 17 relations Sat Nov 01 20:32:07 2008 matrix is 54745 x 55096 with weight 3015660 (avg 54.73/col) Sat Nov 01 20:32:07 2008 filtering completed in 3 passes Sat Nov 01 20:32:07 2008 matrix is 49581 x 49645 with weight 2734730 (avg 55.09/col) Sat Nov 01 20:32:07 2008 saving the first 48 matrix rows for later Sat Nov 01 20:32:07 2008 matrix is 49533 x 49645 with weight 2135984 (avg 43.03/col) Sat Nov 01 20:32:07 2008 matrix includes 64 packed rows Sat Nov 01 20:32:07 2008 commencing Lanczos iteration Sat Nov 01 20:32:40 2008 lanczos halted after 785 iterations (dim = 49530) Sat Nov 01 20:32:41 2008 recovered 16 nontrivial dependencies Sat Nov 01 20:32:41 2008 prp42 factor: 485954209612491624876956921153428347098089 Sat Nov 01 20:32:41 2008 prp44 factor: 15998838028061921724000945081009795138974083 Sat Nov 01 20:32:41 2008 elapsed time 00:26:38
By Jo Yeong Uk / GMP-ECM, Msieve
(8·10240+1)/9 = (8)2399<240> = 499 · 2593 · 4153 · 37537 · 157907 · 592027 · 25143931 · 953529450602823737857<21> · 63206919651724498591265539<26> · 180916423539264977164887047686482530123<39> · C123
C123 = P38 · P43 · P43
P38 = 59644893805996916150715795095302049977<38>
P43 = 1072585571895690212926242783522064352375233<43>
P43 = 2687601656653192547082463793848796171321257<43>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 171937307092353385967400546721317067525746091830138769938460004457841338344298987572006993464275252473429109785647831808737 (123 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3843108160 Step 1 took 13198ms Step 2 took 9251ms ********** Factor found in step 2: 59644893805996916150715795095302049977 Found probable prime factor of 38 digits: 59644893805996916150715795095302049977 Composite cofactor 2882682759929168977194009694842213855041748885584302599479357366656409353283853227881 has 85 digits Sat Nov 01 18:46:36 2008 Sat Nov 01 18:46:36 2008 Sat Nov 01 18:46:36 2008 Msieve v. 1.32 Sat Nov 01 18:46:36 2008 random seeds: 7b2a1340 77511deb Sat Nov 01 18:46:36 2008 factoring 2882682759929168977194009694842213855041748885584302599479357366656409353283853227881 (85 digits) Sat Nov 01 18:46:37 2008 no P-1/P+1/ECM available, skipping Sat Nov 01 18:46:37 2008 commencing quadratic sieve (85-digit input) Sat Nov 01 18:46:37 2008 using multiplier of 1 Sat Nov 01 18:46:37 2008 using VC8 32kb sieve core Sat Nov 01 18:46:37 2008 sieve interval: 12 blocks of size 32768 Sat Nov 01 18:46:37 2008 processing polynomials in batches of 17 Sat Nov 01 18:46:37 2008 using a sieve bound of 1423453 (54412 primes) Sat Nov 01 18:46:37 2008 using large prime bound of 116723146 (26 bits) Sat Nov 01 18:46:37 2008 using trial factoring cutoff of 27 bits Sat Nov 01 18:46:37 2008 polynomial 'A' values have 11 factors Sat Nov 01 19:03:03 2008 54673 relations (28990 full + 25683 combined from 274856 partial), need 54508 Sat Nov 01 19:03:03 2008 begin with 303846 relations Sat Nov 01 19:03:03 2008 reduce to 77135 relations in 2 passes Sat Nov 01 19:03:03 2008 attempting to read 77135 relations Sat Nov 01 19:03:04 2008 recovered 77135 relations Sat Nov 01 19:03:04 2008 recovered 69084 polynomials Sat Nov 01 19:03:04 2008 attempting to build 54673 cycles Sat Nov 01 19:03:04 2008 found 54673 cycles in 1 passes Sat Nov 01 19:03:04 2008 distribution of cycle lengths: Sat Nov 01 19:03:04 2008 length 1 : 28990 Sat Nov 01 19:03:04 2008 length 2 : 25683 Sat Nov 01 19:03:04 2008 largest cycle: 2 relations Sat Nov 01 19:03:04 2008 matrix is 54412 x 54673 with weight 1751130 (avg 32.03/col) Sat Nov 01 19:03:04 2008 filtering completed in 3 passes Sat Nov 01 19:03:04 2008 matrix is 39912 x 39976 with weight 1384330 (avg 34.63/col) Sat Nov 01 19:03:04 2008 saving the first 48 matrix rows for later Sat Nov 01 19:03:04 2008 matrix is 39864 x 39976 with weight 1001281 (avg 25.05/col) Sat Nov 01 19:03:04 2008 matrix includes 64 packed rows Sat Nov 01 19:03:04 2008 commencing Lanczos iteration Sat Nov 01 19:03:21 2008 lanczos halted after 632 iterations (dim = 39862) Sat Nov 01 19:03:21 2008 recovered 16 nontrivial dependencies Sat Nov 01 19:03:21 2008 prp43 factor: 1072585571895690212926242783522064352375233 Sat Nov 01 19:03:21 2008 prp43 factor: 2687601656653192547082463793848796171321257 Sat Nov 01 19:03:21 2008 elapsed time 00:16:45
By Wataru Sakai / GGNFS
(2·10197+1)/3 = (6)1967<197> = 220392158565284374291688840255616335178470607209821260561705899731767149903089665630652594920421<96> · 302491100866089681760705045981867175663870543867735929938582966213623707361104074371799068296165909327<102>
C197 = P96 · P102
P96 = 220392158565284374291688840255616335178470607209821260561705899731767149903089665630652594920421<96>
P102 = 302491100866089681760705045981867175663870543867735929938582966213623707361104074371799068296165909327<102>
Number: 66667_197 N=66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 197 digits) SNFS difficulty: 197 digits. Divisors found: r1=220392158565284374291688840255616335178470607209821260561705899731767149903089665630652594920421 (pp96) r2=302491100866089681760705045981867175663870543867735929938582966213623707361104074371799068296165909327 (pp102) Version: GGNFS-0.77.1-20060722-nocona Total time: 2956.25 hours. Scaled time: 5581.40 units (timescale=1.888). Factorization parameters were as follows: n: 66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 1000000000000000000000000000000000000000 c5: 200 c0: 1 skew: 0.35 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 50700001) Primes: RFBsize:501962, AFBsize:501861, largePrimes:8502861 encountered Relations: rels:9534666, finalFF:1152190 Max relations in full relation-set: 32 Initial matrix: 1003888 x 1152190 with sparse part having weight 195186395. Pruned matrix : 916465 x 921548 with weight 179477863. Total sieving time: 2935.44 hours. Total relation processing time: 0.48 hours. Matrix solve time: 19.96 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,197,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2956.25 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10155+1)/9 = 2(8)1549<156> = 31 · 59 · 72383 · 229093 · C142
C142 = P42 · P46 · P56
P42 = 538963150673787390706865573661610521092599<42>
P46 = 1528601204716243697472593549862635099435041001<46>
P56 = 11561534087493686424248097003525027478147253178845840561<56>
Number: 28889_155 N=9525082252482793999323102663610381687328364089726663768981685048839219164389556307565161122064185071206368574553912285043224680366061665707039 ( 142 digits) SNFS difficulty: 157 digits. Divisors found: r1=538963150673787390706865573661610521092599 (pp42) r2=1528601204716243697472593549862635099435041001 (pp46) r3=11561534087493686424248097003525027478147253178845840561 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.88 hours. Scaled time: 20.63 units (timescale=0.988). Factorization parameters were as follows: name: 28889_155 n: 9525082252482793999323102663610381687328364089726663768981685048839219164389556307565161122064185071206368574553912285043224680366061665707039 m: 20000000000000000000000000000000 deg: 5 c5: 13 c0: 16 skew: 1.04 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1400000, 1900001) Primes: RFBsize:203362, AFBsize:203722, largePrimes:9222201 encountered Relations: rels:9617408, finalFF:720314 Max relations in full relation-set: 28 Initial matrix: 407152 x 720314 with sparse part having weight 80380800. Pruned matrix : 302612 x 304711 with weight 34968755. Total sieving time: 19.87 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.78 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,51,51,2.5,2.5,100000 total time: 20.88 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(8·10234+1)/9 = (8)2339<234> = 17 · 811 · 12000751417<11> · 554504489139892891<18> · 4029308550879030630103503316721468381681617562125360827105876473<64> · C139
C139 = P36 · P50 · P54
P36 = 708452754409146374529483146787025747<36>
P50 = 22620385990634069598730260876721948262835656222041<50>
P54 = 150045427642136409744783106387616892839332104918312931<54>
SNFS difficulty: 156 digits. Divisors found: r1=708452754409146374529483146787025747 r2=22620385990634069598730260876721948262835656222041 r3=150045427642136409744783106387616892839332104918312931 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 2404549213661918600414415840219982246832209037094558163654197849879077303245717353071130110863139553088219578414824432195743107120942866737 m: 100000000000000000000000000 deg: 6 c6: 4 c3: -2 c0: 1 skew: 0.79 type: snfs lss: 0 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1350000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 632870 x 633118 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,6,0,0,0,0,0,0,0,0,2700000,2700000,27,27,52,52,2.5,2.5,100000 total time: 18.00 hours.
By Jo Yeong Uk / GGNFS
(26·10169+1)/9 = 2(8)1689<170> = 29 · 100913 · 21379041680182019<17> · 629791800841938978959882287717<30> · C117
C117 = P39 · P79
P39 = 237851355259520245767693083629268399033<39>
P79 = 3082441596275624181609734228458130179747319199386915262705645132263828924699723<79>
Number: 28889_169 N=733162911182476165696651536719886879504049082501597874078847443074443075794267486433599185290529361536401602468567859 ( 117 digits) Divisors found: r1=237851355259520245767693083629268399033 (pp39) r2=3082441596275624181609734228458130179747319199386915262705645132263828924699723 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.59 hours. Scaled time: 70.74 units (timescale=2.391). Factorization parameters were as follows: name: 28889_169 n: 733162911182476165696651536719886879504049082501597874078847443074443075794267486433599185290529361536401602468567859 skew: 108187.70 # norm 1.20e+16 c5: 2280 c4: -2795606378 c3: 91661920058231 c2: 32492461028090342176 c1: 190596168568149965665252 c0: -22722389176983656882853269024 # alpha -6.02 Y1: 1799589968209 Y0: -50287140329669627061855 # Murphy_E 4.21e-10 # M 32639685845805564224093647946773830579766880893555582023928404958121945799986229313304601184884548131897019900486115 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3500001) Primes: RFBsize:250150, AFBsize:250319, largePrimes:7797872 encountered Relations: rels:7841679, finalFF:647316 Max relations in full relation-set: 28 Initial matrix: 500549 x 647316 with sparse part having weight 63689992. Pruned matrix : 398906 x 401472 with weight 42503958. Polynomial selection time: 1.72 hours. Total sieving time: 26.52 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.06 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 29.59 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(16·10229-1)/3 = 5(3)229<230> = C230
C230 = P36 · C195
P36 = 138587157716002611881874212016797719<36>
C195 = [384836042619661515037583365602420853804947706362741067724480589885195095790677520451016462477007474961684527089033394907416313251084718861869219905548092763513236834002103979070093897973877134707<195>]
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2575188952 Step 1 took 13664ms Step 2 took 7337ms ********** Factor found in step 2: 138587157716002611881874212016797719 Found probable prime factor of 36 digits: 138587157716002611881874212016797719 Composite cofactor 384836042619661515037583365602420853804947706362741067724480589885195095790677520451016462477007474961684527089033394907416313251084718861869219905548092763513236834002103979070093897973877134707 has 195 digits
(16·10227-1)/3 = 5(3)227<228> = 41 · 1101419432827217431<19> · 837939824157522113713403<24> · C185
C185 = P32 · C153
P32 = 50951806998599951488548848592191<32>
C153 = [276623909222459955262062365246498315145753233845762190081926880984539629653558336897979021461117054738370602081856376552137256435890922353288561621777151<153>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2751728905 Step 1 took 22017ms Step 2 took 14817ms ********** Factor found in step 2: 50951806998599951488548848592191 Found probable prime factor of 32 digits: 50951806998599951488548848592191 Composite cofactor 276623909222459955262062365246498315145753233845762190081926880984539629653558336897979021461117054738370602081856376552137256435890922353288561621777151 has 153 digits
By Jo Yeong Uk / GGNFS
(8·10204+1)/9 = (8)2039<204> = 43 · 67 · 1291 · 24907 · 327345587 · 8061929011849<13> · 94532204264734580251505661306547825138854107742779<50> · C122
C122 = P38 · P39 · P46
P38 = 82897411705071064047937967244636410137<38>
P39 = 191569661445027288713112719046241871161<39>
P46 = 2421941276018788705974103400089367990086645033<46>
Number: 88889_204 N=38461951094348424889796919695047691873076556376697842828616885689987407536284091576355196737748437367339041253075869613881 ( 122 digits) SNFS difficulty: 138 digits. Divisors found: r1=82897411705071064047937967244636410137 (pp38) r2=191569661445027288713112719046241871161 (pp39) r3=2421941276018788705974103400089367990086645033 (pp46) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.67 hours. Scaled time: 11.11 units (timescale=2.381). Factorization parameters were as follows: n: 38461951094348424889796919695047691873076556376697842828616885689987407536284091576355196737748437367339041253075869613881 m: 100000000000000000000000 deg: 6 c6: 1 c3: -5 c0: 25 skew: 1.71 type: snfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.4 alambda: 2.4 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1650001) Primes: RFBsize:114155, AFBsize:113645, largePrimes:3608661 encountered Relations: rels:3614398, finalFF:283594 Max relations in full relation-set: 28 Initial matrix: 227865 x 283594 with sparse part having weight 25287404. Pruned matrix : 206933 x 208136 with weight 15893379. Total sieving time: 4.43 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.16 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.4,2.4,50000 total time: 4.67 hours. --------- CPU info (if available) ----------
(8·10207+1)/9 = (8)2069<207> = 7 · 23 · 109 · 307 · 297674527070399026203749<24> · 2909875173333171111479969227134609531967<40> · C138
C138 = P34 · P104
P34 = 5582664782691969404374014480446767<34>
P104 = 34119224042741568474837497946520829604804791221870890569522792743145229666446531659254662634444747964243<104>
Number: 88889_207 N=190476190476190476190476190476190476190476190476190476190476190476190380952380952380952380952380952380952380952380952380952380952380952381 ( 138 digits) SNFS difficulty: 138 digits. Divisors found: r1=5582664782691969404374014480446767 (pp34) r2=34119224042741568474837497946520829604804791221870890569522792743145229666446531659254662634444747964243 (pp104) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.72 hours. Scaled time: 11.27 units (timescale=2.388). Factorization parameters were as follows: n: 190476190476190476190476190476190476190476190476190476190476190476190380952380952380952380952380952380952380952380952380952380952380952381 m: 100000000000000000000000 deg: 6 c6: 4 c3: -2 c0: 1 skew: 0.79 type: snfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.4 alambda: 2.4 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1650001) Primes: RFBsize:114155, AFBsize:113945, largePrimes:3605300 encountered Relations: rels:3601927, finalFF:271303 Max relations in full relation-set: 28 Initial matrix: 228165 x 271303 with sparse part having weight 24454403. Pruned matrix : 212282 x 213486 with weight 16741789. Total sieving time: 4.47 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.4,2.4,50000 total time: 4.72 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
(8·10225+1)/9 = (8)2249<225> = 72 · 43 · 8228029 · 24020107 · 14857882856581287529<20> · 3258352894056569900803<22> · 5000236399743388811370403<25> · 320247123017961326534531395337587<33> · C110
C110 = P32 · P78
P32 = 50532169039234753564210908503389<32>
P78 = 544895758886235998604351913304690160474307653093573978373738315850473064776483<78>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 27534764596801380073444030684382856370143345530480298090729657481328086634802851751249267898435076081333000887 (110 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3291085960 Step 1 took 3256ms Step 2 took 2058ms ********** Factor found in step 2: 50532169039234753564210908503389 Found probable prime factor of 32 digits: 50532169039234753564210908503389 Probable prime cofactor 544895758886235998604351913304690160474307653093573978373738315850473064776483 has 78 digits
Factorizations of 899...99, Factorizations of 88...889, Factorizations of 533...33 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By matsui / GMP-ECM
(7·10190-61)/9 = (7)1891<190> = 232 · C188
C188 = P31 · C157
P31 = 2688905664266052337484729565917<31>
C157 = [5467946951863048473626887020863645023766677773365149383086724143142152008359250701849934634922233312157204345407319371930536542980234660828386982636456713847<157>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 14702793530770846460827557235874816215080865364419239655534551564797311489182944759504305818105440033606385213190506196177273681999579920184835118672547784078975005250997689561016593152699 =2688905664266052337484729565917* 5467946951863048473626887020863645023766677773365149383086724143142152008359250701849934634922233312157204345407319371930536542980234660828386982636456713847
By Serge Batalov / GMP-ECM 6.2.1
6·10168-1 = 5(9)168<169> = 4799 · 2017177 · 4202161651613<13> · 10503821362051<14> · C134
C134 = P34 · P100
P34 = 6720571008125216270124997913782507<34>
P100 = 2089441596792376491620750374295583364339925722989928143182632024080598639760461288200867439741680893<100>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3109165435 Step 1 took 12077ms Step 2 took 9621ms ********** Factor found in step 2: 6720571008125216270124997913782507 Found probable prime factor of 34 digits: 6720571008125216270124997913782507 Probable prime cofactor 2089441596792376491620750374295583364339925722989928143182632024080598639760461288200867439741680893 has 100 digits
By Jo Yeong Uk / GGNFS
(26·10159+1)/9 = 2(8)1589<160> = 3 · 19 · 2897 · 47530117865256101258279<23> · C132
C132 = P53 · P79
P53 = 63372486529335247949657526960405508372415068972242089<53>
P79 = 5808150331783600012048251978464509513167533255570748146548143492258533560391311<79>
Number: 28889_159 N=368076928661310242796685223052351194474178929325136743683341593384751145819507087501554444508127876795316137199592189505603864088679 ( 132 digits) SNFS difficulty: 161 digits. Divisors found: r1=63372486529335247949657526960405508372415068972242089 (pp53) r2=5808150331783600012048251978464509513167533255570748146548143492258533560391311 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.36 hours. Scaled time: 57.78 units (timescale=2.372). Factorization parameters were as follows: n: 368076928661310242796685223052351194474178929325136743683341593384751145819507087501554444508127876795316137199592189505603864088679 m: 100000000000000000000000000000000 deg: 5 c5: 13 c0: 5 skew: 0.83 type: snfs rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:217321, largePrimes:9125240 encountered Relations: rels:9381690, finalFF:582288 Max relations in full relation-set: 28 Initial matrix: 434202 x 582288 with sparse part having weight 65760285. Pruned matrix : 383610 x 385845 with weight 43352181. Total sieving time: 23.04 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,51,51,2.5,2.5,100000 total time: 24.36 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM
5·10177-3 = 4(9)1767<178> = 29 · 71 · 647 · 11597 · 32257 · 11155845410727571<17> · C147
C147 = P31 · P117
P31 = 4116890636843482409367503214379<31>
P117 = 218457987170696445427188464234004646047913220813017808820800049784287693771198669963461651749956944384214219693687749<117>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 899367641926713799141991352700853887454818241078024680408131394423372550185069563049583638222675661519098771870475781201357007143856873533832942871 =4116890636843482409367503214379* 218457987170696445427188464234004646047913220813017808820800049784287693771198669963461651749956944384214219693687749
By Wataru Sakai / GGNFS
(4·10187+17)/3 = 1(3)1869<188> = 227 · C185
C185 = P62 · P123
P62 = 68965476147814636902426765565516035764069141667886618893443389<62>
P123 = 851689200583090792929308232980079439143509638878237547282829962931049006405070726814731704503101259053470178580894789150813<123>
Number: 13339_187 N=58737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279001468428781204111600587371512481644640234948604992657856093979441997063142437591776798825257 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: r1=68965476147814636902426765565516035764069141667886618893443389 (pp62) r2=851689200583090792929308232980079439143509638878237547282829962931049006405070726814731704503101259053470178580894789150813 (pp123) Version: GGNFS-0.77.1-20060722-nocona Total time: 1042.92 hours. Scaled time: 2087.93 units (timescale=2.002). Factorization parameters were as follows: n: 58737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279001468428781204111600587371512481644640234948604992657856093979441997063142437591776798825257 m: 20000000000000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 18500001) Primes: RFBsize:501962, AFBsize:503361, largePrimes:7202596 encountered Relations: rels:7831073, finalFF:1219969 Max relations in full relation-set: 32 Initial matrix: 1005387 x 1219969 with sparse part having weight 139107803. Pruned matrix : 846533 x 851623 with weight 122408733. Total sieving time: 1030.97 hours. Total relation processing time: 0.16 hours. Matrix solve time: 11.53 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1042.92 hours. --------- CPU info (if available) ----------
2·10190+9 = 2(0)1899<191> = 11 · 2267 · C186
C186 = P43 · P144
P43 = 3598257171209322387124035246065550912037121<43>
P144 = 222891543042545298957116640948488621345212099759851442244790596744882493938600415976943482712976628381818095574564453234501990920912116689990817<144>
Number: 20009_190 N=802021093154749969924209006696876127842162248867145205918915667482054778040662469422945823475157396639531619681597626017564261940089024341340177246661587199743353250190480009624253117857 ( 186 digits) SNFS difficulty: 190 digits. Divisors found: r1=3598257171209322387124035246065550912037121 (pp43) r2=222891543042545298957116640948488621345212099759851442244790596744882493938600415976943482712976628381818095574564453234501990920912116689990817 (pp144) Version: GGNFS-0.77.1-20060722-nocona Total time: 868.84 hours. Scaled time: 1750.70 units (timescale=2.015). Factorization parameters were as follows: n: 802021093154749969924209006696876127842162248867145205918915667482054778040662469422945823475157396639531619681597626017564261940089024341340177246661587199743353250190480009624253117857 m: 100000000000000000000000000000000000000 c5: 2 c0: 9 skew: 1.35 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15700001) Primes: RFBsize:501962, AFBsize:502156, largePrimes:6947303 encountered Relations: rels:7503487, finalFF:1184004 Max relations in full relation-set: 32 Initial matrix: 1004183 x 1184004 with sparse part having weight 117312846. Pruned matrix : 866921 x 872005 with weight 96822749. Total sieving time: 860.03 hours. Total relation processing time: 0.13 hours. Matrix solve time: 8.42 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 868.84 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10179-17)/9 = 2(8)1787<180> = 577 · 2011439 · 27778159 · 98699849 · 1653903478537<13> · C143
C143 = P49 · P94
P49 = 5568917968267078138899173830351221759908557861721<49>
P94 = 9857056137728383106952550168939175812236563857884385884810595206543334545507467963339269590847<94>
Number: 28887_179 N=54893137039612879596184897392530603975543294236018838293195344236899356693945768816826702494078297548438412058402012173090931238202908873267687 ( 143 digits) SNFS difficulty: 181 digits. Divisors found: r1=5568917968267078138899173830351221759908557861721 (pp49) r2=9857056137728383106952550168939175812236563857884385884810595206543334545507467963339269590847 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 548.54 hours. Scaled time: 553.48 units (timescale=1.009). Factorization parameters were as follows: name: 28887_179 n: 54893137039612879596184897392530603975543294236018838293195344236899356693945768816826702494078297548438412058402012173090931238202908873267687 m: 1000000000000000000000000000000000000 c5: 13 c0: -85 skew: 1.46 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11000001) Primes: RFBsize:501962, AFBsize:501546, largePrimes:6747299 encountered Relations: rels:7249285, finalFF:1172045 Max relations in full relation-set: 28 Initial matrix: 1003573 x 1172045 with sparse part having weight 87126144. Pruned matrix : 865254 x 870335 with weight 67813684. Total sieving time: 540.27 hours. Total relation processing time: 0.16 hours. Matrix solve time: 7.96 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 548.54 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(28·10190+17)/9 = 3(1)1893<191> = 3 · 53 · 2324869405289<13> · C176
C176 = P30 · P147
P30 = 189344953281801099289844032523<30>
P147 = 444494202776565721977201120940522199860059753010149064714369456018500463217163672442226792310654799092430889759491584962078996666281704027405100381<147>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=732919934 Step 1 took 22026ms Step 2 took 16557ms ********** Factor found in step 2: 189344953281801099289844032523 Found probable prime factor of 30 digits: 189344953281801099289844032523 Probable prime cofactor 444494202776565721977201120940522199860059753010149064714369456018500463217163672442226792310654799092430889759491584962078996666281704027405100381 has 147 digits
(10195-7)/3 = (3)1941<195> = 181 · 269 · 8124997885001<13> · 74717295626884435829<20> · 326293390169303271462521<24> · C134
C134 = P38 · P97
P38 = 29260605544995388086468822651950635609<38>
P97 = 1181168628435656755332100955486268041776709445145430749775935359970677708462298380422465750774959<97>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3346586215 Step 1 took 11984ms Step 2 took 11253ms ********** Factor found in step 2: 29260605544995388086468822651950635609 Found probable prime factor of 38 digits: 29260605544995388086468822651950635609 Probable prime cofactor 1181168628435656755332100955486268041776709445145430749775935359970677708462298380422465750774959 has 97 digits
(2·10200-17)/3 = (6)1991<200> = 273765949 · 189134477377<12> · C181
C181 = P33 · C148
P33 = 522353457577022509514639952407329<33>
C148 = [2464870651612724961793238428217840495900981675124347834528712637053912675622666484609096621861583916321050830926456254813740600462323677340559278633<148>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3352591208 Step 1 took 22005ms Step 2 took 16481ms ********** Factor found in step 2: 522353457577022509514639952407329 Found probable prime factor of 33 digits: 522353457577022509514639952407329 Composite cofactor 2464870651612724961793238428217840495900981675124347834528712637053912675622666484609096621861583916321050830926456254813740600462323677340559278633 has 148 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve
(28·10171+17)/9 = 3(1)1703<172> = 11 · 98671529155359905029<20> · C151
C151 = P30 · P121
P30 = 568989076397229877436168709083<30>
P121 = 5037639078551312735260150274259076408128833763875038399879050906215408406462219863760359907480071781960561895317179882669<121>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3387344901 Step 1 took 16665ms Step 2 took 13201ms ********** Factor found in step 2: 568989076397229877436168709083 Found probable prime factor of 30 digits: 568989076397229877436168709083 Probable prime cofactor 5037639078551312735260150274259076408128833763875038399879050906215408406462219863760359907480071781960561895317179882669 has 121 digits
(28·10181+17)/9 = 3(1)1803<182> = 3 · 11 · 59 · 1013 · 14321 · 25444583528418949967<20> · C152
C152 = P33 · P35 · P35 · P50
P33 = 487786121583417478031377245240619<33>
P35 = 23713943396205054814260936625106267<35>
P35 = 74651041133013577781884111541307929<35>
P50 = 50130535731281299048808262966371781007594617903457<50>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=80191738 Step 1 took 14481ms Step 2 took 12853ms ********** Factor found in step 2: 23713943396205054814260936625106267 Found probable prime factor of 35 digits: 23713943396205054814260936625106267 Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=392881417 Step 1 took 15425ms Step 2 took 12941ms ********** Factor found in step 2: 487786121583417478031377245240619 Found probable prime factor of 33 digits: 487786121583417478031377245240619 Wed Oct 29 19:41:35 2008 Msieve v. 1.36 Wed Oct 29 19:41:35 2008 random seeds: 6270e78e 23782657 Wed Oct 29 19:41:35 2008 factoring 3742296684895887151566152410872755963617683239627020475047963724780736160593630610553 (85 digits) Wed Oct 29 19:41:35 2008 no P-1/P+1/ECM available, skipping Wed Oct 29 19:41:35 2008 commencing quadratic sieve (85-digit input) Wed Oct 29 19:41:35 2008 using multiplier of 3 Wed Oct 29 19:41:35 2008 using 64kb Opteron sieve core Wed Oct 29 19:41:35 2008 sieve interval: 6 blocks of size 65536 Wed Oct 29 19:41:35 2008 processing polynomials in batches of 17 Wed Oct 29 19:41:35 2008 using a sieve bound of 1426129 (54330 primes) Wed Oct 29 19:41:35 2008 using large prime bound of 116942578 (26 bits) Wed Oct 29 19:41:35 2008 using double large prime bound of 332928269126164 (41-49 bits) Wed Oct 29 19:41:35 2008 using trial factoring cutoff of 49 bits Wed Oct 29 19:41:35 2008 polynomial 'A' values have 11 factors Wed Oct 29 20:07:14 2008 54749 relations (16077 full + 38672 combined from 569767 partial), need 54426 Wed Oct 29 20:07:14 2008 begin with 585844 relations Wed Oct 29 20:07:14 2008 reduce to 128305 relations in 9 passes Wed Oct 29 20:07:14 2008 attempting to read 128305 relations Wed Oct 29 20:07:15 2008 recovered 128305 relations Wed Oct 29 20:07:15 2008 recovered 107033 polynomials Wed Oct 29 20:07:15 2008 attempting to build 54749 cycles Wed Oct 29 20:07:15 2008 found 54749 cycles in 6 passes Wed Oct 29 20:07:15 2008 distribution of cycle lengths: Wed Oct 29 20:07:15 2008 length 1 : 16077 Wed Oct 29 20:07:15 2008 length 2 : 11191 Wed Oct 29 20:07:15 2008 length 3 : 9634 Wed Oct 29 20:07:15 2008 length 4 : 7021 Wed Oct 29 20:07:15 2008 length 5 : 4652 Wed Oct 29 20:07:15 2008 length 6 : 2817 Wed Oct 29 20:07:15 2008 length 7 : 1583 Wed Oct 29 20:07:15 2008 length 9+: 1774 Wed Oct 29 20:07:15 2008 largest cycle: 17 relations Wed Oct 29 20:07:15 2008 matrix is 54330 x 54749 (12.7 MB) with weight 2892970 (52.84/col) Wed Oct 29 20:07:16 2008 sparse part has weight 2892970 (52.84/col) Wed Oct 29 20:07:16 2008 filtering completed in 4 passes Wed Oct 29 20:07:16 2008 matrix is 48985 x 49049 (11.5 MB) with weight 2610556 (53.22/col) Wed Oct 29 20:07:16 2008 sparse part has weight 2610556 (53.22/col) Wed Oct 29 20:07:16 2008 saving the first 48 matrix rows for later Wed Oct 29 20:07:16 2008 matrix is 48937 x 49049 (6.8 MB) with weight 1947250 (39.70/col) Wed Oct 29 20:07:16 2008 sparse part has weight 1294865 (26.40/col) Wed Oct 29 20:07:16 2008 matrix includes 64 packed rows Wed Oct 29 20:07:16 2008 using block size 19619 for processor cache size 1024 kB Wed Oct 29 20:07:17 2008 commencing Lanczos iteration Wed Oct 29 20:07:17 2008 memory use: 6.5 MB Wed Oct 29 20:07:27 2008 lanczos halted after 775 iterations (dim = 48935) Wed Oct 29 20:07:27 2008 recovered 18 nontrivial dependencies Wed Oct 29 20:07:28 2008 prp35 factor: 74651041133013577781884111541307929 Wed Oct 29 20:07:28 2008 prp50 factor: 50130535731281299048808262966371781007594617903457 Wed Oct 29 20:07:28 2008 elapsed time 00:25:53
By Robert Backstrom / GGNFS, Msieve
(14·10200-23)/9 = 1(5)1993<201> = 32 · C200
C200 = P52 · P65 · P84
P52 = 3033496037622857307870842268067364837548775059726949<52>
P65 = 12252998283212933037938412743529586470315179061764978083771647637<65>
P84 = 465004560406171829084976708697089017173510355031372707962704278582642195060480525009<84>
Number: n N=17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617 ( 200 digits) SNFS difficulty: 201 digits. Divisors found: Thu Oct 30 08:57:29 2008 prp52 factor: 3033496037622857307870842268067364837548775059726949 Thu Oct 30 08:57:29 2008 prp65 factor: 12252998283212933037938412743529586470315179061764978083771647637 Thu Oct 30 08:57:29 2008 prp84 factor: 465004560406171829084976708697089017173510355031372707962704278582642195060480525009 Thu Oct 30 08:57:30 2008 elapsed time 26:37:36 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 83.40 hours. Scaled time: 170.54 units (timescale=2.045). Factorization parameters were as follows: name: KA_1_5_199_3 n: 17283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617283950617 type: snfs skew: 1.10 deg: 5 c5: 14 c0: -23 m: 10000000000000000000000000000000000000000 rlim: 9600000 alim: 9600000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 13300001) Primes: RFBsize:639851, AFBsize:640823, largePrimes:35380027 encountered Relations: rels:26823768, finalFF:263116 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 81.43 hours. Total relation processing time: 1.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,9600000,9600000,29,29,58,58,2.5,2.5,100000 total time: 83.40 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(26·10183-17)/9 = 2(8)1827<184> = C184
C184 = P90 · P94
P90 = 571191356051002418872131436996090915923457383067405912592086693050165007850808002169422749<90>
P94 = 5057655124302924926840820612415887462963794902802707794326442625485636705143562806846593819363<94>
Number: 28887_183 N=2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: r1=571191356051002418872131436996090915923457383067405912592086693050165007850808002169422749 (pp90) r2=5057655124302924926840820612415887462963794902802707794326442625485636705143562806846593819363 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 296.85 hours. Scaled time: 704.43 units (timescale=2.373). Factorization parameters were as follows: n: 2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 10000000000000000000000000000000000000 c5: 13 c0: -850 skew: 2.31 type: snfs Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved algebraic special-q in [6000000, 11300001) Primes: RFBsize:788060, AFBsize:788454, largePrimes:12608406 encountered Relations: rels:13159127, finalFF:1768281 Max relations in full relation-set: 28 Initial matrix: 1576580 x 1768281 with sparse part having weight 117863959. Pruned matrix : 1406297 x 1414243 with weight 86507487. Total sieving time: 280.09 hours. Total relation processing time: 0.24 hours. Matrix solve time: 16.38 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,51,51,2.6,2.6,100000 total time: 296.85 hours. --------- CPU info (if available) ----------
By Justin Card / GGNFS for sieving, msieve for linear algebra
(10179+17)/9 = (1)1783<179> = 19 · 1439 · 11791673 · 350355007 · 41417257495760776071419<23> · C136
C136 = P56 · P80
P56 = 64359895320324138046847817077342166028615808217898933063<56>
P80 = 36903084954015880064848993395715905165599046095682487205693219081526100375034279<80>
Tue Oct 28 18:11:06 2008 Msieve v. 1.38 Tue Oct 28 18:11:06 2008 random seeds: d81d15f7 8c4cc99f Tue Oct 28 18:11:06 2008 factoring 2375078684637490748471009799403460903791906373419845536550774278476483193823770338103403225837841896931094354587473006789445556151466577 (136 digits) Tue Oct 28 18:11:07 2008 no P-1/P+1/ECM available, skipping Tue Oct 28 18:11:07 2008 commencing number field sieve (136-digit input) Tue Oct 28 18:11:07 2008 R0: -1000000000000000000000000000000000000 Tue Oct 28 18:11:07 2008 R1: 1 Tue Oct 28 18:11:07 2008 A0: 170 Tue Oct 28 18:11:07 2008 A1: 0 Tue Oct 28 18:11:07 2008 A2: 0 Tue Oct 28 18:11:07 2008 A3: 0 Tue Oct 28 18:11:07 2008 A4: 0 Tue Oct 28 18:11:07 2008 A5: 1 Tue Oct 28 18:11:07 2008 size score = 2.613876e-12, Murphy alpha = 0.851423, combined = 1.968017e-12 Tue Oct 28 18:11:07 2008 Tue Oct 28 18:11:07 2008 commencing relation filtering Tue Oct 28 18:11:07 2008 commencing duplicate removal, pass 1 Tue Oct 28 18:14:06 2008 error -9 reading relation 16302560 Tue Oct 28 18:14:58 2008 error -15 reading relation 21041764 Tue Oct 28 18:15:19 2008 found 1848518 hash collisions in 22933637 relations Tue Oct 28 18:16:47 2008 added 721562 free relations Tue Oct 28 18:16:47 2008 commencing duplicate removal, pass 2 Tue Oct 28 18:17:06 2008 found 1107318 duplicates and 22547881 unique relations Tue Oct 28 18:17:06 2008 memory use: 94.6 MB Tue Oct 28 18:17:06 2008 reading rational ideals above 18415616 Tue Oct 28 18:17:06 2008 reading algebraic ideals above 18415616 Tue Oct 28 18:17:06 2008 commencing singleton removal, pass 1 Tue Oct 28 18:21:41 2008 relations with 0 large ideals: 922249 Tue Oct 28 18:21:41 2008 relations with 1 large ideals: 4236483 Tue Oct 28 18:21:41 2008 relations with 2 large ideals: 7900596 Tue Oct 28 18:21:41 2008 relations with 3 large ideals: 6655370 Tue Oct 28 18:21:41 2008 relations with 4 large ideals: 2152524 Tue Oct 28 18:21:41 2008 relations with 5 large ideals: 17717 Tue Oct 28 18:21:41 2008 relations with 6 large ideals: 662941 Tue Oct 28 18:21:41 2008 relations with 7+ large ideals: 1 Tue Oct 28 18:21:41 2008 22547881 relations and about 18723100 large ideals Tue Oct 28 18:21:41 2008 commencing singleton removal, pass 2 Tue Oct 28 18:26:16 2008 found 6186686 singletons Tue Oct 28 18:26:16 2008 current dataset: 16361195 relations and about 11312019 large ideals Tue Oct 28 18:26:16 2008 commencing singleton removal, pass 3 Tue Oct 28 18:29:28 2008 found 1867860 singletons Tue Oct 28 18:29:28 2008 current dataset: 14493335 relations and about 9370319 large ideals Tue Oct 28 18:29:28 2008 commencing singleton removal, pass 4 Tue Oct 28 18:32:18 2008 found 423643 singletons Tue Oct 28 18:32:18 2008 current dataset: 14069692 relations and about 8941622 large ideals Tue Oct 28 18:32:18 2008 commencing singleton removal, final pass Tue Oct 28 18:35:28 2008 memory use: 218.4 MB Tue Oct 28 18:35:28 2008 commencing in-memory singleton removal Tue Oct 28 18:35:30 2008 begin with 14069692 relations and 9950674 unique ideals Tue Oct 28 18:35:54 2008 reduce to 12261335 relations and 8095900 ideals in 14 passes Tue Oct 28 18:35:54 2008 max relations containing the same ideal: 64 Tue Oct 28 18:35:57 2008 reading rational ideals above 720000 Tue Oct 28 18:35:57 2008 reading algebraic ideals above 720000 Tue Oct 28 18:35:57 2008 commencing singleton removal, final pass Tue Oct 28 18:39:45 2008 keeping 9433782 ideals with weight <= 20, new excess is 1020107 Tue Oct 28 18:39:55 2008 memory use: 348.3 MB Tue Oct 28 18:39:56 2008 commencing in-memory singleton removal Tue Oct 28 18:39:58 2008 begin with 12262644 relations and 9433782 unique ideals Tue Oct 28 18:40:25 2008 reduce to 12250914 relations and 9415970 ideals in 11 passes Tue Oct 28 18:40:25 2008 max relations containing the same ideal: 20 Tue Oct 28 18:40:37 2008 removing 2080308 relations and 1680308 ideals in 400000 cliques Tue Oct 28 18:40:38 2008 commencing in-memory singleton removal Tue Oct 28 18:40:39 2008 begin with 10170606 relations and 9415970 unique ideals Tue Oct 28 18:40:55 2008 reduce to 9954338 relations and 7510988 ideals in 8 passes Tue Oct 28 18:40:55 2008 max relations containing the same ideal: 20 Tue Oct 28 18:41:05 2008 removing 1568488 relations and 1168488 ideals in 400000 cliques Tue Oct 28 18:41:05 2008 commencing in-memory singleton removal Tue Oct 28 18:41:07 2008 begin with 8385850 relations and 7510988 unique ideals Tue Oct 28 18:41:18 2008 reduce to 8228753 relations and 6179332 ideals in 7 passes Tue Oct 28 18:41:18 2008 max relations containing the same ideal: 20 Tue Oct 28 18:41:25 2008 removing 1410938 relations and 1010938 ideals in 400000 cliques Tue Oct 28 18:41:26 2008 commencing in-memory singleton removal Tue Oct 28 18:41:27 2008 begin with 6817815 relations and 6179332 unique ideals Tue Oct 28 18:41:36 2008 reduce to 6663133 relations and 5006972 ideals in 7 passes Tue Oct 28 18:41:36 2008 max relations containing the same ideal: 19 Tue Oct 28 18:41:42 2008 removing 1327964 relations and 927964 ideals in 400000 cliques Tue Oct 28 18:41:42 2008 commencing in-memory singleton removal Tue Oct 28 18:41:43 2008 begin with 5335169 relations and 5006972 unique ideals Tue Oct 28 18:41:51 2008 reduce to 5164439 relations and 3899279 ideals in 9 passes Tue Oct 28 18:41:51 2008 max relations containing the same ideal: 19 Tue Oct 28 18:41:56 2008 removing 377053 relations and 295218 ideals in 81835 cliques Tue Oct 28 18:41:56 2008 commencing in-memory singleton removal Tue Oct 28 18:41:57 2008 begin with 4787386 relations and 3899279 unique ideals Tue Oct 28 18:42:02 2008 reduce to 4769762 relations and 3586176 ideals in 6 passes Tue Oct 28 18:42:02 2008 max relations containing the same ideal: 18 Tue Oct 28 18:42:07 2008 relations with 0 large ideals: 142358 Tue Oct 28 18:42:07 2008 relations with 1 large ideals: 686352 Tue Oct 28 18:42:07 2008 relations with 2 large ideals: 1396880 Tue Oct 28 18:42:07 2008 relations with 3 large ideals: 1417942 Tue Oct 28 18:42:07 2008 relations with 4 large ideals: 792619 Tue Oct 28 18:42:07 2008 relations with 5 large ideals: 262925 Tue Oct 28 18:42:07 2008 relations with 6 large ideals: 65802 Tue Oct 28 18:42:07 2008 relations with 7+ large ideals: 4884 Tue Oct 28 18:42:07 2008 commencing 2-way merge Tue Oct 28 18:42:12 2008 reduce to 3246628 relation sets and 2063042 unique ideals Tue Oct 28 18:42:12 2008 commencing full merge Tue Oct 28 18:42:58 2008 memory use: 188.1 MB Tue Oct 28 18:42:59 2008 found 1609067 cycles, need 1449242 Tue Oct 28 18:43:00 2008 weight of 1449242 cycles is about 101702624 (70.18/cycle) Tue Oct 28 18:43:00 2008 distribution of cycle lengths: Tue Oct 28 18:43:00 2008 1 relations: 183967 Tue Oct 28 18:43:00 2008 2 relations: 144810 Tue Oct 28 18:43:00 2008 3 relations: 147743 Tue Oct 28 18:43:00 2008 4 relations: 142868 Tue Oct 28 18:43:00 2008 5 relations: 138666 Tue Oct 28 18:43:00 2008 6 relations: 127732 Tue Oct 28 18:43:00 2008 7 relations: 116050 Tue Oct 28 18:43:00 2008 8 relations: 102946 Tue Oct 28 18:43:00 2008 9 relations: 90027 Tue Oct 28 18:43:00 2008 10+ relations: 254433 Tue Oct 28 18:43:00 2008 heaviest cycle: 17 relations Tue Oct 28 18:43:00 2008 commencing cycle optimization Tue Oct 28 18:43:04 2008 start with 8311173 relations Tue Oct 28 18:43:28 2008 pruned 344021 relations Tue Oct 28 18:43:28 2008 memory use: 259.1 MB Tue Oct 28 18:43:28 2008 distribution of cycle lengths: Tue Oct 28 18:43:28 2008 1 relations: 183967 Tue Oct 28 18:43:28 2008 2 relations: 150111 Tue Oct 28 18:43:28 2008 3 relations: 156291 Tue Oct 28 18:43:28 2008 4 relations: 150605 Tue Oct 28 18:43:28 2008 5 relations: 147049 Tue Oct 28 18:43:28 2008 6 relations: 134232 Tue Oct 28 18:43:28 2008 7 relations: 121130 Tue Oct 28 18:43:28 2008 8 relations: 105413 Tue Oct 28 18:43:28 2008 9 relations: 89711 Tue Oct 28 18:43:28 2008 10+ relations: 210733 Tue Oct 28 18:43:28 2008 heaviest cycle: 16 relations Tue Oct 28 18:43:30 2008 elapsed time 00:32:24 Tue Oct 28 18:49:39 2008 commencing linear algebra Tue Oct 28 18:49:39 2008 read 1449242 cycles Tue Oct 28 18:49:45 2008 cycles contain 4205356 unique relations Tue Oct 28 18:50:50 2008 read 4205356 relations Tue Oct 28 18:51:02 2008 using 32 quadratic characters above 268434108 Tue Oct 28 18:52:08 2008 building initial matrix Tue Oct 28 18:53:21 2008 memory use: 535.9 MB Tue Oct 28 18:53:22 2008 read 1449242 cycles Tue Oct 28 18:53:24 2008 matrix is 1448913 x 1449242 (426.1 MB) with weight 135761514 (93.68/col) Tue Oct 28 18:53:24 2008 sparse part has weight 95768962 (66.08/col) Tue Oct 28 18:54:31 2008 filtering completed in 3 passes Tue Oct 28 18:54:31 2008 matrix is 1445023 x 1445223 (425.4 MB) with weight 135504932 (93.76/col) Tue Oct 28 18:54:31 2008 sparse part has weight 95625280 (66.17/col) Tue Oct 28 18:54:54 2008 read 1445223 cycles Tue Oct 28 18:54:56 2008 matrix is 1445023 x 1445223 (425.4 MB) with weight 135504932 (93.76/col) Tue Oct 28 18:54:56 2008 sparse part has weight 95625280 (66.17/col) Tue Oct 28 18:54:56 2008 saving the first 48 matrix rows for later Tue Oct 28 18:54:57 2008 matrix is 1444975 x 1445223 (407.0 MB) with weight 103303242 (71.48/col) Tue Oct 28 18:54:57 2008 sparse part has weight 92233447 (63.82/col) Tue Oct 28 18:54:57 2008 matrix includes 64 packed rows Tue Oct 28 18:54:57 2008 using block size 10922 for processor cache size 256 kB Tue Oct 28 18:55:08 2008 commencing Lanczos iteration (2 threads) Tue Oct 28 18:55:08 2008 memory use: 401.3 MB Wed Oct 29 05:44:13 2008 lanczos halted after 22851 iterations (dim = 1444972) Wed Oct 29 05:44:18 2008 recovered 49 nontrivial dependencies Wed Oct 29 05:44:18 2008 elapsed time 10:54:41 Wed Oct 29 06:58:26 2008 commencing square root phase Wed Oct 29 06:58:26 2008 reading relations for dependency 1 Wed Oct 29 06:58:26 2008 read 722524 cycles Wed Oct 29 06:58:28 2008 cycles contain 2614791 unique relations Wed Oct 29 06:59:15 2008 read 2614791 relations Wed Oct 29 06:59:34 2008 multiplying 2100892 relations Wed Oct 29 07:03:48 2008 multiply complete, coefficients have about 49.51 million bits Wed Oct 29 07:03:49 2008 initial square root is modulo 12816931 Wed Oct 29 07:10:19 2008 prp56 factor: 64359895320324138046847817077342166028615808217898933063 Wed Oct 29 07:10:19 2008 prp80 factor: 36903084954015880064848993395715905165599046095682487205693219081526100375034279 Wed Oct 29 07:10:19 2008 elapsed time 00:11:55
By Sinkiti Sibata / GGNFS
(26·10156+1)/9 = 2(8)1559<157> = 32 · 223 · 233769517 · 134568092601416937915213119<27> · C119
C119 = P52 · P67
P52 = 4694190438486921544482209313363107731432206332676001<52>
P67 = 9747489708959753624184848714122459667180630977918143237919612742549<67>
Number: 28889_156 N=45756572991048541133395486566429369623153492393720523352242534418823215640644591834205930308998136427613459753843866549 ( 119 digits) SNFS difficulty: 157 digits. Divisors found: r1=4694190438486921544482209313363107731432206332676001 (pp52) r2=9747489708959753624184848714122459667180630977918143237919612742549 (pp67) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 48.37 hours. Scaled time: 22.88 units (timescale=0.473). Factorization parameters were as follows: name: 28889_156 n: 45756572991048541133395486566429369623153492393720523352242534418823215640644591834205930308998136427613459753843866549 m: 10000000000000000000000000000000 c5: 260 c0: 1 skew: 0.33 type: snfs lss: 1 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved rational special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:217216, largePrimes:5794216 encountered Relations: rels:5821754, finalFF:597590 Max relations in full relation-set: 28 Initial matrix: 434099 x 597590 with sparse part having weight 50890701. Pruned matrix : 346420 x 348654 with weight 28861073. Total sieving time: 43.83 hours. Total relation processing time: 0.32 hours. Matrix solve time: 4.10 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 48.37 hours. --------- CPU info (if available) ----------
By Markus Tervooren / GGNFS
(5·10169-11)/3 = 1(6)1683<170> = 13 · 89 · 22391 · 23029 · 461413 · 1819826843737381<16> · 4550168374230307<16> · C121
C121 = P60 · P62
P60 = 342855645862195973177653413327612398418129301253722970119969<60>
P62 = 21325938610287432927341056805305788973239926323324136910316219<62>
Number: 16663_169 N=7311718455847639845721422994958497742937731902430134270627579900735868508985975918296890634287583350087847104844156477211 ( 121 digits) SNFS difficulty: 170 digits. Divisors found: r1=342855645862195973177653413327612398418129301253722970119969 (pp60) r2=21325938610287432927341056805305788973239926323324136910316219 (pp62) Version: GGNFS-0.77.1-20060722-nocona Total time: 93.56 hours. Scaled time: 188.44 units (timescale=2.014). Factorization parameters were as follows: n: 7311718455847639845721422994958497742937731902430134270627579900735868508985975918296890634287583350087847104844156477211 m: 10000000000000000000000000000000000 c5: 1 c0: -22 skew: 1.86 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7000001) Primes: RFBsize:412849, AFBsize:413702, largePrimes:6022667 encountered Relations: rels:6293835, finalFF:938359 Max relations in full relation-set: 32 Initial matrix: 826615 x 938359 with sparse part having weight 53816742. Pruned matrix : 732721 x 736918 with weight 39211480. Total sieving time: 89.30 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.04 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 93.56 hours. --------- CPU info (if available) ----------
By Markus Tervooren / GGNFS
(26·10166+1)/9 = 2(8)1659<167> = 7 · 1667 · C163
C163 = P31 · P132
P31 = 6479340028054522941348709917163<31>
P132 = 382090664543561576649417393525054205485383414004188396956282953099429824152707303462083388779904441883425715160662357958463678303487<132>
Number: 28889_166 N=2475695337123051580160158444501575875301130250140448100856019272336008988678454785233429504575275421106254939488292817626950800316127250740328124851220232144047381 ( 163 digits) SNFS difficulty: 167 digits. Divisors found: r1=6479340028054522941348709917163 (pp31) r2=382090664543561576649417393525054205485383414004188396956282953099429824152707303462083388779904441883425715160662357958463678303487 (pp132) Version: GGNFS-0.77.1-20060722-nocona Total time: 78.56 hours. Scaled time: 159.94 units (timescale=2.036). Factorization parameters were as follows: n: 2475695337123051580160158444501575875301130250140448100856019272336008988678454785233429504575275421106254939488292817626950800316127250740328124851220232144047381 m: 1000000000000000000000000000000000 c5: 260 c0: 1 skew: 0.33 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 6150001) Primes: RFBsize:380800, AFBsize:380647, largePrimes:5982858 encountered Relations: rels:6228346, finalFF:897352 Max relations in full relation-set: 32 Initial matrix: 761514 x 897352 with sparse part having weight 55066587. Pruned matrix : 649767 x 653638 with weight 38510994. Total sieving time: 73.75 hours. Total relation processing time: 0.13 hours. Matrix solve time: 4.58 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 78.56 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(64·10249-1)/9 = 7(1)249<250> = 134 · 31 · 79 · 575149723 · 1750665933361<13> · 133333333333333333333333333333333333333333333333333333333333333333333333333333333333<84> · C138
C138 = P44 · P95
P44 = 27086436208081622110852425797559383058724969<44>
P95 = 27957637508878218719963598621020965070748187141715745023108986130986591894311142081697805427129<95>
SNFS difficulty: 168 digits. Divisors found: r1=27086436208081622110852425797559383058724969 r2=27957637508878218719963598621020965070748187141715745023108986130986591894311142081697805427129 Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.953). Factorization parameters were as follows: n: 757272764912899866386887025526747705214803310378892063447463012260184658852997426333940202723454900300368209126720821842355792483182284001 m: 10000000000000000000000000000 c6: 4 c3: 10 c0: 25 skew: 1.36 type: snfs lss: 0 rlim: 4400000 alim: 4400000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved algebraic special-q in [2200000, 4600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 872724 x 872972 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,6,0,0,0,0,0,0,0,0,4400000,4400000,27,27,54,54,2.6,2.6,100000 total time: 40.00 hours.
(64·10229-1)/9 = 7(1)229<230> = C230
C230 = P40 · P191
P40 = 4034369654841644099524570966777671875083<40>
P191 = 17626325100321612372043581868911704206480250854797206110017885233003976436117257470546278972236787342059112346427096034798397900124082888413527743045616320435222095135066126658177229500020917<191>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=72303299 Step 1 took 111927ms Step 2 took 31142ms ********** Factor found in step 2: 4034369654841644099524570966777671875083 Found probable prime factor of 40 digits: 4034369654841644099524570966777671875083 Probable prime cofactor 17626325100321612372043581868911704206480250854797206110017885233003976436117257470546278972236787342059112346427096034798397900124082888413527743045616320435222095135066126658177229500020917 has 191 digits
By Jo Yeong Uk / msieve v1.32 for x86_64
(64·10243-1)/9 = 7(1)243<244> = 13 · 67 · 12373 · 380557 · 47182356220003<14> · 6517738858382209<16> · 54699974406060473236679<23> · 11669402665120428032569628031827203<35> · 24375392270487185471964198611176415474970434465429475617027<59> · C87
C87 = P41 · P47
P41 = 17158834697255184376964105105887004062117<41>
P47 = 21118975572183169191742372770186676720387518241<47>
Mon Oct 27 20:54:49 2008 Mon Oct 27 20:54:49 2008 Mon Oct 27 20:54:49 2008 Msieve v. 1.32 Mon Oct 27 20:54:49 2008 random seeds: 115608e0 5cb23f87 Mon Oct 27 20:54:49 2008 factoring 362377010818461224190198188942329063958140704637401162426736098893805128375151434576197 (87 digits) Mon Oct 27 20:54:49 2008 no P-1/P+1/ECM available, skipping Mon Oct 27 20:54:49 2008 commencing quadratic sieve (87-digit input) Mon Oct 27 20:54:49 2008 using multiplier of 13 Mon Oct 27 20:54:49 2008 using VC8 32kb sieve core Mon Oct 27 20:54:49 2008 sieve interval: 20 blocks of size 32768 Mon Oct 27 20:54:49 2008 processing polynomials in batches of 11 Mon Oct 27 20:54:49 2008 using a sieve bound of 1489097 (56667 primes) Mon Oct 27 20:54:49 2008 using large prime bound of 119127760 (26 bits) Mon Oct 27 20:54:49 2008 using double large prime bound of 344209894043680 (42-49 bits) Mon Oct 27 20:54:49 2008 using trial factoring cutoff of 49 bits Mon Oct 27 20:54:49 2008 polynomial 'A' values have 11 factors Mon Oct 27 21:25:48 2008 56817 relations (16105 full + 40712 combined from 594294 partial), need 56763 Mon Oct 27 21:25:51 2008 begin with 610399 relations Mon Oct 27 21:25:51 2008 reduce to 135207 relations in 9 passes Mon Oct 27 21:25:51 2008 attempting to read 135207 relations Mon Oct 27 21:25:53 2008 recovered 135207 relations Mon Oct 27 21:25:53 2008 recovered 113112 polynomials Mon Oct 27 21:25:53 2008 attempting to build 56817 cycles Mon Oct 27 21:25:53 2008 found 56817 cycles in 6 passes Mon Oct 27 21:25:53 2008 distribution of cycle lengths: Mon Oct 27 21:25:53 2008 length 1 : 16105 Mon Oct 27 21:25:53 2008 length 2 : 11391 Mon Oct 27 21:25:53 2008 length 3 : 10003 Mon Oct 27 21:25:53 2008 length 4 : 7238 Mon Oct 27 21:25:53 2008 length 5 : 5067 Mon Oct 27 21:25:53 2008 length 6 : 3127 Mon Oct 27 21:25:53 2008 length 7 : 1795 Mon Oct 27 21:25:53 2008 length 9+: 2091 Mon Oct 27 21:25:53 2008 largest cycle: 19 relations Mon Oct 27 21:25:53 2008 matrix is 56667 x 56817 with weight 3227551 (avg 56.81/col) Mon Oct 27 21:25:53 2008 filtering completed in 3 passes Mon Oct 27 21:25:53 2008 matrix is 51992 x 52056 with weight 2991184 (avg 57.46/col) Mon Oct 27 21:25:53 2008 saving the first 48 matrix rows for later Mon Oct 27 21:25:53 2008 matrix is 51944 x 52056 with weight 2392846 (avg 45.97/col) Mon Oct 27 21:25:53 2008 matrix includes 64 packed rows Mon Oct 27 21:25:53 2008 using block size 20822 for processor cache size 4096 kB Mon Oct 27 21:25:54 2008 commencing Lanczos iteration Mon Oct 27 21:26:06 2008 lanczos halted after 823 iterations (dim = 51940) Mon Oct 27 21:26:06 2008 recovered 15 nontrivial dependencies Mon Oct 27 21:26:06 2008 prp41 factor: 17158834697255184376964105105887004062117 Mon Oct 27 21:26:06 2008 prp47 factor: 21118975572183169191742372770186676720387518241 Mon Oct 27 21:26:06 2008 elapsed time 00:31:17
By Jo Yeong Uk / GMP-ECM, GGNFS
(64·10243-1)/9 = 7(1)243<244> = 13 · 67 · 12373 · 380557 · 47182356220003<14> · 6517738858382209<16> · 54699974406060473236679<23> · 24375392270487185471964198611176415474970434465429475617027<59> · C121
C121 = P35 · C87
P35 = 11669402665120428032569628031827203<35>
C87 = [362377010818461224190198188942329063958140704637401162426736098893805128375151434576197<87>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 4228723255823325591225591310871269787909747181710337388679437779965558548033222618556156136920285183366078808713840886991 (121 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1941427008 Step 1 took 3928ms Step 2 took 2305ms ********** Factor found in step 2: 11669402665120428032569628031827203 Found probable prime factor of 35 digits: 11669402665120428032569628031827203 Composite cofactor 362377010818461224190198188942329063958140704637401162426736098893805128375151434576197 has 87 digits
(64·10213-1)/9 = 7(1)213<214> = 13 · 382523701896683<15> · 4067453597354015437<19> · 348562279075051256093224790444794552907778175157643567551<57> · C124
C124 = P30 · P94
P30 = 567258301292899201186210025281<30>
P94 = 1778082503370430610274480465861532259362412214947513681455173686500912615751057885081460445747<94>
Number: 71111_213 N=1008632060420536186503070653401950661490631137612965301768555874785722944164613998799848275106831807902913290493950398929907 ( 124 digits) SNFS difficulty: 144 digits. Divisors found: r1=567258301292899201186210025281 (pp30) r2=1778082503370430610274480465861532259362412214947513681455173686500912615751057885081460445747 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.56 hours. Scaled time: 25.03 units (timescale=2.371). Factorization parameters were as follows: n: 1008632060420536186503070653401950661490631137612965301768555874785722944164613998799848275106831807902913290493950398929907 m: 1000000000000000000000000 c6: 4 c3: 10 c0: 25 skew: 1.36 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1550001) Primes: RFBsize:114155, AFBsize:113529, largePrimes:3493047 encountered Relations: rels:3529121, finalFF:303069 Max relations in full relation-set: 28 Initial matrix: 227750 x 303069 with sparse part having weight 30082344. Pruned matrix : 203350 x 204552 with weight 17555191. Total sieving time: 10.30 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.18 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 10.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Sinkiti Sibata / GGNFS
(26·10163+1)/9 = 2(8)1629<164> = 7457 · 18506641791872782624357<23> · 40079919846728870051247378643<29> · C109
C109 = P41 · P69
P41 = 28009093238970577101538416824495651053679<41>
P69 = 186471808485408531378078405605085883074515478870902537239877522909513<69>
Number: 28889_163 N=5222906270307272385287641264035510040058867306663010966297297185700537761242664898692400059453720580222748327 ( 109 digits) Divisors found: r1=28009093238970577101538416824495651053679 (pp41) r2=186471808485408531378078405605085883074515478870902537239877522909513 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 28.21 hours. Scaled time: 13.34 units (timescale=0.473). Factorization parameters were as follows: name: 28889_163 n: 5222906270307272385287641264035510040058867306663010966297297185700537761242664898692400059453720580222748327 skew: 14112.08 # norm 1.79e+15 c5: 223200 c4: -6134129468 c3: -76619933374282 c2: 612536663203801749 c1: 11856328080881592151098 c0: 35073061741902416693402160 # alpha -6.38 Y1: 311615672159 Y0: -471894792419104682383 # Murphy_E 1.14e-09 # M 2569326901361743041309263714221806126383752657397438348950049127272982709113883339738467089251094412998729618 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3000001) Primes: RFBsize:230209, AFBsize:230072, largePrimes:7400735 encountered Relations: rels:7297161, finalFF:627508 Max relations in full relation-set: 28 Initial matrix: 460365 x 627508 with sparse part having weight 50506885. Pruned matrix : 330047 x 332412 with weight 27258385. Polynomial selection time: 1.35 hours. Total sieving time: 22.24 hours. Total relation processing time: 0.62 hours. Matrix solve time: 3.71 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 28.21 hours. --------- CPU info (if available) ----------
(26·10153+1)/9 = 2(8)1529<154> = 3 · 263 · 171697 · 217829018959<12> · C134
C134 = P37 · P37 · P62
P37 = 1799406072605487269788642443251985797<37>
P37 = 3155029794925095373974038518269034733<37>
P62 = 17244187886143827169731047895923370766606567965331126953137387<62>
Number: 28889_153 N=97898354655912498577542654582672781408023360921519599642012823005388701296746551513056855209262153547431585837515028847674767970483787 ( 134 digits) SNFS difficulty: 154 digits. Divisors found: r1=1799406072605487269788642443251985797 (pp37) r2=3155029794925095373974038518269034733 (pp37) r3=17244187886143827169731047895923370766606567965331126953137387 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 37.34 hours. Scaled time: 29.20 units (timescale=0.782). Factorization parameters were as follows: name: 28889_153 n: 97898354655912498577542654582672781408023360921519599642012823005388701296746551513056855209262153547431585837515028847674767970483787 m: 2000000000000000000000000000000 c5: 1625 c0: 2 skew: 0.26 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:217126, largePrimes:5838600 encountered Relations: rels:5918466, finalFF:645652 Max relations in full relation-set: 28 Initial matrix: 434008 x 645652 with sparse part having weight 54622944. Pruned matrix : 325218 x 327452 with weight 33994766. Total sieving time: 35.64 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.43 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 37.34 hours. --------- CPU info (if available) ----------
Factorizations of 711...11 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Serge Batalov / GMP-ECM 6.2.1
4·10187-9 = 3(9)1861<188> = 53 · 10684013423190202598370871<26> · C161
C161 = P34 · C128
P34 = 1626349888286077666713489931346081<34>
C128 = [43434588619417477329933277408700569125776242676471321059204704968470235596379158309505822359339758001320385530719040417854267197<128>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1057010532 Step 1 took 19422ms Step 2 took 12488ms ********** Factor found in step 2: 1626349888286077666713489931346081 Found probable prime factor of 34 digits: 1626349888286077666713489931346081 Composite cofactor 43434588619417477329933277408700569125776242676471321059204704968470235596379158309505822359339758001320385530719040417854267197 has 128 digits
By Sinkiti Sibata / GGNFS
(26·10150+1)/9 = 2(8)1499<151> = 3 · 71 · C149
C149 = P55 · P94
P55 = 3017003463910021527742494989600535726691290449142078503<55>
P94 = 4495473338205509039310196795964079881302715548106765302223250101153564129630339087731808697251<94>
Number: 28889_150 N=13562858633281168492436098069900886802295252999478351591027647365675534689619196661450182576943140323422013562858633281168492436098069900886802295253 ( 149 digits) SNFS difficulty: 151 digits. Divisors found: r1=3017003463910021527742494989600535726691290449142078503 (pp55) r2=4495473338205509039310196795964079881302715548106765302223250101153564129630339087731808697251 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 21.15 hours. Scaled time: 16.37 units (timescale=0.774). Factorization parameters were as follows: name: 28889_150 n: 13562858633281168492436098069900886802295252999478351591027647365675534689619196661450182576943140323422013562858633281168492436098069900886802295253 m: 1000000000000000000000000000000 c5: 26 c0: 1 skew: 0.52 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176443, largePrimes:5632146 encountered Relations: rels:5707812, finalFF:631681 Max relations in full relation-set: 28 Initial matrix: 352813 x 631681 with sparse part having weight 54511948. Pruned matrix : 239959 x 241787 with weight 23574679. Total sieving time: 20.32 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.62 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.15 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
(26·10161+1)/9 = 2(8)1609<162> = 76423 · 220372643 · 1474229971<10> · 147156782343257<15> · C125
C125 = P35 · P91
P35 = 10361570462978943081240648695403377<35>
P91 = 7630938828349621287861991098515099831174529504441192479176022590263801165241085184406853279<91>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 79068510368626578914580689981349106518885530717911113165602486185883192699712154881358461884808530837102009408078304160123183 (125 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4091174184 Step 1 took 3914ms Step 2 took 2300ms ********** Factor found in step 2: 10361570462978943081240648695403377 Found probable prime factor of 35 digits: 10361570462978943081240648695403377 Probable prime cofactor 7630938828349621287861991098515099831174529504441192479176022590263801165241085184406853279 has 91 digits
By Robert Backstrom / GMP-ECM
(13·10200-31)/9 = 1(4)1991<201> = 3 · C200
C200 = P42 · P159
P42 = 114479882131369179149234001603952546215491<42>
P159 = 420581741103617402874421898652662038794499187212832147446391522348358265479791351017478571599457943977151584144697838957610036655579567326450207149555866212817<159>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 48148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148147 (200 digits) Using B1=5144000, B2=11416472350, polynomial Dickson(12), sigma=3111509481 Step 1 took 94705ms Step 2 took 35047ms ********** Factor found in step 2: 114479882131369179149234001603952546215491 Found probable prime factor of 42 digits: 114479882131369179149234001603952546215491 Probable prime cofactor 420581741103617402874421898652662038794499187212832147446391522348358265479791351017478571599457943977151584144697838957610036655579567326450207149555866212817 has 159 digits
By Sinkiti Sibata / GGNFS
(26·10149+1)/9 = 2(8)1489<150> = 20179355711<11> · 106315628013331801<18> · C123
C123 = P38 · P85
P38 = 15750235873838074915509902031059707619<38>
P85 = 8549473520716549201848743714153027681604986908351797552246043947706893694574847601621<85>
Number: 28889_149 N=134656224548418501202256267790773535854432105692255442723175176680010180799465933023419580788851221043186204159831650450399 ( 123 digits) SNFS difficulty: 151 digits. Divisors found: r1=15750235873838074915509902031059707619 (pp38) r2=8549473520716549201848743714153027681604986908351797552246043947706893694574847601621 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.14 hours. Scaled time: 24.36 units (timescale=1.009). Factorization parameters were as follows: name: 28889_149 n: 134656224548418501202256267790773535854432105692255442723175176680010180799465933023419580788851221043186204159831650450399 m: 1000000000000000000000000000000 c5: 13 c0: 5 skew: 0.83 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:177028, largePrimes:5838819 encountered Relations: rels:6030865, finalFF:724886 Max relations in full relation-set: 28 Initial matrix: 353395 x 724886 with sparse part having weight 65294965. Pruned matrix : 231892 x 233722 with weight 29627846. Total sieving time: 23.59 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.42 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 24.14 hours. --------- CPU info (if available) ----------
(26·10143+1)/9 = 2(8)1429<144> = 61 · 1187 · 117617 · 63544867 · 163152643 · 5008510873<10> · C108
C108 = P51 · P58
P51 = 242354794037594091064567695394505940331886690503589<51>
P58 = 2695537401622218909188582052352420335657517229979365604083<58>
Number: 28889_143 N=653276411790784408103837393616365788765257143439082180152626896708423506902293078416685615987036100464553887 ( 108 digits) SNFS difficulty: 144 digits. Divisors found: r1=242354794037594091064567695394505940331886690503589 (pp51) r2=2695537401622218909188582052352420335657517229979365604083 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.79 hours. Scaled time: 13.79 units (timescale=0.775). Factorization parameters were as follows: name: 28889_143 n: 653276411790784408103837393616365788765257143439082180152626896708423506902293078416685615987036100464553887 m: 20000000000000000000000000000 c5: 1625 c0: 2 skew: 0.26 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2750001) Primes: RFBsize:100021, AFBsize:99838, largePrimes:2898969 encountered Relations: rels:2922932, finalFF:246910 Max relations in full relation-set: 28 Initial matrix: 199925 x 246910 with sparse part having weight 29217163. Pruned matrix : 187821 x 188884 with weight 20844043. Total sieving time: 17.28 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.34 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.79 hours. --------- CPU info (if available) ----------
(26·10124+1)/9 = 2(8)1239<125> = 7 · 46359253 · 7190093831059<13> · C104
C104 = P36 · P68
P36 = 773275929802648482592761218854738987<36>
P68 = 16011326705494942557586789847113370037134298211097213575458840860723<68>
Number: 28889_124 N=12381173545565578195482031153109208249880322714939240951946839415492096378310151279966671538102585107601 ( 104 digits) SNFS difficulty: 126 digits. Divisors found: r1=773275929802648482592761218854738987 (pp36) r2=16011326705494942557586789847113370037134298211097213575458840860723 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.98 hours. Scaled time: 1.41 units (timescale=0.473). Factorization parameters were as follows: name: 28889_124 n: 12381173545565578195482031153109208249880322714939240951946839415492096378310151279966671538102585107601 m: 10000000000000000000000000 c5: 13 c0: 5 skew: 0.83 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64323, largePrimes:2131178 encountered Relations: rels:2175070, finalFF:179780 Max relations in full relation-set: 28 Initial matrix: 113486 x 179780 with sparse part having weight 16502796. Pruned matrix : 98778 x 99409 with weight 6491834. Total sieving time: 2.75 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.13 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.98 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
9·10169+1 = 9(0)1681<170> = 7 · 13 · 23 · 26680727 · 2783029903<10> · C150
C150 = P59 · P92
P59 = 11273267512862863753557060067341695659241008487576093151619<59>
P92 = 51369807273759613054098903544267959129913929401519425473243091409904983605073403539507467663<92>
GGNFS-0.77.1-20060513-pentium-m 579105579481300680664203254199355666978495794312124657905662485914995879034725283343220643005997344743212838687825264828908375906570902705963398596397 = 11273267512862863753557060067341695659241008487576093151619* 51369807273759613054098903544267959129913929401519425473243091409904983605073403539507467663
By Jo Yeong Uk / GMP-ECM
(26·10158+1)/9 = 2(8)1579<159> = 105188220778305713<18> · 24222934745760446147<20> · C123
C123 = P33 · P90
P33 = 417696229209318550390360676653337<33>
P90 = 271441605526889400486767802727114167273548745703371791610999906296442521703183253981680827<90>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 113380135079105024067914279723335761157532854479549372542241163306012886790982389958922970574426694448602106850588458469699 (123 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1028318472 Step 1 took 3951ms Step 2 took 2281ms ********** Factor found in step 2: 417696229209318550390360676653337 Found probable prime factor of 33 digits: 417696229209318550390360676653337 Probable prime cofactor 271441605526889400486767802727114167273548745703371791610999906296442521703183253981680827 has 90 digits
By Sinkiti Sibata / GGNFS
(26·10132+1)/9 = 2(8)1319<133> = 3 · 229 · 2651273 · 36877893731033<14> · C110
C110 = P55 · P56
P55 = 2726275397938340164900433126360846604110296672882596679<55>
P56 = 15775524934216280471244052315246368790827525421860015377<56>
Number: 28889_132 N=43008425517716697593767624874994058946918870477503849624665527408666408016173678755798405053073648918629132983 ( 110 digits) SNFS difficulty: 133 digits. Divisors found: r1=2726275397938340164900433126360846604110296672882596679 (pp55) r2=15775524934216280471244052315246368790827525421860015377 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.84 hours. Scaled time: 4.59 units (timescale=0.786). Factorization parameters were as follows: name: 28889_132 n: 43008425517716697593767624874994058946918870477503849624665527408666408016173678755798405053073648918629132983 m: 100000000000000000000000000 c5: 2600 c0: 1 skew: 0.21 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:64003, largePrimes:1522242 encountered Relations: rels:1518630, finalFF:162295 Max relations in full relation-set: 28 Initial matrix: 128021 x 162295 with sparse part having weight 14413076. Pruned matrix : 119236 x 119940 with weight 8876334. Total sieving time: 5.66 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.84 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(26·10109+1)/9 = 2(8)1089<110> = 107 · 2185727459<10> · 3764215737119<13> · C86
C86 = P40 · P47
P40 = 2352715497850448405626204828134063318937<40>
P47 = 13947845666568227036142246713980273600953265951<47>
Fri Oct 24 07:38:35 2008 Msieve v. 1.38 Fri Oct 24 07:38:35 2008 random seeds: 27520f42 5012447c Fri Oct 24 07:38:35 2008 factoring 32815312661361285664799561745417563767797352627553000827562716332375330588420695614087 (86 digits) Fri Oct 24 07:38:36 2008 searching for 15-digit factors Fri Oct 24 07:38:38 2008 commencing quadratic sieve (86-digit input) Fri Oct 24 07:38:38 2008 using multiplier of 7 Fri Oct 24 07:38:38 2008 using 64kb Pentium 4 sieve core Fri Oct 24 07:38:38 2008 sieve interval: 8 blocks of size 65536 Fri Oct 24 07:38:38 2008 processing polynomials in batches of 13 Fri Oct 24 07:38:38 2008 using a sieve bound of 1461403 (55577 primes) Fri Oct 24 07:38:38 2008 using large prime bound of 116912240 (26 bits) Fri Oct 24 07:38:38 2008 using double large prime bound of 332772803587280 (41-49 bits) Fri Oct 24 07:38:38 2008 using trial factoring cutoff of 49 bits Fri Oct 24 07:38:38 2008 polynomial 'A' values have 11 factors Fri Oct 24 08:44:54 2008 55888 relations (15735 full + 40153 combined from 584474 partial), need 55673 Fri Oct 24 08:44:57 2008 begin with 600209 relations Fri Oct 24 08:44:57 2008 reduce to 133634 relations in 11 passes Fri Oct 24 08:44:57 2008 attempting to read 133634 relations Fri Oct 24 08:45:01 2008 recovered 133634 relations Fri Oct 24 08:45:01 2008 recovered 114115 polynomials Fri Oct 24 08:45:01 2008 attempting to build 55888 cycles Fri Oct 24 08:45:01 2008 found 55887 cycles in 5 passes Fri Oct 24 08:45:01 2008 distribution of cycle lengths: Fri Oct 24 08:45:01 2008 length 1 : 15735 Fri Oct 24 08:45:01 2008 length 2 : 10950 Fri Oct 24 08:45:01 2008 length 3 : 9687 Fri Oct 24 08:45:01 2008 length 4 : 7328 Fri Oct 24 08:45:01 2008 length 5 : 5058 Fri Oct 24 08:45:01 2008 length 6 : 3109 Fri Oct 24 08:45:01 2008 length 7 : 1856 Fri Oct 24 08:45:01 2008 length 9+: 2164 Fri Oct 24 08:45:01 2008 largest cycle: 19 relations Fri Oct 24 08:45:01 2008 matrix is 55577 x 55887 (12.5 MB) with weight 3052144 (54.61/col) Fri Oct 24 08:45:01 2008 sparse part has weight 3052144 (54.61/col) Fri Oct 24 08:45:02 2008 filtering completed in 3 passes Fri Oct 24 08:45:02 2008 matrix is 51138 x 51202 (11.5 MB) with weight 2815779 (54.99/col) Fri Oct 24 08:45:02 2008 sparse part has weight 2815779 (54.99/col) Fri Oct 24 08:45:02 2008 saving the first 48 matrix rows for later Fri Oct 24 08:45:03 2008 matrix is 51090 x 51202 (6.9 MB) with weight 2162007 (42.23/col) Fri Oct 24 08:45:03 2008 sparse part has weight 1511643 (29.52/col) Fri Oct 24 08:45:03 2008 matrix includes 64 packed rows Fri Oct 24 08:45:03 2008 using block size 20480 for processor cache size 512 kB Fri Oct 24 08:45:03 2008 commencing Lanczos iteration Fri Oct 24 08:45:03 2008 memory use: 7.1 MB Fri Oct 24 08:45:30 2008 lanczos halted after 809 iterations (dim = 51090) Fri Oct 24 08:45:30 2008 recovered 18 nontrivial dependencies Fri Oct 24 08:45:30 2008 prp40 factor: 2352715497850448405626204828134063318937 Fri Oct 24 08:45:30 2008 prp47 factor: 13947845666568227036142246713980273600953265951 Fri Oct 24 08:45:30 2008 elapsed time 01:06:55
(26·10140+1)/9 = 2(8)1399<141> = 31 · 4973 · 13349257 · 146756720381<12> · C117
C117 = P41 · P77
P41 = 16946406410302077950728265839823308474681<41>
P77 = 56444025048774398773331902576688228725404795527707944697772162262625763068639<77>
Number: 28889_140 N=956523387909801529433876566582169079255855390436023481092130570669948064133375135303153768545553242649095876996629159 ( 117 digits) SNFS difficulty: 141 digits. Divisors found: r1=16946406410302077950728265839823308474681 (pp41) r2=56444025048774398773331902576688228725404795527707944697772162262625763068639 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.86 hours. Scaled time: 7.93 units (timescale=1.009). Factorization parameters were as follows: name: 28889_140 n: 956523387909801529433876566582169079255855390436023481092130570669948064133375135303153768545553242649095876996629159 m: 10000000000000000000000000000 c5: 26 c0: 1 skew: 0.52 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:100158, largePrimes:2845541 encountered Relations: rels:2958063, finalFF:396703 Max relations in full relation-set: 28 Initial matrix: 200247 x 396703 with sparse part having weight 33108599. Pruned matrix : 147491 x 148556 with weight 12955765. Total sieving time: 7.67 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 7.86 hours. --------- CPU info (if available) ----------
(26·10118+1)/9 = 2(8)1179<119> = 7 · 43 · 347 · 18493 · 142596099014873898701<21> · C90
C90 = P39 · P51
P39 = 310504758589188668868039465733010830759<39>
P51 = 337793737293839609947074217344570551540349654109001<51>
Fri Oct 24 08:55:48 2008 Msieve v. 1.38 Fri Oct 24 08:55:48 2008 random seeds: a74e622f fe874ab3 Fri Oct 24 08:55:48 2008 factoring 104886562851363485405548252303473041147564571797863156376514452609058806792242120949561759 (90 digits) Fri Oct 24 08:55:49 2008 searching for 15-digit factors Fri Oct 24 08:55:51 2008 commencing quadratic sieve (90-digit input) Fri Oct 24 08:55:51 2008 using multiplier of 41 Fri Oct 24 08:55:51 2008 using 64kb Pentium 4 sieve core Fri Oct 24 08:55:51 2008 sieve interval: 17 blocks of size 65536 Fri Oct 24 08:55:51 2008 processing polynomials in batches of 6 Fri Oct 24 08:55:51 2008 using a sieve bound of 1561267 (59333 primes) Fri Oct 24 08:55:51 2008 using large prime bound of 124901360 (26 bits) Fri Oct 24 08:55:51 2008 using double large prime bound of 374818364744400 (42-49 bits) Fri Oct 24 08:55:51 2008 using trial factoring cutoff of 49 bits Fri Oct 24 08:55:51 2008 polynomial 'A' values have 12 factors Fri Oct 24 11:06:35 2008 59936 relations (15999 full + 43937 combined from 627733 partial), need 59429 Fri Oct 24 11:06:37 2008 begin with 643732 relations Fri Oct 24 11:06:38 2008 reduce to 145799 relations in 9 passes Fri Oct 24 11:06:38 2008 attempting to read 145799 relations Fri Oct 24 11:06:42 2008 recovered 145799 relations Fri Oct 24 11:06:42 2008 recovered 126067 polynomials Fri Oct 24 11:06:42 2008 attempting to build 59936 cycles Fri Oct 24 11:06:42 2008 found 59936 cycles in 5 passes Fri Oct 24 11:06:42 2008 distribution of cycle lengths: Fri Oct 24 11:06:42 2008 length 1 : 15999 Fri Oct 24 11:06:42 2008 length 2 : 11788 Fri Oct 24 11:06:42 2008 length 3 : 10497 Fri Oct 24 11:06:42 2008 length 4 : 7907 Fri Oct 24 11:06:42 2008 length 5 : 5609 Fri Oct 24 11:06:42 2008 length 6 : 3532 Fri Oct 24 11:06:42 2008 length 7 : 2083 Fri Oct 24 11:06:42 2008 length 9+: 2521 Fri Oct 24 11:06:42 2008 largest cycle: 22 relations Fri Oct 24 11:06:42 2008 matrix is 59333 x 59936 (14.6 MB) with weight 3594607 (59.97/col) Fri Oct 24 11:06:42 2008 sparse part has weight 3594607 (59.97/col) Fri Oct 24 11:06:43 2008 filtering completed in 3 passes Fri Oct 24 11:06:43 2008 matrix is 55352 x 55416 (13.5 MB) with weight 3320978 (59.93/col) Fri Oct 24 11:06:43 2008 sparse part has weight 3320978 (59.93/col) Fri Oct 24 11:06:44 2008 saving the first 48 matrix rows for later Fri Oct 24 11:06:44 2008 matrix is 55304 x 55416 (8.4 MB) with weight 2564229 (46.27/col) Fri Oct 24 11:06:44 2008 sparse part has weight 1857421 (33.52/col) Fri Oct 24 11:06:44 2008 matrix includes 64 packed rows Fri Oct 24 11:06:44 2008 using block size 21845 for processor cache size 512 kB Fri Oct 24 11:06:44 2008 commencing Lanczos iteration Fri Oct 24 11:06:44 2008 memory use: 8.2 MB Fri Oct 24 11:07:15 2008 lanczos halted after 876 iterations (dim = 55304) Fri Oct 24 11:07:15 2008 recovered 19 nontrivial dependencies Fri Oct 24 11:07:16 2008 prp39 factor: 310504758589188668868039465733010830759 Fri Oct 24 11:07:16 2008 prp51 factor: 337793737293839609947074217344570551540349654109001 Fri Oct 24 11:07:16 2008 elapsed time 02:11:28
(26·10135+1)/9 = 2(8)1349<136> = 3 · 3623 · 8298691 · C125
C125 = P55 · P71
P55 = 2984924145121567481231370167761731005911594902352492537<55>
P71 = 10729966269440986387424384155216021254035129543325817268738099540010143<71>
Number: 28889_135 N=32028135393994390893512870715772478008650433931356742226952684544130115555067978734842948059021629198081409882507694311802791 ( 125 digits) SNFS difficulty: 136 digits. Divisors found: r1=2984924145121567481231370167761731005911594902352492537 (pp55) r2=10729966269440986387424384155216021254035129543325817268738099540010143 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.86 hours. Scaled time: 4.26 units (timescale=0.728). Factorization parameters were as follows: name: 28889_135 n: 32028135393994390893512870715772478008650433931356742226952684544130115555067978734842948059021629198081409882507694311802791 m: 1000000000000000000000000000 c5: 26 c0: 1 skew: 0.52 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63993, largePrimes:1584823 encountered Relations: rels:1636631, finalFF:222218 Max relations in full relation-set: 28 Initial matrix: 142559 x 222218 with sparse part having weight 16894199. Pruned matrix : 118197 x 118973 with weight 7602832. Total sieving time: 5.70 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.86 hours. --------- CPU info (if available) ----------
(26·10144+1)/9 = 2(8)1439<145> = 3 · C144
C144 = P40 · P105
P40 = 3868456166380275987258850199506057417163<40>
P105 = 248926941794460034322836458820266164478157735098297360503167305646685102364493278068850644610523325296601<105>
Number: 28889_144 N=962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 ( 144 digits) SNFS difficulty: 146 digits. Divisors found: r1=3868456166380275987258850199506057417163 (pp40) r2=248926941794460034322836458820266164478157735098297360503167305646685102364493278068850644610523325296601 (pp105) Version: GGNFS-0.77.1-20050930-nocona Total time: 13.04 hours. Scaled time: 13.00 units (timescale=0.997). Factorization parameters were as follows: name: 28889_144 n: 962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962962963 m: 100000000000000000000000000000 c5: 13 c0: 5 skew: 0.83 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2450001) Primes: RFBsize:114155, AFBsize:114927, largePrimes:2920308 encountered Relations: rels:2974362, finalFF:340461 Max relations in full relation-set: 28 Initial matrix: 229147 x 340461 with sparse part having weight 34112156. Pruned matrix : 196490 x 197699 with weight 18660001. Total sieving time: 12.72 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.22 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 13.04 hours. --------- CPU info (if available) ----------
(26·10136+1)/9 = 2(8)1359<137> = 72 · 1009163 · 92173330259<11> · C118
C118 = P39 · P80
P39 = 109003884098615801826326739083592367603<39>
P80 = 58146849261168928709085037160922928516795192130437343258069237123101709831491811<80>
Number: 28889_136 N=6338232417564141772974103575750162136421796142704203282418999024391507789321722903633658782706570980626231650996199033 ( 118 digits) SNFS difficulty: 137 digits. Divisors found: r1=109003884098615801826326739083592367603 (pp39) r2=58146849261168928709085037160922928516795192130437343258069237123101709831491811 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.84 hours. Scaled time: 8.22 units (timescale=0.759). Factorization parameters were as follows: name: 28889_136 n: 6338232417564141772974103575750162136421796142704203282418999024391507789321722903633658782706570980626231650996199033 m: 1000000000000000000000000000 c5: 260 c0: 1 skew: 0.33 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:64178, largePrimes:1540035 encountered Relations: rels:1534558, finalFF:167204 Max relations in full relation-set: 28 Initial matrix: 142743 x 167204 with sparse part having weight 14162172. Pruned matrix : 135478 x 136255 with weight 9964494. Total sieving time: 10.56 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.84 hours. --------- CPU info (if available) ----------
(26·10146+1)/9 = 2(8)1459<147> = 17 · 1367 · 185599 · 5265763 · 20930509 · C123
C123 = P58 · P66
P58 = 1124073153303578585771807081716025889983932995108149151131<58>
P66 = 540632434021785268234902288892949509330978466439075267476173783637<66>
Number: 28889_146 N=607710404889057066896460732610797716908669403889768225367727440828283420463903579304033251169460502873600370283178007843447 ( 123 digits) SNFS difficulty: 147 digits. Divisors found: r1=1124073153303578585771807081716025889983932995108149151131 (pp58) r2=540632434021785268234902288892949509330978466439075267476173783637 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.54 hours. Scaled time: 15.59 units (timescale=1.003). Factorization parameters were as follows: name: 28889_146 n: 607710404889057066896460732610797716908669403889768225367727440828283420463903579304033251169460502873600370283178007843447 m: 100000000000000000000000000000 c5: 260 c0: 1 skew: 0.33 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114352, largePrimes:2879800 encountered Relations: rels:2888648, finalFF:289991 Max relations in full relation-set: 28 Initial matrix: 228574 x 289991 with sparse part having weight 30172774. Pruned matrix : 209836 x 211042 with weight 20187694. Total sieving time: 15.18 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 15.54 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(26·10127+1)/9 = 2(8)1269<128> = C128
C128 = P33 · P46 · P49
P33 = 458085681516861371474360406126427<33>
P46 = 7023583414196555680661945198122510555776461537<46>
P49 = 8978946353297513072321536821597066798123200152411<49>
Number: 28889_127 N=28888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 128 digits) SNFS difficulty: 129 digits. Divisors found: r1=458085681516861371474360406126427 (pp33) r2=7023583414196555680661945198122510555776461537 (pp46) r3=8978946353297513072321536821597066798123200152411 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.91 hours. Scaled time: 4.57 units (timescale=2.386). Factorization parameters were as follows: n: 28888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 20000000000000000000000000 c5: 325 c0: 4 skew: 0.41 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78521, largePrimes:1556455 encountered Relations: rels:1594578, finalFF:212343 Max relations in full relation-set: 28 Initial matrix: 157086 x 212343 with sparse part having weight 10787721. Pruned matrix : 132986 x 133835 with weight 5333440. Total sieving time: 1.85 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.91 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Serge Batalov / Msieve, GMP-ECM 6.2.1, Msieve-1.38
(26·10145+1)/9 = 2(8)1449<146> = 23 · 16034479 · 187957327080463607012417<24> · 588289017691633394319116788695937<33> · C81
C81 = P32 · P50
P32 = 54896618346979991955469420943911<32>
P50 = 12904837953364134191960473735409301929999830768343<50>
Thu Oct 23 10:29:56 2008 Msieve v. 1.38 Thu Oct 23 10:29:56 2008 random seeds: bf8006ca f25a0719 Thu Oct 23 10:29:56 2008 factoring 708431963955453258881716546076869813358455186906357975700925723287910831437409473 (81 digits) Thu Oct 23 10:29:57 2008 searching for 15-digit factors Thu Oct 23 10:29:57 2008 commencing quadratic sieve (81-digit input) Thu Oct 23 10:29:57 2008 using multiplier of 29 Thu Oct 23 10:29:57 2008 using 64kb Opteron sieve core Thu Oct 23 10:29:57 2008 sieve interval: 6 blocks of size 65536 Thu Oct 23 10:29:57 2008 processing polynomials in batches of 17 Thu Oct 23 10:29:57 2008 using a sieve bound of 1319687 (50882 primes) Thu Oct 23 10:29:57 2008 using large prime bound of 126689952 (26 bits) Thu Oct 23 10:29:57 2008 using trial factoring cutoff of 27 bits Thu Oct 23 10:29:57 2008 polynomial 'A' values have 10 factors Thu Oct 23 10:42:21 2008 51080 relations (26277 full + 24803 combined from 272800 partial), need 50978 Thu Oct 23 10:42:21 2008 begin with 299077 relations Thu Oct 23 10:42:21 2008 reduce to 72762 relations in 2 passes Thu Oct 23 10:42:21 2008 attempting to read 72762 relations Thu Oct 23 10:42:22 2008 recovered 72762 relations Thu Oct 23 10:42:22 2008 recovered 63176 polynomials Thu Oct 23 10:42:22 2008 attempting to build 51080 cycles Thu Oct 23 10:42:22 2008 found 51080 cycles in 1 passes Thu Oct 23 10:42:22 2008 distribution of cycle lengths: Thu Oct 23 10:42:22 2008 length 1 : 26277 Thu Oct 23 10:42:22 2008 length 2 : 24803 Thu Oct 23 10:42:22 2008 largest cycle: 2 relations Thu Oct 23 10:42:22 2008 matrix is 50882 x 51080 (7.6 MB) with weight 1575931 (30.85/col) Thu Oct 23 10:42:22 2008 sparse part has weight 1575931 (30.85/col) Thu Oct 23 10:42:22 2008 filtering completed in 3 passes Thu Oct 23 10:42:22 2008 matrix is 36078 x 36141 (5.9 MB) with weight 1255285 (34.73/col) Thu Oct 23 10:42:22 2008 sparse part has weight 1255285 (34.73/col) Thu Oct 23 10:42:22 2008 saving the first 48 matrix rows for later Thu Oct 23 10:42:22 2008 matrix is 36030 x 36141 (4.6 MB) with weight 1016694 (28.13/col) Thu Oct 23 10:42:22 2008 sparse part has weight 840697 (23.26/col) Thu Oct 23 10:42:22 2008 matrix includes 64 packed rows Thu Oct 23 10:42:22 2008 using block size 14456 for processor cache size 1024 kB Thu Oct 23 10:42:22 2008 commencing Lanczos iteration Thu Oct 23 10:42:22 2008 memory use: 4.3 MB Thu Oct 23 10:42:27 2008 lanczos halted after 571 iterations (dim = 36030) Thu Oct 23 10:42:27 2008 recovered 18 nontrivial dependencies Thu Oct 23 10:42:27 2008 prp32 factor: 54896618346979991955469420943911 Thu Oct 23 10:42:27 2008 prp50 factor: 12904837953364134191960473735409301929999830768343 Thu Oct 23 10:42:27 2008 elapsed time 00:12:31
(26·10141+1)/9 = 2(8)1409<142> = 3 · 19 · 29 · 3296148577<10> · 5839065893291<13> · 35712359448084329<17> · 144912971424315491<18> · C83
C83 = P37 · P46
P37 = 7537297685684934579476791673851030409<37>
P46 = 2327910906718027614464758526910877086171667909<46>
Thu Oct 23 10:32:00 2008 Msieve v. 1.38 Thu Oct 23 10:32:00 2008 random seeds: f4ffedc8 bb9bb07a Thu Oct 23 10:32:00 2008 factoring 17546157489686507164223646012583316051508274916630319119035081251725924541808444781 (83 digits) Thu Oct 23 10:32:01 2008 searching for 15-digit factors Thu Oct 23 10:32:01 2008 commencing quadratic sieve (83-digit input) Thu Oct 23 10:32:01 2008 using multiplier of 69 Thu Oct 23 10:32:01 2008 using 64kb Opteron sieve core Thu Oct 23 10:32:01 2008 sieve interval: 6 blocks of size 65536 Thu Oct 23 10:32:01 2008 processing polynomials in batches of 17 Thu Oct 23 10:32:01 2008 using a sieve bound of 1367749 (52320 primes) Thu Oct 23 10:32:01 2008 using large prime bound of 124465159 (26 bits) Thu Oct 23 10:32:01 2008 using trial factoring cutoff of 27 bits Thu Oct 23 10:32:01 2008 polynomial 'A' values have 11 factors Thu Oct 23 10:49:00 2008 52549 relations (27310 full + 25239 combined from 272691 partial), need 52416 Thu Oct 23 10:49:01 2008 begin with 300001 relations Thu Oct 23 10:49:01 2008 reduce to 74599 relations in 2 passes Thu Oct 23 10:49:01 2008 attempting to read 74599 relations Thu Oct 23 10:49:01 2008 recovered 74599 relations Thu Oct 23 10:49:01 2008 recovered 67221 polynomials Thu Oct 23 10:49:01 2008 attempting to build 52549 cycles Thu Oct 23 10:49:01 2008 found 52549 cycles in 1 passes Thu Oct 23 10:49:01 2008 distribution of cycle lengths: Thu Oct 23 10:49:01 2008 length 1 : 27310 Thu Oct 23 10:49:01 2008 length 2 : 25239 Thu Oct 23 10:49:01 2008 largest cycle: 2 relations Thu Oct 23 10:49:01 2008 matrix is 52320 x 52549 (8.1 MB) with weight 1707055 (32.49/col) Thu Oct 23 10:49:01 2008 sparse part has weight 1707055 (32.49/col) Thu Oct 23 10:49:02 2008 filtering completed in 3 passes Thu Oct 23 10:49:02 2008 matrix is 37474 x 37538 (6.3 MB) with weight 1347017 (35.88/col) Thu Oct 23 10:49:02 2008 sparse part has weight 1347017 (35.88/col) Thu Oct 23 10:49:02 2008 saving the first 48 matrix rows for later Thu Oct 23 10:49:02 2008 matrix is 37426 x 37538 (4.0 MB) with weight 985377 (26.25/col) Thu Oct 23 10:49:02 2008 sparse part has weight 680625 (18.13/col) Thu Oct 23 10:49:02 2008 matrix includes 64 packed rows Thu Oct 23 10:49:02 2008 using block size 15015 for processor cache size 1024 kB Thu Oct 23 10:49:02 2008 commencing Lanczos iteration Thu Oct 23 10:49:02 2008 memory use: 4.1 MB Thu Oct 23 10:49:06 2008 lanczos halted after 593 iterations (dim = 37426) Thu Oct 23 10:49:06 2008 recovered 19 nontrivial dependencies Thu Oct 23 10:49:06 2008 prp37 factor: 7537297685684934579476791673851030409 Thu Oct 23 10:49:06 2008 prp46 factor: 2327910906718027614464758526910877086171667909 Thu Oct 23 10:49:06 2008 elapsed time 00:17:06
(26·10123+1)/9 = 2(8)1229<124> = 3 · 19 · 23 · 293673451 · 14086235410802221<17> · C96
C96 = P31 · P66
P31 = 2260206644216843897235550228849<31>
P66 = 235678719982591680453016546251331940361325353146335698040419053881<66>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1715797540 Step 1 took 8517ms Step 2 took 8480ms ********** Factor found in step 2: 2260206644216843897235550228849 Found probable prime factor of 31 digits: 2260206644216843897235550228849 Probable prime cofactor 235678719982591680453016546251331940361325353146335698040419053881 has 66 digits
(26·10168+1)/9 = 2(8)1679<169> = 3 · 156641 · 21214442884961<14> · 23964088941151470239380261199<29> · C122
C122 = P35 · P87
P35 = 26698194639575122525661827534142287<35>
P87 = 452928540577266887157236259134255076239219768187618558929062743927670190164498760454451<87>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=274814543 Step 1 took 13361ms Step 2 took 10905ms ********** Factor found in step 2: 26698194639575122525661827534142287 Found probable prime factor of 35 digits: 26698194639575122525661827534142287 Probable prime cofactor 452928540577266887157236259134255076239219768187618558929062743927670190164498760454451 has 87 digits
(26·10151+1)/9 = 2(8)1509<152> = 367 · 11399 · 6075767 · 959734623010792392437077357<27> · C112
C112 = P34 · P38 · P40
P34 = 7947880915750697011047998057190331<34>
P38 = 51027845668162402739414306998386845861<38>
P40 = 2920028986625899746912414355924945584277<40>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1288646471 Step 1 took 11085ms Step 2 took 9828ms ********** Factor found in step 2: 7947880915750697011047998057190331 Found probable prime factor of 34 digits: 7947880915750697011047998057190331 # Thu Oct 23 11:52:40 2008 Msieve v. 1.38 Thu Oct 23 11:52:40 2008 random seeds: 55b14030 4ff574bf Thu Oct 23 11:52:40 2008 factoring 149002788476107069043684168199295287350958471236577922876144705896373784127497 (78 digits) Thu Oct 23 11:52:41 2008 searching for 15-digit factors Thu Oct 23 11:52:41 2008 commencing quadratic sieve (78-digit input) Thu Oct 23 11:52:41 2008 using multiplier of 5 Thu Oct 23 11:52:41 2008 using 64kb Opteron sieve core Thu Oct 23 11:52:41 2008 sieve interval: 6 blocks of size 65536 Thu Oct 23 11:52:41 2008 processing polynomials in batches of 17 Thu Oct 23 11:52:41 2008 using a sieve bound of 958687 (37824 primes) Thu Oct 23 11:52:41 2008 using large prime bound of 95868700 (26 bits) Thu Oct 23 11:52:41 2008 using trial factoring cutoff of 27 bits Thu Oct 23 11:52:41 2008 polynomial 'A' values have 10 factors Thu Oct 23 11:57:36 2008 38199 relations (20007 full + 18192 combined from 205677 partial), need 37920 Thu Oct 23 11:57:36 2008 begin with 225684 relations Thu Oct 23 11:57:37 2008 reduce to 54082 relations in 2 passes Thu Oct 23 11:57:37 2008 attempting to read 54082 relations Thu Oct 23 11:57:37 2008 recovered 54082 relations Thu Oct 23 11:57:37 2008 recovered 42175 polynomials Thu Oct 23 11:57:37 2008 attempting to build 38199 cycles Thu Oct 23 11:57:37 2008 found 38199 cycles in 1 passes Thu Oct 23 11:57:37 2008 distribution of cycle lengths: Thu Oct 23 11:57:37 2008 length 1 : 20007 Thu Oct 23 11:57:37 2008 length 2 : 18192 Thu Oct 23 11:57:37 2008 largest cycle: 2 relations Thu Oct 23 11:57:37 2008 matrix is 37824 x 38199 (5.5 MB) with weight 1141071 (29.87/col) Thu Oct 23 11:57:37 2008 sparse part has weight 1141071 (29.87/col) Thu Oct 23 11:57:37 2008 filtering completed in 4 passes Thu Oct 23 11:57:37 2008 matrix is 27598 x 27662 (4.3 MB) with weight 893917 (32.32/col) Thu Oct 23 11:57:37 2008 sparse part has weight 893917 (32.32/col) Thu Oct 23 11:57:37 2008 saving the first 48 matrix rows for later Thu Oct 23 11:57:37 2008 matrix is 27550 x 27662 (2.8 MB) with weight 652298 (23.58/col) Thu Oct 23 11:57:37 2008 sparse part has weight 456512 (16.50/col) Thu Oct 23 11:57:37 2008 matrix includes 64 packed rows Thu Oct 23 11:57:37 2008 commencing Lanczos iteration Thu Oct 23 11:57:37 2008 memory use: 3.9 MB Thu Oct 23 11:57:54 2008 lanczos halted after 437 iterations (dim = 27550) Thu Oct 23 11:57:54 2008 recovered 18 nontrivial dependencies Thu Oct 23 11:57:55 2008 prp38 factor: 51027845668162402739414306998386845861 Thu Oct 23 11:57:55 2008 prp40 factor: 2920028986625899746912414355924945584277 Thu Oct 23 11:57:55 2008 elapsed time 00:05:15
(26·10122+1)/9 = 2(8)1219<123> = 74162267 · 237038273947153447<18> · C98
C98 = P38 · P60
P38 = 46879667831372870430779365910146268011<38>
P60 = 350545857881710086313544549379318576471907638151859610638951<60>
Using B1=4000000, B2=14268967450, polynomial Dickson(12), sigma=2427505608 Step 1 took 13613ms Step 2 took 9084ms ********** Factor found in step 2: 46879667831372870430779365910146268011 Found probable prime factor of 38 digits: 46879667831372870430779365910146268011 Probable prime cofactor 350545857881710086313544549379318576471907638151859610638951 has 60 digits
10237-9 = (9)2361<237> = 107 · 7561 · 57235347277<11> · 672331504409<12> · 4675438610011439<16> · C193
C193 = P33 · P161
P33 = 124195659693998352897446580594911<33>
P161 = 55317229683125179811055047825566314237250570327459404598417890762364651604901335574716743377299431025304065892097911840931358872788401832572008373559390024256489<161>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1344070187 Step 1 took 16461ms Step 2 took 8449ms ********** Factor found in step 2: 124195659693998352897446580594911 Found probable prime factor of 33 digits: 124195659693998352897446580594911 Probable prime cofactor 55317229683125179811055047825566314237250570327459404598417890762364651604901335574716743377299431025304065892097911840931358872788401832572008373559390024256489 has 161 digits
10209-9 = (9)2081<209> = 6199 · 1098311 · 8749770522229013046664029725719<31> · C169
C169 = P32 · P138
P32 = 11779221979625493750760591465889<32>
P138 = 142508169351112330751625366154027236299106678544471738141095195169427914114649935286029433461028125436734063605464802185882769616072838209<138>
Using B1=6000000, B2=35128842850, polynomial Dickson(12), sigma=2769882817 Step 1 took 40563ms ********** Factor found in step 1: 11779221979625493750760591465889 Found probable prime factor of 32 digits: 11779221979625493750760591465889 Probable prime cofactor 142508169351112330751625366154027236299106678544471738141095195169427914114649935286029433461028125436734063605464802185882769616072838209 has 138 digits
10227-9 = (9)2261<227> = 43 · 925733 · 1415114047290409<16> · C205
C205 = P41 · P164
P41 = 17786640496933624840678534245662351596213<41>
P164 = 99806868526225823221956954125006142277499588289181858360905874746351256925536418640176658497489042909882373987832308907586475427226873597370517730462039750438400917<164>
Using B1=6000000, B2=35128842850, polynomial Dickson(12), sigma=1970878906 Step 1 took 50263ms Step 2 took 28402ms ********** Factor found in step 2: 17786640496933624840678534245662351596213 Found probable prime factor of 41 digits: 17786640496933624840678534245662351596213 Probable prime cofactor 99806868526225823221956954125006142277499588289181858360905874746351256925536418640176658497489042909882373987832308907586475427226873597370517730462039750438400917 has 164 digits
(26·10128+1)/9 = 2(8)1279<129> = 47 · 587621 · C122
C122 = P36 · P86
P36 = 608854427798862595293365769991723889<36>
P86 = 17179962200419555232686564654540718862779882714985860187643887329996349818496153104123<86>
SNFS difficulty: 129 digits. Divisors found: r1=608854427798862595293365769991723889 r2=17179962200419555232686564654540718862779882714985860187643887329996349818496153104123 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 10460096055142536651261318814623454062675761044303483385382570148029227584304823806460897990475945755921230053547283494347 m: 20000000000000000000000000 c5: 1625 c0: 2 skew: 0.26 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111088 x 111310 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 2.00 hours.
Factorizations of 288...889 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
The following PRPs were imported from Henri & Renaud Lifchitz's PRP Top records (www.primenumbers.net).
1026927+3 = 1(0)269263<26928> is PRP. (Jason Earls / Dec 2007)
1023636+7 = 1(0)236357<23637> is PRP. (Jason Earls / Nov 2007)
1030221+7 = 1(0)302207<30222> is PRP. (Jason Earls / Nov 2007)
1050711+7 = 1(0)507107<50712> is PRP. (Jason Earls / Dec 2007)
1043186+9 = 1(0)431859<43187> is PRP. (Jason Earls / Dec 2007)
1048109+9 = 1(0)481089<48110> is PRP. (Jason Earls / Dec 2007)
(1020016+17)/9 = (1)200153<20016> is PRP. (Lelio R Paula / Oct 2008)
(1022973+53)/9 = (1)229727<22973> is PRP. (Lelio R Paula / Oct 2008)
(1010683+11)/3 = (3)106827<10683> is PRP. (Lelio R Paula / Oct 2008)
(1012891+11)/3 = (3)128907<12891> is PRP. (Lelio R Paula / Oct 2008)
(1014118+11)/3 = (3)141177<14118> is PRP. (Lelio R Paula / Oct 2008)
(61·1030976-7)/9 = 6(7)30976<30977> is PRP. (Maksym Voznyy / Jan 2008)
(61·1031631-7)/9 = 6(7)31631<31632> is PRP. (Maksym Voznyy / Jan 2008)
(61·1043271-7)/9 = 6(7)43271<43272> is PRP. (Maksym Voznyy / Jan 2008)
1035925-9 = (9)359241<35925> is PRP. (Jason Earls / Jan 2008)
1037597-9 = (9)375961<37597> is PRP. (Jason Earls / Jan 2008)
Factorizations of 99...991 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Robert Backstrom / GGNFS, Msieve
(64·10197-1)/9 = 7(1)197<198> = 3 · 79 · C196
C196 = P55 · P141
P55 = 3210403733699042628385928154786408307073629412536388653<55>
P141 = 934607940975846911851800500250432186081148964077948364953109571678411737172955610971512851456158708210894860371172826511957783213489964794351<141>
Number: n N=3000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203 ( 196 digits) SNFS difficulty: 199 digits. Divisors found: Thu Oct 23 20:51:46 2008 prp55 factor: 3210403733699042628385928154786408307073629412536388653 Thu Oct 23 20:51:46 2008 prp141 factor: 934607940975846911851800500250432186081148964077948364953109571678411737172955610971512851456158708210894860371172826511957783213489964794351 Thu Oct 23 20:51:47 2008 elapsed time 11:12:22 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 84.04 hours. Scaled time: 171.86 units (timescale=2.045). Factorization parameters were as follows: name: KA_7_1_197 n: 3000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203000468823253633380215658696671354899203 type: snfs skew: 0.69 deg: 5 c5: 25 c0: -4 m: 4000000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 15500001) Primes: RFBsize:633578, AFBsize:632788, largePrimes:15523414 encountered Relations: rels:15938365, finalFF:1374724 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 83.45 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,199,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,52,52,2.5,2.5,100000 total time: 84.04 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(25·10241-1)/3 = 8(3)241<242> = 2203 · 3533 · 3139573 · 1058961517<10> · 2936784733<10> · 59760373009<11> · 119276608278517969<18> · 166630678549184691608467541279<30> · 372622263768407797404826574707693<33> · C121
C121 = P41 · P80
P41 = 54171639063846133845831310427219878076359<41>
P80 = 45737605300666532796752786676494483427340987650457306599587100372839171400797483<80>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3548948731 Step 1 took 14409ms Step 2 took 5545ms ********** Factor found in step 2: 54171639063846133845831310427219878076359 Found probable prime factor of 41 digits: 54171639063846133845831310427219878076359 Probable prime cofactor 45737605300666532796752786676494483427340987650457306599587100372839171400797483 has 80 digits
6·10194+7 = 6(0)1937<195> = 4880807929<10> · C186
C186 = P33 · P153
P33 = 126110244771031557278809682152871<33>
P153 = 974785733093042308010396782144898734663233985206820852016727149290684723767326775717208198754930119035872196205293376228506927605092858346962533362269673<153>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1132209484 Step 1 took 21881ms Step 2 took 14389ms ********** Factor found in step 2: 126110244771031557278809682152871 Found probable prime factor of 33 digits: 126110244771031557278809682152871 Probable prime cofactor 974785733093042308010396782144898734663233985206820852016727149290684723767326775717208198754930119035872196205293376228506927605092858346962533362269673 has 153 digits
(82·10194+71)/9 = 9(1)1939<195> = 157 · 35401 · 439303 · C183
C183 = P32 · P152
P32 = 22467877310459119267034990240771<32>
P152 = 16608482289955078759929672168069305816166331355355992549338772775044676696047614498320631904769235512996939922475775859447478409033448005589419459522359<152>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=93914341 Step 1 took 21998ms Step 2 took 14025ms ********** Factor found in step 2: 22467877310459119267034990240771 Found probable prime factor of 32 digits: 22467877310459119267034990240771 Probable prime cofactor 16608482289955078759929672168069305816166331355355992549338772775044676696047614498320631904769235512996939922475775859447478409033448005589419459522359 has 152 digits
(4·10195-7)/3 = 1(3)1941<196> = 11 · 1657 · 23283583928233049<17> · C175
C175 = P34 · P142
P34 = 2194943961380131549337327265014227<34>
P142 = 1431364613322065902729609803616244522630895563591548703486827349517993939479808043205791458209999060733306207315449033301346771404634709812211<142>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3766808131 Step 1 took 22026ms Step 2 took 10516ms ********** Factor found in step 2: 2194943961380131549337327265014227 Found probable prime factor of 34 digits: 2194943961380131549337327265014227 Probable prime cofactor 1431364613322065902729609803616244522630895563591548703486827349517993939479808043205791458209999060733306207315449033301346771404634709812211 has 142 digits
(8·10172-71)/9 = (8)1711<172> = 179 · 286168242716791<15> · C156
C156 = P42 · P47 · P67
P42 = 859892965727862593870368712758282269775693<42>
P47 = 96055266805913240015249975071088706895776783497<47>
P67 = 2100909916748059669934740832392497068778405503990060382377373126649<67>
SNFS difficulty: 172 digits. Divisors found: r1=859892965727862593870368712758282269775693 r2=96055266805913240015249975071088706895776783497 r3=2100909916748059669934740832392497068778405503990060382377373126649 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.738). Factorization parameters were as follows: n: 173529377939311546112233330859262908774776885502244844273521228100899743749862292880170396230641247365799626515772661387843469000681651927737996523449881229 m: 20000000000000000000000000000000000 c5: 25 c0: -71 skew: 1.23 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1228674 x 1228922 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 80.00 hours.
By Sinkiti Sibata / GMP-ECM
(25·10203-1)/3 = 8(3)203<204> = 900569 · 2432695777627<13> · C186
C186 = P33 · C153
P33 = 486546315175897598205259424750039<33>
C153 = [781789388846407183224231919023102419829059677554399166273755190513515221233686096508806523349056395051660115861262590344318823595148958539349778964632369<153>]
Input number is 380376746386836391787720513595455266505544842024516623969328880579839730067674651069153627908565521628498123510335067429803810807786576517269219113340039622848742338852787297549353412391 Run 179 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2772300172 Step 1 took 34118ms Step 2 took 12776ms Run 180 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3515028684 Step 1 took 34117ms Step 2 took 12761ms ********** Factor found in step 2: 486546315175897598205259424750039 Found probable prime factor of 33 digits: 486546315175897598205259424750039 Composite cofactor 781789388846407183224231919023102419829059677554399166273755190513515221233686096508806523349056395051660115861262590344318823595148958539349778964632369 has 153 digits
By Serge Batalov / GMP-ECM 6.2.1
(25·10217-1)/3 = 8(3)217<218> = 24083 · 50159 · 682397437 · C201
C201 = P32 · C169
P32 = 53312541175672655088375062336039<32>
C169 = [1896236612999935992014192963454630164995472234248038672300325066098629976525511506392351915195618799007084787069826889009159795113041528626213108925327088233124191280523<169>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4157420674 Step 1 took 25198ms Step 2 took 15601ms ********** Factor found in step 2: 53312541175672655088375062336039 Found probable prime factor of 32 digits: 53312541175672655088375062336039 Composite cofactor 1896236612999935992014192963454630164995472234248038672300325066098629976525511506392351915195618799007084787069826889009159795113041528626213108925327088233124191280523 has 169 digits
3·10195-7 = 2(9)1943<196> = 73 · 367 · 1013 · 919621 · C183
C183 = P37 · C146
P37 = 3410320049990177024859778486328134861<37>
C146 = [35246732830663562403369748164068680908724548385265603739345073793139596507744308018070883299760651207926080099361321383824319522570619998407671491<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3556153323 Step 1 took 29388ms ********** Factor found in step 1: 3410320049990177024859778486328134861 Found probable prime factor of 37 digits: 3410320049990177024859778486328134861 Composite cofactor 35246732830663562403369748164068680908724548385265603739345073793139596507744308018070883299760651207926080099361321383824319522570619998407671491 has 146 digits
Factorizations of 833...33 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Sinkiti Sibata / GGNFS
(26·10175-17)/9 = 2(8)1747<176> = 3 · 368227817 · 45998168948410733<17> · 4452792496021608493<19> · C132
C132 = P42 · P90
P42 = 333421341979068916546519038846193733716819<42>
P90 = 382936350699197296494228208288801846939571547135265957954115629647469996359944562538119167<90>
Number: 28887_175 N=127679151942693728206021113439808513462081475775475615214415429600954901928788362016440862567483214318764393846123460096592454169773 ( 132 digits) SNFS difficulty: 176 digits. Divisors found: r1=333421341979068916546519038846193733716819 (pp42) r2=382936350699197296494228208288801846939571547135265957954115629647469996359944562538119167 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 309.56 hours. Scaled time: 312.35 units (timescale=1.009). Factorization parameters were as follows: name: 28887_175 n: 127679151942693728206021113439808513462081475775475615214415429600954901928788362016440862567483214318764393846123460096592454169773 m: 100000000000000000000000000000000000 c5: 26 c0: -17 skew: 0.92 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15000001) Primes: RFBsize:501962, AFBsize:501686, largePrimes:6831540 encountered Relations: rels:7367937, finalFF:1178170 Max relations in full relation-set: 28 Initial matrix: 1003714 x 1178170 with sparse part having weight 96796142. Pruned matrix : 860913 x 865995 with weight 75896054. Total sieving time: 301.51 hours. Total relation processing time: 0.15 hours. Matrix solve time: 7.74 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 309.56 hours. --------- CPU info (if available) ----------
(22·10195-31)/9 = 2(4)1941<196> = 18307 · 61409 · 226017649145596719973<21> · C166
C166 = P32 · C135
P32 = 52333261226040013874068864421239<32>
C135 = [183827640054939547309364653857658843651474314964103416379471945088898934302542172912689307063113308104017719598958720895076627555187681<135>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1438106012 Step 1 took 21034ms Step 2 took 12889ms ********** Factor found in step 2: 52333261226040013874068864421239 Found probable prime factor of 32 digits: 52333261226040013874068864421239 Composite cofactor 183827640054939547309364653857658843651474314964103416379471945088898934302542172912689307063113308104017719598958720895076627555187681 has 135 digits
(26·10174-71)/9 = 2(8)1731<175> = 61 · 70388459 · C165
C165 = P38 · C128
P38 = 22644944916809299781937983566931675591<38>
C128 = [29711753102043529863724139334764046191153540703972565269144764438568718925369069665849357714992411887439678409638011808886202809<128>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4142602450 Step 1 took 27291ms Step 2 took 20090ms ********** Factor found in step 2: 22644944916809299781937983566931675591 Found probable prime factor of 38 digits: 22644944916809299781937983566931675591 Composite cofactor 29711753102043529863724139334764046191153540703972565269144764438568718925369069665849357714992411887439678409638011808886202809 has 128 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
5·10197-9 = 4(9)1961<198> = 823 · 3257 · 34031 · 6940928766071<13> · 76433656928038861510273<23> · C152
C152 = P43 · P109
P43 = 2168632766838689918632576115783405377195649<43>
P109 = 4764194222655886177034856326166901781481228840032171605198783310162696238849016167824739197316648246761058353<109>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3644175409 Step 1 took 18528ms Step 2 took 14609ms ********** Factor found in step 2: 2168632766838689918632576115783405377195649 Found probable prime factor of 43 digits: 2168632766838689918632576115783405377195649 Probable prime cofactor 4764194222655886177034856326166901781481228840032171605198783310162696238849016167824739197316648246761058353 has 109 digits
5·10199+9 = 5(0)1989<200> = 17 · 163 · C197
C197 = P37 · C161
P37 = 1593430546178302621526623328857130497<37>
C161 = [11324012502583584716566772960189801921788975775190511695521026198515623091804565348455568883549293387605458234997823194604094623522025069708549012210465528813107<161>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1420271003 Step 1 took 29385ms Step 2 took 17514ms ********** Factor found in step 2: 1593430546178302621526623328857130497 Found probable prime factor of 37 digits: 1593430546178302621526623328857130497 Composite cofactor 11324012502583584716566772960189801921788975775190511695521026198515623091804565348455568883549293387605458234997823194604094623522025069708549012210465528813107 has 161 digits
(7·10196-61)/9 = (7)1951<196> = 131 · 1249 · 4051 · 127852841 · 1197242672028108617231<22> · C158
C158 = P39 · P120
P39 = 484157287113548064449100693247493210791<39>
P120 = 158336306549811414521395276193314134816000853211628844174230012646700094764773236328445359419394774791738633126133192019<120>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1582530103 Step 1 took 24888ms Step 2 took 16469ms ********** Factor found in step 2: 484157287113548064449100693247493210791 Found probable prime factor of 39 digits: 484157287113548064449100693247493210791 Probable prime cofactor 158336306549811414521395276193314134816000853211628844174230012646700094764773236328445359419394774791738633126133192019 has 120 digits
(4·10177-13)/9 = (4)1763<177> = 19 · 14431 · 23473 · 628267 · C162
C162 = P57 · P105
P57 = 320789733615284478790758170913537296973917782547673504923<57>
P105 = 342636910756108034586766060914046263261456091001097853168240096906715579872630546306091053981879958965759<105>
SNFS difficulty: 177 digits. Divisors found: r1=320789733615284478790758170913537296973917782547673504923 r2=342636910756108034586766060914046263261456091001097853168240096906715579872630546306091053981879958965759 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.281). Factorization parameters were as follows: n: 109914403328215897583290904223367841286661632871483804427109630525156921629961980459222248722455169313801745457689541853647747810604369591678411685966649674931557 m: 200000000000000000000000000000000000 c5: 25 c0: -26 skew: 1.01 type: snfs Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5700000, 10100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1424965 x 1425213 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,54,54,2.6,2.6,100000 total time: 110.00 hours.
(34·10193-7)/9 = 3(7)193<194> = 37 · 22901 · C188
C188 = P30 · P158
P30 = 946117454127035503341112357253<30>
P158 = 47123244252065994014385015090264019377616545139384926670539844445909827517900655076093584087367694433369681889961469872752436905117920097107236907128765203957<158>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3439099762 Step 1 took 28025ms Step 2 took 19251ms ********** Factor found in step 2: 946117454127035503341112357253 Found probable prime factor of 30 digits: 946117454127035503341112357253 Probable prime cofactor 47123244252065994014385015090264019377616545139384926670539844445909827517900655076093584087367694433369681889961469872752436905117920097107236907128765203957 has 158 digits
(4·10196+17)/3 = 1(3)1959<197> = 107 · C195
C195 = P30 · P165
P30 = 641296994832521105786533002959<30>
P165 = 194310269507585008333310325816908802409995304643133352971273908773477838968564150543240097299719754825793275239136337188618271630275071223132887746105578377626129503<165>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1275197237 Step 1 took 27673ms Step 2 took 15717ms ********** Factor found in step 2: 641296994832521105786533002959 Found probable prime factor of 30 digits: 641296994832521105786533002959 Probable prime cofactor 194310269507585008333310325816908802409995304643133352971273908773477838968564150543240097299719754825793275239136337188618271630275071223132887746105578377626129503 has 165 digits
(5·10193+13)/9 = (5)1927<193> = 7 · 47 · 15649 · 1023815540327<13> · C175
C175 = P35 · C140
P35 = 96202913674607842378594019111136319<35>
C140 = [10955572152743952498130226545991213873754319162826343738038102711428932017005877244725536758158221707727384194996333763864519351564276702309<140>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1846112973 Step 1 took 28376ms Step 2 took 18626ms ********** Factor found in step 2: 96202913674607842378594019111136319 Found probable prime factor of 35 digits: 96202913674607842378594019111136319 Composite cofactor 10955572152743952498130226545991213873754319162826343738038102711428932017005877244725536758158221707727384194996333763864519351564276702309 has 140 digits
(14·10195+13)/9 = 1(5)1947<196> = 3 · C195
C195 = P31 · C165
P31 = 1415892518921261163610086153683<31>
C165 = [366213191742524998189471571564403867788336481566277323078309497974979063250048045513244983636839391531554468834937850896594871724072212797942208215172448975244422093<165>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1098833014 Step 1 took 35065ms Step 2 took 20938ms ********** Factor found in step 2: 1415892518921261163610086153683 Found probable prime factor of 31 digits: 1415892518921261163610086153683 Composite cofactor 366213191742524998189471571564403867788336481566277323078309497974979063250048045513244983636839391531554468834937850896594871724072212797942208215172448975244422093 has 165 digits
(88·10195-7)/9 = 9(7)195<196> = 3 · 1373153 · 23721061919<11> · 998739769839937<15> · 229945776953320669<18> · C147
C147 = P32 · P116
P32 = 17709857971448705875752495584023<32>
P116 = 24602145954927762256766162278883504969116012969682193397520906584714252423186238558577964843369251118649923063873823<116>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3297299414 Step 1 took 15977ms Step 2 took 10901ms ********** Factor found in step 2: 17709857971448705875752495584023 Found probable prime factor of 32 digits: 17709857971448705875752495584023 Probable prime cofactor 24602145954927762256766162278883504969116012969682193397520906584714252423186238558577964843369251118649923063873823 has 116 digits
By matsui /
9·10195-7 = 8(9)1943<196> = 17 · 439 · 119183 · 1271399 · 242885213 · C173
C173 = P36 · C137
P36 = 461827684596426570878380861037770727<36>
C137 = [70949910236655858413737617479417459261252133160753837106470160640665889525424116417039764845206841627192033768547036282598220368986487733<137>]
32766632766919078662825942812534767317385600913749182215022623020157389542005326478182856310139863849914763447191777621051072856816588852757981045807466834521306007851991891 = 461827684596426570878380861037770727* 70949910236655858413737617479417459261252133160753837106470160640665889525424116417039764845206841627192033768547036282598220368986487733
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(14·10176+31)/9 = 1(5)1759<177> = 3 · 566207205049711<15> · C161
C161 = P59 · P103
P59 = 56152629625366819992137469300041576546741213872597735252417<59>
P103 = 1630867885921653385652101326198882104756613516393727742204108998674895216128979500226008716085217882819<103>
SNFS difficulty: 177 digits. Divisors found: r1=56152629625366819992137469300041576546741213872597735252417 r2=1630867885921653385652101326198882104756613516393727742204108998674895216128979500226008716085217882819 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: n: 91577520366063589277240766947306748041354023568047146249685501908499620499316018448070354842587752733157064074686017179232354084676531620519553064437257292523523 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5700000, 10200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1465262 x 1465510 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,54,54,2.6,2.6,100000 total time: 150.00 hours.
2·10182+9 = 2(0)1819<183> = 112 · 19 · C179
C179 = P46 · P134
P46 = 4792421492537717215974620350584419014570035427<46>
P134 = 18152482101795525258673725492310366645321546282550812322674378256610903698310179167802038160476302016480186262806948758018518330672633<134>
SNFS difficulty: 182 digits. Divisors found: r1=4792421492537717215974620350584419014570035427 r2=18152482101795525258673725492310366645321546282550812322674378256610903698310179167802038160476302016480186262806948758018518330672633 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 86994345367551109177903436276642018268812527185732927359721618094823836450630709003914745541539799913005654632448890822096563723357981731187472814267072640278381905176163549369291 m: 1000000000000000000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved rational special-q in [7500000, 10300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1054356 x 1054581 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,15000000,15000000,28,28,49,49,2.6,2.6,100000 total time: 220.00 hours.
(14·10200+13)/9 = 1(5)1997<201> = 149 · 82234460157247<14> · 801797680026694996283<21> · C164
C164 = P28 · P31 · P32 · P74
P28 = 6459280719655949148659797177<28>
P31 = 3406177645914414016513634539813<31>
P32 = 29650943696340059768408884079497<32>
P74 = 24271166126560128989106147319544463210746453787159176905895443038471222169<74>
# 3 ECM factors! Yes, 3! # Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3727128160 Step 1 took 19634ms ********** Factor found in step 1: 6459280719655949148659797177 Found probable prime factor of 28 digits: 6459280719655949148659797177 # Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=520959377 Step 1 took 24794ms Step 2 took 16513ms ********** Factor found in step 2: 3406177645914414016513634539813 Found probable prime factor of 31 digits: 3406177645914414016513634539813 # Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=249960142 Step 1 took 24944ms Step 2 took 16634ms ********** Factor found in step 2: 29650943696340059768408884079497 Found probable prime factor of 32 digits: 29650943696340059768408884079497
(19·10200+17)/9 = 2(1)1993<201> = 3 · 126544763 · 2943578385629665516163<22> · C171
C171 = P27 · P144
P27 = 898447831098242238266148503<27>
P144 = 210269939678342336529513921152874898053927458055258874398493904056791369753272627555998930381253413935650920678917164241827912150245681803371653<144>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2082085495 Step 1 took 19441ms Step 2 took 12897ms ********** Factor found in step 2: 898447831098242238266148503 Found probable prime factor of 27 digits: 898447831098242238266148503 Probable prime cofactor 210269939678342336529513921152874898053927458055258874398493904056791369753272627555998930381253413935650920678917164241827912150245681803371653 has 144 digits
2·10200-1 = 1(9)200<201> = 47 · 199 · 8832847 · 26986789362889673<17> · C173
C173 = P32 · C142
P32 = 22887618087703883422612434497873<32>
C142 = [3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841<142>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2533383244 Step 1 took 20761ms Step 2 took 12781ms ********** Factor found in step 2: 22887618087703883422612434497873 Found probable prime factor of 32 digits: 22887618087703883422612434497873 Composite cofactor 3919462703564142473698047873878421629698357069094950750629640809045036371942703314337013367544634521328393484746001349161465007919976067433841 has 142 digits
8·10200+3 = 8(0)1993<201> = 11 · 607472219 · 147010366511382569644373<24> · C168
C168 = P37 · C132
P37 = 7546527715304377195290179372975899421<37>
C132 = [107913492600146389511828126361061001602717552095077467114432068529999855181951097623769940565256091764288088215600992621367406387499<132>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4043050459 Step 1 took 24875ms Step 2 took 17112ms ********** Factor found in step 2: 7546527715304377195290179372975899421 Found probable prime factor of 37 digits: 7546527715304377195290179372975899421 Composite cofactor 107913492600146389511828126361061001602717552095077467114432068529999855181951097623769940565256091764288088215600992621367406387499 has 132 digits
(82·10200-1)/9 = 9(1)200<201> = 402883508155939<15> · C187
C187 = P33 · P155
P33 = 102407901890348689567844185695023<33>
P155 = 22083015858137772409667015245738789158555690527213028648393927531768748273294785668401228006283649881036393732744822021725553670861667592092248276044786563<155>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3874257449 Step 1 took 29631ms Step 2 took 19525ms ********** Factor found in step 2: 102407901890348689567844185695023 Found probable prime factor of 33 digits: 102407901890348689567844185695023 Probable prime cofactor 22083015858137772409667015245738789158555690527213028648393927531768748273294785668401228006283649881036393732744822021725553670861667592092248276044786563 has 155 digits
6·10198-7 = 5(9)1973<199> = 167 · 265447401151<12> · C186
C186 = P31 · C155
P31 = 1599529266754550409912307759727<31>
C155 = [84618263884039984680979205479242373328854046385994102543980925758836773562467373965067601568858438800912633777084401273137347795319481939335873583645268527<155>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1986207576 Step 1 took 23769ms ********** Factor found in step 1: 1599529266754550409912307759727 Found probable prime factor of 31 digits: 1599529266754550409912307759727 Composite cofactor 84618263884039984680979205479242373328854046385994102543980925758836773562467373965067601568858438800912633777084401273137347795319481939335873583645268527 has 155 digits
(22·10199+23)/9 = 2(4)1987<200> = 32 · 619 · 128173 · 742789 · 149620828199987785329497659<27> · C159
C159 = P32 · P127
P32 = 43482312117488028224282836493909<32>
P127 = 7084028770911422344248461958410720572198835237947535379552273443567806999719918274887993804124122573096734631865106103730841651<127>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=329097599 Step 1 took 19390ms Step 2 took 12444ms ********** Factor found in step 2: 43482312117488028224282836493909 Found probable prime factor of 32 digits: 43482312117488028224282836493909 Probable prime cofactor 7084028770911422344248461958410720572198835237947535379552273443567806999719918274887993804124122573096734631865106103730841651 has 127 digits
(4·10198-7)/3 = 1(3)1971<199> = 35433614694519093943915021<26> · C173
C173 = P29 · C144
P29 = 53080170921181623484835211569<29>
C144 = [708909776366544417055494111166661177395346300454696028653520045734998051049191473489799475703118236101317585796307759176426123229836426451112719<144>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1091327796 Step 1 took 20217ms Step 2 took 12849ms ********** Factor found in step 2: 53080170921181623484835211569 Found probable prime factor of 29 digits: 53080170921181623484835211569 Composite cofactor 708909776366544417055494111166661177395346300454696028653520045734998051049191473489799475703118236101317585796307759176426123229836426451112719 has 144 digits
(8·10198-71)/9 = (8)1971<198> = 7 · 181 · 246151 · 26571308869211899069<20> · C171
C171 = P31 · C140
P31 = 2181736485124043717540785640249<31>
C140 = [49164770484616078662130837495285105615980477313414831637996342826393591225258796960761072524813073625782737476138348702108473214785930571753<140>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2812342345 Step 1 took 24849ms Step 2 took 16942ms ********** Factor found in step 2: 2181736485124043717540785640249 Found probable prime factor of 31 digits: 2181736485124043717540785640249 Composite cofactor 49164770484616078662130837495285105615980477313414831637996342826393591225258796960761072524813073625782737476138348702108473214785930571753 has 140 digits
(14·10199-41)/9 = 1(5)1981<200> = 11 · 9905209 · 49424550329263117<17> · C175
C175 = P29 · C146
P29 = 93342682385042014936376105033<29>
C146 = [30946119177002457256257679064752877429329252807104046662651498568475129246685538584195558365545659808057878297832367685917174350969470564322807409<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3253425714 Step 1 took 28821ms Step 2 took 18723ms ********** Factor found in step 2: 93342682385042014936376105033 Found probable prime factor of 29 digits: 93342682385042014936376105033 Composite cofactor 30946119177002457256257679064752877429329252807104046662651498568475129246685538584195558365545659808057878297832367685917174350969470564322807409 has 146 digits
(19·10197+17)/9 = 2(1)1963<198> = 3 · 7 · 90017 · 189037603483<12> · 1167987135194728007608387<25> · C156
C156 = P33 · C124
P33 = 130987118004416341717932217759037<33>
C124 = [3861467755350303484159223919449335539186556972805576020551599415949486879617583193229971628069176142786276497779467927144217<124>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3671506003 Step 1 took 19437ms Step 2 took 12449ms ********** Factor found in step 2: 130987118004416341717932217759037 Found probable prime factor of 33 digits: 130987118004416341717932217759037 Composite cofactor 3861467755350303484159223919449335539186556972805576020551599415949486879617583193229971628069176142786276497779467927144217 has 124 digits
(88·10197-7)/9 = 9(7)197<198> = 47 · 61 · 12150092320841<14> · 39579394802884247<17> · C165
C165 = P36 · C130
P36 = 120780957158617319735656378500678509<36>
C130 = [5871719163515225280922211088120438405575691242148159445644927132369821177548971534618963281375524980385790625213433048301365617017<130>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3923837933 Step 1 took 21101ms Step 2 took 12849ms ********** Factor found in step 2: 120780957158617319735656378500678509 Found probable prime factor of 36 digits: 120780957158617319735656378500678509 Composite cofactor 5871719163515225280922211088120438405575691242148159445644927132369821177548971534618963281375524980385790625213433048301365617017 has 130 digits
(25·10197+11)/9 = 2(7)1969<198> = 3 · 29 · 31 · 131 · 167 · 11973221894137871<17> · C174
C174 = P36 · P138
P36 = 859405617629884678518292762614354083<36>
P138 = 457529990349271379357800820089302302513147819742197174361744364096811170650975745897790665507102867916025781272624748791884073929721978187<138>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3634545673 Step 1 took 22749ms Step 2 took 14193ms ********** Factor found in step 2: 859405617629884678518292762614354083 Found probable prime factor of 36 digits: 859405617629884678518292762614354083 Probable prime cofactor 457529990349271379357800820089302302513147819742197174361744364096811170650975745897790665507102867916025781272624748791884073929721978187 has 138 digits
3·10197+7 = 3(0)1967<198> = 2357 · 8929 · 1802680774763383<16> · C175
C175 = P29 · P146
P29 = 97148865973080265245073984193<29>
P146 = 81395854489413446318803739695291383680562514323245286068600107617125030508665056235124237334794958273834035260731457900762605517868916643151494701<146>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1336248685 Step 1 took 21957ms Step 2 took 14189ms ********** Factor found in step 2: 97148865973080265245073984193 Found probable prime factor of 29 digits: 97148865973080265245073984193 Probable prime cofactor 81395854489413446318803739695291383680562514323245286068600107617125030508665056235124237334794958273834035260731457900762605517868916643151494701 has 146 digits
(19·10197-1)/9 = 2(1)197<198> = 217409 · 148309607497483921<18> · C175
C175 = P29 · C147
P29 = 39352703424498545120297305189<29>
C147 = [166375630748703395463164557225749379129853263886867234344540086253317490155678563790257803512283631412627990637610456181042880430192706837121126091<147>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2585434931 Step 1 took 22001ms Step 2 took 2841ms ********** Factor found in step 2: 39352703424498545120297305189 Found probable prime factor of 29 digits: 39352703424498545120297305189 Composite cofactor 166375630748703395463164557225749379129853263886867234344540086253317490155678563790257803512283631412627990637610456181042880430192706837121126091 has 147 digits
(4·10197+11)/3 = 1(3)1967<198> = 19 · 1511 · 19347313 · 434677339 · C177
C177 = P33 · C145
P33 = 145143707113728537226153436432311<33>
C145 = [3804826017512159968793268569143505668827839952767829974171836729047124862981119444455807733568534433006902687070212949433801193366615213429833609<145>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1442437893 Step 1 took 21958ms Step 2 took 14017ms ********** Factor found in step 2: 145143707113728537226153436432311 Found probable prime factor of 33 digits: 145143707113728537226153436432311 Composite cofactor 3804826017512159968793268569143505668827839952767829974171836729047124862981119444455807733568534433006902687070212949433801193366615213429833609 has 145 digits
7·10198-9 = 6(9)1971<199> = 113 · 557 · 14669 · 1011899197<10> · C181
C181 = P33 · P149
P33 = 264988857469403991211956741757711<33>
P149 = 28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237<149>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3404709547 Step 1 took 29350ms Step 2 took 18701ms ********** Factor found in step 2: 264988857469403991211956741757711 Found probable prime factor of 33 digits: 264988857469403991211956741757711 Probable prime cofactor 28274766614610714157255420998775798591008627434112116606543963199796112209476723290238538742147137438714006318672046665431077283855690553184035469237 has 149 digits
By Sinkiti Sibata / GGNFS
(26·10172-17)/9 = 2(8)1717<173> = 32 · 41 · 83 · 131 · 527623 · 371470216724616829<18> · 1322759690532757068064807<25> · C119
C119 = P32 · P36 · P51
P32 = 79595740428624758405274066235447<32>
P36 = 605333788407412819438944577230313913<36>
P51 = 576423491058992736416957914655421765461285925809189<51>
Number: 28887_172 N=27773231513010531676806997508834162293990971944311745383468612502175567406803821638563467475456350783538064197649005979 ( 119 digits) Divisors found: r1=79595740428624758405274066235447 (pp32) r2=605333788407412819438944577230313913 (pp36) r3=576423491058992736416957914655421765461285925809189 (pp51) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 94.00 hours. Scaled time: 44.46 units (timescale=0.473). Factorization parameters were as follows: name: 28887_172 n: 27773231513010531676806997508834162293990971944311745383468612502175567406803821638563467475456350783538064197649005979 skew: 37008.98 # norm 3.26e+16 c5: 55440 c4: 3164058222 c3: 1264562398005151 c2: -4105551205117045627 c1: -550046594059784674117371 c0: -1001973857328021287339465895 # alpha -6.55 Y1: 524543343403 Y0: -54949100966099077885304 # Murphy_E 3.50e-10 # M 6977594599683708295921293182066515609590231586712473955854354315894030466074015681292072989429107770858219365562363712 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4170001) Primes: RFBsize:315948, AFBsize:315849, largePrimes:7625017 encountered Relations: rels:7651561, finalFF:714486 Max relations in full relation-set: 28 Initial matrix: 631882 x 714486 with sparse part having weight 61493390. Pruned matrix : 563522 x 566745 with weight 43154206. Total sieving time: 77.23 hours. Total relation processing time: 0.94 hours. Matrix solve time: 15.34 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 94.00 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(86·10187+31)/9 = 9(5)1869<188> = 3 · 11 · 17 · C186
C186 = P41 · P64 · P82
P41 = 82497070342294097847760872671048101547273<41>
P64 = 1137506622062276258802403675541190635066970154120153739009283317<64>
P82 = 1815100267956222784484327964833504354369950932271791040395824755849419204499493059<82>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 170330758566052683699742523271935036640918993860170330758566052683699742523271935036640918993860170330758566052683699742523271935036640918993860170330758566052683699742523271935036640919 (186 digits) Using B1=6498000, B2=14271500890, polynomial Dickson(12), sigma=3182954353 Step 1 took 110706ms Step 2 took 38266ms ********** Factor found in step 2: 82497070342294097847760872671048101547273 Found probable prime factor of 41 digits: 82497070342294097847760872671048101547273 Composite cofactor 2064688574507215477497755904533791903970653712003879148874388035763738505270729759860310938616946784208098286504015093167178563384654221405996703 has 145 digits Number: n N=2064688574507215477497755904533791903970653712003879148874388035763738505270729759860310938616946784208098286504015093167178563384654221405996703 ( 145 digits) SNFS difficulty: 188 digits. Divisors found: Mon Oct 20 06:06:17 2008 prp64 factor: 1137506622062276258802403675541190635066970154120153739009283317 Mon Oct 20 06:06:17 2008 prp82 factor: 1815100267956222784484327964833504354369950932271791040395824755849419204499493059 Mon Oct 20 06:06:17 2008 elapsed time 14:04:55 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 73.18 hours. Scaled time: 95.50 units (timescale=1.305). Factorization parameters were as follows: name: KA_9_5_186_9 n: 2064688574507215477497755904533791903970653712003879148874388035763738505270729759860310938616946784208098286504015093167178563384654221405996703 # n: 170330758566052683699742523271935036640918993860170330758566052683699742523271935036640918993860170330758566052683699742523271935036640918993860170330758566052683699742523271935036640919 type: snfs skew: 0.32 deg: 5 c5: 8600 c0: 31 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 4600001) Primes: RFBsize:602489, AFBsize:602751, largePrimes:14634264 encountered Relations: rels:14608986, finalFF:1232635 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 72.49 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 73.18 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(5·10175-11)/3 = 1(6)1743<176> = 13 · 79 · 2089896749<10> · C163
C163 = P60 · P104
P60 = 144047157479044276664515263647763869136494387420848021424177<60>
P104 = 53907449282249810484152355599174717398503110311207169164812814056689715236474601082663524167528740888753<104>
SNFS difficulty: 175 digits. Divisors found: r1=144047157479044276664515263647763869136494387420848021424177 r2=53907449282249810484152355599174717398503110311207169164812814056689715236474601082663524167528740888753 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.289). Factorization parameters were as follows: n: 7765214836053830812275343365804816217160142233644828115751473920601722240369883569064895059784125043523570290124022191806025184608151076080284683874319931781581281 m: 100000000000000000000000000000000000 c5: 5 c0: -11 skew: 1.17 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 8100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1275006 x 1275254 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.6,2.6,100000 total time: 60.00 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(67·10172+23)/9 = 7(4)1717<173> = 97 · 113 · 1589431 · 1851763 · 15393406299013<14> · 6244601986384031<16> · C128
C128 = P48 · P80
P48 = 372451441498190701496064087171739015353189667169<48>
P80 = 64453407041615178803320844206373593795836632906817191842652742276875476360294537<80>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 24005764362119208380643126639474468236589502434740487688631317708317255847326760429726029271573224998580272635211810049838955753 (128 digits) Using B1=7600000, B2=17126054410, polynomial Dickson(12), sigma=3670869563 Step 1 took 75402ms Step 2 took 28669ms ********** Factor found in step 2: 372451441498190701496064087171739015353189667169 Found probable prime factor of 48 digits: 372451441498190701496064087171739015353189667169 Probable prime cofactor 64453407041615178803320844206373593795836632906817191842652742276875476360294537 has 80 digits
(26·10175-53)/9 = 2(8)1743<176> = 19 · C175
C175 = P44 · P52 · P80
P44 = 19864097753703704521827520997023829831149889<44>
P52 = 1054510268817082005325406588880925137752766424226059<52>
P80 = 72586788244848406664760136158312476684344733516938432662645506456827825620239107<80>
Number: n N=1520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257 ( 175 digits) SNFS difficulty: 176 digits. Divisors found: Sun Oct 19 19:49:27 2008 prp44 factor: 19864097753703704521827520997023829831149889 Sun Oct 19 19:49:28 2008 prp52 factor: 1054510268817082005325406588880925137752766424226059 Sun Oct 19 19:49:28 2008 prp80 factor: 72586788244848406664760136158312476684344733516938432662645506456827825620239107 Sun Oct 19 19:49:28 2008 elapsed time 03:39:37 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.77 hours. Scaled time: 58.83 units (timescale=2.045). Factorization parameters were as follows: name: KA_2_8_174_3 n: 1520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257309941520467836257 type: snfs skew: 1.15 deg: 5 c5: 26 c0: -53 m: 100000000000000000000000000000000000 rlim: 7500000 alim: 7500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7500000/7500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 5400001) Primes: RFBsize:508261, AFBsize:507306, largePrimes:15130815 encountered Relations: rels:15517541, finalFF:1644503 Max relations in full relation-set: 28 Initial matrix: 1015633 x 1644502 with sparse part having weight 201628258. Pruned matrix : Total sieving time: 28.36 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7500000,7500000,28,28,52,52,2.5,2.5,100000 total time: 28.77 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
7·10188+9 = 7(0)1879<189> = 29 · 281 · C185
C185 = P48 · P138
P48 = 390755155423951786421642709723832482956478913627<48>
P138 = 219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383<138>
Number: 70009_188 N=85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141 ( 185 digits) SNFS difficulty: 188 digits. Divisors found: r1=390755155423951786421642709723832482956478913627 (pp48) r2=219831035497922940488479509910463429809878109532808903912313282503371748866596450007079463861910551465289953658044366335149641788862040383 (pp138) Version: GGNFS-0.77.1-20060722-nocona Total time: 1450.14 hours. Scaled time: 2891.58 units (timescale=1.994). Factorization parameters were as follows: n: 85900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999140998895570008590011044299914099889557000859001104429991409988955700085900110442999141 m: 10000000000000000000000000000000000000 c5: 7000 c0: 9 skew: 0.26 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 24600001) Primes: RFBsize:501962, AFBsize:501336, largePrimes:7487189 encountered Relations: rels:8168947, finalFF:1186873 Max relations in full relation-set: 32 Initial matrix: 1003366 x 1186873 with sparse part having weight 161157006. Pruned matrix : 876731 x 881811 with weight 145912668. Total sieving time: 1436.68 hours. Total relation processing time: 0.20 hours. Matrix solve time: 12.95 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1450.14 hours. --------- CPU info (if available) ----------
5·10194-9 = 4(9)1931<195> = 311 · C193
C193 = P36 · P60 · P98
P36 = 568077914109210905300509346220531359<36>
P60 = 132431729646308774647525574567728230397013165316585384835709<60>
P98 = 21370252768992179896389372845940321522055761100150580614076984207751248231030310254841786517307851<98>
Number: 49991_194 N=1607717041800643086816720257234726688102893890675241157556270096463022508038585209003215434083601286173633440514469453376205787781350482315112540192926045016077170418006430868167202572347266881 ( 193 digits) SNFS difficulty: 195 digits. Divisors found: r1=568077914109210905300509346220531359 (pp36) r2=132431729646308774647525574567728230397013165316585384835709 (pp60) r3=21370252768992179896389372845940321522055761100150580614076984207751248231030310254841786517307851 (pp98) Version: GGNFS-0.77.1-20060722-nocona Total time: 2068.37 hours. Scaled time: 4157.43 units (timescale=2.010). Factorization parameters were as follows: n: 1607717041800643086816720257234726688102893890675241157556270096463022508038585209003215434083601286173633440514469453376205787781350482315112540192926045016077170418006430868167202572347266881 m: 1000000000000000000000000000000000000000 c5: 1 c0: -18 skew: 1.78 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 3700000) Primes: RFBsize:501962, AFBsize:502056, largePrimes:7770161 encountered Relations: rels:8548694, finalFF:1151262 Max relations in full relation-set: 32 Initial matrix: 1004085 x 1151262 with sparse part having weight 177304272. Pruned matrix : 910075 x 915159 with weight 160568505. Total sieving time: 2049.99 hours. Total relation processing time: 0.31 hours. Matrix solve time: 17.74 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2068.37 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10171-53)/9 = 2(8)1703<172> = 3 · 211 · 122719 · C164
C164 = P75 · P90
P75 = 180794175688461612300191133500389304146671181730293708035199997373677168279<75>
P90 = 205698386608080360118607066964350163888517864066216726017377451689667747458205138175489651<90>
Number: 28883_171 N=37189070247254379933093515608867117606170787003243257385914198810335088069575624062314246404907190505731062435395522633044302883104269186116325126035940349949980629 ( 164 digits) SNFS difficulty: 172 digits. Divisors found: r1=180794175688461612300191133500389304146671181730293708035199997373677168279 (pp75) r2=205698386608080360118607066964350163888517864066216726017377451689667747458205138175489651 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 221.55 hours. Scaled time: 223.54 units (timescale=1.009). Factorization parameters were as follows: name: 28883_171 n: 37189070247254379933093515608867117606170787003243257385914198810335088069575624062314246404907190505731062435395522633044302883104269186116325126035940349949980629 m: 10000000000000000000000000000000000 c5: 260 c0: -53 skew: 0.73 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 11500001) Primes: RFBsize:412849, AFBsize:413441, largePrimes:6524908 encountered Relations: rels:6877907, finalFF:969004 Max relations in full relation-set: 28 Initial matrix: 826357 x 969004 with sparse part having weight 93418054. Pruned matrix : 719756 x 723951 with weight 75272991. Total sieving time: 215.51 hours. Total relation processing time: 0.16 hours. Matrix solve time: 5.74 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 221.55 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(17·10169+1)/9 = 1(8)1689<170> = 2286095969<10> · 61583159712948473<17> · C144
C144 = P40 · P50 · P54
P40 = 2904146275484962375815593435366057290811<40>
P50 = 67503164136279247648768712027109846191861011687973<50>
P54 = 684395851991037539017805425656538836579993071788064599<54>
SNFS difficulty: 171 digits. Divisors found: r1=2904146275484962375815593435366057290811 r2=67503164136279247648768712027109846191861011687973 r3=684395851991037539017805425656538836579993071788064599 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: n: 134168321346815434942285506994673592803638268962020611376419262011341845173814146151104444227872039130130466930338638784045925621136206412137697 m: 10000000000000000000000000000000000 c5: 17 c0: 10 skew: 0.9 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 959749 x 959997 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 40.00 hours.
(13·10167+23)/9 = 1(4)1667<168> = 3 · 571 · 1120864826830189595009<22> · C143
C143 = P52 · P92
P52 = 2196722081660400619860435665895112903415321030329429<52>
P92 = 34246415634863136312265358406712864250373833913675284562837241961141882980145948561830479379<92>
SNFS difficulty: 168 digits. Divisors found: r1=2196722081660400619860435665895112903415321030329429 r2=34246415634863136312265358406712864250373833913675284562837241961141882980145948561830479379 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.310). Factorization parameters were as follows: n: 75229857442823839063327954585610815916921620664868103784648473223197175129674845956583458783493459542969045721078101701111280306855293361344591 m: 1000000000000000000000000000000000 c5: 1300 c0: 23 skew: 0.45 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2750000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 972189 x 972437 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,54,54,2.6,2.6,100000 total time: 40.00 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(8·10186-71)/9 = (8)1851<186> = 7 · 6247 · C182
C182 = P45 · P49 · P89
P45 = 987895103890722668057692699475951929826842691<45>
P49 = 1518369038049027997383307706026952156843005415743<49>
P89 = 13551574573816468594611225834346709335102626184834964057831450659712303002693008791158453<89>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 20327217381803583180243977426625097507120878339063067732829218342264604470463282693153030915156735550524569253559168718445171142465843922543138166637446291680324015845065949115893089 (182 digits) Using B1=6016000, B2=14270867530, polynomial Dickson(12), sigma=513170549 Step 1 took 93488ms Step 2 took 36334ms ********** Factor found in step 2: 987895103890722668057692699475951929826842691 Found probable prime factor of 45 digits: 987895103890722668057692699475951929826842691 Composite cofactor 20576291249695377971301832017847716213382725784697613948242181117163577126798867943121419615352806546244832708544699170564753533853725579 has 137 digits Number: n N=20576291249695377971301832017847716213382725784697613948242181117163577126798867943121419615352806546244832708544699170564753533853725579 ( 137 digits) SNFS difficulty: 187 digits. Divisors found: Sat Oct 18 02:11:00 2008 prp49 factor: 1518369038049027997383307706026952156843005415743 Sat Oct 18 02:11:00 2008 prp89 factor: 13551574573816468594611225834346709335102626184834964057831450659712303002693008791158453 Sat Oct 18 02:11:00 2008 elapsed time 07:20:02 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 82.38 hours. Scaled time: 167.89 units (timescale=2.038). Factorization parameters were as follows: name: KA_8_185_1 n: 20576291249695377971301832017847716213382725784697613948242181117163577126798867943121419615352806546244832708544699170564753533853725579 type: snfs skew: 1.95 deg: 5 c5: 5 c0: -142 m: 20000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6500001) Primes: RFBsize:602489, AFBsize:600661, largePrimes:14480275 encountered Relations: rels:14249707, finalFF:1207021 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 81.94 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 82.38 hours. --------- CPU info (if available) ----------
6·10171-7 = 5(9)1703<172> = 13 · 347 · 280561 · 3619261 · C157
C157 = P63 · P95
P63 = 104668478321136247869629778050319602787493232821426679133681787<63>
P95 = 12514552052547785247649358827497335463132200483914345373302430877998388248495950980295389454969<95>
Number: n N=1309879120210828994066681132598393425452886882387371219479021676852192760494238995653573474587735850307389375209623160606880841799831258125095168152211949603 ( 157 digits) SNFS difficulty: 171 digits. Divisors found: Sat Oct 18 08:27:22 2008 prp63 factor: 104668478321136247869629778050319602787493232821426679133681787 Sat Oct 18 08:27:22 2008 prp95 factor: 12514552052547785247649358827497335463132200483914345373302430877998388248495950980295389454969 Sat Oct 18 08:27:23 2008 elapsed time 02:57:46 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.18 hours. Scaled time: 14.01 units (timescale=1.951). Factorization parameters were as follows: name: KA_5_9_170_3 n: 1309879120210828994066681132598393425452886882387371219479021676852192760494238995653573474587735850307389375209623160606880841799831258125095168152211949603 type: snfs skew: 0.65 deg: 5 c5: 60 c0: -7 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 2100001) Primes: RFBsize:425648, AFBsize:426177, largePrimes:13318679 encountered Relations: rels:12554588, finalFF:860203 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 6.87 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 7.18 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve
(10180+53)/9 = (1)1797<180> = 3 · 263 · 1847 · 62191 · 121590592499<12> · 5868575487559<13> · C145
C145 = P56 · P89
P56 = 81793764274037836798450374935577510454727483448973394983<56>
P89 = 21005507864120051654894845196111841280466161257529202703568230197334018456832678768309963<89>
Number: 11117_180 N=1718119558694283508664575042321785026498137677843135605871188922547889529147024841393023704163871626361079396990446562395410058599515961373115629 ( 145 digits) SNFS difficulty: 180 digits. Divisors found: r1=81793764274037836798450374935577510454727483448973394983 r2=21005507864120051654894845196111841280466161257529202703568230197334018456832678768309963 Version: Total time: 370.11 hours. Scaled time: 954.51 units (timescale=2.579). Factorization parameters were as follows: n: 1718119558694283508664575042321785026498137677843135605871188922547889529147024841393023704163871626361079396990446562395410058599515961373115629 m: 1000000000000000000000000000000000000 c5: 1 c0: 53 skew: 2.21 type: snfs Y0: 1000000000000000000000000000000000000 Y1: -1 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 qintsize: 1000000Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [10000000, 15000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1009060 x 1009286 Total sieving time: 370.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,48,48,2.6,2.6,100000 total time: 370.11 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(26·10157-17)/9 = 2(8)1567<158> = 3 · 41 · 82013 · 52965943 · 84856973371799<14> · C129
C129 = P52 · P78
P52 = 3677069971699943402973240503427918915132808241897783<52>
P78 = 173283371006799030478413179782103712024486470011088345019793475092290392389823<78>
Number: 28887_157 N=637175080124041304185260340865104028285702638816685146476778755934657374983610403654286401198601947444535960325318924282255462409 ( 129 digits) SNFS difficulty: 158 digits. Divisors found: r1=3677069971699943402973240503427918915132808241897783 (pp52) r2=173283371006799030478413179782103712024486470011088345019793475092290392389823 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 58.34 hours. Scaled time: 44.57 units (timescale=0.764). Factorization parameters were as follows: name: 28887_157 n: 637175080124041304185260340865104028285702638816685146476778755934657374983610403654286401198601947444535960325318924282255462409 m: 10000000000000000000000000000000 c5: 2600 c0: -17 skew: 0.37 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3700001) Primes: RFBsize:283146, AFBsize:282132, largePrimes:5804981 encountered Relations: rels:5920382, finalFF:725994 Max relations in full relation-set: 28 Initial matrix: 565345 x 725994 with sparse part having weight 47524292. Pruned matrix : 442217 x 445107 with weight 31339304. Total sieving time: 53.79 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.22 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 58.34 hours. --------- CPU info (if available) ----------
(26·10159-17)/9 = 2(8)1587<160> = 8837 · 5635633 · 1139822240018422481622821<25> · 145680615773863178153918657<27> · C99
C99 = P48 · P51
P48 = 457172000486643298781203262917205228548147422071<48>
P51 = 764125619267224024718139398079281672269351217374681<51>
Fri Oct 17 07:48:19 2008 Msieve v. 1.38 Fri Oct 17 07:48:19 2008 random seeds: 0af0844d 10432bce Fri Oct 17 07:48:19 2008 factoring 349336837983491953871872894642555708833828354422395239433937378913519331683566606179884934655984351 (99 digits) Fri Oct 17 07:48:22 2008 searching for 15-digit factors Fri Oct 17 07:48:25 2008 commencing quadratic sieve (99-digit input) Fri Oct 17 07:48:26 2008 using multiplier of 5 Fri Oct 17 07:48:26 2008 using 32kb Intel Core sieve core Fri Oct 17 07:48:26 2008 sieve interval: 36 blocks of size 32768 Fri Oct 17 07:48:26 2008 processing polynomials in batches of 6 Fri Oct 17 07:48:26 2008 using a sieve bound of 2605289 (95294 primes) Fri Oct 17 07:48:26 2008 using large prime bound of 390793350 (28 bits) Fri Oct 17 07:48:26 2008 using double large prime bound of 2920820370574650 (43-52 bits) Fri Oct 17 07:48:26 2008 using trial factoring cutoff of 52 bits Fri Oct 17 07:48:26 2008 polynomial 'A' values have 13 factors Fri Oct 17 12:43:25 2008 15126 relations (9655 full + 5471 combined from 615376 partial), need 95390 Fri Oct 17 12:43:25 2008 elapsed time 04:55:06 Fri Oct 17 14:25:55 2008 Fri Oct 17 14:25:55 2008 Fri Oct 17 14:25:55 2008 Msieve v. 1.38 Fri Oct 17 14:25:55 2008 random seeds: 741f743b 867902a2 Fri Oct 17 14:25:55 2008 factoring 349336837983491953871872894642555708833828354422395239433937378913519331683566606179884934655984351 (99 digits) Fri Oct 17 14:25:56 2008 searching for 15-digit factors Fri Oct 17 14:25:58 2008 commencing quadratic sieve (99-digit input) Fri Oct 17 14:25:58 2008 using multiplier of 5 Fri Oct 17 14:25:58 2008 using 32kb Intel Core sieve core Fri Oct 17 14:25:58 2008 sieve interval: 36 blocks of size 32768 Fri Oct 17 14:25:58 2008 processing polynomials in batches of 6 Fri Oct 17 14:25:58 2008 using a sieve bound of 2605289 (95294 primes) Fri Oct 17 14:25:58 2008 using large prime bound of 390793350 (28 bits) Fri Oct 17 14:25:58 2008 using double large prime bound of 2920820370574650 (43-52 bits) Fri Oct 17 14:25:58 2008 using trial factoring cutoff of 52 bits Fri Oct 17 14:25:58 2008 polynomial 'A' values have 13 factors Fri Oct 17 14:26:01 2008 restarting with 9655 full and 615376 partial relations Fri Oct 17 19:59:18 2008 95480 relations (22688 full + 72792 combined from 1444752 partial), need 95390 Fri Oct 17 19:59:22 2008 begin with 1467440 relations Fri Oct 17 19:59:23 2008 reduce to 252468 relations in 11 passes Fri Oct 17 19:59:23 2008 attempting to read 252468 relations Fri Oct 17 19:59:30 2008 recovered 252468 relations Fri Oct 17 19:59:30 2008 recovered 242508 polynomials Fri Oct 17 19:59:30 2008 attempting to build 95480 cycles Fri Oct 17 19:59:30 2008 found 95480 cycles in 6 passes Fri Oct 17 19:59:30 2008 distribution of cycle lengths: Fri Oct 17 19:59:30 2008 length 1 : 22688 Fri Oct 17 19:59:30 2008 length 2 : 16361 Fri Oct 17 19:59:30 2008 length 3 : 15836 Fri Oct 17 19:59:30 2008 length 4 : 12998 Fri Oct 17 19:59:30 2008 length 5 : 9880 Fri Oct 17 19:59:30 2008 length 6 : 6778 Fri Oct 17 19:59:30 2008 length 7 : 4489 Fri Oct 17 19:59:30 2008 length 9+: 6450 Fri Oct 17 19:59:30 2008 largest cycle: 19 relations Fri Oct 17 19:59:31 2008 matrix is 95294 x 95480 (25.1 MB) with weight 6205758 (65.00/col) Fri Oct 17 19:59:31 2008 sparse part has weight 6205758 (65.00/col) Fri Oct 17 19:59:31 2008 filtering completed in 3 passes Fri Oct 17 19:59:31 2008 matrix is 91462 x 91526 (24.2 MB) with weight 5981686 (65.36/col) Fri Oct 17 19:59:31 2008 sparse part has weight 5981686 (65.36/col) Fri Oct 17 19:59:32 2008 saving the first 48 matrix rows for later Fri Oct 17 19:59:32 2008 matrix is 91414 x 91526 (13.5 MB) with weight 4495303 (49.12/col) Fri Oct 17 19:59:32 2008 sparse part has weight 2988757 (32.65/col) Fri Oct 17 19:59:32 2008 matrix includes 64 packed rows Fri Oct 17 19:59:32 2008 using block size 36610 for processor cache size 2048 kB Fri Oct 17 19:59:33 2008 commencing Lanczos iteration Fri Oct 17 19:59:33 2008 memory use: 14.1 MB Fri Oct 17 20:00:21 2008 lanczos halted after 1448 iterations (dim = 91412) Fri Oct 17 20:00:22 2008 recovered 17 nontrivial dependencies Fri Oct 17 20:00:22 2008 prp48 factor: 457172000486643298781203262917205228548147422071 Fri Oct 17 20:00:22 2008 prp51 factor: 764125619267224024718139398079281672269351217374681 Fri Oct 17 20:00:22 2008 elapsed time 05:34:27
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38/gnfs
(26·10196-17)/9 = 2(8)1957<197> = 3 · 287771327 · 810857563 · 185726128967846339<18> · 671758004937985886076476237<27> · C135
C135 = P32 · P104
P32 = 31939879173910580438400878878759<32>
P104 = 10356150813844787900834823060533787167148150203266154500522047784924543502448871053345793359278564043017<104>
Using B1=2000000, B2=2853999340, polynomial Dickson(6), sigma=847032883 Step 1 took 10326ms Step 2 took 4807ms ********** Factor found in step 2: 31939879173910580438400878878759 Found probable prime factor of 32 digits: 31939879173910580438400878878759 Probable prime cofactor 10356150813844787900834823060533787167148150203266154500522047784924543502448871053345793359278564043017 has 104 digits
(26·10192-17)/9 = 2(8)1917<193> = 41 · 79272414103<11> · 82042192357926772102610496389810561633<38> · C143
C143 = P33 · P41 · P69
P33 = 646339692493393337747248290139367<33>
P41 = 23347548471027891222391051218682713727291<41>
P69 = 717935663614141323476198407218450614415097949778852880550482361549069<69>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2198108180 Step 1 took 7098ms Step 2 took 3284ms ********** Factor found in step 2: 646339692493393337747248290139367 Found probable prime factor of 33 digits: 646339692493393337747248290139367 Composite cofactor 16762037705310739694160961481530313246498654277376477496854405204777871932916995964594549612157158757580942079 has 110 digits Number: 28883_192 N=16762037705310739694160961481530313246498654277376477496854405204777871932916995964594549612157158757580942079 ( 110 digits) Divisors found: r1=23347548471027891222391051218682713727291 r2=717935663614141323476198407218450614415097949778852880550482361549069 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: name: 28883_192 n: 16762037705310739694160961481530313246498654277376477496854405204777871932916995964594549612157158757580942079 skew: 19634.27 # norm 1.15e+15 c5: 23760 c4: -732510172 c3: -74628572677882 c2: 291776264655235985 c1: 6237779486097660130452 c0: -18038503918973282230456943 # alpha -5.40 Y1: 313275396047 Y0: -932603358146879780640 # Murphy_E 1.05e-09 # M 5809571181138759701044419189937894699342167502695450717956767491143381064004365373882245868097473045576903676 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 406475 x 406723 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 10.00 hours.
By Serge Batalov / PFGW
(86·1013741+13)/9 = 9(5)137407<13742> is PRP.
By Sinkiti Sibata / GGNFS
(26·10168-17)/9 = 2(8)1677<169> = 1151 · 53189 · 3845297 · C155
C155 = P30 · P60 · P65
P30 = 691786150359227305260342651851<30>
P60 = 946812596364691311451086016834132866784096017745846067579369<60>
P65 = 18735613134758722493314686248856404802936412322699495052983347031<65>
Number: 28887_168 N=12271673742223879146119302921287351987225723768693572415492792094221612528875452222509963796606702569982599797468379627090212002056147005375530500792715589 ( 155 digits) SNFS difficulty: 169 digits. Divisors found: r1=691786150359227305260342651851 (pp30) r2=946812596364691311451086016834132866784096017745846067579369 (pp60) r3=18735613134758722493314686248856404802936412322699495052983347031 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 138.68 hours. Scaled time: 139.93 units (timescale=1.009). Factorization parameters were as follows: name: 28887_168 n: 12271673742223879146119302921287351987225723768693572415492792094221612528875452222509963796606702569982599797468379627090212002056147005375530500792715589 m: 2000000000000000000000000000000000 c5: 1625 c0: -34 skew: 0.46 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7900001) Primes: RFBsize:412849, AFBsize:412476, largePrimes:6178678 encountered Relations: rels:6457589, finalFF:939587 Max relations in full relation-set: 28 Initial matrix: 825391 x 939587 with sparse part having weight 63700451. Pruned matrix : 733378 x 737568 with weight 48023686. Total sieving time: 134.15 hours. Total relation processing time: 0.13 hours. Matrix solve time: 4.29 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 138.68 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(26·10202-17)/9 = 2(8)2017<203> = 3 · 41 · 2333 · C198
C198 = P39 · C159
P39 = 129797485565316576138335938787553938939<39>
C159 = [775612337868844507616271572284373761381973575256362313544270876107000293028543916178363902529711692579369109164356752919211141934170017178762799324790822743387<159>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1776639700 Step 1 took 25697ms Step 2 took 8377ms ********** Factor found in step 2: 129797485565316576138335938787553938939 Found probable prime factor of 39 digits: 129797485565316576138335938787553938939 Composite cofactor 775612337868844507616271572284373761381973575256362313544270876107000293028543916178363902529711692579369109164356752919211141934170017178762799324790822743387 has 159 digits
(26·10161-17)/9 = 2(8)1607<162> = 491 · 30557 · 12184547 · C148
C148 = P69 · P79
P69 = 265985593868700211361992135555305954314323409649102462483859930225459<69>
P79 = 5941158371782505498596768539671106948764441091331681031338463367290089728487537<79>
SNFS difficulty: 162 digits. Divisors found: r1=265985593868700211361992135555305954314323409649102462483859930225459 r2=5941158371782505498596768539671106948764441091331681031338463367290089728487537 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 1580262537786569725372553727321669981525482758855547985590946005188563140610837578431188916339843319915956447890498719664890521061648998787481604483 m: 100000000000000000000000000000000 c5: 260 c0: -17 skew: 0.58 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2250000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 805162 x 805410 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,54,54,2.5,2.5,100000 total time: 20.00 hours.
(26·10171-17)/9 = 2(8)1707<172> = 71 · 2014690833579469<16> · 1891416654878237659147193<25> · C131
C131 = P35 · P96
P35 = 48109016865913520195095540051309093<35>
P96 = 221947566920328070216344062694348500510850700259673035094854433728769797473984579418247370694137<96>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2805974126 Step 1 took 5226ms Step 2 took 3003ms ********** Factor found in step 2: 48109016865913520195095540051309093 Found probable prime factor of 35 digits: 48109016865913520195095540051309093 Probable prime cofactor 221947566920328070216344062694348500510850700259673035094854433728769797473984579418247370694137 has 96 digits
(26·10192-17)/9 = 2(8)1917<193> = 41 · 79272414103<11> · C180
C180 = P38 · C143
P38 = 82042192357926772102610496389810561633<38>
C143 = [10833970296013207989084662536581651616879108714184793508692814128673265107095600617603313406072713756279265813854583416619917872689578064723993<143>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=652635297 Step 1 took 9334ms Step 2 took 4332ms ********** Factor found in step 2: 82042192357926772102610496389810561633 Found probable prime factor of 38 digits: 82042192357926772102610496389810561633 Composite cofactor 10833970296013207989084662536581651616879108714184793508692814128673265107095600617603313406072713756279265813854583416619917872689578064723993 has 143 digits
By Serge Batalov / PFGW
(86·1010003+13)/9 = 9(5)100027<10004> is PRP.
By Jo Yeong Uk / GGNFS
4·10173+1 = 4(0)1721<174> = 7 · 19 · 19081 · 1380947158352491<16> · C153
C153 = P49 · P49 · P56
P49 = 1031387844700915926546275570854626898299232457527<49>
P49 = 4950984722498265333902822196208270860948138231881<49>
P56 = 22352008973784616122462526641600512964655392476154917761<56>
Number: 40001_173 N=114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407 ( 153 digits) SNFS difficulty: 175 digits. Divisors found: r1=1031387844700915926546275570854626898299232457527 (pp49) r2=4950984722498265333902822196208270860948138231881 (pp49) r3=22352008973784616122462526641600512964655392476154917761 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 92.56 hours. Scaled time: 220.01 units (timescale=2.377). Factorization parameters were as follows: n: 114137973672119360672572150898106796661330101454417637896259526429919025856550052603359765770360708093834065329551585587198631771640340154306807238895407 m: 100000000000000000000000000000000000 c5: 1 c0: 25 skew: 1.9 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4000000, 5700001) Primes: RFBsize:539777, AFBsize:538970, largePrimes:10773912 encountered Relations: rels:10964419, finalFF:1364486 Max relations in full relation-set: 28 Initial matrix: 1078811 x 1364486 with sparse part having weight 86737254. Pruned matrix : 813086 x 818544 with weight 49578617. Total sieving time: 87.82 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.52 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,50,50,2.6,2.6,100000 total time: 92.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Serge Batalov / Msieve-1.38
(26·10166-17)/9 = 2(8)1657<167> = 3 · 293 · C164
C164 = P52 · P113
P52 = 1471197411837404676000587813206308006550640281066939<52>
P113 = 22339374628322814429464629999793314774821231845019922359202585861305762667563370954938494467079355549589396537627<113>
SNFS difficulty: 167 digits. Divisors found: r1=1471197411837404676000587813206308006550640281066939 r2=22339374628322814429464629999793314774821231845019922359202585861305762667563370954938494467079355549589396537627 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.953). Factorization parameters were as follows: n: 32865630135254708633548223991909998735937302490203514094299077234230817848565288838326380988497029452660851978258121602831500442421944128428770066995322968019213753 m: 1000000000000000000000000000000000 c5: 260 c0: -17 skew: 0.58 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2750000, 4950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 951798 x 952046 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,54,54,2.6,2.6,100000 total time: 40.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(26·10124-17)/9 = 2(8)1237<125> = 3 · 2089 · 67324333 · 83861369 · C105
C105 = P43 · P63
P43 = 1824903596618491254551411008086026120234261<43>
P63 = 447401266840912389986722883683744380837849073077673223449077613<63>
Number: 28887_124 N=816464180989650351224051488844692798792324458135191337497018777767584167746285873004029875623655930698993 ( 105 digits) Divisors found: r1=1824903596618491254551411008086026120234261 (pp43) r2=447401266840912389986722883683744380837849073077673223449077613 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.15 hours. Scaled time: 12.43 units (timescale=0.770). Factorization parameters were as follows: name: 28887_124 n: 816464180989650351224051488844692798792324458135191337497018777767584167746285873004029875623655930698993 skew: 5714.03 # norm 3.50e+14 c5: 401040 c4: 6493525469 c3: -27978259045032 c2: -159309783903663376 c1: 580710657569380116552 c0: -5182581195961543252333 # alpha -5.78 Y1: 154008731899 Y0: -72735580824209398380 # Murphy_E 1.78e-09 # M 447983274830461864379146476925871244975907299446442034552756791959963487336853989126526061321897454429511 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183110, largePrimes:4631329 encountered Relations: rels:4993380, finalFF:682858 Max relations in full relation-set: 28 Initial matrix: 366260 x 682858 with sparse part having weight 52516455. Pruned matrix : 195355 x 197250 with weight 26985107. Total sieving time: 15.41 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.42 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 16.15 hours. --------- CPU info (if available) ----------
(26·10125-17)/9 = 2(8)1247<126> = 367 · 829 · 107823286243<12> · 7310071877663<13> · C97
C97 = P31 · P66
P31 = 3042549675264553555477312649387<31>
P66 = 395948183335808890825034372088476100294521230559806139712454179923<66>
Wed Oct 15 16:15:04 2008 Msieve v. 1.38 Wed Oct 15 16:15:04 2008 random seeds: 96667591 d41288e4 Wed Oct 15 16:15:04 2008 factoring 1204692016629955256328089887937976301517969093592680868815711272508092143797499855243889513657201 (97 digits) Wed Oct 15 16:15:06 2008 searching for 15-digit factors Wed Oct 15 16:15:07 2008 commencing quadratic sieve (97-digit input) Wed Oct 15 16:15:08 2008 using multiplier of 1 Wed Oct 15 16:15:08 2008 using 64kb Pentium 4 sieve core Wed Oct 15 16:15:08 2008 sieve interval: 18 blocks of size 65536 Wed Oct 15 16:15:08 2008 processing polynomials in batches of 6 Wed Oct 15 16:15:08 2008 using a sieve bound of 2333549 (85882 primes) Wed Oct 15 16:15:08 2008 using large prime bound of 350032350 (28 bits) Wed Oct 15 16:15:08 2008 using double large prime bound of 2395491891430500 (43-52 bits) Wed Oct 15 16:15:08 2008 using trial factoring cutoff of 52 bits Wed Oct 15 16:15:08 2008 polynomial 'A' values have 12 factors Wed Oct 15 23:33:55 2008 86273 relations (21010 full + 65263 combined from 1288906 partial), need 85978 Wed Oct 15 23:34:00 2008 begin with 1309916 relations Wed Oct 15 23:34:02 2008 reduce to 225209 relations in 11 passes Wed Oct 15 23:34:02 2008 attempting to read 225209 relations Wed Oct 15 23:34:09 2008 recovered 225209 relations Wed Oct 15 23:34:09 2008 recovered 208543 polynomials Wed Oct 15 23:34:10 2008 attempting to build 86273 cycles Wed Oct 15 23:34:10 2008 found 86273 cycles in 6 passes Wed Oct 15 23:34:10 2008 distribution of cycle lengths: Wed Oct 15 23:34:10 2008 length 1 : 21010 Wed Oct 15 23:34:10 2008 length 2 : 15212 Wed Oct 15 23:34:10 2008 length 3 : 14481 Wed Oct 15 23:34:10 2008 length 4 : 11709 Wed Oct 15 23:34:10 2008 length 5 : 8783 Wed Oct 15 23:34:10 2008 length 6 : 5987 Wed Oct 15 23:34:10 2008 length 7 : 3793 Wed Oct 15 23:34:10 2008 length 9+: 5298 Wed Oct 15 23:34:10 2008 largest cycle: 22 relations Wed Oct 15 23:34:10 2008 matrix is 85882 x 86273 (23.5 MB) with weight 5811120 (67.36/col) Wed Oct 15 23:34:10 2008 sparse part has weight 5811120 (67.36/col) Wed Oct 15 23:34:12 2008 filtering completed in 4 passes Wed Oct 15 23:34:12 2008 matrix is 81786 x 81850 (22.3 MB) with weight 5526947 (67.53/col) Wed Oct 15 23:34:12 2008 sparse part has weight 5526947 (67.53/col) Wed Oct 15 23:34:13 2008 saving the first 48 matrix rows for later Wed Oct 15 23:34:13 2008 matrix is 81738 x 81850 (15.7 MB) with weight 4521233 (55.24/col) Wed Oct 15 23:34:13 2008 sparse part has weight 3616544 (44.19/col) Wed Oct 15 23:34:13 2008 matrix includes 64 packed rows Wed Oct 15 23:34:13 2008 using block size 21845 for processor cache size 512 kB Wed Oct 15 23:34:14 2008 commencing Lanczos iteration Wed Oct 15 23:34:14 2008 memory use: 14.2 MB Wed Oct 15 23:35:33 2008 lanczos halted after 1294 iterations (dim = 81736) Wed Oct 15 23:35:34 2008 recovered 16 nontrivial dependencies Wed Oct 15 23:35:35 2008 prp31 factor: 3042549675264553555477312649387 Wed Oct 15 23:35:35 2008 prp66 factor: 395948183335808890825034372088476100294521230559806139712454179923 Wed Oct 15 23:35:35 2008 elapsed time 07:20:31
By Robert Backstrom / GGNFS, Msieve
(34·10186-43)/9 = 3(7)1853<187> = 2549 · C184
C184 = P72 · P112
P72 = 546343618539092922731973753936839243091501383544493873477842943394088769<72>
P112 = 2712693316518363022366031105781560682107270534818253728649490721133162710749555853025070780629498066137114271833<112>
Number: n N=1482062682533455385554247853188614271391831219214506778257268645656248637810034436162329453816311407523647617802188221960681748833965389477354954012466762564840242360838673117998343577 ( 184 digits) SNFS difficulty: 187 digits. Divisors found: Thu Oct 16 05:34:52 2008 prp72 factor: 546343618539092922731973753936839243091501383544493873477842943394088769 Thu Oct 16 05:34:52 2008 prp112 factor: 2712693316518363022366031105781560682107270534818253728649490721133162710749555853025070780629498066137114271833 Thu Oct 16 05:34:52 2008 elapsed time 18:52:41 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 58.62 hours. Scaled time: 76.43 units (timescale=1.304). Factorization parameters were as follows: name: KA_3_7_185_3 n: 1482062682533455385554247853188614271391831219214506778257268645656248637810034436162329453816311407523647617802188221960681748833965389477354954012466762564840242360838673117998343577 type: snfs skew: 0.66 deg: 5 c5: 340 c0: -43 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 5600001) Primes: RFBsize:602489, AFBsize:603165, largePrimes:14394823 encountered Relations: rels:14154498, finalFF:1206761 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.03 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 58.62 hours. --------- CPU info (if available) ----------
(5·10171-23)/9 = (5)1703<171> = 7 · 53 · 131 · C167
C167 = P82 · P85
P82 = 6027739170558698373176408401461180267513269261549301064477211046506440175172858341<82>
P85 = 1896390793053781284969080421438636485505504937000715539338204658483363752598306704533<85>
Number: n N=11430949065977151819006924868944168958571954395085606377555102889972542860343522881330745366464796106161510165543004373481112642858285952049454858039043549629751559753 ( 167 digits) SNFS difficulty: 171 digits. Divisors found: Thu Oct 16 12:30:45 2008 prp82 factor: 6027739170558698373176408401461180267513269261549301064477211046506440175172858341 Thu Oct 16 12:30:45 2008 prp85 factor: 1896390793053781284969080421438636485505504937000715539338204658483363752598306704533 Thu Oct 16 12:30:45 2008 elapsed time 04:44:35 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 12.01 hours. Scaled time: 15.58 units (timescale=1.297). Factorization parameters were as follows: name: KA_5_170_3 n: 11430949065977151819006924868944168958571954395085606377555102889972542860343522881330745366464796106161510165543004373481112642858285952049454858039043549629751559753 type: snfs skew: 0.86 deg: 5 c5: 50 c0: -23 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 1100001) Primes: RFBsize:425648, AFBsize:426017, largePrimes:13787792 encountered Relations: rels:13296250, finalFF:939569 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 11.29 hours. Total relation processing time: 0.72 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 12.01 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(26·10162-17)/9 = 2(8)1617<163> = 29 · 41 · 61 · 995377 · C152
C152 = P40 · P47 · P66
P40 = 5501286498405655905342717694686972908197<40>
P47 = 10125694884984205676521560253483207273265641799<47>
P66 = 718360506293268421227792773673534536293455189801295656412695055613<66>
SNFS difficulty: 163 digits. Divisors found: r1=5501286498405655905342717694686972908197 r2=10125694884984205676521560253483207273265641799 r3=718360506293268421227792773673534536293455189801295656412695055613 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.927). Factorization parameters were as follows: n: 40015804032673956426793177377995556955910649250570011850509081244438492540540333850676610741645571858036088889078135323086736656603072425792048061050039 m: 100000000000000000000000000000000 c5: 2600 c0: -17 skew: 0.37 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2250000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 854525 x 854773 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,54,54,2.5,2.5,100000 total time: 20.00 hours.
(26·10154-17)/9 = 2(8)1537<155> = 32 · 33349 · C149
C149 = P58 · P92
P58 = 1655806187784170081376129355024512400874595061215829462877<58>
P92 = 58129423001915900497455256477363673668965485263795199277948640370085158428885797129195181391<92>
SNFS difficulty: 156 digits. Divisors found: r1=1655806187784170081376129355024512400874595061215829462877 r2=58129423001915900497455256477363673668965485263795199277948640370085158428885797129195181391 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 96251058298895815263122628660825708213435981385045324993549328112083616996308031521481200132234146247559943123028472914026703745535894425916115721907 m: 10000000000000000000000000000000 c5: 13 c0: -85 skew: 1.46 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1500000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 620058 x 620306 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,54,54,2.5,2.5,100000 total time: 15.00 hours.
(26·10165-17)/9 = 2(8)1647<166> = 263957 · 4058137 · 7818152593406970277472416624103<31> · C123
C123 = P32 · P92
P32 = 12764119228429224522971656618663<32>
P92 = 27025638012775141945475448077100614364122822615878345459713349089216440618643727446116152387<92>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=660598922 Step 1 took 12213ms ********** Factor found in step 1: 12764119228429224522971656618663 Found probable prime factor of 32 digits: 12764119228429224522971656618663 Probable prime cofactor 27025638012775141945475448077100614364122822615878345459713349089216440618643727446116152387 has 92 digits
(26·10184-17)/9 = 2(8)1837<185> = 3 · 347 · 773 · C179
C179 = P37 · C143
P37 = 1320609859565989645500044320598167223<37>
C143 = [27184796089295598978415391289548696133680825116303565800551982812921189048358167264993631889810511264157528029387662330821692327090836318455933<143>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1909449008 Step 1 took 24466ms Step 2 took 16501ms ********** Factor found in step 2: 1320609859565989645500044320598167223 Found probable prime factor of 37 digits: 1320609859565989645500044320598167223 Composite cofactor 27184796089295598978415391289548696133680825116303565800551982812921189048358167264993631889810511264157528029387662330821692327090836318455933 has 143 digits
By Serge Batalov / PFGW
(14·1013024-23)/9 = 1(5)130233<13025> is PRP.
By Robert Backstrom / GGNFS, Msieve
4·10193+9 = 4(0)1929<194> = 7 · 11437 · 13853895929<11> · 284374155722383<15> · 1455040861595700679822195920931<31> · 40774884715492908428204364418823<32> · C103
C103 = P46 · P57
P46 = 9456466122140544011470454984220083014832730601<46>
P57 = 226042958165565708353120714503974059356275405880402226161<57>
Number: n N=2137567576041104372111455292736110616642012466158171115994587987948441933469530773750128809166787452761 ( 103 digits) Divisors found: Wed Oct 15 22:27:48 2008 prp46 factor: 9456466122140544011470454984220083014832730601 Wed Oct 15 22:27:48 2008 prp57 factor: 226042958165565708353120714503974059356275405880402226161 Wed Oct 15 22:27:48 2008 elapsed time 00:36:40 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 5.56 hours. Scaled time: 4.66 units (timescale=0.838). Factorization parameters were as follows: name: n n: 2137567576041104372111455292736110616642012466158171115994587987948441933469530773750128809166787452761 skew: 9441.31 # norm 1.14e+14 c5: 44400 c4: -428088886 c3: -15435140099909 c2: 26020273585723447 c1: 570016691238045740745 c0: -1047976788238775541382005 # alpha -5.67 Y1: 15416468573 Y0: -34395985086804511558 # Murphy_E 2.49e-09 # M 454570796391432565790902417114729285898493548317986804335761562880391700012618568074746351559767174829 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1950001) Primes: RFBsize:169511, AFBsize:169709, largePrimes:4205201 encountered Relations: rels:4098356, finalFF:370203 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 5.48 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.56 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Serge Batalov / Msieve-1.38
(26·10149-17)/9 = 2(8)1487<150> = C150
C150 = P69 · P82
P69 = 134971906566222676263728404267505511206402426126592403563178725170953<69>
P82 = 2140363103985260191659544710319723616409514346738105611022769933803701494623081279<82>
SNFS difficulty: 151 digits. Divisors found: r1=134971906566222676263728404267505511206402426126592403563178725170953 r2=2140363103985260191659544710319723616409514346738105611022769933803701494623081279 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.946). Factorization parameters were as follows: n: 288888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 1000000000000000000000000000000 c5: 13 c0: -85 skew: 1.46 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 506341 x 506589 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,54,54,2.5,2.5,100000 total time: 10.00 hours.
7·10172-9 = 6(9)1711<173> = 10598698069<11> · C163
C163 = P75 · P89
P75 = 223245829680143568677436140783698003000608237638667397220569703726322445019<75>
P89 = 29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881<89>
SNFS difficulty: 172 digits. Divisors found: r1=223245829680143568677436140783698003000608237638667397220569703726322445019 r2=29584359061808698085356769885290337868193171920464425723391688951441403237695049377138881 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: n: 6604584784308756592809399333404107371973103803302616752748256819882053383173887637991171460740665429743736952188103699060096321723041245359586061437788090649683739 m: 10000000000000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1249370 x 1249618 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 34.00 hours.
By Sinkiti Sibata / GMP-ECM, Msieve, GGNFS
(26·10118-17)/9 = 2(8)1177<119> = 32 · 31 · 4817 · C113
C113 = P33 · P34 · P46
P33 = 339145835876930553447588298468823<33>
P34 = 6925540496049346647691472035885723<34>
P46 = 9151869670383651567843410263648963919135064821<46>
Factor28887_118 Inputnumber is 21495620639334323620041094666134567380379144717364418646392658683358512145893753595865962238643222881393696673809 Run 216 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=334309867 Step 1 took 15101ms Step 2 took 7317ms ********** Factor found in step 2: 339145835876930553447588298468823 Found probable prime factor of 33 digits: 339145835876930553447588298468823 Composite cofactor 63381644016807764877796119529273285908378065539823990280799855167981847753450583 has 80 digits Wed Oct 15 13:45:35 2008 Wed Oct 15 13:45:35 2008 Msieve v. 1.38 Wed Oct 15 13:45:35 2008 random seeds: 6e94724d 3e8b164c Wed Oct 15 13:45:35 2008 factoring 80 (2 digits) Wed Oct 15 13:45:35 2008 p1 factor: 2 Wed Oct 15 13:45:35 2008 p1 factor: 2 Wed Oct 15 13:45:35 2008 p1 factor: 2 Wed Oct 15 13:45:35 2008 p1 factor: 2 Wed Oct 15 13:45:35 2008 p1 factor: 5 Wed Oct 15 13:45:35 2008 elapsed time 00:00:00 Wed Oct 15 13:51:54 2008 Wed Oct 15 13:51:54 2008 Wed Oct 15 13:51:54 2008 Msieve v. 1.38 Wed Oct 15 13:51:54 2008 random seeds: c1fb0222 03cd8c81 Wed Oct 15 13:51:54 2008 factoring 63381644016807764877796119529273285908378065539823990280799855167981847753450583 (80 digits) Wed Oct 15 13:51:55 2008 searching for 15-digit factors Wed Oct 15 13:51:57 2008 commencing quadratic sieve (80-digit input) Wed Oct 15 13:51:57 2008 using multiplier of 47 Wed Oct 15 13:51:57 2008 using 32kb Intel Core sieve core Wed Oct 15 13:51:57 2008 sieve interval: 12 blocks of size 32768 Wed Oct 15 13:51:57 2008 processing polynomials in batches of 17 Wed Oct 15 13:51:57 2008 using a sieve bound of 1301023 (49967 primes) Wed Oct 15 13:51:57 2008 using large prime bound of 130102300 (26 bits) Wed Oct 15 13:51:57 2008 using trial factoring cutoff of 27 bits Wed Oct 15 13:51:57 2008 polynomial 'A' values have 10 factors Wed Oct 15 14:04:14 2008 50098 relations (26281 full + 23817 combined from 265003 partial), need 50063 Wed Oct 15 14:04:15 2008 begin with 291284 relations Wed Oct 15 14:04:15 2008 reduce to 70947 relations in 2 passes Wed Oct 15 14:04:15 2008 attempting to read 70947 relations Wed Oct 15 14:04:16 2008 recovered 70947 relations Wed Oct 15 14:04:16 2008 recovered 58432 polynomials Wed Oct 15 14:04:16 2008 attempting to build 50098 cycles Wed Oct 15 14:04:16 2008 found 50098 cycles in 1 passes Wed Oct 15 14:04:16 2008 distribution of cycle lengths: Wed Oct 15 14:04:16 2008 length 1 : 26281 Wed Oct 15 14:04:16 2008 length 2 : 23817 Wed Oct 15 14:04:16 2008 largest cycle: 2 relations Wed Oct 15 14:04:16 2008 matrix is 49967 x 50098 (6.6 MB) with weight 1541394 (30.77/col) Wed Oct 15 14:04:16 2008 sparse part has weight 1541394 (30.77/col) Wed Oct 15 14:04:17 2008 filtering completed in 3 passes Wed Oct 15 14:04:17 2008 matrix is 34614 x 34677 (5.1 MB) with weight 1207990 (34.84/col) Wed Oct 15 14:04:17 2008 sparse part has weight 1207990 (34.84/col) Wed Oct 15 14:04:17 2008 saving the first 48 matrix rows for later Wed Oct 15 14:04:17 2008 matrix is 34566 x 34677 (3.8 MB) with weight 961386 (27.72/col) Wed Oct 15 14:04:17 2008 sparse part has weight 792580 (22.86/col) Wed Oct 15 14:04:17 2008 matrix includes 64 packed rows Wed Oct 15 14:04:17 2008 using block size 13870 for processor cache size 2048 kB Wed Oct 15 14:04:17 2008 commencing Lanczos iteration Wed Oct 15 14:04:17 2008 memory use: 4.1 MB Wed Oct 15 14:04:23 2008 lanczos halted after 548 iterations (dim = 34564) Wed Oct 15 14:04:23 2008 recovered 17 nontrivial dependencies Wed Oct 15 14:04:23 2008 prp34 factor: 6925540496049346647691472035885723 Wed Oct 15 14:04:23 2008 prp46 factor: 9151869670383651567843410263648963919135064821 Wed Oct 15 14:04:23 2008 elapsed time 00:12:29
(26·10153-17)/9 = 2(8)1527<154> = 191 · 13691 · 29404942766701<14> · 2690568143184441439<19> · 24008502534823630793<20> · C96
C96 = P36 · P61
P36 = 144033299950349239793375411134290953<36>
P61 = 4038034105758540631100193593028886436502038569222778774393017<61>
Wed Oct 15 07:31:11 2008 Msieve v. 1.38 Wed Oct 15 07:31:11 2008 random seeds: 4a2e2996 99e36ae2 Wed Oct 15 07:31:11 2008 factoring 581611377564460147190254458089733717901553248586056816556993159064446199463882568826397249475201 (96 digits) Wed Oct 15 07:31:13 2008 searching for 15-digit factors Wed Oct 15 07:31:15 2008 commencing quadratic sieve (96-digit input) Wed Oct 15 07:31:15 2008 using multiplier of 5 Wed Oct 15 07:31:15 2008 using 64kb Pentium 4 sieve core Wed Oct 15 07:31:15 2008 sieve interval: 18 blocks of size 65536 Wed Oct 15 07:31:15 2008 processing polynomials in batches of 6 Wed Oct 15 07:31:15 2008 using a sieve bound of 2296873 (84706 primes) Wed Oct 15 07:31:15 2008 using large prime bound of 344530950 (28 bits) Wed Oct 15 07:31:15 2008 using double large prime bound of 2328149289953700 (43-52 bits) Wed Oct 15 07:31:15 2008 using trial factoring cutoff of 52 bits Wed Oct 15 07:31:15 2008 polynomial 'A' values have 12 factors Wed Oct 15 16:02:07 2008 85039 relations (20512 full + 64527 combined from 1285560 partial), need 84802 Wed Oct 15 16:02:12 2008 begin with 1306072 relations Wed Oct 15 16:02:14 2008 reduce to 223844 relations in 12 passes Wed Oct 15 16:02:14 2008 attempting to read 223844 relations Wed Oct 15 16:02:21 2008 recovered 223844 relations Wed Oct 15 16:02:21 2008 recovered 210027 polynomials Wed Oct 15 16:02:21 2008 attempting to build 85039 cycles Wed Oct 15 16:02:21 2008 found 85039 cycles in 6 passes Wed Oct 15 16:02:21 2008 distribution of cycle lengths: Wed Oct 15 16:02:21 2008 length 1 : 20512 Wed Oct 15 16:02:21 2008 length 2 : 14602 Wed Oct 15 16:02:21 2008 length 3 : 13960 Wed Oct 15 16:02:21 2008 length 4 : 11605 Wed Oct 15 16:02:21 2008 length 5 : 8985 Wed Oct 15 16:02:21 2008 length 6 : 6035 Wed Oct 15 16:02:21 2008 length 7 : 3886 Wed Oct 15 16:02:21 2008 length 9+: 5454 Wed Oct 15 16:02:21 2008 largest cycle: 20 relations Wed Oct 15 16:02:22 2008 matrix is 84706 x 85039 (23.8 MB) with weight 5898680 (69.36/col) Wed Oct 15 16:02:22 2008 sparse part has weight 5898680 (69.36/col) Wed Oct 15 16:02:24 2008 filtering completed in 3 passes Wed Oct 15 16:02:24 2008 matrix is 80977 x 81040 (22.8 MB) with weight 5643742 (69.64/col) Wed Oct 15 16:02:24 2008 sparse part has weight 5643742 (69.64/col) Wed Oct 15 16:02:24 2008 saving the first 48 matrix rows for later Wed Oct 15 16:02:25 2008 matrix is 80929 x 81040 (16.7 MB) with weight 4727767 (58.34/col) Wed Oct 15 16:02:25 2008 sparse part has weight 3887127 (47.97/col) Wed Oct 15 16:02:25 2008 matrix includes 64 packed rows Wed Oct 15 16:02:25 2008 using block size 21845 for processor cache size 512 kB Wed Oct 15 16:02:26 2008 commencing Lanczos iteration Wed Oct 15 16:02:26 2008 memory use: 14.7 MB Wed Oct 15 16:03:47 2008 lanczos halted after 1282 iterations (dim = 80929) Wed Oct 15 16:03:47 2008 recovered 18 nontrivial dependencies Wed Oct 15 16:03:50 2008 prp36 factor: 144033299950349239793375411134290953 Wed Oct 15 16:03:50 2008 prp61 factor: 4038034105758540631100193593028886436502038569222778774393017 Wed Oct 15 16:03:50 2008 elapsed time 08:32:39
(26·10144-17)/9 = 2(8)1437<145> = 193 · C143
C143 = P37 · P41 · P66
P37 = 1782151055743702442344825007074171523<37>
P41 = 16521095534080175058325500493943837954429<41>
P66 = 508382011054035835676406114546052839485630855313152746851685502977<66>
Number: 28887_144 N=14968336211859527921704087507196315486470926885434657455382843983880253310305123776626367299942429476108232584916522740356937248128957973517559 ( 143 digits) SNFS difficulty: 146 digits. Divisors found: r1=1782151055743702442344825007074171523 (pp37) r2=16521095534080175058325500493943837954429 (pp41) r3=508382011054035835676406114546052839485630855313152746851685502977 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.60 hours. Scaled time: 19.78 units (timescale=1.009). Factorization parameters were as follows: name: 28887_144 n: 14968336211859527921704087507196315486470926885434657455382843983880253310305123776626367299942429476108232584916522740356937248128957973517559 m: 100000000000000000000000000000 c5: 13 c0: -85 skew: 1.46 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3250001) Primes: RFBsize:114155, AFBsize:114742, largePrimes:2972820 encountered Relations: rels:2998620, finalFF:273682 Max relations in full relation-set: 28 Initial matrix: 228962 x 273682 with sparse part having weight 31732339. Pruned matrix : 216250 x 217458 with weight 23641325. Total sieving time: 19.18 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.32 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 19.60 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW
(67·1026194-13)/9 = 7(4)261933<26195> is PRP.
By Sinkiti Sibata / Msieve, GGNFS
(26·10110-17)/9 = 2(8)1097<111> = 7 · 67 · 1367 · 43744265513290879<17> · C89
C89 = P40 · P49
P40 = 6001131512745860146554482788707579097961<40>
P49 = 1716466010916447043435880068391731173711732687851<49>
Wed Oct 15 05:27:12 2008 Msieve v. 1.38 Wed Oct 15 05:27:12 2008 random seeds: dba802fa 24726388 Wed Oct 15 05:27:12 2008 factoring 10300738268667869941900222275951412419627031093089343147466513267202507820099968563571811 (89 digits) Wed Oct 15 05:27:13 2008 searching for 15-digit factors Wed Oct 15 05:27:15 2008 commencing quadratic sieve (89-digit input) Wed Oct 15 05:27:15 2008 using multiplier of 11 Wed Oct 15 05:27:15 2008 using 64kb Pentium 4 sieve core Wed Oct 15 05:27:15 2008 sieve interval: 14 blocks of size 65536 Wed Oct 15 05:27:15 2008 processing polynomials in batches of 8 Wed Oct 15 05:27:15 2008 using a sieve bound of 1537147 (58224 primes) Wed Oct 15 05:27:15 2008 using large prime bound of 122971760 (26 bits) Wed Oct 15 05:27:15 2008 using double large prime bound of 364459767191680 (42-49 bits) Wed Oct 15 05:27:15 2008 using trial factoring cutoff of 49 bits Wed Oct 15 05:27:15 2008 polynomial 'A' values have 11 factors Wed Oct 15 06:57:24 2008 58395 relations (16414 full + 41981 combined from 610832 partial), need 58320 Wed Oct 15 06:57:26 2008 begin with 627246 relations Wed Oct 15 06:57:27 2008 reduce to 139598 relations in 11 passes Wed Oct 15 06:57:27 2008 attempting to read 139598 relations Wed Oct 15 06:57:30 2008 recovered 139598 relations Wed Oct 15 06:57:30 2008 recovered 115984 polynomials Wed Oct 15 06:57:30 2008 attempting to build 58395 cycles Wed Oct 15 06:57:31 2008 found 58395 cycles in 6 passes Wed Oct 15 06:57:31 2008 distribution of cycle lengths: Wed Oct 15 06:57:31 2008 length 1 : 16414 Wed Oct 15 06:57:31 2008 length 2 : 11404 Wed Oct 15 06:57:31 2008 length 3 : 10538 Wed Oct 15 06:57:31 2008 length 4 : 7465 Wed Oct 15 06:57:31 2008 length 5 : 5335 Wed Oct 15 06:57:31 2008 length 6 : 3216 Wed Oct 15 06:57:31 2008 length 7 : 1855 Wed Oct 15 06:57:31 2008 length 9+: 2168 Wed Oct 15 06:57:31 2008 largest cycle: 20 relations Wed Oct 15 06:57:31 2008 matrix is 58224 x 58395 (14.0 MB) with weight 3437825 (58.87/col) Wed Oct 15 06:57:31 2008 sparse part has weight 3437825 (58.87/col) Wed Oct 15 06:57:32 2008 filtering completed in 3 passes Wed Oct 15 06:57:32 2008 matrix is 53593 x 53657 (13.0 MB) with weight 3201131 (59.66/col) Wed Oct 15 06:57:32 2008 sparse part has weight 3201131 (59.66/col) Wed Oct 15 06:57:32 2008 saving the first 48 matrix rows for later Wed Oct 15 06:57:32 2008 matrix is 53545 x 53657 (9.3 MB) with weight 2631124 (49.04/col) Wed Oct 15 06:57:32 2008 sparse part has weight 2128145 (39.66/col) Wed Oct 15 06:57:32 2008 matrix includes 64 packed rows Wed Oct 15 06:57:32 2008 using block size 21462 for processor cache size 512 kB Wed Oct 15 06:57:33 2008 commencing Lanczos iteration Wed Oct 15 06:57:33 2008 memory use: 8.5 MB Wed Oct 15 06:58:05 2008 lanczos halted after 848 iterations (dim = 53545) Wed Oct 15 06:58:05 2008 recovered 18 nontrivial dependencies Wed Oct 15 06:58:07 2008 prp40 factor: 6001131512745860146554482788707579097961 Wed Oct 15 06:58:07 2008 prp49 factor: 1716466010916447043435880068391731173711732687851 Wed Oct 15 06:58:07 2008 elapsed time 01:30:55
(26·10127-17)/9 = 2(8)1267<128> = 32 · 41 · 2410931 · C119
C119 = P45 · P75
P45 = 176708995742868033725601335173947516522546743<45>
P75 = 183764252538525370473390572332885210401984688084514695855899989508440764331<75>
Number: 28887_127 N=32472796519521605950704707962779367391733293104734093089187017362312920723741833758460503464549450724888744205594623933 ( 119 digits) SNFS difficulty: 128 digits. Divisors found: r1=176708995742868033725601335173947516522546743 (pp45) r2=183764252538525370473390572332885210401984688084514695855899989508440764331 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.81 hours. Scaled time: 2.98 units (timescale=0.783). Factorization parameters were as follows: name: 28887_127 n: 32472796519521605950704707962779367391733293104734093089187017362312920723741833758460503464549450724888744205594623933 m: 10000000000000000000000000 c5: 2600 c0: -17 skew: 0.37 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:63953, largePrimes:1446680 encountered Relations: rels:1429455, finalFF:159869 Max relations in full relation-set: 28 Initial matrix: 127971 x 159869 with sparse part having weight 9961803. Pruned matrix : 117646 x 118349 with weight 5787394. Total sieving time: 3.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.81 hours. --------- CPU info (if available) ----------
(26·10134-17)/9 = 2(8)1337<135> = 7 · 29 · 68113 · 3973247 · C121
C121 = P41 · P81
P41 = 15177348453623950838024813965176032894221<41>
P81 = 346468154200169948635742296967949960762542906674809782261859479169727252266013559<81>
Number: 28887_134 N=5258467904379893917425879319299797702544751262661304331982090981680291206386080564645724578974138223446115582384798742539 ( 121 digits) SNFS difficulty: 136 digits. Divisors found: r1=15177348453623950838024813965176032894221 (pp41) r2=346468154200169948635742296967949960762542906674809782261859479169727252266013559 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.36 hours. Scaled time: 8.38 units (timescale=1.002). Factorization parameters were as follows: name: 28887_134 n: 5258467904379893917425879319299797702544751262661304331982090981680291206386080564645724578974138223446115582384798742539 m: 1000000000000000000000000000 c5: 13 c0: -85 skew: 1.46 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:64473, largePrimes:1753499 encountered Relations: rels:1865992, finalFF:264471 Max relations in full relation-set: 28 Initial matrix: 143036 x 264471 with sparse part having weight 26412188. Pruned matrix : 117853 x 118632 with weight 11238155. Total sieving time: 8.22 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.36 hours. --------- CPU info (if available) ----------
(26·10137-17)/9 = 2(8)1367<138> = 41 · 109 · C134
C134 = P36 · P37 · P62
P36 = 526294333620542813446146956660416129<36>
P37 = 2734255542207168448248267232752481223<37>
P62 = 44921338536578715635599211917927596126790380075342452322497069<62>
Number: 28887_137 N=64642848263345018771288630317495835508813803734367618905546853633673951418413266701474354193083215235822082991472116556027945600556923 ( 134 digits) SNFS difficulty: 138 digits. Divisors found: r1=526294333620542813446146956660416129 (pp36) r2=2734255542207168448248267232752481223 (pp37) r3=44921338536578715635599211917927596126790380075342452322497069 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.31 hours. Scaled time: 8.41 units (timescale=1.011). Factorization parameters were as follows: name: 28887_137 n: 64642848263345018771288630317495835508813803734367618905546853633673951418413266701474354193083215235822082991472116556027945600556923 m: 1000000000000000000000000000 c5: 2600 c0: -17 skew: 0.37 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:63953, largePrimes:1617804 encountered Relations: rels:1626585, finalFF:164691 Max relations in full relation-set: 28 Initial matrix: 142518 x 164691 with sparse part having weight 17091487. Pruned matrix : 136891 x 137667 with weight 12918139. Total sieving time: 8.15 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.31 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(26·10111-17)/9 = 2(8)1107<112> = C112
C112 = P35 · P77
P35 = 73754123201921790624647439007473229<35>
P77 = 39169184900751608644593613969599919588169278840249296543982129934412148934803<77>
SNFS difficulty: 113 digits. Divisors found: r1=73754123201921790624647439007473229 r2=39169184900751608644593613969599919588169278840249296543982129934412148934803 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.300). Factorization parameters were as follows: n: 2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 10000000000000000000000000000 c4: 13 c0: -85 skew: 1.6 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 345001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 48154 x 48371 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.60 hours.
(26·10103-17)/9 = 2(8)1027<104> = 3 · 31 · 463 · 115597 · C94
C94 = P31 · P64
P31 = 1972108063362367189451376248797<31>
P64 = 2942995695171047624969249628590188180420693681219570640764638677<64>
N=5803905540887558263985489078759725396885725234535263165222238080255654302916465210789360921569 ( 94 digits) SNFS difficulty: 105 digits. Divisors found: r1=1972108063362367189451376248797 r2=2942995695171047624969249628590188180420693681219570640764638677 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 5803905540887558263985489078759725396885725234535263165222238080255654302916465210789360921569 m: 100000000000000000000000000 c4: 13 c0: -85 skew: 1.6 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 285001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37181 x 37410 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.40 hours.
(26·10120-17)/9 = 2(8)1197<121> = 5653 · 11949605451227<14> · 4379004068674901<16> · C88
C88 = P31 · P58
P31 = 3759727749368860911148358537753<31>
P58 = 2597565697150329074823057784392058457450845003898821264709<58>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1986497679 Step 1 took 3732ms Step 2 took 2901ms ********** Factor found in step 2: 3759727749368860911148358537753 Found probable prime factor of 31 digits: 3759727749368860911148358537753 Probable prime cofactor 2597565697150329074823057784392058457450845003898821264709 has 58 digits
(26·10165-17)/9 = 2(8)1647<166> = 263957 · 4058137 · C154
C154 = P31 · C123
P31 = 7818152593406970277472416624103<31>
C123 = [344958465819430965530710574646567760779022977241793408151628340601011887317136749920912630213301975588157023174300056198581<123>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2782357100 Step 1 took 14693ms Step 2 took 13021ms ********** Factor found in step 2: 7818152593406970277472416624103 Found probable prime factor of 31 digits: 7818152593406970277472416624103 Composite cofactor 344958465819430965530710574646567760779022977241793408151628340601011887317136749920912630213301975588157023174300056198581 has 123 digits
By Serge Batalov / PFGW
(38·1039855+61)/9 = 4(2)398549<39856> is PRP.
(19·1027222+53)/9 = 2(1)272217<27223> is PRP.
Factorizations of 288...887 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By matsui / GMP-ECM
4·10192+9 = 4(0)1919<193> = 13 · 3084049 · 20054833 · 362793721871669762743297557966121<33> · C146
C146 = P35 · P111
P35 = 34347828192180472650311406770836321<35>
P111 = 399224581811496883777327450848889939055934413354952004388681194427258371965399996716709123759572132028042808069<111>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 13712497346156392212676019147625431370510365650834689585981115102219563918727772856984851299023907414810459127022107546442249298162322016417074149 = 34347828192180472650311406770836321* 399224581811496883777327450848889939055934413354952004388681194427258371965399996716709123759572132028042808069
4·10193+9 = 4(0)1929<194> = 7 · 11437 · 13853895929<11> · 284374155722383<15> · 40774884715492908428204364418823<32> · C133
C133 = P31 · C103
P31 = 1455040861595700679822195920931<31>
C103 = [2137567576041104372111455292736110616642012466158171115994587987948441933469530773750128809166787452761<103>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 126820010468908806071880109357043266345981215766729369753337225868175064400665316164905372765852198104155866881930631191806135695255612601001613076169469586595362093 = 1455040861595700679822195920931* 87159071484651651948214084667005400934366096726356153793048130126152962818451986017052417673584656337918155219572308362365470331720303
By Robert Backstrom / GGNFS, Msieve
(25·10186-43)/9 = 2(7)1853<187> = 131 · C185
C185 = P80 · P105
P80 = 31424022345942293721314643526777454557385387249420546118526109881135411541015663<80>
P105 = 674783459735086705269541484554441010464640876312706928931469006792480841626496533516974299488863906180641<105>
Number: n N=21204410517387616624257845631891433418150975402883799830364715860899067005937234944868532654792196776929601357082273112807463952502120441051738761662425784563189143341815097540288379983 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: Tue Oct 14 05:57:25 2008 prp80 factor: 31424022345942293721314643526777454557385387249420546118526109881135411541015663 Tue Oct 14 05:57:25 2008 prp105 factor: 674783459735086705269541484554441010464640876312706928931469006792480841626496533516974299488863906180641 Tue Oct 14 05:57:26 2008 elapsed time 06:56:43 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 73.50 hours. Scaled time: 150.32 units (timescale=2.045). Factorization parameters were as follows: name: KA_2_7_185_3 n: 21204410517387616624257845631891433418150975402883799830364715860899067005937234944868532654792196776929601357082273112807463952502120441051738761662425784563189143341815097540288379983 type: snfs skew: 0.70 deg: 5 c5: 250 c0: -43 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6500001) Primes: RFBsize:602489, AFBsize:602475, largePrimes:14280891 encountered Relations: rels:14024050, finalFF:1214304 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 73.14 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 73.50 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW
(19·1017520+53)/9 = 2(1)175197<17521> is PRP.
(64·1017666+17)/9 = 7(1)176653<17667> is PRP.
(64·1020864+17)/9 = 7(1)208633<20865> is PRP.
By Serge Batalov / PFGW
(35·1010176-17)/9 = 3(8)101757<10177> is PRP.
(46·1012809+53)/9 = 5(1)128087<12810> is PRP.
(46·1015071+53)/9 = 5(1)150707<15072> is PRP.
(58·1011391+41)/9 = 6(4)113909<11392> is PRP.
(58·1011673+41)/9 = 6(4)116729<11674> is PRP.
By Sinkiti Sibata / GGNFS
(26·10167-53)/9 = 2(8)1663<168> = 7 · 2399 · 6323 · 127691 · 2938021 · 180397057763401<15> · C134
C134 = P39 · P95
P39 = 641381666556496229620462884848095705753<39>
P95 = 62678442074912406253135639578417547373032295596932760185025327623693360325589453770923938796959<95>
Number: 28883_167 N=40200803635172132619878290809551400226863431975204543229129709070472743443263344426800924623027279256511540239797176634645520875205127 ( 134 digits) SNFS difficulty: 168 digits. Divisors found: r1=641381666556496229620462884848095705753 (pp39) r2=62678442074912406253135639578417547373032295596932760185025327623693360325589453770923938796959 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 143.96 hours. Scaled time: 145.25 units (timescale=1.009). Factorization parameters were as follows: name: 28883_167 n: 40200803635172132619878290809551400226863431975204543229129709070472743443263344426800924623027279256511540239797176634645520875205127 m: 1000000000000000000000000000000000 c5: 2600 c0: -53 skew: 0.46 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 8050001) Primes: RFBsize:380800, AFBsize:380897, largePrimes:6325510 encountered Relations: rels:6667158, finalFF:966762 Max relations in full relation-set: 28 Initial matrix: 761764 x 966762 with sparse part having weight 80074010. Pruned matrix : 602881 x 606753 with weight 61848504. Total sieving time: 139.97 hours. Total relation processing time: 0.13 hours. Matrix solve time: 3.75 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 143.96 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(68·10173+13)/9 = 7(5)1727<174> = 112 · 107 · 6606011 · C163
C163 = P43 · P57 · P64
P43 = 6610570985981893588217485599928065911900503<43>
P57 = 580045643086614207620043405574822802210547317327758301137<57>
P64 = 2303863904620842108302141414515874627622737561828500894022443411<64>
SNFS difficulty: 174 digits. Divisors found: r1=6610570985981893588217485599928065911900503 r2=580045643086614207620043405574822802210547317327758301137 r3=2303863904620842108302141414515874627622737561828500894022443411 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.596). Factorization parameters were as follows: n: 8834011550082961570244632107524709874248369610339476895245395710746521446283572650471917371886973695062656009852723821223435749028679163809470732622166742120828421 m: 20000000000000000000000000000000000 c5: 2125 c0: 13 skew: 0.36 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 7200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1243431 x 1243679 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 6.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,54,54,2.6,2.6,100000 total time: 61.00 hours.
By Jo Yeong Uk / GGNFS
(8·10169+1)/9 = (8)1689<169> = 3 · 134838716741<12> · 104450884973579663627<21> · C138
C138 = P62 · P76
P62 = 67798627312166014383929640769882002342372388847421981172672289<62>
P76 = 3102977219325565368707599249750650170581500768570091107590293404218912306981<76>
Number: 88889_169 N=210377596051195229278114432178007432868301425550480627660077223627399086374121611283425294082727290932956598726259701763200994497679949509 ( 138 digits) SNFS difficulty: 170 digits. Divisors found: r1=67798627312166014383929640769882002342372388847421981172672289 (pp62) r2=3102977219325565368707599249750650170581500768570091107590293404218912306981 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 57.72 hours. Scaled time: 137.30 units (timescale=2.379). Factorization parameters were as follows: n: 210377596051195229278114432178007432868301425550480627660077223627399086374121611283425294082727290932956598726259701763200994497679949509 m: 10000000000000000000000000000000000 c5: 4 c0: 5 skew: 1.05 type: snfs Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [3500000, 6700001) Primes: RFBsize:476648, AFBsize:476559, largePrimes:6565015 encountered Relations: rels:7040243, finalFF:1111712 Max relations in full relation-set: 28 Initial matrix: 953271 x 1111712 with sparse part having weight 56167175. Pruned matrix : 811416 x 816246 with weight 37322717. Total sieving time: 53.99 hours. Total relation processing time: 0.10 hours. Matrix solve time: 3.57 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,49,49,2.5,2.5,100000 total time: 57.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
(52·10175-7)/9 = 5(7)175<176> = 3 · 44119 · 505411 · 108654820435393<15> · 107924410927665683001385431856290806743357967<45> · C107
C107 = P53 · P55
P53 = 31288719349461934155851843896696720363661033230725719<53>
P55 = 2354034136349944678676611987548074368673930574524031959<55>
Number: 57777_175 N=73654713431306427074409733299667444457566434315864090073277343599353361668298394489931133898094003519253521 ( 107 digits) Divisors found: r1=31288719349461934155851843896696720363661033230725719 (pp53) r2=2354034136349944678676611987548074368673930574524031959 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.93 hours. Scaled time: 21.32 units (timescale=2.388). Factorization parameters were as follows: name: 57777_175 n: 73654713431306427074409733299667444457566434315864090073277343599353361668298394489931133898094003519253521 skew: 17886.39 # norm 2.10e+15 c5: 110160 c4: 5442417444 c3: -149713271052144 c2: -1264206659453831591 c1: 16575436908728770826116 c0: 83199602893546180382049300 # alpha -7.26 Y1: 24471492101 Y0: -231758072512480916699 # Murphy_E 1.55e-09 # M 38194101069741355399707275664143179168743790556414615227357162011118711033618235651356369089463785195133086 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [900000, 1400001) Primes: RFBsize:135072, AFBsize:134855, largePrimes:4986712 encountered Relations: rels:5028126, finalFF:374807 Max relations in full relation-set: 28 Initial matrix: 270008 x 374807 with sparse part having weight 36527943. Pruned matrix : 213572 x 214986 with weight 18438358. Polynomial selection time: 0.55 hours. Total sieving time: 8.04 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,50,50,2.6,2.6,50000 total time: 8.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(8·10168-71)/9 = (8)1671<168> = 7 · 83 · 173 · 180380873 · 1899953897191177928067350987423<31> · C125
C125 = P41 · P84
P41 = 30196695799267574612214510483582331213049<41>
P84 = 854539752983938975409709010100505812475698391065616612344483235106134591693546624847<84>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 25804276969237260916253285418344233476581942122469731457748077108761430322204665370889961476489935277885313096413193234028503 (125 digits) Using B1=6486000, B2=14271342550, polynomial Dickson(12), sigma=3532503115 Step 1 took 57942ms Step 2 took 23495ms ********** Factor found in step 2: 30196695799267574612214510483582331213049 Found probable prime factor of 41 digits: 30196695799267574612214510483582331213049 Probable prime cofactor 854539752983938975409709010100505812475698391065616612344483235106134591693546624847 has 84 digits
(26·10185-53)/9 = 2(8)1843<186> = 7 · C185
C185 = P68 · P118
P68 = 11967880220222771535977473028528815286409995203134321966881379578399<68>
P118 = 3448383549168999632700369166622141002514388314197364283079763510370070630825743226204284898075719770357515051628529131<118>
Number: n N=41269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269 ( 185 digits) SNFS difficulty: 186 digits. Divisors found: Sun Oct 12 22:19:14 2008 prp68 factor: 11967880220222771535977473028528815286409995203134321966881379578399 Sun Oct 12 22:19:14 2008 prp118 factor: 3448383549168999632700369166622141002514388314197364283079763510370070630825743226204284898075719770357515051628529131 Sun Oct 12 22:19:14 2008 elapsed time 16:31:56 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 64.71 hours. Scaled time: 84.58 units (timescale=1.307). Factorization parameters were as follows: name: KA_2_8_184_3 n: 41269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269 type: snfs skew: 1.15 deg: 5 c5: 26 c0: -53 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6100001) Primes: RFBsize:602489, AFBsize:601295, largePrimes:14538080 encountered Relations: rels:14376374, finalFF:1255184 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 64.04 hours. Total relation processing time: 0.67 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 64.71 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10166-53)/9 = 2(8)1653<167> = 521 · 1597 · 197787847 · C153
C153 = P54 · P99
P54 = 265118142137434755285925832970724934903901408844488191<54>
P99 = 662138969195960498557622691000644669495559191169984336202123246282041767740138009213412163051256367<99>
Number: 28883_166 N=175545053350029188479712622193807947858289238010646688835359710365749635407791235397932755833241463063172111251654787140131951630486754812817265645062097 ( 153 digits) SNFS difficulty: 167 digits. Divisors found: r1=265118142137434755285925832970724934903901408844488191 (pp54) r2=662138969195960498557622691000644669495559191169984336202123246282041767740138009213412163051256367 (pp99) Version: GGNFS-0.77.1-20050930-nocona Total time: 133.61 hours. Scaled time: 134.68 units (timescale=1.008). Factorization parameters were as follows: 28883_166 n: 175545053350029188479712622193807947858289238010646688835359710365749635407791235397932755833241463063172111251654787140131951630486754812817265645062097 m: 1000000000000000000000000000000000 c5: 260 c0: -53 skew: 0.73 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7650001) Primes: RFBsize:380800, AFBsize:381462, largePrimes:6278885 encountered Relations: rels:6593734, finalFF:945834 Max relations in full relation-set: 28 Initial matrix: 762329 x 945834 with sparse part having weight 74842668. Pruned matrix : 619288 x 623163 with weight 56284364. Total sieving time: 129.71 hours. Total relation processing time: 0.12 hours. Matrix solve time: 3.66 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 133.61 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
2·10176-7 = 1(9)1753<177> = 31 · 167 · 84349 · 762539 · 5303471 · C156
C156 = P63 · P93
P63 = 337158791033264179423030381537184109066737553257391166972636621<63>
P93 = 335903976890265082828384698860438605538743727883895495015727111914842671618296153307348566709<93>
SNFS difficulty: 176 digits. Divisors found: r1=337158791033264179423030381537184109066737553257391166972636621 r2=335903976890265082828384698860438605538743727883895495015727111914842671618296153307348566709 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 113252978751587285152120274127084084614582650358880557515891373662125548580378985430928277226131608413432226944828272335376297243741299360815777087034850289 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 20 c0: -7 skew: 0.81 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 7900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1260259 x 1260507 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.6,2.6,100000 total time: 60.00 hours.
9·10173+1 = 9(0)1721<174> = 263 · 659 · 719503 · C163
C163 = P48 · P53 · P64
P48 = 119042288029767638893284897945328190576465889847<48>
P53 = 17758729179548142956399209216703776600136321973088783<53>
P64 = 3413937667616485389431567664007791715409001756176675366899769851<64>
SNFS difficulty: 173 digits. Divisors found: r1=119042288029767638893284897945328190576465889847 r2=17758729179548142956399209216703776600136321973088783 r3=3413937667616485389431567664007791715409001756176675366899769851 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.924). Factorization parameters were as follows: n: 7217199947136759338491991713436421871033060911813262302390708730896124696133610146983344119522988647120966471514735115383937781143270879649291821299541605910126051 m: 10000000000000000000000000000000000 c5: 9000 c0: 1 skew: 0.16 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1277412 x 1277660 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 50.00 hours.
(23·10177+1)/3 = 7(6)1767<178> = 11 · 31 · 113 · 659 · 17107 · 26189 · 7423487 · C155
C155 = P37 · P119
P37 = 1222827647443896135605384277317373191<37>
P119 = 74237334747024884434878158461319294495747514134705484811961053103278950707050742632109379197705733552024608749051925771<119>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=486638099 Step 1 took 18977ms Step 2 took 14697ms ********** Factor found in step 2: 1222827647443896135605384277317373191 Found probable prime factor of 37 digits: 1222827647443896135605384277317373191 Probable prime cofactor 74237334747024884434878158461319294495747514134705484811961053103278950707050742632109379197705733552024608749051925771 has 119 digits
(52·10175-7)/9 = 5(7)175<176> = 3 · 44119 · 505411 · 108654820435393<15> · C151
C151 = P45 · C107
P45 = 107924410927665683001385431856290806743357967<45>
C107 = [73654713431306427074409733299667444457566434315864090073277343599353361668298394489931133898094003519253521<107>]
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=4191283557 Step 1 took 61895ms Step 2 took 34491ms ********** Factor found in step 2: 107924410927665683001385431856290806743357967 Found probable prime factor of 45 digits: 107924410927665683001385431856290806743357967 Composite cofactor 73654713431306427074409733299667444457566434315864090073277343599353361668298394489931133898094003519253521 has 107 digits
By Wataru Sakai / GGNFS
(26·10183-71)/9 = 2(8)1821<184> = C184
C184 = P54 · P130
P54 = 593003743193204034604146674734025028736359951238501379<54>
P130 = 4871619988995031102117074254428860421831102448543408974537652092788862101145035929409514449229400537835795554628125214530032586939<130>
Number: 28881_183 N=2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 ( 184 digits) SNFS difficulty: 184 digits. Divisors found: r1=593003743193204034604146674734025028736359951238501379 (pp54) r2=4871619988995031102117074254428860421831102448543408974537652092788862101145035929409514449229400537835795554628125214530032586939 (pp130) Version: GGNFS-0.77.1-20060722-nocona Total time: 785.58 hours. Scaled time: 1582.94 units (timescale=2.015). Factorization parameters were as follows: n: 2888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 m: 2000000000000000000000000000000000000 c5: 1625 c0: -142 skew: 0.61 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 14200001) Primes: RFBsize:501962, AFBsize:500922, largePrimes:6904629 encountered Relations: rels:7420737, finalFF:1166355 Max relations in full relation-set: 32 Initial matrix: 1002950 x 1166355 with sparse part having weight 109741467. Pruned matrix : 875913 x 880991 with weight 88948169. Total sieving time: 776.71 hours. Total relation processing time: 0.13 hours. Matrix solve time: 8.48 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 785.58 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(25·10185+11)/9 = 2(7)1849<186> = 3 · C185
C185 = P67 · P119
P67 = 1823763826037021477970377431624932839442513244497272766446966241367<67>
P119 = 50770056555948494869560884191142325298211888542444804452840248720103134991812471526266558180708741955889392180067993879<119>
Number: n N=92592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 ( 185 digits) SNFS difficulty: 186 digits. Divisors found: Fri Oct 10 06:51:11 2008 prp67 factor: 1823763826037021477970377431624932839442513244497272766446966241367 Fri Oct 10 06:51:11 2008 prp119 factor: 50770056555948494869560884191142325298211888542444804452840248720103134991812471526266558180708741955889392180067993879 Fri Oct 10 06:51:12 2008 elapsed time 04:57:15 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.26 hours. Scaled time: 93.05 units (timescale=1.928). Factorization parameters were as follows: name: KA_2_7_184_9 n: 92592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 type: snfs skew: 0.85 deg: 5 c5: 25 c0: 11 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 5300001) Primes: RFBsize:602489, AFBsize:601876, largePrimes:13793332 encountered Relations: rels:13528674, finalFF:1248100 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.92 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 48.26 hours. --------- CPU info (if available) ----------
(2·10167-11)/9 = (2)1661<167> = 33 · 211 · 345979 · 8190545575864479761627<22> · C136
C136 = P44 · P92
P44 = 22483399937205086685698973749619580104633619<44>
P92 = 61223296584507659608164240577076192938735095756775297725553210186474662678695824030849575959<92>
Number: n N=1376507862583607912194299306720179473657830314931095313323900204083253155343440552393400001707363124784549392207334549098635997205565621 ( 136 digits) SNFS difficulty: 167 digits. Divisors found: Fri Oct 10 19:46:59 2008 prp44 factor: 22483399937205086685698973749619580104633619 Fri Oct 10 19:47:00 2008 prp92 factor: 61223296584507659608164240577076192938735095756775297725553210186474662678695824030849575959 Fri Oct 10 19:47:00 2008 elapsed time 01:21:20 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.30 hours. Scaled time: 21.06 units (timescale=2.045). Factorization parameters were as follows: name: KA_2_166_1 n: 1376507862583607912194299306720179473657830314931095313323900204083253155343440552393400001707363124784549392207334549098635997205565621 type: snfs skew: 0.56 deg: 5 c5: 200 c0: -11 m: 1000000000000000000000000000000000 rlim: 5400000 alim: 5400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 1800001) Primes: RFBsize:374362, AFBsize:375528, largePrimes:14838620 encountered Relations: rels:15562665, finalFF:1959922 Max relations in full relation-set: 28 Initial matrix: 749955 x 1959922 with sparse part having weight 219154798. Pruned matrix : Total sieving time: 9.93 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,52,52,2.5,2.5,100000 total time: 10.30 hours. --------- CPU info (if available) ----------
(13·10170-31)/9 = 1(4)1691<171> = 3 · 19 · 236119276660919<15> · C155
C155 = P60 · P95
P60 = 109065844527518766065659152112671088120780239748152362904203<60>
P95 = 98402419407674987943082172616752732098497131153709107438685468235316808878942400958071245812309<95>
Number: n N=10732342976249175501514261110742800869349996874710556532865562180039360327636609694024258570779685560647369177417833819967466747928851454103481701085234727 ( 155 digits) SNFS difficulty: 171 digits. Divisors found: Fri Oct 10 22:50:54 2008 prp60 factor: 109065844527518766065659152112671088120780239748152362904203 Fri Oct 10 22:50:54 2008 prp95 factor: 98402419407674987943082172616752732098497131153709107438685468235316808878942400958071245812309 Fri Oct 10 22:50:54 2008 elapsed time 03:40:28 (Msieve 1.38) Version: GGNFS-0.77.1-20050930-k8 Total time: 29.13 hours. Scaled time: 24.41 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_4_169_1 n: 10732342976249175501514261110742800869349996874710556532865562180039360327636609694024258570779685560647369177417833819967466747928851454103481701085234727 type: snfs skew: 1.19 deg: 5 c5: 13 c0: -31 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6100001) Primes: RFBsize:425648, AFBsize:426143, largePrimes:14169683 encountered Relations: rels:13493805, finalFF:875185 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 28.85 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 29.13 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS
(26·10172-71)/9 = 2(8)1711<173> = 3 · 1867 · 9980458761793547<16> · 32389267017818243837131<23> · C131
C131 = P61 · P70
P61 = 2449546433911624471161459374915594356652322414642886072105793<61>
P70 = 6513703188268288072413620827782285132171359163786368510031938034560281<70>
Number: 28881_172 N=15955618416381363719105020564561792442731148624050997442594452601010541512632742936245978681162464959750190451806002119796467807833 ( 131 digits) SNFS difficulty: 173 digits. Divisors found: r1=2449546433911624471161459374915594356652322414642886072105793 (pp61) r2=6513703188268288072413620827782285132171359163786368510031938034560281 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 242.20 hours. Scaled time: 244.38 units (timescale=1.009). Factorization parameters were as follows: name: 28881_172 n: 15955618416381363719105020564561792442731148624050997442594452601010541512632742936245978681162464959750190451806002119796467807833 m: 10000000000000000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12200001) Primes: RFBsize:501962, AFBsize:500812, largePrimes:6616660 encountered Relations: rels:7076277, finalFF:1134545 Max relations in full relation-set: 28 Initial matrix: 1002841 x 1134545 with sparse part having weight 77981353. Pruned matrix : 891612 x 896690 with weight 60315465. Total sieving time: 235.01 hours. Total relation processing time: 0.15 hours. Matrix solve time: 6.90 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 242.20 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(16·10169-43)/9 = 1(7)1683<170> = 13 · 1337081204948276467921<22> · C148
C148 = P47 · P101
P47 = 14960913929144985858253456596284691608551594667<47>
P101 = 68362543450116714569706242160205915953260475026395859705760545962255010206177617289863648239322570803<101>
SNFS difficulty: 170 digits. Divisors found: r1=14960913929144985858253456596284691608551594667 r2=68362543450116714569706242160205915953260475026395859705760545962255010206177617289863648239322570803 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1022766128534630473716139749411132618557924540474766154578045443849993035831818663230810420705936920336800737164136824385552259626574190971664707601 m: 10000000000000000000000000000000000 c5: 8 c0: -215 skew: 1.93 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1095583 x 1095831 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(10176+11)/3 = (3)1757<176> = 37 · 619 · 5807147 · 25654907 · C157
C157 = P70 · P88
P70 = 4086161435966825565731672088764901305281427456131784256360630460786921<70>
P88 = 2390768841211409882313112507942100812266380438329776481094137736714719683197884863631231<88>
SNFS difficulty: 176 digits. Divisors found: r1=4086161435966825565731672088764901305281427456131784256360630460786921 r2=2390768841211409882313112507942100812266380438329776481094137736714719683197884863631231 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.618). Factorization parameters were as follows: n: 9769067441269158180523604400486296984649389790765301062586030897703330125403155429472917988622131386228273403986649763681756430041630652919266860669811929751 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 10 c0: 11 skew: 1.02 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 8100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1284153 x 1284401 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.6,2.6,100000 total time: 50.00 hours.
(22·10177+41)/9 = 2(4)1769<178> = 173 · 1540115542109<13> · C163
C163 = P31 · C133
P31 = 3988176640532111179738994803247<31>
C133 = [2300415998333757249778490685464197237196599067392634238293373017266221785902267818855923626007378850090684685815884380328807466034631<133>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1068787070 Step 1 took 18926ms ********** Factor found in step 1: 3988176640532111179738994803247 Found probable prime factor of 31 digits: 3988176640532111179738994803247 Composite cofactor 2300415998333757249778490685464197237196599067392634238293373017266221785902267818855923626007378850090684685815884380328807466034631 has 133 digits
(19·10177+53)/9 = 2(1)1767<178> = 151 · 811 · 14901849676042845247<20> · C154
C154 = P32 · P122
P32 = 34696836474803684531094725876141<32>
P122 = 33341353998949281134084684490034526580396360733890803452497947844769267578107604119537306016289266699197332365783050679211<122>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1881158939 Step 1 took 14161ms Step 2 took 5968ms ********** Factor found in step 2: 34696836474803684531094725876141 Found probable prime factor of 32 digits: 34696836474803684531094725876141 Probable prime cofactor 33341353998949281134084684490034526580396360733890803452497947844769267578107604119537306016289266699197332365783050679211 has 122 digits
(4·10173-31)/9 = (4)1721<173> = 16231087 · 354269821 · C157
C157 = P61 · P97
P61 = 4498230111620791750209610078468593245067235231274070330521039<61>
P97 = 1718280454213440932277591880486530693988757269147198266364252508172991305884293618799254053566797<97>
SNFS difficulty: 173 digits. Divisors found: r1=4498230111620791750209610078468593245067235231274070330521039 r2=1718280454213440932277591880486530693988757269147198266364252508172991305884293618799254053566797 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 7729220879352351153013101378082592843337556829023539351665660507177539117223814006573982196897174293351721382439223285549015530353367195285541263649400342083 Y1: 1 Y0: -20000000000000000000000000000000000 c5: 125 c0: -31 skew: 0.76 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1312353 x 1312601 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
By Jo Yeong Uk / GGNFS
(67·10175+23)/9 = 7(4)1747<176> = 7 · 11 · 42487 · C170
C170 = P83 · P87
P83 = 32537127495497706794954789158042722494748647843639292901724992978991735797029256711<83>
P87 = 699368861975805845572995184055315621277581863012055140909431384666070068950015730613723<87>
Number: 74447_175 N=22755453828487933037559982272482566690206674201778586649252970716006468118878973964058813542184926373030969731136841076351985571276177814648405652712852562218250546445053 ( 170 digits) SNFS difficulty: 176 digits. Divisors found: r1=32537127495497706794954789158042722494748647843639292901724992978991735797029256711 (pp83) r2=699368861975805845572995184055315621277581863012055140909431384666070068950015730613723 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 114.12 hours. Scaled time: 270.93 units (timescale=2.374). Factorization parameters were as follows: n: 22755453828487933037559982272482566690206674201778586649252970716006468118878973964058813542184926373030969731136841076351985571276177814648405652712852562218250546445053 m: 100000000000000000000000000000000000 c5: 67 c0: 23 skew: 0.81 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4000000, 6100001) Primes: RFBsize:539777, AFBsize:539305, largePrimes:10682829 encountered Relations: rels:10758829, finalFF:1265217 Max relations in full relation-set: 28 Initial matrix: 1079147 x 1265217 with sparse part having weight 84046143. Pruned matrix : 910123 x 915582 with weight 53529564. Total sieving time: 108.12 hours. Total relation processing time: 0.14 hours. Matrix solve time: 5.77 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,50,50,2.6,2.6,100000 total time: 114.12 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Sinkiti Sibata / GGNFS
(26·10160-53)/9 = 2(8)1593<161> = 139 · 11833111840768866262117<23> · C137
C137 = P41 · P43 · P54
P41 = 24699164607397616188571642243521836798253<41>
P43 = 4778115508280883342643806899807566682589691<43>
P54 = 148825777520226664598083038604252245390400654880786267<54>
Number: 28883_160 N=17563742810030346118482219962830768316393397876574007624819397524539131637145339947227845276968833406707060393815181493162114024771700741 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: r1=24699164607397616188571642243521836798253 (pp41) r2=4778115508280883342643806899807566682589691 (pp43) r3=148825777520226664598083038604252245390400654880786267 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 75.15 hours. Scaled time: 57.57 units (timescale=0.766). Factorization parameters were as follows: name: 28883_160 n: 17563742810030346118482219962830768316393397876574007624819397524539131637145339947227845276968833406707060393815181493162114024771700741 m: 100000000000000000000000000000000 c5: 26 c0: -53 skew: 1.15 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4500001) Primes: RFBsize:283146, AFBsize:282797, largePrimes:5867428 encountered Relations: rels:5950995, finalFF:678604 Max relations in full relation-set: 28 Initial matrix: 566009 x 678604 with sparse part having weight 55712005. Pruned matrix : 491609 x 494503 with weight 40623709. Total sieving time: 71.62 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.19 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 75.15 hours. --------- CPU info (if available) ----------
(26·10164-53)/9 = 2(8)1633<165> = 17 · 61 · 173 · 1570859 · 3678654851<10> · 5556478709<10> · 88233409332539930388136681<26> · C108
C108 = P41 · P68
P41 = 22070470776022600268261014908547019424559<41>
P68 = 25753450207192235293374738897634290020737717214515574604202694188217<68>
Number: 28883_164 N=568390770179589408939872195752617880907878497620541326109998551022184578078602427260979786896871916978221303 ( 108 digits) Divisors found: r1=22070470776022600268261014908547019424559 (pp41) r2=25753450207192235293374738897634290020737717214515574604202694188217 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 23.43 hours. Scaled time: 11.06 units (timescale=0.472). Factorization parameters were as follows: name: 28883_164 n: 568390770179589408939872195752617880907878497620541326109998551022184578078602427260979786896871916978221303 skew: 7666.01 # norm 2.95e+14 c5: 187200 c4: 843376632 c3: -3418951398874 c2: -175469085741270535 c1: -370049593689987005412 c0: 1943332529637999987863604 # alpha -5.56 Y1: 118808547149 Y0: -313666462701129548531 # Murphy_E 1.31e-09 # M 262874865414326697381161367861846653573701310987028493467367656403077279337065340473173389149331409696073463 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2600001) Primes: RFBsize:183072, AFBsize:182839, largePrimes:4583538 encountered Relations: rels:4786702, finalFF:525654 Max relations in full relation-set: 28 Initial matrix: 365992 x 525654 with sparse part having weight 44709387. Pruned matrix : 260833 x 262726 with weight 24752832. Polynomial selection time: 1.20 hours. Total sieving time: 19.51 hours. Total relation processing time: 0.34 hours. Matrix solve time: 2.17 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 23.43 hours. --------- CPU info (if available) ----------
(26·10130-53)/9 = 2(8)1293<131> = 2557961551<10> · C122
C122 = P48 · P74
P48 = 236438277260853769814529260092665387318271835347<48>
P74 = 47766018217713433955106464691584719775555236704971354158444251526906538639<74>
Number: 28883_130 N=11293715059006721125218699148808624484633189425484405527285773064729262964941605914266882930520205027463639498969501472733 ( 122 digits) SNFS difficulty: 131 digits. Divisors found: r1=236438277260853769814529260092665387318271835347 (pp48) r2=47766018217713433955106464691584719775555236704971354158444251526906538639 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.80 hours. Scaled time: 4.54 units (timescale=0.783). Factorization parameters were as follows: name: 28883_130 n: 11293715059006721125218699148808624484633189425484405527285773064729262964941605914266882930520205027463639498969501472733 m: 100000000000000000000000000 c5: 26 c0: -53 skew: 1.15 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:63973, largePrimes:1545334 encountered Relations: rels:1548381, finalFF:166677 Max relations in full relation-set: 28 Initial matrix: 127990 x 166677 with sparse part having weight 14699325. Pruned matrix : 118264 x 118967 with weight 8717232. Total sieving time: 5.63 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.80 hours. --------- CPU info (if available) ----------
By Justin Card / msieve 1.38, ggnfs
(10176+17)/9 = (1)1753<176> = 13 · 1879391 · 6718199 · 43731936268508244866927446133249317<35> · C127
C127 = P48 · P79
P48 = 710124167792898446935804545868140581401807318057<48>
P79 = 2179772311514524087931982060767986518870830842019718570624060123823472397032281<79>
Msieve v. 1.38 Wed Oct 8 17:36:45 2008 random seeds: 52413acf cf6c524a factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing relation filtering commencing duplicate removal, pass 1 error -15 reading relation 30050 error -11 reading relation 57741 error -15 reading relation 3597789 error -15 reading relation 5167541 error -11 reading relation 9339118 found 958927 hash collisions in 10721948 relations commencing duplicate removal, pass 2 found 835100 duplicates and 9886848 unique relations memory use: 50.6 MB reading rational ideals above 4915200 reading algebraic ideals above 4915200 commencing singleton removal, pass 1 relations with 0 large ideals: 137456 relations with 1 large ideals: 871545 relations with 2 large ideals: 2638586 relations with 3 large ideals: 3621314 relations with 4 large ideals: 1942464 relations with 5 large ideals: 82128 relations with 6 large ideals: 1244 relations with 7+ large ideals: 592111 9886848 relations and about 10243474 large ideals commencing singleton removal, pass 2 found 3672509 singletons current dataset: 6214339 relations and about 5185675 large ideals commencing singleton removal, pass 3 found 1055209 singletons current dataset: 5159130 relations and about 4059385 large ideals commencing singleton removal, pass 4 found 268425 singletons current dataset: 4890705 relations and about 3784822 large ideals commencing singleton removal, final pass memory use: 85.6 MB commencing in-memory singleton removal begin with 4890705 relations and 3998829 unique ideals reduce to 4317250 relations and 3413986 ideals in 15 passes max relations containing the same ideal: 55 reading rational ideals above 720000 reading algebraic ideals above 720000 commencing singleton removal, final pass keeping 3681423 ideals with weight <= 20, new excess is 429104 memory use: 127.8 MB commencing in-memory singleton removal begin with 4318889 relations and 3681423 unique ideals reduce to 4317135 relations and 3669929 ideals in 5 passes max relations containing the same ideal: 20 removing 561927 relations and 487204 ideals in 74723 cliques commencing in-memory singleton removal begin with 3755208 relations and 3669929 unique ideals reduce to 3697378 relations and 3123500 ideals in 8 passes max relations containing the same ideal: 20 removing 423906 relations and 349183 ideals in 74723 cliques commencing in-memory singleton removal begin with 3273472 relations and 3123500 unique ideals reduce to 3236125 relations and 2736235 ideals in 7 passes max relations containing the same ideal: 20 relations with 0 large ideals: 38894 relations with 1 large ideals: 235104 relations with 2 large ideals: 678797 relations with 3 large ideals: 1034849 relations with 4 large ideals: 822119 relations with 5 large ideals: 323075 relations with 6 large ideals: 64340 relations with 7+ large ideals: 38947 commencing 2-way merge reduce to 2013829 relation sets and 1513939 unique ideals commencing full merge memory use: 138.3 MB found 969439 cycles, need 902139 weight of 902139 cycles is about 63203125 (70.06/cycle) distribution of cycle lengths: 1 relations: 102303 2 relations: 96867 3 relations: 98547 4 relations: 92829 5 relations: 85292 6 relations: 77434 7 relations: 67639 8 relations: 58867 9 relations: 51014 10+ relations: 171347 heaviest cycle: 18 relations commencing cycle optimization start with 5307933 relations pruned 150799 relations memory use: 173.8 MB distribution of cycle lengths: 1 relations: 102303 2 relations: 99276 3 relations: 102677 4 relations: 96095 5 relations: 88079 6 relations: 79370 7 relations: 68613 8 relations: 59191 9 relations: 51176 10+ relations: 155359 heaviest cycle: 18 relations elapsed time 00:14:12 justin@riall:~/factoring_projects/11113_176$ ~/ggnfs/msieve -nc2 -nf 11113_176.fb -s 11113_176.dat -v -i 11113_176.ini Msieve v. 1.38 Wed Oct 8 18:53:11 2008 random seeds: 6da1b961 3bdc077b factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing linear algebra read 902139 cycles cycles contain 2879140 unique relations read 2879140 relations using 32 quadratic characters above 134217324 building initial matrix memory use: 356.1 MB read 902139 cycles matrix is 901831 x 902139 (268.9 MB) with weight 86502896 (95.89/col) sparse part has weight 60564938 (67.13/col) filtering completed in 3 passes matrix is 895277 x 895477 (267.8 MB) with weight 86093846 (96.14/col) sparse part has weight 60354117 (67.40/col) read 895477 cycles matrix is 895277 x 895477 (267.8 MB) with weight 86093846 (96.14/col) sparse part has weight 60354117 (67.40/col) saving the first 48 matrix rows for later matrix is 895229 x 895477 (258.7 MB) with weight 67221065 (75.07/col) sparse part has weight 58856479 (65.73/col) matrix includes 64 packed rows using block size 10922 for processor cache size 256 kB commencing Lanczos iteration memory use: 247.2 MB linear algebra completed 894740 of 895477 dimensions (99.9%, ETA 0h 0m) lanczos halted after 14159 iterations (dim = 895225) recovered 50 nontrivial dependencies elapsed time 03:47:21 justin@riall:~/factoring_projects/11113_176$ ~/ggnfs/msieve -nc3 -nf 11113_176.fb -s 11113_176.dat -v -i 11113_176.ini Msieve v. 1.38 Wed Oct 8 23:20:44 2008 random seeds: ddd9cea2 c865422e factoring 1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017 (127 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (127-digit input) R0: -100000000000000000000000000000 R1: 1 A0: 17 A1: 0 A2: 0 A3: 0 A4: 0 A5: 0 A6: 100 size score = 8.015950e-09, Murphy alpha = -1.265032, combined = 1.150603e-08 commencing square root phase reading relations for dependency 1 read 447370 cycles cycles contain 1763729 unique relations read 1763729 relations multiplying 1435668 relations multiply complete, coefficients have about 41.54 million bits initial square root is modulo 919693 reading relations for dependency 2 read 447432 cycles cycles contain 1761594 unique relations read 1761594 relations multiplying 1433372 relations multiply complete, coefficients have about 41.47 million bits initial square root is modulo 899161 prp48 factor: 710124167792898446935804545868140581401807318057 prp79 factor: 2179772311514524087931982060767986518870830842019718570624060123823472397032281 elapsed time 00:26:34 Sieve time: 51.75 hours Filtering: 0.25 hours Block Lanczos: 3.78 hours Square root: 0.5 hours Had to manually restart the filtering/linalg/sqrt, so all I had were the newest run times and the time spent sieving
By Robert Backstrom / GGNFS, Msieve
(8·10186-17)/9 = (8)1857<186> = 122041 · 600760122234227247339021404369<30> · C152
C152 = P46 · P49 · P58
P46 = 3064396278824864704453221938558760266788976239<46>
P49 = 2068999825167536250079312154581792851089121116323<49>
P58 = 1912208492840357290420849493550726386987869589952298531099<58>
Number: n N=12123851911813520689442426339677939520762900296076844725658595042305449072115945719786865839939239072337205062999312826980398145833769450425203032477503 ( 152 digits) SNFS difficulty: 187 digits. Divisors found: Thu Oct 09 10:20:58 2008 prp46 factor: 3064396278824864704453221938558760266788976239 Thu Oct 09 10:20:58 2008 prp49 factor: 2068999825167536250079312154581792851089121116323 Thu Oct 09 10:20:58 2008 prp58 factor: 1912208492840357290420849493550726386987869589952298531099 Thu Oct 09 10:20:58 2008 elapsed time 12:57:42 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 60.70 hours. Scaled time: 79.28 units (timescale=1.306). Factorization parameters were as follows: name: KA_8_185_7 n: 12123851911813520689442426339677939520762900296076844725658595042305449072115945719786865839939239072337205062999312826980398145833769450425203032477503 type: snfs skew: 1.47 deg: 5 c5: 5 c0: -34 m: 20000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 5600001) Primes: RFBsize:602489, AFBsize:602555, largePrimes:14506280 encountered Relations: rels:14387661, finalFF:1299453 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 60.15 hours. Total relation processing time: 0.55 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 60.70 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(89·10173+1)/9 = 9(8)1729<174> = 112 · 401 · 1972031 · C164
C164 = P44 · P59 · P62
P44 = 36508796972420217359188613859528017520402107<44>
P59 = 26223045467053073103521145401907892655457523884058353664729<59>
P62 = 10795017884319115590619497478062896384036042183481493808139013<62>
SNFS difficulty: 174 digits. Divisors found: r1=36508796972420217359188613859528017520402107 r2=26223045467053073103521145401907892655457523884058353664729 r3=10795017884319115590619497478062896384036042183481493808139013 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.927). Factorization parameters were as follows: n: 10334846166644773118947276370372213703596548275653083075970650843413193899166892826813873902967045814628347177312759151240329845214046927329358818292276154861809039 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 89000 c0: 1 skew: 0.103 type: snfs rlim: 9000000 alim: 9000000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1248890 x 1249138 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 40.00 hours.
10175+9 = 1(0)1749<176> = 3851 · 219533 · 85277080211<11> · C156
C156 = P47 · P109
P47 = 16208367959129657766791547475962271323480435637<47>
P109 = 8557660626492680468621533137816698825726336699568343271840514655920348964720598883835279448245250317366446089<109>
SNFS difficulty: 175 digits. Divisors found: r1=16208367959129657766791547475962271323480435637 r2=8557660626492680468621533137816698825726336699568343271840514655920348964720598883835279448245250317366446089 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 138705712303549395821421358642400204296070680855511012025776877011088224302623733204392953440147869792198011279515236944228094761620670597318606436194873693 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 1 c0: 9 skew: 1.55 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1175765 x 1176013 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,54,54,2.6,2.6,100000 total time: 50.00 hours.
By Tyler Cadigan / GGNFS + Msieve 1.38
(25·10195-61)/9 = 2(7)1941<196> = 17 · C195
C195 = P96 · P100
P96 = 119509737931441137246596335232308772579390887315656085068081433412471176766596851200060667993821<96>
P100 = 1367241662802357158967844931268345670438128299143736962843556968202636908577271893194737300367939703<100>
Number: 15557_195 N=163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=119509737931441137246596335232308772579390887315656085068081433412471176766596851200060667993821 r2=1367241662802357158967844931268345670438128299143736962843556968202636908577271893194737300367939703 Version: Total time: 1129.81 hours. Scaled time: 2875.38 units (timescale=2.545). Factorization parameters were as follows: n: 163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163 m: 1000000000000000000000000000000000000000 c5: 25 c0: -61 skew: 1.2 type: snfs Y0: 1000000000000000000000000000000000000000 Y1: -1 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 qintsize: 1000000Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [10000000, 26000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1695139 x 1695356 Total sieving time: 1129.81 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,20000000,20000000,27,27,48,48,2.6,2.6,100000 total time: 1129.81 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(26·10149-53)/9 = 2(8)1483<150> = 7 · 269 · 1531 · 4229 · 70639 · 12856007 · 4742624878308117767<19> · C109
C109 = P35 · P74
P35 = 97788970591581258252270720835373003<35>
P74 = 56261117004221928191795911695451058499504506266353625153621755380206925363<74>
Number: 28883_149 N=5501716716175370397325516787455730544812029811212504821841017486779689125976143858501663582405137361886175089 ( 109 digits) SNFS difficulty: 151 digits. Divisors found: r1=97788970591581258252270720835373003 (pp35) r2=56261117004221928191795911695451058499504506266353625153621755380206925363 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.19 hours. Scaled time: 24.45 units (timescale=1.011). Factorization parameters were as follows: name: 28883_149 n: 5501716716175370397325516787455730544812029811212504821841017486779689125976143858501663582405137361886175089 m: 1000000000000000000000000000000 c5: 13 c0: -265 skew: 1.83 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176698, largePrimes:6417293 encountered Relations: rels:7070190, finalFF:1144358 Max relations in full relation-set: 28 Initial matrix: 353065 x 1144358 with sparse part having weight 107679175. Pruned matrix : 220217 x 222046 with weight 44610337. Total sieving time: 23.50 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.54 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 24.19 hours. --------- CPU info (if available) ----------
(26·10137-53)/9 = 2(8)1363<138> = 7 · 21563 · C133
C133 = P29 · P104
P29 = 41029142321912814750708583949<29>
P104 = 46647801149261483258230864451435677225991269707280561420744207532823419482080864353602554573078146542987<104>
Number: 28883_137 N=1913919272357337561622679648928315625899450042658316089656812190782417559767650200335819220019006690620102483015806764821280426715663 ( 133 digits) SNFS difficulty: 138 digits. Divisors found: r1=41029142321912814750708583949 (pp29) r2=46647801149261483258230864451435677225991269707280561420744207532823419482080864353602554573078146542987 (pp104) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.37 hours. Scaled time: 11.46 units (timescale=1.008). Factorization parameters were as follows: name: 28883_137 n: 1913919272357337561622679648928315625899450042658316089656812190782417559767650200335819220019006690620102483015806764821280426715663 m: 1000000000000000000000000000 c5: 2600 c0: -53 skew: 0.46 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2275001) Primes: RFBsize:78498, AFBsize:64048, largePrimes:1748682 encountered Relations: rels:1827123, finalFF:206065 Max relations in full relation-set: 28 Initial matrix: 142613 x 206065 with sparse part having weight 24284636. Pruned matrix : 129253 x 130030 with weight 14132842. Total sieving time: 11.20 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.37 hours. --------- CPU info (if available) ----------
(26·10145-53)/9 = 2(8)1443<146> = 11239 · 216179 · 5232607 · 2857515761752823077296380205207103<34> · C96
C96 = P43 · P54
P43 = 6321322749840508001653491196321933073104039<43>
P54 = 125798350480661208614497151909486922156386678885355697<54>
Tue Oct 7 22:38:21 2008 Msieve v. 1.38 Tue Oct 7 22:38:21 2008 random seeds: dcc069ef 6a45db20 Tue Oct 7 22:38:21 2008 factoring 795211974785813302750461673722896568366746906042605051709158919773319198321998699917820402360183 (96 digits) Tue Oct 7 22:38:23 2008 searching for 15-digit factors Tue Oct 7 22:38:25 2008 commencing quadratic sieve (96-digit input) Tue Oct 7 22:38:25 2008 using multiplier of 7 Tue Oct 7 22:38:25 2008 using 64kb Pentium 4 sieve core Tue Oct 7 22:38:25 2008 sieve interval: 18 blocks of size 65536 Tue Oct 7 22:38:25 2008 processing polynomials in batches of 6 Tue Oct 7 22:38:25 2008 using a sieve bound of 2298871 (84706 primes) Tue Oct 7 22:38:25 2008 using large prime bound of 344830650 (28 bits) Tue Oct 7 22:38:25 2008 using double large prime bound of 2331795890236200 (43-52 bits) Tue Oct 7 22:38:25 2008 using trial factoring cutoff of 52 bits Tue Oct 7 22:38:25 2008 polynomial 'A' values have 13 factors Wed Oct 8 08:11:12 2008 85140 relations (20193 full + 64947 combined from 1290119 partial), need 84802 Wed Oct 8 08:11:17 2008 begin with 1310312 relations Wed Oct 8 08:11:19 2008 reduce to 225183 relations in 10 passes Wed Oct 8 08:11:19 2008 attempting to read 225183 relations Wed Oct 8 08:11:26 2008 recovered 225183 relations Wed Oct 8 08:11:26 2008 recovered 213287 polynomials Wed Oct 8 08:11:27 2008 attempting to build 85140 cycles Wed Oct 8 08:11:27 2008 found 85140 cycles in 5 passes Wed Oct 8 08:11:27 2008 distribution of cycle lengths: Wed Oct 8 08:11:27 2008 length 1 : 20193 Wed Oct 8 08:11:27 2008 length 2 : 14574 Wed Oct 8 08:11:27 2008 length 3 : 14166 Wed Oct 8 08:11:27 2008 length 4 : 11703 Wed Oct 8 08:11:27 2008 length 5 : 8966 Wed Oct 8 08:11:27 2008 length 6 : 6093 Wed Oct 8 08:11:27 2008 length 7 : 4011 Wed Oct 8 08:11:27 2008 length 9+: 5434 Wed Oct 8 08:11:27 2008 largest cycle: 20 relations Wed Oct 8 08:11:27 2008 matrix is 84706 x 85140 (23.0 MB) with weight 5695354 (66.89/col) Wed Oct 8 08:11:27 2008 sparse part has weight 5695354 (66.89/col) Wed Oct 8 08:11:29 2008 filtering completed in 3 passes Wed Oct 8 08:11:29 2008 matrix is 81132 x 81196 (22.0 MB) with weight 5438057 (66.97/col) Wed Oct 8 08:11:29 2008 sparse part has weight 5438057 (66.97/col) Wed Oct 8 08:11:30 2008 saving the first 48 matrix rows for later Wed Oct 8 08:11:30 2008 matrix is 81084 x 81196 (13.8 MB) with weight 4318391 (53.18/col) Wed Oct 8 08:11:30 2008 sparse part has weight 3130861 (38.56/col) Wed Oct 8 08:11:30 2008 matrix includes 64 packed rows Wed Oct 8 08:11:30 2008 using block size 21845 for processor cache size 512 kB Wed Oct 8 08:11:31 2008 commencing Lanczos iteration Wed Oct 8 08:11:31 2008 memory use: 13.3 MB Wed Oct 8 08:12:42 2008 lanczos halted after 1284 iterations (dim = 81079) Wed Oct 8 08:12:42 2008 recovered 14 nontrivial dependencies Wed Oct 8 08:12:45 2008 prp43 factor: 6321322749840508001653491196321933073104039 Wed Oct 8 08:12:45 2008 prp54 factor: 125798350480661208614497151909486922156386678885355697 Wed Oct 8 08:12:45 2008 elapsed time 09:34:24
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38, Msieve-1.38+polyselect
(26·10155-53)/9 = 2(8)1543<156> = 7 · 23 · 601751861 · C145
C145 = P36 · P109
P36 = 434606430250744155498232965602831581<36>
P109 = 6861062456898643456131174629095768996957912069600254884539207471769541324001009925483131949479653797412862483<109>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1810396645 Step 1 took 18717ms Step 2 took 16371ms ********** Factor found in step 2: 434606430250744155498232965602831581 Found probable prime factor of 36 digits: 434606430250744155498232965602831581 Probable prime cofactor 6861062456898643456131174629095768996957912069600254884539207471769541324001009925483131949479653797412862483 has 109 digits
(26·10161-53)/9 = 2(8)1603<162> = 72 · 499 · 1787 · 69191 · C149
C149 = P73 · P77
P73 = 2820898047146817411392847106167872926575917073080403520030662745443696079<73>
P77 = 33874481999243789182317500712459693487731094537714674684152288464812979533931<77>
N=95556460119776824140681734005614945558557064412858747129162824146979553114842635616632409878886974756421559331683241340660947531973593588107432156549 ( 149 digits) SNFS difficulty: 162 digits. Divisors found: r1=2820898047146817411392847106167872926575917073080403520030662745443696079 r2=33874481999243789182317500712459693487731094537714674684152288464812979533931 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 95556460119776824140681734005614945558557064412858747129162824146979553114842635616632409878886974756421559331683241340660947531973593588107432156549 Y1: 1 Y0: -100000000000000000000000000000000 c5: 260 c0: -53 skew: 0.73 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2250000, 3950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 812374 x 812622 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,54,54,2.5,2.5,100000 total time: 20.00 hours.
(26·10147-53)/9 = 2(8)1463<148> = 3 · 56729549 · C140
C140 = P32 · P51 · P58
P32 = 29588801926945123689788161696051<32>
P51 = 139196806868612644199754015153798471168262938060269<51>
P58 = 4121388922514085391358255144517180551116771872537841893331<58>
SNFS difficulty: 148 digits. Divisors found: r1=29588801926945123689788161696051 r2=139196806868612644199754015153798471168262938060269 r3=4121388922514085391358255144517180551116771872537841893331 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.719). Factorization parameters were as follows: n: 16974627507843627717945773955702749601675186294235530815923866466186131022528717141096308785443772221121711419968506412116249381128747611989 Y1: 1 Y0: -100000000000000000000000000000 c5: 2600 c0: -53 skew: 0.46 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [750000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 291409 x 291640 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 11.00 hours.
9·10173-1 = 8(9)173<174> = 1289 · 1997 · 34668071675443361<17> · C152
C152 = P64 · P88
P64 = 3806940299291622726460350337947914704889277467532053374128676991<64>
P88 = 2649145276309295977725794028033536754856664922424512618104600287851523960480215455939453<88>
SNFS difficulty: 173 digits. Divisors found: r1=3806940299291622726460350337947914704889277467532053374128676991 r2=2649145276309295977725794028033536754856664922424512618104600287851523960480215455939453 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 10085137911059899814189806692481744412911545555803075485333634280013678423569068540994799208916444935039759847996393359202808120784082348266403890225923 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 9000 c0: -1 skew: 0.16 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1301900 x 1302148 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 20.00 hours.
(26·10159-53)/9 = 2(8)1583<160> = 33 · 29 · 287107 · 23759322402380015305157<23> · 10313704067523250659900937829730796309<38> · C92
C92 = P44 · P49
P44 = 11921264837382755488951323168235476632314123<44>
P49 = 4399002839960155168477804483921875138150723586357<49>
Number: 28883_159 N=52441677875563878773945469819992980394894802790218697762200342387440721101475627254741219911 ( 92 digits) Divisors found: r1=11921264837382755488951323168235476632314123 r2=4399002839960155168477804483921875138150723586357 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.943). Factorization parameters were as follows: name: 28883_159 n: 52441677875563878773945469819992980394894802790218697762200342387440721101475627254741219911 Y1: 1 Y0: -1064529985727826489681 deg: 4 c4: 40836168 c3: 202395460292 c2: 37363335780110865 c1: -807240905915521234 c0: -18833047913277457717700 skew: 1635.250 type: gnfs # adj. I(F,S) = 52.156 # E(F1,F2) = 1.052910e-04 # GGNFS version 0.77.1-20060722-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1223408207. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 790001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 122147 x 122395 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 1.00 hours.
(26·10170-53)/9 = 2(8)1693<171> = 7229 · C167
C167 = P83 · P85
P83 = 24035351007699908057581878367616649511683898296781394921019100136189478983771471809<83>
P85 = 1662655008492786764992070871336132080310708411773454004559517256637120059624426981103<85>
SNFS difficulty: 171 digits. Divisors found: r1=24035351007699908057581878367616649511683898296781394921019100136189478983771471809 r2=1662655008492786764992070871336132080310708411773454004559517256637120059624426981103 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.738). Factorization parameters were as follows: n: 39962496733834401561611410829836614869122823196692334885722629532285086303622754030832603249258388281766342355635480549023224358678778377215228785293801201948940225327 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 26 c0: -53 skew: 1.15 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 6200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1134038 x 1134286 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
By Robert Backstrom / GGNFS, Msieve
(26·10142-53)/9 = 2(8)1413<143> = 53089 · 340047641 · 991880503657452655844894459<27> · C103
C103 = P42 · P62
P42 = 132486450373648223508514208908735758773123<42>
P62 = 12177431881605206398029290707267400696763668300063466828015931<62>
Number: n N=1613344724660769886649916619810211394771546044497351298684758158261984306026169867062528357836858622513 ( 103 digits) SNFS difficulty: 143 digits. Divisors found: Wed Oct 08 09:00:44 2008 prp42 factor: 132486450373648223508514208908735758773123 Wed Oct 08 09:00:44 2008 prp62 factor: 12177431881605206398029290707267400696763668300063466828015931 Wed Oct 08 09:00:44 2008 elapsed time 00:26:15 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.07 hours. Scaled time: 11.10 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_8_141_3 n: 1613344724660769886649916619810211394771546044497351298684758158261984306026169867062528357836858622513 type: snfs skew: 0.46 deg: 5 c5: 2600 c0: -53 m: 10000000000000000000000000000 rlim: 1300000 alim: 1300000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 1180001) Primes: RFBsize:100021, AFBsize:100068, largePrimes:9478504 encountered Relations: rels:8279703, finalFF:207932 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 5.87 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,28,28,52,52,2.5,2.5,100000 total time: 6.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(22·10182+41)/9 = 2(4)1819<183> = 3 · C182
C182 = P68 · P115
P68 = 11131817333645608134880826432818812343782233091922887565788360266449<68>
P115 = 7319692646698933068447008380320554226838232071464676446580397185871101360352917608275605713660449939915296564240667<115>
Number: n N=81481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481483 ( 182 digits) SNFS difficulty: 183 digits. Divisors found: Wed Oct 08 01:16:41 2008 prp68 factor: 11131817333645608134880826432818812343782233091922887565788360266449 Wed Oct 08 01:16:41 2008 prp115 factor: 7319692646698933068447008380320554226838232071464676446580397185871101360352917608275605713660449939915296564240667 Wed Oct 08 01:16:42 2008 elapsed time 06:28:41 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 54.73 hours. Scaled time: 111.92 units (timescale=2.045). Factorization parameters were as follows: name: KA_2_4_181_9 n: 81481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481483 type: snfs skew: 0.45 deg: 5 c5: 2200 c0: 41 m: 1000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 4500001) Primes: RFBsize:571119, AFBsize:570514, largePrimes:14085472 encountered Relations: rels:13769297, finalFF:1174408 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 54.36 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,52,52,2.5,2.5,100000 total time: 54.73 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(26·10158-53)/9 = 2(8)1573<159> = 130811 · 973426505769073<15> · 34425015087386547163<20> · 3241490273279072043571<22> · C98
C98 = P41 · P58
P41 = 12344721383578441602570691129719532666583<41>
P58 = 1646960755389981787462956664892649361997386854346581393679<58>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 20331271654977211294393339555490793753127508716336082890964068276470475952992887907854903370728857 (98 digits) Using B1=2008000, B2=2853999340, polynomial Dickson(6), sigma=809588647 Step 1 took 14062ms ********** Factor found in step 1: 12344721383578441602570691129719532666583 Found probable prime factor of 41 digits: 12344721383578441602570691129719532666583 Probable prime cofactor 1646960755389981787462956664892649361997386854346581393679 has 58 digits
(26·10121-53)/9 = 2(8)1203<122> = 19 · 173 · 991 · 67489 · C111
C111 = P43 · P68
P43 = 2007712048273207184446462298497217117810023<43>
P68 = 65452021084529422210274885461837884035260977024336997039822115743117<68>
Number: n N=131408811315241709778882446115455544690473727820806141910612876582430405380071525155184407438686776994275861691 ( 111 digits) SNFS difficulty: 122 digits. Divisors found: r1=2007712048273207184446462298497217117810023 (pp43) r2=65452021084529422210274885461837884035260977024336997039822115743117 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.61 hours. Scaled time: 2.94 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_8_120_3 n: 131408811315241709778882446115455544690473727820806141910612876582430405380071525155184407438686776994275861691 type: snfs skew: 0.73 deg: 5 c5: 260 c0: -53 m: 1000000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [100000, 320001) Primes: RFBsize:41538, AFBsize:41737, largePrimes:4668741 encountered Relations: rels:4058830, finalFF:149942 Max relations in full relation-set: 48 Initial matrix: 83342 x 149942 with sparse part having weight 20829512. Pruned matrix : 73830 x 74310 with weight 6580037. Total sieving time: 1.46 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.03 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,500000,500000,28,28,52,52,2.5,2.5,50000 total time: 1.61 hours. --------- CPU info (if available) ----------
(26·10128-53)/9 = 2(8)1273<129> = 3259 · 6329 · 10861 · 29861809811904979<17> · C101
C101 = P46 · P56
P46 = 2131370352579613462233814865258221222956640337<46>
P56 = 20261263429298435688151884603702447939050574911133385351<56>
Number: n N=43184256179012235031192687636333472190588881801215689091140993405776276872330744228362505736131503287 ( 101 digits) SNFS difficulty: 129 digits. Divisors found: Wed Oct 08 00:36:52 2008 prp46 factor: 2131370352579613462233814865258221222956640337 Wed Oct 08 00:36:52 2008 prp56 factor: 20261263429298435688151884603702447939050574911133385351 Wed Oct 08 00:36:52 2008 elapsed time 00:10:12 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.31 hours. Scaled time: 4.22 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_8_127_3 n: 43184256179012235031192687636333472190588881801215689091140993405776276872330744228362505736131503287 type: snfs skew: 0.58 deg: 5 c5: 1625 c0: -106 m: 20000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 440001) Primes: RFBsize:63951, AFBsize:64263, largePrimes:5797517 encountered Relations: rels:4914384, finalFF:132843 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 2.22 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,28,28,52,52,2.5,2.5,50000 total time: 2.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / Msieve, GGNFS
(26·10101-53)/9 = 2(8)1003<102> = 7 · 2054853599791<13> · C89
C89 = P36 · P54
P36 = 121426997166013585257945094641811871<36>
P54 = 165400438930491170714093139841463045980448069972087429<54>
ue Oct 7 11:47:53 2008 Msieve v. 1.38 Tue Oct 7 11:47:53 2008 random seeds: 1d892829 4d448959 Tue Oct 7 11:47:53 2008 factoring 20084078629270154464915312484066295599082921065544328970184837510862039456747676582069659 (89 digits) Tue Oct 7 11:47:55 2008 searching for 15-digit factors Tue Oct 7 11:47:56 2008 commencing quadratic sieve (89-digit input) Tue Oct 7 11:47:57 2008 using multiplier of 19 Tue Oct 7 11:47:57 2008 using 64kb Pentium 4 sieve core Tue Oct 7 11:47:57 2008 sieve interval: 15 blocks of size 65536 Tue Oct 7 11:47:57 2008 processing polynomials in batches of 7 Tue Oct 7 11:47:57 2008 using a sieve bound of 1538939 (58667 primes) Tue Oct 7 11:47:57 2008 using large prime bound of 123115120 (26 bits) Tue Oct 7 11:47:57 2008 using double large prime bound of 365224943163840 (42-49 bits) Tue Oct 7 11:47:57 2008 using trial factoring cutoff of 49 bits Tue Oct 7 11:47:57 2008 polynomial 'A' values have 11 factors Tue Oct 7 13:17:05 2008 59144 relations (16771 full + 42373 combined from 612311 partial), need 58763 Tue Oct 7 13:17:07 2008 begin with 629082 relations Tue Oct 7 13:17:08 2008 reduce to 140845 relations in 10 passes Tue Oct 7 13:17:08 2008 attempting to read 140845 relations Tue Oct 7 13:17:12 2008 recovered 140845 relations Tue Oct 7 13:17:12 2008 recovered 115844 polynomials Tue Oct 7 13:17:12 2008 attempting to build 59144 cycles Tue Oct 7 13:17:12 2008 found 59144 cycles in 5 passes Tue Oct 7 13:17:12 2008 distribution of cycle lengths: Tue Oct 7 13:17:12 2008 length 1 : 16771 Tue Oct 7 13:17:12 2008 length 2 : 11626 Tue Oct 7 13:17:12 2008 length 3 : 10380 Tue Oct 7 13:17:12 2008 length 4 : 7739 Tue Oct 7 13:17:12 2008 length 5 : 5283 Tue Oct 7 13:17:12 2008 length 6 : 3224 Tue Oct 7 13:17:12 2008 length 7 : 1938 Tue Oct 7 13:17:12 2008 length 9+: 2183 Tue Oct 7 13:17:12 2008 largest cycle: 18 relations Tue Oct 7 13:17:12 2008 matrix is 58667 x 59144 (14.3 MB) with weight 3505818 (59.28/col) Tue Oct 7 13:17:12 2008 sparse part has weight 3505818 (59.28/col) Tue Oct 7 13:17:13 2008 filtering completed in 3 passes Tue Oct 7 13:17:13 2008 matrix is 54053 x 54117 (13.1 MB) with weight 3220858 (59.52/col) Tue Oct 7 13:17:13 2008 sparse part has weight 3220858 (59.52/col) Tue Oct 7 13:17:14 2008 saving the first 48 matrix rows for later Tue Oct 7 13:17:14 2008 matrix is 54005 x 54117 (9.9 MB) with weight 2692096 (49.75/col) Tue Oct 7 13:17:14 2008 sparse part has weight 2262300 (41.80/col) Tue Oct 7 13:17:14 2008 matrix includes 64 packed rows Tue Oct 7 13:17:14 2008 using block size 21646 for processor cache size 512 kB Tue Oct 7 13:17:15 2008 commencing Lanczos iteration Tue Oct 7 13:17:15 2008 memory use: 8.8 MB Tue Oct 7 13:17:48 2008 lanczos halted after 856 iterations (dim = 54005) Tue Oct 7 13:17:48 2008 recovered 18 nontrivial dependencies Tue Oct 7 13:17:49 2008 prp36 factor: 121426997166013585257945094641811871 Tue Oct 7 13:17:49 2008 prp54 factor: 165400438930491170714093139841463045980448069972087429 Tue Oct 7 13:17:49 2008 elapsed time 01:29:56
(26·10127-53)/9 = 2(8)1263<128> = 71 · 223 · 1131379 · C118
C118 = P59 · P60
P59 = 15345026787558290531448963866298651876102210421274475955901<59>
P60 = 105097373460091410047218511082896636270831228339123800626269<60>
Number: 28883_127 N=1612722011047120431126093651159581582679062156542549515978111750383441311031911185410142095485998023922924326226163369 ( 118 digits) SNFS difficulty: 128 digits. Divisors found: r1=15345026787558290531448963866298651876102210421274475955901 (pp59) r2=105097373460091410047218511082896636270831228339123800626269 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.61 hours. Scaled time: 3.60 units (timescale=0.780). Factorization parameters were as follows: name: 28883_127 n: 1612722011047120431126093651159581582679062156542549515978111750383441311031911185410142095485998023922924326226163369 m: 10000000000000000000000000 c5: 2600 c0: -53 skew: 0.46 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64048, largePrimes:1503692 encountered Relations: rels:1505752, finalFF:174921 Max relations in full relation-set: 28 Initial matrix: 128066 x 174921 with sparse part having weight 12955403. Pruned matrix : 114003 x 114707 with weight 6745759. Total sieving time: 4.47 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.61 hours. --------- CPU info (if available) ----------
(26·10104-53)/9 = 2(8)1033<105> = 61 · 1123 · 1470236641<10> · C91
C91 = P40 · P51
P40 = 6918276745362442304529579011355599487433<40>
P51 = 414606469566875297250530265767866835398335555183037<51>
Tue Oct 7 13:26:14 2008 Msieve v. 1.38 Tue Oct 7 13:26:14 2008 random seeds: a8c52f61 feb94d20 Tue Oct 7 13:26:14 2008 factoring 2868362296881334515585997025651531016682339074705062742924681119186664562240834443696274021 (91 digits) Tue Oct 7 13:26:16 2008 searching for 15-digit factors Tue Oct 7 13:26:17 2008 commencing quadratic sieve (91-digit input) Tue Oct 7 13:26:18 2008 using multiplier of 1 Tue Oct 7 13:26:18 2008 using 64kb Pentium 4 sieve core Tue Oct 7 13:26:18 2008 sieve interval: 18 blocks of size 65536 Tue Oct 7 13:26:18 2008 processing polynomials in batches of 6 Tue Oct 7 13:26:18 2008 using a sieve bound of 1685869 (63499 primes) Tue Oct 7 13:26:18 2008 using large prime bound of 155099948 (27 bits) Tue Oct 7 13:26:18 2008 using double large prime bound of 553478662336492 (42-49 bits) Tue Oct 7 13:26:18 2008 using trial factoring cutoff of 49 bits Tue Oct 7 13:26:18 2008 polynomial 'A' values have 12 factors Tue Oct 7 15:42:48 2008 63914 relations (16908 full + 47006 combined from 723821 partial), need 63595 Tue Oct 7 15:42:50 2008 begin with 740729 relations Tue Oct 7 15:42:51 2008 reduce to 156965 relations in 10 passes Tue Oct 7 15:42:51 2008 attempting to read 156965 relations Tue Oct 7 15:42:55 2008 recovered 156965 relations Tue Oct 7 15:42:55 2008 recovered 133565 polynomials Tue Oct 7 15:42:55 2008 attempting to build 63914 cycles Tue Oct 7 15:42:55 2008 found 63914 cycles in 6 passes Tue Oct 7 15:42:55 2008 distribution of cycle lengths: Tue Oct 7 15:42:55 2008 length 1 : 16908 Tue Oct 7 15:42:55 2008 length 2 : 12442 Tue Oct 7 15:42:55 2008 length 3 : 11234 Tue Oct 7 15:42:55 2008 length 4 : 8455 Tue Oct 7 15:42:55 2008 length 5 : 5982 Tue Oct 7 15:42:55 2008 length 6 : 3880 Tue Oct 7 15:42:55 2008 length 7 : 2258 Tue Oct 7 15:42:55 2008 length 9+: 2755 Tue Oct 7 15:42:55 2008 largest cycle: 19 relations Tue Oct 7 15:42:56 2008 matrix is 63499 x 63914 (15.5 MB) with weight 3794539 (59.37/col) Tue Oct 7 15:42:56 2008 sparse part has weight 3794539 (59.37/col) Tue Oct 7 15:42:57 2008 filtering completed in 3 passes Tue Oct 7 15:42:57 2008 matrix is 59321 x 59385 (14.4 MB) with weight 3538343 (59.58/col) Tue Oct 7 15:42:57 2008 sparse part has weight 3538343 (59.58/col) Tue Oct 7 15:42:57 2008 saving the first 48 matrix rows for later Tue Oct 7 15:42:57 2008 matrix is 59273 x 59385 (9.0 MB) with weight 2762056 (46.51/col) Tue Oct 7 15:42:57 2008 sparse part has weight 2003226 (33.73/col) Tue Oct 7 15:42:57 2008 matrix includes 64 packed rows Tue Oct 7 15:42:57 2008 using block size 21845 for processor cache size 512 kB Tue Oct 7 15:42:58 2008 commencing Lanczos iteration Tue Oct 7 15:42:58 2008 memory use: 8.9 MB Tue Oct 7 15:43:33 2008 lanczos halted after 939 iterations (dim = 59273) Tue Oct 7 15:43:34 2008 recovered 17 nontrivial dependencies Tue Oct 7 15:43:35 2008 prp40 factor: 6918276745362442304529579011355599487433 Tue Oct 7 15:43:35 2008 prp51 factor: 414606469566875297250530265767866835398335555183037 Tue Oct 7 15:43:35 2008 elapsed time 02:17:21
(26·10122-53)/9 = 2(8)1213<123> = 1396273 · C117
C117 = P32 · P86
P32 = 19402957166974971366426216788597<32>
P86 = 10663323221080904571958089552579308973412592003811372507188170021888642482959500866743<86>
Number: 28883_122 N=206900003716242374441738033241986981692612325017305991656996080916044991838192738016769563608899469436771239498929571 ( 117 digits) SNFS difficulty: 123 digits. Divisors found: r1=19402957166974971366426216788597 (pp32) r2=10663323221080904571958089552579308973412592003811372507188170021888642482959500866743 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.76 hours. Scaled time: 2.12 units (timescale=0.768). Factorization parameters were as follows: name: 28883_122 n: 206900003716242374441738033241986981692612325017305991656996080916044991838192738016769563608899469436771239498929571 m: 1000000000000000000000000 c5: 2600 c0: -53 skew: 0.46 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64048, largePrimes:2190048 encountered Relations: rels:2274759, finalFF:199026 Max relations in full relation-set: 28 Initial matrix: 113213 x 199026 with sparse part having weight 19677855. Pruned matrix : 97348 x 97978 with weight 6954336. Total sieving time: 2.63 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.76 hours. --------- CPU info (if available) ----------
(26·10106-53)/9 = 2(8)1053<107> = 5198788583502427<16> · C91
C91 = P39 · P53
P39 = 335500273381690253463142691283043816681<39>
P53 = 16562878025476215601525675460299270300212300146053409<53>
Tue Oct 7 15:52:28 2008 Msieve v. 1.38 Tue Oct 7 15:52:28 2008 random seeds: 16d200f0 5ed508d6 Tue Oct 7 15:52:28 2008 factoring 5556850105534860400941856415980529361598976848281810529616069149916703991904509622631115529 (91 digits) Tue Oct 7 15:52:30 2008 searching for 15-digit factors Tue Oct 7 15:52:31 2008 commencing quadratic sieve (91-digit input) Tue Oct 7 15:52:31 2008 using multiplier of 1 Tue Oct 7 15:52:31 2008 using 64kb Pentium 4 sieve core Tue Oct 7 15:52:31 2008 sieve interval: 18 blocks of size 65536 Tue Oct 7 15:52:31 2008 processing polynomials in batches of 6 Tue Oct 7 15:52:31 2008 using a sieve bound of 1718107 (64706 primes) Tue Oct 7 15:52:31 2008 using large prime bound of 164938272 (27 bits) Tue Oct 7 15:52:31 2008 using double large prime bound of 618270452838912 (42-50 bits) Tue Oct 7 15:52:31 2008 using trial factoring cutoff of 50 bits Tue Oct 7 15:52:31 2008 polynomial 'A' values have 12 factors Tue Oct 7 18:39:51 2008 65214 relations (16974 full + 48240 combined from 766306 partial), need 64802 Tue Oct 7 18:39:54 2008 begin with 783280 relations Tue Oct 7 18:39:55 2008 reduce to 162786 relations in 10 passes Tue Oct 7 18:39:55 2008 attempting to read 162786 relations Tue Oct 7 18:39:59 2008 recovered 162786 relations Tue Oct 7 18:39:59 2008 recovered 142392 polynomials Tue Oct 7 18:39:59 2008 attempting to build 65214 cycles Tue Oct 7 18:39:59 2008 found 65213 cycles in 5 passes Tue Oct 7 18:39:59 2008 distribution of cycle lengths: Tue Oct 7 18:39:59 2008 length 1 : 16974 Tue Oct 7 18:39:59 2008 length 2 : 12127 Tue Oct 7 18:39:59 2008 length 3 : 11248 Tue Oct 7 18:39:59 2008 length 4 : 8709 Tue Oct 7 18:39:59 2008 length 5 : 6255 Tue Oct 7 18:39:59 2008 length 6 : 4176 Tue Oct 7 18:39:59 2008 length 7 : 2520 Tue Oct 7 18:39:59 2008 length 9+: 3204 Tue Oct 7 18:39:59 2008 largest cycle: 17 relations Tue Oct 7 18:40:00 2008 matrix is 64706 x 65213 (16.0 MB) with weight 3920348 (60.12/col) Tue Oct 7 18:40:00 2008 sparse part has weight 3920348 (60.12/col) Tue Oct 7 18:40:01 2008 filtering completed in 3 passes Tue Oct 7 18:40:01 2008 matrix is 60922 x 60986 (14.9 MB) with weight 3666150 (60.11/col) Tue Oct 7 18:40:01 2008 sparse part has weight 3666150 (60.11/col) Tue Oct 7 18:40:01 2008 saving the first 48 matrix rows for later Tue Oct 7 18:40:02 2008 matrix is 60874 x 60986 (9.2 MB) with weight 2856674 (46.84/col) Tue Oct 7 18:40:02 2008 sparse part has weight 2041678 (33.48/col) Tue Oct 7 18:40:02 2008 matrix includes 64 packed rows Tue Oct 7 18:40:02 2008 using block size 21845 for processor cache size 512 kB Tue Oct 7 18:40:02 2008 commencing Lanczos iteration Tue Oct 7 18:40:02 2008 memory use: 9.1 MB Tue Oct 7 18:40:39 2008 lanczos halted after 963 iterations (dim = 60870) Tue Oct 7 18:40:39 2008 recovered 15 nontrivial dependencies Tue Oct 7 18:40:40 2008 prp39 factor: 335500273381690253463142691283043816681 Tue Oct 7 18:40:40 2008 prp53 factor: 16562878025476215601525675460299270300212300146053409 Tue Oct 7 18:40:40 2008 elapsed time 02:48:12
(26·10126-53)/9 = 2(8)1253<127> = 3 · 1447 · 28935371 · C116
C116 = P39 · P78
P39 = 165228653254615932145236476570314596911<39>
P78 = 139195961274715951475738988525401637958819321233452897120611300841286875640923<78>
Number: 28883_126 N=22999161219902989050763756242254328115413953432130767044127223526570030118688305537411634697583777575015585520988853 ( 116 digits) SNFS difficulty: 127 digits. Divisors found: r1=165228653254615932145236476570314596911 (pp39) r2=139195961274715951475738988525401637958819321233452897120611300841286875640923 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.67 hours. Scaled time: 3.57 units (timescale=0.765). Factorization parameters were as follows: name: 28883_126 n: 22999161219902989050763756242254328115413953432130767044127223526570030118688305537411634697583777575015585520988853 m: 10000000000000000000000000 c5: 260 c0: -53 skew: 0.73 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:49098, AFBsize:64238, largePrimes:2372758 encountered Relations: rels:2620192, finalFF:260114 Max relations in full relation-set: 28 Initial matrix: 113403 x 260114 with sparse part having weight 29757285. Pruned matrix : 95261 x 95892 with weight 9517273. Total sieving time: 4.50 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.67 hours. --------- CPU info (if available) ----------
(26·10143-53)/9 = 2(8)1423<144> = 7 · 283 · 577 · 639430311176401939<18> · C120
C120 = P47 · P73
P47 = 72608421793173348599781043468017773823555749411<47>
P73 = 5443651740505919077345587202768020121504697287012529543072932930028188871<73>
Number: 28883_143 N=395254961669796004987946127703194385910388393704209881767151146015249881172862281036767220131736918647909394011455004981 ( 120 digits) SNFS difficulty: 144 digits. Divisors found: r1=72608421793173348599781043468017773823555749411 (pp47) r2=5443651740505919077345587202768020121504697287012529543072932930028188871 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.55 hours. Scaled time: 17.69 units (timescale=1.008). Factorization parameters were as follows: name: 28883_143 n: 395254961669796004987946127703194385910388393704209881767151146015249881172862281036767220131736918647909394011455004981 m: 20000000000000000000000000000 c5: 1625 c0: -106 skew: 0.58 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3150001) Primes: RFBsize:100021, AFBsize:100028, largePrimes:3026076 encountered Relations: rels:3108906, finalFF:263940 Max relations in full relation-set: 28 Initial matrix: 200115 x 263940 with sparse part having weight 33430537. Pruned matrix : 184887 x 185951 with weight 22544896. Total sieving time: 17.21 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.24 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.55 hours. --------- CPU info (if available) ----------
(26·10133-53)/9 = 2(8)1323<134> = 232 · 97 · 135571 · 2876131 · 109545440891568721810547809<27> · C92
C92 = P34 · P58
P34 = 5002428365042696296439157033787319<34>
P58 = 2634831116987297229287109977599312699036948502466768118621<58>
Tue Oct 7 18:56:25 2008 Msieve v. 1.38 Tue Oct 7 18:56:25 2008 random seeds: 83ca2303 33019c16 Tue Oct 7 18:56:25 2008 factoring 13180553916714386534909752569425608716853442786350982542867254483031175653902223819877567099 (92 digits) Tue Oct 7 18:56:26 2008 searching for 15-digit factors Tue Oct 7 18:56:28 2008 commencing quadratic sieve (92-digit input) Tue Oct 7 18:56:28 2008 using multiplier of 11 Tue Oct 7 18:56:28 2008 using 64kb Pentium 4 sieve core Tue Oct 7 18:56:28 2008 sieve interval: 18 blocks of size 65536 Tue Oct 7 18:56:28 2008 processing polynomials in batches of 6 Tue Oct 7 18:56:28 2008 using a sieve bound of 1753553 (65561 primes) Tue Oct 7 18:56:28 2008 using large prime bound of 177108853 (27 bits) Tue Oct 7 18:56:28 2008 using double large prime bound of 702801048059511 (42-50 bits) Tue Oct 7 18:56:28 2008 using trial factoring cutoff of 50 bits Tue Oct 7 18:56:28 2008 polynomial 'A' values have 12 factors Tue Oct 7 22:29:52 2008 65765 relations (16425 full + 49340 combined from 804803 partial), need 65657 Tue Oct 7 22:29:55 2008 begin with 821228 relations Tue Oct 7 22:29:56 2008 reduce to 167642 relations in 10 passes Tue Oct 7 22:29:56 2008 attempting to read 167642 relations Tue Oct 7 22:30:01 2008 recovered 167642 relations Tue Oct 7 22:30:01 2008 recovered 150130 polynomials Tue Oct 7 22:30:01 2008 attempting to build 65765 cycles Tue Oct 7 22:30:01 2008 found 65765 cycles in 6 passes Tue Oct 7 22:30:01 2008 distribution of cycle lengths: Tue Oct 7 22:30:01 2008 length 1 : 16425 Tue Oct 7 22:30:01 2008 length 2 : 11908 Tue Oct 7 22:30:01 2008 length 3 : 11132 Tue Oct 7 22:30:01 2008 length 4 : 9002 Tue Oct 7 22:30:01 2008 length 5 : 6712 Tue Oct 7 22:30:01 2008 length 6 : 4291 Tue Oct 7 22:30:01 2008 length 7 : 2786 Tue Oct 7 22:30:01 2008 length 9+: 3509 Tue Oct 7 22:30:01 2008 largest cycle: 20 relations Tue Oct 7 22:30:01 2008 matrix is 65561 x 65765 (16.2 MB) with weight 3995981 (60.76/col) Tue Oct 7 22:30:01 2008 sparse part has weight 3995981 (60.76/col) Tue Oct 7 22:30:02 2008 filtering completed in 3 passes Tue Oct 7 22:30:02 2008 matrix is 62136 x 62200 (15.5 MB) with weight 3802683 (61.14/col) Tue Oct 7 22:30:02 2008 sparse part has weight 3802683 (61.14/col) Tue Oct 7 22:30:03 2008 saving the first 48 matrix rows for later Tue Oct 7 22:30:03 2008 matrix is 62088 x 62200 (9.0 MB) with weight 2903630 (46.68/col) Tue Oct 7 22:30:03 2008 sparse part has weight 1995181 (32.08/col) Tue Oct 7 22:30:03 2008 matrix includes 64 packed rows Tue Oct 7 22:30:03 2008 using block size 21845 for processor cache size 512 kB Tue Oct 7 22:30:04 2008 commencing Lanczos iteration Tue Oct 7 22:30:04 2008 memory use: 9.2 MB Tue Oct 7 22:30:42 2008 lanczos halted after 983 iterations (dim = 62086) Tue Oct 7 22:30:42 2008 recovered 17 nontrivial dependencies Tue Oct 7 22:30:43 2008 prp34 factor: 5002428365042696296439157033787319 Tue Oct 7 22:30:43 2008 prp58 factor: 2634831116987297229287109977599312699036948502466768118621 Tue Oct 7 22:30:43 2008 elapsed time 03:34:18
(26·10123-53)/9 = 2(8)1223<124> = 32 · 31 · 479 · 88657 · 10411764445779331<17> · C98
C98 = P49 · P49
P49 = 4577386029919616907920358735921111593023502164133<49>
P49 = 5116066918556820603101831088148502094912304324933<49>
Number: 28883_123 N=23418213241135893111654536836037973463107834917996575496935072255016382759107548568754821130228089 ( 98 digits) SNFS difficulty: 124 digits. Divisors found: r1=4577386029919616907920358735921111593023502164133 (pp49) r2=5116066918556820603101831088148502094912304324933 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.74 hours. Scaled time: 2.09 units (timescale=0.762). Factorization parameters were as follows: name: 28883_123 n: 23418213241135893111654536836037973463107834917996575496935072255016382759107548568754821130228089 m: 2000000000000000000000000 c5: 1625 c0: -106 skew: 0.58 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64263, largePrimes:2115498 encountered Relations: rels:2111676, finalFF:135551 Max relations in full relation-set: 28 Initial matrix: 113427 x 135551 with sparse part having weight 12279235. Pruned matrix : 108186 x 108817 with weight 8199310. Total sieving time: 2.59 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.74 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1; Msieve-1.38, Msieve v. 1.36
(26·10105-53)/9 = 2(8)1043<106> = 34 · 109 · 199 · C100
C100 = P30 · P34 · P37
P30 = 849624280316155038972453763277<30>
P34 = 1577350554019897265169205252353313<34>
P37 = 1226905483766051707687131862935370973<37>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2391236779 Step 1 took 3248ms Step 2 took 3033ms ********** Factor found in step 2: 849624280316155038972453763277 Found probable prime factor of 30 digits: 849624280316155038972453763277 Mon Oct 6 19:24:09 2008 Msieve v. 1.36 Mon Oct 6 19:24:09 2008 random seeds: 06327895 4682e542 Mon Oct 6 19:24:09 2008 factoring 1935260044548431731260988683498011215653904307146361370089234920583549 (70 digits) Mon Oct 6 19:24:10 2008 no P-1/P+1/ECM available, skipping Mon Oct 6 19:24:10 2008 commencing quadratic sieve (70-digit input) Mon Oct 6 19:24:10 2008 using multiplier of 5 Mon Oct 6 19:24:10 2008 using 64kb Opteron sieve core Mon Oct 6 19:24:10 2008 sieve interval: 6 blocks of size 65536 Mon Oct 6 19:24:10 2008 processing polynomials in batches of 17 Mon Oct 6 19:24:10 2008 using a sieve bound of 215143 (9551 primes) Mon Oct 6 19:24:10 2008 using large prime bound of 20438585 (24 bits) Mon Oct 6 19:24:10 2008 using trial factoring cutoff of 24 bits Mon Oct 6 19:24:10 2008 polynomial 'A' values have 9 factors Mon Oct 6 19:25:37 2008 10205 relations (4704 full + 5501 combined from 55773 partial), need 9647 Mon Oct 6 19:25:37 2008 begin with 60477 relations Mon Oct 6 19:25:37 2008 reduce to 14980 relations in 2 passes Mon Oct 6 19:25:37 2008 attempting to read 14980 relations Mon Oct 6 19:25:37 2008 recovered 14980 relations Mon Oct 6 19:25:38 2008 recovered 12682 polynomials Mon Oct 6 19:25:38 2008 attempting to build 10205 cycles Mon Oct 6 19:25:38 2008 found 10205 cycles in 1 passes Mon Oct 6 19:25:38 2008 distribution of cycle lengths: Mon Oct 6 19:25:38 2008 length 1 : 4704 Mon Oct 6 19:25:38 2008 length 2 : 5501 Mon Oct 6 19:25:38 2008 largest cycle: 2 relations Mon Oct 6 19:25:38 2008 matrix is 9551 x 10205 (1.4 MB) with weight 297849 (29.19/col) Mon Oct 6 19:25:38 2008 sparse part has weight 297849 (29.19/col) Mon Oct 6 19:25:38 2008 filtering completed in 4 passes Mon Oct 6 19:25:38 2008 matrix is 8767 x 8831 (1.2 MB) with weight 249813 (28.29/col) Mon Oct 6 19:25:38 2008 sparse part has weight 249813 (28.29/col) Mon Oct 6 19:25:38 2008 commencing Lanczos iteration Mon Oct 6 19:25:38 2008 memory use: 1.6 MB Mon Oct 6 19:25:39 2008 lanczos halted after 140 iterations (dim = 8762) Mon Oct 6 19:25:39 2008 recovered 63 nontrivial dependencies Mon Oct 6 19:25:40 2008 prp34 factor: 1577350554019897265169205252353313 Mon Oct 6 19:25:40 2008 prp37 factor: 1226905483766051707687131862935370973 Mon Oct 6 19:25:40 2008 elapsed time 00:01:31
(26·10125-53)/9 = 2(8)1243<126> = 7 · 6310145134591339<16> · C109
C109 = P37 · P72
P37 = 7155330995836183377322672101607069373<37>
P72 = 914036885595968065221316256368672623704512840186938586508794752515903627<72>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1904982041 Step 1 took 3273ms Step 2 took 3168ms ********** Factor found in step 2: 7155330995836183377322672101607069373 Found probable prime factor of 37 digits: 7155330995836183377322672101607069373 Probable prime cofactor 914036885595968065221316256368672623704512840186938586508794752515903627 has 72 digits
(26·10197-53)/9 = 2(8)1963<198> = 7 · 71 · 5827 · 33931 · 11178789730567<14> · 160474133236419241<18> · 56306547250849852600833678809<29> · C128
C128 = P29 · P99
P29 = 75596565104432146039405528529<29>
P99 = 385009979678762504086786747134199125917805790129411664760128132679332492042940092757602857005240341<99>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3961827852 Step 1 took 4420ms Step 2 took 3764ms ********** Factor found in step 2: 75596565104432146039405528529 Found probable prime factor of 29 digits: 75596565104432146039405528529 Probable prime cofactor 385009979678762504086786747134199125917805790129411664760128132679332492042940092757602857005240341 has 99 digits
(26·10102-53)/9 = 2(8)1013<103> = 3 · 541 · 7056254953606319<16> · C84
C84 = P42 · P43
P42 = 121810470780205711661897992036627074980747<42>
P43 = 2070872842870751685650025646347946691354497<43>
Mon Oct 6 19:27:00 2008 Msieve v. 1.36 Mon Oct 6 19:27:00 2008 random seeds: c8b1b998 262548ec Mon Oct 6 19:27:00 2008 factoring 252253995916029232215594555960055997739757430421020264159842100261129995557626869259 (84 digits) Mon Oct 6 19:27:01 2008 no P-1/P+1/ECM available, skipping Mon Oct 6 19:27:01 2008 commencing quadratic sieve (84-digit input) Mon Oct 6 19:27:01 2008 using multiplier of 35 Mon Oct 6 19:27:01 2008 using 64kb Opteron sieve core Mon Oct 6 19:27:01 2008 sieve interval: 6 blocks of size 65536 Mon Oct 6 19:27:01 2008 processing polynomials in batches of 17 Mon Oct 6 19:27:01 2008 using a sieve bound of 1400453 (53488 primes) Mon Oct 6 19:27:01 2008 using large prime bound of 120438958 (26 bits) Mon Oct 6 19:27:01 2008 using double large prime bound of 351059328825056 (41-49 bits) Mon Oct 6 19:27:01 2008 using trial factoring cutoff of 49 bits Mon Oct 6 19:27:01 2008 polynomial 'A' values have 11 factors Mon Oct 6 19:57:53 2008 53681 relations (16403 full + 37278 combined from 566333 partial), need 53584 Mon Oct 6 19:57:53 2008 begin with 582736 relations Mon Oct 6 19:57:53 2008 reduce to 123581 relations in 9 passes Mon Oct 6 19:57:53 2008 attempting to read 123581 relations Mon Oct 6 19:57:54 2008 recovered 123581 relations Mon Oct 6 19:57:54 2008 recovered 96905 polynomials Mon Oct 6 19:57:55 2008 attempting to build 53681 cycles Mon Oct 6 19:57:55 2008 found 53681 cycles in 5 passes Mon Oct 6 19:57:55 2008 distribution of cycle lengths: Mon Oct 6 19:57:55 2008 length 1 : 16403 Mon Oct 6 19:57:55 2008 length 2 : 11163 Mon Oct 6 19:57:55 2008 length 3 : 9472 Mon Oct 6 19:57:55 2008 length 4 : 6739 Mon Oct 6 19:57:55 2008 length 5 : 4402 Mon Oct 6 19:57:55 2008 length 6 : 2532 Mon Oct 6 19:57:55 2008 length 7 : 1382 Mon Oct 6 19:57:55 2008 length 9+: 1588 Mon Oct 6 19:57:55 2008 largest cycle: 17 relations Mon Oct 6 19:57:55 2008 matrix is 53488 x 53681 (12.1 MB) with weight 2745542 (51.15/col) Mon Oct 6 19:57:55 2008 sparse part has weight 2745542 (51.15/col) Mon Oct 6 19:57:56 2008 filtering completed in 4 passes Mon Oct 6 19:57:56 2008 matrix is 47610 x 47674 (10.9 MB) with weight 2470762 (51.83/col) Mon Oct 6 19:57:56 2008 sparse part has weight 2470762 (51.83/col) Mon Oct 6 19:57:56 2008 saving the first 48 matrix rows for later Mon Oct 6 19:57:56 2008 matrix is 47562 x 47674 (6.3 MB) with weight 1818216 (38.14/col) Mon Oct 6 19:57:56 2008 sparse part has weight 1182930 (24.81/col) Mon Oct 6 19:57:56 2008 matrix includes 64 packed rows Mon Oct 6 19:57:56 2008 using block size 19069 for processor cache size 1024 kB Mon Oct 6 19:57:56 2008 commencing Lanczos iteration Mon Oct 6 19:57:56 2008 memory use: 6.1 MB Mon Oct 6 19:58:11 2008 lanczos halted after 754 iterations (dim = 47556) Mon Oct 6 19:58:11 2008 recovered 14 nontrivial dependencies Mon Oct 6 19:58:12 2008 prp42 factor: 121810470780205711661897992036627074980747 Mon Oct 6 19:58:12 2008 prp43 factor: 2070872842870751685650025646347946691354497 Mon Oct 6 19:58:12 2008 elapsed time 00:31:12
(26·10156-53)/9 = 2(8)1553<157> = 3 · 331 · 587 · 9377 · 32537 · 82779547 · C135
C135 = P32 · P103
P32 = 29861311761897452258856672790427<32>
P103 = 6571585131207911210838823149579888907845030427984588149967313321690114167689229511352163744579597243273<103>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3981921852 Step 1 took 5012ms Step 2 took 4817ms ********** Factor found in step 2: 29861311761897452258856672790427 Found probable prime factor of 32 digits: 29861311761897452258856672790427 Probable prime cofactor 6571585131207911210838823149579888907845030427984588149967313321690114167689229511352163744579597243273 has 103 digits
(26·10157-53)/9 = 2(8)1563<158> = 19 · 313 · 34321501 · 1671089759<10> · 21638934139807<14> · 57074054446152619<17> · 2220772121157679073<19> · C89
C89 = P32 · P58
P32 = 18327578493929997273111231602653<32>
P58 = 1684935087308557261733642836693608542354060512864471113923<58>
Mon Oct 6 19:09:21 2008 Msieve v. 1.36 Mon Oct 6 19:09:21 2008 random seeds: 912b2852 0c5bdc26 Mon Oct 6 19:09:21 2008 factoring 30880780069824376361574877541433529546434253609647535122483720592782720577763879432037719 (89 digits) Mon Oct 6 19:09:22 2008 no P-1/P+1/ECM available, skipping Mon Oct 6 19:09:22 2008 commencing quadratic sieve (89-digit input) Mon Oct 6 19:09:23 2008 using multiplier of 59 Mon Oct 6 19:09:23 2008 using 64kb Opteron sieve core Mon Oct 6 19:09:23 2008 sieve interval: 15 blocks of size 65536 Mon Oct 6 19:09:23 2008 processing polynomials in batches of 7 Mon Oct 6 19:09:23 2008 using a sieve bound of 1545001 (58667 primes) Mon Oct 6 19:09:23 2008 using large prime bound of 123600080 (26 bits) Mon Oct 6 19:09:23 2008 using double large prime bound of 367818635270160 (42-49 bits) Mon Oct 6 19:09:23 2008 using trial factoring cutoff of 49 bits Mon Oct 6 19:09:23 2008 polynomial 'A' values have 12 factors Mon Oct 6 20:22:39 2008 58782 relations (16284 full + 42498 combined from 616885 partial), need 58763 Mon Oct 6 20:22:39 2008 begin with 633169 relations Mon Oct 6 20:22:40 2008 reduce to 141208 relations in 11 passes Mon Oct 6 20:22:40 2008 attempting to read 141208 relations Mon Oct 6 20:22:41 2008 recovered 141208 relations Mon Oct 6 20:22:41 2008 recovered 121099 polynomials Mon Oct 6 20:22:41 2008 attempting to build 58782 cycles Mon Oct 6 20:22:41 2008 found 58782 cycles in 5 passes Mon Oct 6 20:22:41 2008 distribution of cycle lengths: Mon Oct 6 20:22:41 2008 length 1 : 16284 Mon Oct 6 20:22:41 2008 length 2 : 11594 Mon Oct 6 20:22:41 2008 length 3 : 10265 Mon Oct 6 20:22:41 2008 length 4 : 7688 Mon Oct 6 20:22:41 2008 length 5 : 5399 Mon Oct 6 20:22:41 2008 length 6 : 3363 Mon Oct 6 20:22:41 2008 length 7 : 1903 Mon Oct 6 20:22:41 2008 length 9+: 2286 Mon Oct 6 20:22:41 2008 largest cycle: 17 relations Mon Oct 6 20:22:41 2008 matrix is 58667 x 58782 (14.9 MB) with weight 3437105 (58.47/col) Mon Oct 6 20:22:41 2008 sparse part has weight 3437105 (58.47/col) Mon Oct 6 20:22:42 2008 filtering completed in 3 passes Mon Oct 6 20:22:42 2008 matrix is 54537 x 54601 (14.0 MB) with weight 3223743 (59.04/col) Mon Oct 6 20:22:42 2008 sparse part has weight 3223743 (59.04/col) Mon Oct 6 20:22:42 2008 saving the first 48 matrix rows for later Mon Oct 6 20:22:42 2008 matrix is 54489 x 54601 (9.0 MB) with weight 2509159 (45.95/col) Mon Oct 6 20:22:42 2008 sparse part has weight 1807075 (33.10/col) Mon Oct 6 20:22:42 2008 matrix includes 64 packed rows Mon Oct 6 20:22:42 2008 using block size 21840 for processor cache size 1024 kB Mon Oct 6 20:22:43 2008 commencing Lanczos iteration Mon Oct 6 20:22:43 2008 memory use: 8.0 MB Mon Oct 6 20:23:04 2008 lanczos halted after 863 iterations (dim = 54485) Mon Oct 6 20:23:04 2008 recovered 14 nontrivial dependencies Mon Oct 6 20:23:05 2008 prp32 factor: 18327578493929997273111231602653 Mon Oct 6 20:23:05 2008 prp58 factor: 1684935087308557261733642836693608542354060512864471113923 Mon Oct 6 20:23:05 2008 elapsed time 01:13:44
(26·10124-53)/9 = 2(8)1233<125> = C125
C125 = P58 · P67
P58 = 4702771018702305749095782377707818488983640114722149202591<58>
P67 = 6142950352888021378812891699753388017001993925608663874220496607213<67>
SNFS difficulty: 126 digits. Divisors found: r1=4702771018702305749095782377707818488983640114722149202591 r2=6142950352888021378812891699753388017001993925608663874220496607213 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 28888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 Y1: 1 Y0: -10000000000000000000000000 c5: 13 c0: -265 skew: 1.83 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121605 x 121827 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.00 hours.
(26·10103-53)/9 = 2(8)1023<104> = 19 · 29 · 227 · 5189 · C95
C95 = P41 · P54
P41 = 89692426478836592784300376550795841826967<41>
P54 = 496265333259345156772057309654185119335498040025379133<54>
SNFS difficulty: 105 digits. Divisors found: r1=89692426478836592784300376550795841826967 r2=496265333259345156772057309654185119335498040025379133 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 44511241917359155577106323878765321362023863046193398616907007659676149245603176570253558479611 Y1: 1 Y0: -100000000000000000000000000 c4: 13 c0: -265 skew: 2.5 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 265001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 46343 x 46563 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.20 hours.
(26·10174-53)/9 = 2(8)1733<175> = 3 · 151 · 18917 · C168
C168 = P31 · C138
P31 = 2243086562866881513988079273467<31>
C138 = [150291472292069767424055033263206434728976210392907193097679201540140532262561658836638110174056704378245409474091400576686840194702606449<138>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1153297637 Step 1 took 19225ms ********** Factor found in step 1: 2243086562866881513988079273467 Found probable prime factor of 31 digits: 2243086562866881513988079273467 Composite cofactor 150291472292069767424055033263206434728976210392907193097679201540140532262561658836638110174056704378245409474091400576686840194702606449 has 138 digits
(26·10169-53)/9 = 2(8)1683<170> = 599 · 564251 · 18224693 · 177056177 · 4722398199915096083<19> · 4741302251973319790706989<25> · C103
C103 = P35 · P68
P35 = 56575334809536652290971314862111609<35>
P68 = 20910913013535396971131194830319308120739735863239243650630700492909<68>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=67958517 Step 1 took 13433ms Step 2 took 12543ms ********** Factor found in step 2: 56575334809536652290971314862111609 Found probable prime factor of 35 digits: 56575334809536652290971314862111609 Probable prime cofactor 20910913013535396971131194830319308120739735863239243650630700492909 has 68 digits
(26·10204-53)/9 = 2(8)2033<205> = 32 · 199 · 463 · 868884451118897<15> · 156502951782418193<18> · C167
C167 = P33 · P134
P33 = 694430743408346543317934266065283<33>
P134 = 36892727464062353803746935998125110790437863065618259953712823593194923501179666721819922557179370336183877369556062715328482342983457<134>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2172110407 Step 1 took 20453ms Step 2 took 15109ms ********** Factor found in step 2: 694430743408346543317934266065283 Found probable prime factor of 33 digits: 694430743408346543317934266065283 Probable prime cofactor 36892727464062353803746935998125110790437863065618259953712823593194923501179666721819922557179370336183877369556062715328482342983457 has 134 digits
2·10175-9 = 1(9)1741<176> = 11 · 2104936691786471<16> · C159
C159 = P70 · P90
P70 = 2999235301404108672880852229001943743610905187225557697685545402923389<70>
P90 = 287996846831064477423205097882532373558238456659108938210015914290084744018871680277303599<90>
SNFS difficulty: 175 digits. Divisors found: r1=2999235301404108672880852229001943743610905187225557697685545402923389 r2=287996846831064477423205097882532373558238456659108938210015914290084744018871680277303599 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.739). Factorization parameters were as follows: n: 863770309708800587661565784926991363552067036251619250125149999067901342834852215125908090950700120597465563999602721827174720277628477497212972232080890977011 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 2 c0: -9 skew: 1.35 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3700000, 6400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1083635 x 1083883 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,54,54,2.6,2.6,100000 total time: 35.00 hours.
(26·10168-53)/9 = 2(8)1673<169> = 32 · 31 · 666737 · C161
C161 = P40 · P122
P40 = 1167093673337653327127830327069259661809<40>
P122 = 13306577381392358475255309881615503665415368980360269644105388734553589493156498969747963330291726610161219478491166215269<122>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=304196581 Step 1 took 18965ms Step 2 took 14725ms ********** Factor found in step 2: 1167093673337653327127830327069259661809 Found probable prime factor of 40 digits: 1167093673337653327127830327069259661809 Probable prime cofactor 13306577381392358475255309881615503665415368980360269644105388734553589493156498969747963330291726610161219478491166215269 has 122 digits
(26·10159-53)/9 = 2(8)1583<160> = 33 · 29 · 287107 · 23759322402380015305157<23> · C129
C129 = P38 · C92
P38 = 10313704067523250659900937829730796309<38>
C92 = [52441677875563878773945469819992980394894802790218697762200342387440721101475627254741219911<92>]
Input number is 540867946412947238983837576736402476646300389187376607989044293296034269709414547519382982732739649482451258823652599480116108499 (129 digits) Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1193863371 Step 1 took 15386ms Step 2 took 15370ms ********** Factor found in step 2: 10313704067523250659900937829730796309 Found probable prime factor of 38 digits: 10313704067523250659900937829730796309 Composite cofactor 52441677875563878773945469819992980394894802790218697762200342387440721101475627254741219911 has 92 digits
(26·10174-53)/9 = 2(8)1733<175> = 3 · 151 · 18917 · 2243086562866881513988079273467<31> · C138
C138 = P40 · P98
P40 = 9505588734014909843517432505768084428737<40>
P98 = 15810853645946726698592400974520411575672816481225283858869417945537837498204945702733827218560177<98>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=481747367 Step 1 took 25522ms Step 2 took 19983ms ********** Factor found in step 2: 9505588734014909843517432505768084428737 Found probable prime factor of 40 digits: 9505588734014909843517432505768084428737
By matsui / GMP-ECM
(5·10182-23)/9 = (5)1813<182> = 11587 · C178
C178 = P32 · C147
P32 = 22164089254899828504746140018019<32>
C147 = [216324942791152081793580282576603715592327742295380183409321402881799332508862151634956890785529810487524741549747806557894880895635721994907999801<147>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 4794645340084193972171878446151338185514417498537633171274320838487577073923841853418102662946021882761332144261288992453228234707478687801463325757793696000306857301765388414219 =22164089254899828504746140018019* 216324942791152081793580282576603715592327742295380183409321402881799332508862151634956890785529810487524741549747806557894880895635721994907999801
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38
(16·10200-7)/9 = 1(7)200<201> = 3 · 29 · 113 · 17239 · 183167 · C187
C187 = P35 · P152
P35 = 73650921956704125918421412553905053<35>
P152 = 77757499705047821516199564486492518620219929342504211246580583218570399145822019564955875866277439662266095840431970859014732292772322991513398308879003<152>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=437088288 Step 1 took 28010ms Step 2 took 10289ms ********** Factor found in step 2: 73650921956704125918421412553905053 Found probable prime factor of 35 digits: 73650921956704125918421412553905053 Probable prime cofactor 77757499705047821516199564486492518620219929342504211246580583218570399145822019564955875866277439662266095840431970859014732292772322991513398308879003 has 152 digits
(55·10174-1)/9 = 6(1)174<175> = 32 · 4597775143424143997<19> · C156
C156 = P43 · P114
P43 = 1229252059113818413091149720294853232697801<43>
P114 = 120140379125834124954583462842564535156416411241662126164981729522718127588795637427044066299014456569821516369507<114>
SNFS difficulty: 176 digits. Divisors found: r1=1229252059113818413091149720294853232697801 r2=120140379125834124954583462842564535156416411241662126164981729522718127588795637427044066299014456569821516369507 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.854). Factorization parameters were as follows: n: 147682808423146405493156532543584238917034823309657064787055774798020076967093264949590809254482259992363365073823088990550667441301074161608069140782354107 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 11 c0: -2 skew: 0.71 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 7800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1260653 x 1260901 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(23·10168+31)/9 = 2(5)1679<169> = 32 · 236812287285483410929<21> · C148
C148 = P43 · P105
P43 = 4399881371891076411517211881007444147724161<43>
P105 = 272519521223774045867200767539451361177012007095888916737879651496577799389203378273684289426752607226079<105>
SNFS difficulty: 169 digits. Divisors found: r1=4399881371891076411517211881007444147724161 r2=272519521223774045867200767539451361177012007095888916737879651496577799389203378273684289426752607226079 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.291). Factorization parameters were as follows: n: 1199053564909158263764865435863424465914489971376071052470965230844971018946176597623262002158130529740670738185026088323656292700989789111057594719 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 23000 c0: 31 skew: 0.27 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1069246 x 1069494 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
Factorizations of 288...883 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Sinkiti Sibata / GGNFS
(26·10171-71)/9 = 2(8)1701<172> = 43 · 1380617898681809<16> · C155
C155 = P73 · P83
P73 = 3669494174838085730319346360886510108147157739379354571402691886612341441<73>
P83 = 13261195602581412992450307530343836667060648761360730528724076800274659175677939043<83>
Number: 28881_171 N=48661880015060933137981457416002802132480114106356745333892966732948461875636848914080280263954783190211344349331132472591262877557224150237206443500780963 ( 155 digits) SNFS difficulty: 172 digits. Divisors found: r1=3669494174838085730319346360886510108147157739379354571402691886612341441 (pp73) r2=13261195602581412992450307530343836667060648761360730528724076800274659175677939043 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 221.80 hours. Scaled time: 223.57 units (timescale=1.008). Factorization parameters were as follows: name: 28881_171 n: 48661880015060933137981457416002802132480114106356745333892966732948461875636848914080280263954783190211344349331132472591262877557224150237206443500780963 m: 10000000000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 11500001) Primes: RFBsize:412849, AFBsize:412212, largePrimes:6501610 encountered Relations: rels:6831268, finalFF:949374 Max relations in full relation-set: 28 Initial matrix: 825128 x 949374 with sparse part having weight 91645762. Pruned matrix : 732702 x 736891 with weight 74084923. Total sieving time: 215.68 hours. Total relation processing time: 0.15 hours. Matrix solve time: 5.83 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 221.80 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(10187+71)/9 = (1)1869<187> = 3 · 170759 · C181
C181 = P60 · P122
P60 = 118556060853532355684657119016905151082226412154225341230741<60>
P122 = 18294850799511873801677071498271275076680523886468931501062534084271591363969148990966231170862572128613900878977069885767<122>
Number: n N=2168965444693224780950757326819496309830640671182018929429022015649953269639494084472094415933393673952004698846739383402165451720672821756805617099950048725808715033294704058763347 ( 181 digits) SNFS difficulty: 187 digits. Divisors found: Mon Oct 06 07:01:53 2008 prp60 factor: 118556060853532355684657119016905151082226412154225341230741 Mon Oct 06 07:01:53 2008 prp122 factor: 18294850799511873801677071498271275076680523886468931501062534084271591363969148990966231170862572128613900878977069885767 Mon Oct 06 07:01:53 2008 elapsed time 13:58:33 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 70.75 hours. Scaled time: 91.41 units (timescale=1.292). Factorization parameters were as follows: name: KA_1_186_9 n: 2168965444693224780950757326819496309830640671182018929429022015649953269639494084472094415933393673952004698846739383402165451720672821756805617099950048725808715033294704058763347 type: snfs skew: 0.93 deg: 5 c5: 100 c0: 71 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6100001) Primes: RFBsize:602489, AFBsize:603001, largePrimes:14684678 encountered Relations: rels:14609629, finalFF:1302685 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 70.18 hours. Total relation processing time: 0.57 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 70.75 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(89·10171+1)/9 = 9(8)1709<172> = 11 · 29 · 31153 · C165
C165 = P65 · P101
P65 = 20859158360218646280250430937682237384800186664930597024627057321<65>
P101 = 47704588922816156402622683680592959261170977885583403442268477509804178279463931489193875017204443487<101>
SNFS difficulty: 172 digits. Divisors found: r1=20859158360218646280250430937682237384800186664930597024627057321 r2=47704588922816156402622683680592959261170977885583403442268477509804178279463931489193875017204443487 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.945). Factorization parameters were as follows: n: 995077574850154454487684142878694352676489781788767772295123953291595307585354484031425533710695819398473817099576283669917204961707234693618912994475429930254118327 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 890 c0: 1 skew: 0.26 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 7000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1147835 x 1148083 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(86·10170+31)/9 = 9(5)1699<171> = 7 · 137 · 2579 · 3582718889<10> · C156
C156 = P50 · P106
P50 = 73044612100303015021615574110453666513439422703861<50>
P106 = 1476335530587363807889463028248959534110527268122976885451689164688958624422893045288065598247542738990111<106>
SNFS difficulty: 171 digits. Divisors found: r1=73044612100303015021615574110453666513439422703861 r2=1476335530587363807889463028248959534110527268122976885451689164688958624422893045288065598247542738990111 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: n: 107838356161649026351577516693291315248999841606208829510603234036113769212515591345037604034970771261765500380483485337838846613658594572419135364160518571 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 86 c0: 31 skew: 0.82 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1061379 x 1061627 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(23·10173-41)/9 = 2(5)1721<174> = 673 · 853 · 5591061403121<13> · C155
C155 = P46 · P47 · P63
P46 = 7006809008629239360483702710486422780612342481<46>
P47 = 25181631057758153981933321553668940225037068307<47>
P63 = 451255837422041310778962833166372971071264336217045028875777297<63>
SNFS difficulty: 174 digits. Divisors found: r1=7006809008629239360483702710486422780612342481 r2=25181631057758153981933321553668940225037068307 r3=451255837422041310778962833166372971071264336217045028875777297 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 79620879277102236161350777737232714052888759619073923411143140991524898238688532735937210657700343773756579155877217308484407849335553097765189963046610099 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 23000 c0: -41 skew: 0.28 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1366742 x 1366990 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(22·10170+41)/9 = 2(4)1699<171> = 3 · 17 · 139 · 367 · 80993649263<11> · C154
C154 = P49 · P105
P49 = 5658141762156826678442825564795456282008165567021<49>
P105 = 205023828685265645027427152433093505046281741380993784990718808353878468660941885633315531455901334965301<105>
SNFS difficulty: 171 digits. Divisors found: r1=5658141762156826678442825564795456282008165567021 r2=205023828685265645027427152433093505046281741380993784990718808353878468660941885633315531455901334965301 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: n: 1160053887321388306247894317985684521194560853620648242948063882893486761625576778027346877448599606173015566550740807961330613627642328527504536024938321 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 22 c0: 41 skew: 1.13 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1117066 x 1117314 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(13·10174+23)/9 = 1(4)1737<175> = 19 · 233584627 · 327017448697<12> · C153
C153 = P49 · P105
P49 = 1508884939339678464343119204491325903774757813009<49>
P105 = 659592843928901000722573606753947216311128546998729114026951853355308952821337342212632003472349819672303<105>
SNFS difficulty: 176 digits. Divisors found: r1=1508884939339678464343119204491325903774757813009 r2=659592843928901000722573606753947216311128546998729114026951853355308952821337342212632003472349819672303 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 995249708300545791129799221580502120491420761030163428196894321573713576560876946695413362256842523332134667375458489194130944953153275856117997330389727 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 13 c0: 230 skew: 1.78 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [5000000, 8900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1375609 x 1375857 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,10000000,10000000,27,27,54,54,2.6,2.6,100000 total time: 32.00 hours.
(5·10170+13)/9 = (5)1697<170> = 3 · 503 · 207041 · 7023543563<10> · C152
C152 = P64 · P88
P64 = 6757843255424349562422360600427818373615137317957647846931199517<64>
P88 = 3746428975831510131769641735411669473409387191490552876044280413845098431855725258972543<88>
SNFS difficulty: 170 digits. Divisors found: r1=6757843255424349562422360600427818373615137317957647846931199517 r2=3746428975831510131769641735411669473409387191490552876044280413845098431855725258972543 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 25317779786249324256984188517325628223953057120399900583722505923834812071552989221685696863859315525075555386181217047735768127271487751932309957861731 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 5 c0: 13 skew: 1.21 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 999105 x 999353 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(16·10189-7)/9 = 1(7)189<190> = 97 · 565257584232221<15> · 2894757784480057<16> · C158
C158 = P33 · C125
P33 = 313874266742039388275321127723139<33>
C125 = [35685468203316383629285285631630576483658593506329090236596327342634932358233727998968557498199790458256613246731307616845327<125>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=349201591 Step 1 took 26185ms Step 2 took 9028ms ********** Factor found in step 2: 313874266742039388275321127723139 Found probable prime factor of 33 digits: 313874266742039388275321127723139 Composite cofactor 35685468203316383629285285631630576483658593506329090236596327342634932358233727998968557498199790458256613246731307616845327 has 125 digits
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
4·10188+3 = 4(0)1873<189> = 13 · 151 · 50311 · C181
C181 = P44 · P55 · P83
P44 = 24875180711963832920631823391799924802362043<44>
P55 = 1752874383582602263485228831981881536452332411343350533<55>
P83 = 92888019522893020037527962353614086664215590109173413876816904217403183939544249209<83>
Number: n N=4050202544047648688833499443952755480878371070909903214031140974559533638618025124682194528939826171179603163787365865012439741466256147587274599773413443774526317927554290357785071 ( 181 digits) SNFS difficulty: 188 digits. Divisors found: Sun Oct 05 10:57:16 2008 prp44 factor: 24875180711963832920631823391799924802362043 Sun Oct 05 10:57:16 2008 prp55 factor: 1752874383582602263485228831981881536452332411343350533 Sun Oct 05 10:57:16 2008 prp83 factor: 92888019522893020037527962353614086664215590109173413876816904217403183939544249209 Sun Oct 05 10:57:17 2008 elapsed time 06:48:28 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.83 hours. Scaled time: 137.98 units (timescale=1.976). Factorization parameters were as follows: name: KA_4_0_187_3 n: 4050202544047648688833499443952755480878371070909903214031140974559533638618025124682194528939826171179603163787365865012439741466256147587274599773413443774526317927554290357785071 type: snfs skew: 0.47 deg: 5 c5: 125 c0: 3 m: 20000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6900001) Primes: RFBsize:602489, AFBsize:601580, largePrimes:14186992 encountered Relations: rels:13935264, finalFF:1227975 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 69.46 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,52,52,2.5,2.5,100000 total time: 69.83 hours. --------- CPU info (if available) ----------
(52·10193-7)/9 = 5(7)193<194> = 3 · 1517945766670785449<19> · 7229865440639606423<19> · 36201349029514598526708460117<29> · C128
C128 = P43 · P86
P43 = 1361633458879307976532980614815947376699811<43>
P86 = 35601487205328491845602471971596039725155115291438663960324094921313571336527310320491<86>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 48476176164638862053734691122979671227372039614455965680139465155443601982618066197127877857347079214807473440402864044309127201 (128 digits) Using B1=6942000, B2=17125579390, polynomial Dickson(12), sigma=2494068609 Step 1 took 69080ms Step 2 took 28676ms ********** Factor found in step 2: 1361633458879307976532980614815947376699811 Found probable prime factor of 43 digits: 1361633458879307976532980614815947376699811 Probable prime cofactor 35601487205328491845602471971596039725155115291438663960324094921313571336527310320491 has 86 digits
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(26·10170-71)/9 = 2(8)1691<171> = 281 · 1036151797<10> · C159
C159 = P43 · P117
P43 = 8352757623297097696332618845370352702448983<43>
P117 = 118787640151714003352535632523216976307927450058745101074936089603900745826743578588056704612356256078974602954505651<117>
SNFS difficulty: 171 digits. Divisors found: r1=8352757623297097696332618845370352702448983 r2=118787640151714003352535632523216976307927450058745101074936089603900745826743578588056704612356256078974602954505651 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.943). Factorization parameters were as follows: n: 992204366830701552260601889495933995632772966000609277532605334444861061300128325310454559138001358509582850301327815420242221382563071698277700080441812702933 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 26 c0: -71 skew: 1.22 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1163491 x 1163739 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(8·10172-11)/3 = 2(6)1713<173> = 7 · 13 · 257 · 12729680113627<14> · C155
C155 = P48 · P108
P48 = 379919932959707519722966083766347941284954305359<48>
P108 = 235767884328121729344442224036858091022336279014513197183862800102339634118624490038634191101266307973040593<108>
SNFS difficulty: 172 digits. Divisors found: r1=379919932959707519722966083766347941284954305359 r2=235767884328121729344442224036858091022336279014513197183862800102339634118624490038634191101266307973040593 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 89572918807992084599135765143735520891413934611338714495828143684100870450188258262831597166069426537504778163501521975640172727386960968697358477424437887 Y1: 1 Y0: -20000000000000000000000000000000000 c5: 25 c0: -11 skew: 0.85 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 6700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1208103 x 1208351 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
6·10172-1 = 5(9)172<173> = 71 · 5333 · C168
C168 = P32 · C137
P32 = 10527309174692505715358220955631<32>
C137 = [15052337248182079245295376732473140587727231583696298965536998382697969877116207805028160665561308034389058830834673663504559791338218603<137>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3257129926 Step 1 took 26700ms ********** Factor found in step 1: 10527309174692505715358220955631 Found probable prime factor of 32 digits: 10527309174692505715358220955631 Composite cofactor 15052337248182079245295376732473140587727231583696298965536998382697969877116207805028160665561308034389058830834673663504559791338218603 has 137 digits
(11·10169+7)/9 = 1(2)1683<170> = 13 · 199 · 23117 · 21154360223<11> · C151
C151 = P71 · P81
P71 = 56614438302582048814610056890653305828644096999449225595894307044593297<71>
P81 = 170645631849406535892466311038242263821975056450557183563575141057584461818693727<81>
SNFS difficulty: 171 digits. Divisors found: r1=56614438302582048814610056890653305828644096999449225595894307044593297 r2=170645631849406535892466311038242263821975056450557183563575141057584461818693727 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.722). Factorization parameters were as follows: n: 9661006595943356569335913717277784341104880983330214595309914724528045964926430879738402044162773517773405484364046472591892578927791104378358520147919 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 11 c0: 70 skew: 1.45 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1040091 x 1040339 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
(16·10174+11)/9 = 1(7)1739<175> = 3 · 367 · 69677 · 229637 · C162
C162 = P33 · C129
P33 = 168059235324598838433859428519907<33>
C129 = [600477118485275904046986059283468225318011819543399844819021644617823346316693276523484494374747561974398107937389166265935378453<129>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=151457020 Step 1 took 26818ms Step 2 took 16347ms ********** Factor found in step 2: 168059235324598838433859428519907 Found probable prime factor of 33 digits: 168059235324598838433859428519907 Composite cofactor 600477118485275904046986059283468225318011819543399844819021644617823346316693276523484494374747561974398107937389166265935378453 has 129 digits
By Sinkiti Sibata / GGNFS
(26·10166-71)/9 = 2(8)1651<167> = 32 · 251 · 331 · 5263090523549879<16> · C145
C145 = P46 · P100
P46 = 1510502859597760806417065936942084544672808513<46>
P100 = 4859865188787395072098314485948357294398599462740799180745466247719147971275211882335881557251224807<100>
Number: 28881_166 N=7340840264922971933894794829417861112201031590340036998496018396191265355575127755600652658160478266119929479034056755293239804822403937826381991 ( 145 digits) SNFS difficulty: 167 digits. Divisors found: r1=1510502859597760806417065936942084544672808513 (pp46) r2=4859865188787395072098314485948357294398599462740799180745466247719147971275211882335881557251224807 (pp100) Version: GGNFS-0.77.1-20050930-nocona Total time: 134.13 hours. Scaled time: 135.34 units (timescale=1.009). Factorization parameters were as follows: name: 28881_166 n: 7340840264922971933894794829417861112201031590340036998496018396191265355575127755600652658160478266119929479034056755293239804822403937826381991 m: 1000000000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7650001) Primes: RFBsize:380800, AFBsize:380063, largePrimes:6291023 encountered Relations: rels:6618048, finalFF:955138 Max relations in full relation-set: 28 Initial matrix: 760930 x 955138 with sparse part having weight 75716287. Pruned matrix : 609006 x 612874 with weight 57216633. Total sieving time: 130.33 hours. Total relation processing time: 0.12 hours. Matrix solve time: 3.57 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 134.13 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(26·10167-71)/9 = 2(8)1661<168> = 47 · 3623 · 160163 · C158
C158 = P71 · P87
P71 = 62177173667916090994125727316510673911399562654031399314878446246681393<71>
P87 = 170361507648356832458459057572079293694991001668148898771440660882317084143196327486739<87>
SNFS difficulty: 168 digits. Divisors found: r1=62177173667916090994125727316510673911399562654031399314878446246681393 r2=170361507648356832458459057572079293694991001668148898771440660882317084143196327486739 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 10592597047379898181857972294175227389945639616830971048303006763410773656749525762983982387259612103870860289508693080736858983683550573934343464506965547427 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2750000, 4450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1039542 x 1039790 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 3.00 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,54,54,2.6,2.6,100000 total time: 30.00 hours.
By Jo Yeong Uk / GGNFS, GMP-ECM
(25·10192+11)/9 = 2(7)1919<193> = 28850999 · 29654969 · 433264503167730948116363789<27> · 21023680370390040093666753767791<32> · C120
C120 = P54 · P66
P54 = 523283330570262509507095968646219549154589782060264537<54>
P66 = 681146319566940643603387966607299632516460088185410724746611917543<66>
Number: 27779_192 N=356432514708665067434889972034144550754335969029805940899612059115982464982373416977480490869176337160263355155411072591 ( 120 digits) Divisors found: r1=523283330570262509507095968646219549154589782060264537 (pp54) r2=681146319566940643603387966607299632516460088185410724746611917543 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.90 hours. Scaled time: 92.46 units (timescale=2.377). Factorization parameters were as follows: name: 27779_192 n: 356432514708665067434889972034144550754335969029805940899612059115982464982373416977480490869176337160263355155411072591 skew: 45877.59 # norm 2.10e+16 c5: 59220 c4: 4268148652 c3: -54178355275093 c2: -32310008489240418903 c1: -452211177823445963143823 c0: -93973871227905947990253765 # alpha -5.48 Y1: 4244062156877 Y0: -90344452061388090682912 # Murphy_E 2.82e-10 # M 255242693196056850117205220883103512579840869547747893244572149774913258474069373072912491588421647886917861100495805716 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2500000, 4600001) Primes: RFBsize:348513, AFBsize:348452, largePrimes:8679735 encountered Relations: rels:8845813, finalFF:843049 Max relations in full relation-set: 28 Initial matrix: 697049 x 843049 with sparse part having weight 74015787. Pruned matrix : 573546 x 577095 with weight 47186435. Polynomial selection time: 2.62 hours. Total sieving time: 33.93 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.01 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,51,51,2.4,2.4,100000 total time: 38.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
(2·10175+1)/3 = (6)1747<175> = 7 · 34429 · C170
C170 = P49 · P122
P49 = 1050191318423217125232464277698554503013130761249<49>
P122 = 26340127233392236974087975009212418003633400562423119067589738496416129946457990774500568552310756834852983770264132755361<122>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 27662172946671479884759387504166614800092391657641882742815096354263916493432308588136523888361002421823241481088063910684375989787125748088889626546834133461685815805889 (170 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1712934266 Step 1 took 16245ms Step 2 took 7139ms ********** Factor found in step 2: 1050191318423217125232464277698554503013130761249 Found probable prime factor of 49 digits: 1050191318423217125232464277698554503013130761249 Probable prime cofactor 26340127233392236974087975009212418003633400562423119067589738496416129946457990774500568552310756834852983770264132755361 has 122 digits
By Wataru Sakai / GGNFS
(2·10190+61)/9 = (2)1899<190> = 32 · C189
C189 = P68 · P122
P68 = 15037230780948987466386569695720830218543444409461952110026324979003<68>
P122 = 16420149683393438216632983454542924702334404553643490266996276078158368227441725013767141314944794683769900016944611993527<122>
Number: 22229_190 N=246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913581 ( 189 digits) SNFS difficulty: 190 digits. Divisors found: r1=15037230780948987466386569695720830218543444409461952110026324979003 (pp68) r2=16420149683393438216632983454542924702334404553643490266996276078158368227441725013767141314944794683769900016944611993527 (pp122) Version: GGNFS-0.77.1-20060722-nocona Total time: 1316.55 hours. Scaled time: 2589.65 units (timescale=1.967). Factorization parameters were as follows: n: 246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913581 m: 100000000000000000000000000000000000000 c5: 2 c0: 61 skew: 1.98 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 22700001) Primes: RFBsize:501962, AFBsize:501692, largePrimes:7358473 encountered Relations: rels:8000424, finalFF:1177185 Max relations in full relation-set: 32 Initial matrix: 1003721 x 1177185 with sparse part having weight 156407719. Pruned matrix : 883064 x 888146 with weight 138266463. Total sieving time: 1304.28 hours. Total relation processing time: 0.17 hours. Matrix solve time: 11.79 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1316.55 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
3·10196-1 = 2(9)196<197> = C197
C197 = P54 · P54 · P90
P54 = 122344767534061284667205826233542620221024729103782351<54>
P54 = 349916959335497159053279727421119255555113601555011417<54>
P90 = 700762515289784210874039143325825539548489780330736974377987653994531387998577206825482297<90>
Number: 29999_196 N=29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 197 digits) SNFS difficulty: 196 digits. Divisors found: r1=122344767534061284667205826233542620221024729103782351 (pp54) r2=349916959335497159053279727421119255555113601555011417 (pp54) r3=700762515289784210874039143325825539548489780330736974377987653994531387998577206825482297 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 516.20 hours. Scaled time: 1233.71 units (timescale=2.390). Factorization parameters were as follows: n: 29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 1000000000000000000000000000000000000000 c5: 30 c0: -1 skew: 0.51 type: snfs Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 53/53 Sieved algebraic special-q in [10000000, 18300001) Primes: RFBsize:1270607, AFBsize:1269815, largePrimes:23687268 encountered Relations: rels:24203236, finalFF:2931375 Max relations in full relation-set: 28 Initial matrix: 2540489 x 2931375 with sparse part having weight 208140655. Pruned matrix : 2176346 x 2189112 with weight 145380897. Total sieving time: 472.02 hours. Total relation processing time: 1.03 hours. Matrix solve time: 42.87 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,53,53,2.6,2.6,100000 total time: 516.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By Robert Backstrom / GMP-ECM
6·10167+1 = 6(0)1661<168> = 19 · 53 · 151888273037<12> · 285222132532084029211<21> · C134
C134 = P38 · P97
P38 = 11344553699289079283476154821341898793<38>
P97 = 1212346876153485600056159157453359594304541020922218903516315067388636750613885280058055706162793<97>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 13753534238688584322143339202854565292590236731829919256769931192382804504625818230345229409471072118823813652385708513638874588208849 (134 digits) Using B1=5466000, B2=11416630690, polynomial Dickson(12), sigma=2706353897 Step 1 took 54142ms Step 2 took 21534ms ********** Factor found in step 2: 11344553699289079283476154821341898793 Found probable prime factor of 38 digits: 11344553699289079283476154821341898793 Probable prime cofactor 1212346876153485600056159157453359594304541020922218903516315067388636750613885280058055706162793 has 97 digits
By Serge Batalov / GMP-ECM 6.2.1
2·10170+9 = 2(0)1699<171> = 11 · 20856546081214729<17> · C153
C153 = P35 · P119
P35 = 31898045403876622590018206760962939<35>
P119 = 27329447332447825571832005501356411557247380282440211338517340420235479911185535153515772085011975930967362685161689849<119>
Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=2478872043 Step 1 took 262323ms Step 2 took 79158ms ********** Factor found in step 2: 31898045403876622590018206760962939 Found probable prime factor of 35 digits: 31898045403876622590018206760962939 Probable prime cofactor 27329447332447825571832005501356411557247380282440211338517340420235479911185535153515772085011975930967362685161689849 has 119 digits
By matsui / GMP-ECM
5·10186-3 = 4(9)1857<187> = 67317521395141<14> · 46615341719911308568542113<26> · C148
C148 = P36 · P112
P36 = 440247862165415629914964024062743623<36>
P112 = 3619226468217882437161494597428834606600520897650913186570957157465554197450093428407182748230547242163506739583<112>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 1593356715325410319172868890988741940658975404678256641171322555945504876672202381871531579446721699351252766811856458978967108352978533218354929209 =440247862165415629914964024062743623* 3619226468217882437161494597428834606600520897650913186570957157465554197450093428407182748230547242163506739583
By Sinkiti Sibata / GGNFS
(26·10161-71)/9 = 2(8)1601<162> = 19 · C161
C161 = P72 · P89
P72 = 632162252911445335796435973980354556377945502963326151746830745204115223<72>
P89 = 24051860566725428718633081455487317525885368126175025927404218378326986147965349318982413<89>
Number: 28881_161 N=15204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099 ( 161 digits) SNFS difficulty: 162 digits. Divisors found: r1=632162252911445335796435973980354556377945502963326151746830745204115223 (pp72) r2=24051860566725428718633081455487317525885368126175025927404218378326986147965349318982413 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 77.65 hours. Scaled time: 78.28 units (timescale=1.008). Factorization parameters were as follows: name: 28881_161 n: 15204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099 m: 100000000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5150001) Primes: RFBsize:315948, AFBsize:315212, largePrimes:5888530 encountered Relations: rels:5992989, finalFF:725848 Max relations in full relation-set: 28 Initial matrix: 631227 x 725848 with sparse part having weight 54679237. Pruned matrix : 563033 x 566253 with weight 40813096. Total sieving time: 74.92 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.54 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 77.65 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(17·10170-53)/9 = 1(8)1693<171> = 3 · 31 · 2333 · 90168271 · C157
C157 = P33 · P34 · P92
P33 = 115142149344161629850376984688397<33>
P34 = 1772963737984840369465746226474583<34>
P92 = 47295606304386422476579305729270226175133053046692469208394133140258992145305451848568435167<92>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 9655060123620669206025974738195444050561032290005483080386739714241489585777600926399707507460520910682304298115846620265195528870797762599462867740469931317 (157 digits) Using B1=1252000, B2=1426326730, polynomial Dickson(6), sigma=374355149 Step 1 took 15984ms Step 2 took 6844ms ********** Factor found in step 2: 115142149344161629850376984688397 Found probable prime factor of 33 digits: 115142149344161629850376984688397 Composite cofactor 83853394943684333473055241658152182035340424420224832510221965919173132871571422640806640872525599975611826059405083408860361 has 125 digits GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 83853394943684333473055241658152182035340424420224832510221965919173132871571422640806640872525599975611826059405083408860361 (125 digits) Using B1=1372000, B2=1426564240, polynomial Dickson(6), sigma=495894633 Step 1 took 12015ms Step 2 took 5141ms ********** Factor found in step 2: 1772963737984840369465746226474583 Found probable prime factor of 34 digits: 1772963737984840369465746226474583 Probable prime cofactor 47295606304386422476579305729270226175133053046692469208394133140258992145305451848568435167 has 92 digits
(5·10170-23)/9 = (5)1693<170> = 31643 · 769507357 · C157
C157 = P56 · P101
P56 = 45001623418203325386019413691245428244292701406687273123<56>
P101 = 50700108208826272869285692148550799344352074012722932660038293634721356836394536023755688749101133861<101>
Number: n N=2281587176875759054520890703509527182715102806806507622366468975418052184720131042409246726276126043931951476891864183073846751143457027596919608277490517903 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: Thu Oct 02 03:06:19 2008 prp56 factor: 45001623418203325386019413691245428244292701406687273123 Thu Oct 02 03:06:19 2008 prp101 factor: 50700108208826272869285692148550799344352074012722932660038293634721356836394536023755688749101133861 Thu Oct 02 03:06:19 2008 elapsed time 04:09:19 (Msieve 1.38 **dep=7**) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 0.78 hours. Scaled time: 1.02 units (timescale=1.299). Factorization parameters were as follows: name: KA_5_169_3 n: 2281587176875759054520890703509527182715102806806507622366468975418052184720131042409246726276126043931951476891864183073846751143457027596919608277490517903 type: snfs skew: 1.36 deg: 5 c5: 5 c0: -23 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 200001) Primes: RFBsize:425648, AFBsize:426252, largePrimes:14739769 encountered Relations: rels:15116534, finalFF:1557464 Max relations in full relation-set: 28 Initial matrix: 851965 x 1557464 with sparse part having weight 149351625. Pruned matrix : Total sieving time: 0.35 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 0.78 hours. --------- CPU info (if available) ----------
(4·10170+41)/9 = (4)1699<170> = 72 · 383 · 190938968767<12> · C155
C155 = P32 · P124
P32 = 11076321807868186689085681697297<32>
P124 = 1119779442197062735519303413885522946726562495949180557564827738640396690905680513942218528205584546242743238956698113861153<124>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 12403037455609799575206813257751283380841275957391153538977388063043774573103258275233257298220454720621344967752277641859121318792311574674879151233403441 (155 digits) Using B1=784000, B2=696767622, polynomial Dickson(3), sigma=1997601525 Step 1 took 9391ms Step 2 took 3984ms ********** Factor found in step 2: 11076321807868186689085681697297 Found probable prime factor of 32 digits: 11076321807868186689085681697297 Probable prime cofactor 1119779442197062735519303413885522946726562495949180557564827738640396690905680513942218528205584546242743238956698113861153 has 124 digits
5·10170-1 = 4(9)170<171> = 31 · 4688909 · 5962171 · C156
C156 = P36 · P121
P36 = 414098898368494463344506663169333769<36>
P121 = 1393246636581073462780644946707410311348854022175587735092066569086144683145170283932792460440716222911271989247205306919<121>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 576941897363832680247990659532154636533269260043447804982278645257355362380723176817840997220371791999561855565743580805836706271803510382912248634396047711 (156 digits) Using B1=1114000, B2=1426247560, polynomial Dickson(6), sigma=3235219842 Step 1 took 14359ms Step 2 took 6828ms ********** Factor found in step 2: 414098898368494463344506663169333769 Found probable prime factor of 36 digits: 414098898368494463344506663169333769 Probable prime cofactor 1393246636581073462780644946707410311348854022175587735092066569086144683145170283932792460440716222911271989247205306919 has 121 digits
3·10171-7 = 2(9)1703<172> = 73 · 26103770121167<14> · C157
C157 = P71 · P86
P71 = 69185802781796879642077085597448791268734799821577537651715919383668229<71>
P86 = 22755069893669253071145751833555900531496535657694741960060249774778750742959661038387<86>
Number: n N=1574327777949404635376174768673852196943179488710897574632998700132319413715457346172529249449492909562247276388632517481561461992754350763645351691241306623 ( 157 digits) SNFS difficulty: 171 digits. Divisors found: Thu Oct 02 04:55:00 2008 prp71 factor: 69185802781796879642077085597448791268734799821577537651715919383668229 Thu Oct 02 04:55:01 2008 prp86 factor: 22755069893669253071145751833555900531496535657694741960060249774778750742959661038387 Thu Oct 02 04:55:01 2008 elapsed time 02:13:30 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.58 hours. Scaled time: 34.00 units (timescale=2.051). Factorization parameters were as follows: name: KA_2_9_170_3 n: 1574327777949404635376174768673852196943179488710897574632998700132319413715457346172529249449492909562247276388632517481561461992754350763645351691241306623 type: snfs skew: 0.75 deg: 5 c5: 30 c0: -7 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 3800001) Primes: RFBsize:425648, AFBsize:425482, largePrimes:13895280 encountered Relations: rels:13425134, finalFF:1026037 Max relations in full relation-set: 28 Initial matrix: 851197 x 1026037 with sparse part having weight 114941916. Pruned matrix : Total sieving time: 16.25 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 16.58 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(79·10169-7)/9 = 8(7)169<170> = 3 · 19 · 29 · 1725943553750443<16> · C152
C152 = P76 · P76
P76 = 3116549881367973389270395010859470666928419469489925409699923580919060881933<76>
P76 = 9872134366631629882925427065540193668246546885604057444260571641728324014211<76>
Number: n N=30766999189174499224689468894868725545675655898997098145447140665073696881219316660229533882153414599964581869484884935996126880831097168266744485149863 ( 152 digits) SNFS difficulty: 171 digits. Divisors found: Wed Oct 01 10:57:02 2008 prp76 factor: 3116549881367973389270395010859470666928419469489925409699923580919060881933 Wed Oct 01 10:57:02 2008 prp76 factor: 9872134366631629882925427065540193668246546885604057444260571641728324014211 Wed Oct 01 10:57:02 2008 elapsed time 02:23:05 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 14.24 hours. Scaled time: 27.78 units (timescale=1.951). Factorization parameters were as follows: name: KA_8_7_169 n: 30766999189174499224689468894868725545675655898997098145447140665073696881219316660229533882153414599964581869484884935996126880831097168266744485149863 type: snfs skew: 0.98 deg: 5 c5: 79 c0: -70 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 3000001) Primes: RFBsize:425648, AFBsize:426147, largePrimes:13749595 encountered Relations: rels:13289628, finalFF:1055105 Max relations in full relation-set: 28 Initial matrix: 851860 x 1055105 with sparse part having weight 108793998. Pruned matrix : Total sieving time: 13.93 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 14.24 hours. --------- CPU info (if available) ----------
The two P76s are the largest "nice split" in our tables so far. Congratulations!
(13·10193+23)/9 = 1(4)1927<194> = 17 · C192
C192 = P64 · P64 · P66
P64 = 1196455461628544734772941131559603494899791069387129434425021729<64>
P64 = 5746234301488081463418161619215684930851366835539570351147091267<64>
P66 = 123586790714944675816525046385603864129642170689196698566797580037<66>
Number: n N=849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143791 ( 192 digits) SNFS difficulty: 194 digits. Divisors found: Wed Oct 01 20:28:23 2008 prp64 factor: 1196455461628544734772941131559603494899791069387129434425021729 Wed Oct 01 20:28:23 2008 prp64 factor: 5746234301488081463418161619215684930851366835539570351147091267 Wed Oct 01 20:28:23 2008 prp66 factor: 123586790714944675816525046385603864129642170689196698566797580037 Wed Oct 01 20:28:23 2008 elapsed time 24:38:46 (Msieve 1.38) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 207.28 hours. Scaled time: 266.77 units (timescale=1.287). Factorization parameters were as follows: name: KA_1_4_192_7 n: 849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143791 type: snfs skew: 0.28 deg: 5 c5: 13000 c0: 23 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 17600001) Primes: RFBsize:633578, AFBsize:634378, largePrimes:15782300 encountered Relations: rels:16300207, finalFF:1288581 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 206.17 hours. Total relation processing time: 1.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,52,52,2.5,2.5,100000 total time: 207.28 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(25·10172+11)/9 = 2(7)1719<173> = 23981 · 53995615589<11> · 7460424273338579899<19> · 13239143598630449657<20> · C120
C120 = P57 · P64
P57 = 109489131787240102633809097207760966409512000943817713697<57>
P64 = 1983705886913857198927917859022711403667837530552000416457450961<64>
Number: 27779_172 N=217194235279435322578068101831818127012956773396156707671960089661930773720951196887833399196951403371695218091515512817 ( 120 digits) Divisors found: r1=109489131787240102633809097207760966409512000943817713697 (pp57) r2=1983705886913857198927917859022711403667837530552000416457450961 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 39.03 hours. Scaled time: 88.36 units (timescale=2.264). Factorization parameters were as follows: name: 27779_172 n: 217194235279435322578068101831818127012956773396156707671960089661930773720951196887833399196951403371695218091515512817 skew: 120743.00 # norm 2.20e+16 c5: 12540 c4: -2801895919 c3: -707820581642247 c2: 37147529845475201007 c1: 3152016688089544702881334 c0: -61311511986314671396522758936 # alpha -5.67 Y1: 5015245439623 Y0: -111612034227956946874235 # Murphy_E 2.91e-10 # M 31924727766020902462974355133718177632421051733378130399990588470417387964299356643973755470171567151060421048341657594 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2500000, 4600001) Primes: RFBsize:348513, AFBsize:348407, largePrimes:8681924 encountered Relations: rels:8873385, finalFF:860548 Max relations in full relation-set: 28 Initial matrix: 697004 x 860548 with sparse part having weight 75775813. Pruned matrix : 560161 x 563710 with weight 47440428. Polynomial selection time: 2.63 hours. Total sieving time: 34.03 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.02 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,51,51,2.4,2.4,100000 total time: 39.03 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1250k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673800) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.40 BogoMIPS (lpj=2672204) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672344)
By matsui / GMP-ECM
4·10193+9 = 4(0)1929<194> = 7 · 11437 · 13853895929<11> · 284374155722383<15> · C165
C165 = P32 · C133
P32 = 40774884715492908428204364418823<32>
C133 = [3110248167561881935201485645217781199329548107070074852028048966879022371455995745826435473920853302379411133812169289220566053640491<133>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 126820010468908806071880109357043266345981215766729369753337225868175064400665316164905372765852198104155866881930631191806135695255612601001613076169469586595362093 =40774884715492908428204364418823* 3110248167561881935201485645217781199329548107070074852028048966879022371455995745826435473920853302379411133812169289220566053640491
By Sinkiti Sibata / GGNFS
(26·10160-71)/9 = 2(8)1591<161> = 3 · C160
C160 = P70 · P91
P70 = 1094998023968034643446213026625908789762145086429066485506433912988981<70>
P91 = 8794198180133646807441422534325880565522933789319895295254625222992854439653169060283985967<91>
Number: 28881_160 N=9629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629627 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=1094998023968034643446213026625908789762145086429066485506433912988981 (pp70) r2=8794198180133646807441422534325880565522933789319895295254625222992854439653169060283985967 (pp91) Version: GGNFS-0.77.1-20050930-nocona Total time: 66.55 hours. Scaled time: 67.29 units (timescale=1.011). Factorization parameters were as follows: name: 28881_160 n: 9629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629627 m: 100000000000000000000000000000000 c5: 26 c0: -71 skew: 1.22 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4500001) Primes: RFBsize:283146, AFBsize:284453, largePrimes:6116457 encountered Relations: rels:6399110, finalFF:847689 Max relations in full relation-set: 28 Initial matrix: 567665 x 847689 with sparse part having weight 74518698. Pruned matrix : 396349 x 399251 with weight 60554454. Total sieving time: 64.50 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.87 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 66.55 hours. --------- CPU info (if available) ----------
(26·10176-71)/9 = 2(8)1751<177> = 107 · 613 · 5414231 · 10578209 · 230072970263<12> · 4597194814998215328498307<25> · C122
C122 = P41 · P82
P41 = 54750566371088487970140619870411787020199<41>
P82 = 1327976953687722400410338375555843000971594563026585227832663573259827714155008331<82>
Number: 28881_176 N=72707490342155548476515019381711751468610942138147232179566137303158185999391724808661810254764068692558145383814510277869 ( 122 digits) Divisors found: r1=54750566371088487970140619870411787020199 (pp41) r2=1327976953687722400410338375555843000971594563026585227832663573259827714155008331 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 104.16 hours. Scaled time: 79.47 units (timescale=0.763). Factorization parameters were as follows: name: 28881_176 n: 72707490342155548476515019381711751468610942138147232179566137303158185999391724808661810254764068692558145383814510277869 skew: 195914.61 # norm 6.01e+16 c5: 16920 c4: -2370698138 c3: -1945543577514837 c2: 94960906202510051988 c1: 32239981473917970843344652 c0: -350196706109857443759359141920 # alpha -6.48 Y1: 1223064843187 Y0: -336229491185560213282809 # Murphy_E 2.30e-10 # M 62554245738941506985845956102807922475403985619745266129749410940345544183912752389781863871923413333511066297556897473815 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5560001) Primes: RFBsize:348513, AFBsize:347798, largePrimes:7893977 encountered Relations: rels:8200076, finalFF:872826 Max relations in full relation-set: 28 Initial matrix: 696394 x 872826 with sparse part having weight 85171281. Pruned matrix : 554875 x 558420 with weight 58323465. Total sieving time: 98.04 hours. Total relation processing time: 0.62 hours. Matrix solve time: 5.04 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 104.16 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
5·10194-7 = 4(9)1933<195> = 17 · 1981997 · 128401228061807<15> · C174
C174 = P33 · P141
P33 = 132786590634016095535035300329071<33>
P141 = 870351520581469776388414556682719376942987278061824153278788586760800351254966171514056538147644847695340761111994287303596157877520893178381<141>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=2621838758 Step 1 took 99259ms Step 2 took 29938ms ********** Factor found in step 2: 132786590634016095535035300329071 Found probable prime factor of 33 digits: 132786590634016095535035300329071 Probable prime cofactor 870351520581469776388414556682719376942987278061824153278788586760800351254966171514056538147644847695340761111994287303596157877520893178381 has 141 digits
By Justin Card / ggnfs/msieve 1.38
(10181+17)/9 = (1)1803<181> = 3 · 157 · 1217 · 158606909 · 387812569 · 1081691731937760857100887471929643<34> · C125
C125 = P46 · P79
P46 = 7385184232314750943068830580286922326162032853<46>
P79 = 3944910724671705496959005657530034323166977886486088453196723251979037296752101<79>
Number: 11113_181 N=29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153 ( 125 digits) Divisors found: r1=7385184232314750943068830580286922326162032853 r2=3944910724671705496959005657530034323166977886486088453196723251979037296752101 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.096). Factorization parameters were as follows: name: 11113_181 n: 29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153 skew: 59306.55 # norm 1.20e+17 c5: 81240 c4: -26753789998 c3: 2671095956360131 c2: 181566292555311624899 c1: -2830291977228100294497705 c0: 6437501435799513345248142525 # alpha -5.47 Y1: 34134483791353 Y0: -814567199780845767882556 # Murphy_E 1.44e-10 # M 11523274213504150547440140399716556813368765874185185755558534481244351005830591973008858940401959649125501491092593456176972 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [4000000, 8300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 977398 x 977646 Total sieving time: 39.40 hours. Total relation processing time: 1.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.16 hours. total time: 44.73 hours. --------- CPU info (if available) ---------- [ 27.172216] Memory: 3055428k/3111872k available (2523k kernel code, 56056k reserved, 1328k data, 328k init) [ 27.318604] Calibrating delay using timer specific routine.. 3982.80 BogoMIPS (lpj=19914039) [ 28.066173] Calibrating delay using timer specific routine.. 3979.59 BogoMIPS (lpj=19897994)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(25·10181-43)/9 = 2(7)1803<182> = 199 · C180
C180 = P84 · P96
P84 = 737914540865569522516610635268562488832829093976632609420812249119634895894823895649<84>
P96 = 189163941450691415519843770805049671097893785124964204776656846922107400108917180888501599597323<96>
Number: n N=139586823003908431044109436069235064209938581797878280290340591848129536571747627024008933556672250139586823003908431044109436069235064209938581797878280290340591848129536571747627 ( 180 digits) SNFS difficulty: 182 digits. Divisors found: Tue Sep 30 07:28:26 2008 prp84 factor: 737914540865569522516610635268562488832829093976632609420812249119634895894823895649 Tue Sep 30 07:28:27 2008 prp96 factor: 189163941450691415519843770805049671097893785124964204776656846922107400108917180888501599597323 Tue Sep 30 07:28:27 2008 elapsed time 04:32:32 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.65 hours. Scaled time: 89.27 units (timescale=2.045). Factorization parameters were as follows: name: KA_2_7_180_3 n: 139586823003908431044109436069235064209938581797878280290340591848129536571747627024008933556672250139586823003908431044109436069235064209938581797878280290340591848129536571747627 type: snfs skew: 0.70 deg: 5 c5: 250 c0: -43 m: 1000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 3700001) Primes: RFBsize:539777, AFBsize:540260, largePrimes:13819945 encountered Relations: rels:13443130, finalFF:1142439 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.32 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 43.65 hours. --------- CPU info (if available) ----------
(8·10170-71)/9 = (8)1691<170> = 3 · 10039 · 716789 · 2965043 · C154
C154 = P69 · P85
P69 = 443198506540851385333367717395890976633598570600406398617488535633577<69>
P85 = 3133395045463270610737589355782572374210977477082636826967676595220533524174375587867<85>
Number: n N=1388716004551824663688127790977244167305559219887100242841409051448755631839236069068098714742279970502100643048354646251438202731220208003585966679010259 ( 154 digits) SNFS difficulty: 170 digits. Divisors found: Tue Sep 30 17:22:35 2008 prp69 factor: 443198506540851385333367717395890976633598570600406398617488535633577 Tue Sep 30 17:22:35 2008 prp85 factor: 3133395045463270610737589355782572374210977477082636826967676595220533524174375587867 Tue Sep 30 17:22:35 2008 elapsed time 01:58:27 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.00 hours. Scaled time: 14.26 units (timescale=2.038). Factorization parameters were as follows: name: KA_8_169_1 n: 1388716004551824663688127790977244167305559219887100242841409051448755631839236069068098714742279970502100643048354646251438202731220208003585966679010259 type: snfs skew: 1.55 deg: 5 c5: 8 c0: -71 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 1700001) Primes: RFBsize:425648, AFBsize:425953, largePrimes:12556966 encountered Relations: rels:11858449, finalFF:922632 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 6.74 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,52,52,2.5,2.5,100000 total time: 7.00 hours. --------- CPU info (if available) ----------
2·10171-7 = 1(9)1703<172> = 69542053866301<14> · C158
C158 = P37 · P122
P37 = 2207526515260409521358128631916321637<37>
P122 = 13027964122020918758541442567091441481729149610702735659626025690125388966404642417856907478360011684956625601358894013289<122>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 28759576239222479445427457166769989217459420861873120828607886411638715838759733339575181195652664367341890322210548946242344000418152022255576564125476234093 (158 digits) Using B1=990000, B2=1045563762, polynomial Dickson(6), sigma=38349962 Step 1 took 12640ms Step 2 took 6438ms ********** Factor found in step 2: 2207526515260409521358128631916321637 Found probable prime factor of 37 digits: 2207526515260409521358128631916321637 Probable prime cofactor 13027964122020918758541442567091441481729149610702735659626025690125388966404642417856907478360011684956625601358894013289 has 122 digits
By Sinkiti Sibata / GGNFS
(26·10163-71)/9 = 2(8)1621<164> = 3 · 7 · 17482589 · 742458152998064175019<21> · C135
C135 = P41 · P94
P41 = 82040906752589392506124571605912668180523<41>
P94 = 1291824044130121762655087841332987925302619521194453123869004000921846867381372572710987124377<94>
Number: 28881_163 N=105982415945232243895233769180678939994479004894602568437992066771945436505597759901254384722787348132133665169458489655421436489909171 ( 135 digits) SNFS difficulty: 164 digits. Divisors found: r1=82040906752589392506124571605912668180523 (pp41) r2=1291824044130121762655087841332987925302619521194453123869004000921846867381372572710987124377 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 92.11 hours. Scaled time: 92.66 units (timescale=1.006). Factorization parameters were as follows: name: 28881_163 n: 105982415945232243895233769180678939994479004894602568437992066771945436505597759901254384722787348132133665169458489655421436489909171 m: 200000000000000000000000000000000 c5: 1625 c0: -142 skew: 0.61 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5800001) Primes: RFBsize:348513, AFBsize:347822, largePrimes:6128209 encountered Relations: rels:6437711, finalFF:928519 Max relations in full relation-set: 28 Initial matrix: 696401 x 928519 with sparse part having weight 64868998. Pruned matrix : 512907 x 516453 with weight 47758086. Total sieving time: 89.49 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.41 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 92.11 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM
4·10198+3 = 4(0)1973<199> = 73 · 499 · 6623605628946997<16> · 1337219835698580307<19> · C160
C160 = P38 · P123
P38 = 22355415272513896662048780081754279783<38>
P123 = 118028070472771437685486920896484037107828428621451610964475648743976065340805709497284979806314122890506877033820039746847<123>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 2638566529232341089643546066807989595166818810117536594989975833327270688254378755998477840372259078317921239139584373535543895418449639572065879395910130094201 =22355415272513896662048780081754279783* 118028070472771437685486920896484037107828428621451610964475648743976065340805709497284979806314122890506877033820039746847
By Wataru Sakai / GGNFS
(73·10194-1)/9 = 8(1)194<195> = C195
C195 = P75 · P121
P75 = 306560981981481704619439698696478142677609707817262304366101661349418983307<75>
P121 = 2645839355903771034479686515433710428643834762960463161678823519151880019097909680932155803208297225177206761675775557173<121>
Number: 81111_194 N=811111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=306560981981481704619439698696478142677609707817262304366101661349418983307 (pp75) r2=2645839355903771034479686515433710428643834762960463161678823519151880019097909680932155803208297225177206761675775557173 (pp121) Version: GGNFS-0.77.1-20060722-nocona Total time: 4907.46 hours. Scaled time: 9829.64 units (timescale=2.003). Factorization parameters were as follows: n: 811111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 1000000000000000000000000000000000000000 c5: 73 c0: -10 skew: 0.67 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 86400001) Primes: RFBsize:501962, AFBsize:502306, largePrimes:9714699 encountered Relations: rels:11320200, finalFF:1140454 Max relations in full relation-set: 32 Initial matrix: 1004333 x 1140454 with sparse part having weight 216153670. Pruned matrix : 939585 x 944670 with weight 198992522. Total sieving time: 4888.56 hours. Total relation processing time: 0.95 hours. Matrix solve time: 17.53 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 4907.46 hours. --------- CPU info (if available) ----------
(16·10190+11)/9 = 1(7)1899<191> = 163 · C189
C189 = P59 · P130
P59 = 15893897701210748826466356818360065080329541721568770733123<59>
P130 = 6862138122843942847791922085053418154936259828171101678155392075764498344425374075168875066509622240658600914959115020089323939771<130>
Number: 17779_190 N=109066121336059986366734832992501704158145875937286980231765507839127471029311520109066121336059986366734832992501704158145875937286980231765507839127471029311520109066121336059986366734833 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=15893897701210748826466356818360065080329541721568770733123 (pp59) r2=6862138122843942847791922085053418154936259828171101678155392075764498344425374075168875066509622240658600914959115020089323939771 (pp130) Version: GGNFS-0.77.1-20060722-nocona Total time: 1211.20 hours. Scaled time: 2426.02 units (timescale=2.003). Factorization parameters were as follows: n: 109066121336059986366734832992501704158145875937286980231765507839127471029311520109066121336059986366734832992501704158145875937286980231765507839127471029311520109066121336059986366734833 m: 200000000000000000000000000000000000000 c5: 1 c0: 22 skew: 1.86 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 20600001) Primes: RFBsize:501962, AFBsize:502487, largePrimes:7199292 encountered Relations: rels:7802974, finalFF:1170083 Max relations in full relation-set: 32 Initial matrix: 1004513 x 1170083 with sparse part having weight 143400992. Pruned matrix : 885927 x 891013 with weight 123578297. Total sieving time: 1199.45 hours. Total relation processing time: 0.14 hours. Matrix solve time: 11.33 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1211.20 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10162-71)/9 = 2(8)1611<163> = 1605341 · C157
C157 = P44 · P56 · P57
P44 = 34840843885409601679480678418650111005563801<44>
P56 = 65612945889179070840638882215639321183998522259344767579<56>
P57 = 787200458193689081759211506325782501478201241604278678679<57>
Number: 28881_162 N=1799548437926203148669901839477649227727248534042853754366760014781214015519997862690162955340260348978122958853532607021741106026002505940413213696584643941 ( 157 digits) SNFS difficulty: 163 digits. Divisors found: r1=34840843885409601679480678418650111005563801 (pp44) r2=65612945889179070840638882215639321183998522259344767579 (pp56) r3=787200458193689081759211506325782501478201241604278678679 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 77.77 hours. Scaled time: 78.40 units (timescale=1.008). Factorization parameters were as follows: name: 28881_162 n: 1799548437926203148669901839477649227727248534042853754366760014781214015519997862690162955340260348978122958853532607021741106026002505940413213696584643941 m: 100000000000000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5150001) Primes: RFBsize:315948, AFBsize:315767, largePrimes:5897191 encountered Relations: rels:5994983, finalFF:717928 Max relations in full relation-set: 28 Initial matrix: 631782 x 717928 with sparse part having weight 56111003. Pruned matrix : 571221 x 574443 with weight 42764962. Total sieving time: 74.92 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.65 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 77.77 hours. --------- CPU info (if available) ----------
(26·10155-71)/9 = 2(8)1541<156> = 761 · 54499 · 30564664990261253<17> · C132
C132 = P47 · P85
P47 = 63836161460698741419691880404514945920853927423<47>
P85 = 3570024888040223758946915583946688879184055497902878240186964550332918034067683819241<85>
Number: 28881_155 N=227896685171648671109267995127880791600813825571543173727625987550571717872159185551505336201973631147175443328833813898063264945943 ( 132 digits) SNFS difficulty: 156 digits. Divisors found: r1=63836161460698741419691880404514945920853927423 (pp47) r2=3570024888040223758946915583946688879184055497902878240186964550332918034067683819241 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 42.65 hours. Scaled time: 33.26 units (timescale=0.780). Factorization parameters were as follows: name: 28881_155 n: 227896685171648671109267995127880791600813825571543173727625987550571717872159185551505336201973631147175443328833813898063264945943 m: 10000000000000000000000000000000 c5: 26 c0: -71 skew: 1.22 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3000001) Primes: RFBsize:216816, AFBsize:218152, largePrimes:5706068 encountered Relations: rels:5661084, finalFF:528212 Max relations in full relation-set: 28 Initial matrix: 435034 x 528212 with sparse part having weight 46997049. Pruned matrix : 392905 x 395144 with weight 32227067. Total sieving time: 40.43 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.94 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 42.65 hours. --------- CPU info (if available) ----------
(26·10134-71)/9 = 2(8)1331<135> = 1801897 · 265450281363670856539<21> · C108
C108 = P49 · P60
P49 = 2151771244658802648860981132723919893684815718567<49>
P60 = 280686539850995217773316080340193459612811030104024615577821<60>
Number: 28881_134 N=603973225214148590339598242124486865273569787328277014085649480739015184344731316431305397368734430023102507 ( 108 digits) Divisors found: r1=2151771244658802648860981132723919893684815718567 (pp49) r2=280686539850995217773316080340193459612811030104024615577821 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 19.00 hours. Scaled time: 8.97 units (timescale=0.472). Factorization parameters were as follows: name: 28881_134 n: 603973225214148590339598242124486865273569787328277014085649480739015184344731316431305397368734430023102507 skew: 9031.63 # norm 8.65e+14 c5: 132480 c4: -9655136832 c3: 3073901148074 c2: 788244391354358951 c1: 755654046763763982904 c0: -3914555308130336395968572 # alpha -6.44 Y1: 184659791063 Y0: -340233371806463795427 # Murphy_E 1.39e-09 # M 528174875071408094852850298995715238680787298333444263874278964954547222542074420587388804359136793122955655 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182771, largePrimes:4380791 encountered Relations: rels:4391242, finalFF:413456 Max relations in full relation-set: 28 Initial matrix: 365923 x 413456 with sparse part having weight 29385875. Pruned matrix : 328573 x 330466 with weight 19750900. Total sieving time: 15.57 hours. Total relation processing time: 0.29 hours. Matrix solve time: 2.92 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 19.00 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38
(26·10140-71)/9 = 2(8)1391<141> = 258551 · C136
C136 = P58 · P79
P58 = 1061457857440639884285723044526980992447605343813900560013<58>
P79 = 1052644826720225490937098572168106297601845969296447812929710800726211325127987<79>
SNFS difficulty: 141 digits. Divisors found: r1=1061457857440639884285723044526980992447605343813900560013 r2=1052644826720225490937098572168106297601845969296447812929710800726211325127987 Version: Total time: 5.70 hours. Scaled time: 14.70 units (timescale=2.579). Factorization parameters were as follows: n: 1117338122416424182806830717687763299654183851112116715421285892875637258757030098080799876577112016154990268414699184643992438199383831 Y1: 1 Y0: -10000000000000000000000000000 c5: 26 c0: -71 skew: 1.22 type: snfs lss: 1 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [650000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 215541 x 215782 Total sieving time: 5.70 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 5.70 hours.
By Robert Backstrom / GGNFS, Msieve
5·10181-7 = 4(9)1803<182> = 107 · 167 · C178
C178 = P79 · P99
P79 = 5349247229374462217450139738261038814734050044867358474115901989701104007451021<79>
P99 = 523090803940434651997243625173949810907397035980386998037130621336689305210083737010025418468122257<99>
Number: n N=2798142033689630085623146230902680620068274665622026974089204768034025407129665901841177458167776596340030219933963848004924729979293748950696737366388717891320163411494767474397 ( 178 digits) SNFS difficulty: 181 digits. Divisors found: Sun Sep 28 04:54:25 2008 prp79 factor: 5349247229374462217450139738261038814734050044867358474115901989701104007451021 Sun Sep 28 04:54:25 2008 prp99 factor: 523090803940434651997243625173949810907397035980386998037130621336689305210083737010025418468122257 Sun Sep 28 04:54:25 2008 elapsed time 05:08:16 (Msieve 1.38) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.26 hours. Scaled time: 83.51 units (timescale=1.976). Factorization parameters were as follows: name: KA_4_9_180_3 n: 2798142033689630085623146230902680620068274665622026974089204768034025407129665901841177458167776596340030219933963848004924729979293748950696737366388717891320163411494767474397 type: snfs skew: 0.67 deg: 5 c5: 50 c0: -7 m: 1000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 4500001) Primes: RFBsize:539777, AFBsize:540740, largePrimes:13860963 encountered Relations: rels:13460271, finalFF:1117649 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 41.94 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 42.26 hours. --------- CPU info (if available) ----------
By Justin Card / msieve 1.38
(26·10126-71)/9 = 2(8)1251<127> = 401 · 3354622878026888455049<22> · C103
C103 = P44 · P60
P44 = 16283299902589791600249813240195129893581187<44>
P60 = 131886498973573202679378662889306990910980844571318172595187<60>
Number: 28881_126 N=2147547415889293181059921809418318585188055202701289383214912889185222223648914042877205066401069946969 ( 103 digits) SNFS difficulty: 127 digits. Divisors found: r1=16283299902589791600249813240195129893581187 r2=131886498973573202679378662889306990910980844571318172595187 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.090). Factorization parameters were as follows: n: 2147547415889293181059921809418318585188055202701289383214912889185222223648914042877205066401069946969 Y1: 1 Y0: -10000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 131945 x 132185 Total sieving time: 1.22 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours.
(26·10124-71)/9 = 2(8)1231<125> = 3 · 163 · 57162358247<11> · 4863987289960456051<19> · C93
C93 = P44 · P49
P44 = 82711241811099317326869797485718892733761469<44>
P49 = 2568945372540053678056380379294551958469473628953<49>
Sat Sep 27 00:44:53 2008 Sat Sep 27 00:44:53 2008 Sat Sep 27 00:44:53 2008 Msieve v. 1.38 Sat Sep 27 00:44:53 2008 random seeds: 5731128c 633662a3 Sat Sep 27 00:44:53 2008 factoring 212480661907664999835916436228413132121070297399683627848151251731890808162658241713314211957 (93 digits) Sat Sep 27 00:44:55 2008 no P-1/P+1/ECM available, skipping Sat Sep 27 00:44:55 2008 commencing quadratic sieve (93-digit input) Sat Sep 27 00:44:55 2008 using multiplier of 37 Sat Sep 27 00:44:55 2008 using 64kb Athlon XP sieve core Sat Sep 27 00:44:55 2008 sieve interval: 18 blocks of size 65536 Sat Sep 27 00:44:55 2008 processing polynomials in batches of 6 Sat Sep 27 00:44:55 2008 using a sieve bound of 1883627 (70588 primes) Sat Sep 27 00:44:55 2008 using large prime bound of 220384359 (27 bits) Sat Sep 27 00:44:55 2008 using double large prime bound of 1041658353184527 (42-50 bits) Sat Sep 27 00:44:55 2008 using trial factoring cutoff of 50 bits Sat Sep 27 00:44:55 2008 polynomial 'A' values have 12 factors Sat Sep 27 11:40:31 2008 Sat Sep 27 11:40:31 2008 Sat Sep 27 11:40:31 2008 Msieve v. 1.38 Sat Sep 27 11:40:31 2008 random seeds: 367b5676 c75d7466 Sat Sep 27 11:40:31 2008 factoring 212480661907664999835916436228413132121070297399683627848151251731890808162658241713314211957 (93 digits) Sat Sep 27 11:40:32 2008 no P-1/P+1/ECM available, skipping Sat Sep 27 11:40:32 2008 commencing quadratic sieve (93-digit input) Sat Sep 27 11:40:33 2008 using multiplier of 37 Sat Sep 27 11:40:33 2008 using 64kb Athlon XP sieve core Sat Sep 27 11:40:33 2008 sieve interval: 18 blocks of size 65536 Sat Sep 27 11:40:33 2008 processing polynomials in batches of 6 Sat Sep 27 11:40:33 2008 using a sieve bound of 1883627 (70588 primes) Sat Sep 27 11:40:33 2008 using large prime bound of 220384359 (27 bits) Sat Sep 27 11:40:33 2008 using double large prime bound of 1041658353184527 (42-50 bits) Sat Sep 27 11:40:33 2008 using trial factoring cutoff of 50 bits Sat Sep 27 11:40:33 2008 polynomial 'A' values have 12 factors Sat Sep 27 11:40:37 2008 restarting with 12109 full and 628657 partial relations Sat Sep 27 14:00:31 2008 71068 relations (17856 full + 53212 combined from 924337 partial), need 70684 Sat Sep 27 14:00:32 2008 begin with 942193 relations Sat Sep 27 14:00:34 2008 reduce to 180710 relations in 10 passes Sat Sep 27 14:00:34 2008 attempting to read 180710 relations Sat Sep 27 14:00:39 2008 recovered 180710 relations Sat Sep 27 14:00:39 2008 recovered 163046 polynomials Sat Sep 27 14:00:40 2008 attempting to build 71068 cycles Sat Sep 27 14:00:40 2008 found 71068 cycles in 6 passes Sat Sep 27 14:00:40 2008 distribution of cycle lengths: Sat Sep 27 14:00:40 2008 length 1 : 17856 Sat Sep 27 14:00:40 2008 length 2 : 13079 Sat Sep 27 14:00:40 2008 length 3 : 12068 Sat Sep 27 14:00:40 2008 length 4 : 9612 Sat Sep 27 14:00:40 2008 length 5 : 7147 Sat Sep 27 14:00:40 2008 length 6 : 4619 Sat Sep 27 14:00:40 2008 length 7 : 2916 Sat Sep 27 14:00:41 2008 length 9+: 3771 Sat Sep 27 14:00:41 2008 largest cycle: 18 relations Sat Sep 27 14:00:41 2008 matrix is 70588 x 71068 (17.9 MB) with weight 4411696 (62.08/col) Sat Sep 27 14:00:41 2008 sparse part has weight 4411696 (62.08/col) Sat Sep 27 14:00:44 2008 filtering completed in 3 passes Sat Sep 27 14:00:44 2008 matrix is 66723 x 66786 (16.9 MB) with weight 4156271 (62.23/col) Sat Sep 27 14:00:44 2008 sparse part has weight 4156271 (62.23/col) Sat Sep 27 14:00:46 2008 saving the first 48 matrix rows for later Sat Sep 27 14:00:46 2008 matrix is 66675 x 66786 (10.3 MB) with weight 3184238 (47.68/col) Sat Sep 27 14:00:46 2008 sparse part has weight 2309093 (34.57/col) Sat Sep 27 14:00:46 2008 matrix includes 64 packed rows Sat Sep 27 14:00:46 2008 using block size 10922 for processor cache size 256 kB Sat Sep 27 14:00:47 2008 commencing Lanczos iteration Sat Sep 27 14:00:47 2008 memory use: 10.3 MB Sat Sep 27 14:25:49 2008 Sat Sep 27 14:25:49 2008 Sat Sep 27 14:25:49 2008 Msieve v. 1.38 Sat Sep 27 14:25:49 2008 random seeds: 6394e89c b1852f11 Sat Sep 27 14:25:49 2008 factoring 212480661907664999835916436228413132121070297399683627848151251731890808162658241713314211957 (93 digits) Sat Sep 27 14:25:51 2008 no P-1/P+1/ECM available, skipping Sat Sep 27 14:25:51 2008 commencing quadratic sieve (93-digit input) Sat Sep 27 14:25:51 2008 using multiplier of 37 Sat Sep 27 14:25:51 2008 using 64kb Athlon XP sieve core Sat Sep 27 14:25:51 2008 sieve interval: 18 blocks of size 65536 Sat Sep 27 14:25:51 2008 processing polynomials in batches of 6 Sat Sep 27 14:25:51 2008 using a sieve bound of 1883627 (70588 primes) Sat Sep 27 14:25:51 2008 using large prime bound of 220384359 (27 bits) Sat Sep 27 14:25:51 2008 using double large prime bound of 1041658353184527 (42-50 bits) Sat Sep 27 14:25:51 2008 using trial factoring cutoff of 50 bits Sat Sep 27 14:25:51 2008 polynomial 'A' values have 12 factors Sat Sep 27 14:25:54 2008 restarting with 17856 full and 924337 partial relations Sat Sep 27 14:25:54 2008 71068 relations (17856 full + 53212 combined from 924337 partial), need 70684 Sat Sep 27 14:25:55 2008 begin with 942193 relations Sat Sep 27 14:25:58 2008 reduce to 180710 relations in 10 passes Sat Sep 27 14:25:58 2008 attempting to read 180710 relations Sat Sep 27 14:26:03 2008 recovered 180710 relations Sat Sep 27 14:26:03 2008 recovered 163046 polynomials Sat Sep 27 14:26:03 2008 attempting to build 71068 cycles Sat Sep 27 14:26:04 2008 found 71068 cycles in 6 passes Sat Sep 27 14:26:04 2008 distribution of cycle lengths: Sat Sep 27 14:26:04 2008 length 1 : 17856 Sat Sep 27 14:26:04 2008 length 2 : 13079 Sat Sep 27 14:26:04 2008 length 3 : 12068 Sat Sep 27 14:26:04 2008 length 4 : 9612 Sat Sep 27 14:26:04 2008 length 5 : 7147 Sat Sep 27 14:26:04 2008 length 6 : 4619 Sat Sep 27 14:26:04 2008 length 7 : 2916 Sat Sep 27 14:26:04 2008 length 9+: 3771 Sat Sep 27 14:26:04 2008 largest cycle: 18 relations Sat Sep 27 14:26:04 2008 matrix is 70588 x 71068 (17.9 MB) with weight 4411696 (62.08/col) Sat Sep 27 14:26:04 2008 sparse part has weight 4411696 (62.08/col) Sat Sep 27 14:26:08 2008 filtering completed in 3 passes Sat Sep 27 14:26:08 2008 matrix is 66723 x 66786 (16.9 MB) with weight 4156271 (62.23/col) Sat Sep 27 14:26:08 2008 sparse part has weight 4156271 (62.23/col) Sat Sep 27 14:26:09 2008 saving the first 48 matrix rows for later Sat Sep 27 14:26:09 2008 matrix is 66675 x 66786 (10.3 MB) with weight 3184238 (47.68/col) Sat Sep 27 14:26:09 2008 sparse part has weight 2309093 (34.57/col) Sat Sep 27 14:26:09 2008 matrix includes 64 packed rows Sat Sep 27 14:26:09 2008 using block size 10922 for processor cache size 256 kB Sat Sep 27 14:26:10 2008 commencing Lanczos iteration Sat Sep 27 14:26:10 2008 memory use: 10.3 MB Sat Sep 27 14:27:52 2008 lanczos halted after 1056 iterations (dim = 66674) Sat Sep 27 14:27:53 2008 recovered 17 nontrivial dependencies Sat Sep 27 14:27:54 2008 prp44 factor: 82711241811099317326869797485718892733761469 Sat Sep 27 14:27:54 2008 prp49 factor: 2568945372540053678056380379294551958469473628953 Sat Sep 27 14:27:54 2008 elapsed time 00:02:05
By Jo Yeong Uk / GMP-ECM, GGNFS
(26·10165-71)/9 = 2(8)1641<166> = 17 · 13309 · 71671 · 101477581746372523<18> · C139
C139 = P37 · P102
P37 = 1787383004449952594789773835754260083<37>
P102 = 982212133326409521576440542949381649398350348153586585505016074608770961266853317136037014383074679043<102>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1755589273872155261233718370285448343873266326860841413940094147862817828579285028494983879753180712516018684386238936660834341115171540569 (139 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1501512258 Step 1 took 4703ms Step 2 took 2604ms ********** Factor found in step 2: 1787383004449952594789773835754260083 Found probable prime factor of 37 digits: 1787383004449952594789773835754260083 Probable prime cofactor 982212133326409521576440542949381649398350348153586585505016074608770961266853317136037014383074679043 has 102 digits
(13·10179+41)/9 = 1(4)1789<180> = 23 · 42015451969<11> · 78770911838628725351<20> · 46992713266751930707073011577<29> · C119
C119 = P53 · P67
P53 = 30311897398836633926595718252104305336929992466250467<53>
P67 = 1332154054820807868883060706294827597729163358841002375824024699203<67>
Number: 14449_179 N=40380117029172520674769513188321069808478594187938313449637188262684915551986256553904977186681940701330222198933277801 ( 119 digits) Divisors found: r1=30311897398836633926595718252104305336929992466250467 (pp53) r2=1332154054820807868883060706294827597729163358841002375824024699203 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 34.61 hours. Scaled time: 82.51 units (timescale=2.384). Factorization parameters were as follows: name: 14449_179 n: 40380117029172520674769513188321069808478594187938313449637188262684915551986256553904977186681940701330222198933277801 skew: 59519.84 # norm 5.30e+16 c5: 90180 c4: 37114906902 c3: -1064109571462834 c2: -114583571740201368031 c1: 1888116932644638843692268 c0: 14072364541878315912665194068 # alpha -6.66 Y1: 10050004274557 Y0: -53728508162727730627147 # Murphy_E 3.17e-10 # M 1546977283922582777487438798546142938538458754200649131652727350868351272901527820115965843604045265077433363727393309 type: gnfs rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2100000, 4050001) Primes: RFBsize:296314, AFBsize:295837, largePrimes:7735710 encountered Relations: rels:7843064, finalFF:755394 Max relations in full relation-set: 28 Initial matrix: 592232 x 755394 with sparse part having weight 67118714. Pruned matrix : 463583 x 466608 with weight 42170854. Polynomial selection time: 2.29 hours. Total sieving time: 30.40 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.64 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4200000,4200000,27,27,50,50,2.4,2.4,75000 total time: 34.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) Calibrating delay using timer specific routine.. 5344.63 BogoMIPS (lpj=2672318) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355)
By Sinkiti Sibata / GGNFS
(26·10127-71)/9 = 2(8)1261<128> = 3 · 7 · 4177 · C123
C123 = P33 · P91
P33 = 113230714718788553945893724491447<33>
P91 = 2908592098095199284156292274582063675219090371694461454439845943319274746957258978219884619<91>
Number: 28881_127 N=329341962092740163125607224242608489675762838319697309402839687733151941914211485674257998892904327426711913185458792353693 ( 123 digits) SNFS difficulty: 128 digits. Divisors found: r1=113230714718788553945893724491447 (pp33) r2=2908592098095199284156292274582063675219090371694461454439845943319274746957258978219884619 (pp91) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 5.33 hours. Scaled time: 2.52 units (timescale=0.473). Factorization parameters were as follows: name: 28881_127 n: 329341962092740163125607224242608489675762838319697309402839687733151941914211485674257998892904327426711913185458792353693 m: 10000000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63854, largePrimes:1453713 encountered Relations: rels:1433520, finalFF:156420 Max relations in full relation-set: 28 Initial matrix: 127872 x 156420 with sparse part having weight 10645432. Pruned matrix : 118915 x 119618 with weight 6495540. Total sieving time: 5.06 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.16 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.33 hours. --------- CPU info (if available) ----------
(26·10142-71)/9 = 2(8)1411<143> = 3 · 23 · 281 · 1277 · 351887 · 1043876039<10> · C121
C121 = P54 · P67
P54 = 318812637521068164983566579422495812535445874888122847<54>
P67 = 9963154172558509622279112283921622547309975069751848442172384313887<67>
Number: 28881_142 N=3176379459782413951612104998475795623034111084218794263647507738095092102518673699145472039926316940831767873865464076289 ( 121 digits) SNFS difficulty: 143 digits. Divisors found: r1=318812637521068164983566579422495812535445874888122847 (pp54) r2=9963154172558509622279112283921622547309975069751848442172384313887 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.38 hours. Scaled time: 13.48 units (timescale=0.776). Factorization parameters were as follows: name: 28881_142 n: 3176379459782413951612104998475795623034111084218794263647507738095092102518673699145472039926316940831767873865464076289 m: 10000000000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2550001) Primes: RFBsize:100021, AFBsize:100034, largePrimes:2828558 encountered Relations: rels:2813811, finalFF:228562 Max relations in full relation-set: 28 Initial matrix: 200122 x 228562 with sparse part having weight 25448559. Pruned matrix : 192472 x 193536 with weight 20041376. Total sieving time: 16.84 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.37 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.38 hours. --------- CPU info (if available) ----------
(26·10151-71)/9 = 2(8)1501<152> = 3 · 7 · 263 · 13679 · 3226777 · 17209986945207499<17> · C121
C121 = P34 · P88
P34 = 2745596514435287531823283642891597<34>
P88 = 2507928999895546296791005056224527982607687054515900884400907699433831261610761528623203<88>
Number: 28881_151 N=6885761120564388500947561397500272791597190120780410367728327785360043793953985345335262886302990052218560958181187925191 ( 121 digits) SNFS difficulty: 152 digits. Divisors found: r1=2745596514435287531823283642891597 (pp34) r2=2507928999895546296791005056224527982607687054515900884400907699433831261610761528623203 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.07 hours. Scaled time: 31.35 units (timescale=1.009). Factorization parameters were as follows: name: 28881_151 n: 6885761120564388500947561397500272791597190120780410367728327785360043793953985345335262886302990052218560958181187925191 m: 1000000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:175109, largePrimes:6378422 encountered Relations: rels:6891323, finalFF:940324 Max relations in full relation-set: 28 Initial matrix: 351478 x 940324 with sparse part having weight 106935468. Pruned matrix : 239768 x 241589 with weight 53592392. Total sieving time: 30.17 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.73 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 31.07 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(26·10125-71)/9 = 2(8)1241<126> = 19 · 613 · 91823 · 153407 · C112
C112 = P41 · P72
P41 = 15699580490746648722017623746645943623109<41>
P72 = 112158465934766181512722569942161506774982710985048339315616976232886227<72>
Number: 28881_125 N=1760840863661527731242588303029745571382012232491529812649018974750700959809037491808401556805124013624565019743 ( 112 digits) SNFS difficulty: 126 digits. Divisors found: r1=15699580490746648722017623746645943623109 (pp41) r2=112158465934766181512722569942161506774982710985048339315616976232886227 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.95 hours. Scaled time: 1.87 units (timescale=0.473). Factorization parameters were as follows: name: 28881_125 n: 1760840863661527731242588303029745571382012232491529812649018974750700959809037491808401556805124013624565019743 m: 10000000000000000000000000 c5: 26 c0: -71 skew: 1.22 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:64324, largePrimes:2208963 encountered Relations: rels:2289393, finalFF:185176 Max relations in full relation-set: 28 Initial matrix: 113488 x 185176 with sparse part having weight 18384705. Pruned matrix : 101189 x 101820 with weight 7567708. Total sieving time: 3.68 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.15 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.95 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM
(26·10133-71)/9 = 2(8)1321<134> = 3 · 72 · 17 · 151 · 1061 · 37783 · 99011812111<11> · C110
C110 = P43 · P67
P43 = 1965547559984367689019258871317555515695451<43>
P67 = 9813077914068196935358138454323876101771621519472202609560133578483<67>
Number: n N=19288071349933233074261710240111886312422696827531398603739748930210286351177246600319447391698166441034580833 ( 110 digits) SNFS difficulty: 134 digits. Divisors found: r1=1965547559984367689019258871317555515695451 (pp43) r2=9813077914068196935358138454323876101771621519472202609560133578483 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.06 hours. Scaled time: 5.58 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_8_132_1 n: 19288071349933233074261710240111886312422696827531398603739748930210286351177246600319447391698166441034580833 type: snfs skew: 0.31 deg: 5 c5: 26000 c0: -71 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [100000, 540001) Primes: RFBsize:71274, AFBsize:71446, largePrimes:6627165 encountered Relations: rels:5704800, finalFF:179357 Max relations in full relation-set: 48 Initial matrix: 142787 x 179357 with sparse part having weight 22618482. Pruned matrix : 132920 x 133697 with weight 12851718. Total sieving time: 2.80 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.13 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,900000,900000,28,28,52,52,2.5,2.5,75000 total time: 3.06 hours. --------- CPU info (if available) ----------
(26·10138-71)/9 = 2(8)1371<139> = 120949069 · 41467906931283023773<20> · C111
C111 = P35 · P77
P35 = 35541916653799466686224456599258869<35>
P77 = 16205981899812491349119706433005180738013612088106238598294885611831440295477<77>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 575991657976118306505152747026865159701331253253282035051336670437456519531720961945340575972665515620572835513 (111 digits) Using B1=962000, B2=871244232, polynomial Dickson(3), sigma=110969026 Step 1 took 7547ms Step 2 took 3375ms ********** Factor found in step 2: 35541916653799466686224456599258869 Found probable prime factor of 35 digits: 35541916653799466686224456599258869 Probable prime cofactor 16205981899812491349119706433005180738013612088106238598294885611831440295477 has 77 digits
By Sinkiti Sibata / GGNFS
(2·10167+43)/9 = (2)1667<167> = 3 · 43577 · 6890591 · 114764843449205755577<21> · C135
C135 = P53 · P83
P53 = 11279471825173337406649938800073870329587734408745733<53>
P83 = 19057011588196652779014261179465989128269937645311151180852735600411117204477421907<83>
Number: 22227_167 N=214953025281065940547395149502201290586118762475115084677179939782782050610010468173133158100944549423320604633635433583123437326972831 ( 135 digits) SNFS difficulty: 167 digits. Divisors found: r1=11279471825173337406649938800073870329587734408745733 (pp53) r2=19057011588196652779014261179465989128269937645311151180852735600411117204477421907 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 115.79 hours. Scaled time: 116.48 units (timescale=1.006). Factorization parameters were as follows: name: 22227_167 n: 214953025281065940547395149502201290586118762475115084677179939782782050610010468173133158100944549423320604633635433583123437326972831 m: 1000000000000000000000000000000000 c5: 200 c0: 43 skew: 0.74 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 6850001) Primes: RFBsize:380800, AFBsize:380632, largePrimes:6097586 encountered Relations: rels:6324207, finalFF:873305 Max relations in full relation-set: 28 Initial matrix: 761497 x 873305 with sparse part having weight 61105444. Pruned matrix : 674396 x 678267 with weight 45815347. Total sieving time: 111.93 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.64 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 115.79 hours. --------- CPU info (if available) ----------
(26·10136-71)/9 = 2(8)1351<137> = 3 · 2741 · C133
C133 = P47 · P86
P47 = 92372285975211434631537057344098560567670446839<47>
P86 = 38032848797379633248033194711881967676062087393154102007966129723213945990007458206473<86>
Number: 28881_136 N=3513181185563527774399718945505154917778048022484359587606577756158201251232991473779507343899901360682097639412488007891145432188847 ( 133 digits) SNFS difficulty: 137 digits. Divisors found: r1=92372285975211434631537057344098560567670446839 (pp47) r2=38032848797379633248033194711881967676062087393154102007966129723213945990007458206473 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.79 hours. Scaled time: 10.05 units (timescale=0.786). Factorization parameters were as follows: name: 28881_136 n: 3513181185563527774399718945505154917778048022484359587606577756158201251232991473779507343899901360682097639412488007891145432188847 m: 1000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2125001) Primes: RFBsize:78498, AFBsize:63419, largePrimes:1663569 encountered Relations: rels:1683191, finalFF:159116 Max relations in full relation-set: 28 Initial matrix: 141984 x 159116 with sparse part having weight 17826188. Pruned matrix : 137921 x 138694 with weight 14425970. Total sieving time: 12.53 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.79 hours. --------- CPU info (if available) ----------
(26·10146-71)/9 = 2(8)1451<147> = 17681 · 23242459 · C135
C135 = P56 · P80
P56 = 17943666279248153726359854426579738150064948201372651529<56>
P80 = 39176962177511276591329105438819030419134508058060721100657357913796416293078491<80>
Number: 28881_146 N=702978335147989415065882633006451840646443720183542402084529045134097378966611414274165384547692051817047065827290671468580902788162739 ( 135 digits) SNFS difficulty: 147 digits. Divisors found: r1=17943666279248153726359854426579738150064948201372651529 (pp56) r2=39176962177511276591329105438819030419134508058060721100657357913796416293078491 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 28.94 hours. Scaled time: 29.20 units (timescale=1.009). Factorization parameters were as follows: name: 28881_146 n: 702978335147989415065882633006451840646443720183542402084529045134097378966611414274165384547692051817047065827290671468580902788162739 m: 100000000000000000000000000000 c5: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4850001) Primes: RFBsize:114155, AFBsize:113433, largePrimes:3262406 encountered Relations: rels:3446743, finalFF:323228 Max relations in full relation-set: 28 Initial matrix: 227655 x 323228 with sparse part having weight 43074247. Pruned matrix : 205449 x 206651 with weight 27908579. Total sieving time: 28.49 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.33 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 28.94 hours. --------- CPU info (if available) ----------
By Justin Card / msieve 1.38
(26·10110-71)/9 = 2(8)1091<111> = 127 · 1951 · 7886623688988353<16> · C90
C90 = P37 · P53
P37 = 9671736314603461057887965599847505751<37>
P53 = 15285311076956761976885931758180371769621907771691351<53>
Fri Sep 26 23:47:52 2008 Msieve v. 1.38 Fri Sep 26 23:47:52 2008 random seeds: 7df286b6 f127304e Fri Sep 26 23:47:52 2008 factoring 147835498223013253412349061166493597442944842892249770825188005060303286665934263969459601 (90 digits) Fri Sep 26 23:47:52 2008 no P-1/P+1/ECM available, skipping Fri Sep 26 23:47:52 2008 commencing quadratic sieve (90-digit input) Fri Sep 26 23:47:52 2008 using multiplier of 1 Fri Sep 26 23:47:52 2008 using 64kb Opteron sieve core Fri Sep 26 23:47:52 2008 sieve interval: 18 blocks of size 65536 Fri Sep 26 23:47:52 2008 processing polynomials in batches of 6 Fri Sep 26 23:47:52 2008 using a sieve bound of 1575281 (59491 primes) Fri Sep 26 23:47:52 2008 using large prime bound of 126022480 (26 bits) Fri Sep 26 23:47:52 2008 using double large prime bound of 380896014563600 (42-49 bits) Fri Sep 26 23:47:52 2008 using trial factoring cutoff of 49 bits Fri Sep 26 23:47:52 2008 polynomial 'A' values have 11 factors Fri Sep 26 23:47:53 2008 restarting with 760 full and 30262 partial relations Sat Sep 27 01:12:36 2008 59841 relations (15780 full + 44061 combined from 636896 partial), need 59587 Sat Sep 27 01:12:36 2008 begin with 652676 relations Sat Sep 27 01:12:37 2008 reduce to 147025 relations in 10 passes Sat Sep 27 01:12:37 2008 attempting to read 147025 relations Sat Sep 27 01:12:38 2008 failed to read relation 88569 Sat Sep 27 01:12:38 2008 recovered 147024 relations Sat Sep 27 01:12:38 2008 recovered 124630 polynomials Sat Sep 27 01:12:38 2008 attempting to build 59840 cycles Sat Sep 27 01:12:38 2008 found 59840 cycles in 5 passes Sat Sep 27 01:12:38 2008 distribution of cycle lengths: Sat Sep 27 01:12:38 2008 length 1 : 15780 Sat Sep 27 01:12:38 2008 length 2 : 11165 Sat Sep 27 01:12:38 2008 length 3 : 10262 Sat Sep 27 01:12:38 2008 length 4 : 8151 Sat Sep 27 01:12:38 2008 length 5 : 5865 Sat Sep 27 01:12:38 2008 length 6 : 3768 Sat Sep 27 01:12:38 2008 length 7 : 2170 Sat Sep 27 01:12:38 2008 length 9+: 2679 Sat Sep 27 01:12:38 2008 largest cycle: 17 relations Sat Sep 27 01:12:39 2008 matrix is 59491 x 59840 (15.7 MB) with weight 3627865 (60.63/col) Sat Sep 27 01:12:39 2008 sparse part has weight 3627865 (60.63/col) Sat Sep 27 01:12:39 2008 filtering completed in 3 passes Sat Sep 27 01:12:39 2008 matrix is 55644 x 55708 (14.7 MB) with weight 3402133 (61.07/col) Sat Sep 27 01:12:39 2008 sparse part has weight 3402133 (61.07/col) Sat Sep 27 01:12:40 2008 saving the first 48 matrix rows for later Sat Sep 27 01:12:40 2008 matrix is 55596 x 55708 (11.1 MB) with weight 2851124 (51.18/col) Sat Sep 27 01:12:40 2008 sparse part has weight 2355787 (42.29/col) Sat Sep 27 01:12:40 2008 matrix includes 64 packed rows Sat Sep 27 01:12:40 2008 using block size 10922 for processor cache size 256 kB Sat Sep 27 01:12:40 2008 commencing Lanczos iteration Sat Sep 27 01:12:40 2008 memory use: 9.3 MB Sat Sep 27 01:13:00 2008 lanczos halted after 881 iterations (dim = 55592) Sat Sep 27 01:13:00 2008 recovered 14 nontrivial dependencies Sat Sep 27 01:13:00 2008 prp37 factor: 9671736314603461057887965599847505751 Sat Sep 27 01:13:00 2008 prp53 factor: 15285311076956761976885931758180371769621907771691351 Sat Sep 27 01:13:00 2008 elapsed time 01:25:08
By Serge Batalov / Msieve-1.36, Msieve-1.38
(26·10150-71)/9 = 2(8)1491<151> = 43 · 59 · 39511 · 156236473309783<15> · 306806534558417<15> · 90996090683978972051700665489<29> · C85
C85 = P42 · P44
P42 = 278892062287133994385679444936173651725679<42>
P44 = 23691165618220695016170882191532431070649463<44>
Fri Sep 26 20:08:09 2008 Msieve v. 1.36 Fri Sep 26 20:08:09 2008 random seeds: 3070926c edda5a26 Fri Sep 26 20:08:09 2008 factoring 6607278037251613419745403617730917584902354733438686568219298506923381764817244660377 (85 digits) Fri Sep 26 20:08:09 2008 no P-1/P+1/ECM available, skipping Fri Sep 26 20:08:09 2008 commencing quadratic sieve (85-digit input) Fri Sep 26 20:08:09 2008 using multiplier of 17 Fri Sep 26 20:08:09 2008 using 64kb Opteron sieve core Fri Sep 26 20:08:09 2008 sieve interval: 6 blocks of size 65536 Fri Sep 26 20:08:09 2008 processing polynomials in batches of 17 Fri Sep 26 20:08:09 2008 using a sieve bound of 1434229 (54704 primes) Fri Sep 26 20:08:09 2008 using large prime bound of 116172549 (26 bits) Fri Sep 26 20:08:09 2008 using double large prime bound of 328992642862119 (41-49 bits) Fri Sep 26 20:08:09 2008 using trial factoring cutoff of 49 bits Fri Sep 26 20:08:09 2008 polynomial 'A' values have 11 factors Fri Sep 26 20:46:26 2008 54970 relations (16331 full + 38639 combined from 567574 partial), need 54800 Fri Sep 26 20:46:27 2008 begin with 583905 relations Fri Sep 26 20:46:27 2008 reduce to 127831 relations in 10 passes Fri Sep 26 20:46:27 2008 attempting to read 127831 relations Fri Sep 26 20:46:28 2008 recovered 127831 relations Fri Sep 26 20:46:28 2008 recovered 106406 polynomials Fri Sep 26 20:46:29 2008 attempting to build 54970 cycles Fri Sep 26 20:46:29 2008 found 54970 cycles in 5 passes Fri Sep 26 20:46:29 2008 distribution of cycle lengths: Fri Sep 26 20:46:29 2008 length 1 : 16331 Fri Sep 26 20:46:29 2008 length 2 : 11450 Fri Sep 26 20:46:29 2008 length 3 : 9750 Fri Sep 26 20:46:29 2008 length 4 : 6906 Fri Sep 26 20:46:29 2008 length 5 : 4543 Fri Sep 26 20:46:29 2008 length 6 : 2755 Fri Sep 26 20:46:29 2008 length 7 : 1559 Fri Sep 26 20:46:29 2008 length 9+: 1676 Fri Sep 26 20:46:29 2008 largest cycle: 18 relations Fri Sep 26 20:46:29 2008 matrix is 54704 x 54970 (12.7 MB) with weight 2895459 (52.67/col) Fri Sep 26 20:46:29 2008 sparse part has weight 2895459 (52.67/col) Fri Sep 26 20:46:30 2008 filtering completed in 3 passes Fri Sep 26 20:46:30 2008 matrix is 49166 x 49230 (11.5 MB) with weight 2617484 (53.17/col) Fri Sep 26 20:46:30 2008 sparse part has weight 2617484 (53.17/col) Fri Sep 26 20:46:30 2008 saving the first 48 matrix rows for later Fri Sep 26 20:46:30 2008 matrix is 49118 x 49230 (7.0 MB) with weight 1976889 (40.16/col) Fri Sep 26 20:46:30 2008 sparse part has weight 1351761 (27.46/col) Fri Sep 26 20:46:30 2008 matrix includes 64 packed rows Fri Sep 26 20:46:30 2008 using block size 19692 for processor cache size 1024 kB Fri Sep 26 20:46:31 2008 commencing Lanczos iteration Fri Sep 26 20:46:31 2008 memory use: 6.6 MB Fri Sep 26 20:47:02 2008 lanczos halted after 778 iterations (dim = 49118) Fri Sep 26 20:47:02 2008 recovered 18 nontrivial dependencies Fri Sep 26 20:47:02 2008 prp42 factor: 278892062287133994385679444936173651725679 Fri Sep 26 20:47:02 2008 prp44 factor: 23691165618220695016170882191532431070649463 Fri Sep 26 20:47:02 2008 elapsed time 00:38:53
(26·10102-71)/9 = 2(8)1011<103> = 67 · C101
C101 = P43 · P58
P43 = 4538946310673361934203419529586170464160589<43>
P58 = 9499505316661328483693123081125976474462217351123397421287<58>
SNFS difficulty: 103 digits. Divisors found: r1=4538946310673361934203419529586170464160589 r2=9499505316661328483693123081125976474462217351123397421287 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: n: 43117744610281923714759535655058043117744610281923714759535655058043117744610281923714759535655058043 Y1: 1 Y0: -100000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 305001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 43400 x 43627 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.30 hours.
(26·10112-71)/9 = 2(8)1111<113> = 32 · 29147 · C108
C108 = P43 · P65
P43 = 4769177979227823799073881807117328228690591<43>
P65 = 23091435821474135828457919814168101536665195947355131326279552917<65>
SNFS difficulty: 113 digits. Divisors found: r1=4769177979227823799073881807117328228690591 r2=23091435821474135828457919814168101536665195947355131326279552917 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 110127167228527002546055393117983893478226800123850706529312675171025372875763424819359678293130563804503947 Y1: 1 Y0: -10000000000000000000000 c5: 2600 c0: -71 skew: 0.49 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 99584 x 99802 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.65 hours.
(26·10121-71)/9 = 2(8)1201<122> = 32 · 7 · 47 · 142543003 · C110
C110 = P54 · P57
P54 = 222364605027963289594960585610198951220800558531666759<54>
P57 = 307808683726998816731583533019641595302396302718066515573<57>
SNFS difficulty: 122 digits. Divisors found: r1=222364605027963289594960585610198951220800558531666759 r2=307808683726998816731583533019641595302396302718066515573 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.744). Factorization parameters were as follows: n: 68445756381131363080887663085460098626256994430630041422322275180521774617167939449170434442331404815119937907 Y1: 1 Y0: -1000000000000000000000000000000 c4: 260 c0: -71 skew: 0.77 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 725001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 91856 x 92076 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 1.20 hours.
By Robert Backstrom / GMP-ECM
(34·10196-7)/9 = 3(7)196<197> = 37 · 47 · 6173 · 118373 · 31219384748723<14> · 1473811541368567<16> · 2242132689060816180407<22> · C135
C135 = P43 · P92
P43 = 8818435865982917766354331139100370909728421<43>
P92 = 32678997856966163491820964161711557583797401265091727332837787241185572405703184609703490221<92>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 288177646766249323807994780014805681086201286651911030677961221351613989107380858450475712007537724154169055689087760689539206939271041 (135 digits) Using B1=4866000, B2=11416155670, polynomial Dickson(12), sigma=1204317703 Step 1 took 48318ms Step 2 took 21169ms ********** Factor found in step 2: 8818435865982917766354331139100370909728421 Found probable prime factor of 43 digits: 8818435865982917766354331139100370909728421 Probable prime cofactor 32678997856966163491820964161711557583797401265091727332837787241185572405703184609703490221 has 92 digits
Factorizations of 288...881 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Sinkiti Sibata / GGNFS
(13·10166+41)/9 = 1(4)1659<167> = 431 · 659 · 67211 · 34187057 · 109318474575529<15> · C135
C135 = P50 · P85
P50 = 34142122029434846349176131188868061554306868171903<50>
P85 = 5929963384398578517109566018319591899379255541236213307569733895313595568330293252969<85>
Number: 14449_166 N=202461533500216725433746524290492280498300806327822604511062313669686113177108949960264126600183931185734180294575384666460492157130007 ( 135 digits) SNFS difficulty: 167 digits. Divisors found: r1=34142122029434846349176131188868061554306868171903 (pp50) r2=5929963384398578517109566018319591899379255541236213307569733895313595568330293252969 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 124.34 hours. Scaled time: 125.46 units (timescale=1.009). Factorization parameters were as follows: name: 14449_166 n: 202461533500216725433746524290492280498300806327822604511062313669686113177108949960264126600183931185734180294575384666460492157130007 m: 1000000000000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7250001) Primes: RFBsize:380800, AFBsize:379893, largePrimes:6183848 encountered Relations: rels:6450049, finalFF:907035 Max relations in full relation-set: 28 Initial matrix: 760760 x 907035 with sparse part having weight 68399919. Pruned matrix : 645283 x 649150 with weight 50746737. Total sieving time: 120.50 hours. Total relation processing time: 0.12 hours. Matrix solve time: 3.61 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 124.34 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(4·10182-7)/3 = 1(3)1811<183> = 51473 · C178
C178 = P33 · P66 · P80
P33 = 111674969858577488476968435205091<33>
P66 = 410923244146929474573211564906433238336504047888161145678797662857<66>
P80 = 56447238927081583452010133015677952938829702727247218171506201584513543966479481<80>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2590354813850627189659303583108296258880060096231681334550800095843128112473206017394232575006961578562223560572209378379603546195740161508622643586605275257578406802271741171747 (178 digits) Using B1=782000, B2=696767622, polynomial Dickson(3), sigma=2644948554 Step 1 took 12144ms Step 2 took 4526ms ********** Factor found in step 2: 111674969858577488476968435205091 Found probable prime factor of 33 digits: 111674969858577488476968435205091 Composite cofactor 23195482543053206881421353751404610349519007646345770007549762402992329345957190547132777743367728994353508496397809803285168273674330253046337217 has 146 digits Number: n N=23195482543053206881421353751404610349519007646345770007549762402992329345957190547132777743367728994353508496397809803285168273674330253046337217 ( 146 digits) SNFS difficulty: 182 digits. Divisors found: Fri Sep 26 04:28:28 2008 prp66 factor: 410923244146929474573211564906433238336504047888161145678797662857 Fri Sep 26 04:28:28 2008 prp80 factor: 56447238927081583452010133015677952938829702727247218171506201584513543966479481 Fri Sep 26 04:28:29 2008 elapsed time 04:37:09 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.64 hours. Scaled time: 81.07 units (timescale=2.045). Factorization parameters were as follows: name: KA_1_3_181_1 n: 23195482543053206881421353751404610349519007646345770007549762402992329345957190547132777743367728994353508496397809803285168273674330253046337217 type: snfs skew: 0.89 deg: 5 c5: 25 c0: -14 m: 2000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 3700001) Primes: RFBsize:539777, AFBsize:539275, largePrimes:13622239 encountered Relations: rels:13313889, finalFF:1206082 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 39.33 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 39.64 hours. --------- CPU info (if available) ----------
By Serge Batalov / **Msieve 1.38**
(5·10169-41)/9 = (5)1681<169> = 5851 · 13267 · 1027853 · 73870523 · C147
C147 = P57 · P91
P57 = 696980304571246698535520900058861516042355649025352830041<57>
P91 = 1352390091424003573905931189189861414444936573068295525332680772365816186487388077452104457<91>
SNFS difficulty: 170 digits. Divisors found: r1=696980304571246698535520900058861516042355649025352830041 r2=1352390091424003573905931189189861414444936573068295525332680772365816186487388077452104457 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: n: 942589257819838178696155706168661683360821107017404276607244976674025274365182068018460893385781710775435724423885085318984473409680541616099592737 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 1 c0: -82 skew: 2.41 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 988373 x 988621 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 38.00 hours.
By Robert Backstrom / GGNFS, Msieve
9·10180-7 = 8(9)1793<181> = 10891 · C177
C177 = P76 · P102
P76 = 5486819574558925029152624668200693996930258823313386814434120700542015883423<76>
P102 = 150610091392044818382883472006373182746590680311053182451698963556980981251397542935784243994273255701<102>
Number: n N=826370397575980167110458176475989349003764576255623909650169865026168395923239371958497842255072996051785878248094757138922045725828665870902580112019098338077311541639886144523 ( 177 digits) SNFS difficulty: 180 digits. Divisors found: Wed Sep 24 11:08:36 2008 prp76 factor: 5486819574558925029152624668200693996930258823313386814434120700542015883423 Wed Sep 24 11:08:36 2008 prp102 factor: 150610091392044818382883472006373182746590680311053182451698963556980981251397542935784243994273255701 Wed Sep 24 11:08:37 2008 elapsed time 03:49:38 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.61 hours. Scaled time: 60.78 units (timescale=1.707). Factorization parameters were as follows: name: KA_8_9_179_3 n: 826370397575980167110458176475989349003764576255623909650169865026168395923239371958497842255072996051785878248094757138922045725828665870902580112019098338077311541639886144523 type: snfs skew: 0.95 deg: 5 c5: 9 c0: -7 m: 1000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 3000001) Primes: RFBsize:539777, AFBsize:539995, largePrimes:13973574 encountered Relations: rels:13965082, finalFF:1414887 Max relations in full relation-set: 28 Initial matrix: 1079836 x 1414887 with sparse part having weight 138132887. Pruned matrix : Total sieving time: 35.29 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 35.61 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(5·10166-23)/9 = (5)1653<166> = 32 · 334610021 · 733322295128893182421<21> · C136
C136 = P36 · P100
P36 = 954966188692478370261835870373955259<36>
P100 = 2634287420039296053564941005908420267092205878181191973670272490843357273239995457115579925801892643<100>
Number: 55553_166 N=2515655417435468421906423529418482767298588603498122386763350799680220456382663824939484925376682675948872275090986001914951956003259537 ( 136 digits) SNFS difficulty: 166 digits. Divisors found: r1=954966188692478370261835870373955259 (pp36) r2=2634287420039296053564941005908420267092205878181191973670272490843357273239995457115579925801892643 (pp100) Version: GGNFS-0.77.1-20050930-nocona Total time: 101.01 hours. Scaled time: 101.82 units (timescale=1.008). Factorization parameters were as follows: name: 55553_166 n: 2515655417435468421906423529418482767298588603498122386763350799680220456382663824939484925376682675948872275090986001914951956003259537 m: 1000000000000000000000000000000000 c5: 50 c0: -23 skew: 0.86 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6200001) Primes: RFBsize:348513, AFBsize:348791, largePrimes:6077777 encountered Relations: rels:6316953, finalFF:862311 Max relations in full relation-set: 28 Initial matrix: 697369 x 862311 with sparse part having weight 64492968. Pruned matrix : 571242 x 574792 with weight 47124797. Total sieving time: 97.95 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.86 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 101.01 hours. --------- CPU info (if available) ----------
(25·10162+11)/9 = 2(7)1619<163> = 956996067485339718144137108196685667<36> · C127
C127 = P44 · P83
P44 = 82764568509156828642850056701654905874238953<44>
P83 = 35070575358147688261227157636411129948137439908546697720503815691536272272514529929<83>
Number: 27779_162 N=2902601036884961627173699119809625917037467027349604362385456802139104947986390088924478788941052925770284265498185067416124337 ( 127 digits) SNFS difficulty: 164 digits. Divisors found: r1=82764568509156828642850056701654905874238953 (pp44) r2=35070575358147688261227157636411129948137439908546697720503815691536272272514529929 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 61.07 hours. Scaled time: 47.63 units (timescale=0.780). Factorization parameters were as follows: name: 27779_162 n: 2902601036884961627173699119809625917037467027349604362385456802139104947986390088924478788941052925770284265498185067416124337 m: 500000000000000000000000000000000 c5: 4 c0: 55 skew: 1.69 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4150001) Primes: RFBsize:315948, AFBsize:315287, largePrimes:5705479 encountered Relations: rels:5818145, finalFF:746133 Max relations in full relation-set: 28 Initial matrix: 631299 x 746133 with sparse part having weight 43557527. Pruned matrix : 536894 x 540114 with weight 29054475. Total sieving time: 58.07 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.71 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 61.07 hours. --------- CPU info (if available) ----------
By Justin Card / GGNFS
7·10166+1 = 7(0)1651<167> = 23 · 53 · 31327 · 34726262056239405863392591<26> · C134
C134 = P55 · P80
P55 = 1913290242196232539268012066652201280412112493917178819<55>
P80 = 27589042770237067407217839796789774556735213612294539601853969868354417611828713<80>
Number: 70001_166 N=52785846323829097015703542990556850979883528135952978084427866439294004697060090080086165672931785725911862903245367422061368419629947 ( 134 digits) SNFS difficulty: 166 digits. Divisors found: r1=1913290242196232539268012066652201280412112493917178819 r2=27589042770237067407217839796789774556735213612294539601853969868354417611828713 Version: Total time: 90.40 hours. Scaled time: 189.48 units (timescale=2.096). Factorization parameters were as follows: n: 52785846323829097015703542990556850979883528135952978084427866439294004697060090080086165672931785725911862903245367422061368419629947 m: 1000000000000000000000000000000000 c5: 70 c4: 0 c3: 0 c2: 0 c1: 0 c0: 1 Y1: 1 Y0: -1000000000000000000000000000000000 skew: 0.43 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 603990 x 604208 Total sieving time: 90.40 hours. Total relation processing time: 1.58 hours. Matrix solve time: 1.25 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 93.42 hours. --------- CPU info (if available) ---------- [ 27.172216] Memory: 3055428k/3111872k available (2523k kernel code, 56056k reserved, 1328k data, 328k init) [ 27.318604] Calibrating delay using timer specific routine.. 3982.80 BogoMIPS (lpj=19914039) [ 28.066173] Calibrating delay using timer specific routine.. 3979.59 BogoMIPS (lpj=19897994)
By Serge Batalov / Msieve-1.37 QS
(4·10172+41)/9 = (4)1719<172> = 32 · 47 · 220793663 · 262458105583<12> · 487196685878876428730725467376703<33> · 398845555197803023949777099556339851<36> · C81
C81 = P34 · P48
P34 = 2449842135058899424657127232517211<34>
P48 = 380875764020883110409902511467730416896409998609<48>
Tue Sep 23 11:56:13 2008 Msieve v. 1.37 Tue Sep 23 11:56:13 2008 random seeds: 53d42b0a 75560bf7 Tue Sep 23 11:56:13 2008 factoring 933085494921109827158710069754359573279758458138952040836991150992465132078559499 (81 digits) Tue Sep 23 11:56:13 2008 searching for 15-digit factors Tue Sep 23 11:56:14 2008 commencing quadratic sieve (81-digit input) Tue Sep 23 11:56:14 2008 using multiplier of 1 Tue Sep 23 11:56:14 2008 using 64kb Opteron sieve core Tue Sep 23 11:56:14 2008 sieve interval: 6 blocks of size 65536 Tue Sep 23 11:56:14 2008 processing polynomials in batches of 17 Tue Sep 23 11:56:14 2008 using a sieve bound of 1325923 (50864 primes) Tue Sep 23 11:56:14 2008 using large prime bound of 127288608 (26 bits) Tue Sep 23 11:56:14 2008 using trial factoring cutoff of 27 bits Tue Sep 23 11:56:14 2008 polynomial 'A' values have 10 factors Tue Sep 23 12:08:02 2008 51110 relations (26192 full + 24918 combined from 272885 partial), need 50960 Tue Sep 23 12:08:02 2008 begin with 299077 relations Tue Sep 23 12:08:02 2008 reduce to 72955 relations in 2 passes Tue Sep 23 12:08:02 2008 attempting to read 72955 relations Tue Sep 23 12:08:03 2008 recovered 72955 relations Tue Sep 23 12:08:03 2008 recovered 63005 polynomials Tue Sep 23 12:08:03 2008 attempting to build 51110 cycles Tue Sep 23 12:08:03 2008 found 51110 cycles in 1 passes Tue Sep 23 12:08:03 2008 distribution of cycle lengths: Tue Sep 23 12:08:03 2008 length 1 : 26192 Tue Sep 23 12:08:03 2008 length 2 : 24918 Tue Sep 23 12:08:03 2008 largest cycle: 2 relations Tue Sep 23 12:08:03 2008 matrix is 50864 x 51110 (7.6 MB) with weight 1580108 (30.92/col) Tue Sep 23 12:08:03 2008 sparse part has weight 1580108 (30.92/col) Tue Sep 23 12:08:03 2008 filtering completed in 3 passes Tue Sep 23 12:08:03 2008 matrix is 36125 x 36188 (5.9 MB) with weight 1256316 (34.72/col) Tue Sep 23 12:08:03 2008 sparse part has weight 1256316 (34.72/col) Tue Sep 23 12:08:03 2008 saving the first 48 matrix rows for later Tue Sep 23 12:08:03 2008 matrix is 36077 x 36188 (4.5 MB) with weight 995457 (27.51/col) Tue Sep 23 12:08:03 2008 sparse part has weight 804953 (22.24/col) Tue Sep 23 12:08:03 2008 matrix includes 64 packed rows Tue Sep 23 12:08:03 2008 using block size 14475 for processor cache size 1024 kB Tue Sep 23 12:08:04 2008 commencing Lanczos iteration Tue Sep 23 12:08:04 2008 memory use: 4.2 MB Tue Sep 23 12:08:08 2008 lanczos halted after 572 iterations (dim = 36076) Tue Sep 23 12:08:08 2008 recovered 17 nontrivial dependencies Tue Sep 23 12:08:08 2008 prp34 factor: 2449842135058899424657127232517211 Tue Sep 23 12:08:08 2008 prp48 factor: 380875764020883110409902511467730416896409998609 Tue Sep 23 12:08:08 2008 elapsed time 00:11:55
By Sinkiti Sibata / GGNFS
(25·10165+11)/9 = 2(7)1649<166> = 72 · 71 · 1229 · 156799 · 86859680114923<14> · 141208653207553585741<21> · C120
C120 = P59 · P62
P59 = 16074984290793976464998006648109533726617375552718845662617<59>
P62 = 21014439226186271746727555583827699417119049826464020217738801<62>
Number: 27779_165 N=337806780440789045113039137220969559081629068252855899137979087861381973412324924977923686904046145934723285022276102217 ( 120 digits) Divisors found: r1=16074984290793976464998006648109533726617375552718845662617 (pp59) r2=21014439226186271746727555583827699417119049826464020217738801 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 64.36 hours. Scaled time: 49.49 units (timescale=0.769). Factorization parameters were as follows: name: 27779_165 n: 337806780440789045113039137220969559081629068252855899137979087861381973412324924977923686904046145934723285022276102217 skew: 95898.23 # norm 1.67e+16 c5: 30060 c4: -74717654 c3: -705030454434139 c2: 8050922963625462632 c1: 3155243119129826402614188 c0: -64504785277031888812155507520 # alpha -5.98 Y1: 7426006963723 Y0: -102361323587563003671847 # Murphy_E 3.18e-10 # M 285492000409818898872953286248517410567252442636728159563327865228391630836454600444674685956951115206410069923986873559 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4110001) Primes: RFBsize:315948, AFBsize:316989, largePrimes:7774050 encountered Relations: rels:7972494, finalFF:848401 Max relations in full relation-set: 28 Initial matrix: 633016 x 848401 with sparse part having weight 71702901. Pruned matrix : 457851 x 461080 with weight 42942460. Total sieving time: 60.49 hours. Total relation processing time: 0.43 hours. Matrix solve time: 3.08 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 64.36 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.37
(4·10172+41)/9 = (4)1719<172> = 32 · 47 · 220793663 · 262458105583<12> · C150
C150 = P33 · P36 · C81
P33 = 487196685878876428730725467376703<33>
P36 = 398845555197803023949777099556339851<36>
C81 = [933085494921109827158710069754359573279758458138952040836991150992465132078559499<81>]
# two ECM factors: # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3260962697 Step 1 took 14297ms Step 2 took 12741ms ********** Factor found in step 2: 398845555197803023949777099556339851 Found probable prime factor of 36 digits: 398845555197803023949777099556339851 Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2979693243 Step 1 took 16485ms Step 2 took 12965ms ********** Factor found in step 2: 487196685878876428730725467376703 Found probable prime factor of 33 digits: 487196685878876428730725467376703
(13·10179+41)/9 = 1(4)1789<180> = 23 · 42015451969<11> · 78770911838628725351<20> · C148
C148 = P29 · C119
P29 = 46992713266751930707073011577<29>
C119 = [40380117029172520674769513188321069808478594187938313449637188262684915551986256553904977186681940701330222198933277801<119>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=843826318 Step 1 took 14245ms Step 2 took 12917ms ********** Factor found in step 2: 46992713266751930707073011577 Found probable prime factor of 29 digits: 46992713266751930707073011577 Composite cofactor 40380117029172520674769513188321069808478594187938313449637188262684915551986256553904977186681940701330222198933277801 has 119 digits
4·10195-9 = 3(9)1941<196> = 13 · 107 · 317 · 683 · 4813 · 34945726168123<14> · 235346907565680687670001<24> · C147
C147 = P35 · P112
P35 = 84023102213882289455105713911646201<35>
P112 = 3993335105848129845498334339702023428427294782244533437466867913637243996141634999335678685464308070534367797009<112>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3729024413 Step 1 took 18539ms Step 2 took 16998ms ********** Factor found in step 2: 84023102213882289455105713911646201 Found probable prime factor of 35 digits: 84023102213882289455105713911646201 Probable prime cofactor 3993335105848129845498334339702023428427294782244533437466867913637243996141634999335678685464308070534367797009 has 112 digits
(8·10198-53)/9 = (8)1973<198> = 4432 · 509 · 54001 · 781721 · 23743506773317561028947<23> · 2580754674706962971246952203<28> · C130
C130 = P29 · P102
P29 = 32368523515701041820822572173<29>
P102 = 106280646441674238900428385238379104570468681385301477094082044361402629538958719229812675579724825371<102>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3529257140 Step 1 took 12445ms Step 2 took 11241ms ********** Factor found in step 2: 32368523515701041820822572173 Found probable prime factor of 29 digits: 32368523515701041820822572173 Probable prime cofactor 106280646441674238900428385238379104570468681385301477094082044361402629538958719229812675579724825371 has 102 digits
(13·10167+41)/9 = 1(4)1669<168> = 480185983 · 28444017767816011987<20> · C140
C140 = P60 · P80
P60 = 255495494090934243398138407064825919513157133359958105353597<60>
P80 = 41392073043566976748716370443946057031311344967750540425260269537821998787807977<80>
SNFS difficulty: 168 digits. Divisors found: r1=255495494090934243398138407064825919513157133359958105353597 r2=41392073043566976748716370443946057031311344967750540425260269537821998787807977 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.729). Factorization parameters were as follows: n: 10575488153714185091397046009582798434739843055341525642692804920734214201457798874370694763287755300109417664211267870586842810176122243269 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 1300 c0: 41 skew: 0.5 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2750000, 5050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1009651 x 1009899 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.30 hours * 3 Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,54,54,2.6,2.6,100000 total time: 39.00 hours.
8·10189-7 = 7(9)1883<190> = 1403785393<10> · 1947272813871401270971<22> · C160
C160 = P30 · P131
P30 = 259434316310048883009749966749<30>
P131 = 11280673929515482410186744031856075693766227254925575504050922917780974235338007459650081318927619624208279244239261693510134938119<131>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1724537978 Step 1 took 20561ms Step 2 took 2944ms ********** Factor found in step 2: 259434316310048883009749966749 Found probable prime factor of 30 digits: 259434316310048883009749966749 Probable prime cofactor 11280673929515482410186744031856075693766227254925575504050922917780974235338007459650081318927619624208279244239261693510134938119 has 131 digits
By Robert Backstrom / GGNFS, Msieve
7·10178-9 = 6(9)1771<179> = 19 · 2539 · C175
C175 = P65 · P111
P65 = 12897341641762311482225721924377786620072960817038184469508152023<65>
P111 = 112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337<111>
Number: n N=1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751 ( 175 digits) SNFS difficulty: 178 digits. Divisors found: Mon Sep 22 18:53:36 2008 prp65 factor: 12897341641762311482225721924377786620072960817038184469508152023 Mon Sep 22 18:53:36 2008 prp111 factor: 112507515436489482196909605851330785043044214218396095102143177575566128872215934971677861051720757848691700337 Mon Sep 22 18:53:36 2008 elapsed time 05:54:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 57.99 hours. Scaled time: 118.94 units (timescale=2.051). Factorization parameters were as follows: name: KA_6_9_177_1 n: 1451047863850251860450654008001492506374245973342177815551087249435127795858294811467423975456561845732882817520366493231898177898468108040878091250181380982981281482556331751 type: snfs skew: 0.26 deg: 5 c5: 7000 c0: -9 m: 100000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 11400001) Primes: RFBsize:539777, AFBsize:539075, largePrimes:15392040 encountered Relations: rels:15911037, finalFF:1641017 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 57.50 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 57.99 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(8·10198-53)/9 = (8)1973<198> = 4432 · 509 · 54001 · 781721 · 23743506773317561028947<23> · C157
C157 = P28 · C130
P28 = 2580754674706962971246952203<28>
C130 = [3440147603611240855717915265739196737191480416785639942379705043877609846496446141839893018288901405432125844676826299567469001183<130>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1884473842 Step 1 took 24308ms ********** Factor found in step 1: 2580754674706962971246952203 Found probable prime factor of 28 digits: 2580754674706962971246952203 Composite cofactor 3440147603611240855717915265739196737191480416785639942379705043877609846496446141839893018288901405432125844676826299567469001183 has 130 digits
By matsui / GMP-ECM
4·10182+9 = 4(0)1819<183> = 593 · 1328642261<10> · 23666791403837444777<20> · C152
C152 = P38 · P114
P38 = 30538114624651788954583755347034152657<38>
P114 = 702450347822345188677038220687379849426066288977031773444331177142414305322712815983768134833633739828814217175997<114>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 21451509239925295538168421795102247653439573588875108420209533505822891969985296592779292726269424313705399400454705326894779927663246219481894334174029 =30538114624651788954583755347034152657* 702450347822345188677038220687379849426066288977031773444331177142414305322712815983768134833633739828814217175997
By Sinkiti Sibata / GGNFS
(25·10157+11)/9 = 2(7)1569<158> = 9542909 · 2914206752057<13> · 9138747720366349<16> · C123
C123 = P58 · P65
P58 = 1324246518820340916190100054706676378801923457295730611749<58>
P65 = 82535507900081281232126800634121927761333411590662336194211534983<65>
Number: 27779_157 N=109297359015751382757590584761681435097761745318418345552443725745543683153018309251137026627824848955651477944234904315267 ( 123 digits) Divisors found: r1=1324246518820340916190100054706676378801923457295730611749 (pp58) r2=82535507900081281232126800634121927761333411590662336194211534983 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 82.43 hours. Scaled time: 83.18 units (timescale=1.009). Factorization parameters were as follows: name: 27779_157 n: 109297359015751382757590584761681435097761745318418345552443725745543683153018309251137026627824848955651477944234904315267 skew: 62000.91 # norm 9.42e+15 c5: 1560 c4: 1495301999 c3: -237801306897353 c2: -6516794873467408648 c1: 46696468715858655525789 c0: 428876002410578610703489620 # alpha -4.43 Y1: 11440970936461 Y0: -587618408973170623261291 # Murphy_E 2.39e-10 # M 100730276207215881327981099032047925236957950976150459045887497600095574624645597788010714685658071890436466215979834840367 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5440001) Primes: RFBsize:348513, AFBsize:348010, largePrimes:7962731 encountered Relations: rels:8330423, finalFF:925608 Max relations in full relation-set: 28 Initial matrix: 696602 x 925608 with sparse part having weight 90657732. Pruned matrix : 519652 x 523199 with weight 62536167. Total sieving time: 79.00 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.92 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 82.43 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(43·10180-7)/9 = 4(7)180<181> = 7717 · C177
C177 = P37 · P140
P37 = 7974850129236699611743439999799043481<37>
P140 = 77634527787228389847918815078532026524742425012288827865479837265962584100748133165695301835012008917167725311213692593828248802988299673701<140>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 619123723957208471916259916778252919240349588930643744690654111413473860020445481116726419305141606554072538263285963169337537615365786935049601889047269376412825939844211193181 (177 digits) Using B1=3834000, B2=8561443810, polynomial Dickson(6), sigma=936150032 Step 1 took 59850ms Step 2 took 21227ms ********** Factor found in step 2: 7974850129236699611743439999799043481 Found probable prime factor of 37 digits: 7974850129236699611743439999799043481 Probable prime cofactor 77634527787228389847918815078532026524742425012288827865479837265962584100748133165695301835012008917167725311213692593828248802988299673701 has 140 digits
(22·10195+41)/9 = 2(4)1949<196> = C196
C196 = P48 · P149
P48 = 133847907008974165416726785238473125656386676331<48>
P149 = 18262851463792785302404893664396092758157756934387695704742235137911239465916250049387416609237886485726480277100893540116149440927005054900514665379<149>
Number: n N=2444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: Sun Sep 21 23:31:43 2008 prp48 factor: 133847907008974165416726785238473125656386676331 Sun Sep 21 23:31:43 2008 prp149 factor: 18262851463792785302404893664396092758157756934387695704742235137911239465916250049387416609237886485726480277100893540116149440927005054900514665379 Sun Sep 21 23:31:43 2008 elapsed time 24:58:19 (Msieve 1.37) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 183.83 hours. Scaled time: 236.96 units (timescale=1.289). Factorization parameters were as follows: name: KA_2_4_194_9 n: 2444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 type: snfs skew: 1.13 deg: 5 c5: 22 c0: 41 m: 1000000000000000000000000000000000000000 rlim: 9600000 alim: 9600000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9600000/9600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 16100001) Primes: RFBsize:639851, AFBsize:639690, largePrimes:15700927 encountered Relations: rels:16181449, finalFF:1303141 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 182.76 hours. Total relation processing time: 1.08 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,9600000,9600000,28,28,52,52,2.5,2.5,100000 total time: 183.83 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.37
(25·10158+11)/9 = 2(7)1579<159> = 3 · 163 · 448801 · C151
C151 = P39 · P112
P39 = 137389628695179787605418180755763657877<39>
P112 = 9212571560698381077396463062817283198373662941165977110800670318580503998459757629198423949102641490029724479343<112>
SNFS difficulty: 159 digits. Divisors found: r1=137389628695179787605418180755763657877 r2=9212571560698381077396463062817283198373662941165977110800670318580503998459757629198423949102641490029724479343 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.720). Factorization parameters were as follows: n: 1265711786052123537291755711705811059148731331941557665959847133426148586146192857342235679715462077090018193295647088925848584354096853706755005734811 Y1: 1 Y0: -50000000000000000000000000000000 c5: 8 c0: 11 skew: 1.07 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2000000, 2800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 648365 x 648613 Total sieving time: 12.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.50 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,54,54,2.5,2.5,100000 total time: 14.00 hours.
(25·10159+11)/9 = 2(7)1589<160> = 7 · C159
C159 = P43 · P117
P43 = 2657780922364980442038543388644686126602807<43>
P117 = 149307037869881540490495888397203652439490230060489375653475306412910625822390022203824618445561134554266447970512371<117>
SNFS difficulty: 160 digits. Divisors found: r1=2657780922364980442038543388644686126602807 r2=149307037869881540490495888397203652439490230060489375653475306412910625822390022203824618445561134554266447970512371 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.703). Factorization parameters were as follows: n: 396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825396825397 Y1: 1 Y0: -100000000000000000000000000000000 c5: 5 c0: 22 skew: 1.34 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [2000000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 715410 x 715658 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,54,54,2.5,2.5,100000 total time: 19.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(25·10168+11)/9 = 2(7)1679<169> = 60737823877<11> · 2391245651153087<16> · 88327195955309617<17> · 11269454630239385869<20> · C107
C107 = P44 · P63
P44 = 99636796677422281629691745530908874418949017<44>
P63 = 192839935983067964860238605035402472643939209453310925694585381<63>
Number: 27779_168 N=19213953492832071691888356432134441574295306649176679790741819525345351703318048554011557238677581592520477 ( 107 digits) Divisors found: r1=99636796677422281629691745530908874418949017 (pp44) r2=192839935983067964860238605035402472643939209453310925694585381 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.68 hours. Scaled time: 15.17 units (timescale=0.771). Factorization parameters were as follows: name: 27779_168 n: 19213953492832071691888356432134441574295306649176679790741819525345351703318048554011557238677581592520477 skew: 9817.78 # norm 1.43e+14 c5: 6840 c4: -1293420660 c3: 965728069439 c2: 125523965749091149 c1: 284947326891434748589 c0: -4579311507562674711556 # alpha -4.62 Y1: 7631626717 Y0: -308825058652731342747 # Murphy_E 1.46e-09 # M 17111148031494828095272157669907087589765217394301232366704600631807007446817858694000563667479322053158049 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2600001) Primes: RFBsize:183072, AFBsize:183200, largePrimes:4619239 encountered Relations: rels:4875921, finalFF:565343 Max relations in full relation-set: 28 Initial matrix: 366351 x 565343 with sparse part having weight 48074444. Pruned matrix : 245460 x 247355 with weight 26390764. Total sieving time: 18.67 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.68 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 19.68 hours. --------- CPU info (if available) ----------
(25·10135+11)/9 = 2(7)1349<136> = 7 · 17 · 24618943 · 829455593933613949664672311<27> · C100
C100 = P33 · P68
P33 = 101760642791834943232640563376777<33>
P68 = 11233320577193988996054868802362165629420963942890486212300213105621<68>
Sat Sep 20 16:03:00 2008 Msieve v. 1.36 Sat Sep 20 16:03:00 2008 random seeds: a78bf2a4 352f1807 Sat Sep 20 16:03:00 2008 factoring 1143109922622006640335934320858230741322564114655730564054913482556917003342965340126485297919563517 (100 digits) Sat Sep 20 16:03:02 2008 no P-1/P+1/ECM available, skipping Sat Sep 20 16:03:02 2008 commencing quadratic sieve (100-digit input) Sat Sep 20 16:03:02 2008 using multiplier of 3 Sat Sep 20 16:03:02 2008 using 64kb Pentium 4 sieve core Sat Sep 20 16:03:02 2008 sieve interval: 18 blocks of size 65536 Sat Sep 20 16:03:02 2008 processing polynomials in batches of 6 Sat Sep 20 16:03:02 2008 using a sieve bound of 2681729 (97571 primes) Sat Sep 20 16:03:02 2008 using large prime bound of 402259350 (28 bits) Sat Sep 20 16:03:02 2008 using double large prime bound of 3076883377187400 (43-52 bits) Sat Sep 20 16:03:02 2008 using trial factoring cutoff of 52 bits Sat Sep 20 16:03:02 2008 polynomial 'A' values have 13 factors Sat Sep 20 16:03:06 2008 restarting with 8177 full and 518198 partial relations Sun Sep 21 03:25:34 2008 97777 relations (23198 full + 74579 combined from 1477182 partial), need 97667 Sun Sep 21 03:25:39 2008 begin with 1500380 relations Sun Sep 21 03:25:41 2008 reduce to 258871 relations in 12 passes Sun Sep 21 03:25:41 2008 attempting to read 258871 relations Sun Sep 21 03:25:50 2008 recovered 258871 relations Sun Sep 21 03:25:50 2008 recovered 249493 polynomials Sun Sep 21 03:25:50 2008 attempting to build 97777 cycles Sun Sep 21 03:25:51 2008 found 97777 cycles in 6 passes Sun Sep 21 03:25:51 2008 distribution of cycle lengths: Sun Sep 21 03:25:51 2008 length 1 : 23198 Sun Sep 21 03:25:51 2008 length 2 : 16628 Sun Sep 21 03:25:51 2008 length 3 : 16331 Sun Sep 21 03:25:51 2008 length 4 : 13312 Sun Sep 21 03:25:51 2008 length 5 : 10105 Sun Sep 21 03:25:51 2008 length 6 : 7105 Sun Sep 21 03:25:51 2008 length 7 : 4567 Sun Sep 21 03:25:51 2008 length 9+: 6531 Sun Sep 21 03:25:51 2008 largest cycle: 22 relations Sun Sep 21 03:25:51 2008 matrix is 97571 x 97777 (26.0 MB) with weight 6414114 (65.60/col) Sun Sep 21 03:25:51 2008 sparse part has weight 6414114 (65.60/col) Sun Sep 21 03:25:53 2008 filtering completed in 3 passes Sun Sep 21 03:25:53 2008 matrix is 93701 x 93765 (25.0 MB) with weight 6179719 (65.91/col) Sun Sep 21 03:25:53 2008 sparse part has weight 6179719 (65.91/col) Sun Sep 21 03:25:54 2008 saving the first 48 matrix rows for later Sun Sep 21 03:25:54 2008 matrix is 93653 x 93765 (13.8 MB) with weight 4676238 (49.87/col) Sun Sep 21 03:25:54 2008 sparse part has weight 3067094 (32.71/col) Sun Sep 21 03:25:54 2008 matrix includes 64 packed rows Sun Sep 21 03:25:54 2008 using block size 21845 for processor cache size 512 kB Sun Sep 21 03:25:55 2008 commencing Lanczos iteration Sun Sep 21 03:25:55 2008 memory use: 14.5 MB Sun Sep 21 03:27:25 2008 lanczos halted after 1482 iterations (dim = 93647) Sun Sep 21 03:27:25 2008 recovered 15 nontrivial dependencies Sun Sep 21 03:27:28 2008 prp33 factor: 101760642791834943232640563376777 Sun Sep 21 03:27:28 2008 prp68 factor: 11233320577193988996054868802362165629420963942890486212300213105621 Sun Sep 21 03:27:28 2008 elapsed time 11:24:28
By Jo Yeong Uk / GGNFS
(25·10177+11)/9 = 2(7)1769<178> = 7 · 401 · 2677468327<10> · 845137723820723<15> · 545382280341452033<18> · 384200698398579815600737<24> · C109
C109 = P46 · P63
P46 = 6157197430675453532424056643451057039223485303<46>
P63 = 338969797703252851359735909773659729555343992931588939572392839<63>
Number: 27779_177 N=2087103967495046706276067970122419419022511455953998279647936986802817671321789654961798929535928625058945217 ( 109 digits) Divisors found: r1=6157197430675453532424056643451057039223485303 (pp46) r2=338969797703252851359735909773659729555343992931588939572392839 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.74 hours. Scaled time: 27.28 units (timescale=2.323). Factorization parameters were as follows: name: 27779_177 n: 2087103967495046706276067970122419419022511455953998279647936986802817671321789654961798929535928625058945217 skew: 32823.13 # norm 4.71e+14 c5: 4140 c4: -71364416 c3: -11634601779911 c2: -437449399023178436 c1: 2192614406917375491624 c0: 51523026074077021222366080 # alpha -5.51 Y1: 53450399057 Y0: -871984650797901441577 # Murphy_E 1.24e-09 # M 1324511941542110147642404859276676481618277862522208959679582391092161274809532009101863003961825845040641987 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1700001) Primes: RFBsize:148933, AFBsize:148689, largePrimes:5135535 encountered Relations: rels:5333563, finalFF:456369 Max relations in full relation-set: 28 Initial matrix: 297703 x 456369 with sparse part having weight 47715445. Pruned matrix : 224563 x 226115 with weight 22753216. Polynomial selection time: 0.68 hours. Total sieving time: 10.69 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.22 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,26,26,50,50,2.6,2.6,50000 total time: 11.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) Calibrating delay using timer specific routine.. 5344.63 BogoMIPS (lpj=2672318) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(14·10178-23)/9 = 1(5)1773<179> = 17 · C177
C177 = P43 · P135
P43 = 2225841655194472268016781853809366714396313<43>
P135 = 411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793<135>
Number: n N=915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209 ( 177 digits) SNFS difficulty: 179 digits. Divisors found: Sat Sep 20 16:52:55 2008 prp43 factor: 2225841655194472268016781853809366714396313 Sat Sep 20 16:52:55 2008 prp135 factor: 411095136800562521541539475829738868608002274427477071385840597838998349260485047470252329367328208883411589540139084008392762907660793 Sat Sep 20 16:52:55 2008 elapsed time 06:44:14 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 103.73 hours. Scaled time: 87.34 units (timescale=0.842). Factorization parameters were as follows: name: KA_1_5_177_3 n: 915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209150326797385620915032679738562091503267973856209 type: snfs skew: 0.55 deg: 5 c5: 875 c0: -46 m: 200000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 13800001) Primes: RFBsize:539777, AFBsize:540340, largePrimes:15352877 encountered Relations: rels:15599595, finalFF:1126756 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 103.04 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 103.73 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(79·10171-7)/9 = 8(7)171<172> = 455849 · 5458373 · 67309522537<11> · 1478323965043<13> · 21868648504691<14> · C124
C124 = P39 · P85
P39 = 205933584244552585437467949053421910141<39>
P85 = 7872363074833719679020067199964325911944706977770586747781253428175946317375962633481<85>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1621183944474974841004973167630623544618770286330625649993113352858042939934854174924508403146115135259070343188195700030821 (124 digits) Using B1=5472000, B2=11416630690, polynomial Dickson(12), sigma=1768681715 Step 1 took 48726ms Step 2 took 20109ms ********** Factor found in step 2: 205933584244552585437467949053421910141 Found probable prime factor of 39 digits: 205933584244552585437467949053421910141 Probable prime cofactor 7872363074833719679020067199964325911944706977770586747781253428175946317375962633481 has 85 digits
By Serge Batalov / Msieve 1.37, GMP-ECM 6.2.1, Msieve-1.37
(25·10145+11)/9 = 2(7)1449<146> = 39119 · C141
C141 = P65 · P77
P65 = 22018123084442256945601181842870458576967444925337048195952914377<65>
P77 = 32249980746513672256233897182103678492771023523845280466382534623925440318133<77>
Number: 27779_145 N=710084045547631017607243993399058712589222060323059837362350207770591727236835751879592468564579303606374850527308412223670793675139389498141 ( 141 digits) SNFS difficulty: 146 digits. Divisors found: r1=22018123084442256945601181842870458576967444925337048195952914377 r2=32249980746513672256233897182103678492771023523845280466382534623925440318133 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 710084045547631017607243993399058712589222060323059837362350207770591727236835751879592468564579303606374850527308412223670793675139389498141 Y1: 1 Y0: -100000000000000000000000000000 c5: 25 c0: 11 skew: 0.85 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [750000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 217022 x 217241 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 4.90 hours.
(25·10181+11)/9 = 2(7)1809<182> = 489343 · 210435473 · 429402721073<12> · 182964771137591<15> · 43944186772223093519<20> · C122
C122 = P32 · P91
P32 = 23598479575400327060190027268979<32>
P91 = 3310910530014099084884003286660786026675819476626077776496236615555080721288380919172566327<91>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1615171658 Step 1 took 4421ms Step 2 took 2396ms ********** Factor found in step 2: 23598479575400327060190027268979 Found probable prime factor of 32 digits: 23598479575400327060190027268979 Probable prime cofactor 3310910530014099084884003286660786026675819476626077776496236615555080721288380919172566327 has 91 digits
(25·10149+11)/9 = 2(7)1489<150> = 3 · C149
C149 = P44 · P48 · P58
P44 = 89422569745722268375593254754751733693202109<44>
P48 = 284115817265519624811828721956934316858888334641<48>
P58 = 3644464179724676150814281014736489200665629737281618159797<58>
SNFS difficulty: 150 digits. Divisors found: r1=89422569745722268375593254754751733693202109 r2=284115817265519624811828721956934316858888334641 r3=3644464179724676150814281014736489200665629737281618159797 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 92592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592592593 Y1: 1 Y0: -1000000000000000000000000000000 c5: 5 c0: 22 skew: 1.34 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [1200000, 1800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 451014 x 451254 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,54,54,2.5,2.5,100000 total time: 9.50 hours.
By Sinkiti Sibata / GGNFS, Msieve
(25·10144+11)/9 = 2(7)1439<145> = 2179652333<10> · 555525169807<12> · C124
C124 = P34 · P41 · P49
P34 = 6555616797040220553503787469828621<34>
P41 = 73975542567038708308894989343115810707013<41>
P49 = 4730475671659868972131894097385159232743234787633<49>
Number: 27779_144 N=2294069293066095745670137846707089174646054183142057512760829022119782349751523968362806955211662464140409618998272826924209 ( 124 digits) SNFS difficulty: 145 digits. Divisors found: r1=6555616797040220553503787469828621 (pp34) r2=73975542567038708308894989343115810707013 (pp41) r3=4730475671659868972131894097385159232743234787633 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.88 hours. Scaled time: 17.02 units (timescale=1.008). Factorization parameters were as follows: name: 27779_144 n: 2294069293066095745670137846707089174646054183142057512760829022119782349751523968362806955211662464140409618998272826924209 m: 100000000000000000000000000000 c5: 5 c0: 22 skew: 1.34 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3150001) Primes: RFBsize:100021, AFBsize:100104, largePrimes:3076799 encountered Relations: rels:3208992, finalFF:311014 Max relations in full relation-set: 28 Initial matrix: 200190 x 311014 with sparse part having weight 39232556. Pruned matrix : 176682 x 177746 with weight 22487174. Total sieving time: 16.56 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.22 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 16.88 hours. --------- CPU info (if available) ----------
(25·10109+11)/9 = 2(7)1089<110> = 621059 · 60520133 · C96
C96 = P37 · P59
P37 = 8518541216079366642207800998712558843<37>
P59 = 86756003328650734930201809343394393921066217104696711721799<59>
Fri Sep 19 21:48:34 2008 Msieve v. 1.36 Fri Sep 19 21:48:34 2008 random seeds: 6141f597 886cea6a Fri Sep 19 21:48:34 2008 factoring 739034590097430011847178811447724966016948771754630731479696239768907048998575629325791633318557 (96 digits) Fri Sep 19 21:48:36 2008 no P-1/P+1/ECM available, skipping Fri Sep 19 21:48:36 2008 commencing quadratic sieve (96-digit input) Fri Sep 19 21:48:36 2008 using multiplier of 5 Fri Sep 19 21:48:36 2008 using 64kb Pentium 4 sieve core Fri Sep 19 21:48:36 2008 sieve interval: 18 blocks of size 65536 Fri Sep 19 21:48:36 2008 processing polynomials in batches of 6 Fri Sep 19 21:48:36 2008 using a sieve bound of 2298889 (84706 primes) Fri Sep 19 21:48:36 2008 using large prime bound of 344833350 (28 bits) Fri Sep 19 21:48:36 2008 using double large prime bound of 2331828631036500 (43-52 bits) Fri Sep 19 21:48:36 2008 using trial factoring cutoff of 52 bits Fri Sep 19 21:48:36 2008 polynomial 'A' values have 12 factors Sat Sep 20 05:02:55 2008 84910 relations (21169 full + 63741 combined from 1268574 partial), need 84802 Sat Sep 20 05:03:00 2008 begin with 1289743 relations Sat Sep 20 05:03:01 2008 reduce to 219896 relations in 10 passes Sat Sep 20 05:03:01 2008 attempting to read 219896 relations Sat Sep 20 05:03:09 2008 recovered 219896 relations Sat Sep 20 05:03:09 2008 recovered 203990 polynomials Sat Sep 20 05:03:09 2008 attempting to build 84910 cycles Sat Sep 20 05:03:09 2008 found 84910 cycles in 6 passes Sat Sep 20 05:03:09 2008 distribution of cycle lengths: Sat Sep 20 05:03:09 2008 length 1 : 21169 Sat Sep 20 05:03:09 2008 length 2 : 14932 Sat Sep 20 05:03:09 2008 length 3 : 14313 Sat Sep 20 05:03:09 2008 length 4 : 11452 Sat Sep 20 05:03:09 2008 length 5 : 8668 Sat Sep 20 05:03:09 2008 length 6 : 5678 Sat Sep 20 05:03:09 2008 length 7 : 3710 Sat Sep 20 05:03:09 2008 length 9+: 4988 Sat Sep 20 05:03:09 2008 largest cycle: 21 relations Sat Sep 20 05:03:10 2008 matrix is 84706 x 84910 (23.5 MB) with weight 5816551 (68.50/col) Sat Sep 20 05:03:10 2008 sparse part has weight 5816551 (68.50/col) Sat Sep 20 05:03:11 2008 filtering completed in 3 passes Sat Sep 20 05:03:11 2008 matrix is 80313 x 80375 (22.4 MB) with weight 5547279 (69.02/col) Sat Sep 20 05:03:11 2008 sparse part has weight 5547279 (69.02/col) Sat Sep 20 05:03:12 2008 saving the first 48 matrix rows for later Sat Sep 20 05:03:12 2008 matrix is 80265 x 80375 (16.9 MB) with weight 4712491 (58.63/col) Sat Sep 20 05:03:12 2008 sparse part has weight 3959309 (49.26/col) Sat Sep 20 05:03:12 2008 matrix includes 64 packed rows Sat Sep 20 05:03:12 2008 using block size 21845 for processor cache size 512 kB Sat Sep 20 05:03:13 2008 commencing Lanczos iteration Sat Sep 20 05:03:13 2008 memory use: 14.7 MB Sat Sep 20 05:04:34 2008 lanczos halted after 1270 iterations (dim = 80265) Sat Sep 20 05:04:34 2008 recovered 18 nontrivial dependencies Sat Sep 20 05:04:36 2008 prp37 factor: 8518541216079366642207800998712558843 Sat Sep 20 05:04:36 2008 prp59 factor: 86756003328650734930201809343394393921066217104696711721799 Sat Sep 20 05:04:36 2008 elapsed time 07:16:02
(25·10146+11)/9 = 2(7)1459<147> = 32 · 311 · 815280920042379045817<21> · C123
C123 = P36 · P87
P36 = 217157733583248726770838103900749061<36>
P87 = 560546985914951290774332227279129798735530007314797011598600521856481772063274777635233<87>
Number: 27779_146 N=121727113028212068940104061530922353894609120636416006266835333908723404409672394991179681058140998472858620222918925266213 ( 123 digits) SNFS difficulty: 147 digits. Divisors found: r1=217157733583248726770838103900749061 (pp36) r2=560546985914951290774332227279129798735530007314797011598600521856481772063274777635233 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.59 hours. Scaled time: 15.71 units (timescale=1.008). Factorization parameters were as follows: name: 27779_146 n: 121727113028212068940104061530922353894609120636416006266835333908723404409672394991179681058140998472858620222918925266213 m: 100000000000000000000000000000 c5: 250 c0: 11 skew: 0.54 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114243, largePrimes:2880134 encountered Relations: rels:2875007, finalFF:270616 Max relations in full relation-set: 28 Initial matrix: 228464 x 270616 with sparse part having weight 29150397. Pruned matrix : 215839 x 217045 with weight 21581657. Total sieving time: 15.19 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.29 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 15.59 hours. --------- CPU info (if available) ----------
(25·10153+11)/9 = 2(7)1529<154> = 7 · 1619 · 26249 · 121001 · 9629191476013162601<19> · C121
C121 = P47 · P75
P47 = 17089294561179909609497895907997512028577048257<47>
P75 = 468961218759818144911743241615271591080346751331129510155707954444981636591<75>
Number: 27779_153 N=8014216405156462018926099823156586249159542824660379557516458721325017323013340800025073267558580653489159472339843971887 ( 121 digits) SNFS difficulty: 154 digits. Divisors found: r1=17089294561179909609497895907997512028577048257 (pp47) r2=468961218759818144911743241615271591080346751331129510155707954444981636591 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.53 hours. Scaled time: 19.99 units (timescale=0.783). Factorization parameters were as follows: name: 27779_153 n: 8014216405156462018926099823156586249159542824660379557516458721325017323013340800025073267558580653489159472339843971887 m: 5000000000000000000000000000000 c5: 8 c0: 11 skew: 1.07 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175424, largePrimes:5471494 encountered Relations: rels:5387090, finalFF:488774 Max relations in full relation-set: 28 Initial matrix: 351791 x 488774 with sparse part having weight 42592876. Pruned matrix : 290759 x 292581 with weight 23002981. Total sieving time: 24.47 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.86 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 25.53 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(25·10142+11)/9 = 2(7)1419<143> = 18679 · 2324149 · 21883871 · 2721872386127978805349<22> · C104
C104 = P32 · P72
P32 = 17100579543785749444125700728983<32>
P72 = 628169976582331219460679003133833163982380481247619650573495514275530357<72>
Number: 27779_142 N=10742070651564186516675552053776763874950710443051540573202381782044493421278783011980786156993846236931 ( 104 digits) Divisors found: r1=17100579543785749444125700728983 (pp32) r2=628169976582331219460679003133833163982380481247619650573495514275530357 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.95 hours. Scaled time: 11.79 units (timescale=2.380). Factorization parameters were as follows: name: 27779_142 n: 10742070651564186516675552053776763874950710443051540573202381782044493421278783011980786156993846236931 skew: 25644.16 # norm 4.05e+14 c5: 4200 c4: 237417580 c3: -22938014228706 c2: -99292987080815543 c1: 3491001841126376848650 c0: -7512869258041779422968325 # alpha -6.19 Y1: 6826139641 Y0: -76132011157515595038 # Murphy_E 2.31e-09 # M 2345490416613929445046528387112026856772247017840236364780300929704505961959466593458521683729229215729 type: gnfs rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [800000, 1550001) Primes: RFBsize:121127, AFBsize:120508, largePrimes:4424323 encountered Relations: rels:4365416, finalFF:305834 Max relations in full relation-set: 28 Initial matrix: 241714 x 305834 with sparse part having weight 26506673. Pruned matrix : 208289 x 209561 with weight 15361234. Polynomial selection time: 0.39 hours. Total sieving time: 4.29 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1600000,1600000,26,26,49,49,2.6,2.6,50000 total time: 4.95 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) Calibrating delay using timer specific routine.. 5344.63 BogoMIPS (lpj=2672318) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355)
(25·10171+11)/9 = 2(7)1709<172> = 7 · 139 · 160019 · 16845041 · 26144659 · 65978131 · 31757213781199<14> · 470300919484222862311<21> · C107
C107 = P44 · P63
P44 = 47874100857762290609637818483054673407660177<44>
P63 = 858695511971689614580328938461510753245623133163645463110819701<63>
Number: 27779_171 N=41109275546240495062432283264051165658091623196993437906976151352389340190469170320769270885516502924747077 ( 107 digits) Divisors found: r1=47874100857762290609637818483054673407660177 (pp44) r2=858695511971689614580328938461510753245623133163645463110819701 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.77 hours. Scaled time: 22.77 units (timescale=2.331). Factorization parameters were as follows: name: 27779_171 n: 41109275546240495062432283264051165658091623196993437906976151352389340190469170320769270885516502924747077 skew: 12398.44 # norm 1.37e+15 c5: 159840 c4: -1028441856 c3: -137128844967686 c2: 134334849458104183 c1: 5984236747583308367232 c0: 6813532622585497995327780 # alpha -6.31 Y1: 102254484497 Y0: -191448147793948031093 # Murphy_E 1.43e-09 # M 17913856090839271483351743511826600163139299801714024344774155683648315054779271422721430516648895900507594 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1550001) Primes: RFBsize:148933, AFBsize:148910, largePrimes:4994109 encountered Relations: rels:5074616, finalFF:422065 Max relations in full relation-set: 28 Initial matrix: 297927 x 422065 with sparse part having weight 40159545. Pruned matrix : 222425 x 223978 with weight 20465865. Polynomial selection time: 0.54 hours. Total sieving time: 8.84 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,26,26,50,50,2.6,2.6,50000 total time: 9.77 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672343) Calibrating delay using timer specific routine.. 5344.63 BogoMIPS (lpj=2672318) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672355)
(25·10187+11)/9 = 2(7)1869<188> = C188
C188 = P37 · C151
P37 = 3467294206652453951666199350752110791<37>
C151 = [8011370285360413276920870842742682043675772489490261688319864518192193944560646037656706933240715383931249954780125806286441085989770305439253452225269<151>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 (188 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3112568619 Step 1 took 18665ms Step 2 took 7928ms ********** Factor found in step 2: 3467294206652453951666199350752110791 Found probable prime factor of 37 digits: 3467294206652453951666199350752110791 Composite cofactor 8011370285360413276920870842742682043675772489490261688319864518192193944560646037656706933240715383931249954780125806286441085989770305439253452225269 has 151 digits
By Thomas Womack / ggnfs lattice siever, msieve
(16·10179-1)/3 = 5(3)179<180> = 59431787 · C172
C172 = P58 · P115
P58 = 1226638090264928115723655327333228728490191370449664758311<58>
P115 = 7315828104216888973836157895081638072697654891738449634905084897704701381178005284947042277396339224057301618595369<115>
prp58 factor: 1226638090264928115723655327333228728490191370449664758311 prp115 factor: 7315828104216888973836157895081638072697654891738449634905084897704701381178005284947042277396339224057301618595369 elapsed time 06:07:08 (that's the processing time, sieving was ~101 CPU-hours)
By Robert Backstrom / GGNFS, Msieve
(13·10178+23)/9 = 1(4)1777<179> = 277 · C176
C176 = P64 · P113
P64 = 4761758900615140831294272937064147828242820480788864164772892249<64>
P113 = 10950997291772328108097594654307473313103101691401224343725196196487050663817487869687697193902016189467940704539<113>
Number: n N=52146008824709185720016044925792218210990774167669474528680304853590052146008824709185720016044925792218210990774167669474528680304853590052146008824709185720016044925792218211 ( 176 digits) SNFS difficulty: 179 digits. Divisors found: Sat Sep 20 00:18:31 2008 prp64 factor: 4761758900615140831294272937064147828242820480788864164772892249 Sat Sep 20 00:18:31 2008 prp113 factor: 10950997291772328108097594654307473313103101691401224343725196196487050663817487869687697193902016189467940704539 Sat Sep 20 00:18:31 2008 elapsed time 04:43:43 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 55.55 hours. Scaled time: 113.93 units (timescale=2.051). Factorization parameters were as follows: name: KA_1_4_177_7 n: 52146008824709185720016044925792218210990774167669474528680304853590052146008824709185720016044925792218210990774167669474528680304853590052146008824709185720016044925792218211 type: snfs skew: 0.28 deg: 5 c5: 13000 c0: 23 m: 100000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 11400001) Primes: RFBsize:539777, AFBsize:540425, largePrimes:15635665 encountered Relations: rels:16290338, finalFF:1677740 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 54.95 hours. Total relation processing time: 0.60 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 55.55 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(25·10104+11)/9 = 2(7)1039<105> = 3 · 157 · 491248811 · C94
C94 = P45 · P49
P45 = 252854036142891231851223614578087693577960987<45>
P49 = 4747939643331217537545944530363101682879932936157<49>
Fri Sep 19 16:36:13 2008 Msieve v. 1.36 Fri Sep 19 16:36:13 2008 random seeds: 58339ecb c2f9e10e Fri Sep 19 16:36:13 2008 factoring 1200535702179137783553330569598159007986633480577939579822794144056580555474363458076107706959 (94 digits) Fri Sep 19 16:36:14 2008 no P-1/P+1/ECM available, skipping Fri Sep 19 16:36:14 2008 commencing quadratic sieve (94-digit input) Fri Sep 19 16:36:14 2008 using multiplier of 5 Fri Sep 19 16:36:14 2008 using 64kb Pentium 4 sieve core Fri Sep 19 16:36:14 2008 sieve interval: 18 blocks of size 65536 Fri Sep 19 16:36:14 2008 processing polynomials in batches of 6 Fri Sep 19 16:36:14 2008 using a sieve bound of 1991609 (73803 primes) Fri Sep 19 16:36:14 2008 using large prime bound of 256917561 (27 bits) Fri Sep 19 16:36:14 2008 using double large prime bound of 1372868018887893 (42-51 bits) Fri Sep 19 16:36:14 2008 using trial factoring cutoff of 51 bits Fri Sep 19 16:36:14 2008 polynomial 'A' values have 12 factors Fri Sep 19 21:37:50 2008 74067 relations (18463 full + 55604 combined from 1027184 partial), need 73899 Fri Sep 19 21:37:54 2008 begin with 1045647 relations Fri Sep 19 21:37:55 2008 reduce to 190511 relations in 10 passes Fri Sep 19 21:37:55 2008 attempting to read 190511 relations Fri Sep 19 21:38:01 2008 recovered 190511 relations Fri Sep 19 21:38:01 2008 recovered 173085 polynomials Fri Sep 19 21:38:01 2008 attempting to build 74067 cycles Fri Sep 19 21:38:01 2008 found 74067 cycles in 5 passes Fri Sep 19 21:38:01 2008 distribution of cycle lengths: Fri Sep 19 21:38:01 2008 length 1 : 18463 Fri Sep 19 21:38:01 2008 length 2 : 13069 Fri Sep 19 21:38:01 2008 length 3 : 12697 Fri Sep 19 21:38:01 2008 length 4 : 10086 Fri Sep 19 21:38:01 2008 length 5 : 7424 Fri Sep 19 21:38:01 2008 length 6 : 5078 Fri Sep 19 21:38:01 2008 length 7 : 3085 Fri Sep 19 21:38:01 2008 length 9+: 4165 Fri Sep 19 21:38:01 2008 largest cycle: 19 relations Fri Sep 19 21:38:02 2008 matrix is 73803 x 74067 (19.5 MB) with weight 4812420 (64.97/col) Fri Sep 19 21:38:02 2008 sparse part has weight 4812420 (64.97/col) Fri Sep 19 21:38:03 2008 filtering completed in 3 passes Fri Sep 19 21:38:03 2008 matrix is 69969 x 70033 (18.5 MB) with weight 4577242 (65.36/col) Fri Sep 19 21:38:03 2008 sparse part has weight 4577242 (65.36/col) Fri Sep 19 21:38:04 2008 saving the first 48 matrix rows for later Fri Sep 19 21:38:04 2008 matrix is 69921 x 70033 (11.8 MB) with weight 3620447 (51.70/col) Fri Sep 19 21:38:04 2008 sparse part has weight 2665595 (38.06/col) Fri Sep 19 21:38:04 2008 matrix includes 64 packed rows Fri Sep 19 21:38:04 2008 using block size 21845 for processor cache size 512 kB Fri Sep 19 21:38:05 2008 commencing Lanczos iteration Fri Sep 19 21:38:05 2008 memory use: 11.2 MB Fri Sep 19 21:38:59 2008 lanczos halted after 1107 iterations (dim = 69913) Fri Sep 19 21:38:59 2008 recovered 12 nontrivial dependencies Fri Sep 19 21:39:01 2008 prp45 factor: 252854036142891231851223614578087693577960987 Fri Sep 19 21:39:01 2008 prp49 factor: 4747939643331217537545944530363101682879932936157 Fri Sep 19 21:39:01 2008 elapsed time 05:02:48
(25·10131+11)/9 = 2(7)1309<132> = 3 · 474917 · 916760665887089<15> · C111
C111 = P35 · P76
P35 = 94380226647732964091537890550890669<35>
P76 = 2253313099465234579424830713654498806792655361016665349309311724347507836769<76>
Number: 27779_131 N=212668201035834491692037209728328759241937969007540092694188106330944785211386193946770471207640858090417208461 ( 111 digits) SNFS difficulty: 132 digits. Divisors found: r1=94380226647732964091537890550890669 (pp35) r2=2253313099465234579424830713654498806792655361016665349309311724347507836769 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.15 hours. Scaled time: 4.02 units (timescale=0.781). Factorization parameters were as follows: name: 27779_131 n: 212668201035834491692037209728328759241937969007540092694188106330944785211386193946770471207640858090417208461 m: 100000000000000000000000000 c5: 250 c0: 11 skew: 0.54 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:64024, largePrimes:1524370 encountered Relations: rels:1534771, finalFF:177835 Max relations in full relation-set: 28 Initial matrix: 128041 x 177835 with sparse part having weight 14394177. Pruned matrix : 114549 x 115253 with weight 7529044. Total sieving time: 5.01 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.15 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(25·10126+11)/9 = 2(7)1259<127> = 4079 · 80877693697<11> · C112
C112 = P34 · P79
P34 = 5921234966250715563066349802636897<34>
P79 = 1422010294334862352761456402011079915700506602156564668923988341467060275943389<79>
Number: 27779_126 N=8420057077184058787598473132349406192030301923297927628502389558208977776558965593828185370809262511926494623933 ( 112 digits) SNFS difficulty: 128 digits. Divisors found: r1=5921234966250715563066349802636897 (pp34) r2=1422010294334862352761456402011079915700506602156564668923988341467060275943389 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.76 hours. Scaled time: 4.04 units (timescale=2.292). Factorization parameters were as follows: n: 8420057077184058787598473132349406192030301923297927628502389558208977776558965593828185370809262511926494623933 m: 50000000000000000000000000 c5: 2 c0: 275 skew: 2.68 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78707, largePrimes:1558651 encountered Relations: rels:1609975, finalFF:224099 Max relations in full relation-set: 28 Initial matrix: 157270 x 224099 with sparse part having weight 11295137. Pruned matrix : 125906 x 126756 with weight 5116173. Total sieving time: 1.70 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.76 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673813) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.29 BogoMIPS (lpj=2672145) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
(25·10128+11)/9 = 2(7)1279<129> = 33 · 463 · 3053293 · 106459341671<12> · C107
C107 = P41 · P66
P41 = 88835349405043160784533804171443167335437<41>
P66 = 769510713970792550300555952851855989341577812582377543694990208889<66>
Number: 27779_128 N=68359753146519583856843073026007483494688797670717179829285121834152207820493624762386763326338142162099493 ( 107 digits) SNFS difficulty: 130 digits. Divisors found: r1=88835349405043160784533804171443167335437 (pp41) r2=769510713970792550300555952851855989341577812582377543694990208889 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.51 hours. Scaled time: 3.57 units (timescale=2.354). Factorization parameters were as follows: n: 68359753146519583856843073026007483494688797670717179829285121834152207820493624762386763326338142162099493 m: 100000000000000000000000000 c5: 1 c0: 44 skew: 2.13 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78087, largePrimes:1507905 encountered Relations: rels:1540170, finalFF:207011 Max relations in full relation-set: 28 Initial matrix: 156649 x 207011 with sparse part having weight 9809048. Pruned matrix : 130030 x 130877 with weight 4819028. Total sieving time: 1.46 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673813) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.29 BogoMIPS (lpj=2672145) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672389)
By anonymous / GMP-ECM
(25·10164+11)/9 = 2(7)1639<165> = 32 · 2729 · 2336093 · 21024053473<11> · C144
C144 = P31 · P113
P31 = 2530290505519396636552217573611<31>
P113 = 91006934911632667105331373545676803276176580669962007769491107333139904850733355058121735195657525624018987256541<113>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 230273983343325847520474402702127170340777004798958820095817677549008342383184157970938223756549950521498102500948013368207088201076600608739551 (144 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=808694177 Step 1 took 4610ms Step 2 took 2619ms ********** Factor found in step 2: 2530290505519396636552217573611 Found probable prime factor of 31 digits: 2530290505519396636552217573611 Probable prime cofactor 91006934911632667105331373545676803276176580669962007769491107333139904850733355058121735195657525624018987256541 has 113 digits
By Serge Batalov / Msieve-1.37 QS, GMP-ECM 6.2.1, GMP-ECM 6.2.1 [P-1!]
(25·10134+11)/9 = 2(7)1339<135> = 3 · 5569 · 6501367 · 325527911 · 1641755237<10> · 35864341695964682465531767<26> · C81
C81 = P37 · P44
P37 = 7464496412545245228296694969557118343<37>
P44 = 17874517414703582293209008808015497997711773<44>
Thu Sep 18 21:24:45 2008 Msieve v. 1.37 Thu Sep 18 21:24:45 2008 random seeds: 8396dfb3 39287007 Thu Sep 18 21:24:45 2008 factoring 133424271118032401399678682893589251520170031584126003417413899923975037765352139 (81 digits) Thu Sep 18 21:24:46 2008 searching for 15-digit factors Thu Sep 18 21:24:46 2008 commencing quadratic sieve (81-digit input) Thu Sep 18 21:24:46 2008 using multiplier of 3 Thu Sep 18 21:24:46 2008 using 64kb Opteron sieve core Thu Sep 18 21:24:46 2008 sieve interval: 6 blocks of size 65536 Thu Sep 18 21:24:46 2008 processing polynomials in batches of 17 Thu Sep 18 21:24:46 2008 using a sieve bound of 1309421 (50122 primes) Thu Sep 18 21:24:46 2008 using large prime bound of 129632679 (26 bits) Thu Sep 18 21:24:46 2008 using trial factoring cutoff of 27 bits Thu Sep 18 21:24:46 2008 polynomial 'A' values have 10 factors Thu Sep 18 21:36:25 2008 50241 relations (25847 full + 24394 combined from 272444 partial), need 50218 Thu Sep 18 21:36:25 2008 begin with 298291 relations Thu Sep 18 21:36:25 2008 reduce to 71651 relations in 2 passes Thu Sep 18 21:36:25 2008 attempting to read 71651 relations Thu Sep 18 21:36:26 2008 recovered 71651 relations Thu Sep 18 21:36:26 2008 recovered 61361 polynomials Thu Sep 18 21:36:26 2008 attempting to build 50241 cycles Thu Sep 18 21:36:26 2008 found 50241 cycles in 1 passes Thu Sep 18 21:36:26 2008 distribution of cycle lengths: Thu Sep 18 21:36:26 2008 length 1 : 25847 Thu Sep 18 21:36:26 2008 length 2 : 24394 Thu Sep 18 21:36:26 2008 largest cycle: 2 relations Thu Sep 18 21:36:26 2008 matrix is 50122 x 50241 (7.4 MB) with weight 1528596 (30.43/col) Thu Sep 18 21:36:26 2008 sparse part has weight 1528596 (30.43/col) Thu Sep 18 21:36:26 2008 filtering completed in 3 passes Thu Sep 18 21:36:26 2008 matrix is 35603 x 35667 (5.7 MB) with weight 1215903 (34.09/col) Thu Sep 18 21:36:26 2008 sparse part has weight 1215903 (34.09/col) Thu Sep 18 21:36:26 2008 saving the first 48 matrix rows for later Thu Sep 18 21:36:26 2008 matrix is 35555 x 35667 (4.1 MB) with weight 931931 (26.13/col) Thu Sep 18 21:36:26 2008 sparse part has weight 707670 (19.84/col) Thu Sep 18 21:36:26 2008 matrix includes 64 packed rows Thu Sep 18 21:36:26 2008 using block size 14266 for processor cache size 1024 kB Thu Sep 18 21:36:27 2008 commencing Lanczos iteration Thu Sep 18 21:36:27 2008 memory use: 4.0 MB Thu Sep 18 21:36:31 2008 lanczos halted after 564 iterations (dim = 35553) Thu Sep 18 21:36:31 2008 recovered 16 nontrivial dependencies Thu Sep 18 21:36:31 2008 prp37 factor: 7464496412545245228296694969557118343 Thu Sep 18 21:36:31 2008 prp44 factor: 17874517414703582293209008808015497997711773 Thu Sep 18 21:36:31 2008 elapsed time 00:11:46
(25·10162+11)/9 = 2(7)1619<163> = C163
C163 = P36 · C127
P36 = 956996067485339718144137108196685667<36>
C127 = [2902601036884961627173699119809625917037467027349604362385456802139104947986390088924478788941052925770284265498185067416124337<127>]
Using B1=3000000, B2=23415979870, polynomial Dickson(12), sigma=3570635795 Step 1 took 21809ms Step 2 took 19409ms ********** Factor found in step 2: 956996067485339718144137108196685667 Found probable prime factor of 36 digits: 956996067485339718144137108196685667 Composite cofactor 2902601036884961627173699119809625917037467027349604362385456802139104947986390088924478788941052925770284265498185067416124337 has 127 digits
(25·10121+11)/9 = 2(7)1209<122> = C122
C122 = P41 · P81
P41 = 28281986806699176262127343626160011389591<41>
P81 = 982172078914838963908547772788255008357011466169123485822865552044233331522856069<81>
Number: 27779_121 N=27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 122 digits) SNFS difficulty: 122 digits. Divisors found: r1=28281986806699176262127343626160011389591 r2=982172078914838963908547772788255008357011466169123485822865552044233331522856069 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 Y1: 1 Y0: -1000000000000000000000000 c5: 250 c0: 11 skew: 0.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 121099 x 121346 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.80 hours.
(25·10124+11)/9 = 2(7)1239<125> = C125
C125 = P47 · P78
P47 = 27794149819268048962266606788818980074038015727<47>
P78 = 999410953686414922780705848621382863777285842485662131420022280753390278988477<78>
Number: 27779_124 N=27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 125 digits) SNFS difficulty: 125 digits. Divisors found: r1=27794149819268048962266606788818980074038015727 r2=999410953686414922780705848621382863777285842485662131420022280753390278988477 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.180). Factorization parameters were as follows: n: 27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 Y1: 1 Y0: -10000000000000000000000000 c5: 5 c0: 22 skew: 1.34 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 127050 x 127270 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.20 hours.
(25·10191+11)/9 = 2(7)1909<192> = 32 · 19 · 33419237 · 25138963259580059<17> · 3389122341921446988947<22> · C144
C144 = P31 · P114
P31 = 2526416268926009103666694532857<31>
P114 = 225821526905109989428395988313810618602302745969461692647476062511113200159315648162004578240008559799312133924557<114>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [P-1] Input number is 570519179446782359339252890837934249143440005001801732527646024358610926299288672350376351755659176142334448475296192648854650039135351195669349 (144 digits) Using B1=30000000, B2=756268978042, polynomial x^1, x0=3676457812 Step 1 took 18456ms ********** Factor found in step 1: 2526416268926009103666694532857 Found probable prime factor of 31 digits: 2526416268926009103666694532857 Probable prime cofactor 225821526905109989428395988313810618602302745969461692647476062511113200159315648162004578240008559799312133924557 has 114 digits
(25·10136+11)/9 = 2(7)1359<137> = C137
C137 = P68 · P69
P68 = 49939563665725420108333887821126316151365501830209825661485480290103<68>
P69 = 556227883041001713698169637988173699800671023277860382280971907619493<69>
Number: 27779_136 N=27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 137 digits) SNFS difficulty: 137 digits. Divisors found: r1=49939563665725420108333887821126316151365501830209825661485480290103 r2=556227883041001713698169637988173699800671023277860382280971907619493 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: n: 27777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 Y1: 1 Y0: -1000000000000000000000000000 c5: 250 c0: 11 skew: 0.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 142483 x 142700 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 4.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(25·10173-43)/9 = 2(7)1723<174> = 3 · 33037 · C169
C169 = P77 · P92
P77 = 46558850779493096424492483442855753081279943870049563681536791783611326923121<77>
P92 = 60196797774643852813248874227286977777238841940686534272161886935039204136300928460553097083<92>
Number: 27773_173 N=2802693724992965238750267657250736828180300650561267445367091218712128601041032557211387008281399418609213687459290873644477179907152362278433047570681133050597590356043 ( 169 digits) SNFS difficulty: 174 digits. Divisors found: r1=46558850779493096424492483442855753081279943870049563681536791783611326923121 (pp77) r2=60196797774643852813248874227286977777238841940686534272161886935039204136300928460553097083 (pp92) Version: GGNFS-0.77.1-20050930-nocona Total time: 262.57 hours. Scaled time: 265.45 units (timescale=1.011). Factorization parameters were as follows: name: 27773_173 n: 2802693724992965238750267657250736828180300650561267445367091218712128601041032557211387008281399418609213687459290873644477179907152362278433047570681133050597590356043 m: 50000000000000000000000000000000000 c5: 8 c0: -43 skew: 1.4 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11000001) Primes: RFBsize:501962, AFBsize:502386, largePrimes:6593939 encountered Relations: rels:7149050, finalFF:1223519 Max relations in full relation-set: 28 Initial matrix: 1004413 x 1223519 with sparse part having weight 75368111. Pruned matrix : 812967 x 818053 with weight 54796900. Total sieving time: 255.78 hours. Total relation processing time: 0.19 hours. Matrix solve time: 6.48 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 262.57 hours. --------- CPU info (if available) ----------
(25·10108+11)/9 = 2(7)1079<109> = 47 · 972 · 1489717 · 22665857 · C90
C90 = P33 · P57
P33 = 853359707941802590369203380773573<33>
P57 = 217995797342499960244508687999226483457599274315394828629<57>
Fri Sep 19 14:38:44 2008 Msieve v. 1.36 Fri Sep 19 14:38:44 2008 random seeds: e11317bc 9b0d859a Fri Sep 19 14:38:44 2008 factoring 186028829952736151348531947356431309694958639565062282660203345428934749304330489787021417 (90 digits) Fri Sep 19 14:38:45 2008 no P-1/P+1/ECM available, skipping Fri Sep 19 14:38:45 2008 commencing quadratic sieve (90-digit input) Fri Sep 19 14:38:46 2008 using multiplier of 1 Fri Sep 19 14:38:46 2008 using 64kb Pentium 4 sieve core Fri Sep 19 14:38:46 2008 sieve interval: 18 blocks of size 65536 Fri Sep 19 14:38:46 2008 processing polynomials in batches of 6 Fri Sep 19 14:38:46 2008 using a sieve bound of 1572443 (59667 primes) Fri Sep 19 14:38:46 2008 using large prime bound of 125795440 (26 bits) Fri Sep 19 14:38:46 2008 using double large prime bound of 379661707918720 (42-49 bits) Fri Sep 19 14:38:46 2008 using trial factoring cutoff of 49 bits Fri Sep 19 14:38:46 2008 polynomial 'A' values have 11 factors Fri Sep 19 16:27:20 2008 59783 relations (16226 full + 43557 combined from 632833 partial), need 59763 Fri Sep 19 16:27:22 2008 begin with 649059 relations Fri Sep 19 16:27:23 2008 reduce to 145005 relations in 9 passes Fri Sep 19 16:27:23 2008 attempting to read 145005 relations Fri Sep 19 16:27:26 2008 recovered 145005 relations Fri Sep 19 16:27:26 2008 recovered 120201 polynomials Fri Sep 19 16:27:27 2008 attempting to build 59783 cycles Fri Sep 19 16:27:27 2008 found 59783 cycles in 5 passes Fri Sep 19 16:27:27 2008 distribution of cycle lengths: Fri Sep 19 16:27:27 2008 length 1 : 16226 Fri Sep 19 16:27:27 2008 length 2 : 11495 Fri Sep 19 16:27:27 2008 length 3 : 10335 Fri Sep 19 16:27:27 2008 length 4 : 7992 Fri Sep 19 16:27:27 2008 length 5 : 5624 Fri Sep 19 16:27:27 2008 length 6 : 3481 Fri Sep 19 16:27:27 2008 length 7 : 2186 Fri Sep 19 16:27:27 2008 length 9+: 2444 Fri Sep 19 16:27:27 2008 largest cycle: 18 relations Fri Sep 19 16:27:27 2008 matrix is 59667 x 59783 (14.6 MB) with weight 3583703 (59.95/col) Fri Sep 19 16:27:27 2008 sparse part has weight 3583703 (59.95/col) Fri Sep 19 16:27:28 2008 filtering completed in 3 passes Fri Sep 19 16:27:28 2008 matrix is 55554 x 55618 (13.7 MB) with weight 3369862 (60.59/col) Fri Sep 19 16:27:28 2008 sparse part has weight 3369862 (60.59/col) Fri Sep 19 16:27:28 2008 saving the first 48 matrix rows for later Fri Sep 19 16:27:29 2008 matrix is 55506 x 55618 (10.1 MB) with weight 2804439 (50.42/col) Fri Sep 19 16:27:29 2008 sparse part has weight 2310918 (41.55/col) Fri Sep 19 16:27:29 2008 matrix includes 64 packed rows Fri Sep 19 16:27:29 2008 using block size 21845 for processor cache size 512 kB Fri Sep 19 16:27:29 2008 commencing Lanczos iteration Fri Sep 19 16:27:29 2008 memory use: 9.1 MB Fri Sep 19 16:28:04 2008 lanczos halted after 879 iterations (dim = 55506) Fri Sep 19 16:28:05 2008 recovered 17 nontrivial dependencies Fri Sep 19 16:28:06 2008 prp33 factor: 853359707941802590369203380773573 Fri Sep 19 16:28:06 2008 prp57 factor: 217995797342499960244508687999226483457599274315394828629 Fri Sep 19 16:28:06 2008 elapsed time 01:49:22
(25·10137+11)/9 = 2(7)1369<138> = 32 · 19 · 31 · C134
C134 = P45 · P90
P45 = 161921640164388497483372857632347906673665639<45>
P90 = 323619588033082331955512247873525202849766126106862528717344406156559958159975949812820961<90>
Number: 27779_137 N=52401014483640403278207466096543629084659078999769435536271982225575887149175208032027500052401014483640403278207466096543629084659079 ( 134 digits) SNFS difficulty: 139 digits. Divisors found: r1=161921640164388497483372857632347906673665639 (pp45) r2=323619588033082331955512247873525202849766126106862528717344406156559958159975949812820961 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.21 hours. Scaled time: 5.25 units (timescale=1.008). Factorization parameters were as follows: name: 27779_137 n: 52401014483640403278207466096543629084659078999769435536271982225575887149175208032027500052401014483640403278207466096543629084659079 m: 5000000000000000000000000000 c5: 4 c0: 55 skew: 1.69 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63994, largePrimes:1557289 encountered Relations: rels:1578648, finalFF:193359 Max relations in full relation-set: 28 Initial matrix: 142556 x 193359 with sparse part having weight 14877974. Pruned matrix : 126678 x 127454 with weight 8126953. Total sieving time: 5.09 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.21 hours. --------- CPU info (if available) ----------
(25·10139+11)/9 = 2(7)1389<140> = 1579 · 23677 · C132
C132 = P30 · P103
P30 = 209083018584969192252595113529<30>
P103 = 3553611393113190589659808998064869756016200551109239594585632907970680199445429803699384634763303281397<103>
Number: 27779_139 N=742999796950043490304314795675635378579661200235868554740897886188462070872331423725779198524157510524138893921226513631533448720013 ( 132 digits) SNFS difficulty: 140 digits. Divisors found: r1=209083018584969192252595113529 (pp30) r2=3553611393113190589659808998064869756016200551109239594585632907970680199445429803699384634763303281397 (pp103) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.10 hours. Scaled time: 10.19 units (timescale=1.009). Factorization parameters were as follows: name: 27779_137 n: 742999796950043490304314795675635378579661200235868554740897886188462070872331423725779198524157510524138893921226513631533448720013 m: 10000000000000000000000000000 c5: 5 c0: 22 skew: 1.34 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:100104, largePrimes:2894835 encountered Relations: rels:2976696, finalFF:348480 Max relations in full relation-set: 28 Initial matrix: 200190 x 348480 with sparse part having weight 35375015. Pruned matrix : 163148 x 164212 with weight 16176754. Total sieving time: 9.88 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.14 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.10 hours. --------- CPU info (if available) ----------
(25·10155+11)/9 = 2(7)1549<156> = 33 · 19 · 862257989 · 822143730045749087393<21> · 182026023701860412223553<24> · C100
C100 = P41 · P60
P41 = 18085812322923420183023124569529108930833<41>
P60 = 232019056365966092443217013695946993609084795707320945808071<60>
Number: 27779_155 N=4196253108776653175638038416478924297372907360500066045972590132987812392925813812223693780032153143 ( 100 digits) Divisors found: r1=18085812322923420183023124569529108930833 (pp41) r2=232019056365966092443217013695946993609084795707320945808071 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.29 hours. Scaled time: 5.71 units (timescale=0.784). Factorization parameters were as follows: name: 27779_155 n: 4196253108776653175638038416478924297372907360500066045972590132987812392925813812223693780032153143 skew: 2549.76 # norm 8.24e+13 c5: 708000 c4: 19166104 c3: -4074259275762 c2: -16901136602923433 c1: 32379437717701640298 c0: 46739428509995733823168 # alpha -6.81 Y1: 50409368801 Y0: -5682843064049718825 # Murphy_E 3.68e-09 # M 1027250211033138229216287220548871958441136017879058543953306680295155783875246280193616482926558222 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: RFBsize:135072, AFBsize:135060, largePrimes:4208119 encountered Relations: rels:4572216, finalFF:675038 Max relations in full relation-set: 28 Initial matrix: 270217 x 675038 with sparse part having weight 54174360. Pruned matrix : 135288 x 136703 with weight 15301062. Total sieving time: 6.89 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.13 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 7.29 hours. --------- CPU info (if available) ----------
Factorizations of 277...779 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Serge Batalov / GMP-ECM 6.2.1
(7·10189-61)/9 = (7)1881<189> = 3 · 1291 · 355909522613<12> · C174
C174 = P40 · C134
P40 = 6586408395714765506229052421915313517957<40>
C134 = [85668225182877184644786666541917164742621853107779269580528230063969136871950475692301384534838463105695144272049997293525583827839347<134>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=272832663 Step 1 took 28102ms Step 2 took 18633ms ********** Factor found in step 2: 6586408395714765506229052421915313517957 Found probable prime factor of 40 digits: 6586408395714765506229052421915313517957 Composite cofactor 85668225182877184644786666541917164742621853107779269580528230063969136871950475692301384534838463105695144272049997293525583827839347 has 134 digits
By Serge Batalov / GMP-ECM 6.2.1
(5·10180-23)/9 = (5)1793<180> = 617 · 19195003 · 108827351 · 1035425066346613909<19> · C144
C144 = P42 · P102
P42 = 687803100970957788662415682330278575034733<42>
P102 = 605247890592415863871110605761674126376482105290280241337087884763077147497213529971623886197755952749<102>
Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=1426785098 Step 1 took 67428ms Step 2 took 43125ms ********** Factor found in step 2: 687803100970957788662415682330278575034733 Found probable prime factor of 42 digits: 687803100970957788662415682330278575034733 Probable prime cofactor 605247890592415863871110605761674126376482105290280241337087884763077147497213529971623886197755952749 has 102 digits
3·10189-7 = 2(9)1883<190> = 29 · 4139 · 116881 · 184949 · C175
C175 = P33 · P142
P33 = 349757439117349435285448300528377<33>
P142 = 3305711616124445048311225343825846971474411661265757514018027000415495130450466308113753852376938088222883119475153546917208332615074442720531<142>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3188158830 Step 1 took 29325ms Step 2 took 18759ms ********** Factor found in step 2: 349757439117349435285448300528377 Found probable prime factor of 33 digits: 349757439117349435285448300528377 Probable prime cofactor 3305711616124445048311225343825846971474411661265757514018027000415495130450466308113753852376938088222883119475153546917208332615074442720531 has 142 digits
(5·10188-23)/9 = (5)1873<188> = 329994138355223<15> · C174
C174 = P28 · C146
P28 = 6949099976695798019485329959<28>
C146 = [24226613417251399107633278235282534498979801691191248382376457126126295340750015734646309207992878830271994380586380451824139683183787774912460129<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2395590199 Step 1 took 25942ms ********** Factor found in step 1: 6949099976695798019485329959 Found probable prime factor of 28 digits: 6949099976695798019485329959 Composite cofactor 24226613417251399107633278235282534498979801691191248382376457126126295340750015734646309207992878830271994380586380451824139683183787774912460129 has 146 digits
(8·10181-17)/9 = (8)1807<181> = 7 · 1709 · 4253 · C174
C174 = P28 · C146
P28 = 3983165093026307702402046217<28>
C146 = [43861520701364732252769870687031534361057141753068471924374557286056504583720673640378144134184647090935167172927062385446263634692674481022068849<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2914738981 Step 1 took 25105ms Step 2 took 16411ms ********** Factor found in step 2: 3983165093026307702402046217 Found probable prime factor of 28 digits: 3983165093026307702402046217 Composite cofactor 43861520701364732252769870687031534361057141753068471924374557286056504583720673640378144134184647090935167172927062385446263634692674481022068849 has 146 digits
By matsui / GMP-ECM
4·10188+9 = 4(0)1879<189> = 337 · 1201 · 58693 · 876529 · C173
C173 = P37 · P136
P37 = 2430640727175969638994585027337101361<37>
P136 = 7903395490385727731463723829241886338897947794113256415232279926080628572269461573229661036837524536596561491729907318379745124431713621<136>
Input number is 19210314961910444414903654271569167794536732506063457824599929055888256292329337954197463698980821541562015442076418326664270192429185687422314470872745845677597780201338181 (173 digits) Using B1=88000000, B2=582207787990, polynomial Dickson(30), sigma=101061817 Step 1 took 1763944ms Step 2 took 402772ms ********** Factor found in step 2: 2430640727175969638994585027337101361 Found probable prime factor of 37 digits: 2430640727175969638994585027337101361 Probable prime cofactor 7903395490385727731463723829241886338897947794113256415232279926080628572269461573229661036837524536596561491729907318379745124431713621 has 136 digits
4·10190+9 = 4(0)1899<191> = 2789 · 17155258129<11> · C177
C177 = P34 · C144
P34 = 1411411376393248424585966404607993<34>
C144 = [592325740845773596110618934810993533587964947739141920784957245331142523666993635952898907996987364689434079735407153529578722036865973825841773<144>]
Input number is 836015289160283879500272797444715885812605958351520507116372858766515218453575577239195951346683064794135993251110322481581764211436292340215488177214241765662632022089309091589 (177 digits) Using B1=88000000, B2=582207787990, polynomial Dickson(30), sigma=2898798771 Step 1 took 1923663ms ********** Factor found in step 1: 1411411376393248424585966404607993 Found probable prime factor of 34 digits: 1411411376393248424585966404607993 Composite cofactor 592325740845773596110618934810993533587964947739141920784957245331142523666993635952898907996987364689434079735407153529578722036865973825841773 has 144 digits
4·10192+9 = 4(0)1919<193> = 13 · 3084049 · 20054833 · C178
C178 = P33 · C146
P33 = 362793721871669762743297557966121<33>
C146 = [13712497346156392212676019147625431370510365650834689585981115102219563918727772856984851299023907414810459127022107546442249298162322016417074149<146>]
Input number is 4974807948367471887114396159851198874837557117234981819868633168970552843782088694722828194509779833777082181924438616285128530903647465329505197651600423635188354862434086906029 (178 digits) Using B1=88000000, B2=582207787990, polynomial Dickson(30), sigma=2110858031 Step 1 took 1929223ms Step 2 took 431804ms ********** Factor found in step 2: 362793721871669762743297557966121 Found probable prime factor of 33 digits: 362793721871669762743297557966121 Composite cofactor 13712497346156392212676019147625431370510365650834689585981115102219563918727772856984851299023907414810459127022107546442249298162322016417074149 has 146 digits
By Robert Backstrom / GGNFS, Msieve
9·10193-1 = 8(9)193<194> = 43 · C193
C193 = P43 · P66 · P85
P43 = 1821585162697457488304296102273254935173081<43>
P66 = 577907847913674910737796883693373565504125011795363899114213268519<66>
P85 = 1988227065562338941228938824773608620242017418041162968604820660552549013425070142387<85>
Number: n N=2093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093 ( 193 digits) SNFS difficulty: 193 digits. Divisors found: Wed Sep 17 08:14:24 2008 prp43 factor: 1821585162697457488304296102273254935173081 Wed Sep 17 08:14:24 2008 prp66 factor: 577907847913674910737796883693373565504125011795363899114213268519 Wed Sep 17 08:14:24 2008 prp85 factor: 1988227065562338941228938824773608620242017418041162968604820660552549013425070142387 Wed Sep 17 08:14:25 2008 elapsed time 09:59:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 161.42 hours. Scaled time: 330.10 units (timescale=2.045). Factorization parameters were as follows: name: KA_8_9_193 n: 2093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093023255813953488372093 type: snfs skew: 0.16 deg: 5 c5: 9000 c0: -1 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 12100001) Primes: RFBsize:633578, AFBsize:634548, largePrimes:15156746 encountered Relations: rels:15251348, finalFF:1305201 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 160.82 hours. Total relation processing time: 0.59 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,52,52,2.5,2.5,100000 total time: 161.42 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(25·10170-43)/9 = 2(7)1693<171> = 32 · 7 · 13 · 331 · 78778604771093191<17> · C149
C149 = P44 · P105
P44 = 17619764491236916651312474862954886430331357<44>
P105 = 738205403106764575938062723471690111389545121101186209390350592296561164036335958186089930067485740613911<105>
Number: 27773_170 N=13007005348899804709094980881302261626646867240510572909883953359395253502607313995996074802578303581068987576332763598695119953893377355680333707227 ( 149 digits) SNFS difficulty: 171 digits. Divisors found: r1=17619764491236916651312474862954886430331357 (pp44) r2=738205403106764575938062723471690111389545121101186209390350592296561164036335958186089930067485740613911 (pp105) Version: GGNFS-0.77.1-20050930-nocona Total time: 183.30 hours. Scaled time: 184.95 units (timescale=1.009). Factorization parameters were as follows: name: 27773_170 n: 13007005348899804709094980881302261626646867240510572909883953359395253502607313995996074802578303581068987576332763598695119953893377355680333707227 m: 10000000000000000000000000000000000 c5: 25 c0: -43 skew: 1.11 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 8700001) Primes: RFBsize:412849, AFBsize:411971, largePrimes:6323654 encountered Relations: rels:6647667, finalFF:972289 Max relations in full relation-set: 28 Initial matrix: 824884 x 972289 with sparse part having weight 73248063. Pruned matrix : 707814 x 712002 with weight 55447414. Total sieving time: 178.63 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.40 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 183.30 hours. --------- CPU info (if available) ----------
By Chris Monico / GGNFS-0.91.4
(16·10169-1)/3 = 5(3)169<170> = 2477 · 2837 · 4254557 · 4055471607565486774482757<25> · C132
C132 = P49 · P84
P49 = 2359339499068883240543885710901550432466257806573<49>
P84 = 186434909099572698920884170268392055319140036876977757831249406175990968275589112521<84>
N=439863245043938633275360032107760843619767204363929593692974356134399238277245461761858058337741355248435942840638766855441150400533 r1=2359339499068883240543885710901550432466257806573 (pp49) r2=186434909099572698920884170268392055319140036876977757831249406175990968275589112521 (pp84) Version: GGNFS-0.91.4
By Sinkiti Sibata / Msieve
(25·10108-43)/9 = 2(7)1073<109> = C109
C109 = P47 · P62
P47 = 98977571642142365276984929935548439173343598577<47>
P62 = 28064719427760380820022102182615812657550236296462577237567549<62>
Fri Sep 12 05:02:50 2008 Msieve v. 1.36 Fri Sep 12 05:02:50 2008 random seeds: 9881df76 48087ea0 Fri Sep 12 05:02:50 2008 factoring 2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 (109 digits) Fri Sep 12 05:02:52 2008 no P-1/P+1/ECM available, skipping Fri Sep 12 05:02:52 2008 commencing quadratic sieve (109-digit input) Fri Sep 12 05:02:52 2008 using multiplier of 5 Fri Sep 12 05:02:52 2008 using 32kb Intel Core sieve core Fri Sep 12 05:02:52 2008 sieve interval: 50 blocks of size 32768 Fri Sep 12 05:02:52 2008 processing polynomials in batches of 5 Fri Sep 12 05:02:52 2008 using a sieve bound of 5812619 (200667 primes) Fri Sep 12 05:02:52 2008 using large prime bound of 871892850 (29 bits) Fri Sep 12 05:02:52 2008 using double large prime bound of 12383220374195100 (45-54 bits) Fri Sep 12 05:02:52 2008 using trial factoring cutoff of 54 bits Fri Sep 12 05:02:52 2008 polynomial 'A' values have 14 factors Mon Sep 15 10:59:05 2008 201065 relations (48104 full + 152961 combined from 2940810 partial), need 200763 Mon Sep 15 10:59:18 2008 begin with 2988914 relations Mon Sep 15 10:59:21 2008 reduce to 528487 relations in 12 passes Mon Sep 15 10:59:21 2008 attempting to read 528487 relations Mon Sep 15 10:59:38 2008 recovered 528487 relations Mon Sep 15 10:59:38 2008 recovered 519328 polynomials Mon Sep 15 10:59:39 2008 attempting to build 201065 cycles Mon Sep 15 10:59:39 2008 found 201065 cycles in 7 passes Mon Sep 15 10:59:39 2008 distribution of cycle lengths: Mon Sep 15 10:59:39 2008 length 1 : 48104 Mon Sep 15 10:59:39 2008 length 2 : 34121 Mon Sep 15 10:59:39 2008 length 3 : 33987 Mon Sep 15 10:59:39 2008 length 4 : 27116 Mon Sep 15 10:59:39 2008 length 5 : 21113 Mon Sep 15 10:59:39 2008 length 6 : 14366 Mon Sep 15 10:59:39 2008 length 7 : 9281 Mon Sep 15 10:59:39 2008 length 9+: 12977 Mon Sep 15 10:59:39 2008 largest cycle: 21 relations Mon Sep 15 10:59:40 2008 matrix is 200667 x 201065 (61.2 MB) with weight 15238112 (75.79/col) Mon Sep 15 10:59:40 2008 sparse part has weight 15238112 (75.79/col) Mon Sep 15 10:59:42 2008 filtering completed in 3 passes Mon Sep 15 10:59:42 2008 matrix is 192791 x 192855 (59.0 MB) with weight 14697710 (76.21/col) Mon Sep 15 10:59:42 2008 sparse part has weight 14697710 (76.21/col) Mon Sep 15 10:59:44 2008 saving the first 48 matrix rows for later Mon Sep 15 10:59:44 2008 matrix is 192743 x 192855 (40.9 MB) with weight 12213594 (63.33/col) Mon Sep 15 10:59:44 2008 sparse part has weight 9571959 (49.63/col) Mon Sep 15 10:59:44 2008 matrix includes 64 packed rows Mon Sep 15 10:59:44 2008 using block size 65536 for processor cache size 2048 kB Mon Sep 15 10:59:46 2008 commencing Lanczos iteration Mon Sep 15 10:59:46 2008 memory use: 36.9 MB Mon Sep 15 11:04:34 2008 lanczos halted after 3049 iterations (dim = 192738) Mon Sep 15 11:04:35 2008 recovered 15 nontrivial dependencies Mon Sep 15 11:04:38 2008 prp47 factor: 98977571642142365276984929935548439173343598577 Mon Sep 15 11:04:38 2008 prp62 factor: 28064719427760380820022102182615812657550236296462577237567549 Mon Sep 15 11:04:38 2008 elapsed time 78:01:48
By Robert Backstrom / GGNFS, Msieve
(16·10166-7)/9 = 1(7)166<167> = 73867 · 261427 · 45020051 · 2159829807661<13> · C136
C136 = P65 · P72
P65 = 11534998653303754286376078599436060408108912634496357909792199251<65>
P72 = 820792749689864725133726681975155104671578537741228360509241468320423773<72>
Number: n N=9467843262314075088114456690203792146385655753244537824265820827096598765879588060136679376473184972544225902520642437741750597973194023 ( 136 digits) SNFS difficulty: 167 digits. Divisors found: Mon Sep 15 00:12:37 2008 prp65 factor: 11534998653303754286376078599436060408108912634496357909792199251 Mon Sep 15 00:12:37 2008 prp72 factor: 820792749689864725133726681975155104671578537741228360509241468320423773 Mon Sep 15 00:12:37 2008 elapsed time 03:35:17 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 40.54 hours. Scaled time: 34.09 units (timescale=0.841). Factorization parameters were as follows: name: KA_1_7_166 n: 9467843262314075088114456690203792146385655753244537824265820827096598765879588060136679376473184972544225902520642437741750597973194023 type: snfs skew: 1.07 deg: 5 c5: 5 c0: -7 m: 2000000000000000000000000000000000 rlim: 5400000 alim: 5400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 4700001) Primes: RFBsize:374362, AFBsize:373867, largePrimes:14071031 encountered Relations: rels:13318773, finalFF:814933 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 40.16 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,52,52,2.5,2.5,100000 total time: 40.54 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(29·10166+7)/9 = 3(2)1653<167> = 3 · 2309 · 63281501 · 412394155289780003<18> · C138
C138 = P53 · P85
P53 = 79353768896243354879317921547141159657539357186424707<53>
P85 = 2246226099411522565081310175327100561059317639528459166402607843175730179074495466669<85>
Number: n N=178246506781412113310294463823584874541396179184968819439212220708712747355434245310443530401773459134403743276598581768969540379596590983 ( 138 digits) SNFS difficulty: 167 digits. Divisors found: Mon Sep 15 03:08:09 2008 prp53 factor: 79353768896243354879317921547141159657539357186424707 Mon Sep 15 03:08:09 2008 prp85 factor: 2246226099411522565081310175327100561059317639528459166402607843175730179074495466669 Mon Sep 15 03:08:09 2008 elapsed time 03:50:18 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 43.04 hours. Scaled time: 36.20 units (timescale=0.841). Factorization parameters were as follows: name: KA_3_2_165_3 n: 178246506781412113310294463823584874541396179184968819439212220708712747355434245310443530401773459134403743276598581768969540379596590983 type: snfs skew: 0.47 deg: 5 c5: 290 c0: 7 m: 1000000000000000000000000000000000 rlim: 5400000 alim: 5400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 4900001) Primes: RFBsize:374362, AFBsize:374497, largePrimes:14043887 encountered Relations: rels:13214911, finalFF:755528 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 42.60 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5400000,5400000,28,28,52,52,2.5,2.5,100000 total time: 43.04 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Serge Batalov / Msieve-1.37
(25·10169-43)/9 = 2(7)1683<170> = 6761 · C166
C166 = P79 · P88
P79 = 3080145577490737926404037860940972976068672736877912330103917098426035030034777<79>
P88 = 1333875575134097511706641124139988902844113672229182918543377260872116052419579028419309<88>
Number: 27773_169 N=4108530953672204966392216798961363374911666584496047593222567338822330687439399168433334976745714802215319890220052917878683297999967131752370622360268862265608309093 ( 166 digits) SNFS difficulty: 170 digits. Divisors found: r1=3080145577490737926404037860940972976068672736877912330103917098426035030034777 r2=1333875575134097511706641124139988902844113672229182918543377260872116052419579028419309 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.727). Factorization parameters were as follows: n: 4108530953672204966392216798961363374911666584496047593222567338822330687439399168433334976745714802215319890220052917878683297999967131752370622360268862265608309093 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 5 c0: -86 skew: 1.77 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [3000000, 5500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 996680 x 996928 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,54,54,2.6,2.6,100000 total time: 42.50 hours.
By Wataru Sakai / GGNFS
(25·10184-61)/9 = 2(7)1831<185> = 3 · 269 · C182
C182 = P75 · P107
P75 = 509575232245114400105218066214409542599718583695395748663216501642189269183<75>
P107 = 67548491293142657192636214891586037775613013390913300305025073464846830376816916705229553974495985164761891<107>
Number: 27771_184 N=34421038138510257469365276056725870852264904309513974941484235164532562302079030703566019551149662673826242599476800220294644086465647803937766763045573454495387580889439625499105053 ( 182 digits) SNFS difficulty: 185 digits. Divisors found: r1=509575232245114400105218066214409542599718583695395748663216501642189269183 (pp75) r2=67548491293142657192636214891586037775613013390913300305025073464846830376816916705229553974495985164761891 (pp107) Version: GGNFS-0.77.1-20060722-nocona Total time: 835.22 hours. Scaled time: 1672.94 units (timescale=2.003). Factorization parameters were as follows: n: 34421038138510257469365276056725870852264904309513974941484235164532562302079030703566019551149662673826242599476800220294644086465647803937766763045573454495387580889439625499105053 m: 10000000000000000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15000001) Primes: RFBsize:501962, AFBsize:500647, largePrimes:6989854 encountered Relations: rels:7537555, finalFF:1185130 Max relations in full relation-set: 32 Initial matrix: 1002674 x 1185130 with sparse part having weight 117077372. Pruned matrix : 861922 x 866999 with weight 96601519. Total sieving time: 826.03 hours. Total relation processing time: 0.12 hours. Matrix solve time: 8.80 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 835.22 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GMP-ECM
(25·10168-43)/9 = 2(7)1673<169> = 17 · 8971 · 10337 · 8615692218787<13> · C147
C147 = P40 · P108
P40 = 1985140693063465171692545141141610284639<40>
P108 = 103022417519537981589629426097797637160177611134278915004628187551244055578499294100173927259247731956871779<108>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 204513993315809305228716749061373306143831113687280897005385595482580547491319916444125287840919440008825849540473546379899733573903628096216302781 Run 377 out of 2350: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3964083566 Step 1 took 54756ms Step 2 took 18455ms ********** Factor found in step 2: 1985140693063465171692545141141610284639 Found probable prime factor of 40 digits: 1985140693063465171692545141141610284639 Probable prime cofactor 103022417519537981589629426097797637160177611134278915004628187551244055578499294100173927259247731956871779 has 108 digits
By Sinkiti Sibata / GGNFS
(25·10166-43)/9 = 2(7)1653<167> = 503 · 706751 · 2776343 · 2440785247913<13> · C140
C140 = P47 · P93
P47 = 64438863979153398772474615309331228867392153447<47>
P93 = 178942095075642967256744351697024985709989506953109244293032020741491038953890828802470902717<93>
Number: 27773_166 N=11530825324724092380753939585475456118157613190482884095671427620741334156187743828513545625362299892188371422291850861036994978256673215499 ( 140 digits) SNFS difficulty: 167 digits. Divisors found: r1=64438863979153398772474615309331228867392153447 (pp47) r2=178942095075642967256744351697024985709989506953109244293032020741491038953890828802470902717 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 106.94 hours. Scaled time: 107.80 units (timescale=1.008). Factorization parameters were as follows: name: 27773_166 n: 11530825324724092380753939585475456118157613190482884095671427620741334156187743828513545625362299892188371422291850861036994978256673215499 m: 1000000000000000000000000000000000 c5: 250 c0: -43 skew: 0.7 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 6450001) Primes: RFBsize:380800, AFBsize:381622, largePrimes:6131252 encountered Relations: rels:6442154, finalFF:949844 Max relations in full relation-set: 28 Initial matrix: 762488 x 949844 with sparse part having weight 61604041. Pruned matrix : 608545 x 612421 with weight 43738158. Total sieving time: 103.72 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.01 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 106.94 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(25·10150-43)/9 = 2(7)1493<151> = 4024156931<10> · C141
C141 = P55 · P86
P55 = 7093738736322567193255076634889767778935410319128407547<55>
P86 = 97307743410819327218171555923430401617608483828797046105780850465138527911441189609789<86>
Number: n N=690275708777466108659015857296291355238347134374660344919281622761788307051929376602579065219307615957827509927638499885773410405245892677583 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=7093738736322567193255076634889767778935410319128407547 (pp55) r2=97307743410819327218171555923430401617608483828797046105780850465138527911441189609789 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 14.80 hours. Scaled time: 26.61 units (timescale=1.798). Factorization parameters were as follows: name: KA_2_7_149_3 n: 690275708777466108659015857296291355238347134374660344919281622761788307051929376602579065219307615957827509927638499885773410405245892677583 type: snfs skew: 1.11 deg: 5 c5: 25 c0: -43 m: 1000000000000000000000000000000 rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [100000, 960001) Primes: RFBsize:121127, AFBsize:120625, largePrimes:10273485 encountered Relations: rels:9213877, finalFF:294423 Max relations in full relation-set: 48 Initial matrix: 241816 x 294423 with sparse part having weight 47230275. Pruned matrix : 227056 x 228329 with weight 31481125. Total sieving time: 13.74 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.78 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,52,52,2.5,2.5,100000 total time: 14.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GGNFS, Msieve
(13·10193+41)/9 = 1(4)1929<194> = C194
C194 = P49 · P145
P49 = 1901287922333370738124450534127671428882960582469<49>
P145 = 7597189397131069455903065721394056844398540195601305071590900567978034358366761385835754036511022197005546476527689112466320193426394369847525421<145>
Number: n N=14444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 194 digits) SNFS difficulty: 194 digits. Divisors found: Fri Sep 12 22:18:39 2008 prp49 factor: 1901287922333370738124450534127671428882960582469 Fri Sep 12 22:18:39 2008 prp145 factor: 7597189397131069455903065721394056844398540195601305071590900567978034358366761385835754036511022197005546476527689112466320193426394369847525421 Fri Sep 12 22:18:39 2008 elapsed time 24:07:01 (Msieve 1.37) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 249.78 hours. Scaled time: 320.72 units (timescale=1.284). Factorization parameters were as follows: name: KA_1_4_192_9 n: 14444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 type: snfs skew: 0.32 deg: 5 c5: 13000 c0: 41 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 20100001) Primes: RFBsize:633578, AFBsize:632714, largePrimes:15887207 encountered Relations: rels:16490078, finalFF:1303499 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 248.58 hours. Total relation processing time: 1.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,52,52,2.5,2.5,100000 total time: 249.78 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(25·10156-43)/9 = 2(7)1553<157> = C157
C157 = P39 · P50 · P69
P39 = 372185119464374581000505742262872837559<39>
P50 = 27261215972898031404791163916223415134863840191709<50>
P69 = 273774673963716145379187767741510557645709906000665535557462756307383<69>
Number: 27773_156 N=2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 157 digits) SNFS difficulty: 158 digits. Divisors found: r1=372185119464374581000505742262872837559 (pp39) r2=27261215972898031404791163916223415134863840191709 (pp50) r3=273774673963716145379187767741510557645709906000665535557462756307383 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.15 hours. Scaled time: 57.46 units (timescale=2.379). Factorization parameters were as follows: n: 2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 50000000000000000000000000000000 c5: 2 c0: -1075 skew: 3.52 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283717, largePrimes:5772871 encountered Relations: rels:5900578, finalFF:739057 Max relations in full relation-set: 28 Initial matrix: 566928 x 739057 with sparse part having weight 46097498. Pruned matrix : 429064 x 431962 with weight 29205104. Total sieving time: 23.11 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.93 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(25·10185-43)/9 = 2(7)1843<186> = 3 · 1106257 · 527014997 · 6161874197<10> · 7380221741<10> · 645660194219364791<18> · 773333185615761311050817<24> · C109
C109 = P36 · P74
P36 = 207427746518315298219866961491334487<36>
P74 = 33719217843231569076697258173474898117809420616890018677139524636324971843<74>
Number: 27773_185 N=6994301371581692181777843367355613443324859575717902716265870548989008052704863600572322946143570728769849541 ( 109 digits) Divisors found: r1=207427746518315298219866961491334487 (pp36) r2=33719217843231569076697258173474898117809420616890018677139524636324971843 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.43 hours. Scaled time: 27.16 units (timescale=2.377). Factorization parameters were as follows: name: 27773_185 n: 6994301371581692181777843367355613443324859575717902716265870548989008052704863600572322946143570728769849541 skew: 21151.42 # norm 1.25e+15 c5: 16560 c4: -2088178530 c3: -65952207601223 c2: 745789390304980316 c1: 6183343412064671125560 c0: -39578050847778957024291000 # alpha -6.06 Y1: 210305389327 Y0: -841665524867103496247 # Murphy_E 1.19e-09 # M 3656899472026595564392796563244510379395325061944130045086403262223357093135654178911921285543656665588495754 type: gnfs rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [1000000, 1650001) Primes: RFBsize:148933, AFBsize:148957, largePrimes:4996228 encountered Relations: rels:5005800, finalFF:346194 Max relations in full relation-set: 28 Initial matrix: 297968 x 346194 with sparse part having weight 32876209. Pruned matrix : 268177 x 269730 with weight 22653877. Polynomial selection time: 0.68 hours. Total sieving time: 10.27 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.33 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2000000,2000000,26,26,50,50,2.6,2.6,50000 total time: 11.43 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(23·10167+31)/9 = 2(5)1669<168> = 37 · 89 · 42499349 · 111504861389<12> · 186436563074621<15> · C131
C131 = P38 · P94
P38 = 55483666228939118598781075378752414371<38>
P94 = 1583147127896190823350447145282876632629418105166606868157240854518223554213826164611612094613<94>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 87838806835495842387786872741538203556807416279684160572753784510959133212549527350596610907585322642508289465712809312178232883423 (131 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3374304280 Step 1 took 3886ms Step 2 took 2369ms ********** Factor found in step 2: 55483666228939118598781075378752414371 Found probable prime factor of 38 digits: 55483666228939118598781075378752414371 Probable prime cofactor 1583147127896190823350447145282876632629418105166606868157240854518223554213826164611612094613 has 94 digits
By Sinkiti Sibata / GGNFS
(25·10138-43)/9 = 2(7)1373<139> = 3461369355503102471<19> · C120
C120 = P48 · P73
P48 = 790851346784577684398460172607720171516872020779<48>
P73 = 1014739803995546828170875314780552789730502310354605465076404664637362497<73>
Number: 27773_138 N=802508340625796592750740934904214903221912043435135793932312557736238617400120237419203039842903464308882342049139325163 ( 120 digits) SNFS difficulty: 139 digits. Divisors found: r1=790851346784577684398460172607720171516872020779 (pp48) r2=1014739803995546828170875314780552789730502310354605465076404664637362497 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.93 hours. Scaled time: 8.46 units (timescale=0.774). Factorization parameters were as follows: name: 27773_142 n: 802508340625796592750740934904214903221912043435135793932312557736238617400120237419203039842903464308882342049139325163 m: 5000000000000000000000000000 c5: 8 c0: -43 skew: 1.4 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1825001) Primes: RFBsize:78498, AFBsize:64453, largePrimes:1658794 encountered Relations: rels:1698186, finalFF:193639 Max relations in full relation-set: 28 Initial matrix: 143016 x 193639 with sparse part having weight 20004298. Pruned matrix : 130828 x 131607 with weight 12027837. Total sieving time: 10.71 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.93 hours. --------- CPU info (if available) ----------
(25·10158-43)/9 = 2(7)1573<159> = 3 · 7 · 13 · 18731 · 43991 · 3802871 · 1406979953<10> · 31936685952781180337671<23> · C109
C109 = P52 · P58
P52 = 1060954734369655295158543412841251294725874914494979<52>
P58 = 6811203372630868140845047043796262908156716759170685398043<58>
Number: 27773_158 N=7226378464947282981654061338531266785619495339921092659976461093024228582184017894788462297005065080939926097 ( 109 digits) Divisors found: r1=1060954734369655295158543412841251294725874914494979 (pp52) r2=6811203372630868140845047043796262908156716759170685398043 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 21.60 hours. Scaled time: 21.65 units (timescale=1.002). Factorization parameters were as follows: name: 27773_158 n: 7226378464947282981654061338531266785619495339921092659976461093024228582184017894788462297005065080939926097 skew: 13387.42 # norm 4.83e+14 c5: 114000 c4: 25870285 c3: -58382673621146 c2: 61359297300806952 c1: 4190972551164436333248 c0: -10579597973151794333285760 # alpha -5.46 Y1: 423910963663 Y0: -575974366622446883713 # Murphy_E 1.16e-09 # M 4576898731503046020234271183227462729024026786633249131730637009994011599613654968105344173860276081349930103 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2900001) Primes: RFBsize:230209, AFBsize:230748, largePrimes:8157077 encountered Relations: rels:8862586, finalFF:1267055 Max relations in full relation-set: 28 Initial matrix: 461037 x 1267055 with sparse part having weight 112957061. Pruned matrix : 231027 x 233396 with weight 44419779. Total sieving time: 20.70 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.55 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 21.60 hours. --------- CPU info (if available) ----------
(25·10152-43)/9 = 2(7)1513<153> = 33 · 7 · 13 · 172 · 71593 · 19123127327388755233<20> · C123
C123 = P43 · P81
P43 = 1979428177393314368570122123308590554452839<43>
P81 = 144352820453911733686418927078964022953285009748700229868308507688975473906555211<81>
Number: 27773_152 N=285736040292670853957964209651635759654923438991468283221845678871226287254773670813818454574097166010637334422447449194029 ( 123 digits) SNFS difficulty: 154 digits. Divisors found: r1=1979428177393314368570122123308590554452839 (pp43) r2=144352820453911733686418927078964022953285009748700229868308507688975473906555211 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.41 hours. Scaled time: 31.60 units (timescale=1.006). Factorization parameters were as follows: name: 27773_152 n: 285736040292670853957964209651635759654923438991468283221845678871226287254773670813818454574097166010637334422447449194029 m: 5000000000000000000000000000000 c5: 4 c0: -215 skew: 2.22 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:176203, largePrimes:6287534 encountered Relations: rels:6809416, finalFF:1013312 Max relations in full relation-set: 28 Initial matrix: 352569 x 1013312 with sparse part having weight 97004807. Pruned matrix : 226092 x 227918 with weight 43662774. Total sieving time: 30.70 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.56 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 31.41 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve 1.37
(25·10197-43)/9 = 2(7)1963<198> = 32 · 557 · 69708090293108587957264033909<29> · C165
C165 = P39 · C127
P39 = 295129451897746307965079731115042417503<39>
C127 = [2693419861220489027602411855507083936235406613469644223236807794490616222429689028593525007468377268250369054863714727544458923<127>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3572283450 Step 1 took 24483ms Step 2 took 20195ms ********** Factor found in step 2: 295129451897746307965079731115042417503 Found probable prime factor of 39 digits: 295129451897746307965079731115042417503 Composite cofactor 2693419861220489027602411855507083936235406613469644223236807794490616222429689028593525007468377268250369054863714727544458923 has 127 digits
(25·10159-43)/9 = 2(7)1583<160> = 14804843 · C153
C153 = P52 · P101
P52 = 7089429201080214479664670394561412242126294491529591<52>
P101 = 26465641374720917002970020698949335866709819281304228891957159307035545316434566546736730357665451121<101>
Number: 27773_159 N=187626290787263179878218078893357921983892553117772189666434002561038828833090481120115747109089760545098504440592701846130876077360481146458478335621511 ( 153 digits) SNFS difficulty: 160 digits. Divisors found: r1=7089429201080214479664670394561412242126294491529591 r2=26465641374720917002970020698949335866709819281304228891957159307035545316434566546736730357665451121 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 187626290787263179878218078893357921983892553117772189666434002561038828833090481120115747109089760545098504440592701846130876077360481146458478335621511 Y1: 1 Y0: -100000000000000000000000000000000 c5: 5 c0: -86 skew: 1.77 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 653896 x 654144 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.5,2.5,100000 total time: 18.00 hours.
By Robert Backstrom / GGNFS
(25·10122-43)/9 = 2(7)1213<123> = 3 · 72 · 13 · 53 · 163 · 15187 · C112
C112 = P41 · P71
P41 = 12296099279101296181724216494604921968343<41>
P71 = 90101907275351747216622783339526222453849108310187602759487276953447057<71>
Number: n N=1107901997094104452594768197905015821872713125836258972221023391495310813044300088873487367827302532099280516551 ( 112 digits) SNFS difficulty: 124 digits. Divisors found: r1=12296099279101296181724216494604921968343 (pp41) r2=90101907275351747216622783339526222453849108310187602759487276953447057 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.58 hours. Scaled time: 2.87 units (timescale=1.813). Factorization parameters were as follows: name: KA_2_7_121_3 n: 1107901997094104452594768197905015821872713125836258972221023391495310813044300088873487367827302532099280516551 type: snfs skew: 2.22 deg: 5 c5: 4 c0: -215 m: 5000000000000000000000000 rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [100000, 260001) Primes: RFBsize:49098, AFBsize:49151, largePrimes:4627065 encountered Relations: rels:3986750, finalFF:176484 Max relations in full relation-set: 48 Initial matrix: 98313 x 176484 with sparse part having weight 18651096. Pruned matrix : 80127 x 80682 with weight 4849535. Total sieving time: 1.44 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.03 hours. Total square root time: 0.05 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,600000,28,28,52,52,2.5,2.5,50000 total time: 1.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / Msieve, GGNFS
(25·10111-43)/9 = 2(7)1103<112> = 23 · 595207 · 4435129 · 6200659 · C91
C91 = P32 · P59
P32 = 80335719249839503097507848265209<32>
P59 = 91843588104175473506416389257508387935075613929940942541007<59>
Wed Sep 10 21:25:51 2008 Msieve v. 1.36 Wed Sep 10 21:25:51 2008 random seeds: e69762f8 0dfdb476 Wed Sep 10 21:25:51 2008 factoring 7378320708834939980942794923012846889957608886051853826338735120290578568531951753293925463 (91 digits) Wed Sep 10 21:25:53 2008 no P-1/P+1/ECM available, skipping Wed Sep 10 21:25:53 2008 commencing quadratic sieve (91-digit input) Wed Sep 10 21:25:53 2008 using multiplier of 15 Wed Sep 10 21:25:53 2008 using 64kb Pentium 4 sieve core Wed Sep 10 21:25:53 2008 sieve interval: 18 blocks of size 65536 Wed Sep 10 21:25:53 2008 processing polynomials in batches of 6 Wed Sep 10 21:25:53 2008 using a sieve bound of 1719863 (64695 primes) Wed Sep 10 21:25:53 2008 using large prime bound of 165106848 (27 bits) Wed Sep 10 21:25:53 2008 using double large prime bound of 619408411789728 (42-50 bits) Wed Sep 10 21:25:53 2008 using trial factoring cutoff of 50 bits Wed Sep 10 21:25:53 2008 polynomial 'A' values have 12 factors Thu Sep 11 00:35:10 2008 64893 relations (16878 full + 48015 combined from 766514 partial), need 64791 Thu Sep 11 00:35:13 2008 begin with 783392 relations Thu Sep 11 00:35:13 2008 reduce to 162113 relations in 11 passes Thu Sep 11 00:35:13 2008 attempting to read 162113 relations Thu Sep 11 00:35:18 2008 recovered 162113 relations Thu Sep 11 00:35:18 2008 recovered 143629 polynomials Thu Sep 11 00:35:18 2008 attempting to build 64893 cycles Thu Sep 11 00:35:18 2008 found 64893 cycles in 6 passes Thu Sep 11 00:35:18 2008 distribution of cycle lengths: Thu Sep 11 00:35:18 2008 length 1 : 16878 Thu Sep 11 00:35:18 2008 length 2 : 12100 Thu Sep 11 00:35:18 2008 length 3 : 11142 Thu Sep 11 00:35:18 2008 length 4 : 8604 Thu Sep 11 00:35:18 2008 length 5 : 6293 Thu Sep 11 00:35:18 2008 length 6 : 4176 Thu Sep 11 00:35:18 2008 length 7 : 2556 Thu Sep 11 00:35:18 2008 length 9+: 3144 Thu Sep 11 00:35:18 2008 largest cycle: 20 relations Thu Sep 11 00:35:19 2008 matrix is 64695 x 64893 (16.0 MB) with weight 3929052 (60.55/col) Thu Sep 11 00:35:19 2008 sparse part has weight 3929052 (60.55/col) Thu Sep 11 00:35:20 2008 filtering completed in 3 passes Thu Sep 11 00:35:20 2008 matrix is 60904 x 60968 (15.1 MB) with weight 3714849 (60.93/col) Thu Sep 11 00:35:20 2008 sparse part has weight 3714849 (60.93/col) Thu Sep 11 00:35:20 2008 saving the first 48 matrix rows for later Thu Sep 11 00:35:20 2008 matrix is 60856 x 60968 (8.8 MB) with weight 2835309 (46.50/col) Thu Sep 11 00:35:20 2008 sparse part has weight 1949848 (31.98/col) Thu Sep 11 00:35:20 2008 matrix includes 64 packed rows Thu Sep 11 00:35:20 2008 using block size 21845 for processor cache size 512 kB Thu Sep 11 00:35:21 2008 commencing Lanczos iteration Thu Sep 11 00:35:21 2008 memory use: 9.0 MB Thu Sep 11 00:35:58 2008 lanczos halted after 964 iterations (dim = 60856) Thu Sep 11 00:35:58 2008 recovered 19 nontrivial dependencies Thu Sep 11 00:35:59 2008 prp32 factor: 80335719249839503097507848265209 Thu Sep 11 00:35:59 2008 prp59 factor: 91843588104175473506416389257508387935075613929940942541007 Thu Sep 11 00:35:59 2008 elapsed time 03:10:08
(5·10165+31)/9 = (5)1649<165> = 132 · 197 · 509 · 90527 · 272351681066590730815104119<27> · C127
C127 = P60 · P67
P60 = 370716149467693053462676008244862500592389799729429922243563<60>
P67 = 3586799392723596076389074822312062821586305721304049998960779310453<67>
Number: 55559_165 N=1329684459783551319011438303306065173410835619674644634108352388375150231496077427760368587873116286526650932326829865857864039 ( 127 digits) SNFS difficulty: 165 digits. Divisors found: r1=370716149467693053462676008244862500592389799729429922243563 (pp60) r2=3586799392723596076389074822312062821586305721304049998960779310453 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 88.75 hours. Scaled time: 89.55 units (timescale=1.009). Factorization parameters were as follows: name: 55559_165 n: 1329684459783551319011438303306065173410835619674644634108352388375150231496077427760368587873116286526650932326829865857864039 m: 1000000000000000000000000000000000 c5: 5 c0: 31 skew: 1.44 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5400001) Primes: RFBsize:348513, AFBsize:348707, largePrimes:5990856 encountered Relations: rels:6232115, finalFF:871113 Max relations in full relation-set: 28 Initial matrix: 697285 x 871113 with sparse part having weight 55986264. Pruned matrix : 558153 x 561703 with weight 38940973. Total sieving time: 86.17 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.38 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 88.75 hours. --------- CPU info (if available) ----------
(25·10123-43)/9 = 2(7)1223<124> = 9187 · 23567851 · 2954627142542967631<19> · C94
C94 = P36 · P59
P36 = 197767387776465112016466741177603017<36>
P59 = 21955657065213338757728221623461856918053744589286504372427<59>
Thu Sep 11 05:57:41 2008 Msieve v. 1.36 Thu Sep 11 05:57:41 2008 random seeds: 19311b63 c69426e7 Thu Sep 11 05:57:41 2008 factoring 4342112944703132326197740951319412899341521838472865926258815265174619316324832004333726812259 (94 digits) Thu Sep 11 05:57:43 2008 no P-1/P+1/ECM available, skipping Thu Sep 11 05:57:43 2008 commencing quadratic sieve (94-digit input) Thu Sep 11 05:57:43 2008 using multiplier of 19 Thu Sep 11 05:57:43 2008 using 64kb Pentium 4 sieve core Thu Sep 11 05:57:43 2008 sieve interval: 18 blocks of size 65536 Thu Sep 11 05:57:43 2008 processing polynomials in batches of 6 Thu Sep 11 05:57:43 2008 using a sieve bound of 2058671 (76471 primes) Thu Sep 11 05:57:43 2008 using large prime bound of 284096598 (28 bits) Thu Sep 11 05:57:43 2008 using double large prime bound of 1645276127747088 (42-51 bits) Thu Sep 11 05:57:43 2008 using trial factoring cutoff of 51 bits Thu Sep 11 05:57:43 2008 polynomial 'A' values have 12 factors Thu Sep 11 10:30:36 2008 76676 relations (19493 full + 57183 combined from 1084674 partial), need 76567 Thu Sep 11 10:30:40 2008 begin with 1104167 relations Thu Sep 11 10:30:41 2008 reduce to 195866 relations in 10 passes Thu Sep 11 10:30:41 2008 attempting to read 195866 relations Thu Sep 11 10:30:47 2008 recovered 195866 relations Thu Sep 11 10:30:47 2008 recovered 176093 polynomials Thu Sep 11 10:30:48 2008 attempting to build 76676 cycles Thu Sep 11 10:30:48 2008 found 76676 cycles in 5 passes Thu Sep 11 10:30:48 2008 distribution of cycle lengths: Thu Sep 11 10:30:48 2008 length 1 : 19493 Thu Sep 11 10:30:48 2008 length 2 : 13874 Thu Sep 11 10:30:48 2008 length 3 : 13105 Thu Sep 11 10:30:48 2008 length 4 : 10291 Thu Sep 11 10:30:48 2008 length 5 : 7656 Thu Sep 11 10:30:48 2008 length 6 : 5026 Thu Sep 11 10:30:48 2008 length 7 : 3090 Thu Sep 11 10:30:48 2008 length 9+: 4141 Thu Sep 11 10:30:48 2008 largest cycle: 20 relations Thu Sep 11 10:30:48 2008 matrix is 76471 x 76676 (20.2 MB) with weight 4983164 (64.99/col) Thu Sep 11 10:30:48 2008 sparse part has weight 4983164 (64.99/col) Thu Sep 11 10:30:50 2008 filtering completed in 3 passes Thu Sep 11 10:30:50 2008 matrix is 72258 x 72322 (19.2 MB) with weight 4734465 (65.46/col) Thu Sep 11 10:30:50 2008 sparse part has weight 4734465 (65.46/col) Thu Sep 11 10:30:50 2008 saving the first 48 matrix rows for later Thu Sep 11 10:30:51 2008 matrix is 72210 x 72322 (12.7 MB) with weight 3804435 (52.60/col) Thu Sep 11 10:30:51 2008 sparse part has weight 2885271 (39.89/col) Thu Sep 11 10:30:51 2008 matrix includes 64 packed rows Thu Sep 11 10:30:51 2008 using block size 21845 for processor cache size 512 kB Thu Sep 11 10:30:51 2008 commencing Lanczos iteration Thu Sep 11 10:30:51 2008 memory use: 11.8 MB Thu Sep 11 10:31:50 2008 lanczos halted after 1143 iterations (dim = 72210) Thu Sep 11 10:31:50 2008 recovered 18 nontrivial dependencies Thu Sep 11 10:31:51 2008 prp36 factor: 197767387776465112016466741177603017 Thu Sep 11 10:31:51 2008 prp59 factor: 21955657065213338757728221623461856918053744589286504372427 Thu Sep 11 10:31:51 2008 elapsed time 04:34:10
(25·10137-43)/9 = 2(7)1363<138> = 3 · 183078069497<12> · C126
C126 = P37 · P41 · P49
P37 = 3450507775979522920422222278082125473<37>
P41 = 18317658128532632830435818365348120635739<41>
P49 = 8001786516984967398026373100632236071167857872549<49>
Number: 27773_137 N=505754691684193538361759780341565552359166040090181804723821047319728569316991723580215967720444203699416467812879368361655303 ( 126 digits) SNFS difficulty: 139 digits. Divisors found: r1=3450507775979522920422222278082125473 (pp37) r2=18317658128532632830435818365348120635739 (pp41) r3=8001786516984967398026373100632236071167857872549 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.32 hours. Scaled time: 8.37 units (timescale=1.005). Factorization parameters were as follows: name: 27773_137 n: 505754691684193538361759780341565552359166040090181804723821047319728569316991723580215967720444203699416467812879368361655303 m: 5000000000000000000000000000 c5: 4 c0: -215 skew: 2.22 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:64043, largePrimes:1675641 encountered Relations: rels:1732833, finalFF:212605 Max relations in full relation-set: 28 Initial matrix: 142605 x 212605 with sparse part having weight 21652651. Pruned matrix : 126227 x 127004 with weight 11457432. Total sieving time: 8.18 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.32 hours. --------- CPU info (if available) ----------
(25·10145-43)/9 = 2(7)1443<146> = 47237 · 52957 · 4493917383401<13> · C124
C124 = P61 · P63
P61 = 9361636002439421548832013290405714726713563748317735359487143<61>
P63 = 263945937385059899912750880407649594646514339637183924419826979<63>
Number: 27773_145 N=2470965790121598028563385922026799376277420920856636335118189769521140183570701413099038001314908717575196572384098235030997 ( 124 digits) SNFS difficulty: 146 digits. Divisors found: r1=9361636002439421548832013290405714726713563748317735359487143 (pp61) r2=263945937385059899912750880407649594646514339637183924419826979 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.36 hours. Scaled time: 18.96 units (timescale=0.778). Factorization parameters were as follows: name: 27773_145 n: 2470965790121598028563385922026799376277420920856636335118189769521140183570701413099038001314908717575196572384098235030997 m: 100000000000000000000000000000 c5: 25 c0: -43 skew: 1.11 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3450001) Primes: RFBsize:114155, AFBsize:113677, largePrimes:2999915 encountered Relations: rels:3045828, finalFF:292596 Max relations in full relation-set: 28 Initial matrix: 227896 x 292596 with sparse part having weight 34011955. Pruned matrix : 209927 x 211130 with weight 23189695. Total sieving time: 23.70 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.48 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 24.36 hours. --------- CPU info (if available) ----------
(25·10142-43)/9 = 2(7)1413<143> = 19 · 109 · 59026157 · 18399994554796203751<20> · C113
C113 = P34 · P79
P34 = 5428210099470840332597507186448961<34>
P79 = 2275089826819532792479137350314839096344705558799489784040259764474500966858369<79>
Number: 27773_142 N=12349665575145153005345838457224467517841859428044691619956472747422827816639099804751127362518567750321334204609 ( 113 digits) SNFS difficulty: 144 digits. Divisors found: r1=5428210099470840332597507186448961 (pp34) r2=2275089826819532792479137350314839096344705558799489784040259764474500966858369 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.10 hours. Scaled time: 10.21 units (timescale=1.011). Factorization parameters were as follows: name: 27773_142 n: 12349665575145153005345838457224467517841859428044691619956472747422827816639099804751127362518567750321334204609 m: 50000000000000000000000000000 c5: 4 c0: -215 skew: 2.22 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:100053, largePrimes:2707861 encountered Relations: rels:2659320, finalFF:231209 Max relations in full relation-set: 28 Initial matrix: 200138 x 231209 with sparse part having weight 23015066. Pruned matrix : 191293 x 192357 with weight 17221770. Total sieving time: 9.82 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.20 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.10 hours. --------- CPU info (if available) ----------
(25·10135-43)/9 = 2(7)1343<136> = 29 · 53 · 238020656130017<15> · C118
C118 = P43 · P76
P43 = 1364825535132809236399287376342620506894869<43>
P76 = 5563291859982587204588404791822161196008037539326329882180989274171637224473<76>
Number: 27773_135 N=7592922789900736215977182615340711041741161887250275039784231201917045291412141943209741657646425920334073674764929037 ( 118 digits) SNFS difficulty: 136 digits. Divisors found: r1=1364825535132809236399287376342620506894869 (pp43) r2=5563291859982587204588404791822161196008037539326329882180989274171637224473 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.93 hours. Scaled time: 6.95 units (timescale=0.778). Factorization parameters were as follows: name: 27773_135 n: 7592922789900736215977182615340711041741161887250275039784231201917045291412141943209741657646425920334073674764929037 m: 1000000000000000000000000000 c5: 25 c0: -43 skew: 1.11 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1525001) Primes: RFBsize:78498, AFBsize:63718, largePrimes:1599745 encountered Relations: rels:1612334, finalFF:178104 Max relations in full relation-set: 28 Initial matrix: 142280 x 178104 with sparse part having weight 16706176. Pruned matrix : 132155 x 132930 with weight 10824903. Total sieving time: 8.73 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.93 hours. --------- CPU info (if available) ----------
(25·10117-43)/9 = 2(7)1163<118> = 24535543 · C111
C111 = P54 · P57
P54 = 332379232893091453153280727133385117857511762001897881<54>
P57 = 340618274207022680190491805403099427972738440448723209331<57>
Number: 27773_117 N=113214440690298876930409804982827475135878499928767738206477752612924758900904609194007965414817914475248327611 ( 111 digits) SNFS difficulty: 119 digits. Divisors found: r1=332379232893091453153280727133385117857511762001897881 (pp54) r2=340618274207022680190491805403099427972738440448723209331 (pp57) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.08 hours. Scaled time: 0.98 units (timescale=0.473). Factorization parameters were as follows: name: 27773_117 n: 113214440690298876930409804982827475135878499928767738206477752612924758900904609194007965414817914475248327611 m: 500000000000000000000000 c5: 4 c0: -215 skew: 2.22 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64043, largePrimes:2098489 encountered Relations: rels:2176365, finalFF:225353 Max relations in full relation-set: 28 Initial matrix: 113205 x 225353 with sparse part having weight 18857668. Pruned matrix : 86361 x 86991 with weight 4764692. Total sieving time: 1.91 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.08 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve 1.37, GMP-ECM 6.2.1
(25·10125-43)/9 = 2(7)1243<126> = 33 · 1873255141<10> · 71896123627953440059<20> · C95
C95 = P33 · P63
P33 = 381306168368381458964149411069297<33>
P63 = 200335306845756080003950949178160433159808858651862484975520193<63>
Number: 27773_125 N=76389088242259230546878135267029828620090034029365369180195758708686390425923652120904945814321 ( 95 digits) SNFS difficulty: 126 digits. Divisors found: r1=381306168368381458964149411069297 r2=200335306845756080003950949178160433159808858651862484975520193 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 76389088242259230546878135267029828620090034029365369180195758708686390425923652120904945814321 Y1: 1 Y0: -10000000000000000000000000 c5: 25 c0: -43 skew: 1.11 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 113348 x 113566 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.60 hours.
(25·10143-43)/9 = 2(7)1423<144> = 32 · 1482743516013854857834034989178053<34> · C110
C110 = P31 · P79
P31 = 8226588327582747533833817658727<31>
P79 = 2530283545192651715467543393327713035545251849149594450020225834649504085392087<79>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3216840893 Step 1 took 4375ms Step 2 took 4197ms ********** Factor found in step 2: 8226588327582747533833817658727 Found probable prime factor of 31 digits: 8226588327582747533833817658727 Probable prime cofactor 2530283545192651715467543393327713035545251849149594450020225834649504085392087 has 79 digits
(25·10187-43)/9 = 2(7)1863<188> = 47 · 53 · 191 · 730757 · C176
C176 = P36 · C141
P36 = 408695703662735190084599512114819513<36>
C141 = [195486759675827484517045324269925956580801061150249953622950500225372551296385452583893098093930134597595406548846078045518688710538357715613<141>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=634280738 Step 1 took 9559ms Step 2 took 7056ms ********** Factor found in step 2: 408695703662735190084599512114819513 Found probable prime factor of 36 digits: 408695703662735190084599512114819513 Composite cofactor 195486759675827484517045324269925956580801061150249953622950500225372551296385452583893098093930134597595406548846078045518688710538357715613 has 141 digits
(25·10155-43)/9 = 2(7)1543<156> = 3 · 23 · 548425147 · C145
C145 = P32 · P114
P32 = 34510830591104725201050200123389<32>
P114 = 212703989838578957956596911663076383197629838071552664368933220525486296004406576502241258446128246382524518156199<114>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4161596758 Step 1 took 6051ms Step 2 took 5277ms ********** Factor found in step 2: 34510830591104725201050200123389 Found probable prime factor of 32 digits: 34510830591104725201050200123389 Probable prime cofactor 212703989838578957956596911663076383197629838071552664368933220525486296004406576502241258446128246382524518156199 has 114 digits
(25·10171-43)/9 = 2(7)1703<172> = 233 · C170
C170 = P39 · P131
P39 = 308225110411339886828989718831887891927<39>
P131 = 38678850732708674890175184503305789832974358219544817519426484893378186338847858514538120983978402786856331024910705786603696208803<131>
Run 731 out of 940: Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1398058429 Step 1 took 9015ms Step 2 took 5397ms ********** Factor found in step 2: 308225110411339886828989718831887891927 Found probable prime factor of 39 digits: 308225110411339886828989718831887891927 Probable prime cofactor 38678850732708674890175184503305789832974358219544817519426484893378186338847858514538120983978402786856331024910705786603696208803 has 131 digits
(25·10188-43)/9 = 2(7)1873<189> = 32 · 7 · 13 · 2501779210016117<16> · C171
C171 = P32 · C139
P32 = 75595202411944051335860944001329<32>
C139 = [1793371996900593249505181161038180873846675034251124827702447409512594054767965061858759389454185358822624969674213962033030690382324261619<139>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1655319311 Step 1 took 24426ms Step 2 took 19927ms ********** Factor found in step 2: 75595202411944051335860944001329 Found probable prime factor of 32 digits: 75595202411944051335860944001329 Composite cofactor 1793371996900593249505181161038180873846675034251124827702447409512594054767965061858759389454185358822624969674213962033030690382324261619 has 139 digits
(25·10179-43)/9 = 2(7)1783<180> = 37 · 1321 · 2309 · 16398814309<11> · C160
C160 = P36 · P125
P36 = 129908366675717436134275154951566843<36>
P125 = 19546652628421566148393564324629980588172892836991090912732311730703259332008780061652120853995535520635416749547652215263653<125>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2302857862 Step 1 took 24350ms Step 2 took 19295ms ********** Factor found in step 2: 129908366675717436134275154951566843 Found probable prime factor of 36 digits: 129908366675717436134275154951566843 Probable prime cofactor 19546652628421566148393564324629980588172892836991090912732311730703259332008780061652120853995535520635416749547652215263653 has 125 digits
(25·10163-43)/9 = 2(7)1623<164> = 29 · 9689 · 2518933 · C152
C152 = P38 · P115
P38 = 25131004094841299841358281520343734889<38>
P115 = 1561687335706147372245163522601054060771060260107529473974744099616485815066706249125187406434716123100749765802509<115>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=4270192938 Step 1 took 20946ms ********** Factor found in step 1: 25131004094841299841358281520343734889 Found probable prime factor of 38 digits: 25131004094841299841358281520343734889 Probable prime cofactor 1561687335706147372245163522601054060771060260107529473974744099616485815066706249125187406434716123100749765802509 has 115 digits
By Jo Yeong Uk / GGNFS, Msieve v1.32 for x86_64
(25·10132-43)/9 = 2(7)1313<133> = C133
C133 = P50 · P83
P50 = 91185321297776872404938800679692229995674932806297<50>
P83 = 30462992708076369935379615201255241888123967336490277389467361391384334239604056309<83>
Number: 27773_132 N=2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 133 digits) SNFS difficulty: 134 digits. Divisors found: r1=91185321297776872404938800679692229995674932806297 (pp50) r2=30462992708076369935379615201255241888123967336490277389467361391384334239604056309 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.65 hours. Scaled time: 6.31 units (timescale=2.382). Factorization parameters were as follows: n: 2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 m: 500000000000000000000000000 c5: 4 c0: -215 skew: 2.22 type: snfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1200001) Primes: RFBsize:92938, AFBsize:93049, largePrimes:2380853 encountered Relations: rels:2288460, finalFF:236025 Max relations in full relation-set: 28 Initial matrix: 186051 x 236025 with sparse part having weight 12189200. Pruned matrix : 164924 x 165918 with weight 6809779. Total sieving time: 2.54 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,46,46,2.2,2.2,50000 total time: 2.65 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(25·10153-43)/9 = 2(7)1523<154> = 881 · 71577134882299548903547<23> · 84565353734169392574360041<26> · C102
C102 = P41 · P61
P41 = 80602305649128280728158724072025600598519<41>
P61 = 6462601031553857846813389871404198724474243802915238445011241<61>
Wed Sep 10 22:58:26 2008 Wed Sep 10 22:58:26 2008 Wed Sep 10 22:58:26 2008 Msieve v. 1.32 Wed Sep 10 22:58:26 2008 random seeds: 3e19a540 473eeb8a Wed Sep 10 22:58:26 2008 factoring 520900543633675770740076921288124839804013151855325091973855979598655668095461137038511238639282952079 (102 digits) Wed Sep 10 22:58:27 2008 no P-1/P+1/ECM available, skipping Wed Sep 10 22:58:27 2008 commencing quadratic sieve (102-digit input) Wed Sep 10 22:58:27 2008 using multiplier of 7 Wed Sep 10 22:58:27 2008 using VC8 32kb sieve core Wed Sep 10 22:58:27 2008 sieve interval: 36 blocks of size 32768 Wed Sep 10 22:58:27 2008 processing polynomials in batches of 6 Wed Sep 10 22:58:27 2008 using a sieve bound of 3198409 (114644 primes) Wed Sep 10 22:58:27 2008 using large prime bound of 479761350 (28 bits) Wed Sep 10 22:58:27 2008 using double large prime bound of 4225182407156700 (44-52 bits) Wed Sep 10 22:58:27 2008 using trial factoring cutoff of 52 bits Wed Sep 10 22:58:27 2008 polynomial 'A' values have 13 factors Thu Sep 11 15:38:50 2008 114820 relations (26751 full + 88069 combined from 1732378 partial), need 114740 Thu Sep 11 15:39:08 2008 begin with 1759129 relations Thu Sep 11 15:39:09 2008 reduce to 306160 relations in 10 passes Thu Sep 11 15:39:09 2008 attempting to read 306160 relations Thu Sep 11 15:39:14 2008 recovered 306160 relations Thu Sep 11 15:39:14 2008 recovered 298979 polynomials Thu Sep 11 15:39:14 2008 attempting to build 114820 cycles Thu Sep 11 15:39:14 2008 found 114820 cycles in 7 passes Thu Sep 11 15:39:14 2008 distribution of cycle lengths: Thu Sep 11 15:39:14 2008 length 1 : 26751 Thu Sep 11 15:39:14 2008 length 2 : 19192 Thu Sep 11 15:39:14 2008 length 3 : 19098 Thu Sep 11 15:39:14 2008 length 4 : 15690 Thu Sep 11 15:39:14 2008 length 5 : 12104 Thu Sep 11 15:39:14 2008 length 6 : 8269 Thu Sep 11 15:39:14 2008 length 7 : 5581 Thu Sep 11 15:39:14 2008 length 9+: 8135 Thu Sep 11 15:39:14 2008 largest cycle: 25 relations Thu Sep 11 15:39:15 2008 matrix is 114644 x 114820 with weight 8535738 (avg 74.34/col) Thu Sep 11 15:39:15 2008 filtering completed in 3 passes Thu Sep 11 15:39:15 2008 matrix is 110340 x 110404 with weight 8259057 (avg 74.81/col) Thu Sep 11 15:39:16 2008 saving the first 48 matrix rows for later Thu Sep 11 15:39:16 2008 matrix is 110292 x 110404 with weight 7008939 (avg 63.48/col) Thu Sep 11 15:39:16 2008 matrix includes 64 packed rows Thu Sep 11 15:39:16 2008 using block size 44161 for processor cache size 4096 kB Thu Sep 11 15:39:17 2008 commencing Lanczos iteration Thu Sep 11 15:40:34 2008 lanczos halted after 1746 iterations (dim = 110292) Thu Sep 11 15:40:34 2008 recovered 18 nontrivial dependencies Thu Sep 11 15:40:36 2008 prp41 factor: 80602305649128280728158724072025600598519 Thu Sep 11 15:40:36 2008 prp61 factor: 6462601031553857846813389871404198724474243802915238445011241 Thu Sep 11 15:40:36 2008 elapsed time 16:42:10
Factorizations of 277...773 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Serge Batalov / GMP-ECM 6.2.1
(22·10199+41)/9 = 2(4)1989<200> = 41061733 · C192
C192 = P31 · C162
P31 = 1897620275559982337516555558951<31>
C162 = [313713772035430533818551391590458721020856491086140653105242080969835209074220644870655195685240555478883046828465009236909425448182270062487091452141001532415403<162>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=614666195 Step 1 took 7800ms Step 2 took 5917ms ********** Factor found in step 2: 1897620275559982337516555558951 Found probable prime factor of 31 digits: 1897620275559982337516555558951 Composite cofactor 313713772035430533818551391590458721020856491086140653105242080969835209074220644870655195685240555478883046828465009236909425448182270062487091452141001532415403 has 162 digits
(4·10200+17)/3 = 1(3)1999<201> = 4877 · 1293587 · C191
C191 = P33 · P158
P33 = 310858393336630686720841637998697<33>
P158 = 67987291591061721286953508434298743969287676084869733019950591260403028836697158046529832913321391635730918226951318222021514833120320272626786443796812828213<158>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4007235084 Step 1 took 7252ms Step 2 took 5488ms ********** Factor found in step 2: 310858393336630686720841637998697 Found probable prime factor of 33 digits: 310858393336630686720841637998697 Probable prime cofactor 67987291591061721286953508434298743969287676084869733019950591260403028836697158046529832913321391635730918226951318222021514833120320272626786443796812828213 has 158 digits
(23·10199+1)/3 = 7(6)1987<200> = 73 · 11 · 1733 · 10429 · C190
C190 = P29 · C161
P29 = 34568930457523287016666104607<29>
C161 = [32523150062698802917720624652745100514767773266788406670334720522108075012188621040006096086302630721307928762888386196012800664896540679247928777489412633566121<161>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=567802524 Step 1 took 29554ms Step 2 took 22544ms ********** Factor found in step 2: 34568930457523287016666104607 Found probable prime factor of 29 digits: 34568930457523287016666104607 Composite cofactor 32523150062698802917720624652745100514767773266788406670334720522108075012188621040006096086302630721307928762888386196012800664896540679247928777489412633566121 has 161 digits
7·10200-9 = 6(9)1991<201> = 15764641 · C194
C194 = P32 · P163
P32 = 11284635217137977617526487653933<32>
P163 = 3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547<163>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=13078247 Step 1 took 8353ms ********** Factor found in step 1: 11284635217137977617526487653933 Found probable prime factor of 32 digits: 11284635217137977617526487653933 Probable prime cofactor 3934834132347528894029161821328170864341780603433105197044385991837432909415350859571119308115656096581344079723625343143220426630178141030835445756037523722590547 has 163 digits
By Serge Batalov / Msieve v. 1.37
(22·10203+41)/9 = 2(4)2029<204> = 33 · C202
C202 = P80 · P123
P80 = 20334617025001623036456051797874969977087099512082033181887892745732650713921249<80>
P123 = 445225888997833666251265091330295968315737344718479488559782320485075276157873543888006881723934397805015254789157876721363<123>
Number: 24449_203 N=905349...53497942387 ( 202 digits) SNFS difficulty: 205 digits. Divisors found: r1=20334617025001623036456051797874969977087099512082033181887892745732650713921249 r2=445225888997833666251265091330295968315737344718479488559782320485075276157873543888006881723934397805015254789157876721363 Version: Msieve v. 1.37 Scaled time: 0.00 units (timescale=2.512). Factorization parameters were as follows: Y0: -10000000000000000000000000000000000 Y1: 1 c0: 205 c6: 11 skew: 1.6 type: snfs lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 rlim: 15000000 alim: 15000000 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [7500000, 15100001) Primes: rational ideals reading, algebraic ideals reading, found 4443154 hash collisions in 25,677,752 relations found 4233772 duplicates and 22662229 unique relations Relations: 22,662,229 relations and about 20,667,937 large ideals Max relations in full relation-set: 19 found 2671198 cycles, need 2587737 building initial matrix memory use: 997.0 MB Pruned matrix : 2578133 x 2578381 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 17.90 hours. Time per square root: 3.50 hours. Prototype def-par.txt line would be: snfs,205,6,0,0,0,0,0,0,0,0,15000000,15000000,28,28,56,56,2.5,2.5,100000 total time: 24 CPU-days.
By Sinkiti Sibata / GGNFS
(23·10184+13)/9 = 2(5)1837<185> = 3 · 7 · C184
C184 = P60 · P62 · P62
P60 = 142386499451271609105675459975554447296326441982772562419531<60>
P62 = 89036746517664876241810609616253040552772136863324747726467631<62>
P62 = 95990429887620748854364521660144618194288049254915390847010397<62>
Number: 25557_184 N=1216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931217 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: r1=142386499451271609105675459975554447296326441982772562419531 (pp60) r2=89036746517664876241810609616253040552772136863324747726467631 (pp62) r3=95990429887620748854364521660144618194288049254915390847010397 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 1200.97 hours. Scaled time: 922.35 units (timescale=0.768). Factorization parameters were as follows: name: 25557_184 n: 1216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931216931217 m: 10000000000000000000000000000000000000 c5: 23 c0: 130 skew: 1.41 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 17400001) Primes: RFBsize:501962, AFBsize:502146, largePrimes:7061627 encountered Relations: rels:7610234, finalFF:1155388 Max relations in full relation-set: 28 Initial matrix: 1004173 x 1155388 with sparse part having weight 119681935. Pruned matrix : 890697 x 895781 with weight 101009017. Total sieving time: 1183.49 hours. Total relation processing time: 1.03 hours. Matrix solve time: 16.19 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1200.97 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(64·10177+53)/9 = 7(1)1767<178> = 11 · 239 · C175
C175 = P79 · P96
P79 = 2746163758092184047690455322356302856116462038401676834020608038326185212384119<79>
P96 = 984964203168698675125288342788491918288490272600571711870157920520614551405691698408931673803167<96>
Number: n N=2704872997760027048729977600270487299776002704872997760027048729977600270487299776002704872997760027048729977600270487299776002704872997760027048729977600270487299776002704873 ( 175 digits) SNFS difficulty: 178 digits. Divisors found: Tue Sep 09 18:31:04 2008 prp79 factor: 2746163758092184047690455322356302856116462038401676834020608038326185212384119 Tue Sep 09 18:31:04 2008 prp96 factor: 984964203168698675125288342788491918288490272600571711870157920520614551405691698408931673803167 Tue Sep 09 18:31:05 2008 elapsed time 04:42:39 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.10 hours. Scaled time: 49.11 units (timescale=2.038). Factorization parameters were as follows: name: KA_7_1_176_7 n: 2704872997760027048729977600270487299776002704872997760027048729977600270487299776002704872997760027048729977600270487299776002704872997760027048729977600270487299776002704873 type: snfs skew: 0.77 deg: 5 c5: 200 c0: 53 m: 200000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 6100001) Primes: RFBsize:539777, AFBsize:539400, largePrimes:13853455 encountered Relations: rels:13478199, finalFF:1170101 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 23.78 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,52,52,2.5,2.5,100000 total time: 24.10 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(16·10177+11)/9 = 1(7)1769<178> = 33 · C176
C176 = P82 · P95
P82 = 2621531707625220519663585478246951504563621768505547944917351252820632944202250639<82>
P95 = 25116469584425904701377272005029275086064055491074195222257361498430466934150973115235367370343<95>
Number: n N=65843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399177 ( 176 digits) SNFS difficulty: 178 digits. Divisors found: Tue Sep 9 00:56:01 2008 prp82 factor: 2621531707625220519663585478246951504563621768505547944917351252820632944202250639 Tue Sep 9 00:56:01 2008 prp95 factor: 25116469584425904701377272005029275086064055491074195222257361498430466934150973115235367370343 Tue Sep 9 00:56:01 2008 elapsed time 06:39:00 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.76 hours. Scaled time: 58.46 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_7_176_9 n: 65843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399176954732510288065843621399177 type: snfs skew: 0.74 deg: 5 c5: 50 c0: 11 m: 200000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 11050001) Primes: RFBsize:571119, AFBsize:570218, largePrimes:14534848 encountered Relations: rels:14277297, finalFF:1165292 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 69.27 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,52,52,2.5,2.5,100000 total time: 69.76 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(82·10193-1)/9 = 9(1)193<194> = 7 · 13 · 569 · C190
C190 = P53 · P137
P53 = 39594545141939885526894322438648642768790356810813157<53>
P137 = 44440846840731324443581573454499877887493864000996240378981166983107524169324621440113544908284126532200838021972350456511361678763879337<137>
Number: n N=1759615116381372971882637963481548718807066785977155045696346223586996873464360283340951179264008789492093534272796135713534659053112480177506539545203868578209527242919158560634834800036909 ( 190 digits) SNFS difficulty: 195 digits. Divisors found: Mon Sep 08 12:03:07 2008 prp53 factor: 39594545141939885526894322438648642768790356810813157 Mon Sep 08 12:03:07 2008 prp137 factor: 44440846840731324443581573454499877887493864000996240378981166983107524169324621440113544908284126532200838021972350456511361678763879337 Mon Sep 08 12:03:07 2008 elapsed time 07:55:00 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 147.85 hours. Scaled time: 303.24 units (timescale=2.051). Factorization parameters were as follows: name: KA_9_1_193 n: 1759615116381372971882637963481548718807066785977155045696346223586996873464360283340951179264008789492093534272796135713534659053112480177506539545203868578209527242919158560634834800036909 type: snfs skew: 0.21 deg: 5 c5: 5125 c0: -2 m: 200000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 12100001) Primes: RFBsize:633578, AFBsize:633804, largePrimes:14961201 encountered Relations: rels:14978001, finalFF:1305987 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 147.24 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,52,52,2.5,2.5,100000 total time: 147.85 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(65·10165+43)/9 = 7(2)1647<166> = 32 · 11 · 29 · 7639 · 2252567 · 12425239 · 72706584488576609<17> · C129
C129 = P49 · P80
P49 = 2844021580936529047321181522766000025422187626149<49>
P80 = 56899971005532573858733054130402004114671676641026019412601626011729833138572151<80>
Number: 72227_165 N=161824745494397415085594949862446015318804831340450950581977528424876612513918227943180593176597511704495626812201425598050776499 ( 129 digits) SNFS difficulty: 166 digits. Divisors found: r1=2844021580936529047321181522766000025422187626149 (pp49) r2=56899971005532573858733054130402004114671676641026019412601626011729833138572151 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 45.38 hours. Scaled time: 108.18 units (timescale=2.384). Factorization parameters were as follows: n: 161824745494397415085594949862446015318804831340450950581977528424876612513918227943180593176597511704495626812201425598050776499 m: 1000000000000000000000000000000000 c5: 65 c0: 43 skew: 0.92 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [3000000, 5500001) Primes: RFBsize:412849, AFBsize:413366, largePrimes:6535631 encountered Relations: rels:6859270, finalFF:962155 Max relations in full relation-set: 28 Initial matrix: 826281 x 962155 with sparse part having weight 57220973. Pruned matrix : 707273 x 711468 with weight 37824375. Total sieving time: 42.55 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.66 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,49,49,2.6,2.6,100000 total time: 45.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.37
3·10198+1 = 3(0)1971<199> = C199
C199 = P82 · P118
P82 = 1833911383348466522566074446250134380140228731863510782284501695384966021186952971<82>
P118 = 1635847853521917851052479217771526282232255683407487990801439756907074080101789715314755512178980013517705612191904931<118>
Number: 30001_198 N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 199 digits) SNFS difficulty: 198 digits. Divisors found: r1=1833911383348466522566074446250134380140228731863510782284501695384966021186952971 r2=1635847853521917851052479217771526282232255683407487990801439756907074080101789715314755512178980013517705612191904931 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 Y1: 1 Y0: -1000000000000000000000000000000000000000 c5: 3000 c0: 1 skew: 0.2 type: snfs lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 rlim: 10000000 alim: 10000000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved rational special-q in [5000000, 10100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1857143 x 1857391 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 11.00 hours. (4 threads) Time per square root: 0.55 hours. Prototype def-par.txt line would be: snfs,198,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,56,56,2.5,2.5,100000 total time: 20 CPU-days.
By Wataru Sakai / GGNFS
(4·10186+17)/3 = 1(3)1859<187> = 7 · 139 · C184
C184 = P70 · P114
P70 = 4683752657040481930352270796090095702982198572437623038900544234035807<70>
P114 = 292571449844658244129724130403038430010264115229371023800613342811197195422433644669612330433068714444752149233049<114>
Number: 13339_186 N=1370332305584104145255224391915039397053785542994176087701267557382665296334361082562521411442274751627269612881123672490578965399109284001370332305584104145255224391915039397053785543 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: r1=4683752657040481930352270796090095702982198572437623038900544234035807 (pp70) r2=292571449844658244129724130403038430010264115229371023800613342811197195422433644669612330433068714444752149233049 (pp114) Version: GGNFS-0.77.1-20060722-nocona Total time: 739.89 hours. Scaled time: 1489.40 units (timescale=2.013). Factorization parameters were as follows: n: 1370332305584104145255224391915039397053785542994176087701267557382665296334361082562521411442274751627269612881123672490578965399109284001370332305584104145255224391915039397053785543 m: 10000000000000000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13600001) Primes: RFBsize:501962, AFBsize:502686, largePrimes:6810292 encountered Relations: rels:7291905, finalFF:1137529 Max relations in full relation-set: 32 Initial matrix: 1004714 x 1137529 with sparse part having weight 102564823. Pruned matrix : 901497 x 906584 with weight 83116476. Total sieving time: 730.37 hours. Total relation processing time: 0.13 hours. Matrix solve time: 9.13 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 739.89 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve
(4·10162+17)/3 = 1(3)1619<163> = 7 · 631789 · 1255021 · 4123529 · 219455932845923<15> · C129
C129 = P39 · P41 · P51
P39 = 175477359310145651369576592622195539679<39>
P41 = 11017383187107043445598825146216819497967<41>
P51 = 137309858416434405546180978438036203884533672564143<51>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 265461328902714720449135413796276012856770681128783935438114532587303104386318078788477129357372613085202661101773298430470012799 (129 digits) Using B1=2842000, B2=4281592780, polynomial Dickson(6), sigma=4034181669 Step 1 took 27125ms Step 2 took 11531ms ********** Factor found in step 2: 11017383187107043445598825146216819497967 Found probable prime factor of 41 digits: 11017383187107043445598825146216819497967 Composite cofactor 24094771362165887160008178046242774179489161331528524488085284544470775942950829629130097 has 89 digits Sun Sep 07 03:19:16 2008 Sun Sep 07 03:19:16 2008 Sun Sep 07 03:19:16 2008 Msieve v. 1.37 Sun Sep 07 03:19:16 2008 random seeds: f938b800 08bc6fd4 Sun Sep 07 03:19:16 2008 factoring 24094771362165887160008178046242774179489161331528524488085284544470775942950829629130097 (89 digits) Sun Sep 07 03:19:16 2008 searching for 15-digit factors Sun Sep 07 03:19:17 2008 commencing quadratic sieve (89-digit input) Sun Sep 07 03:19:17 2008 using multiplier of 17 Sun Sep 07 03:19:17 2008 using 64kb Opteron sieve core Sun Sep 07 03:19:17 2008 sieve interval: 15 blocks of size 65536 Sun Sep 07 03:19:17 2008 processing polynomials in batches of 7 Sun Sep 07 03:19:17 2008 using a sieve bound of 1546837 (58635 primes) Sun Sep 07 03:19:17 2008 using large prime bound of 123746960 (26 bits) Sun Sep 07 03:19:17 2008 using double large prime bound of 368605688486800 (42-49 bits) Sun Sep 07 03:19:17 2008 using trial factoring cutoff of 49 bits Sun Sep 07 03:19:17 2008 polynomial 'A' values have 11 factors Sun Sep 07 04:22:05 2008 58762 relations (16144 full + 42618 combined from 616952 partial), need 58731 Sun Sep 07 04:22:07 2008 begin with 633096 relations Sun Sep 07 04:22:07 2008 reduce to 141733 relations in 11 passes Sun Sep 07 04:22:07 2008 attempting to read 141733 relations Sun Sep 07 04:22:10 2008 recovered 141733 relations Sun Sep 07 04:22:10 2008 recovered 119607 polynomials Sun Sep 07 04:22:10 2008 attempting to build 58762 cycles Sun Sep 07 04:22:10 2008 found 58762 cycles in 5 passes Sun Sep 07 04:22:11 2008 distribution of cycle lengths: Sun Sep 07 04:22:11 2008 length 1 : 16144 Sun Sep 07 04:22:11 2008 length 2 : 11470 Sun Sep 07 04:22:11 2008 length 3 : 10451 Sun Sep 07 04:22:11 2008 length 4 : 7660 Sun Sep 07 04:22:11 2008 length 5 : 5338 Sun Sep 07 04:22:11 2008 length 6 : 3372 Sun Sep 07 04:22:11 2008 length 7 : 1977 Sun Sep 07 04:22:11 2008 length 9+: 2350 Sun Sep 07 04:22:11 2008 largest cycle: 19 relations Sun Sep 07 04:22:11 2008 matrix is 58635 x 58762 (14.3 MB) with weight 3516020 (59.83/col) Sun Sep 07 04:22:11 2008 sparse part has weight 3516020 (59.83/col) Sun Sep 07 04:22:12 2008 filtering completed in 4 passes Sun Sep 07 04:22:12 2008 matrix is 54458 x 54522 (13.4 MB) with weight 3300382 (60.53/col) Sun Sep 07 04:22:12 2008 sparse part has weight 3300382 (60.53/col) Sun Sep 07 04:22:13 2008 saving the first 48 matrix rows for later Sun Sep 07 04:22:13 2008 matrix is 54410 x 54522 (10.1 MB) with weight 2767191 (50.75/col) Sun Sep 07 04:22:13 2008 sparse part has weight 2308672 (42.34/col) Sun Sep 07 04:22:13 2008 matrix includes 64 packed rows Sun Sep 07 04:22:13 2008 using block size 21808 for processor cache size 1024 kB Sun Sep 07 04:22:14 2008 commencing Lanczos iteration Sun Sep 07 04:22:14 2008 memory use: 9.0 MB Sun Sep 07 04:22:56 2008 lanczos halted after 862 iterations (dim = 54409) Sun Sep 07 04:22:56 2008 recovered 17 nontrivial dependencies Sun Sep 07 04:22:56 2008 prp39 factor: 175477359310145651369576592622195539679 Sun Sep 07 04:22:56 2008 prp51 factor: 137309858416434405546180978438036203884533672564143 Sun Sep 07 04:22:56 2008 elapsed time 01:03:40
By Serge Batalov / GMP-ECM 6.2.1
(4·10229-1)/3 = 1(3)229<230> = 13 · 347 · C226
C226 = P49 · C177
P49 = 4246645545363041585151546344082603927473277793231<49>
C177 = [696017078534428470457529048170257815534293367782109964021146339362857748163339563659802340252478769639355612562186287999935138147155138236220734436267484891688123677205851655813<177>]
# ...and another nice factor; my personal 2nd best (my best is 56-digit) # Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=2062470196 Step 1 took 111731ms Step 2 took 57919ms ********** Factor found in step 2: 4246645545363041585151546344082603927473277793231 Found probable prime factor of 49 digits: 4246645545363041585151546344082603927473277793231 Composite cofactor 696017078534428470457529048170257815534293367782109964021146339362857748163339563659802340252478769639355612562186287999935138147155138236220734436267484891688123677205851655813 has 177 digits
By nuggetprime / GMP-ECM
(4·10163+17)/3 = 1(3)1629<164> = 19 · 2797 · 5791 · 69661 · 720611 · 1560371 · 14857397 · 3514121576753<13> · C119
C119 = P51 · P68
P51 = 495436223298434385356722609135189152207142936793249<51>
P68 = 21383233343940664218943433891745463379743409952464040968535330972587<68>
This is a nuggetprime's result posted on 21 Aug 2008 at: https://www.mersenneforum.org/showthread.php?p=139605#post139605 GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 10594028369831114716682888330845541566105401124620505895213725128397891350870967330967394277735211887867089454105665163 (119 digits) Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=861666340 Step 1 took 46698ms Step 2 took 25614ms ********** Factor found in step 2: 495436223298434385356722609135189152207142936793249 Found probable prime factor of 51 digits: 495436223298434385356722609135189152207142936793249 Probable prime cofactor 21383233343940664218943433891745463379743409952464040968535330972587 has 68 digits
Makoto Kamada posted.
By Serge Batalov / Msieve-1.37, GMP-ECM 6.2.1
8·10172-7 = 7(9)1713<173> = 190313 · C168
C168 = P60 · P109
P60 = 138161571992322355518249925361034781278945385532571294634897<60>
P109 = 3042525772479980573421781698654833894292124178776206300829682839392738230075715174164879797011327208823658113<109>
Number: 79993_172 N=420360143552989023345751472574127884064672408085627361241743864055529574963349849983973769527042293484943225108111374420034364441735456852658515182882934954522286969361 ( 168 digits) SNFS difficulty: 172 digits. Divisors found: r1=138161571992322355518249925361034781278945385532571294634897 r2=3042525772479980573421781698654833894292124178776206300829682839392738230075715174164879797011327208823658113 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 420360143552989023345751472574127884064672408085627361241743864055529574963349849983973769527042293484943225108111374420034364441735456852658515182882934954522286969361 Y1: 1 Y0: -20000000000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [4500000, 6800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1139892 x 1140140 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,52,52,2.6,2.6,100000 total time: 45.00 hours.
8·10229-1 = 7(9)229<230> = 4365541 · C224
C224 = P35 · P189
P35 = 22899378996803067916894382980974701<35>
P189 = 800254657956886391196780894633531374565554844629496936038376921729764352514694201229462957643423367969876748771951592669068650319491433270363334538454741598932512755263816205496476120544639<189>
# there goes a big number # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=754930536 Step 1 took 37320ms Step 2 took 27701ms ********** Factor found in step 2: 22899378996803067916894382980974701 Found probable prime factor of 35 digits: 22899378996803067916894382980974701 Probable prime cofactor 800254657956886391196780894633531374565554844629496936038376921729764352514694201229462957643423367969876748771951592669068650319491433270363334538454741598932512755263816205496476120544639 has 189 digits
By Sinkiti Sibata / GGNFS
(25·10170-61)/9 = 2(7)1691<171> = 131909045573<12> · 123310363949659<15> · C146
C146 = P71 · P75
P71 = 51349565953817840490156245892197350453929733234153814020952530482561583<71>
P75 = 332572675808658297792850706653907384324838226345820816882845634793838252691<75>
Number: 27771_170 N=17077462550874378271150629056169128122565987071157482103253108951984884573035699470470382216719112388277895264154420547419468349410224094522969853 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=51349565953817840490156245892197350453929733234153814020952530482561583 (pp71) r2=332572675808658297792850706653907384324838226345820816882845634793838252691 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 170.65 hours. Scaled time: 172.53 units (timescale=1.011). Factorization parameters were as follows: name: 27771_170 n: 17077462550874378271150629056169128122565987071157482103253108951984884573035699470470382216719112388277895264154420547419468349410224094522969853 m: 10000000000000000000000000000000000 c5: 25 c0: -61 skew: 1.2 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7900001) Primes: RFBsize:412849, AFBsize:412112, largePrimes:6360126 encountered Relations: rels:6833798, finalFF:1111408 Max relations in full relation-set: 28 Initial matrix: 825025 x 1111408 with sparse part having weight 72010060. Pruned matrix : 587573 x 591762 with weight 55353352. Total sieving time: 166.78 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.59 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 170.65 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
(43·10165-7)/9 = 4(7)165<166> = 1344190880737392833<19> · 2301204226992762281<19> · C130
C130 = P42 · P88
P42 = 385071591629280252011363710960963257145127<42>
P88 = 4011144968271534743653930349805245289947412403901164321780638693543548253701599315974287<88>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1544577977188098720238620993157952890934508035999346072911447051418801275216503660329923388280907102934899877127344967702159349449 (130 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3941855257 Step 1 took 11715ms Step 2 took 5580ms ********** Factor found in step 2: 385071591629280252011363710960963257145127 Found probable prime factor of 42 digits: 385071591629280252011363710960963257145127 Probable prime cofactor 4011144968271534743653930349805245289947412403901164321780638693543548253701599315974287 has 88 digits
5·10194+9 = 5(0)1939<195> = C195
C195 = P88 · P108
P88 = 3403248951366474932718274863522798490198007146565255920384348350563174584990964183684189<88>
P108 = 146918432105661751654501039168244531252281316834293602197361365522821831096719447512829008767795879133716381<108>
Number: 50009_194 N=500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 195 digits) SNFS difficulty: 195 digits. Divisors found: r1=3403248951366474932718274863522798490198007146565255920384348350563174584990964183684189 (pp88) r2=146918432105661751654501039168244531252281316834293602197361365522821831096719447512829008767795879133716381 (pp108) Version: GGNFS-0.77.1-20050930-nocona Total time: 482.37 hours. Scaled time: 1149.02 units (timescale=2.382). Factorization parameters were as follows: n: 500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 53/53 Sieved algebraic special-q in [10000000, 17700001) Primes: RFBsize:1270607, AFBsize:1269885, largePrimes:23603955 encountered Relations: rels:24083724, finalFF:2909883 Max relations in full relation-set: 28 Initial matrix: 2540559 x 2909883 with sparse part having weight 199159428. Pruned matrix : 2192610 x 2205376 with weight 135726398. Total sieving time: 435.38 hours. Total relation processing time: 0.62 hours. Matrix solve time: 46.13 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,53,53,2.6,2.6,100000 total time: 482.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672345) Calibrating delay using timer specific routine.. 5344.05 BogoMIPS (lpj=2672026) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GMP-ECM
(73·10187-1)/9 = 8(1)187<188> = 3 · C188
C188 = P43 · P146
P43 = 2013417203339758754699697149093409802311811<43>
P146 = 13428432513733026611376469936844319340401408181621142465772463805980046207426301273004696887406182311284638034277950590963617673065257314162498767<146>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 27037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 (188 digits) Using B1=5764000, B2=11416947370, polynomial Dickson(12), sigma=2302872240 Step 1 took 98185ms Step 2 took 33267ms ********** Factor found in step 2: 2013417203339758754699697149093409802311811 Found probable prime factor of 43 digits: 2013417203339758754699697149093409802311811 Probable prime cofactor 13428432513733026611376469936844319340401408181621142465772463805980046207426301273004696887406182311284638034277950590963617673065257314162498767 has 146 digits
By Serge Batalov / GMP-ECM 6.2.1
(25·10199-61)/9 = 2(7)1981<200> = 3 · 7 · 283 · 1391259626479767819093311<25> · 4950310741210515424439214523<28> · 21631834288992712007555427246085799<35> · C110
C110 = P34 · P76
P34 = 8137130775905265500667125642011561<34>
P76 = 3855551265441025333983640384610406523731030541038891638539125959121664278391<76>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=2054967644 Step 1 took 37534ms Step 2 took 21049ms ********** Factor found in step 2: 8137130775905265500667125642011561 Found probable prime factor of 34 digits: 8137130775905265500667125642011561 Probable prime cofactor 3855551265441025333983640384610406523731030541038891638539125959121664278391 has 76 digits
(25·10177-61)/9 = 2(7)1761<178> = 271 · 419 · 66821 · 141356306265971<15> · 127353589502138899<18> · C137
C137 = P35 · P102
P35 = 71134251631905636534346663289671327<35>
P102 = 285888094063953311988136712438838290992815309587898590647604791112176558836528871352247718253340599053<102>
Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=1489180364 Step 1 took 60415ms Step 2 took 11865ms ********** Factor found in step 2: 71134251631905636534346663289671327 Found probable prime factor of 35 digits: 71134251631905636534346663289671327 Probable prime cofactor 285888094063953311988136712438838290992815309587898590647604791112176558836528871352247718253340599053 has 102 digits
By Robert Backstrom / GGNFS, Msieve
(25·10161-61)/9 = 2(7)1601<162> = 13 · 984211 · 17915596918681641487769<23> · C133
C133 = P66 · P67
P66 = 253653749852508153250333883090711675749451709540031375104589078333<66>
P67 = 4777419331469809285428949137256054363568169465244600000364285743961<67>
Number: n N=1211810328045179737137835843378066173006313450989972138219571769921632974435429855162342174929531805158519800996508886585732210697013 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: Thu Sep 4 16:02:43 2008 prp66 factor: 253653749852508153250333883090711675749451709540031375104589078333 Thu Sep 4 16:02:43 2008 prp67 factor: 4777419331469809285428949137256054363568169465244600000364285743961 Thu Sep 4 16:02:43 2008 elapsed time 01:45:45 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 15.24 hours. Scaled time: 12.77 units (timescale=0.838). Factorization parameters were as follows: name: KA_2_7_160_1 n: 1211810328045179737137835843378066173006313450989972138219571769921632974435429855162342174929531805158519800996508886585732210697013 type: snfs skew: 0.75 deg: 5 c5: 250 c0: -61 m: 100000000000000000000000000000000 rlim: 4400000 alim: 4400000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 2100001) Primes: RFBsize:309335, AFBsize:309449, largePrimes:12410612 encountered Relations: rels:11542233, finalFF:649714 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 14.97 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4400000,4400000,28,28,52,52,2.5,2.5,100000 total time: 15.24 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(25·10171-61)/9 = 2(7)1701<172> = 1777 · 11110598531288144356616827185083<32> · C138
C138 = P47 · P91
P47 = 44512398379504795249333730316447728566719025499<47>
P91 = 3160760731055610510155798731208531392799859145056964147663316803202246756868891237027738419<91>
# what a nice catch for B1=3e6! :-) Wow. # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3132305148 Step 1 took 18363ms Step 2 took 16355ms ********** Factor found in step 2: 44512398379504795249333730316447728566719025499 Found probable prime factor of 47 digits: 44512398379504795249333730316447728566719025499 Probable prime cofactor 3160760731055610510155798731208531392799859145056964147663316803202246756868891237027738419 has 91 digits
(25·10193-61)/9 = 2(7)1921<194> = 3 · 7 · 73883 · 26925317 · 19159973142181<14> · 284017799510891<15> · C153
C153 = P29 · C124
P29 = 80485311297327121853982640517<29>
C124 = [1518153815704622240936737904859078621016147552740776785285576396386699185397561525934124104891750356941221401004594467058163<124>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1712037598 Step 1 took 18241ms Step 2 took 16894ms ********** Factor found in step 2: 80485311297327121853982640517 Found probable prime factor of 29 digits: 80485311297327121853982640517 Composite cofactor 1518153815704622240936737904859078621016147552740776785285576396386699185397561525934124104891750356941221401004594467058163 has 124 digits
(25·10199-61)/9 = 2(7)1981<200> = 3 · 7 · 283 · 1391259626479767819093311<25> · 4950310741210515424439214523<28> · C144
C144 = P35 · C110
P35 = 21631834288992712007555427246085799<35>
C110 = [31373124860100658739370173152893372981358932607827628090607273537011259875274623530665824683543468162744478351<110>]
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1435650970 Step 1 took 20513ms Step 2 took 16641ms ********** Factor found in step 2: 21631834288992712007555427246085799 Found probable prime factor of 35 digits: 21631834288992712007555427246085799 Composite cofactor 31373124860100658739370173152893372981358932607827628090607273537011259875274623530665824683543468162744478351 has 110 digits
(25·10189-61)/9 = 2(7)1881<190> = 59 · 1447 · 1549 · 55837 · 18626559023<11> · 1680493671035288368696859<25> · C143
C143 = P40 · P103
P40 = 2016363122734122769308758804969621922733<40>
P103 = 5960259958234267822953007523507500830294029263387822644819553059732204123759026007056155922498545778959<103>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2931673241 Step 1 took 18370ms Step 2 took 16498ms ********** Factor found in step 2: 2016363122734122769308758804969621922733 Found probable prime factor of 40 digits: 2016363122734122769308758804969621922733 Probable prime cofactor 5960259958234267822953007523507500830294029263387822644819553059732204123759026007056155922498545778959 has 103 digits
By Sinkiti Sibata / Msieve, GGNFS
(25·10172-61)/9 = 2(7)1711<173> = 3 · 47 · 271 · 57935341 · 12956265741884479104103362197<29> · 323491665334534849464472655197<30> · C103
C103 = P46 · P58
P46 = 1419307810265852610333835137969799236391677581<46>
P58 = 2109337107130584539479018932845314440549663990721314805649<58>
Msieve v. 1.36 Tue Sep 2 13:53:04 2008 random seeds: 331ffe7b d5a5e8c8 factoring 2993798630634018102752511257355121413329191653523966592393572962544732 016371065178595419712380085455069 (103 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (103-digit input) using multiplier of 1 using 64kb Pentium 4 sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 3418799 (122500 primes) using large prime bound of 512819850 (28 bits) using double large prime bound of 4763615381480700 (44-53 bits) using trial factoring cutoff of 53 bits polynomial 'A' values have 13 factors sieving in progress (press Ctrl-C to pause) 100039 relations (27689 full + 72350 combined from 1685255 partial), need 122596 100275 relations (27714 full + 72561 combined from 1686837 partial), need 122596 100506 relations (27736 full + 72770 combined from 1688414 partial), need 122596 100749 relations (27755 full + 72994 combined from 1690053 partial), need 122596 101012 relations (27781 full + 73231 combined from 1691734 partial), need 122596 101272 relations (27809 full + 73463 combined from 1693393 partial), need 122596 101524 relations (27834 full + 73690 combined from 1695033 partial), need 122596 101785 relations (27857 full + 73928 combined from 1696615 partial), need 122596 102024 relations (27882 full + 74142 combined from 1698192 partial), need 122596 102312 relations (27902 full + 74410 combined from 1699740 partial), need 122596 102557 relations (27936 full + 74621 combined from 1701299 partial), need 122596 102792 relations (27961 full + 74831 combined from 1702802 partial), need 122596 103045 relations (27997 full + 75048 combined from 1704372 partial), need 122596 103324 relations (28032 full + 75292 combined from 1706045 partial), need 122596 103582 relations (28060 full + 75522 combined from 1707634 partial), need 122596 103834 relations (28093 full + 75741 combined from 1709201 partial), need 122596 104069 relations (28118 full + 75951 combined from 1710735 partial), need 122596 104304 relations (28156 full + 76148 combined from 1712299 partial), need 122596 104536 relations (28183 full + 76353 combined from 1713828 partial), need 122596 104784 relations (28212 full + 76572 combined from 1715370 partial), need 122596 105055 relations (28236 full + 76819 combined from 1716949 partial), need 122596 105312 relations (28269 full + 77043 combined from 1718490 partial), need 122596 105545 relations (28303 full + 77242 combined from 1720109 partial), need 122596 105798 relations (28327 full + 77471 combined from 1721726 partial), need 122596 106066 relations (28358 full + 77708 combined from 1723336 partial), need 122596 106315 relations (28382 full + 77933 combined from 1724913 partial), need 122596 106540 relations (28405 full + 78135 combined from 1726523 partial), need 122596 106795 relations (28430 full + 78365 combined from 1728052 partial), need 122596 107071 relations (28456 full + 78615 combined from 1729635 partial), need 122596 107349 relations (28486 full + 78863 combined from 1731297 partial), need 122596 107612 relations (28505 full + 79107 combined from 1732891 partial), need 122596 107878 relations (28531 full + 79347 combined from 1734576 partial), need 122596 108119 relations (28560 full + 79559 combined from 1736178 partial), need 122596 108348 relations (28582 full + 79766 combined from 1737692 partial), need 122596 108579 relations (28603 full + 79976 combined from 1739206 partial), need 122596 108835 relations (28630 full + 80205 combined from 1740789 partial), need 122596 109089 relations (28658 full + 80431 combined from 1742365 partial), need 122596 109343 relations (28687 full + 80656 combined from 1743914 partial), need 122596 109578 relations (28712 full + 80866 combined from 1745500 partial), need 122596 109836 relations (28739 full + 81097 combined from 1747133 partial), need 122596 110093 relations (28764 full + 81329 combined from 1748667 partial), need 122596 110348 relations (28789 full + 81559 combined from 1750171 partial), need 122596 110618 relations (28818 full + 81800 combined from 1751812 partial), need 122596 110880 relations (28833 full + 82047 combined from 1753432 partial), need 122596 111115 relations (28862 full + 82253 combined from 1754973 partial), need 122596 111382 relations (28887 full + 82495 combined from 1756580 partial), need 122596 111634 relations (28915 full + 82719 combined from 1758168 partial), need 122596 111902 relations (28944 full + 82958 combined from 1759681 partial), need 122596 112141 relations (28969 full + 83172 combined from 1761279 partial), need 122596 112406 relations (28996 full + 83410 combined from 1762883 partial), need 122596 112641 relations (29019 full + 83622 combined from 1764483 partial), need 122596 112900 relations (29044 full + 83856 combined from 1765994 partial), need 122596 113157 relations (29063 full + 84094 combined from 1767612 partial), need 122596 113431 relations (29094 full + 84337 combined from 1769187 partial), need 122596 113699 relations (29115 full + 84584 combined from 1770789 partial), need 122596 113976 relations (29152 full + 84824 combined from 1772445 partial), need 122596 114260 relations (29181 full + 85079 combined from 1774007 partial), need 122596 114504 relations (29203 full + 85301 combined from 1775586 partial), need 122596 114784 relations (29225 full + 85559 combined from 1777186 partial), need 122596 115057 relations (29259 full + 85798 combined from 1778770 partial), need 122596 115325 relations (29282 full + 86043 combined from 1780307 partial), need 122596 115605 relations (29305 full + 86300 combined from 1781882 partial), need 122596 115862 relations (29330 full + 86532 combined from 1783480 partial), need 122596 116094 relations (29347 full + 86747 combined from 1785041 partial), need 122596 116349 relations (29365 full + 86984 combined from 1786621 partial), need 122596 116608 relations (29392 full + 87216 combined from 1788221 partial), need 122596 116875 relations (29411 full + 87464 combined from 1789818 partial), need 122596 117163 relations (29438 full + 87725 combined from 1791426 partial), need 122596 117465 relations (29464 full + 88001 combined from 1793037 partial), need 122596 117754 relations (29493 full + 88261 combined from 1794667 partial), need 122596 118013 relations (29511 full + 88502 combined from 1796239 partial), need 122596 118293 relations (29539 full + 88754 combined from 1797859 partial), need 122596 118590 relations (29576 full + 89014 combined from 1799475 partial), need 122596 118867 relations (29595 full + 89272 combined from 1801040 partial), need 122596 119128 relations (29618 full + 89510 combined from 1802617 partial), need 122596 119375 relations (29645 full + 89730 combined from 1804194 partial), need 122596 119642 relations (29675 full + 89967 combined from 1805758 partial), need 122596 119923 relations (29704 full + 90219 combined from 1807401 partial), need 122596 120225 relations (29745 full + 90480 combined from 1809005 partial), need 122596 120505 relations (29768 full + 90737 combined from 1810656 partial), need 122596 120771 relations (29787 full + 90984 combined from 1812243 partial), need 122596 121035 relations (29810 full + 91225 combined from 1813821 partial), need 122596 121305 relations (29831 full + 91474 combined from 1815435 partial), need 122596 121600 relations (29860 full + 91740 combined from 1816956 partial), need 122596 121881 relations (29884 full + 91997 combined from 1818562 partial), need 122596 122151 relations (29908 full + 92243 combined from 1820182 partial), need 122596 122423 relations (29927 full + 92496 combined from 1821756 partial), need 122596 122710 relations (29950 full + 92760 combined from 1823402 partial), need 122596 122710 relations (29950 full + 92760 combined from 1823402 partial), need 122596 sieving complete, commencing postprocessing begin with 1853352 relations reduce to 320739 relations in 10 passes attempting to read 320739 relations recovered 320739 relations recovered 310067 polynomials attempting to build 122710 cycles found 122709 cycles in 5 passes distribution of cycle lengths: length 1 : 29950 length 2 : 21063 length 3 : 20688 length 4 : 16492 length 5 : 12620 length 6 : 8658 length 7 : 5521 length 9+: 7717 largest cycle: 19 relations matrix is 122500 x 122709 (35.8 MB) with weight 8892811 (72.47/col) sparse part has weight 8892811 (72.47/col) filtering completed in 3 passes matrix is 116994 x 117058 (34.4 MB) with weight 8538750 (72.94/col) sparse part has weight 8538750 (72.94/col) saving the first 48 matrix rows for later matrix is 116946 x 117058 (24.7 MB) with weight 7163227 (61.19/col) sparse part has weight 5785677 (49.43/col) matrix includes 64 packed rows using block size 21845 for processor cache size 512 kB commencing Lanczos iteration memory use: 21.9 MB linear algebra completed 115406 out of 117058 dimensions (98.6%) lanczos halted after 1850 iterations (dim = 116945) recovered 16 nontrivial dependencies prp46 factor: 1419307810265852610333835137969799236391677581 prp58 factor: 2109337107130584539479018932845314440549663990721314805649 elapsed time 34:58:42
(25·10157-61)/9 = 2(7)1561<158> = 3 · 7 · 271 · 3096349 · 23837571371<11> · 53476976743<11> · C127
C127 = P42 · P85
P42 = 251111527431617622010853018800610054904163<42>
P85 = 4924515457609151256111451286897140203112085825934235152907008026879826815789247413971<85>
Number: 27771_157 N=1236602598420845392465064144285320486196111595543875173246683943577905648456176531599471021910006680459702992441135973992261273 ( 127 digits) SNFS difficulty: 159 digits. Divisors found: r1=251111527431617622010853018800610054904163 (pp42) r2=4924515457609151256111451286897140203112085825934235152907008026879826815789247413971 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.89 hours. Scaled time: 44.02 units (timescale=1.003). Factorization parameters were as follows: name: 27771_157 n: 1236602598420845392465064144285320486196111595543875173246683943577905648456176531599471021910006680459702992441135973992261273 m: 50000000000000000000000000000000 c5: 4 c0: -305 skew: 2.38 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3700001) Primes: RFBsize:283146, AFBsize:282638, largePrimes:6156179 encountered Relations: rels:6587926, finalFF:1001963 Max relations in full relation-set: 28 Initial matrix: 565848 x 1001963 with sparse part having weight 66147813. Pruned matrix : 326559 x 329452 with weight 53505394. Total sieving time: 42.50 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.22 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 43.89 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(25·10149-61)/9 = 2(7)1481<150> = 13 · 181 · 197 · 1690007339<10> · C135
C135 = P39 · P96
P39 = 470636525232146442959347571682077326597<39>
P96 = 753416498702436697593695957452689801144133736876627078063382917767291118360831661478156933806457<96>
Number: 27771_149 N=354585323001884776628629511894083866932645350523269087652602074338492850583139742796679407422397312103865993638601297787473881576436829 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=470636525232146442959347571682077326597 (pp39) r2=753416498702436697593695957452689801144133736876627078063382917767291118360831661478156933806457 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.16 hours. Scaled time: 29.54 units (timescale=1.013). Factorization parameters were as follows: name: 27771_149 n: 354585323001884776628629511894083866932645350523269087652602074338492850583139742796679407422397312103865993638601297787473881576436829 m: 1000000000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175719, largePrimes:5507544 encountered Relations: rels:5398019, finalFF:462635 Max relations in full relation-set: 28 Initial matrix: 352086 x 462635 with sparse part having weight 40929944. Pruned matrix : 302640 x 304464 with weight 23597003. Total sieving time: 28.49 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.52 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 29.16 hours. --------- CPU info (if available) ----------
(25·10130-61)/9 = 2(7)1291<131> = 3 · 58495944249857<14> · C117
C117 = P38 · P79
P38 = 72325146532934744296452924098623296259<38>
P79 = 2188573651977845386131277387482593882061834489364029224669677420951255801033939<79>
Number: 27771_130 N=158288910077417795908138195479665635472032771658895991675636236713434628266715780232941527665528194251098524510734201 ( 117 digits) SNFS difficulty: 131 digits. Divisors found: r1=72325146532934744296452924098623296259 (pp38) r2=2188573651977845386131277387482593882061834489364029224669677420951255801033939 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.74 hours. Scaled time: 2.93 units (timescale=0.783). Factorization parameters were as follows: name: 27771_130 n: 158288910077417795908138195479665635472032771658895991675636236713434628266715780232941527665528194251098524510734201 m: 100000000000000000000000000 c5: 25 c0: -61 skew: 1.2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:63799, largePrimes:1454614 encountered Relations: rels:1449393, finalFF:168881 Max relations in full relation-set: 28 Initial matrix: 127814 x 168881 with sparse part having weight 10444584. Pruned matrix : 114673 x 115376 with weight 5503834. Total sieving time: 3.62 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.74 hours. --------- CPU info (if available) ----------
(25·10154-61)/9 = 2(7)1531<155> = 3 · 293 · 26557 · 49256293730178799051846621<26> · C122
C122 = P40 · P82
P40 = 5301064110976528276021825235523818767679<40>
P82 = 4557270671561061255123982087138571971565022174347192982395270017827900110497448323<82>
Number: 27771_154 N=24158384001018243165313643924362406754822830761328446656124480605992670616305009456597905435143480920734912217227845152317 ( 122 digits) SNFS difficulty: 155 digits. Divisors found: r1=5301064110976528276021825235523818767679 (pp40) r2=4557270671561061255123982087138571971565022174347192982395270017827900110497448323 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 32.40 hours. Scaled time: 32.60 units (timescale=1.006). Factorization parameters were as follows: name: 27771_154 n: 24158384001018243165313643924362406754822830761328446656124480605992670616305009456597905435143480920734912217227845152317 m: 10000000000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216067, largePrimes:6039660 encountered Relations: rels:6273316, finalFF:769405 Max relations in full relation-set: 28 Initial matrix: 432948 x 769405 with sparse part having weight 68934654. Pruned matrix : 305773 x 308001 with weight 39508435. Total sieving time: 31.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.88 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.40 hours. --------- CPU info (if available) ----------
(25·10152-61)/9 = 2(7)1511<153> = 271 · 251197 · 23650616473873<14> · C132
C132 = P37 · P41 · P55
P37 = 1649194932995458194552098353071508753<37>
P41 = 40462912832676719001557694003003432413533<41>
P55 = 2585485814085485481752663875511265877142630193494391229<55>
Number: 27771_152 N=172532650636111904860054938051259144514788546119627239692446419141078903561074468627544423576489365555172803898817679618101016804921 ( 132 digits) SNFS difficulty: 154 digits. Divisors found: r1=1649194932995458194552098353071508753 (pp37) r2=40462912832676719001557694003003432413533 (pp41) r3=2585485814085485481752663875511265877142630193494391229 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 30.42 hours. Scaled time: 23.91 units (timescale=0.786). Factorization parameters were as follows: name: 27771_152 n: 172532650636111904860054938051259144514788546119627239692446419141078903561074468627544423576489365555172803898817679618101016804921 m: 5000000000000000000000000000000 c5: 4 c0: -305 skew: 2.38 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:175969, largePrimes:5737118 encountered Relations: rels:5759844, finalFF:564149 Max relations in full relation-set: 28 Initial matrix: 352335 x 564149 with sparse part having weight 53178188. Pruned matrix : 277777 x 279602 with weight 28211723. Total sieving time: 29.27 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.94 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.42 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve 1.37, GMP-ECM 6.2.1+Msieve 1.37/QS
(25·10153-61)/9 = 2(7)1521<154> = C154
C154 = P51 · P104
P51 = 109597476817915399648783767470638342286678753105441<51>
P104 = 25345271245548484326118620469718080997667197757537826608184756610171014468393711341782508146039235365131<104>
Number: 27771_153 N=2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 154 digits) SNFS difficulty: 154 digits. Divisors found: r1=109597476817915399648783767470638342286678753105441 r2=25345271245548484326118620469718080997667197757537826608184756610171014468393711341782508146039235365131 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.716). Factorization parameters were as follows: n: 2777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 Y1: 1 Y0: -5000000000000000000000000000000 c5: 8 c0: -61 skew: 1.5 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 472490 x 472732 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,52,52,2.5,2.5,100000 total time: 11.50 hours.
(25·10165-61)/9 = 2(7)1641<166> = 139 · 163 · 1399 · 17783920837<11> · 5046891031387<13> · 28368734240391359<17> · C119
C119 = P32 · P37 · P51
P32 = 80362373512148298738695020240543<32>
P37 = 1311733054597632858229417944775231493<37>
P51 = 326503438371259342587167097723316440052457045232143<51>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4222096588 Step 1 took 3912ms ********** Factor found in step 1: 80362373512148298738695020240543 Found probable prime factor of 32 digits: 80362373512148298738695020240543 Composite cofactor 428285352551361986373445292067672882719692682241289020565800346753478523267674749479499 has 87 digits Tue Sep 2 09:21:10 2008 Msieve v. 1.37 Tue Sep 2 09:21:10 2008 random seeds: a88b20fd 0f1ad02c Tue Sep 2 09:21:10 2008 factoring 428285352551361986373445292067672882719692682241289020565800346753478523267674749479499 (87 digits) Tue Sep 2 09:21:11 2008 no P-1/P+1/ECM available, skipping Tue Sep 2 09:21:11 2008 commencing quadratic sieve (87-digit input) Tue Sep 2 09:21:11 2008 using multiplier of 3 Tue Sep 2 09:21:11 2008 using 64kb Opteron sieve core Tue Sep 2 09:21:11 2008 sieve interval: 10 blocks of size 65536 Tue Sep 2 09:21:11 2008 processing polynomials in batches of 11 Tue Sep 2 09:21:11 2008 using a sieve bound of 1484177 (56667 primes) Tue Sep 2 09:21:11 2008 using large prime bound of 118734160 (26 bits) Tue Sep 2 09:21:11 2008 using double large prime bound of 342165490136480 (42-49 bits) Tue Sep 2 09:21:11 2008 using trial factoring cutoff of 49 bits Tue Sep 2 09:21:11 2008 polynomial 'A' values have 11 factors Tue Sep 2 10:02:32 2008 56852 relations (15434 full + 41418 combined from 599869 partial), need 56763 Tue Sep 2 10:02:33 2008 begin with 615303 relations Tue Sep 2 10:02:33 2008 reduce to 138044 relations in 11 passes Tue Sep 2 10:02:33 2008 attempting to read 138044 relations Tue Sep 2 10:02:34 2008 recovered 138044 relations Tue Sep 2 10:02:34 2008 recovered 118769 polynomials Tue Sep 2 10:02:34 2008 attempting to build 56852 cycles Tue Sep 2 10:02:34 2008 found 56852 cycles in 5 passes Tue Sep 2 10:02:34 2008 distribution of cycle lengths: Tue Sep 2 10:02:34 2008 length 1 : 15434 Tue Sep 2 10:02:34 2008 length 2 : 11111 Tue Sep 2 10:02:34 2008 length 3 : 10050 Tue Sep 2 10:02:34 2008 length 4 : 7450 Tue Sep 2 10:02:34 2008 length 5 : 5195 Tue Sep 2 10:02:34 2008 length 6 : 3284 Tue Sep 2 10:02:34 2008 length 7 : 2019 Tue Sep 2 10:02:34 2008 length 9+: 2309 Tue Sep 2 10:02:34 2008 largest cycle: 17 relations Tue Sep 2 10:02:34 2008 matrix is 56667 x 56852 (14.0 MB) with weight 3220880 (56.65/col) Tue Sep 2 10:02:34 2008 sparse part has weight 3220880 (56.65/col) Tue Sep 2 10:02:35 2008 filtering completed in 3 passes Tue Sep 2 10:02:35 2008 matrix is 52655 x 52719 (13.1 MB) with weight 3016772 (57.22/col) Tue Sep 2 10:02:35 2008 sparse part has weight 3016772 (57.22/col) Tue Sep 2 10:02:35 2008 saving the first 48 matrix rows for later Tue Sep 2 10:02:35 2008 matrix is 52607 x 52719 (8.5 MB) with weight 2347485 (44.53/col) Tue Sep 2 10:02:35 2008 sparse part has weight 1706392 (32.37/col) Tue Sep 2 10:02:35 2008 matrix includes 64 packed rows Tue Sep 2 10:02:35 2008 using block size 21087 for processor cache size 1024 kB Tue Sep 2 10:02:35 2008 commencing Lanczos iteration Tue Sep 2 10:02:35 2008 memory use: 7.7 MB Tue Sep 2 10:02:50 2008 lanczos halted after 834 iterations (dim = 52604) Tue Sep 2 10:02:50 2008 recovered 15 nontrivial dependencies Tue Sep 2 10:02:50 2008 prp37 factor: 1311733054597632858229417944775231493 Tue Sep 2 10:02:50 2008 prp51 factor: 326503438371259342587167097723316440052457045232143 Tue Sep 2 10:02:50 2008 elapsed time 00:41:40
(25·10164-61)/9 = 2(7)1631<165> = 3299 · C161
C161 = P33 · P48 · P81
P33 = 659829942255417221379291150281179<33>
P48 = 248570702244139474826035756339690768851787296439<48>
P81 = 513373237714119628900245111388942430675374787557277953916106237311225424401827709<81>
Number: 27771_164 N=84200599508268498871711966589202115119059647704691657404600720757131790778350341854434003570105419150584352160587383382169681048129062678926273955070560102387929 ( 161 digits) SNFS difficulty: 165 digits. Divisors found: r1=659829942255417221379291150281179 r2=248570702244139474826035756339690768851787296439 r3=513373237714119628900245111388942430675374787557277953916106237311225424401827709 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 84200599508268498871711966589202115119059647704691657404600720757131790778350341854434003570105419150584352160587383382169681048129062678926273955070560102387929 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 827994 x 828242 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 31.00 hours. # I knew about 3 factors, because of ECM results (but GNFS was still useless): Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3546418022 Step 1 took 19842ms Step 2 took 14809ms ********** Factor found in step 2: 659829942255417221379291150281179 Found probable prime factor of 33 digits: 659829942255417221379291150281179 Composite cofactor 127609546211946264112980194582537324356226142070695470718473719517438302591875232733472700792167849318979451951203715019387228251 has 129 digits
By Wataru Sakai / GGNFS
(8·10179-11)/3 = 2(6)1783<180> = C180
C180 = P40 · P140
P40 = 4682209735745219226761500789554699502777<40>
P140 = 56953165645456519175499917759107331724155107752653509943265611671232250463973830108138400277147620488064312051591440159053383107906533210719<140>
Number: 26663_179 N=266666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 180 digits) SNFS difficulty: 180 digits. Divisors found: r1=4682209735745219226761500789554699502777 (pp40) r2=56953165645456519175499917759107331724155107752653509943265611671232250463973830108138400277147620488064312051591440159053383107906533210719 (pp140) Version: GGNFS-0.77.1-20060722-nocona Total time: 340.53 hours. Scaled time: 686.16 units (timescale=2.015). Factorization parameters were as follows: n: 266666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 1000000000000000000000000000000000000 c5: 4 c0: -55 skew: 1.69 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 7800001) Primes: RFBsize:501962, AFBsize:500697, largePrimes:6409304 encountered Relations: rels:6929357, finalFF:1194527 Max relations in full relation-set: 32 Initial matrix: 1002723 x 1194527 with sparse part having weight 57740419. Pruned matrix : 833652 x 838729 with weight 41052163. Total sieving time: 336.37 hours. Total relation processing time: 0.09 hours. Matrix solve time: 3.89 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 340.53 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(8·10166-11)/3 = 2(6)1653<167> = 7 · 132 · 3343 · C160
C160 = P78 · P83
P78 = 651701029217118246663040446269232348044819826548758806571194117322481623985581<78>
P83 = 10346636798875123657678542081026145261494185181631514140254760838629797607664649267<83>
Number: n N=6742913850762627770842409927524633339309240733571712195242419131602039630296147933461263266366927288715640955683294439363377903151022642957570130307653030219127 ( 160 digits) SNFS difficulty: 167 digits. Divisors found: Tue Sep 2 13:14:52 2008 prp78 factor: 651701029217118246663040446269232348044819826548758806571194117322481623985581 Tue Sep 2 13:14:52 2008 prp83 factor: 10346636798875123657678542081026145261494185181631514140254760838629797607664649267 Tue Sep 2 13:14:52 2008 elapsed time 01:26:16 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 22.59 hours. Scaled time: 18.93 units (timescale=0.838). Factorization parameters were as follows: name: KA_2_6_165_3 n: 6742913850762627770842409927524633339309240733571712195242419131602039630296147933461263266366927288715640955683294439363377903151022642957570130307653030219127 type: snfs skew: 1.34 deg: 5 c5: 5 c0: -22 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 2600001) Primes: RFBsize:348513, AFBsize:348587, largePrimes:13964706 encountered Relations: rels:13838473, finalFF:1133567 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Loading matrix into RAM... Matrix scanned: it should be 697165 x 1133567. Found 6 dense blocks. Re-reading matrix... The dense blocks consist of the following sets of rows: [697101, 697164] [0, 63] [64, 127] [128, 191] [348513, 348576] [348577, 348640] Matrix loaded: it is 697165 x 1133567. Warning: column 121076 is all zero! checkMat() did not like something about the matrix: This is probably a sign that something has gone horribly wrong in the matrix construction (matbuild). However, the number of bad columns is only 1, so we will delete them and attempt to continue. checkMat() returned some error! Terminating... Return value 65280. Terminating... Total sieving time: 22.25 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,52,52,2.5,2.5,100000 total time: 22.59 hours. --------- CPU info (if available) ----------
(52·10167-7)/9 = 5(7)167<168> = 6469 · 14737 · 59029 · 158560488000179<15> · C141
C141 = P39 · P50 · P53
P39 = 134423132005673053281516895507169533951<39>
P50 = 92767036161728595441434580385004989605003143823259<50>
P53 = 51926195999481557111023152924214215900076403618583911<53>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 647521509972609978778474895181437790066412069595365135629283038763004668109673455943367523705566963333241654425358525680208523021452673454499 (141 digits) Using B1=4860000, B2=11416155670, polynomial Dickson(12), sigma=3081001015 Step 1 took 51375ms Step 2 took 24656ms ********** Factor found in step 2: 134423132005673053281516895507169533951 Found probable prime factor of 39 digits: 134423132005673053281516895507169533951 Composite cofactor 4817039302024912335467132326152784905075738362859412701896443731750706099437308147192818330864044985949 has 103 digits Number: n N=4817039302024912335467132326152784905075738362859412701896443731750706099437308147192818330864044985949 ( 103 digits) Divisors found: r1=92767036161728595441434580385004989605003143823259 (pp50) r2=51926195999481557111023152924214215900076403618583911 (pp53) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.65 hours. Scaled time: 12.17 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_7_167 n: 4817039302024912335467132326152784905075738362859412701896443731750706099437308147192818330864044985949 skew: 3985.52 # norm 3.59e+13 c5: 93600 c4: -601932860 c3: -2428712294883 c2: 21750733387237273 c1: 13248076622685588363 c0: -19810988854558364477813 # alpha -4.55 Y1: 81379529627 Y0: -34857976460207414076 # Murphy_E 2.31e-09 # M 4281574460791113755516230351221977994129597477696987288901441868558155807652878845341700823494448725006 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:169511, AFBsize:169363, largePrimes:4077544 encountered Relations: rels:4035675, finalFF:430083 Max relations in full relation-set: 48 Initial matrix: 338952 x 430083 with sparse part having weight 26429719. Pruned matrix : 252628 x 254386 with weight 10673012. Total sieving time: 6.20 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.28 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS, GMP-ECM, Msieve
(25·10129-61)/9 = 2(7)1281<130> = 153151 · 4673772755787217<16> · C109
C109 = P38 · P72
P38 = 20453259670836204190673329947267817129<38>
P72 = 189735037545599924396551452154414396763586188577807393187978065955851197<72>
Number: 27771_129 N=3880699991576011953128227159099334239837445535573922171440035776758693606702134517293709663755165267331753413 ( 109 digits) SNFS difficulty: 130 digits. Divisors found: r1=20453259670836204190673329947267817129 (pp38) r2=189735037545599924396551452154414396763586188577807393187978065955851197 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.11 hours. Scaled time: 4.01 units (timescale=0.785). Factorization parameters were as follows: name: 27771_129 n: 3880699991576011953128227159099334239837445535573922171440035776758693606702134517293709663755165267331753413 m: 100000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63784, largePrimes:1545512 encountered Relations: rels:1563329, finalFF:183787 Max relations in full relation-set: 28 Initial matrix: 127800 x 183787 with sparse part having weight 14621739. Pruned matrix : 113248 x 113951 with weight 7290682. Total sieving time: 4.97 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.11 hours. --------- CPU info (if available) ----------
(25·10147-61)/9 = 2(7)1461<148> = 17 · 271 · 3309855891091<13> · C132
C132 = P34 · P98
P34 = 9229490189668026616203266998176737<34>
P98 = 19737515731549627398346041144166461110062712518326895924348032317964415590287193972630324247892759<98>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 182167207812755629686046229168270893227835379964737052055815747768780391916854905259389815243129008035784843900450078564467304547383 Run 334 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4055225039 Step 1 took 14680ms Step 2 took 6957ms ********** Factor found in step 2: 9229490189668026616203266998176737 Found probable prime factor of 34 digits: 9229490189668026616203266998176737 Probable prime cofactor 19737515731549627398346041144166461110062712518326895924348032317964415590287193972630324247892759 has 98 digits
(25·10124-61)/9 = 2(7)1231<125> = 32 · 502027579 · 7574678889386110163953<22> · C93
C93 = P41 · P53
P41 = 70362686316521436307034813012932569418787<41>
P53 = 11535084375410612732158710144999540847723947258858451<53>
Msieve v. 1.36 Tue Sep 2 06:30:15 2008 random seeds: fac47258 aa7b8a3d factoring 8116395235416245391682881300129730356859284926250012455520665659765342 50127979479486173118937 (93 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (93-digit input) using multiplier of 57 using 64kb Pentium 4 sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 1956883 (72856 primes) using large prime bound of 244610375 (27 bits) using double large prime bound of 1256766767596625 (42-51 bits) using trial factoring cutoff of 51 bits polynomial 'A' values have 12 factors sieving in progress (press Ctrl-C to pause) 73048 relations (18356 full + 54692 combined from 993590 partial), need 72952 73048 relations (18356 full + 54692 combined from 993590 partial), need 72952 sieving complete, commencing postprocessing begin with 1011946 relations reduce to 187410 relations in 10 passes attempting to read 187410 relations recovered 187410 relations recovered 170694 polynomials attempting to build 73048 cycles found 73048 cycles in 6 passes distribution of cycle lengths: length 1 : 18356 length 2 : 12889 length 3 : 12517 length 4 : 9860 length 5 : 7391 length 6 : 4737 length 7 : 3122 length 9+: 4176 largest cycle: 23 relations matrix is 72856 x 73048 (19.3 MB) with weight 4773964 (65.35/col) sparse part has weight 4773964 (65.35/col) filtering completed in 3 passes matrix is 69230 x 69294 (18.5 MB) with weight 4561561 (65.83/col) sparse part has weight 4561561 (65.83/col) saving the first 48 matrix rows for later matrix is 69182 x 69294 (11.9 MB) with weight 3618831 (52.22/col) sparse part has weight 2700647 (38.97/col) matrix includes 64 packed rows using block size 21845 for processor cache size 512 kB commencing Lanczos iteration memory use: 11.2 MB linear algebra completed 64229 out of 69294 dimensions (92.7%) lanczos halted after 1096 iterations (dim = 69181) recovered 18 nontrivial dependencies prp41 factor: 70362686316521436307034813012932569418787 prp53 factor: 11535084375410612732158710144999540847723947258858451 elapsed time 04:50:14
(25·10143-61)/9 = 2(7)1421<144> = 13 · 2171111317<10> · 9299223345239532250199<22> · C112
C112 = P34 · P39 · P40
P34 = 1309143485309777583241846470683317<34>
P39 = 484378549302141911629687706665230167387<39>
P40 = 1668988046339800108673532942790290417931<40>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1058340406055840797247159275511465608167592959514093349104328096492970348022598919601596788146797957174561417149 Run 100 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2624782773 Step 1 took 11606ms Step 2 took 5928ms ********** Factor found in step 2: 1309143485309777583241846470683317 Found probable prime factor of 34 digits: 1309143485309777583241846470683317 Composite cofactor 808422008688688376397533217076481426744848381871723328550796245844581316216297 has 78 digits Tue Sep 2 11:39:26 2008 Msieve v. 1.36 Tue Sep 2 11:39:26 2008 random seeds: 5ccc56ec cd254687 Tue Sep 2 11:39:26 2008 factoring 808422008688688376397533217076481426744848381871723328550796245844581316216297 (78 digits) Tue Sep 2 11:39:27 2008 no P-1/P+1/ECM available, skipping Tue Sep 2 11:39:27 2008 commencing quadratic sieve (78-digit input) Tue Sep 2 11:39:27 2008 using multiplier of 5 Tue Sep 2 11:39:27 2008 using 32kb Intel Core sieve core Tue Sep 2 11:39:27 2008 sieve interval: 12 blocks of size 32768 Tue Sep 2 11:39:27 2008 processing polynomials in batches of 17 Tue Sep 2 11:39:27 2008 using a sieve bound of 1032511 (40529 primes) Tue Sep 2 11:39:27 2008 using large prime bound of 103251100 (26 bits) Tue Sep 2 11:39:27 2008 using trial factoring cutoff of 27 bits Tue Sep 2 11:39:27 2008 polynomial 'A' values have 10 factors Tue Sep 2 11:46:12 2008 40779 relations (20784 full + 19995 combined from 222822 partial), need 40625 Tue Sep 2 11:46:12 2008 begin with 243606 relations Tue Sep 2 11:46:12 2008 reduce to 58257 relations in 2 passes Tue Sep 2 11:46:12 2008 attempting to read 58257 relations Tue Sep 2 11:46:12 2008 recovered 58257 relations Tue Sep 2 11:46:12 2008 recovered 47947 polynomials Tue Sep 2 11:46:13 2008 attempting to build 40779 cycles Tue Sep 2 11:46:13 2008 found 40779 cycles in 1 passes Tue Sep 2 11:46:13 2008 distribution of cycle lengths: Tue Sep 2 11:46:13 2008 length 1 : 20784 Tue Sep 2 11:46:13 2008 length 2 : 19995 Tue Sep 2 11:46:13 2008 largest cycle: 2 relations Tue Sep 2 11:46:13 2008 matrix is 40529 x 40779 (5.3 MB) with weight 1219217 (29.90/col) Tue Sep 2 11:46:13 2008 sparse part has weight 1219217 (29.90/col) Tue Sep 2 11:46:13 2008 filtering completed in 3 passes Tue Sep 2 11:46:13 2008 matrix is 29746 x 29810 (4.1 MB) with weight 967944 (32.47/col) Tue Sep 2 11:46:13 2008 sparse part has weight 967944 (32.47/col) Tue Sep 2 11:46:13 2008 saving the first 48 matrix rows for later Tue Sep 2 11:46:13 2008 matrix is 29698 x 29810 (2.3 MB) with weight 682503 (22.90/col) Tue Sep 2 11:46:13 2008 sparse part has weight 436808 (14.65/col) Tue Sep 2 11:46:13 2008 matrix includes 64 packed rows Tue Sep 2 11:46:13 2008 commencing Lanczos iteration Tue Sep 2 11:46:13 2008 memory use: 3.5 MB Tue Sep 2 11:46:25 2008 lanczos halted after 471 iterations (dim = 29698) Tue Sep 2 11:46:25 2008 recovered 18 nontrivial dependencies Tue Sep 2 11:46:25 2008 prp39 factor: 484378549302141911629687706665230167387 Tue Sep 2 11:46:25 2008 prp40 factor: 1668988046339800108673532942790290417931 Tue Sep 2 11:46:25 2008 elapsed time 00:06:59
(25·10121-61)/9 = 2(7)1201<122> = 3 · 7 · 49627 · C116
C116 = P51 · P66
P51 = 151751901518049889837708613154968992021300406120197<51>
P66 = 175641056329064573758109081077588831777126235148165732731308152329<66>
Number: 27771_121 N=26653864282574460501798442838602429147898348132091860304325293141864766182174044829454183233376011500822591559488813 ( 116 digits) SNFS difficulty: 122 digits. Divisors found: r1=151751901518049889837708613154968992021300406120197 (pp51) r2=175641056329064573758109081077588831777126235148165732731308152329 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.43 hours. Scaled time: 1.90 units (timescale=0.781). Factorization parameters were as follows: name: 27771_121 n: 26653864282574460501798442838602429147898348132091860304325293141864766182174044829454183233376011500822591559488813 m: 1000000000000000000000000 c5: 250 c0: -61 skew: 0.75 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64054, largePrimes:2215166 encountered Relations: rels:2352484, finalFF:253562 Max relations in full relation-set: 28 Initial matrix: 113218 x 253562 with sparse part having weight 24450133. Pruned matrix : 87484 x 88114 with weight 6169356. Total sieving time: 2.31 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.43 hours. --------- CPU info (if available) ----------
(25·10120-61)/9 = 2(7)1191<121> = 19 · 731683 · 1060777 · C108
C108 = P34 · P74
P34 = 2077909526098467227127095357094899<34>
P74 = 90650500191125839001849566503209300133757025311439466547532183753689765801<74>
Number: 27771_120 N=188363537892731304918189934923172037561952148759302117343469768319278002963865656881762961384765891041749099 ( 108 digits) SNFS difficulty: 121 digits. Divisors found: r1=2077909526098467227127095357094899 (pp34) r2=90650500191125839001849566503209300133757025311439466547532183753689765801 (pp74) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.05 hours. Scaled time: 0.97 units (timescale=0.473). Factorization parameters were as follows: name: 27771_120 n: 188363537892731304918189934923172037561952148759302117343469768319278002963865656881762961384765891041749099 m: 1000000000000000000000000 c5: 25 c0: -61 skew: 1.2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63799, largePrimes:2043190 encountered Relations: rels:2063781, finalFF:182037 Max relations in full relation-set: 28 Initial matrix: 112961 x 182037 with sparse part having weight 14502213. Pruned matrix : 92717 x 93345 with weight 4989049. Total sieving time: 1.87 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.05 hours. --------- CPU info (if available) ----------
(25·10142-61)/9 = 2(7)1411<143> = 32 · 271 · 13907 · 8197537 · 4493806896529693<16> · C113
C113 = P46 · P67
P46 = 2901173421641272627502030357866773367220862841<46>
P67 = 7662681283468009442196894266756698463559266727460022585926879778867<67>
Number: 27771_142 N=22230767278105423457838826207878695530231315713506366491222875197108426865608784560893162769503742321415017381147 ( 113 digits) SNFS difficulty: 144 digits. Divisors found: r1=2901173421641272627502030357866773367220862841 (pp46) r2=7662681283468009442196894266756698463559266727460022585926879778867 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.27 hours. Scaled time: 16.45 units (timescale=1.011). Factorization parameters were as follows: name: 27771_142 n: 22230767278105423457838826207878695530231315713506366491222875197108426865608784560893162769503742321415017381147 m: 50000000000000000000000000000 c5: 4 c0: -305 skew: 2.38 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:99834, largePrimes:3010808 encountered Relations: rels:3140551, finalFF:366900 Max relations in full relation-set: 28 Initial matrix: 199919 x 366900 with sparse part having weight 41430559. Pruned matrix : 163905 x 164968 with weight 19507651. Total sieving time: 15.88 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.27 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 16.27 hours. --------- CPU info (if available) ----------
(25·10139-61)/9 = 2(7)1381<140> = 3 · 7 · 80084639981<11> · C128
C128 = P52 · P76
P52 = 6190455589244173649468957716997216405600058094976893<52>
P76 = 2668126182700760482119033930880089627186177930718096494876239686787844595447<76>
Number: 27771_139 N=16516916640508643948357831885991140837451264045925620296168380208470962412813488436668742365820180095732542134692365768398006171 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=6190455589244173649468957716997216405600058094976893 (pp52) r2=2668126182700760482119033930880089627186177930718096494876239686787844595447 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.63 hours. Scaled time: 13.07 units (timescale=0.786). Factorization parameters were as follows: name: 27771_139 n: 16516916640508643948357831885991140837451264045925620296168380208470962412813488436668742365820180095732542134692365768398006171 m: 10000000000000000000000000000 c5: 5 c0: -122 skew: 1.89 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:99699, largePrimes:2732880 encountered Relations: rels:2707703, finalFF:256474 Max relations in full relation-set: 28 Initial matrix: 199785 x 256474 with sparse part having weight 24432411. Pruned matrix : 182795 x 183857 with weight 15345607. Total sieving time: 16.20 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.26 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 16.63 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve v. 1.36/QS, Msieve v. 1.37/QS, Msieve-1.37 snfs, GMP-ECM 6.2.1, Msieve-1.37; 64-bit sievers (Childers)
(25·10134-61)/9 = 2(7)1331<135> = 154682376054408611<18> · 4819569705512101509596789<25> · C93
C93 = P34 · P60
P34 = 2285341270841103220316892131357527<34>
P60 = 163041189884638045718398236420560827643537175317697019375987<60>
Mon Sep 1 10:51:50 2008 Msieve v. 1.36 Mon Sep 1 10:51:50 2008 random seeds: 6c6c726c 4abd9356 Mon Sep 1 10:51:50 2008 factoring 372604760090404334748669246936986927822050971487117589245170278954091582540355072904735504149 (93 digits) Mon Sep 1 10:51:50 2008 no P-1/P+1/ECM available, skipping Mon Sep 1 10:51:50 2008 commencing quadratic sieve (93-digit input) Mon Sep 1 10:51:51 2008 using multiplier of 1 Mon Sep 1 10:51:51 2008 using 64kb Opteron sieve core Mon Sep 1 10:51:51 2008 sieve interval: 18 blocks of size 65536 Mon Sep 1 10:51:51 2008 processing polynomials in batches of 6 Mon Sep 1 10:51:51 2008 using a sieve bound of 1923133 (71747 primes) Mon Sep 1 10:51:51 2008 using large prime bound of 232699093 (27 bits) Mon Sep 1 10:51:51 2008 using double large prime bound of 1148762820023984 (42-51 bits) Mon Sep 1 10:51:51 2008 using trial factoring cutoff of 51 bits Mon Sep 1 10:51:51 2008 polynomial 'A' values have 12 factors Mon Sep 1 13:09:44 2008 72146 relations (17299 full + 54847 combined from 977711 partial), need 71843 Mon Sep 1 13:09:45 2008 begin with 995010 relations Mon Sep 1 13:09:45 2008 reduce to 187321 relations in 9 passes Mon Sep 1 13:09:45 2008 attempting to read 187321 relations Mon Sep 1 13:09:47 2008 recovered 187321 relations Mon Sep 1 13:09:47 2008 recovered 171042 polynomials Mon Sep 1 13:09:47 2008 attempting to build 72146 cycles Mon Sep 1 13:09:47 2008 found 72146 cycles in 6 passes Mon Sep 1 13:09:47 2008 distribution of cycle lengths: Mon Sep 1 13:09:47 2008 length 1 : 17299 Mon Sep 1 13:09:47 2008 length 2 : 12778 Mon Sep 1 13:09:47 2008 length 3 : 12307 Mon Sep 1 13:09:47 2008 length 4 : 9774 Mon Sep 1 13:09:47 2008 length 5 : 7552 Mon Sep 1 13:09:47 2008 length 6 : 4913 Mon Sep 1 13:09:47 2008 length 7 : 3199 Mon Sep 1 13:09:47 2008 length 9+: 4324 Mon Sep 1 13:09:47 2008 largest cycle: 20 relations Mon Sep 1 13:09:47 2008 matrix is 71747 x 72146 (18.8 MB) with weight 4351494 (60.32/col) Mon Sep 1 13:09:47 2008 sparse part has weight 4351494 (60.32/col) Mon Sep 1 13:09:48 2008 filtering completed in 3 passes Mon Sep 1 13:09:48 2008 matrix is 68402 x 68465 (17.9 MB) with weight 4139994 (60.47/col) Mon Sep 1 13:09:48 2008 sparse part has weight 4139994 (60.47/col) Mon Sep 1 13:09:48 2008 saving the first 48 matrix rows for later Mon Sep 1 13:09:48 2008 matrix is 68354 x 68465 (10.6 MB) with weight 3144332 (45.93/col) Mon Sep 1 13:09:48 2008 sparse part has weight 2085056 (30.45/col) Mon Sep 1 13:09:48 2008 matrix includes 64 packed rows Mon Sep 1 13:09:48 2008 using block size 27386 for processor cache size 1024 kB Mon Sep 1 13:09:48 2008 commencing Lanczos iteration Mon Sep 1 13:09:48 2008 memory use: 10.0 MB Mon Sep 1 13:10:13 2008 lanczos halted after 1082 iterations (dim = 68350) Mon Sep 1 13:10:13 2008 recovered 13 nontrivial dependencies Mon Sep 1 13:10:14 2008 prp34 factor: 2285341270841103220316892131357527 Mon Sep 1 13:10:14 2008 prp60 factor: 163041189884638045718398236420560827643537175317697019375987 Mon Sep 1 13:10:14 2008 elapsed time 02:18:24
(25·10117-61)/9 = 2(7)1161<118> = 271 · 39064037 · 35586743578678280759909<23> · C85
C85 = P42 · P44
P42 = 619747506717711772232144970127654889620759<42>
P44 = 11897290019020184431574871639392025782656283<44>
Mon Sep 1 11:02:19 2008 Msieve v. 1.37 Mon Sep 1 11:02:19 2008 random seeds: 714daeb2 a296f0bc Mon Sep 1 11:02:19 2008 factoring 7373315825985276969439340659001240598496120288389807384293268160113990464333518578797 (85 digits) Mon Sep 1 11:02:20 2008 no P-1/P+1/ECM available, skipping Mon Sep 1 11:02:20 2008 commencing quadratic sieve (85-digit input) Mon Sep 1 11:02:20 2008 using multiplier of 2 Mon Sep 1 11:02:20 2008 using 64kb Opteron sieve core Mon Sep 1 11:02:20 2008 sieve interval: 6 blocks of size 65536 Mon Sep 1 11:02:20 2008 processing polynomials in batches of 17 Mon Sep 1 11:02:20 2008 using a sieve bound of 1434241 (54705 primes) Mon Sep 1 11:02:20 2008 using large prime bound of 116173521 (26 bits) Mon Sep 1 11:02:20 2008 using double large prime bound of 328997602795950 (41-49 bits) Mon Sep 1 11:02:20 2008 using trial factoring cutoff of 49 bits Mon Sep 1 11:02:20 2008 polynomial 'A' values have 11 factors Mon Sep 1 11:31:50 2008 54866 relations (16358 full + 38508 combined from 570198 partial), need 54801 Mon Sep 1 11:31:50 2008 begin with 586556 relations Mon Sep 1 11:31:51 2008 reduce to 128079 relations in 8 passes Mon Sep 1 11:31:51 2008 attempting to read 128079 relations Mon Sep 1 11:31:51 2008 recovered 128079 relations Mon Sep 1 11:31:51 2008 recovered 107644 polynomials Mon Sep 1 11:31:52 2008 attempting to build 54866 cycles Mon Sep 1 11:31:52 2008 found 54866 cycles in 5 passes Mon Sep 1 11:31:52 2008 distribution of cycle lengths: Mon Sep 1 11:31:52 2008 length 1 : 16358 Mon Sep 1 11:31:52 2008 length 2 : 11052 Mon Sep 1 11:31:52 2008 length 3 : 9697 Mon Sep 1 11:31:52 2008 length 4 : 7070 Mon Sep 1 11:31:52 2008 length 5 : 4547 Mon Sep 1 11:31:52 2008 length 6 : 2753 Mon Sep 1 11:31:52 2008 length 7 : 1601 Mon Sep 1 11:31:52 2008 length 9+: 1788 Mon Sep 1 11:31:52 2008 largest cycle: 18 relations Mon Sep 1 11:31:52 2008 matrix is 54705 x 54866 (12.5 MB) with weight 2844525 (51.84/col) Mon Sep 1 11:31:52 2008 sparse part has weight 2844525 (51.84/col) Mon Sep 1 11:31:52 2008 filtering completed in 4 passes Mon Sep 1 11:31:52 2008 matrix is 49391 x 49455 (11.4 MB) with weight 2593007 (52.43/col) Mon Sep 1 11:31:52 2008 sparse part has weight 2593007 (52.43/col) Mon Sep 1 11:31:52 2008 saving the first 48 matrix rows for later Mon Sep 1 11:31:52 2008 matrix is 49343 x 49455 (6.7 MB) with weight 1918802 (38.80/col) Mon Sep 1 11:31:52 2008 sparse part has weight 1248764 (25.25/col) Mon Sep 1 11:31:52 2008 matrix includes 64 packed rows Mon Sep 1 11:31:52 2008 using block size 19782 for processor cache size 1024 kB Mon Sep 1 11:31:53 2008 commencing Lanczos iteration Mon Sep 1 11:31:53 2008 memory use: 6.4 MB Mon Sep 1 11:32:03 2008 lanczos halted after 781 iterations (dim = 49337) Mon Sep 1 11:32:03 2008 recovered 14 nontrivial dependencies Mon Sep 1 11:32:04 2008 prp42 factor: 619747506717711772232144970127654889620759 Mon Sep 1 11:32:04 2008 prp44 factor: 11897290019020184431574871639392025782656283 Mon Sep 1 11:32:04 2008 elapsed time 00:29:45
(25·10162-61)/9 = 2(7)1611<163> = 271 · 563 · 1879 · 1373431 · 1359263813985643<16> · 151483474336947757<18> · 23620461886232346133505839<26> · C91
C91 = P30 · P61
P30 = 518359647652198152916575830119<30>
P61 = 2798321461530763710270557913472221025759214843794041462439153<61>
Mon Sep 1 10:49:29 2008 Msieve v. 1.37 Mon Sep 1 10:49:29 2008 random seeds: dc3a699f 068f696d Mon Sep 1 10:49:29 2008 factoring 1450536926816670844973433674050011398591359995388009351598663646137374467946327419502249207 (91 digits) Mon Sep 1 10:49:29 2008 no P-1/P+1/ECM available, skipping Mon Sep 1 10:49:29 2008 commencing quadratic sieve (91-digit input) Mon Sep 1 10:49:29 2008 using multiplier of 7 Mon Sep 1 10:49:30 2008 using 64kb Opteron sieve core Mon Sep 1 10:49:30 2008 sieve interval: 18 blocks of size 65536 Mon Sep 1 10:49:30 2008 processing polynomials in batches of 6 Mon Sep 1 10:49:30 2008 using a sieve bound of 1648379 (62353 primes) Mon Sep 1 10:49:30 2008 using large prime bound of 145057352 (27 bits) Mon Sep 1 10:49:30 2008 using double large prime bound of 490649675444456 (42-49 bits) Mon Sep 1 10:49:30 2008 using trial factoring cutoff of 49 bits Mon Sep 1 10:49:30 2008 polynomial 'A' values have 12 factors Mon Sep 1 12:30:08 2008 62716 relations (16467 full + 46249 combined from 697522 partial), need 62449 Mon Sep 1 12:30:08 2008 begin with 713989 relations Mon Sep 1 12:30:09 2008 reduce to 154131 relations in 12 passes Mon Sep 1 12:30:09 2008 attempting to read 154131 relations Mon Sep 1 12:30:11 2008 recovered 154131 relations Mon Sep 1 12:30:11 2008 recovered 134673 polynomials Mon Sep 1 12:30:11 2008 attempting to build 62716 cycles Mon Sep 1 12:30:11 2008 found 62716 cycles in 6 passes Mon Sep 1 12:30:11 2008 distribution of cycle lengths: Mon Sep 1 12:30:11 2008 length 1 : 16467 Mon Sep 1 12:30:11 2008 length 2 : 11946 Mon Sep 1 12:30:11 2008 length 3 : 11000 Mon Sep 1 12:30:11 2008 length 4 : 8364 Mon Sep 1 12:30:11 2008 length 5 : 5902 Mon Sep 1 12:30:11 2008 length 6 : 3907 Mon Sep 1 12:30:11 2008 length 7 : 2351 Mon Sep 1 12:30:11 2008 length 9+: 2779 Mon Sep 1 12:30:11 2008 largest cycle: 19 relations Mon Sep 1 12:30:11 2008 matrix is 62353 x 62716 (16.4 MB) with weight 3807249 (60.71/col) Mon Sep 1 12:30:11 2008 sparse part has weight 3807249 (60.71/col) Mon Sep 1 12:30:12 2008 filtering completed in 3 passes Mon Sep 1 12:30:12 2008 matrix is 58563 x 58627 (15.4 MB) with weight 3568812 (60.87/col) Mon Sep 1 12:30:12 2008 sparse part has weight 3568812 (60.87/col) Mon Sep 1 12:30:12 2008 saving the first 48 matrix rows for later Mon Sep 1 12:30:12 2008 matrix is 58515 x 58627 (10.2 MB) with weight 2824552 (48.18/col) Mon Sep 1 12:30:12 2008 sparse part has weight 2093163 (35.70/col) Mon Sep 1 12:30:12 2008 matrix includes 64 packed rows Mon Sep 1 12:30:12 2008 using block size 23450 for processor cache size 1024 kB Mon Sep 1 12:30:13 2008 commencing Lanczos iteration Mon Sep 1 12:30:13 2008 memory use: 9.0 MB Mon Sep 1 12:30:39 2008 lanczos halted after 927 iterations (dim = 58513) Mon Sep 1 12:30:40 2008 recovered 17 nontrivial dependencies Mon Sep 1 12:30:40 2008 prp30 factor: 518359647652198152916575830119 Mon Sep 1 12:30:40 2008 prp61 factor: 2798321461530763710270557913472221025759214843794041462439153 Mon Sep 1 12:30:40 2008 elapsed time 01:41:11
(25·10101-61)/9 = 2(7)1001<102> = 13 · 317 · 517601989 · C90
C90 = P40 · P51
P40 = 1220440232504536752439016607144455724019<40>
P51 = 106704425575836651096236897680730256801192448458461<51>
Number: 27771_101 N=130226373959037120408897782242685193121360604141675290599021813285783982746449324201474759 ( 90 digits) SNFS difficulty: 102 digits. Divisors found: r1=1220440232504536752439016607144455724019 r2=106704425575836651096236897680730256801192448458461 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: n: 130226373959037120408897782242685193121360604141675290599021813285783982746449324201474759 Y1: 1 Y0: -100000000000000000000 c5: 250 c0: -61 skew: 0.75 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 285001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 42339 x 42554 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.30 hours.
(25·10190-61)/9 = 2(7)1891<191> = 3 · 619 · 2858827 · 3617101 · 220477529829865223482993<24> · 26459747372041207956272582179<29> · C123
C123 = P37 · P86
P37 = 2976504347692375718574208936493265731<37>
P86 = 83306815908902703939279567118759249527571709871356299315811741626793814308282721962477<86>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2641304095 Step 1 took 5033ms Step 2 took 2858ms ********** Factor found in step 2: 2976504347692375718574208936493265731 Found probable prime factor of 37 digits: 2976504347692375718574208936493265731 Probable prime cofactor 83306815908902703939279567118759249527571709871356299315811741626793814308282721962477 has 86 digits
(25·10145-61)/9 = 2(7)1441<146> = 3 · 72 · C144
C144 = P40 · P47 · P57
P40 = 9828296418549422058299450666557398619289<40>
P47 = 87046340760163089105257888142997578027021705923<47>
P57 = 220877459896081835011433334820685258323697425657910538619<57>
Number: 27771_145 N=188964474678760393046107331821617535903250188964474678760393046107331821617535903250188964474678760393046107331821617535903250188964474678760393 ( 144 digits) SNFS difficulty: 146 digits. Divisors found: r1=9828296418549422058299450666557398619289 r2=87046340760163089105257888142997578027021705923 r3=220877459896081835011433334820685258323697425657910538619 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: n: 188964474678760393046107331821617535903250188964474678760393046107331821617535903250188964474678760393046107331821617535903250188964474678760393 Y1: 1 Y0: -100000000000000000000000000000 c5: 25 c0: -61 skew: 1.2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [750000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 224466 x 224712 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 5.00 hours.
(25·10136-61)/9 = 2(7)1351<137> = 3 · C136
C136 = P40 · P97
P40 = 1901077818633176986641273760618004825731<40>
P97 = 4870531426176132915928552436849317829157610124238343115163233836263288860176292922476799468932947<97>
Number: 27771_136 N=9259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 ( 136 digits) SNFS difficulty: 137 digits. Divisors found: r1=1901077818633176986641273760618004825731 r2=4870531426176132915928552436849317829157610124238343115163233836263288860176292922476799468932947 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.291). Factorization parameters were as follows: n: 9259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 Y1: 1 Y0: -1000000000000000000000000000 c5: 250 c0: -61 skew: 0.75 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 154199 x 154447 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.10 hours.
(25·10159-61)/9 = 2(7)1581<160> = 23 · 29 · 1448387 · 439692763 · 961430228377<12> · C130
C130 = P35 · P96
P35 = 40938435274311943365251489605994903<35>
P96 = 166145551502820974033100434453141488073658394935290823556214125540250731272635492119584942449183<96>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=232563863 Step 1 took 4581ms Step 2 took 3756ms ********** Factor found in step 2: 40938435274311943365251489605994903 Found probable prime factor of 35 digits: 40938435274311943365251489605994903 Probable prime cofactor 166145551502820974033100434453141488073658394935290823556214125540250731272635492119584942449183 has 96 digits
(25·10163-61)/9 = 2(7)1621<164> = 3 · 7 · 17 · 739 · 11492161 · 4402226051<10> · C142
C142 = P33 · P109
P33 = 343669074489795639277832878263307<33>
P109 = 6055783638574069034440712866051481024164387943862544584024154281615135516630551624273818820529570512643159301<109>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1462551368 Step 1 took 5520ms Step 2 took 4013ms ********** Factor found in step 2: 343669074489795639277832878263307 Found probable prime factor of 33 digits: 343669074489795639277832878263307 Probable prime cofactor 6055783638574069034440712866051481024164387943862544584024154281615135516630551624273818820529570512643159301 has 109 digits
10193-9 = (9)1921<193> = 31 · 71 · 397 · 31039 · 7333825763352817867<19> · C164
C164 = P66 · P99
P66 = 114623516402068263048374107148074526153902078826891749923032115067<66>
P99 = 438608874285502256844751510885066987832289149361752461518587566928513572528389208388687896598390093<99>
# the Labor day weekend (idle computers) motivated me to finish the 99991 series. # 1 day on 20cpu + 7 hrs Lanczos # Number: 99991_193 N=50274891495756964747055055496890986637122321939508209584006709525221053605515373965266365474014162871727873923935469195773083682555289322275596819198059208928831231 ( 164 digits) SNFS difficulty: 193 digits. Divisors found: r1=114623516402068263048374107148074526153902078826891749923032115067 r2=438608874285502256844751510885066987832289149361752461518587566928513572528389208388687896598390093 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 50274891495756964747055055496890986637122321939508209584006709525221053605515373965266365474014162871727873923935469195773083682555289322275596819198059208928831231 Y1: 1 Y0: -100000000000000000000000000000000000000 c5: 1000 c0: -9 skew: 0.39 type: snfs rlim: 15000000 alim: 15000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 #qintsize: 100000 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved rational special-q in [7500000, 15100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 63000000 relations (had to throw away 10000000) => 53000000 Max relations in full relation-set: Initial matrix: Pruned matrix : 1729622 x 1729870 Total sieving time: 380.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 7.30 hours. Time per square root: 0.40 hours * (4 sqrts) Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,58,58,2.5,2.5,100000 total time: 389.00 hours.
Factorizations of 277...771 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Robert Backstrom / GGNFS, Msieve
(68·10192+13)/9 = 7(5)1917<193> = 3 · C193
C193 = P92 · P102
P92 = 10084827411252959360121233502972739996691984935274651940807752390233804581909806438612395447<92>
P102 = 249733427833209956994171060959372869772921006108776325921841891154070929004420634528685716659200605377<102>
Number: n N=2518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 ( 193 digits) SNFS difficulty: 194 digits. Divisors found: Mon Sep 01 20:42:16 2008 prp92 factor: 10084827411252959360121233502972739996691984935274651940807752390233804581909806438612395447 Mon Sep 01 20:42:16 2008 prp102 factor: 249733427833209956994171060959372869772921006108776325921841891154070929004420634528685716659200605377 Mon Sep 01 20:42:17 2008 elapsed time 06:18:29 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 160.26 hours. Scaled time: 327.72 units (timescale=2.045). Factorization parameters were as follows: name: KA_7_5_191_7 n: 2518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 type: snfs skew: 0.57 deg: 5 c5: 425 c0: 26 m: 200000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 12500001) Primes: RFBsize:633578, AFBsize:634283, largePrimes:11118249 encountered Relations: rels:11173345, finalFF:1300777 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 159.88 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,194,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 160.26 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM 6.2.1
4·10167+3 = 4(0)1663<168> = 31 · 28775130387762169<17> · 6041416682842093129<19> · C131
C131 = P40 · P91
P40 = 9040172761574724472563661611963885082577<40>
P91 = 8210421944564469678826128815336450569971653908303104793893829949559207978039441352980000269<91>
Run 691 out of 904: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4208089882 Step 1 took 18313ms Step 2 took 9062ms ********** Factor found in step 2: 9040172761574724472563661611963885082577 Found probable prime factor of 40 digits: 9040172761574724472563661611963885082577 Probable prime cofactor 8210421944564469678826128815336450569971653908303104793893829949559207978039441352980000269 has 91 digits
By Sinkiti Sibata / GGNFS
(8·10168-11)/3 = 2(6)1673<169> = 10147737487<11> · 16342775944014823<17> · 7182282825305090787823969<25> · C118
C118 = P52 · P66
P52 = 8673076109373383322045834079530356383323130570903067<52>
P66 = 258129726574229822024593324520497107330628067659816506194390087581<66>
Number: 26663_168 N=2238778764670036419303891122295571160842294590325316161112993170253842339716470732568621665558861692124847724391510927 ( 118 digits) Divisors found: r1=8673076109373383322045834079530356383323130570903067 (pp52) r2=258129726574229822024593324520497107330628067659816506194390087581 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 82.55 hours. Scaled time: 38.96 units (timescale=0.472). Factorization parameters were as follows: name: 26663_168 n: 2238778764670036419303891122295571160842294590325316161112993170253842339716470732568621665558861692124847724391510927 skew: 87948.71 # norm 6.50e+15 c5: 3300 c4: -2150396930 c3: -27162499434620 c2: 11425700944262902017 c1: -153744611732049114131170 c0: -9212687014339136827415685337 # alpha -5.65 Y1: 3149785904737 Y0: -58385163583490247768414 # Murphy_E 4.08e-10 # M 75257000721508686292250693276166591660463930381830897805141574721611218468907349199283468006029506246273595166527328 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3810001) Primes: RFBsize:315948, AFBsize:315291, largePrimes:7527907 encountered Relations: rels:7516576, finalFF:709664 Max relations in full relation-set: 28 Initial matrix: 631318 x 709664 with sparse part having weight 55983557. Pruned matrix : 563555 x 566775 with weight 38359589. Polynomial selection time: 3.98 hours. Total sieving time: 63.38 hours. Total relation processing time: 0.72 hours. Matrix solve time: 14.05 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 82.55 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
3·10192+1 = 3(0)1911<193> = 151 · C191
C191 = P48 · P71 · P72
P48 = 791442937966190685229637395742267041720820331589<48>
P71 = 95011290548333356448178869786693410025075222062601524884381341878748749<71>
P72 = 264210140483694895177251228728197166603387493603667452462313902636578791<72>
Number: n N=19867549668874172185430463576158940397350993377483443708609271523178807947019867549668874172185430463576158940397350993377483443708609271523178807947019867549668874172185430463576158940397351 ( 191 digits) SNFS difficulty: 192 digits. Divisors found: Mon Sep 01 05:42:01 2008 prp48 factor: 791442937966190685229637395742267041720820331589 Mon Sep 01 05:42:01 2008 prp71 factor: 95011290548333356448178869786693410025075222062601524884381341878748749 Mon Sep 01 05:42:01 2008 prp72 factor: 264210140483694895177251228728197166603387493603667452462313902636578791 Mon Sep 01 05:42:01 2008 elapsed time 14:25:58 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 179.21 hours. Scaled time: 103.23 units (timescale=0.576). Factorization parameters were as follows: name: KA_3_0_191_1 n: 19867549668874172185430463576158940397350993377483443708609271523178807947019867549668874172185430463576158940397350993377483443708609271523178807947019867549668874172185430463576158940397351 type: snfs skew: 0.32 deg: 5 c5: 300 c0: 1 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 14600001) Primes: RFBsize:633578, AFBsize:633363, largePrimes:11219211 encountered Relations: rels:11288392, finalFF:1313629 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 178.52 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 179.21 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(8·10165-11)/3 = 2(6)1643<166> = 1553 · 1190821 · C157
C157 = P33 · P57 · P67
P33 = 892943739843446667190715388245117<33>
P57 = 392527646794798165127898569877809173341146158091463648461<57>
P67 = 4113925703226251734064538448395755445011135196921757070023860615523<67>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 1441951960246082360764268417591729632910128417810088023130093284906523100277052882542186121907079037104833973273686096487538783909255696393232530195633467051 (157 digits) Using B1=2610000, B2=3568033570, polynomial Dickson(6), sigma=2799032758 Step 1 took 31469ms Step 2 took 12031ms ********** Factor found in step 2: 892943739843446667190715388245117 Found probable prime factor of 33 digits: 892943739843446667190715388245117 Composite cofactor 1614829575376035798972495961314039512335349400212716937196026101586056506417632008295855000696288207767290358854258751660103 has 124 digits Number: n N=1614829575376035798972495961314039512335349400212716937196026101586056506417632008295855000696288207767290358854258751660103 ( 124 digits) SNFS difficulty: 166 digits. Divisors found: Mon Sep 1 12:19:26 2008 prp57 factor: 392527646794798165127898569877809173341146158091463648461 Mon Sep 1 12:19:26 2008 prp67 factor: 4113925703226251734064538448395755445011135196921757070023860615523 Mon Sep 1 12:19:26 2008 elapsed time 01:21:42 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 12.27 hours. Scaled time: 10.29 units (timescale=0.839). Factorization parameters were as follows: name: KA_2_6_164_3 n: 1614829575376035798972495961314039512335349400212716937196026101586056506417632008295855000696288207767290358854258751660103 type: snfs skew: 2.13 deg: 5 c5: 1 c0: -44 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved special-q in [100000, 1400001) Primes: RFBsize:348513, AFBsize:347567, largePrimes:11994991 encountered Relations: rels:11300458, finalFF:810381 Max relations in full relation-set: 28 Initial matrix: 696143 x 810381 with sparse part having weight 59295126. Pruned matrix : Total sieving time: 12.01 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,52,52,2.5,2.5,100000 total time: 12.27 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(5·10188+7)/3 = 1(6)1879<189> = 13 · 4508291 · C181
C181 = P64 · P117
P64 = 5572625206496682509937965003069828168574001110247054129799055991<64>
P117 = 510309462344547784599419974697282044175752543112956276456061023653909400195521795522887826526858682926321882006053773<117>
Number: n N=2843763372974996625732569796517753737019307941859303339740161586843622231311269130700041437613612967865832199567532978796803603143744008652684689790546533156981329027011082583804043 ( 181 digits) SNFS difficulty: 190 digits. Divisors found: Sun Aug 31 21:55:16 2008 prp64 factor: 5572625206496682509937965003069828168574001110247054129799055991 Sun Aug 31 21:55:16 2008 prp117 factor: 510309462344547784599419974697282044175752543112956276456061023653909400195521795522887826526858682926321882006053773 Sun Aug 31 21:55:16 2008 elapsed time 05:08:39 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 214.52 hours. Scaled time: 179.76 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_6_187_9 n: 2843763372974996625732569796517753737019307941859303339740161586843622231311269130700041437613612967865832199567532978796803603143744008652684689790546533156981329027011082583804043 type: snfs skew: 2.69 deg: 5 c5: 1 c0: 140 m: 100000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 8900001) Primes: RFBsize:602489, AFBsize:603790, largePrimes:10824329 encountered Relations: rels:10821915, finalFF:1236646 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 214.11 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.5,2.5,100000 total time: 214.52 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
(2·10199-17)/3 = (6)1981<199> = C199
C199 = P61 · P138
P61 = 7746198155672718412194373416422042294291282224078057676781559<61>
P138 = 860637248452586240793411305547124642667894480293199002512800099070390305673067846165291277474909445333699703778303587085959036214662816579<138>
Number: 66661_199 N=6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=7746198155672718412194373416422042294291282224078057676781559 (pp61) r2=860637248452586240793411305547124642667894480293199002512800099070390305673067846165291277474909445333699703778303587085959036214662816579 (pp138) Version: GGNFS-0.77.1-20060722-nocona Total time: 6373.94 hours. Scaled time: 11944.77 units (timescale=1.874). Factorization parameters were as follows: n: 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 10000000000000000000000000000000000000000 c5: 1 c0: -85 skew: 2.43 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 107400001) Primes: RFBsize:501962, AFBsize:502501, largePrimes:10315349 encountered Relations: rels:12144748, finalFF:1129224 Max relations in full relation-set: 32 Initial matrix: 1004527 x 1129224 with sparse part having weight 218619771. Pruned matrix : 945193 x 950279 with weight 202057474. Total sieving time: 6350.64 hours. Total relation processing time: 1.31 hours. Matrix solve time: 21.57 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 6373.94 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GMP-ECM
(8·10170-11)/3 = 2(6)1693<171> = 733 · 433336074385189<15> · 4848705026009567<16> · C138
C138 = P41 · P97
P41 = 21444720061961923459119388271642272065257<41>
P97 = 8074093367579318645109991039242689165888372857971148977391463264840925662722940362463996964183521<97>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 173146672021881921378896373090978957549911838084851329459712681790545591628898153652066417156764183279951056853213653990375319291436029897 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1148971329 Step 1 took 48953ms Step 2 took 16973ms ********** Factor found in step 2: 21444720061961923459119388271642272065257 Found probable prime factor of 41 digits: 21444720061961923459119388271642272065257 Probable prime cofactor 8074093367579318645109991039242689165888372857971148977391463264840925662722940362463996964183521 has 97 digits
By Tyler Cadigan / GGNFS, Msieve
(25·10195-1)/3 = 8(3)195<196> = 13 · 191 · 641 · 2521 · 70360703591<11> · C176
C176 = P45 · P131
P45 = 347475803459299610733739361332835589747500711<45>
P131 = 84948637535002693046809344987987788506145903659602270746463195239782274901028606636613753795353452586876315488810371234015435431391<131>
Number: 83333_195 N=29517596080247877525790851053981747064359792547947739805692098981033869953189081994166555707582584397071309454538456953939153374792078239873193031003841009649977944238364219001 ( 176 digits) SNFS difficulty: 196 digits. Divisors found: r1=347475803459299610733739361332835589747500711 r2=84948637535002693046809344987987788506145903659602270746463195239782274901028606636613753795353452586876315488810371234015435431391 Version: Total time: 436.75 hours. Scaled time: 1128.56 units (timescale=2.584). Factorization parameters were as follows: n: 29517596080247877525790851053981747064359792547947739805692098981033869953189081994166555707582584397071309454538456953939153374792078239873193031003841009649977944238364219001 m: 1000000000000000000000000000000000000000 c5: 25 c0: -1 skew: 0.53 Y0: 1000000000000000000000000000000000000000 Y1: -1 type: snfs lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 qintsize: 1000000Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [10000000, 16000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2686515 x 2686763 Total sieving time: 436.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,58,58,2.6,2.6,100000 total time: 436.75 hours. --------- CPU info (if available) ----------
Factorizations of 833...33 have been completed up to n=200.
By Jo Yeong Uk / GGNFS
8·10174-9 = 7(9)1731<175> = 41 · 173743074481<12> · 19106912458400837994080317241<29> · 451656251742733916273683704772193<33> · C102
C102 = P45 · P57
P45 = 592251998082554341409369753785202370375115807<45>
P57 = 219732123875349514938455918437129730022904144914165154681<57>
Number: 79991_174 N=130136789408099093943642895529280422128901086592792253560350069883955602104627506623059801699443142567 ( 102 digits) Divisors found: r1=592251998082554341409369753785202370375115807 (pp45) r2=219732123875349514938455918437129730022904144914165154681 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.00 hours. Scaled time: 9.56 units (timescale=2.392). Factorization parameters were as follows: name: 79991_174 n: 130136789408099093943642895529280422128901086592792253560350069883955602104627506623059801699443142567 skew: 10873.83 # norm 5.58e+13 c5: 8280 c4: -265261398 c3: -736553682108 c2: 6989101037039633 c1: -128237153725381623216 c0: 63440594100681936495345 # alpha -5.23 Y1: 31466063483 Y0: -27496482160245593002 # Murphy_E 2.83e-09 # M 12646438619583911536750972380335684031448376564007326365424264391297480438938008412765721828969481049 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [750000, 1350001) Primes: RFBsize:114155, AFBsize:113556, largePrimes:4385038 encountered Relations: rels:4331759, finalFF:321559 Max relations in full relation-set: 28 Initial matrix: 227790 x 321559 with sparse part having weight 27654118. Pruned matrix : 180096 x 181298 with weight 12977876. Polynomial selection time: 0.31 hours. Total sieving time: 3.46 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,49,49,2.6,2.6,50000 total time: 4.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2460k kernel code, 339200k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.59 BogoMIPS (lpj=2673799) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347) Calibrating delay using timer specific routine.. 5344.51 BogoMIPS (lpj=2672259) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672350)
By Serge Batalov / GMP-ECM 6.2.1, pol51+Msieve 1.37
(14·10171+31)/9 = 1(5)1709<172> = 53 · 496681 · 410603139824071<15> · 2475177024694321515444421<25> · C125
C125 = P34 · P92
P34 = 5813483701575740349680035428752387<34>
P92 = 10001545600677817037581209402111644839880337297632163971294502938355625025052962872656161339<92>
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=783124874 Step 1 took 11510ms Step 2 took 6852ms ********** Factor found in step 2: 5813483701575740349680035428752387 Found probable prime factor of 34 digits: 5813483701575740349680035428752387 Probable prime cofactor 10001545600677817037581209402111644839880337297632163971294502938355625025052962872656161339 has 92 digits
8·10174-9 = 7(9)1731<175> = 41 · 173743074481<12> · 19106912458400837994080317241<29> · C134
C134 = P33 · C102
P33 = 451656251742733916273683704772193<33>
C102 = [130136789408099093943642895529280422128901086592792253560350069883955602104627506623059801699443142567<102>]
Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=1366989160 Step 1 took 10130ms Step 2 took 6967ms ********** Factor found in step 2: 451656251742733916273683704772193 Found probable prime factor of 33 digits: 451656251742733916273683704772193 Composite cofactor 130136789408099093943642895529280422128901086592792253560350069883955602104627506623059801699443142567 has 102 digits
(4·10176+11)/3 = 1(3)1757<177> = 654817399 · 2654433511<10> · 651698912539<12> · 137745684013733<15> · C132
C132 = P34 · P34 · P66
P34 = 1089318090564868475456017418176427<34>
P34 = 1231627716604690046697182424513253<34>
P66 = 636923845516948278854619576438453364025839828712022887610324552089<66>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=5705781910, polynomial Dickson(6), sigma=3838364986 Step 1 took 11629ms Step 2 took 7041ms ********** Factor found in step 2: 1089318090564868475456017418176427 Found probable prime factor of 34 digits: 1089318090564868475456017418176427 Composite cofactor 784453061505117357864038664345811078914332428946244066627988881633785366535204327880785191069335517 has 99 digits Number: 13337_176 N=784453061505117357864038664345811078914332428946244066627988881633785366535204327880785191069335517 ( 99 digits) Divisors found: r1=1231627716604690046697182424513253 r2=636923845516948278854619576438453364025839828712022887610324552089 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: 13337_176 n: 784453061505117357864038664345811078914332428946244066627988881633785366535204327880785191069335517 skew: 2513.29 # norm 1.16e+13 c5: 20580 c4: 508307051 c3: 557345214445 c2: -470168275690464 c1: -2589049590718293107 c0: -52486279407165116565 # alpha -4.66 Y1: 5234753843 Y0: -8245613164455536492 # Murphy_E 3.94e-09 # M 675691405801972959220472988772094584688379672974200505104477011633136745725111786358588561469188675 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 165902 x 166133 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 2.50 hours.
By Sinkiti Sibata / GGNFS
(8·10155-11)/3 = 2(6)1543<156> = 23 · 383 · 7853 · 140143 · 89728591 · 1561361513<10> · C126
C126 = P46 · P80
P46 = 8627089357765378991076246682719777963998610241<46>
P80 = 22758126142966332417669133587283570000761657492867169951767849493683399601751411<80>
Number: 26663_155 N=196336387850666898435886985994390947515578847455806385406582232661469625771635883806609574286096836768770851495960073560800051 ( 126 digits) SNFS difficulty: 155 digits. Divisors found: r1=8627089357765378991076246682719777963998610241 (pp46) r2=22758126142966332417669133587283570000761657492867169951767849493683399601751411 (pp80) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 38.18 hours. Scaled time: 18.02 units (timescale=0.472). Factorization parameters were as follows: name: 26663_155 n: 196336387850666898435886985994390947515578847455806385406582232661469625771635883806609574286096836768770851495960073560800051 m: 10000000000000000000000000000000 c5: 8 c0: -11 skew: 1.07 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216082, largePrimes:5574642 encountered Relations: rels:5553841, finalFF:573445 Max relations in full relation-set: 28 Initial matrix: 432963 x 573445 with sparse part having weight 42953283. Pruned matrix : 333445 x 335673 with weight 26446379. Total sieving time: 34.16 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.70 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 38.18 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, ***Msieve-1.37***
(19·10176+17)/9 = 2(1)1753<177> = 32 · 167 · 1543 · 53611 · 2401409 · 974819639393790407634579313<27> · C132
C132 = P31 · P102
P31 = 4956648204881915050768672150327<31>
P102 = 146336874948973085318917842213648178095098263874900615495508640162228819919842162403788352528350133653<102>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2131237211 Step 1 took 16750ms Step 2 took 6958ms ********** Factor found in step 2: 4956648204881915050768672150327 Found probable prime factor of 31 digits: 4956648204881915050768672150327 Probable prime cofactor 146336874948973085318917842213648178095098263874900615495508640162228819919842162403788352528350133653 has 102 digits
(8·10163-11)/3 = 2(6)1623<164> = 814320350738108743<18> · 2763870653886852635716885631<28> · C119
C119 = P42 · P77
P42 = 301147670230833087243353381876753817878047<42>
P77 = 39343792552349727779693072074780867921299727848712907400115696799639680859713<77>
Number: 26663_163 N=11848291465185322644709783710930277954304746404731360294607998144533448422134791685213367257651306885901437134349420511 ( 119 digits) SNFS difficulty: 163 digits. Divisors found: r1=301147670230833087243353381876753817878047 r2=39343792552349727779693072074780867921299727848712907400115696799639680859713 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 11848291465185322644709783710930277954304746404731360294607998144533448422134791685213367257651306885901437134349420511 Y1: 1 Y0: -200000000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 741400 x 741648 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.10 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.5,2.5,100000 total time: 14.00 hours.
Msieve 1.37 has been released.
By Wataru Sakai / GGNFS
6·10187+1 = 6(0)1861<188> = 4547 · C185
C185 = P67 · P118
P67 = 6536834037833420095985946925674276836560136508795702561667702266167<67>
P118 = 2018639826103785865286631933082975605890545795355024440916114945745465813061205948102752034943266139296166842862791149<118>
Number: 60001_187 N=13195513525401363536397624807565427754563448427534638223004178579283043765119859247855729052122278425335385968770617989883439630525621288761820980866505388168022872223444029030129755883 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: r1=6536834037833420095985946925674276836560136508795702561667702266167 (pp67) r2=2018639826103785865286631933082975605890545795355024440916114945745465813061205948102752034943266139296166842862791149 (pp118) Version: GGNFS-0.77.1-20060722-nocona Total time: 777.86 hours. Scaled time: 1561.95 units (timescale=2.008). Factorization parameters were as follows: n: 13195513525401363536397624807565427754563448427534638223004178579283043765119859247855729052122278425335385968770617989883439630525621288761820980866505388168022872223444029030129755883 m: 10000000000000000000000000000000000000 c5: 600 c0: 1 skew: 0.28 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15700001) Primes: RFBsize:501962, AFBsize:501791, largePrimes:6891187 encountered Relations: rels:7436758, finalFF:1180022 Max relations in full relation-set: 32 Initial matrix: 1003819 x 1180022 with sparse part having weight 115293725. Pruned matrix : 865389 x 870472 with weight 93704423. Total sieving time: 768.45 hours. Total relation processing time: 0.14 hours. Matrix solve time: 9.03 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 777.86 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(8·10162-11)/3 = 2(6)1613<163> = 359 · 4507487 · 27059729 · 6315921853<10> · 103496669775133<15> · C122
C122 = P40 · P83
P40 = 4696433042047289514966970256674200476261<40>
P83 = 19837415944333569454521178385670584763249729870811764701051961027139351921162624331<83>
Number: 26663_162 N=93165095709803910034220755200074213920442816991906500418090991135299650476503556714014354208663641612641625384792826506391 ( 122 digits) SNFS difficulty: 162 digits. Divisors found: r1=4696433042047289514966970256674200476261 (pp40) r2=19837415944333569454521178385670584763249729870811764701051961027139351921162624331 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 53.91 hours. Scaled time: 54.39 units (timescale=1.009). Factorization parameters were as follows: name: 26663_162 n: 93165095709803910034220755200074213920442816991906500418090991135299650476503556714014354208663641612641625384792826506391 m: 200000000000000000000000000000000 c5: 25 c0: -11 skew: 0.85 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:315742, largePrimes:5978765 encountered Relations: rels:6297572, finalFF:922018 Max relations in full relation-set: 28 Initial matrix: 631754 x 922018 with sparse part having weight 52727144. Pruned matrix : 405565 x 408787 with weight 39479532. Total sieving time: 52.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.34 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 53.91 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve 1.36, GMP-ECM 6.2.1
(8·10157-11)/3 = 2(6)1563<158> = 11069 · C154
C154 = P40 · P115
P40 = 1105327928036418569669147130317306733637<40>
P115 = 2179561869275003655805053554544359944708001505318774837743094477875371215017299055737728009643796884495907468594071<115>
Number: 26663_157 N=2409130604992923178847833288162134489716023729936459180293311651157888397024723702833739874122925889119763905200710693528472912337760110820007829674466227 ( 154 digits) SNFS difficulty: 157 digits. Divisors found: r1=1105327928036418569669147130317306733637 r2=2179561869275003655805053554544359944708001505318774837743094477875371215017299055737728009643796884495907468594071 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: n: 2409130604992923178847833288162134489716023729936459180293311651157888397024723702833739874122925889119763905200710693528472912337760110820007829674466227 Y1: 1 Y0: -20000000000000000000000000000000 c5: 25 c0: -11 skew: 0.85 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1500000, 2300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 496232 x 496474 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,52,52,2.5,2.5,100000 total time: 15.20 hours.
(8·10164-11)/3 = 2(6)1633<165> = 179 · 77450201 · 386822927 · C146
C146 = P35 · P112
P35 = 10865659052292619388679044078475137<35>
P112 = 4576409430557803066039585822705526398937317357435248022811589980525323757752016816620470019755082138495042370603<112>
Using B1=25000000, B2=96190324246, polynomial Dickson(12), sigma=2919656688 Step 1 took 173974ms Step 2 took 45112ms ********** Factor found in step 2: 10865659052292619388679044078475137 Found probable prime factor of 35 digits: 10865659052292619388679044078475137 Probable prime cofactor 4576409430557803066039585822705526398937317357435248022811589980525323757752016816620470019755082138495042370603 has 112 digits
By Hugo Platzer / Msieve-1.36 optimized 64-bit linux lattice siever from Greg Childers
6·10180-7 = 5(9)1793<181> = 17 · 5791 · C176
C176 = P61 · P116
P61 = 4830487850130825355136992625082278853531328717363811995759451<61>
P116 = 12617048427077972576764760920138324767170820384685368004188695290274577720048489648872812603297601032348850349016469<116>
Tue Aug 26 11:38:06 2008 Tue Aug 26 11:38:06 2008 Tue Aug 26 11:38:06 2008 Msieve v. 1.36 Tue Aug 26 11:38:06 2008 random seeds: d67440d2 74216d9f Tue Aug 26 11:38:06 2008 factoring 60946499131512387375948479892734161528538198218330675388787875709772771135738011315733338750799922801101100084309323798592135870062063851615590114477840868690767621156561398519 (176 digits) Tue Aug 26 11:38:08 2008 no P-1/P+1/ECM available, skipping Tue Aug 26 11:38:08 2008 commencing number field sieve (176-digit input) Tue Aug 26 11:38:08 2008 R0: -1000000000000000000000000000000000000 Tue Aug 26 11:38:08 2008 R1: 1 Tue Aug 26 11:38:08 2008 A0: -7 Tue Aug 26 11:38:08 2008 A1: 0 Tue Aug 26 11:38:08 2008 A2: 0 Tue Aug 26 11:38:08 2008 A3: 0 Tue Aug 26 11:38:08 2008 A4: 0 Tue Aug 26 11:38:08 2008 A5: 6 Tue Aug 26 11:38:08 2008 size score = 2.794913e-12, Murphy alpha = 1.791017, combined = 1.538481e-12 Tue Aug 26 11:38:08 2008 generating factor base Tue Aug 26 11:38:11 2008 factor base complete: Tue Aug 26 11:38:11 2008 539777 rational roots (max prime = 7999993) Tue Aug 26 11:38:11 2008 539975 algebraic roots (max prime = 7999993) Tue Aug 26 11:38:12 2008 a range: [-60000000, 60000000] Tue Aug 26 11:38:12 2008 b range: [1, 4294967295] Tue Aug 26 11:38:12 2008 number of hash buckets: 123 Tue Aug 26 11:38:12 2008 sieve block size: 65536 Tue Aug 26 11:38:12 2008 Tue Aug 26 11:38:12 2008 maximum RFB prime: 7999993 Tue Aug 26 11:38:12 2008 RFB entries: 539777 Tue Aug 26 11:38:12 2008 medium RFB entries: 6542 Tue Aug 26 11:38:12 2008 resieved RFB entries: 6374 Tue Aug 26 11:38:12 2008 small RFB prime powers: 28 Tue Aug 26 11:38:12 2008 projective RFB roots: 0 Tue Aug 26 11:38:12 2008 RFB trial factoring cutoff: 60 or 89 bits Tue Aug 26 11:38:12 2008 single large prime RFB range: 23 - 27 bits Tue Aug 26 11:38:12 2008 double large prime RFB range: 46 - 52 bits Tue Aug 26 11:38:12 2008 triple large prime RFB range: 72 - 79 bits Tue Aug 26 11:38:12 2008 Tue Aug 26 11:38:12 2008 maximum AFB prime: 7999993 Tue Aug 26 11:38:12 2008 AFB entries: 539975 Tue Aug 26 11:38:12 2008 medium AFB entries: 6517 Tue Aug 26 11:38:12 2008 resieved AFB entries: 6364 Tue Aug 26 11:38:12 2008 small AFB prime powers: 6 Tue Aug 26 11:38:12 2008 projective AFB roots: 2 Tue Aug 26 11:38:12 2008 AFB trial factoring cutoff: 60 or 89 bits Tue Aug 26 11:38:12 2008 single large prime AFB range: 23 - 27 bits Tue Aug 26 11:38:12 2008 double large prime AFB range: 46 - 52 bits Tue Aug 26 11:38:12 2008 triple large prime AFB range: 72 - 79 bits Tue Aug 26 11:38:12 2008 Tue Aug 26 11:38:12 2008 multiplying 1523913 primes from 7999993 to 33554432 Tue Aug 26 11:38:16 2008 multiply complete, product has 36865603 bits Tue Aug 26 11:38:44 2008 completed b = 3, found 172 relations Tue Aug 26 11:38:44 2008 elapsed time 00:00:38 Tue Aug 26 11:43:18 2008 Tue Aug 26 11:43:18 2008 Tue Aug 26 11:43:18 2008 Msieve v. 1.36 Tue Aug 26 11:43:18 2008 random seeds: 0d302a09 c30c0b1f Tue Aug 26 11:43:18 2008 factoring 60946499131512387375948479892734161528538198218330675388787875709772771135738011315733338750799922801101100084309323798592135870062063851615590114477840868690767621156561398519 (176 digits) Tue Aug 26 11:43:20 2008 no P-1/P+1/ECM available, skipping Tue Aug 26 11:43:20 2008 commencing number field sieve (176-digit input) Tue Aug 26 11:43:20 2008 R0: -1000000000000000000000000000000000000 Tue Aug 26 11:43:20 2008 R1: 1 Tue Aug 26 11:43:20 2008 A0: -7 Tue Aug 26 11:43:20 2008 A1: 0 Tue Aug 26 11:43:20 2008 A2: 0 Tue Aug 26 11:43:20 2008 A3: 0 Tue Aug 26 11:43:20 2008 A4: 0 Tue Aug 26 11:43:20 2008 A5: 6 Tue Aug 26 11:43:20 2008 size score = 2.794913e-12, Murphy alpha = 1.791017, combined = 1.538481e-12 Tue Aug 26 11:43:46 2008 restarting with 11607220 relations Tue Aug 26 11:43:48 2008 added 27651 free relations Tue Aug 26 11:43:48 2008 Tue Aug 26 11:43:48 2008 commencing relation filtering Tue Aug 26 11:43:48 2008 commencing duplicate removal, pass 1 Tue Aug 26 11:44:34 2008 error -9 reading relation 6604032 Tue Aug 26 11:44:41 2008 error -11 reading relation 7631047 Tue Aug 26 11:44:48 2008 error -9 reading relation 8631315 Tue Aug 26 11:44:55 2008 error -5 reading relation 9591341 Tue Aug 26 11:44:58 2008 error -11 reading relation 10123854 Tue Aug 26 11:45:02 2008 error -9 reading relation 10634976 Tue Aug 26 11:45:05 2008 error -15 reading relation 11125754 Tue Aug 26 11:45:09 2008 error -11 reading relation 11607220 Tue Aug 26 11:45:09 2008 found 1494552 hash collisions in 11634863 relations Tue Aug 26 11:45:09 2008 commencing duplicate removal, pass 2 Tue Aug 26 11:45:18 2008 found 1523897 duplicates and 10110966 unique relations Tue Aug 26 11:45:18 2008 memory use: 65.3 MB Tue Aug 26 11:45:20 2008 ignoring smallest 592937 rational and 593231 algebraic ideals Tue Aug 26 11:45:20 2008 filtering rational ideals above 8847360 Tue Aug 26 11:45:20 2008 filtering algebraic ideals above 8847360 Tue Aug 26 11:45:20 2008 need 1779252 more relations than ideals Tue Aug 26 11:45:20 2008 commencing singleton removal, pass 1 Tue Aug 26 11:46:32 2008 relations with 0 large ideals: 97035 Tue Aug 26 11:46:32 2008 relations with 1 large ideals: 975911 Tue Aug 26 11:46:32 2008 relations with 2 large ideals: 3729723 Tue Aug 26 11:46:32 2008 relations with 3 large ideals: 4605398 Tue Aug 26 11:46:32 2008 relations with 4 large ideals: 676207 Tue Aug 26 11:46:32 2008 relations with 5 large ideals: 26692 Tue Aug 26 11:46:32 2008 relations with 6 large ideals: 0 Tue Aug 26 11:46:32 2008 relations with 7+ large ideals: 0 Tue Aug 26 11:46:32 2008 10110966 relations and about 7977776 large ideals Tue Aug 26 11:46:32 2008 commencing singleton removal, pass 2 Tue Aug 26 11:47:43 2008 found 3829552 singletons Tue Aug 26 11:47:43 2008 current dataset: 6281414 relations and about 3704726 large ideals Tue Aug 26 11:47:43 2008 commencing singleton removal, pass 3 Tue Aug 26 11:48:29 2008 found 415704 singletons Tue Aug 26 11:48:29 2008 current dataset: 5865710 relations and about 3281204 large ideals Tue Aug 26 11:48:29 2008 commencing singleton removal, final pass Tue Aug 26 11:49:15 2008 memory use: 97.1 MB Tue Aug 26 11:49:15 2008 commencing in-memory singleton removal Tue Aug 26 11:49:15 2008 begin with 5865710 relations and 3465322 unique ideals Tue Aug 26 11:49:18 2008 reduce to 5552191 relations and 3148643 ideals in 7 passes Tue Aug 26 11:49:18 2008 max relations containing the same ideal: 27 Tue Aug 26 11:49:20 2008 removing 981791 relations and 669643 ideals in 312148 cliques Tue Aug 26 11:49:21 2008 commencing in-memory singleton removal Tue Aug 26 11:49:21 2008 begin with 4570400 relations and 3148643 unique ideals Tue Aug 26 11:49:23 2008 reduce to 4538232 relations and 2445242 ideals in 5 passes Tue Aug 26 11:49:23 2008 max relations containing the same ideal: 23 Tue Aug 26 11:49:24 2008 removing 695031 relations and 382883 ideals in 312148 cliques Tue Aug 26 11:49:25 2008 commencing in-memory singleton removal Tue Aug 26 11:49:25 2008 begin with 3843201 relations and 2445242 unique ideals Tue Aug 26 11:49:26 2008 reduce to 3788806 relations and 2003161 ideals in 5 passes Tue Aug 26 11:49:26 2008 max relations containing the same ideal: 21 Tue Aug 26 11:49:28 2008 filtering rational ideals above 720000 Tue Aug 26 11:49:28 2008 filtering algebraic ideals above 720000 Tue Aug 26 11:49:28 2008 need 116061 more relations than ideals Tue Aug 26 11:49:28 2008 commencing singleton removal, final pass Tue Aug 26 11:50:21 2008 keeping 3928915 ideals with weight <= 20, new excess is 405849 Tue Aug 26 11:50:25 2008 memory use: 173.7 MB Tue Aug 26 11:50:25 2008 commencing in-memory singleton removal Tue Aug 26 11:50:26 2008 begin with 5552191 relations and 3928915 unique ideals Tue Aug 26 11:50:29 2008 reduce to 5551567 relations and 3928291 ideals in 4 passes Tue Aug 26 11:50:29 2008 max relations containing the same ideal: 20 Tue Aug 26 11:50:32 2008 removing 1158851 relations and 758851 ideals in 400000 cliques Tue Aug 26 11:50:33 2008 commencing in-memory singleton removal Tue Aug 26 11:50:33 2008 begin with 4392716 relations and 3928291 unique ideals Tue Aug 26 11:50:37 2008 reduce to 4330937 relations and 3103156 ideals in 6 passes Tue Aug 26 11:50:37 2008 max relations containing the same ideal: 20 Tue Aug 26 11:50:39 2008 removing 880038 relations and 480038 ideals in 400000 cliques Tue Aug 26 11:50:40 2008 commencing in-memory singleton removal Tue Aug 26 11:50:40 2008 begin with 3450899 relations and 3103156 unique ideals Tue Aug 26 11:50:42 2008 reduce to 3381301 relations and 2546450 ideals in 5 passes Tue Aug 26 11:50:42 2008 max relations containing the same ideal: 20 Tue Aug 26 11:50:44 2008 removing 775867 relations and 411801 ideals in 364066 cliques Tue Aug 26 11:50:45 2008 commencing in-memory singleton removal Tue Aug 26 11:50:45 2008 begin with 2605434 relations and 2546450 unique ideals Tue Aug 26 11:50:47 2008 reduce to 2540585 relations and 2063741 ideals in 6 passes Tue Aug 26 11:50:47 2008 max relations containing the same ideal: 19 Tue Aug 26 11:50:48 2008 relations with 0 large ideals: 7566 Tue Aug 26 11:50:48 2008 relations with 1 large ideals: 73927 Tue Aug 26 11:50:48 2008 relations with 2 large ideals: 377040 Tue Aug 26 11:50:48 2008 relations with 3 large ideals: 723326 Tue Aug 26 11:50:48 2008 relations with 4 large ideals: 726199 Tue Aug 26 11:50:48 2008 relations with 5 large ideals: 427856 Tue Aug 26 11:50:48 2008 relations with 6 large ideals: 164504 Tue Aug 26 11:50:48 2008 relations with 7+ large ideals: 40167 Tue Aug 26 11:50:48 2008 commencing 2-way merge Tue Aug 26 11:50:50 2008 reduce to 2074143 relation sets and 1597299 unique ideals Tue Aug 26 11:50:50 2008 commencing full merge Tue Aug 26 11:51:16 2008 memory use: 159.8 MB Tue Aug 26 11:51:16 2008 found 1023946 cycles, need 953499 Tue Aug 26 11:51:16 2008 weight of 953499 cycles is about 67027131 (70.30/cycle) Tue Aug 26 11:51:16 2008 distribution of cycle lengths: Tue Aug 26 11:51:16 2008 1 relations: 27101 Tue Aug 26 11:51:16 2008 2 relations: 92836 Tue Aug 26 11:51:16 2008 3 relations: 126795 Tue Aug 26 11:51:16 2008 4 relations: 136910 Tue Aug 26 11:51:16 2008 5 relations: 133726 Tue Aug 26 11:51:16 2008 6 relations: 116981 Tue Aug 26 11:51:16 2008 7 relations: 97766 Tue Aug 26 11:51:16 2008 8 relations: 76828 Tue Aug 26 11:51:16 2008 9 relations: 58371 Tue Aug 26 11:51:16 2008 10+ relations: 86185 Tue Aug 26 11:51:16 2008 heaviest cycle: 15 relations Tue Aug 26 11:51:16 2008 commencing cycle optimization Tue Aug 26 11:51:17 2008 start with 5257576 relations Tue Aug 26 11:51:28 2008 pruned 115780 relations Tue Aug 26 11:51:28 2008 memory use: 158.4 MB Tue Aug 26 11:51:28 2008 distribution of cycle lengths: Tue Aug 26 11:51:28 2008 1 relations: 27101 Tue Aug 26 11:51:28 2008 2 relations: 94079 Tue Aug 26 11:51:28 2008 3 relations: 130300 Tue Aug 26 11:51:28 2008 4 relations: 140494 Tue Aug 26 11:51:28 2008 5 relations: 138881 Tue Aug 26 11:51:28 2008 6 relations: 120218 Tue Aug 26 11:51:28 2008 7 relations: 100012 Tue Aug 26 11:51:28 2008 8 relations: 76349 Tue Aug 26 11:51:28 2008 9 relations: 56039 Tue Aug 26 11:51:28 2008 10+ relations: 70026 Tue Aug 26 11:51:28 2008 heaviest cycle: 15 relations Tue Aug 26 11:51:29 2008 Tue Aug 26 11:51:29 2008 commencing linear algebra Tue Aug 26 11:51:30 2008 read 953499 cycles Tue Aug 26 11:51:31 2008 cycles contain 2367107 unique relations Tue Aug 26 11:51:56 2008 read 2367107 relations Tue Aug 26 11:52:00 2008 using 32 quadratic characters above 134213508 Tue Aug 26 11:52:21 2008 building initial matrix Tue Aug 26 11:52:40 2008 Tue Aug 26 11:52:40 2008 Tue Aug 26 11:52:40 2008 Msieve v. 1.36 Tue Aug 26 11:52:40 2008 random seeds: 091c43c1 ad0d2b3e Tue Aug 26 11:52:40 2008 factoring 60946499131512387375948479892734161528538198218330675388787875709772771135738011315733338750799922801101100084309323798592135870062063851615590114477840868690767621156561398519 (176 digits) Tue Aug 26 11:52:42 2008 no P-1/P+1/ECM available, skipping Tue Aug 26 11:52:42 2008 commencing number field sieve (176-digit input) Tue Aug 26 11:52:42 2008 R0: -1000000000000000000000000000000000000 Tue Aug 26 11:52:42 2008 R1: 1 Tue Aug 26 11:52:42 2008 A0: -7 Tue Aug 26 11:52:42 2008 A1: 0 Tue Aug 26 11:52:42 2008 A2: 0 Tue Aug 26 11:52:42 2008 A3: 0 Tue Aug 26 11:52:42 2008 A4: 0 Tue Aug 26 11:52:42 2008 A5: 6 Tue Aug 26 11:52:42 2008 size score = 2.794913e-12, Murphy alpha = 1.791017, combined = 1.538481e-12 Tue Aug 26 11:52:42 2008 Tue Aug 26 11:52:42 2008 commencing linear algebra Tue Aug 26 11:52:42 2008 read 953499 cycles Tue Aug 26 11:52:44 2008 cycles contain 2367107 unique relations Tue Aug 26 11:53:13 2008 read 2367107 relations Tue Aug 26 11:53:17 2008 using 32 quadratic characters above 134213508 Tue Aug 26 11:53:38 2008 building initial matrix Tue Aug 26 11:54:12 2008 memory use: 311.7 MB Tue Aug 26 11:54:14 2008 read 953499 cycles Tue Aug 26 11:54:16 2008 matrix is 953311 x 953499 (283.2 MB) with weight 89798014 (94.18/col) Tue Aug 26 11:54:16 2008 sparse part has weight 63743099 (66.85/col) Tue Aug 26 11:54:24 2008 filtering completed in 2 passes Tue Aug 26 11:54:24 2008 matrix is 952824 x 953012 (283.1 MB) with weight 89772381 (94.20/col) Tue Aug 26 11:54:24 2008 sparse part has weight 63730580 (66.87/col) Tue Aug 26 11:54:34 2008 read 953012 cycles Tue Aug 26 11:54:34 2008 matrix is 952824 x 953012 (283.1 MB) with weight 89772381 (94.20/col) Tue Aug 26 11:54:34 2008 sparse part has weight 63730580 (66.87/col) Tue Aug 26 11:54:35 2008 saving the first 48 matrix rows for later Tue Aug 26 11:54:35 2008 matrix is 952776 x 953012 (270.1 MB) with weight 68365485 (71.74/col) Tue Aug 26 11:54:35 2008 sparse part has weight 61268317 (64.29/col) Tue Aug 26 11:54:35 2008 matrix includes 64 packed rows Tue Aug 26 11:54:35 2008 using block size 65536 for processor cache size 4096 kB Tue Aug 26 11:54:40 2008 commencing Lanczos iteration (4 threads) Tue Aug 26 11:54:40 2008 memory use: 279.2 MB Tue Aug 26 13:05:42 2008 lanczos halted after 15067 iterations (dim = 952776) Tue Aug 26 13:05:44 2008 recovered 49 nontrivial dependencies Tue Aug 26 13:05:44 2008 elapsed time 01:13:04 Tue Aug 26 13:16:40 2008 Tue Aug 26 13:16:40 2008 Tue Aug 26 13:16:40 2008 Msieve v. 1.36 Tue Aug 26 13:16:40 2008 random seeds: d1ae08a7 def52c6a Tue Aug 26 13:16:40 2008 factoring 60946499131512387375948479892734161528538198218330675388787875709772771135738011315733338750799922801101100084309323798592135870062063851615590114477840868690767621156561398519 (176 digits) Tue Aug 26 13:16:42 2008 no P-1/P+1/ECM available, skipping Tue Aug 26 13:16:42 2008 commencing number field sieve (176-digit input) Tue Aug 26 13:16:42 2008 R0: -1000000000000000000000000000000000000 Tue Aug 26 13:16:42 2008 R1: 1 Tue Aug 26 13:16:42 2008 A0: -7 Tue Aug 26 13:16:42 2008 A1: 0 Tue Aug 26 13:16:42 2008 A2: 0 Tue Aug 26 13:16:42 2008 A3: 0 Tue Aug 26 13:16:42 2008 A4: 0 Tue Aug 26 13:16:42 2008 A5: 6 Tue Aug 26 13:16:42 2008 size score = 2.794913e-12, Murphy alpha = 1.791017, combined = 1.538481e-12 Tue Aug 26 13:16:42 2008 Tue Aug 26 13:16:42 2008 commencing square root phase Tue Aug 26 13:16:42 2008 reading relations for dependency 1 Tue Aug 26 13:16:42 2008 read 476023 cycles Tue Aug 26 13:16:43 2008 cycles contain 1540727 unique relations Tue Aug 26 13:17:11 2008 read 1540727 relations Tue Aug 26 13:17:20 2008 multiplying 2569832 relations Tue Aug 26 13:20:01 2008 multiply complete, coefficients have about 64.69 million bits Tue Aug 26 13:20:03 2008 initial square root is modulo 1936936291 Tue Aug 26 13:25:03 2008 reading relations for dependency 2 Tue Aug 26 13:25:03 2008 read 476612 cycles Tue Aug 26 13:25:04 2008 cycles contain 1542603 unique relations Tue Aug 26 13:25:25 2008 read 1542603 relations Tue Aug 26 13:25:34 2008 multiplying 2570336 relations Tue Aug 26 13:28:16 2008 multiply complete, coefficients have about 64.70 million bits Tue Aug 26 13:28:17 2008 initial square root is modulo 1946412371 Tue Aug 26 13:33:19 2008 reading relations for dependency 3 Tue Aug 26 13:33:19 2008 read 476357 cycles Tue Aug 26 13:33:20 2008 cycles contain 1541319 unique relations Tue Aug 26 13:33:33 2008 read 1541319 relations Tue Aug 26 13:33:41 2008 multiplying 2568952 relations Tue Aug 26 13:36:23 2008 multiply complete, coefficients have about 64.67 million bits Tue Aug 26 13:36:24 2008 initial square root is modulo 1924029001 Tue Aug 26 13:41:25 2008 prp61 factor: 4830487850130825355136992625082278853531328717363811995759451 Tue Aug 26 13:41:25 2008 prp116 factor: 12617048427077972576764760920138324767170820384685368004188695290274577720048489648872812603297601032348850349016469 Tue Aug 26 13:41:25 2008 elapsed time 00:24:45
By Sinkiti Sibata / GGNFS, Msieve
(8·10148-11)/3 = 2(6)1473<149> = 7 · 13 · C147
C147 = P36 · P36 · P75
P36 = 631170595247677325494007511276201721<36>
P36 = 737524339058375728078988025299221609<36>
P75 = 629512306969773167184550234503027158972717529174606520898597164110023596037<75>
Number: 26663_148 N=293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293 ( 147 digits) SNFS difficulty: 148 digits. Divisors found: r1=631170595247677325494007511276201721 (pp36) r2=737524339058375728078988025299221609 (pp36) r3=629512306969773167184550234503027158972717529174606520898597164110023596037 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.94 hours. Scaled time: 21.21 units (timescale=1.013). Factorization parameters were as follows: name: 26663_148 n: 293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293040293 m: 200000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3650001) Primes: RFBsize:114155, AFBsize:114243, largePrimes:3091916 encountered Relations: rels:3208626, finalFF:346994 Max relations in full relation-set: 28 Initial matrix: 228464 x 346994 with sparse part having weight 42238202. Pruned matrix : 199407 x 200613 with weight 24522224. Total sieving time: 20.55 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.28 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 20.94 hours. --------- CPU info (if available) ----------
(8·10141-11)/3 = 2(6)1403<142> = 5483 · C138
C138 = P65 · P74
P65 = 42566066342315420407961503276609805239725144032539524413928807061<65>
P74 = 11425809234867554634313801966008971003354585779235506262097186026891882401<74>
Number: 26663_141 N=486351753906012523557663079822481609824305428901452975864794212414128518450969663809350112468843090765396072709587208948872271870630433461 ( 138 digits) SNFS difficulty: 142 digits. Divisors found: r1=42566066342315420407961503276609805239725144032539524413928807061 (pp65) r2=11425809234867554634313801966008971003354585779235506262097186026891882401 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.88 hours. Scaled time: 15.04 units (timescale=1.011). Factorization parameters were as follows: name: 26663_141 n: 486351753906012523557663079822481609824305428901452975864794212414128518450969663809350112468843090765396072709587208948872271870630433461 m: 20000000000000000000000000000 c5: 5 c0: -22 skew: 1.34 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:100104, largePrimes:3163162 encountered Relations: rels:3417143, finalFF:483950 Max relations in full relation-set: 28 Initial matrix: 200190 x 483950 with sparse part having weight 54374487. Pruned matrix : 151850 x 152914 with weight 22718147. Total sieving time: 14.49 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.29 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.88 hours. --------- CPU info (if available) ----------
(8·10110-11)/3 = 2(6)1093<111> = 422270161 · C102
C102 = P50 · P53
P50 = 16332279646114817898481597976376858514229176394471<50>
P53 = 38666203384806306112733511010467776636962683473769073<53>
Mon Aug 25 15:02:36 2008 Msieve v. 1.36 Mon Aug 25 15:02:36 2008 random seeds: fad24d48 84aab7b6 Mon Aug 25 15:02:36 2008 factoring 631507246534207911192348413807687128209531875179469919179694694711489848004360096537028735655007995383 (102 digits) Mon Aug 25 15:02:37 2008 no P-1/P+1/ECM available, skipping Mon Aug 25 15:02:38 2008 commencing quadratic sieve (102-digit input) Mon Aug 25 15:02:38 2008 using multiplier of 3 Mon Aug 25 15:02:38 2008 using 32kb Intel Core sieve core Mon Aug 25 15:02:38 2008 sieve interval: 36 blocks of size 32768 Mon Aug 25 15:02:38 2008 processing polynomials in batches of 6 Mon Aug 25 15:02:38 2008 using a sieve bound of 3264419 (117500 primes) Mon Aug 25 15:02:38 2008 using large prime bound of 489662850 (28 bits) Mon Aug 25 15:02:38 2008 using double large prime bound of 4383437839720350 (44-52 bits) Mon Aug 25 15:02:38 2008 using trial factoring cutoff of 52 bits Mon Aug 25 15:02:38 2008 polynomial 'A' values have 13 factors Tue Aug 26 11:57:29 2008 117764 relations (27401 full + 90363 combined from 1765490 partial), need 117596 Tue Aug 26 11:57:34 2008 begin with 1792891 relations Tue Aug 26 11:57:36 2008 reduce to 313570 relations in 12 passes Tue Aug 26 11:57:36 2008 attempting to read 313570 relations Tue Aug 26 11:57:44 2008 recovered 313570 relations Tue Aug 26 11:57:44 2008 recovered 305981 polynomials Tue Aug 26 11:57:44 2008 attempting to build 117764 cycles Tue Aug 26 11:57:44 2008 found 117764 cycles in 6 passes Tue Aug 26 11:57:44 2008 distribution of cycle lengths: Tue Aug 26 11:57:44 2008 length 1 : 27401 Tue Aug 26 11:57:44 2008 length 2 : 19789 Tue Aug 26 11:57:44 2008 length 3 : 19479 Tue Aug 26 11:57:44 2008 length 4 : 16071 Tue Aug 26 11:57:44 2008 length 5 : 12409 Tue Aug 26 11:57:44 2008 length 6 : 8719 Tue Aug 26 11:57:44 2008 length 7 : 5710 Tue Aug 26 11:57:44 2008 length 9+: 8186 Tue Aug 26 11:57:44 2008 largest cycle: 24 relations Tue Aug 26 11:57:45 2008 matrix is 117500 x 117764 (34.8 MB) with weight 8659607 (73.53/col) Tue Aug 26 11:57:45 2008 sparse part has weight 8659607 (73.53/col) Tue Aug 26 11:57:46 2008 filtering completed in 3 passes Tue Aug 26 11:57:46 2008 matrix is 113226 x 113290 (33.6 MB) with weight 8365111 (73.84/col) Tue Aug 26 11:57:46 2008 sparse part has weight 8365111 (73.84/col) Tue Aug 26 11:57:47 2008 saving the first 48 matrix rows for later Tue Aug 26 11:57:47 2008 matrix is 113178 x 113290 (23.7 MB) with weight 6978451 (61.60/col) Tue Aug 26 11:57:47 2008 sparse part has weight 5540716 (48.91/col) Tue Aug 26 11:57:47 2008 matrix includes 64 packed rows Tue Aug 26 11:57:47 2008 using block size 45316 for processor cache size 2048 kB Tue Aug 26 11:57:48 2008 commencing Lanczos iteration Tue Aug 26 11:57:48 2008 memory use: 21.2 MB Tue Aug 26 11:59:27 2008 lanczos halted after 1792 iterations (dim = 113178) Tue Aug 26 11:59:27 2008 recovered 18 nontrivial dependencies Tue Aug 26 11:59:29 2008 prp50 factor: 16332279646114817898481597976376858514229176394471 Tue Aug 26 11:59:29 2008 prp53 factor: 38666203384806306112733511010467776636962683473769073 Tue Aug 26 11:59:29 2008 elapsed time 20:56:53
(8·10153-11)/3 = 2(6)1523<154> = 19 · 403653373 · C144
C144 = P67 · P77
P67 = 9584647896404527490150217237474587315829821200029362091271254431753<67>
P77 = 36276917910572708977019726585543332934889029681264749296841149667688620319833<77>
Number: 26663_153 N=347701484939610441804361875586216038235238225528174779157242115236783754412850842678285896895876743219937012988495149260111487140603869530857249 ( 144 digits) SNFS difficulty: 153 digits. Divisors found: r1=9584647896404527490150217237474587315829821200029362091271254431753 (pp67) r2=36276917910572708977019726585543332934889029681264749296841149667688620319833 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.00 hours. Scaled time: 24.07 units (timescale=1.003). Factorization parameters were as follows: name: 26663_153 n: 347701484939610441804361875586216038235238225528174779157242115236783754412850842678285896895876743219937012988495149260111487140603869530857249 m: 2000000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176244, largePrimes:5838800 encountered Relations: rels:5925527, finalFF:616857 Max relations in full relation-set: 28 Initial matrix: 352612 x 616857 with sparse part having weight 59940685. Pruned matrix : 264646 x 266473 with weight 31491438. Total sieving time: 23.08 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.76 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 24.00 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, pol51, Msieve 1.36
(8·10197-11)/3 = 2(6)1963<198> = 111733 · 5397377 · 30795825067283<14> · 255721698337823<15> · 1123975172813840253229<22> · C137
C137 = P30 · P107
P30 = 584631897521184211264327771703<30>
P107 = 85448780591496185069139272511079480379794034535247604377701836586510272565252157696362447303206979984172421<107>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=4075465090 Step 1 took 7029ms Step 2 took 5423ms ********** Factor found in step 2: 584631897521184211264327771703 Found probable prime factor of 30 digits: 584631897521184211264327771703 Probable prime cofactor 85448780591496185069139272511079480379794034535247604377701836586510272565252157696362447303206979984172421 has 107 digits
(8·10178-11)/3 = 2(6)1773<179> = 72 · 13 · 68889803 · C168
C168 = P32 · C137
P32 = 24902290071539505232947157370809<32>
C137 = [24402542030292362032996350257126313176584682115300957283898560700731379335812856761997377266656064229543530545017001142017298689072691137<137>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2294159883 Step 1 took 8351ms Step 2 took 6372ms ********** Factor found in step 2: 24902290071539505232947157370809 Found probable prime factor of 32 digits: 24902290071539505232947157370809 Composite cofactor 24402542030292362032996350257126313176584682115300957283898560700731379335812856761997377266656064229543530545017001142017298689072691137 has 137 digits
(8·10194-11)/3 = 2(6)1933<195> = 173 · 1489 · C190
C190 = P32 · C158
P32 = 13268292354555506055377112473833<32>
C158 = [78021249133662649201010056260756443212459081834801215517983657063217652246078341944261089148602713232013125543543274882835988069853193682190413043480015720763<158>]
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2757967481 Step 1 took 9391ms Step 2 took 7236ms ********** Factor found in step 2: 13268292354555506055377112473833 Found probable prime factor of 32 digits: 13268292354555506055377112473833 Composite cofactor 78021249133662649201010056260756443212459081834801215517983657063217652246078341944261089148602713232013125543543274882835988069853193682190413043480015720763 has 158 digits
(8·10180-11)/3 = 2(6)1793<181> = 3397753236583<13> · 392394707280681851533<21> · 205355556215967421129829<24> · C124
C124 = P28 · P41 · P56
P28 = 3400747871425819708132739489<28>
P41 = 38816920840993351478857495860128753476187<41>
P56 = 73782230785092535333770078843852428216528975329015286611<56>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1157696711 Step 1 took 5689ms Step 2 took 3166ms ********** Factor found in step 2: 3400747871425819708132739489 Found probable prime factor of 28 digits: 3400747871425819708132739489 Composite cofactor 2863999011856839684189632857032227275314528666558642362791977590502022197508465810654828368432257 has 97 digits Number: 26663_180 N=2863999011856839684189632857032227275314528666558642362791977590502022197508465810654828368432257 ( 97 digits) Divisors found: r1=38816920840993351478857495860128753476187 r2=73782230785092535333770078843852428216528975329015286611 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.953). Factorization parameters were as follows: name: 26663_180 n: 2863999011856839684189632857032227275314528666558642362791977590502022197508465810654828368432257 skew: 4520.93 # norm 1.38e+13 c5: 32880 c4: 2367442 c3: -1766456187165 c2: 3692732179295755 c1: 21831126546193430705 c0: 6433261978193336300543 # alpha -5.40 Y1: 10108298959 Y0: -2443476604716635280 # Murphy_E 4.95e-09 # M 1500633408794892675967970158936107201052746886196142694054793555285370286000876464460094243978359 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1020001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123265 x 123498 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 1.70 hours.
(8·10158-11)/3 = 2(6)1573<159> = 29 · 89 · C156
C156 = P41 · P115
P41 = 85645030255583612491797176677799392292263<41>
P115 = 1206364533295746858405918018055464413960376241979912931904257349702717955872012065492560876276627423631920046146621<115>
Number: 26663_158 N=103319126953377243962288518662017305953764690688363683326875887898747255585690300916957251711223040165310603125403590339661629859227689526023505101381893323 ( 156 digits) SNFS difficulty: 158 digits. Divisors found: r1=85645030255583612491797176677799392292263 r2=1206364533295746858405918018055464413960376241979912931904257349702717955872012065492560876276627423631920046146621 Version: Total time: 22.37 hours. Scaled time: 76.54 units (timescale=3.422). Factorization parameters were as follows: n: 103319126953377243962288518662017305953764690688363683326875887898747255585690300916957251711223040165310603125403590339661629859227689526023505101381893323 Y1: 1 Y0: -20000000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 490121 x 490369 Total sieving time: 22.37 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.70 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 22.37 hours.
By Jo Yeong Uk / GMP-ECM
(8·10201-11)/3 = 2(6)2003<202> = C202
C202 = P30 · C172
P30 = 451812655504187553833642493151<30>
C172 = [5902151332372209503609296911272406487211881024719526726349392490909514083822506333934172090530872360967046140330267742066517371414348495611729173874621014004093969936550713<172>]
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 (202 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2863822186 Step 1 took 7248ms ********** Factor found in step 1: 451812655504187553833642493151 Found probable prime factor of 30 digits: 451812655504187553833642493151 Composite cofactor 5902151332372209503609296911272406487211881024719526726349392490909514083822506333934172090530872360967046140330267742066517371414348495611729173874621014004093969936550713 has 172 digits
By Sinkiti Sibata / Msieve, GGNFS
(8·10115-11)/3 = 2(6)1143<116> = 27327373 · 744960989 · 159825498529<12> · C88
C88 = P38 · P51
P38 = 36394744129187324330831066302113920077<38>
P51 = 225191803222073042077948412162190617679629996439163<51>
Msieve v. 1.36 Mon Aug 25 09:12:26 2008 random seeds: 022eeabf 0fc3ee48 factoring 8195798058257650035222798926893206468073882016281189047624546008259499 372911085174775551 (88 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (88-digit input) using multiplier of 15 using 32kb Intel Core sieve core sieve interval: 28 blocks of size 32768 processing polynomials in batches of 8 using a sieve bound of 1533799 (58333 primes) using large prime bound of 122703920 (26 bits) using double large prime bound of 363032185823760 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors sieving in progress (press Ctrl-C to pause) 58733 relations (16463 full + 42270 combined from 612585 partial), need 58429 58733 relations (16463 full + 42270 combined from 612585 partial), need 58429 sieving complete, commencing postprocessing begin with 629048 relations reduce to 140284 relations in 10 passes attempting to read 140284 relations recovered 140284 relations recovered 117682 polynomials attempting to build 58733 cycles found 58733 cycles in 5 passes distribution of cycle lengths: length 1 : 16463 length 2 : 11455 length 3 : 10354 length 4 : 7733 length 5 : 5344 length 6 : 3310 length 7 : 1921 length 9+: 2153 largest cycle: 18 relations matrix is 58333 x 58733 (14.2 MB) with weight 3477966 (59.22/col) sparse part has weight 3477966 (59.22/col) filtering completed in 3 passes matrix is 53756 x 53820 (13.0 MB) with weight 3201859 (59.49/col) sparse part has weight 3201859 (59.49/col) saving the first 48 matrix rows for later matrix is 53708 x 53820 (9.4 MB) with weight 2620040 (48.68/col) sparse part has weight 2132255 (39.62/col) matrix includes 64 packed rows using block size 21528 for processor cache size 4096 kB commencing Lanczos iteration memory use: 8.6 MB lanczos halted after 851 iterations (dim = 53706) recovered 17 nontrivial dependencies prp38 factor: 36394744129187324330831066302113920077 prp51 factor: 225191803222073042077948412162190617679629996439163 elapsed time 00:54:52
(8·10138-11)/3 = 2(6)1373<139> = 8419 · 185873959 · 1807965893376375389<19> · C108
C108 = P31 · P78
P31 = 4022953384627041789849995127289<31>
P78 = 234290370863190928348570573401696087817693212086985056963495641872571535390143<78>
Number: 26663_138 N=942539240449598799728657907393877165710658736278448078722000554709399106887259501615297280227529767560912327 ( 108 digits) SNFS difficulty: 138 digits. Divisors found: r1=4022953384627041789849995127289 (pp31) r2=234290370863190928348570573401696087817693212086985056963495641872571535390143 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.64 hours. Scaled time: 9.25 units (timescale=0.869). Factorization parameters were as follows: name: 26663_138 n: 942539240449598799728657907393877165710658736278448078722000554709399106887259501615297280227529767560912327 m: 2000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:64024, largePrimes:1644943 encountered Relations: rels:1676321, finalFF:186319 Max relations in full relation-set: 28 Initial matrix: 142588 x 186319 with sparse part having weight 19451277. Pruned matrix : 131689 x 132465 with weight 12236740. Total sieving time: 10.38 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.64 hours. --------- CPU info (if available) ----------
(8·10126-11)/3 = 2(6)1253<127> = 349 · C124
C124 = P34 · P91
P34 = 1077539553478360533230464619964479<34>
P91 = 7091042436804680319855247362684038701737502682164360896283654857951232009654026676364876653<91>
Number: 26663_126 N=7640878701050620821394460362941738299904489016236867239732569245463228271251193887297039159503342884431709646609360076408787 ( 124 digits) SNFS difficulty: 127 digits. Divisors found: r1=1077539553478360533230464619964479 (pp34) r2=7091042436804680319855247362684038701737502682164360896283654857951232009654026676364876653 (pp91) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.46 hours. Scaled time: 2.70 units (timescale=0.780). Factorization parameters were as follows: name: 26663_126 n: 7640878701050620821394460362941738299904489016236867239732569245463228271251193887297039159503342884431709646609360076408787 m: 20000000000000000000000000 c5: 5 c0: -22 skew: 1.34 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63744, largePrimes:2346493 encountered Relations: rels:2596068, finalFF:320129 Max relations in full relation-set: 28 Initial matrix: 112907 x 320129 with sparse part having weight 33834564. Pruned matrix : 89415 x 90043 with weight 8750419. Total sieving time: 3.31 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.46 hours. --------- CPU info (if available) ----------
(8·10136-11)/3 = 2(6)1353<137> = 72 · 13 · 2477 · 958183397433934124845303<24> · C107
C107 = P43 · P65
P43 = 1571318684431170472268584011635077965756373<43>
P65 = 11225104096442483874271543011120612457408910397229839548437445173<65>
Number: 26663_136 N=17638215801424946277538705205049357412849843641681158464695470568727377018710107384739025942038188662837529 ( 107 digits) SNFS difficulty: 137 digits. Divisors found: r1=1571318684431170472268584011635077965756373 (pp43) r2=11225104096442483874271543011120612457408910397229839548437445173 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.52 hours. Scaled time: 6.91 units (timescale=0.657). Factorization parameters were as follows: name: 26663_136 n: 17638215801424946277538705205049357412849843641681158464695470568727377018710107384739025942038188662837529 m: 2000000000000000000000000000 c5: 5 c0: -22 skew: 1.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:63744, largePrimes:1792261 encountered Relations: rels:1939159, finalFF:299448 Max relations in full relation-set: 28 Initial matrix: 142307 x 299448 with sparse part having weight 29445787. Pruned matrix : 112486 x 113261 with weight 11386504. Total sieving time: 10.31 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.52 hours. --------- CPU info (if available) ----------
(8·10108-11)/3 = 2(6)1073<109> = 173 · 1396985297<10> · C98
C98 = P46 · P52
P46 = 9478218721635962950063775331955797995694998263<46>
P52 = 1164136932415231088051595778237945031400502778838821<52>
Msieve v. 1.36 Mon Aug 25 10:36:30 2008 random seeds: 38e93f28 18cf46c6 factoring 1103394446736590300212881872621524333132390980448938746594859925015513 3200443654428583548751967923 (98 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (98-digit input) using multiplier of 3 using 32kb Intel Core sieve core sieve interval: 36 blocks of size 32768 processing polynomials in batches of 6 using a sieve bound of 2439067 (89109 primes) using large prime bound of 365860050 (28 bits) using double large prime bound of 2593981779484650 (43-52 bits) using trial factoring cutoff of 52 bits polynomial 'A' values have 13 factors sieving in progress (press Ctrl-C to pause) 89224 relations (20824 full + 68400 combined from 1362659 partial), need 89205 89224 relations (20824 full + 68400 combined from 1362659 partial), need 89205 sieving complete, commencing postprocessing begin with 1383483 relations reduce to 237176 relations in 10 passes attempting to read 237176 relations recovered 237176 relations recovered 226560 polynomials attempting to build 89224 cycles found 89224 cycles in 6 passes distribution of cycle lengths: length 1 : 20824 length 2 : 15190 length 3 : 14918 length 4 : 12146 length 5 : 9457 length 6 : 6438 length 7 : 4306 length 9+: 5945 largest cycle: 21 relations matrix is 89109 x 89224 (24.4 MB) with weight 6042868 (67.73/col) sparse part has weight 6042868 (67.73/col) filtering completed in 3 passes matrix is 85635 x 85699 (23.6 MB) with weight 5842727 (68.18/col) sparse part has weight 5842727 (68.18/col) saving the first 48 matrix rows for later matrix is 85587 x 85699 (14.7 MB) with weight 4635880 (54.09/col) sparse part has weight 3342133 (39.00/col) matrix includes 64 packed rows using block size 34279 for processor cache size 4096 kB commencing Lanczos iteration memory use: 14.2 MB linear algebra completed 80326 out of 85699 dimensions (93.7%) lanczos halted after 1355 iterations (dim = 85586) recovered 17 nontrivial dependencies prp46 factor: 9478218721635962950063775331955797995694998263 prp52 factor: 1164136932415231088051595778237945031400502778838821 elapsed time 06:57:03
(8·10143-11)/3 = 2(6)1423<144> = 17 · 7146336199<10> · C133
C133 = P35 · P45 · P53
P35 = 74131706740520134432488133381283627<35>
P45 = 473918783322639150993506355219846282948081391<45>
P53 = 62478190973515905091229270530795437441876297718914173<53>
Number: 26663_143 N=2195009312883842615956312494274824259880177803431059411666199434226845762617106919694017756641960595544954965800031013549434101030161 ( 133 digits) SNFS difficulty: 143 digits. Divisors found: r1=74131706740520134432488133381283627 (pp35) r2=473918783322639150993506355219846282948081391 (pp45) r3=62478190973515905091229270530795437441876297718914173 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.89 hours. Scaled time: 12.93 units (timescale=1.003). Factorization parameters were as follows: name: 26663_143 n: 2195009312883842615956312494274824259880177803431059411666199434226845762617106919694017756641960595544954965800031013549434101030161 m: 20000000000000000000000000000 c5: 250 c0: -11 skew: 0.54 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:100179, largePrimes:2890914 encountered Relations: rels:2943556, finalFF:305165 Max relations in full relation-set: 28 Initial matrix: 200266 x 305165 with sparse part having weight 33397507. Pruned matrix : 173998 x 175063 with weight 17976771. Total sieving time: 12.62 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.18 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 12.89 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(8·10103-11)/3 = 2(6)1023<104> = 42640406154121325305813<23> · C81
C81 = P29 · P53
P29 = 32310722809845102049503136009<29>
P53 = 19355336495052044162304280966510001150870536267517939<53>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 625384912382905433497831556663133629465431712905651150435013281886485743164365451 (81 digits) Using B1=716000, B2=696728352, polynomial Dickson(3), sigma=3553693662 Step 1 took 3813ms Step 2 took 2156ms ********** Factor found in step 2: 32310722809845102049503136009 Found probable prime factor of 29 digits: 32310722809845102049503136009 Probable prime cofactor 19355336495052044162304280966510001150870536267517939 has 53 digits
(8·10114-11)/3 = 2(6)1133<115> = 89 · C113
C113 = P34 · P80
P34 = 2259115997850597640784499152946323<34>
P80 = 13262951900206461666213310460070950876252932275320620693018204736411989385181029<80>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 29962546816479400749063670411985018726591760299625468164794007490636704119850187265917602996254681647940074906367 (113 digits) Using B1=1054000, B2=1045563762, polynomial Dickson(6), sigma=3402612825 Step 1 took 8203ms Step 2 took 4407ms ********** Factor found in step 2: 2259115997850597640784499152946323 Found probable prime factor of 34 digits: 2259115997850597640784499152946323 Probable prime cofactor 13262951900206461666213310460070950876252932275320620693018204736411989385181029 has 80 digits
(8·10128-11)/3 = 2(6)1273<129> = C129
C129 = P36 · P93
P36 = 497804025886962506207714390938400623<36>
P93 = 535686038680649951068585178875042757472954243229661921056248994248736475025875054178317329481<93>
Number: n N=266666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 129 digits) SNFS difficulty: 128 digits. Divisors found: r1=497804025886962506207714390938400623 (pp36) r2=535686038680649951068585178875042757472954243229661921056248994248736475025875054178317329481 (pp93) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.27 hours. Scaled time: 2.96 units (timescale=0.905). Factorization parameters were as follows: name: KA_2_6_127_3 n: 266666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 type: snfs skew: 0.54 deg: 5 c5: 250 c0: -11 m: 20000000000000000000000000 rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 360001) Primes: RFBsize:56543, AFBsize:56529, largePrimes:5287037 encountered Relations: rels:4505640, finalFF:143302 Max relations in full relation-set: 48 Initial matrix: 113138 x 143302 with sparse part having weight 17608215. Pruned matrix : 105459 x 106088 with weight 9691679. Total sieving time: 2.98 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.12 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,700000,700000,28,28,50,50,2.5,2.5,50000 total time: 3.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(17·10192+1)/9 = 1(8)1919<193> = 23 · C191
C191 = P94 · P98
P94 = 1948662034201098323710903730958276574627075333548724371561250262056978094886490485343891106957<94>
P98 = 42144611237527240110223119654035423284203139603203167827807897848137401763143004307433958811849899<98>
Number: n N=82125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647343 ( 191 digits) SNFS difficulty: 193 digits. Divisors found: Mon Aug 25 19:56:31 2008 prp94 factor: 1948662034201098323710903730958276574627075333548724371561250262056978094886490485343891106957 Mon Aug 25 19:56:31 2008 prp98 factor: 42144611237527240110223119654035423284203139603203167827807897848137401763143004307433958811849899 Mon Aug 25 19:56:31 2008 elapsed time 07:59:02 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 177.74 hours. Scaled time: 364.55 units (timescale=2.051). Factorization parameters were as follows: name: KA_1_8_191_9 n: 82125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647342995169082125603864734299516908212560386473429951690821256038647343 type: snfs skew: 0.23 deg: 5 c5: 1700 c0: 1 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 13700001) Primes: RFBsize:633578, AFBsize:634678, largePrimes:11237680 encountered Relations: rels:11302726, finalFF:1311085 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 177.34 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 177.74 hours. --------- CPU info (if available) ----------
(8·10139-11)/3 = 2(6)1383<140> = C140
C140 = P33 · P107
P33 = 959282682025957797850608113019113<33>
P107 = 27798549026599729182324561097530178917531373289574911508549281342744062452451420379597840926261692683566351<107>
Number: n N=26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 140 digits) SNFS difficulty: 140 digits. Divisors found: Mon Aug 25 20:32:13 2008 prp33 factor: 959282682025957797850608113019113 Mon Aug 25 20:32:13 2008 prp107 factor: 27798549026599729182324561097530178917531373289574911508549281342744062452451420379597840926261692683566351 Mon Aug 25 20:32:13 2008 elapsed time 00:17:59 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.66 hours. Scaled time: 10.35 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_6_138_3 n: 26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 type: snfs skew: 1.69 deg: 5 c5: 4 c0: -55 m: 10000000000000000000000000000 rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 560001) Primes: RFBsize:92938, AFBsize:92975, largePrimes:7002152 encountered Relations: rels:6006723, finalFF:211320 Max relations in full relation-set: 28 Initial matrix: 185977 x 211320 with sparse part having weight 22376445. Pruned matrix : Total sieving time: 4.96 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,50,50,2.5,2.5,100000 total time: 5.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(8·10123-11)/3 = 2(6)1223<124> = 193 · 3323 · C118
C118 = P45 · P73
P45 = 642613838830751806249659095006571736039311649<45>
P73 = 6470398189326729013605156656933550973595555578999795769319970345586959333<73>
Number: n N=4157967419206794950356467744307872539587747925304194297659532114321235207381223762575902395872801539695335332276170117 ( 118 digits) SNFS difficulty: 123 digits. Divisors found: r1=642613838830751806249659095006571736039311649 (pp45) r2=6470398189326729013605156656933550973595555578999795769319970345586959333 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.50 hours. Scaled time: 2.74 units (timescale=1.827). Factorization parameters were as follows: name: KA_2_6_122_3 n: 4157967419206794950356467744307872539587747925304194297659532114321235207381223762575902395872801539695335332276170117 type: snfs skew: 0.54 deg: 5 c5: 250 c0: -11 m: 2000000000000000000000000 rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 260001) Primes: RFBsize:56543, AFBsize:56529, largePrimes:4753006 encountered Relations: rels:3997616, finalFF:139366 Max relations in full relation-set: 48 Initial matrix: 113138 x 139366 with sparse part having weight 13526645. Pruned matrix : 104170 x 104799 with weight 7166986. Total sieving time: 1.29 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Total square root time: 0.09 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,700000,700000,28,28,50,50,2.5,2.5,50000 total time: 1.50 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Serge Batalov / Msieve
(8·10132-11)/3 = 2(6)1313<133> = 15536946350327<14> · 57716815808783<14> · 97764490225841183<17> · C89
C89 = P31 · P59
P31 = 2878173973878396344472623824273<31>
P59 = 10568236438025805805146214006943933895776577890265004772977<59>
Sun Aug 24 12:23:27 2008 Msieve v. 1.36 Sun Aug 24 12:23:27 2008 random seeds: 91c7b3f0 39fd5771 Sun Aug 24 12:23:27 2008 factoring 30417223065719202025408393332329506476088430781684930885264026157024451489312987907070721 (89 digits) Sun Aug 24 12:23:27 2008 searching for 15-digit factors Sun Aug 24 12:23:28 2008 commencing quadratic sieve (89-digit input) Sun Aug 24 12:23:28 2008 using multiplier of 1 Sun Aug 24 12:23:28 2008 using 32kb Intel Core sieve core Sun Aug 24 12:23:28 2008 sieve interval: 30 blocks of size 32768 Sun Aug 24 12:23:28 2008 processing polynomials in batches of 7 Sun Aug 24 12:23:28 2008 using a sieve bound of 1546697 (58666 primes) Sun Aug 24 12:23:28 2008 using large prime bound of 123735760 (26 bits) Sun Aug 24 12:23:28 2008 using double large prime bound of 368545723802400 (42-49 bits) Sun Aug 24 12:23:28 2008 using trial factoring cutoff of 49 bits Sun Aug 24 12:23:28 2008 polynomial 'A' values have 11 factors Sun Aug 24 12:49:33 2008 59095 relations (17383 full + 41712 combined from 602353 partial), need 58762 Sun Aug 24 12:49:34 2008 begin with 619735 relations Sun Aug 24 12:49:34 2008 reduce to 137172 relations in 9 passes Sun Aug 24 12:49:34 2008 attempting to read 137172 relations Sun Aug 24 12:49:35 2008 recovered 137172 relations Sun Aug 24 12:49:35 2008 recovered 103123 polynomials Sun Aug 24 12:49:35 2008 attempting to build 59095 cycles Sun Aug 24 12:49:35 2008 found 59095 cycles in 5 passes Sun Aug 24 12:49:35 2008 distribution of cycle lengths: Sun Aug 24 12:49:35 2008 length 1 : 17383 Sun Aug 24 12:49:35 2008 length 2 : 12291 Sun Aug 24 12:49:35 2008 length 3 : 10403 Sun Aug 24 12:49:35 2008 length 4 : 7514 Sun Aug 24 12:49:35 2008 length 5 : 5032 Sun Aug 24 12:49:35 2008 length 6 : 2924 Sun Aug 24 12:49:35 2008 length 7 : 1676 Sun Aug 24 12:49:35 2008 length 9+: 1872 Sun Aug 24 12:49:35 2008 largest cycle: 16 relations Sun Aug 24 12:49:36 2008 matrix is 58666 x 59095 (13.6 MB) with weight 3325898 (56.28/col) Sun Aug 24 12:49:36 2008 sparse part has weight 3325898 (56.28/col) Sun Aug 24 12:49:36 2008 filtering completed in 4 passes Sun Aug 24 12:49:36 2008 matrix is 53129 x 53193 (12.3 MB) with weight 3012466 (56.63/col) Sun Aug 24 12:49:36 2008 sparse part has weight 3012466 (56.63/col) Sun Aug 24 12:49:36 2008 saving the first 48 matrix rows for later Sun Aug 24 12:49:36 2008 matrix is 53081 x 53193 (8.4 MB) with weight 2389276 (44.92/col) Sun Aug 24 12:49:36 2008 sparse part has weight 1875750 (35.26/col) Sun Aug 24 12:49:36 2008 matrix includes 64 packed rows Sun Aug 24 12:49:36 2008 using block size 21277 for processor cache size 4096 kB Sun Aug 24 12:49:37 2008 commencing Lanczos iteration Sun Aug 24 12:49:37 2008 memory use: 7.9 MB Sun Aug 24 12:49:50 2008 lanczos halted after 841 iterations (dim = 53079) Sun Aug 24 12:49:50 2008 recovered 16 nontrivial dependencies Sun Aug 24 12:49:50 2008 prp31 factor: 2878173973878396344472623824273 Sun Aug 24 12:49:50 2008 prp59 factor: 10568236438025805805146214006943933895776577890265004772977 Sun Aug 24 12:49:50 2008 elapsed time 00:26:23
(8·10113-11)/3 = 2(6)1123<114> = 2341 · 30810511543917882721369333<26> · C85
C85 = P28 · P57
P28 = 6149421791025899547499894967<28>
P57 = 601220980001406340971556885053700885153827701171358855913<57>
Sun Aug 24 12:53:43 2008 Msieve v. 1.36 Sun Aug 24 12:53:43 2008 random seeds: 7f72a470 3623d00f Sun Aug 24 12:53:43 2008 factoring 3697161395642594715145547845696911974342125553234116133620464452526327268032786889871 (85 digits) Sun Aug 24 12:53:43 2008 searching for 15-digit factors Sun Aug 24 12:53:44 2008 commencing quadratic sieve (85-digit input) Sun Aug 24 12:53:44 2008 using multiplier of 47 Sun Aug 24 12:53:44 2008 using 32kb Intel Core sieve core Sun Aug 24 12:53:44 2008 sieve interval: 12 blocks of size 32768 Sun Aug 24 12:53:44 2008 processing polynomials in batches of 17 Sun Aug 24 12:53:44 2008 using a sieve bound of 1422583 (54412 primes) Sun Aug 24 12:53:44 2008 using large prime bound of 116651806 (26 bits) Sun Aug 24 12:53:44 2008 using double large prime bound of 331439743440844 (41-49 bits) Sun Aug 24 12:53:44 2008 using trial factoring cutoff of 49 bits Sun Aug 24 12:53:44 2008 polynomial 'A' values have 11 factors Sun Aug 24 13:17:41 2008 54639 relations (16031 full + 38608 combined from 572576 partial), need 54508 Sun Aug 24 13:17:42 2008 begin with 588606 relations Sun Aug 24 13:17:43 2008 reduce to 127985 relations in 11 passes Sun Aug 24 13:17:43 2008 attempting to read 127985 relations Sun Aug 24 13:17:44 2008 recovered 127985 relations Sun Aug 24 13:17:44 2008 recovered 109198 polynomials Sun Aug 24 13:17:44 2008 attempting to build 54639 cycles Sun Aug 24 13:17:44 2008 found 54639 cycles in 6 passes Sun Aug 24 13:17:44 2008 distribution of cycle lengths: Sun Aug 24 13:17:44 2008 length 1 : 16031 Sun Aug 24 13:17:44 2008 length 2 : 11091 Sun Aug 24 13:17:44 2008 length 3 : 9819 Sun Aug 24 13:17:44 2008 length 4 : 6949 Sun Aug 24 13:17:44 2008 length 5 : 4532 Sun Aug 24 13:17:44 2008 length 6 : 2756 Sun Aug 24 13:17:44 2008 length 7 : 1649 Sun Aug 24 13:17:44 2008 length 9+: 1812 Sun Aug 24 13:17:44 2008 largest cycle: 19 relations Sun Aug 24 13:17:44 2008 matrix is 54412 x 54639 (12.2 MB) with weight 2973852 (54.43/col) Sun Aug 24 13:17:44 2008 sparse part has weight 2973852 (54.43/col) Sun Aug 24 13:17:44 2008 filtering completed in 3 passes Sun Aug 24 13:17:44 2008 matrix is 49179 x 49239 (11.1 MB) with weight 2708823 (55.01/col) Sun Aug 24 13:17:44 2008 sparse part has weight 2708823 (55.01/col) Sun Aug 24 13:17:44 2008 saving the first 48 matrix rows for later Sun Aug 24 13:17:45 2008 matrix is 49131 x 49239 (7.1 MB) with weight 2122297 (43.10/col) Sun Aug 24 13:17:45 2008 sparse part has weight 1554725 (31.58/col) Sun Aug 24 13:17:45 2008 matrix includes 64 packed rows Sun Aug 24 13:17:45 2008 using block size 19695 for processor cache size 4096 kB Sun Aug 24 13:17:45 2008 commencing Lanczos iteration Sun Aug 24 13:17:45 2008 memory use: 7.0 MB Sun Aug 24 13:17:55 2008 lanczos halted after 779 iterations (dim = 49130) Sun Aug 24 13:17:55 2008 recovered 17 nontrivial dependencies Sun Aug 24 13:17:57 2008 prp28 factor: 6149421791025899547499894967 Sun Aug 24 13:17:57 2008 prp57 factor: 601220980001406340971556885053700885153827701171358855913 Sun Aug 24 13:17:57 2008 elapsed time 00:24:14
(8·10135-11)/3 = 2(6)1343<136> = 19 · 1399 · 28360288684575581731<20> · 6005110147387091815727<22> · C90
C90 = P39 · P51
P39 = 760367035665068717323133747416114223399<39>
P51 = 774715974656339115136575138199572212734645113395921<51>
Sun Aug 24 13:20:02 2008 Msieve v. 1.36 Sun Aug 24 13:20:02 2008 random seeds: fbaa4548 d5ff5a09 Sun Aug 24 13:20:02 2008 factoring 589068489131815076485354105182151500327586386083290131231332775086317716668600958529355479 (90 digits) Sun Aug 24 13:20:03 2008 searching for 15-digit factors Sun Aug 24 13:20:04 2008 commencing quadratic sieve (90-digit input) Sun Aug 24 13:20:04 2008 using multiplier of 31 Sun Aug 24 13:20:04 2008 using 32kb Intel Core sieve core Sun Aug 24 13:20:04 2008 sieve interval: 36 blocks of size 32768 Sun Aug 24 13:20:04 2008 processing polynomials in batches of 6 Sun Aug 24 13:20:04 2008 using a sieve bound of 1615223 (61176 primes) Sun Aug 24 13:20:04 2008 using large prime bound of 135678732 (27 bits) Sun Aug 24 13:20:04 2008 using double large prime bound of 435031874203416 (42-49 bits) Sun Aug 24 13:20:04 2008 using trial factoring cutoff of 49 bits Sun Aug 24 13:20:04 2008 polynomial 'A' values have 12 factors Sun Aug 24 14:23:42 2008 61374 relations (16026 full + 45348 combined from 666990 partial), need 61272 Sun Aug 24 14:23:44 2008 begin with 683015 relations Sun Aug 24 14:23:44 2008 reduce to 150768 relations in 11 passes Sun Aug 24 14:23:44 2008 attempting to read 150768 relations Sun Aug 24 14:23:45 2008 recovered 150768 relations Sun Aug 24 14:23:45 2008 recovered 132163 polynomials Sun Aug 24 14:23:46 2008 attempting to build 61374 cycles Sun Aug 24 14:23:46 2008 found 61374 cycles in 5 passes Sun Aug 24 14:23:46 2008 distribution of cycle lengths: Sun Aug 24 14:23:46 2008 length 1 : 16026 Sun Aug 24 14:23:46 2008 length 2 : 11796 Sun Aug 24 14:23:46 2008 length 3 : 10722 Sun Aug 24 14:23:46 2008 length 4 : 8278 Sun Aug 24 14:23:46 2008 length 5 : 5853 Sun Aug 24 14:23:46 2008 length 6 : 3771 Sun Aug 24 14:23:46 2008 length 7 : 2257 Sun Aug 24 14:23:46 2008 length 9+: 2671 Sun Aug 24 14:23:46 2008 largest cycle: 20 relations Sun Aug 24 14:23:46 2008 matrix is 61176 x 61374 (15.1 MB) with weight 3710603 (60.46/col) Sun Aug 24 14:23:46 2008 sparse part has weight 3710603 (60.46/col) Sun Aug 24 14:23:46 2008 filtering completed in 4 passes Sun Aug 24 14:23:46 2008 matrix is 57514 x 57578 (14.3 MB) with weight 3511473 (60.99/col) Sun Aug 24 14:23:46 2008 sparse part has weight 3511473 (60.99/col) Sun Aug 24 14:23:46 2008 saving the first 48 matrix rows for later Sun Aug 24 14:23:46 2008 matrix is 57466 x 57578 (9.1 MB) with weight 2779570 (48.27/col) Sun Aug 24 14:23:46 2008 sparse part has weight 2038144 (35.40/col) Sun Aug 24 14:23:46 2008 matrix includes 64 packed rows Sun Aug 24 14:23:46 2008 using block size 23031 for processor cache size 4096 kB Sun Aug 24 14:23:47 2008 commencing Lanczos iteration Sun Aug 24 14:23:47 2008 memory use: 8.8 MB Sun Aug 24 14:24:02 2008 lanczos halted after 911 iterations (dim = 57464) Sun Aug 24 14:24:02 2008 recovered 16 nontrivial dependencies Sun Aug 24 14:24:03 2008 prp39 factor: 760367035665068717323133747416114223399 Sun Aug 24 14:24:03 2008 prp51 factor: 774715974656339115136575138199572212734645113395921 Sun Aug 24 14:24:03 2008 elapsed time 01:04:01
(8·10102-11)/3 = 2(6)1013<103> = 29 · 70516981 · C94
C94 = P45 · P49
P45 = 919296806573087122167025368337737943218105509<45>
P49 = 1418473648139463334070630967104623852741892124443<49>
Number: 26663_102 N=1303998294942685466447248806768902972446460444933734162001625398992691667717090268173731856487 ( 94 digits) SNFS difficulty: 102 digits. Divisors found: r1=919296806573087122167025368337737943218105509 (pp45) r2=1418473648139463334070630967104623852741892124443 (pp49) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 0.29 hours. Scaled time: 0.99 units (timescale=3.423). Factorization parameters were as follows: n: 1303998294942685466447248806768902972446460444933734162001625398992691667717090268173731856487 Y1: 1 Y0: -200000000000000000000 c5: 25 c0: -11 skew: 0.85 type: snfs Factor base limits: 300000/350000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [175000, 235001) Relations: rels:882623, finalFF:80529 Initial matrix: 55859 x 80529 with sparse part having weight 2078125. Pruned matrix : 44104 x 44447 with weight 826916. Total sieving time: 0.27 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,300000,350000,25,25,43,43,2.1,2.1,10000 total time: 0.29 hours.
Factorizations of 266...663 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Robert Backstrom / GGNFS, Msieve
(28·10192+17)/9 = 3(1)1913<193> = 521 · C190
C190 = P73 · P118
P73 = 1458937323972688141163556335746502776674397881172224762818763944697215069<73>
P118 = 4092994524178830122862088646214472282038812569865140154265414739307172089165984897534485615008489229532328512174074037<118>
Number: n N=5971422478140328428236297718063552996374493495414800597142247814032842823629771806355299637449349541480059714224781403284282362977180635529963744934954148005971422478140328428236297718063553 ( 190 digits) SNFS difficulty: 193 digits. Divisors found: Sun Aug 24 01:06:20 2008 prp73 factor: 1458937323972688141163556335746502776674397881172224762818763944697215069 Sun Aug 24 01:06:20 2008 prp118 factor: 4092994524178830122862088646214472282038812569865140154265414739307172089165984897534485615008489229532328512174074037 Sun Aug 24 01:06:20 2008 elapsed time 13:52:38 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 205.33 hours. Scaled time: 269.80 units (timescale=1.314). Factorization parameters were as follows: name: KA_3_1_191_3 n: 5971422478140328428236297718063552996374493495414800597142247814032842823629771806355299637449349541480059714224781403284282362977180635529963744934954148005971422478140328428236297718063553 type: snfs skew: 0.66 deg: 5 c5: 175 c0: 34 m: 200000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 19100001) Primes: RFBsize:633578, AFBsize:634408, largePrimes:11259898 encountered Relations: rels:11316728, finalFF:1301584 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 204.60 hours. Total relation processing time: 0.73 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,193,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 205.33 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Serge Batalov / Msieve
(5·10166+1)/3 = 1(6)1657<167> = 7 · 2412311810963<13> · 21681484588402783327<20> · C134
C134 = P60 · P75
P60 = 120290653074033155377693119077932432451849157820371719000141<60>
P75 = 378439419381373063595334977207576433701637494219631261758036807264278082741<75>
Number: 16667_166 N=45522724906343286192598532980210324781874447309646171866952716995837515000348028814367639145587478869903469660672480559082664988666481 ( 134 digits) SNFS difficulty: 166 digits. Divisors found: r1=120290653074033155377693119077932432451849157820371719000141 r2=378439419381373063595334977207576433701637494219631261758036807264278082741 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.719). Factorization parameters were as follows: n: 45522724906343286192598532980210324781874447309646171866952716995837515000348028814367639145587478869903469660672480559082664988666481 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 50 c0: 1 skew: 0.46 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 714390 x 714638 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.90 hours. Time per square root: 0.60 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 24.00 hours.
By Serge Batalov / Msieve
4·10166+1 = 4(0)1651<167> = 13 · 41 · 4517 · 152421337841<12> · 941160476969540120952877<24> · C126
C126 = P51 · P75
P51 = 338717486802811900673981008844119653096357974239957<51>
P75 = 341928753479598700237304527485927308118819144008567869244980664981674968409<75>
Number: 40001_166 N=115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413 ( 126 digits) SNFS difficulty: 166 digits. Divisors found: r1=338717486802811900673981008844119653096357974239957 r2=341928753479598700237304527485927308118819144008567869244980664981674968409 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.694). Factorization parameters were as follows: n: 115817248044227896509289122964484316966630639321189981212930837312203257669785275747098638613513868711415814586413023760518413 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 40 c0: 1 skew: 0.48 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 3900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 741740 x 741988 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.20 hours. Time per square root: 0.40 hours. * 2 Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 23.50 hours.
(7·10171-1)/3 = 2(3)171<172> = 1138853 · C166
C166 = P56 · P110
P56 = 52466933536616764762455731674465527913345675902479976653<56>
P110 = 39050215312850715281346300573082614025282121181643881618463088046577029592640409813713876589831290571574330037<110>
Number: 23333_171 N=2048845051409912722127731439732198390251712322251715834557518251550756184804652868573321871508731445878733544481450488634910153754113422305893151559800372245876626161 ( 166 digits) SNFS difficulty: 171 digits. Divisors found: r1=52466933536616764762455731674465527913345675902479976653 r2=39050215312850715281346300573082614025282121181643881618463088046577029592640409813713876589831290571574330037 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 2048845051409912722127731439732198390251712322251715834557518251550756184804652868573321871508731445878733544481450488634910153754113422305893151559800372245876626161 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 70 c0: -1 skew: 0.43 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 5700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1012135 x 1012383 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.20 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.6,2.6,100000 total time: 44.50 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(5·10198-23)/9 = (5)1973<198> = 79 · 1787 · 92166227 · 62964716122813547478189355909<29> · 119356565544646731891786102577789<33> · C124
C124 = P42 · P83
P42 = 396488530126012349110486416962263561871273<42>
P83 = 14329460853556106742975766217842853536031643858403149301167495308116549583366771591<83>
(22·10174+23)/9 = 2(4)1737<175> = 947 · C172
C172 = P44 · P45 · P85
P44 = 13793496764933613173998444708639348503342167<44>
P45 = 110540140507371818048930699460533646011671649<45>
P85 = 1692917532546119710378264581159890068911580941102272929764210993817970269701152940547<85>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2581250733309867417575970902264460870585474598146192655168367945559075442919159920215886424967734365833626657280300363721694239117681567523172591810395400680511556963510501 (172 digits) Using B1=4606000, B2=8562235510, polynomial Dickson(6), sigma=970024370 Step 1 took 65031ms Step 2 took 21375ms ********** Factor found in step 2: 13793496764933613173998444708639348503342167 Found probable prime factor of 44 digits: 13793496764933613173998444708639348503342167 Composite cofactor 187135341915041275536807385055191549657231130756477371436302859011515528532617086139748716813756071039729965347118336379382452003 has 129 digits Number: n N=187135341915041275536807385055191549657231130756477371436302859011515528532617086139748716813756071039729965347118336379382452003 ( 129 digits) SNFS difficulty: 176 digits. Divisors found: Fri Aug 22 16:47:46 2008 prp45 factor: 110540140507371818048930699460533646011671649 Fri Aug 22 16:47:46 2008 prp85 factor: 1692917532546119710378264581159890068911580941102272929764210993817970269701152940547 Fri Aug 22 16:47:46 2008 elapsed time 02:52:14 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 48.99 hours. Scaled time: 41.06 units (timescale=0.838). Factorization parameters were as follows: name: KA_2_4_173_7 n: 187135341915041275536807385055191549657231130756477371436302859011515528532617086139748716813756071039729965347118336379382452003 type: snfs skew: 1.60 deg: 5 c5: 11 c0: 115 m: 100000000000000000000000000000000000 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 5300001) Primes: RFBsize:501962, AFBsize:502147, largePrimes:10305780 encountered Relations: rels:10097030, finalFF:1048955 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 48.70 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,50,50,2.5,2.5,100000 total time: 48.99 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Serge Batalov / Msieve
9·10177-1 = 8(9)177<178> = 89 · 757 · C174
C174 = P76 · P98
P76 = 2795376519729848150784923706882701877318922481507609115407740172075186231071<76>
P98 = 47787719999108578060151819968036562451065721814882830579492456551763376466710619837746260674550853<98>
Number: 89999_177 N=133584670416932599112404078785270063675359565404538910245944220978730351921392842830213883900078666528134415863921749068617992370831045077404895136033722707909696762798153563 ( 174 digits) SNFS difficulty: 177 digits. Divisors found: r1=2795376519729848150784923706882701877318922481507609115407740172075186231071 r2=47787719999108578060151819968036562451065721814882830579492456551763376466710619837746260674550853 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.651). Factorization parameters were as follows: n: 133584670416932599112404078785270063675359565404538910245944220978730351921392842830213883900078666528134415863921749068617992370831045077404895136033722707909696762798153563 Y1: 1 Y0: -100000000000000000000000000000000000 c5: 900 c0: -1 skew: 0.26 type: snfs Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [5700000, 9700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1301455 x 1301703 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 7.00 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,52,52,2.6,2.6,100000 total time: 76.00 hours.
By matsui / GGNFS
10191+9 = 1(0)1909<192> = 7 · 13 · 103 · C188
C188 = P39 · P149
P39 = 558512525126795884293354955450279221529<39>
P149 = 19102423361688353491586596941283273631279087307124210159959098992316128275614458548628339728160988510023049614103059197070847250912364210612167195877<149>
N=10668942707777659233969913581564067000960204843699989331057292222340766030086418435932999039795156300010668942707777659233969913581564067000960204843699989331057292222340766030086418435933 ( 188 digits) SNFS difficulty: 191 digits. Divisors found: r1=558512525126795884293354955450279221529 (pp39) r2=19102423361688353491586596941283273631279087307124210159959098992316128275614458548628339728160988510023049614103059197070847250912364210612167195877 (pp149) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 477.36 hours. Scaled time: 915.57 units (timescale=1.918). Factorization parameters were as follows: n: 10668942707777659233969913581564067000960204843699989331057292222340766030086418435932999039795156300010668942707777659233969913581564067000960204843699989331057292222340766030086418435933 m: 100000000000000000000000000000000000000 c5: 10 c0: 9 skew: 0.98 type: snfs rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 14500001) Primes: RFBsize:664579, AFBsize:664685, largePrimes:11579378 encountered Relations: rels:11937015, finalFF:1530165 Max relations in full relation-set: 28 Initial matrix: 1329331 x 1530165 with sparse part having weight 146036484. Pruned matrix : 1164732 x 1171442 with weight 119352904. Total sieving time: 456.55 hours. Total relation processing time: 0.53 hours. Matrix solve time: 19.77 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 477.36 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(5·10174-23)/9 = (5)1733<174> = 17 · 29 · C172
C172 = P63 · P109
P63 = 359886655710553109256565370413038399176555884657330308072113227<63>
P109 = 3131229009864065205534482597030840703301171760518459388457299185286436731474229584526926422614873427573448623<109>
Number: n N=1126887536623844940274960558936218165427090376380437232364210051836826684696867252648185711066035609646157313500112688753662384494027496055893621816542709037638043723236421 ( 172 digits) SNFS difficulty: 175 digits. Divisors found: Wed Aug 20 12:24:15 2008 prp63 factor: 359886655710553109256565370413038399176555884657330308072113227 Wed Aug 20 12:24:15 2008 prp109 factor: 3131229009864065205534482597030840703301171760518459388457299185286436731474229584526926422614873427573448623 Wed Aug 20 12:24:15 2008 elapsed time 02:54:01 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 43.83 hours. Scaled time: 36.90 units (timescale=0.842). Factorization parameters were as follows: name: KA_5_173_3 n: 1126887536623844940274960558936218165427090376380437232364210051836826684696867252648185711066035609646157313500112688753662384494027496055893621816542709037638043723236421 type: snfs skew: 2.15 deg: 5 c5: 1 c0: -46 m: 100000000000000000000000000000000000 rlim: 7400000 alim: 7400000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 4700001) Primes: RFBsize:501962, AFBsize:502151, largePrimes:10263667 encountered Relations: rels:10063226, finalFF:1058780 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.56 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,28,28,50,50,2.5,2.5,100000 total time: 43.83 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(67·10170+23)/9 = 7(4)1697<171> = 3 · 2340797939300562583<19> · 702139207668471108691<21> · C132
C132 = P42 · P90
P42 = 391473357601478428260308573141911055833729<42>
P90 = 385675167227586804576204636749049134730109858952723259341925218373142706418135301504058177<90>
By Wataru Sakai / GGNFS
(5·10189+1)/3 = 1(6)1887<190> = 89 · C188
C188 = P69 · P120
P69 = 155220716217629705641047956974028903638974953850976713020609050449043<69>
P120 = 120644925604155219989104828180435891279930064771908342549722918494534590742040930991869791304135720103379793852604543921<120>
Number: 16667_189 N=18726591760299625468164794007490636704119850187265917602996254681647940074906367041198501872659176029962546816479400749063670411985018726591760299625468164794007490636704119850187265917603 ( 188 digits) SNFS difficulty: 190 digits. Divisors found: r1=155220716217629705641047956974028903638974953850976713020609050449043 (pp69) r2=120644925604155219989104828180435891279930064771908342549722918494534590742040930991869791304135720103379793852604543921 (pp120) Version: GGNFS-0.77.1-20060722-nocona Total time: 878.82 hours. Scaled time: 1761.16 units (timescale=2.004). Factorization parameters were as follows: n: 18726591760299625468164794007490636704119850187265917602996254681647940074906367041198501872659176029962546816479400749063670411985018726591760299625468164794007490636704119850187265917603 m: 100000000000000000000000000000000000000 c5: 1 c0: 2 skew: 1.15 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15700001) Primes: RFBsize:501962, AFBsize:501936, largePrimes:6977777 encountered Relations: rels:7567375, finalFF:1214697 Max relations in full relation-set: 32 Initial matrix: 1003962 x 1214697 with sparse part having weight 117983597. Pruned matrix : 840086 x 845169 with weight 98678495. Total sieving time: 869.86 hours. Total relation processing time: 0.12 hours. Matrix solve time: 8.60 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 878.82 hours. --------- CPU info (if available) ----------
10188+7 = 1(0)1877<189> = 919 · C186
C186 = P48 · P138
P48 = 546994870962230793373065729931284587933779712219<48>
P138 = 198930436022901655488560388986742823483843042807587457103337590796061445066460085353325337124807905412409771088506395458055122523822016387<138>
Number: 10007_188 N=108813928182807399347116430903155603917301414581066376496191512513601741022850924918389553862894450489662676822633297062023939064200217627856365614798694232861806311207834602829162132753 ( 186 digits) SNFS difficulty: 188 digits. Divisors found: r1=546994870962230793373065729931284587933779712219 (pp48) r2=198930436022901655488560388986742823483843042807587457103337590796061445066460085353325337124807905412409771088506395458055122523822016387 (pp138) Version: GGNFS-0.77.1-20060722-nocona Total time: 842.87 hours. Scaled time: 1690.80 units (timescale=2.006). Factorization parameters were as follows: n: 108813928182807399347116430903155603917301414581066376496191512513601741022850924918389553862894450489662676822633297062023939064200217627856365614798694232861806311207834602829162132753 m: 10000000000000000000000000000000000000 c5: 1000 c0: 7 skew: 0.37 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15000001) Primes: RFBsize:501962, AFBsize:501101, largePrimes:6954314 encountered Relations: rels:7527639, finalFF:1210235 Max relations in full relation-set: 32 Initial matrix: 1003129 x 1210235 with sparse part having weight 117655184. Pruned matrix : 840397 x 845476 with weight 97173257. Total sieving time: 833.71 hours. Total relation processing time: 0.14 hours. Matrix solve time: 8.78 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 842.87 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(23·10171+31)/9 = 2(5)1709<172> = 3 · 347 · C169
C169 = P46 · P123
P46 = 2507406786358400630053956114754671784954141033<46>
P123 = 979061110287926914452686823674334926754673406716505690256590865236353645010621985257918365427531665179753798361452391361503<123>
Number: 25559_171 N=2454904472195538477959227238766143665279111964990927526950581705624933290639342512541359803607642224356921763261820898708506777671042800725797843953463550005336748852599 ( 169 digits) SNFS difficulty: 172 digits. Divisors found: r1=2507406786358400630053956114754671784954141033 r2=979061110287926914452686823674334926754673406716505690256590865236353645010621985257918365427531665179753798361452391361503 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.721). Factorization parameters were as follows: n: 2454904472195538477959227238766143665279111964990927526950581705624933290639342512541359803607642224356921763261820898708506777671042800725797843953463550005336748852599 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 230 c0: 31 skew: 0.67 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [4500000, 10000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1302887 x 1303135 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 7.15 hours. Time per square root: 2.70 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,9000000,9000000,27,27,52,52,2.6,2.6,100000 total time: 84.00 hours.
By Sinkiti Sibata / GMP-ECM
(22·10179-13)/9 = 2(4)1783<180> = 3 · 167 · 630373842617<12> · 2216727877196124340330489<25> · C141
C141 = P47 · P95
P47 = 24726223009098487467636225633358624031335131751<47>
P95 = 14121281057022318743169320232071258885317897178039011226565812763366085713013565900617484617961<95>
factor24443_179 GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 349165944590091867944970739224950115657298071576715071521804379303095232821001110672336976242671808298508474956698907944114498422023835979711 Run 1472 out of 2350: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1048915276 Step 1 took 49375ms Step 2 took 17269ms ********** Factor found in step 2: 24726223009098487467636225633358624031335131751 Found probable prime factor of 47 digits: 24726223009098487467636225633358624031335131751 Probable prime cofactor 14121281057022318743169320232071258885317897178039011226565812763366085713013565900617484617961 has 95 digits
By Robert Backstrom / GGNFS, Msieve
9·10192+1 = 9(0)1911<193> = 1109 · C190
C190 = P62 · P129
P62 = 14734116298400713270539985713991888026642775154005017603856013<62>
P129 = 550791043881235942395862556041076669468450897765276463896412425335034457457595786628772946981138862497150863003489314800842696753<129>
Number: n N=8115419296663660955816050495942290351668169522091974752028854824165915238954012623985572587917042380522993688007213706041478809738503155996393146979260595130748422001803426510369702434625789 ( 190 digits) SNFS difficulty: 192 digits. Divisors found: Mon Aug 18 06:37:29 2008 prp62 factor: 14734116298400713270539985713991888026642775154005017603856013 Mon Aug 18 06:37:30 2008 prp129 factor: 550791043881235942395862556041076669468450897765276463896412425335034457457595786628772946981138862497150863003489314800842696753 Mon Aug 18 06:37:30 2008 elapsed time 06:34:54 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 151.51 hours. Scaled time: 309.84 units (timescale=2.045). Factorization parameters were as follows: name: KA_9_0_191_1 n: 8115419296663660955816050495942290351668169522091974752028854824165915238954012623985572587917042380522993688007213706041478809738503155996393146979260595130748422001803426510369702434625789 type: snfs skew: 0.26 deg: 5 c5: 900 c0: 1 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 12100001) Primes: RFBsize:633578, AFBsize:632398, largePrimes:11067961 encountered Relations: rels:11117802, finalFF:1296478 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 151.11 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 151.51 hours. --------- CPU info (if available) ----------
(23·10166+31)/9 = 2(5)1659<167> = 172 · 107 · C162
C162 = P56 · P107
P56 = 18196127155026565765210313040636762315634917977595426793<56>
P107 = 45417658774727419799492427840630036712482623752503343649034406587180499821842694832789683367090599801389581<107>
Number: n N=826425494148548185996040343936731738691445058873833572278095771935308849579780601997075172381578616419996622434936958107413755313376954226807087137585472158443733 ( 162 digits) SNFS difficulty: 167 digits. Divisors found: Mon Aug 18 12:45:53 2008 prp56 factor: 18196127155026565765210313040636762315634917977595426793 Mon Aug 18 12:45:57 2008 prp107 factor: 45417658774727419799492427840630036712482623752503343649034406587180499821842694832789683367090599801389581 Mon Aug 18 12:45:57 2008 elapsed time 01:29:48 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 49.69 hours. Scaled time: 41.59 units (timescale=0.837). Factorization parameters were as follows: name: KA_2_5_165_9 n: 826425494148548185996040343936731738691445058873833572278095771935308849579780601997075172381578616419996622434936958107413755313376954226807087137585472158443733 type: snfs deg: 5 c5: 230 c0: 31 skew: 0.28 m: 1000000000000000000000000000000000 rlim: 6000000 alim: 6000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5700001) Primes: RFBsize:412849, AFBsize:413297, largePrimes:5940623 encountered Relations: rels:6154327, finalFF:881975 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 49.48 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.5,2.5,100000 total time: 49.69 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Jo Yeong Uk / GGNFS
(23·10170+31)/9 = 2(5)1699<171> = 7 · 37 · 26671840033<11> · 161421299558369246533<21> · 297906976876056499602031<24> · C114
C114 = P50 · P65
P50 = 36980604693757519861771088341660957144857651838787<50>
P65 = 20802573382540544081050343846624872121634029784960968772855844397<65>
Number: 25559_170 N=769291742872614091219688752614724603405832009110180438834256123590702076321274183344961360080414224048366601226439 ( 114 digits) Divisors found: r1=36980604693757519861771088341660957144857651838787 (pp50) r2=20802573382540544081050343846624872121634029784960968772855844397 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.66 hours. Scaled time: 46.86 units (timescale=2.383). Factorization parameters were as follows: name: 25559_170 n: 769291742872614091219688752614724603405832009110180438834256123590702076321274183344961360080414224048366601226439 skew: 46401.47 # norm 1.16e+16 c5: 59280 c4: -555799160 c3: -633544502641438 c2: 2986793278184410387 c1: 397242036976346980316280 c0: -1036910798119627579106192689 # alpha -6.47 Y1: 467621825129 Y0: -6647167652001661320280 # Murphy_E 5.90e-10 # M 68984389221729131535103752351912674335008154275451042128487769092207973153624902851094592364583691152142341444552 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2870001) Primes: RFBsize:250150, AFBsize:249788, largePrimes:7423751 encountered Relations: rels:7272702, finalFF:578183 Max relations in full relation-set: 28 Initial matrix: 500021 x 578183 with sparse part having weight 47872572. Pruned matrix : 436944 x 439508 with weight 31525107. Polynomial selection time: 1.19 hours. Total sieving time: 17.17 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.05 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 19.66 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2459k kernel code, 339200k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.73 BogoMIPS (lpj=2672366) Calibrating delay using timer specific routine.. 5343.99 BogoMIPS (lpj=2671997) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve
(23·10165+31)/9 = 2(5)1649<166> = 3 · C165
C165 = P57 · P109
P57 = 352723018532378683493559904773387908384026434468579905407<57>
P109 = 2415073037751447362227275468798835152491591313608019272430734224422879445896978821428462796498802433657712179<109>
Number: 25559_165 N=851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 ( 165 digits) SNFS difficulty: 166 digits. Divisors found: r1=352723018532378683493559904773387908384026434468579905407 r2=2415073037751447362227275468798835152491591313608019272430734224422879445896978821428462796498802433657712179 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.740). Factorization parameters were as follows: n: 851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 Y1: 1 Y0: -1000000000000000000000000000000000 c5: 23 c0: 31 skew: 1.06 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4600001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 874652 x 874900 Total sieving time: 0.00 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 32.00 hours.
By Sinkiti Sibata / GGNFS, GMP-ECM
(22·10165-31)/9 = 2(4)1641<166> = 1697 · 111127 · 3102605993391224233<19> · C139
C139 = P43 · P96
P43 = 9181028417573967427804067865162623442511111<43>
P96 = 455051740794629015966935014142950094789983481286596107420482412029657149588773814025318977528753<96>
Number: 24441_165 N=4177842963701992033746833730712078164567800348143405756245054797703306366232238457460680059458300800412620841713791420956286274751524474583 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: r1=9181028417573967427804067865162623442511111 (pp43) r2=455051740794629015966935014142950094789983481286596107420482412029657149588773814025318977528753 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 92.09 hours. Scaled time: 92.92 units (timescale=1.009). Factorization parameters were as follows: name: 24441_165 n: 4177842963701992033746833730712078164567800348143405756245054797703306366232238457460680059458300800412620841713791420956286274751524474583 m: 1000000000000000000000000000000000 c5: 22 c0: -31 skew: 1.07 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5800001) Primes: RFBsize:348513, AFBsize:349063, largePrimes:6054324 encountered Relations: rels:6306720, finalFF:875688 Max relations in full relation-set: 28 Initial matrix: 697642 x 875688 with sparse part having weight 62365519. Pruned matrix : 559325 x 562877 with weight 44759532. Total sieving time: 89.22 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.66 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 92.09 hours. --------- CPU info (if available) ----------
(23·10164+31)/9 = 2(5)1639<165> = 73 · 37 · 53 · 724604863 · 2644339927<10> · 149558255498137<15> · 31384734606290870461<20> · C107
C107 = P44 · P64
P44 = 20314652098684047620712717838258567099838687<44>
P64 = 2079490044692460090839907111629368942340721746105913902433258787<64>
Number: 25559_164 N=42244116800604268366529850193804123484513381418170860149158312723787899125249545685537409884760891425292669 ( 107 digits) Divisors found: r1=20314652098684047620712717838258567099838687 (pp44) r2=2079490044692460090839907111629368942340721746105913902433258787 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.02 hours. Scaled time: 13.97 units (timescale=0.775). Factorization parameters were as follows: name: 25559_164 n: 42244116800604268366529850193804123484513381418170860149158312723787899125249545685537409884760891425292669 skew: 16965.36 # norm 7.81e+14 c5: 37380 c4: -2072117878 c3: 459849219343 c2: 650402933349225612 c1: 3693541153055369233838 c0: -99725642052992786755340 # alpha -6.01 Y1: 244617478073 Y0: -257412696036039939867 # Murphy_E 1.59e-09 # M 14173624692086331959785602197541481713292728257386366262229978088003544278931180429090516706414989995363285 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2600001) Primes: RFBsize:183072, AFBsize:182751, largePrimes:4603461 encountered Relations: rels:4871820, finalFF:586406 Max relations in full relation-set: 28 Initial matrix: 365902 x 586406 with sparse part having weight 48127292. Pruned matrix : 228725 x 230618 with weight 25556880. Total sieving time: 17.12 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.56 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 18.02 hours. --------- CPU info (if available) ----------
(22·10175-13)/9 = 2(4)1743<176> = 499 · 665179 · C167
C167 = P39 · C129
P39 = 108255761415671706622622739225515636293<39>
C129 = [680283718429769696056120418073040544541397423248695726710441763806401518016805452458069590962210373264962514288556879937951373631<129>]
Factorizations of 244...443 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Tyler Cadigan / GGNFS, Msieve
10191-9 = (9)1901<191> = 25890181282711<14> · 19215578593700683<17> · C162
C162 = P55 · P108
P55 = 1107810740439824418721011542356263180679141608975450841<55>
P108 = 181445361934394941929618652274442590996558678743985524419560737457231701804057845993063138605270872862639227<108>
Number: 99991_191 N=201007120753913992913726676871999752197866484593647274473058062430107124951627993332234694165639979396161961186666496539291615060870044793869267715322527456739907 ( 162 digits) SNFS difficulty: 191 digits. Divisors found: r1=1107810740439824418721011542356263180679141608975450841 r2=181445361934394941929618652274442590996558678743985524419560737457231701804057845993063138605270872862639227 Version: Total time: 363.74 hours. Scaled time: 939.54 units (timescale=2.583). Factorization parameters were as follows: n: 201007120753913992913726676871999752197866484593647274473058062430107124951627993332234694165639979396161961186666496539291615060870044793869267715322527456739907 m: 100000000000000000000000000000000000000 Y0: -100000000000000000000000000000000000000 Y1: 1 c5: 10 c0: -9 skew: 0.98 type: snfs lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 qintsize: 1000000Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [10000000, 15000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2351993 x 2352241 Total sieving time: 363.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,58,58,2.6,2.6,100000 total time: 363.74 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(5·10172+31)/9 = (5)1719<172> = 33 · 19 · 367 · 43714416961213<14> · 1653798301727248021218700562722037<34> · C120
C120 = P44 · P76
P44 = 72241579725298286703752721169908212029424891<44>
P76 = 5650014980209093403988213136282838275204663201213283605113623503379000966699<76>
Number: 55559_172 N=408166007641904842658786198853065554777699197980622797915618429703920585969239307313834166622909064779063867322012704809 ( 120 digits) Divisors found: r1=72241579725298286703752721169908212029424891 (pp44) r2=5650014980209093403988213136282838275204663201213283605113623503379000966699 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 42.61 hours. Scaled time: 99.58 units (timescale=2.337). Factorization parameters were as follows: name: 55559_172 n: 408166007641904842658786198853065554777699197980622797915618429703920585969239307313834166622909064779063867322012704809 skew: 54464.11 # norm 3.98e+16 c5: 40560 c4: 6211959848 c3: 1146515758710458 c2: -11049075575316808459 c1: -1084310473612104839818758 c0: 92932460856167809044240576 # alpha -6.32 Y1: 5874725186849 Y0: -100126030045029031070743 # Murphy_E 2.99e-10 # M 258527015088446783614594124384726963336972174365477566922540598905648026740976070805859456854511819187120769710896024535 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4650001) Primes: RFBsize:315948, AFBsize:316780, largePrimes:7744450 encountered Relations: rels:7832498, finalFF:721672 Max relations in full relation-set: 28 Initial matrix: 632807 x 721672 with sparse part having weight 65602018. Pruned matrix : 562992 x 566220 with weight 47467813. Polynomial selection time: 2.63 hours. Total sieving time: 37.39 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.29 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 42.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2459k kernel code, 339200k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.73 BogoMIPS (lpj=2672366) Calibrating delay using timer specific routine.. 5343.99 BogoMIPS (lpj=2671997) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS
(23·10149+31)/9 = 2(5)1489<150> = 37 · 191 · 15679 · 37011751151<11> · C131
C131 = P34 · P98
P34 = 3361584197264652895273596117265271<34>
P98 = 18537375539177608834436534677836482023113574981058078117740700688664556806167695348972239081086803<98>
Number: 25559_149 N=62314948671259774341306738441476012012330414940443595705313775103277218363502467421308755586346875644340628426542897274022928318613 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=3361584197264652895273596117265271 (pp34) r2=18537375539177608834436534677836482023113574981058078117740700688664556806167695348972239081086803 (pp98) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.35 hours. Scaled time: 24.57 units (timescale=1.009). Factorization parameters were as follows: name: 25559_149 n: 62314948671259774341306738441476012012330414940443595705313775103277218363502467421308755586346875644340628426542897274022928318613 m: 1000000000000000000000000000000 c5: 23 c0: 310 skew: 1.68 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176064, largePrimes:5968072 encountered Relations: rels:6262049, finalFF:824133 Max relations in full relation-set: 28 Initial matrix: 352431 x 824133 with sparse part having weight 71719533. Pruned matrix : 215298 x 217124 with weight 31813327. Total sieving time: 23.81 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.40 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 24.35 hours. --------- CPU info (if available) ----------
(23·10142+31)/9 = 2(5)1419<143> = 48904153 · C135
C135 = P30 · P106
P30 = 444194718344280895043997630773<30>
P106 = 1176430281451362767142572801287387880687088852707840173878701242816842277224993751011294270542540793205411<106>
Number: 25559_142 N=522564117520971185321532008857316382834716625304921558616004566228875399509639918629314683265356943316359155746047898131587220323712703 ( 135 digits) SNFS difficulty: 143 digits. Divisors found: r1=444194718344280895043997630773 (pp30) r2=1176430281451362767142572801287387880687088852707840173878701242816842277224993751011294270542540793205411 (pp106) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.94 hours. Scaled time: 16.94 units (timescale=1.000). Factorization parameters were as follows: name: 25559_142 n: 522564117520971185321532008857316382834716625304921558616004566228875399509639918629314683265356943316359155746047898131587220323712703 m: 10000000000000000000000000000 c5: 2300 c0: 31 skew: 0.42 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3150001) Primes: RFBsize:100021, AFBsize:100199, largePrimes:3033286 encountered Relations: rels:3111625, finalFF:248898 Max relations in full relation-set: 28 Initial matrix: 200287 x 248898 with sparse part having weight 31797235. Pruned matrix : 188622 x 189687 with weight 23055159. Total sieving time: 16.58 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.25 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 16.94 hours. --------- CPU info (if available) ----------
(23·10147+31)/9 = 2(5)1469<148> = 3 · 607 · 613 · 11814950847142514192592437550491<32> · C111
C111 = P44 · P67
P44 = 75103645093403353316146749218224397401074883<44>
P67 = 2580013458340758255133834372880389552639163595586137327515941451111<67>
Number: 25559_147 N=193768415111428505634206429615235537385350691524879778259506099811343404692477670800012264250391853206194545013 ( 111 digits) SNFS difficulty: 148 digits. Divisors found: r1=75103645093403353316146749218224397401074883 (pp44) r2=2580013458340758255133834372880389552639163595586137327515941451111 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 37.50 hours. Scaled time: 37.92 units (timescale=1.011). Factorization parameters were as follows: name: 25559_147 n: 193768415111428505634206429615235537385350691524879778259506099811343404692477670800012264250391853206194545013 m: 100000000000000000000000000000 c5: 2300 c0: 31 skew: 0.42 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 6050001) Primes: RFBsize:114155, AFBsize:114273, largePrimes:3381300 encountered Relations: rels:3629815, finalFF:298783 Max relations in full relation-set: 28 Initial matrix: 228495 x 298783 with sparse part having weight 41916253. Pruned matrix : 212196 x 213402 with weight 29855920. Total sieving time: 36.99 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.37 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 37.50 hours. --------- CPU info (if available) ----------
(23·10156+31)/9 = 2(5)1559<157> = 3 · 103 · 30103 · 356309378983<12> · 1282946082595495938311<22> · C117
C117 = P37 · P81
P37 = 2246093478334450292669536908800692657<37>
P81 = 267579958753199187375886538609657583415035345954915647058260946016914480850748237<81>
Number: 25559_156 N=601009600288561901917388771431808879676434281891754853211007016430854322163937732912532470157987210701592422321595709 ( 117 digits) SNFS difficulty: 157 digits. Divisors found: r1=2246093478334450292669536908800692657 (pp37) r2=267579958753199187375886538609657583415035345954915647058260946016914480850748237 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 60.72 hours. Scaled time: 46.39 units (timescale=0.764). Factorization parameters were as follows: name: 25559_156 n: 601009600288561901917388771431808879676434281891754853211007016430854322163937732912532470157987210701592422321595709 m: 10000000000000000000000000000000 c5: 230 c0: 31 skew: 0.67 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3600001) Primes: RFBsize:216816, AFBsize:217007, largePrimes:5989157 encountered Relations: rels:6100315, finalFF:603185 Max relations in full relation-set: 28 Initial matrix: 433890 x 603185 with sparse part having weight 65102898. Pruned matrix : 365549 x 367782 with weight 42219288. Total sieving time: 58.23 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.14 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 60.72 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(23·10154+31)/9 = 2(5)1539<155> = C155
C155 = P68 · P88
P68 = 24004480982001907880256277793174862134905775836273857482990834610803<68>
P88 = 1064616042926177540280830726352520704884408223688229599012984589433059561384926047461053<88>
Number: 25559_154 N=25555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 155 digits) SNFS difficulty: 156 digits. Divisors found: r1=24004480982001907880256277793174862134905775836273857482990834610803 r2=1064616042926177540280830726352520704884408223688229599012984589433059561384926047461053 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 25555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 Y1: 1 Y0: -10000000000000000000000000000000 c5: 23 c0: 310 skew: 1.68 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1500000, 2200001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 536384 x 536632 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,52,52,2.5,2.5,100000 total time: 12.00 hours.
(23·10159+31)/9 = 2(5)1589<160> = 32 · 151 · 173 · C155
C155 = P68 · P87
P68 = 89402830646845862862212588779611774210792761685868432636233023487881<68>
P87 = 121581779965533991572064099812148849337116961553860068777860822932046094064865597027077<87>
Number: 25559_159 N=10869755284000712677868185785857314140181090123031451873213283975192382853575416961449703988207733311026705098340566446577752068443540836961704906938353837 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=89402830646845862862212588779611774210792761685868432636233023487881 r2=121581779965533991572064099812148849337116961553860068777860822932046094064865597027077 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 10869755284000712677868185785857314140181090123031451873213283975192382853575416961449703988207733311026705098340566446577752068443540836961704906938353837 Y1: 1 Y0: -100000000000000000000000000000000 c5: 23 c0: 310 skew: 1.68 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 612972 x 613220 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.5,2.5,100000 total time: 17.20 hours.
(23·10157+31)/9 = 2(5)1569<158> = C158
C158 = P50 · P108
P50 = 49305565416638237546855293608378285511055783935823<50>
P108 = 518309755493277331341705329873406123057615376398129738348359754423513248803380888816255348102631292457305833<108>
Number: 25559_157 N=25555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 158 digits) SNFS difficulty: 158 digits. Divisors found: r1=49305565416638237546855293608378285511055783935823 r2=518309755493277331341705329873406123057615376398129738348359754423513248803380888816255348102631292457305833 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.707). Factorization parameters were as follows: n: 25555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 Y1: 1 Y0: -10000000000000000000000000000000 c5: 2300 c0: 31 skew: 0.42 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 5300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 775626 x 775874 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.5,2.5,100000 total time: 23.00 hours.
(23·10163+31)/9 = 2(5)1629<164> = 11197 · 600135654958518913015121<24> · 15917843362328931372400174231396061<35> · C102
C102 = P46 · P56
P46 = 4777261969155687481306587205398516207932071267<46>
P56 = 50011621397949403287827699425161427247300887932441419861<56>
N=238918616920236482284688193493767802557297554431710259935973434002654087902904166343115871840121233887 ( 102 digits) Divisors found: r1=4777261969155687481306587205398516207932071267 r2=50011621397949403287827699425161427247300887932441419861 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.718). Factorization parameters were as follows: name: 25559_163 n: 238918616920236482284688193493767802557297554431710259935973434002654087902904166343115871840121233887 skew: 26690.28 # norm 3.49e+14 c5: 11340 c4: 172695024 c3: -21952003729623 c2: -183405417277364978 c1: 2326716827805210224682 c0: 34516205836374053444042628 # alpha -7.10 Y1: 46579288979 Y0: -29155820963474000399 # Murphy_E 2.89e-09 # M 60712994758916835332065667762407420644104045750246852901951305449959008087828470303990127529380791560 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 215230 x 215478 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.50 hours.
By Sinkiti Sibata / GGNFS
(23·10136+31)/9 = 2(5)1359<137> = 227 · 397 · 727 · 773 · C126
C126 = P37 · P42 · P48
P37 = 4294379808444677906913969409355254559<37>
P42 = 377963583243089172487553781282255778332803<42>
P48 = 310888493269623289140455555332340572349264972183<48>
Number: 25559_136 N=504609076331431584228366233423443440822540269199705375616028388572415036563660999834170097655998553802901539210099104791238491 ( 126 digits) SNFS difficulty: 137 digits. Divisors found: r1=4294379808444677906913969409355254559 (pp37) r2=377963583243089172487553781282255778332803 (pp42) r3=310888493269623289140455555332340572349264972183 (pp48) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.32 hours. Scaled time: 11.19 units (timescale=0.988). Factorization parameters were as follows: name: 25559_136 n: 504609076331431584228366233423443440822540269199705375616028388572415036563660999834170097655998553802901539210099104791238491 m: 1000000000000000000000000000 c5: 230 c0: 31 skew: 0.67 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2275001) Primes: RFBsize:78498, AFBsize:63729, largePrimes:1760780 encountered Relations: rels:1843501, finalFF:205262 Max relations in full relation-set: 28 Initial matrix: 142294 x 205262 with sparse part having weight 24445222. Pruned matrix : 129188 x 129963 with weight 14345545. Total sieving time: 11.15 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.32 hours. --------- CPU info (if available) ----------
(23·10141+31)/9 = 2(5)1409<142> = 32 · 29 · 10607 · 372078052816479538519637<24> · C112
C112 = P35 · P77
P35 = 76194565446367493174455763880460463<35>
P77 = 32560735029065341214128814187400511581285961062243794359923482842555071079407<77>
Number: 25559_141 N=2480951056153949701228703243919926546283721927193703106236404703317962887038008437037078659456775758113596985441 ( 112 digits) SNFS difficulty: 142 digits. Divisors found: r1=76194565446367493174455763880460463 (pp35) r2=32560735029065341214128814187400511581285961062243794359923482842555071079407 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.76 hours. Scaled time: 14.76 units (timescale=1.000). Factorization parameters were as follows: name: 25559_141 n: 2480951056153949701228703243919926546283721927193703106236404703317962887038008437037078659456775758113596985441 m: 10000000000000000000000000000 c5: 230 c0: 31 skew: 0.67 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2750001) Primes: RFBsize:100021, AFBsize:99799, largePrimes:3038180 encountered Relations: rels:3144558, finalFF:307864 Max relations in full relation-set: 28 Initial matrix: 199887 x 307864 with sparse part having weight 38526056. Pruned matrix : 175685 x 176748 with weight 21820711. Total sieving time: 14.44 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.76 hours. --------- CPU info (if available) ----------
(23·10137+31)/9 = 2(5)1369<138> = 37 · 308555744497093<15> · C122
C122 = P42 · P80
P42 = 305762271390977651319812135780994171599831<42>
P80 = 73209268986643556707742394636801129517180084446760232905412721334096208230335929<80>
Number: 25559_137 N=22384632372229190609714858716588723245099169836977091812409926831894009881923370879370091085934184452345263599880489627999 ( 122 digits) SNFS difficulty: 138 digits. Divisors found: r1=305762271390977651319812135780994171599831 (pp42) r2=73209268986643556707742394636801129517180084446760232905412721334096208230335929 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.38 hours. Scaled time: 13.37 units (timescale=0.769). Factorization parameters were as follows: name: 25559_137 n: 22384632372229190609714858716588723245099169836977091812409926831894009881923370879370091085934184452345263599880489627999 m: 1000000000000000000000000000 c5: 2300 c0: 31 skew: 0.42 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2725001) Primes: RFBsize:78498, AFBsize:64019, largePrimes:1757390 encountered Relations: rels:1826972, finalFF:174401 Max relations in full relation-set: 28 Initial matrix: 142584 x 174401 with sparse part having weight 21121949. Pruned matrix : 135557 x 136333 with weight 15350591. Total sieving time: 17.08 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.16 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 17.38 hours. --------- CPU info (if available) ----------
(23·10138+31)/9 = 2(5)1379<139> = 3 · 53 · 389 · 1433539 · C128
C128 = P64 · P65
P64 = 1279333927545199012128258534852861478951245004473500538855514499<64>
P65 = 22529168901137974895314002117395908892469523921646148358021532669<65>
Number: 25559_138 N=28822330134622000820620584010253028421676120212058138406067842081365878773742408071645154741613441781555667878148540074531667831 ( 128 digits) SNFS difficulty: 139 digits. Divisors found: r1=1279333927545199012128258534852861478951245004473500538855514499 (pp64) r2=22529168901137974895314002117395908892469523921646148358021532669 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.19 hours. Scaled time: 14.19 units (timescale=1.000). Factorization parameters were as follows: name: 25559_138 n: 28822330134622000820620584010253028421676120212058138406067842081365878773742408071645154741613441781555667878148540074531667831 m: 1000000000000000000000000000 c5: 23000 c0: 31 skew: 0.27 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2875001) Primes: RFBsize:78498, AFBsize:63914, largePrimes:1802628 encountered Relations: rels:1904248, finalFF:193118 Max relations in full relation-set: 28 Initial matrix: 142479 x 193118 with sparse part having weight 24230890. Pruned matrix : 132213 x 132989 with weight 15653467. Total sieving time: 14.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 14.19 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(23·10102+31)/9 = 2(5)1019<103> = 3 · 17 · 336761 · 14684161 · C89
C89 = P38 · P51
P38 = 36174622317116628604747601318347875179<38>
P51 = 280117484022614210615310757466475649891967034175151<51>
Number: n N=10133144188939020667332924829099166344145459417174872384023152068186407293124797771477029 ( 89 digits) SNFS difficulty: 103 digits. Divisors found: r1=36174622317116628604747601318347875179 (pp38) r2=280117484022614210615310757466475649891967034175151 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.75 hours. Scaled time: 1.09 units (timescale=1.449). Factorization parameters were as follows: name: KA_2_5_101_9 n: 10133144188939020667332924829099166344145459417174872384023152068186407293124797771477029 type: snfs skew: 0.42 deg: 5 c5: 2300 c0: 31 m: 100000000000000000000 rlim: 300000 alim: 300000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 300000/300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:25997, AFBsize:25925, largePrimes:3193322 encountered Relations: rels:2812979, finalFF:136783 Max relations in full relation-set: 28 Initial matrix: 51989 x 136783 with sparse part having weight 12094637. Pruned matrix : 40477 x 40800 with weight 2131424. Total sieving time: 0.67 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,300000,300000,28,28,50,50,2.5,2.5,20000 total time: 0.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(23·10127+31)/9 = 2(5)1269<128> = 47 · 67 · 19474127 · C117
C117 = P50 · P68
P50 = 37482453682442295251317733556828300327910374081709<50>
P68 = 11117999624135567706071487447289819238425678281178420561049303069537<68>
Number: n N=416729905953072264269507026565861748886593163661877469648194994869817747460538910312526637595843864694003181346798733 ( 117 digits) SNFS difficulty: 128 digits. Divisors found: Thu Aug 14 14:30:21 2008 prp50 factor: 37482453682442295251317733556828300327910374081709 Thu Aug 14 14:30:21 2008 prp68 factor: 11117999624135567706071487447289819238425678281178420561049303069537 Thu Aug 14 14:30:21 2008 elapsed time 00:25:45 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.18 hours. Scaled time: 4.59 units (timescale=1.444). Factorization parameters were as follows: name: KA_2_5_126_9 n: 416729905953072264269507026565861748886593163661877469648194994869817747460538910312526637595843864694003181346798733 type: snfs skew: 0.42 deg: 5 c5: 2300 c0: 31 m: 10000000000000000000000000 rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 460001) Primes: RFBsize:56543, AFBsize:56539, largePrimes:5776983 encountered Relations: rels:4980603, finalFF:104656 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 3.05 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,700000,700000,28,28,50,50,2.5,2.5,50000 total time: 3.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10191+9 = 7(0)1909<192> = 97 · C190
C190 = P57 · P65 · P69
P57 = 234464897294589778294207283924185372179122521034823214261<57>
P65 = 37245591958990518315896750106678790768293832822047005717210831897<65>
P69 = 826368192949751598558367932833322291039122696920944478534061838111341<69>
Number: n N=7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897 ( 190 digits) SNFS difficulty: 191 digits. Divisors found: Thu Aug 14 17:44:30 2008 prp57 factor: 234464897294589778294207283924185372179122521034823214261 Thu Aug 14 17:44:30 2008 prp65 factor: 37245591958990518315896750106678790768293832822047005717210831897 Thu Aug 14 17:44:30 2008 prp69 factor: 826368192949751598558367932833322291039122696920944478534061838111341 Thu Aug 14 17:44:30 2008 elapsed time 12:59:34 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 167.63 hours. Scaled time: 218.25 units (timescale=1.302). Factorization parameters were as follows: name: KA_7_0_190_9 n: 7216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670103092783505154639175257731958762886597938144329897 type: snfs skew: 0.66 deg: 5 c5: 70 c0: 9 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 14600001) Primes: RFBsize:633578, AFBsize:635068, largePrimes:11104373 encountered Relations: rels:11157968, finalFF:1297829 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 166.97 hours. Total relation processing time: 0.66 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 167.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(23·10130+31)/9 = 2(5)1299<131> = 233 · 6949 · 15443 · 12049469 · 67386721 · C106
C106 = P44 · P62
P44 = 14880480537836991036560178301181133024307979<44>
P62 = 84589456232401803618572893875810928263984685426113509528121359<62>
Number: n N=1258731757172469004163889939303851535943090531086634050129863780310728667440482666587361506345620904023461 ( 106 digits) SNFS difficulty: 131 digits. Divisors found: r1=14880480537836991036560178301181133024307979 (pp44) r2=84589456232401803618572893875810928263984685426113509528121359 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.43 hours. Scaled time: 4.98 units (timescale=1.450). Factorization parameters were as follows: name: KA_2_5_129_9 n: 1258731757172469004163889939303851535943090531086634050129863780310728667440482666587361506345620904023461 type: snfs skew: 1.06 deg: 5 c5: 23 c0: 31 m: 100000000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 480001) Primes: RFBsize:63951, AFBsize:63869, largePrimes:6329489 encountered Relations: rels:5532637, finalFF:154928 Max relations in full relation-set: 28 Initial matrix: 127885 x 154928 with sparse part having weight 14763138. Pruned matrix : 119834 x 120537 with weight 9726166. Total sieving time: 2.95 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.27 hours. Total square root time: 0.08 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,28,28,50,50,2.5,2.5,50000 total time: 3.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Serge Batalov / Msieve, GMP-ECM, pol51
(23·10108+31)/9 = 2(5)1079<109> = 3 · C108
C108 = P32 · P76
P32 = 87457626883402500347090286707579<32>
P76 = 9740166549311141470879840695000672432811606088405464382425229128401576277207<76>
Number: 25559_108 N=851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 ( 108 digits) SNFS difficulty: 109 digits. Divisors found: r1=87457626883402500347090286707579 r2=9740166549311141470879840695000672432811606088405464382425229128401576277207 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.875). Factorization parameters were as follows: n: 851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851851853 Y1: 1 Y0: -1000000000000000000000 c5: 23000 c0: 31 skew: 0.27 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73371 x 73604 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.90 hours.
(23·10132+31)/9 = 2(5)1319<133> = 32 · 415729 · 11552413 · 38085356615361651136669097<26> · C94
C94 = P43 · P51
P43 = 1655570577258704683443960244245536278805161<43>
P51 = 937678728208859008823339976946357714452296342866939<51>
Wed Aug 13 10:45:30 2008 Msieve v. 1.36 Wed Aug 13 10:45:30 2008 random seeds: 9f5c825b c4951560 Wed Aug 13 10:45:30 2008 factoring 1552393313343948764302713161569033385259291635053878410148001293956160874279801427032129472179 (94 digits) Wed Aug 13 10:45:31 2008 no P-1/P+1/ECM available, skipping Wed Aug 13 10:45:31 2008 commencing quadratic sieve (94-digit input) Wed Aug 13 10:45:31 2008 using multiplier of 1 Wed Aug 13 10:45:31 2008 using 64kb Opteron sieve core Wed Aug 13 10:45:31 2008 sieve interval: 18 blocks of size 65536 Wed Aug 13 10:45:31 2008 processing polynomials in batches of 6 Wed Aug 13 10:45:31 2008 using a sieve bound of 1984859 (74118 primes) Wed Aug 13 10:45:31 2008 using large prime bound of 256046811 (27 bits) Wed Aug 13 10:45:31 2008 using double large prime bound of 1364503925389509 (42-51 bits) Wed Aug 13 10:45:31 2008 using trial factoring cutoff of 51 bits Wed Aug 13 10:45:31 2008 polynomial 'A' values have 12 factors Wed Aug 13 14:12:07 2008 74570 relations (18435 full + 56135 combined from 1036730 partial), need 74214 Wed Aug 13 14:12:07 2008 begin with 1055165 relations Wed Aug 13 14:12:08 2008 reduce to 193738 relations in 11 passes Wed Aug 13 14:12:08 2008 attempting to read 193738 relations Wed Aug 13 14:12:10 2008 recovered 193738 relations Wed Aug 13 14:12:10 2008 recovered 177248 polynomials Wed Aug 13 14:12:10 2008 attempting to build 74570 cycles Wed Aug 13 14:12:10 2008 found 74570 cycles in 5 passes Wed Aug 13 14:12:10 2008 distribution of cycle lengths: Wed Aug 13 14:12:10 2008 length 1 : 18435 Wed Aug 13 14:12:10 2008 length 2 : 13018 Wed Aug 13 14:12:10 2008 length 3 : 12408 Wed Aug 13 14:12:10 2008 length 4 : 10058 Wed Aug 13 14:12:10 2008 length 5 : 7624 Wed Aug 13 14:12:10 2008 length 6 : 5079 Wed Aug 13 14:12:10 2008 length 7 : 3422 Wed Aug 13 14:12:10 2008 length 9+: 4526 Wed Aug 13 14:12:10 2008 largest cycle: 21 relations Wed Aug 13 14:12:11 2008 matrix is 74118 x 74570 (20.0 MB) with weight 4654747 (62.42/col) Wed Aug 13 14:12:11 2008 sparse part has weight 4654747 (62.42/col) Wed Aug 13 14:12:12 2008 filtering completed in 3 passes Wed Aug 13 14:12:12 2008 matrix is 70647 x 70711 (19.0 MB) with weight 4418943 (62.49/col) Wed Aug 13 14:12:12 2008 sparse part has weight 4418943 (62.49/col) Wed Aug 13 14:12:13 2008 saving the first 48 matrix rows for later Wed Aug 13 14:12:13 2008 matrix is 70599 x 70711 (11.6 MB) with weight 3378476 (47.78/col) Wed Aug 13 14:12:13 2008 sparse part has weight 2338269 (33.07/col) Wed Aug 13 14:12:13 2008 matrix includes 64 packed rows Wed Aug 13 14:12:13 2008 using block size 28284 for processor cache size 1024 kB Wed Aug 13 14:12:13 2008 commencing Lanczos iteration Wed Aug 13 14:12:13 2008 memory use: 10.7 MB Wed Aug 13 14:12:53 2008 lanczos halted after 1118 iterations (dim = 70597) Wed Aug 13 14:12:54 2008 recovered 16 nontrivial dependencies Wed Aug 13 14:12:54 2008 prp43 factor: 1655570577258704683443960244245536278805161 Wed Aug 13 14:12:54 2008 prp51 factor: 937678728208859008823339976946357714452296342866939 Wed Aug 13 14:12:54 2008 elapsed time 03:27:24
(23·10116+31)/9 = 2(5)1159<117> = 7 · 37 · 173 · 6650044967<10> · C102
C102 = P44 · P59
P44 = 54931236506670937151390207759795749240532083<44>
P59 = 15613328680502956072470938717289086244068747139245028532717<59>
Number: 25559_116 N=857659450405096353317645695092954648720447466263198250149873858089122806724718795563981780401853659511 ( 102 digits) SNFS difficulty: 117 digits. Divisors found: r1=54931236506670937151390207759795749240532083 r2=15613328680502956072470938717289086244068747139245028532717 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 857659450405096353317645695092954648720447466263198250149873858089122806724718795563981780401853659511 Y1: 1 Y0: -100000000000000000000000 c5: 230 c0: 31 skew: 0.67 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 450001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 107451 x 107666 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.00 hours.
(23·10123+31)/9 = 2(5)1229<124> = 33 · 89 · 426530711 · 346377283131541<15> · C97
C97 = P33 · P65
P33 = 714725418909421255436482397289613<33>
P65 = 10071464350712919091136784607863782767507181435730410139468751531<65>
(23·10151+31)/9 = 2(5)1509<152> = 53 · 3631 · 6833 · C143
C143 = P35 · P108
P35 = 28491347801258535159984087380636957<35>
P108 = 682116873892988320832073056144143663626338689069642201544762686263040341183467097296639486409774086795960473<108>
(23·10163+31)/9 = 2(5)1629<164> = 11197 · 600135654958518913015121<24> · C136
C136 = P35 · C102
P35 = 15917843362328931372400174231396061<35>
C102 = [238918616920236482284688193493767802557297554431710259935973434002654087902904166343115871840121233887<102>]
(23·10153+31)/9 = 2(5)1529<154> = 3 · 14207 · 542856502895113009<18> · C132
C132 = P30 · P33 · P69
P30 = 148492579562995654158351194371<30>
P33 = 751293507943332722148018478605683<33>
P69 = 990061696833602124338231060672328983775827259228387769290559186187867<69>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3707587740 Step 1 took 5072ms Step 2 took 4844ms ********** Factor found in step 2: 148492579562995654158351194371 Found probable prime factor of 30 digits: 148492579562995654158351194371 Composite cofactor 743826925294445331005247766856880519633040968045235123810908647040711559143705680259634454974251848161 has 102 digits Number: 25559_153 N=743826925294445331005247766856880519633040968045235123810908647040711559143705680259634454974251848161 ( 102 digits) Divisors found: r1=751293507943332722148018478605683 r2=990061696833602124338231060672328983775827259228387769290559186187867 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.948). Factorization parameters were as follows: name: 25559_153 n: 743826925294445331005247766856880519633040968045235123810908647040711559143705680259634454974251848161 skew: 7667.78 # norm 1.63e+14 c5: 79380 c4: -1220023119 c3: -11990119136399 c2: 43162577465978701 c1: -50323790623128607716 c0: 595649923520302040373 # alpha -5.39 Y1: 40114117769 Y0: -24794440917443004098 # Murphy_E 2.51e-09 # M 108954050070074233826012025933116688514356381169118919916758488143137004054206742903805050301638526229 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 269347 x 269595 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.10 hours.
Factorizations of 255...559 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Jo Yeong Uk / GGNFS, GMP-ECM
(67·10186+23)/9 = 7(4)1857<187> = 19 · 195493 · 9573671 · 15879889 · 867874901 · 21647287940191<14> · 89421769771573038016990490819<29> · C115
C115 = P37 · P79
P37 = 1746382501984432932253147027099413497<37>
P79 = 4493432943695280633611271672078629570872945669670928390073563152978895513171103<79>
Number: 74447_186 N=7847252666709839743467752504350917467823681102493087715558574118900695078873620596188423137154878036922729908577191 ( 115 digits) Divisors found: r1=1746382501984432932253147027099413497 (pp37) r2=4493432943695280633611271672078629570872945669670928390073563152978895513171103 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.87 hours. Scaled time: 54.46 units (timescale=2.381). Factorization parameters were as follows: name: 74447_186 n: 7847252666709839743467752504350917467823681102493087715558574118900695078873620596188423137154878036922729908577191 skew: 51581.35 # norm 1.74e+16 c5: 44400 c4: 11244086600 c3: -438029123632375 c2: -16066004853798946614 c1: 595416047125765423448296 c0: 2879863880296498472471170048 # alpha -6.95 Y1: 2243360191787 Y0: -11206307361932270455113 # Murphy_E 5.39e-10 # M 2501025341128000393248592538385081061341254539000833808236602444299295780685350436595419391261914916678877912287855 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3080001) Primes: RFBsize:250150, AFBsize:250380, largePrimes:7570818 encountered Relations: rels:7503217, finalFF:612787 Max relations in full relation-set: 28 Initial matrix: 500610 x 612787 with sparse part having weight 54051584. Pruned matrix : 411617 x 414184 with weight 34251677. Polynomial selection time: 1.33 hours. Total sieving time: 20.21 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.07 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 22.87 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2459k kernel code, 339200k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.73 BogoMIPS (lpj=2672366) Calibrating delay using timer specific routine.. 5343.99 BogoMIPS (lpj=2671997) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(55·10184-1)/9 = 6(1)184<185> = 113113526204811467<18> · 902962100831388890356903<24> · 30298080812156225043145231<26> · C119
C119 = P33 · P86
P33 = 299222870320790868968071687171273<33>
P86 = 65997306601865480874354633900283209180626121298931610636261094645539057137062347684197<86>
By Sinkiti Sibata / GGNFS
6·10165+1 = 6(0)1641<166> = 108649 · 1383530154323<13> · 10418259026881<14> · C136
C136 = P59 · P78
P59 = 12198214958645406697515956553865609339286480946779228031841<59>
P78 = 314083740589948806536874133179020940182628645393194584520163117078481245780803<78>
Number: 60001_165 N=3831260982731617026109963484953683259170695517683951964059413219775587940296031765586309929215323885262414918355104547162842906990548323 ( 136 digits) SNFS difficulty: 165 digits. Divisors found: r1=12198214958645406697515956553865609339286480946779228031841 (pp59) r2=314083740589948806536874133179020940182628645393194584520163117078481245780803 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 73.33 hours. Scaled time: 73.92 units (timescale=1.008). Factorization parameters were as follows: name: 60001_165 n: 3831260982731617026109963484953683259170695517683951964059413219775587940296031765586309929215323885262414918355104547162842906990548323 m: 1000000000000000000000000000000000 c5: 6 c0: 1 skew: 0.7 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5000001) Primes: RFBsize:348513, AFBsize:348726, largePrimes:6213178 encountered Relations: rels:6700823, finalFF:1088127 Max relations in full relation-set: 28 Initial matrix: 697305 x 1088127 with sparse part having weight 65822247. Pruned matrix : 402300 x 405850 with weight 63363491. Total sieving time: 71.21 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.94 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 73.33 hours. --------- CPU info (if available) ----------
By Serge Batalov / pol51, Franke/Childers-64bit-assembly-sievers, Msieve
(19·10176+53)/9 = 2(1)1757<177> = 7 · 288499 · 2637468153113<13> · 246110466160057<15> · 7544750677235511008287<22> · C122
C122 = P45 · P77
P45 = 664699855687740871426245760733544298057358189<45>
P77 = 32113005584426118305653746784676287558964283770905370659367037921112708262563<77>
Number: 21117_176 N=21345510177667657540730006301434663701471756955685409885592596413899469145549610473198894598984475625669925326599950178407 ( 122 digits) Divisors found: r1=664699855687740871426245760733544298057358189 r2=32113005584426118305653746784676287558964283770905370659367037921112708262563 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.719). Factorization parameters were as follows: name: 21117_176 n: 21345510177667657540730006301434663701471756955685409885592596413899469145549610473198894598984475625669925326599950178407 skew: 170756.40 # norm 7.43e+16 c5: 3960 c4: -2169820698 c3: 1300114549842949 c2: 51004422752112391841 c1: -13720078057851879793267805 c0: -306179776140910730398882578519 # alpha -6.28 Y1: 9129774563993 Y0: -351822415252155645580046 # Murphy_E 2.29e-10 # M 19568358484057287237196273449831904887169580518105982422756745467726799115462603151064661311112921045638463225213236455353 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 9100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 815845 x 816093 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 3.00 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000 total time: 51 hours.
(64·10232+53)/9 = 7(1)2317<233> = 29 · 31 · 25544394638150569<17> · 21891861055037187204902189298063661<35> · 1156244055915277149927645527883080159<37> · C144
C144 = P70 · P74
P70 = 5629056896456130761115640768115712949562588093167473845957065096607951<70>
P74 = 21732731937076769089333819026656467057955775638915262225760919560406955043<74>
Number: 71117_232 N=122334784589234392683295194652612149338189319179115868523072772347572950426690801931827228533310815015647306731512386262336087369965447853346893 ( 144 digits) Divisors found: r1=5629056896456130761115640768115712949562588093167473845957065096607951 r2=21732731937076769089333819026656467057955775638915262225760919560406955043 Version: Total time: 22 CPU-days. Scaled time: ? units (timescale=2.739). Factorization parameters were as follows: name: 71117_232 n: 122334784589234392683295194652612149338189319179115868523072772347572950426690801931827228533310815015647306731512386262336087369965447853346893 skew: 690006.04 # norm 1.16e+20 c5: 366240 c4: -200755493198 c3: -1264280431194248789 c2: 30690227552865176460280 c1: 116115356677156443273022507812 c0: 1643772806174680731101452821850125 # alpha -6.86 Y1: 12549580773819617 Y0: -3197105916158047746993222154 # Murphy_E 1.41e-11 # M 5734946885270096719071646003056964635381291967622973864385956607094834583149950289638574241818695561052754902888430269917445698295408593930669 type: gnfs rlim: 20000000 alim: 20000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [10000000, 11400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 24,475,000 relations (22,067,313 unique) vs. 19,071,047 large primes Max relations in full relation-set: Initial matrix: Pruned matrix : 2595393 x 2595641 Total sieving time: 20 CPU-days. (with 8cpus * a 2.5-day weekend) Total relation processing time: 0.50 hours. Top memory use in filtering: 1.5 Gb Matrix solve time: 37.35 hours. Time per square root: 1.90 hours. Prototype def-par.txt line would be: gnfs,144,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,20000000,20000000,28,28,56,56,2.6,2.6,100000 #use this line, sieve algebraic (or better yet, always do test runs) total time: 22 CPU-days. # Note: my estimate of a general case GNFS:SNFS break-even ratio is 72:100 # this is GNFS-144 ~= complexity of SNFS-200 # GNFS is absolutely better for this particular number
Note: C144 is the largest composite number factored by GNFS so far in our tables.
By Robert Backstrom / GMP-ECM
7·10171+1 = 7(0)1701<172> = 191 · 11351 · 200087 · 199743193690849<15> · 503783621180657<15> · C132
C132 = P42 · P90
P42 = 640757244242093195737825269513973688101421<42>
P90 = 250266153200200437607062854749076319929624557778915248618363969037755267406743304872865851<90>
By Sinkiti Sibata / GGNFS
(23·10165-41)/9 = 2(5)1641<166> = 29 · 71 · 132745428289<12> · 1240062004353599171<19> · C133
C133 = P66 · P68
P66 = 620307761470091015755690541703303810222293530677225354864980633273<66>
P68 = 12155107128456035886009851568901921324819251306725762561321071641847<68>
Number: 25551_165 N=7539907293281709664021555033543314880138720337710856966983086890475334408273968539560151442899749274783057664654530833081819907375231 ( 133 digits) SNFS difficulty: 166 digits. Divisors found: r1=620307761470091015755690541703303810222293530677225354864980633273 (pp66) r2=12155107128456035886009851568901921324819251306725762561321071641847 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 101.57 hours. Scaled time: 102.39 units (timescale=1.008). Factorization parameters were as follows: name: 25551_165 n: 7539907293281709664021555033543314880138720337710856966983086890475334408273968539560151442899749274783057664654530833081819907375231 m: 1000000000000000000000000000000000 c5: 23 c0: -41 skew: 1.12 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6200001) Primes: RFBsize:348513, AFBsize:348762, largePrimes:6205595 encountered Relations: rels:6582900, finalFF:985608 Max relations in full relation-set: 28 Initial matrix: 697340 x 985608 with sparse part having weight 70810848. Pruned matrix : 477437 x 480987 with weight 57774851. Total sieving time: 98.88 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.49 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 101.57 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(4·10193-31)/9 = (4)1921<193> = C193
C193 = P57 · P136
P57 = 646181061524363199600970571839514279881175613475434692033<57>
P136 = 6878017182923696594530988282380362877712659016819970541769693419701317790915722248377653237079002311402940729245426422513461529454956377<136>
Number: 44441_193 N=4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 ( 193 digits) SNFS difficulty: 195 digits. Divisors found: r1=646181061524363199600970571839514279881175613475434692033 (pp57) r2=6878017182923696594530988282380362877712659016819970541769693419701317790915722248377653237079002311402940729245426422513461529454956377 (pp136) Version: GGNFS-0.77.1-20050930-nocona Total time: 633.40 hours. Scaled time: 1503.05 units (timescale=2.373). Factorization parameters were as follows: n: 4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 m: 1000000000000000000000000000000000000000 c5: 1 c0: -775 skew: 3.78 type: snfs Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 52/52 Sieved algebraic special-q in [10000000, 20400001) Primes: RFBsize:1270607, AFBsize:1272451, largePrimes:21030425 encountered Relations: rels:21534447, finalFF:2888534 Max relations in full relation-set: 28 Initial matrix: 2543122 x 2888533 with sparse part having weight 170079893. Pruned matrix : 2224800 x 2237579 with weight 124339102. Total sieving time: 591.27 hours. Total relation processing time: 0.69 hours. Matrix solve time: 41.22 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,52,52,2.6,2.6,100000 total time: 633.40 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047092k/8912896k available (2459k kernel code, 339200k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.73 BogoMIPS (lpj=2672366) Calibrating delay using timer specific routine.. 5343.99 BogoMIPS (lpj=2671997) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve
(85·10185+41)/9 = 9(4)1849<186> = 11 · 97 · 859 · 994769 · 725406797 · 1283920045522639113163<22> · 49703136401507545869061<23> · C122
C122 = P55 · P67
P55 = 5945312755539665917551963829023944543338834374958932437<55>
P67 = 3763730250037354798169122734936464412007531853274549949355322112591<67>
Number: 94449_185 N=22376553463957581646819827364810402074663641841688814278996265692919457557189900085368580368180018925514654615380876014267 ( 122 digits) Divisors found: r1=5945312755539665917551963829023944543338834374958932437 r2=3763730250037354798169122734936464412007531853274549949355322112591 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.719). Factorization parameters were as follows: name: 94449_185 n: 22376553463957581646819827364810402074663641841688814278996265692919457557189900085368580368180018925514654615380876014267 skew: 395089.16 # norm 8.53e+16 c5: 1920 c4: -2122639568 c3: -1001519971436916 c2: 252010646313405784356 c1: 17053914602620055702421409 c0: -5102205586876697697049786391166 # alpha -6.67 Y1: 14417436812383 Y0: -410489229162219968921845 # Murphy_E 2.43e-10 # M 13327227797342778556781154439976826870101708204128832160162315240816752369766045276700781494476592724195508665899854601153 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 693877 x 694113 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.80 hours. Time per square root: 1.80 hours / 6deps. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000 total time: 41.00 hours.
(8·10178-53)/9 = (8)1773<178> = 3 · 7 · 580033 · 4121233246377533370895087<25> · 11414389645507504885866557<26> · C122
C122 = P61 · P61
P61 = 2084319019311817485408263671504067644597211773621536836338031<61>
P61 = 7442715191706727951117023466133424089625836289964455009349139<61>
# Nice split, again, P61.P61 :-) ...guys, don't shy away from gnfs-122 # Number: 88883_178 N=15512992829395332874459989302553000844308438535363267904145402644391992053787434208266071942229443864121635964649502805309 ( 122 digits) Divisors found: r1=2084319019311817485408263671504067644597211773621536836338031 r2=7442715191706727951117023466133424089625836289964455009349139 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.740). Factorization parameters were as follows: name: 88883_178 n: 15512992829395332874459989302553000844308438535363267904145402644391992053787434208266071942229443864121635964649502805309 skew: 98981.13 # norm 3.36e+16 c5: 1320 c4: -10396789456 c3: -66076991548644 c2: 78186712031832272171 c1: 200139365179873413081944 c0: -88020638544471412575938322460 # alpha -5.65 Y1: 1247076274951 Y0: -411174721634384235437837 # Murphy_E 2.21e-10 # M 12429707818737800271460182262993084301376975976751266457817355689134402992212562892000794069795686993932653381134042300059 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 727897 x 728145 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.50 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000 total time: 43.00 hours.
(23·10169+13)/9 = 2(5)1687<170> = 3 · 83 · 311 · 28517 · 199813 · C155
C155 = P64 · P91
P64 = 7124994157222814707790131826005124154401833141434559408862786761<64>
P91 = 8128557869000804133044033360884580345414021448333631032282453920166787798539408237113453723<91>
Number: 25557_169 N=57915927323278263122576779147506228774571092503906587992363346778093393164170615259694974150158339232963013238210915096456461157537716585458112711190561203 ( 155 digits) SNFS difficulty: 171 digits. Divisors found: r1=7124994157222814707790131826005124154401833141434559408862786761 r2=8128557869000804133044033360884580345414021448333631032282453920166787798539408237113453723 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.649). Factorization parameters were as follows: n: 57915927323278263122576779147506228774571092503906587992363346778093393164170615259694974150158339232963013238210915096456461157537716585458112711190561203 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 23 c0: 130 skew: 1.41 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 11500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1186790 x 1187021 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 5.75 hours. Time per square root: 0.6 hours. * 2 Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.6,2.6,100000 total time: 81 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(55·10190-1)/9 = 6(1)190<191> = 19 · C190
C190 = P70 · P120
P70 = 4021755757979865444475768755543444537089434622309462148175034259090497<70>
P120 = 799743809062497136193595600318187981540855191647234243172296174585420358670139789796095969053096762864603044328884198077<120>
Number: n N=3216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269 ( 190 digits) SNFS difficulty: 191 digits. Divisors found: Mon Aug 11 14:32:35 2008 prp70 factor: 4021755757979865444475768755543444537089434622309462148175034259090497 Mon Aug 11 14:32:35 2008 prp120 factor: 799743809062497136193595600318187981540855191647234243172296174585420358670139789796095969053096762864603044328884198077 Mon Aug 11 14:32:36 2008 elapsed time 05:04:45 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 112.32 hours. Scaled time: 230.37 units (timescale=2.051). Factorization parameters were as follows: name: KA_6_1_190 n: 3216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269005847953216374269 type: snfs skew: 0.45 deg: 5 c5: 55 c0: -1 m: 100000000000000000000000000000000000000 rlim: 9500000 alim: 9500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9500000/9500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 10100001) Primes: RFBsize:633578, AFBsize:632819, largePrimes:10786354 encountered Relations: rels:10836389, finalFF:1293401 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 111.99 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,9500000,9500000,28,28,50,50,2.5,2.5,100000 total time: 112.32 hours. --------- CPU info (if available) ----------
5·10192+9 = 5(0)1919<193> = 7 · C192
C192 = P33 · P160
P33 = 185946012230334004175737692114361<33>
P160 = 3841360756911088155477151257427655759049773811262830812715564417935995018641284052166995975037217217287976245074877594743197862509898796882391887621294514456167<160>
By Serge Batalov / Msieve
(8·10170+1)/9 = (8)1699<170> = 17 · 5099 · 31249 · C161
C161 = P47 · P114
P47 = 40186975583101099592439039411422087973769840987<47>
P114 = 816567512176293048559848164336180107760931586096734124270214265473016206624606162885231652725468625601857209063441<114>
N=32815378673782298576607235073579556585939084838902199304862538597260220415657115437029661430649398611754093077143742580179076977702588819453143262953557765056267 ( 161 digits) SNFS difficulty: 170 digits. Divisors found: r1=40186975583101099592439039411422087973769840987 r2=816567512176293048559848164336180107760931586096734124270214265473016206624606162885231652725468625601857209063441 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.384). Factorization parameters were as follows: n: 32815378673782298576607235073579556585939084838902199304862538597260220415657115437029661430649398611754093077143742580179076977702588819453143262953557765056267 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 8 c0: 1 skew: 0.66 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 7700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1009103 x 1009351 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.6,2.6,100000 total time: 41 hours.
(14·10176-41)/9 = 1(5)1751<177> = 2259105661271087<16> · 80720351480358203<17> · 6253487942641704767889353221<28> · C117
C117 = P46 · P72
P46 = 1019051608417910918330923759093085376287866529<46>
P72 = 133858958754694373843982955055938024720353027482661337116522058059690599<72>
Number: 15551_176 N=136409187220118099594259543876309212197184154651522471682143115643170104578299575205818479783053844257159831548060871 ( 117 digits) Divisors found: r1=1019051608417910918330923759093085376287866529 r2=133858958754694373843982955055938024720353027482661337116522058059690599 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: name: 15551_176 n: 136409187220118099594259543876309212197184154651522471682143115643170104578299575205818479783053844257159831548060871 skew: 49132.51 # norm 2.08e+16 c5: 6660 c4: 447743516 c3: -609459037292731 c2: -187213174297973853 c1: 85240638334503841045441 c0: 142345279227926981946484747 # alpha -5.80 Y1: 173069743693 Y0: -28991710782521877328584 # Murphy_E 4.58e-10 # M 111726850663256429068149510231893237790161040770684032330899062146596737783001767146726624576283412255547250616765441 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 5550001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 624752 x 624980 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 1.9 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.5,2.5,100000 total time: 31 hours.
(55·10170-1)/9 = 6(1)170<171> = 13 · 4669558519<10> · C161
C161 = P39 · P122
P39 = 153955579103572816331228445297936006451<39>
P122 = 65389132198097929317384532477022329243907106763690774891859053196341390466253053476569510421739623931334520824845665359863<122>
Number: 61111_170 N=10067021714638245985971023443671936676077995417139563755622043422676508607003185306595149781655096762809625375423750419979908286273807163855998898770530004476213 ( 161 digits) SNFS difficulty: 171 digits. Divisors found: r1=153955579103572816331228445297936006451 r2=65389132198097929317384532477022329243907106763690774891859053196341390466253053476569510421739623931334520824845665359863 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 10067021714638245985971023443671936676077995417139563755622043422676508607003185306595149781655096762809625375423750419979908286273807163855998898770530004476213 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 55 c0: -1 skew: 0.45 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 8300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1037714 x 1037962 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 4.00 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.6,2.6,100000 total time: 46.00 hours.
(2·10170-11)/9 = (2)1691<170> = 3 · 7 · 521 · 19415939 · C159
C159 = P69 · P90
P69 = 210932730451696181940250897337150581037995111538975826259659355381171<69>
P90 = 495938809108537651024325469852249119314303434921038892150321898130866669026706293313313849<90>
Number: 22221_170 N=104609727142226379588669649515486510594483116351492265894829942358267978639698604872885143129569104911079270956508881509938720071447460557768825472436548137179 ( 159 digits) SNFS difficulty: 170 digits. Divisors found: r1=210932730451696181940250897337150581037995111538975826259659355381171 r2=495938809108537651024325469852249119314303434921038892150321898130866669026706293313313849 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 104609727142226379588669649515486510594483116351492265894829942358267978639698604872885143129569104911079270956508881509938720071447460557768825472436548137179 Y1: 1 Y0: -10000000000000000000000000000000000 c5: 2 c0: -11 skew: 1.41 type: snfsFactor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 7300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 973133 x 973381 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 5.00 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.6,2.6,100000 total time: 47.00 hours.
By Serge Batalov / GMP-ECM, Msieve
(5·10185-23)/9 = (5)1843<185> = 79 · 76231583 · 1164328700579194207<19> · 44029950759275554233180522078377<32> · C126
C126 = P55 · P71
P55 = 4447157373848506897595629163234478692497222248038378089<55>
P71 = 40463101119128220174838353390558913450445769536584152739988540703367199<71>
Number: 55553_185 N=179945778510708836080589448871146949371246104317066383335530794551793683889740159757425063640639714889836321930337300962902711 ( 126 digits) Divisors found: r1=4447157373848506897595629163234478692497222248038378089 r2=40463101119128220174838353390558913450445769536584152739988540703367199 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.737). Factorization parameters were as follows: name: 55553_185 n: 179945778510708836080589448871146949371246104317066383335530794551793683889740159757425063640639714889836321930337300962902711 skew: 78436.96 # norm 4.47e+17 c5: 141120 c4: 210798550396 c3: -2311548511262600 c2: -1331340454492406883599 c1: -12898272503990683384020858 c0: 342428524648698367377122484465 # alpha -6.86 Y1: 28117900703519 Y0: -1049801391123476444878468 # Murphy_E 1.33e-10 # M 159496249529484995713156133406394224529425016161226558234898604187480904861637765732940295828492291561597036179686238567469420 type: gnfs rlim: 8000000 alim: 8000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [4000000, 7800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 994198 x 994446 Poly selection time: 4.00 hours Total sieving time: 60.00 hours. Total relation processing time: 0.50 hours. Matrix solve time: 4.00 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,8000000,8000000,27,27,52,52,2.5,2.5,100000 total time: 69 hours.
(37·10179-1)/9 = 4(1)179<180> = 3 · 1097 · 13591 · 75541 · 45882114659<11> · 7184177864869<13> · C144
C144 = P31 · P36 · P78
P31 = 1722998328122894393200632853951<31>
P36 = 692868277288158536240177021151239891<36>
P78 = 309201188459405009925071126374392611866926465706986114595332287804513277197981<78>
#ECM, then gnfs-114 # Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=3638089732 Step 1 took 70571ms Step 2 took 43411ms ********** Factor found in step 2: 1722998328122894393200632853951 Found probable prime factor of 31 digits: 1722998328122894393200632853951 Composite cofactor 214235694783319195542137193905151660133632944476526636783089769017222260753479030798583580704509521146076431860071 has 114 digits Number: 41111_179 N=214235694783319195542137193905151660133632944476526636783089769017222260753479030798583580704509521146076431860071 ( 114 digits) Divisors found: r1=692868277288158536240177021151239891 r2=309201188459405009925071126374392611866926465706986114595332287804513277197981 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.650). Factorization parameters were as follows: name: 41111_179 n: 214235694783319195542137193905151660133632944476526636783089769017222260753479030798583580704509521146076431860071 skew: 51889.37 # norm 2.73e+15 c5: 22320 c4: -30532338 c3: -142817595591249 c2: 809069780721612917 c1: 203983597776382398282865 c0: -2359341539772994802155635507 # alpha -5.57 Y1: 1833293458381 Y0: -6258057702735141305522 # Murphy_E 6.49e-10 # M 162728657052454355033301763797280575233678834117861705307163381743582580557743703942799163215917912548867785628741 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 492737 x 492977 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.90 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 16.00 hours.
By Serge Batalov / GMP-ECM, pol51, Msieve
(67·10186+23)/9 = 7(4)1857<187> = 19 · 195493 · 9573671 · 15879889 · 867874901 · 21647287940191<14> · C144
C144 = P29 · C115
P29 = 89421769771573038016990490819<29>
C115 = [7847252666709839743467752504350917467823681102493087715558574118900695078873620596188423137154878036922729908577191<115>]
(46·10193-1)/9 = 5(1)193<194> = 33 · 17 · 2721767 · 3878672933<10> · 18833673139<11> · 253531733109664214357<21> · C145
C145 = P30 · P116
P30 = 219941831910466951808401970081<30>
P116 = 10043690953294073007230012497539826164684415783776924661750095830636397234524639892390514224691823099504978786649353<116>
(10180+71)/9 = (1)1799<180> = 10627 · 7936631 · 699357776561<12> · 9775791858109<13> · C144
C144 = P34 · P34 · P77
P34 = 1226535304270133824209889298575081<34>
P34 = 9646827652244259591998878269506813<34>
P77 = 16285259880623894915342400241019541187822058715291361864722782960855927435971<77>
#ECM, then gnfs/Msieve # Using B1=11000000, B2=96175819756, polynomial Dickson(12), sigma=3029909724 Step 1 took 70033ms Step 2 took 4611ms ********** Factor found in step 2: 9646827652244259591998878269506813 Found probable prime factor of 34 digits: 9646827652244259591998878269506813 Composite cofactor 19974446182799232189458363156421231710407036132090260102835765147805964274317792564316416219690880744163638651 has 110 digits Number: 11119_180 N=19974446182799232189458363156421231710407036132090260102835765147805964274317792564316416219690880744163638651 ( 110 digits) Divisors found: r1=1226535304270133824209889298575081 r2=16285259880623894915342400241019541187822058715291361864722782960855927435971 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.718). Factorization parameters were as follows: name: 11119_180 n: 19974446182799232189458363156421231710407036132090260102835765147805964274317792564316416219690880744163638651 skew: 33063.44 # norm 4.01e+15 c5: 22800 c4: 3094334570 c3: -43841089883993 c2: 652837658814255144 c1: -1748227893997554020746 c0: -332389422893059106735269160 # alpha -6.55 Y1: 199871801533 Y0: -973880254752302195949 # Murphy_E 1.01e-09 # M 3541451005798240763734180262500322055167427459870109414796898368049994906448361437203335532088229954682971890 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 400903 x 401151 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 10.1 hours.
(82·10190-1)/9 = 9(1)190<191> = 3677 · 27737 · 428987020794740431<18> · 139985185084079890573<21> · C146
C146 = P32 · P40 · P75
P32 = 44235066145162170816345276923453<32>
P40 = 1525202975164716560489995462930009247117<40>
P75 = 220494455529149193117835135530917883959908968067515100876835257557187880353<75>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=3120628407 Step 1 took 4820ms Step 2 took 3349ms ********** Factor found in step 2: 44235066145162170816345276923453 Found probable prime factor of 32 digits: 44235066145162170816345276923453 Composite cofactor 336298799580382636884047391898935435196982232927500031943041760199290494110321251616554876960770043264810606192301 has 114 digits Number: 91111_190 N=336298799580382636884047391898935435196982232927500031943041760199290494110321251616554876960770043264810606192301 ( 114 digits) Divisors found: r1=1525202975164716560489995462930009247117 r2=220494455529149193117835135530917883959908968067515100876835257557187880353 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.739). Factorization parameters were as follows: name: 91111_190 n: 336298799580382636884047391898935435196982232927500031943041760199290494110321251616554876960770043264810606192301 skew: 32758.65 # norm 6.57e+15 c5: 50880 c4: -4540729432 c3: -272586044989870 c2: 3297416222680395891 c1: 23148281183123748940654 c0: -388365960665666774880376595 # alpha -6.25 Y1: 1469988935897 Y0: -5808147070876337435082 # Murphy_E 6.48e-10 # M 229552349424334768180847434863489988993809348628602001900164640068452475773800216940633862159662059995974114158504 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 504464 x 504706 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 15.5 hours.
(16·10176+11)/9 = 1(7)1759<177> = 4061677 · 1714060249079230343915479<25> · C146
C146 = P30 · P39 · P78
P30 = 496354928791903362317826467779<30>
P39 = 387669240746989213840155332047740229877<39>
P78 = 132706539281050231573399714574367502225844538391956406948964649195004351055911<78>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=4163435521 Step 1 took 4756ms Step 2 took 3461ms ********** Factor found in step 2: 496354928791903362317826467779 Found probable prime factor of 30 digits: 496354928791903362317826467779 Composite cofactor 51446243325245243124883276436320816900607858949251075683543295198629791680567051300669622750582627486876398819652947 has 116 digits Number: 17779_176 N=51446243325245243124883276436320816900607858949251075683543295198629791680567051300669622750582627486876398819652947 ( 116 digits) Divisors found: r1=387669240746989213840155332047740229877 r2=132706539281050231573399714574367502225844538391956406948964649195004351055911 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: name: 17779_176 n: 51446243325245243124883276436320816900607858949251075683543295198629791680567051300669622750582627486876398819652947 skew: 49622.16 # norm 1.82e+16 c5: 35640 c4: 4885507446 c3: 532420277871665 c2: -13094255266500546523 c1: -567963476960577454726385 c0: 9529471883982232144532871901 # alpha -6.81 Y1: 446283389723 Y0: -17056223681646455534652 # Murphy_E 4.89e-10 # M 44535924776312533812638796895673595643407947395099259882857573980766606301104420581431481670434365857616130626039851 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 5150001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 602954 x 603191 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.5,2.5,100000 total time: 22.5 hours.
(11·10173+61)/9 = 1(2)1729<174> = 3 · 167 · 9393214717<10> · 3991464716169220319<19> · C142
C142 = P36 · P39 · P69
P36 = 370213993053058810577180008052464963<36>
P39 = 135581314979100013821605633469943622819<39>
P69 = 129632302176827106237494463843268187181151032935432367315492954199859<69>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=11413147210, polynomial Dickson(12), sigma=774383078 Step 1 took 13440ms Step 2 took 13985ms ********** Factor found in step 2: 370213993053058810577180008052464963 Found probable prime factor of 36 digits: 370213993053058810577180008052464963 Composite cofactor 17575717992902268267555073239638187779950682665186919490503984459819118518231525646978446649297579838982521 has 107 digits Number: 12229_173 N=17575717992902268267555073239638187779950682665186919490503984459819118518231525646978446649297579838982521 ( 107 digits) Divisors found: r1=135581314979100013821605633469943622819 r2=129632302176827106237494463843268187181151032935432367315492954199859 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.719). Factorization parameters were as follows: name: 12229_173 n: 17575717992902268267555073239638187779950682665186919490503984459819118518231525646978446649297579838982521 skew: 12412.40 # norm 3.95e+14 c5: 23880 c4: -801144701 c3: -28651090013206 c2: 233589483730740904 c1: 1012470718482202241190 c0: 858705876167084202647853 # alpha -5.24 Y1: 60738216517 Y0: -236252547292224089980 # Murphy_E 1.52e-09 # M 17395019518137050286633518025364420683886479604045755806861763608633749627030105245197574996886503717697083 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 298764 x 299012 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.50 hours.
(16·10195+11)/9 = 1(7)1949<196> = 32 · 740087 · 230743222131950995499<21> · 162777255677946980081591009<27> · C142
C142 = P32 · P44 · P67
P32 = 73424827831293500485868707674581<32>
P44 = 20303773842269115123939467873342342848136567<44>
P67 = 4766612074547657425113602299458810889222950655299003162801405514909<67>
#ECM, then Msieve-1.36/gnfs # Using B1=2000000, B2=11413147210, polynomial Dickson(12), sigma=3622984911 Step 1 took 13465ms Step 2 took 14018ms ********** Factor found in step 2: 73424827831293500485868707674581 Found probable prime factor of 32 digits: 73424827831293500485868707674581 Composite cofactor 96780213555444848209611889152187386372688573948470598229105258151036484021479960765765687805868153067786577403 has 110 digits Number: 17779_195 N=96780213555444848209611889152187386372688573948470598229105258151036484021479960765765687805868153067786577403 ( 110 digits) Divisors found: r1=20303773842269115123939467873342342848136567 r2=4766612074547657425113602299458810889222950655299003162801405514909 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.734). Factorization parameters were as follows: name: 17779_195 n: 96780213555444848209611889152187386372688573948470598229105258151036484021479960765765687805868153067786577403 skew: 39343.05 # norm 4.40e+15 c5: 29700 c4: -2720680614 c3: -229660812986110 c2: 3755159898497477197 c1: 103107695126468227504850 c0: -1036926091866752413602699423 # alpha -6.52 Y1: 416125022923 Y0: -1266510048212425943194 # Murphy_E 9.33e-10 # M 38482898344273848443470793235030589679953893757120088997777761815782974719049996096666657288907626213621790808 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 401501 x 401746 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 12.00 hours.
By Wataru Sakai / GGNFS
(67·10189+23)/9 = 7(4)1887<190> = 11 · C189
C189 = P41 · P41 · P109
P41 = 12302291030660287515731443085247910553801<41>
P41 = 33535040497930633918581716583415099870073<41>
P109 = 1640418944811902951085590868766787391959788474209885459585076912235664555929048919674251980667635272532335549<109>
Number: 74447_189 N=676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767677 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=12302291030660287515731443085247910553801 (pp41) r2=33535040497930633918581716583415099870073 (pp41) r3=1640418944811902951085590868766787391959788474209885459585076912235664555929048919674251980667635272532335549 (pp109) Version: GGNFS-0.77.1-20060722-nocona Total time: 1521.52 hours. Scaled time: 2985.23 units (timescale=1.962). Factorization parameters were as follows: n: 676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767677 m: 100000000000000000000000000000000000000 c5: 67 c0: 230 skew: 1.28 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 3700000) Primes: RFBsize:501962, AFBsize:501696, largePrimes:7422129 encountered Relations: rels:8069778, finalFF:1154154 Max relations in full relation-set: 32 Initial matrix: 1003723 x 1154154 with sparse part having weight 155775130. Pruned matrix : 901456 x 906538 with weight 137484835. Total sieving time: 1508.35 hours. Total relation processing time: 0.18 hours. Matrix solve time: 12.67 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1521.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM
(17·10173-53)/9 = 1(8)1723<174> = 3 · 33538283375647<14> · 344480854549100429<18> · C142
C142 = P31 · P112
P31 = 5082667344375497681419535599351<31>
P112 = 1072229004522264389297731966081077378110519279231987469943729528228287736187297292244073007381734462645151035597<112>
By Sinkiti Sibata / GMP-ECM, GGNFS
(5·10172+31)/9 = (5)1719<172> = 33 · 19 · 367 · 43714416961213<14> · C153
C153 = P34 · C120
P34 = 1653798301727248021218700562722037<34>
C120 = [408166007641904842658786198853065554777699197980622797915618429703920585969239307313834166622909064779063867322012704809<120>]
(23·10161+13)/9 = 2(5)1607<162> = 599 · 15607 · C155
C155 = P41 · P115
P41 = 19719319340366401075426222484741876988119<41>
P115 = 1386267857558319169729300035985642690747006048187548119187725566550353932206640751237137083635630032062262815957971<115>
Number: 25557_161 N=27336258574478058415373902314022608060438138183527249026196300935932878408072268795481368753089962901963488575826924496077169639918601179402671135170346549 ( 155 digits) SNFS difficulty: 162 digits. Divisors found: r1=19719319340366401075426222484741876988119 (pp41) r2=1386267857558319169729300035985642690747006048187548119187725566550353932206640751237137083635630032062262815957971 (pp115) Version: GGNFS-0.77.1-20050930-nocona Total time: 80.39 hours. Scaled time: 81.11 units (timescale=1.009). Factorization parameters were as follows: name: 25557_161 n: 27336258574478058415373902314022608060438138183527249026196300935932878408072268795481368753089962901963488575826924496077169639918601179402671135170346549 m: 100000000000000000000000000000000 c5: 230 c0: 13 skew: 0.56 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4750001) Primes: RFBsize:315948, AFBsize:315406, largePrimes:5864181 encountered Relations: rels:5997416, finalFF:758540 Max relations in full relation-set: 28 Initial matrix: 631421 x 758540 with sparse part having weight 49501404. Pruned matrix : 535315 x 538536 with weight 34463912. Total sieving time: 78.17 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.97 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 80.39 hours. --------- CPU info (if available) ----------
(23·10168+13)/9 = 2(5)1677<169> = 19 · 324341 · 532000939 · 216482375323<12> · 425109585038514342899997341<27> · C115
C115 = P57 · P59
P57 = 752167598816115129543711951071928819636012261007143013921<57>
P59 = 11261063627173626179935047244183866914533647947005762221199<59>
Number: 25557_168 N=8470207188566678333602446992785470861350447681497005619521829651930901627167738151021929008822533350752240338311279 ( 115 digits) Divisors found: r1=752167598816115129543711951071928819636012261007143013921 (pp57) r2=11261063627173626179935047244183866914533647947005762221199 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 68.17 hours. Scaled time: 32.18 units (timescale=0.472). Factorization parameters were as follows: name: 25557_168 n: 8470207188566678333602446992785470861350447681497005619521829651930901627167738151021929008822533350752240338311279 skew: 27936.96 # norm 2.58e+16 c5: 124740 c4: 8884344672 c3: -720747713544096 c2: 14872117333479277883 c1: 141746735268279867872576 c0: 287065501993506415599337280 # alpha -6.37 Y1: 2338220458913 Y0: -9254993027360638988041 # Murphy_E 4.89e-10 # M 2062918138089881151250020832567888086452521627216082223859635173810679776500422403196605929108393081923762769012169 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3150001) Primes: RFBsize:250150, AFBsize:250255, largePrimes:7732143 encountered Relations: rels:7764575, finalFF:677928 Max relations in full relation-set: 28 Initial matrix: 500489 x 677928 with sparse part having weight 63776725. Pruned matrix : 367416 x 369982 with weight 38952604. Polynomial selection time: 2.60 hours. Total sieving time: 58.12 hours. Total relation processing time: 0.68 hours. Matrix solve time: 6.40 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 68.17 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(23·10155+13)/9 = 2(5)1547<156> = 27733 · 298395011 · C143
C143 = P64 · P80
P64 = 1536858237752765680135546884026991837272131624810560183412405141<64>
P80 = 20093847776981569795021169228096774173833895240522025864774809260371178027213679<80>
Number: 25557_155 N=30881395484204223525048363706070578871079743618026477135015191321940299122219049311869646894913492403479134345321756517220076016992416125123739 ( 143 digits) SNFS difficulty: 156 digits. Divisors found: r1=1536858237752765680135546884026991837272131624810560183412405141 (pp64) r2=20093847776981569795021169228096774173833895240522025864774809260371178027213679 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 36.57 hours. Scaled time: 28.09 units (timescale=0.768). Factorization parameters were as follows: name: 25557_155 n: 30881395484204223525048363706070578871079743618026477135015191321940299122219049311869646894913492403479134345321756517220076016992416125123739 m: 10000000000000000000000000000000 c5: 23 c0: 13 skew: 0.89 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:215956, largePrimes:5538932 encountered Relations: rels:5466993, finalFF:530339 Max relations in full relation-set: 28 Initial matrix: 432837 x 530339 with sparse part having weight 40290796. Pruned matrix : 366783 x 369011 with weight 26137725. Total sieving time: 34.89 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.44 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 36.57 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, pol51, Msieve
8·10173-9 = 7(9)1721<174> = 762946411 · 25759368564863328438503015111<29> · C137
C137 = P41 · P97
P41 = 23660900021573994987453189462396384397709<41>
P97 = 1720400179231385795985452436310629205021018478432220686288060649998543845046452046194341069059519<97>
(22·10176-13)/9 = 2(4)1753<177> = 3 · 47 · 11795329101796117<17> · 9398668257774823337<19> · C140
C140 = P37 · P103
P37 = 3402062619689460830934510402880048421<37>
P103 = 4596659900995630289638965548262792933809828494069495661471865826071626866018519050235823880497506667447<103>
(46·10174-1)/9 = 5(1)174<175> = 35159 · 58943237 · 1746625507597<13> · 248922781670497343680620477691<30> · C121
C121 = P61 · P61
P61 = 1067893823990919847935504982633835567161445887859246435573567<61>
P61 = 5311929554816100268964112016368816505627228318873420984890013<61>
# Nice split = P61 . P61 # Number: 51111_174 N=5672576765062949804877898588549304541456787458112679112216952341251445580533290906546230462728475408918734991394065086371 ( 121 digits) Divisors found: r1=1067893823990919847935504982633835567161445887859246435573567 r2=5311929554816100268964112016368816505627228318873420984890013 Version: Msieve 1.36 Total time: 42.5 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: name: 51111_174 n: 5672576765062949804877898588549304541456787458112679112216952341251445580533290906546230462728475408918734991394065086371 skew: 102014.76 # norm 3.35e+16 c5: 19140 c4: -9372030763 c3: -731870746623170 c2: 92837430175095225840 c1: 5337914859676003650431006 c0: 58938389159516231169474581275 # alpha -6.11 Y1: 216595974521 Y0: -196955329213367588586144 # Murphy_E 2.63e-10 # M 5469059722226539692538946386706739042829288291660310148684440958350372775671721201637447869734866081337144509489415174153 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 7900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 749432 x 749653 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.10 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000 total time: 42.5 hours.
7·10171-9 = 6(9)1701<172> = 1951 · 32173 · 42839 · 191392620057115592363<21> · C140
C140 = P30 · P44 · P67
P30 = 121675574481606991533348359183<30>
P44 = 37422933325867189106477419970456951426047763<44>
P67 = 2987056712446451498387325795625445621950302093418101807281997373189<67>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3791932801 Step 1 took 4752ms Step 2 took 4028ms ********** Factor found in step 2: 121675574481606991533348359183 Found probable prime factor of 30 digits: 121675574481606991533348359183 Composite cofactor 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 has 111 digits Number: 69991_171 N=111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 ( 111 digits) Divisors found: r1=37422933325867189106477419970456951426047763 r2=2987056712446451498387325795625445621950302093418101807281997373189 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: name: 69991_171 n: 111784424190467595098459056149911917007502961485656473196420609707893662179624033360420585864758177758049626207 skew: 16193.65 # norm 1.24e+15 c5: 11520 c4: 3427171552 c3: -6558936108298 c2: -63252626562105279 c1: 1972660268393096151002 c0: -13877734259057275740107961 # alpha -5.84 Y1: 104053675033 Y0: -1575375388115067456790 # Murphy_E 9.89e-10 # M 37041568271832547269366268052856747176849485994032370674464185504456218729408930988297991607542039622190059088 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416881 x 417129 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.60 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 12.00 hours.
(7·10173+11)/9 = (7)1729<173> = 13 · 41 · 97 · 1187 · 4283 · 20123 · 2542985731006770567379<22> · C136
C136 = P33 · P44 · P61
P33 = 148374117022910019762569059285381<33>
P44 = 12742154383891239743677658168449128630353237<44>
P61 = 3058582034683493208292511149822611160088020815388316641196351<61>
#ECM, then gnfs/Msieve # Using B1=6000000, B2=46838457130, polynomial Dickson(12), sigma=3016012969 Step 1 took 41693ms Step 2 took 28838ms ********** Factor found in step 2: 148374117022910019762569059285381 Found probable prime factor of 33 digits: 148374117022910019762569059285381 Composite cofactor 38972924481733260870403559566764442799445187208849829731616034785643738108037675326777009491015405438187 has 104 digits Number: 77779_173 N=38972924481733260870403559566764442799445187208849829731616034785643738108037675326777009491015405438187 ( 104 digits) Divisors found: r1=12742154383891239743677658168449128630353237 r2=3058582034683493208292511149822611160088020815388316641196351 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: name: 77779_173 n: 38972924481733260870403559566764442799445187208849829731616034785643738108037675326777009491015405438187 skew: 9933.83 # norm 1.97e+14 c5: 34860 c4: 901297777 c3: -21180099304087 c2: -78583700990596635 c1: 703469453536820960998 c0: -394872940644774252554872 # alpha -5.56 Y1: 92456260217 Y0: -64518446932467432327 # Murphy_E 2.08e-09 # M 30218089768888548155266849306367562088407850169320702880711957874078613122326425973957506041161891019394 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 246221 x 246469 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.00 hours.
(22·10201+41)/9 = 2(4)2009<202> = 3797 · 3739573 · 9224921 · 103799099 · 1624797562127<13> · 1003362284833326692245409<25> · C141
C141 = P36 · P41 · P64
P36 = 330339604811711267297717657513076361<36>
P41 = 98925041246554540448114569641042954062293<41>
P64 = 3374717342088131963785890619806166620582933081953540929990793009<64>
#ECM, then gnfs/Msieve # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3739902623 Step 1 took 19269ms Step 2 took 16557ms ********** Factor found in step 2: 330339604811711267297717657513076361 Found probable prime factor of 36 digits: 330339604811711267297717657513076361 Composite cofactor 333844052261531363551751769986354954315086292507097564052612942432609377571688862191585189443825054909637 has 105 digits Number: 24449_201 N=333844052261531363551751769986354954315086292507097564052612942432609377571688862191585189443825054909637 ( 105 digits) Divisors found: r1=98925041246554540448114569641042954062293 r2=3374717342088131963785890619806166620582933081953540929990793009 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.640). Factorization parameters were as follows: name: 24449_201 n: 333844052261531363551751769986354954315086292507097564052612942432609377571688862191585189443825054909637 skew: 13311.19 # norm 3.73e+14 c5: 12600 c4: 1440916962 c3: -12014813041711 c2: -50543851810534588 c1: 1101519325379670022132 c0: 88313820922993320076000 # alpha -6.41 Y1: 81213642653 Y0: -121514465581815833139 # Murphy_E 2.04e-09 # M 101610898617811713987352624168799700761878918485444785286881499599136886363679267953692098842357271862008 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 305904 x 306152 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 5.00 hours.
(14·10176-41)/9 = 1(5)1751<177> = 2259105661271087<16> · 80720351480358203<17> · C144
C144 = P28 · C117
P28 = 6253487942641704767889353221<28>
C117 = [136409187220118099594259543876309212197184154651522471682143115643170104578299575205818479783053844257159831548060871<117>]
(55·10184-1)/9 = 6(1)184<185> = 113113526204811467<18> · 902962100831388890356903<24> · C144
C144 = P26 · C119
P26 = 30298080812156225043145231<26>
C119 = [19747903514851469875519184933191367723255404512820964004527952705940791479122740524381113999412093592853212505254472781<119>]
2·10179-1 = 1(9)179<180> = 149 · 19645014971<11> · 838639710091<12> · 13513905648601<14> · C142
C142 = P34 · P108
P34 = 7736164186569272400196540924681661<34>
P108 = 779308440001156560248963164065011218680470960978737478778245389819252290693403741828408530381050760178412831<108>
(7·10184-61)/9 = (7)1831<184> = 17 · 19 · 12973 · 154681 · 1214431 · 8563859219<10> · 125889320445307<15> · C142
C142 = P33 · P110
P33 = 129094206503327431146389777618501<33>
P110 = 70996610207680637642204608399521543078046698423883298589248821326163661299941720117124087158672108046378173023<110>
(7·10175-43)/9 = (7)1743<175> = 3 · 382871 · 4421693 · 17287094566914421<17> · C146
C146 = P37 · P110
P37 = 1684109493826672636928080591712280253<37>
P110 = 52601833872567659626851043826581619661581030085497192629117169385792946029809296953983334314216888134146219869<110>
(88·10192-7)/9 = 9(7)192<193> = 3 · 23 · 7288271 · 64712835717378481819<20> · 464852779560926987089<21> · C144
C144 = P32 · P113
P32 = 18366535073149532144552799837541<32>
P113 = 35191150359072223380378605356328279445463560817952105212736869086800146064986873859220813359328377257541095219333<113>
By Sinkiti Sibata / GGNFS
(23·10156+13)/9 = 2(5)1557<157> = 17657 · 44971 · C148
C148 = P54 · P94
P54 = 781907070859593547152702692114831874677192073746363363<54>
P94 = 4116050781119597221247693666790093823786502395231349904415402687602576392453281676423041883437<94>
Number: 25557_156 N=3218369209774566274049173141039366428490259800717741754764314923643946321825760512611705672009243932137381206086696326505234361349905745712893318631 ( 148 digits) SNFS difficulty: 157 digits. Divisors found: r1=781907070859593547152702692114831874677192073746363363 (pp54) r2=4116050781119597221247693666790093823786502395231349904415402687602576392453281676423041883437 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 40.68 hours. Scaled time: 40.56 units (timescale=0.997). Factorization parameters were as follows: name: 25557_156 n: 3218369209774566274049173141039366428490259800717741754764314923643946321825760512611705672009243932137381206086696326505234361349905745712893318631 m: 10000000000000000000000000000000 c5: 230 c0: 13 skew: 0.56 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3200001) Primes: RFBsize:216816, AFBsize:216366, largePrimes:6056710 encountered Relations: rels:6288634, finalFF:749664 Max relations in full relation-set: 28 Initial matrix: 433249 x 749664 with sparse part having weight 72754471. Pruned matrix : 315959 x 318189 with weight 42689934. Total sieving time: 39.53 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.98 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 40.68 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM
3·10174-7 = 2(9)1733<175> = 17 · 13707838783<11> · 37843367550258766630487<23> · C141
C141 = P34 · P108
P34 = 2335652610416605452519508897978433<34>
P108 = 145648266590335890831386445560195486299154390924262334577765318323875048848015754190501837612604655871004353<108>
By Serge Batalov / GMP-ECM, pol51, Msieve
7·10173+1 = 7(0)1721<174> = 62473 · 1835807801<10> · 3510906612731053298436347<25> · C136
C136 = P33 · P34 · P70
P33 = 992595949608553727415223604789713<33>
P34 = 1626878119033344343859043164870647<34>
P70 = 1076543722683910823425060595208148712881299436943475382391159481127061<70>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3918156657 Step 1 took 4876ms Step 2 took 3917ms ********** Factor found in step 2: 1626878119033344343859043164870647 Found probable prime factor of 34 digits: 1626878119033344343859043164870647 Composite cofactor 1068572938712563985973724191660647332399339731320429804051791387573023191775826284252964977667138723493 has 103 digits Number: 70001_173 N=1068572938712563985973724191660647332399339731320429804051791387573023191775826284252964977667138723493 ( 103 digits) Divisors found: r1=992595949608553727415223604789713 r2=1076543722683910823425060595208148712881299436943475382391159481127061 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: name: 70001_173 n: 1068572938712563985973724191660647332399339731320429804051791387573023191775826284252964977667138723493 skew: 15552.49 # norm 5.16e+13 c5: 2940 c4: 129072552 c3: 676512448813 c2: -10144897000555416 c1: -183754969317295252134 c0: 1149836521829367843055935 # alpha -4.98 Y1: 2140818119 Y0: -51533686343477739386 # Murphy_E 2.69e-09 # M 737117335365418159696785999293603511904503343401603691135378419973771783304690523634342544985619791933 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 273072 x 273320 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.00 hours.
By Serge Batalov / GMP-ECM, pol51, Msieve
5·10188-7 = 4(9)1873<189> = 1013 · 5167 · 304746299542785906368113<24> · 305640055064400234524887<24> · C136
C136 = P31 · P52 · P54
P31 = 1125757121291323820335846959911<31>
P52 = 7781904029500380045551718378173661286980891261937589<52>
P54 = 117069244032165610046166201324768623892290569937890367<54>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=1218311065 Step 1 took 6562ms Step 2 took 5173ms ********** Factor found in step 2: 1125757121291323820335846959911 Found probable prime factor of 31 digits: 1125757121291323820335846959911 Composite cofactor 911021621864472880075023900946638173443125657307892780789019050463547543440983821891566758943879478305163 has 105 digits # Number: 49993_188 N=911021621864472880075023900946638173443125657307892780789019050463547543440983821891566758943879478305163 ( 105 digits) Divisors found: r1=7781904029500380045551718378173661286980891261937589 r2=117069244032165610046166201324768623892290569937890367 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.734). Factorization parameters were as follows: name: 49993_188 n: 911021621864472880075023900946638173443125657307892780789019050463547543440983821891566758943879478305163 skew: 25126.52 # norm 1.03e+14 c5: 3000 c4: -184008800 c3: -4855436126528 c2: 67822196941694137 c1: 1629442699164998766054 c0: -1737491899063811738070735 # alpha -5.76 Y1: 37648389859 Y0: -197916726587171231828 # Murphy_E 2.09e-09 # M 765710024518842781312326828781050795290290399363406343051939875665884698804336614622533704295513648569450 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 254568 x 254816 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 5.1 hours.
(8·10174-71)/9 = (8)1731<174> = 7 · 53 · 12101 · 1939607078801257064760060301<28> · C141
C141 = P33 · P41 · P67
P33 = 850114323448304243508033259581857<33>
P41 = 78519989734889223718360727461925074539577<41>
P67 = 1529258766563958643337276955202978587578375066092351071414778732099<67>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2137109807 Step 1 took 6074ms Step 2 took 5382ms ********** Factor found in step 2: 850114323448304243508033259581857 Found probable prime factor of 33 digits: 850114323448304243508033259581857 Composite cofactor 120077382652591388295983297045168552769870447621305691159671304298960005415149680145939340552228814255782123 has 108 digits Number: 88881_174 N=120077382652591388295983297045168552769870447621305691159671304298960005415149680145939340552228814255782123 ( 108 digits) Divisors found: r1=78519989734889223718360727461925074539577 r2=1529258766563958643337276955202978587578375066092351071414778732099 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.737). Factorization parameters were as follows: name: 88881_174 n: 120077382652591388295983297045168552769870447621305691159671304298960005415149680145939340552228814255782123 skew: 15539.87 # norm 5.21e+14 c5: 10620 c4: 2345195624 c3: -9769755854673 c2: -757793244395768101 c1: -346626392993315128485 c0: 663410832095626035419180 # alpha -5.61 Y1: 214905875723 Y0: -407997250730317195257 # Murphy_E 1.32e-09 # M 45879032032193932672059950995837741871759094187743379265860171579020205688976944665220708460720323858425038 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1600000, 2900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 335656 x 335899 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,26,26,49,49,2.6,2.6,100000 total time: 8.5 hours.
(8·10177-71)/9 = (8)1761<177> = 2521 · 12347 · 508009 · 2364600556759857195209813<25> · C140
C140 = P39 · P42 · P60
P39 = 652164356657968751849283918254856440873<39>
P42 = 286392555317369108538464512499833719018257<42>
P60 = 127281476955854375844191574769583701186317121525016829505199<60>
#ECM, then gnfs/Msieve # Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=2437338572 Step 1 took 6152ms Step 2 took 5294ms ********** Factor found in step 2: 652164356657968751849283918254856440873 Found probable prime factor of 39 digits: 652164356657968751849283918254856440873 Composite cofactor 36452467429955965780886924086595385555832450018859545691294583204020859281578886114742778261357418143 has 101 digits Number: 88881_177 N=36452467429955965780886924086595385555832450018859545691294583204020859281578886114742778261357418143 ( 101 digits) Divisors found: r1=286392555317369108538464512499833719018257 r2=127281476955854375844191574769583701186317121525016829505199 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: name: 88881_177 n: 36452467429955965780886924086595385555832450018859545691294583204020859281578886114742778261357418143 skew: 12368.22 # norm 1.12e+14 c5: 15120 c4: 150264694 c3: -11598943337685 c2: -17156313923209009 c1: 524819569682653239745 c0: 949953813586943591715135 # alpha -5.76 Y1: 139498271 Y0: -18898834485199271362 # Murphy_E 3.00e-09 # M 26093282328691552134264344581641201739610238309972482507984177247986435870294398991833476024748170828 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 196349 x 196597 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.2 hours.
(29·10185+7)/9 = 3(2)1843<186> = 11 · 59 · 685249 · 171202729 · 734289631 · 411680179561846754678303<24> · C137
C137 = P36 · P42 · P59
P36 = 998491758420129256214012778643327061<36>
P42 = 191014929503817134873863510492700758731779<42>
P59 = 73402786568103797704687105151174128789470935649299173949761<59>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=8559543730, polynomial Dickson(6), sigma=2737868976 Step 1 took 9609ms Step 2 took 7188ms ********** Factor found in step 2: 998491758420129256214012778643327061 Found probable prime factor of 36 digits: 998491758420129256214012778643327061 Composite cofactor 14021028101690082203690938282107943503058227685215117433407131744368757397621888113439598832620154819 has 101 digits Number: 32223_185 N=14021028101690082203690938282107943503058227685215117433407131744368757397621888113439598832620154819 ( 101 digits) Divisors found: r1=191014929503817134873863510492700758731779 r2=73402786568103797704687105151174128789470935649299173949761 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.738). Factorization parameters were as follows: name: 32223_185 n: 14021028101690082203690938282107943503058227685215117433407131744368757397621888113439598832620154819 skew: 5770.54 # norm 1.14e+14 c5: 48600 c4: 1184294521 c3: -12491219393246 c2: -27607875436124762 c1: 101137989921524038740 c0: 155838742740402087911160 # alpha -5.97 Y1: 29392050083 Y0: -12360148402989801913 # Murphy_E 3.32e-09 # M 10280378046388752780938709639775952386580967738344090357039117454518361154218840421540055381266736973 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 201675 x 201913 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.4 hours.
(2·10183+7)/9 = (2)1823<183> = 17 · 361822305232022329<18> · 152872903897698185022599<24> · C141
C141 = P41 · P42 · P59
P41 = 56504766697054018996849756720133510657753<41>
P42 = 129327126139044059461605326059944584322779<42>
P59 = 32339849927200696698255186332877160637861959050438843478747<59>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=8559543730, polynomial Dickson(6), sigma=1270233868 Step 1 took 9533ms Step 2 took 7464ms ********** Factor found in step 2: 129327126139044059461605326059944584322779 Found probable prime factor of 42 digits: 129327126139044059461605326059944584322779 Composite cofactor 1827355675154214767482106570239375220163114678088840958328885624433969277661546681725988126646275491 has 100 digits Number: 22223_183 N=1827355675154214767482106570239375220163114678088840958328885624433969277661546681725988126646275491 ( 100 digits) Divisors found: r1=56504766697054018996849756720133510657753 r2=32339849927200696698255186332877160637861959050438843478747 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: name: 22223_183 n: 1827355675154214767482106570239375220163114678088840958328885624433969277661546681725988126646275491 skew: 3575.19 # norm 2.82e+13 c5: 102900 c4: -1062787720 c3: -2272158754673 c2: 10216394129434064 c1: 16004713462425507864 c0: 8663053915124755834480 # alpha -5.13 Y1: 3656686517 Y0: -7077534675564246313 # Murphy_E 3.52e-09 # M 940969014475266382158432414369008942926809560248257615283982847759757507643575631266244431986526342 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 178248 x 178496 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.9 hours.
4·10182+7 = 4(0)1817<183> = 11 · 37 · 5902703 · 37760843933<11> · 1674936332852367533987873251<28> · C136
C136 = P37 · P41 · P59
P37 = 2330176577666875374606105976962270839<37>
P41 = 47627606812357868080621344383726803782953<41>
P59 = 23720676061967159486831460421686709294636997657176676784247<59>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=8559543730, polynomial Dickson(6), sigma=55071172 Step 1 took 10844ms Step 2 took 7141ms ********** Factor found in step 2: 2330176577666875374606105976962270839 Found probable prime factor of 37 digits: 2330176577666875374606105976962270839 Composite cofactor 1129759032802681292108641345913746599729470090263548664373455174466738092066408583230872690597541391 has 100 digits Number: 40007_182 N=1129759032802681292108641345913746599729470090263548664373455174466738092066408583230872690597541391 ( 100 digits) Divisors found: r1=47627606812357868080621344383726803782953 r2=23720676061967159486831460421686709294636997657176676784247 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: name: 40007_182 n: 1129759032802681292108641345913746599729470090263548664373455174466738092066408583230872690597541391 skew: 5286.20 # norm 4.88e+13 c5: 58800 c4: -906758215 c3: -6836595460751 c2: 23281841126672733 c1: 66931458270165345836 c0: -88859584402032996519968 # alpha -5.55 Y1: 15480297767 Y0: -7189928693554233609 # Murphy_E 3.55e-09 # M 947782540688762278453606516086462947233300208592534816796037426704101353095513118854962769689206778 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 180923 x 181171 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.3 hours.
(19·10193-1)/9 = 2(1)193<194> = 3 · 7 · 23 · 613 · 2833 · 416490302317<12> · 33136289468939<14> · 6387850378064999378621<22> · C138
C138 = P34 · P36 · P69
P34 = 3585254944930175016436306851443401<34>
P36 = 105774509586365818991279929828972043<36>
P69 = 752822071840582304755740077449928254967150719264138691792961720686657<69>
#ECM, then gnfs/Msieve # Using B1=2000000, B2=8559543730, polynomial Dickson(6), sigma=1729672148 Step 1 took 9573ms Step 2 took 7300ms ********** Factor found in step 2: 3585254944930175016436306851443401 Found probable prime factor of 34 digits: 3585254944930175016436306851443401 Composite cofactor 79629385454729450269141990896146731249794383524320855682484215788054337303524638643371992825766416130251 has 104 digits Number: 21111_193 N=79629385454729450269141990896146731249794383524320855682484215788054337303524638643371992825766416130251 ( 104 digits) Divisors found: r1=105774509586365818991279929828972043 r2=752822071840582304755740077449928254967150719264138691792961720686657 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.737). Factorization parameters were as follows: name: 21111_193 n: 79629385454729450269141990896146731249794383524320855682484215788054337303524638643371992825766416130251 skew: 11440.70 # norm 3.65e+14 c5: 49560 c4: 954446464 c3: -11673185859318 c2: 99159039807627574 c1: 85142343816020421663 c0: -3137015993006215705337408 # alpha -5.99 Y1: 67495019713 Y0: -69372410581475242965 # Murphy_E 1.98e-09 # M 71658718969377613232222706448506061496258100849620301512030428716481435024437065551927822137618899207361 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 281490 x 281734 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.9 hours.
By Sinkiti Sibata / GGNFS
(23·10158+13)/9 = 2(5)1577<159> = 179 · 857 · 5853319 · 10428049068221<14> · 396542762668729543<18> · C116
C116 = P38 · P79
P38 = 28481733151018451194381169971516170137<38>
P79 = 2416516546246403734291325726758822978398144770574446242022023119207272957248691<79>
Number: 25557_158 N=68826579425210809470015553353770765456077504207060256500230860436840512081806665744753698910449007201997412976540667 ( 116 digits) SNFS difficulty: 159 digits. Divisors found: r1=28481733151018451194381169971516170137 (pp38) r2=2416516546246403734291325726758822978398144770574446242022023119207272957248691 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 58.23 hours. Scaled time: 58.75 units (timescale=1.009). Factorization parameters were as follows: name: 25557_158 n: 68826579425210809470015553353770765456077504207060256500230860436840512081806665744753698910449007201997412976540667 m: 10000000000000000000000000000000 c5: 23000 c0: 13 skew: 0.22 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:282137, largePrimes:5923659 encountered Relations: rels:6064985, finalFF:735082 Max relations in full relation-set: 28 Initial matrix: 565350 x 735082 with sparse part having weight 58078754. Pruned matrix : 446248 x 449138 with weight 41455549. Total sieving time: 56.27 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.76 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 58.23 hours. --------- CPU info (if available) ----------
(23·10149+13)/9 = 2(5)1487<150> = 64772479953469503305191<23> · C127
C127 = P45 · P82
P45 = 566133521560795325889304563432237670928480249<45>
P82 = 6969087711214779205512251281730735486566945920175972509570822329865906521478641323<82>
Number: 25557_149 N=3945434168016085953016073180664300665240976809696498373238898533666905590653549512885830295321311057834646752892450153760729427 ( 127 digits) SNFS difficulty: 151 digits. Divisors found: r1=566133521560795325889304563432237670928480249 (pp45) r2=6969087711214779205512251281730735486566945920175972509570822329865906521478641323 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 30.98 hours. Scaled time: 24.11 units (timescale=0.778). Factorization parameters were as follows: name: 25557_149 n: 3945434168016085953016073180664300665240976809696498373238898533666905590653549512885830295321311057834646752892450153760729427 m: 1000000000000000000000000000000 c5: 23 c0: 130 skew: 1.41 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176533, largePrimes:5965007 encountered Relations: rels:6142480, finalFF:692622 Max relations in full relation-set: 28 Initial matrix: 352900 x 692622 with sparse part having weight 67465135. Pruned matrix : 251696 x 253524 with weight 35454550. Total sieving time: 29.81 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.93 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.98 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(19·10187-1)/9 = 2(1)187<188> = 32 · 7 · C186
C186 = P48 · P59 · P80
P48 = 329022937768969847915045880276123722387918253629<48>
P59 = 94329378756867316059517725551482756560238888705578834764291<59>
P80 = 10796858061879096975942872469334528421951068133497198680481477155854888637343823<80>
Number: n N=335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097 ( 186 digits) SNFS difficulty: 188 digits. Divisors found: Thu Aug 07 03:14:08 2008 prp48 factor: 329022937768969847915045880276123722387918253629 Thu Aug 07 03:14:08 2008 prp59 factor: 94329378756867316059517725551482756560238888705578834764291 Thu Aug 07 03:14:08 2008 prp80 factor: 10796858061879096975942872469334528421951068133497198680481477155854888637343823 Thu Aug 07 03:14:08 2008 elapsed time 10:51:17 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 128.02 hours. Scaled time: 167.58 units (timescale=1.309). Factorization parameters were as follows: name: KA_2_1_187 n: 335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097001763668430335097 type: snfs skew: 0.22 deg: 5 c5: 1900 c0: -1 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 10350001) Primes: RFBsize:602489, AFBsize:602920, largePrimes:11018733 encountered Relations: rels:11102338, finalFF:1302917 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 127.32 hours. Total relation processing time: 0.71 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.5,2.5,100000 total time: 128.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
(16·10187-7)/9 = 1(7)187<188> = 23 · C186
C186 = P61 · P125
P61 = 8413570336737408496831483163541109031813882697182810158716967<61>
P125 = 91869067348061522362678558846592350747618316691107208817401001795528904555531717670493313920079035651924077479602838554208497<125>
Number: n N=772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599 ( 186 digits) SNFS difficulty: 188 digits. Divisors found: Wed Aug 06 14:01:52 2008 prp61 factor: 8413570336737408496831483163541109031813882697182810158716967 Wed Aug 06 14:01:52 2008 prp125 factor: 91869067348061522362678558846592350747618316691107208817401001795528904555531717670493313920079035651924077479602838554208497 Wed Aug 06 14:01:52 2008 elapsed time 04:55:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 104.83 hours. Scaled time: 215.00 units (timescale=2.051). Factorization parameters were as follows: name: KA_1_7_187 n: 772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599033816425120772946859903381642512077294685990338164251207729468599 type: snfs skew: 0.67 deg: 5 c5: 50 c0: -7 m: 20000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 7700001) Primes: RFBsize:602489, AFBsize:603650, largePrimes:10820302 encountered Relations: rels:10822304, finalFF:1234763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 104.47 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.5,2.5,100000 total time: 104.83 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, GMP-ECM
(23·10144+13)/9 = 2(5)1437<145> = 457 · 17183 · 4178794657<10> · 343786229129288649902671981<27> · C102
C102 = P40 · P62
P40 = 4114335642866747764693039576228582994911<40>
P62 = 55059328596536920501386029149429591370549677520488608295796081<62>
Number: 25557_144 N=226532558117044239774320977876345460092466644275246353722984829588615428664800021207013083965916743791 ( 102 digits) Divisors found: r1=4114335642866747764693039576228582994911 (pp40) r2=55059328596536920501386029149429591370549677520488608295796081 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.89 hours. Scaled time: 7.61 units (timescale=0.769). Factorization parameters were as follows: name: 25557_144 n: 226532558117044239774320977876345460092466644275246353722984829588615428664800021207013083965916743791 skew: 7988.34 # norm 3.60e+14 c5: 71400 c4: -774575110 c3: 15524586669067 c2: -87782106422671083 c1: -780942194720821060323 c0: -750391296517424150053023 # alpha -6.72 Y1: 23670384947 Y0: -19965840648434549932 # Murphy_E 2.77e-09 # M 83675160995847320103734812275915734706169745801809051083627009931664545162604386774762890030652613951 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1650001) Primes: RFBsize:169511, AFBsize:169027, largePrimes:4335727 encountered Relations: rels:4400992, finalFF:476262 Max relations in full relation-set: 28 Initial matrix: 338623 x 476262 with sparse part having weight 33631253. Pruned matrix : 223554 x 225311 with weight 14342686. Total sieving time: 9.27 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.34 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 9.89 hours. --------- CPU info (if available) ----------
(23·10164+13)/9 = 2(5)1637<165> = 173 · 2459 · 69821287 · C151
C151 = P35 · P116
P35 = 97996674633214703904333152367330721<35>
P116 = 87797369882483358127297218980473387849967031598734392845350193043538916210511016929393258070159166263052725101579213<116>
(23·10146+13)/9 = 2(5)1457<147> = 15881 · 92333 · 217691 · 522492712207777<15> · C118
C118 = P41 · P77
P41 = 30395386576514997938657854711907051494819<41>
P77 = 50410633075491711788515806989680923366586844061809091392422973274639746710273<77>
Number: 25557_146 N=1532250679896423743216230013144060122627556389523592324124708922006937367233119275394131176657352314823367662353575587 ( 118 digits) SNFS difficulty: 147 digits. Divisors found: r1=30395386576514997938657854711907051494819 (pp41) r2=50410633075491711788515806989680923366586844061809091392422973274639746710273 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.21 hours. Scaled time: 18.60 units (timescale=0.768). Factorization parameters were as follows: name: 25557_146 n: 1532250679896423743216230013144060122627556389523592324124708922006937367233119275394131176657352314823367662353575587 m: 100000000000000000000000000000 c5: 230 c0: 13 skew: 0.56 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3450001) Primes: RFBsize:114155, AFBsize:113437, largePrimes:2959727 encountered Relations: rels:2981079, finalFF:268285 Max relations in full relation-set: 28 Initial matrix: 227659 x 268285 with sparse part having weight 31407304. Pruned matrix : 216257 x 217459 with weight 23868475. Total sieving time: 23.52 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.49 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 24.21 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, pol51, Msieve
(23·10142+13)/9 = 2(5)1417<143> = 3 · 7 · 489601939 · 1872029835859049<16> · C118
C118 = P55 · P63
P55 = 6625098495942842425461341162814530427168462082503703937<55>
P63 = 200409265926613305929760532852100392767304804014811227076778131<63>
Number: 25557_142 N=1327731126263414951933406087090320904441165906586586461502979533450403825686008579656045087639294576190702887860201747 ( 118 digits) SNFS difficulty: 143 digits. Divisors found: r1=6625098495942842425461341162814530427168462082503703937 r2=200409265926613305929760532852100392767304804014811227076778131 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 1327731126263414951933406087090320904441165906586586461502979533450403825686008579656045087639294576190702887860201747 Y1: 1 Y0: -10000000000000000000000000000 c5: 2300 c0: 13 skew: 0.36 type: snfsFactor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [650000, 2550001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 232957 x 233174 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 8.8 hours.
(23·10143+13)/9 = 2(5)1427<144> = 17 · 61744519 · 101301403166701741<18> · C118
C118 = P53 · P65
P53 = 65859675644733747744876500166006837201688502506803137<53>
P65 = 36492443555669713830870958080651283618116301983410638260983585327<65>
Number: 25557_143 N=2403380496060161658259467596978281135018814158374470115183024859384918654165882944235953366808378500030515903230770799 ( 118 digits) SNFS difficulty: 144 digits. Divisors found: r1=65859675644733747744876500166006837201688502506803137 r2=36492443555669713830870958080651283618116301983410638260983585327 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 2403380496060161658259467596978281135018814158374470115183024859384918654165882944235953366808378500030515903230770799 Y1: 1 Y0: -10000000000000000000000000000 c5: 23000 c0: 13 skew: 0.22 type: snfsFactor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [650000, 2750001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239842 x 240061 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 9.50 hours.
(23·10161-41)/9 = 2(5)1601<162> = 34239449 · 2926008353<10> · C145
C145 = P37 · P108
P37 = 3265797762225884596670732499419492287<37>
P108 = 781076750339822130193637764085753788800316293642129828413036710971415513493721659905790281056519495473703209<108>
Number: 25551_161 N=2550838703386457058983851982174471636580809444581382140772962847792680968368041877385417491833370434666366908243887386972936845573239198502648983 ( 145 digits) SNFS difficulty: 162 digits. Divisors found: r1=3265797762225884596670732499419492287 r2=781076750339822130193637764085753788800316293642129828413036710971415513493721659905790281056519495473703209 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 2550838703386457058983851982174471636580809444581382140772962847792680968368041877385417491833370434666366908243887386972936845573239198502648983 Y1: 1 Y0: -100000000000000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 5850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 847882 x 848130 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.5,2.5,100000 total time: 31.00 hours.
(89·10183+1)/9 = 9(8)1829<184> = 11 · 31 · 230939 · 6528699292836557<16> · 45042607302532677661259<23> · C138
C138 = P30 · P48 · P61
P30 = 855468002423990818667567862479<30>
P48 = 275723309612424883809954589539130241126436024793<48>
P61 = 1810374387839617565875816723065884562933961409570318045244551<61>
# by ECM - Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3594520275 Step 1 took 4753ms Step 2 took 2516ms ********** Factor found in step 2: 855468002423990818667567862479 Found probable prime factor of 30 digits: 855468002423990818667567862479 Composite cofactor 499162417852707040683001124722295789588462930665489693937531449950777948895806297476020644412226345984152943 has 108 digits # # then gnfs-108 # Number: 98889_183 N=499162417852707040683001124722295789588462930665489693937531449950777948895806297476020644412226345984152943 ( 108 digits) Divisors found: r1=275723309612424883809954589539130241126436024793 r2=1810374387839617565875816723065884562933961409570318045244551 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.731). Factorization parameters were as follows: name: 98889_183 n: 499162417852707040683001124722295789588462930665489693937531449950777948895806297476020644412226345984152943 skew: 6367.74 # norm 1.99e+14 c5: 98280 c4: -3932189772 c3: -14195911115856 c2: 168247492708970018 c1: 394303928144318474569 c0: 11250118535848240977980 # alpha -4.82 Y1: 146536788547 Y0: -347661669355558617337 # Murphy_E 1.26e-09 # M 234099490853764417282034601725069136841311422359331376023196173334057189716504940742691805709108107303510010 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1600000, 2900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 363455 x 363690 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,26,26,49,49,2.6,2.6,100000 total time: 9.00 hours.
(23·10178+13)/9 = 2(5)1777<179> = 3 · 7 · 3089 · 30965694031<11> · 105798861707767097<18> · C147
C147 = P34 · P113
P34 = 9190189260448802869426553982826697<34>
P113 = 13084642307823470911065057058071680416067637028123994347405023218259557598814694113241703703772546244245296570607<113>
(23·10197+13)/9 = 2(5)1967<198> = 53714423800700912989<20> · 1014976496456936546473<22> · C157
C157 = P34 · P124
P34 = 2580874998888541245310406445060083<34>
P124 = 1816232526436507979241205514927769365658211492022209623151229839650671428819401905149150226796372100647466485902499391480507<124>
(23·10196+13)/9 = 2(5)1957<197> = 3 · 7 · 4871 · 961159 · 131819032819<12> · 1698569523257<13> · C163
C163 = P35 · C128
P35 = 53004070707953670657090858563081161<35>
C128 = [21901910122835344256061530624500431703779582143146602139059801748063458973892397511598243950760773344980568496721822880202328731<128>]
(23·10170+13)/9 = 2(5)1697<171> = 131 · C169
C169 = P37 · P133
P37 = 1044017213865280636808570384948699591<37>
P133 = 1868557090526470524991054799255390917927347831803388988191607353986471639712766833299263075001398831704077334177755758059926799038417<133>
(23·10186+13)/9 = 2(5)1857<187> = 19 · 98830288759<11> · 13923449887211<14> · 7114090681306556579<19> · 88088266222011349289720093<26> · C117
C117 = P44 · P73
P44 = 27296107544757600811971553165015267535987419<44>
P73 = 5714215643994044486498201355639702225760874868392820299955666521320942079<73>
(23·10157+13)/9 = 2(5)1567<158> = 3 · C157
C157 = P60 · P98
P60 = 126011477037647694969872702702861906404388540860818011857969<60>
P98 = 67601132204596663156815669683198816877432469167676276619995009811867251792268967419820117585110951<98>
Number: 25557_157 N=8518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 ( 157 digits) SNFS difficulty: 158 digits. Divisors found: r1=126011477037647694969872702702861906404388540860818011857969 r2=67601132204596663156815669683198816877432469167676276619995009811867251792268967419820117585110951 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 8518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518518519 Y1: 1 Y0: -10000000000000000000000000000000 c5: 2300 c0: 13 skew: 0.36 type: snfsFactor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 759044 x 759292 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 2.10 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.5,2.5,100000 total time: 20 hours.
2·10175-7 = 1(9)1743<176> = 13 · 17 · 19 · 263 · 1061 · 2381 · 13441 · 4860859 · 226155589725368669<18> · C135
C135 = P32 · P36 · P68
P32 = 39446498300985945769793398333109<32>
P36 = 938415519872263667316969095279317859<36>
P68 = 13106840786581520901091016381324397299535250533490063320445846306169<68>
(5·10183-17)/3 = 1(6)1821<184> = 113 · 12379 · 1256764309<10> · 125559628324721<15> · 10322887976088217<17> · C137
C137 = P31 · P107
P31 = 4829132631888808394893101232471<31>
P107 = 12859110351779873791714693881189925990159509826139111805995342132170989852683935783801451769837720188516543<107>
5·10179+9 = 5(0)1789<180> = 19 · 24379 · 343338641215057<15> · 14527279412530452112203563<26> · C135
C135 = P35 · P37 · P65
P35 = 12944269695080218973540346309891121<35>
P37 = 1416113441407550287859867356704288481<37>
P65 = 11806412269556885461858705275762974929092425790557887195787409499<65>
Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3581677858 Step 1 took 3904ms Step 2 took 3752ms ********** Factor found in step 2: 12944269695080218973540346309891121 Found probable prime factor of 35 digits: 12944269695080218973540346309891121 Composite cofactor 16719219109718527335685783927057161772888685825706508837251201359866567487929188872684878878975681019 has 101 digits # # then gnfs-101 # Number: 50009_179 N=16719219109718527335685783927057161772888685825706508837251201359866567487929188872684878878975681019 ( 101 digits) Divisors found: r1=1416113441407550287859867356704288481 r2=11806412269556885461858705275762974929092425790557887195787409499 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.736). Factorization parameters were as follows: name: 50009_179 n: 16719219109718527335685783927057161772888685825706508837251201359866567487929188872684878878975681019 skew: 6884.51 # norm 1.80e+14 c5: 59040 c4: 1540165672 c3: 1429662248062 c2: -5353850835984479 c1: -182843902268221600200 c0: 165393405335782266813485 # alpha -6.13 Y1: 32528906267 Y0: -12314249336339487954 # Murphy_E 3.05e-09 # M 2698677695487388832340123883243887723436621037793473171541586333935792498476842577280377936006176964 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 220160 x 220404 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 3.10 hours.
7·10175-3 = 6(9)1747<176> = 23 · 29 · 1945849999<10> · 2698778453724854253232121<25> · C140
C140 = P29 · P111
P29 = 35295282339376795682867577001<29>
P111 = 566211848432648253496266298077169810224298129799525026373713085611725821142446735214380281508918974507036807529<111>
(2·10196+43)/9 = (2)1957<196> = 17 · 110603 · 230233 · 3753551 · 6394253894512031<16> · 27649217431563171213901<23> · C139
C139 = P32 · P107
P32 = 81138414297630889430251145739989<32>
P107 = 95337229664362344632451111019572229885524724831347194268019251865868739229410557616425622800014970494708241<107>
(82·10183+71)/9 = 9(1)1829<184> = 11 · 23 · 163 · 197 · 3274339280356427<16> · 3335041541237212183843<22> · C141
C141 = P38 · P103
P38 = 41480030672124309263512074376549364243<38>
P103 = 2475899410245908517561043105208184696388776127548286273247484238023102962064108404636745176885425655191<103>
(4·10179+23)/9 = (4)1787<179> = 13 · 1129 · 1068209353<10> · 4580453449268690402279557<25> · C141
C141 = P37 · P105
P37 = 4350096229342528260116893990630301077<37>
P105 = 142271029265416575875338086225461356162340830827056279182201282910066824179702907590984231521837085273683<105>
(4·10177+11)/3 = 1(3)1767<178> = 7 · 17 · 2441851757<10> · 344843269369<12> · 17322469213591<14> · C141
C141 = P31 · P111
P31 = 1310834231603013835472766122929<31>
P111 = 585993979754822263932541066661484381757424330937782473588984197513512092586728761605870328163008363244704467429<111>
7·10176+1 = 7(0)1751<177> = 71 · 8573471 · 805581827 · 284095648103<12> · 8413635332369<13> · C135
C135 = P34 · P37 · P65
P34 = 1772201439222433182847040694601969<34>
P37 = 5991250959750702185019813412247610703<37>
P65 = 56246368184668911475605266297942702738852214410521358324628735307<65>
By Sinkiti Sibata / GGNFS
(23·10131+13)/9 = 2(5)1307<132> = 61 · 419 · 1365289 · 9462091313<10> · C111
C111 = P50 · P62
P50 = 29649551865195893964260815165749888504612732839393<50>
P62 = 26104273375312135035055511375576115903150531981672897300414523<62>
Number: 25557_131 N=773980007344569427881399921940724281760206790024553518841461247679190814482147572814023669633379467193683704539 ( 111 digits) SNFS difficulty: 132 digits. Divisors found: r1=29649551865195893964260815165749888504612732839393 (pp50) r2=26104273375312135035055511375576115903150531981672897300414523 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.72 hours. Scaled time: 3.17 units (timescale=0.472). Factorization parameters were as follows: name: 25557_131 n: 773980007344569427881399921940724281760206790024553518841461247679190814482147572814023669633379467193683704539 m: 100000000000000000000000000 c5: 230 c0: 13 skew: 0.56 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63408, largePrimes:1478490 encountered Relations: rels:1453525, finalFF:144533 Max relations in full relation-set: 28 Initial matrix: 127426 x 144533 with sparse part having weight 11750424. Pruned matrix : 123058 x 123759 with weight 8687465. Total sieving time: 6.39 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.21 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(23·10127+13)/9 = 2(5)1267<128> = 32 · 17 · 89 · 550127 · 15161969 · C111
C111 = P35 · P77
P35 = 13962671799159788912176788641978303<35>
P77 = 16114498505559821766333917333370677084205143841791033427451207993209327515189<77>
Number: 25557_127 N=225001453841182686270734845345767763482321035145545368687777587106504220899885180817018327157682834904240944267 ( 111 digits) SNFS difficulty: 128 digits. Divisors found: r1=13962671799159788912176788641978303 (pp35) r2=16114498505559821766333917333370677084205143841791033427451207993209327515189 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.50 hours. Scaled time: 3.52 units (timescale=0.782). Factorization parameters were as follows: name: 25557_127 n: 225001453841182686270734845345767763482321035145545368687777587106504220899885180817018327157682834904240944267 m: 10000000000000000000000000 c5: 2300 c0: 13 skew: 0.36 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64288, largePrimes:1480412 encountered Relations: rels:1464229, finalFF:157594 Max relations in full relation-set: 28 Initial matrix: 128306 x 157594 with sparse part having weight 11631696. Pruned matrix : 119660 x 120365 with weight 7163626. Total sieving time: 4.35 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.50 hours. --------- CPU info (if available) ----------
(23·10119+13)/9 = 2(5)1187<120> = 280032133 · 16397289482959744157<20> · C92
C92 = P44 · P48
P44 = 96993982263781813971167216661363091550858813<44>
P48 = 573800079124972352177927819974219178800933411769<48>
Number: 25557_119 N=55655154697604169806028078164116264032438483353137260828203497020024427432838560478111570197 ( 92 digits) SNFS difficulty: 121 digits. Divisors found: r1=96993982263781813971167216661363091550858813 (pp44) r2=573800079124972352177927819974219178800933411769 (pp48) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 3.02 hours. Scaled time: 1.43 units (timescale=0.472). Factorization parameters were as follows: name: 25557_119 n: 55655154697604169806028078164116264032438483353137260828203497020024427432838560478111570197 m: 1000000000000000000000000 c5: 23 c0: 130 skew: 1.41 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63533, largePrimes:2228706 encountered Relations: rels:2377123, finalFF:258771 Max relations in full relation-set: 28 Initial matrix: 112696 x 258771 with sparse part having weight 25229340. Pruned matrix : 86971 x 87598 with weight 6306762. Total sieving time: 2.82 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.02 hours. --------- CPU info (if available) ----------
(23·10128+13)/9 = 2(5)1277<129> = 83 · 920849 · 1030201 · 24436253 · C108
C108 = P34 · P74
P34 = 7593900515955794514613493406731977<34>
P74 = 17490302870130540569518879363200396131415419419892069960190397320321006691<74>
Number: 25557_128 N=132819619989707425690297221931201401167919173092980715094496396268807687443328293733002387041546989060658107 ( 108 digits) SNFS difficulty: 129 digits. Divisors found: r1=7593900515955794514613493406731977 (pp34) r2=17490302870130540569518879363200396131415419419892069960190397320321006691 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.15 hours. Scaled time: 4.00 units (timescale=0.778). Factorization parameters were as follows: name: 25557_128 n: 132819619989707425690297221931201401167919173092980715094496396268807687443328293733002387041546989060658107 m: 10000000000000000000000000 c5: 23000 c0: 13 skew: 0.22 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63628, largePrimes:1510729 encountered Relations: rels:1505111, finalFF:164740 Max relations in full relation-set: 28 Initial matrix: 127646 x 164740 with sparse part having weight 12961919. Pruned matrix : 117224 x 117926 with weight 7554883. Total sieving time: 4.99 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.15 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve
(23·10115+13)/9 = 2(5)1147<116> = 3 · 1590765569<10> · C106
C106 = P41 · P66
P41 = 25989819434052094099886238319121888616577<41>
P66 = 206041464084329287564612835952629247644214995705639504013510860663<66>
Number: 25557_115 N=5354980447479447877412865049581996904861673252948384953709366158979594131835599541140507623419977679010551 ( 106 digits) SNFS difficulty: 116 digits. Divisors found: r1=25989819434052094099886238319121888616577 r2=206041464084329287564612835952629247644214995705639504013510860663 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.204). Factorization parameters were as follows: n: 5354980447479447877412865049581996904861673252948384953709366158979594131835599541140507623419977679010551 Y1: 1 Y0: -100000000000000000000000 c5: 23 c0: 13 skew: 0.89 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 72538 x 72764 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.75 hours.
(23·10176+13)/9 = 2(5)1757<177> = 4567 · C173
C173 = P31 · C143
P31 = 1370850223332403243997479287923<31>
C143 = [40819182982692297903201245645427546973252118080333946991250896508476928198768851369315568750971333405347653894783379624671217671886324833679377<143>]
(23·10117+13)/9 = 2(5)1167<118> = 67 · 1069 · C113
C113 = P37 · P77
P37 = 1088529921713480335664455585324748987<37>
P77 = 32778754467867428138643680913471158736943850231412323569027407329166201609257<77>
Number: 25557_117 N=35680655034773125330627808882000971134350076868541607522102614461214352310787813349839514618984900877588980572659 ( 113 digits) SNFS difficulty: 118 digits. Divisors found: r1=1088529921713480335664455585324748987 r2=32778754467867428138643680913471158736943850231412323569027407329166201609257 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.287). Factorization parameters were as follows: n: 35680655034773125330627808882000971134350076868541607522102614461214352310787813349839514618984900877588980572659 Y1: 1 Y0: -100000000000000000000000 c5: 2300 c0: 13 skew: 0.36 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 115127 x 115347 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.00 hours.
(23·10140+13)/9 = 2(5)1397<141> = 383 · 37571 · 60029 · 323957 · 543259 · 1169334002020951974997922683<28> · C91
C91 = P41 · P50
P41 = 97007064866694932760814312825637589612503<41>
P50 = 14819598862760793777831985088043035801154127559863<50>
Mon Aug 4 20:04:31 2008 Msieve v. 1.36 Mon Aug 4 20:04:31 2008 random seeds: 3716472c 5ff7c185 Mon Aug 4 20:04:31 2008 factoring 1437605788178234778599655579349905454752457659865333975172464249220608012494047083105767089 (91 digits) Mon Aug 4 20:04:32 2008 no P-1/P+1/ECM available, skipping Mon Aug 4 20:04:32 2008 commencing quadratic sieve (91-digit input) Mon Aug 4 20:04:32 2008 using multiplier of 1 Mon Aug 4 20:04:32 2008 using 64kb Opteron sieve core Mon Aug 4 20:04:32 2008 sieve interval: 18 blocks of size 65536 Mon Aug 4 20:04:32 2008 processing polynomials in batches of 6 Mon Aug 4 20:04:32 2008 using a sieve bound of 1650079 (62353 primes) Mon Aug 4 20:04:32 2008 using large prime bound of 145206952 (27 bits) Mon Aug 4 20:04:32 2008 using double large prime bound of 491560817809336 (42-49 bits) Mon Aug 4 20:04:32 2008 using trial factoring cutoff of 49 bits Mon Aug 4 20:04:32 2008 polynomial 'A' values have 12 factors Mon Aug 4 21:17:32 2008 62761 relations (17292 full + 45469 combined from 684074 partial), need 62449 Mon Aug 4 21:17:33 2008 begin with 701366 relations Mon Aug 4 21:17:33 2008 reduce to 151346 relations in 10 passes Mon Aug 4 21:17:33 2008 attempting to read 151346 relations Mon Aug 4 21:17:35 2008 recovered 151346 relations Mon Aug 4 21:17:35 2008 recovered 125083 polynomials Mon Aug 4 21:17:35 2008 attempting to build 62761 cycles Mon Aug 4 21:17:35 2008 found 62761 cycles in 6 passes Mon Aug 4 21:17:35 2008 distribution of cycle lengths: Mon Aug 4 21:17:35 2008 length 1 : 17292 Mon Aug 4 21:17:35 2008 length 2 : 12526 Mon Aug 4 21:17:35 2008 length 3 : 11168 Mon Aug 4 21:17:35 2008 length 4 : 8120 Mon Aug 4 21:17:35 2008 length 5 : 5621 Mon Aug 4 21:17:35 2008 length 6 : 3514 Mon Aug 4 21:17:35 2008 length 7 : 2067 Mon Aug 4 21:17:35 2008 length 9+: 2453 Mon Aug 4 21:17:35 2008 largest cycle: 20 relations Mon Aug 4 21:17:35 2008 matrix is 62353 x 62761 (15.8 MB) with weight 3643919 (58.06/col) Mon Aug 4 21:17:35 2008 sparse part has weight 3643919 (58.06/col) Mon Aug 4 21:17:36 2008 filtering completed in 3 passes Mon Aug 4 21:17:36 2008 matrix is 57751 x 57815 (14.6 MB) with weight 3369339 (58.28/col) Mon Aug 4 21:17:36 2008 sparse part has weight 3369339 (58.28/col) Mon Aug 4 21:17:36 2008 saving the first 48 matrix rows for later Mon Aug 4 21:17:37 2008 matrix is 57703 x 57815 (9.2 MB) with weight 2595919 (44.90/col) Mon Aug 4 21:17:37 2008 sparse part has weight 1846004 (31.93/col) Mon Aug 4 21:17:37 2008 matrix includes 64 packed rows Mon Aug 4 21:17:37 2008 using block size 23126 for processor cache size 1024 kB Mon Aug 4 21:17:37 2008 commencing Lanczos iteration Mon Aug 4 21:17:37 2008 memory use: 8.4 MB Mon Aug 4 21:18:00 2008 lanczos halted after 914 iterations (dim = 57701) Mon Aug 4 21:18:00 2008 recovered 16 nontrivial dependencies Mon Aug 4 21:18:01 2008 prp41 factor: 97007064866694932760814312825637589612503 Mon Aug 4 21:18:01 2008 prp50 factor: 14819598862760793777831985088043035801154127559863 Mon Aug 4 21:18:01 2008 elapsed time 01:13:30
(23·10130+13)/9 = 2(5)1297<131> = 3 · 7 · 1911853405367337457<19> · C111
C111 = P45 · P67
P45 = 273621240879818118935599372820806523689400881<45>
P67 = 2326278114029065603348744181689416700387279243410338996591662514801<67>
Number: 25557_130 N=636519104192195960835737776365832516184927682124212998818556622451324575858446919445568813294192981881484939681 ( 111 digits) SNFS difficulty: 131 digits. Divisors found: r1=273621240879818118935599372820806523689400881 r2=2326278114029065603348744181689416700387279243410338996591662514801 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.313). Factorization parameters were as follows: n: 636519104192195960835737776365832516184927682124212998818556622451324575858446919445568813294192981881484939681 Y1: 1 Y0: -100000000000000000000000000 c5: 23 c0: 13 skew: 0.89 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 103517 x 103765 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 1.75 hours.
(23·10138+13)/9 = 2(5)1377<139> = 12307410569462018609<20> · C120
C120 = P30 · P34 · P57
P30 = 507750308517183330272789653297<30>
P34 = 3474089539882015715274674665350059<34>
P57 = 117713814807586006583552288564604273462593769995433243151<57>
#by ECM Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=3165820906 Step 1 took 11745ms Step 2 took 11152ms ********** Factor found in step 2: 507750308517183330272789653297 Found probable prime factor of 30 digits: 507750308517183330272789653297 Composite cofactor 408948332722643277879927696871940117264041855347969617854343237250222908088195835079195909 has 90 digits # # then stopped the running snfs-138, and did QS-90 (with Msieve-1.36) # Mon Aug 4 22:13:03 2008 Msieve v. 1.36 Mon Aug 4 22:13:03 2008 random seeds: bac18a9e 3a47e97e Mon Aug 4 22:13:03 2008 factoring 408948332722643277879927696871940117264041855347969617854343237250222908088195835079195909 (90 digits) Mon Aug 4 22:13:04 2008 no P-1/P+1/ECM available, skipping Mon Aug 4 22:13:04 2008 commencing quadratic sieve (90-digit input) Mon Aug 4 22:13:04 2008 using multiplier of 11 Mon Aug 4 22:13:04 2008 using 64kb Opteron sieve core Mon Aug 4 22:13:04 2008 sieve interval: 18 blocks of size 65536 Mon Aug 4 22:13:04 2008 processing polynomials in batches of 6 Mon Aug 4 22:13:04 2008 using a sieve bound of 1578193 (60000 primes) Mon Aug 4 22:13:04 2008 using large prime bound of 126255440 (26 bits) Mon Aug 4 22:13:04 2008 using double large prime bound of 382164232656720 (42-49 bits) Mon Aug 4 22:13:04 2008 using trial factoring cutoff of 49 bits Mon Aug 4 22:13:04 2008 polynomial 'A' values have 12 factors Mon Aug 4 23:37:53 2008 60097 relations (15999 full + 44098 combined from 632948 partial), need 60096 Mon Aug 4 23:37:53 2008 begin with 648947 relations Mon Aug 4 23:37:54 2008 reduce to 146281 relations in 10 passes Mon Aug 4 23:37:54 2008 attempting to read 146281 relations Mon Aug 4 23:37:55 2008 recovered 146281 relations Mon Aug 4 23:37:55 2008 recovered 125898 polynomials Mon Aug 4 23:37:55 2008 attempting to build 60097 cycles Mon Aug 4 23:37:55 2008 found 60097 cycles in 6 passes Mon Aug 4 23:37:55 2008 distribution of cycle lengths: Mon Aug 4 23:37:55 2008 length 1 : 15999 Mon Aug 4 23:37:55 2008 length 2 : 11696 Mon Aug 4 23:37:55 2008 length 3 : 10617 Mon Aug 4 23:37:55 2008 length 4 : 7985 Mon Aug 4 23:37:55 2008 length 5 : 5632 Mon Aug 4 23:37:55 2008 length 6 : 3524 Mon Aug 4 23:37:55 2008 length 7 : 2118 Mon Aug 4 23:37:55 2008 length 9+: 2526 Mon Aug 4 23:37:55 2008 largest cycle: 23 relations Mon Aug 4 23:37:56 2008 matrix is 60000 x 60097 (15.8 MB) with weight 3662551 (60.94/col) Mon Aug 4 23:37:56 2008 sparse part has weight 3662551 (60.94/col) Mon Aug 4 23:37:56 2008 filtering completed in 3 passes Mon Aug 4 23:37:56 2008 matrix is 56117 x 56181 (14.9 MB) with weight 3461219 (61.61/col) Mon Aug 4 23:37:56 2008 sparse part has weight 3461219 (61.61/col) Mon Aug 4 23:37:57 2008 saving the first 48 matrix rows for later Mon Aug 4 23:37:57 2008 matrix is 56069 x 56181 (9.9 MB) with weight 2726773 (48.54/col) Mon Aug 4 23:37:57 2008 sparse part has weight 2024982 (36.04/col) Mon Aug 4 23:37:57 2008 matrix includes 64 packed rows Mon Aug 4 23:37:57 2008 using block size 22472 for processor cache size 1024 kB Mon Aug 4 23:37:57 2008 commencing Lanczos iteration Mon Aug 4 23:37:57 2008 memory use: 8.6 MB Mon Aug 4 23:38:21 2008 lanczos halted after 888 iterations (dim = 56069) Mon Aug 4 23:38:21 2008 recovered 19 nontrivial dependencies Mon Aug 4 23:38:22 2008 prp34 factor: 3474089539882015715274674665350059 Mon Aug 4 23:38:22 2008 prp57 factor: 117713814807586006583552288564604273462593769995433243151 elapsed time 01:25:19
(23·10136+13)/9 = 2(5)1357<137> = 33 · 7 · 260511659 · C126
C126 = P35 · P92
P35 = 35617088186151596018674980636783041<35>
P92 = 14572630267115638925813556562718250466819225757428431015167830009407651750016178741452169627<92>
Number: 25557_136 N=519034657328039600210553006352615630158346372995501019534847688559781900082053191302111498978559137446093228922297791128895707 ( 126 digits) SNFS difficulty: 137 digits. Divisors found: r1=35617088186151596018674980636783041 r2=14572630267115638925813556562718250466819225757428431015167830009407651750016178741452169627 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 519034657328039600210553006352615630158346372995501019534847688559781900082053191302111498978559137446093228922297791128895707 Y1: 1 Y0: -1000000000000000000000000000 c5: 230 c0: 13 skew: 0.56 type: snfsFactor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1625001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 146625 x 146858 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 3.00 hours.
(17·10189+1)/9 = 1(8)1889<190> = 59 · 71 · 1617391 · 12524207 · 3607698986231981<16> · 370127884625109553441<21> · C137
C137 = P31 · P36 · P71
P31 = 1756706333511604963524042522871<31>
P36 = 668814360582016023721300568011912207<36>
P71 = 14188743452434643875801927553951755349395681019380535143529908397628329<71>
(23·10171+13)/9 = 2(5)1707<172> = 47 · 89 · 224293807 · C160
C160 = P30 · P130
P30 = 420665653593367124551131807829<30>
P130 = 6475049984190779352600188491788559885012137408499137509465838676005670925080692961463905247359951019310758928110457579498055421593<130>
(23·10137+13)/9 = 2(5)1367<138> = 1193 · C135
C135 = P53 · P82
P53 = 24825801948309814186567834093884243731110843768686833<53>
P82 = 8628625030368435551953354953972853797741901598228835301547475858040231276993102253<82>
Number: 25557_137 N=214212536090155536928378504237682779174816056626618236006333240197448076743969451429635838688646735587221756542795939275402812703734749 ( 135 digits) SNFS difficulty: 138 digits. Divisors found: r1=24825801948309814186567834093884243731110843768686833 r2=8628625030368435551953354953972853797741901598228835301547475858040231276993102253 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.946). Factorization parameters were as follows: n: 214212536090155536928378504237682779174816056626618236006333240197448076743969451429635838688646735587221756542795939275402812703734749 Y1: 1 Y0: -1000000000000000000000000000 c5: 2300 c0: 13 skew: 0.36 type: snfsFactor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 2450001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 172185 x 172417 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.25 hours.
(23·10191+13)/9 = 2(5)1907<192> = 17 · 61 · 600577511 · C180
C180 = P33 · P147
P33 = 581223556439835774287202811285249<33>
P147 = 705983086990766454288312162598464346964091589028038512031272672754584909109068532226533435641467045849482264569501155389959859487896366390090168799<147>
Factorizations of 255...557 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors probably have 30 or more digits.
By Serge Batalov / GMP-ECM
(8·10179-17)/9 = (8)1787<179> = 32 · 193 · 15809 · 552241 · 1674912378443233<16> · 3436763031126603253<19> · C133
C133 = P30 · P103
P30 = 681730178728744701011924498497<30>
P103 = 1493689791486146713478996194570842049379770863848290072870963693810359525801102136426038074592658672243<103>
(43·10187-7)/9 = 4(7)187<188> = 157 · 167 · 857 · 398681 · 15621247 · 153367745358551<15> · 38912178926543071<17> · C137
C137 = P33 · P105
P33 = 563109820432391065038572286966239<33>
P105 = 101595641665225801482855126843463077933095944176748411552258185690480521896642701682667226673118857591243<105>
(67·10179+23)/9 = 7(4)1787<180> = 3 · 11 · 127721089 · 12689264677<11> · 11278525964270232939888763<26> · C136
C136 = P31 · P105
P31 = 1503577311371110536299145909067<31>
P105 = 820807237203065576049616360230827773873672515282532295733748443458210584183593438540403638917367057872443<105>
(10181+11)/3 = (3)1807<181> = 7 · 17 · 37426643 · 314567063 · 5853728102221<13> · 954343568843543<15> · C135
C135 = P30 · P33 · P74
P30 = 105981447101665873606353102413<30>
P33 = 173528881158073536221773584328933<33>
P74 = 23157877513186904238703485740025834562034755077344962107936455349631017881<74>
By matsui / GGNFS
(2·10185+1)/3 = (6)1847<185> = 21143 · C181
C181 = P81 · P100
P81 = 900453601285265582520047067012732576071069650788340131680486043607858213615331267<81>
P100 = 3501714962000928317461759364309288753778079923142299914269367242522743703784043573496181765706887407<100>
N=3153131848208232827255671695911964558798026139463021646250137949518359110186192435636696148449447413643601507197023443535291428211070645919059105456494663324346907565939869775654669 ( 181 digits) SNFS difficulty: 185 digits. Divisors found: r1=900453601285265582520047067012732576071069650788340131680486043607858213615331267 (pp81) r2=3501714962000928317461759364309288753778079923142299914269367242522743703784043573496181765706887407 (pp100) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 298.03 hours. Scaled time: 848.78 units (timescale=2.848). Factorization parameters were as follows: n: 3153131848208232827255671695911964558798026139463021646250137949518359110186192435636696148449447413643601507197023443535291428211070645919059105456494663324346907565939869775654669 m: 10000000000000000000000000000000000000 c5: 2 c0: 1 skew: 0.87 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10800001) Primes: RFBsize:501962, AFBsize:501936, largePrimes:6574782 encountered Relations: rels:7037035, finalFF:1136338 Max relations in full relation-set: 28 Initial matrix: 1003963 x 1136338 with sparse part having weight 79195228. Pruned matrix : 896127 x 901210 with weight 62006881. Total sieving time: 291.34 hours. Total relation processing time: 0.13 hours. Matrix solve time: 6.33 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 298.03 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(23·10164-41)/9 = 2(5)1631<165> = 17 · 14783 · 6954611 · C153
C153 = P39 · P40 · P75
P39 = 127092897952617830861128387381793123491<39>
P40 = 5984338350534202483602163442377911766177<40>
P75 = 192248766671982198740268835298401979782919136451461142361013167032834159033<75>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 146218049130642441234495363713913754675210966706539923532522558284754745799883843367386080454093351306607004960263989647786921657401273701595788872021931 (153 digits) Using B1=4366000, B2=8561918830, polynomial Dickson(6), sigma=1627898278 Step 1 took 52484ms Step 2 took 17660ms ********** Factor found in step 2: 5984338350534202483602163442377911766177 Found probable prime factor of 40 digits: 5984338350534202483602163442377911766177 Composite cofactor 24433452884158869463121391219856044588647399397141519895148690044715795722505127594463645181432631902409302144203 has 113 digits Number: n N=24433452884158869463121391219856044588647399397141519895148690044715795722505127594463645181432631902409302144203 ( 113 digits) Divisors found: Mon Aug 4 22:19:36 2008 prp39 factor: 127092897952617830861128387381793123491 Mon Aug 4 22:19:36 2008 prp75 factor: 192248766671982198740268835298401979782919136451461142361013167032834159033 Mon Aug 4 22:19:36 2008 elapsed time 00:39:09 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.39 hours. Scaled time: 17.93 units (timescale=0.838). Factorization parameters were as follows: name: KA_2_5_163_1 n: 24433452884158869463121391219856044588647399397141519895148690044715795722505127594463645181432631902409302144203 skew: 22181.66 # norm 3.00e+15 c5: 92520 c4: -6744153222 c3: -45832076939516 c2: 3355354381773925699 c1: 26376496291199123709754 c0: 55897100324407256183969376 # alpha -5.88 Y1: 32923335533 Y0: -3050351678222518898863 # Murphy_E 7.42e-10 # M 24431814637208274680734783426277441947002447691196750391363360992421760360967572735589642666701638520266722683606 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1500001) Primes: RFBsize:250150, AFBsize:249815, largePrimes:6780508 encountered Relations: rels:6430342, finalFF:544879 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 21.19 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 21.39 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(2·10191+61)/9 = (2)1909<191> = 17 · C190
C190 = P35 · C156
P35 = 10852771508056059135206234116514171<35>
C156 = [120447531905866413108914601272250048343140105606651999784883636087529705448811959016585189877632383393661040361642471439530256902961775524681574643452982847<156>]
By Serge Batalov / GMP-ECM, pol51, Msieve
(43·10193-7)/9 = 4(7)193<194> = 919 · 445461301538551<15> · 893558958002816352193<21> · 4284288203992414224517391893<28> · C128
C128 = P33 · P96
P33 = 150826515975256399552220025155339<33>
P96 = 202125386244925252749734893061275680905056146225460546218343135651883483612166284107990237484503<96>
(10184+71)/9 = (1)1839<184> = 3 · 29 · 199 · 1697 · 919179139 · 1299592780666421554668910151<28> · 9343168720031962523222369884197334253<37> · C103
C103 = P40 · P64
P40 = 1586931314118813407557567732512708559877<40>
P64 = 2135224521200188890616493683567821754642212756737532735710790131<64>
Number: 11119_184 N=3388454655366929914498505057165802657142065274822407340167831244985945664751645516070076150034794173887 ( 103 digits) Divisors found: r1=1586931314118813407557567732512708559877 r2=2135224521200188890616493683567821754642212756737532735710790131 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: name: 11119_184 n: 3388454655366929914498505057165802657142065274822407340167831244985945664751645516070076150034794173887 skew: 31960.24 # norm 9.10e+13 c5: 480 c4: -138581412 c3: -2970890933000 c2: 125334112112828449 c1: 728602337992886243758 c0: -14786800388206937397895095 # alpha -5.22 Y1: 7082309663 Y0: -93272580525981859492 # Murphy_E 2.34e-09 # M 3088295724384864144699871818544359448147530931965530510173465076385594779988601548584947108074515787463 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 273090 x 273338 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.90 hours.
(16·10199-43)/9 = 1(7)1983<200> = 132 · 197 · 41046419 · 3191682259<10> · 200516406221467309<18> · C161
C161 = P40 · P56 · P66
P40 = 4390892260316240532684572528091436747139<40>
P56 = 23900525030689996426582940228851626653088952483784974829<56>
P66 = 193695479051958499150090176237277153417415656132662983103787245979<66>
# first ECM # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1416775493 Step 1 took 24354ms Step 2 took 19253ms ********** Factor found in step 2: 4390892260316240532684572528091436747139 Found probable prime factor of 40 digits: 4390892260316240532684572528091436747139 Composite cofactor 4629423645412823967849086103516114227366096388384060554523226454110605387301721011151681397173112326997089098521746462591 has 121 digits # # then Msieve-1.36/gnfs-121 # Number: 17773_199 N=4629423645412823967849086103516114227366096388384060554523226454110605387301721011151681397173112326997089098521746462591 ( 121 digits) Divisors found: r1=23900525030689996426582940228851626653088952483784974829 r2=193695479051958499150090176237277153417415656132662983103787245979 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.299). Factorization parameters were as follows: name: 17773_199 n: 4629423645412823967849086103516114227366096388384060554523226454110605387301721011151681397173112326997089098521746462591 skew: 43909.78 # norm 6.12e+16 c5: 13800 c4: 29054540302 c3: -1619554790749659 c2: -70244931498683416923 c1: 55355974140314250897651 c0: 1392762997799671933665557405 # alpha -5.70 Y1: 9197936842171 Y0: -201892988572876655833536 # Murphy_E 2.30e-10 # M 4486796550059614013416217299982389050995435682256387198880252966082610771759153383949597551122257473790454129900955193894 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 9500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 830699 x 830947 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.5,2.5,100000 total time: 2.5 days
(16·10214-61)/9 = 1(7)2131<215> = 13 · 863 · 18661 · 369819256019<12> · 584833068852155422531<21> · 4516565897012282883697690057920883<34> · C140
C140 = P53 · P88
P53 = 16814750565378686502204377710527501824320586545945603<53>
P88 = 5169733908173540534007921788791377675334362229095173255753307146459503895142109161685829<88>
# gnfs,140 # pol51 polynomial selection time: 2 or 3 days (while ECM was run for a week or two) # Number: 17771_214 N=86927786155318407263273710266523202940690097929584601977940218641236715258445415008714444666356629075405450626239173034367866144188409959887 ( 140 digits) Divisors found: r1=16814750565378686502204377710527501824320586545945603 r2=5169733908173540534007921788791377675334362229095173255753307146459503895142109161685829 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: name: 17771_214 n: 86927786155318407263273710266523202940690097929584601977940218641236715258445415008714444666356629075405450626239173034367866144188409959887 skew: 267143.89 # norm 1.97e+19 c5: 698880 c4: -1489690686532 c3: -176616113976832028 c2: 103006324549653347616719 c1: 3712851734270791622017222272 c0: -432658741100514020527612440105864 # alpha -6.29 Y1: 13968147388773457 Y0: -659105787539946137530863055 # Murphy_E 1.94e-11 # M 49579079600743972072443184556436418407617530021357634358500716158197635856463288739352084719618552259657530257163309696054721363836328031333 type: gnfs rlim: 12000000 alim: 12000000 lpbr: 27 lpba: 27 mfbr: 54 mfba: 54 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 54/54 Sieved rational special-q in [6000000, 37700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 16715895 relations #### (beware of huge redundancy! up to 25-30% in the end) 12175171 unique relations and about 10717437 large ideals Max relations in full relation-set: 20 Initial matrix: Pruned matrix : 2296340 x 2296588 (this one, Lanczos = 31hrs) Pruned matrix : 1881104 x 1881352 (with most oversieving, Lanczos = 15hrs, -> ...Sun Aug 3 03:17:51 2008 lanczos error: only trivial dependencies found !! tried twice) Pruned matrix : 2052464 x 2052685 (alternative run with oversieving and pruning, Lanczos = 19hrs, still running for studying purposes) Total sieving time: 17 days Total relation processing time: 2.00 hours. Matrix solve time: 31.00 hours. Time per square root: 1.60 hours. * 3 deps Prototype def-par.txt line would be: gnfs,139,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,12000000,12000000,27,27,54,54,2.6,2.6,100000 total time: 19 days # in retrospect, obervations - rlim/alim should be higher still # 28 bit would have been probably better in terms of redundancy of sieving
Note: C140 is the largest composite number factored by GNFS so far in our tables.
By Tyler Cadigan / Msieve, GGNFS
(5·10198-11)/3 = 1(6)1973<199> = 17 · 73 · 14417612748337<14> · 15591863092514077<17> · 2050925281672230869<19> · 798492457907659976598191<24> · C124
C124 = P59 · P65
P59 = 58029655586752866277654340982152770761209260744213665747727<59>
P65 = 62865872733823391060391929387855942847658010265702276841724324879<65>
Number: 16663_198 N=3648084942904409231781740133863005618024633980723139006909650256997407933041732927137820715390571584310230633883275803800033 ( 124 digits) Divisors found: r1=58029655586752866277654340982152770761209260744213665747727 r2=62865872733823391060391929387855942847658010265702276841724324879 Version: Total time: 82.43 hours. Scaled time: 205.57 units (timescale=2.494). Factorization parameters were as follows: name: 16663_198 n: 3648084942904409231781740133863005618024633980723139006909650256997407933041732927137820715390571584310230633883275803800033 skew: 212888.11 # norm 1.22e+017 c5: 10740 c4: 7370305606 c3: -2467585952064540 c2: -248933528645380281069 c1: 34811739326102006425315528 c0: 1611754352640371786855945807871 # alpha -5.96 Y1: 22584968622799 Y0: -805768826493317965725508 # Murphy_E 1.69e-010 # M 2314935598007029659498302023408434039733754485237880886588822343019923669131832398564903343895745163314827211213456861106685 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 6700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 715840 x 716088 Total sieving time: 82.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5, total time: 82.43 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(23·10166-41)/9 = 2(5)1651<167> = 32 · C166
C166 = P72 · P94
P72 = 643496646045034314863036088356290602835699348302317420935391877062800651<72>
P94 = 4412620003991111484688047460906035814232134281081696744784440167395589300355555901131709979989<94>
Number: n N=2839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839 ( 166 digits) SNFS difficulty: 167 digits. Divisors found: Sun Aug 3 15:17:18 2008 prp72 factor: 643496646045034314863036088356290602835699348302317420935391877062800651 Sun Aug 3 15:17:18 2008 prp94 factor: 4412620003991111484688047460906035814232134281081696744784440167395589300355555901131709979989 Sun Aug 3 15:17:18 2008 elapsed time 01:27:42 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 88.42 hours. Scaled time: 74.18 units (timescale=0.839). Factorization parameters were as follows: name: KA_2_5_165_1 n: 2839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839506172839 type: snfs deg: 5 c5: 230 c0: -41 skew: 0.71 m: 1000000000000000000000000000000000 rlim: 5800000 alim: 5800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 4600001) Primes: RFBsize:399993, AFBsize:399420, largePrimes:5834136 encountered Relations: rels:5996928, finalFF:828084 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 88.21 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,48,48,2.5,2.5,100000 total time: 88.42 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By suberi / GMP-ECM
(46·10167-1)/9 = 5(1)167<168> = 70626533 · 213771611 · 38387318408683<14> · C138
C138 = P41 · P98
P41 = 10652708041146778174216248100844005311463<41>
P98 = 82784609590842840754482542867744143167470530984746443938052838133532893663609041186948295276030693<98>
(46·10174-1)/9 = 5(1)174<175> = 35159 · 58943237 · 1746625507597<13> · C151
C151 = P30 · C121
P30 = 248922781670497343680620477691<30>
C121 = [5672576765062949804877898588549304541456787458112679112216952341251445580533290906546230462728475408918734991394065086371<121>]
By Serge Batalov / GMP-ECM, Msieve, pol51
(4·10190+23)/9 = (4)1897<190> = 9569335559270336914133<22> · 2204456588025119545885777787<28> · C141
C141 = P33 · P108
P33 = 914614705542996095283314411688089<33>
P108 = 230354111071823462818299073248460216708575614431593821351666507826249002338559777821243718681313328757074913<108>
3·10181-7 = 2(9)1803<182> = 1936760724982998289<19> · 68808646991249141025719<23> · C141
C141 = P37 · P105
P37 = 1724512309637715528857993530467193207<37>
P105 = 130537703533059377398780785440600547165396660129485394210598345885209061956376547057033455498259978403289<105>
(16·10196+11)/9 = 1(7)1959<197> = 10099 · 160006301767452572991787889<27> · 888035983002108169065398017<27> · C140
C140 = P31 · P53 · P57
P31 = 4803801617306383518347006989561<31>
P53 = 14715761835396161314812187666323650894319358275041849<53>
P57 = 175252263317018383575140193534337967914768654073004843553<57>
(22·10181+41)/9 = 2(4)1809<182> = 23897095845197<14> · 776272617318286786491553225607<30> · C139
C139 = P34 · P36 · P69
P34 = 1769770208978296859658331890070637<34>
P36 = 894919377524823262965410505209487619<36>
P69 = 831993602705134771540965249704583123198561362548116161848843063999477<69>
#ecm: # Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1689418823 Step 1 took 18414ms Step 2 took 16307ms ********** Factor found in step 2: 894919377524823262965410505209487619 Found probable prime factor of 36 digits: 894919377524823262965410505209487619 Composite cofactor 1472437492128072456080341721656210925078116385346784875563765316598223832211646356703426379933261056849 has 103 digits # #then pol51, and Msieve/gnfs-103 # Number: 24449_181 N=1472437492128072456080341721656210925078116385346784875563765316598223832211646356703426379933261056849 ( 103 digits) Divisors found: r1=1769770208978296859658331890070637 r2=831993602705134771540965249704583123198561362548116161848843063999477 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: name: 24449_181 n: 1472437492128072456080341721656210925078116385346784875563765316598223832211646356703426379933261056849 skew: 12109.92 # norm 1.11e+14 c5: 13800 c4: 229021120 c3: -5546394553982 c2: 39015717440707647 c1: 265001117184500868642 c0: -1409292541606116852827712 # alpha -5.56 Y1: 57257448043 Y0: -40330119583764690079 # Murphy_E 2.48e-09 # M 555219686948494539915267439001639650635907604410780913489476571794940846402885098730478554425179319560 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 231148 x 231396 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.50 hours.
(23·10185+1)/3 = 7(6)1847<186> = 11 · 409 · 3919 · 9019884346492579823<19> · 81540614634217442591<20> · C140
C140 = P33 · P108
P33 = 334871162855198257095061908037933<33>
P108 = 176547927865901998870134175492592669582800548196356188701886100127196219234273530578226419288591470033352403<108>
(10184+71)/9 = (1)1839<184> = 3 · 29 · 199 · 1697 · 919179139 · 1299592780666421554668910151<28> · C140
C140 = P37 · C103
P37 = 9343168720031962523222369884197334253<37>
C103 = [3388454655366929914498505057165802657142065274822407340167831244985945664751645516070076150034794173887<103>]
6·10189+1 = 6(0)1881<190> = 42589 · 5780291335866737<16> · 107788304148617970061487122159<30> · C141
C141 = P30 · P41 · P71
P30 = 174013302696433020274845304681<30>
P41 = 18309085696764041534162136664724986762411<41>
P71 = 70971393580825121102733841341176453634821357709829428898091709401554553<71>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=2803236752 Step 1 took 20722ms Step 2 took 16429ms ********** Factor found in step 2: 174013302696433020274845304681 Found probable prime factor of 30 digits: 174013302696433020274845304681 Composite cofactor 1299421327090096537092650364554015119148292501873377738981166234391431318448786187635106425292624877709866307283 has 112 digits # # then Msieve/gnfs-112 # Number: 60001_189 N=1299421327090096537092650364554015119148292501873377738981166234391431318448786187635106425292624877709866307283 ( 112 digits) Divisors found: r1=18309085696764041534162136664724986762411 r2=70971393580825121102733841341176453634821357709829428898091709401554553 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.188). Factorization parameters were as follows: name: 60001_189 n: 1299421327090096537092650364554015119148292501873377738981166234391431318448786187635106425292624877709866307283 skew: 52578.04 # norm 2.72e+15 c5: 16440 c4: 1619746172 c3: -135511103262470 c2: -4014692173401370183 c1: 183805157963031787936530 c0: 1031049847200277256970651600 # alpha -5.96 Y1: 828435965947 Y0: -2396440646982282764377 # Murphy_E 7.97e-10 # M 1136488550539358265641494014969627028960530201153737973603644946454438107607609201185415837558953909792296923205 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3550001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 437477 x 437725 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 16.0 hours.
By Serge Batalov / GMP-ECM
(23·10194+1)/3 = 7(6)1937<195> = 13 · 139 · 78459255911<11> · 234102535388474561689151<24> · C158
C158 = P32 · C126
P32 = 28755254470177769678351594744207<32>
C126 = [803305815778793560119943241710039446370201891384089344299540163842961294333911367771016525950573017814190338673989871897500803<126>]
(5·10198-23)/9 = (5)1973<198> = 79 · 1787 · 92166227 · 62964716122813547478189355909<29> · C156
C156 = P33 · C124
P33 = 119356565544646731891786102577789<33>
C124 = [5681466871324695058688910174023721450274408912155790860885985665340075745372042729625565314195995410292414361378012735405343<124>]
(43·10193-7)/9 = 4(7)193<194> = 919 · 445461301538551<15> · 893558958002816352193<21> · C156
C156 = P28 · C128
P28 = 4284288203992414224517391893<28>
C128 = [30485867797475088755064300991906426987241836546815788111296849337158228409230973644957546968604924308437984135196279273180211517<128>]
By Sinkiti Sibata / GGNFS
(23·10154-41)/9 = 2(5)1531<155> = 3 · 91411 · 125717 · 99479243282099<14> · C130
C130 = P33 · P47 · P51
P33 = 340181494077011694290357817506041<33>
P47 = 69952169448817622365476237996541279017803003027<47>
P51 = 313131860083472179775867830221927950460921636582587<51>
Number: 25551_154 N=7451421490539368400745666140791923586210703006310976378376855205625717878891916365540177939686299220679430926588394932343158718809 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: r1=340181494077011694290357817506041 (pp33) r2=69952169448817622365476237996541279017803003027 (pp47) r3=313131860083472179775867830221927950460921636582587 (pp51) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 57.77 hours. Scaled time: 27.27 units (timescale=0.472). Factorization parameters were as follows: name: 25551_154 n: 7451421490539368400745666140791923586210703006310976378376855205625717878891916365540177939686299220679430926588394932343158718809 m: 10000000000000000000000000000000 c5: 23 c0: -410 skew: 1.78 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3000001) Primes: RFBsize:216816, AFBsize:216777, largePrimes:5650674 encountered Relations: rels:5572838, finalFF:509244 Max relations in full relation-set: 28 Initial matrix: 433658 x 509244 with sparse part having weight 42472284. Pruned matrix : 400314 x 402546 with weight 29842667. Total sieving time: 51.37 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.99 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 57.77 hours. --------- CPU info (if available) ----------
(23·10179-41)/9 = 2(5)1781<180> = 311 · 605993 · 9486007 · 14509530323<11> · 29282668291<11> · 62155026673<11> · 348398479188686501<18> · C116
C116 = P55 · P61
P55 = 4498980788192811699189568905957540794386101261910526893<55>
P61 = 3453371022627095076155775850110344684731257028691845350307583<61>
Number: 25551_179 N=15536649885301064370678981856573830216220820743461352404945988973856041528897128938405796842530844335414223143329619 ( 116 digits) Divisors found: r1=4498980788192811699189568905957540794386101261910526893 (pp55) r2=3453371022627095076155775850110344684731257028691845350307583 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 47.90 hours. Scaled time: 36.41 units (timescale=0.760). Factorization parameters were as follows: name: 25551_179 n: 15536649885301064370678981856573830216220820743461352404945988973856041528897128938405796842530844335414223143329619 skew: 29412.77 # norm 3.98e+15 c5: 13440 c4: 7304861420 c3: -37829521335628 c2: -4586753777585773893 c1: 32509909704735860085894 c0: 381949982671101480999382968 # alpha -5.47 Y1: 523520788439 Y0: -16315113794246774390069 # Murphy_E 4.96e-10 # M 2833285247338597467203869810197414061555862670509082923762924242923193033919568095952457100773799659651415061182693 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3630001) Primes: RFBsize:315948, AFBsize:316793, largePrimes:7713552 encountered Relations: rels:7941927, finalFF:902430 Max relations in full relation-set: 28 Initial matrix: 632821 x 902430 with sparse part having weight 72590726. Pruned matrix : 404955 x 408183 with weight 39044189. Total sieving time: 45.03 hours. Total relation processing time: 0.38 hours. Matrix solve time: 2.20 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 47.90 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
(23·10169-41)/9 = 2(5)1681<170> = 3 · 7 · 19 · C167
C167 = P38 · P129
P38 = 99115019415880121677092502404222247027<38>
P129 = 646208937806761842825739606924013230081780096425955573149216008366271383509656353669041781599017902484058310271913115315734810187<129>
By Robert Backstrom / GGNFS, Msieve
(82·10187-1)/9 = 9(1)187<188> = 7 · 13 · C187
C187 = P73 · P114
P73 = 3026480116245698243462872523183807295562073549268169183952528712774717527<73>
P114 = 330820280578284578811104218819679244326107204280567814363792995482310812487533307731049138903576211787733292120323<114>
Number: n N=1001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221 ( 187 digits) SNFS difficulty: 188 digits. Divisors found: Fri Aug 01 22:10:03 2008 prp73 factor: 3026480116245698243462872523183807295562073549268169183952528712774717527 Fri Aug 01 22:10:03 2008 prp114 factor: 330820280578284578811104218819679244326107204280567814363792995482310812487533307731049138903576211787733292120323 Fri Aug 01 22:10:03 2008 elapsed time 06:58:34 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 125.80 hours. Scaled time: 258.01 units (timescale=2.051). Factorization parameters were as follows: name: KA_9_1_187 n: 1001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221001221 type: snfs skew: 0.16 deg: 5 c5: 8200 c0: -1 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 9300001) Primes: RFBsize:602489, AFBsize:603036, largePrimes:10948587 encountered Relations: rels:10948800, finalFF:1233699 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 125.35 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.5,2.5,100000 total time: 125.80 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(22·10200-31)/9 = 2(4)1991<201> = C201
C201 = P53 · P70 · P79
P53 = 47713862744287860379304252114030623412334743979315223<53>
P70 = 2395392072792774623211423837351600973074529935809359597689484971362983<70>
P79 = 2138744897728437264421864974178897354836969223259709418858727405909337720973849<79>
# ok, dudes! If there's a thing called a nice split, # there must be a thing called an ugly split. Well, it's OK. # Doing a full 43M ECM wouldn't have helped -- # SNFS-201 is easier than GNFS-149 # # C201 = P53 . P70 . P79 (no smaller factors!) # # plain SNFS, 29-bit LPs, 1 CPU, 2Gb of memory, 23 days # Number: 24441_200 N=244444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 ( 201 digits) SNFS difficulty: 201 digits. Divisors found: r1=47713862744287860379304252114030623412334743979315223 r2=2395392072792774623211423837351600973074529935809359597689484971362983 r3=2138744897728437264421864974178897354836969223259709418858727405909337720973849 Version: Msieve 1.36 Total time: 23 days Scaled time: ? units (timescale=2.738). Factorization parameters were as follows: n: 244444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 name: 24441_200 #res: 1872 Y0: -10000000000000000000000000000000000000000 Y1: 1 c5: 22 c0: -31 skew: 1.07 type: snfs lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.5 alambda: 2.5 rlim: 16000000 alim: 16000000 Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [8000000, 16900001) Relations: 40323955 relations 37001703 unique relations and about 33452936 large ideals Max relations in full relation-set: 20 Initial matrix: 3454542 x 3455788 (1045.7 MB) with weight 328806948 (95.15/col) sparse part has weight 236099120 (68.32/col) Pruned matrix : 3395676 x 3395924 (991.3 MB) with weight 250430313 (73.74/col) sparse part has weight 225898752 (66.52/col) Total sieving time: exactly 20 days on 1cpu. Total relation processing time: 2.00 hours. Matrix solve time: 67.50 hours. (a bit under 3 days) Time per square root: 1.11 hours. Times 5. (One Newton failed to converge.) elapsed time 05:35:31 Prototype def-par.txt line would be: snfs,201,5,0,0,0,0,0,0,0,0,16000000,16000000,29,29,57,57,2.5,2.5,100000 total time: 23 days.
By Serge Batalov / GMP-ECM
(5·10198-23)/9 = (5)1973<198> = 79 · 1787 · 92166227 · C185
C185 = P29 · C156
P29 = 62964716122813547478189355909<29>
C156 = [678120373017004965696027723355266137898901427492400737189655707913532453650073593892558088509716301805095025038393270924775790361244152143461824320103726627<156>]
(8·10200+7)/3 = 2(6)1999<201> = 10181399 · 126355837 · 36206518457<11> · 28184782664921<14> · C162
C162 = P30 · P132
P30 = 697368348053808161867372475367<30>
P132 = 291274374180553751645366386448159892837438428245940571965196990275330307174828818699791027080461993416672152709678515211741667562337<132>
By Sinkiti Sibata / GGNFS, GMP-ECM
(23·10156-41)/9 = 2(5)1551<157> = 109 · 1949 · 615887 · 79671967 · C138
C138 = P60 · P78
P60 = 568072473549876077847951681943235841700911865100362592901083<60>
P78 = 431555511214783572160697906549520112228842379475734051031125209152188991775173<78>
Number: 25551_156 N=245154806729863389877554529829728473478831042552701224896737949891351647068415901547655165076105391748463107205434374654549956804164212359 ( 138 digits) SNFS difficulty: 157 digits. Divisors found: r1=568072473549876077847951681943235841700911865100362592901083 (pp60) r2=431555511214783572160697906549520112228842379475734051031125209152188991775173 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 60.42 hours. Scaled time: 46.29 units (timescale=0.766). Factorization parameters were as follows: name: 25551_156 n: 245154806729863389877554529829728473478831042552701224896737949891351647068415901547655165076105391748463107205434374654549956804164212359 m: 10000000000000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3600001) Primes: RFBsize:216816, AFBsize:216312, largePrimes:5870783 encountered Relations: rels:5897251, finalFF:541008 Max relations in full relation-set: 28 Initial matrix: 433195 x 541008 with sparse part having weight 56507710. Pruned matrix : 387613 x 389842 with weight 39426318. Total sieving time: 57.85 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.25 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 60.42 hours. --------- CPU info (if available) ----------
8·10206-1 = 7(9)206<207> = 2844937 · 95500513 · 69076890761242761822409<23> · C170
C170 = P47 · P124
P47 = 41135749498277498847659154913591669404231513839<47>
P124 = 1036237806348703114978686943063529149880910428973216429428407074021642801060804673132690587919795720559017683362400311580929<124>
Factor79991_206 Input number is 42626418822604840172098173334880818320537225294947181741042961592958391680695314798229314971658518580998472053287968986315776968375378540443044665760795283585213031976431 Run 1845 out of 2350: Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1065804300 Step 1 took 66862ms Step 2 took 21278ms ********** Factor found in step 2: 41135749498277498847659154913591669404231513839 Found probable prime factor of 47 digits: 41135749498277498847659154913591669404231513839 Probable prime cofactor 1036237806348703114978686943063529149880910428973216429428407074021642801060804673132690587919795720559017683362400311580929 has 124 digits
By Robert Backstrom / GGNFS, Msieve
(8·10186+7)/3 = 2(6)1859<187> = 19 · C186
C186 = P64 · P122
P64 = 9461561365491417751494369249651340254835341510781699493399324537<64>
P122 = 14833796640042493150323341558774456583384342378431564682298156460186483076837772252833910763261999400743782662308014748023<122>
Number: n N=140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140351 ( 186 digits) SNFS difficulty: 186 digits. Divisors found: Fri Aug 01 04:57:51 2008 prp64 factor: 9461561365491417751494369249651340254835341510781699493399324537 Fri Aug 01 04:57:51 2008 prp122 factor: 14833796640042493150323341558774456583384342378431564682298156460186483076837772252833910763261999400743782662308014748023 Fri Aug 01 04:57:51 2008 elapsed time 08:20:34 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 75.43 hours. Scaled time: 98.52 units (timescale=1.306). Factorization parameters were as follows: name: KA_2_6_185_9 n: 140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140350877192982456140351 type: snfs skew: 0.61 deg: 5 c5: 80 c0: 7 m: 10000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 6350001) Primes: RFBsize:602489, AFBsize:603715, largePrimes:10590638 encountered Relations: rels:10590627, finalFF:1235224 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 74.89 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.5,2.5,100000 total time: 75.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(23·10158-41)/9 = 2(5)1571<159> = 203982161 · C151
C151 = P66 · P85
P66 = 171689635527179533850177211158120096687991880816145824295203094123<66>
P85 = 7297079191886613832743568747111087572188527660082593836965018158316475096972563946317<85>
Number: n N=1252832866867978497176307273044114654494495504219879088130434874427845460248632014225771221021408610116428541785845457120907526592757077201253670194991 ( 151 digits) SNFS difficulty: 159 digits. Divisors found: Fri Aug 1 10:14:11 2008 prp66 factor: 171689635527179533850177211158120096687991880816145824295203094123 Fri Aug 1 10:14:11 2008 prp85 factor: 7297079191886613832743568747111087572188527660082593836965018158316475096972563946317 Fri Aug 1 10:14:11 2008 elapsed time 00:58:14 (Msieve 1.36) Version: GGNFS-0.77.1-20050930-k8 Total time: 35.26 hours. Scaled time: 29.51 units (timescale=0.837). Factorization parameters were as follows: name: KA_2_5_157_1 n: 1252832866867978497176307273044114654494495504219879088130434874427845460248632014225771221021408610116428541785845457120907526592757077201253670194991 type: snfs deg: 5 c5: 23000 c0: -41 skew: 0.28 m: 10000000000000000000000000000000 rlim: 5500000 alim: 5500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100001) Primes: RFBsize:380800, AFBsize:381098, largePrimes:5429667 encountered Relations: rels:5543974, finalFF:780100 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.09 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.5,2.5,100000 total time: 35.26 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Tyler Cadigan / Msieve, GGNFS
(10198+53)/9 = (1)1977<198> = 3 · 11618966467<11> · 272033009875993867<18> · 30874217309083734095351287845727<32> · C138
C138 = P49 · P89
P49 = 9453997590293827952520076434647256044623334210059<49>
P89 = 40145390515984245549625564941684431539990421548183675478964571944721581807941671195434707<89>
Number: 11117_198 N=379534425199519751802558862062259553534112280564965144585212678040651849592463853984445240166695146589693057988042923980473715294957117713 ( 138 digits) Divisors found: r1=9453997590293827952520076434647256044623334210059 r2=40145390515984245549625564941684431539990421548183675478964571944721581807941671195434707 Version: Total time: 621.18 hours. Scaled time: 1600.17 units (timescale=2.576). Factorization parameters were as follows: name: 11117_198 n: 379534425199519751802558862062259553534112280564965144585212678040651849592463853984445240166695146589693057988042923980473715294957117713 skew: 113421.69 # norm 6.07e+018 c5: 4597020 c4: 112946341846 c3: -142581740199761914 c2: 9306396615802705483023 c1: 924174800200196017988522392 c0: -13806708124835709986443831217980 # alpha -5.94 Y1: 6237782020208299 Y0: -152529859043766825334703079 # Murphy_E 2.62e-011 # M 105204987891615758404166717436433383277087204802518042147842137078868339598661102665100403548164843043068382038692909504027948782527384386 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 13700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1309332 x 1309580 Total sieving time: 621.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5, total time: 621.18 hours. --------- CPU info (if available) ----------
By Serge Batalov / pol51, Msieve
(23·10188-41)/9 = 2(5)1871<189> = 43 · 683 · 1123 · 11003 · 129491 · 13776430890486919<17> · 1998967854737700046309<22> · 4118359186990383026851<22> · C113
C113 = P44 · P69
P44 = 65615481280730819870909029109781563549335597<44>
P69 = 730790082739108945520358150329693309160286713343015176689118525792073<69>
Number: 25551_188 N=47951142994111730052600594373683969756210565578842353767390601851826733211778758756378457047403995719847319322581 ( 113 digits) Divisors found: r1=65615481280730819870909029109781563549335597 r2=730790082739108945520358150329693309160286713343015176689118525792073 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: name: 25551_188 n: 47951142994111730052600594373683969756210565578842353767390601851826733211778758756378457047403995719847319322581 skew: 39942.85 # norm 4.55e+15 c5: 34440 c4: 33787766 c3: -289153465319201 c2: 86740494851837328 c1: 170200457961466906677222 c0: 1225255008348063687936417840 # alpha -6.30 Y1: 624020572153 Y0: -4253506998509198027219 # Murphy_E 7.21e-10 # M 13308855079719020252483670510147535496065937586070006992997317244223463936867911346371720820664892712291005385604 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3650001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 7790604 relations (7008594 unique relations and about 7083638 large ideals) Max relations in full relation-set: 20 Initial matrix: 486909 x 487115 (149.7 MB) with weight 49914063 (102.47/col) Pruned matrix : 484228 x 484476 Total sieving time: 12.00 hours. Total relation processing time: 00:06:58 Matrix solve time: 01:06:27 Time per square root: 00:14:26 Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 13.6 hours.
By Sinkiti Sibata / GMP-ECM, GGNFS
8·10203-1 = 7(9)203<204> = 139 · 661 · 691 · 221101 · 7609211 · 8030409029<10> · 58953836021010431<17> · C158
C158 = P35 · P123
P35 = 15964735925805978713074497549589901<35>
P123 = 990954857884280807155141937143358514822699724692261377137730212333798710863533568558966350673543013087657806107656416640019<123>
(23·10160-41)/9 = 2(5)1591<161> = 3 · 421 · 1303290019<10> · 16757517846851<14> · 33410740941589932192257971<26> · C110
C110 = P51 · P60
P51 = 141201378282839605551482507237147623978827958693229<51>
P60 = 196384032376405294052137230651200422806370915812525870825887<60>
Number: 25551_160 N=27729696044290224460609024058949846655012187821821005718326741022823024412724637968075461477077242655504819123 ( 110 digits) Divisors found: r1=141201378282839605551482507237147623978827958693229 (pp51) r2=196384032376405294052137230651200422806370915812525870825887 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 34.78 hours. Scaled time: 16.45 units (timescale=0.473). Factorization parameters were as follows: name: 25551_160 n: 27729696044290224460609024058949846655012187821821005718326741022823024412724637968075461477077242655504819123 skew: 19703.02 # norm 2.58e+15 c5: 97200 c4: 2699482653 c3: -193815028071876 c2: -1584280404140977288 c1: 22126732270643781438316 c0: -44916850879699875155644045 # alpha -6.32 Y1: 17675023289 Y0: -778136368901680828542 # Murphy_E 1.04e-09 # M 5474228949482118542256893329492702222648847949467955749282916956767404137793286945529386778071697693401222665 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: RFBsize:230209, AFBsize:230705, largePrimes:7471164 encountered Relations: rels:7388085, finalFF:642533 Max relations in full relation-set: 28 Initial matrix: 460991 x 642533 with sparse part having weight 52550874. Pruned matrix : 312266 x 314634 with weight 26599352. Total sieving time: 30.88 hours. Total relation processing time: 0.45 hours. Matrix solve time: 3.16 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 34.78 hours. --------- CPU info (if available) ----------
(23·10148-41)/9 = 2(5)1471<149> = 33 · 17 · 151 · 1283 · 75011929299489064304755445730298699<35> · C106
C106 = P48 · P59
P48 = 242428544050253915914646918889394792594740748663<48>
P59 = 15803560686756702280080903994808482373671375272389819798509<59>
Number: 25551_148 N=3831234208100258225905784789352281618753028879135330243405513044277690944977878017308340945272902471143467 ( 106 digits) SNFS difficulty: 149 digits. Divisors found: r1=242428544050253915914646918889394792594740748663 (pp48) r2=15803560686756702280080903994808482373671375272389819798509 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 42.02 hours. Scaled time: 32.06 units (timescale=0.763). Factorization parameters were as follows: name: 25551_148 n: 3831234208100258225905784789352281618753028879135330243405513044277690944977878017308340945272902471143467 m: 100000000000000000000000000000 c5: 23000 c0: -41 skew: 0.28 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 5650001) Primes: RFBsize:114155, AFBsize:113913, largePrimes:3272514 encountered Relations: rels:3445255, finalFF:267676 Max relations in full relation-set: 28 Initial matrix: 228135 x 267676 with sparse part having weight 36440840. Pruned matrix : 218281 x 219485 with weight 28929745. Total sieving time: 41.16 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.59 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 42.02 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GMP-ECM, GGNFS
8·10212-1 = 7(9)212<213> = 4049 · 194729 · 119979793 · 486354823 · C188
C188 = P32 · P157
P32 = 10363055718258968541866287435591<32>
P157 = 1677885836761735105027686433776347699057186426741928740520860590753000052575004869637655827915676182908115006877848710311065778076524792688071381438849355831<157>
(23·10152-41)/9 = 2(5)1511<153> = 251 · 15727 · 30313 · 103850550449<12> · 534229782631<12> · C119
C119 = P35 · P85
P35 = 19790119266604017679102945476566143<35>
P85 = 1945142794525748056047069045389871786110518491818897667080431528816127400819396477203<85>
Number: 25551_152 N=38494607894239986573312408816526294980131769999525671688250208724577379801467092036352155350111476847297481563421138029 ( 119 digits) SNFS difficulty: 153 digits. Divisors found: r1=19790119266604017679102945476566143 (pp35) r2=1945142794525748056047069045389871786110518491818897667080431528816127400819396477203 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.36 hours. Scaled time: 33.39 units (timescale=0.770). Factorization parameters were as follows: name: 25551_152 n: 38494607894239986573312408816526294980131769999525671688250208724577379801467092036352155350111476847297481563421138029 m: 1000000000000000000000000000000 c5: 2300 c0: -41 skew: 0.45 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2700001) Primes: RFBsize:176302, AFBsize:176434, largePrimes:5926245 encountered Relations: rels:5993828, finalFF:528516 Max relations in full relation-set: 28 Initial matrix: 352803 x 528516 with sparse part having weight 59010423. Pruned matrix : 295070 x 296898 with weight 34887846. Total sieving time: 41.80 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.27 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 43.36 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(22·10186-31)/9 = 2(4)1851<187> = 2609147 · 11184881843<11> · 20693708759<11> · 107449652673263951068137572239<30> · C131
C131 = P60 · P72
P60 = 171456587163938150377867556321935189380057680476175447590519<60>
P72 = 219711454591472501320115502574137369201432836002086108434234387703221959<72>
Number: 24441_186 N=37670976165078443863256836601861142328673369625675002713509577133696652081698435733705187027373757745600233596423796059159601006721 ( 131 digits) Divisors found: r1=171456587163938150377867556321935189380057680476175447590519 (pp60) r2=219711454591472501320115502574137369201432836002086108434234387703221959 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 397.44 hours. Scaled time: 398.64 units (timescale=1.003). Factorization parameters were as follows: name: 24441_186 n: 37670976165078443863256836601861142328673369625675002713509577133696652081698435733705187027373757745600233596423796059159601006721 skew: 126850.64 # norm 1.14e+18 c5: 401700 c4: -88329015826 c3: -33312095062761562 c2: 1203702866763267563315 c1: 138153793740909087892531458 c0: -1041535282133753560962272111400 # alpha -5.91 Y1: 97569885487877 Y0: -9872364854022489260068993 # Murphy_E 6.68e-11 # M 633122711962913050141178229451031715178519068215028293487278893698121013088255029031311623901634808174113378784182677589098774524 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 17640001) Primes: RFBsize:374362, AFBsize:373919, largePrimes:10334820 encountered Relations: rels:12618895, finalFF:844096 Max relations in full relation-set: 28 Initial matrix: 748367 x 844096 with sparse part having weight 133631545. Pruned matrix : 684149 x 687954 with weight 117917272. Total sieving time: 387.86 hours. Total relation processing time: 1.06 hours. Matrix solve time: 7.94 hours. Time per square root: 0.58 hours. Prototype def-par.txt line would be: gnfs,130,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 397.44 hours. --------- CPU info (if available) ----------
By Serge Batalov / pol51, Msieve, GMP-ECM
(23·10195-41)/9 = 2(5)1941<196> = 158597 · 7029942179561563<16> · 313306481963429959<18> · 138881901627091563659<21> · 337159954666957756609533851017<30> · C108
C108 = P51 · P57
P51 = 425452593547811250316631268573489297907292332462667<51>
P57 = 367228525511343637108246350268855498271898118507609664399<57>
Number: 25551_195 N=156238328603539719034056512317514350799152188699229320945880126217790717414234564344734256456866329066492133 ( 108 digits) Divisors found: r1=425452593547811250316631268573489297907292332462667 r2=367228525511343637108246350268855498271898118507609664399 Version: Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: name: 25551_195 n: 156238328603539719034056512317514350799152188699229320945880126217790717414234564344734256456866329066492133 skew: 18161.46 # norm 6.06e+14 c5: 19440 c4: -1287147529 c3: -42621652708216 c2: 324919101556326086 c1: 4304459856666512446668 c0: 5045724495165348220842000 # alpha -5.28 Y1: 144033260789 Y0: -381083757256829511337 # Murphy_E 1.27e-09 # M 128206860376250402135095926671172746209589861555750814743352707800749867899952792114219665913762911409522204 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1600000, 2900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 372333 x 372574 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,26,26,49,49,2.6,2.6,100000 total time: 11.25 hours.
(23·10167-41)/9 = 2(5)1661<168> = 43 · 1913 · 202061459 · 8243229814663<13> · 9719287489760292844376840465897<31> · C111
C111 = P44 · P67
P44 = 25684063928938037339841953821170973102004701<44>
P67 = 7471758700860606702764453521083040039688701616397278375982183054061<67>
Number: 25551_167 N=191905128134502839826363774871925281664941680452003820832204690551782529098643580568564988256211135109759140761 ( 111 digits) Divisors found: r1=25684063928938037339841953821170973102004701 r2=7471758700860606702764453521083040039688701616397278375982183054061 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: name: 25551_167 n: 191905128134502839826363774871925281664941680452003820832204690551782529098643580568564988256211135109759140761 skew: 34967.52 # norm 4.00e+15 c5: 50760 c4: 4857904818 c3: -154098803765337 c2: -4794514057547441483 c1: 129763218046029315253297 c0: -162403929682185181213925415 # alpha -6.94 Y1: 464271068387 Y0: -1304698116443718001226 # Murphy_E 9.82e-10 # M 49869502946388985127326104835168775949738092057117596251976267998101212859840610032696852809604089189634082330 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 404231 x 404479 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 14.00 hours.
(23·10146-41)/9 = 2(5)1451<147> = 43 · 6841 · 346043 · 41510532436848216902506677855337901<35> · C101
C101 = P35 · P67
P35 = 34758835800516322384363626653111027<35>
P67 = 1739977716010306568378337706839472575468221244846012298568319529657<67>
Number: 25551_146 N=60479599727359666560994131358298323344894266838551584001575199716934366999703013872164853960440227739 ( 101 digits) Divisors found: r1=34758835800516322384363626653111027 r2=1739977716010306568378337706839472575468221244846012298568319529657 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.306). Factorization parameters were as follows: name: 25551_146 n: 60479599727359666560994131358298323344894266838551584001575199716934366999703013872164853960440227739 skew: 9581.22 # norm 8.20e+13 c5: 23940 c4: -717855282 c3: -6785777479427 c2: 59164854376037827 c1: 270725537666604462153 c0: -1234452836689798433057766 # alpha -6.03 Y1: 129595215343 Y0: -19077200685863818687 # Murphy_E 3.21e-09 # M 16954413833068882237305959215587452485169461365335948587591155236573028568610291703407904271619835883 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 180427 x 180657 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.00 hours.
(23·10136-41)/9 = 2(5)1351<137> = 3 · 587 · 5081 · C130
C130 = P64 · P66
P64 = 7220707395104081979889441231486340266276055853078025872679218893<64>
P66 = 395546029374132684362629681712347760388410687843986837692961179827<66>
Number: 25551_136 N=2856122139405856309563107813059951282752130483951642176474844660794454712203535608497877323817032394969305938353534250598068871511 ( 130 digits) SNFS difficulty: 137 digits. Divisors found: r1=7220707395104081979889441231486340266276055853078025872679218893 r2=395546029374132684362629681712347760388410687843986837692961179827 Version: Msieve 1.36 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.294). Factorization parameters were as follows: n: 2856122139405856309563107813059951282752130483951642176474844660794454712203535608497877323817032394969305938353534250598068871511 Y1: 1 Y0: -1000000000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 2225001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 167043 x 167264 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.60 hours.
(23·10128-41)/9 = 2(5)1271<129> = 2455552249163861923<19> · C111
C111 = P36 · P75
P36 = 183984724928350103604095598822455287<36>
P75 = 565658580426499955089656149121889215128319053548001037907750693173909533651<75>
Number: 25551_128 N=104072538323130598266669657959877765401398196056849442449371065528617787768961145538112189660598674708969362837 ( 111 digits) SNFS difficulty: 129 digits. Divisors found: r1=183984724928350103604095598822455287 r2=565658580426499955089656149121889215128319053548001037907750693173909533651 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 104072538323130598266669657959877765401398196056849442449371065528617787768961145538112189660598674708969362837 Y1: 1 Y0: -10000000000000000000000000 c5: 23000 c0: -41 skew: 0.28 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 1050001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 120882 x 121130 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 2.60 hours.
(23·10151-41)/9 = 2(5)1501<152> = 3 · 7 · 19 · C149
C149 = P42 · P107
P42 = 828705755470883248206443600902260497750813<42>
P107 = 77288001192943139407705039988537472974515304633897945114412907051296370165896505908384922416246634351671973<107>
Number: 25551_151 N=64049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049 ( 149 digits) SNFS difficulty: 152 digits. Divisors found: r1=828705755470883248206443600902260497750813 r2=77288001192943139407705039988537472974515304633897945114412907051296370165896505908384922416246634351671973 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.312). Factorization parameters were as follows: n: 64049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049011417432470064049 Y1: 1 Y0: -1000000000000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1200000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 580869 x 581117 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,52,52,2.5,2.5,100000 total time: 14.25 hours.
(23·10176-41)/9 = 2(5)1751<177> = 1693 · 40766729 · 6784935167<10> · 582406709601371<15> · 64712766329852691432002761083917<32> · C110
C110 = P39 · P71
P39 = 771073511127576234777110033082908100809<39>
P71 = 18778663554365193587028132136971846756713170062564978859065837339119323<71>
By Sinkiti Sibata / GGNFS
(23·10127-41)/9 = 2(5)1261<128> = 3 · 7 · 13789 · 636704041316348681226905897<27> · C96
C96 = P40 · P56
P40 = 7221520930973206646401819070774877612779<40>
P56 = 19194065806847188314532804326356425958335559911996902133<56>
Number: 25551_127 N=138610347974624100139747647275393532986136399287735632429301347986696578956797567157662333157607 ( 96 digits) SNFS difficulty: 128 digits. Divisors found: r1=7221520930973206646401819070774877612779 (pp40) r2=19194065806847188314532804326356425958335559911996902133 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.25 hours. Scaled time: 4.06 units (timescale=0.774). Factorization parameters were as follows: name: 25551_127 n: 138610347974624100139747647275393532986136399287735632429301347986696578956797567157662333157607 m: 10000000000000000000000000 c5: 2300 c0: -41 skew: 0.45 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63839, largePrimes:1565208 encountered Relations: rels:1597866, finalFF:199561 Max relations in full relation-set: 28 Initial matrix: 127857 x 199561 with sparse part having weight 16075767. Pruned matrix : 109221 x 109924 with weight 7153577. Total sieving time: 5.11 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
8·10237-1 = 7(9)237<238> = 19 · 31 · 569 · 33529 · 441702386307151<15> · 35149384885764499121265377855887521968365553602811950790861159929701230228471<77> · C137
C137 = P52 · P86
P52 = 1236107286628145196448639851671015323071433818391231<52>
P86 = 37096948202534582401901585244832896057767553242001774619573918018896075253502000311741<86>
Number: 79999_237 N=45855807984819870790284032074741112260037755149041837570580988639808010607112972363240352571450865017457653731943683977750690941100743171 ( 137 digits) SNFS difficulty: 159 digits. Divisors found: r1=1236107286628145196448639851671015323071433818391231 (pp52) r2=37096948202534582401901585244832896057767553242001774619573918018896075253502000311741 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 30.73 hours. Scaled time: 73.26 units (timescale=2.384). Factorization parameters were as follows: n: 45855807984819870790284032074741112260037755149041837570580988639808010607112972363240352571450865017457653731943683977750690941100743171 m: 200000000000000000000000000 c6: 25 c3: 10 c0: 4 skew: 0.74 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:282762, largePrimes:5755281 encountered Relations: rels:5770382, finalFF:637340 Max relations in full relation-set: 28 Initial matrix: 565974 x 637340 with sparse part having weight 42624067. Pruned matrix : 511711 x 514604 with weight 30656236. Total sieving time: 29.14 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.44 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,159,6,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 30.73 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By suberi / GMP-ECM
(4·10205-1)/3 = 1(3)205<206> = 13 · 2722799 · 769133399 · C189
C189 = P35 · P155
P35 = 16552386941879045763447940586089963<35>
P155 = 29588128831725251679987662009307565255386626445186833657115513568355695849046387928726745167267846248912352318255956907081595132326285283802772607783082707<155>
By Robert Backstrom / GGNFS, Msieve
(22·10165-13)/9 = 2(4)1643<166> = 7 · 17 · 3191 · C160
C160 = P52 · P109
P52 = 5754480652293022944296874651263801107670250103676807<52>
P109 = 1118665569732113050387533457391188058592674819391297562139857816414188357774603895007548142093328554147528381<109>
Number: n N=6437339377409796050458206890820675914782501321849119884034257179315892240109247501361350975154503460216218525433781576978435790904683193657699160307599483959467 ( 160 digits) SNFS difficulty: 166 digits. Divisors found: Mon Jul 28 17:54:55 2008 prp52 factor: 5754480652293022944296874651263801107670250103676807 Mon Jul 28 17:54:55 2008 prp109 factor: 1118665569732113050387533457391188058592674819391297562139857816414188357774603895007548142093328554147528381 Mon Jul 28 17:54:55 2008 elapsed time 02:54:38 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 40.31 hours. Scaled time: 52.76 units (timescale=1.309). Factorization parameters were as follows: name: KA_2_4_164_3 n: 6437339377409796050458206890820675914782501321849119884034257179315892240109247501361350975154503460216218525433781576978435790904683193657699160307599483959467 type: snfs skew: 0.90 deg: 5 c5: 22 c0: -13 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2300000) Primes: RFBsize:348513, AFBsize:348457, largePrimes:9839460 encountered Relations: rels:9290956, finalFF:745978 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 39.81 hours. Total relation processing time: 0.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,50,50,2.5,2.5,100000 total time: 40.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(23·10125-41)/9 = 2(5)1241<126> = 43 · C124
C124 = P42 · P83
P42 = 249348569303014160413787592148654698519463<42>
P83 = 23834716483005383332708850249577163177780742690701649474076750209456743894544822939<83>
Number: n N=5943152454780361757105943152454780361757105943152454780361757105943152454780361757105943152454780361757105943152454780361757 ( 124 digits) SNFS difficulty: 126 digits. Divisors found: r1=249348569303014160413787592148654698519463 (pp42) r2=23834716483005383332708850249577163177780742690701649474076750209456743894544822939 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.59 hours. Scaled time: 2.90 units (timescale=1.818). Factorization parameters were as follows: name: KA_2_5_124_1 n: 5943152454780361757105943152454780361757105943152454780361757105943152454780361757105943152454780361757105943152454780361757 skew: 1.12 deg: 5 c5: 23 c0: -41 m: 10000000000000000000000000 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 320001) Primes: RFBsize:56543, AFBsize:56629, largePrimes:5090222 encountered Relations: rels:4337119, finalFF:156374 Max relations in full relation-set: 48 Initial matrix: 113237 x 156374 with sparse part having weight 17243698. Pruned matrix : 101383 x 102013 with weight 7505512. Total sieving time: 1.44 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.05 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,700000,700000,28,28,50,50,2.5,2.5,50000 total time: 1.59 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(28·10169-1)/9 = 3(1)169<170> = 569 · 66874311668453<14> · C153
C153 = P65 · P89
P65 = 44747666732132274776543864200416504217245710983578615464026424207<65>
P89 = 18271471956786769290650039107080148906269339162611613818652179674703425122513940651184189<89>
Number: n N=817605737827795112675191444680284193664087344513277738051760753443865670302478953404332802895920027643909527487197553597209356778647497395851301805263123 ( 153 digits) SNFS difficulty: 171 digits. Divisors found: Mon Jul 28 21:12:01 2008 prp65 factor: 44747666732132274776543864200416504217245710983578615464026424207 Mon Jul 28 21:12:01 2008 prp89 factor: 18271471956786769290650039107080148906269339162611613818652179674703425122513940651184189 Mon Jul 28 21:12:01 2008 elapsed time 02:26:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.38 hours. Scaled time: 88.49 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_1_169 n: 817605737827795112675191444680284193664087344513277738051760753443865670302478953404332802895920027643909527487197553597209356778647497395851301805263123 skew: 0.81 deg: 5 c5: 14 c0: -5 m: 10000000000000000000000000000000000 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3100001) Primes: RFBsize:412849, AFBsize:414176, largePrimes:9904175 encountered Relations: rels:9455000, finalFF:839308 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 48.10 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,50,50,2.5,2.5,100000 total time: 48.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(23·10129-41)/9 = 2(5)1281<130> = 347 · 1399 · 59004638297548789745241165391<29> · C95
C95 = P36 · P60
P36 = 145724632415306209970889384614530979<36>
P60 = 612236216310466332533975530312917979837581554624783714920903<60>
Number: 25551_129 N=89217897573180606659720594531071090386214846727194734208262478987142825655424436387351428154037 ( 95 digits) SNFS difficulty: 131 digits. Divisors found: r1=145724632415306209970889384614530979 (pp36) r2=612236216310466332533975530312917979837581554624783714920903 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.18 hours. Scaled time: 4.01 units (timescale=0.774). Factorization parameters were as follows: name: 25551_129 n: 89217897573180606659720594531071090386214846727194734208262478987142825655424436387351428154037 m: 100000000000000000000000000 c5: 23 c0: -410 skew: 1.78 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:64059, largePrimes:1499300 encountered Relations: rels:1490747, finalFF:160397 Max relations in full relation-set: 28 Initial matrix: 128075 x 160397 with sparse part having weight 12552187. Pruned matrix : 119298 x 120002 with weight 7667375. Total sieving time: 5.02 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.18 hours. --------- CPU info (if available) ----------
(23·10116-41)/9 = 2(5)1151<117> = 17 · 192406883 · C107
C107 = P38 · P70
P38 = 20871150723274008192701347204335976081<38>
P70 = 3743427330215324631982859564971087424753593345379490493751515455230261<70>
Number: 25551_116 N=78129636030547262195749898698837870196137347232609306808107078432860782708361889269454031878999438043387141 ( 107 digits) SNFS difficulty: 117 digits. Divisors found: r1=20871150723274008192701347204335976081 (pp38) r2=3743427330215324631982859564971087424753593345379490493751515455230261 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.23 hours. Scaled time: 1.73 units (timescale=0.774). Factorization parameters were as follows: name: 25551_116 n: 78129636030547262195749898698837870196137347232609306808107078432860782708361889269454031878999438043387141 m: 100000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63644, largePrimes:2232224 encountered Relations: rels:2412467, finalFF:298474 Max relations in full relation-set: 28 Initial matrix: 112809 x 298474 with sparse part having weight 28115143. Pruned matrix : 79906 x 80534 with weight 5836660. Total sieving time: 2.12 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
(23·10123-41)/9 = 2(5)1221<124> = 1453 · 1801 · 9391 · 6693819476983<13> · C101
C101 = P45 · P56
P45 = 637191652502528066422659078234237565527319133<45>
P56 = 24380919769593584418550698024252096421356470057475816983<56>
Number: 25551_123 N=15535318557518891893677625380007670301471136199536056513238867420641462692932163565132174374942235739 ( 101 digits) SNFS difficulty: 124 digits. Divisors found: r1=637191652502528066422659078234237565527319133 (pp45) r2=24380919769593584418550698024252096421356470057475816983 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.15 hours. Scaled time: 3.19 units (timescale=0.768). Factorization parameters were as follows: name: 25551_123 n: 15535318557518891893677625380007670301471136199536056513238867420641462692932163565132174374942235739 m: 1000000000000000000000000 c5: 23000 c0: -41 skew: 0.28 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63559, largePrimes:2391319 encountered Relations: rels:2706287, finalFF:384069 Max relations in full relation-set: 28 Initial matrix: 112724 x 384069 with sparse part having weight 40247857. Pruned matrix : 85697 x 86324 with weight 9432873. Total sieving time: 4.00 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.15 hours. --------- CPU info (if available) ----------
(23·10133-41)/9 = 2(5)1321<134> = 3 · 7 · 19 · 1406343509201398365268977301<28> · C104
C104 = P39 · P66
P39 = 131983281958163855510539651678444328449<39>
P66 = 345065940183956376607582992204291886943136677148509477565980637101<66>
Number: 25551_133 N=45542935277458017797569348660685401934522573265115886086415534445131430705420105041865756177125119186349 ( 104 digits) SNFS difficulty: 134 digits. Divisors found: r1=131983281958163855510539651678444328449 (pp39) r2=345065940183956376607582992204291886943136677148509477565980637101 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 10.59 hours. Scaled time: 5.01 units (timescale=0.473). Factorization parameters were as follows: name: 25551_133 n: 45542935277458017797569348660685401934522573265115886086415534445131430705420105041865756177125119186349 m: 100000000000000000000000000 c5: 23000 c0: -41 skew: 0.28 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:78498, AFBsize:63559, largePrimes:1565148 encountered Relations: rels:1564919, finalFF:169848 Max relations in full relation-set: 28 Initial matrix: 142124 x 169848 with sparse part having weight 15160791. Pruned matrix : 133632 x 134406 with weight 10401980. Total sieving time: 10.13 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.31 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.59 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve, pol51
8·10244-1 = 7(9)244<245> = 89 · 1278578053639<13> · 108861017508663575689495374381113<33> · C199
C199 = P36 · C164
P36 = 142573390866785288763609707121204263<36>
C164 = [45296210130250230198807436160507101560969066892484152346441941909506494187913106289607271581488076574862891981551400056470584444467889627923713436760753843396214751<164>]
8·10240-1 = 7(9)240<241> = 7 · 23 · 167 · 1063 · 1327 · 53831 · 2010123697<10> · 14590058377<11> · 967282300096325356931642416182002212551860417333658191869546350550040969<72> · C135
C135 = P56 · P80
P56 = 12638631559884545162091883790692457456172929864285579791<56>
P80 = 10928936369148320848662567406798716031938309146132546684068294609008875247151417<80>
Number: 79999_240 N=138126800111087979621904572738473262040684851838378352665408113514452160684022609766361862880248315626676076038065194239443863012213847 ( 135 digits) SNFS difficulty: 162 digits. Divisors found: r1=12638631559884545162091883790692457456172929864285579791 r2=10928936369148320848662567406798716031938309146132546684068294609008875247151417 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 138126800111087979621904572738473262040684851838378352665408113514452160684022609766361862880248315626676076038065194239443863012213847 Y1: 1 Y0: -1000000000000000000000000000 c6: 1 c3: 5 c0: 25 skew: 1.7 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2500000, 6000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 808067 x 808315 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.25 hours. * 4 dep Prototype def-par.txt line would be: snfs,162,6,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 25.90 hours.
(23·10134-41)/9 = 2(5)1331<135> = 83 · C133
C133 = P62 · P71
P62 = 61675709953442697785653352579529799727020527376375559085086927<62>
P71 = 49922126545103830085717272367270909155555235254621911382926371134183211<71>
Number: 25551_134 N=3078982597054886211512717536813922356091030789825970548862115127175368139223560910307898259705488621151271753681392235609103078982597 ( 133 digits) SNFS difficulty: 136 digits. Divisors found: r1=61675709953442697785653352579529799727020527376375559085086927 r2=49922126545103830085717272367270909155555235254621911382926371134183211 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.303). Factorization parameters were as follows: n: 3078982597054886211512717536813922356091030789825970548862115127175368139223560910307898259705488621151271753681392235609103078982597 Y1: 1 Y0: -1000000000000000000000000000 c5: 23 c0: -410 skew: 1.78 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1625001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 145782 x 146030 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 4.5 hours.
(23·10170-41)/9 = 2(5)1691<171> = 47 · 167 · 1233615293<10> · 645304315442331619894177<24> · 8914696587075694200020688570908983<34> · C100
C100 = P39 · P62
P39 = 285490091589476305221345080451232055137<39>
P62 = 16070488449447674612650589351851462929548050466307798710623429<62>
Number: 25551_170 N=4587965219320437679186724585504871860492353253197962059126245596532976638080543930484448622172004773 ( 100 digits) Divisors found: r1=285490091589476305221345080451232055137 r2=16070488449447674612650589351851462929548050466307798710623429 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: name: 25551_170 n: 4587965219320437679186724585504871860492353253197962059126245596532976638080543930484448622172004773 skew: 4343.54 # norm 1.85e+14 c5: 102600 c4: -2099554410 c3: 313677236699 c2: -32073952736029022 c1: -22993856991668603067 c0: 77448256609396649268195 # alpha -6.35 Y1: 13929288857 Y0: -8513290624657879186 # Murphy_E 3.34e-09 # M 881146291402212354249118032869459916813881084351627622763479243021417493888375943481775157365108946 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 4089960 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 188015 x 188257 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 2.80 hours.
(23·10144-41)/9 = 2(5)1431<145> = C145
C145 = P53 · P93
P53 = 11328951549049208258659188667017358765383634275585517<53>
P93 = 225577410627202540610471998982892547446702289733649826841945206400113122054353971517703547003<93>
Number: 25551_144 N=2555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 ( 145 digits) SNFS difficulty: 146 digits. Divisors found: r1=11328951549049208258659188667017358765383634275585517 r2=225577410627202540610471998982892547446702289733649826841945206400113122054353971517703547003 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 2555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 Y1: 1 Y0: -100000000000000000000000000000 c5: 23 c0: -410 skew: 1.78 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved rational special-q in [750000, 2750001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 3186702 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 255651 x 255899 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 7.02 hours.
By Sinkiti Sibata / GGNFS
(23·10121-41)/9 = 2(5)1201<122> = 33 · 72 · 107 · 242689 · 2785847 · 774795187 · C96
C96 = P48 · P48
P48 = 552729096969604125117866209022368136492287800707<48>
P48 = 623498064629031326448330932831149966744250542153<48>
Number: 25551_121 N=344625522224700355890781569301728917200166256280370455883285888961664239432175325341492766702171 ( 96 digits) SNFS difficulty: 122 digits. Divisors found: r1=552729096969604125117866209022368136492287800707 (pp48) r2=623498064629031326448330932831149966744250542153 (pp48) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.99 hours. Scaled time: 1.42 units (timescale=0.473). Factorization parameters were as follows: name: 25551_121 n: 344625522224700355890781569301728917200166256280370455883285888961664239432175325341492766702171 m: 1000000000000000000000000 c5: 230 c0: -41 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63644, largePrimes:2079639 encountered Relations: rels:2058172, finalFF:128435 Max relations in full relation-set: 28 Initial matrix: 112809 x 128435 with sparse part having weight 11139017. Pruned matrix : 108190 x 108818 with weight 8118576. Total sieving time: 2.71 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.99 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve, pol51
8·10244-1 = 7(9)244<245> = 89 · 1278578053639<13> · C231
C231 = P33 · C199
P33 = 108861017508663575689495374381113<33>
C199 = [6458034271684205445370439176812586281872425037340884899946467880064597890608060770039709215095343983538806570804236640838846920029060722859175686181158626178828082778050969836074995833443582884683513<199>]
8·10241-1 = 7(9)241<242> = 149 · 24421 · 31350871 · 1697371865690194829<19> · C210
C210 = P31 · C180
P31 = 4084686957513171056405214141139<31>
C180 = [101147437776188067596893019641822094170077201992981329794320726118257488337588143534303319427488460340571418858976260720363458708418693527978581840212562659143024599069105778741431<180>]
(23·10114-41)/9 = 2(5)1131<115> = 12671 · 3204884250067103630129<22> · C89
C89 = P27 · P62
P27 = 725788414881940170954537007<27>
P62 = 86706579727612278786969624143583485674657111291579725893503327<62>
(23·10153-41)/9 = 2(5)1521<154> = 157 · 1511 · 71889401 · 6594980699<10> · 10359967718793949674331<23> · 126119780815898289136469561<27> · C83
C83 = P41 · P42
P41 = 50235185876494027386262953460826258885293<41>
P42 = 346173000949072010309520257023196154046249<42>
Sun Jul 27 11:25:56 2008 Msieve v. 1.36 Sun Jul 27 11:25:56 2008 random seeds: 42d2437e c33efa51 Sun Jul 27 11:25:56 2008 factoring 17390065048100375790461411356970700872395622645753315257013857083257878410307915957 (83 digits) Sun Jul 27 11:25:57 2008 no P-1/P+1/ECM available, skipping Sun Jul 27 11:25:57 2008 commencing quadratic sieve (83-digit input) Sun Jul 27 11:25:57 2008 using multiplier of 13 Sun Jul 27 11:25:57 2008 using 64kb Opteron sieve core Sun Jul 27 11:25:57 2008 sieve interval: 6 blocks of size 65536 Sun Jul 27 11:25:57 2008 processing polynomials in batches of 17 Sun Jul 27 11:25:57 2008 using a sieve bound of 1356389 (52353 primes) Sun Jul 27 11:25:57 2008 using large prime bound of 123431399 (26 bits) Sun Jul 27 11:25:57 2008 using trial factoring cutoff of 27 bits Sun Jul 27 11:25:57 2008 polynomial 'A' values have 11 factors Sun Jul 27 11:42:17 2008 52737 relations (28001 full + 24736 combined from 268831 partial), need 52449 Sun Jul 27 11:42:17 2008 begin with 296832 relations Sun Jul 27 11:42:17 2008 reduce to 74247 relations in 2 passes Sun Jul 27 11:42:17 2008 attempting to read 74247 relations Sun Jul 27 11:42:18 2008 recovered 74247 relations Sun Jul 27 11:42:18 2008 recovered 64353 polynomials Sun Jul 27 11:42:18 2008 attempting to build 52737 cycles Sun Jul 27 11:42:18 2008 found 52737 cycles in 1 passes Sun Jul 27 11:42:18 2008 distribution of cycle lengths: Sun Jul 27 11:42:18 2008 length 1 : 28001 Sun Jul 27 11:42:18 2008 length 2 : 24736 Sun Jul 27 11:42:18 2008 largest cycle: 2 relations Sun Jul 27 11:42:18 2008 matrix is 52353 x 52737 (8.1 MB) with weight 1696688 (32.17/col) Sun Jul 27 11:42:18 2008 sparse part has weight 1696688 (32.17/col) Sun Jul 27 11:42:19 2008 filtering completed in 3 passes Sun Jul 27 11:42:19 2008 matrix is 36662 x 36726 (6.1 MB) with weight 1317403 (35.87/col) Sun Jul 27 11:42:19 2008 sparse part has weight 1317403 (35.87/col) Sun Jul 27 11:42:19 2008 saving the first 48 matrix rows for later Sun Jul 27 11:42:19 2008 matrix is 36614 x 36726 (4.1 MB) with weight 989538 (26.94/col) Sun Jul 27 11:42:19 2008 sparse part has weight 717356 (19.53/col) Sun Jul 27 11:42:19 2008 matrix includes 64 packed rows Sun Jul 27 11:42:19 2008 using block size 14690 for processor cache size 1024 kB Sun Jul 27 11:42:19 2008 commencing Lanczos iteration Sun Jul 27 11:42:19 2008 memory use: 4.1 MB Sun Jul 27 11:42:26 2008 lanczos halted after 581 iterations (dim = 36608) Sun Jul 27 11:42:26 2008 recovered 14 nontrivial dependencies Sun Jul 27 11:42:26 2008 prp41 factor: 50235185876494027386262953460826258885293 Sun Jul 27 11:42:26 2008 prp42 factor: 346173000949072010309520257023196154046249 Sun Jul 27 11:42:26 2008 elapsed time 00:16:30
(23·10124-41)/9 = 2(5)1231<125> = 3 · 47 · 3643631 · 17073588094550355706752106093964111<35> · C82
C82 = P36 · P47
P36 = 155830978679555689187019330766573207<36>
P47 = 18696194936136122483576503549609207686186338653<47>
Sun Jul 27 11:25:25 2008 Msieve v. 1.36 Sun Jul 27 11:25:25 2008 random seeds: 795a1938 d119b872 Sun Jul 27 11:25:25 2008 factoring 2913446354481845142744359062908868931976606350837226718898980159766073710818270171 (82 digits) Sun Jul 27 11:25:26 2008 no P-1/P+1/ECM available, skipping Sun Jul 27 11:25:26 2008 commencing quadratic sieve (82-digit input) Sun Jul 27 11:25:26 2008 using multiplier of 1 Sun Jul 27 11:25:26 2008 using 64kb Opteron sieve core Sun Jul 27 11:25:26 2008 sieve interval: 6 blocks of size 65536 Sun Jul 27 11:25:26 2008 processing polynomials in batches of 17 Sun Jul 27 11:25:26 2008 using a sieve bound of 1337729 (51471 primes) Sun Jul 27 11:25:26 2008 using large prime bound of 125746526 (26 bits) Sun Jul 27 11:25:26 2008 using trial factoring cutoff of 27 bits Sun Jul 27 11:25:26 2008 polynomial 'A' values have 10 factors Sun Jul 27 11:46:04 2008 51676 relations (25977 full + 25699 combined from 278377 partial), need 51567 Sun Jul 27 11:46:05 2008 begin with 304354 relations Sun Jul 27 11:46:05 2008 reduce to 74155 relations in 2 passes Sun Jul 27 11:46:05 2008 attempting to read 74155 relations Sun Jul 27 11:46:06 2008 recovered 74155 relations Sun Jul 27 11:46:06 2008 recovered 65726 polynomials Sun Jul 27 11:46:06 2008 attempting to build 51676 cycles Sun Jul 27 11:46:07 2008 found 51676 cycles in 1 passes Sun Jul 27 11:46:07 2008 distribution of cycle lengths: Sun Jul 27 11:46:07 2008 length 1 : 25977 Sun Jul 27 11:46:07 2008 length 2 : 25699 Sun Jul 27 11:46:07 2008 largest cycle: 2 relations Sun Jul 27 11:46:07 2008 matrix is 51471 x 51676 (7.7 MB) with weight 1608107 (31.12/col) Sun Jul 27 11:46:07 2008 sparse part has weight 1608107 (31.12/col) Sun Jul 27 11:46:08 2008 filtering completed in 3 passes Sun Jul 27 11:46:08 2008 matrix is 37409 x 37473 (6.1 MB) with weight 1301480 (34.73/col) Sun Jul 27 11:46:08 2008 sparse part has weight 1301480 (34.73/col) Sun Jul 27 11:46:08 2008 saving the first 48 matrix rows for later Sun Jul 27 11:46:08 2008 matrix is 37361 x 37473 (4.6 MB) with weight 1010936 (26.98/col) Sun Jul 27 11:46:08 2008 sparse part has weight 827779 (22.09/col) Sun Jul 27 11:46:08 2008 matrix includes 64 packed rows Sun Jul 27 11:46:08 2008 using block size 14989 for processor cache size 1024 kB Sun Jul 27 11:46:09 2008 commencing Lanczos iteration Sun Jul 27 11:46:09 2008 memory use: 4.4 MB Sun Jul 27 11:46:22 2008 lanczos halted after 593 iterations (dim = 37361) Sun Jul 27 11:46:22 2008 recovered 18 nontrivial dependencies Sun Jul 27 11:46:23 2008 prp36 factor: 155830978679555689187019330766573207 Sun Jul 27 11:46:23 2008 prp47 factor: 18696194936136122483576503549609207686186338653 Sun Jul 27 11:46:23 2008 elapsed time 00:20:58
(23·10170-41)/9 = 2(5)1691<171> = 47 · 167 · 1233615293<10> · 645304315442331619894177<24> · C134
C134 = P34 · C100
P34 = 8914696587075694200020688570908983<34>
C100 = [4587965219320437679186724585504871860492353253197962059126245596532976638080543930484448622172004773<100>]
(23·10146-41)/9 = 2(5)1451<147> = 43 · 6841 · 346043 · C136
C136 = P35 · C101
P35 = 41510532436848216902506677855337901<35>
C101 = [60479599727359666560994131358298323344894266838551584001575199716934366999703013872164853960440227739<101>]
(23·10195-41)/9 = 2(5)1941<196> = 158597 · 7029942179561563<16> · 313306481963429959<18> · 138881901627091563659<21> · C137
C137 = P30 · C108
P30 = 337159954666957756609533851017<30>
C108 = [156238328603539719034056512317514350799152188699229320945880126217790717414234564344734256456866329066492133<108>]
(23·10148-41)/9 = 2(5)1471<149> = 33 · 17 · 151 · 1283 · C141
C141 = P35 · C106
P35 = 75011929299489064304755445730298699<35>
C106 = [3831234208100258225905784789352281618753028879135330243405513044277690944977878017308340945272902471143467<106>]
(23·10157-41)/9 = 2(5)1561<158> = 32 · 7 · 14776651 · 63748651 · C141
C141 = P30 · P111
P30 = 973336363550106887302722574739<30>
P111 = 442420062949587264507358090096128210983570197191636875054556465288607675852564435098117942495764116067637731443<111>
(23·10106-41)/9 = 2(5)1051<107> = 3 · 89 · 304585559 · 183954605179<12> · C85
C85 = P32 · P54
P32 = 12361526776253110052746469951419<32>
P54 = 138191705900215663268288927238977959384385858170547267<54>
Sun Jul 27 11:50:55 2008 Msieve v. 1.36 Sun Jul 27 11:50:55 2008 random seeds: 2bb3be20 caa580c6 Sun Jul 27 11:50:55 2008 factoring 1708260472741610815635081495099835617949910688096929711288607302314546926614133221873 (85 digits) Sun Jul 27 11:50:55 2008 no P-1/P+1/ECM available, skipping Sun Jul 27 11:50:55 2008 commencing quadratic sieve (85-digit input) Sun Jul 27 11:50:55 2008 using multiplier of 1 Sun Jul 27 11:50:56 2008 using 64kb Opteron sieve core Sun Jul 27 11:50:56 2008 sieve interval: 6 blocks of size 65536 Sun Jul 27 11:50:56 2008 processing polynomials in batches of 17 Sun Jul 27 11:50:56 2008 using a sieve bound of 1409879 (54118 primes) Sun Jul 27 11:50:56 2008 using large prime bound of 118429836 (26 bits) Sun Jul 27 11:50:56 2008 using trial factoring cutoff of 27 bits Sun Jul 27 11:50:56 2008 polynomial 'A' values have 11 factors Sun Jul 27 12:27:36 2008 54264 relations (27466 full + 26798 combined from 283153 partial), need 54214 Sun Jul 27 12:27:36 2008 begin with 310619 relations Sun Jul 27 12:27:36 2008 reduce to 77728 relations in 2 passes Sun Jul 27 12:27:36 2008 attempting to read 77728 relations Sun Jul 27 12:27:37 2008 recovered 77728 relations Sun Jul 27 12:27:37 2008 recovered 72460 polynomials Sun Jul 27 12:27:37 2008 attempting to build 54264 cycles Sun Jul 27 12:27:37 2008 found 54264 cycles in 1 passes Sun Jul 27 12:27:37 2008 distribution of cycle lengths: Sun Jul 27 12:27:37 2008 length 1 : 27466 Sun Jul 27 12:27:37 2008 length 2 : 26798 Sun Jul 27 12:27:37 2008 largest cycle: 2 relations Sun Jul 27 12:27:37 2008 matrix is 54118 x 54264 (8.2 MB) with weight 1722644 (31.75/col) Sun Jul 27 12:27:37 2008 sparse part has weight 1722644 (31.75/col) Sun Jul 27 12:27:38 2008 filtering completed in 3 passes Sun Jul 27 12:27:38 2008 matrix is 39821 x 39884 (6.6 MB) with weight 1398732 (35.07/col) Sun Jul 27 12:27:38 2008 sparse part has weight 1398732 (35.07/col) Sun Jul 27 12:27:38 2008 saving the first 48 matrix rows for later Sun Jul 27 12:27:38 2008 matrix is 39773 x 39884 (4.2 MB) with weight 1024154 (25.68/col) Sun Jul 27 12:27:38 2008 sparse part has weight 701631 (17.59/col) Sun Jul 27 12:27:38 2008 matrix includes 64 packed rows Sun Jul 27 12:27:38 2008 using block size 15953 for processor cache size 1024 kB Sun Jul 27 12:27:38 2008 commencing Lanczos iteration Sun Jul 27 12:27:38 2008 memory use: 4.3 MB Sun Jul 27 12:27:46 2008 lanczos halted after 631 iterations (dim = 39770) Sun Jul 27 12:27:46 2008 recovered 14 nontrivial dependencies Sun Jul 27 12:27:46 2008 prp32 factor: 12361526776253110052746469951419 Sun Jul 27 12:27:46 2008 prp54 factor: 138191705900215663268288927238977959384385858170547267 Sun Jul 27 12:27:46 2008 elapsed time 00:36:51
(23·10110-41)/9 = 2(5)1091<111> = 52498139 · 68759837 · C95
C95 = P43 · P53
P43 = 1171236310664623846065075156444685421318659<43>
P53 = 60445232405964426967246594540875308055954431145200123<53>
Number: 25551_110 N=70795651000427540270331785995431991726223223369658715988001782164765787215865399899805108995057 ( 95 digits) SNFS difficulty: 111 digits. Divisors found: r1=1171236310664623846065075156444685421318659 r2=60445232405964426967246594540875308055954431145200123 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.176). Factorization parameters were as follows: n: 70795651000427540270331785995431991726223223369658715988001782164765787215865399899805108995057 Y1: 1 Y0: -10000000000000000000000 c5: 23 c0: -41 skew: 1.12 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 2.8M relations Max relations in full relation-set: Initial matrix: Pruned matrix : 66260 x 66481 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.05 hours.
(23·10180-41)/9 = 2(5)1791<181> = 17 · 160625847619<12> · 23288197500401<14> · 10538502885230213<17> · 14005677645847267<17> · 452648203174615703323010093477<30> · C93
C93 = P36 · P57
P36 = 818721351585225269696284670558586233<36>
P57 = 734691701926879427540330661208791006085582518574130629367<57>
Number: 25551_180 N=601507783200024177533706526882724961664302389935805095370359219106224905189670063398031704511 ( 93 digits) Divisors found: r1=818721351585225269696284670558586233 r2=734691701926879427540330661208791006085582518574130629367 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: name: 25551_180 n: 601507783200024177533706526882724961664302389935805095370359219106224905189670063398031704511 skew: 9274.72 # norm 5.56e+12 c5: 960 c4: 51491975 c3: -375693115044 c2: -3597295424721214 c1: 12421001845831235314 c0: 64030193958855804894760 # alpha -4.84 Y1: 14132136997 Y0: -910587610201992171 # Murphy_E 7.07e-09 # M 172801455112640510589520181640160855778357793905387688415191739720540490264493458130883360178 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109001 x 109222 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,92,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 1.60 hours.
(23·10143-41)/9 = 2(5)1421<144> = 557 · 171012781 · 136207903799352110227<21> · C113
C113 = P33 · P80
P33 = 538844847458477932858080232424621<33>
P80 = 36554051399146403713935390141869213541499333355306590438897345084105764804979409<80>
(23·10138-41)/9 = 2(5)1371<139> = C139
C139 = P35 · P105
P35 = 17609003514447728631938833758128093<35>
P105 = 145127778153873886153305871603820300439044982225316042826202236046692596812484867625963184012287196067307<105>
(23·10176-41)/9 = 2(5)1751<177> = 1693 · 40766729 · 6784935167<10> · 582406709601371<15> · C141
C141 = P32 · C110
P32 = 64712766329852691432002761083917<32>
C110 = [14479730041147820385756519417126351350432451092133329416395602786113828306192530413105615533147360150563832307<110>]
Factorizations of 255...551 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
By Serge Batalov / GMP-ECM
8·10249-1 = 7(9)249<250> = 139 · 6513641919379205078817101<25> · 30704788883921543079717165000137354872639579175495937407099<59> · C165
C165 = P30 · P135
P30 = 444308886544865560271771281999<30>
P135 = 647679560070206617765843309810908725678476935981017638468004383156312447877119496409280870778743697648282559776979950903559036235285741<135>
8·10246-1 = 7(9)246<247> = 72 · 4519 · 234721 · 227403769 · 423619321 · 91904895863405227344778390349737714039<38> · 982772344963126877180586765965485256911<39> · C143
C143 = P36 · P107
P36 = 727185362958603102583458640927672321<36>
P107 = 24327052797346741204514652628175478116899457476934725356694836765790319302103867872875822020632685040373489<107>
By Jo Yeong Uk / GGNFS
8·10231-1 = 7(9)231<232> = 331 · 1549 · 2719 · 3296551 · 180273339366603915157042541456190941<36> · 336541551884960929475454162660123389<36> · C146
C146 = P68 · P78
P68 = 86993443529090471243193900012390628379624840454127261893376643990701<68>
P78 = 329825971258905280264523732622444591114643795678979992003823731515025390553941<78>
Number: 79999_231 N=28692697005138993302709192211409576219617822299744756725421307261784974933066555140257538805109891878235215013147269934963361194111890447242902641 ( 146 digits) SNFS difficulty: 156 digits. Divisors found: r1=86993443529090471243193900012390628379624840454127261893376643990701 (pp68) r2=329825971258905280264523732622444591114643795678979992003823731515025390553941 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.78 hours. Scaled time: 59.18 units (timescale=2.388). Factorization parameters were as follows: n: 28692697005138993302709192211409576219617822299744756725421307261784974933066555140257538805109891878235215013147269934963361194111890447242902641 m: 100000000000000000000000000 c6: 1 c3: 5 c0: 25 skew: 1.71 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:216710, largePrimes:5807273 encountered Relations: rels:5811297, finalFF:564255 Max relations in full relation-set: 28 Initial matrix: 433591 x 564255 with sparse part having weight 50527041. Pruned matrix : 358974 x 361205 with weight 33138080. Total sieving time: 23.66 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.98 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,156,6,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 24.78 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By Sinkiti Sibata / GGNFS
(22·10162+23)/9 = 2(4)1617<163> = 1978727 · 1171413239<10> · 1087986601832676187<19> · C129
C129 = P55 · P75
P55 = 1030690545220291183793531315683239605395413174248632823<55>
P75 = 940442666446536063195756357805894289825335687502835965056411741932351986299<75>
Number: 24447_162 N=969305364628204696618841104157701934175888050442734215063287899040826831867856381020984867573714343451139369729680252409177692077 ( 129 digits) SNFS difficulty: 163 digits. Divisors found: r1=1030690545220291183793531315683239605395413174248632823 (pp55) r2=940442666446536063195756357805894289825335687502835965056411741932351986299 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 95.03 hours. Scaled time: 72.98 units (timescale=0.768). Factorization parameters were as follows: name: 24447_162 n: 969305364628204696618841104157701934175888050442734215063287899040826831867856381020984867573714343451139369729680252409177692077 m: 100000000000000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5350001) Primes: RFBsize:315948, AFBsize:315882, largePrimes:6095209 encountered Relations: rels:6363736, finalFF:864607 Max relations in full relation-set: 28 Initial matrix: 631897 x 864607 with sparse part having weight 68497139. Pruned matrix : 463354 x 466577 with weight 52859718. Total sieving time: 90.96 hours. Total relation processing time: 0.28 hours. Matrix solve time: 3.65 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 95.03 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(85·10182+41)/9 = 9(4)1819<183> = 13 · 103 · C180
C180 = P36 · C145
P36 = 104574808336266590413440953679885241<36>
C145 = [6744795118571178385715723334774127654765899499968956986278497873607085936148420292629447731798091830209139268833767631800242442027606210314918251<145>]
(71·10169-17)/9 = 7(8)1687<170> = 7 · 11 · 2517919 · 22273117 · C155
C155 = P53 · P103
P53 = 11409640629076421191434060010145846556226043653471327<53>
P103 = 1601144010506807619000508842408173481687372550772951863625802499128877259926572721944100979348066363311<103>
Number: n N=18268477755280836423775397397311493833809308462958858798539984335848791528224787061958360337859405752134076680695538897022388485946815868458429689903283697 ( 155 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jul 27 06:14:21 2008 prp53 factor: 11409640629076421191434060010145846556226043653471327 Sun Jul 27 06:14:21 2008 prp103 factor: 1601144010506807619000508842408173481687372550772951863625802499128877259926572721944100979348066363311 Sun Jul 27 06:14:21 2008 elapsed time 04:24:45 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 81.67 hours. Scaled time: 117.77 units (timescale=1.442). Factorization parameters were as follows: name: KA_7_8_168_7 n: 18268477755280836423775397397311493833809308462958858798539984335848791528224787061958360337859405752134076680695538897022388485946815868458429689903283697 skew: 1.19 deg: 5 c5: 71 c0: -170 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3900001) Primes: RFBsize:425648, AFBsize:425813, largePrimes:10128244 encountered Relations: rels:9731875, finalFF:881380 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 81.20 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,50,50,2.5,2.5,100000 total time: 81.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(68·10169+13)/9 = 7(5)1687<170> = 7 · 11 · 474977 · C163
C163 = P32 · P46 · P86
P32 = 12564720581656893961516793698787<32>
P46 = 7968617766944774753846532883783787495699428027<46>
P86 = 20633232290617592691462578937718847171342995492350851612982494029893918840047147814217<86>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 2065870518448222210720184306273737972536019599351086981014324864658670295574819372813802017742419067114789223438694886786057516429723926086907873394376951391291033 (163 digits) Using B1=290000, B2=172085560, polynomial Dickson(3), sigma=929903015 Step 1 took 3703ms Step 2 took 1859ms ********** Factor found in step 2: 12564720581656893961516793698787 Found probable prime factor of 32 digits: 12564720581656893961516793698787 Composite cofactor 164418341420513981191767033032572250364100248544748569751915035921047786398535014962302739673567607106739107738403172999090158859859 has 132 digits GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 164418341420513981191767033032572250364100248544748569751915035921047786398535014962302739673567607106739107738403172999090158859859 (132 digits) Using B1=3744000, B2=8561285470, polynomial Dickson(6), sigma=1706818246 Step 1 took 36187ms Step 2 took 15657ms ********** Factor found in step 2: 7968617766944774753846532883783787495699428027 Found probable prime factor of 46 digits: 7968617766944774753846532883783787495699428027 Probable prime cofactor 20633232290617592691462578937718847171342995492350851612982494029893918840047147814217 has 86 digits
By Robert Backstrom / GGNFS, Msieve
(35·10169-53)/9 = 3(8)1683<170> = 33 · 112 · 661 · 2207 · 7726057 · C154
C154 = P65 · P89
P65 = 59462556413862442092449340501731601838252568471681890551614913937<65>
P89 = 17761151691851101595704380123061264611926150229274494050475365714951019876727414514520043<89>
Number: n N=1056123484451864485860196229763977615884332123194476548802930056924154205342208938356587023654483801371879875439683279449403528714039431756768156306539291 ( 154 digits) SNFS difficulty: 170 digits. Divisors found: Sat Jul 26 20:46:42 2008 prp65 factor: 59462556413862442092449340501731601838252568471681890551614913937 Sat Jul 26 20:46:42 2008 prp89 factor: 17761151691851101595704380123061264611926150229274494050475365714951019876727414514520043 Sat Jul 26 20:46:42 2008 elapsed time 03:16:11 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 75.91 hours. Scaled time: 132.69 units (timescale=1.748). Factorization parameters were as follows: name: KA_3_8_168_3 n: 1056123484451864485860196229763977615884332123194476548802930056924154205342208938356587023654483801371879875439683279449403528714039431756768156306539291 type: snfs skew: 1.72 deg: 5 c5: 7 c0: -106 m: 10000000000000000000000000000000000 rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2500001) Primes: RFBsize:412849, AFBsize:412531, largePrimes:10050797 encountered Relations: rels:9692589, finalFF:916683 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 75.46 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,50,50,2.6,2.6,100000 total time: 75.91 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Wataru Sakai / GGNFS
(31·10189-13)/9 = 3(4)1883<190> = 11 · C189
C189 = P47 · P51 · P93
P47 = 18960275308406929724116517425722392691269164543<47>
P51 = 148127824952087837453635732252173826200808100223731<51>
P93 = 111492387161833705684170668928437133194092717290960694048484857650925015218158645936453543861<93>
Number: 34443_189 N=313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313 ( 189 digits) SNFS difficulty: 191 digits. Divisors found: r1=18960275308406929724116517425722392691269164543 (pp47) r2=148127824952087837453635732252173826200808100223731 (pp51) r3=111492387161833705684170668928437133194092717290960694048484857650925015218158645936453543861 (pp93) Version: GGNFS-0.77.1-20060722-nocona Total time: 1502.39 hours. Scaled time: 2836.51 units (timescale=1.888). Factorization parameters were as follows: n: 313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313 m: 100000000000000000000000000000000000000 c5: 31 c0: -130 skew: 1.33 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 25500001) Primes: RFBsize:501962, AFBsize:503087, largePrimes:7478270 encountered Relations: rels:8154107, finalFF:1168778 Max relations in full relation-set: 32 Initial matrix: 1005114 x 1168778 with sparse part having weight 159477313. Pruned matrix : 892881 x 897970 with weight 142693512. Total sieving time: 1489.05 hours. Total relation processing time: 0.17 hours. Matrix solve time: 12.84 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1502.39 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
8·10228-1 = 7(9)228<229> = 7 · 71 · 3449 · 4847041 · 15820639 · 17076769 · 18395633 · 130854596492286412438405476816657478703173293235697757911<57> · C139
C139 = P43 · P96
P43 = 1528903929139327175345777358726109783347673<43>
P96 = 968389496066443829563630012210817722372169284170780283664563868997439143831062269183972619538007<96>
Number: 79999_228 N=1480574505473238989199098674408682671411071598963681517151759583539213670859023764835487170244141115567827261158255099210189135575118507711 ( 139 digits) SNFS difficulty: 153 digits. Divisors found: r1=1528903929139327175345777358726109783347673 (pp43) r2=968389496066443829563630012210817722372169284170780283664563868997439143831062269183972619538007 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.80 hours. Scaled time: 49.37 units (timescale=2.374). Factorization parameters were as follows: n: 1480574505473238989199098674408682671411071598963681517151759583539213670859023764835487170244141115567827261158255099210189135575118507711 m: 20000000000000000000000000 c6: 25 c3: 10 c0: 4 skew: 0.74 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2600001) Primes: RFBsize:176302, AFBsize:175893, largePrimes:5789972 encountered Relations: rels:5766761, finalFF:478712 Max relations in full relation-set: 28 Initial matrix: 352261 x 478712 with sparse part having weight 49162015. Pruned matrix : 300961 x 302786 with weight 30294030. Total sieving time: 20.06 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.60 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,153,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 20.80 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By matsui / GGNFS
(14·10179+31)/9 = 1(5)1789<180> = 32 · 937 · C176
C176 = P45 · P49 · P83
P45 = 175295153066532340613622437887691574772872821<45>
P49 = 8441086165595067651650397848876928006494892885709<49>
P83 = 12466231410440518465524895241428903373602741675890690732557533120565315438138006407<83>
N=18446051886108805354625347510441782942672305888243277072875080701477001726023426485895358182800374191338261064337193828478068961882551352490875792192049751637087104892156475223 ( 176 digits) SNFS difficulty: 180 digits. Divisors found: r1=175295153066532340613622437887691574772872821 (pp45) r2=8441086165595067651650397848876928006494892885709 (pp49) r3=12466231410440518465524895241428903373602741675890690732557533120565315438138006407 (pp83) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 315.32 hours. Scaled time: 610.14 units (timescale=1.935). Factorization parameters were as follows: n: 18446051886108805354625347510441782942672305888243277072875080701477001726023426485895358182800374191338261064337193828478068961882551352490875792192049751637087104892156475223 m: 1000000000000000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10200001) Primes: RFBsize:501962, AFBsize:499942, largePrimes:6632716 encountered Relations: rels:7100185, finalFF:1147043 Max relations in full relation-set: 28 Initial matrix: 1001969 x 1147043 with sparse part having weight 77618795. Pruned matrix : 881350 x 886423 with weight 59827143. Total sieving time: 308.53 hours. Total relation processing time: 0.13 hours. Matrix solve time: 6.25 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 315.32 hours.
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
8·10234-1 = 7(9)234<235> = 7 · 127 · 359 · 967 · 46271 · 18821440207<11> · 6017479539201391<16> · 3860717760049320127<19> · 948031877361413200744641307998671084939526110708897790110817166822633<69> · C109
C109 = P45 · P64
P45 = 282121745180560667036164213290041989056941689<45>
P64 = 4790307443776610893726570695190991776424749473108915987693203239<64>
Number: n N=1351449895989687962880757239485494608558029508437965645529620904507286128520390416692603853519156577248930671 ( 109 digits) Divisors found: r1=282121745180560667036164213290041989056941689 (pp45) r2=4790307443776610893726570695190991776424749473108915987693203239 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.28 hours. Scaled time: 20.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_9_234 n: 1351449895989687962880757239485494608558029508437965645529620904507286128520390416692603853519156577248930671 skew: 23681.14 # norm 8.45e+14 c5: 35400 c4: 909978134 c3: -10843425355649 c2: -859297610146079263 c1: 1071555635925958284545 c0: 159770744406752924182690785 # alpha -5.97 Y1: 174057782899 Y0: -520425527026525197052 # Murphy_E 1.21e-09 # M 430725653313612678331739255995629435060729388392356940731188563969563801629981448267959244966784299042202987 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:230209, AFBsize:230422, largePrimes:6728311 encountered Relations: rels:6387483, finalFF:548322 Max relations in full relation-set: 48 Initial matrix: 460713 x 548322 with sparse part having weight 36052224. Pruned matrix : 375310 x 377677 with weight 17297185. Polynomial selection time: 1.36 hours. Total sieving time: 8.95 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.69 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 11.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
2·10183-7 = 1(9)1823<184> = 811 · 2624277319<10> · 2755493291<10> · 101591439292081<15> · 16322026806562391<17> · C132
C132 = P40 · P46 · P47
P40 = 6162314909610575169723533703783208734587<40>
P46 = 2296936960460684436839110679001518570233133723<46>
P47 = 14530343872204972792659597373865720056086160057<47>
Sat Jul 26 07:08:12 2008 Sat Jul 26 07:08:12 2008 Sat Jul 26 07:08:12 2008 Msieve v. 1.36 Sat Jul 26 07:08:12 2008 random seeds: 6c176500 b95488c8 Sat Jul 26 07:08:12 2008 factoring 33375283888271021987099616586864311324910632800353159555401618973887857681828893792862302211 (92 digits) Sat Jul 26 07:08:12 2008 searching for 15-digit factors Sat Jul 26 07:08:13 2008 commencing quadratic sieve (92-digit input) Sat Jul 26 07:08:13 2008 using multiplier of 3 Sat Jul 26 07:08:13 2008 using 64kb Opteron sieve core Sat Jul 26 07:08:13 2008 sieve interval: 18 blocks of size 65536 Sat Jul 26 07:08:13 2008 processing polynomials in batches of 6 Sat Jul 26 07:08:13 2008 using a sieve bound of 1816147 (68235 primes) Sat Jul 26 07:08:13 2008 using large prime bound of 197960023 (27 bits) Sat Jul 26 07:08:13 2008 using double large prime bound of 858695942807652 (42-50 bits) Sat Jul 26 07:08:13 2008 using trial factoring cutoff of 50 bits Sat Jul 26 07:08:13 2008 polynomial 'A' values have 12 factors Sat Jul 26 07:29:14 2008 Sat Jul 26 07:29:14 2008 Sat Jul 26 07:29:14 2008 Msieve v. 1.36 Sat Jul 26 07:29:14 2008 random seeds: ae82c9e0 243e55c6 Sat Jul 26 07:29:14 2008 factoring 33375283888271021987099616586864311324910632800353159555401618973887857681828893792862302211 (92 digits) Sat Jul 26 07:29:14 2008 searching for 15-digit factors Sat Jul 26 07:29:15 2008 commencing quadratic sieve (92-digit input) Sat Jul 26 07:29:15 2008 using multiplier of 3 Sat Jul 26 07:29:15 2008 using 64kb Opteron sieve core Sat Jul 26 07:29:15 2008 sieve interval: 18 blocks of size 65536 Sat Jul 26 07:29:15 2008 processing polynomials in batches of 6 Sat Jul 26 07:29:15 2008 using a sieve bound of 1816147 (68235 primes) Sat Jul 26 07:29:15 2008 using large prime bound of 197960023 (27 bits) Sat Jul 26 07:29:15 2008 using double large prime bound of 858695942807652 (42-50 bits) Sat Jul 26 07:29:15 2008 using trial factoring cutoff of 50 bits Sat Jul 26 07:29:15 2008 polynomial 'A' values have 12 factors Sat Jul 26 07:29:15 2008 restarting with 3580 full and 178004 partial relations Sat Jul 26 08:43:06 2008 68500 relations (16968 full + 51532 combined from 874683 partial), need 68331 Sat Jul 26 08:43:08 2008 begin with 891651 relations Sat Jul 26 08:43:08 2008 reduce to 174938 relations in 12 passes Sat Jul 26 08:43:08 2008 attempting to read 174938 relations Sat Jul 26 08:43:10 2008 recovered 174938 relations Sat Jul 26 08:43:10 2008 recovered 157541 polynomials Sat Jul 26 08:43:10 2008 attempting to build 68500 cycles Sat Jul 26 08:43:10 2008 found 68500 cycles in 6 passes Sat Jul 26 08:43:11 2008 distribution of cycle lengths: Sat Jul 26 08:43:11 2008 length 1 : 16968 Sat Jul 26 08:43:11 2008 length 2 : 12406 Sat Jul 26 08:43:11 2008 length 3 : 11767 Sat Jul 26 08:43:11 2008 length 4 : 9209 Sat Jul 26 08:43:11 2008 length 5 : 7086 Sat Jul 26 08:43:11 2008 length 6 : 4525 Sat Jul 26 08:43:11 2008 length 7 : 2793 Sat Jul 26 08:43:11 2008 length 9+: 3746 Sat Jul 26 08:43:11 2008 largest cycle: 20 relations Sat Jul 26 08:43:11 2008 matrix is 68235 x 68500 (17.0 MB) with weight 4195226 (61.24/col) Sat Jul 26 08:43:11 2008 sparse part has weight 4195226 (61.24/col) Sat Jul 26 08:43:11 2008 filtering completed in 3 passes Sat Jul 26 08:43:11 2008 matrix is 64825 x 64889 (16.2 MB) with weight 3993054 (61.54/col) Sat Jul 26 08:43:11 2008 sparse part has weight 3993054 (61.54/col) Sat Jul 26 08:43:12 2008 saving the first 48 matrix rows for later Sat Jul 26 08:43:12 2008 matrix is 64777 x 64889 (9.5 MB) with weight 3068327 (47.29/col) Sat Jul 26 08:43:12 2008 sparse part has weight 2106581 (32.46/col) Sat Jul 26 08:43:12 2008 matrix includes 64 packed rows Sat Jul 26 08:43:12 2008 using block size 25955 for processor cache size 1024 kB Sat Jul 26 08:43:12 2008 commencing Lanczos iteration Sat Jul 26 08:43:12 2008 memory use: 9.7 MB Sat Jul 26 08:43:37 2008 lanczos halted after 1025 iterations (dim = 64774) Sat Jul 26 08:43:38 2008 recovered 16 nontrivial dependencies Sat Jul 26 08:43:38 2008 prp46 factor: 2296936960460684436839110679001518570233133723 Sat Jul 26 08:43:38 2008 prp47 factor: 14530343872204972792659597373865720056086160057 Sat Jul 26 08:43:38 2008 elapsed time 01:14:24
By Robert Backstrom / GGNFS, Msieve
(2·10169+1)/3 = (6)1687<169> = 7 · 766169 · 5025529 · C156
C156 = P46 · P111
P46 = 1261440917199733159119900387950410686385690243<46>
P111 = 196081864308815835019995393044774169560246557899424260150099777307102229210524305885773367324515406034150789967<111>
Number: n N=247345686759946268316263131816608663902423313937075401253427394805496653944142877381675229300044388850675738926738552046324162639205415759533671843014191981 ( 156 digits) SNFS difficulty: 170 digits. Divisors found: Sat Jul 26 00:24:03 2008 prp46 factor: 1261440917199733159119900387950410686385690243 Sat Jul 26 00:24:03 2008 prp111 factor: 196081864308815835019995393044774169560246557899424260150099777307102229210524305885773367324515406034150789967 Sat Jul 26 00:24:03 2008 elapsed time 02:24:18 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 53.75 hours. Scaled time: 70.47 units (timescale=1.311). Factorization parameters were as follows: name: KA_6_168_7 n: 247345686759946268316263131816608663902423313937075401253427394805496653944142877381675229300044388850675738926738552046324162639205415759533671843014191981 skew: 1.38 deg: 5 c5: 1 c0: 5 m: 10000000000000000000000000000000000 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2100001) Primes: RFBsize:412849, AFBsize:412271, largePrimes:9846876 encountered Relations: rels:9579900, finalFF:971104 Max relations in full relation-set: 28 Initial matrix: 825184 x 971103 with sparse part having weight 57456378. Pruned matrix : Total sieving time: 53.39 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,50,50,2.5,2.5,100000 total time: 53.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Kenji Ibusuki / GGNFS
5·10190-7 = 4(9)1893<191> = 19 · 43 · C188
C188 = P37 · P67 · P86
P37 = 1765787545312409783860474993038088441<37>
P67 = 1221634377469420523013631539626062841035324877347830895794628620683<67>
P86 = 28370582518084984958701082392541132842482155696727816580550567234311865111305350903443<86>
Number: 49993_190 N=61199510403916768665850673194614443084455324357405140758873929008567931456548347613219094247246022031823745410036719706242350061199510403916768665850673194614443084455324357405140758873929 ( 188 digits) SNFS difficulty: 190 digits. Divisors found: r1=1765787545312409783860474993038088441 (pp37) r2=1221634377469420523013631539626062841035324877347830895794628620683 (pp67) r3=28370582518084984958701082392541132842482155696727816580550567234311865111305350903443 (pp86) Version: GGNFS-0.77.1 Total time: 476.75 hours. Scaled time: 1380.66 units (timescale=2.896). Factorization parameters were as follows: n: 61199510403916768665850673194614443084455324357405140758873929008567931456548347613219094247246022031823745410036719706242350061199510403916768665850673194614443084455324357405140758873929 m: 100000000000000000000000000000000000000 type: snfs skew: 1.070 c0: -7 c5: 5 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 29/29 Sieved special-q in [3700000, 11800001) Relations: rels:18218529, finalFF:1213632 Initial matrix: 1003163 x 1213632 with sparse part having weight 169464967. Pruned matrix : 952997 x 958076 with weight 121817026. Total sieving time: 462.13 hours. Total relation processing time: 0.88 hours. Matrix solve time: 13.50 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,7400000,7400000,29,29,51,51,2.6,2.6,100000 total time: 476.75 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM
(4·10243-1)/3 = 1(3)243<244> = 31 · 83 · 157 · 131231 · 299197 · 1442216753248456277<19> · 4038335633468132831<19> · C191
C191 = P35 · P156
P35 = 35657045111837177984079582344894317<35>
P156 = 404787718601259261978273194650372481814255336058492445066139143092845027355459172172060392549607938205765428041891254949939762856614330735166038645561890001<156>
(4·10245-1)/3 = 1(3)245<246> = 293 · 4428013 · 436570924477<12> · 197820650760877883<18> · 1940832977077439598289<22> · 245134337177055685486188936209<30> · C157
C157 = P31 · C127
P31 = 1675203063576126721567576664071<31>
C127 = [1493055747910029065087937422859586920491486247404972020337179301095994338939893155969148811179362195548241166474252224587374317<127>]
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(2·10169-17)/3 = (6)1681<169> = 238729 · 571138289 · C155
C155 = P41 · P44 · P72
P41 = 11817386542506337749843599398989802401983<41>
P44 = 13085479642349468381361523918766801187989977<44>
P72 = 316192233564917210640549980219740383800204370022180000336001159014458091<72>
Number: n N=48894756307188046205660588215055908169171174475099021113090591883003280000280409811352237979810160283919583949322319878169034135110728714578780893777197581 ( 155 digits) SNFS difficulty: 170 digits. Divisors found: Fri Jul 25 11:48:36 2008 prp41 factor: 11817386542506337749843599398989802401983 Fri Jul 25 11:48:36 2008 prp44 factor: 13085479642349468381361523918766801187989977 Fri Jul 25 11:48:36 2008 prp72 factor: 316192233564917210640549980219740383800204370022180000336001159014458091 Fri Jul 25 11:48:36 2008 elapsed time 02:12:34 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.36 hours. Scaled time: 76.02 units (timescale=1.676). Factorization parameters were as follows: name: KA_6_168_1 n: 48894756307188046205660588215055908169171174475099021113090591883003280000280409811352237979810160283919583949322319878169034135110728714578780893777197581 skew: 2.43 deg: 5 c5: 1 c0: -85 m: 10000000000000000000000000000000000 type: snfs rlim: 6000000 alim: 6000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2600001) Primes: RFBsize:412849, AFBsize:413336, largePrimes:9838235 encountered Relations: rels:9447054, finalFF:885558 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 45.07 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,28,28,50,50,2.5,2.5,100000 total time: 45.36 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
8·10219-1 = 7(9)219<220> = 19 · 29 · 61 · 91734541 · 1119024901<10> · 589635422899<12> · 100236345329109106048850820884161<33> · 5936402484004975288098822472966741469<37> · C118
C118 = P32 · P86
P32 = 78804181274997851192664174029191<32>
P86 = 83859934851872620017547819860052379897723933994052604566651127218360972849629908176429<86>
By Jo Yeong Uk / GGNFS, GMP-ECM
8·10213-1 = 7(9)213<214> = 311 · 14341 · 49801 · 118018309 · 812126836567325311<18> · 48223863818791257229<20> · 15900386507052020800133836615165276113430575119<47> · C111
C111 = P42 · P70
P42 = 173118702419871755400126634132558566548011<42>
P70 = 2830904217224319706645261082037462977679894136530963560822965061287591<70>
Number: 79999_213 N=490082464760816993503044892873304511247077521030235243425978837079485571213821882640228393121233082755780031501 ( 111 digits) SNFS difficulty: 144 digits. Divisors found: r1=173118702419871755400126634132558566548011 (pp42) r2=2830904217224319706645261082037462977679894136530963560822965061287591 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.44 hours. Scaled time: 24.97 units (timescale=2.392). Factorization parameters were as follows: n: 490082464760816993503044892873304511247077521030235243425978837079485571213821882640228393121233082755780031501 m: 1000000000000000000000000 c6: 1 c3: 5 c0: 25 skew: 1.71 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1550001) Primes: RFBsize:114155, AFBsize:113645, largePrimes:3474537 encountered Relations: rels:3489348, finalFF:285283 Max relations in full relation-set: 28 Initial matrix: 227865 x 285283 with sparse part having weight 27887141. Pruned matrix : 209026 x 210229 with weight 17824594. Total sieving time: 10.16 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.19 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 10.44 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
8·10216-1 = 7(9)216<217> = 7 · 10337 · 113209 · 14053183457400553<17> · 1539265796448195743859457<25> · 125696116580006172197631576931601768549558111<45> · C123
C123 = P36 · P88
P36 = 147283812222899232001715996680222327<36>
P88 = 2438660054892819457675742999944584962791806880889823383873998562744490822150544305736417<88>
By Robert Backstrom / GGNFS, Msieve
(22·10168+41)/9 = 2(4)1679<169> = 7 · 31 · 82189 · C162
C162 = P43 · P119
P43 = 2899543658506815033242105025684834449702477<43>
P119 = 47269073375747822390380499935334445424904739368471132437674465794253492151242396483956332265049621005799300244584991649<119>
Number: n N=137058741950142926413591313022560984084757574577851131616469494271994331848507452416459940031691843703418912251112149144183098966311067137682739252527847579614573 ( 162 digits) SNFS difficulty: 169 digits. Divisors found: Fri Jul 25 01:46:01 2008 prp43 factor: 2899543658506815033242105025684834449702477 Fri Jul 25 01:46:01 2008 prp119 factor: 47269073375747822390380499935334445424904739368471132437674465794253492151242396483956332265049621005799300244584991649 Fri Jul 25 01:46:01 2008 elapsed time 02:23:22 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 54.93 hours. Scaled time: 100.46 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_167_9 n: 137058741950142926413591313022560984084757574577851131616469494271994331848507452416459940031691843703418912251112149144183098966311067137682739252527847579614573 skew: 0.57 deg: 5 c5: 1375 c0: 82 m: 2000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3200001) Primes: RFBsize:399993, AFBsize:399636, largePrimes:10053706 encountered Relations: rels:9578110, finalFF:811962 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 54.61 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 54.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS
8·10207-1 = 7(9)207<208> = 31 · 439 · 212039 · 995881 · 4155919 · 35458744861<11> · 339679388641<12> · 2626410054718091<16> · 7442213814490672036679386751621599<34> · C115
C115 = P42 · P73
P42 = 541832960047230906014967345407576299650631<42>
P73 = 5251106845463258052650105055200096921760782933920709388847288619870698129<73>
Number: 79999_207 N=2845222765601634215803869063836629035398868860105421171772198973101369113582035289814048310534414748999136765369399 ( 115 digits) SNFS difficulty: 138 digits. Divisors found: r1=541832960047230906014967345407576299650631 (pp42) r2=5251106845463258052650105055200096921760782933920709388847288619870698129 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.37 hours. Scaled time: 12.78 units (timescale=2.379). Factorization parameters were as follows: n: 2845222765601634215803869063836629035398868860105421171772198973101369113582035289814048310534414748999136765369399 m: 100000000000000000000000 c6: 4 c3: 2 c0: 1 skew: 0.79 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [650000, 1800001) Primes: RFBsize:100021, AFBsize:99911, largePrimes:2422278 encountered Relations: rels:2600965, finalFF:242584 Max relations in full relation-set: 28 Initial matrix: 199997 x 242584 with sparse part having weight 25213545. Pruned matrix : 185672 x 186735 with weight 17433607. Total sieving time: 5.15 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.15 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,138,6,0,0,0,0,0,0,0,0,1300000,1300000,25,25,47,47,2.3,2.3,50000 total time: 5.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By Sinkiti Sibata / GGNFS
(22·10160+41)/9 = 2(4)1599<161> = 2609 · 6053 · 133979 · 3698763923775038153208904926649<31> · C118
C118 = P46 · P73
P46 = 2175120316596344341395729390310266840279264737<46>
P73 = 1436014378583454632133875028269996384218596726067989942997243612917575231<73>
Number: 24449_160 N=3123504049781346520649845866412023805576131973733178763648331210776077464897935701049859097482628566670996489562929247 ( 118 digits) SNFS difficulty: 161 digits. Divisors found: r1=2175120316596344341395729390310266840279264737 (pp46) r2=1436014378583454632133875028269996384218596726067989942997243612917575231 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 70.37 hours. Scaled time: 54.82 units (timescale=0.779). Factorization parameters were as follows: name: 24449_160 n: 3123504049781346520649845866412023805576131973733178763648331210776077464897935701049859097482628566670996489562929247 m: 100000000000000000000000000000000 c5: 22 c0: 41 skew: 1.13 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4300001) Primes: RFBsize:283146, AFBsize:282794, largePrimes:5837251 encountered Relations: rels:5919740, finalFF:686098 Max relations in full relation-set: 28 Initial matrix: 566006 x 686098 with sparse part having weight 53196518. Pruned matrix : 483417 x 486311 with weight 38131690. Total sieving time: 67.10 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.94 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 70.37 hours. --------- CPU info (if available) ----------
Factorizations of 799...99 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
Note the algebraic factorization 8·103k-1 = (2·10k-1)(4·102k+2·10k+1).
"Efforts by ECM" section was added in "Contribution and Reservation" pages.
By Jo Yeong Uk / GGNFS
(4·10235-1)/3 = 1(3)235<236> = 13 · 67 · 677 · 7079 · 48775637 · 7554172820434544567959<22> · 17218527001291015325523195827<29> · 6303239909341182749584186343717<31> · 103002075143888028035790451977073523<36> · C102
C102 = P46 · P57
P46 = 1989378140372439563653744711213759800430408243<46>
P57 = 389804622956411924070438346247626600778953706285860014157<57>
Number: 13333_235 N=775468795925606718265168401955990662675462021136190876422142039835490928358779949182032553037269496151 ( 102 digits) Divisors found: r1=1989378140372439563653744711213759800430408243 (pp46) r2=389804622956411924070438346247626600778953706285860014157 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.05 hours. Scaled time: 9.64 units (timescale=2.380). Factorization parameters were as follows: name: 13333_235 n: 775468795925606718265168401955990662675462021136190876422142039835490928358779949182032553037269496151 skew: 7498.52 # norm 1.34e+14 c5: 31320 c4: 1422114954 c3: -74642879737 c2: -36382164166013463 c1: 102204763625923220477 c0: -178970016479028225265815 # alpha -5.96 Y1: 4898667461 Y0: -30112573504914213526 # Murphy_E 2.76e-09 # M 715234690321575102484757119045421095899911177627116595345331779978125106824482793025729130387051609948 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [750000, 1350001) Primes: RFBsize:114155, AFBsize:114862, largePrimes:4398781 encountered Relations: rels:4343529, finalFF:318275 Max relations in full relation-set: 28 Initial matrix: 229097 x 318275 with sparse part having weight 27359727. Pruned matrix : 184410 x 185619 with weight 13182842. Polynomial selection time: 0.31 hours. Total sieving time: 3.52 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,49,49,2.6,2.6,50000 total time: 4.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By Sinkiti Sibata / GGNFS
(22·10148+41)/9 = 2(4)1479<149> = 5063780237<10> · 28583166325918913<17> · C123
C123 = P41 · P82
P41 = 17402239799437999024534166513064894599063<41>
P82 = 9704872554934624715117145597971219813583628402942201073104426199442049345595512483<82>
Number: 24449_148 N=168886519423956864772830398013728626154547408630592155514741531403323179695674542221418226218787968070077564086556296603429 ( 123 digits) SNFS difficulty: 149 digits. Divisors found: r1=17402239799437999024534166513064894599063 (pp41) r2=9704872554934624715117145597971219813583628402942201073104426199442049345595512483 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.93 hours. Scaled time: 30.29 units (timescale=0.778). Factorization parameters were as follows: name: 24449_148 n: 168886519423956864772830398013728626154547408630592155514741531403323179695674542221418226218787968070077564086556296603429 m: 200000000000000000000000000000 c5: 1375 c0: 82 skew: 0.57 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 5250001) Primes: RFBsize:114155, AFBsize:114334, largePrimes:3203085 encountered Relations: rels:3335826, finalFF:257222 Max relations in full relation-set: 28 Initial matrix: 228555 x 257222 with sparse part having weight 34263507. Pruned matrix : 221405 x 222611 with weight 28567526. Total sieving time: 38.06 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.62 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 38.93 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
(8·10169-71)/9 = (8)1681<169> = 89 · 463 · 673 · 419791 · C156
C156 = P41 · P116
P41 = 47781549603347332166946262947607610229479<41>
P116 = 15979679407133185494514008168674390360680444782139128263236808135037861497132308268172748142259881307507065765651839<116>
By suberi / GMP-ECM
(4·10235-1)/3 = 1(3)235<236> = 13 · 67 · 677 · 7079 · 48775637 · 7554172820434544567959<22> · 17218527001291015325523195827<29> · 6303239909341182749584186343717<31> · C137
C137 = P36 · C102
P36 = 103002075143888028035790451977073523<36>
C102 = [775468795925606718265168401955990662675462021136190876422142039835490928358779949182032553037269496151<102>]
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(22·10155+41)/9 = 2(4)1549<156> = 3 · 31129227631<11> · 1579287976025387<16> · C130
C130 = P47 · P83
P47 = 45999919755091463993377327103075511881496406927<47>
P83 = 36030655935244507282549301863752200400900959948706991027890149836194085839645629857<83>
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 1657407281744557318977622952657209008164750830211547757484769227847986576290000102482091734717402424938133879682164532903292819439 (130 digits) Using B1=3870000, B2=5773430343, polynomial Dickson(6), sigma=219387156 Step 1 took 51500ms Step 2 took 25750ms ********** Factor found in step 2: 45999919755091463993377327103075511881496406927 Found probable prime factor of 47 digits: 45999919755091463993377327103075511881496406927 Probable prime cofactor 36030655935244507282549301863752200400900959948706991027890149836194085839645629857 has 83 digits
7·10169-9 = 6(9)1681<170> = 208699 · 241417849 · C157
C157 = P42 · P115
P42 = 260261239348850539688922265966919165310599<42>
P115 = 5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859<115>
Number: n N=1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: Tue Jul 22 11:26:18 2008 prp42 factor: 260261239348850539688922265966919165310599 Tue Jul 22 11:26:18 2008 prp115 factor: 5338248691337501107137922770641624082752782783076792345043666099791736776212975427477023032244417290856029907636859 Tue Jul 22 11:26:18 2008 elapsed time 04:16:58 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 76.95 hours. Scaled time: 111.43 units (timescale=1.448). Factorization parameters were as follows: name: KA_6_9_168_1 n: 1389339220359877542274357801042835125646101146451738583460851033141648832587493612920864982552675488236762722326237405531715310872085039395485860784835768541 skew: 1.67 deg: 5 c5: 7 c0: -90 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3500001) Primes: RFBsize:425648, AFBsize:426372, largePrimes:10109777 encountered Relations: rels:9700992, finalFF:871192 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 76.51 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,50,50,2.5,2.5,100000 total time: 76.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(22·10158+41)/9 = 2(4)1579<159> = 32 · 23 · 6473 · 8629 · C149
C149 = P61 · P89
P61 = 1105326103418514975838635653554146491496662790047875884527581<61>
P89 = 19127284756894328245610160409392789398531145245398183946272241072229624360054573707039191<89>
Number: n N=21141887129314365340413439278686685605805369645401750927238009940322413589021656829320590485472112245817998315002378156081032695372500342703287426971 ( 149 digits) SNFS difficulty: 159 digits. Divisors found: r1=1105326103418514975838635653554146491496662790047875884527581 (pp61) r2=19127284756894328245610160409392789398531145245398183946272241072229624360054573707039191 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.64 hours. Scaled time: 46.74 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_4_157_9 n: 21141887129314365340413439278686685605805369645401750927238009940322413589021656829320590485472112245817998315002378156081032695372500342703287426971 skew: 0.57 deg: 5 c5: 1375 c0: 82 m: 20000000000000000000000000000000 type: snfs rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:269987, AFBsize:269724, largePrimes:9478739 encountered Relations: rels:8787558, finalFF:611556 Max relations in full relation-set: 48 Initial matrix: 539777 x 611556 with sparse part having weight 54924569. Pruned matrix : 481221 x 483983 with weight 35223051. Total sieving time: 23.38 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.00 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,50,50,2.5,2.5,100000 total time: 25.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10150+41)/9 = 2(4)1499<151> = 7 · 23476275923<11> · C140
C140 = P50 · P90
P50 = 16097965590711520018626138438225266068918017570413<50>
P90 = 924021191327169870580703157780617527631433867785181172624034019357349260873271768572067393<90>
Number: n N=14874861343073046583956967287786005221131697004818390945830695295766361927386448243115974657528153010128905799588150001926913642418358843309 ( 140 digits) SNFS difficulty: 151 digits. Divisors found: Tue Jul 22 16:05:34 2008 prp50 factor: 16097965590711520018626138438225266068918017570413 Tue Jul 22 16:05:34 2008 prp90 factor: 924021191327169870580703157780617527631433867785181172624034019357349260873271768572067393 Tue Jul 22 16:05:34 2008 elapsed time 00:49:27 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.87 hours. Scaled time: 44.79 units (timescale=1.731). Factorization parameters were as follows: name: KA_2_4_149_9 n: 14874861343073046583956967287786005221131697004818390945830695295766361927386448243115974657528153010128905799588150001926913642418358843309 type: snfs skew: 1.13 deg: 5 c5: 22 c0: 41 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 1200001) Primes: RFBsize:148933, AFBsize:148322, largePrimes:6170485 encountered Relations: rels:5474077, finalFF:325172 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 25.66 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,50,50,2.3,2.3,100000 total time: 25.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(22·10143+41)/9 = 2(4)1429<144> = 3 · 97 · 2457442313<10> · C132
C132 = P61 · P71
P61 = 6803073944175257199768043132997513943459774741129425881805173<61>
P71 = 50245672019300841540350636053956247113188991898199365782683211009817511<71>
Number: 24449_143 N=341825022122081335958998419546470762029091886554630659976017195508658914361214371124388440953080000138856974651484571068809985784403 ( 132 digits) SNFS difficulty: 144 digits. Divisors found: r1=6803073944175257199768043132997513943459774741129425881805173 (pp61) r2=50245672019300841540350636053956247113188991898199365782683211009817511 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.21 hours. Scaled time: 15.56 units (timescale=0.770). Factorization parameters were as follows: name: 24449_143 n: 341825022122081335958998419546470762029091886554630659976017195508658914361214371124388440953080000138856974651484571068809985784403 m: 20000000000000000000000000000 c5: 1375 c0: 82 skew: 0.57 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2950001) Primes: RFBsize:100021, AFBsize:100230, largePrimes:2954435 encountered Relations: rels:3008883, finalFF:265588 Max relations in full relation-set: 28 Initial matrix: 200317 x 265588 with sparse part having weight 31931584. Pruned matrix : 184165 x 185230 with weight 21048063. Total sieving time: 19.70 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.33 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 20.21 hours. --------- CPU info (if available) ----------
(22·10173+41)/9 = 2(4)1729<174> = 3 · C173
C173 = P70 · P104
P70 = 7247333544342156249361332950765992322106652729740454583309021232849433<70>
P104 = 11242960046332128968771133199614355501934832225686603228803080298550488784257145880620332675742271558851<104>
Number: 24449_173 N=81481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481483 ( 173 digits) SNFS difficulty: 174 digits. Divisors found: r1=7247333544342156249361332950765992322106652729740454583309021232849433 (pp70) r2=11242960046332128968771133199614355501934832225686603228803080298550488784257145880620332675742271558851 (pp104) Version: GGNFS-0.77.1-20050930-nocona Total time: 271.39 hours. Scaled time: 273.83 units (timescale=1.009). Factorization parameters were as follows: name: 24449_173 n: 81481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481483 m: 20000000000000000000000000000000000 c5: 1375 c0: 82 skew: 0.57 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13400001) Primes: RFBsize:501962, AFBsize:501393, largePrimes:6712203 encountered Relations: rels:7232983, finalFF:1179697 Max relations in full relation-set: 28 Initial matrix: 1003421 x 1179697 with sparse part having weight 85859116. Pruned matrix : 855294 x 860375 with weight 65427418. Total sieving time: 264.22 hours. Total relation processing time: 0.16 hours. Matrix solve time: 6.86 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 271.39 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
6·10196+1 = 6(0)1951<197> = C197
C197 = P67 · P131
P67 = 4526985911422555852980453461875447673693370404671619628486604463189<67>
P131 = 13253851718117155717822280766012995701858464863771693748201984239161431357726436028994453405662098135543550990120795749232748691709<131>
Number: 60001_196 N=60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 197 digits) SNFS difficulty: 196 digits. Divisors found: r1=4526985911422555852980453461875447673693370404671619628486604463189 (pp67) r2=13253851718117155717822280766012995701858464863771693748201984239161431357726436028994453405662098135543550990120795749232748691709 (pp131) Version: GGNFS-0.77.1-20060722-nocona Total time: 2601.57 hours. Scaled time: 5190.14 units (timescale=1.995). Factorization parameters were as follows: n: 60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 1000000000000000000000000000000000000000 c5: 60 c0: 1 skew: 0.44 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 43700001) Primes: RFBsize:501962, AFBsize:501211, largePrimes:8270429 encountered Relations: rels:9230838, finalFF:1133951 Max relations in full relation-set: 32 Initial matrix: 1003240 x 1133951 with sparse part having weight 191292090. Pruned matrix : 927307 x 932387 with weight 174534450. Total sieving time: 2581.77 hours. Total relation processing time: 0.44 hours. Matrix solve time: 19.00 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2601.57 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, Msieve
(22·10166+41)/9 = 2(4)1659<167> = 53 · 83 · 8819 · 530427087249316307<18> · 50263678452053034167<20> · C122
C122 = P35 · P36 · P52
P35 = 57372938262772414492411144007923057<35>
P36 = 225361366817860241485519425537206353<36>
P52 = 1827849120928944890321391127384847605488278593446721<52>
Mon Jul 21 12:58:41 2008 Mon Jul 21 12:58:41 2008 Mon Jul 21 12:58:41 2008 Msieve v. 1.34 Mon Jul 21 12:58:41 2008 random seeds: 002e7883 9734cdf0 Mon Jul 21 12:58:41 2008 factoring 104869074768719184432156021238416395118856035807718212846525806858901934786582196946097 (87 digits) Mon Jul 21 12:58:41 2008 no P-1/P+1/ECM available, skipping Mon Jul 21 12:58:41 2008 commencing quadratic sieve (87-digit input) Mon Jul 21 12:58:41 2008 using multiplier of 1 Mon Jul 21 12:58:41 2008 using 32kb Intel Core sieve core Mon Jul 21 12:58:41 2008 sieve interval: 17 blocks of size 32768 Mon Jul 21 12:58:41 2008 processing polynomials in batches of 12 Mon Jul 21 12:58:41 2008 using a sieve bound of 1470841 (55895 primes) Mon Jul 21 12:58:41 2008 using large prime bound of 117667280 (26 bits) Mon Jul 21 12:58:41 2008 using double large prime bound of 336651265440320 (41-49 bits) Mon Jul 21 12:58:41 2008 using trial factoring cutoff of 49 bits Mon Jul 21 12:58:41 2008 polynomial 'A' values have 11 factors Mon Jul 21 13:34:54 2008 56176 relations (15553 full + 40623 combined from 590767 partial), need 55991 Mon Jul 21 13:34:54 2008 begin with 606320 relations Mon Jul 21 13:34:54 2008 reduce to 134589 relations in 9 passes Mon Jul 21 13:34:54 2008 attempting to read 134589 relations Mon Jul 21 13:34:55 2008 recovered 134589 relations Mon Jul 21 13:34:55 2008 recovered 114672 polynomials Mon Jul 21 13:34:55 2008 attempting to build 56176 cycles Mon Jul 21 13:34:55 2008 found 56176 cycles in 5 passes Mon Jul 21 13:34:55 2008 distribution of cycle lengths: Mon Jul 21 13:34:55 2008 length 1 : 15553 Mon Jul 21 13:34:55 2008 length 2 : 11023 Mon Jul 21 13:34:55 2008 length 3 : 10008 Mon Jul 21 13:34:55 2008 length 4 : 7469 Mon Jul 21 13:34:55 2008 length 5 : 5111 Mon Jul 21 13:34:55 2008 length 6 : 3141 Mon Jul 21 13:34:55 2008 length 7 : 1794 Mon Jul 21 13:34:55 2008 length 9+: 2077 Mon Jul 21 13:34:55 2008 largest cycle: 18 relations Mon Jul 21 13:34:55 2008 matrix is 55895 x 56176 (13.3 MB) with weight 3027730 (53.90/col) Mon Jul 21 13:34:55 2008 sparse part has weight 3027730 (53.90/col) Mon Jul 21 13:34:55 2008 filtering completed in 3 passes Mon Jul 21 13:34:55 2008 matrix is 51376 x 51440 (12.2 MB) with weight 2791920 (54.28/col) Mon Jul 21 13:34:55 2008 sparse part has weight 2791920 (54.28/col) Mon Jul 21 13:34:56 2008 saving the first 48 matrix rows for later Mon Jul 21 13:34:56 2008 matrix is 51328 x 51440 (7.6 MB) with weight 2134271 (41.49/col) Mon Jul 21 13:34:56 2008 sparse part has weight 1470468 (28.59/col) Mon Jul 21 13:34:56 2008 matrix includes 64 packed rows Mon Jul 21 13:34:56 2008 using block size 20576 for processor cache size 4096 kB Mon Jul 21 13:34:56 2008 commencing Lanczos iteration Mon Jul 21 13:34:56 2008 memory use: 7.1 MB Mon Jul 21 13:35:05 2008 lanczos halted after 813 iterations (dim = 51328) Mon Jul 21 13:35:05 2008 recovered 17 nontrivial dependencies Mon Jul 21 13:35:05 2008 prp35 factor: 57372938262772414492411144007923057 Mon Jul 21 13:35:05 2008 prp52 factor: 1827849120928944890321391127384847605488278593446721 Mon Jul 21 13:35:05 2008 elapsed time 00:36:24
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(22·10156+41)/9 = 2(4)1559<157> = 72 · 992111 · C149
C149 = P35 · P115
P35 = 34403366202778334391060150858471779<35>
P115 = 1461580998276864345860844458718294113767553420340741001484818970216017514257778694796433577617315925915621203003029<115>
8·10168-9 = 7(9)1671<169> = 17 · 168837552669242694718423<24> · C145
C145 = P44 · P102
P44 = 11681215841603794478271720614912632360063687<44>
P102 = 238607433000818367820061770438598453100921190268658947143978441159074725390668672932146359772318330023<102>
Number: n N=2787224926293575534663953848834295056925125529822509299870571408485875014665190039863959156312828009389084493476356617788753739536968981764174801 ( 145 digits) SNFS difficulty: 168 digits. Divisors found: Mon Jul 21 11:20:53 2008 prp44 factor: 11681215841603794478271720614912632360063687 Mon Jul 21 11:20:53 2008 prp102 factor: 238607433000818367820061770438598453100921190268658947143978441159074725390668672932146359772318330023 Mon Jul 21 11:20:53 2008 elapsed time 02:05:02 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.83 hours. Scaled time: 79.91 units (timescale=1.823). Factorization parameters were as follows: name: KA_7_9_167_1 n: 2787224926293575534663953848834295056925125529822509299870571408485875014665190039863959156312828009389084493476356617788753739536968981764174801 skew: 0.51 deg: 5 c5: 250 c0: -9 m: 2000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2500001) Primes: RFBsize:399993, AFBsize:399254, largePrimes:9743482 encountered Relations: rels:9275445, finalFF:825351 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.56 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 43.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GGNFS, Msieve
(22·10151+41)/9 = 2(4)1509<152> = 50777 · C147
C147 = P59 · P89
P59 = 30747866532082367838345848099460820768463553615562170458503<59>
P89 = 15656624858700526687871150149500413269209603785459994790145094019676577696231079026640879<89>
Number: n N=481407811498206755902169179834264419805117365036225937815240058381638230782528397590335081718976001820596814393218276866385261918672714899352944137 ( 147 digits) SNFS difficulty: 152 digits. Divisors found: Sun Jul 20 13:39:18 2008 prp59 factor: 30747866532082367838345848099460820768463553615562170458503 Sun Jul 20 13:39:18 2008 prp89 factor: 15656624858700526687871150149500413269209603785459994790145094019676577696231079026640879 Sun Jul 20 13:39:18 2008 elapsed time 01:23:08 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 20.54 hours. Scaled time: 26.78 units (timescale=1.304). Factorization parameters were as follows: name: KA_2_4_150_9 n: 481407811498206755902169179834264419805117365036225937815240058381638230782528397590335081718976001820596814393218276866385261918672714899352944137 skew: 0.71 deg: 5 c5: 220 c0: 41 m: 1000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 1100001) Primes: RFBsize:148933, AFBsize:149787, largePrimes:8214123 encountered Relations: rels:7234772, finalFF:302813 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 20.33 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,50,50,2.5,2.5,100000 total time: 20.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(19·10166+71)/9 = 2(1)1659<167> = 7 · 7253 · 54378083 · 50343939967158130056229<23> · C132
C132 = P63 · P69
P63 = 301435271504692523257664371180080720857128869883045784752185487<63>
P69 = 503883585883986267026777603663420832974904119028443835373022979452021<69>
Number: n N=151888285517697453349404132924871468767777805685695965312726172612353451929406967016381249252832945080495001996679890790773409019227 ( 132 digits) SNFS difficulty: 167 digits. Divisors found: Sun Jul 20 14:20:37 2008 prp63 factor: 301435271504692523257664371180080720857128869883045784752185487 Sun Jul 20 14:20:37 2008 prp69 factor: 503883585883986267026777603663420832974904119028443835373022979452021 Sun Jul 20 14:20:37 2008 elapsed time 02:27:03 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.26 hours. Scaled time: 106.55 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_165_9 n: 151888285517697453349404132924871468767777805685695965312726172612353451929406967016381249252832945080495001996679890790773409019227 skew: 0.82 deg: 5 c5: 190 c0: 71 m: 1000000000000000000000000000000000 type: snfs rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3600000) Primes: RFBsize:361407, AFBsize:361798, largePrimes:10438565 encountered Relations: rels:10034059, finalFF:839198 Max relations in full relation-set: 28 Initial matrix: 723272 x 839198 with sparse part having weight 83825767. Pruned matrix : 631948 x 635628 with weight 56173117. Total sieving time: 57.88 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,50,50,2.5,2.5,100000 total time: 58.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(28·10169+17)/9 = 3(1)1683<170> = 3 · 11 · 19 · 310055033 · C159
C159 = P46 · P113
P46 = 2415206321322037173599420711140338010790023979<46>
P113 = 66260538169077111369916032292205300925953034481165074616471999679785377784367854169703990146660279900274172153217<113>
Number: n N=160032870640155162550188298305797990544533418321959766573500508174037736228648792769050260989051569394837206366583950880158878277647558739735213553585491990443 ( 159 digits) SNFS difficulty: 171 digits. Divisors found: Sun Jul 20 15:32:22 2008 prp46 factor: 2415206321322037173599420711140338010790023979 Sun Jul 20 15:32:22 2008 prp113 factor: 66260538169077111369916032292205300925953034481165074616471999679785377784367854169703990146660279900274172153217 Sun Jul 20 15:32:22 2008 elapsed time 03:30:08 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.65 hours. Scaled time: 111.13 units (timescale=1.746). Factorization parameters were as follows: name: KA_3_1_168_3 n: 160032870640155162550188298305797990544533418321959766573500508174037736228648792769050260989051569394837206366583950880158878277647558739735213553585491990443 type: snfs skew: 1.43 deg: 5 c5: 14 c0: 85 m: 10000000000000000000000000000000000 rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2300001) Primes: RFBsize:425648, AFBsize:425672, largePrimes:10044587 encountered Relations: rels:9775401, finalFF:976677 Max relations in full relation-set: 28 Initial matrix: 851386 x 976677 with sparse part having weight 58701082. Pruned matrix : Total sieving time: 63.27 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,50,50,2.6,2.6,100000 total time: 63.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(22·10141+41)/9 = 2(4)1409<142> = 29 · 149 · 5449 · 452946459853<12> · 67357504684949<14> · C109
C109 = P54 · P56
P54 = 330751162736293369432428637738428342414840410247225443<54>
P56 = 10288329338218503898012571540672054405004510290431734211<56>
Number: 24449_141 N=3402876891229689848436598461222854587652833006566211367190450112565004405320662633342669332652310661572730473 ( 109 digits) Divisors found: r1=330751162736293369432428637738428342414840410247225443 (pp54) r2=10288329338218503898012571540672054405004510290431734211 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.97 hours. Scaled time: 17.71 units (timescale=0.771). Factorization parameters were as follows: name: 24449_141 n: 3402876891229689848436598461222854587652833006566211367190450112565004405320662633342669332652310661572730473 skew: 30807.09 # norm 3.85e+15 c5: 69120 c4: 2895205464 c3: -280193627009614 c2: -2131733424676079691 c1: 98239689575495530872726 c0: -135859311080054690787186605 # alpha -6.94 Y1: 341702854723 Y0: -547578302901837438032 # Murphy_E 1.13e-09 # M 2624517538539014615930987387730867606025583956109033825991318871842305983421265016580000378459286719069186525 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2900001) Primes: RFBsize:230209, AFBsize:230058, largePrimes:7228712 encountered Relations: rels:6973746, finalFF:525266 Max relations in full relation-set: 28 Initial matrix: 460344 x 525266 with sparse part having weight 39329504. Pruned matrix : 407937 x 410302 with weight 26054930. Total sieving time: 20.82 hours. Total relation processing time: 0.28 hours. Matrix solve time: 1.61 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 22.97 hours. --------- CPU info (if available) ----------
(22·10154+41)/9 = 2(4)1539<155> = 17 · 3610089887<10> · 616771282165439<15> · 104974090577393839<18> · 925466719406338609<18> · C94
C94 = P45 · P50
P45 = 459905896132990216649786240439121054688244443<45>
P50 = 14453638434218503727640096477729668894378052287453<50>
Number: 24449_154 N=6647313536471490523384054516889594848412193076035299505863961930987106914439120763464965873679 ( 94 digits) Divisors found: r1=459905896132990216649786240439121054688244443 (pp45) r2=14453638434218503727640096477729668894378052287453 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.02 hours. Scaled time: 6.14 units (timescale=0.765). Factorization parameters were as follows: name: 24449_154 n: 6647313536471490523384054516889594848412193076035299505863961930987106914439120763464965873679 m: 3925432779428596964968 deg: 4 c4: 27996000 c3: -86903748365 c2: 550027718475813193 c1: 229055727357494269 c0: -454436951428866878844665 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.859 # E(F1,F2) = 3.999849e-05 # GGNFS version 0.77.1-20050930-nocona polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1216504368. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1380001) Primes: RFBsize:92938, AFBsize:93133, largePrimes:1934443 encountered Relations: rels:2058820, finalFF:267616 Max relations in full relation-set: 28 Initial matrix: 186148 x 267616 with sparse part having weight 23334623. Pruned matrix : 154321 x 155315 with weight 11475763. Total sieving time: 7.74 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.14 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 8.02 hours. --------- CPU info (if available) ----------
(22·10139+41)/9 = 2(4)1389<140> = 1181 · 1423 · 5985013 · 27989977 · 1178781981409<13> · C107
C107 = P36 · P72
P36 = 316278564394734722828161457146528573<36>
P72 = 232891954950910687233387848924968216474272090842685731013040356996107539<72>
Number: 24449_139 N=73658733170957263936885436254788076953910255688365008131780721746620663191907956191768368728974527244211847 ( 107 digits) SNFS difficulty: 141 digits. Divisors found: r1=316278564394734722828161457146528573 (pp36) r2=232891954950910687233387848924968216474272090842685731013040356996107539 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.91 hours. Scaled time: 9.29 units (timescale=0.780). Factorization parameters were as follows: name: 24449_139 n: 73658733170957263936885436254788076953910255688365008131780721746620663191907956191768368728974527244211847 m: 10000000000000000000000000000 c5: 11 c0: 205 skew: 1.8 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:100200, largePrimes:2746564 encountered Relations: rels:2719321, finalFF:249721 Max relations in full relation-set: 28 Initial matrix: 200286 x 249721 with sparse part having weight 24385516. Pruned matrix : 185707 x 186772 with weight 16198328. Total sieving time: 11.48 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.30 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.91 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(22·10137+41)/9 = 2(4)1369<138> = 3 · 197 · 4721 · 21532792806979<14> · 2558904966847610279<19> · C100
C100 = P45 · P55
P45 = 866628596690676908124381538472636863619623849<45>
P55 = 1834725747446334136962416765898795700139838509999294251<55>
Number: 24449_137 N=1590025799821669844965039915392518155073858809059005816989579180428522176731895180810762304088192099 ( 100 digits) SNFS difficulty: 138 digits. Divisors found: r1=866628596690676908124381538472636863619623849 (pp45) r2=1834725747446334136962416765898795700139838509999294251 (pp55) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 15.16 hours. Scaled time: 7.16 units (timescale=0.472). Factorization parameters were as follows: name: 24449_137 n: 1590025799821669844965039915392518155073858809059005816989579180428522176731895180810762304088192099 m: 1000000000000000000000000000 c5: 2200 c0: 41 skew: 0.45 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2050001) Primes: RFBsize:78498, AFBsize:63670, largePrimes:1652714 encountered Relations: rels:1677088, finalFF:173641 Max relations in full relation-set: 28 Initial matrix: 142235 x 173641 with sparse part having weight 18526781. Pruned matrix : 134432 x 135207 with weight 12954715. Total sieving time: 14.63 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.37 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 15.16 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(22·10135+41)/9 = 2(4)1349<136> = 19 · 59 · 197217048137<12> · 3473512671526180949462569<25> · C97
C97 = P34 · P64
P34 = 2065104407058693668461888789327799<34>
P64 = 1541413660666489857341708687188271597185167763339609496930078327<64>
Number: n N=3183180143742841983978949218813441515939722303188901929973696523261819759463827185617358748512273 ( 97 digits) SNFS difficulty: 136 digits. Divisors found: r1=2065104407058693668461888789327799 (pp34) r2=1541413660666489857341708687188271597185167763339609496930078327 (pp64) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 5.54 hours. Scaled time: 7.25 units (timescale=1.309). Factorization parameters were as follows: name: KA_2_4_134_9 n: 3183180143742841983978949218813441515939722303188901929973696523261819759463827185617358748512273 skew: 1.13 deg: 5 c5: 22 c0: 41 m: 1000000000000000000000000000 type: snfs rlim: 950000 alim: 950000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 950000/950000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:74907, AFBsize:74185, largePrimes:7821834 encountered Relations: rels:7065344, finalFF:237913 Max relations in full relation-set: 28 Initial matrix: 149158 x 237913 with sparse part having weight 25256409. Pruned matrix : 129264 x 130073 with weight 11067695. Total sieving time: 4.87 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.42 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,950000,950000,28,28,50,50,2.5,2.5,75000 total time: 5.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(65·10167+43)/9 = 7(2)1667<168> = 11 · 5879 · 31159 · 286831 · 517095792649<12> · C142
C142 = P49 · P93
P49 = 6350896847958870927475301612070577433786600427541<49>
P93 = 380503836982596483446568644330742044611360532394516326298199791512990729260726018085652941203<93>
Number: n N=2416540618929028067669513756315393816139046863325989248996067013124199091486295011457802290992087222445824703172180542641244773807423934871823 ( 142 digits) SNFS difficulty: 168 digits. Divisors found: Sat Jul 19 16:15:17 2008 prp49 factor: 6350896847958870927475301612070577433786600427541 Sat Jul 19 16:15:17 2008 prp93 factor: 380503836982596483446568644330742044611360532394516326298199791512990729260726018085652941203 Sat Jul 19 16:15:17 2008 elapsed time 02:23:29 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.76 hours. Scaled time: 82.09 units (timescale=1.834). Factorization parameters were as follows: name: KA_7_2_166_7 n: 2416540618929028067669513756315393816139046863325989248996067013124199091486295011457802290992087222445824703172180542641244773807423934871823 skew: 0.37 deg: 5 c5: 6500 c0: 43 m: 1000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2700209) Primes: RFBsize:399993, AFBsize:399914, largePrimes:9845687 encountered Relations: rels:9387478, finalFF:832705 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 44.42 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 44.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(22·10145+41)/9 = 2(4)1449<146> = 107 · 649488379249<12> · C132
C132 = P36 · P97
P36 = 330656667519370766780036608680693031<36>
P97 = 1063769965393139226970800550235148159416860116316758164927268244022746113357233560752845829368053<97>
Number: 24449_145 N=351742631764091784060929143940635209161080432608066070671172188248276741820313159008906507475054840176158667869578115152472811138643 ( 132 digits) SNFS difficulty: 146 digits. Divisors found: r1=330656667519370766780036608680693031 (pp36) r2=1063769965393139226970800550235148159416860116316758164927268244022746113357233560752845829368053 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.76 hours. Scaled time: 17.66 units (timescale=0.776). Factorization parameters were as follows: name: 24449_145 n: 351742631764091784060929143940635209161080432608066070671172188248276741820313159008906507475054840176158667869578115152472811138643 m: 100000000000000000000000000000 c5: 22 c0: 41 skew: 1.13 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3250001) Primes: RFBsize:114155, AFBsize:113514, largePrimes:2953981 encountered Relations: rels:2977548, finalFF:281309 Max relations in full relation-set: 28 Initial matrix: 227735 x 281309 with sparse part having weight 31945458. Pruned matrix : 212164 x 213366 with weight 22643648. Total sieving time: 22.10 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.47 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 22.76 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(4·10207-1)/3 = 1(3)207<208> = 227 · C205
C205 = P100 · P106
P100 = 3999406295062729501331514001724671368377647689512510156551098073080765712556308639257272683646862107<100>
P106 = 1468646766913267291096484238457962531138809604380942950365724174756132537097046980347507927618050634373797<106>
Number: 13333_207 N=5873715124816446402349486049926578560939794419970631424375917767988252569750367107195301027900146842878120411160058737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279 ( 205 digits) SNFS difficulty: 207 digits. Divisors found: r1=3999406295062729501331514001724671368377647689512510156551098073080765712556308639257272683646862107 (p100) r2=1468646766913267291096484238457962531138809604380942950365724174756132537097046980347507927618050634373797 (p106) Version: Msieve 1.36 Total time: 25 CPU-days. (timescale=2.952). Factorization parameters were as follows: n: 5873715124816446402349486049926578560939794419970631424375917767988252569750367107195301027900146842878120411160058737151248164464023494860499265785609397944199706314243759177679882525697503671071953010279 Y0: -200000000000000000000000000000000000000000 Y1: 1 c0: -2 c5: 25 skew: 0.65 type: snfs lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 rlim: 20000000 alim: 20000000 Factor base limits: 20000000/20000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved rational special-q in [10000000, 22300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 42704260 relations (38902786 unique relations and about 34331443 large ideals) Max relations in full relation-set: Initial matrix: 3899964 x 3900911 (1179.1 MB) with weight 369366720 (94.69/col) sparse part has weight 266186760 (68.24/col) (memory use: 1591.7 MB) Pruned matrix : 3845390 x 3845638 (1123.7 MB) with weight 283186391 (73.64/col) sparse part has weight 256108183 (66.60/col) Total sieving time: 20 CPU-days.. Total relation processing time: 1.00 hours. Matrix solve time: 84:14:53 recovered 48 nontrivial dependencies Time per square root: 01:02:59 (on 1st dependency) Prototype def-par.txt line would be: snfs,207,5,0,0,0,0,0,0,0,0,20000000,20000000,29,29,58,58,2.6,2.6,100000 total time: 25 CPU-days. (8 calendar days; the matrix step was on a single CPU) --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS All stages were under 2.0Gb of memory (the C200+'s _can_ be now done on home computers) P.S. Many thanks to JasonP, the greatest.
C205 is the largest snfs-factored composite number in our tables so far and P100 is also the largest snfs-discovered prime factor in our tables so far. In addition, this effort shows that you can factor numbers which have 200 digits or more by your home computers with 2GB memory. Congratulations on the exciting records!!! See also www.mersenneforum.org.
(22·10121+41)/9 = 2(4)1209<122> = 131041 · 2319738263<10> · C107
C107 = P35 · P73
P35 = 25062368393601465451556297653785029<35>
P73 = 3208572650535973954961225795597759882808586084195449958716499723851512507<73>
Number: 24449_121 N=80414429785366873756397237324162557271658995122046202935508783138144456898631522252449895246859675082857703 ( 107 digits) SNFS difficulty: 122 digits. Divisors found: r1=25062368393601465451556297653785029 r2=3208572650535973954961225795597759882808586084195449958716499723851512507 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 80414429785366873756397237324162557271658995122046202935508783138144456898631522252449895246859675082857703 Y1: 1 Y0: -1000000000000000000000000 c5: 220 c0: 41 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 102792 x 103019 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.10 hours.
By Robert Backstrom / GGNFS, GMP-ECM
(22·10114+41)/9 = 2(4)1139<115> = 72 · 23 · 53 · C110
C110 = P38 · P73
P38 = 36786423298913986934702187003334911349<38>
P73 = 1112481561942967290761054206790315374836962739575611381377759806988761071<73>
Number: n N=40924217649870995704817338474903223526216611884020767180265598172547662762124264526702121920685145811127294779 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=36786423298913986934702187003334911349 (pp38) r2=1112481561942967290761054206790315374836962739575611381377759806988761071 (pp73) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 1.32 hours. Scaled time: 1.73 units (timescale=1.308). Factorization parameters were as follows: name: KA_2_4_113_9 n: 40924217649870995704817338474903223526216611884020767180265598172547662762124264526702121920685145811127294779 skew: 1.80 deg: 5 c5: 11 c0: 205 m: 100000000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:41538, AFBsize:41594, largePrimes:3882954 encountered Relations: rels:3287386, finalFF:111057 Max relations in full relation-set: 28 Initial matrix: 83197 x 111057 with sparse part having weight 8625133. Pruned matrix : 74572 x 75051 with weight 4207667. Total sieving time: 1.16 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.06 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,500000,500000,28,28,50,50,2.5,2.5,50000 total time: 1.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(22·10131+41)/9 = 2(4)1309<132> = 32 · 4787 · 6966823 · 1281492591809<13> · 19736198501419<14> · C95
C95 = P32 · P63
P32 = 38341155108220418699692555245493<32>
P63 = 839836335247171403374568311996768228503199306945428622409955187<63>
By Jo Yeong Uk / GMP-ECM
8·10167+3 = 8(0)1663<168> = 251467910385709<15> · 126974570731714215575127079<27> · C128
C128 = P45 · P83
P45 = 837436146854618446845679601742976105039316057<45>
P83 = 29918440904777602878053870979485087624956432150490430623595618437356372457311766689<83>
GMP-ECM 6.2 [powered by GMP 4.2.2] [ECM] Input number is 25054783871194560239401225829811852453817515096204346029171349857158592954195626273041212563779604664854740343106865830915425273 (128 digits) Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=127447873 Step 1 took 6030ms Step 2 took 2946ms ********** Factor found in step 2: 837436146854618446845679601742976105039316057 Found probable prime factor of 45 digits: 837436146854618446845679601742976105039316057 Probable prime cofactor 29918440904777602878053870979485087624956432150490430623595618437356372457311766689 has 83 digits
By Robert Backstrom / GGNFS, Msieve
5·10168-1 = 4(9)168<169> = 71 · 461 · 1609 · 14951 · 80777981 · C149
C149 = P41 · P45 · P64
P41 = 22639721157902129095414403005942496800349<41>
P45 = 457434303099638694586122437203847366912844131<45>
P64 = 7590871641081854629092704253048698545019692817001067700599918729<64>
Number: n N=78612471559442958193948932412621943215928354030608716743603360935146350691540877706643356686115717423275593902051381288373526750237641857883878895151 ( 149 digits) SNFS difficulty: 169 digits. Divisors found: Fri Jul 18 13:57:52 2008 prp41 factor: 22639721157902129095414403005942496800349 Fri Jul 18 13:57:52 2008 prp45 factor: 457434303099638694586122437203847366912844131 Fri Jul 18 13:57:52 2008 prp64 factor: 7590871641081854629092704253048698545019692817001067700599918729 Fri Jul 18 13:57:52 2008 elapsed time 03:10:45 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 55.74 hours. Scaled time: 36.51 units (timescale=0.655). Factorization parameters were as follows: name: KA_4_9_168 n: 78612471559442958193948932412621943215928354030608716743603360935146350691540877706643356686115717423275593902051381288373526750237641857883878895151 skew: 0.91 deg: 5 c5: 8 c0: -5 m: 5000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2402509) Primes: RFBsize:399993, AFBsize:399814, largePrimes:9619479 encountered Relations: rels:9166302, finalFF:834416 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 55.38 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 55.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / Msieve, GGNFS
(22·10136+41)/9 = 2(4)1359<137> = 23 · 61 · 178844202666818707982925019<27> · 8717675454678942130350489919<28> · C80
C80 = P36 · P44
P36 = 531452776093609479259543855857961849<36>
P44 = 21027239274346636115400378553683570984303247<44>
Fri Jul 18 13:45:18 2008 Msieve v. 1.36 Fri Jul 18 13:45:18 2008 random seeds: 46217630 d69eac1b Fri Jul 18 13:45:18 2008 factoring 11174984685936094268528804965283109768871202961445260752328824538012748772823703 (80 digits) Fri Jul 18 13:45:19 2008 no P-1/P+1/ECM available, skipping Fri Jul 18 13:45:19 2008 commencing quadratic sieve (80-digit input) Fri Jul 18 13:45:19 2008 using multiplier of 1 Fri Jul 18 13:45:19 2008 using 64kb Pentium 4 sieve core Fri Jul 18 13:45:19 2008 sieve interval: 6 blocks of size 65536 Fri Jul 18 13:45:19 2008 processing polynomials in batches of 17 Fri Jul 18 13:45:19 2008 using a sieve bound of 1186657 (45938 primes) Fri Jul 18 13:45:19 2008 using large prime bound of 118665700 (26 bits) Fri Jul 18 13:45:19 2008 using trial factoring cutoff of 27 bits Fri Jul 18 13:45:19 2008 polynomial 'A' values have 10 factors Fri Jul 18 14:00:45 2008 46148 relations (23831 full + 22317 combined from 251282 partial), need 46034 Fri Jul 18 14:00:46 2008 begin with 275113 relations Fri Jul 18 14:00:46 2008 reduce to 65721 relations in 2 passes Fri Jul 18 14:00:46 2008 attempting to read 65721 relations Fri Jul 18 14:00:48 2008 recovered 65721 relations Fri Jul 18 14:00:48 2008 recovered 53985 polynomials Fri Jul 18 14:00:48 2008 attempting to build 46148 cycles Fri Jul 18 14:00:48 2008 found 46148 cycles in 1 passes Fri Jul 18 14:00:48 2008 distribution of cycle lengths: Fri Jul 18 14:00:48 2008 length 1 : 23831 Fri Jul 18 14:00:48 2008 length 2 : 22317 Fri Jul 18 14:00:48 2008 largest cycle: 2 relations Fri Jul 18 14:00:48 2008 matrix is 45938 x 46148 (6.0 MB) with weight 1395149 (30.23/col) Fri Jul 18 14:00:48 2008 sparse part has weight 1395149 (30.23/col) Fri Jul 18 14:00:48 2008 filtering completed in 3 passes Fri Jul 18 14:00:48 2008 matrix is 32312 x 32375 (4.7 MB) with weight 1091791 (33.72/col) Fri Jul 18 14:00:48 2008 sparse part has weight 1091791 (33.72/col) Fri Jul 18 14:00:48 2008 saving the first 48 matrix rows for later Fri Jul 18 14:00:48 2008 matrix is 32264 x 32375 (2.8 MB) with weight 793320 (24.50/col) Fri Jul 18 14:00:48 2008 sparse part has weight 546231 (16.87/col) Fri Jul 18 14:00:48 2008 matrix includes 64 packed rows Fri Jul 18 14:00:48 2008 using block size 12950 for processor cache size 512 kB Fri Jul 18 14:00:49 2008 commencing Lanczos iteration Fri Jul 18 14:00:49 2008 memory use: 3.4 MB Fri Jul 18 14:00:57 2008 lanczos halted after 512 iterations (dim = 32262) Fri Jul 18 14:00:57 2008 recovered 16 nontrivial dependencies Fri Jul 18 14:00:57 2008 prp36 factor: 531452776093609479259543855857961849 Fri Jul 18 14:00:57 2008 prp44 factor: 21027239274346636115400378553683570984303247 Fri Jul 18 14:00:57 2008 elapsed time 00:15:39
(22·10119+41)/9 = 2(4)1189<120> = 3 · 607 · 19426872662255651093434709<26> · C91
C91 = P41 · P51
P41 = 47566566335345876577853460008460440738421<41>
P51 = 145266519005140854768685462486158749326268729347421<51>
Fri Jul 18 14:36:07 2008 Msieve v. 1.36 Fri Jul 18 14:36:07 2008 random seeds: 02092aa2 9098e17e Fri Jul 18 14:36:07 2008 factoring 6909829512562814960843460860887417512953556989063562541544742552648533771432775918691962241 (91 digits) Fri Jul 18 14:36:08 2008 no P-1/P+1/ECM available, skipping Fri Jul 18 14:36:08 2008 commencing quadratic sieve (91-digit input) Fri Jul 18 14:36:08 2008 using multiplier of 1 Fri Jul 18 14:36:08 2008 using 64kb Pentium 4 sieve core Fri Jul 18 14:36:08 2008 sieve interval: 18 blocks of size 65536 Fri Jul 18 14:36:08 2008 processing polynomials in batches of 6 Fri Jul 18 14:36:08 2008 using a sieve bound of 1719241 (64706 primes) Fri Jul 18 14:36:08 2008 using large prime bound of 165047136 (27 bits) Fri Jul 18 14:36:08 2008 using double large prime bound of 619005322436736 (42-50 bits) Fri Jul 18 14:36:08 2008 using trial factoring cutoff of 50 bits Fri Jul 18 14:36:08 2008 polynomial 'A' values have 12 factors Fri Jul 18 17:27:51 2008 65119 relations (16691 full + 48428 combined from 768023 partial), need 64802 Fri Jul 18 17:27:53 2008 begin with 784714 relations Fri Jul 18 17:27:54 2008 reduce to 163266 relations in 10 passes Fri Jul 18 17:27:54 2008 attempting to read 163266 relations Fri Jul 18 17:27:59 2008 recovered 163266 relations Fri Jul 18 17:27:59 2008 recovered 143283 polynomials Fri Jul 18 17:27:59 2008 attempting to build 65119 cycles Fri Jul 18 17:27:59 2008 found 65119 cycles in 5 passes Fri Jul 18 17:27:59 2008 distribution of cycle lengths: Fri Jul 18 17:27:59 2008 length 1 : 16691 Fri Jul 18 17:27:59 2008 length 2 : 12043 Fri Jul 18 17:27:59 2008 length 3 : 11400 Fri Jul 18 17:27:59 2008 length 4 : 8911 Fri Jul 18 17:27:59 2008 length 5 : 6291 Fri Jul 18 17:27:59 2008 length 6 : 3993 Fri Jul 18 17:27:59 2008 length 7 : 2570 Fri Jul 18 17:27:59 2008 length 9+: 3220 Fri Jul 18 17:27:59 2008 largest cycle: 19 relations Fri Jul 18 17:27:59 2008 matrix is 64706 x 65119 (16.1 MB) with weight 3956681 (60.76/col) Fri Jul 18 17:27:59 2008 sparse part has weight 3956681 (60.76/col) Fri Jul 18 17:28:01 2008 filtering completed in 3 passes Fri Jul 18 17:28:01 2008 matrix is 60964 x 61028 (15.1 MB) with weight 3719537 (60.95/col) Fri Jul 18 17:28:01 2008 sparse part has weight 3719537 (60.95/col) Fri Jul 18 17:28:01 2008 saving the first 48 matrix rows for later Fri Jul 18 17:28:01 2008 matrix is 60916 x 61028 (9.7 MB) with weight 2948615 (48.32/col) Fri Jul 18 17:28:01 2008 sparse part has weight 2173245 (35.61/col) Fri Jul 18 17:28:01 2008 matrix includes 64 packed rows Fri Jul 18 17:28:01 2008 using block size 21845 for processor cache size 512 kB Fri Jul 18 17:28:02 2008 commencing Lanczos iteration Fri Jul 18 17:28:02 2008 memory use: 9.4 MB Fri Jul 18 17:28:40 2008 lanczos halted after 965 iterations (dim = 60913) Fri Jul 18 17:28:40 2008 recovered 15 nontrivial dependencies Fri Jul 18 17:28:42 2008 prp41 factor: 47566566335345876577853460008460440738421 Fri Jul 18 17:28:42 2008 prp51 factor: 145266519005140854768685462486158749326268729347421 Fri Jul 18 17:28:42 2008 elapsed time 02:52:35
(22·10122+41)/9 = 2(4)1219<123> = 33 · 17 · 397 · 509 · 226522559 · 20019177865109<14> · C93
C93 = P37 · P57
P37 = 2479394702744903130958322262280605137<37>
P57 = 234399040945537669940119153419177139386619105466093573281<57>
Fri Jul 18 17:41:27 2008 Msieve v. 1.36 Fri Jul 18 17:41:27 2008 random seeds: f13eb197 24f0b957 Fri Jul 18 17:41:27 2008 factoring 581167740448851748884915075302866508210009792004549285245839702179434977036441317607334544497 (93 digits) Fri Jul 18 17:41:28 2008 no P-1/P+1/ECM available, skipping Fri Jul 18 17:41:28 2008 commencing quadratic sieve (93-digit input) Fri Jul 18 17:41:29 2008 using multiplier of 17 Fri Jul 18 17:41:29 2008 using 64kb Pentium 4 sieve core Fri Jul 18 17:41:29 2008 sieve interval: 18 blocks of size 65536 Fri Jul 18 17:41:29 2008 processing polynomials in batches of 6 Fri Jul 18 17:41:29 2008 using a sieve bound of 1956901 (72801 primes) Fri Jul 18 17:41:29 2008 using large prime bound of 244612625 (27 bits) Fri Jul 18 17:41:29 2008 using double large prime bound of 1256787622996125 (42-51 bits) Fri Jul 18 17:41:29 2008 using trial factoring cutoff of 51 bits Fri Jul 18 17:41:29 2008 polynomial 'A' values have 12 factors Fri Jul 18 21:47:43 2008 73312 relations (18883 full + 54429 combined from 988028 partial), need 72897 Fri Jul 18 21:47:46 2008 begin with 1006911 relations Fri Jul 18 21:47:47 2008 reduce to 185758 relations in 11 passes Fri Jul 18 21:47:47 2008 attempting to read 185758 relations Fri Jul 18 21:47:53 2008 recovered 185758 relations Fri Jul 18 21:47:53 2008 recovered 166149 polynomials Fri Jul 18 21:47:54 2008 attempting to build 73312 cycles Fri Jul 18 21:47:54 2008 found 73312 cycles in 5 passes Fri Jul 18 21:47:54 2008 distribution of cycle lengths: Fri Jul 18 21:47:54 2008 length 1 : 18883 Fri Jul 18 21:47:54 2008 length 2 : 13309 Fri Jul 18 21:47:54 2008 length 3 : 12540 Fri Jul 18 21:47:54 2008 length 4 : 9829 Fri Jul 18 21:47:54 2008 length 5 : 7230 Fri Jul 18 21:47:54 2008 length 6 : 4642 Fri Jul 18 21:47:54 2008 length 7 : 3012 Fri Jul 18 21:47:54 2008 length 9+: 3867 Fri Jul 18 21:47:54 2008 largest cycle: 18 relations Fri Jul 18 21:47:54 2008 matrix is 72801 x 73312 (18.6 MB) with weight 4575927 (62.42/col) Fri Jul 18 21:47:54 2008 sparse part has weight 4575927 (62.42/col) Fri Jul 18 21:47:56 2008 filtering completed in 3 passes Fri Jul 18 21:47:56 2008 matrix is 68635 x 68698 (17.4 MB) with weight 4293577 (62.50/col) Fri Jul 18 21:47:56 2008 sparse part has weight 4293577 (62.50/col) Fri Jul 18 21:47:56 2008 saving the first 48 matrix rows for later Fri Jul 18 21:47:56 2008 matrix is 68587 x 68698 (10.7 MB) with weight 3329385 (48.46/col) Fri Jul 18 21:47:56 2008 sparse part has weight 2391376 (34.81/col) Fri Jul 18 21:47:56 2008 matrix includes 64 packed rows Fri Jul 18 21:47:56 2008 using block size 21845 for processor cache size 512 kB Fri Jul 18 21:47:57 2008 commencing Lanczos iteration Fri Jul 18 21:47:57 2008 memory use: 10.6 MB Fri Jul 18 21:48:46 2008 lanczos halted after 1086 iterations (dim = 68583) Fri Jul 18 21:48:46 2008 recovered 14 nontrivial dependencies Fri Jul 18 21:48:50 2008 prp37 factor: 2479394702744903130958322262280605137 Fri Jul 18 21:48:50 2008 prp57 factor: 234399040945537669940119153419177139386619105466093573281 Fri Jul 18 21:48:50 2008 elapsed time 04:07:23
(22·10138+41)/9 = 2(4)1379<139> = 7 · 17 · 31 · 193 · 373 · 673 · 937 · 41161 · C120
C120 = P36 · P84
P36 = 610651208920497670366733893531787309<36>
P84 = 580726416089174434252413269353020068317056403185036791065062056709332599816085902681<84>
Number: 24449_138 N=354621288036922317129460378447709402989326839295547924604905462758134623744329528219757499403532898824792484232564875429 ( 120 digits) SNFS difficulty: 139 digits. Divisors found: r1=610651208920497670366733893531787309 (pp36) r2=580726416089174434252413269353020068317056403185036791065062056709332599816085902681 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 13.03 hours. Scaled time: 10.18 units (timescale=0.781). Factorization parameters were as follows: name: 24449_138 n: 354621288036922317129460378447709402989326839295547924604905462758134623744329528219757499403532898824792484232564875429 m: 2000000000000000000000000000 c5: 1375 c0: 82 skew: 0.57 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2125001) Primes: RFBsize:78498, AFBsize:64075, largePrimes:1684247 encountered Relations: rels:1730964, finalFF:191244 Max relations in full relation-set: 28 Initial matrix: 142639 x 191244 with sparse part having weight 20674544. Pruned matrix : 131077 x 131854 with weight 12803762. Total sieving time: 12.77 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.13 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 13.03 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve
(22·10130+41)/9 = 2(4)1299<131> = 623007889151<12> · 391864797803729335146086239<27> · C93
C93 = P34 · P59
P34 = 2404106623587392833380957646953757<34>
P59 = 41648239554086215738636228680214783731775995314642888620213<59>
(22·10140+41)/9 = 2(4)1399<141> = 32 · 53 · 385157668968708457<18> · C121
C121 = P33 · P88
P33 = 636996487870315120894764412495687<33>
P88 = 2088748759088354916772576445771665562338190776869101189675739705777594695442923658592843<88>
(22·10112+41)/9 = 2(4)1119<113> = 6389 · 882751 · C103
C103 = P49 · P55
P49 = 3337089450937904685056902869759131185338950859791<49>
P55 = 1298796820924815062861063233533242770022606282492927501<55>
Number: 24449_112 N=4334201170019887212757136278967289763497618984157758520106755541166969075712698056910874692340579012291 ( 103 digits) SNFS difficulty: 113 digits. Divisors found: r1=3337089450937904685056902869759131185338950859791 r2=1298796820924815062861063233533242770022606282492927501 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.300). Factorization parameters were as follows: n: 4334201170019887212757136278967289763497618984157758520106755541166969075712698056910874692340579012291 Y1: 1 Y0: -10000000000000000000000 c5: 2200 c0: 41 skew: 0.45 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 85491 x 85712 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.90 hours.
(22·10196+41)/9 = 2(4)1959<197> = 61 · 29927 · 14045039 · 175281864497<12> · 78685402711417120250969<23> · 121595069518936332737259113161<30> · 164769187376264668609706570911<30> · C91
C91 = P34 · P57
P34 = 5803154930334451126145780382617113<34>
P57 = 594534302111706146898488870469731843809863616765324450427<57>
Thu Jul 17 23:11:07 2008 Msieve v. 1.36 Thu Jul 17 23:11:07 2008 random seeds: 1f8931f2 b1016748 Thu Jul 17 23:11:07 2008 factoring 3450174666552499603958825634868719551155941132530381444028934776059628299672087790690357251 (91 digits) Thu Jul 17 23:11:08 2008 no P-1/P+1/ECM available, skipping Thu Jul 17 23:11:08 2008 commencing quadratic sieve (91-digit input) Thu Jul 17 23:11:08 2008 using multiplier of 11 Thu Jul 17 23:11:08 2008 using 64kb Opteron sieve core Thu Jul 17 23:11:08 2008 sieve interval: 18 blocks of size 65536 Thu Jul 17 23:11:08 2008 processing polynomials in batches of 6 Thu Jul 17 23:11:08 2008 using a sieve bound of 1684919 (63529 primes) Thu Jul 17 23:11:08 2008 using large prime bound of 155012548 (27 bits) Thu Jul 17 23:11:08 2008 using double large prime bound of 552917357712160 (42-49 bits) Thu Jul 17 23:11:08 2008 using trial factoring cutoff of 49 bits Thu Jul 17 23:11:08 2008 polynomial 'A' values have 12 factors Fri Jul 18 00:45:24 2008 64103 relations (17260 full + 46843 combined from 724321 partial), need 63625 Fri Jul 18 00:45:24 2008 begin with 741581 relations Fri Jul 18 00:45:25 2008 reduce to 156628 relations in 10 passes Fri Jul 18 00:45:25 2008 attempting to read 156628 relations Fri Jul 18 00:45:26 2008 recovered 156628 relations Fri Jul 18 00:45:26 2008 recovered 134292 polynomials Fri Jul 18 00:45:26 2008 attempting to build 64103 cycles Fri Jul 18 00:45:26 2008 found 64103 cycles in 5 passes Fri Jul 18 00:45:26 2008 distribution of cycle lengths: Fri Jul 18 00:45:26 2008 length 1 : 17260 Fri Jul 18 00:45:26 2008 length 2 : 12150 Fri Jul 18 00:45:26 2008 length 3 : 11287 Fri Jul 18 00:45:26 2008 length 4 : 8555 Fri Jul 18 00:45:26 2008 length 5 : 6019 Fri Jul 18 00:45:26 2008 length 6 : 3774 Fri Jul 18 00:45:26 2008 length 7 : 2313 Fri Jul 18 00:45:26 2008 length 9+: 2745 Fri Jul 18 00:45:26 2008 largest cycle: 17 relations Fri Jul 18 00:45:27 2008 matrix is 63529 x 64103 (16.6 MB) with weight 3834011 (59.81/col) Fri Jul 18 00:45:27 2008 sparse part has weight 3834011 (59.81/col) Fri Jul 18 00:45:28 2008 filtering completed in 3 passes Fri Jul 18 00:45:28 2008 matrix is 59293 x 59357 (15.4 MB) with weight 3550633 (59.82/col) Fri Jul 18 00:45:28 2008 sparse part has weight 3550633 (59.82/col) Fri Jul 18 00:45:28 2008 saving the first 48 matrix rows for later Fri Jul 18 00:45:28 2008 matrix is 59245 x 59357 (9.8 MB) with weight 2743225 (46.22/col) Fri Jul 18 00:45:28 2008 sparse part has weight 1973750 (33.25/col) Fri Jul 18 00:45:28 2008 matrix includes 64 packed rows Fri Jul 18 00:45:28 2008 using block size 23742 for processor cache size 1024 kB Fri Jul 18 00:45:28 2008 commencing Lanczos iteration Fri Jul 18 00:45:28 2008 memory use: 8.8 MB Fri Jul 18 00:45:55 2008 lanczos halted after 939 iterations (dim = 59240) Fri Jul 18 00:45:56 2008 recovered 14 nontrivial dependencies Fri Jul 18 00:45:56 2008 prp34 factor: 5803154930334451126145780382617113 Fri Jul 18 00:45:56 2008 prp57 factor: 594534302111706146898488870469731843809863616765324450427 Fri Jul 18 00:45:56 2008 elapsed time 01:34:49
Factorizations of 244...449 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
By Serge Batalov / GMP-ECM
(73·10191-1)/9 = 8(1)191<192> = 72 · 2957 · 28391329 · 81902647 · 1197538717<10> · 4210320749<10> · C153
C153 = P27 · C127
P27 = 281150019363827276479091879<27>
C127 = [1698268766936150674397664693080209666761726866084951569803456920236110045824863664598013300791554963893047144133640896867139147<127>]
By suberi / GMP-ECM
(10178+53)/9 = (1)1777<178> = 17 · 19 · 31 · 29774267 · 17227909875533589273161569<26> · C141
C141 = P52 · P89
P52 = 4616319830731803277321116745402333657467824322700921<52>
P89 = 46862312350682118639301501622052895505443364470908072445277360687050905418909375922185723<89>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1762451977 Step 1 took 88941ms Step 2 took 29294ms ********** Factor found in step 2: 4616319830731803277321116745402333657467824322700921 Found probable prime factor of 52 digits: 4616319830731803277321116745402333657467824322700921 Probable prime cofactor 46862312350682118639301501622052895505443364470908072445277360687050905418909375922185723 has 89 digits
By Serge Batalov / GMP-ECM, Msieve
(43·10194-7)/9 = 4(7)194<195> = 3 · 89 · 107 · 38917751 · 109329978532264895118221121359<30> · 27984220393915439255871446690087<32> · C123
C123 = P39 · P42 · P43
P39 = 150253016357827367252162610270549921517<39>
P42 = 750043144488989115802079916490146682858549<42>
P43 = 1246296144452316719852297075309650379237447<43>
Using B1=3000000, B2=14267859070, polynomial Dickson(12), sigma=1189677086 Step 1 took 21161ms Step 2 took 17730ms ********** Factor found in step 2: 150253016357827367252162610270549921517 Found probable prime factor of 39 digits: 150253016357827367252162610270549921517 Thu Jul 17 12:15:31 2008 Msieve v. 1.36 Thu Jul 17 12:15:31 2008 random seeds: c40b47a0 78880a05 Thu Jul 17 12:15:31 2008 factoring 934775879149519040345063733991838603284029386859630642611343691487753360644784884403 (84 digits) Thu Jul 17 12:15:32 2008 no P-1/P+1/ECM available, skipping Thu Jul 17 12:15:32 2008 commencing quadratic sieve (84-digit input) Thu Jul 17 12:15:32 2008 using multiplier of 2 Thu Jul 17 12:15:32 2008 using 64kb Opteron sieve core Thu Jul 17 12:15:32 2008 sieve interval: 6 blocks of size 65536 Thu Jul 17 12:15:32 2008 processing polynomials in batches of 17 Thu Jul 17 12:15:32 2008 using a sieve bound of 1409171 (53729 primes) Thu Jul 17 12:15:32 2008 using large prime bound of 119779535 (26 bits) Thu Jul 17 12:15:32 2008 using trial factoring cutoff of 27 bits Thu Jul 17 12:15:32 2008 polynomial 'A' values have 11 factors Thu Jul 17 12:52:32 2008 53862 relations (26979 full + 26883 combined from 284871 partial), need 53825 Thu Jul 17 12:52:32 2008 begin with 311850 relations Thu Jul 17 12:52:32 2008 reduce to 77390 relations in 2 passes Thu Jul 17 12:52:32 2008 attempting to read 77390 relations Thu Jul 17 12:52:32 2008 recovered 77390 relations Thu Jul 17 12:52:32 2008 recovered 72319 polynomials Thu Jul 17 12:52:33 2008 attempting to build 53862 cycles Thu Jul 17 12:52:33 2008 found 53862 cycles in 1 passes Thu Jul 17 12:52:33 2008 distribution of cycle lengths: Thu Jul 17 12:52:33 2008 length 1 : 26979 Thu Jul 17 12:52:33 2008 length 2 : 26883 Thu Jul 17 12:52:33 2008 largest cycle: 2 relations Thu Jul 17 12:52:33 2008 matrix is 53729 x 53862 (8.4 MB) with weight 1758571 (32.65/col) Thu Jul 17 12:52:33 2008 sparse part has weight 1758571 (32.65/col) Thu Jul 17 12:52:33 2008 filtering completed in 3 passes Thu Jul 17 12:52:33 2008 matrix is 39922 x 39986 (6.7 MB) with weight 1436413 (35.92/col) Thu Jul 17 12:52:33 2008 sparse part has weight 1436413 (35.92/col) Thu Jul 17 12:52:33 2008 saving the first 48 matrix rows for later Thu Jul 17 12:52:33 2008 matrix is 39874 x 39986 (4.4 MB) with weight 1075978 (26.91/col) Thu Jul 17 12:52:33 2008 sparse part has weight 761119 (19.03/col) Thu Jul 17 12:52:33 2008 matrix includes 64 packed rows Thu Jul 17 12:52:33 2008 using block size 15994 for processor cache size 1024 kB Thu Jul 17 12:52:34 2008 commencing Lanczos iteration Thu Jul 17 12:52:34 2008 memory use: 4.4 MB Thu Jul 17 12:52:40 2008 lanczos halted after 632 iterations (dim = 39872) Thu Jul 17 12:52:41 2008 recovered 17 nontrivial dependencies Thu Jul 17 12:52:41 2008 prp42 factor: 750043144488989115802079916490146682858549 Thu Jul 17 12:52:41 2008 prp43 factor: 1246296144452316719852297075309650379237447 Thu Jul 17 12:52:41 2008 elapsed time 00:37:10
By Wataru Sakai / GGNFS
6·10183-1 = 5(9)183<184> = 7 · 2837 · C180
C180 = P63 · P118
P63 = 112649776609562047883105198303449664536396037482590034913768341<63>
P118 = 2682029434148964127373780620479656968569866368989364416202844775610580864046145940166851280210227212021563042712498321<118>
Number: 59999_183 N=302130016617150913943300266881514678483307316581902412004632660254796314013797270758849891736744045520922503650737700790573543481544891484969031673296742031320811722644644745455461 ( 180 digits) SNFS difficulty: 184 digits. Divisors found: r1=112649776609562047883105198303449664536396037482590034913768341 (pp63) r2=2682029434148964127373780620479656968569866368989364416202844775610580864046145940166851280210227212021563042712498321 (pp118) Version: GGNFS-0.77.1-20060722-nocona Total time: 571.11 hours. Scaled time: 1149.08 units (timescale=2.012). Factorization parameters were as follows: n: 302130016617150913943300266881514678483307316581902412004632660254796314013797270758849891736744045520922503650737700790573543481544891484969031673296742031320811722644644745455461 m: 2000000000000000000000000000000000000 c5: 375 c0: -2 skew: 0.35 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10800001) Primes: RFBsize:501962, AFBsize:501426, largePrimes:6705920 encountered Relations: rels:7228998, finalFF:1191175 Max relations in full relation-set: 32 Initial matrix: 1003454 x 1191175 with sparse part having weight 89284613. Pruned matrix : 846750 x 851831 with weight 68965118. Total sieving time: 563.95 hours. Total relation processing time: 0.12 hours. Matrix solve time: 6.82 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 571.11 hours. --------- CPU info (if available) ----------
(2·10178+1)/3 = (6)1777<178> = 59 · C177
C177 = P81 · P96
P81 = 185421820977433014232739114726348871301256180810891425507564250791297781333322283<81>
P96 = 609390791692408139110213498907677209688513214774525388871591629305745057845486938328656711665011<96>
Number: 66667_178 N=112994350282485875706214689265536723163841807909604519774011299435028248587570621468926553672316384180790960451977401129943502824858757062146892655367231638418079096045197740113 ( 177 digits) SNFS difficulty: 178 digits. Divisors found: r1=185421820977433014232739114726348871301256180810891425507564250791297781333322283 (pp81) r2=609390791692408139110213498907677209688513214774525388871591629305745057845486938328656711665011 (pp96) Version: GGNFS-0.77.1-20060722-nocona Total time: 257.83 hours. Scaled time: 519.01 units (timescale=2.013). Factorization parameters were as follows: n: 112994350282485875706214689265536723163841807909604519774011299435028248587570621468926553672316384180790960451977401129943502824858757062146892655367231638418079096045197740113 m: 200000000000000000000000000000000000 c5: 125 c0: 2 skew: 0.44 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, ) Primes: RFBsize:501962, AFBsize:501581, largePrimes:6581325 encountered Relations: rels:7061543, finalFF:1142735 Max relations in full relation-set: 32 Initial matrix: 1003608 x 1142735 with sparse part having weight 81062804. Pruned matrix : 887061 x 892143 with weight 62469237. Total sieving time: 255.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.98 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 257.83 hours. --------- CPU info (if available) ----------
(79·10178-7)/9 = 8(7)178<179> = 3 · C179
C179 = P44 · P136
P44 = 19971896401363047141199475475638205189325457<44>
P136 = 1465021581889557857924256214667419479705503658147178481828370509373285421613856871941147734400057046089676390097180025635682843605088587<136>
Number: 87777_178 N=29259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 ( 179 digits) SNFS difficulty: 179 digits. Divisors found: r1=19971896401363047141199475475638205189325457 (pp44) r2=1465021581889557857924256214667419479705503658147178481828370509373285421613856871941147734400057046089676390097180025635682843605088587 (pp136) Version: GGNFS-0.77.1-20060722-nocona Total time: 563.40 hours. Scaled time: 1127.37 units (timescale=2.001). Factorization parameters were as follows: n: 29259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 m: 100000000000000000000000000000000000 c5: 79000 c0: -7 skew: 0.15 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 25400001) Primes: RFBsize:501962, AFBsize:502131, largePrimes:7373002 encountered Relations: rels:8019550, finalFF:1174666 Max relations in full relation-set: 32 Initial matrix: 1004160 x 1174666 with sparse part having weight 144974941. Pruned matrix : 879802 x 884886 with weight 124736252. Total sieving time: 550.51 hours. Total relation processing time: 0.18 hours. Matrix solve time: 11.93 hours. Time per square root: 0.78 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 563.40 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
10174+7 = 1(0)1737<175> = 29 · 71 · 487 · 11125843 · C161
C161 = P62 · P100
P62 = 11284673357060483641065406171245055689125329700802610659045727<62>
P100 = 7943150153899727308211547689503218266715542847275764169224019083630803802075842027404310615659484239<100>
N=89635854912843133047377276427170795358631018925432063304303551079726674670973827431931933014153835794202245565283120853861244899792595963890869576186164736796753 ( 161 digits) SNFS difficulty: 175 digits. Divisors found: r1=11284673357060483641065406171245055689125329700802610659045727 (pp62) r2=7943150153899727308211547689503218266715542847275764169224019083630803802075842027404310615659484239 (pp100) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 154.34 hours. Scaled time: 221.02 units (timescale=1.432). Factorization parameters were as follows: n: 89635854912843133047377276427170795358631018925432063304303551079726674670973827431931933014153835794202245565283120853861244899792595963890869576186164736796753 m: 100000000000000000000000000000000000 c5: 1 c0: 70 skew: 2.34 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11200001) Primes: RFBsize:501962, AFBsize:503466, largePrimes:6481592 encountered Relations: rels:6948668, finalFF:1144792 Max relations in full relation-set: 28 Initial matrix: 1005492 x 1144792 with sparse part having weight 69603650. Pruned matrix : 885359 x 890450 with weight 52443459. Total sieving time: 148.66 hours. Total relation processing time: 0.12 hours. Matrix solve time: 5.17 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 154.34 hours.
By Robert Backstrom / GGNFS, Msieve
(5·10168+13)/9 = (5)1677<168> = 2193410005059955014607<22> · C147
C147 = P66 · P82
P66 = 211201992164536130541235848631497798541612474874808458918779453283<66>
P82 = 1199249826735630800334398062812385809281436836301713944282871073656817271907107897<82>
Number: n N=253283952509540008450507359677177401846286089874624769147262785793068091845083311740268079983995444677484848230048759659916753262836974367351875851 ( 147 digits) SNFS difficulty: 169 digits. Divisors found: Thu Jul 17 22:16:48 2008 prp66 factor: 211201992164536130541235848631497798541612474874808458918779453283 Thu Jul 17 22:16:48 2008 prp82 factor: 1199249826735630800334398062812385809281436836301713944282871073656817271907107897 Thu Jul 17 22:16:48 2008 elapsed time 02:04:27 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.01 hours. Scaled time: 76.83 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_167_7 n: 253283952509540008450507359677177401846286089874624769147262785793068091845083311740268079983995444677484848230048759659916753262836974367351875851 skew: 1.52 deg: 5 c5: 8 c0: 65 m: 5000000000000000000000000000000000 type: snfs rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2700001) Primes: RFBsize:399993, AFBsize:399999, largePrimes:9791480 encountered Relations: rels:9307871, finalFF:813987 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 41.76 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,50,50,2.5,2.5,100000 total time: 42.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GMP-ECM
(4·10169+11)/3 = 1(3)1687<170> = 3398633569951<13> · C157
C157 = P30 · P128
P30 = 243693271397142150776644064113<30>
P128 = 16098701792205555493787516689184765943671906327794613923990682608079019066384014799429979843106295062079900053829846688958148599<128>
By Serge Batalov / GMP-ECM, Msieve
9·10199-7 = 8(9)1983<200> = 31 · 743 · 6841 · 12697 · 316339 · 413089877 · 107105780766623<15> · 13919023264892149<17> · 19620579832179617602901623499857<32> · C113
C113 = P37 · P76
P37 = 6427503805579223317744356595461437807<37>
P76 = 1831041340434809452833718361805463604259680227651236173580827772015915361667<76>
Number: 89993_199 N=11769025183817619952672417054651487669578574210254607906854183871505045045861473013946425938221361597450232344269 ( 113 digits) Divisors found: r1=6427503805579223317744356595461437807 r2=1831041340434809452833718361805463604259680227651236173580827772015915361667 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: 89993_199 n: 11769025183817619952672417054651487669578574210254607906854183871505045045861473013946425938221361597450232344269 skew: 53840.95 # norm 3.64e+15 c5: 8880 c4: -1129742670 c3: -155660144868577 c2: 2381642608767554524 c1: 137513208798163850234032 c0: -2172126232263059673608813344 # alpha -6.03 Y1: 231688360871 Y0: -4211784220495418937693 # Murphy_E 7.67e-10 # M 7420350881970755408277194183514819226857195980988978384894736154280999709633602187020363784915146259202193086546 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3650001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 7928000 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 463893 x 464136 Total sieving time: 11.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.75 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 12.00 hours.
(22·10183-13)/9 = 2(4)1823<184> = 7 · 74821 · 3777824523836434735369063990067<31> · C148
C148 = P30 · P54 · P64
P30 = 233948542471655416966539695957<30>
P54 = 728025222965584731793931788563408594665953022055106061<54>
P64 = 7253541024316580869418663127314988483163280924756047872134021891<64>
#-- first, by ECM -- Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=369411570 Step 1 took 18298ms Step 2 took 14326ms ********** Factor found in step 2: 233948542471655416966539695957 Found probable prime factor of 30 digits: 233948542471655416966539695957 Composite cofactor 5280760821518094650260482230697796599116648705786845313167148884685871265840183994032230085997595905486342212500781351 has 118 digits #--then by Msieve (gnfs,118) Number: 24443_183 N=5280760821518094650260482230697796599116648705786845313167148884685871265840183994032230085997595905486342212500781351 ( 118 digits) Divisors found: r1=728025222965584731793931788563408594665953022055106061 r2=7253541024316580869418663127314988483163280924756047872134021891 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: 24443_183 n: 5280760821518094650260482230697796599116648705786845313167148884685871265840183994032230085997595905486342212500781351 skew: 37599.46 # norm 2.85e+16 c5: 114720 c4: -19508028470 c3: -143899311857623 c2: 42457844710427220106 c1: 763166056347895704407064 c0: -45130489940034694521668160 # alpha -6.40 Y1: 7577882143777 Y0: -34089038769616882470619 # Murphy_E 3.93e-10 # M 2727036486374593181091379991914029708867927407917977652616807660464128792055469928307341336543407724973003349846889828 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3950001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 8162000 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 569973 x 570212 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.5,2.5,100000 total time: 27.00 hours.
(4·10198-13)/9 = (4)1973<198> = 523 · 82737301 · 22861189383523<14> · C174
C174 = P30 · C145
P30 = 109004345405742704229513258503<30>
C145 = [4121656653229606688891632821619209502441186611362878540444545066393408185585679257868260089902556418333145433375944552756831904252394732003086489<145>]
(43·10194-7)/9 = 4(7)194<195> = 3 · 89 · 107 · 38917751 · 109329978532264895118221121359<30> · C154
C154 = P32 · C123
P32 = 27984220393915439255871446690087<32>
C123 = [140452895460755142568169629971827239108134551763753952081688857640992802509386073644380889037709828929708318820579567399351<123>]
(34·10193-43)/9 = 3(7)1923<194> = 33 · 11 · 192 · 79 · 661 · 33889871 · 206690543 · 93566161264769<14> · C155
C155 = P30 · C125
P30 = 219952497998232711504934775239<30>
C125 = [46806479030908156153665353632537735280964258077511172703126540334606775972905563382609259392230247331755789931137661196139137<125>]
10191-3 = (9)1907<191> = 113 · 2454455881<10> · 13778267355178489115141197<26> · C155
C155 = P40 · P115
P40 = 4177672914958740985247164938293269252349<40>
P115 = 6263791373890807735811613899906525630519387461611911965595048014000039506928204827175275652877326155130619692271533<115>
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(22·10168+23)/9 = 2(4)1677<169> = 4543813 · 1878087349<10> · C153
C153 = P36 · P47 · P72
P36 = 157077838092449523332749097610339671<36>
P47 = 12314963809991883286233006440538730997310281149<47>
P72 = 148079820454272076138749463653539263120184911826609262340495505792576389<72>
Number: n N=1823597629884456456024969058909706258632372020265790999907676961582423394895913928332215564831650488011286590649190961 ( 118 digits) Divisors found: Wed Jul 16 03:18:19 2008 prp47 factor: 12314963809991883286233006440538730997310281149 Wed Jul 16 03:18:19 2008 prp72 factor: 148079820454272076138749463653539263120184911826609262340495505792576389 Wed Jul 16 03:18:19 2008 elapsed time 04:29:31 (Msieve 1.36, Dep=6) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.39 hours. Scaled time: 90.04 units (timescale=1.752). Factorization parameters were as follows: name: KA_2_4_167_7 n: 1823597629884456456024969058909706258632372020265790999907676961582423394895913928332215564831650488011286590649190961 skew: 48983.94 # norm 6.46e+15 c5: 50040 c4: 3600602710 c3: -376262433842969 c2: -8229887425109787560 c1: 404072477709485347899232 c0: 2578150019307161193042749712 # alpha -5.44 Y1: 2056468829983 Y0: -32532837847316073020785 # Murphy_E 3.87e-10 # M 74352331651996214033401096617626779374954279297543952462796538594023349857190087022767517996283017661881645908058429 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 2300000) Primes: RFBsize:315948, AFBsize:315738, largePrimes:9457688 encountered Relations: rels:8737174, finalFF:664621 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 51.02 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,50,50,2.5,2.5,60000 total time: 51.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(83·10168+61)/9 = 9(2)1679<169> = 5381 · 36173552095222639<17> · C149
C149 = P39 · P111
P39 = 106355916117472562674540821070957317439<39>
P111 = 445471353245345900119817406448596918723980474959155182424548921066868827075147451237495128565791226177408521729<111>
2·10168-7 = 1(9)1673<169> = 8002843 · 679331923056720559092781<24> · C138
C138 = P55 · P84
P55 = 1743135735135318112931632042583008770405177795897939247<55>
P84 = 211043737325077621766641712794419286115201489247799793695341755432378145694998105193<84>
Number: n N=367877880207854154431115542622985059730951001687730951844231434351077499649003285665322749166951767834677806526397408965900679678429209671 ( 138 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jul 16 17:57:06 2008 prp55 factor: 1743135735135318112931632042583008770405177795897939247 Wed Jul 16 17:57:06 2008 prp84 factor: 211043737325077621766641712794419286115201489247799793695341755432378145694998105193 Wed Jul 16 17:57:06 2008 elapsed time 02:13:52 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 53.77 hours. Scaled time: 98.35 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_9_167_3 n: 367877880207854154431115542622985059730951001687730951844231434351077499649003285665322749166951767834677806526397408965900679678429209671 skew: 0.65 deg: 5 c5: 125 c0: -14 m: 2000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 3400000) Primes: RFBsize:380800, AFBsize:381052, largePrimes:10127809 encountered Relations: rels:9638577, finalFF:794819 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 53.49 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,50,50,2.5,2.5,100000 total time: 53.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By suberi / GMP-ECM
(4·10213-1)/3 = 1(3)213<214> = 31 · 43 · 42929 · 1647001 · 55070453 · 109103879 · 315971342878788876787<21> · C163
C163 = P34 · C130
P34 = 2472176201488989163470538770710003<34>
C130 = [3014241151258482250646629430943474307709267290595380818070266010335607748326473373305206926053831950374530423789611599608439806667<130>]
By Robert Backstrom / GGNFS, Msieve
(22·10156+23)/9 = 2(4)1557<157> = 4547 · 10601 · 817603 · 2219635954465259223327708947<28> · C116
C116 = P54 · P63
P54 = 140350244666350609226894618859195516341027638500563633<54>
P63 = 199099872181567014671579008715002480094143366187033872354713317<63>
Number: n N=27943715773722063936691722152698523908458765196954280032157968841627837312957044871581762548438985303588808631000661 ( 116 digits) Divisors found: Tue Jul 15 16:08:22 2008 prp54 factor: 140350244666350609226894618859195516341027638500563633 Tue Jul 15 16:08:22 2008 prp63 factor: 199099872181567014671579008715002480094143366187033872354713317 Tue Jul 15 16:08:22 2008 elapsed time 01:31:56 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 42.90 hours. Scaled time: 56.33 units (timescale=1.313). Factorization parameters were as follows: name: n n: 27943715773722063936691722152698523908458765196954280032157968841627837312957044871581762548438985303588808631000661 skew: 47568.43 # norm 1.44e+16 c5: 44160 c4: 4908212444 c3: -559428385396405 c2: -8122621523859034918 c1: 191177662074665609611144 c0: -1057339503448102257405097600 # alpha -6.06 Y1: 3013035451613 Y0: -14462687652541172636637 # Murphy_E 4.75e-10 # M 13749798645903224652008884833430320114302017669267970026189959974505191987149920357678449950213629431261078728068770 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved special-q in [100000, 1799990) Primes: RFBsize:315948, AFBsize:315778, largePrimes:9341040 encountered Relations: rels:8769691, finalFF:762080 Max relations in full relation-set: 28 Initial matrix: 631808 x 762080 with sparse part having weight 45124286. Pruned matrix : Total sieving time: 42.50 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,50,50,2.5,2.5,60000 total time: 42.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(22·10161+23)/9 = 2(4)1607<162> = 72 · 73795848330403<14> · 107546926227583<15> · C132
C132 = P52 · P81
P52 = 1502437621398893305826089711439184886680078009309919<52>
P81 = 418367277957308925333921233455513317862150641697102827631297773846327424699635013<81>
Number: n N=628570737965308867894616758650083694072525682923772825126976449775573725741245698307743195957424393590240832150518669803215300593947 ( 132 digits) SNFS difficulty: 162 digits. Divisors found: Tue Jul 15 18:20:17 2008 prp52 factor: 1502437621398893305826089711439184886680078009309919 Tue Jul 15 18:20:17 2008 prp81 factor: 418367277957308925333921233455513317862150641697102827631297773846327424699635013 Tue Jul 15 18:20:17 2008 elapsed time 01:38:49 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.99 hours. Scaled time: 69.73 units (timescale=1.453). Factorization parameters were as follows: name: KA_2_4_160_7 n: 628570737965308867894616758650083694072525682923772825126976449775573725741245698307743195957424393590240832150518669803215300593947 skew: 0.64 deg: 5 c5: 220 c0: 23 m: 100000000000000000000000000000000 type: snfs rlim: 4400000 alim: 4400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4400000/4400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:309335, AFBsize:309159, largePrimes:7452388 encountered Relations: rels:6986017, finalFF:643203 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.75 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4400000,4400000,28,28,48,48,2.5,2.5,100000 total time: 47.99 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS
(13·10191+41)/9 = 1(4)1909<192> = C192
C192 = P51 · P141
P51 = 497657554076973302518779613306102473057258401585609<51>
P141 = 290248672528143811855534364536737651221044179346938023837658334270944573019672423163353331467770581052482338681134129509473272799800519044761<141>
Number: 14449_191 N=144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: r1=497657554076973302518779613306102473057258401585609 (pp51) r2=290248672528143811855534364536737651221044179346938023837658334270944573019672423163353331467770581052482338681134129509473272799800519044761 (pp141) Version: GGNFS-0.77.1-20050930-nocona Total time: 592.51 hours. Scaled time: 1409.59 units (timescale=2.379). Factorization parameters were as follows: n: 144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 m: 100000000000000000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [8000000, 18100001) Primes: RFBsize:1031130, AFBsize:1029654, largePrimes:14861895 encountered Relations: rels:16051847, finalFF:2329705 Max relations in full relation-set: 28 Initial matrix: 2060851 x 2329705 with sparse part having weight 193127240. Pruned matrix : 1827746 x 1838114 with weight 151862872. Total sieving time: 552.20 hours. Total relation processing time: 0.44 hours. Matrix solve time: 39.65 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,16000000,16000000,28,28,52,52,2.6,2.6,100000 total time: 592.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047052k/8912896k available (2459k kernel code, 339236k reserved, 1247k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673804) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.23 BogoMIPS (lpj=2672116) Calibrating delay using timer specific routine.. 5589.60 BogoMIPS (lpj=2794804)
By Serge Batalov / Msieve
(22·10176+23)/9 = 2(4)1757<177> = 13 · 1109 · 2083 · 12637 · 2201791629722900115084517<25> · 98202646709372914952284004731<29> · C112
C112 = P33 · P80
P33 = 263918040926244833932442223532777<33>
P80 = 11287649866483430593118539466784682520308464734220950406084876622638519492533399<80>
Number: 24447_176 N=2979014439423696070680381230689894498227059660077707317426808607490416509659199184543278457103523964979443719023 ( 112 digits) Divisors found: r1=263918040926244833932442223532777 r2=11287649866483430593118539466784682520308464734220950406084876622638519492533399 Version: Msieve 1.36 Factorization parameters were as follows: name: 24447_176 n: 2979014439423696070680381230689894498227059660077707317426808607490416509659199184543278457103523964979443719023 skew: 43254.19 # norm 3.04e+15 c5: 3840 c4: 2706565576 c3: 2492910207212 c2: -5833440226913678650 c1: -98011231431123673328307 c0: -232632515522583734331555306 # alpha -6.06 Y1: 643298896207 Y0: -3783884480249237801755 # Murphy_E 8.01e-10 # M 1300968512421426024764568100635526414813480594650460600267126043707504036536817791911229599377015845824674248517 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3250001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 430899 x 431147 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 15.00 hours.
By Robert Backstrom / GGNFS, Msieve
(7·10167-61)/9 = (7)1661<167> = 114807751 · 3626102422772747707<19> · C141
C141 = P57 · P84
P57 = 823035057767144134239967477480765928602729472785254183529<57>
P84 = 227000032497982054005520830210122515119411890431796815636671279518904326397745213007<84>
Number: n N=186828984860120255606519839560874657226518689870717896574431922306201449144447043355099889582452640081134312356077616468363781250379975961703 ( 141 digits) SNFS difficulty: 167 digits. Divisors found: Mon Jul 14 15:50:30 2008 prp57 factor: 823035057767144134239967477480765928602729472785254183529 Mon Jul 14 15:50:30 2008 prp84 factor: 227000032497982054005520830210122515119411890431796815636671279518904326397745213007 Mon Jul 14 15:50:30 2008 elapsed time 01:51:25 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.67 hours. Scaled time: 126.80 units (timescale=1.820). Factorization parameters were as follows: name: KA_7_166_1 n: 186828984860120255606519839560874657226518689870717896574431922306201449144447043355099889582452640081134312356077616468363781250379975961703 skew: 0.61 deg: 5 c5: 700 c0: -61 m: 1000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4300001) Primes: RFBsize:380800, AFBsize:380053, largePrimes:8163761 encountered Relations: rels:7710086, finalFF:765959 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 69.35 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 69.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By matsui / GGNFS
4·10174+1 = 4(0)1731<175> = 21669802129<11> · C165
C165 = P47 · P118
P47 = 90895849637269554525310385291775885388075787009<47>
P118 = 2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441<118>
N=184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969 ( 165 digits) SNFS difficulty: 175 digits. Divisors found: r1=90895849637269554525310385291775885388075787009 (pp47) r2=2030771183197325350577624750920707697746469994254856700264575730266390155389375430973873995208761043763694185654787441 (pp118) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 105.95 hours. Scaled time: 151.40 units (timescale=1.429). Factorization parameters were as follows: n: 184588672115604069528972854978670396146283150031988000899756623707562973659121407660916256260292684834971895741761989764036760485363820924070607603839279154684153969 m: 100000000000000000000000000000000000 c5: 2 c0: 5 skew: 1.2 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10400001) Primes: RFBsize:501962, AFBsize:501861, largePrimes:6413242 encountered Relations: rels:6884769, finalFF:1153553 Max relations in full relation-set: 28 Initial matrix: 1003888 x 1153553 with sparse part having weight 68214227. Pruned matrix : 873507 x 878590 with weight 50441029. Total sieving time: 101.00 hours. Total relation processing time: 0.12 hours. Matrix solve time: 4.44 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 105.95 hours.
By Sinkiti Sibata / GGNFS
(22·10151+23)/9 = 2(4)1507<152> = 3 · 97 · 8834843 · 18558168955073395708146667411<29> · C114
C114 = P53 · P61
P53 = 70985983835086576997852624750687510213827313422930409<53>
P61 = 7217397353726318978026298518599642790594988964775374257181581<61>
Number: 24447_151 N=512334051883013116583423649922513914567713078285125905872387242449953931012240050043094620958754046039730239596629 ( 114 digits) Divisors found: r1=70985983835086576997852624750687510213827313422930409 (pp53) r2=7217397353726318978026298518599642790594988964775374257181581 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 59.21 hours. Scaled time: 28.00 units (timescale=0.473). Factorization parameters were as follows: name: 24447_151 n: 512334051883013116583423649922513914567713078285125905872387242449953931012240050043094620958754046039730239596629 skew: 58934.48 # norm 1.67e+16 c5: 39240 c4: 2548362158 c3: -848790397397041 c2: -7561237389283676814 c1: 1098028132791631657707704 c0: -101853278834969772710102272 # alpha -6.65 Y1: 698620596401 Y0: -6655248136878522324179 # Murphy_E 5.69e-10 # M 411099533570434247334050740846394508864406295354105061320770663934783270735188517730048665882061695384371932235740 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: RFBsize:250150, AFBsize:249615, largePrimes:7495265 encountered Relations: rels:7340500, finalFF:563249 Max relations in full relation-set: 28 Initial matrix: 499845 x 563249 with sparse part having weight 48058090. Pruned matrix : 449089 x 451652 with weight 33803649. Total sieving time: 50.37 hours. Total relation processing time: 0.55 hours. Matrix solve time: 7.94 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 59.21 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, Msieve
(2·10192+1)/3 = (6)1917<192> = 22441 · 437977 · 48109987 · 1526524747081880791478251001<28> · C147
C147 = P38 · P45 · P66
P38 = 11948477248990278755249447965289499937<38>
P45 = 166390757028721578564820877464821642636142609<45>
P66 = 464552052602373136402651573347040115738820665732325211913648101361<66>
# first, by ECM Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=3529291452 Step 1 took 5972ms Step 2 took 5538ms ********** Factor found in step 2: 11948477248990278755249447965289499937 Found probable prime factor of 38 digits: 11948477248990278755249447965289499937 Composite cofactor 77297167711755354438769313097704800502672814513221504344872692101599293570057314899883042225028440669682990849 has 110 digits # then by Msieve/gnfs,110 Number: 66667_192 N=77297167711755354438769313097704800502672814513221504344872692101599293570057314899883042225028440669682990849 ( 110 digits) Divisors found: r1=166390757028721578564820877464821642636142609 r2=464552052602373136402651573347040115738820665732325211913648101361 Factorization parameters were as follows: name: 66667_192 n: 77297167711755354438769313097704800502672814513221504344872692101599293570057314899883042225028440669682990849 skew: 10017.40 # norm 6.40e+14 c5: 74880 c4: 2885407200 c3: 17695074766288 c2: -253585168675014076 c1: 568043165283630402721 c0: -813150504652600490326365 # alpha -5.61 Y1: 345585391877 Y0: -1006371663273310375634 # Murphy_E 1.14e-09 # M 31155127991704449356442579169587931086327302371789743816853144263449870130460753713703574862673252103015339066 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 369426 x 369674 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 11.00 hours.
5·10199-3 = 4(9)1987<200> = 219619 · 3639959 · 4744042763965047965693<22> · C167
C167 = P31 · P136
P31 = 8093176768651631185069802113901<31>
P136 = 1629055878393401770330660883294105510464026569183051106513390639156296434054875594593755637398223572917720059576936252313923440973374849<136>
(8·10174-71)/9 = (8)1731<174> = 7 · 53 · 12101 · C168
C168 = P28 · C141
P28 = 1939607078801257064760060301<28>
C141 = [102079502915150872449364582616265150010758333661353575581993053425424847966829582828720569749338022010525015105109233120216741718055475742411<141>]
(2·10188+7)/9 = (2)1873<188> = 113 · 587 · 2659 · 1864630093819<13> · C167
C167 = P33 · P135
P33 = 112654204167499843146979520977037<33>
P135 = 599808355233464006448212960910397629581245269600833415238862953159561681692737075144423658619895686481443976435337829801517842607704129<135>
(19·10195+17)/9 = 2(1)1943<196> = 59 · 1267577 · 158612774241033861923<21> · C168
C168 = P39 · P129
P39 = 282503324001414019100503379652927974071<39>
P129 = 629974551490611084435937066618096229596276276489387128835727689298806791822488193421449041113663483875019510871892831411163366727<129>
(32·10195-23)/9 = 3(5)1943<196> = 11 · 17 · 1019 · 11597 · 67829 · 244979073043<12> · C170
C170 = P33 · C138
P33 = 103006187361337566011944121049239<33>
C138 = [940022626361736428027252898323336782308056104327236273583195401942375080676203948933037333853780425271367083459258236281339248935045206101<138>]
By Sinkiti Sibata / GGNFS
(22·10154+23)/9 = 2(4)1537<155> = 32 · 1613 · 6144493 · 85808033 · 26756289861065329<17> · C120
C120 = P58 · P62
P58 = 1798409594124660216759258210120687655281031358400703839301<58>
P62 = 66370454423809885762078346386195882275783383739027815254557491<62>
Number: 24447_154 N=119361262002193195821448307853344484885855650684642416843797966406457642714370053703754405333884430590534099281529753791 ( 120 digits) Divisors found: r1=1798409594124660216759258210120687655281031358400703839301 (pp58) r2=66370454423809885762078346386195882275783383739027815254557491 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 70.89 hours. Scaled time: 55.58 units (timescale=0.784). Factorization parameters were as follows: name: 24447_154 n: 119361262002193195821448307853344484885855650684642416843797966406457642714370053703754405333884430590534099281529753791 skew: 60960.40 # norm 1.84e+16 c5: 47940 c4: 5307530782 c3: -625612329042056 c2: -16268669865623770227 c1: 204342567025062309743036 c0: 8794015424991234094426300580 # alpha -5.74 Y1: 5404961881777 Y0: -75723797960330337216429 # Murphy_E 3.09e-10 # M 75322734279060307587904586726507012317372125376889169597155511412590324434436033530464569542901548305306847769101384234 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316629, largePrimes:7720056 encountered Relations: rels:7821817, finalFF:759929 Max relations in full relation-set: 28 Initial matrix: 632662 x 759929 with sparse part having weight 66754450. Pruned matrix : 529324 x 532551 with weight 43939785. Total sieving time: 66.31 hours. Total relation processing time: 0.50 hours. Matrix solve time: 3.68 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 70.89 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
4·10168+7 = 4(0)1677<169> = 112 · 2618693672249983639196789<25> · C143
C143 = P63 · P80
P63 = 434600913422969283935715734532476163912699428553621729133663787<63>
P80 = 29046866416543146278620690212890391220410722501413452500320961183706650069675369<80>
Number: n N=12623794676704621965362748212067023827563490650371887005640338255443815536512266154311383935241401663051630078521097059654813799889624681162403 ( 143 digits) SNFS difficulty: 168 digits. Divisors found: Sun Jul 13 16:29:05 2008 prp63 factor: 434600913422969283935715734532476163912699428553621729133663787 Sun Jul 13 16:29:05 2008 prp80 factor: 29046866416543146278620690212890391220410722501413452500320961183706650069675369 Sun Jul 13 16:29:05 2008 elapsed time 01:05:28 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.09 hours. Scaled time: 86.36 units (timescale=1.834). Factorization parameters were as follows: name: KA_4_0_167_7 n: 12623794676704621965362748212067023827563490650371887005640338255443815536512266154311383935241401663051630078521097059654813799889624681162403 skew: 0.56 deg: 5 c5: 125 c0: 7 m: 2000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900000) Primes: RFBsize:380800, AFBsize:380502, largePrimes:7959970 encountered Relations: rels:7657643, finalFF:861422 Max relations in full relation-set: 28 Initial matrix: 761367 x 861422 with sparse part having weight 40728051. Pruned matrix : Total sieving time: 46.84 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 47.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Serge Batalov / GMP-ECM
7·10183+9 = 7(0)1829<184> = 79 · 69172788077<11> · C172
C172 = P30 · C142
P30 = 133818982259225767835521221337<30>
C142 = [9572336242243985044301236538042107107618534026530064456879616370843986823511954236728268510314492217680175701229960850902545463856024173108379<142>]
9·10199-7 = 8(9)1983<200> = 31 · 743 · 6841 · 12697 · 316339 · 413089877 · 107105780766623<15> · 13919023264892149<17> · C144
C144 = P32 · C113
P32 = 19620579832179617602901623499857<32>
C113 = [11769025183817619952672417054651487669578574210254607906854183871505045045861473013946425938221361597450232344269<113>]
6·10194+1 = 6(0)1931<195> = 153817 · 33881245227068299278185531<26> · C165
C165 = P33 · C132
P33 = 901361069267656452128353133474957<33>
C132 = [127728776954149061732629779151943546510736581677373866290113899810994265965188567884730521444012921154476658141238516044262272295959<132>]
By Robert Backstrom / GGNFS, Msieve
(19·10163+71)/9 = 2(1)1629<164> = 53 · 62755516806818389237490084489<29> · C133
C133 = P67 · P67
P67 = 1702357182418622530789291597341299637631432288875092672261013494321<67>
P67 = 3728486921641779431391217242278242452352917616981245286538949510667<67>
Number: n N=6347216490610783077441171781434338047436822507152466738398464557918916343716774041846421465798549105708434295220219648071786733422107 ( 133 digits) SNFS difficulty: 164 digits. Divisors found: Sun Jul 13 04:05:21 2008 prp67 factor: 1702357182418622530789291597341299637631432288875092672261013494321 Sun Jul 13 04:05:21 2008 prp67 factor: 3728486921641779431391217242278242452352917616981245286538949510667 Sun Jul 13 04:05:21 2008 elapsed time 02:59:59 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 86.99 hours. Scaled time: 113.78 units (timescale=1.308). Factorization parameters were as follows: name: KA_2_1_162_9 n: 6347216490610783077441171781434338047436822507152466738398464557918916343716774041846421465798549105708434295220219648071786733422107 skew: 0.33 deg: 5 c5: 19000 c0: 71 m: 100000000000000000000000000000000 type: snfs rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5700001) Primes: RFBsize:322441, AFBsize:322667, largePrimes:8115761 encountered Relations: rels:7560077, finalFF:650072 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 86.72 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,48,48,2.5,2.5,100000 total time: 86.99 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Serge Batalov / GMP-ECM, pol51, Msieve
(17·10198-53)/9 = 1(8)1973<199> = 7603 · 30803 · 43261 · 102559 · 1042469 · 2250737867569<13> · 1941823279749679397<19> · C144
C144 = P36 · P38 · P71
P36 = 532909957499658687338853693037114127<36>
P38 = 12127492055545606309658842712355349019<38>
P71 = 61735571024736893980769353536098228900774070762653834895799357457201053<71>
# by ECM -- Using B1=1000000, B2=2852890960, polynomial Dickson(6), sigma=323913398 Step 1 took 6878ms Step 2 took 5269ms ********** Factor found in step 2: 12127492055545606309658842712355349019 Found probable prime factor of 38 digits: 12127492055545606309658842712355349019 Composite cofactor 32899500531009698487939962220216476251136087124144340859751512031161508952739461583756806371723685945575731 has 107 digits # # then by GNFS/Msieve # Number: 18883_198 N=32899500531009698487939962220216476251136087124144340859751512031161508952739461583756806371723685945575731 ( 107 digits) Divisors found: r1=532909957499658687338853693037114127 r2=61735571024736893980769353536098228900774070762653834895799357457201053 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: name: 18883_198 n: 32899500531009698487939962220216476251136087124144340859751512031161508952739461583756806371723685945575731 skew: 44376.14 # norm 8.55e+14 c5: 8100 c4: -489452472 c3: -48951202463129 c2: 862613667364327251 c1: 36219942136802215898001 c0: -363404921018249872201819607 # alpha -5.93 Y1: 88261732339 Y0: -332462181768746779864 # Murphy_E 1.37e-09 # M 18483838965041290916740587464894868353558034896369087202581405858735878552821000366540532693858814885993829 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 310515 x 310763 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 6.00 hours.
(22·10178+23)/9 = 2(4)1777<179> = 3 · 9511 · 7058628672138574632984994873<28> · C147
C147 = P30 · P50 · P67
P30 = 407818136912747014681334981443<30>
P50 = 75160945043175857866901963484673054341461063508311<50>
P67 = 3959621107875479961537988501024588458702472685250586541345053347871<67>
# by ECM -- # Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=430382 Step 1 took 20824ms Step 2 took 15058ms ********** Factor found in step 2: 407818136912747014681334981443 Found probable prime factor of 30 digits: 407818136912747014681334981443 Composite cofactor 297608864480828054398175478834481222993428795506090706648602298717700679595827000206738339572148229407385859182655881 has 117 digits # # then by GNFS/Msieve # Number: 24447_178 N=297608864480828054398175478834481222993428795506090706648602298717700679595827000206738339572148229407385859182655881 ( 117 digits) Divisors found: r1=75160945043175857866901963484673054341461063508311 r2=3959621107875479961537988501024588458702472685250586541345053347871 Factorization parameters were as follows: name: 24447_178 n: 297608864480828054398175478834481222993428795506090706648602298717700679595827000206738339572148229407385859182655881 skew: 56866.92 # norm 3.03e+16 c5: 11760 c4: 58587242 c3: -948018741867885 c2: 5359060334242097837 c1: 500754803694110056951611 c0: -3720239981301914611368153205 # alpha -6.05 Y1: 3414751932097 Y0: -30244587069795188032038 # Murphy_E 4.18e-10 # M 109539901323225467029707024396066592108219284886924732442320854580487753105415174514190809144234342576834319914949849 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 570807 x 571055 Total sieving time: 15.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 01:14:42 Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.5,2.5,100000 total time: 17.00 hours.
By Serge Batalov / GMP-ECM
(2·10180+7)/9 = (2)1793<180> = 71 · 3581374329011<13> · C165
C165 = P42 · P124
P42 = 282287262952400056073198405956934109921109<42>
P124 = 3095908655365249055568580267803159689569266960813853471093469310442231639214617495399521734305189014030222056875561596808087<124>
6·10189+7 = 6(0)1887<190> = 6209183697097282695749827<25> · C165
C165 = P29 · C137
P29 = 84650755361806968467920668269<29>
C137 = [11415262534024941376215177642404391202003957780146884337777704466878931859742980790987063731573828128798768767273676353885360988327570689<137>]
(4·10174+41)/9 = (4)1739<174> = 401 · 1531 · 2333 · C165
C165 = P32 · C134
P32 = 11103172231868232665208082632227<32>
C134 = [27947058444735539012965143631675640717984624676970856746909322865014587987121750699821648616857592608427104241739512228516510591633269<134>]
(8·10198-17)/9 = (8)1977<198> = 29 · 2551 · 26987713 · 24810652678294736989<20> · C167
C167 = P30 · C138
P30 = 122763886401873301220354203087<30>
C138 = [146171976769747747349388334776423064471607044898176691920488992333574187962280014690489994846698316344610133907207472343085837277045010167<138>]
(4·10191-7)/3 = 1(3)1901<192> = 11 · 8111 · 22485379500775341739<20> · C167
C167 = P32 · P136
P32 = 17187029396452962451764372549233<32>
P136 = 3866968269055691419473815558756213198307575801275502239579209994484850503385131935406232395834688131221430324342382120842650685242448053<136>
(14·10196-41)/9 = 1(5)1951<197> = 43 · 12991941439670998826484083573<29> · C167
C167 = P32 · C135
P32 = 31549870079323557671928299889097<32>
C135 = [882562440577446030345916906651940795515837407245481246517202735480841275954656517617252892526279545364367486770393761420751543094322497<135>]
(4·10199-13)/9 = (4)1983<199> = 3 · 97 · 107 · 175859 · 682417 · 130656152593<12> · C172
C172 = P32 · P141
P32 = 21660553494232995120193600442447<32>
P141 = 420268522590178138077849423985006098086889585395357247913022086632798078770561566068346842586303068386567989060067693212646894386791399439703<141>
(7·10192-61)/9 = (7)1911<192> = 3 · 313 · 761 · 9139826512344133<16> · 358804313245062117504457<24> · C147
C147 = P31 · P117
P31 = 2736444955335091738175869222951<31>
P117 = 121289430700501471603498088503911465819708333729664041167291526413944869019180851149006200154305108790796966792303979<117>
(17·10197-53)/9 = 1(8)1963<198> = 3 · 19 · 619 · 8581 · 20073649757649413<17> · 5797970114799596368404037<25> · C148
C148 = P31 · P118
P31 = 2604864000866961077367688444027<31>
P118 = 2057859104406529255404097678068784747468733410880713070871039782861735411913581127133206348898129767928452882855107983<118>
(5·10197+31)/9 = (5)1969<197> = 72 · 43891 · 162829 · 81609246936439853<17> · 42761497358777840501<20> · C149
C149 = P27 · P122
P27 = 950049141625022318627404183<27>
P122 = 47850429337345006784444707647769333495962030245726338067483271465533087330815675138269874797856518257348618342044284285431<122>
By Sinkiti Sibata / GGNFS
5·10180-7 = 4(9)1793<181> = 109 · 1488967 · 8420351363<10> · 25030322608453531<17> · 10767890436875898837091171<26> · C122
C122 = P51 · P71
P51 = 139863195581166062045796944539175077355000899883699<51>
P71 = 97057186527914640161646341782139678769623110723336236535802668798096963<71>
Number: 49993_180 N=13574728261911441147955700905150374565535532034665629960565878514238403995814790116946394699688601479367104968379225106137 ( 122 digits) Divisors found: r1=139863195581166062045796944539175077355000899883699 (pp51) r2=97057186527914640161646341782139678769623110723336236535802668798096963 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 85.86 hours. Scaled time: 67.31 units (timescale=0.784). Factorization parameters were as follows: name: 49993_180 n: 13574728261911441147955700905150374565535532034665629960565878514238403995814790116946394699688601479367104968379225106137 skew: 77051.65 # norm 4.21e+16 c5: 34020 c4: -13370552037 c3: -806276712066080 c2: 43437997914285937766 c1: 379528431266404362894308 c0: 12554215439813951821136969239 # alpha -6.11 Y1: 2279412482303 Y0: -209025725432362513645620 # Murphy_E 2.48e-10 # M 12408996827428119508990999514464920706883057660258542158125313393200473585265399403708299436417097179742052149520854139575 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 4960001) Primes: RFBsize:348513, AFBsize:348568, largePrimes:7707588 encountered Relations: rels:7855683, finalFF:809185 Max relations in full relation-set: 28 Initial matrix: 697159 x 809185 with sparse part having weight 68458102. Pruned matrix : 604522 x 608071 with weight 46617823. Total sieving time: 80.23 hours. Total relation processing time: 0.62 hours. Matrix solve time: 4.58 hours. Time per square root: 0.43 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 85.86 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(61·10166-7)/9 = 6(7)166<167> = 67 · 367 · 18457172593<11> · 59403451729<11> · C142
C142 = P51 · P91
P51 = 571362150201701442101639602427041315624408776223453<51>
P91 = 4400055322869183148068430795279616992237472574915031133555720308758263448099841707032943673<91>
Number: n N=2514025070280978156173856658318084509079462260303472446853628761692169926867747112435428341002721935384211845341853088789294874496506610562869 ( 142 digits) SNFS difficulty: 167 digits. Divisors found: Fri Jul 11 20:01:05 2008 prp51 factor: 571362150201701442101639602427041315624408776223453 Fri Jul 11 20:01:05 2008 prp91 factor: 4400055322869183148068430795279616992237472574915031133555720308758263448099841707032943673 Fri Jul 11 20:01:05 2008 elapsed time 03:52:37 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 95.20 hours. Scaled time: 166.51 units (timescale=1.749). Factorization parameters were as follows: name: KA_6_7_166 n: 2514025070280978156173856658318084509079462260303472446853628761692169926867747112435428341002721935384211845341853088789294874496506610562869 type: snfs skew: 0.41 deg: 5 c5: 610 c0: -7 m: 1000000000000000000000000000000000 rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4000001) Primes: RFBsize:380800, AFBsize:381368, largePrimes:8083118 encountered Relations: rels:7642312, finalFF:764250 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 94.85 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.6,2.6,100000 total time: 95.20 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Serge Batalov / GMP-ECM
(22·10172-13)/9 = 2(4)1713<173> = 832582043 · 21430900157<11> · C154
C154 = P32 · P123
P32 = 10657958831905102704921058981771<32>
P123 = 128540113827202101407963240722095256356240982179406016084691632863292226740107335226351658112576118368825069138632503298783<123>
(4·10245-1)/3 = 1(3)245<246> = 293 · 4428013 · 436570924477<12> · 197820650760877883<18> · 1940832977077439598289<22> · C186
C186 = P30 · C157
P30 = 245134337177055685486188936209<30>
C157 = [2501171562988825851415370384081321419214621935721077851805784023208701598634345508830113823065528926160766234175487084012080520263262356598377156307842064507<157>]
(22·10204+23)/9 = 2(4)2037<205> = 720023 · 50715854861597509<17> · 1888715261066607592247<22> · C161
C161 = P33 · P129
P33 = 192419819014657626660048413404243<33>
P129 = 184193270944572775718293604852340692637144385757769845962737152831321614464484501568395567703368265474703829715890241313565646801<129>
(22·10182+23)/9 = 2(4)1817<183> = 132 · 17 · 19 · 3673990757<10> · C169
C169 = P35 · C134
P35 = 44982980583091433538219963671317681<35>
C134 = [27095967114785546061369574234256681325758554891730009334878063346192359766250427904748769055763410666798187604335850455402484330235193<134>]
(4·10231-1)/3 = 1(3)231<232> = 2917 · 51824844853<11> · C217
C217 = P32 · C186
P32 = 23692560197239551081270833387477<32>
C186 = [372265083945976876768738111732476398995298007157226123029218145214349213362722613653536404844918572502440528633936829558008893550996679328683843376684364405105826229589913544277836064729<186>]
(22·10188+23)/9 = 2(4)1877<189> = 13 · C188
C188 = P34 · P154
P34 = 6189273399288534095811470799393323<34>
P154 = 3038065632321280803476378108253243566314611187787592040202073700106715272161599074003370726703208829303229285374974719559646659679887499093314088198875153<154>
(34·10181-43)/9 = 3(7)1803<182> = 3 · 11 · 29 · 163 · 5200627 · C170
C170 = P39 · C132
P39 = 213915155316488930742987770646789353867<39>
C132 = [217690564118948162947524692462895493375283510041319060406784879841316278978454648395634663748148125534702826272476735696747049821067<132>]
(22·10193-13)/9 = 2(4)1923<194> = 5657 · C190
C190 = P38 · C152
P38 = 56324686381350084101805638381550307243<38>
C152 = [76717635739151528363645309382391042558552748328658787346390836596385290572482473167190784819468980117146226312447151202964037959418539144514394956959993<152>]
(11·10190+7)/9 = 1(2)1893<191> = 31 · 4241 · 6376025173745417<16> · C170
C170 = P31 · C139
P31 = 1863228909427870138828633619159<31>
C139 = [7825353626582025776538354806681030279556975533141499321701053340837219702251845795735815749187118825483332759959817834394476302231364380271<139>]
(22·10190-31)/9 = 2(4)1891<191> = 3 · 107 · 30301683840760864991<20> · C169
C169 = P31 · C139
P31 = 2490251637797916931309772842307<31>
C139 = [1009171883154106743508535605718677600660412608929316157145576041105042869396199255493030596518470433121808888282588221824147334028807874733<139>]
(67·10185+23)/9 = 7(4)1847<186> = 3 · 11 · 25733 · 632743 · 1531297 · C168
C168 = P32 · P137
P32 = 34750107879239961728047681359629<32>
P137 = 26036643415171346432359099267987911251355957717634424727606538886386969243082299006926238395178631918394732555045442482566554127640653897<137>
By Sinkiti Sibata / GGNFS
(22·10147+23)/9 = 2(4)1467<148> = 65203 · 128552809986493<15> · C129
C129 = P61 · P69
P61 = 1719658046526775063872329620833713151617719446440944978655437<61>
P69 = 169585580715031070644678516951803468114192521983834826364569163297389<69>
Number: 24447_147 N=291629208451519068887102421369332315645823720830469690559715370792266303503783111885851927973996158741963183104053718746592753993 ( 129 digits) SNFS difficulty: 148 digits. Divisors found: r1=1719658046526775063872329620833713151617719446440944978655437 (pp61) r2=169585580715031070644678516951803468114192521983834826364569163297389 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 26.74 hours. Scaled time: 27.04 units (timescale=1.011). Factorization parameters were as follows: name: 24447_147 n: 291629208451519068887102421369332315645823720830469690559715370792266303503783111885851927973996158741963183104053718746592753993 m: 100000000000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4450001) Primes: RFBsize:114155, AFBsize:113693, largePrimes:3180001 encountered Relations: rels:3315913, finalFF:304892 Max relations in full relation-set: 28 Initial matrix: 227915 x 304892 with sparse part having weight 39345363. Pruned matrix : 209004 x 210207 with weight 26695627. Total sieving time: 26.30 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.33 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 26.74 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, pol51, Msieve
(22·10165+23)/9 = 2(4)1647<166> = 3630210973012969<16> · 184423336707533618359111<24> · C127
C127 = P33 · P41 · P54
P33 = 519065104826878486825033434428939<33>
P41 = 13564038936664591900573721755613575846723<41>
P54 = 518586933045876452658110256298142053169804574677366689<54>
Number: 24447_165 N=7034133351879741953545824637111591729772173449090960338984032566235543003595723345747130010147 ( 94 digits) Divisors found: r1=13564038936664591900573721755613575846723 r2=518586933045876452658110256298142053169804574677366689 Version: Msieve 1.36 Factorization parameters were as follows: name: 24447_165 n: 7034133351879741953545824637111591729772173449090960338984032566235543003595723345747130010147 skew: 3323.02 # norm 2.17e+13 c5: 12480 c4: 132852514 c3: 2026591728383 c2: -2797070364676835 c1: -152907382291947879 c0: 2428472541599586000585 # alpha -6.27 Y1: 21826676509 Y0: -891613348784733154 # Murphy_E 7.04e-09 # M 985921677842606424635089187194602414969543492765505871351915733770294116031045157405970754230 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 900001) Relations: 1827435 relations Pruned matrix : 113960 x 114182 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,93,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 1.70 hours.
(22·10160+23)/9 = 2(4)1597<161> = 3 · 59 · 1185889 · 111246536441<12> · C142
C142 = P38 · P104
P38 = 18275254618976078978614739674353667489<38>
P104 = 57281308395505724725642726213432671439294032138257996320630107178666862119375122137370004294231648428551<104>
(22·10158+23)/9 = 2(4)1577<159> = 13 · 103 · 100591 · 14065771 · 77006431 · C136
C136 = P38 · P98
P38 = 41970499708599475548745693906469796007<38>
P98 = 39921402516784417137477507774986630829373202203626798195388657530740030186361497142025588004796529<98>
(22·10164+23)/9 = 2(4)1637<165> = 13 · 19 · 157 · 877 · 370824437303<12> · 3897947297568115721<19> · C127
C127 = P40 · P88
P40 = 1995019063063025398231422514593900200743<40>
P88 = 2492485343226881663435258057593521762659123549921057652169671101365172576804392184453401<88>
(4·10203-1)/3 = 1(3)203<204> = 1296951005067479<16> · 3007224097573595988541199<25> · C164
C164 = P35 · C130
P35 = 22202898588664747899239883251976133<35>
C130 = [1539712722915429936027828705221199253961258103511550016874758536693107690174955859182188496690238915491251386488264294882125167481<130>]
By Sinkiti Sibata / GGNFS
(22·10146+23)/9 = 2(4)1457<147> = 13 · 19 · 691 · 827 · 225508344619<12> · C127
C127 = P45 · P82
P45 = 877528400546131797964133967369485080367167411<45>
P82 = 8751366321326903185967256414898843569806199348466925509478330018011501491730031177<82>
Number: 24447_146 N=7679572490547282653445779566837844449760348140477557883118528874893256621861959423600369133825523183623545437777492618208372747 ( 127 digits) SNFS difficulty: 147 digits. Divisors found: r1=877528400546131797964133967369485080367167411 (pp45) r2=8751366321326903185967256414898843569806199348466925509478330018011501491730031177 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.11 hours. Scaled time: 22.36 units (timescale=1.011). Factorization parameters were as follows: name: 24447_146 n: 7679572490547282653445779566837844449760348140477557883118528874893256621861959423600369133825523183623545437777492618208372747 m: 100000000000000000000000000000 c5: 220 c0: 23 skew: 0.64 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3650001) Primes: RFBsize:114155, AFBsize:113843, largePrimes:3064283 encountered Relations: rels:3144276, finalFF:305371 Max relations in full relation-set: 28 Initial matrix: 228065 x 305371 with sparse part having weight 37448122. Pruned matrix : 207710 x 208914 with weight 24673037. Total sieving time: 21.70 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.30 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 22.11 hours. --------- CPU info (if available) ----------
(22·10163+23)/9 = 2(4)1627<164> = 33 · 443567 · 2488363 · 18057001737479<14> · 73151581097461<14> · 9341132069122380143<19> · C104
C104 = P45 · P60
P45 = 249102491687358608662848197534804232352965847<45>
P60 = 266868000887712185768043059435968943896537652150789168406059<60>
Number: 24447_163 N=66477483972753334552687859983056965286835579716750839563958970783526092476680414187738718186558254866973 ( 104 digits) Divisors found: r1=249102491687358608662848197534804232352965847 (pp45) r2=266868000887712185768043059435968943896537652150789168406059 (pp60) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 13.82 hours. Scaled time: 6.54 units (timescale=0.473). Factorization parameters were as follows: name: 24447_163 n: 66477483972753334552687859983056965286835579716750839563958970783526092476680414187738718186558254866973 skew: 17881.90 # norm 4.12e+14 c5: 26280 c4: -214869564 c3: -22555996750888 c2: -53134620097994881 c1: -558143968031074428782 c0: 7374303972577595376526720 # alpha -6.71 Y1: 12172641437 Y0: -75964372797368143719 # Murphy_E 2.22e-09 # M 29165913441586357822458021902992880104855066735453999372086240476381350149477004246431504334222637972910 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: RFBsize:169511, AFBsize:169933, largePrimes:4303283 encountered Relations: rels:4293785, finalFF:413693 Max relations in full relation-set: 28 Initial matrix: 339528 x 413693 with sparse part having weight 29409280. Pruned matrix : 277889 x 279650 with weight 15942175. Polynomial selection time: 0.78 hours. Total sieving time: 10.85 hours. Total relation processing time: 0.32 hours. Matrix solve time: 1.68 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 13.82 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve
6·10199+1 = 6(0)1981<200> = 100827365033<12> · 21583541164043<14> · 10056670285225909<17> · 2683916005958404450397<22> · C139
C139 = P60 · P79
P60 = 479403087032713635428088886452712241517044136079900092034489<60>
P79 = 2130718979593492245520692728000484684740606068588764504461505725233767054216707<79>
Number: 60001_199 N=1021473256416313751511313085195015415741101216728868678354738007603336860446052672596356366452772363939729027082207007676223269169924007723 ( 139 digits) Divisors found: r1=479403087032713635428088886452712241517044136079900092034489 r2=2130718979593492245520692728000484684740606068588764504461505725233767054216707 Version: Total time: 729.05 hours. Scaled time: 1862.01 units (timescale=2.554). Factorization parameters were as follows: name: 60001_199 n: 1021473256416313751511313085195015415741101216728868678354738007603336860446052672596356366452772363939729027082207007676223269169924007723 skew: 280338.19 # norm 1.04e+019 c5: 252300 c4: 245677573930 c3: -164464139065339148 c2: -14892083660147997638066 c1: 2698421714535061042480987013 c0: 224570424633670708149720645350596 # alpha -5.52 Y1: 7549711331871863 Y0: -332246204352086047653102315 # Murphy_E 2.43e-011 # M 763279243787741847951479506369752047463195655372871890327270343578515699232362167261281075751089072705232087075956662908098373259288311939 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 1000000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 1 ) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1293519 x 1293747 Total sieving time: 729.05 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,138,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5, total time: 729.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(22·10163-13)/9 = 2(4)1623<164> = 2713 · 56432111231<11> · 141768691238978391619<21> · C130
C130 = P65 · P65
P65 = 27792384200043657245658680170611919922816011461860744469047783927<65>
P65 = 40522659874175581080586722921710792443780673884463536926755858537<65>
Number: n N=1126221332030780515366787389894956177448864285682143722873412986001818217724292991301588775644224073995875067988739088144154334799 ( 130 digits) SNFS difficulty: 164 digits. Divisors found: Thu Jul 10 11:46:24 2008 prp65 factor: 27792384200043657245658680170611919922816011461860744469047783927 Thu Jul 10 11:46:24 2008 prp65 factor: 40522659874175581080586722921710792443780673884463536926755858537 Thu Jul 10 11:46:24 2008 elapsed time 01:44:02 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 53.83 hours. Scaled time: 78.10 units (timescale=1.451). Factorization parameters were as follows: name: KA_2_4_162_3 n: 1126221332030780515366787389894956177448864285682143722873412986001818217724292991301588775644224073995875067988739088144154334799 skew: 0.45 deg: 5 c5: 1375 c0: -26 m: 200000000000000000000000000000000 type: snfs rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600001) Primes: RFBsize:322441, AFBsize:322367, largePrimes:7552829 encountered Relations: rels:7113306, finalFF:680302 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 53.58 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,48,48,2.5,2.5,100000 total time: 53.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(22·10169-1)/3 = 7(3)169<170> = 17 · 73 · 3727 · C164
C164 = P44 · P46 · P75
P44 = 55182912468944908194699383336535592987483933<44>
P46 = 1869960505794526294457703325188424521177501593<46>
P75 = 153650224634059109499407293340558535698949481554589881535242993884968124551<75>
Number: n N=15855146230932655194315267042822804110893487217617143045345502013927881137716286716104453991644770349377516148646608321169913764580338422330791537185975315987659219 ( 164 digits) SNFS difficulty: 171 digits. Divisors found: Thu Jul 10 15:53:51 2008 prp44 factor: 55182912468944908194699383336535592987483933 Thu Jul 10 15:53:51 2008 prp46 factor: 1869960505794526294457703325188424521177501593 Thu Jul 10 15:53:51 2008 prp75 factor: 153650224634059109499407293340558535698949481554589881535242993884968124551 Thu Jul 10 15:53:51 2008 elapsed time 01:29:24 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.25 hours. Scaled time: 106.53 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_3_169 n: 15855146230932655194315267042822804110893487217617143045345502013927881137716286716104453991644770349377516148646608321169913764580338422330791537185975315987659219 skew: 0.85 deg: 5 c5: 11 c0: -5 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600001) Primes: RFBsize:425648, AFBsize:425618, largePrimes:8091283 encountered Relations: rels:7744929, finalFF:876648 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 57.97 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,48,48,2.5,2.5,100000 total time: 58.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(65·10187+43)/9 = 7(2)1867<188> = 7 · 11 · 17 · 73 · 367 · 227627 · 12114132883<11> · 31708861836795119<17> · 1408778549650698007<19> · C131
C131 = P40 · P91
P40 = 3377652857328732875380257962975302947377<40>
P91 = 4949801375445568906672988898650230437891483199484561725621942929232193814285739846837010593<91>
By Sinkiti Sibata / GGNFS
(22·10143+23)/9 = 2(4)1427<144> = 7 · 47 · 22277 · 7533054917<10> · C127
C127 = P35 · P93
P35 = 24899585554378077503177286185969857<35>
P93 = 177813330540874967071390044687145423961622216372486528405096995740758978152899220369615973311<93>
Number: 24447_143 N=4427478236511424556653540737563208231598857083891635006455103628275009139523403268427254684269587423295577407426383647562486527 ( 127 digits) SNFS difficulty: 144 digits. Divisors found: r1=24899585554378077503177286185969857 (pp35) r2=177813330540874967071390044687145423961622216372486528405096995740758978152899220369615973311 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.00 hours. Scaled time: 16.98 units (timescale=0.999). Factorization parameters were as follows: name: 24447_143 n: 4427478236511424556653540737563208231598857083891635006455103628275009139523403268427254684269587423295577407426383647562486527 m: 20000000000000000000000000000 c5: 1375 c0: 46 skew: 0.51 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3150001) Primes: RFBsize:100021, AFBsize:99749, largePrimes:3058574 encountered Relations: rels:3168065, finalFF:285821 Max relations in full relation-set: 28 Initial matrix: 199836 x 285821 with sparse part having weight 36330475. Pruned matrix : 180305 x 181368 with weight 22450673. Total sieving time: 16.66 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.23 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.00 hours. --------- CPU info (if available) ----------
(22·10117+23)/9 = 2(4)1167<118> = 911 · 954962039576383<15> · C100
C100 = P45 · P56
P45 = 153350347540615171531355729586920964045930299<45>
P56 = 18322761197418823300515221966963200845626965065189219581<56>
Number: 24447_117 N=2809801797527874745136340628744054936820227528609256621780222174244995101695208495794891430931984719 ( 100 digits) SNFS difficulty: 118 digits. Divisors found: r1=153350347540615171531355729586920964045930299 (pp45) r2=18322761197418823300515221966963200845626965065189219581 (pp56) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 2.93 hours. Scaled time: 1.39 units (timescale=0.473). Factorization parameters were as follows: name: 24447_117 n: 2809801797527874745136340628744054936820227528609256621780222174244995101695208495794891430931984719 m: 100000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63764, largePrimes:2268593 encountered Relations: rels:2519915, finalFF:366680 Max relations in full relation-set: 28 Initial matrix: 112929 x 366680 with sparse part having weight 33794001. Pruned matrix : 73925 x 74553 with weight 6172791. Total sieving time: 2.74 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.93 hours. --------- CPU info (if available) ----------
(22·10144+23)/9 = 2(4)1437<145> = 29 · 281 · 6690491558713094261<19> · C122
C122 = P35 · P88
P35 = 24491557737939074393638448434527023<35>
P88 = 1830633552595663753669826211681350715915526535694694172275334022433701837826737468955001<88>
Number: 24447_144 N=44835067350405226132220665937906722622652243693041125936761642925899229679585266289557561143910490252449797666019505492023 ( 122 digits) SNFS difficulty: 146 digits. Divisors found: r1=24491557737939074393638448434527023 (pp35) r2=1830633552595663753669826211681350715915526535694694172275334022433701837826737468955001 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 13.14 hours. Scaled time: 13.21 units (timescale=1.005). Factorization parameters were as follows: name: 24447_144 n: 44835067350405226132220665937906722622652243693041125936761642925899229679585266289557561143910490252449797666019505492023 m: 100000000000000000000000000000 c5: 11 c0: 115 skew: 1.6 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2450001) Primes: RFBsize:114155, AFBsize:113898, largePrimes:2942200 encountered Relations: rels:3014645, finalFF:358154 Max relations in full relation-set: 28 Initial matrix: 228118 x 358154 with sparse part having weight 35742933. Pruned matrix : 190894 x 192098 with weight 18442775. Total sieving time: 12.84 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.21 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 13.14 hours. --------- CPU info (if available) ----------
(22·10145+23)/9 = 2(4)1447<146> = 32 · 43 · 10671352823<11> · C133
C133 = P47 · P87
P47 = 26172017367152437248707175326456702997166050893<47>
P87 = 226158298190510848206744669030862864131241436076272580498188671436573372939791504234879<87>
Number: 24447_145 N=5919018907967689542617280706178958723228668739763380195197924256951909716923374279609506382494224904358851019371435845744377939696947 ( 133 digits) SNFS difficulty: 146 digits. Divisors found: r1=26172017367152437248707175326456702997166050893 (pp47) r2=226158298190510848206744669030862864131241436076272580498188671436573372939791504234879 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.40 hours. Scaled time: 15.57 units (timescale=1.011). Factorization parameters were as follows: name: 24447_145 n: 5919018907967689542617280706178958723228668739763380195197924256951909716923374279609506382494224904358851019371435845744377939696947 m: 100000000000000000000000000000 c5: 22 c0: 23 skew: 1.01 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114118, largePrimes:3011437 encountered Relations: rels:3111828, finalFF:366744 Max relations in full relation-set: 28 Initial matrix: 228339 x 366744 with sparse part having weight 39789463. Pruned matrix : 191140 x 192345 with weight 21006123. Total sieving time: 15.07 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.23 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 15.40 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(22·10131+23)/9 = 2(4)1307<132> = 7 · 233 · 674318596793<12> · 127599449770529340523<21> · C97
C97 = P40 · P58
P40 = 1485468538436582264497629280992342831383<40>
P58 = 1172597093940178493433708438105100250038657021267386646301<58>
Number: 24447_131 N=1741856091310300700715755929448806029623162241556917825463352044460114273431692604987339103664283 ( 97 digits) SNFS difficulty: 132 digits. Divisors found: r1=1485468538436582264497629280992342831383 r2=1172597093940178493433708438105100250038657021267386646301 Version: Msieve 1.36 Factorization parameters were as follows: n: 1741856091310300700715755929448806029623162241556917825463352044460114273431692604987339103664283 Y1: 1 Y0: -100000000000000000000000000 c5: 220 c0: 23 skew: 0.64 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 1100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 120923 x 121140 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 2.00 hours --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 2.00 hours
(22·10138+23)/9 = 2(4)1377<139> = 2799078671<10> · C129
C129 = P60 · P70
P60 = 155810637693047503621475661225318370708471397541118401055253<60>
P70 = 5604901198936834141789322417044567348370536055675412409260801606914669<70>
Number: 24447_138 N=873303230012874634363731481002180250775968434523662748614629575891775442150280471500346924134182166559206525583376303911125206257 ( 129 digits) SNFS difficulty: 139 digits. Divisors found: r1=155810637693047503621475661225318370708471397541118401055253 r2=5604901198936834141789322417044567348370536055675412409260801606914669 Version: Factorization parameters were as follows: n: 873303230012874634363731481002180250775968434523662748614629575891775442150280471500346924134182166559206525583376303911125206257 Y1: 1 Y0: -2000000000000000000000000000 c5: 1375 c0: 46 skew: 0.51 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 2600001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 174196 x 174436 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 5.80 hours
(22·10132+23)/9 = 2(4)1317<133> = 2687 · 778785229 · 31870902618307355072948857<26> · C95
C95 = P46 · P50
P46 = 1066310319098017272671211681952031856865065671<46>
P50 = 34372951380569981263498111038130737929995501699787<50>
Number: 24447_132 N=36652232754956210070888323715313598937737298897994870862991340173992678559983082119579881712077 ( 95 digits) SNFS difficulty: 133 digits. Divisors found: r1=1066310319098017272671211681952031856865065671 r2=34372951380569981263498111038130737929995501699787 Version: Msieve 1.36 Factorization parameters were as follows: n: 36652232754956210070888323715313598937737298897994870862991340173992678559983082119579881712077 Y1: 1 Y0: -100000000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 1250001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 1458934 unique relations Pruned matrix : 130812 x 131059 Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 2.50 hours.
(22·10137+23)/9 = 2(4)1367<138> = 7 · 1741 · 6477307 · 56495077137950327<17> · C110
C110 = P37 · P73
P37 = 5838733377978851433090143474291042027<37>
P73 = 9387709216450097303503200248806037900230421287622289557752517186938865827<73>
Number: 24447_137 N=54812331144846873200817559961946909008650132404608284127492823677164804029605122171898283048704688433371111329 ( 110 digits) SNFS difficulty: 138 digits. Divisors found: r1=5838733377978851433090143474291042027 r2=9387709216450097303503200248806037900230421287622289557752517186938865827 Version: Factorization parameters were as follows: n: 54812331144846873200817559961946909008650132404608284127492823677164804029605122171898283048704688433371111329 Y1: 1 Y0: -1000000000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1925001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 157294 x 157519 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 4.00 hours.
By Robert Backstrom / GMP-ECM, GGNFS
(22·10139+23)/9 = 2(4)1387<140> = 3 · 4349 · C136
C136 = P36 · P41 · P60
P36 = 384822306832803106175504740480258261<36>
P41 = 29820580306445179468434784370467918075513<41>
P60 = 163265032757307485732791583648752186409635917475529565664157<60>
Number: n N=4868658020573690727126546481856282776892240686260398313613025995290300464136292012462195107123487541 ( 100 digits) SNFS difficulty: 141 digits. Divisors found: r1=29820580306445179468434784370467918075513 (pp41) r2=163265032757307485732791583648752186409635917475529565664157 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.87 hours. Scaled time: 7.06 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_4_138_7 n: 4868658020573690727126546481856282776892240686260398313613025995290300464136292012462195107123487541 skew: 1.60 deg: 5 c5: 11 c0: 115 m: 10000000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 760001) Primes: RFBsize:92938, AFBsize:92505, largePrimes:6164160 encountered Relations: rels:5408624, finalFF:225942 Max relations in full relation-set: 48 Initial matrix: 185508 x 225942 with sparse part having weight 26325682. Pruned matrix : 171948 x 172939 with weight 15531984. Total sieving time: 3.49 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.23 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,100000 total time: 3.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(22·10174-13)/9 = 2(4)1733<175> = 811 · 3379049371<10> · C162
C162 = P47 · P57 · P60
P47 = 11072656343693520216315180207406030758141993043<47>
P57 = 287966682004537921225496398852946852204100412458502336373<57>
P60 = 279750400108181033972244071591541983136545321330179478911277<60>
Number: 24443_174 N=891999847055895139743115124913569524755749316127777265347092103819927701303676855809664819338719798539911436166731483759915450801415537254910271854080136443820803 ( 162 digits) SNFS difficulty: 176 digits. Divisors found: r1=11072656343693520216315180207406030758141993043 (pp47) r2=287966682004537921225496398852946852204100412458502336373 (pp57) r3=279750400108181033972244071591541983136545321330179478911277 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 252.40 hours. Scaled time: 255.17 units (timescale=1.011). Factorization parameters were as follows: name: 24443_174 n: 891999847055895139743115124913569524755749316127777265347092103819927701303676855809664819338719798539911436166731483759915450801415537254910271854080136443820803 m: 100000000000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12600001) Primes: RFBsize:501962, AFBsize:502347, largePrimes:6616943 encountered Relations: rels:7110143, finalFF:1158815 Max relations in full relation-set: 28 Initial matrix: 1004374 x 1158815 with sparse part having weight 81668155. Pruned matrix : 874715 x 879800 with weight 62188821. Total sieving time: 245.38 hours. Total relation processing time: 0.15 hours. Matrix solve time: 6.72 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 252.40 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve
(22·10128+23)/9 = 2(4)1277<129> = 13 · 19 · 8194776089<10> · 3934292331971<13> · C104
C104 = P33 · P34 · P38
P33 = 668426865130797987405649315345219<33>
P34 = 1388343975982515290269796897309261<34>
P38 = 33077183561244911430284006767620500381<38>
Number: 24447_128 N=30695838422148846501555786734418298265899042615875233041634129014791334814237998087446452640996474073579 ( 104 digits) SNFS difficulty: 129 digits. Divisors found: r1=668426865130797987405649315345219 r2=1388343975982515290269796897309261 r3=33077183561244911430284006767620500381 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 30695838422148846501555786734418298265899042615875233041634129014791334814237998087446452640996474073579 Y1: 1 Y0: -20000000000000000000000000 c5: 1375 c0: 46 skew: 0.51 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 1000001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 118754 x 118983 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 2.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 2.00 hours.
(22·10184+23)/9 = 2(4)1837<185> = 3 · 8741 · 883727969 · 428463058069<12> · 103877743860680497<18> · 218460649344400193524021<24> · 144099946999744771890872989<27> · C93
C93 = P38 · P56
P38 = 14478093885479986710222592427921863391<38>
P56 = 51998985992916577835802224283132907761310866802294639523<56>
Wed Jul 9 04:10:59 2008 Msieve v. 1.36 Wed Jul 9 04:10:59 2008 random seeds: c8d737d3 84691ec3 Wed Jul 9 04:10:59 2008 factoring 752846201155204981101305409504528957770644176142445561475056010325809486586027355292795402493 (93 digits) Wed Jul 9 04:11:00 2008 no P-1/P+1/ECM available, skipping Wed Jul 9 04:11:00 2008 commencing quadratic sieve (93-digit input) Wed Jul 9 04:11:00 2008 using multiplier of 13 Wed Jul 9 04:11:00 2008 using 64kb Opteron sieve core Wed Jul 9 04:11:00 2008 sieve interval: 18 blocks of size 65536 Wed Jul 9 04:11:00 2008 processing polynomials in batches of 6 Wed Jul 9 04:11:00 2008 using a sieve bound of 1946657 (72941 primes) Wed Jul 9 04:11:00 2008 using large prime bound of 243332125 (27 bits) Wed Jul 9 04:11:00 2008 using double large prime bound of 1244970127754625 (42-51 bits) Wed Jul 9 04:11:00 2008 using trial factoring cutoff of 51 bits Wed Jul 9 04:11:00 2008 polynomial 'A' values have 12 factors Wed Jul 9 04:11:00 2008 restarting with 1770 full and 95871 partial relations Wed Jul 9 06:13:59 2008 73176 relations (18297 full + 54879 combined from 994629 partial), need 73037 Wed Jul 9 06:13:59 2008 begin with 1012926 relations Wed Jul 9 06:14:00 2008 reduce to 187728 relations in 10 passes Wed Jul 9 06:14:00 2008 attempting to read 187728 relations Wed Jul 9 06:14:02 2008 recovered 187728 relations Wed Jul 9 06:14:02 2008 recovered 170584 polynomials Wed Jul 9 06:14:02 2008 attempting to build 73176 cycles Wed Jul 9 06:14:02 2008 found 73176 cycles in 5 passes Wed Jul 9 06:14:02 2008 distribution of cycle lengths: Wed Jul 9 06:14:02 2008 length 1 : 18297 Wed Jul 9 06:14:02 2008 length 2 : 13020 Wed Jul 9 06:14:02 2008 length 3 : 12504 Wed Jul 9 06:14:02 2008 length 4 : 10068 Wed Jul 9 06:14:02 2008 length 5 : 7265 Wed Jul 9 06:14:02 2008 length 6 : 4859 Wed Jul 9 06:14:02 2008 length 7 : 2997 Wed Jul 9 06:14:02 2008 length 9+: 4166 Wed Jul 9 06:14:02 2008 largest cycle: 21 relations Wed Jul 9 06:14:02 2008 matrix is 72941 x 73176 (20.1 MB) with weight 4680697 (63.96/col) Wed Jul 9 06:14:03 2008 sparse part has weight 4680697 (63.96/col) Wed Jul 9 06:14:03 2008 filtering completed in 3 passes Wed Jul 9 06:14:03 2008 matrix is 69245 x 69309 (19.1 MB) with weight 4458851 (64.33/col) Wed Jul 9 06:14:03 2008 sparse part has weight 4458851 (64.33/col) Wed Jul 9 06:14:04 2008 saving the first 48 matrix rows for later Wed Jul 9 06:14:04 2008 matrix is 69197 x 69309 (12.5 MB) with weight 3534404 (50.99/col) Wed Jul 9 06:14:04 2008 sparse part has weight 2592435 (37.40/col) Wed Jul 9 06:14:04 2008 matrix includes 64 packed rows Wed Jul 9 06:14:04 2008 using block size 27723 for processor cache size 1024 kB Wed Jul 9 06:14:04 2008 commencing Lanczos iteration Wed Jul 9 06:14:04 2008 memory use: 11.0 MB Wed Jul 9 06:14:34 2008 lanczos halted after 1095 iterations (dim = 69196) Wed Jul 9 06:14:34 2008 recovered 17 nontrivial dependencies Wed Jul 9 06:14:34 2008 prp38 factor: 14478093885479986710222592427921863391 Wed Jul 9 06:14:34 2008 prp56 factor: 51998985992916577835802224283132907761310866802294639523 Wed Jul 9 06:14:34 2008 elapsed time 02:03:35 total time: 2.5 hours
(19·10164+71)/9 = 2(1)1639<165> = 3 · 1547632204735021741335968620259<31> · C134
C134 = P58 · P76
P58 = 6742027040094211846211453572461118212957579443337461963393<58>
P76 = 6744217820260450083366667566814032486869788470472656779231418088265090202679<76>
Number: 21119_164 N=45469698908481199516727249124846049133783177271867124530465321077300054016404482853634631520144827560167514096151705840653303648529847 ( 134 digits) SNFS difficulty: 166 digits. Divisors found: r1=6742027040094211846211453572461118212957579443337461963393 r2=6744217820260450083366667566814032486869788470472656779231418088265090202679 Version: Total time: 28.00 hours. Scaled time: 82.656 units (timescale=2.952). Factorization parameters were as follows: n: 45469698908481199516727249124846049133783177271867124530465321077300054016404482853634631520144827560167514096151705840653303648529847 Y0: -1000000000000000000000000000000000 Y1: 1 c5: 19 c0: 710 skew: 2.06 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 4600001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 10573189 relations Max relations in full relation-set: 9708274 relations and about 9462589 large ideals Initial matrix: 866332 x 866551 (261.2 MB) with weight 83061728 (95.85/col) Pruned matrix : 860767 x 861015 (249.7 MB) with weight 63635070 (73.91/col) Total sieving time: 25.00 hours. Matrix solve time: 02:44:00. Time per square root: 00:09:52. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.5,2.5,100000 total time: 28.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Total time: 28.00 hours.
(22·10109+23)/9 = 2(4)1087<110> = 33 · C108
C108 = P48 · P61
P48 = 113608441459662824962269148437092967080552227087<48>
P61 = 7969036302290367567268621003851406845020368538649090611909603<61>
Number: 24447_109 N=905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683127572016461 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=113608441459662824962269148437092967080552227087 r2=7969036302290367567268621003851406845020368538649090611909603 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 905349794238683127572016460905349794238683127572016460905349794238683127572016460905349794238683127572016461 Y1: 1 Y0: -10000000000000000000000 c5: 11 c0: 115 skew: 1.6 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 350001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 72091 x 72333 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 1.00 hours.
(22·10136+23)/9 = 2(4)1357<137> = 34 · 17597 · 474430838713204111<18> · C113
C113 = P57 · P57
P57 = 160942727758616147304759991172660468836593226620551349083<57>
P57 = 224601291731175620982413630782755053499706451971227086767<57>
# NICE SPLIT :-) P57 . P57 Number: 24447_136 N=36147944549324121969604965835519947229596904347641869546100384519388695605927646880868433968210753734213746884661 ( 113 digits) SNFS difficulty: 137 digits. Divisors found: r1=160942727758616147304759991172660468836593226620551349083 r2=224601291731175620982413630782755053499706451971227086767 Factorization parameters were as follows: n: 36147944549324121969604965835519947229596904347641869546100384519388695605927646880868433968210753734213746884661 Y1: 1 Y0: -1000000000000000000000000000 c5: 220 c0: 23 skew: 0.64 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1925001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 156383 x 156621 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 4 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 4 hours.
Factorizations of 133...33 were extended to n=250. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
Factorizations of 244...447 were extended to n=205. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
By matsui / GGNFS
(10175-7)/3 = (3)1741<175> = 23 · 3323 · C170
C170 = P45 · P53 · P74
P45 = 235780448596050115929700871470352538873891461<45>
P53 = 10421228205712331802636719386399164355520595269666467<53>
P74 = 17749816682347588484905538626867074536389885930396621086863262194900258897<74>
N=43613462603636490511891210578881489138067138564332038013494005329565130164379140553105932739317972671804332561375045248967451272858906087130975589544980744656260494489439 ( 170 digits) SNFS difficulty: 175 digits. Divisors found: r1=235780448596050115929700871470352538873891461 (pp45) r2=10421228205712331802636719386399164355520595269666467 (pp53) r3=17749816682347588484905538626867074536389885930396621086863262194900258897 (pp74) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 110.75 hours. Scaled time: 314.20 units (timescale=2.837). Factorization parameters were as follows: n: 43613462603636490511891210578881489138067138564332038013494005329565130164379140553105932739317972671804332561375045248967451272858906087130975589544980744656260494489439 m: 100000000000000000000000000000000000 c5: 1 c0: -7 skew: 1.48 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9800001) Primes: RFBsize:501962, AFBsize:501141, largePrimes:6403058 encountered Relations: rels:6902001, finalFF:1178713 Max relations in full relation-set: 28 Initial matrix: 1003169 x 1178713 with sparse part having weight 65422220. Pruned matrix : 846847 x 851926 with weight 46933518. Total sieving time: 106.18 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.29 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 110.75 hours.
By Sinkiti Sibata / Msieve
(22·10126+23)/9 = 2(4)1257<127> = 499 · 1103 · 87797 · 448607 · 6732252439515400559819<22> · C89
C89 = P31 · P58
P31 = 5244805083985130173131426609173<31>
P58 = 3193512685867020820044526963651820924786832284035313015287<58>
Wed Jul 9 16:54:55 2008 Msieve v. 1.36 Wed Jul 9 16:54:55 2008 random seeds: dd38a79e ee65a53f Wed Jul 9 16:54:55 2008 factoring 16749351570606358764161948724391155809899067723886709775698749787610441965641844723427651 (89 digits) Wed Jul 9 16:54:57 2008 no P-1/P+1/ECM available, skipping Wed Jul 9 16:54:57 2008 commencing quadratic sieve (89-digit input) Wed Jul 9 16:54:57 2008 using multiplier of 3 Wed Jul 9 16:54:57 2008 using 64kb Pentium 4 sieve core Wed Jul 9 16:54:57 2008 sieve interval: 15 blocks of size 65536 Wed Jul 9 16:54:57 2008 processing polynomials in batches of 7 Wed Jul 9 16:54:57 2008 using a sieve bound of 1546823 (58602 primes) Wed Jul 9 16:54:57 2008 using large prime bound of 123745840 (26 bits) Wed Jul 9 16:54:57 2008 using double large prime bound of 368599753674560 (42-49 bits) Wed Jul 9 16:54:57 2008 using trial factoring cutoff of 49 bits Wed Jul 9 16:54:57 2008 polynomial 'A' values have 11 factors Wed Jul 9 18:34:09 2008 58806 relations (15836 full + 42970 combined from 622685 partial), need 58698 Wed Jul 9 18:34:11 2008 begin with 638521 relations Wed Jul 9 18:34:12 2008 reduce to 142912 relations in 11 passes Wed Jul 9 18:34:12 2008 attempting to read 142912 relations Wed Jul 9 18:34:16 2008 recovered 142912 relations Wed Jul 9 18:34:16 2008 recovered 120166 polynomials Wed Jul 9 18:34:16 2008 attempting to build 58806 cycles Wed Jul 9 18:34:16 2008 found 58806 cycles in 5 passes Wed Jul 9 18:34:16 2008 distribution of cycle lengths: Wed Jul 9 18:34:16 2008 length 1 : 15836 Wed Jul 9 18:34:16 2008 length 2 : 11406 Wed Jul 9 18:34:16 2008 length 3 : 10376 Wed Jul 9 18:34:16 2008 length 4 : 7683 Wed Jul 9 18:34:16 2008 length 5 : 5523 Wed Jul 9 18:34:16 2008 length 6 : 3494 Wed Jul 9 18:34:16 2008 length 7 : 2010 Wed Jul 9 18:34:16 2008 length 9+: 2478 Wed Jul 9 18:34:16 2008 largest cycle: 17 relations Wed Jul 9 18:34:16 2008 matrix is 58602 x 58806 (14.4 MB) with weight 3527793 (59.99/col) Wed Jul 9 18:34:16 2008 sparse part has weight 3527793 (59.99/col) Wed Jul 9 18:34:17 2008 filtering completed in 3 passes Wed Jul 9 18:34:17 2008 matrix is 54483 x 54547 (13.4 MB) with weight 3301942 (60.53/col) Wed Jul 9 18:34:17 2008 sparse part has weight 3301942 (60.53/col) Wed Jul 9 18:34:18 2008 saving the first 48 matrix rows for later Wed Jul 9 18:34:18 2008 matrix is 54435 x 54547 (9.6 MB) with weight 2709907 (49.68/col) Wed Jul 9 18:34:18 2008 sparse part has weight 2194112 (40.22/col) Wed Jul 9 18:34:18 2008 matrix includes 64 packed rows Wed Jul 9 18:34:18 2008 using block size 21818 for processor cache size 512 kB Wed Jul 9 18:34:18 2008 commencing Lanczos iteration Wed Jul 9 18:34:18 2008 memory use: 8.8 MB Wed Jul 9 18:34:52 2008 lanczos halted after 863 iterations (dim = 54432) Wed Jul 9 18:34:52 2008 recovered 16 nontrivial dependencies Wed Jul 9 18:34:53 2008 prp31 factor: 5244805083985130173131426609173 Wed Jul 9 18:34:53 2008 prp58 factor: 3193512685867020820044526963651820924786832284035313015287 Wed Jul 9 18:34:53 2008 elapsed time 01:39:58
(22·10114+23)/9 = 2(4)1137<115> = 83 · 163 · 78191 · 3416683 · 33319373 · C92
C92 = P31 · P61
P31 = 4616751856764010560641603977181<31>
P61 = 4396627454638834962965514259782807864624263415930800244963587<61>
Wed Jul 9 18:46:02 2008 Msieve v. 1.36 Wed Jul 9 18:46:02 2008 random seeds: 3e553e05 eee29778 Wed Jul 9 18:46:02 2008 factoring 20298137964703466931499613781729059356375064174379028443684191792924037555723406483723908247 (92 digits) Wed Jul 9 18:46:04 2008 no P-1/P+1/ECM available, skipping Wed Jul 9 18:46:04 2008 commencing quadratic sieve (92-digit input) Wed Jul 9 18:46:04 2008 using multiplier of 7 Wed Jul 9 18:46:04 2008 using 64kb Pentium 4 sieve core Wed Jul 9 18:46:04 2008 sieve interval: 18 blocks of size 65536 Wed Jul 9 18:46:04 2008 processing polynomials in batches of 6 Wed Jul 9 18:46:04 2008 using a sieve bound of 1785001 (67059 primes) Wed Jul 9 18:46:04 2008 using large prime bound of 187425105 (27 bits) Wed Jul 9 18:46:04 2008 using double large prime bound of 778197657514830 (42-50 bits) Wed Jul 9 18:46:04 2008 using trial factoring cutoff of 50 bits Wed Jul 9 18:46:04 2008 polynomial 'A' values have 12 factors Wed Jul 9 22:25:10 2008 67378 relations (16844 full + 50534 combined from 837582 partial), need 67155 Wed Jul 9 22:25:13 2008 begin with 854426 relations Wed Jul 9 22:25:14 2008 reduce to 171242 relations in 11 passes Wed Jul 9 22:25:14 2008 attempting to read 171242 relations Wed Jul 9 22:25:19 2008 recovered 171242 relations Wed Jul 9 22:25:19 2008 recovered 153667 polynomials Wed Jul 9 22:25:20 2008 attempting to build 67378 cycles Wed Jul 9 22:25:20 2008 found 67378 cycles in 5 passes Wed Jul 9 22:25:20 2008 distribution of cycle lengths: Wed Jul 9 22:25:20 2008 length 1 : 16844 Wed Jul 9 22:25:20 2008 length 2 : 12110 Wed Jul 9 22:25:20 2008 length 3 : 11636 Wed Jul 9 22:25:20 2008 length 4 : 9235 Wed Jul 9 22:25:20 2008 length 5 : 6751 Wed Jul 9 22:25:20 2008 length 6 : 4363 Wed Jul 9 22:25:20 2008 length 7 : 2761 Wed Jul 9 22:25:20 2008 length 9+: 3678 Wed Jul 9 22:25:20 2008 largest cycle: 19 relations Wed Jul 9 22:25:20 2008 matrix is 67059 x 67378 (16.6 MB) with weight 4070504 (60.41/col) Wed Jul 9 22:25:20 2008 sparse part has weight 4070504 (60.41/col) Wed Jul 9 22:25:21 2008 filtering completed in 3 passes Wed Jul 9 22:25:21 2008 matrix is 63591 x 63654 (15.7 MB) with weight 3858318 (60.61/col) Wed Jul 9 22:25:21 2008 sparse part has weight 3858318 (60.61/col) Wed Jul 9 22:25:22 2008 saving the first 48 matrix rows for later Wed Jul 9 22:25:22 2008 matrix is 63543 x 63654 (9.1 MB) with weight 2921246 (45.89/col) Wed Jul 9 22:25:22 2008 sparse part has weight 1996484 (31.36/col) Wed Jul 9 22:25:22 2008 matrix includes 64 packed rows Wed Jul 9 22:25:22 2008 using block size 21845 for processor cache size 512 kB Wed Jul 9 22:25:23 2008 commencing Lanczos iteration Wed Jul 9 22:25:23 2008 memory use: 9.4 MB Wed Jul 9 22:26:02 2008 lanczos halted after 1007 iterations (dim = 63543) Wed Jul 9 22:26:02 2008 recovered 18 nontrivial dependencies Wed Jul 9 22:26:03 2008 prp31 factor: 4616751856764010560641603977181 Wed Jul 9 22:26:03 2008 prp61 factor: 4396627454638834962965514259782807864624263415930800244963587 Wed Jul 9 22:26:03 2008 elapsed time 03:40:01
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(34·10167-7)/9 = 3(7)167<168> = 192 · 61 · 3391 · 319591 · 713117 · C149
C149 = P53 · P97
P53 = 17765799744251399391751532208792506707077198483134659<53>
P97 = 1249486269597586121075036778169187427046511143878302586983277601012099857469072501275389410982659<97>
Number: n N=22198122848862430580991565540343634709543895530381938659399213758074630177988467525888585175990283070868339958702115301444012179905280476799810878281 ( 149 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jul 09 19:19:54 2008 prp53 factor: 17765799744251399391751532208792506707077198483134659 Wed Jul 09 19:19:54 2008 prp97 factor: 1249486269597586121075036778169187427046511143878302586983277601012099857469072501275389410982659 Wed Jul 09 19:19:54 2008 elapsed time 02:04:09 Version: GGNFS-0.77.1-20051202-athlon Total time: 64.20 hours. Scaled time: 117.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_7_167 n: 22198122848862430580991565540343634709543895530381938659399213758074630177988467525888585175990283070868339958702115301444012179905280476799810878281 skew: 0.29 deg: 5 c5: 3400 c0: -7 m: 1000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4000153) Primes: RFBsize:380800, AFBsize:380992, largePrimes:8099098 encountered Relations: rels:7674418, finalFF:781427 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 63.88 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 64.20 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10129+23)/9 = 2(4)1287<130> = 767747 · 9294347693<10> · C114
C114 = P36 · P79
P36 = 145463583266265491036564533866890587<36>
P79 = 2354988803953860722933036576440462288212379685460602193096133727602333545086411<79>
By Serge Batalov / Msieve
(22·10108+23)/9 = 2(4)1077<109> = 443 · 7529 · C102
C102 = P39 · P63
P39 = 769844223455726196788224292250471499171<39>
P63 = 951998562560586340256760402450547611450431456341933895606371031<63>
Number: 24447_108 N=732890594125422165802971758094268585680723608201618735455244819937609023722102811025193014233434915301 ( 102 digits) SNFS difficulty: 109 digits. Divisors found: r1=769844223455726196788224292250471499171 r2=951998562560586340256760402450547611450431456341933895606371031 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.915). Factorization parameters were as follows: n: 732890594125422165802971758094268585680723608201618735455244819937609023722102811025193014233434915301 Y1: 1 Y0: -2000000000000000000000 c5: 1375 c0: 46 skew: 0.51 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73387 x 73623 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Total: 42 minutes
(22·10102+23)/9 = 2(4)1017<103> = 17 · 59 · 277 · C97
C97 = P47 · P51
P47 = 10618264544595981314549183771879838048526138753<47>
P51 = 828601906275618561461709775254426181373901654948329<51>
Number: 24447_102 N=8798314242991042916177260436900289904454306554864088040731395864552351769400982771700942099493737 ( 97 digits) SNFS difficulty: 103 digits. Divisors found: r1=10618264544595981314549183771879838048526138753 r2=828601906275618561461709775254426181373901654948329 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.943). Factorization parameters were as follows: #res: 4678 n: 8798314242991042916177260436900289904454306554864088040731395864552351769400982771700942099493737 Y1: 1 Y0: -100000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [225000, 285001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 47340 x 47577 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 22 min
(22·10107+23)/9 = 2(4)1067<108> = 7 · 1087 · C104
C104 = P42 · P62
P42 = 381591330607017206412657428815125306888619<42>
P62 = 84188755147859735744695342070485785175230396419321883226185157<62>
Number: 24447_107 N=32125699099020166177479884931586863509586600662957608679779792935266716315474365152378031862852470028183 ( 104 digits) SNFS difficulty: 108 digits. Divisors found: r1=381591330607017206412657428815125306888619 r2=84188755147859735744695342070485785175230396419321883226185157 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.947). Factorization parameters were as follows: n: 32125699099020166177479884931586863509586600662957608679779792935266716315474365152378031862852470028183 Y1: 1 Y0: -1000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 61013 x 61240 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 41 min
(22·10124+23)/9 = 2(4)1237<125> = 3 · 43 · 103 · C121
C121 = P47 · P74
P47 = 31127363639203918155230106265371550433065849027<47>
P74 = 59103186631439869309748970750979721507029739430928737715066147860616020803<74>
Number: 24447_124 N=1839726382512564494953296037062124214980390189240945619360611458150405994163049931846499920557269846048351354289489308681 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=31127363639203918155230106265371550433065849027 r2=59103186631439869309748970750979721507029739430928737715066147860616020803 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.945). Factorization parameters were as follows: n: 1839726382512564494953296037062124214980390189240945619360611458150405994163049931846499920557269846048351354289489308681 Y1: 1 Y0: -10000000000000000000000000 c5: 11 c0: 115 skew: 1.6 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111567 x 111791 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 49min. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 49min.
(22·10127+23)/9 = 2(4)1267<128> = 32 · C127
C127 = P40 · P88
P40 = 1055851411540761761126901338111649728911<40>
P88 = 2572378417103811115329524052621719508567986338053396769025584246379410302932317285466153<88>
N=2716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049383 ( 127 digits) SNFS difficulty: 128 digits. Divisors found: r1=1055851411540761761126901338111649728911 r2=2572378417103811115329524052621719508567986338053396769025584246379410302932317285466153 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.821). Factorization parameters were as follows: n: 2716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049383 Y1: 1 Y0: -10000000000000000000000000 c5: 2200 c0: 23 skew: 0.4 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [400000, 900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 110989 x 111235 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 1.50 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 1.50 hours.
(22·10123+23)/9 = 2(4)1227<124> = 22142383 · 4261412657<10> · C107
C107 = P38 · P69
P38 = 26763002716631911281029424155030335139<38>
P69 = 967982226653429397489275031441447420090456022581392764391905774301483<69>
Number: 24447_123 N=25906110961577137444577994220052608180999890138710163516987992524436446672531714607299587564660203114711137 ( 107 digits) SNFS difficulty: 124 digits. Divisors found: r1=26763002716631911281029424155030335139 r2=967982226653429397489275031441447420090456022581392764391905774301483 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=1.624). Factorization parameters were as follows: n: 25906110961577137444577994220052608180999890138710163516987992524436446672531714607299587564660203114711137 Y1: 1 Y0: -2000000000000000000000000 c5: 1375 c0: 46 skew: 0.51 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 600001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 109891 x 110122 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.20 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 1.20 hours.
(22·10152+23)/9 = 2(4)1517<153> = 13 · 150329 · 769837 · 87625711531<11> · 769556122625057200022794067<27> · C103
C103 = P35 · P69
P35 = 10813062888571622922756770354132923<35>
P69 = 222830526301659720606359045665497825172567913566370741154408463204093<69>
Number: 24447_152 N=2409480494393359654417053972732335004481060547935443629191110013513357239972483882405770870013399653839 ( 103 digits) Divisors found: r1=10813062888571622922756770354132923 r2=222830526301659720606359045665497825172567913566370741154408463204093 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: name: 24447_152 n: 2409480494393359654417053972732335004481060547935443629191110013513357239972483882405770870013399653839 skew: 19561.08 # norm 8.91e+13 c5: 420 c4: -82996087 c3: -4257878742953 c2: 33361211199951301 c1: 145479990723098945878 c0: -843488700671868424525899 # alpha -4.74 Y1: 24707240459 Y0: -89482799835749821772 # Murphy_E 2.44e-09 # M 2165897549338724270610609111043907709624331788247989596227418375996497476424002657125822225638182266954 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 250649 x 250883 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 4.20 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) total time: 4.20 hours.
Factorizations of 244...447 were extended to n=200. Exposed composite numbers had passed ECM(B1=250000) 430 times. Unknown prime factors are probably greater than 1030.
By Robert Backstrom / GMP-ECM
(37·10181-1)/9 = 4(1)181<182> = 17 · 41 · 4127 · 24499 · 167471 · 245443424673836171<18> · 246875141547236483<18> · C131
C131 = P43 · P88
P43 = 9694281830014265153818506928082037151687589<43>
P88 = 5930066875553988652313184804417901312203848627507573517688576121033537218672808937502993<88>
By Robert Backstrom / GGNFS
(22·10173-31)/9 = 2(4)1721<174> = 29 · C172
C172 = P62 · P111
P62 = 53929390053448635802755667268850142007562273054280940188884371<62>
P111 = 156299167589182500831339219188302177128441788079387540549837743824293003742698300050396169986960092098989076799<111>
Number: n N=8429118773946360153256704980842911877394636015325670498084291187739463601532567049808429118773946360153256704980842911877394636015325670498084291187739463601532567049808429 ( 172 digits) SNFS difficulty: 174 digits. Divisors found: Mon Jul 07 22:10:46 2008 prp62 factor: 53929390053448635802755667268850142007562273054280940188884371 Mon Jul 07 22:10:46 2008 prp111 factor: 156299167589182500831339219188302177128441788079387540549837743824293003742698300050396169986960092098989076799 Mon Jul 07 22:10:46 2008 elapsed time 03:58:11 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 195.03 hours. Scaled time: 255.49 units (timescale=1.310). Factorization parameters were as follows: name: KA_2_4_172_1 n: 8429118773946360153256704980842911877394636015325670498084291187739463601532567049808429118773946360153256704980842911877394636015325670498084291187739463601532567049808429 skew: 0.54 deg: 5 c5: 1375 c0: -62 m: 20000000000000000000000000000000000 type: snfs rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 7100173) Primes: RFBsize:476648, AFBsize:475941, largePrimes:9026408 encountered Relations: rels:8609903, finalFF:954855 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 194.26 hours. Total relation processing time: 0.77 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,48,48,2.5,2.5,100000 total time: 195.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Serge Batalov / GMP-ECM
(64·10215+53)/9 = 7(1)2147<216> = 3 · 11 · 3079 · C211
C211 = P45 · P47 · P120
P45 = 125676554603285221667793460094390282916482437<45>
P47 = 81213719868582797366318791991053471705206424789<47>
P120 = 685693711441738179761734159616977676586319021004974435893926620849586278615885854977785958434104586204829762960643199667<120>
# I have now already sieved 38 MILLION relations (30-bit LPs!), with 320 CPU-hours on Opteron (on 8 CPUs) # # ...in parallel I ran a lot of ECMs, full 1M, 3M, then 11M... # ...and when I cracked off the P47 I was disappointed, but GNFS was still unfeasible # ...and another day later, I checked the B1=43000000 ECM processes (far from complete) # and the number was cracked completely. # # What a pity! # # P.S. Maybe you could leave this story in a text box # (you usually don't for ECMs, but this may be a lesson how to avoid # trivial painful factorizations by two months of GGNFS) # Nobody likes an ECM miss! # The P45 and P47 are not really a miss (for home computing), but nobody wants a 30-39-digit factor, that's for sure. # # --Serge C211 = P45 . P47 . P120 GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 6998642919396410789720305796954059376923943341611415661431900470549382533793056690101185067083085920370753108655024861585433199593641295492545898521864744664354927427353539727687178158110278928726476631640645931 (211 digits) Run 3861 out of 4600: Using B1=11000000, B2=58553269330, polynomial Dickson(12), sigma=1048397889 Step 1 took 122874ms Step 2 took 55826ms ********** Factor found in step 2: 81213719868582797366318791991053471705206424789 Found probable prime factor of 47 digits: 81213719868582797366318791991053471705206424789 Composite cofactor 86175623167136908906028312775085985010301678182392368154328956428185102943358698524469334462125149952396328912164009032468557009157053703824006666253050812289748479 has 164 digits GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Run 33 out of 1000: Using B1=43000000, B2=240490660426, polynomial Dickson(12), sigma=1801021090 Step 1 took 361683ms Step 2 took 92881ms ********** Factor found in step 2: 125676554603285221667793460094390282916482437 Found probable prime factor of 45 digits: 125676554603285221667793460094390282916482437 Probable prime cofactor 685693711441738179761734159616977676586319021004974435893926620849586278615885854977785958434104586204829762960643199667 has 120 digits all three factors prime by APRT-CLE.
By Sinkiti Sibata / GGNFS
(22·10169-13)/9 = 2(4)1683<170> = 6603123233761858889<19> · C151
C151 = P35 · P117
P35 = 34538325050649741960582584869569799<35>
P117 = 107183885461665753591363007370745581050786551598708387085447555024370036792587759492946489199946634658942041297437413<117>
Number: 24443_169 N=3701951876266622979874422342651354796993731339689201245901440527900042776675366699392640951666692911201609719346004277223504578989840161477542437489987 ( 151 digits) SNFS difficulty: 171 digits. Divisors found: r1=34538325050649741960582584869569799 (pp35) r2=107183885461665753591363007370745581050786551598708387085447555024370036792587759492946489199946634658942041297437413 (pp117) Version: GGNFS-0.77.1-20050930-nocona Total time: 141.04 hours. Scaled time: 142.17 units (timescale=1.008). Factorization parameters were as follows: name: 24443_169 n: 3701951876266622979874422342651354796993731339689201245901440527900042776675366699392640951666692911201609719346004277223504578989840161477542437489987 m: 10000000000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 8300001) Primes: RFBsize:412849, AFBsize:413107, largePrimes:6158208 encountered Relations: rels:6424609, finalFF:926523 Max relations in full relation-set: 28 Initial matrix: 826021 x 926523 with sparse part having weight 64258799. Pruned matrix : 747047 x 751241 with weight 49325952. Total sieving time: 136.65 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.17 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 141.04 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
3·10168+7 = 3(0)1677<169> = 312 · 220442934797851<15> · C152
C152 = P59 · P93
P59 = 68134668790873592384459578322644469894232860523283147276193<59>
P93 = 207842105702935771469899396383940505601339931626765063877009064283675813950588095504388659109<93>
Number: n N=14161253032867268200456854209951828454345061458914538796845639216326800017761514121711220530384697406593320683898998558239446506333949451311352948292037 ( 152 digits) SNFS difficulty: 168 digits. Divisors found: Mon Jul 07 06:38:48 2008 prp59 factor: 68134668790873592384459578322644469894232860523283147276193 Mon Jul 07 06:38:48 2008 prp93 factor: 207842105702935771469899396383940505601339931626765063877009064283675813950588095504388659109 Mon Jul 07 06:38:48 2008 elapsed time 01:31:51 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 52.57 hours. Scaled time: 96.15 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_0_167_7 n: 14161253032867268200456854209951828454345061458914538796845639216326800017761514121711220530384697406593320683898998558239446506333949451311352948292037 skew: 0.30 deg: 5 c5: 3000 c0: 7 m: 1000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200129) Primes: RFBsize:380800, AFBsize:380817, largePrimes:7815275 encountered Relations: rels:7399067, finalFF:765549 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 52.37 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 52.57 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10169+17)/9 = 2(1)1683<170> = 202343 · C165
C165 = P41 · P45 · P79
P41 = 11854813632301944696197779784107475828959<41>
P45 = 989586227294571474744567542974907856207448937<45>
P79 = 8893537356585734852905220128099726473408062960442837007302516244982560116409577<79>
Number: n N=104333291050894328497210731832142011886307463619255971845386848623926259426375565802182981922335396386883218649081565021330666794063106265653425673787139219597965391 ( 165 digits) SNFS difficulty: 171 digits. Divisors found: Mon Jul 07 08:20:12 2008 prp41 factor: 11854813632301944696197779784107475828959 Mon Jul 07 08:20:12 2008 prp45 factor: 989586227294571474744567542974907856207448937 Mon Jul 07 08:20:12 2008 prp79 factor: 8893537356585734852905220128099726473408062960442837007302516244982560116409577 Mon Jul 07 08:20:12 2008 elapsed time 03:35:37 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 131.75 hours. Scaled time: 190.77 units (timescale=1.448). Factorization parameters were as follows: name: KA_2_1_168_3 n: 104333291050894328497210731832142011886307463619255971845386848623926259426375565802182981922335396386883218649081565021330666794063106265653425673787139219597965391 skew: 1.55 deg: 5 c5: 19 c0: 170 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5900189) Primes: RFBsize:425648, AFBsize:427217, largePrimes:8696525 encountered Relations: rels:8265355, finalFF:868827 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 131.37 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,48,48,2.5,2.5,100000 total time: 131.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By matsui / GGNFS
7·10175-9 = 6(9)1741<176> = 1301 · 700849 · C167
C167 = P58 · P110
P58 = 2998263129687771495713319147093796698599357538666071288999<58>
P110 = 25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541<110>
N=76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459 ( 167 digits) SNFS difficulty: 175 digits. Divisors found: r1=2998263129687771495713319147093796698599357538666071288999 (pp58) r2=25605103830539641054955333281714615256570243024259263526043334000070733816061239428491153704128112278858660541 (pp110) Version: GGNFS-0.77.1-20060513-pentium-m Total time: 120.77 hours. Scaled time: 343.95 units (timescale=2.848). Factorization parameters were as follows: n: 76770838746934130507392324931250151067188852114401986823165103555542800872777834759409606762117612554266824567026809163243163420541346739870235062843495421078448688459 m: 100000000000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12000001) Primes: RFBsize:501962, AFBsize:502356, largePrimes:6549781 encountered Relations: rels:7030593, finalFF:1152542 Max relations in full relation-set: 28 Initial matrix: 1004384 x 1152542 with sparse part having weight 76779199. Pruned matrix : 878852 x 883937 with weight 58230885. Total sieving time: 112.93 hours. Total relation processing time: 0.11 hours. Matrix solve time: 7.52 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 120.77 hours.
By Wataru Sakai / GGNFS
(8·10175-71)/9 = (8)1741<175> = 31 · C174
C174 = P76 · P98
P76 = 5771423368902638327030970168234828127947353990816013247148660980653867079991<76>
P98 = 49682432378721834064763150900527183566952281275682356497289727057025185041987238713931398215237961<98>
Number: 88881_175 N=286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351 ( 174 digits) SNFS difficulty: 175 digits. Divisors found: r1=5771423368902638327030970168234828127947353990816013247148660980653867079991 (pp76) r2=49682432378721834064763150900527183566952281275682356497289727057025185041987238713931398215237961 (pp98) Version: GGNFS-0.77.1-20060722-nocona Total time: 201.98 hours. Scaled time: 406.99 units (timescale=2.015). Factorization parameters were as follows: n: 286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351254480286738351 m: 100000000000000000000000000000000000 c5: 8 c0: -71 skew: 1.55 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10200001) Primes: RFBsize:501962, AFBsize:501892, largePrimes:6609281 encountered Relations: rels:7255516, finalFF:1306535 Max relations in full relation-set: 32 Initial matrix: 1003919 x 1306535 with sparse part having weight 79027919. Pruned matrix : 736827 x 741910 with weight 57352113. Total sieving time: 197.68 hours. Total relation processing time: 0.10 hours. Matrix solve time: 4.02 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 201.98 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(14·10168-41)/9 = 1(5)1671<169> = 33 · 37656643141339<14> · C154
C154 = P38 · P116
P38 = 16981226766391967119183913630606464339<38>
P116 = 90097159217599722569381430542429490640646635539748578844942039627166323665820109863974364446625831381931678300595853<116>
Number: n N=1529960291681783151114531193400230721051917068342751517577310648254554333940389934727118286669463974028994922153019732058807777461380973311907897295786167 ( 154 digits) SNFS difficulty: 169 digits. Divisors found: Sun Jul 06 09:20:10 2008 prp38 factor: 16981226766391967119183913630606464339 Sun Jul 06 09:20:10 2008 prp116 factor: 90097159217599722569381430542429490640646635539748578844942039627166323665820109863974364446625831381931678300595853 Sun Jul 06 09:20:10 2008 elapsed time 02:40:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 81.62 hours. Scaled time: 142.92 units (timescale=1.751). Factorization parameters were as follows: name: KA_1_5_167_1 n: 1529960291681783151114531193400230721051917068342751517577310648254554333940389934727118286669463974028994922153019732058807777461380973311907897295786167 type: snfs skew: 0.62 deg: 5 c5: 875 c0: -82 m: 2000000000000000000000000000000000 rlim: 5800000 alim: 5800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3800113) Primes: RFBsize:399993, AFBsize:400415, largePrimes:8020626 encountered Relations: rels:7627568, finalFF:810616 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 81.31 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,5800000,5800000,28,28,48,48,2.6,2.6,100000 total time: 81.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM
2·10175+3 = 2(0)1743<176> = 1607 · 9041761 · 65731411 · 1081691158291<13> · C146
C146 = P41 · P105
P41 = 76852616085817677774513791387885482895603<41>
P105 = 251898861882089203262483987189502786622824705946228241740108420753071099837412827838656218659332309040463<105>
2·10176+3 = 2(0)1753<177> = 7 · 1307 · 17785019238356023897<20> · C154
C154 = P37 · P117
P37 = 3214888775730183633684484492940316319<37>
P117 = 382327974808924344375250235945475131233497457127498460037175594820337444676213458154174274593752449576287105681456329<117>
By Robert Backstrom / GGNFS, Msieve
(67·10167+23)/9 = 7(4)1667<168> = 3 · 11 · 590725541875506926873<21> · C146
C146 = P45 · P101
P45 = 757066989154644615491448690405189133528186327<45>
P101 = 50442696473007939117602260588880692523791409579601037039522012224179074179617065626216315357828500929<101>
Number: n N=38188500343661731641278628082568518596787475525445421725857796402998819571882558221901996369633874551499717256707212411143098580436331158604597783 ( 146 digits) SNFS difficulty: 168 digits. Divisors found: Sat Jul 5 16:35:21 2008 prp45 factor: 757066989154644615491448690405189133528186327 Sat Jul 5 16:35:21 2008 prp101 factor: 50442696473007939117602260588880692523791409579601037039522012224179074179617065626216315357828500929 Sat Jul 5 16:35:21 2008 elapsed time 01:28:07 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 72.21 hours. Scaled time: 60.44 units (timescale=0.837). Factorization parameters were as follows: name: KA_7_4_166_7 n: 38188500343661731641278628082568518596787475525445421725857796402998819571882558221901996369633874551499717256707212411143098580436331158604597783 type: snfs deg: 5 c5: 6700 c0: 23 skew: 0.32 m: 1000000000000000000000000000000000 rlim: 5800000 alim: 5800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700187) Primes: RFBsize:399993, AFBsize:399534, largePrimes:5669956 encountered Relations: rels:5827169, finalFF:820255 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 72.01 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,48,48,2.5,2.5,100000 total time: 72.21 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
(22·10164-13)/9 = 2(4)1633<165> = 34 · 29 · 3416647763<10> · 21835992391633997<17> · C136
C136 = P54 · P82
P54 = 188977149108201979911706385119937160520580933260307287<54>
P82 = 7380991743316560115806233653476384595263723304504052365842469875363867165673435351<82>
Number: 24443_164 N=1394838777243141255510981001163768886819125792240408935920463319142421907920649440350855154985034708459237944672082108063593967188702737 ( 136 digits) SNFS difficulty: 166 digits. Divisors found: r1=188977149108201979911706385119937160520580933260307287 (pp54) r2=7380991743316560115806233653476384595263723304504052365842469875363867165673435351 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 83.57 hours. Scaled time: 84.33 units (timescale=1.009). Factorization parameters were as follows: name: 24443_164 n: 1394838777243141255510981001163768886819125792240408935920463319142421907920649440350855154985034708459237944672082108063593967188702737 m: 1000000000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5400001) Primes: RFBsize:348513, AFBsize:348832, largePrimes:5983032 encountered Relations: rels:6212091, finalFF:859947 Max relations in full relation-set: 28 Initial matrix: 697410 x 859947 with sparse part having weight 56628198. Pruned matrix : 568712 x 572263 with weight 39516683. Total sieving time: 80.89 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.48 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 83.57 hours. --------- CPU info (if available) ----------
(22·10161-13)/9 = 2(4)1603<162> = 3 · 1777 · 33815254328427941<17> · 4435250828334077701<19> · C123
C123 = P51 · P72
P51 = 918751243450106267060747603778791899353350478837103<51>
P72 = 332768880114005275926756609421497514018998126560607437380875803735204911<72>
Number: 24443_161 N=305731822386241687388365973109241630242229346029252053757510744441829217228259242418405758238321559754128107663948694612833 ( 123 digits) SNFS difficulty: 162 digits. Divisors found: r1=918751243450106267060747603778791899353350478837103 (pp51) r2=332768880114005275926756609421497514018998126560607437380875803735204911 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 73.49 hours. Scaled time: 146.68 units (timescale=1.996). Factorization parameters were as follows: name: 24443_161 n: 305731822386241687388365973109241630242229346029252053757510744441829217228259242418405758238321559754128107663948694612833 m: 100000000000000000000000000000000 c5: 220 c0: -13 skew: 0.57 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:316452, largePrimes:5901718 encountered Relations: rels:6110503, finalFF:826721 Max relations in full relation-set: 28 Initial matrix: 632467 x 826721 with sparse part having weight 51666016. Pruned matrix : 479579 x 482805 with weight 35391694. Total sieving time: 70.08 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.99 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 73.49 hours. --------- CPU info (if available) ----------
(22·10155-13)/9 = 2(4)1543<156> = 32 · 23 · 143981 · 218747941 · 249745250462299<15> · 292725366458429872841<21> · C105
C105 = P45 · P61
P45 = 482708719167218258004205150027333793774609359<45>
P61 = 1062473059782581072690917238909162188127886673467946816631449<61>
Wed Jul 2 12:30:04 2008 Msieve v. 1.36 Wed Jul 2 12:30:04 2008 random seeds: df1e72e0 8972023e Wed Jul 2 12:30:04 2008 factoring 512865009837325022345519467664391330612010588131901538421543902669711759984610894342811574933034249131191 (105 digits) Wed Jul 2 12:30:05 2008 no P-1/P+1/ECM available, skipping Wed Jul 2 12:30:05 2008 commencing quadratic sieve (105-digit input) Wed Jul 2 12:30:06 2008 using multiplier of 7 Wed Jul 2 12:30:06 2008 using 64kb Pentium 4 sieve core Wed Jul 2 12:30:06 2008 sieve interval: 18 blocks of size 65536 Wed Jul 2 12:30:06 2008 processing polynomials in batches of 6 Wed Jul 2 12:30:06 2008 using a sieve bound of 3948821 (140000 primes) Wed Jul 2 12:30:06 2008 using large prime bound of 592323150 (29 bits) Wed Jul 2 12:30:06 2008 using double large prime bound of 6174554804868150 (44-53 bits) Wed Jul 2 12:30:06 2008 using trial factoring cutoff of 53 bits Wed Jul 2 12:30:06 2008 polynomial 'A' values have 14 factors Sat Jul 5 13:38:29 2008 140161 relations (33632 full + 106529 combined from 2089225 partial), need 140096 Sat Jul 5 13:38:38 2008 begin with 2122857 relations Sat Jul 5 13:38:40 2008 reduce to 368943 relations in 10 passes Sat Jul 5 13:38:40 2008 attempting to read 368943 relations Sat Jul 5 13:38:55 2008 recovered 368943 relations Sat Jul 5 13:38:55 2008 recovered 361714 polynomials Sat Jul 5 13:38:55 2008 attempting to build 140161 cycles Sat Jul 5 13:38:56 2008 found 140160 cycles in 5 passes Sat Jul 5 13:38:56 2008 distribution of cycle lengths: Sat Jul 5 13:38:56 2008 length 1 : 33632 Sat Jul 5 13:38:56 2008 length 2 : 23929 Sat Jul 5 13:38:56 2008 length 3 : 23141 Sat Jul 5 13:38:56 2008 length 4 : 19244 Sat Jul 5 13:38:56 2008 length 5 : 14585 Sat Jul 5 13:38:56 2008 length 6 : 10068 Sat Jul 5 13:38:56 2008 length 7 : 6438 Sat Jul 5 13:38:56 2008 length 9+: 9123 Sat Jul 5 13:38:56 2008 largest cycle: 19 relations Sat Jul 5 13:38:56 2008 matrix is 140000 x 140160 (39.1 MB) with weight 9682174 (69.08/col) Sat Jul 5 13:38:56 2008 sparse part has weight 9682174 (69.08/col) Sat Jul 5 13:39:00 2008 filtering completed in 3 passes Sat Jul 5 13:39:00 2008 matrix is 134452 x 134516 (37.7 MB) with weight 9352275 (69.53/col) Sat Jul 5 13:39:00 2008 sparse part has weight 9352275 (69.53/col) Sat Jul 5 13:39:01 2008 saving the first 48 matrix rows for later Sat Jul 5 13:39:01 2008 matrix is 134404 x 134516 (22.0 MB) with weight 7251326 (53.91/col) Sat Jul 5 13:39:01 2008 sparse part has weight 4967697 (36.93/col) Sat Jul 5 13:39:01 2008 matrix includes 64 packed rows Sat Jul 5 13:39:01 2008 using block size 21845 for processor cache size 512 kB Sat Jul 5 13:39:03 2008 commencing Lanczos iteration Sat Jul 5 13:39:03 2008 memory use: 22.2 MB Sat Jul 5 13:42:22 2008 lanczos halted after 2127 iterations (dim = 134403) Sat Jul 5 13:42:23 2008 recovered 17 nontrivial dependencies Sat Jul 5 13:42:25 2008 prp45 factor: 482708719167218258004205150027333793774609359 Sat Jul 5 13:42:25 2008 prp61 factor: 1062473059782581072690917238909162188127886673467946816631449 Sat Jul 5 13:42:25 2008 elapsed time 73:12:21
By Robert Backstrom / GGNFS, Msieve
(4·10168+41)/9 = (4)1679<168> = 4597 · 130447182347<12> · C153
C153 = P72 · P82
P72 = 663251634063362739752196199073426751298383313952477786487187756107043583<72>
P82 = 1117454752021047188523688656180078402295445713630605513644151002858054731527619817<82>
Number: n N=741153690269829344816607101538581813580363824537014619808453740497332331010205538207186533049730298407091798388514224200756023662978131538180140673484311 ( 153 digits) SNFS difficulty: 168 digits. Divisors found: Sat Jul 05 01:16:13 2008 prp72 factor: 663251634063362739752196199073426751298383313952477786487187756107043583 Sat Jul 05 01:16:13 2008 prp82 factor: 1117454752021047188523688656180078402295445713630605513644151002858054731527619817 Sat Jul 05 01:16:13 2008 elapsed time 01:38:25 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 59.64 hours. Scaled time: 109.07 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_167_9 n: 741153690269829344816607101538581813580363824537014619808453740497332331010205538207186533049730298407091798388514224200756023662978131538180140673484311 skew: 0.80 deg: 5 c5: 125 c0: 41 m: 2000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600221) Primes: RFBsize:380800, AFBsize:381398, largePrimes:8025714 encountered Relations: rels:7629445, finalFF:796763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 59.44 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 59.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Wataru Sakai / GGNFS
(10174+17)/9 = (1)1733<174> = 377876511031<12> · C162
C162 = P64 · P98
P64 = 7316041903847007779820595674552294686019937425938604329901433463<64>
P98 = 40191240367144016302815181110516174673310246906156873550846174801629866981184855893817082957652921<98>
Number: 11113_174 N=294040798693613020978721557691027645861505411458095217132747791724995390273507246425889611518903150754520207364042759151086227684121488178193073709170363929095423 ( 162 digits) SNFS difficulty: 175 digits. Divisors found: r1=7316041903847007779820595674552294686019937425938604329901433463 (pp64) r2=40191240367144016302815181110516174673310246906156873550846174801629866981184855893817082957652921 (pp98) Version: GGNFS-0.77.1-20060722-nocona Total time: 194.34 hours. Scaled time: 352.33 units (timescale=1.813). Factorization parameters were as follows: n: 294040798693613020978721557691027645861505411458095217132747791724995390273507246425889611518903150754520207364042759151086227684121488178193073709170363929095423 m: 100000000000000000000000000000000000 c5: 1 c0: 170 skew: 2.79 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10100001) Primes: RFBsize:501962, AFBsize:502431, largePrimes:6427815 encountered Relations: rels:6885252, finalFF:1141474 Max relations in full relation-set: 32 Initial matrix: 1004457 x 1141474 with sparse part having weight 68636874. Pruned matrix : 885866 x 890952 with weight 51307737. Total sieving time: 187.27 hours. Total relation processing time: 0.10 hours. Matrix solve time: 6.75 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 194.34 hours. --------- CPU info (if available) ----------
(10169+71)/9 = (1)1689<169> = 3 · 59 · 97 · 2029033 · 6513786343<10> · C148
C148 = P41 · P107
P41 = 58256274272138916126619839433275911718637<41>
P107 = 84051828163356372247625226617883687184833701501969291495680461061656160491744043801648027577705796315595717<107>
Number: 11119_169 N=4896546354559178996140354102442220159529990569466487676403385572974008116436611422680942354556609657246123689866555093038830658609501137723946277729 ( 148 digits) SNFS difficulty: 170 digits. Divisors found: r1=58256274272138916126619839433275911718637 (pp41) r2=84051828163356372247625226617883687184833701501969291495680461061656160491744043801648027577705796315595717 (pp107) Version: GGNFS-0.77.1-20060722-nocona Total time: 168.68 hours. Scaled time: 339.73 units (timescale=2.014). Factorization parameters were as follows: n: 4896546354559178996140354102442220159529990569466487676403385572974008116436611422680942354556609657246123689866555093038830658609501137723946277729 m: 10000000000000000000000000000000000 c5: 1 c0: 710 skew: 3.72 type: snfsFactor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 8700001) Primes: RFBsize:412849, AFBsize:413722, largePrimes:6522753 encountered Relations: rels:7031474, finalFF:1142419 Max relations in full relation-set: 32 Initial matrix: 826635 x 1142419 with sparse part having weight 87304407. Pruned matrix : 574125 x 578322 with weight 74347583. Total sieving time: 165.14 hours. Total relation processing time: 0.10 hours. Matrix solve time: 3.27 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 168.68 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM
(64·10249+53)/9 = 7(1)2487<250> = 11 · 8171 · 944916181322280177394519<24> · C221
C221 = P40 · C182
P40 = 1115409808826481487721767396696401745727<40>
C182 = [75065749185647424301639973766450991088912379509114416801234054773803073644854905012027429069765331464723207178998756891472876524389458263589608376114581569780896727097603078911963789<182>]
By suberi / GMP-ECM
5·10188+3 = 5(0)1873<189> = 17 · 353 · 694042304507<12> · C174
C174 = P45 · P129
P45 = 534714061843976765275098162965857648543309727<45>
P129 = 224511622860875644540507133498734394246496745568262356156954776102962010083439706705021118582845752441312785525001232938868447927<129>
By Serge Batalov / Msieve
6·10200+1 = 6(0)1991<201> = 29 · C200
C200 = P84 · P116
P84 = 367530286683762818311653969900003494345257271270268514080948164981978980653079960969<84>
P116 = 56293742099725151227484967667076511849333661046901547637197489587498221199711228253147257513850471263698402737741901<116>
Number: 60001_200 N=20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 ( 200 digits) SNFS difficulty: 200 digits. Divisors found: r1=367530286683762818311653969900003494345257271270268514080948164981978980653079960969 (p84) r2=56293742099725151227484967667076511849333661046901547637197489587498221199711228253147257513850471263698402737741901 (p116) Version: Msieve v. 1.36 Total time: 13 CPU-days. (1 CPU) Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 Y1: 10000000000000000000000000000000000000000 Y0: -1 c0: 6 c5: 1 skew: 1 type: snfs lpbr: 29 lpba: 29 mfbr: 57 mfba: 57 rlambda: 2.5 alambda: 2.5 rlim: 15000000 alim: 15000000 Factor base limits: 15000000/15000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 57/57 Sieved rational special-q in [7500000, 13600001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3079496 x 3079744 Total sieving time: 12.5 days. Matrix solve time: 53:07:51 hours. Time per square root: 00:40:47 hours. (1st dependency!) Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15000000,15000000,29,29,57,57,2.5,2.5,100000 total time: 13 CPU-days. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Fri Jun 20 21:33:29 2008 Msieve v. 1.36 Fri Jun 20 21:33:29 2008 random seeds: 009edf2b 6d52626c Fri Jun 20 21:33:29 2008 factoring 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 (200 digits) Fri Jun 20 21:33:31 2008 no P-1/P+1/ECM available, skipping Fri Jun 20 21:33:31 2008 commencing number field sieve (200-digit input) Fri Jun 20 21:33:31 2008 R0: -1 Fri Jun 20 21:33:31 2008 R1: 10000000000000000000000000000000000000000 Fri Jun 20 21:33:31 2008 A0: 6 Fri Jun 20 21:33:31 2008 A1: 0 Fri Jun 20 21:33:31 2008 A2: 0 Fri Jun 20 21:33:31 2008 A3: 0 Fri Jun 20 21:33:31 2008 A4: 0 Fri Jun 20 21:33:31 2008 A5: 1 Fri Jun 20 21:33:31 2008 size score = 1.681569e-13, Murphy alpha = 0.815479, combined = 1.281333e-13 Fri Jun 20 21:33:31 2008 generating factor base Fri Jun 20 21:33:38 2008 factor base complete: Fri Jun 20 21:33:38 2008 970704 rational roots (max prime = 14999981) Fri Jun 20 21:33:38 2008 969545 algebraic roots (max prime = 14999977) ... ...sieving... ... Tue Jul 1 15:27:06 2008 filtering wants 125832 more relations Tue Jul 1 15:27:06 2008 elapsed time 00:33:10 -> makeJobFile(): Adjusted to q0=13599901, q1=13600000. -> client 1 q0: 13599901 Tue Jul 1 16:23:17 2008 Tue Jul 1 16:23:17 2008 Tue Jul 1 16:23:17 2008 Msieve v. 1.36 Tue Jul 1 16:23:17 2008 random seeds: 73293338 5ae60b30 Tue Jul 1 16:23:17 2008 factoring 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 (200 digits) Tue Jul 1 16:23:19 2008 no P-1/P+1/ECM available, skipping Tue Jul 1 16:23:19 2008 commencing number field sieve (200-digit input) Tue Jul 1 16:23:19 2008 R0: -1 Tue Jul 1 16:23:19 2008 R1: 10000000000000000000000000000000000000000 Tue Jul 1 16:23:19 2008 A0: 6 Tue Jul 1 16:23:19 2008 A1: 0 Tue Jul 1 16:23:19 2008 A2: 0 Tue Jul 1 16:23:19 2008 A3: 0 Tue Jul 1 16:23:19 2008 A4: 0 Tue Jul 1 16:23:19 2008 A5: 1 Tue Jul 1 16:23:19 2008 size score = 1.681569e-13, Murphy alpha = 0.815479, combined = 1.281333e-13 Tue Jul 1 16:23:27 2008 restarting with 38716423 relations Tue Jul 1 16:23:27 2008 Tue Jul 1 16:23:27 2008 commencing relation filtering Tue Jul 1 16:23:27 2008 commencing duplicate removal, pass 1 Tue Jul 1 16:23:28 2008 error -9 reading relation 1 Tue Jul 1 16:24:34 2008 error -9 reading relation 8560327 Tue Jul 1 16:28:26 2008 found 4666296 hash collisions in 38716421 relations Tue Jul 1 16:28:26 2008 commencing duplicate removal, pass 2 Tue Jul 1 16:28:52 2008 found 2885930 duplicates and 35830491 unique relations Tue Jul 1 16:28:52 2008 memory use: 153.2 MB Tue Jul 1 16:28:58 2008 ignoring smallest 955332 rational and 954318 algebraic ideals Tue Jul 1 16:28:58 2008 filtering rational ideals above 14745600 Tue Jul 1 16:28:58 2008 filtering algebraic ideals above 14745600 Tue Jul 1 16:28:58 2008 need 2864475 more relations than ideals Tue Jul 1 16:28:58 2008 commencing singleton removal, pass 1 Tue Jul 1 16:33:56 2008 relations with 0 large ideals: 349980 Tue Jul 1 16:33:56 2008 relations with 1 large ideals: 2681713 Tue Jul 1 16:33:56 2008 relations with 2 large ideals: 9046027 Tue Jul 1 16:33:56 2008 relations with 3 large ideals: 14378910 Tue Jul 1 16:33:56 2008 relations with 4 large ideals: 9313993 Tue Jul 1 16:33:56 2008 relations with 5 large ideals: 59754 Tue Jul 1 16:33:56 2008 relations with 6 large ideals: 114 Tue Jul 1 16:33:56 2008 relations with 7+ large ideals: 0 Tue Jul 1 16:33:56 2008 35830491 relations and about 33000174 large ideals Tue Jul 1 16:33:56 2008 commencing singleton removal, pass 2 Tue Jul 1 16:38:54 2008 found 12137340 singletons Tue Jul 1 16:38:54 2008 current dataset: 23693151 relations and about 18987468 large ideals Tue Jul 1 16:38:54 2008 commencing singleton removal, pass 3 Tue Jul 1 16:42:10 2008 found 2831933 singletons Tue Jul 1 16:42:10 2008 current dataset: 20861218 relations and about 16012294 large ideals Tue Jul 1 16:42:10 2008 commencing singleton removal, pass 4 Tue Jul 1 16:45:07 2008 found 760992 singletons Tue Jul 1 16:45:07 2008 current dataset: 20100226 relations and about 15239442 large ideals Tue Jul 1 16:45:07 2008 commencing singleton removal, pass 5 Tue Jul 1 16:47:59 2008 found 209746 singletons Tue Jul 1 16:47:59 2008 current dataset: 19890480 relations and about 15028746 large ideals Tue Jul 1 16:47:59 2008 commencing singleton removal, final pass Tue Jul 1 16:51:43 2008 memory use: 352.2 MB Tue Jul 1 16:51:44 2008 commencing in-memory singleton removal Tue Jul 1 16:51:47 2008 begin with 19890480 relations and 18306064 unique ideals Tue Jul 1 16:52:34 2008 reduce to 12514527 relations and 10463483 ideals in 21 passes Tue Jul 1 16:52:34 2008 max relations containing the same ideal: 21 Tue Jul 1 16:52:37 2008 filtering rational ideals above 720000 Tue Jul 1 16:52:37 2008 filtering algebraic ideals above 720000 Tue Jul 1 16:52:37 2008 need 116191 more relations than ideals Tue Jul 1 16:52:37 2008 commencing singleton removal, final pass Tue Jul 1 16:55:59 2008 keeping 11195651 ideals with weight <= 20, new excess is 1177388 Tue Jul 1 16:56:11 2008 memory use: 355.6 MB Tue Jul 1 16:56:11 2008 commencing in-memory singleton removal Tue Jul 1 16:56:13 2008 begin with 12514528 relations and 11195651 unique ideals Tue Jul 1 16:56:34 2008 reduce to 12511886 relations and 11193004 ideals in 9 passes Tue Jul 1 16:56:34 2008 max relations containing the same ideal: 20 Tue Jul 1 16:56:47 2008 removing 287933 relations and 276056 ideals in 11878 cliques Tue Jul 1 16:56:48 2008 commencing in-memory singleton removal Tue Jul 1 16:56:50 2008 begin with 12223953 relations and 11193004 unique ideals Tue Jul 1 16:57:13 2008 reduce to 12217820 relations and 10910803 ideals in 9 passes Tue Jul 1 16:57:13 2008 max relations containing the same ideal: 20 Tue Jul 1 16:57:25 2008 removing 208850 relations and 196972 ideals in 11878 cliques Tue Jul 1 16:57:25 2008 commencing in-memory singleton removal Tue Jul 1 16:57:29 2008 begin with 12008970 relations and 10910803 unique ideals Tue Jul 1 16:57:59 2008 reduce to 12005805 relations and 10710657 ideals in 11 passes Tue Jul 1 16:57:59 2008 max relations containing the same ideal: 20 Tue Jul 1 16:58:02 2008 relations with 0 large ideals: 113697 Tue Jul 1 16:58:02 2008 relations with 1 large ideals: 770261 Tue Jul 1 16:58:02 2008 relations with 2 large ideals: 2472911 Tue Jul 1 16:58:02 2008 relations with 3 large ideals: 4030039 Tue Jul 1 16:58:02 2008 relations with 4 large ideals: 3306042 Tue Jul 1 16:58:02 2008 relations with 5 large ideals: 1129408 Tue Jul 1 16:58:02 2008 relations with 6 large ideals: 171106 Tue Jul 1 16:58:02 2008 relations with 7+ large ideals: 12341 Tue Jul 1 16:58:02 2008 commencing 2-way merge Tue Jul 1 16:58:15 2008 reduce to 6550256 relation sets and 5255140 unique ideals Tue Jul 1 16:58:15 2008 ignored 33 oversize relation sets Tue Jul 1 16:58:15 2008 commencing full merge Tue Jul 1 16:59:48 2008 memory use: 454.1 MB Tue Jul 1 16:59:49 2008 found 3213687 cycles, need 3125340 Tue Jul 1 16:59:50 2008 weight of 3125340 cycles is about 219015996 (70.08/cycle) Tue Jul 1 16:59:50 2008 distribution of cycle lengths: Tue Jul 1 16:59:50 2008 1 relations: 425540 Tue Jul 1 16:59:50 2008 2 relations: 415093 Tue Jul 1 16:59:50 2008 3 relations: 401689 Tue Jul 1 16:59:50 2008 4 relations: 351498 Tue Jul 1 16:59:50 2008 5 relations: 288577 Tue Jul 1 16:59:50 2008 6 relations: 247431 Tue Jul 1 16:59:50 2008 7 relations: 201519 Tue Jul 1 16:59:50 2008 8 relations: 161059 Tue Jul 1 16:59:50 2008 9 relations: 129940 Tue Jul 1 16:59:50 2008 10+ relations: 502994 Tue Jul 1 16:59:50 2008 heaviest cycle: 22 relations Tue Jul 1 16:59:51 2008 commencing cycle optimization Tue Jul 1 17:00:03 2008 start with 17192621 relations Tue Jul 1 17:00:44 2008 pruned 170374 relations Tue Jul 1 17:00:44 2008 memory use: 619.4 MB Tue Jul 1 17:00:45 2008 distribution of cycle lengths: Tue Jul 1 17:00:45 2008 1 relations: 425540 Tue Jul 1 17:00:45 2008 2 relations: 418823 Tue Jul 1 17:00:45 2008 3 relations: 408212 Tue Jul 1 17:00:45 2008 4 relations: 354004 Tue Jul 1 17:00:45 2008 5 relations: 291359 Tue Jul 1 17:00:45 2008 6 relations: 247776 Tue Jul 1 17:00:45 2008 7 relations: 201337 Tue Jul 1 17:00:45 2008 8 relations: 160104 Tue Jul 1 17:00:45 2008 9 relations: 128766 Tue Jul 1 17:00:45 2008 10+ relations: 489419 Tue Jul 1 17:00:45 2008 heaviest cycle: 22 relations Tue Jul 1 17:00:55 2008 elapsed time 00:37:38 Tue Jul 1 17:00:57 2008 Tue Jul 1 17:00:57 2008 Tue Jul 1 17:00:57 2008 Msieve v. 1.36 Tue Jul 1 17:00:57 2008 random seeds: 325f3526 08946e45 Tue Jul 1 17:00:57 2008 factoring 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 (200 digits) Tue Jul 1 17:01:03 2008 no P-1/P+1/ECM available, skipping Tue Jul 1 17:01:03 2008 commencing number field sieve (200-digit input) Tue Jul 1 17:01:03 2008 R0: -1 Tue Jul 1 17:01:03 2008 R1: 10000000000000000000000000000000000000000 Tue Jul 1 17:01:03 2008 A0: 6 Tue Jul 1 17:01:03 2008 A1: 0 Tue Jul 1 17:01:03 2008 A2: 0 Tue Jul 1 17:01:03 2008 A3: 0 Tue Jul 1 17:01:03 2008 A4: 0 Tue Jul 1 17:01:03 2008 A5: 1 Tue Jul 1 17:01:03 2008 size score = 1.681569e-13, Murphy alpha = 0.815479, combined = 1.281333e-13 Tue Jul 1 17:01:03 2008 Tue Jul 1 17:01:03 2008 commencing linear algebra Tue Jul 1 17:01:08 2008 read 3125340 cycles Tue Jul 1 17:01:28 2008 cycles contain 10751011 unique relations Tue Jul 1 17:02:59 2008 read 10751011 relations Tue Jul 1 17:03:27 2008 using 32 quadratic characters above 536868974 Tue Jul 1 17:05:31 2008 building initial matrix Tue Jul 1 17:08:07 2008 memory use: 1308.9 MB Tue Jul 1 17:08:10 2008 read 3125340 cycles Tue Jul 1 17:08:13 2008 matrix is 3124507 x 3125340 (946.8 MB) with weight 299306570 (95.77/col) Tue Jul 1 17:08:13 2008 sparse part has weight 213814726 (68.41/col) Tue Jul 1 17:10:18 2008 filtering completed in 3 passes Tue Jul 1 17:10:19 2008 matrix is 3079544 x 3079744 (939.5 MB) with weight 296593355 (96.30/col) Tue Jul 1 17:10:19 2008 sparse part has weight 212416998 (68.97/col) Tue Jul 1 17:10:58 2008 read 3079744 cycles Tue Jul 1 17:11:01 2008 matrix is 3079544 x 3079744 (939.5 MB) with weight 296593355 (96.30/col) Tue Jul 1 17:11:01 2008 sparse part has weight 212416998 (68.97/col) Tue Jul 1 17:11:01 2008 saving the first 48 matrix rows for later Tue Jul 1 17:11:03 2008 matrix is 3079496 x 3079744 (901.2 MB) with weight 229186974 (74.42/col) Tue Jul 1 17:11:03 2008 sparse part has weight 205451830 (66.71/col) Tue Jul 1 17:11:03 2008 matrix includes 64 packed rows Tue Jul 1 17:11:03 2008 using block size 43690 for processor cache size 1024 kB Tue Jul 1 17:11:22 2008 commencing Lanczos iteration Tue Jul 1 17:11:22 2008 memory use: 866.0 MB Thu Jul 3 22:08:36 2008 lanczos halted after 48705 iterations (dim = 3079494) Thu Jul 3 22:08:48 2008 recovered 46 nontrivial dependencies Thu Jul 3 22:08:48 2008 elapsed time 53:07:51 Thu Jul 3 22:08:48 2008 Thu Jul 3 22:08:48 2008 Thu Jul 3 22:08:48 2008 Msieve v. 1.36 Thu Jul 3 22:08:48 2008 random seeds: 93ca7f7c 9d776727 Thu Jul 3 22:08:48 2008 factoring 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 (200 digits) Thu Jul 3 22:08:50 2008 no P-1/P+1/ECM available, skipping Thu Jul 3 22:08:50 2008 commencing number field sieve (200-digit input) Thu Jul 3 22:08:50 2008 R0: -1 Thu Jul 3 22:08:50 2008 R1: 10000000000000000000000000000000000000000 Thu Jul 3 22:08:50 2008 A0: 6 Thu Jul 3 22:08:50 2008 A1: 0 Thu Jul 3 22:08:50 2008 A2: 0 Thu Jul 3 22:08:50 2008 A3: 0 Thu Jul 3 22:08:50 2008 A4: 0 Thu Jul 3 22:08:50 2008 A5: 1 Thu Jul 3 22:08:50 2008 size score = 1.681569e-13, Murphy alpha = 0.815479, combined = 1.281333e-13 Thu Jul 3 22:08:50 2008 Thu Jul 3 22:08:50 2008 commencing square root phase Thu Jul 3 22:08:50 2008 reading relations for dependency 1 Thu Jul 3 22:08:50 2008 read 1538490 cycles Thu Jul 3 22:08:57 2008 cycles contain 6386580 unique relations Thu Jul 3 22:09:54 2008 read 6386580 relations Thu Jul 3 22:10:51 2008 multiplying 8458902 relations Thu Jul 3 22:25:40 2008 multiply complete, coefficients have about 201.64 million bits Thu Jul 3 22:25:44 2008 initial square root is modulo 17227841 Thu Jul 3 22:49:35 2008 prp84 factor: 367530286683762818311653969900003494345257271270268514080948164981978980653079960969 Thu Jul 3 22:49:35 2008 prp116 factor: 56293742099725151227484967667076511849333661046901547637197489587498221199711228253147257513850471263698402737741901 Thu Jul 3 22:49:35 2008 elapsed time 00:40:47 total time: 13 CPU-days.
C200 is the second largest snfs-factored number in our tables so far and P84 is so big as our expectations. Congratulations!
By Robert Backstrom / GMP-ECM
(4·10173+41)/9 = (4)1729<173> = 17 · 151 · C170
C170 = P40 · P130
P40 = 3690261951417434928982708714910132460751<40>
P130 = 4691745193852098076874265382218613551734230024345277073373087798519293567157971656250985794207394773191162000531186646913618048697<130>
By Sinkiti Sibata / GGNFS
(22·10186-13)/9 = 2(4)1853<187> = 31 · 16879 · 1543033 · 5960683 · 189223412921<12> · 13731509942096227<17> · 46081468145707033413173827<26> · C115
C115 = P56 · P59
P56 = 43959204954398191758967014257475577232360237024190677731<56>
P59 = 96500868268959376515840611142404886048601428365351772525347<59>
Number: 24443_186 N=4242101446512566279037752919245875197556434359228304425000793653490947024758992103027621559431224282849289305947657 ( 115 digits) Divisors found: r1=43959204954398191758967014257475577232360237024190677731 (pp56) r2=96500868268959376515840611142404886048601428365351772525347 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 40.02 hours. Scaled time: 40.34 units (timescale=1.008). Factorization parameters were as follows: name: 24443_186 n: 4242101446512566279037752919245875197556434359228304425000793653490947024758992103027621559431224282849289305947657 skew: 41072.16 # norm 1.73e+16 c5: 28980 c4: -5531699547 c3: 372309325381604 c2: 23901648869437194434 c1: -212452296877258001651416 c0: 402545251072873544415047961 # alpha -6.80 Y1: 1980335979017 Y0: -10791941343671477762770 # Murphy_E 5.63e-10 # M 2831575661041463818221452258434492024696583287593071787784957834298756538742697938919050064827202075377543747090696 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3050001) Primes: RFBsize:250150, AFBsize:250878, largePrimes:7937801 encountered Relations: rels:8210451, finalFF:866897 Max relations in full relation-set: 28 Initial matrix: 501111 x 866897 with sparse part having weight 84364678. Pruned matrix : 288555 x 291124 with weight 56212619. Total sieving time: 38.67 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.94 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 40.02 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
(22·10168-13)/9 = 2(4)1673<169> = 61 · 1181 · 2753 · C161
C161 = P36 · P125
P36 = 272806960740898694897744916795109789<36>
P125 = 45179225343192939814830264722714360700948905264435948248866595060194010598980819143752130662346477005769664390040536535097919<125>
By Serge Batalov / GMP-ECM, pol51, Msieve
(22·10160-13)/9 = 2(4)1593<161> = 83 · 343823 · 855737224949<12> · C142
C142 = P33 · P48 · P61
P33 = 735790587500551731348419488073351<33>
P48 = 587239052741479910497804853780708830854156297691<48>
P61 = 2316634778346193718074128370167758320496447356746829997837303<61>
# memo: # 1. started as SNFS (complexity=160) + ECM in parallel # ==> ECM found P33, reduced to C109 # 2. Restarted as GNFS-109 and finished in under 8 hours Run 618 out of 950: Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2528959712 Step 1 took 5168ms Step 2 took 2516ms ********** Factor found in step 2: 735790587500551731348419488073351 Found probable prime factor of 33 digits: 735790587500551731348419488073351 Composite cofactor ... has 109 digits ________________________________ Number: 24443_160_1 N=1360418412783987074914444113841721330588031373907259564665334948457960743026634867009277756438778267452567373 ( 109 digits) Divisors found: r1=587239052741479910497804853780708830854156297691 r2=2316634778346193718074128370167758320496447356746829997837303 Version: Total time: 7.00 hours. Scaled time: 21.00 units (timescale=2.952). Factorization parameters were as follows: name: 24443_160_1 n: 1360418412783987074914444113841721330588031373907259564665334948457960743026634867009277756438778267452567373 skew: 41860.23 # norm 1.64e+15 c5: 3420 c4: 1690161444 c3: -41999216776651 c2: -2882404502481927453 c1: 13452908855870193561711 c0: -31177496575363663531230471 # alpha -6.60 Y1: 24432329119 Y0: -831625922016089307142 # Murphy_E 1.22e-09 # M 698164231928883033395764254761249812600819043440596205752521820506521365412989261638914584739305378444049168 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1600000, 2800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 383287 x 383535 Total sieving time: 6.20 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.51 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,26,26,49,49,2.6,2.6,100000 total time: 7.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618)
By Sinkiti Sibata / GGNFS
(22·10159-13)/9 = 2(4)1583<160> = 73 · 241 · 174319009 · C147
C147 = P53 · P94
P53 = 35979740872329018517519746209133239737925977264625179<53>
P94 = 4714832073781596621362448799071690079103424956069158006846652811186139395908205559836553336951<94>
Number: 24443_159 N=169638436271207498618321778981267682748389403467968388237789976659448429627083605891836793599367968896683372273498374419202359611720013660705689229 ( 147 digits) SNFS difficulty: 161 digits. Divisors found: r1=35979740872329018517519746209133239737925977264625179 (pp53) r2=4714832073781596621362448799071690079103424956069158006846652811186139395908205559836553336951 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 44.04 hours. Scaled time: 43.82 units (timescale=0.995). Factorization parameters were as follows: name: 24443_159 n: 169638436271207498618321778981267682748389403467968388237789976659448429627083605891836793599367968896683372273498374419202359611720013660705689229 m: 100000000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3700001) Primes: RFBsize:283146, AFBsize:283393, largePrimes:5721164 encountered Relations: rels:5780761, finalFF:678838 Max relations in full relation-set: 28 Initial matrix: 566604 x 678838 with sparse part having weight 44595218. Pruned matrix : 483941 x 486838 with weight 30357189. Total sieving time: 42.29 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.58 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 44.04 hours. --------- CPU info (if available) ----------
(22·10157-13)/9 = 2(4)1563<158> = 1901 · 45646637540051<14> · C141
C141 = P69 · P72
P69 = 941115575237730669914918455345091326630972261040701955276054024800787<69>
P72 = 299327281814835613590373614390897333859536305210099996132872751678060239<72>
Number: 24443_157 N=281701567009515337244234737436856874873686680115008093807195786046964542930044212193347083470278961240801256470701268719003298688370560608093 ( 141 digits) SNFS difficulty: 158 digits. Divisors found: r1=941115575237730669914918455345091326630972261040701955276054024800787 (pp69) r2=299327281814835613590373614390897333859536305210099996132872751678060239 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 59.57 hours. Scaled time: 118.90 units (timescale=1.996). Factorization parameters were as follows: name: 24443_157 n: 281701567009515337244234737436856874873686680115008093807195786046964542930044212193347083470278961240801256470701268719003298688370560608093 m: 10000000000000000000000000000000 c5: 2200 c0: -13 skew: 0.36 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:283003, largePrimes:5890953 encountered Relations: rels:6046569, finalFF:756840 Max relations in full relation-set: 28 Initial matrix: 566216 x 756840 with sparse part having weight 51799263. Pruned matrix : 427261 x 430156 with weight 36328521. Total sieving time: 56.77 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.41 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 59.57 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(22·10156-13)/9 = 2(4)1553<157> = 31 · 69610967 · C148
C148 = P68 · P80
P68 = 58736020814238558891405825208486913134774314421667326208192258974379<68>
P80 = 19285739207270759069175268490680623206978396054095595843811679209703382453696521<80>
Number: 24443_156 N=1132767579496231949385886206437540984692756560598462115818360616266781568801922447745841285021267505089852851103858318504307705517077245584780435459 ( 148 digits) SNFS difficulty: 157 digits. Divisors found: r1=58736020814238558891405825208486913134774314421667326208192258974379 (pp68) r2=19285739207270759069175268490680623206978396054095595843811679209703382453696521 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 32.99 hours. Scaled time: 33.28 units (timescale=1.009). Factorization parameters were as follows: name: 24443_156 n: 1132767579496231949385886206437540984692756560598462115818360616266781568801922447745841285021267505089852851103858318504307705517077245584780435459 m: 10000000000000000000000000000000 c5: 220 c0: -13 skew: 0.57 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216882, largePrimes:5615042 encountered Relations: rels:5551495, finalFF:527766 Max relations in full relation-set: 28 Initial matrix: 433765 x 527766 with sparse part having weight 43035221. Pruned matrix : 385213 x 387445 with weight 28597768. Total sieving time: 31.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.02 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.99 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
3·10191+1 = 3(0)1901<192> = 13 · 43 · 41981 · 90059 · 222941 · 1235130679<10> · 8247897299<10> · 94927819198801891456854631<26> · C129
C129 = P61 · P69
P61 = 3509579947593832172401267969183483650808143002961993244596581<61>
P69 = 187600851274178017217228137473536104234402691756912413319983272561371<69>
N=658400185783387989190276926287923699496691827000194736855165613840550040610396624987732594211308692726270672023640418105459272551 ( 129 digits) Divisors found: r1=3509579947593832172401267969183483650808143002961993244596581 (pp61) r2=187600851274178017217228137473536104234402691756912413319983272561371 (pp69) Version: GGNFS-0.77.1-20060513-prescott Total time: 321.19 hours. Scaled time: 462.20 units (timescale=1.439). Factorization parameters were as follows: name: 8000 n: 658400185783387989190276926287923699496691827000194736855165613840550040610396624987732594211308692726270672023640418105459272551 skew: 72736.40 # norm 1.83e+18 c5: 786240 c4: -747480222072 c3: 20219639540097418 c2: 3368292628923275673139 c1: -8265186657456836050216142 c0: -2406243418535148656504477194428 # alpha -7.19 Y1: 82320578815277 Y0: -3842277531817596663468793 # Murphy_E 9.16e-11 # M 557761899041843066496540040677737346243348996541460686464442362588014926906968250733206482629057103019058836980746328716567488758 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 10680001) Primes: RFBsize:374362, AFBsize:375087, largePrimes:9623028 encountered Relations: rels:10716441, finalFF:852775 Max relations in full relation-set: 28 Initial matrix: 749534 x 852775 with sparse part having weight 120954160. Pruned matrix : 674473 x 678284 with weight 101198922. Total sieving time: 308.26 hours. Total relation processing time: 0.80 hours. Matrix solve time: 11.52 hours. Time per square root: 0.62 hours. Prototype def-par.txt line would be: gnfs,128,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 321.19 hours.
By Serge Batalov / pol51, Msieve
(22·10171-13)/9 = 2(4)1703<172> = 7 · 31 · 827 · 5246447 · 479536609 · 4338158526930879037<19> · 242847323361115062389<21> · C112
C112 = P38 · P75
P38 = 17489659331233420841041848831787915121<38>
P75 = 293837879123436495340659649946267814150481624381132301381989520081108118583<75>
Number: 24443_171 N=5139124404481049086395651731906800311483837611273017081671461373903727665577251446454615728185746159540406793543 ( 112 digits) Divisors found: r1=17489659331233420841041848831787915121 r2=293837879123436495340659649946267814150481624381132301381989520081108118583 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.925). Factorization parameters were as follows: name: 24443_171 n: 5139124404481049086395651731906800311483837611273017081671461373903727665577251446454615728185746159540406793543 skew: 23580.22 # norm 7.24e+15 c5: 148800 c4: -4636284728 c3: -470193859049548 c2: 438239297947085878 c1: 79112332684214555643067 c0: -394126047946406209907151014 # alpha -6.39 Y1: 86199672119 Y0: -2030754175241905544721 # Murphy_E 7.70e-10 # M 2640026109499838171364872472237626803511669852765746996736091001649567901109710655658807811642173908560437128601 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3550001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 445649 x 445892 Total sieving time: 11.00 hours. Total relation processing time: 0.80 hours. Matrix solve time: 1.00 hours. Time per square root: 0.79 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Tue Jul 1 20:09:33 2008 Msieve v. 1.36 Tue Jul 1 20:09:33 2008 random seeds: 702b4d8c a9e2f611 Tue Jul 1 20:09:33 2008 factoring 5139124404481049086395651731906800311483837611273017081671461373903727665577251446454615728185746159540406793543 (112 digits) Tue Jul 1 20:09:33 2008 no P-1/P+1/ECM available, skipping Tue Jul 1 20:09:33 2008 commencing number field sieve (112-digit input) Tue Jul 1 20:09:33 2008 R0: -2030754175241905544721 Tue Jul 1 20:09:33 2008 R1: 86199672119 Tue Jul 1 20:09:33 2008 A0: -394126047946406209907151014 Tue Jul 1 20:09:33 2008 A1: 79112332684214555643067 Tue Jul 1 20:09:33 2008 A2: 438239297947085878 Tue Jul 1 20:09:33 2008 A3: -470193859049548 Tue Jul 1 20:09:33 2008 A4: -4636284728 Tue Jul 1 20:09:33 2008 A5: 148800 Tue Jul 1 20:09:33 2008 size score = 1.249103e-11, Murphy alpha = -6.388435, combined = 1.050556e-10 Tue Jul 1 20:09:33 2008 generating factor base Tue Jul 1 20:09:35 2008 factor base complete: Tue Jul 1 20:09:35 2008 250150 rational roots (max prime = 3499999) Tue Jul 1 20:09:35 2008 250613 algebraic roots (max prime = 3499999) Tue Jul 1 20:09:36 2008 a range: [-4000000, 4000000] Tue Jul 1 20:09:36 2008 b range: [1, 300] Tue Jul 1 20:09:36 2008 number of hash buckets: 54 Tue Jul 1 20:09:36 2008 sieve block size: 65536 Tue Jul 1 20:09:36 2008 Tue Jul 1 20:09:36 2008 maximum RFB prime: 3499999 Tue Jul 1 20:09:36 2008 RFB entries: 250150 Tue Jul 1 20:09:36 2008 medium RFB entries: 6542 Tue Jul 1 20:09:36 2008 resieved RFB entries: 6374 Tue Jul 1 20:09:36 2008 small RFB prime powers: 26 ...... Wed Jul 2 07:37:03 2008 read 222881 cycles Wed Jul 2 07:37:04 2008 cycles contain 942396 unique relations Wed Jul 2 07:37:13 2008 read 942396 relations Wed Jul 2 07:37:19 2008 multiplying 1389020 relations Wed Jul 2 07:40:48 2008 multiply complete, coefficients have about 62.98 million bits Wed Jul 2 07:40:51 2008 initial square root is modulo 1099946581 Wed Jul 2 07:48:08 2008 reading relations for dependency 2 Wed Jul 2 07:48:08 2008 read 223005 cycles Wed Jul 2 07:48:09 2008 cycles contain 943124 unique relations Wed Jul 2 07:48:18 2008 read 943124 relations Wed Jul 2 07:48:24 2008 multiplying 1390606 relations Wed Jul 2 07:51:51 2008 multiply complete, coefficients have about 63.05 million bits Wed Jul 2 07:51:54 2008 initial square root is modulo 1127141789 Wed Jul 2 08:00:03 2008 reading relations for dependency 3 Wed Jul 2 08:00:03 2008 read 222905 cycles Wed Jul 2 08:00:04 2008 cycles contain 944334 unique relations Wed Jul 2 08:00:13 2008 read 944334 relations Wed Jul 2 08:00:19 2008 multiplying 1393096 relations Wed Jul 2 08:04:08 2008 multiply complete, coefficients have about 63.16 million bits Wed Jul 2 08:04:11 2008 initial square root is modulo 1169218081 Wed Jul 2 08:12:57 2008 reading relations for dependency 4 Wed Jul 2 08:12:57 2008 read 222408 cycles Wed Jul 2 08:12:58 2008 cycles contain 941642 unique relations Wed Jul 2 08:13:07 2008 read 941642 relations Wed Jul 2 08:13:14 2008 multiplying 1387418 relations Wed Jul 2 08:16:55 2008 multiply complete, coefficients have about 62.90 million bits Wed Jul 2 08:16:58 2008 initial square root is modulo 1073482523 Wed Jul 2 08:24:19 2008 prp38 factor: 17489659331233420841041848831787915121 Wed Jul 2 08:24:19 2008 prp75 factor: 293837879123436495340659649946267814150481624381132301381989520081108118583 Wed Jul 2 08:24:19 2008 elapsed time 00:47:17 Total time: 13hrs.
By suberi / GMP-ECM
10186+7 = 1(0)1857<187> = 23 · 1674321589150079<16> · 5169259926503910472517<22> · C148
C148 = P44 · P105
P44 = 10519579813202962164191587968549958338845129<44>
P105 = 477536446524351969730209842702002079292017485236107832937025486800606023755171179378285725378006234337547<105>
By Jo Yeong Uk / GMP-ECM
(22·10166-13)/9 = 2(4)1653<167> = 204748963 · 1560730573355017<16> · 52343527673168281003<20> · C124
C124 = P35 · P89
P35 = 92451731827226267738142652673971531<35>
P89 = 15807110284823092936676892186474766682999520995799709781771826467335821057469454232049481<89>
By Sinkiti Sibata / GGNFS
(22·10154-13)/9 = 2(4)1533<155> = 3463 · 15581 · C147
C147 = P49 · P99
P49 = 2146985142350986093864164662530779984526223381689<49>
P99 = 211010133979284123150461874857456724663907315722703385915179202631648184177974032185559336543961529<99>
Number: 24443_154 N=453035622539013970891682854298717155295753628948673158226457545176192318250968172647477185573936425721132888801189429376654675287366209803099042481 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: r1=2146985142350986093864164662530779984526223381689 (pp49) r2=211010133979284123150461874857456724663907315722703385915179202631648184177974032185559336543961529 (pp99) Version: GGNFS-0.77.1-20050930-nocona Total time: 33.25 hours. Scaled time: 33.45 units (timescale=1.006). Factorization parameters were as follows: name: 24443_154 n: 453035622539013970891682854298717155295753628948673158226457545176192318250968172647477185573936425721132888801189429376654675287366209803099042481 m: 10000000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:217057, largePrimes:5707407 encountered Relations: rels:5715253, finalFF:588373 Max relations in full relation-set: 28 Initial matrix: 433938 x 588373 with sparse part having weight 48008079. Pruned matrix : 348032 x 350265 with weight 29877041. Total sieving time: 32.22 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.88 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 33.25 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(22·10147-13)/9 = 2(4)1463<148> = 7 · C147
C147 = P40 · P108
P40 = 2021712041728844821895966127264309751829<40>
P108 = 172728035446496740787707614044367729343826209385361445373501288263149880818963169788976312580236715350305881<108>
Number: n N=349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 ( 147 digits) SNFS difficulty: 148 digits. Divisors found: r1=2021712041728844821895966127264309751829 (pp40) r2=172728035446496740787707614044367729343826209385361445373501288263149880818963169788976312580236715350305881 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.68 hours. Scaled time: 19.54 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_146_3 n: 349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349 skew: 0.36 deg: 5 c5: 2200 c0: -13 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2050001) Primes: RFBsize:114155, AFBsize:114288, largePrimes:7233951 encountered Relations: rels:6609013, finalFF:269764 Max relations in full relation-set: 48 Initial matrix: 228510 x 269764 with sparse part having weight 44600679. Pruned matrix : 220578 x 221784 with weight 32514856. Total sieving time: 9.77 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.67 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 10.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10149-13)/9 = 2(4)1483<150> = 3 · 17 · C148
C148 = P59 · P89
P59 = 69002924247755090799484487397373660603707328555480983703141<59>
P89 = 69461234791017154769799796429709791557515126520850419394325840918738250512555886792605573<89>
Number: n N=4793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793 ( 148 digits) SNFS difficulty: 151 digits. Divisors found: r1=69002924247755090799484487397373660603707328555480983703141 (pp59) r2=69461234791017154769799796429709791557515126520850419394325840918738250512555886792605573 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.78 hours. Scaled time: 21.54 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_148_3 n: 4793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793028322440087145969498910675381263616557734204793 skew: 1.43 deg: 5 c5: 11 c0: -65 m: 1000000000000000000000000000000 type: snfs rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:135314, largePrimes:6328487 encountered Relations: rels:5664046, finalFF:311042 Max relations in full relation-set: 48 Initial matrix: 270451 x 311042 with sparse part having weight 32188544. Pruned matrix : 249681 x 251097 with weight 20817556. Total sieving time: 10.90 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.49 hours. Total square root time: 0.26 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.5,2.5,100000 total time: 11.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
4·10168-3 = 3(9)1677<169> = 349 · 241074611 · C158
C158 = P77 · P82
P77 = 21544306803353103509843977179159206218824143080472857184693633917823174539019<77>
P82 = 2206736938256127773273970339311752643567289428173222443185875220281755576364296817<82>
Number: n N=47542617632082091100384231437845636303263529996343334801020808732923113197004353274453935504867471617106807111737038599279044427284432373996054873344064002523 ( 158 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jul 2 15:47:50 2008 prp77 factor: 21544306803353103509843977179159206218824143080472857184693633917823174539019 Wed Jul 2 15:47:50 2008 prp82 factor: 2206736938256127773273970339311752643567289428173222443185875220281755576364296817 Wed Jul 2 15:47:50 2008 elapsed time 01:07:16 Version: GGNFS-0.77.1-20050930-k8 Total time: 57.18 hours. Scaled time: 47.92 units (timescale=0.838). Factorization parameters were as follows: name: KA_3_9_167_7 n: 47542617632082091100384231437845636303263529996343334801020808732923113197004353274453935504867471617106807111737038599279044427284432373996054873344064002523 type: snfs deg: 5 c5: 125 c0: -3 skew: 0.47 m: 2000000000000000000000000000000000 rlim: 5500000 alim: 5500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200111) Primes: RFBsize:380800, AFBsize:379892, largePrimes:5594103 encountered Relations: rels:5729847, finalFF:793042 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 57.00 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.5,2.5,100000 total time: 57.18 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
(22·10137-13)/9 = 2(4)1363<138> = 33 · C136
C136 = P62 · P75
P62 = 58473762489790941516005057792881835042331950647437243978542293<62>
P75 = 154830090572117720754725648814565048360015424986244247352985425052957023613<75>
Number: 24443_137 N=9053497942386831275720164609053497942386831275720164609053497942386831275720164609053497942386831275720164609053497942386831275720164609 ( 136 digits) SNFS difficulty: 138 digits. Divisors found: r1=58473762489790941516005057792881835042331950647437243978542293 (pp62) r2=154830090572117720754725648814565048360015424986244247352985425052957023613 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 12.92 hours. Scaled time: 25.85 units (timescale=2.000). Factorization parameters were as follows: name: 24443_137 n: 9053497942386831275720164609053497942386831275720164609053497942386831275720164609053497942386831275720164609053497942386831275720164609 m: 1000000000000000000000000000 c5: 2200 c0: -13 skew: 0.36 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2125001) Primes: RFBsize:78498, AFBsize:64029, largePrimes:1671959 encountered Relations: rels:1698646, finalFF:166229 Max relations in full relation-set: 28 Initial matrix: 142594 x 166229 with sparse part having weight 18916119. Pruned matrix : 136939 x 137715 with weight 14393055. Total sieving time: 12.59 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.92 hours. --------- CPU info (if available) ----------
(22·10132-13)/9 = 2(4)1313<133> = 42227 · C128
C128 = P53 · P76
P53 = 42883627663814341521903001082675283462854504182949003<53>
P76 = 1349890144337203998734326849512015502391489910957629428484329332974286483403<76>
Number: 24443_132 N=57888186336809255794739016374462889725636309575495404467389216483397931286722818207413371644787563512549895669700533886954897209 ( 128 digits) SNFS difficulty: 133 digits. Divisors found: r1=42883627663814341521903001082675283462854504182949003 (pp53) r2=1349890144337203998734326849512015502391489910957629428484329332974286483403 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.09 hours. Scaled time: 14.15 units (timescale=1.997). Factorization parameters were as follows: name: 24443_132 n: 57888186336809255794739016374462889725636309575495404467389216483397931286722818207413371644787563512549895669700533886954897209 m: 100000000000000000000000000 c5: 2200 c0: -13 skew: 0.36 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1350001) Primes: RFBsize:63951, AFBsize:64029, largePrimes:1557327 encountered Relations: rels:1558691, finalFF:156948 Max relations in full relation-set: 28 Initial matrix: 128047 x 156948 with sparse part having weight 15590982. Pruned matrix : 121238 x 121942 with weight 10526521. Total sieving time: 6.87 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 7.09 hours. --------- CPU info (if available) ----------
(22·10140-13)/9 = 2(4)1393<141> = 3 · 79392461 · C133
C133 = P41 · P92
P41 = 30903737715270715377221878457373280830821<41>
P92 = 33209982218207158692180677111290215531825231303595299136370285580176392535478664638944361001<92>
Number: 24443_140 N=1026312580000278382622267893691839096428582576392001269257561892198825798856159421503277011169630847965293347960097640523846231211821 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=30903737715270715377221878457373280830821 (pp41) r2=33209982218207158692180677111290215531825231303595299136370285580176392535478664638944361001 (pp92) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.16 hours. Scaled time: 10.22 units (timescale=1.006). Factorization parameters were as follows: name: 24443_140 n: 1026312580000278382622267893691839096428582576392001269257561892198825798856159421503277011169630847965293347960097640523846231211821 m: 10000000000000000000000000000 c5: 22 c0: -13 skew: 0.9 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:100234, largePrimes:2776498 encountered Relations: rels:2775252, finalFF:272961 Max relations in full relation-set: 28 Initial matrix: 200321 x 272961 with sparse part having weight 27976184. Pruned matrix : 179707 x 180772 with weight 16440918. Total sieving time: 9.91 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.16 hours. --------- CPU info (if available) ----------
(22·10112-13)/9 = 2(4)1113<113> = 3259 · 13950581137<11> · C99
C99 = P32 · P68
P32 = 13701829988800447487541383114549<32>
P68 = 39239633019081925818391162394055049075239789099796401438595560894829<68>
Tue Jul 1 20:15:56 2008 Msieve v. 1.36 Tue Jul 1 20:15:56 2008 random seeds: 85f03703 ba89e7ee Tue Jul 1 20:15:56 2008 factoring 537654780450380973069393496111123321611416061591593186743289377877472784652282513278331113448767121 (99 digits) Tue Jul 1 20:15:58 2008 no P-1/P+1/ECM available, skipping Tue Jul 1 20:15:58 2008 commencing quadratic sieve (99-digit input) Tue Jul 1 20:15:58 2008 using multiplier of 1 Tue Jul 1 20:15:58 2008 using 64kb Pentium 4 sieve core Tue Jul 1 20:15:58 2008 sieve interval: 18 blocks of size 65536 Tue Jul 1 20:15:58 2008 processing polynomials in batches of 6 Tue Jul 1 20:15:58 2008 using a sieve bound of 2608889 (95294 primes) Tue Jul 1 20:15:58 2008 using large prime bound of 391333350 (28 bits) Tue Jul 1 20:15:58 2008 using double large prime bound of 2928089178039000 (43-52 bits) Tue Jul 1 20:15:58 2008 using trial factoring cutoff of 52 bits Tue Jul 1 20:15:58 2008 polynomial 'A' values have 13 factors Wed Jul 2 11:21:29 2008 95448 relations (22485 full + 72963 combined from 1440354 partial), need 95390 Wed Jul 2 11:21:34 2008 begin with 1462839 relations Wed Jul 2 11:21:36 2008 reduce to 252560 relations in 11 passes Wed Jul 2 11:21:36 2008 attempting to read 252560 relations Wed Jul 2 11:21:45 2008 recovered 252560 relations Wed Jul 2 11:21:45 2008 recovered 242733 polynomials Wed Jul 2 11:21:45 2008 attempting to build 95448 cycles Wed Jul 2 11:21:45 2008 found 95448 cycles in 5 passes Wed Jul 2 11:21:45 2008 distribution of cycle lengths: Wed Jul 2 11:21:45 2008 length 1 : 22485 Wed Jul 2 11:21:45 2008 length 2 : 16133 Wed Jul 2 11:21:45 2008 length 3 : 16027 Wed Jul 2 11:21:45 2008 length 4 : 13262 Wed Jul 2 11:21:45 2008 length 5 : 10160 Wed Jul 2 11:21:45 2008 length 6 : 6709 Wed Jul 2 11:21:45 2008 length 7 : 4445 Wed Jul 2 11:21:45 2008 length 9+: 6227 Wed Jul 2 11:21:45 2008 largest cycle: 20 relations Wed Jul 2 11:21:46 2008 matrix is 95294 x 95448 (25.3 MB) with weight 6255327 (65.54/col) Wed Jul 2 11:21:46 2008 sparse part has weight 6255327 (65.54/col) Wed Jul 2 11:21:48 2008 filtering completed in 3 passes Wed Jul 2 11:21:48 2008 matrix is 91505 x 91569 (24.4 MB) with weight 6039314 (65.95/col) Wed Jul 2 11:21:48 2008 sparse part has weight 6039314 (65.95/col) Wed Jul 2 11:21:48 2008 saving the first 48 matrix rows for later Wed Jul 2 11:21:49 2008 matrix is 91457 x 91569 (14.3 MB) with weight 4638240 (50.65/col) Wed Jul 2 11:21:49 2008 sparse part has weight 3191337 (34.85/col) Wed Jul 2 11:21:49 2008 matrix includes 64 packed rows Wed Jul 2 11:21:49 2008 using block size 21845 for processor cache size 512 kB Wed Jul 2 11:21:49 2008 commencing Lanczos iteration Wed Jul 2 11:21:49 2008 memory use: 14.5 MB Wed Jul 2 11:23:17 2008 lanczos halted after 1447 iterations (dim = 91455) Wed Jul 2 11:23:17 2008 recovered 15 nontrivial dependencies Wed Jul 2 11:23:19 2008 prp32 factor: 13701829988800447487541383114549 Wed Jul 2 11:23:19 2008 prp68 factor: 39239633019081925818391162394055049075239789099796401438595560894829 Wed Jul 2 11:23:19 2008 elapsed time 15:07:23
(22·10139-13)/9 = 2(4)1383<140> = 149 · 168851 · C132
C132 = P36 · P97
P36 = 153134131586673253525316680340706127<36>
P97 = 6344804807107506932431402272201079387020389960080550065808574943830533716609237345358028267464891<97>
Number: 24443_139 N=971606174223357976843188915513989536799608138864038956885201254815241556023578249678947093000919656158644315431926796046363121087157 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=153134131586673253525316680340706127 (pp36) r2=6344804807107506932431402272201079387020389960080550065808574943830533716609237345358028267464891 (pp97) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.28 hours. Scaled time: 20.44 units (timescale=1.989). Factorization parameters were as follows: name: 24443_139 n: 971606174223357976843188915513989536799608138864038956885201254815241556023578249678947093000919656158644315431926796046363121087157 m: 10000000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1750001) Primes: RFBsize:100021, AFBsize:100099, largePrimes:2766896 encountered Relations: rels:2782205, finalFF:298407 Max relations in full relation-set: 28 Initial matrix: 200185 x 298407 with sparse part having weight 27881999. Pruned matrix : 171496 x 172560 with weight 14209059. Total sieving time: 9.82 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.30 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.28 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM, pol51, Msieve
(22·10190-13)/9 = 2(4)1893<191> = 37579 · 197712115002913632677<21> · 4324556297448073545291529<25> · 5173627017798433092541301317<28> · C114
C114 = P44 · P70
P44 = 23032466315154297903558471524435237785670147<44>
P70 = 6384465648362112581210497692982220217680658290277639789815364462792251<70>
(68·10179+13)/9 = 7(5)1787<180> = 11 · 9857 · 33493 · 30812581 · 6965459779<10> · 2442025749808860916183882823027<31> · C123
C123 = P44 · P79
P44 = 57629319515256167066500951939735023830699563<44>
P79 = 6888161396207106342594867165412911745264595604363393849592578966611969346616013<79>
(22·10195-13)/9 = 2(4)1943<196> = 7 · 26837687 · 95955997 · 466934099 · 34189412940043<14> · 387163017726257<15> · 28293299911166088280426132237163<32> · C111
C111 = P31 · P40 · P41
P31 = 4432786487726332261901992580177<31>
P40 = 2282361128060960866345069318662723827857<40>
P41 = 76644156088849870258058669364338740667237<41>
Number: 24443_195 N=775425755799446841939053048525302354064197837605938152294567158088550638083405933820635565662056629872055556293 ( 111 digits) Divisors found: r1=4432786487726332261901992580177 r2=2282361128060960866345069318662723827857 r3=76644156088849870258058669364338740667237 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.844). Factorization parameters were as follows: name: 24443_195 n: 775425755799446841939053048525302354064197837605938152294567158088550638083405933820635565662056629872055556293 skew: 38578.42 # norm 4.25e+14 c5: 5940 c4: -241464251 c3: -28961153603108 c2: 292489093069413502 c1: 20420682911241094723856 c0: 133575367865294507252877085 # alpha -4.46 Y1: 309827997097 Y0: -2649422183486934259056 # Murphy_E 8.30e-10 # M 627846271663089527779179125876741566414536726272675783926772171413507244872142141742899588517629762116642887585 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2500001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 432467 x 432707 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Calibrating delay using timer specific routine.. 5600.62 BogoMIPS (lpj=11201256) Calibrating delay using timer specific routine.. 5600.69 BogoMIPS (lpj=11201386) Calibrating delay using timer specific routine.. 5600.70 BogoMIPS (lpj=11201415) Calibrating delay using timer specific routine.. 5600.65 BogoMIPS (lpj=11201310) Calibrating delay using timer specific routine.. 5600.66 BogoMIPS (lpj=11201320) Calibrating delay using timer specific routine.. 5600.75 BogoMIPS (lpj=11201501) Calibrating delay using timer specific routine.. 5600.56 BogoMIPS (lpj=11201124) saving the first 48 matrix rows for later matrix is 432467 x 432707 (127.7 MB) with weight 34239845 (79.13/col) sparse part has weight 29137637 (67.34/col) matrix includes 64 packed rows using block size 43690 for processor cache size 1024 kB commencing Lanczos iteration memory use: 117.7 MB linear algebra completed 431051 out of 432707 dimensions (99.6%) lanczos halted after 6840 iterations (dim = 432466) recovered 44 nontrivial dependencies elapsed time 00:40:04 =>nice -n 19 "/depts/BioInf/Batalov/MERSE/ggbin/msieve" -s 24443_195.dat -l ggnfs.log -i 24443_195.ini -v -nf 24443_195.fb -t 1 -nc3 Msieve v. 1.36 Tue Jul 1 17:52:34 2008 random seeds: 6a729032 ef40d2b8 factoring 775425755799446841939053048525302354064197837605938152294567158088550638083405933820635565662056629872055556293 (111 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (111-digit input) R0: -2649422183486934259056 R1: 309827997097 A0: 133575367865294507252877085 A1: 20420682911241094723856 A2: 292489093069413502 A3: -28961153603108 A4: -241464251 A5: 5940 size score = 2.646882e-11, Murphy alpha = -4.459988, combined = 1.170534e-10 commencing square root phase reading relations for dependency 1 read 216070 cycles cycles contain 940344 unique relations read 940344 relations multiplying 1324484 relations multiply complete, coefficients have about 54.75 million bits initial square root is modulo 72519241 reading relations for dependency 2 read 216114 cycles cycles contain 940777 unique relations read 940777 relations multiplying 1325292 relations multiply complete, coefficients have about 54.78 million bits initial square root is modulo 73261117 prp31 factor: 4432786487726332261901992580177 prp40 factor: 2282361128060960866345069318662723827857 prp41 factor: 76644156088849870258058669364338740667237 elapsed time 00:20:08 -> Computing time scale for this machine... sumName = g111-24443_195.txt -> Factorization summary written to g111-24443_195.txt. Tue Jul 1 03:08:15 2008 Msieve v. 1.36 Tue Jul 1 03:08:15 2008 random seeds: 2448e225 c3c7c117 Tue Jul 1 03:08:15 2008 factoring 775425755799446841939053048525302354064197837605938152294567158088550638083405933820635565662056629872055556293 (111 digits) Tue Jul 1 03:08:16 2008 no P-1/P+1/ECM available, skipping Tue Jul 1 03:08:16 2008 commencing number field sieve (111-digit input) Tue Jul 1 03:08:16 2008 R0: -2649422183486934259056 Tue Jul 1 03:08:16 2008 R1: 309827997097 Tue Jul 1 03:08:16 2008 A0: 133575367865294507252877085 .... Tue Jul 1 18:02:16 2008 read 216114 cycles Tue Jul 1 18:02:17 2008 cycles contain 940777 unique relations Tue Jul 1 18:02:27 2008 read 940777 relations Tue Jul 1 18:02:33 2008 multiplying 1325292 relations Tue Jul 1 18:05:57 2008 multiply complete, coefficients have about 54.78 million bits Tue Jul 1 18:05:59 2008 initial square root is modulo 73261117 Tue Jul 1 18:12:42 2008 prp31 factor: 4432786487726332261901992580177 Tue Jul 1 18:12:42 2008 prp40 factor: 2282361128060960866345069318662723827857 Tue Jul 1 18:12:42 2008 prp41 factor: 76644156088849870258058669364338740667237 Tue Jul 1 18:12:42 2008 elapsed time 00:20:08 Total time: 15hr 04mn
By Robert Backstrom / GGNFS, Msieve
(22·10114-13)/9 = 2(4)1133<115> = C115
C115 = P44 · P71
P44 = 33598656294760900291371699381269381784370549<44>
P71 = 72754232282366932679878294542235391018639436852035736262753056974819407<71>
Number: n N=2444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: Tue Jul 01 23:04:53 2008 prp44 factor: 33598656294760900291371699381269381784370549 Tue Jul 01 23:04:53 2008 prp71 factor: 72754232282366932679878294542235391018639436852035736262753056974819407 Tue Jul 01 23:04:53 2008 elapsed time 00:04:17 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.76 hours. Scaled time: 1.38 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_113_3 n: 2444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 skew: 1.43 deg: 5 c5: 11 c0: -65 m: 100000000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 180347) Primes: RFBsize:41538, AFBsize:41593, largePrimes:3591138 encountered Relations: rels:2958004, finalFF:89757 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 0.71 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.5,2.5,50000 total time: 0.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10116-13)/9 = 2(4)1153<117> = 3 · 19 · 105879019 · 137400189118849<15> · C93
C93 = P41 · P52
P41 = 52216810517743850150033554179233611101121<41>
P52 = 5645439212850785908811753527171750497376343817221849<52>
Number: n N=294786829666870480000441341655921667461151477270136085258399731059313122304735247508029592729 ( 93 digits) SNFS difficulty: 117 digits. Divisors found: r1=52216810517743850150033554179233611101121 (pp41) r2=5645439212850785908811753527171750497376343817221849 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.87 hours. Scaled time: 1.58 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_115_3 n: 294786829666870480000441341655921667461151477270136085258399731059313122304735247508029592729 skew: 0.57 deg: 5 c5: 220 c0: -13 m: 100000000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:41538, AFBsize:41738, largePrimes:3695260 encountered Relations: rels:3062905, finalFF:93831 Max relations in full relation-set: 48 Initial matrix: 83343 x 93831 with sparse part having weight 8682819. Pruned matrix : 80055 x 80535 with weight 5877569. Total sieving time: 0.77 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.5,2.5,50000 total time: 0.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(22·10129-13)/9 = 2(4)1283<130> = 7 · 241 · 39293 · 13299361 · 2695989282557<13> · C103
C103 = P39 · P64
P39 = 250682305473299306497685825723691855583<39>
P64 = 4102771067678316053775037080369167598169783113856398411976486603<64>
Number: 24443_129 N=1028492110074749967929747272840552481537648574781359688266748220360933344058801859376100555290010254549 ( 103 digits) SNFS difficulty: 131 digits. Divisors found: r1=250682305473299306497685825723691855583 (pp39) r2=4102771067678316053775037080369167598169783113856398411976486603 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.48 hours. Scaled time: 8.96 units (timescale=2.000). Factorization parameters were as follows: name: 24443_129 n: 1028492110074749967929747272840552481537648574781359688266748220360933344058801859376100555290010254549 m: 100000000000000000000000000 c5: 11 c0: -65 skew: 1.43 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63789, largePrimes:1469819 encountered Relations: rels:1461589, finalFF:164980 Max relations in full relation-set: 28 Initial matrix: 127805 x 164980 with sparse part having weight 11368937. Pruned matrix : 116430 x 117133 with weight 6330418. Total sieving time: 4.32 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.48 hours. --------- CPU info (if available) ----------
(22·10117-13)/9 = 2(4)1163<118> = 72 · 17 · 233 · 1621 · C109
C109 = P52 · P58
P52 = 4229313234714843164288246278132448514515779114889059<52>
P58 = 1837072866508690204598997309979916246707045110648608172733<58>
Number: 24443_117 N=7769556587460737839239858142009053023060286573645996521722787955598485746053241569530231076455526632003828247 ( 109 digits) SNFS difficulty: 118 digits. Divisors found: r1=4229313234714843164288246278132448514515779114889059 (pp52) r2=1837072866508690204598997309979916246707045110648608172733 (pp58) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.31 hours. Scaled time: 1.56 units (timescale=0.677). Factorization parameters were as follows: name: 24443_117 n: 7769556587460737839239858142009053023060286573645996521722787955598485746053241569530231076455526632003828247 m: 100000000000000000000000 c5: 2200 c0: -13 skew: 0.36 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64029, largePrimes:1982637 encountered Relations: rels:1949806, finalFF:139200 Max relations in full relation-set: 28 Initial matrix: 113194 x 139200 with sparse part having weight 11012584. Pruned matrix : 103684 x 104313 with weight 6438928. Total sieving time: 2.02 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.31 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
(22·10121-13)/9 = 2(4)1203<122> = 10139 · 21610123627320666846739365871<29> · C90
C90 = P33 · P58
P33 = 106291118910715568757506518867309<33>
P58 = 1049616908171780243294136059455718184430708493672261067883<58>
By Serge Batalov / PRIMO 3.0.6
4·102245+3 = 4(0)22443<2246> is prime.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(22·10164-31)/9 = 2(4)1631<165> = 2083 · 73135006949<11> · C151
C151 = P71 · P80
P71 = 51845043108470586834361561919780616245850625521525516787582746406578547<71>
P80 = 30949836173738031868495545589299632987292537377947824460601813620688132316642509<80>
Number: n N=1604595590627550625150237684729477444026023270824767911255148304083581825227614724819356366988897922998432503475970715695690680776482715993969227654423 ( 151 digits) SNFS difficulty: 166 digits. Divisors found: Tue Jul 01 12:05:17 2008 prp71 factor: 51845043108470586834361561919780616245850625521525516787582746406578547 Tue Jul 01 12:05:17 2008 prp80 factor: 30949836173738031868495545589299632987292537377947824460601813620688132316642509 Tue Jul 01 12:05:17 2008 elapsed time 02:20:11 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.82 hours. Scaled time: 103.57 units (timescale=1.761). Factorization parameters were as follows: name: KA_2_4_163_1 n: 1604595590627550625150237684729477444026023270824767911255148304083581825227614724819356366988897922998432503475970715695690680776482715993969227654423 type: snfs skew: 1.70 deg: 5 c5: 11 c0: -155 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600267) Primes: RFBsize:348513, AFBsize:348353, largePrimes:7679016 encountered Relations: rels:7285979, finalFF:745129 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.55 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 58.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10168+7 = 6(0)1677<169> = 13 · 162683 · 1905773 · C157
C157 = P32 · P34 · P91
P32 = 92496541056236438247583376263031<32>
P34 = 1737404675144043985388097795414143<34>
P91 = 9263350086582064127298447027451667014374897979566099083674205980098110320670551785060577237<91>
(17·10169-53)/9 = 1(8)1683<170> = 133 · 1153 · C163
C163 = P34 · P130
P34 = 1899184819671361163387290225408063<34>
P130 = 3926266888112567544073047887536313671079408556962007900627998803362902182734040273650475604473730549935716930277198186398648831001<130>
7·10173+9 = 7(0)1729<174> = 727 · C171
C171 = P50 · P57 · P65
P50 = 46703390984381129306990060832824441396119105760387<50>
P57 = 803575513133626214041688443279256687479553115056384050651<57>
P65 = 25655974804389045502754045805223424190216260512796697773191686191<65>
Number: n N=962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967 ( 171 digits) SNFS difficulty: 173 digits. Divisors found: Tue Jul 01 15:01:54 2008 prp50 factor: 46703390984381129306990060832824441396119105760387 Tue Jul 01 15:01:54 2008 prp57 factor: 803575513133626214041688443279256687479553115056384050651 Tue Jul 01 15:01:54 2008 prp65 factor: 25655974804389045502754045805223424190216260512796697773191686191 Tue Jul 01 15:01:54 2008 elapsed time 03:00:18 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 143.54 hours. Scaled time: 262.54 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_0_172_9 n: 962861072902338376891334250343878954607977991746905089408528198074277854195323246217331499312242090784044016506189821182943603851444291609353507565337001375515818431911967 skew: 0.26 deg: 5 c5: 7000 c0: 9 m: 10000000000000000000000000000000000 type: snfs rlim: 7200000 alim: 7200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 8200537) Primes: RFBsize:489319, AFBsize:488763, largePrimes:9369787 encountered Relations: rels:8949267, finalFF:985202 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 142.94 hours. Total relation processing time: 0.61 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7200000,7200000,28,28,48,48,2.5,2.5,100000 total time: 143.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
Factorizations of 11...11 (Repunit) was extended to n=100000 and Factorizations of 100...001 was extended to n=50000.
The factor table of 244...443 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By suberi / GMP-ECM
(64·10246+53)/9 = 7(1)2457<247> = 13 · 17 · 1160548621<10> · C236
C236 = P40 · P196
P40 = 3653540712889564696115226712823703119009<40>
P196 = 7588709004594473714701606971400814241433489374368336268700131770235266770437697694816355315610746815222410425117554914203426930343872298340279245942146302647290762688407537944247691411211636284693<196>
By Serge Batalov / PRIMO 3.0.6
(11·102136+1)/3 = 3(6)21357<2137> is prime.
(22·102204-1)/3 = 7(3)2204<2205> is prime.
By Robert Backstrom / GGNFS, Msieve
(22·10167-31)/9 = 2(4)1661<168> = 23 · 2539 · 37321 · C159
C159 = P44 · P115
P44 = 17383069455340930576859078822201728294481827<44>
P115 = 6452230846702379390519960216544745384363065802954977313588048296249399827777355779886850218076924772405182266503159<115>
Number: n N=112159576950120681443763221790573388303510799505846499774493764431806325745620236083497493365726993165082508258285562019154441967021394020693105366603163591493 ( 159 digits) SNFS difficulty: 168 digits. Divisors found: Mon Jun 30 13:30:40 2008 prp44 factor: 17383069455340930576859078822201728294481827 Mon Jun 30 13:30:40 2008 prp115 factor: 6452230846702379390519960216544745384363065802954977313588048296249399827777355779886850218076924772405182266503159 Mon Jun 30 13:30:40 2008 elapsed time 01:27:40 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 64.33 hours. Scaled time: 117.66 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_4_166_1 n: 112159576950120681443763221790573388303510799505846499774493764431806325745620236083497493365726993165082508258285562019154441967021394020693105366603163591493 skew: 0.43 deg: 5 c5: 2200 c0: -31 m: 1000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3900000) Primes: RFBsize:380800, AFBsize:380504, largePrimes:8273794 encountered Relations: rels:7946017, finalFF:867342 Max relations in full relation-set: 28 Initial matrix: 761371 x 867342 with sparse part having weight 46178197. Pruned matrix : 664153 x 668023 with weight 29900504. Total sieving time: 63.98 hours. Total relation processing time: 0.35 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 64.33 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10166-31)/9 = 2(4)1651<167> = 3 · 71 · 64951 · C160
C160 = P49 · P112
P49 = 1054167195644633213538682942324589961665224175651<49>
P112 = 1676120464464856575059394614578455426232363135439230363648406284394705342167031244505148822086872348576246745457<112>
Number: n N=1766911209587497953093599302301376953102490078251437681439192871104381428198667673452673889623000339399549117991254544465513254335857550718764621943204454267507 ( 160 digits) SNFS difficulty: 167 digits. Divisors found: Mon Jun 30 13:57:25 2008 prp49 factor: 1054167195644633213538682942324589961665224175651 Mon Jun 30 13:57:25 2008 prp112 factor: 1676120464464856575059394614578455426232363135439230363648406284394705342167031244505148822086872348576246745457 Mon Jun 30 13:57:25 2008 elapsed time 01:54:07 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 64.73 hours. Scaled time: 93.66 units (timescale=1.447). Factorization parameters were as follows: name: KA_2_4_165_1 n: 1766911209587497953093599302301376953102490078251437681439192871104381428198667673452673889623000339399549117991254544465513254335857550718764621943204454267507 skew: 0.68 deg: 5 c5: 220 c0: -31 m: 1000000000000000000000000000000000 type: snfs rlim: 5200000 alim: 5200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5200000/5200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000000) Primes: RFBsize:361407, AFBsize:361244, largePrimes:7999134 encountered Relations: rels:7698324, finalFF:845404 Max relations in full relation-set: 28 Initial matrix: 722718 x 845404 with sparse part having weight 44159497. Pruned matrix : 607145 x 610822 with weight 26410081. Total sieving time: 64.45 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5200000,5200000,28,28,48,48,2.5,2.5,100000 total time: 64.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Serge Batalov / GMP-ECM
(13·10169-31)/9 = 1(4)1681<170> = 11 · 233435160481<12> · C157
C157 = P32 · P34 · P92
P32 = 23177318032476375616378164979441<32>
P34 = 3889428202100559149737103058094361<34>
P92 = 62401200909819595851686241736549279149882130176261860111226874344359239380766173789767518451<92>
By suberi / GMP-ECM
2·10171-3 = 1(9)1707<172> = 4691 · 2769503838393179<16> · C153
C153 = P32 · P37 · P85
P32 = 56976208855415157152685472638791<32>
P37 = 1494197448543319671819667216019537347<37>
P85 = 1808260737095189373997972911343245292873628525108905125242459880129553110340203951049<85>
By Robert Backstrom / GGNFS, Msieve
(22·10162-31)/9 = 2(4)1611<163> = 63737 · 175819093 · C150
C150 = P47 · P104
P47 = 14301556867419987422995670262853271843431921849<47>
P104 = 15252435624754255559351197971224772317866956646695045907287784752020816148507378065192759386215178367749<104>
Number: n N=218133575454085489914759947173598865752402947025291892634882341632830313219197266117538854778381938634304794779037061562662852396167085943869950047901 ( 150 digits) SNFS difficulty: 163 digits. Divisors found: Sun Jun 29 16:01:24 2008 prp47 factor: 14301556867419987422995670262853271843431921849 Sun Jun 29 16:01:24 2008 prp104 factor: 15252435624754255559351197971224772317866956646695045907287784752020816148507378065192759386215178367749 Sun Jun 29 16:01:24 2008 elapsed time 00:52:21 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 44.63 hours. Scaled time: 37.44 units (timescale=0.839). Factorization parameters were as follows: name: KA_2_4_161_1 n: 218133575454085489914759947173598865752402947025291892634882341632830313219197266117538854778381938634304794779037061562662852396167085943869950047901 type: snfs deg: 5 c5: 2200 c0: -31 skew: 0.43 m: 100000000000000000000000000000000 rlim: 4500000 alim: 4500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500000 ) Primes: RFBsize:315948, AFBsize:315573, largePrimes:5606089 encountered Relations: rels:5690538, finalFF:717744 Max relations in full relation-set: 28 Initial matrix: 631588 x 717744 with sparse part having weight 42037180. Pruned matrix : 552185 x 555406 with weight 26967299. Total sieving time: 44.45 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.5,2.5,100000 total time: 44.63 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS
(22·10152-31)/9 = 2(4)1511<153> = 241 · 33589 · 43063 · C141
C141 = P36 · P41 · P65
P36 = 267966650482880119367198545606586717<36>
P41 = 31215354255566197538002781232347164771547<41>
P65 = 83832565493279521861357860130355126983160895444458139420999716557<65>
Number: 24441_152 N=701232074521790742830270859869370784937896181312621274744822033496199307723301462181157327064017251111525772069827393633543232268035105331843 ( 141 digits) SNFS difficulty: 153 digits. Divisors found: r1=267966650482880119367198545606586717 (pp36) r2=31215354255566197538002781232347164771547 (pp41) r3=83832565493279521861357860130355126983160895444458139420999716557 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 44.29 hours. Scaled time: 29.94 units (timescale=0.676). Factorization parameters were as follows: name: 24441_152 n: 701232074521790742830270859869370784937896181312621274744822033496199307723301462181157327064017251111525772069827393633543232268035105331843 m: 1000000000000000000000000000000 c5: 2200 c0: -31 skew: 0.43 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2400001) Primes: RFBsize:176302, AFBsize:176210, largePrimes:5703677 encountered Relations: rels:5676502, finalFF:516785 Max relations in full relation-set: 28 Initial matrix: 352579 x 516785 with sparse part having weight 48496265. Pruned matrix : 293926 x 295752 with weight 26826377. Total sieving time: 40.17 hours. Total relation processing time: 0.27 hours. Matrix solve time: 3.70 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 44.29 hours. --------- CPU info (if available) ----------
By Serge Batalov / pol51, Msieve 1.36, GMP-ECM
(7·10180+17)/3 = 2(3)1799<181> = 4739322601106537<16> · 54789725825058929<17> · 5635025408798334073151006813<28> · C121
C121 = P47 · P74
P47 = 41874999678888405957858413767086436069870427179<47>
P74 = 38081205768930982523881149611719815860882075982791143081161151118407749709<74>
Number: 23339_180 N=1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 (121 digits) Divisors found: r1=41874999678888405957858413767086436069870427179 (prp47) r2=38081205768930982523881149611719815860882075982791143081161151118407749709 (prp74) Version: Total time: 34 hours. Scaled time: 97.648 units (timescale=2.872). Factorization parameters were as follows: # poly selected by pol51 - 1.5 hours name: 23339_180 n: 1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 skew: 35462.53 # norm 6.04e+16 c5: 38340 c4: -7645887822 c3: 2237821005459970 c2: 7602474157459019760 c1: -538696810513896633321935 c0: -1823549329867625284056766348 # alpha -5.80 Y1: 139319909443 Y0: -132985012360110909014155 # Murphy_E 2.48e-10 # M 788889806718177053534508787704877298154248623318878955959190838689725553459502855482663675053605970537986455887147354079 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 4840001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 667726 x 667974 Total sieving time: 30:45:50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 01:51:54 hours. Time per square root: 00:38:04 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Thu Jun 26 23:58:49 2008 Msieve v. 1.36 Thu Jun 26 23:58:49 2008 random seeds: 90f676d8 a0df0a85 Thu Jun 26 23:58:49 2008 factoring 1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 (121 digits) Thu Jun 26 23:58:51 2008 no P-1/P+1/ECM available, skipping Thu Jun 26 23:58:51 2008 commencing number field sieve (121-digit input) Thu Jun 26 23:58:51 2008 R0: -132985012360110909014155 Thu Jun 26 23:58:51 2008 R1: 139319909443 Thu Jun 26 23:58:51 2008 A0: -1823549329867625284056766348 Thu Jun 26 23:58:51 2008 A1: -538696810513896633321935 Thu Jun 26 23:58:51 2008 A2: 7602474157459019760 Thu Jun 26 23:58:51 2008 A3: 2237821005459970 Thu Jun 26 23:58:51 2008 A4: -7645887822 Thu Jun 26 23:58:51 2008 A5: 38340 Thu Jun 26 23:58:51 2008 size score = 1.875082e-12, Murphy alpha = -5.801511, combined = 1.296806e-11 Thu Jun 26 23:58:51 2008 generating factor base Thu Jun 26 23:58:54 2008 factor base complete: Thu Jun 26 23:58:54 2008 348513 rational roots (max prime = 4999999) Thu Jun 26 23:58:54 2008 348157 algebraic roots (max prime = 4999999) Thu Jun 26 23:58:54 2008 a range: [-4000000, 4000000] Thu Jun 26 23:58:54 2008 b range: [1, 300] Thu Jun 26 23:58:54 2008 number of hash buckets: 77 Thu Jun 26 23:58:54 2008 sieve block size: 65536 Thu Jun 26 23:58:54 2008 Thu Jun 26 23:58:54 2008 maximum RFB prime: 4999999 Thu Jun 26 23:58:54 2008 RFB entries: 348513 Thu Jun 26 23:58:54 2008 medium RFB entries: 6542 Thu Jun 26 23:58:54 2008 resieved RFB entries: 6374 Thu Jun 26 23:58:54 2008 small RFB prime powers: 25 Thu Jun 26 23:58:54 2008 projective RFB roots: 5 Thu Jun 26 23:58:54 2008 RFB trial factoring cutoff: 58 or 87 bits Thu Jun 26 23:58:54 2008 single large prime RFB range: 22 - 27 bits Thu Jun 26 23:58:54 2008 double large prime RFB range: 45 - 52 bits Thu Jun 26 23:58:54 2008 triple large prime RFB range: 70 - 79 bits Thu Jun 26 23:58:54 2008 ... Sat Jun 28 14:45:50 2008 Sat Jun 28 14:45:50 2008 Msieve v. 1.36 Sat Jun 28 14:45:50 2008 random seeds: 6a3598f8 87614cc3 Sat Jun 28 14:45:50 2008 factoring 1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 (121 digits) Sat Jun 28 14:45:51 2008 no P-1/P+1/ECM available, skipping Sat Jun 28 14:45:51 2008 commencing number field sieve (121-digit input) Sat Jun 28 14:45:51 2008 R0: -132985012360110909014155 Sat Jun 28 14:45:51 2008 R1: 139319909443 Sat Jun 28 14:45:51 2008 A0: -1823549329867625284056766348 Sat Jun 28 14:45:51 2008 A1: -538696810513896633321935 Sat Jun 28 14:45:51 2008 A2: 7602474157459019760 Sat Jun 28 14:45:51 2008 A3: 2237821005459970 Sat Jun 28 14:45:51 2008 A4: -7645887822 Sat Jun 28 14:45:51 2008 A5: 38340 Sat Jun 28 14:45:51 2008 size score = 1.875082e-12, Murphy alpha = -5.801511, combined = 1.296806e-11 Sat Jun 28 14:45:53 2008 restarting with 9447173 relations Sat Jun 28 14:45:53 2008 Sat Jun 28 14:45:53 2008 commencing relation filtering Sat Jun 28 14:45:53 2008 commencing duplicate removal, pass 1 Sat Jun 28 14:47:13 2008 found 1803884 hash collisions in 9447173 relations Sat Jun 28 14:47:13 2008 commencing duplicate removal, pass 2 Sat Jun 28 14:47:20 2008 found 1954127 duplicates and 7493046 unique relations Sat Jun 28 14:47:20 2008 memory use: 65.3 MB Sat Jun 28 14:47:22 2008 ignoring smallest 334421 rational and 334153 algebraic ideals Sat Jun 28 14:47:22 2008 filtering rational ideals above 4784128 Sat Jun 28 14:47:22 2008 filtering algebraic ideals above 4784128 Sat Jun 28 14:47:22 2008 need 1002861 more relations than ideals Sat Jun 28 14:47:22 2008 commencing singleton removal, pass 1 Sat Jun 28 14:48:31 2008 relations with 0 large ideals: 149207 Sat Jun 28 14:48:31 2008 relations with 1 large ideals: 1077069 Sat Jun 28 14:48:31 2008 relations with 2 large ideals: 2678793 Sat Jun 28 14:48:31 2008 relations with 3 large ideals: 2659073 Sat Jun 28 14:48:31 2008 relations with 4 large ideals: 899179 Sat Jun 28 14:48:31 2008 relations with 5 large ideals: 29496 Sat Jun 28 14:48:31 2008 relations with 6 large ideals: 229 Sat Jun 28 14:48:31 2008 relations with 7+ large ideals: 0 Sat Jun 28 14:48:31 2008 7493046 relations and about 7336098 large ideals Sat Jun 28 14:48:31 2008 commencing singleton removal, pass 2 Sat Jun 28 14:49:38 2008 found 3525823 singletons Sat Jun 28 14:49:38 2008 current dataset: 3967223 relations and about 3186249 large ideals Sat Jun 28 14:49:38 2008 commencing singleton removal, pass 3 Sat Jun 28 14:50:14 2008 found 677892 singletons Sat Jun 28 14:50:14 2008 current dataset: 3289331 relations and about 2463551 large ideals Sat Jun 28 14:50:14 2008 commencing singleton removal, pass 4 Sat Jun 28 14:50:44 2008 found 196603 singletons Sat Jun 28 14:50:44 2008 current dataset: 3092728 relations and about 2262445 large ideals Sat Jun 28 14:50:44 2008 commencing singleton removal, final pass Sat Jun 28 14:51:13 2008 memory use: 48.8 MB Sat Jun 28 14:51:14 2008 commencing in-memory singleton removal Sat Jun 28 14:51:14 2008 begin with 3092728 relations and 2380225 unique ideals Sat Jun 28 14:51:18 2008 reduce to 2697937 relations and 1977905 ideals in 14 passes Sat Jun 28 14:51:18 2008 max relations containing the same ideal: 39 Sat Jun 28 14:51:19 2008 filtering rational ideals above 720000 Sat Jun 28 14:51:19 2008 filtering algebraic ideals above 720000 Sat Jun 28 14:51:19 2008 need 116384 more relations than ideals Sat Jun 28 14:51:19 2008 commencing singleton removal, final pass Sat Jun 28 14:51:49 2008 keeping 2366367 ideals with weight <= 20, new excess is 279161 Sat Jun 28 14:51:50 2008 memory use: 67.1 MB Sat Jun 28 14:51:51 2008 commencing in-memory singleton removal Sat Jun 28 14:51:52 2008 begin with 2697937 relations and 2366367 unique ideals Sat Jun 28 14:51:57 2008 reduce to 2684931 relations and 2353350 ideals in 12 passes Sat Jun 28 14:51:57 2008 max relations containing the same ideal: 20 Sat Jun 28 14:52:00 2008 removing 147313 relations and 135061 ideals in 12252 cliques Sat Jun 28 14:52:00 2008 commencing in-memory singleton removal Sat Jun 28 14:52:00 2008 begin with 2537618 relations and 2353350 unique ideals Sat Jun 28 14:52:03 2008 reduce to 2532155 relations and 2212784 ideals in 7 passes Sat Jun 28 14:52:03 2008 max relations containing the same ideal: 20 Sat Jun 28 14:52:05 2008 removing 108716 relations and 96464 ideals in 12252 cliques Sat Jun 28 14:52:05 2008 commencing in-memory singleton removal Sat Jun 28 14:52:05 2008 begin with 2423439 relations and 2212784 unique ideals Sat Jun 28 14:52:08 2008 reduce to 2420149 relations and 2113014 ideals in 7 passes Sat Jun 28 14:52:08 2008 max relations containing the same ideal: 20 Sat Jun 28 14:52:09 2008 relations with 0 large ideals: 14446 Sat Jun 28 14:52:09 2008 relations with 1 large ideals: 117305 Sat Jun 28 14:52:09 2008 relations with 2 large ideals: 394599 Sat Jun 28 14:52:09 2008 relations with 3 large ideals: 691417 Sat Jun 28 14:52:09 2008 relations with 4 large ideals: 675705 Sat Jun 28 14:52:09 2008 relations with 5 large ideals: 376977 Sat Jun 28 14:52:09 2008 relations with 6 large ideals: 123053 Sat Jun 28 14:52:09 2008 relations with 7+ large ideals: 26647 Sat Jun 28 14:52:09 2008 commencing 2-way merge Sat Jun 28 14:52:11 2008 reduce to 1418089 relation sets and 1110954 unique ideals Sat Jun 28 14:52:11 2008 commencing full merge Sat Jun 28 14:52:32 2008 memory use: 108.3 MB Sat Jun 28 14:52:32 2008 found 697143 cycles, need 671154 Sat Jun 28 14:52:32 2008 weight of 671154 cycles is about 47207664 (70.34/cycle) Sat Jun 28 14:52:32 2008 distribution of cycle lengths: Sat Jun 28 14:52:32 2008 1 relations: 82867 Sat Jun 28 14:52:32 2008 2 relations: 77630 Sat Jun 28 14:52:32 2008 3 relations: 77110 Sat Jun 28 14:52:32 2008 4 relations: 70420 Sat Jun 28 14:52:32 2008 5 relations: 62652 Sat Jun 28 14:52:32 2008 6 relations: 53841 Sat Jun 28 14:52:32 2008 7 relations: 45748 Sat Jun 28 14:52:32 2008 8 relations: 39137 Sat Jun 28 14:52:32 2008 9 relations: 32448 Sat Jun 28 14:52:32 2008 10+ relations: 129301 Sat Jun 28 14:52:32 2008 heaviest cycle: 20 relations Sat Jun 28 14:52:32 2008 commencing cycle optimization Sat Jun 28 14:52:34 2008 start with 3953499 relations Sat Jun 28 14:52:43 2008 pruned 44706 relations Sat Jun 28 14:52:43 2008 memory use: 133.5 MB Sat Jun 28 14:52:43 2008 distribution of cycle lengths: Sat Jun 28 14:52:43 2008 1 relations: 82867 Sat Jun 28 14:52:43 2008 2 relations: 78135 Sat Jun 28 14:52:43 2008 3 relations: 78214 Sat Jun 28 14:52:43 2008 4 relations: 71049 Sat Jun 28 14:52:43 2008 5 relations: 63458 Sat Jun 28 14:52:43 2008 6 relations: 54339 Sat Jun 28 14:52:43 2008 7 relations: 46219 Sat Jun 28 14:52:43 2008 8 relations: 39107 Sat Jun 28 14:52:43 2008 9 relations: 32511 Sat Jun 28 14:52:43 2008 10+ relations: 125255 Sat Jun 28 14:52:43 2008 heaviest cycle: 20 relations Sat Jun 28 14:52:44 2008 elapsed time 00:06:54 Sat Jun 28 14:52:45 2008 Sat Jun 28 14:52:45 2008 Sat Jun 28 14:52:45 2008 Msieve v. 1.36 Sat Jun 28 14:52:45 2008 random seeds: 4fe81a4b 0280ad61 Sat Jun 28 14:52:45 2008 factoring 1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 (121 digits) Sat Jun 28 14:52:46 2008 no P-1/P+1/ECM available, skipping Sat Jun 28 14:52:46 2008 commencing number field sieve (121-digit input) Sat Jun 28 14:52:46 2008 R0: -132985012360110909014155 Sat Jun 28 14:52:46 2008 R1: 139319909443 Sat Jun 28 14:52:46 2008 A0: -1823549329867625284056766348 Sat Jun 28 14:52:46 2008 A1: -538696810513896633321935 Sat Jun 28 14:52:46 2008 A2: 7602474157459019760 Sat Jun 28 14:52:46 2008 A3: 2237821005459970 Sat Jun 28 14:52:46 2008 A4: -7645887822 Sat Jun 28 14:52:46 2008 A5: 38340 Sat Jun 28 14:52:46 2008 size score = 1.875082e-12, Murphy alpha = -5.801511, combined = 1.296806e-11 Sat Jun 28 14:52:46 2008 Sat Jun 28 14:52:46 2008 commencing linear algebra Sat Jun 28 14:52:46 2008 read 671154 cycles Sat Jun 28 14:52:48 2008 cycles contain 2240490 unique relations Sat Jun 28 14:53:09 2008 read 2240490 relations Sat Jun 28 14:53:13 2008 using 32 quadratic characters above 134214782 Sat Jun 28 14:53:39 2008 building initial matrix Sat Jun 28 14:54:06 2008 memory use: 294.3 MB Sat Jun 28 14:54:09 2008 read 671154 cycles Sat Jun 28 14:54:10 2008 matrix is 670952 x 671154 (204.8 MB) with weight 68700036 (102.36/col) Sat Jun 28 14:54:10 2008 sparse part has weight 45644834 (68.01/col) Sat Jun 28 14:54:24 2008 filtering completed in 2 passes Sat Jun 28 14:54:24 2008 matrix is 667774 x 667974 (204.4 MB) with weight 68497158 (102.54/col) Sat Jun 28 14:54:24 2008 sparse part has weight 45560828 (68.21/col) Sat Jun 28 14:54:32 2008 read 667974 cycles Sat Jun 28 14:54:33 2008 matrix is 667774 x 667974 (204.4 MB) with weight 68497158 (102.54/col) Sat Jun 28 14:54:33 2008 sparse part has weight 45560828 (68.21/col) Sat Jun 28 14:54:33 2008 saving the first 48 matrix rows for later Sat Jun 28 14:54:34 2008 matrix is 667726 x 667974 (199.0 MB) with weight 53617419 (80.27/col) Sat Jun 28 14:54:34 2008 sparse part has weight 45486108 (68.10/col) Sat Jun 28 14:54:34 2008 matrix includes 64 packed rows Sat Jun 28 14:54:34 2008 using block size 43690 for processor cache size 1024 kB Sat Jun 28 14:54:38 2008 commencing Lanczos iteration Sat Jun 28 14:54:38 2008 memory use: 183.9 MB Sat Jun 28 16:44:37 2008 lanczos halted after 10561 iterations (dim = 667725) Sat Jun 28 16:44:39 2008 recovered 43 nontrivial dependencies Sat Jun 28 16:44:39 2008 elapsed time 01:51:54 Sat Jun 28 16:44:40 2008 Sat Jun 28 16:44:40 2008 Sat Jun 28 16:44:40 2008 Msieve v. 1.36 Sat Jun 28 16:44:40 2008 random seeds: 5793e7f0 d0222ab8 Sat Jun 28 16:44:40 2008 factoring 1594650479345668205679297248996417788309645764071629470283797649136969454552884601269365941059206432039370206471942940911 (121 digits) Sat Jun 28 16:44:40 2008 no P-1/P+1/ECM available, skipping Sat Jun 28 16:44:40 2008 commencing number field sieve (121-digit input) Sat Jun 28 16:44:40 2008 R0: -132985012360110909014155 Sat Jun 28 16:44:40 2008 R1: 139319909443 Sat Jun 28 16:44:40 2008 A0: -1823549329867625284056766348 Sat Jun 28 16:44:40 2008 A1: -538696810513896633321935 Sat Jun 28 16:44:40 2008 A2: 7602474157459019760 Sat Jun 28 16:44:40 2008 A3: 2237821005459970 Sat Jun 28 16:44:40 2008 A4: -7645887822 Sat Jun 28 16:44:40 2008 A5: 38340 Sat Jun 28 16:44:40 2008 size score = 1.875082e-12, Murphy alpha = -5.801511, combined = 1.296806e-11 Sat Jun 28 16:44:40 2008 Sat Jun 28 16:44:40 2008 commencing square root phase Sat Jun 28 16:44:40 2008 reading relations for dependency 1 Sat Jun 28 16:44:41 2008 read 333636 cycles Sat Jun 28 16:44:41 2008 cycles contain 1366577 unique relations Sat Jun 28 16:44:54 2008 read 1366577 relations Sat Jun 28 16:45:04 2008 multiplying 1949326 relations Sat Jun 28 16:52:18 2008 multiply complete, coefficients have about 89.97 million bits Sat Jun 28 16:52:21 2008 initial square root is modulo 2871293 Sat Jun 28 17:03:37 2008 reading relations for dependency 2 Sat Jun 28 17:03:37 2008 read 333906 cycles Sat Jun 28 17:03:38 2008 cycles contain 1370087 unique relations Sat Jun 28 17:03:51 2008 read 1370087 relations Sat Jun 28 17:04:00 2008 multiplying 1955116 relations Sat Jun 28 17:11:15 2008 multiply complete, coefficients have about 90.24 million bits Sat Jun 28 17:11:19 2008 initial square root is modulo 2999401 Sat Jun 28 17:22:44 2008 prp47 factor: 41874999678888405957858413767086436069870427179 Sat Jun 28 17:22:44 2008 prp74 factor: 38081205768930982523881149611719815860882075982791143081161151118407749709 Sat Jun 28 17:22:44 2008 elapsed time 00:38:04 Total time: 34 hours.
(8·10168-17)/9 = (8)1677<168> = 3947 · 71699 · 373247252387<12> · 1024799923094265919<19> · C130
C130 = P41 · P90
P41 = 13086962130596681403157479104708270412239<41>
P90 = 627469619736798457013692142254079987778839619064291230581747063260251518592308215913277437<90>
By Sinkiti Sibata / GGNFS
(22·10157-31)/9 = 2(4)1561<158> = 3 · 73 · 18541 · 1732231 · 3794897 · C138
C138 = P44 · P94
P44 = 44098693698355178723007115893291109054904999<44>
P94 = 4419774566759251381250748538579444137486855579222989929121298784868474730416401309522649387033<94>
Number: 24441_157 N=194906284835296689056161059734252486653472926503376515699092856713705334417156440133625881676221606796262345126825254838818544669397477967 ( 138 digits) SNFS difficulty: 158 digits. Divisors found: r1=44098693698355178723007115893291109054904999 (pp44) r2=4419774566759251381250748538579444137486855579222989929121298784868474730416401309522649387033 (pp94) Version: GGNFS-0.77.1-20060513-k8 Total time: 54.43 hours. Scaled time: 108.85 units (timescale=2.000). Factorization parameters were as follows: name: 24441_157 n: 194906284835296689056161059734252486653472926503376515699092856713705334417156440133625881676221606796262345126825254838818544669397477967 m: 10000000000000000000000000000000 c5: 2200 c0: -31 skew: 0.43 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3700001) Primes: RFBsize:283146, AFBsize:282969, largePrimes:5939096 encountered Relations: rels:6178732, finalFF:832302 Max relations in full relation-set: 28 Initial matrix: 566182 x 832302 with sparse part having weight 55094693. Pruned matrix : 372755 x 375649 with weight 39705875. Total sieving time: 52.04 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.03 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 54.43 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM
(16·10240-61)/9 = 1(7)2391<241> = 214259 · 45971639314341857839<20> · C216
C216 = P43 · P173
P43 = 3635546933168771123588232262171985799019073<43>
P173 = 49645358754231505271704520463941124503054131985354822418891186123680825347035422254985426027429954370789824305822464117472409850554663118163426845863590649176484170127543527<173>
By Robert Backstrom / GGNFS, Msieve
(13·10172+41)/9 = 1(4)1719<173> = 3547 · C169
C169 = P78 · P91
P78 = 695174701333859421685033528060504335793719122110800973735698497489652426318743<78>
P91 = 5857950471415925447371678650915658511220611799017059207971764941934442613310213419314598469<91>
Number: n N=4072298969395106976161388340694796854932180559471227641512389186479967421608244839144190708893274441625160542555524230178867900886508160260627134041286846474328853804467 ( 169 digits) SNFS difficulty: 173 digits. Divisors found: Thu Jun 26 22:17:23 2008 prp78 factor: 695174701333859421685033528060504335793719122110800973735698497489652426318743 Thu Jun 26 22:17:23 2008 prp91 factor: 5857950471415925447371678650915658511220611799017059207971764941934442613310213419314598469 Thu Jun 26 22:17:23 2008 elapsed time 01:59:04 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 136.56 hours. Scaled time: 114.43 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_4_171_9 n: 4072298969395106976161388340694796854932180559471227641512389186479967421608244839144190708893274441625160542555524230178867900886508160260627134041286846474328853804467 type: snfs deg: 5 c5: 1300 c0: 41 skew: 0.50 m: 10000000000000000000000000000000000 rlim: 6500000 alim: 6500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6500000/6500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 6800177) Primes: RFBsize:444757, AFBsize:445323, largePrimes:6021958 encountered Relations: rels:6219222, finalFF:891387 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 136.26 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,6500000,6500000,27,27,48,48,2.5,2.5,100000 total time: 136.56 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(19·10160+71)/9 = 2(1)1599<161> = 7 · 379 · 593389409 · 559762404127<12> · C137
C137 = P67 · P70
P67 = 3099176592679107542715695147437752731506212235694176436016316355489<67>
P70 = 7730080230344753874735172128135993331930898349569035397737365097724549<70>
Number: n N=23956883709415985088805146185238519992526664677894688593124161720632613338572606501599381490541484980237314702722541489720018966486199461 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: Fri Jun 27 00:53:52 2008 prp67 factor: 3099176592679107542715695147437752731506212235694176436016316355489 Fri Jun 27 00:53:52 2008 prp70 factor: 7730080230344753874735172128135993331930898349569035397737365097724549 Fri Jun 27 00:53:52 2008 elapsed time 01:43:21 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.04 hours. Scaled time: 84.50 units (timescale=1.759). Factorization parameters were as follows: name: KA_2_1_159_9 n: 23956883709415985088805146185238519992526664677894688593124161720632613338572606501599381490541484980237314702722541489720018966486199461 type: snfs skew: 1.30 deg: 5 c5: 19 c0: 71 m: 100000000000000000000000000000000 rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300131) Primes: RFBsize:296314, AFBsize:296822, largePrimes:7204240 encountered Relations: rels:6697074, finalFF:620996 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.72 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,48,48,2.3,2.3,100000 total time: 48.04 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Serge Batalov / GMP-ECM
8·10174-3 = 7(9)1737<175> = 73 · 383 · C171
C171 = P33 · C138
P33 = 804673696565514864785886378683159<33>
C138 = [355589188251300183599349551020909011128214064008671840079518563313901833340223003003363699479461924771115130765652610192085570225362572237<138>]
By Sinkiti Sibata / GGNFS
(22·10143-31)/9 = 2(4)1421<144> = 1429 · 2131 · 8539 · 30697 · 101377089370163640052001<24> · C106
C106 = P53 · P53
P53 = 51705751863367893367331438399782672546461708678915431<53>
P53 = 58422867534690837233698901081105668200911196544155883<53>
Number: 24441_143 N=3020798291895136359891852704095799554819730181878610339127208508607228112945999193267116836929465838130573 ( 106 digits) SNFS difficulty: 144 digits. Divisors found: r1=51705751863367893367331438399782672546461708678915431 (pp53) r2=58422867534690837233698901081105668200911196544155883 (pp53) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 21.09 hours. Scaled time: 14.26 units (timescale=0.676). Factorization parameters were as follows: name: 24441_143 n: 3020798291895136359891852704095799554819730181878610339127208508607228112945999193267116836929465838130573 m: 20000000000000000000000000000 c5: 1375 c0: -62 skew: 0.54 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2650001) Primes: RFBsize:100021, AFBsize:99985, largePrimes:2812854 encountered Relations: rels:2793602, finalFF:225695 Max relations in full relation-set: 28 Initial matrix: 200072 x 225695 with sparse part having weight 25021839. Pruned matrix : 193287 x 194351 with weight 20050117. Total sieving time: 19.53 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.29 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 21.09 hours. --------- CPU info (if available) ----------
(22·10154-31)/9 = 2(4)1531<155> = 3 · 179 · 1549 · 60258383 · 38677036373<11> · C131
C131 = P35 · P96
P35 = 25070638326752702413568294387068201<35>
P96 = 502942589916015173876187946749795727665325828159843838684451355988388130195810478642949230888423<96>
Number: 24441_154 N=12609091770904717240693985056152712545732991754181146303169573493897991028211382495502130245846221909822164021358484594677522337023 ( 131 digits) SNFS difficulty: 156 digits. Divisors found: r1=25070638326752702413568294387068201 (pp35) r2=502942589916015173876187946749795727665325828159843838684451355988388130195810478642949230888423 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 37.39 hours. Scaled time: 73.43 units (timescale=1.964). Factorization parameters were as follows: name: 24441_154 n: 12609091770904717240693985056152712545732991754181146303169573493897991028211382495502130245846221909822164021358484594677522337023 m: 10000000000000000000000000000000 c5: 11 c0: -155 skew: 1.7 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216508, largePrimes:6026421 encountered Relations: rels:6304162, finalFF:822234 Max relations in full relation-set: 28 Initial matrix: 433389 x 822234 with sparse part having weight 69650706. Pruned matrix : 285741 x 287971 with weight 37845723. Total sieving time: 35.53 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.54 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 37.39 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM
2·10192+3 = 2(0)1913<193> = 79 · 173 · 276519843869<12> · 35108586452041<14> · C164
C164 = P35 · C130
P35 = 10356144553255211560838847446569517<35>
C130 = [1455522925575811754655315825187997365065439919940867408609722558444730235468189624497400802537194515833119641347147862725255416513<130>]
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(7·10164+17)/3 = 2(3)1639<165> = 96972986953<11> · C154
C154 = P71 · P84
P71 = 20447108973637357731169193895657060177008590426856381850872885970740323<71>
P84 = 117677680826937163671024204749611691538446639389633232890693130285209291102895498081<84>
Number: n N=2406168363633299719066077856603911691342633210075679056961401519069627139871496470530434083135582234263916180531155483725562058518778534518235727395820163 ( 154 digits) SNFS difficulty: 165 digits. Divisors found: Thu Jun 26 13:04:03 2008 prp71 factor: 20447108973637357731169193895657060177008590426856381850872885970740323 Thu Jun 26 13:04:03 2008 prp84 factor: 117677680826937163671024204749611691538446639389633232890693130285209291102895498081 Thu Jun 26 13:04:03 2008 elapsed time 02:18:29 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 79.25 hours. Scaled time: 115.15 units (timescale=1.453). Factorization parameters were as follows: name: KA_2_3_163_9 n: 2406168363633299719066077856603911691342633210075679056961401519069627139871496470530434083135582234263916180531155483725562058518778534518235727395820163 skew: 1.89 deg: 5 c5: 7 c0: 170 m: 1000000000000000000000000000000000 type: snfs rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3800081) Primes: RFBsize:335439, AFBsize:336417, largePrimes:8020664 encountered Relations: rels:7582836, finalFF:722525 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 78.95 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,48,48,2.5,2.5,100000 total time: 79.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(19·10159+71)/9 = 2(1)1589<160> = 13 · 21427248679<11> · 352051289081<12> · C137
C137 = P66 · P71
P66 = 250401041858585819131096746756630366154245800973610054933853193899<66>
P71 = 85972441214000396829052981243585775513440893313292234278082838842690863<71>
Number: n N=21527588851111722002830557879225910998694697479830930289731614802312922945498898793081333700260607997346333469572376218484361244054644837 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: Thu Jun 26 14:22:48 2008 prp66 factor: 250401041858585819131096746756630366154245800973610054933853193899 Thu Jun 26 14:22:48 2008 prp71 factor: 85972441214000396829052981243585775513440893313292234278082838842690863 Thu Jun 26 14:22:48 2008 elapsed time 01:04:02 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.37 hours. Scaled time: 59.20 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_158_9 n: 21527588851111722002830557879225910998694697479830930289731614802312922945498898793081333700260607997346333469572376218484361244054644837 skew: 2.06 deg: 5 c5: 19 c0: 710 m: 100000000000000000000000000000000 type: snfs rlim: 4200000 alim: 4200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100097) Primes: RFBsize:296314, AFBsize:296187, largePrimes:7325398 encountered Relations: rels:6841474, finalFF:613001 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 32.20 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4200000,4200000,28,28,48,48,2.5,2.5,100000 total time: 32.37 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(7·10170+17)/3 = 2(3)1699<171> = 239 · C168
C168 = P31 · P48 · P90
P31 = 2734097213579852352604376181511<31>
P48 = 587102801544801723967976976231640540307396605327<48>
P90 = 608206110816364789917478064076131806984451756354900504967234326972616286107690838688949133<90>
Number: n N=357079511576955902498941916492360411034102781813871575217201017566042447728954311622582640108988805296696748643381230960452338753179831491 ( 138 digits) SNFS difficulty: 170 digits. Divisors found: Thu Jun 26 19:55:29 2008 prp48 factor: 587102801544801723967976976231640540307396605327 Thu Jun 26 19:55:29 2008 prp90 factor: 608206110816364789917478064076131806984451756354900504967234326972616286107690838688949133 Thu Jun 26 19:55:29 2008 elapsed time 02:50:04 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 109.62 hours. Scaled time: 143.49 units (timescale=1.309). Factorization parameters were as follows: name: KA_2_3_169_9 n: 357079511576955902498941916492360411034102781813871575217201017566042447728954311622582640108988805296696748643381230960452338753179831491 skew: 1.19 deg: 5 c5: 7 c0: 17 m: 10000000000000000000000000000000000 type: snfs rlim: 6200000 alim: 6200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 6200000/6200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4200113) Primes: RFBsize:425648, AFBsize:426207, largePrimes:8293957 encountered Relations: rels:7938547, finalFF:885064 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 109.19 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6200000,6200000,28,28,48,48,2.5,2.5,100000 total time: 109.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(22·10140-31)/9 = 2(4)1391<141> = 17 · 1447 · 8237 · 86711 · 93229 · 881417 · C117
C117 = P35 · P82
P35 = 63355190713391485500322124879334139<35>
P82 = 2672420577333034720731187670756586117081501976010031863655603623277223815204027931<82>
Number: 24441_140 N=169311715343326193553763454607944049710794497657459785323473749818757455099325376029901018323588244645974454037836409 ( 117 digits) SNFS difficulty: 141 digits. Divisors found: r1=63355190713391485500322124879334139 (pp35) r2=2672420577333034720731187670756586117081501976010031863655603623277223815204027931 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 13.15 hours. Scaled time: 8.89 units (timescale=0.676). Factorization parameters were as follows: name: 24441_140 n: 169311715343326193553763454607944049710794497657459785323473749818757455099325376029901018323588244645974454037836409 m: 10000000000000000000000000000 c5: 22 c0: -31 skew: 1.07 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1850001) Primes: RFBsize:100021, AFBsize:99815, largePrimes:2696036 encountered Relations: rels:2660778, finalFF:252054 Max relations in full relation-set: 28 Initial matrix: 199902 x 252054 with sparse part having weight 23135386. Pruned matrix : 183699 x 184762 with weight 14732105. Total sieving time: 12.01 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.92 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 13.15 hours. --------- CPU info (if available) ----------
(22·10153-31)/9 = 2(4)1521<154> = 4450992226721<13> · 3130978137030994435259<22> · C120
C120 = P55 · P65
P55 = 4672251179457423783044554303760906137448973750934054087<55>
P65 = 37541975175578769737137485685757194683231428146965223756007180237<65>
Number: 24441_153 N=175405537793259231219488124213779154690238530622835181016940877487171118032255677027504477326241747103099776251715478619 ( 120 digits) SNFS difficulty: 154 digits. Divisors found: r1=4672251179457423783044554303760906137448973750934054087 (pp55) r2=37541975175578769737137485685757194683231428146965223756007180237 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 37.78 hours. Scaled time: 74.38 units (timescale=1.969). Factorization parameters were as follows: name: 24441_153 n: 175405537793259231219488124213779154690238530622835181016940877487171118032255677027504477326241747103099776251715478619 m: 2000000000000000000000000000000 c5: 1375 c0: -62 skew: 0.54 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216848, largePrimes:5787943 encountered Relations: rels:5857389, finalFF:638086 Max relations in full relation-set: 28 Initial matrix: 433730 x 638086 with sparse part having weight 53254032. Pruned matrix : 322563 x 324795 with weight 33104563. Total sieving time: 35.94 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.51 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 37.78 hours. --------- CPU info (if available) ----------
By Serge Batalov / pol51, Msieve, GMP-ECM
(22·10150-31)/9 = 2(4)1491<151> = 78839 · 47567413 · 613925800595764424450450712559<30> · C109
C109 = P41 · P68
P41 = 45972127484749710794015017878432605888239<41>
P68 = 23095057306620505652516576474633038696841517536460420603268895763763<68>
Number: 24441_150 N=1061728918767558176817203458627519930862711303791793816419560970916391073286967729158741586433757396924083357 ( 109 digits) Divisors found: r1=45972127484749710794015017878432605888239 (p41) r2=23095057306620505652516576474633038696841517536460420603268895763763 (p68) Version: Msieve v. 1.36; pol51 - gnfs,109 Total time: 9.60 hours. Scaled time: 28.33 units (timescale=2.951). Factorization parameters were as follows: name: 24441_150 n: 1061728918767558176817203458627519930862711303791793816419560970916391073286967729158741586433757396924083357 skew: 11015.45 # norm 1.37e+14 c5: 3600 c4: 1023682614 c3: -5433223933674 c2: -100960073103402731 c1: 129616438775426891628 c0: 1513442468498894463493856 # alpha -4.31 Y1: 108792954869 Y0: -783319249020200496039 # Murphy_E 1.21e-09 # M 527144102954660051708727624048815718732776484104453757771420413640585603452113943932347220759815262186792022 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 429719 x 429967 Total sieving time: 5.50 hours. Total relation processing time: 0.00 hours. (see below) Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 5.60 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Tue Jun 24 20:43:05 2008 Msieve v. 1.36 Tue Jun 24 20:43:05 2008 random seeds: 419df898 1074d5e8 Tue Jun 24 20:43:05 2008 factoring 1061728918767558176817203458627519930862711303791793816419560970916391073286967729158741586433757396924083357 (109 digits) Tue Jun 24 20:43:05 2008 no P-1/P+1/ECM available, skipping Tue Jun 24 20:43:05 2008 commencing number field sieve (109-digit input) Tue Jun 24 20:43:05 2008 R0: -783319249020200496039 Tue Jun 24 20:43:05 2008 R1: 108792954869 Tue Jun 24 20:43:05 2008 A0: 1513442468498894463493856 Tue Jun 24 20:43:05 2008 A1: 129616438775426891628 Tue Jun 24 20:43:05 2008 A2: -100960073103402731 Tue Jun 24 20:43:05 2008 A3: -5433223933674 Tue Jun 24 20:43:05 2008 A4: 1023682614 Tue Jun 24 20:43:05 2008 A5: 3600 Tue Jun 24 20:43:05 2008 size score = 5.545366e-11, Murphy alpha = -4.305145, combined = 2.328970e-10 Tue Jun 24 20:43:05 2008 generating factor base Tue Jun 24 20:43:07 2008 factor base complete: Tue Jun 24 20:43:07 2008 230209 rational roots (max prime = 3199997) Tue Jun 24 20:43:07 2008 229805 algebraic roots (max prime = 3199997) Tue Jun 24 20:43:07 2008 a range: [-4000000, 4000000] Tue Jun 24 20:43:07 2008 b range: [1, 300] ... Wed Jun 25 02:46:14 2008 sparse part has weight 29438035 (67.80/col) Wed Jun 25 02:46:28 2008 filtering completed in 3 passes Wed Jun 25 02:46:28 2008 matrix is 429767 x 429967 (131.2 MB) with weight 43306866 (100.72/col) Wed Jun 25 02:46:28 2008 sparse part has weight 29228734 (67.98/col) Wed Jun 25 02:46:33 2008 read 429967 cycles Wed Jun 25 02:46:34 2008 matrix is 429767 x 429967 (131.2 MB) with weight 43306866 (100.72/col) Wed Jun 25 02:46:34 2008 sparse part has weight 29228734 (67.98/col) Wed Jun 25 02:46:34 2008 saving the first 48 matrix rows for later Wed Jun 25 02:46:34 2008 matrix is 429719 x 429967 (126.5 MB) with weight 33748060 (78.49/col) Wed Jun 25 02:46:34 2008 sparse part has weight 28857124 (67.11/col) Wed Jun 25 02:46:34 2008 matrix includes 64 packed rows Wed Jun 25 02:46:34 2008 using block size 43690 for processor cache size 1024 kB Wed Jun 25 02:46:37 2008 commencing Lanczos iteration Wed Jun 25 02:46:37 2008 memory use: 116.5 MB Wed Jun 25 03:22:14 2008 lanczos halted after 6796 iterations (dim = 429715) Wed Jun 25 03:22:15 2008 recovered 41 nontrivial dependencies Wed Jun 25 03:22:15 2008 elapsed time 00:36:53 Wed Jun 25 03:22:15 2008 Wed Jun 25 03:22:15 2008 Wed Jun 25 03:22:15 2008 Msieve v. 1.36 Wed Jun 25 03:22:15 2008 random seeds: 17402b89 00ef29ea Wed Jun 25 03:22:15 2008 factoring 1061728918767558176817203458627519930862711303791793816419560970916391073286967729158741586433757396924083357 (109 digits) Wed Jun 25 03:22:16 2008 no P-1/P+1/ECM available, skipping Wed Jun 25 03:22:16 2008 commencing number field sieve (109-digit input) Wed Jun 25 03:22:16 2008 R0: -783319249020200496039 Wed Jun 25 03:22:16 2008 R1: 108792954869 Wed Jun 25 03:22:16 2008 A0: 1513442468498894463493856 Wed Jun 25 03:22:16 2008 A1: 129616438775426891628 Wed Jun 25 03:22:16 2008 A2: -100960073103402731 Wed Jun 25 03:22:16 2008 A3: -5433223933674 Wed Jun 25 03:22:16 2008 A4: 1023682614 Wed Jun 25 03:22:16 2008 A5: 3600 Wed Jun 25 03:22:16 2008 size score = 5.545366e-11, Murphy alpha = -4.305145, combined = 2.328970e-10 Wed Jun 25 03:22:16 2008 Wed Jun 25 03:22:16 2008 commencing square root phase Wed Jun 25 03:22:16 2008 reading relations for dependency 1 Wed Jun 25 03:22:16 2008 read 215006 cycles Wed Jun 25 03:22:17 2008 cycles contain 966311 unique relations Wed Jun 25 03:22:26 2008 read 966311 relations Wed Jun 25 03:22:31 2008 multiplying 1374744 relations Wed Jun 25 03:25:41 2008 multiply complete, coefficients have about 57.91 million bits Wed Jun 25 03:25:44 2008 initial square root is modulo 205847419 Wed Jun 25 03:32:07 2008 prp41 factor: 45972127484749710794015017878432605888239 Wed Jun 25 03:32:07 2008 prp68 factor: 23095057306620505652516576474633038696841517536460420603268895763763 Wed Jun 25 03:32:07 2008 elapsed time 00:09:52
(16·10184-43)/9 = 1(7)1833<185> = 7 · 3598093 · 13132245417019<14> · 107537092713773<15> · 104005733668072867117900455439<30> · C121
C121 = P43 · P78
P43 = 9530320599055730642353200206233150010763811<43>
P78 = 504248918081124804358394041346970391553990768685952091678182150911229308328301<78>
(22·10184-31)/9 = 2(4)1831<185> = 3 · 7019 · 6705079 · 202293075931<12> · 425042380540337999804473<24> · 2233556149517112120304444591<28> · C111
C111 = P45 · P67
P45 = 114423653990361075653055464062935164466831611<45>
P67 = 7878686770508480786149343903599253200453322043489051808630270100369<67>
Number: 24441_184 N=901508128927097743805796506111739621599509328568185510262339660197159877020209849161252647032352169836391964459 ( 111 digits) Divisors found: r1=114423653990361075653055464062935164466831611 (prp45) r2=7878686770508480786149343903599253200453322043489051808630270100369 (prp67) Version: Total time: 10.00 hours. Scaled time: 29.45 units (timescale=2.945). Factorization parameters were as follows: name: 24441_184 n: 901508128927097743805796506111739621599509328568185510262339660197159877020209849161252647032352169836391964459 skew: 46520.21 # norm 8.13e+15 c5: 18900 c4: -3935161950 c3: -315632321754924 c2: 6956788420149104008 c1: 165764613453978096609019 c0: -2648291551878358192286209268 # alpha -6.76 Y1: 308911050547 Y0: -2166227912833797164915 # Murphy_E 8.47e-10 # M 495691579157807496339000308739825919751575707403851431472491711303878872482938118133184764017988135434894218932 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 429325 x 429573 Total sieving time: 8.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 00:38:19 hours. Time per square root: 00:31:06 hours. (2nd dep.) Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 10.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618)
By Robert Backstrom / Msieve, GGNFS
(22·10108-31)/9 = 2(4)1071<109> = 17 · 181 · 104959 · 482753 · 21544099 · C87
C87 = P42 · P46
P42 = 138995389975794491309068904263146176694797<42>
P46 = 5235754528978806667489969821427816016907360493<46>
Wed Jun 25 05:45:44 2008 Wed Jun 25 05:45:44 2008 Wed Jun 25 05:45:44 2008 Msieve v. 1.36 Wed Jun 25 05:45:44 2008 random seeds: 2c2f2650 d595796d Wed Jun 25 05:45:44 2008 factoring 727745742572941432727590326080685974558243874913479827895808647003715217085608116454921 (87 digits) Wed Jun 25 05:45:44 2008 searching for 15-digit factors Wed Jun 25 05:45:45 2008 commencing quadratic sieve (87-digit input) Wed Jun 25 05:45:45 2008 using multiplier of 1 Wed Jun 25 05:45:45 2008 using 64kb Opteron sieve core Wed Jun 25 05:45:45 2008 sieve interval: 11 blocks of size 65536 Wed Jun 25 05:45:45 2008 processing polynomials in batches of 10 Wed Jun 25 05:45:45 2008 using a sieve bound of 1499123 (56987 primes) Wed Jun 25 05:45:45 2008 using large prime bound of 119929840 (26 bits) Wed Jun 25 05:45:45 2008 using double large prime bound of 348392707234640 (42-49 bits) Wed Jun 25 05:45:45 2008 using trial factoring cutoff of 49 bits Wed Jun 25 05:45:45 2008 polynomial 'A' values have 11 factors Wed Jun 25 06:18:28 2008 57110 relations (15937 full + 41173 combined from 597887 partial), need 57083 Wed Jun 25 06:18:29 2008 begin with 613823 relations Wed Jun 25 06:18:29 2008 reduce to 136931 relations in 10 passes Wed Jun 25 06:18:29 2008 attempting to read 136931 relations Wed Jun 25 06:18:31 2008 recovered 136931 relations Wed Jun 25 06:18:31 2008 recovered 114809 polynomials Wed Jun 25 06:18:31 2008 attempting to build 57110 cycles Wed Jun 25 06:18:31 2008 found 57110 cycles in 5 passes Wed Jun 25 06:18:31 2008 distribution of cycle lengths: Wed Jun 25 06:18:31 2008 length 1 : 15937 Wed Jun 25 06:18:31 2008 length 2 : 11207 Wed Jun 25 06:18:31 2008 length 3 : 9996 Wed Jun 25 06:18:31 2008 length 4 : 7557 Wed Jun 25 06:18:31 2008 length 5 : 5191 Wed Jun 25 06:18:31 2008 length 6 : 3117 Wed Jun 25 06:18:31 2008 length 7 : 1859 Wed Jun 25 06:18:31 2008 length 9+: 2246 Wed Jun 25 06:18:31 2008 largest cycle: 18 relations Wed Jun 25 06:18:31 2008 matrix is 56987 x 57110 (13.0 MB) with weight 3192278 (55.90/col) Wed Jun 25 06:18:31 2008 sparse part has weight 3192278 (55.90/col) Wed Jun 25 06:18:32 2008 filtering completed in 3 passes Wed Jun 25 06:18:32 2008 matrix is 52584 x 52648 (12.2 MB) with weight 2979847 (56.60/col) Wed Jun 25 06:18:32 2008 sparse part has weight 2979847 (56.60/col) Wed Jun 25 06:18:32 2008 saving the first 48 matrix rows for later Wed Jun 25 06:18:32 2008 matrix is 52536 x 52648 (7.8 MB) with weight 2338595 (44.42/col) Wed Jun 25 06:18:32 2008 sparse part has weight 1724452 (32.75/col) Wed Jun 25 06:18:32 2008 matrix includes 64 packed rows Wed Jun 25 06:18:32 2008 using block size 21059 for processor cache size 1024 kB Wed Jun 25 06:18:32 2008 commencing Lanczos iteration Wed Jun 25 06:18:32 2008 memory use: 7.7 MB Wed Jun 25 06:18:48 2008 lanczos halted after 832 iterations (dim = 52534) Wed Jun 25 06:18:48 2008 recovered 15 nontrivial dependencies Wed Jun 25 06:18:48 2008 prp42 factor: 138995389975794491309068904263146176694797 Wed Jun 25 06:18:48 2008 prp46 factor: 5235754528978806667489969821427816016907360493 Wed Jun 25 06:18:48 2008 elapsed time 00:33:04
(11·10168+61)/9 = 1(2)1679<169> = 284576113 · C160
C160 = P45 · P116
P45 = 411666912515401882965759279521788799204135831<45>
P116 = 10432917434026609382438829606769439297165342068877860732100883252228761348457631305397697008539566408107238406463843<116>
Number: n N=4294886908593843300622432151296627704737193533254220188966535719820666122536511777508965491500062137057238610263195991513954729651614231663295725113169362258533 ( 160 digits) SNFS difficulty: 169 digits. Divisors found: Wed Jun 25 12:13:26 2008 prp45 factor: 411666912515401882965759279521788799204135831 Wed Jun 25 12:13:26 2008 prp116 factor: 10432917434026609382438829606769439297165342068877860732100883252228761348457631305397697008539566408107238406463843 Wed Jun 25 12:13:26 2008 elapsed time 02:24:39 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 101.65 hours. Scaled time: 63.02 units (timescale=0.620). Factorization parameters were as follows: name: KA_1_2_167_9 n: 4294886908593843300622432151296627704737193533254220188966535719820666122536511777508965491500062137057238610263195991513954729651614231663295725113169362258533 type: snfs deg: 5 c5: 11000 c0: 61 skew: 0.35 m: 1000000000000000000000000000000000 rlim: 5800000 alim: 5800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5800000/5800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5300093) Primes: RFBsize:399993, AFBsize:401226, largePrimes:5866471 encountered Relations: rels:6006996, finalFF:811405 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 101.36 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,5800000,5800000,27,27,48,48,2.5,2.5,100000 total time: 101.65 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By suberi / GMP-ECM
2·10190+3 = 2(0)1893<191> = 76949 · 1032007 · C180
C180 = P33 · C148
P33 = 209094547936744449194474908906729<33>
C148 = [1204485741923092584911687923487690778909963227537014315607526677383436191113446013891831878203679688385334440434720800302150846416269081049293062249<148>]
2·10191+3 = 2(0)1903<192> = 2221 · 283112539 · 5806007837521<13> · C167
C167 = P40 · C128
P40 = 2980061483271130133454822323000539259581<40>
C128 = [18383131354982444551956076518958438866176346336034655261991448351404481492241607264551622466419738184569706208252244605090183537<128>]
By Serge Batalov / Msieve, Pol51
(22·10106-31)/9 = 2(4)1051<107> = 32 · 19 · 229 · 2557 · C99
C99 = P46 · P53
P46 = 9631591007156665672864019700139260889641266659<46>
P53 = 25346606237218165683573730083344826363369886203189673<53>
Number: vs N=244128144696331536415917888750242967148917292732461485370154311413947192044016455404328933748012507 ( 99 digits) SNFS difficulty: 107 digits. Divisors found: r1=9631591007156665672864019700139260889641266659 r2=25346606237218165683573730083344826363369886203189673 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: #res:5730 n: 244128144696331536415917888750242967148917292732461485370154311413947192044016455404328933748012507 name: 24441_106 Y0: -1000000000000000000000 Y1: 1 c5: 220 c0: -31 skew: 0.68 type: snfsFactor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 350001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 67178 x 67407 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Msieve v. 1.36 Tue Jun 24 17:07:38 2008 random seeds: 6635feda 25f502d1 factoring 244128144696331536415917888750242967148917292732461485370154311413947192044016455404328933748012507 (99 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (99-digit input) R0: -1000000000000000000000 R1: 1 A0: -31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 220 size score = 1.115181e-07, Murphy alpha = -0.098283, combined = 1.152321e-07 commencing square root phase reading relations for dependency 1 read 33759 cycles cycles contain 150066 unique relations read 150066 relations multiplying 248786 relations multiply complete, coefficients have about 6.50 million bits initial square root is modulo 29586071 reading relations for dependency 2 read 33549 cycles cycles contain 149442 unique relations read 149442 relations multiplying 247648 relations multiply complete, coefficients have about 6.47 million bits initial square root is modulo 27412771 reading relations for dependency 3 read 33871 cycles cycles contain 150712 unique relations read 150712 relations multiplying 250366 relations multiply complete, coefficients have about 6.54 million bits initial square root is modulo 33020791 prp46 factor: 9631591007156665672864019700139260889641266659 prp53 factor: 25346606237218165683573730083344826363369886203189673 elapsed time 00:02:09 # 25 minutes. total! :-)
(22·10116-31)/9 = 2(4)1151<117> = 106816327 · 2341301839<10> · C99
C99 = P44 · P56
P44 = 74779328381478672337559932601827975176268631<44>
P56 = 13070841991426997088803843630742662043950302826857829687<56>
Number: s99 N=977428785499340052582306526584012835139359060523885018765669359761522729518706248747753495558648497 ( 99 digits) SNFS difficulty: 117 digits. Divisors found: r1=74779328381478672337559932601827975176268631 r2=13070841991426997088803843630742662043950302826857829687 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.943). Factorization parameters were as follows: #res: 4974 name: 24441_116 n: 977428785499340052582306526584012835139359060523885018765669359761522729518706248747753495558648497 Y1: 1 Y0: -100000000000000000000000 c5: 220 c0: -31 skew: 0.68 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 99420 x 99635 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) Calibrating delay using timer specific routine.. 5600.56 BogoMIPS (lpj=11201124) ___________screen log_________ Msieve v. 1.36 Tue Jun 24 17:41:00 2008 random seeds: a8b54151 bdb568c5 factoring 977428785499340052582306526584012835139359060523885018765669359761522729518706248747753495558648497 (99 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (99-digit input) R0: -100000000000000000000000 R1: 1 A0: -31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 220 size score = 2.402585e-08, Murphy alpha = -0.098283, combined = 2.482600e-08 commencing linear algebra read 99882 cycles cycles contain 356766 unique relations read 356766 relations using 32 quadratic characters above 33550338 building initial matrix memory use: 48.3 MB read 99882 cycles matrix is 99716 x 99882 (30.2 MB) with weight 9788440 (98.00/col) sparse part has weight 6817281 (68.25/col) filtering completed in 2 passes matrix is 99468 x 99635 (30.2 MB) with weight 9773494 (98.09/col) sparse part has weight 6809835 (68.35/col) read 99635 cycles matrix is 99468 x 99635 (30.2 MB) with weight 9773494 (98.09/col) sparse part has weight 6809835 (68.35/col) saving the first 48 matrix rows for later matrix is 99420 x 99635 (28.8 MB) with weight 7580439 (76.08/col) sparse part has weight 6566360 (65.90/col) matrix includes 64 packed rows using block size 39854 for processor cache size 1024 kB commencing Lanczos iteration memory use: 25.9 MB linear algebra completed 96425 out of 99635 dimensions (96.8%) lanczos halted after 1573 iterations (dim = 99418) recovered 50 nontrivial dependencies elapsed time 00:03:35 =>nice -n 19 "/depts/BioInf/Batalov/MERSE/ggbin/msieve" -s s99.dat -l ggnfs.log -i s99.ini -v -nf s99.fb -t 1 -nc3 Msieve v. 1.36 Tue Jun 24 17:44:35 2008 random seeds: ac726169 0a8b790a factoring 977428785499340052582306526584012835139359060523885018765669359761522729518706248747753495558648497 (99 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (99-digit input) R0: -100000000000000000000000 R1: 1 A0: -31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 220 size score = 2.402585e-08, Murphy alpha = -0.098283, combined = 2.482600e-08 commencing square root phase reading relations for dependency 1 read 49629 cycles cycles contain 223442 unique relations read 223442 relations multiplying 346538 relations multiply complete, coefficients have about 9.09 million bits initial square root is modulo 168731 prp44 factor: 74779328381478672337559932601827975176268631 prp56 factor: 13070841991426997088803843630742662043950302826857829687 elapsed time 00:01:08 -> Computing time scale for this machine... sumName = s117-s99.txt -> Factorization summary written to s117-s99.txt. Start: 2008-06-24 17:10 Finish: 2008-06-24 17:47
(22·10137-31)/9 = 2(4)1361<138> = 107 · 6260299 · C129
C129 = P40 · P89
P40 = 4230643473881898745530247026033528758893<40>
P89 = 86257107301040353258760835519646764214155993239698998324248576055986190717546106427894309<89>
Tue Jun 24 17:18:34 2008 Msieve v. 1.36 Tue Jun 24 17:18:34 2008 random seeds: 61323b09 a250f5eb Tue Jun 24 17:18:34 2008 factoring 364923068079077051345646208213109615163068484659184173606608115958004538540567489875997792910118943908918763856606819776147839937 (129 digits) Tue Jun 24 17:18:35 2008 no P-1/P+1/ECM available, skipping Tue Jun 24 17:18:35 2008 commencing number field sieve (129-digit input) Tue Jun 24 17:18:35 2008 R0: -1000000000000000000000000000 Tue Jun 24 17:18:35 2008 R1: 1 Tue Jun 24 17:18:35 2008 A0: -31 Tue Jun 24 17:18:35 2008 A1: 0 Tue Jun 24 17:18:35 2008 A2: 0 Tue Jun 24 17:18:35 2008 A3: 0 Tue Jun 24 17:18:35 2008 A4: 0 Tue Jun 24 17:18:35 2008 A5: 2200 Tue Jun 24 17:18:35 2008 size score = 7.036318e-10, Murphy alpha = -0.077176, combined = 7.219677e-10 Tue Jun 24 17:18:35 2008 generating factor base Tue Jun 24 17:18:36 2008 factor base complete: Tue Jun 24 17:18:36 2008 78498 rational roots (max prime = 999983) Tue Jun 24 17:18:36 2008 64300 algebraic roots (max prime = 799999) Tue Jun 24 17:18:36 2008 a range: [-2000000, 2000000] Tue Jun 24 17:18:36 2008 b range: [1, 200] Tue Jun 24 17:18:36 2008 number of hash buckets: 16 Tue Jun 24 17:18:36 2008 sieve block size: 65536 Tue Jun 24 17:18:36 2008 Tue Jun 24 17:18:36 2008 maximum RFB prime: 999983 Tue Jun 24 17:18:36 2008 RFB entries: 78498 Tue Jun 24 17:18:36 2008 medium RFB entries: 6542 Tue Jun 24 17:18:36 2008 resieved RFB entries: 6374 Tue Jun 24 17:18:36 2008 small RFB prime powers: 28 Tue Jun 24 17:18:36 2008 projective RFB roots: 0 Tue Jun 24 17:18:36 2008 RFB trial factoring cutoff: 52 or 78 bits Tue Jun 24 17:18:36 2008 single large prime RFB range: 20 - 25 bits Tue Jun 24 17:18:36 2008 double large prime RFB range: 40 - 48 bits Tue Jun 24 17:18:36 2008 triple large prime RFB range: 63 - 73 bits ... Tue Jun 24 19:41:53 2008 restarting with 1854989 relations Tue Jun 24 19:41:53 2008 Tue Jun 24 19:41:53 2008 commencing relation filtering Tue Jun 24 19:41:53 2008 commencing duplicate removal, pass 1 Tue Jun 24 19:42:07 2008 found 320701 hash collisions in 1854989 relations Tue Jun 24 19:42:07 2008 commencing duplicate removal, pass 2 Tue Jun 24 19:42:08 2008 found 368524 duplicates and 1486465 unique relations Tue Jun 24 19:42:08 2008 memory use: 39.7 MB Tue Jun 24 19:42:08 2008 ignoring smallest 86756 rational and 87067 algebraic ideals Tue Jun 24 19:42:08 2008 filtering rational ideals above 1114112 Tue Jun 24 19:42:08 2008 filtering algebraic ideals above 1114112 Tue Jun 24 19:42:08 2008 need 260734 more relations than ideals Tue Jun 24 19:42:08 2008 commencing singleton removal, pass 1 Tue Jun 24 19:42:20 2008 relations with 0 large ideals: 43587 Tue Jun 24 19:42:20 2008 relations with 1 large ideals: 319974 Tue Jun 24 19:42:20 2008 relations with 2 large ideals: 715856 Tue Jun 24 19:42:20 2008 relations with 3 large ideals: 331819 Tue Jun 24 19:42:20 2008 relations with 4 large ideals: 56954 Tue Jun 24 19:42:20 2008 relations with 5 large ideals: 3204 Tue Jun 24 19:42:20 2008 relations with 6 large ideals: 15071 Tue Jun 24 19:42:20 2008 relations with 7+ large ideals: 0 Tue Jun 24 19:42:20 2008 1486465 relations and about 1477266 large ideals Tue Jun 24 19:42:20 2008 commencing singleton removal, pass 2 Tue Jun 24 19:42:33 2008 found 825689 singletons Tue Jun 24 19:42:33 2008 current dataset: 660776 relations and about 478158 large ideals Tue Jun 24 19:42:33 2008 commencing singleton removal, pass 3 Tue Jun 24 19:42:38 2008 found 117444 singletons Tue Jun 24 19:42:38 2008 current dataset: 543332 relations and about 353249 large ideals Tue Jun 24 19:42:38 2008 commencing singleton removal, final pass Tue Jun 24 19:42:43 2008 memory use: 15.3 MB Tue Jun 24 19:42:43 2008 commencing in-memory singleton removal Tue Jun 24 19:42:43 2008 begin with 543332 relations and 357367 unique ideals Tue Jun 24 19:42:44 2008 reduce to 500693 relations and 314037 ideals in 9 passes Tue Jun 24 19:42:44 2008 max relations containing the same ideal: 21 Tue Jun 24 19:42:44 2008 filtering rational ideals above 445644 Tue Jun 24 19:42:44 2008 filtering algebraic ideals above 445644 Tue Jun 24 19:42:44 2008 need 74845 more relations than ideals Tue Jun 24 19:42:44 2008 commencing singleton removal, final pass Tue Jun 24 19:42:49 2008 keeping 412739 ideals with weight <= 20, new excess is 75080 Tue Jun 24 19:42:49 2008 memory use: 16.5 MB Tue Jun 24 19:42:49 2008 commencing in-memory singleton removal Tue Jun 24 19:42:49 2008 begin with 500711 relations and 412739 unique ideals Tue Jun 24 19:42:49 2008 reduce to 500015 relations and 412037 ideals in 6 passes Tue Jun 24 19:42:49 2008 max relations containing the same ideal: 20 Tue Jun 24 19:42:50 2008 relations with 0 large ideals: 1946 Tue Jun 24 19:42:50 2008 relations with 1 large ideals: 11438 Tue Jun 24 19:42:50 2008 relations with 2 large ideals: 68326 Tue Jun 24 19:42:50 2008 relations with 3 large ideals: 149117 Tue Jun 24 19:42:50 2008 relations with 4 large ideals: 153528 Tue Jun 24 19:42:50 2008 relations with 5 large ideals: 82207 Tue Jun 24 19:42:50 2008 relations with 6 large ideals: 29396 Tue Jun 24 19:42:50 2008 relations with 7+ large ideals: 4057 Tue Jun 24 19:42:50 2008 commencing 2-way merge Tue Jun 24 19:42:50 2008 reduce to 317885 relation sets and 229906 unique ideals Tue Jun 24 19:42:50 2008 commencing full merge Tue Jun 24 19:42:55 2008 memory use: 25.6 MB Tue Jun 24 19:42:55 2008 found 159297 cycles, need 148106 Tue Jun 24 19:42:55 2008 weight of 148106 cycles is about 10444887 (70.52/cycle) Tue Jun 24 19:42:55 2008 distribution of cycle lengths: Tue Jun 24 19:42:55 2008 1 relations: 9928 Tue Jun 24 19:42:55 2008 2 relations: 14156 Tue Jun 24 19:42:55 2008 3 relations: 16705 Tue Jun 24 19:42:55 2008 4 relations: 16718 Tue Jun 24 19:42:55 2008 5 relations: 16065 Tue Jun 24 19:42:55 2008 6 relations: 14160 Tue Jun 24 19:42:55 2008 7 relations: 12125 Tue Jun 24 19:42:55 2008 8 relations: 10328 Tue Jun 24 19:42:55 2008 9 relations: 8802 Tue Jun 24 19:42:55 2008 10+ relations: 29119 Tue Jun 24 19:42:55 2008 heaviest cycle: 18 relations Tue Jun 24 19:42:55 2008 commencing cycle optimization Tue Jun 24 19:42:56 2008 start with 917995 relations Tue Jun 24 19:42:58 2008 pruned 13768 relations Tue Jun 24 19:42:58 2008 memory use: 28.1 MB Tue Jun 24 19:42:58 2008 distribution of cycle lengths: Tue Jun 24 19:42:58 2008 1 relations: 9928 Tue Jun 24 19:42:58 2008 2 relations: 14233 Tue Jun 24 19:42:58 2008 3 relations: 16970 Tue Jun 24 19:42:58 2008 4 relations: 16921 Tue Jun 24 19:42:58 2008 5 relations: 16400 Tue Jun 24 19:42:58 2008 6 relations: 14355 Tue Jun 24 19:42:58 2008 7 relations: 12496 Tue Jun 24 19:42:58 2008 8 relations: 10360 Tue Jun 24 19:42:58 2008 9 relations: 8865 Tue Jun 24 19:42:58 2008 10+ relations: 27578 Tue Jun 24 19:42:58 2008 heaviest cycle: 18 relations Tue Jun 24 19:42:58 2008 elapsed time 00:01:07 Tue Jun 24 19:42:58 2008 Tue Jun 24 19:42:58 2008 Tue Jun 24 19:42:58 2008 Msieve v. 1.36 Tue Jun 24 19:42:58 2008 random seeds: 2b1162a1 26955b9f Tue Jun 24 19:42:58 2008 factoring 364923068079077051345646208213109615163068484659184173606608115958004538540567489875997792910118943908918763856606819776147839937 (129 digits) Tue Jun 24 19:42:59 2008 no P-1/P+1/ECM available, skipping Tue Jun 24 19:42:59 2008 commencing number field sieve (129-digit input) Tue Jun 24 19:42:59 2008 R0: -1000000000000000000000000000 Tue Jun 24 19:42:59 2008 R1: 1 Tue Jun 24 19:42:59 2008 A0: -31 Tue Jun 24 19:42:59 2008 A1: 0 Tue Jun 24 19:42:59 2008 A2: 0 Tue Jun 24 19:42:59 2008 A3: 0 Tue Jun 24 19:42:59 2008 A4: 0 Tue Jun 24 19:42:59 2008 A5: 2200 Tue Jun 24 19:42:59 2008 size score = 7.036318e-10, Murphy alpha = -0.077176, combined = 7.219677e-10 Tue Jun 24 19:42:59 2008 Tue Jun 24 19:42:59 2008 commencing linear algebra Tue Jun 24 19:42:59 2008 read 148106 cycles Tue Jun 24 19:43:00 2008 cycles contain 434300 unique relations Tue Jun 24 19:43:03 2008 read 434300 relations Tue Jun 24 19:43:04 2008 using 32 quadratic characters above 33549864 Tue Jun 24 19:43:08 2008 building initial matrix Tue Jun 24 19:43:13 2008 memory use: 59.8 MB Tue Jun 24 19:43:14 2008 read 148106 cycles Tue Jun 24 19:43:14 2008 matrix is 147922 x 148106 (44.4 MB) with weight 14140130 (95.47/col) Tue Jun 24 19:43:14 2008 sparse part has weight 10001765 (67.53/col) Tue Jun 24 19:43:16 2008 filtering completed in 2 passes Tue Jun 24 19:43:16 2008 matrix is 147661 x 147845 (44.3 MB) with weight 14122072 (95.52/col) Tue Jun 24 19:43:16 2008 sparse part has weight 9991367 (67.58/col) Tue Jun 24 19:43:17 2008 read 147845 cycles Tue Jun 24 19:43:17 2008 matrix is 147661 x 147845 (44.3 MB) with weight 14122072 (95.52/col) Tue Jun 24 19:43:17 2008 sparse part has weight 9991367 (67.58/col) Tue Jun 24 19:43:17 2008 saving the first 48 matrix rows for later Tue Jun 24 19:43:17 2008 matrix is 147613 x 147845 (41.9 MB) with weight 10871070 (73.53/col) Tue Jun 24 19:43:17 2008 sparse part has weight 9508778 (64.32/col) Tue Jun 24 19:43:17 2008 matrix includes 64 packed rows Tue Jun 24 19:43:17 2008 using block size 43690 for processor cache size 1024 kB Tue Jun 24 19:43:19 2008 commencing Lanczos iteration Tue Jun 24 19:43:19 2008 memory use: 38.1 MB ... linear algebra completed 145627 out of 147845 dimensions (98.5%) lanczos halted after 2337 iterations (dim = 147613) recovered 51 nontrivial dependencies elapsed time 00:04:39 =>nice -n 19 "/depts/BioInf/Batalov/MERSE/ggbin/msieve" -s vs3.dat -l ggnfs.log -i vs3.ini -v -nf vs3.fb -t 1 -nc3 Msieve v. 1.36 Tue Jun 24 19:47:37 2008 random seeds: df5fa5c3 612405f0 factoring 364923068079077051345646208213109615163068484659184173606608115958004538540567489875997792910118943908918763856606819776147839937 (129 digits) no P-1/P+1/ECM available, skipping commencing number field sieve (129-digit input) R0: -1000000000000000000000000000 R1: 1 A0: -31 A1: 0 A2: 0 A3: 0 A4: 0 A5: 2200 size score = 7.036318e-10, Murphy alpha = -0.077176, combined = 7.219677e-10 commencing square root phase reading relations for dependency 1 read 74221 cycles cycles contain 270946 unique relations read 270946 relations multiplying 452950 relations multiply complete, coefficients have about 13.57 million bits initial square root is modulo 62672501 prp40 factor: 4230643473881898745530247026033528758893 prp89 factor: 86257107301040353258760835519646764214155993239698998324248576055986190717546106427894309 elapsed time 00:01:57 -> Computing time scale for this machine... sumName = s138-vs3.txt -> Factorization summary written to s138-vs3.txt. N=364923068079077051345646208213109615163068484659184173606608115958004538540567489875997792910118943908918763856606819776147839937 ( 129 digits) SNFS difficulty: 138 digits. Divisors found: r1=4230643473881898745530247026033528758893 r2=86257107301040353258760835519646764214155993239698998324248576055986190717546106427894309 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: #res:2795 name: 24441_137 n: 364923068079077051345646208213109615163068484659184173606608115958004538540567489875997792910118943908918763856606819776147839937 Y1: 1 Y0: -1000000000000000000000000000 c5: 2200 c0: -31 skew: 0.43 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved rational special-q in [500000, 1325001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147613 x 147845 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618)
(22·10194-31)/9 = 2(4)1931<195> = 278595861831598911140273<24> · 11894864327951802442292729804333<32> · 35018293618452818567197231650421<32> · C109
C109 = P49 · P60
P49 = 5372482836426580900512209972203814089751370013919<49>
P60 = 392081183737090877140072638124636771184362766568147368455751<60>
Number: 24441_194 N=2106449430113337418439686498093665737072417104177983028241236957255256900579714385299982462974479850405598169 ( 109 digits) Divisors found: r1=5372482836426580900512209972203814089751370013919 r2=392081183737090877140072638124636771184362766568147368455751 Version: Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: name: 24441_194 n: 2106449430113337418439686498093665737072417104177983028241236957255256900579714385299982462974479850405598169 skew: 40436.56 # norm 9.50e+14 c5: 6300 c4: -6074415 c3: 15044965730376 c2: -513817562282863186 c1: -38591011017509739247904 c0: -189964629514345907912503176 # alpha -5.99 Y1: 85707496171 Y0: -803234042785158511595 # Murphy_E 1.13e-09 # M 1924700740393856439702834402358433334952951283649528228384901939772757800330389208057432806240169632309889192 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: 7534340 relations Max relations in full relation-set: Initial matrix: Pruned matrix : 384322 x 384563 Total sieving time: 7.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.33 hours. Time per square root: 0.10 hours. x 4 times Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 0.00 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618)
By Sinkiti Sibata / Msieve, GGNFS
(22·10117-31)/9 = 2(4)1161<118> = 29 · 461 · 349093 · 406887201344489491693<21> · C88
C88 = P34 · P54
P34 = 4410818249195386441095460907024479<34>
P54 = 291841410464168265137439674268152491306019075364735359<54>
Wed Jun 25 06:06:08 2008 Msieve v. 1.36 Wed Jun 25 06:06:08 2008 random seeds: 170cc727 b201353d Wed Jun 25 06:06:08 2008 factoring 1287259419146274799029762849499144221452245222008169345367185110030166353130963969852961 (88 digits) Wed Jun 25 06:06:09 2008 no P-1/P+1/ECM available, skipping Wed Jun 25 06:06:09 2008 commencing quadratic sieve (88-digit input) Wed Jun 25 06:06:09 2008 using multiplier of 1 Wed Jun 25 06:06:09 2008 using 64kb Pentium 4 sieve core Wed Jun 25 06:06:09 2008 sieve interval: 12 blocks of size 65536 Wed Jun 25 06:06:09 2008 processing polynomials in batches of 9 Wed Jun 25 06:06:09 2008 using a sieve bound of 1508383 (57210 primes) Wed Jun 25 06:06:09 2008 using large prime bound of 120670640 (26 bits) Wed Jun 25 06:06:09 2008 using double large prime bound of 352275850752880 (42-49 bits) Wed Jun 25 06:06:09 2008 using trial factoring cutoff of 49 bits Wed Jun 25 06:06:09 2008 polynomial 'A' values have 11 factors Wed Jun 25 07:24:25 2008 57416 relations (15610 full + 41806 combined from 604346 partial), need 57306 Wed Jun 25 07:24:27 2008 begin with 619956 relations Wed Jun 25 07:24:28 2008 reduce to 138236 relations in 10 passes Wed Jun 25 07:24:28 2008 attempting to read 138236 relations Wed Jun 25 07:24:31 2008 recovered 138236 relations Wed Jun 25 07:24:31 2008 recovered 115495 polynomials Wed Jun 25 07:24:32 2008 attempting to build 57416 cycles Wed Jun 25 07:24:32 2008 found 57416 cycles in 5 passes Wed Jun 25 07:24:32 2008 distribution of cycle lengths: Wed Jun 25 07:24:32 2008 length 1 : 15610 Wed Jun 25 07:24:32 2008 length 2 : 11329 Wed Jun 25 07:24:32 2008 length 3 : 10241 Wed Jun 25 07:24:32 2008 length 4 : 7591 Wed Jun 25 07:24:32 2008 length 5 : 5209 Wed Jun 25 07:24:32 2008 length 6 : 3257 Wed Jun 25 07:24:32 2008 length 7 : 1922 Wed Jun 25 07:24:32 2008 length 9+: 2257 Wed Jun 25 07:24:32 2008 largest cycle: 19 relations Wed Jun 25 07:24:32 2008 matrix is 57210 x 57416 (13.2 MB) with weight 3220877 (56.10/col) Wed Jun 25 07:24:32 2008 sparse part has weight 3220877 (56.10/col) Wed Jun 25 07:24:33 2008 filtering completed in 3 passes Wed Jun 25 07:24:33 2008 matrix is 52838 x 52902 (12.2 MB) with weight 2996218 (56.64/col) Wed Jun 25 07:24:33 2008 sparse part has weight 2996218 (56.64/col) Wed Jun 25 07:24:33 2008 saving the first 48 matrix rows for later Wed Jun 25 07:24:33 2008 matrix is 52790 x 52902 (7.7 MB) with weight 2328421 (44.01/col) Wed Jun 25 07:24:33 2008 sparse part has weight 1694223 (32.03/col) Wed Jun 25 07:24:33 2008 matrix includes 64 packed rows Wed Jun 25 07:24:33 2008 using block size 21160 for processor cache size 512 kB Wed Jun 25 07:24:34 2008 commencing Lanczos iteration Wed Jun 25 07:24:34 2008 memory use: 7.7 MB Wed Jun 25 07:25:04 2008 lanczos halted after 837 iterations (dim = 52788) Wed Jun 25 07:25:04 2008 recovered 16 nontrivial dependencies Wed Jun 25 07:25:05 2008 prp34 factor: 4410818249195386441095460907024479 Wed Jun 25 07:25:05 2008 prp54 factor: 291841410464168265137439674268152491306019075364735359 Wed Jun 25 07:25:05 2008 elapsed time 01:18:57
(22·10118-31)/9 = 2(4)1171<119> = 3 · 14983 · 622449689 · C105
C105 = P46 · P60
P46 = 4537615633666849151611716577755232938567642751<46>
P60 = 192543196468245533005352464734298731237544060158976608782531<60>
Number: 24441_118 N=873687018450498585860962414011205494434864693142153285668563056838354780242500796832845469760044657582781 ( 105 digits) SNFS difficulty: 119 digits. Divisors found: r1=4537615633666849151611716577755232938567642751 (pp46) r2=192543196468245533005352464734298731237544060158976608782531 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.79 hours. Scaled time: 7.58 units (timescale=2.001). Factorization parameters were as follows: name: 24441_118 n: 873687018450498585860962414011205494434864693142153285668563056838354780242500796832845469760044657582781 m: 200000000000000000000000 c5: 1375 c0: -62 skew: 0.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63870, largePrimes:2479128 encountered Relations: rels:3033113, finalFF:650178 Max relations in full relation-set: 28 Initial matrix: 113034 x 650178 with sparse part having weight 58691005. Pruned matrix : 72863 x 73492 with weight 7919281. Total sieving time: 3.65 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.79 hours. --------- CPU info (if available) ----------
(22·10133-31)/9 = 2(4)1321<134> = 32 · 7 · 139 · 1889 · 72848313288111029<17> · 12107233034358661681<20> · C91
C91 = P34 · P57
P34 = 5639657496580140043807608755154479<34>
P57 = 297081584751261613839479981912844720413453322599248782527<57>
Wed Jun 25 07:41:23 2008 Msieve v. 1.36 Wed Jun 25 07:41:23 2008 random seeds: c50e3e98 41efd23e Wed Jun 25 07:41:23 2008 factoring 1675438386538360779538911366534090700731296549280307459985836895534653957674705576560988433 (91 digits) Wed Jun 25 07:41:25 2008 no P-1/P+1/ECM available, skipping Wed Jun 25 07:41:25 2008 commencing quadratic sieve (91-digit input) Wed Jun 25 07:41:25 2008 using multiplier of 3 Wed Jun 25 07:41:25 2008 using 64kb Pentium 4 sieve core Wed Jun 25 07:41:25 2008 sieve interval: 18 blocks of size 65536 Wed Jun 25 07:41:25 2008 processing polynomials in batches of 6 Wed Jun 25 07:41:25 2008 using a sieve bound of 1648001 (62353 primes) Wed Jun 25 07:41:25 2008 using large prime bound of 145024088 (27 bits) Wed Jun 25 07:41:25 2008 using double large prime bound of 490447101569216 (42-49 bits) Wed Jun 25 07:41:25 2008 using trial factoring cutoff of 49 bits Wed Jun 25 07:41:25 2008 polynomial 'A' values have 12 factors Wed Jun 25 10:35:54 2008 62959 relations (16185 full + 46774 combined from 698397 partial), need 62449 Wed Jun 25 10:35:57 2008 begin with 714582 relations Wed Jun 25 10:35:58 2008 reduce to 156061 relations in 11 passes Wed Jun 25 10:35:58 2008 attempting to read 156061 relations Wed Jun 25 10:36:02 2008 recovered 156061 relations Wed Jun 25 10:36:02 2008 recovered 138295 polynomials Wed Jun 25 10:36:02 2008 attempting to build 62959 cycles Wed Jun 25 10:36:02 2008 found 62959 cycles in 5 passes Wed Jun 25 10:36:02 2008 distribution of cycle lengths: Wed Jun 25 10:36:02 2008 length 1 : 16185 Wed Jun 25 10:36:02 2008 length 2 : 11807 Wed Jun 25 10:36:02 2008 length 3 : 11185 Wed Jun 25 10:36:02 2008 length 4 : 8494 Wed Jun 25 10:36:02 2008 length 5 : 6109 Wed Jun 25 10:36:02 2008 length 6 : 3932 Wed Jun 25 10:36:02 2008 length 7 : 2309 Wed Jun 25 10:36:02 2008 length 9+: 2938 Wed Jun 25 10:36:02 2008 largest cycle: 21 relations Wed Jun 25 10:36:03 2008 matrix is 62353 x 62959 (15.9 MB) with weight 3905559 (62.03/col) Wed Jun 25 10:36:03 2008 sparse part has weight 3905559 (62.03/col) Wed Jun 25 10:36:04 2008 filtering completed in 3 passes Wed Jun 25 10:36:04 2008 matrix is 58686 x 58749 (14.8 MB) with weight 3639529 (61.95/col) Wed Jun 25 10:36:04 2008 sparse part has weight 3639529 (61.95/col) Wed Jun 25 10:36:04 2008 saving the first 48 matrix rows for later Wed Jun 25 10:36:04 2008 matrix is 58638 x 58749 (9.6 MB) with weight 2901339 (49.39/col) Wed Jun 25 10:36:04 2008 sparse part has weight 2164287 (36.84/col) Wed Jun 25 10:36:04 2008 matrix includes 64 packed rows Wed Jun 25 10:36:04 2008 using block size 21845 for processor cache size 512 kB Wed Jun 25 10:36:05 2008 commencing Lanczos iteration Wed Jun 25 10:36:05 2008 memory use: 9.2 MB Wed Jun 25 10:36:43 2008 lanczos halted after 929 iterations (dim = 58636) Wed Jun 25 10:36:43 2008 recovered 18 nontrivial dependencies Wed Jun 25 10:36:44 2008 prp34 factor: 5639657496580140043807608755154479 Wed Jun 25 10:36:44 2008 prp57 factor: 297081584751261613839479981912844720413453322599248782527 Wed Jun 25 10:36:44 2008 elapsed time 02:55:21
(22·10123-31)/9 = 2(4)1221<124> = 23 · 433 · 1117 · 68729 · 501031 · C106
C106 = P30 · P37 · P41
P30 = 112756411670894054808299206741<30>
P37 = 1273632833538519302423429506126087703<37>
P41 = 44434587248671470710438581903003136233111<41>
Number: 24441_123 N=6381262987518437582596006673142664010499591113432826140506374373786489676493680985755553880923201431516453 ( 106 digits) SNFS difficulty: 124 digits. Divisors found: r1=112756411670894054808299206741 (pp30) r2=1273632833538519302423429506126087703 (pp37) r3=44434587248671470710438581903003136233111 (pp41) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.80 hours. Scaled time: 5.54 units (timescale=1.980). Factorization parameters were as follows: name: 24441_123 n: 6381262987518437582596006673142664010499591113432826140506374373786489676493680985755553880923201431516453 m: 2000000000000000000000000 c5: 1375 c0: -62 skew: 0.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63870, largePrimes:2087371 encountered Relations: rels:2089010, finalFF:148808 Max relations in full relation-set: 28 Initial matrix: 113034 x 148808 with sparse part having weight 13134472. Pruned matrix : 103383 x 104012 with weight 7096421. Total sieving time: 2.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.80 hours. --------- CPU info (if available) ----------
(22·10126-31)/9 = 2(4)1251<127> = 251 · 947197 · 7866056173<10> · 147800376943<12> · C97
C97 = P48 · P50
P48 = 125539892302209994144376261639415159617845478621<48>
P50 = 70445263698076214469967576860456601215668550017537<50>
Number: 24441_126 N=8843690817857271302023221252006081640529860641541495178285378366218188996613539373465225708576477 ( 97 digits) SNFS difficulty: 127 digits. Divisors found: r1=125539892302209994144376261639415159617845478621 (pp48) r2=70445263698076214469967576860456601215668550017537 (pp50) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.06 hours. Scaled time: 8.12 units (timescale=1.999). Factorization parameters were as follows: name: 24441_126 n: 8843690817857271302023221252006081640529860641541495178285378366218188996613539373465225708576477 m: 10000000000000000000000000 c5: 220 c0: -31 skew: 0.68 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:64395, largePrimes:2456079 encountered Relations: rels:2883954, finalFF:504666 Max relations in full relation-set: 28 Initial matrix: 113560 x 504666 with sparse part having weight 50686424. Pruned matrix : 82776 x 83407 with weight 10580662. Total sieving time: 3.89 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.06 hours. --------- CPU info (if available) ----------
(22·10136-31)/9 = 2(4)1351<137> = 3 · 102913 · 15234311306269949<17> · 1562581549839689958881<22> · C94
C94 = P41 · P53
P41 = 70140031482922619884047309665806073419879<41>
P53 = 47419525476324695463991738004843827169691997828599769<53>
Wed Jun 25 10:55:40 2008 Msieve v. 1.36 Wed Jun 25 10:55:40 2008 random seeds: df7de77d 5750ec7f Wed Jun 25 10:55:40 2008 factoring 3326007009814665382594988238225932795513919969611140665785160095361635024439266642871779407951 (94 digits) Wed Jun 25 10:55:41 2008 no P-1/P+1/ECM available, skipping Wed Jun 25 10:55:42 2008 commencing quadratic sieve (94-digit input) Wed Jun 25 10:55:42 2008 using multiplier of 31 Wed Jun 25 10:55:42 2008 using 64kb Pentium 4 sieve core Wed Jun 25 10:55:42 2008 sieve interval: 18 blocks of size 65536 Wed Jun 25 10:55:42 2008 processing polynomials in batches of 6 Wed Jun 25 10:55:42 2008 using a sieve bound of 2021197 (75294 primes) Wed Jun 25 10:55:42 2008 using large prime bound of 270840398 (28 bits) Wed Jun 25 10:55:42 2008 using double large prime bound of 1509677378791104 (42-51 bits) Wed Jun 25 10:55:42 2008 using trial factoring cutoff of 51 bits Wed Jun 25 10:55:42 2008 polynomial 'A' values have 12 factors Wed Jun 25 15:40:24 2008 75402 relations (19171 full + 56231 combined from 1058328 partial), need 75390 Wed Jun 25 15:40:28 2008 begin with 1077499 relations Wed Jun 25 15:40:29 2008 reduce to 192564 relations in 10 passes Wed Jun 25 15:40:29 2008 attempting to read 192564 relations Wed Jun 25 15:40:35 2008 recovered 192564 relations Wed Jun 25 15:40:35 2008 recovered 174670 polynomials Wed Jun 25 15:40:35 2008 attempting to build 75402 cycles Wed Jun 25 15:40:35 2008 found 75402 cycles in 5 passes Wed Jun 25 15:40:35 2008 distribution of cycle lengths: Wed Jun 25 15:40:35 2008 length 1 : 19171 Wed Jun 25 15:40:35 2008 length 2 : 13461 Wed Jun 25 15:40:35 2008 length 3 : 13067 Wed Jun 25 15:40:35 2008 length 4 : 10176 Wed Jun 25 15:40:35 2008 length 5 : 7411 Wed Jun 25 15:40:35 2008 length 6 : 4990 Wed Jun 25 15:40:35 2008 length 7 : 3086 Wed Jun 25 15:40:35 2008 length 9+: 4040 Wed Jun 25 15:40:35 2008 largest cycle: 22 relations Wed Jun 25 15:40:36 2008 matrix is 75294 x 75402 (20.0 MB) with weight 4929129 (65.37/col) Wed Jun 25 15:40:36 2008 sparse part has weight 4929129 (65.37/col) Wed Jun 25 15:40:38 2008 filtering completed in 4 passes Wed Jun 25 15:40:38 2008 matrix is 71405 x 71469 (19.1 MB) with weight 4713847 (65.96/col) Wed Jun 25 15:40:38 2008 sparse part has weight 4713847 (65.96/col) Wed Jun 25 15:40:38 2008 saving the first 48 matrix rows for later Wed Jun 25 15:40:38 2008 matrix is 71357 x 71469 (12.9 MB) with weight 3798547 (53.15/col) Wed Jun 25 15:40:38 2008 sparse part has weight 2962125 (41.45/col) Wed Jun 25 15:40:38 2008 matrix includes 64 packed rows Wed Jun 25 15:40:38 2008 using block size 21845 for processor cache size 512 kB Wed Jun 25 15:40:39 2008 commencing Lanczos iteration Wed Jun 25 15:40:39 2008 memory use: 11.9 MB Wed Jun 25 15:41:38 2008 lanczos halted after 1130 iterations (dim = 71357) Wed Jun 25 15:41:38 2008 recovered 18 nontrivial dependencies Wed Jun 25 15:41:40 2008 prp41 factor: 70140031482922619884047309665806073419879 Wed Jun 25 15:41:40 2008 prp53 factor: 47419525476324695463991738004843827169691997828599769 Wed Jun 25 15:41:40 2008 elapsed time 04:46:00
(22·10130-31)/9 = 2(4)1291<131> = 3 · 5791 · 117231343 · C119
C119 = P50 · P69
P50 = 85995374291128139645665669095946376417031817673599<50>
P69 = 139568213783908770745527523180712684153776037520035004684966931153181<69>
Number: 24441_130 N=12002220783491424354719810893455669531170424853954026778227280515249519161486614070059907571911548826570017617728568419 ( 119 digits) SNFS difficulty: 131 digits. Divisors found: r1=85995374291128139645665669095946376417031817673599 (pp50) r2=139568213783908770745527523180712684153776037520035004684966931153181 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.42 hours. Scaled time: 8.76 units (timescale=1.982). Factorization parameters were as follows: name: 24441_130 n: 12002220783491424354719810893455669531170424853954026778227280515249519161486614070059907571911548826570017617728568419 m: 100000000000000000000000000 c5: 22 c0: -31 skew: 1.07 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63540, largePrimes:1452971 encountered Relations: rels:1426412, finalFF:147328 Max relations in full relation-set: 28 Initial matrix: 127557 x 147328 with sparse part having weight 11031003. Pruned matrix : 122110 x 122811 with weight 7660398. Total sieving time: 4.23 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.42 hours. --------- CPU info (if available) ----------
(22·10138-31)/9 = 2(4)1371<139> = 137977193 · 18449653031753849<17> · C114
C114 = P46 · P69
P46 = 3825837938755335201721050723402917950510257463<46>
P69 = 250990967874013770505290290531406928058853824186456271102008457235151<69>
Number: 24441_138 N=960250767177323400882844976192636287552667446686675098746530710972955996716839535226165913888973758453802143681913 ( 114 digits) SNFS difficulty: 139 digits. Divisors found: r1=3825837938755335201721050723402917950510257463 (pp46) r2=250990967874013770505290290531406928058853824186456271102008457235151 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.38 hours. Scaled time: 26.78 units (timescale=2.002). Factorization parameters were as follows: name: 24441_138 n: 960250767177323400882844976192636287552667446686675098746530710972955996716839535226165913888973758453802143681913 m: 2000000000000000000000000000 c5: 1375 c0: -62 skew: 0.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2125001) Primes: RFBsize:78498, AFBsize:63870, largePrimes:1660537 encountered Relations: rels:1687384, finalFF:168711 Max relations in full relation-set: 28 Initial matrix: 142434 x 168711 with sparse part having weight 18605604. Pruned matrix : 135990 x 136766 with weight 13766077. Total sieving time: 13.07 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 13.38 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
6·10176+7 = 6(0)1757<177> = 149 · C175
C175 = P45 · P131
P45 = 230266112072425854835615673997286041414191311<45>
P131 = 17487790979496472353574388242068301111731661211926813193993672549877478287762758543465832179237070194085811306528123110099573405413<131>
N=4026845637583892617449664429530201342281879194630872483221476510067114093959731543624161073825503355704697986577181208053691275167785234899328859060402684563758389261744966443 ( 175 digits) SNFS difficulty: 176 digits. Divisors found: r1=230266112072425854835615673997286041414191311 (pp45) r2=17487790979496472353574388242068301111731661211926813193993672549877478287762758543465832179237070194085811306528123110099573405413 (pp131) Version: GGNFS-0.77.1-20060513-prescott Total time: 252.84 hours. Scaled time: 347.40 units (timescale=1.374). Factorization parameters were as follows: n: 4026845637583892617449664429530201342281879194630872483221476510067114093959731543624161073825503355704697986577181208053691275167785234899328859060402684563758389261744966443 m: 100000000000000000000000000000000000 c5: 60 c0: 7 skew: 0.65 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 14200001) Primes: RFBsize:501962, AFBsize:502341, largePrimes:6688647 encountered Relations: rels:7170745, finalFF:1136864 Max relations in full relation-set: 28 Initial matrix: 1004370 x 1136864 with sparse part having weight 89462948. Pruned matrix : 897008 x 902093 with weight 70418949. Total sieving time: 237.69 hours. Total relation processing time: 0.25 hours. Matrix solve time: 14.56 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 252.84 hours.
By suberi / GMP-ECM, Msieve
(64·10205+53)/9 = 7(1)2047<206> = 7 · 11 · 239 · 39217 · 303337 · 818638853244139<15> · 32171339726493257<17> · C161
C161 = P43 · P118
P43 = 6792360722740653194989864506125393681527657<43>
P118 = 1815795106708801594507912771850228677646491129523164275329155811015085729329124219820438570716764628453647583068010181<118>
2·10187+3 = 2(0)1863<188> = 2650288267127376709<19> · 21691476478039441219<20> · C150
C150 = P31 · P33 · P87
P31 = 4899431565604784118723228083483<31>
P33 = 389595763391679786994327160166767<33>
P87 = 182258522814260407226204545556975019230375927589496525253684233311399812906067616297913<87>
2·10184+3 = 2(0)1833<185> = 241 · 4253 · 41715550696982867<17> · 45046753479013599736939609<26> · C137
C137 = P35 · P44 · P59
P35 = 16450357456538149478222257267964459<35>
P44 = 56831071349735800699564104034197250430260949<44>
P59 = 11106952378085416134328784349105056515147150726616078638907<59>
Tue Jun 24 18:53:10 2008 Tue Jun 24 18:53:10 2008 Tue Jun 24 18:53:10 2008 Msieve v. 1.36 Tue Jun 24 18:53:10 2008 random seeds: 93ee3b85 0329cb0a Tue Jun 24 18:53:10 2008 factoring 182713336872251556937124341395782902015287266671894633925232526091403812179727966275170606313 (93 digits) Tue Jun 24 18:53:11 2008 no P-1/P+1/ECM available, skipping Tue Jun 24 18:53:11 2008 commencing quadratic sieve (93-digit input) Tue Jun 24 18:53:11 2008 using multiplier of 10 Tue Jun 24 18:53:11 2008 using 64kb Opteron sieve core Tue Jun 24 18:53:11 2008 sieve interval: 18 blocks of size 65536 Tue Jun 24 18:53:11 2008 processing polynomials in batches of 6 Tue Jun 24 18:53:11 2008 using a sieve bound of 1884611 (70588 primes) Tue Jun 24 18:53:11 2008 using large prime bound of 220499487 (27 bits) Tue Jun 24 18:53:11 2008 using double large prime bound of 1042638218764623 (42-50 bits) Tue Jun 24 18:53:11 2008 using trial factoring cutoff of 50 bits Tue Jun 24 18:53:11 2008 polynomial 'A' values have 12 factors Tue Jun 24 21:54:01 2008 70947 relations (18129 full + 52818 combined from 924198 partial), need 70684 Tue Jun 24 21:54:01 2008 begin with 942327 relations Tue Jun 24 21:54:02 2008 reduce to 180003 relations in 11 passes Tue Jun 24 21:54:02 2008 attempting to read 180003 relations Tue Jun 24 21:54:04 2008 recovered 180003 relations Tue Jun 24 21:54:04 2008 recovered 162383 polynomials Tue Jun 24 21:54:04 2008 attempting to build 70947 cycles Tue Jun 24 21:54:04 2008 found 70947 cycles in 6 passes Tue Jun 24 21:54:05 2008 distribution of cycle lengths: Tue Jun 24 21:54:05 2008 length 1 : 18129 Tue Jun 24 21:54:05 2008 length 2 : 12833 Tue Jun 24 21:54:05 2008 length 3 : 12206 Tue Jun 24 21:54:05 2008 length 4 : 9619 Tue Jun 24 21:54:05 2008 length 5 : 6914 Tue Jun 24 21:54:05 2008 length 6 : 4575 Tue Jun 24 21:54:05 2008 length 7 : 2879 Tue Jun 24 21:54:05 2008 length 9+: 3792 Tue Jun 24 21:54:05 2008 largest cycle: 20 relations Tue Jun 24 21:54:05 2008 matrix is 70588 x 70947 (18.9 MB) with weight 4387637 (61.84/col) Tue Jun 24 21:54:05 2008 sparse part has weight 4387637 (61.84/col) Tue Jun 24 21:54:06 2008 filtering completed in 4 passes Tue Jun 24 21:54:06 2008 matrix is 66689 x 66753 (17.8 MB) with weight 4139213 (62.01/col) Tue Jun 24 21:54:06 2008 sparse part has weight 4139213 (62.01/col) Tue Jun 24 21:54:07 2008 saving the first 48 matrix rows for later Tue Jun 24 21:54:07 2008 matrix is 66641 x 66753 (10.8 MB) with weight 3149445 (47.18/col) Tue Jun 24 21:54:07 2008 sparse part has weight 2163279 (32.41/col) Tue Jun 24 21:54:07 2008 matrix includes 64 packed rows Tue Jun 24 21:54:07 2008 using block size 21845 for processor cache size 512 kB Tue Jun 24 21:54:07 2008 commencing Lanczos iteration Tue Jun 24 21:54:07 2008 memory use: 10.0 MB Tue Jun 24 21:54:45 2008 lanczos halted after 1055 iterations (dim = 66638) Tue Jun 24 21:54:45 2008 recovered 16 nontrivial dependencies Tue Jun 24 21:54:46 2008 prp35 factor: 16450357456538149478222257267964459 Tue Jun 24 21:54:46 2008 prp59 factor: 11106952378085416134328784349105056515147150726616078638907 Tue Jun 24 21:54:46 2008 elapsed time 03:01:36
By Sinkiti Sibata / GGNFS
(7·10179+17)/3 = 2(3)1789<180> = 22109 · 90469 · 1256323 · 35493226964893<14> · 193576298168347<15> · 952212640912740996809<21> · C116
C116 = P49 · P68
P49 = 1083418340932707176216084357421154856286028373779<49>
P68 = 13100226135502534549666209653747467840650514145509640203419928010693<68>
Number: 23339_179 N=14193025265569445974228728704378542441338653383710387152481587867346291078132553015148374680826377638347769312818847 ( 116 digits) Divisors found: r1=1083418340932707176216084357421154856286028373779 (pp49) r2=13100226135502534549666209653747467840650514145509640203419928010693 (pp68) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 68.57 hours. Scaled time: 46.28 units (timescale=0.675). Factorization parameters were as follows: name: 23339_179 n: 14193025265569445974228728704378542441338653383710387152481587867346291078132553015148374680826377638347769312818847 skew: 53352.58 # norm 4.55e+15 c5: 22800 c4: -1212675256 c3: -208058952557963 c2: 6664111048874094952 c1: 245754196746015982431972 c0: 1432227789190934188360900848 # alpha -5.51 Y1: 2378383133929 Y0: -14415469381987635808679 # Murphy_E 5.17e-10 # M 814671274571655966892064727200267112760459559660949635982948791244348566256512818571951807542954013572351015531657 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3570001) Primes: RFBsize:315948, AFBsize:315628, largePrimes:7558239 encountered Relations: rels:7641850, finalFF:796002 Max relations in full relation-set: 28 Initial matrix: 631652 x 796002 with sparse part having weight 57923912. Pruned matrix : 485483 x 488705 with weight 31317677. Polynomial selection time: 3.01 hours. Total sieving time: 54.29 hours. Total relation processing time: 0.54 hours. Matrix solve time: 10.31 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 68.57 hours. --------- CPU info (if available) ----------
7·10182+3 = 7(0)1813<183> = 19 · 37 · C180
C180 = P76 · P105
P76 = 5796213552807101290302139288236547086048674920761890437988566399723613188147<76>
P105 = 171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783<105>
Number: 70003_182 N=995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101 ( 180 digits) SNFS difficulty: 182 digits. Divisors found: r1=5796213552807101290302139288236547086048674920761890437988566399723613188147 (pp76) r2=171790180884158531835765998721853676674416631560705620499042258287282118632167531441001689658431400392783 (pp105) Version: GGNFS-0.77.1-20060513-k8 Total time: 549.90 hours. Scaled time: 1098.71 units (timescale=1.998). Factorization parameters were as follows: name: 70003_182 n: 995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943100995732574679943101 m: 1000000000000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9800001) Primes: RFBsize:501962, AFBsize:501711, largePrimes:6541906 encountered Relations: rels:7006429, finalFF:1144045 Max relations in full relation-set: 28 Initial matrix: 1003740 x 1144045 with sparse part having weight 73023928. Pruned matrix : 886255 x 891337 with weight 55995755. Total sieving time: 538.86 hours. Total relation processing time: 0.43 hours. Matrix solve time: 10.28 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 549.90 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(19·10162+71)/9 = 2(1)1619<163> = 73 · C161
C161 = P32 · P59 · P70
P32 = 43940526090123600470562056510603<32>
P59 = 73998714678262655889943985399989215015429575850397477288273<59>
P70 = 8894034356803247423111327983734140548254674728357494938725391032087637<70>
Number: n N=658147110707748824755832441227848690652084205220911259328710039673874479237845455658772436193296458069020869661212196684848380901 ( 129 digits) SNFS difficulty: 163 digits. Divisors found: Tue Jun 24 03:33:39 2008 prp59 factor: 73998714678262655889943985399989215015429575850397477288273 Tue Jun 24 03:33:39 2008 prp70 factor: 8894034356803247423111327983734140548254674728357494938725391032087637 Tue Jun 24 03:33:39 2008 elapsed time 01:05:25 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.80 hours. Scaled time: 80.10 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_161_9 n: 658147110707748824755832441227848690652084205220911259328710039673874479237845455658772436193296458069020869661212196684848380901 skew: 0.52 deg: 5 c5: 1900 c0: 71 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000299) Primes: RFBsize:315948, AFBsize:316312, largePrimes:7290029 encountered Relations: rels:6865799, finalFF:650394 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.52 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 43.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
The factor table of 244...441 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS
(7·10159+17)/3 = 2(3)1589<160> = 103 · 36353 · 678599 · 9047282575964125799445511<25> · C123
C123 = P45 · P78
P45 = 913307551148821962130752701805568948809731623<45>
P78 = 111135008099498608276431343957760234609000836576351644580968422062061256514043<78>
Number: 23339_159 N=101500442094257568219640318443861829710581176391361977483716297025113928351635619590108271896052359109780634699299360681789 ( 123 digits) SNFS difficulty: 160 digits. Divisors found: r1=913307551148821962130752701805568948809731623 (pp45) r2=111135008099498608276431343957760234609000836576351644580968422062061256514043 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 75.68 hours. Scaled time: 149.77 units (timescale=1.979). Factorization parameters were as follows: name: 23339_159 n: 101500442094257568219640318443861829710581176391361977483716297025113928351635619590108271896052359109780634699299360681789 m: 100000000000000000000000000000000 c5: 7 c0: 170 skew: 1.89 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4500001) Primes: RFBsize:283146, AFBsize:283272, largePrimes:5891949 encountered Relations: rels:5985703, finalFF:688056 Max relations in full relation-set: 28 Initial matrix: 566483 x 688056 with sparse part having weight 56480525. Pruned matrix : 485332 x 488228 with weight 41065012. Total sieving time: 71.84 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.41 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 75.68 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(4·10169+23)/9 = (4)1687<169> = 7 · 17 · 57349 · C162
C162 = P48 · P115
P48 = 503852761342782171346683824703620971518120723133<48>
P115 = 1292531178579433361975754521183369234349970232633887731714815503149502104258374903219488361379931169871046875018089<115>
Number: n N=651245403448888201173742846862948449416442601615326305125501583104310676359217130736814653555598830812614734176523550767729598480019278166432893988531145135752837 ( 162 digits) SNFS difficulty: 170 digits. Divisors found: Mon Jun 23 18:23:51 2008 prp48 factor: 503852761342782171346683824703620971518120723133 Mon Jun 23 18:23:51 2008 prp115 factor: 1292531178579433361975754521183369234349970232633887731714815503149502104258374903219488361379931169871046875018089 Mon Jun 23 18:23:51 2008 elapsed time 01:31:12 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 68.29 hours. Scaled time: 124.91 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_168_7 n: 651245403448888201173742846862948449416442601615326305125501583104310676359217130736814653555598830812614734176523550767729598480019278166432893988531145135752837 skew: 2.25 deg: 5 c5: 2 c0: 115 m: 10000000000000000000000000000000000 type: snfs rlim: 5750000 alim: 5750000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5750000/5750000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4116257) Primes: RFBsize:396826, AFBsize:396180, largePrimes:8129248 encountered Relations: rels:7699340, finalFF:795201 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.06 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5750000,5750000,28,28,48,48,2.5,2.5,100000 total time: 68.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(7·10163+17)/3 = 2(3)1629<164> = 239 · C161
C161 = P52 · P110
P52 = 1538551780009680675999212973840188207025515314791083<52>
P110 = 63455134257676194489120480630580987480409038207260499417697608713351090232023365272936682525567211829286754047<110>
Number: n N=97629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762901 ( 161 digits) SNFS difficulty: 163 digits. Divisors found: Mon Jun 23 20:47:10 2008 prp52 factor: 1538551780009680675999212973840188207025515314791083 Mon Jun 23 20:47:10 2008 prp110 factor: 63455134257676194489120480630580987480409038207260499417697608713351090232023365272936682525567211829286754047 Mon Jun 23 20:47:10 2008 elapsed time 02:10:56 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.47 hours. Scaled time: 108.18 units (timescale=1.760). Factorization parameters were as follows: name: KA_2_3_162_9 n: 97629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762900976290097629009762901 type: snfs skew: 0.30 deg: 5 c5: 7000 c0: 17 m: 100000000000000000000000000000000 rlim: 4600000 alim: 4600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 4600000/4600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000001) Primes: RFBsize:322441, AFBsize:322486, largePrimes:7447109 encountered Relations: rels:6929923, finalFF:646339 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 61.20 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4600000,4600000,28,28,48,48,2.3,2.3,100000 total time: 61.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM
(64·10184+53)/9 = 7(1)1837<185> = 19 · 239 · 379 · 3653118301152191<16> · C164
C164 = P40 · P124
P40 = 6408857844198902795079491084505047743261<40>
P124 = 1764827968268619245848314702240512687857444858790408730674667676478953242420913659802142902523798197322058590130173904669953<124>
By Wataru Sakai / GGNFS
(7·10173-61)/9 = (7)1721<173> = 5647 · 4150793 · 4174507 · C156
C156 = P76 · P81
P76 = 4697092831087200551529024233831603689378002454075748867575435175236949613467<76>
P81 = 169228042188601079552332909893272905914334638988209627060854725312063782925308629<81>
Number: 77771_173 N=794879823783000459297146595802866396258287289283368570900870245484647858993845972343965939158115233217484416191400328069663743260194300173826749173229706743 ( 156 digits) SNFS difficulty: 173 digits. Divisors found: r1=4697092831087200551529024233831603689378002454075748867575435175236949613467 (pp76) r2=169228042188601079552332909893272905914334638988209627060854725312063782925308629 (pp81) Version: GGNFS-0.77.1-20060722-nocona Total time: 278.56 hours. Scaled time: 497.22 units (timescale=1.785). Factorization parameters were as follows: n: 794879823783000459297146595802866396258287289283368570900870245484647858993845972343965939158115233217484416191400328069663743260194300173826749173229706743 m: 10000000000000000000000000000000000 c5: 7000 c0: -61 skew: 0.39 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13600001) Primes: RFBsize:501962, AFBsize:502027, largePrimes:6884572 encountered Relations: rels:7500187, finalFF:1264391 Max relations in full relation-set: 32 Initial matrix: 1004056 x 1264391 with sparse part having weight 98282831. Pruned matrix : 783753 x 788837 with weight 77243787. Total sieving time: 270.20 hours. Total relation processing time: 0.13 hours. Matrix solve time: 7.94 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 278.56 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
10171+3 = 1(0)1703<172> = 11766503516695099357653883<26> · C146
C146 = P49 · P98
P49 = 3324774752229019712326210320791873479173334110257<49>
P98 = 25561735879742056874997330779164365467172026436929398740217995340496906772469307561544143733079913<98>
N=84987014076113040368276240003085477274619465136310452297603910182168194570059311533447910927491502082842012464686661684313334515329656218133967641 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=3324774752229019712326210320791873479173334110257 (pp49) r2=25561735879742056874997330779164365467172026436929398740217995340496906772469307561544143733079913 (pp98) Version: GGNFS-0.77.1-20060513-prescott Total time: 141.52 hours. Scaled time: 192.33 units (timescale=1.359). Factorization parameters were as follows: n: 84987014076113040368276240003085477274619465136310452297603910182168194570059311533447910927491502082842012464686661684313334515329656218133967641 m: 10000000000000000000000000000000000 c5: 10 c0: 3 skew: 0.79 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 8500001) Primes: RFBsize:412849, AFBsize:412801, largePrimes:6211987 encountered Relations: rels:6507104, finalFF:950866 Max relations in full relation-set: 28 Initial matrix: 825716 x 950866 with sparse part having weight 68018418. Pruned matrix : 726189 x 730381 with weight 51238543. Total sieving time: 129.70 hours. Total relation processing time: 0.16 hours. Matrix solve time: 11.39 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 141.52 hours.
By Serge Batalov / pol51, Msieve 1.36
(7·10167+17)/3 = 2(3)1669<168> = 19 · 172264217003920050943279<24> · 157079089306604304108830836083629<33> · C111
C111 = P38 · P74
P38 = 44403506544729569591382802255945107907<38>
P74 = 10220978328444765863502623751657798456955829517191510572947586215944141713<74>
Sat Jun 21 09:55:24 2008 Msieve v. 1.36 Sat Jun 21 09:55:24 2008 random seeds: 4fcf0dfc 252e6970 Sat Jun 21 09:55:24 2008 factoring 453847278100636257345202489577127970120979761678674473533642473400515264972284842096436647814028980618284824691 (111 digits) Sat Jun 21 09:55:25 2008 no P-1/P+1/ECM available, skipping Sat Jun 21 09:55:25 2008 commencing number field sieve (111-digit input) Sat Jun 21 09:55:25 2008 R0: -2648889719843403962270 Sat Jun 21 09:55:25 2008 R1: 284568061549 Sat Jun 21 09:55:25 2008 A0: 1173007414994245235539459029 Sat Jun 21 09:55:25 2008 A1: 99595796075874533170621 Sat Jun 21 09:55:25 2008 A2: -978964025831487987 Sat Jun 21 09:55:25 2008 A3: -74405497406433 Sat Jun 21 09:55:25 2008 A4: 828092306 Sat Jun 21 09:55:25 2008 A5: 3480 Sat Jun 21 09:55:25 2008 size score = 1.835450e-11, Murphy alpha = -5.910601, combined = 1.316405e-10 Sat Jun 21 09:55:25 2008 Sat Jun 21 09:55:25 2008 commencing linear algebra Sat Jun 21 09:55:25 2008 read 468867 cycles Sat Jun 21 09:55:26 2008 cycles contain 1696762 unique relations Sat Jun 21 09:55:41 2008 read 1696762 relations Sat Jun 21 09:55:43 2008 using 32 quadratic characters above 134217410 Sat Jun 21 09:56:02 2008 building initial matrix Sat Jun 21 09:56:19 2008 memory use: 214.2 MB Sat Jun 21 09:56:22 2008 read 468867 cycles Sat Jun 21 09:56:22 2008 matrix is 468576 x 468867 (142.8 MB) with weight 47963556 (102.30/col) Sat Jun 21 09:56:22 2008 sparse part has weight 31802368 (67.83/col) Sat Jun 21 09:56:34 2008 filtering completed in 3 passes Sat Jun 21 09:56:34 2008 matrix is 465332 x 465532 (142.1 MB) with weight 47694935 (102.45/col) Sat Jun 21 09:56:34 2008 sparse part has weight 31664613 (68.02/col) Sat Jun 21 09:56:40 2008 read 465532 cycles Sat Jun 21 09:56:41 2008 matrix is 465332 x 465532 (142.1 MB) with weight 47694935 (102.45/col) Sat Jun 21 09:56:41 2008 sparse part has weight 31664613 (68.02/col) Sat Jun 21 09:56:41 2008 saving the first 48 matrix rows for later Sat Jun 21 09:56:41 2008 matrix is 465284 x 465532 (138.4 MB) with weight 37310151 (80.15/col) Sat Jun 21 09:56:41 2008 sparse part has weight 31614095 (67.91/col) Sat Jun 21 09:56:41 2008 matrix includes 64 packed rows Sat Jun 21 09:56:41 2008 using block size 43690 for processor cache size 1024 kB Sat Jun 21 09:56:44 2008 commencing Lanczos iteration Sat Jun 21 09:56:44 2008 memory use: 126.8 MB Sat Jun 21 10:39:05 2008 lanczos halted after 7359 iterations (dim = 465284) Sat Jun 21 10:39:06 2008 recovered 44 nontrivial dependencies Sat Jun 21 10:39:06 2008 elapsed time 00:43:42 Sat Jun 21 10:39:06 2008 Sat Jun 21 10:39:06 2008 Sat Jun 21 10:39:06 2008 Msieve v. 1.36 Sat Jun 21 10:39:06 2008 random seeds: b323b31d 6a581883 Sat Jun 21 10:39:06 2008 factoring 453847278100636257345202489577127970120979761678674473533642473400515264972284842096436647814028980618284824691 (111 digits) Sat Jun 21 10:39:07 2008 no P-1/P+1/ECM available, skipping Sat Jun 21 10:39:07 2008 commencing number field sieve (111-digit input) Sat Jun 21 10:39:07 2008 R0: -2648889719843403962270 Sat Jun 21 10:39:07 2008 R1: 284568061549 Sat Jun 21 10:39:07 2008 A0: 1173007414994245235539459029 Sat Jun 21 10:39:07 2008 A1: 99595796075874533170621 Sat Jun 21 10:39:07 2008 A2: -978964025831487987 Sat Jun 21 10:39:07 2008 A3: -74405497406433 Sat Jun 21 10:39:07 2008 A4: 828092306 Sat Jun 21 10:39:07 2008 A5: 3480 Sat Jun 21 10:39:07 2008 size score = 1.835450e-11, Murphy alpha = -5.910601, combined = 1.316405e-10 Sat Jun 21 10:39:07 2008 Sat Jun 21 10:39:07 2008 commencing square root phase Sat Jun 21 10:39:07 2008 reading relations for dependency 1 Sat Jun 21 10:39:07 2008 read 233173 cycles Sat Jun 21 10:39:08 2008 cycles contain 1034223 unique relations Sat Jun 21 10:39:17 2008 read 1034223 relations Sat Jun 21 10:39:23 2008 multiplying 1470374 relations Sat Jun 21 10:42:36 2008 multiply complete, coefficients have about 60.48 million bits Sat Jun 21 10:42:38 2008 initial square root is modulo 481325497 prp38 factor: 44403506544729569591382802255945107907 prp74 factor: 10220978328444765863502623751657798456955829517191510572947586215944141713 Sat Jun 21 10:49:18 2008 elapsed time 00:10:12
By Sinkiti Sibata / GGNFS
(7·10154+17)/3 = 2(3)1539<155> = 30269 · 129967723442083<15> · 1419277675450441<16> · C121
C121 = P41 · P80
P41 = 53214050296629292416897411287835743443231<41>
P80 = 78532516246414065130742159934751039833478176834632670589017775608994139603053867<80>
Number: 23339_154 N=4179033269457535108462874239499699892492658734372965840608209926925321293346293445858237021220932202079153367369349524277 ( 121 digits) SNFS difficulty: 155 digits. Divisors found: r1=53214050296629292416897411287835743443231 (pp41) r2=78532516246414065130742159934751039833478176834632670589017775608994139603053867 (pp80) Version: GGNFS-0.77.1-20060513-k8 Total time: 49.94 hours. Scaled time: 99.43 units (timescale=1.991). Factorization parameters were as follows: name: 23339_154 n: 4179033269457535108462874239499699892492658734372965840608209926925321293346293445858237021220932202079153367369349524277 m: 10000000000000000000000000000000 c5: 7 c0: 170 skew: 1.89 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3200001) Primes: RFBsize:216816, AFBsize:216831, largePrimes:5819124 encountered Relations: rels:5836380, finalFF:567100 Max relations in full relation-set: 28 Initial matrix: 433712 x 567100 with sparse part having weight 52312857. Pruned matrix : 372931 x 375163 with weight 34242270. Total sieving time: 47.37 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.21 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 49.94 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(4·10186-31)/9 = (4)1851<186> = 3 · 499 · C183
C183 = P42 · P141
P42 = 598138986459096730395341182841727820103903<42>
P141 = 496356337189696433117694214004247077816195442584545699193391463991218138922878239760308283346772475928822571944307529233372143772747733213151<141>
(7·10162+17)/3 = 2(3)1619<163> = 43 · 1290083 · 245861039 · C147
C147 = P41 · P106
P41 = 43557628308424616166797635232339288714119<41>
P106 = 3927685813921292174635198623350959368323057014448428705707920626668776971593108079668441340990588761661091<106>
Number: n N=171080678795055855404521716225376616271445673441345458338745464113339205428455017351146799445290278089868761209155962498970919891782836131864643829 ( 147 digits) SNFS difficulty: 162 digits. Divisors found: Sun Jun 22 17:30:45 2008 prp41 factor: 43557628308424616166797635232339288714119 Sun Jun 22 17:30:45 2008 prp106 factor: 3927685813921292174635198623350959368323057014448428705707920626668776971593108079668441340990588761661091 Sun Jun 22 17:30:45 2008 elapsed time 01:24:32 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.24 hours. Scaled time: 79.08 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_3_161_9 n: 171080678795055855404521716225376616271445673441345458338745464113339205428455017351146799445290278089868761209155962498970919891782836131864643829 skew: 0.48 deg: 5 c5: 700 c0: 17 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2673527) Primes: RFBsize:315948, AFBsize:319141, largePrimes:7588284 encountered Relations: rels:7132335, finalFF:663363 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.01 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 43.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GGNFS, Msieve
(7·10161+17)/3 = 2(3)1609<162> = 23 · 199 · C158
C158 = P75 · P84
P75 = 417946621514914850377965094249262197174211343113481758802230384518928472269<75>
P84 = 121976187229760653869170760767223283184214542228118013644651384235208199727139732903<84>
Number: n N=50979535357949166120457359260068458233194960308790328453863520501056004660986089869638045298958560920544752749253513946544315781807588667977569004442502366907 ( 158 digits) SNFS difficulty: 161 digits. Divisors found: Sat Jun 21 20:08:55 2008 prp75 factor: 417946621514914850377965094249262197174211343113481758802230384518928472269 Sat Jun 21 20:08:55 2008 prp84 factor: 121976187229760653869170760767223283184214542228118013644651384235208199727139732903 Sat Jun 21 20:08:55 2008 elapsed time 01:17:34 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.59 hours. Scaled time: 42.24 units (timescale=1.067). Factorization parameters were as follows: name: KA_2_3_160_9 n: 50979535357949166120457359260068458233194960308790328453863520501056004660986089869638045298958560920544752749253513946544315781807588667977569004442502366907 m: 100000000000000000000000000000000 deg: 5 c5: 70 c0: 17 skew: 0.75 type: snfs # These parameters should be manually set: rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900001) Primes: RFBsize:283146, AFBsize:283347, largePrimes:7532339 encountered Relations: rels:7183166, finalFF:710737 Max relations in full relation-set: 28 Initial matrix: 566560 x 710737 with sparse part having weight 43297736. Pruned matrix : 437204 x 440100 with weight 23469831. Total sieving time: 39.36 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 39.59 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Serge Batalov / pol51, Msieve 1.36
(7·10182+17)/3 = 2(3)1819<183> = 67 · 263 · 1900937 · 13440434009<11> · 48375581147<11> · 951589712077612133<18> · 488665648860358418437252373<27> · C107
C107 = P52 · P56
P52 = 1477088288774321744891374447367639204725377033864653<52>
P56 = 15598075496263923715557038856491111313580736481605334217<56>
Number: 23339_182 N=23039734642949158512389218312077989194926064666066772598653542994568986691659234818295104220330335207731701 ( 107 digits) Divisors found: r1=1477088288774321744891374447367639204725377033864653 r2=15598075496263923715557038856491111313580736481605334217 Version: Msieve v. 1.36 Total time: 4.03 hours. Factorization parameters were as follows: name: 23339_182 n: 23039734642949158512389218312077989194926064666066772598653542994568986691659234818295104220330335207731701 skew: 14986.36 # norm 3.69e+14 c5: 14580 c4: -403641738 c3: 23116709876478 c2: 73595465736422882 c1: -2826481295785857219317 c0: -1754227893603197984715460 # alpha -5.74 Y1: 36932884747 Y0: -275260764929799055773 # Murphy_E 1.48e-09 # M 10668570985258081896153286729973393070486963170843217333059578589374620638201361193672818543994648530861085 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2550001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 280216 x 280442 Total sieving time: 4.03 hours. Total relation processing time: 0.23 hours. Matrix solve time: 00:16:07 Time per square root: 00:05:19 Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 0.03 hours. --------- CPU info (if available) ---------- Memory: 33030820k/34078720k available (1920k kernel code, 522988k reserved, 885k data, 196k init) Calibrating delay using timer specific routine.. 5609.80 BogoMIPS (lpj=11219618) _________________log____________ Msieve v. 1.36 ... Fri Jun 20 21:20:34 2008 restarting with 813821 relations Fri Jun 20 22:00:18 2008 restarting with 1447052 relations Fri Jun 20 22:41:11 2008 restarting with 2082702 relations Fri Jun 20 23:23:05 2008 restarting with 2928687 relations Sat Jun 21 00:06:00 2008 restarting with 4146072 relations Sat Jun 21 00:50:01 2008 restarting with 5343099 relations ... Msieve v. 1.36 Sat Jun 21 00:53:44 2008 random seeds: 30e59766 2c15b3e7 factoring 23039734642949158512389218312077989194926064666066772598653542994568986691659234818295104220330335207731701 (107 digits) commencing number field sieve (107-digit input) R0: -275260764929799055773 R1: 36932884747 A0: -1754227893603197984715460 A1: -2826481295785857219317 A2: 73595465736422882 A3: 23116709876478 A4: -403641738 A5: 14580 size score = 5.079226e-11, Murphy alpha = -5.726172, combined = 3.425672e-10 commencing linear algebra read 280900 cycles cycles contain 903261 unique relations read 903261 relations using 32 quadratic characters above 67108650 building initial matrix memory use: 118.1 MB read 280900 cycles matrix is 280722 x 280900 (84.8 MB) with weight 28464436 (101.33/col) sparse part has weight 18846930 (67.09/col) filtering completed in 2 passes matrix is 280264 x 280442 (84.7 MB) with weight 28429949 (101.38/col) sparse part has weight 18829626 (67.14/col) read 280442 cycles matrix is 280264 x 280442 (84.7 MB) with weight 28429949 (101.38/col) sparse part has weight 18829626 (67.14/col) saving the first 48 matrix rows for later matrix is 280216 x 280442 (81.6 MB) with weight 22142180 (78.95/col) sparse part has weight 18586804 (66.28/col) matrix includes 64 packed rows using block size 43690 for processor cache size 1024 kB commencing Lanczos iteration memory use: 74.7 MB linear algebra completed 279198 out of 280442 dimensions (99.6%) lanczos halted after 4434 iterations (dim = 280213) recovered 40 nontrivial dependencies elapsed time 00:16:07 Msieve v. 1.36 Sat Jun 21 01:09:51 2008 commencing square root phase reading relations for dependency 1 read 139967 cycles cycles contain 565071 unique relations read 565071 relations multiplying 874324 relations multiply complete, coefficients have about 36.33 million bits initial square root is modulo 164987 prp52 factor: 1477088288774321744891374447367639204725377033864653 prp56 factor: 15598075496263923715557038856491111313580736481605334217 elapsed time 00:05:19 -> Computing time scale for this machine... sumName = g107-23339_182.txt -> Factorization summary written to g107-23339_182.txt.
By suberi / GMP-ECM
(64·10198+53)/9 = 7(1)1977<199> = 13 · 17 · 239 · 659 · 17164139387516599<17> · C176
C176 = P37 · P140
P37 = 1053947316666084614295602974773924601<37>
P140 = 11293301951476245566388760055470099805134724921150625162401162556882527928893529688436385162911773878376001344332111171233605201210655091323<140>
By Sinkiti Sibata / GGNFS
(7·10150+17)/3 = 2(3)1499<151> = 9927675833<10> · 27850032279480012968457853<26> · C115
C115 = P46 · P70
P46 = 2162964817432196944368364287263298935912589503<46>
P70 = 3901701488783183216290172472354578578481164704106467605063761861590737<70>
Number: 23339_150 N=8439243048360848899390133873267331807205480475339932256875802759406740186112702376997344956850716178544540468233711 ( 115 digits) SNFS difficulty: 150 digits. Divisors found: r1=2162964817432196944368364287263298935912589503 (pp46) r2=3901701488783183216290172472354578578481164704106467605063761861590737 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 26.01 hours. Scaled time: 52.10 units (timescale=2.003). Factorization parameters were as follows: name: 23339_150 n: 8439243048360848899390133873267331807205480475339932256875802759406740186112702376997344956850716178544540468233711 m: 1000000000000000000000000000000 c5: 7 c0: 17 skew: 1.19 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176653, largePrimes:6113908 encountered Relations: rels:6522242, finalFF:919725 Max relations in full relation-set: 28 Initial matrix: 353020 x 919725 with sparse part having weight 85181103. Pruned matrix : 219865 x 221694 with weight 38860597. Total sieving time: 24.89 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.84 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.01 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
(19·10179+17)/9 = 2(1)1783<180> = 3 · 7 · C179
C179 = P52 · P58 · P70
P52 = 1849590095332545517981729396507306427776395737285843<52>
P58 = 1590976674832112443983760714051680873712445958345760173293<58>
P70 = 3416272406688343554143889986701948138927926610009907327005065997766947<70>
Number: 21113_179 N=10052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910053 ( 179 digits) SNFS difficulty: 181 digits. Divisors found: r1=1849590095332545517981729396507306427776395737285843 (pp52) r2=1590976674832112443983760714051680873712445958345760173293 (pp58) r3=3416272406688343554143889986701948138927926610009907327005065997766947 (pp70) Version: GGNFS-0.77.1-20060722-nocona Total time: 552.22 hours. Scaled time: 1112.17 units (timescale=2.014). Factorization parameters were as follows: n: 10052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910052910053 m: 1000000000000000000000000000000000000 c5: 19 c0: 170 skew: 1.55 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10800001) Primes: RFBsize:501962, AFBsize:503851, largePrimes:6702609 encountered Relations: rels:7184475, finalFF:1158871 Max relations in full relation-set: 32 Initial matrix: 1005878 x 1158871 with sparse part having weight 84778609. Pruned matrix : 880411 x 885504 with weight 65680688. Total sieving time: 545.72 hours. Total relation processing time: 0.11 hours. Matrix solve time: 6.15 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 552.22 hours. --------- CPU info (if available) ----------
(7·10174+11)/9 = (7)1739<174> = 251261 · 504617 · C163
C163 = P75 · P89
P75 = 151293655346678656951755233333841852499976949563535402282411057817628895559<75>
P89 = 40545984826172869298143920767413765609952888879712288603313656316625649848981920183195313<89>
Number: 77779_174 N=6134350253982660622277335689861201645599590140587053606604573046120563089433155514660435665006240828163050381504272365473039274996529904470390521720915719775314967 ( 163 digits) SNFS difficulty: 175 digits. Divisors found: r1=151293655346678656951755233333841852499976949563535402282411057817628895559 (pp75) r2=40545984826172869298143920767413765609952888879712288603313656316625649848981920183195313 (pp89) Version: GGNFS-0.77.1-20060722-nocona Total time: 291.50 hours. Scaled time: 585.04 units (timescale=2.007). Factorization parameters were as follows: n: 6134350253982660622277335689861201645599590140587053606604573046120563089433155514660435665006240828163050381504272365473039274996529904470390521720915719775314967 m: 100000000000000000000000000000000000 c5: 7 c0: 110 skew: 1.73 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 14300001) Primes: RFBsize:501962, AFBsize:502982, largePrimes:6844410 encountered Relations: rels:7419841, finalFF:1221660 Max relations in full relation-set: 32 Initial matrix: 1005009 x 1221660 with sparse part having weight 100226513. Pruned matrix : 824853 x 829942 with weight 78137577. Total sieving time: 283.78 hours. Total relation processing time: 0.12 hours. Matrix solve time: 7.36 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 291.50 hours.
By suberi / GMP-ECM
4·10171-3 = 3(9)1707<172> = 7 · 992551249 · 11060804449<11> · 19009303771<11> · C142
C142 = P37 · P106
P37 = 1249207319055289192086424463607428111<37>
P106 = 2191904185664257747583477319317672323649397459016399392947765286350833997120102120957046738111957790744991<106>
4·10182-3 = 3(9)1817<183> = 3313 · 11483 · 176053 · C170
C170 = P35 · P136
P35 = 39387975579353615896504296945339241<35>
P136 = 1516268457802174096132783680473005131671559431263031934817627015235299434290293219117245850021882172515022423742506186276722478373533891<136>
By Sinkiti Sibata / Msieve, GGNFS
(17·10181+1)/9 = 1(8)1809<182> = 19 · 44839 · 48731 · 1008779 · 12003314779<11> · 5830558817883227437007237<25> · 758822763085731218605641418771<30> · C100
C100 = P45 · P56
P45 = 242103400334044748484073044835249209568097447<45>
P56 = 35078653987811118622758840608304843178836958530915817471<56>
Thu Jun 19 06:38:30 2008 Msieve v. 1.36 Thu Jun 19 06:38:30 2008 random seeds: 57997b87 8224c00e Thu Jun 19 06:38:30 2008 factoring 8492661409590470524891423727868139850632579649757129010224121294326903739481230882899276916193096537 (100 digits) Thu Jun 19 06:38:31 2008 no P-1/P+1/ECM available, skipping Thu Jun 19 06:38:31 2008 commencing quadratic sieve (100-digit input) Thu Jun 19 06:38:32 2008 using multiplier of 17 Thu Jun 19 06:38:32 2008 using 64kb Pentium 4 sieve core Thu Jun 19 06:38:32 2008 sieve interval: 18 blocks of size 65536 Thu Jun 19 06:38:32 2008 processing polynomials in batches of 6 Thu Jun 19 06:38:32 2008 using a sieve bound of 2751379 (100000 primes) Thu Jun 19 06:38:32 2008 using large prime bound of 412706850 (28 bits) Thu Jun 19 06:38:32 2008 using double large prime bound of 3222218636339400 (43-52 bits) Thu Jun 19 06:38:32 2008 using trial factoring cutoff of 52 bits Thu Jun 19 06:38:32 2008 polynomial 'A' values have 13 factors Fri Jun 20 04:01:17 2008 100109 relations (23520 full + 76589 combined from 1507622 partial), need 100096 Fri Jun 20 04:01:23 2008 begin with 1531142 relations Fri Jun 20 04:01:25 2008 reduce to 264987 relations in 10 passes Fri Jun 20 04:01:25 2008 attempting to read 264987 relations Fri Jun 20 04:01:34 2008 recovered 264987 relations Fri Jun 20 04:01:34 2008 recovered 256717 polynomials Fri Jun 20 04:01:35 2008 attempting to build 100109 cycles Fri Jun 20 04:01:35 2008 found 100109 cycles in 6 passes Fri Jun 20 04:01:35 2008 distribution of cycle lengths: Fri Jun 20 04:01:35 2008 length 1 : 23520 Fri Jun 20 04:01:35 2008 length 2 : 17176 Fri Jun 20 04:01:35 2008 length 3 : 16902 Fri Jun 20 04:01:35 2008 length 4 : 13567 Fri Jun 20 04:01:35 2008 length 5 : 10292 Fri Jun 20 04:01:35 2008 length 6 : 7180 Fri Jun 20 04:01:35 2008 length 7 : 4698 Fri Jun 20 04:01:35 2008 length 9+: 6774 Fri Jun 20 04:01:35 2008 largest cycle: 20 relations Fri Jun 20 04:01:36 2008 matrix is 100000 x 100109 (28.3 MB) with weight 7027440 (70.20/col) Fri Jun 20 04:01:36 2008 sparse part has weight 7027440 (70.20/col) Fri Jun 20 04:01:38 2008 filtering completed in 3 passes Fri Jun 20 04:01:38 2008 matrix is 96171 x 96234 (27.4 MB) with weight 6799375 (70.65/col) Fri Jun 20 04:01:38 2008 sparse part has weight 6799375 (70.65/col) Fri Jun 20 04:01:39 2008 saving the first 48 matrix rows for later Fri Jun 20 04:01:39 2008 matrix is 96123 x 96234 (17.6 MB) with weight 5431041 (56.44/col) Fri Jun 20 04:01:39 2008 sparse part has weight 4041126 (41.99/col) Fri Jun 20 04:01:39 2008 matrix includes 64 packed rows Fri Jun 20 04:01:39 2008 using block size 21845 for processor cache size 512 kB Fri Jun 20 04:01:40 2008 commencing Lanczos iteration Fri Jun 20 04:01:40 2008 memory use: 16.6 MB Fri Jun 20 04:03:29 2008 lanczos halted after 1521 iterations (dim = 96123) Fri Jun 20 04:03:29 2008 recovered 18 nontrivial dependencies Fri Jun 20 04:03:33 2008 prp45 factor: 242103400334044748484073044835249209568097447 Fri Jun 20 04:03:33 2008 prp56 factor: 35078653987811118622758840608304843178836958530915817471 Fri Jun 20 04:03:33 2008 elapsed time 21:25:03
(7·10146+17)/3 = 2(3)1459<147> = 41873810519116707626863<23> · C124
C124 = P59 · P66
P59 = 21804397652798991947920303404221539210667198756143728491239<59>
P66 = 255558427991811864344755703271114165099174644030525182217947392227<66>
Number: 23339_146 N=5572297587457662816333162127727176214809046786511556224921466488809034721917819970726236103796689823938279599964261266199253 ( 124 digits) SNFS difficulty: 146 digits. Divisors found: r1=21804397652798991947920303404221539210667198756143728491239 (pp59) r2=255558427991811864344755703271114165099174644030525182217947392227 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.48 hours. Scaled time: 39.02 units (timescale=2.003). Factorization parameters were as follows: name: 23339_146 n: 5572297587457662816333162127727176214809046786511556224921466488809034721917819970726236103796689823938279599964261266199253 m: 100000000000000000000000000000 c5: 70 c0: 17 skew: 0.75 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114392, largePrimes:2827827 encountered Relations: rels:2801739, finalFF:256860 Max relations in full relation-set: 28 Initial matrix: 228614 x 256860 with sparse part having weight 27064766. Pruned matrix : 220197 x 221404 with weight 21616388. Total sieving time: 18.70 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.57 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 19.48 hours. --------- CPU info (if available) ----------
(19·10153+71)/9 = 2(1)1529<154> = 13 · 17 · 1931 · 17681 · 79167967819<11> · C133
C133 = P55 · P79
P55 = 2330871598302278901853376041628293375034044869755858891<55>
P79 = 1516218784411238460729939570299747737958774664936753931542252342962491493263081<79>
Number: 21119_153 N=3534111301396561829241944371109709550951878020320586502879799576712460981422857149193925613075150874769889794783911449876155375903171 ( 133 digits) SNFS difficulty: 154 digits. Divisors found: r1=2330871598302278901853376041628293375034044869755858891 (pp55) r2=1516218784411238460729939570299747737958774664936753931542252342962491493263081 (pp79) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 55.24 hours. Scaled time: 37.23 units (timescale=0.674). Factorization parameters were as follows: name: 21119_153 n: 3534111301396561829241944371109709550951878020320586502879799576712460981422857149193925613075150874769889794783911449876155375903171 m: 1000000000000000000000000000000 c5: 19000 c0: 71 skew: 0.33 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2700001) Primes: RFBsize:176302, AFBsize:176259, largePrimes:5780933 encountered Relations: rels:5751272, finalFF:468492 Max relations in full relation-set: 28 Initial matrix: 352628 x 468492 with sparse part having weight 49607110. Pruned matrix : 312585 x 314412 with weight 31405699. Total sieving time: 50.22 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.53 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 55.24 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(19·10173+17)/9 = 2(1)1723<174> = 3 · 7 · C173
C173 = P38 · P57 · P79
P38 = 11908775400215661195548462282129043797<38>
P57 = 826889165198643841886538166294656560201100292366830050189<57>
P79 = 1020886335567388225849072357898453571339187176611699612014911899812973186198741<79>
Number: n N=844159849780020235129746469497252431004627125959824403139627884770709057725585735018317388737365147113252112148503478738967403158612049 ( 135 digits) SNFS difficulty: 174 digits. Divisors found: Fri Jun 20 02:44:06 2008 prp57 factor: 826889165198643841886538166294656560201100292366830050189 Fri Jun 20 02:44:06 2008 prp79 factor: 1020886335567388225849072357898453571339187176611699612014911899812973186198741 Fri Jun 20 02:44:06 2008 elapsed time 02:59:28 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 96.48 hours. Scaled time: 80.94 units (timescale=0.839). Factorization parameters were as follows: name: KA_2_1_172_3 n: 844159849780020235129746469497252431004627125959824403139627884770709057725585735018317388737365147113252112148503478738967403158612049 type: snfs deg: 5 c5: 19000 c0: 17 skew: 0.25 m: 10000000000000000000000000000000000 rlim: 4500000 alim: 4500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 11300747) Primes: RFBsize:315948, AFBsize:315306, largePrimes:6194474 encountered Relations: rels:6248801, finalFF:651129 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 96.15 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.5,2.5,100000 total time: 96.48 hours. --------- CPU info (if available) ----------
8·10169+9 = 8(0)1689<170> = 2083 · 21187 · C163
C163 = P33 · P130
P33 = 347913094655913140947256232930961<33>
P130 = 5210272953749998271101503426402444733270293388626467088714412188109283843702487962421130258535164821785639637952029491481694049489<130>
(11·10167+61)/9 = 1(2)1669<168> = 34 · 449 · 33087070891123<14> · C150
C150 = P72 · P78
P72 = 748005811625541632642916647689589194648693239663159298286037563308548193<72>
P78 = 135786164695082180429353840411133841148804527719360141316474387898066866066119<78>
Number: n N=101568840330264413237388822930979889101910651497072026084643242058579491153939325114881169376679390422211703898084569112611049921791675345871035972967 ( 150 digits) SNFS difficulty: 168 digits. Divisors found: Fri Jun 20 20:10:57 2008 prp72 factor: 748005811625541632642916647689589194648693239663159298286037563308548193 Fri Jun 20 20:10:57 2008 prp78 factor: 135786164695082180429353840411133841148804527719360141316474387898066866066119 Fri Jun 20 20:10:57 2008 elapsed time 02:27:34 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 113.07 hours. Scaled time: 148.57 units (timescale=1.314). Factorization parameters were as follows: name: KA_1_2_166_9 n: 101568840330264413237388822930979889101910651497072026084643242058579491153939325114881169376679390422211703898084569112611049921791675345871035972967 skew: 0.56 deg: 5 c5: 1100 c0: 61 m: 1000000000000000000000000000000000 type: snfs rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5000001) Primes: RFBsize:269987, AFBsize:269319, largePrimes:7804913 encountered Relations: rels:7226972, finalFF:542557 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 112.54 hours. Total relation processing time: 0.53 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,48,48,2.5,2.5,100000 total time: 113.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
(19·10154+71)/9 = 2(1)1539<155> = 7 · 73 · 4483 · 33487 · 83735683584829<14> · C130
C130 = P46 · P85
P46 = 1791677943138389668968679508662606052300273107<46>
P85 = 1834318275709524259788133515195304765934811811430526130176162937982551937357179892483<85>
Number: n N=3286507595284397990244440725109649136011496454300802589054816534378305641090379440018700033067620390985386802795054882189796354681 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: Fri Jun 20 00:19:02 2008 prp46 factor: 1791677943138389668968679508662606052300273107 Fri Jun 20 00:19:02 2008 prp85 factor: 1834318275709524259788133515195304765934811811430526130176162937982551937357179892483 Fri Jun 20 00:19:02 2008 elapsed time 00:29:43 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.65 hours. Scaled time: 43.12 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_1_153_9 n: 3286507595284397990244440725109649136011496454300802589054816534378305641090379440018700033067620390985386802795054882189796354681 skew: 2.06 deg: 5 c5: 19 c0: 710 m: 10000000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1800311) Primes: RFBsize:114155, AFBsize:114373, largePrimes:7133643 encountered Relations: rels:6460420, finalFF:245971 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 23.49 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 23.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS, Msieve
(7·10158+17)/3 = 2(3)1579<159> = 242357443 · 28030229173069<14> · 1454061345137057<16> · 16465999087301435553750282083<29> · C94
C94 = P44 · P50
P44 = 19146295587768898703757081073237370039739239<44>
P50 = 74926974982117317392890572430494126577076446433113<50>
Wed Jun 18 20:51:43 2008 Msieve v. 1.36 Wed Jun 18 20:51:43 2008 random seeds: 1a54057b b92e04e7 Wed Jun 18 20:51:43 2008 factoring 1434574010504983451855968360270997415967569984416379180128533164708864833002769858886175021007 (94 digits) Wed Jun 18 20:51:45 2008 no P-1/P+1/ECM available, skipping Wed Jun 18 20:51:45 2008 commencing quadratic sieve (94-digit input) Wed Jun 18 20:51:45 2008 using multiplier of 3 Wed Jun 18 20:51:45 2008 using 64kb Pentium 4 sieve core Wed Jun 18 20:51:45 2008 sieve interval: 18 blocks of size 65536 Wed Jun 18 20:51:45 2008 processing polynomials in batches of 6 Wed Jun 18 20:51:45 2008 using a sieve bound of 1987303 (74118 primes) Wed Jun 18 20:51:45 2008 using large prime bound of 256362087 (27 bits) Wed Jun 18 20:51:45 2008 using double large prime bound of 1367529713306016 (42-51 bits) Wed Jun 18 20:51:45 2008 using trial factoring cutoff of 51 bits Wed Jun 18 20:51:45 2008 polynomial 'A' values have 12 factors Thu Jun 19 01:10:48 2008 74480 relations (18948 full + 55532 combined from 1022585 partial), need 74214 Thu Jun 19 01:10:52 2008 begin with 1041533 relations Thu Jun 19 01:10:53 2008 reduce to 189783 relations in 11 passes Thu Jun 19 01:10:53 2008 attempting to read 189783 relations Thu Jun 19 01:10:59 2008 recovered 189783 relations Thu Jun 19 01:10:59 2008 recovered 170542 polynomials Thu Jun 19 01:10:59 2008 attempting to build 74480 cycles Thu Jun 19 01:10:59 2008 found 74480 cycles in 5 passes Thu Jun 19 01:10:59 2008 distribution of cycle lengths: Thu Jun 19 01:10:59 2008 length 1 : 18948 Thu Jun 19 01:10:59 2008 length 2 : 13347 Thu Jun 19 01:10:59 2008 length 3 : 12736 Thu Jun 19 01:10:59 2008 length 4 : 10257 Thu Jun 19 01:10:59 2008 length 5 : 7348 Thu Jun 19 01:10:59 2008 length 6 : 4791 Thu Jun 19 01:10:59 2008 length 7 : 3039 Thu Jun 19 01:10:59 2008 length 9+: 4014 Thu Jun 19 01:10:59 2008 largest cycle: 21 relations Thu Jun 19 01:10:59 2008 matrix is 74118 x 74480 (18.5 MB) with weight 4549876 (61.09/col) Thu Jun 19 01:10:59 2008 sparse part has weight 4549876 (61.09/col) Thu Jun 19 01:11:01 2008 filtering completed in 3 passes Thu Jun 19 01:11:01 2008 matrix is 70109 x 70173 (17.5 MB) with weight 4299746 (61.27/col) Thu Jun 19 01:11:01 2008 sparse part has weight 4299746 (61.27/col) Thu Jun 19 01:11:01 2008 saving the first 48 matrix rows for later Thu Jun 19 01:11:01 2008 matrix is 70061 x 70173 (10.1 MB) with weight 3250963 (46.33/col) Thu Jun 19 01:11:01 2008 sparse part has weight 2225728 (31.72/col) Thu Jun 19 01:11:01 2008 matrix includes 64 packed rows Thu Jun 19 01:11:01 2008 using block size 21845 for processor cache size 512 kB Thu Jun 19 01:11:02 2008 commencing Lanczos iteration Thu Jun 19 01:11:02 2008 memory use: 10.4 MB Thu Jun 19 01:11:52 2008 lanczos halted after 1110 iterations (dim = 70060) Thu Jun 19 01:11:52 2008 recovered 17 nontrivial dependencies Thu Jun 19 01:11:53 2008 prp44 factor: 19146295587768898703757081073237370039739239 Thu Jun 19 01:11:53 2008 prp50 factor: 74926974982117317392890572430494126577076446433113 Thu Jun 19 01:11:53 2008 elapsed time 04:20:10
(7·10143+17)/3 = 2(3)1429<144> = 1867 · 4339 · C137
C137 = P39 · P98
P39 = 535765703863921912750851250492181849899<39>
P98 = 53761070475339461599109698874173573872281314889937566690752801724933075409845431841588828412544097<98>
Number: 23339_143 N=28803337763698157643877095499400293933947116002027590388062843451513839654040641262698825840165587919945978105595422803989295198372496203 ( 137 digits) SNFS difficulty: 143 digits. Divisors found: r1=535765703863921912750851250492181849899 (pp39) r2=53761070475339461599109698874173573872281314889937566690752801724933075409845431841588828412544097 (pp98) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.67 hours. Scaled time: 37.52 units (timescale=2.010). Factorization parameters were as follows: name: 23339_143 n: 28803337763698157643877095499400293933947116002027590388062843451513839654040641262698825840165587919945978105595422803989295198372496203 m: 10000000000000000000000000000 c5: 7000 c0: 17 skew: 0.3 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2750001) Primes: RFBsize:100021, AFBsize:100228, largePrimes:2937213 encountered Relations: rels:2987873, finalFF:275507 Max relations in full relation-set: 28 Initial matrix: 200316 x 275507 with sparse part having weight 32504675. Pruned matrix : 181772 x 182837 with weight 20348065. Total sieving time: 18.00 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.46 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 18.67 hours. --------- CPU info (if available) ----------
(7·10144+17)/3 = 2(3)1439<145> = 6112388617<10> · C135
C135 = P45 · P90
P45 = 626946312457987940199614144659177704270837173<45>
P90 = 608885279634814638970724327573961019652307778580222127000169140138289548248184830103481879<90>
Number: 23339_144 N=381738380776997859744121916215088281147051506809213294713740439081334892377529819179907247270716742343762095474325325171538145565088067 ( 135 digits) SNFS difficulty: 145 digits. Divisors found: r1=626946312457987940199614144659177704270837173 (pp45) r2=608885279634814638970724327573961019652307778580222127000169140138289548248184830103481879 (pp90) Version: GGNFS-0.77.1-20060513-k8 Total time: 29.13 hours. Scaled time: 58.34 units (timescale=2.003). Factorization parameters were as follows: name: 23339_144 n: 381738380776997859744121916215088281147051506809213294713740439081334892377529819179907247270716742343762095474325325171538145565088067 m: 100000000000000000000000000000 c5: 7 c0: 170 skew: 1.89 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 4150001) Primes: RFBsize:100021, AFBsize:100013, largePrimes:3149571 encountered Relations: rels:3284509, finalFF:230295 Max relations in full relation-set: 28 Initial matrix: 200099 x 230295 with sparse part having weight 31044379. Pruned matrix : 193206 x 194270 with weight 25166348. Total sieving time: 28.35 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.53 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 29.13 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(7·10160+17)/3 = 2(3)1599<161> = 3701 · 35593 · 69389 · 459841 · 93435119 · 17324364797<11> · 3387727253081<13> · 102689731400639<15> · C97
C97 = P44 · P54
P44 = 38407669121855954038639728065299289990791621<44>
P54 = 256669293719185842934861313379909281435703545898255851<54>
Number: n N=9858069306906950463503372591344284125766706149980496147484008217952622305609424926370754685024471 ( 97 digits) Divisors found: Thu Jun 19 03:19:13 2008 prp44 factor: 38407669121855954038639728065299289990791621 Thu Jun 19 03:19:13 2008 prp54 factor: 256669293719185842934861313379909281435703545898255851 Thu Jun 19 03:19:13 2008 elapsed time 00:16:07 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.39 hours. Scaled time: 9.30 units (timescale=1.454). Factorization parameters were as follows: name: KA_2_3_159_9 n: 9858069306906950463503372591344284125766706149980496147484008217952622305609424926370754685024471 m: 15110236062892358326859 deg: 4 c4: 189106680 c3: -174424676846 c2: -1805591920498891697 c1: 846965004993150148 c0: 1950101995051999511698950 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.947 # E(F1,F2) = 2.502940e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1213786088. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved special-q in [100000, 1060357) Primes: RFBsize:92938, AFBsize:93239, largePrimes:1777853 encountered Relations: rels:1790024, finalFF:200325 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 6.30 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(7·10156+17)/3 = 2(3)1559<157> = 31 · 239 · 128262209 · 54153681173<11> · C134
C134 = P39 · P95
P39 = 527845703954308242079195374698855965483<39>
P95 = 85898088634340166008079398675596416314617721039017551057834275703819076412196974341860416371741<95>
(19·10158+71)/9 = 2(1)1579<159> = 3 · 5111043929<10> · 8586699613<10> · C139
C139 = P61 · P79
P61 = 1552232375168401888226285240732768948412176616299065734638659<61>
P79 = 1032992611981958171657311747096309357508297728486040740667074691813325998649211<79>
Number: n N=1603444575628166296323850859232332205498429149271953164507338103129857597627597826527727616013810322286400015061749747416092265207180448049 ( 139 digits) SNFS difficulty: 159 digits. Divisors found: Thu Jun 19 18:40:36 2008 prp61 factor: 1552232375168401888226285240732768948412176616299065734638659 Thu Jun 19 18:40:36 2008 prp79 factor: 1032992611981958171657311747096309357508297728486040740667074691813325998649211 Thu Jun 19 18:40:36 2008 elapsed time 01:19:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.30 hours. Scaled time: 84.96 units (timescale=1.759). Factorization parameters were as follows: name: KA_2_1_157_9 n: 1603444575628166296323850859232332205498429149271953164507338103129857597627597826527727616013810322286400015061749747416092265207180448049 type: snfs skew: 0.33 deg: 5 c5: 19000 c0: 71 m: 10000000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500213) Primes: RFBsize:203362, AFBsize:203478, largePrimes:7041615 encountered Relations: rels:6395775, finalFF:429719 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 48.07 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,100000 total time: 48.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(7·10152+17)/3 = 2(3)1519<153> = 23029 · 840704633 · 1326812001547<13> · C127
C127 = P45 · P83
P45 = 610101261968507830368749150447308985874102137<45>
P83 = 14888363041956731209585176317112178230936915291439811404040951408011091747600139293<83>
Number: n N=9083409080543093805913755278938747676141202257994375217606729563473712226337971583897960187761658473791899659290793982508969141 ( 127 digits) SNFS difficulty: 152 digits. Divisors found: Thu Jun 19 19:24:26 2008 prp45 factor: 610101261968507830368749150447308985874102137 Thu Jun 19 19:24:26 2008 prp83 factor: 14888363041956731209585176317112178230936915291439811404040951408011091747600139293 Thu Jun 19 19:24:26 2008 elapsed time 00:51:02 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.07 hours. Scaled time: 33.05 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_3_151_9 n: 9083409080543093805913755278938747676141202257994375217606729563473712226337971583897960187761658473791899659290793982508969141 skew: 0.48 deg: 5 c5: 700 c0: 17 m: 1000000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1500157) Primes: RFBsize:114155, AFBsize:114427, largePrimes:6826015 encountered Relations: rels:6086022, finalFF:228605 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 17.92 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 18.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By suberi / GMP-ECM
(16·10244-61)/9 = 1(7)2431<245> = 13 · 11093 · 1330706156723<13> · 3353370740535258743<19> · C209
C209 = P35 · C175
P35 = 23927338568455349437657020835689181<35>
C175 = [1154587832011312664684319787690887343855960034230279419823600016435051159772210847611408481790922675000344963443900485817612482088891032224245876772595417312934546709619016891<175>]
(16·10250-61)/9 = 1(7)2491<251> = 13 · 1117 · 3001 · 68960274559011859<17> · 105187359738922024391561<24> · C203
C203 = P35 · P169
P35 = 47127519770374767542490387021015569<35>
P169 = 1193377463091214465280930122329596329399002506548645441537440214904924329099256353065394411257513274567225314616795075715769044965685150587906045369454735928523088581121<169>
By Sinkiti Sibata / GGNFS, Msieve
(7·10117+17)/3 = 2(3)1169<118> = 23 · 2333 · 594170435227<12> · C101
C101 = P40 · P62
P40 = 7055000601307972440354361852306418014519<40>
P62 = 10373519245946236498753585760743609141393461815640085096926917<62>
Number: 23339_117 N=73185184517830523349631685351219188493971228777679019193467213732990802157068577513278831575587907923 ( 101 digits) SNFS difficulty: 117 digits. Divisors found: r1=7055000601307972440354361852306418014519 (pp40) r2=10373519245946236498753585760743609141393461815640085096926917 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.27 hours. Scaled time: 4.53 units (timescale=1.996). Factorization parameters were as follows: name: 23339_117 n: 73185184517830523349631685351219188493971228777679019193467213732990802157068577513278831575587907923 m: 100000000000000000000000 c5: 700 c0: 17 skew: 0.48 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64083, largePrimes:2285266 encountered Relations: rels:2533749, finalFF:360298 Max relations in full relation-set: 28 Initial matrix: 113248 x 360298 with sparse part having weight 33638715. Pruned matrix : 75040 x 75670 with weight 6289789. Total sieving time: 2.15 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.27 hours. --------- CPU info (if available) ----------
(7·10123+17)/3 = 2(3)1229<124> = 541 · 8875041087261656332723028987<28> · C93
C93 = P41 · P53
P41 = 39640352959941520079217079058662355588447<41>
P53 = 12259468301921439444803232407524450529599277231054411<53>
Wed Jun 18 10:30:39 2008 Msieve v. 1.36 Wed Jun 18 10:30:39 2008 random seeds: 071b2352 82b713c7 Wed Jun 18 10:30:39 2008 factoring 485969650589380773048129474294923494937486054697957352921123969457889678948105771180179989717 (93 digits) Wed Jun 18 10:30:40 2008 no P-1/P+1/ECM available, skipping Wed Jun 18 10:30:40 2008 commencing quadratic sieve (93-digit input) Wed Jun 18 10:30:40 2008 using multiplier of 13 Wed Jun 18 10:30:40 2008 using 64kb Pentium 4 sieve core Wed Jun 18 10:30:40 2008 sieve interval: 18 blocks of size 65536 Wed Jun 18 10:30:40 2008 processing polynomials in batches of 6 Wed Jun 18 10:30:40 2008 using a sieve bound of 1922351 (71765 primes) Wed Jun 18 10:30:40 2008 using large prime bound of 232604471 (27 bits) Wed Jun 18 10:30:40 2008 using double large prime bound of 1147922137951622 (42-51 bits) Wed Jun 18 10:30:40 2008 using trial factoring cutoff of 51 bits Wed Jun 18 10:30:40 2008 polynomial 'A' values have 12 factors Wed Jun 18 10:30:45 2008 restarting with 18575 full and 956051 partial relations Wed Jun 18 10:30:45 2008 72209 relations (18575 full + 53634 combined from 956051 partial), need 71861 Wed Jun 18 10:30:48 2008 begin with 974626 relations Wed Jun 18 10:30:49 2008 reduce to 182680 relations in 11 passes Wed Jun 18 10:30:49 2008 attempting to read 182680 relations Wed Jun 18 10:30:55 2008 recovered 182680 relations Wed Jun 18 10:30:55 2008 recovered 161924 polynomials Wed Jun 18 10:30:55 2008 attempting to build 72209 cycles Wed Jun 18 10:30:55 2008 found 72209 cycles in 6 passes Wed Jun 18 10:30:55 2008 distribution of cycle lengths: Wed Jun 18 10:30:55 2008 length 1 : 18575 Wed Jun 18 10:30:55 2008 length 2 : 13202 Wed Jun 18 10:30:55 2008 length 3 : 12365 Wed Jun 18 10:30:55 2008 length 4 : 9549 Wed Jun 18 10:30:55 2008 length 5 : 7117 Wed Jun 18 10:30:55 2008 length 6 : 4605 Wed Jun 18 10:30:55 2008 length 7 : 2941 Wed Jun 18 10:30:55 2008 length 9+: 3855 Wed Jun 18 10:30:55 2008 largest cycle: 19 relations Wed Jun 18 10:30:56 2008 matrix is 71765 x 72209 (18.3 MB) with weight 4519177 (62.58/col) Wed Jun 18 10:30:56 2008 sparse part has weight 4519177 (62.58/col) Wed Jun 18 10:30:57 2008 filtering completed in 3 passes Wed Jun 18 10:30:57 2008 matrix is 67627 x 67691 (17.2 MB) with weight 4244832 (62.71/col) Wed Jun 18 10:30:57 2008 sparse part has weight 4244832 (62.71/col) Wed Jun 18 10:30:58 2008 saving the first 48 matrix rows for later Wed Jun 18 10:30:58 2008 matrix is 67579 x 67691 (10.6 MB) with weight 3302713 (48.79/col) Wed Jun 18 10:30:58 2008 sparse part has weight 2369433 (35.00/col) Wed Jun 18 10:30:58 2008 matrix includes 64 packed rows Wed Jun 18 10:30:58 2008 using block size 21845 for processor cache size 512 kB Wed Jun 18 10:30:58 2008 commencing Lanczos iteration Wed Jun 18 10:30:58 2008 memory use: 10.4 MB Wed Jun 18 10:31:46 2008 lanczos halted after 1070 iterations (dim = 67575) Wed Jun 18 10:31:47 2008 recovered 15 nontrivial dependencies Wed Jun 18 10:31:48 2008 prp41 factor: 39640352959941520079217079058662355588447 Wed Jun 18 10:31:48 2008 prp53 factor: 12259468301921439444803232407524450529599277231054411 Wed Jun 18 10:31:48 2008 elapsed time 00:01:09
(7·10118+17)/3 = 2(3)1179<119> = 19227743 · C112
C112 = P49 · P63
P49 = 3093087719815041604894591181802808992385054200749<49>
P63 = 392334265399879349992246101266524172412020862047021909878065977<63>
Number: 23339_118 N=1213524298371022190869377302023088894694157984810455045781157639424103667982941800986903836468655386819624816773 ( 112 digits) SNFS difficulty: 118 digits. Divisors found: r1=3093087719815041604894591181802808992385054200749 (pp49) r2=392334265399879349992246101266524172412020862047021909878065977 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.32 hours. Scaled time: 4.58 units (timescale=1.973). Factorization parameters were as follows: name: 23339_118 n: 1213524298371022190869377302023088894694157984810455045781157639424103667982941800986903836468655386819624816773 m: 100000000000000000000000 c5: 7000 c0: 17 skew: 0.3 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64188, largePrimes:2227594 encountered Relations: rels:2431241, finalFF:324093 Max relations in full relation-set: 28 Initial matrix: 113353 x 324093 with sparse part having weight 30217094. Pruned matrix : 77229 x 77859 with weight 5970872. Total sieving time: 2.20 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.32 hours. --------- CPU info (if available) ----------
(7·10126+17)/3 = 2(3)1259<127> = 31 · 3613 · 86753 · 731135486302163043392089<24> · C93
C93 = P41 · P52
P41 = 68030424514091868787676449965273815693041<41>
P52 = 4827936880554905413919785453314420134437806840877729<52>
Wed Jun 18 10:40:16 2008 Msieve v. 1.36 Wed Jun 18 10:40:16 2008 random seeds: b05deab3 ec6c7f99 Wed Jun 18 10:40:16 2008 factoring 328446595511390663902274889915254013499180885468671028135877513010323355822376511174877183889 (93 digits) Wed Jun 18 10:40:17 2008 no P-1/P+1/ECM available, skipping Wed Jun 18 10:40:17 2008 commencing quadratic sieve (93-digit input) Wed Jun 18 10:40:17 2008 using multiplier of 19 Wed Jun 18 10:40:17 2008 using 64kb Pentium 4 sieve core Wed Jun 18 10:40:17 2008 sieve interval: 18 blocks of size 65536 Wed Jun 18 10:40:17 2008 processing polynomials in batches of 6 Wed Jun 18 10:40:17 2008 using a sieve bound of 1919377 (71765 primes) Wed Jun 18 10:40:17 2008 using large prime bound of 232244617 (27 bits) Wed Jun 18 10:40:17 2008 using double large prime bound of 1144727446588341 (42-51 bits) Wed Jun 18 10:40:17 2008 using trial factoring cutoff of 51 bits Wed Jun 18 10:40:17 2008 polynomial 'A' values have 12 factors Wed Jun 18 14:37:22 2008 72231 relations (18362 full + 53869 combined from 958546 partial), need 71861 Wed Jun 18 14:37:26 2008 begin with 976908 relations Wed Jun 18 14:37:27 2008 reduce to 183295 relations in 10 passes Wed Jun 18 14:37:27 2008 attempting to read 183295 relations Wed Jun 18 14:37:32 2008 recovered 183295 relations Wed Jun 18 14:37:32 2008 recovered 163365 polynomials Wed Jun 18 14:37:33 2008 attempting to build 72231 cycles Wed Jun 18 14:37:33 2008 found 72231 cycles in 5 passes Wed Jun 18 14:37:33 2008 distribution of cycle lengths: Wed Jun 18 14:37:33 2008 length 1 : 18362 Wed Jun 18 14:37:33 2008 length 2 : 13186 Wed Jun 18 14:37:33 2008 length 3 : 12410 Wed Jun 18 14:37:33 2008 length 4 : 9670 Wed Jun 18 14:37:33 2008 length 5 : 7135 Wed Jun 18 14:37:33 2008 length 6 : 4786 Wed Jun 18 14:37:33 2008 length 7 : 2899 Wed Jun 18 14:37:33 2008 length 9+: 3783 Wed Jun 18 14:37:33 2008 largest cycle: 19 relations Wed Jun 18 14:37:33 2008 matrix is 71765 x 72231 (18.7 MB) with weight 4625287 (64.03/col) Wed Jun 18 14:37:33 2008 sparse part has weight 4625287 (64.03/col) Wed Jun 18 14:37:35 2008 filtering completed in 3 passes Wed Jun 18 14:37:35 2008 matrix is 67539 x 67603 (17.6 MB) with weight 4340466 (64.21/col) Wed Jun 18 14:37:35 2008 sparse part has weight 4340466 (64.21/col) Wed Jun 18 14:37:35 2008 saving the first 48 matrix rows for later Wed Jun 18 14:37:35 2008 matrix is 67491 x 67603 (11.0 MB) with weight 3412442 (50.48/col) Wed Jun 18 14:37:35 2008 sparse part has weight 2475447 (36.62/col) Wed Jun 18 14:37:35 2008 matrix includes 64 packed rows Wed Jun 18 14:37:35 2008 using block size 21845 for processor cache size 512 kB Wed Jun 18 14:37:36 2008 commencing Lanczos iteration Wed Jun 18 14:37:36 2008 memory use: 10.6 MB Wed Jun 18 14:38:25 2008 lanczos halted after 1069 iterations (dim = 67490) Wed Jun 18 14:38:25 2008 recovered 18 nontrivial dependencies Wed Jun 18 14:38:26 2008 prp41 factor: 68030424514091868787676449965273815693041 Wed Jun 18 14:38:26 2008 prp52 factor: 4827936880554905413919785453314420134437806840877729 Wed Jun 18 14:38:26 2008 elapsed time 03:58:10
(7·10119+17)/3 = 2(3)1189<120> = 47 · 1667 · 1598728711<10> · 526853357803<12> · C94
C94 = P43 · P52
P43 = 2487899235307330769877021031219003735293763<43>
P52 = 1421169944438458969216053661423570617164050231393409<52>
Wed Jun 18 14:47:16 2008 Msieve v. 1.36 Wed Jun 18 14:47:16 2008 random seeds: 31d20917 2261db0f Wed Jun 18 14:47:16 2008 factoring 3535727618010203827241863252367638975873802814867733018263403913509911611397412713507437008067 (94 digits) Wed Jun 18 14:47:17 2008 no P-1/P+1/ECM available, skipping Wed Jun 18 14:47:17 2008 commencing quadratic sieve (94-digit input) Wed Jun 18 14:47:18 2008 using multiplier of 3 Wed Jun 18 14:47:18 2008 using 64kb Pentium 4 sieve core Wed Jun 18 14:47:18 2008 sieve interval: 18 blocks of size 65536 Wed Jun 18 14:47:18 2008 processing polynomials in batches of 6 Wed Jun 18 14:47:18 2008 using a sieve bound of 2023201 (75294 primes) Wed Jun 18 14:47:18 2008 using large prime bound of 271108934 (28 bits) Wed Jun 18 14:47:18 2008 using double large prime bound of 1512372783942046 (42-51 bits) Wed Jun 18 14:47:18 2008 using trial factoring cutoff of 51 bits Wed Jun 18 14:47:18 2008 polynomial 'A' values have 12 factors Wed Jun 18 20:40:18 2008 75496 relations (18487 full + 57009 combined from 1076904 partial), need 75390 Wed Jun 18 20:40:22 2008 begin with 1095391 relations Wed Jun 18 20:40:23 2008 reduce to 196684 relations in 12 passes Wed Jun 18 20:40:23 2008 attempting to read 196684 relations Wed Jun 18 20:40:29 2008 recovered 196684 relations Wed Jun 18 20:40:29 2008 recovered 181534 polynomials Wed Jun 18 20:40:29 2008 attempting to build 75496 cycles Wed Jun 18 20:40:30 2008 found 75496 cycles in 6 passes Wed Jun 18 20:40:30 2008 distribution of cycle lengths: Wed Jun 18 20:40:30 2008 length 1 : 18487 Wed Jun 18 20:40:30 2008 length 2 : 13231 Wed Jun 18 20:40:30 2008 length 3 : 12825 Wed Jun 18 20:40:30 2008 length 4 : 10112 Wed Jun 18 20:40:30 2008 length 5 : 7521 Wed Jun 18 20:40:30 2008 length 6 : 5337 Wed Jun 18 20:40:30 2008 length 7 : 3381 Wed Jun 18 20:40:30 2008 length 9+: 4602 Wed Jun 18 20:40:30 2008 largest cycle: 21 relations Wed Jun 18 20:40:30 2008 matrix is 75294 x 75496 (19.6 MB) with weight 4844871 (64.17/col) Wed Jun 18 20:40:30 2008 sparse part has weight 4844871 (64.17/col) Wed Jun 18 20:40:31 2008 filtering completed in 3 passes Wed Jun 18 20:40:31 2008 matrix is 71867 x 71931 (18.8 MB) with weight 4647852 (64.62/col) Wed Jun 18 20:40:31 2008 sparse part has weight 4647852 (64.62/col) Wed Jun 18 20:40:32 2008 saving the first 48 matrix rows for later Wed Jun 18 20:40:32 2008 matrix is 71819 x 71931 (11.7 MB) with weight 3646166 (50.69/col) Wed Jun 18 20:40:32 2008 sparse part has weight 2648356 (36.82/col) Wed Jun 18 20:40:32 2008 matrix includes 64 packed rows Wed Jun 18 20:40:32 2008 using block size 21845 for processor cache size 512 kB Wed Jun 18 20:40:33 2008 commencing Lanczos iteration Wed Jun 18 20:40:33 2008 memory use: 11.5 MB Wed Jun 18 20:41:29 2008 lanczos halted after 1137 iterations (dim = 71817) Wed Jun 18 20:41:29 2008 recovered 17 nontrivial dependencies Wed Jun 18 20:41:31 2008 prp43 factor: 2487899235307330769877021031219003735293763 Wed Jun 18 20:41:31 2008 prp52 factor: 1421169944438458969216053661423570617164050231393409 Wed Jun 18 20:41:31 2008 elapsed time 05:54:15
(7·10142+17)/3 = 2(3)1419<143> = 239 · 359 · 3864886943178480283<19> · C119
C119 = P46 · P73
P46 = 8736112065016231832182289058545466897704748911<46>
P73 = 8054330474086409141498305541361295838218114061746685318944976380558270903<73>
Number: 23339_142 N=70363533630294185294165706482946113409918647922182584068184418398232967632488922819202335829444250304263960981932236633 ( 119 digits) SNFS difficulty: 142 digits. Divisors found: r1=8736112065016231832182289058545466897704748911 (pp46) r2=8054330474086409141498305541361295838218114061746685318944976380558270903 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.48 hours. Scaled time: 37.14 units (timescale=2.010). Factorization parameters were as follows: name: 23339_142 n: 70363533630294185294165706482946113409918647922182584068184418398232967632488922819202335829444250304263960981932236633 m: 10000000000000000000000000000 c5: 700 c0: 17 skew: 0.48 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2750001) Primes: RFBsize:100021, AFBsize:100193, largePrimes:2963927 encountered Relations: rels:3028488, finalFF:283712 Max relations in full relation-set: 28 Initial matrix: 200281 x 283712 with sparse part having weight 33966330. Pruned matrix : 180243 x 181308 with weight 20552126. Total sieving time: 17.84 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.44 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 18.48 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(19·10175+71)/9 = 2(1)1749<176> = C176
C176 = P80 · P96
P80 = 60850084350740294278005008684441134760052865768236487179773355418574426998451693<80>
P96 = 346936431335518371490342055169677665804525006321550138544617865907161312009720281338190068074283<96>
Number: 21119_175 N=21111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 ( 176 digits) SNFS difficulty: 176 digits. Divisors found: r1=60850084350740294278005008684441134760052865768236487179773355418574426998451693 (pp80) r2=346936431335518371490342055169677665804525006321550138544617865907161312009720281338190068074283 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 155.75 hours. Scaled time: 367.09 units (timescale=2.357). Factorization parameters were as follows: n: 21111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111119 m: 100000000000000000000000000000000000 c5: 19 c0: 71 skew: 1.3 type: snfs Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4200000, 7100001) Primes: RFBsize:564877, AFBsize:565827, largePrimes:10879977 encountered Relations: rels:10992982, finalFF:1297142 Max relations in full relation-set: 28 Initial matrix: 1130769 x 1297142 with sparse part having weight 89502042. Pruned matrix : 985530 x 991247 with weight 62042272. Total sieving time: 147.48 hours. Total relation processing time: 0.17 hours. Matrix solve time: 7.98 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,50,50,2.6,2.6,100000 total time: 155.75 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2440k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.81 BogoMIPS (lpj=2672409) Calibrating delay using timer specific routine.. 5344.41 BogoMIPS (lpj=2672208) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672385)
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(7·10102+17)/3 = 2(3)1019<103> = C103
C103 = P34 · P69
P34 = 6419956900481202228469077758003149<34>
P69 = 363449999665642674884178819352787543464290520450591658241900375546311<69>
(7·10153+17)/3 = 2(3)1529<154> = 560459 · 230304748630662063984749951147<30> · 262935549327310361422795083043<30> · C89
C89 = P40 · P50
P40 = 1895549872520483456073059398581094704841<40>
P50 = 36269830185861666534847203262383843474869227650761<50>
Wed Jun 18 08:10:17 2008 Wed Jun 18 08:10:17 2008 Wed Jun 18 08:10:17 2008 Msieve v. 1.36 Wed Jun 18 08:10:17 2008 random seeds: 6aa74100 9e706eaf Wed Jun 18 08:10:17 2008 factoring 68751271985149664776156554199563981434395577319158661478300292012981830544670599124034001 (89 digits) Wed Jun 18 08:10:18 2008 searching for 15-digit factors Wed Jun 18 08:10:19 2008 commencing quadratic sieve (89-digit input) Wed Jun 18 08:10:19 2008 using multiplier of 5 Wed Jun 18 08:10:19 2008 using 64kb Opteron sieve core Wed Jun 18 08:10:19 2008 sieve interval: 17 blocks of size 65536 Wed Jun 18 08:10:19 2008 processing polynomials in batches of 6 Wed Jun 18 08:10:19 2008 using a sieve bound of 1564307 (59333 primes) Wed Jun 18 08:10:19 2008 using large prime bound of 125144560 (26 bits) Wed Jun 18 08:10:19 2008 using double large prime bound of 376132987801280 (42-49 bits) Wed Jun 18 08:10:19 2008 using trial factoring cutoff of 49 bits Wed Jun 18 08:10:19 2008 polynomial 'A' values have 11 factors Wed Jun 18 08:50:40 2008 59748 relations (16594 full + 43154 combined from 626616 partial), need 59429 Wed Jun 18 08:50:41 2008 begin with 643209 relations Wed Jun 18 08:50:41 2008 reduce to 143702 relations in 11 passes Wed Jun 18 08:50:41 2008 attempting to read 143702 relations Wed Jun 18 08:50:42 2008 recovered 143702 relations Wed Jun 18 08:50:42 2008 recovered 117032 polynomials Wed Jun 18 08:50:43 2008 attempting to build 59748 cycles Wed Jun 18 08:50:43 2008 found 59748 cycles in 5 passes Wed Jun 18 08:50:43 2008 distribution of cycle lengths: Wed Jun 18 08:50:43 2008 length 1 : 16594 Wed Jun 18 08:50:43 2008 length 2 : 11669 Wed Jun 18 08:50:43 2008 length 3 : 10367 Wed Jun 18 08:50:43 2008 length 4 : 7898 Wed Jun 18 08:50:43 2008 length 5 : 5487 Wed Jun 18 08:50:43 2008 length 6 : 3538 Wed Jun 18 08:50:43 2008 length 7 : 1911 Wed Jun 18 08:50:43 2008 length 9+: 2284 Wed Jun 18 08:50:43 2008 largest cycle: 18 relations Wed Jun 18 08:50:43 2008 matrix is 59333 x 59748 (14.6 MB) with weight 3578395 (59.89/col) Wed Jun 18 08:50:43 2008 sparse part has weight 3578395 (59.89/col) Wed Jun 18 08:50:44 2008 filtering completed in 3 passes Wed Jun 18 08:50:44 2008 matrix is 54872 x 54936 (13.5 MB) with weight 3307764 (60.21/col) Wed Jun 18 08:50:44 2008 sparse part has weight 3307764 (60.21/col) Wed Jun 18 08:50:44 2008 saving the first 48 matrix rows for later Wed Jun 18 08:50:44 2008 matrix is 54824 x 54936 (10.0 MB) with weight 2755556 (50.16/col) Wed Jun 18 08:50:44 2008 sparse part has weight 2295339 (41.78/col) Wed Jun 18 08:50:44 2008 matrix includes 64 packed rows Wed Jun 18 08:50:44 2008 using block size 21974 for processor cache size 1024 kB Wed Jun 18 08:50:44 2008 commencing Lanczos iteration Wed Jun 18 08:50:44 2008 memory use: 9.0 MB Wed Jun 18 08:51:06 2008 lanczos halted after 868 iterations (dim = 54822) Wed Jun 18 08:51:06 2008 recovered 16 nontrivial dependencies Wed Jun 18 08:51:07 2008 prp40 factor: 1895549872520483456073059398581094704841 Wed Jun 18 08:51:07 2008 prp50 factor: 36269830185861666534847203262383843474869227650761 Wed Jun 18 08:51:07 2008 elapsed time 00:40:50
(7·10104+17)/3 = 2(3)1039<105> = 1549 · 431213149 · C93
C93 = P38 · P55
P38 = 84021039913865811864528095862181648183<38>
P55 = 4157625043236494780959904525049407778407073398238277733<55>
Number: n N=349327979704661599779941625272810754908557163679461621704641746110472048389941659397248809139 ( 93 digits) SNFS difficulty: 105 digits. Divisors found: r1=84021039913865811864528095862181648183 (pp38) r2=4157625043236494780959904525049407778407073398238277733 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.70 hours. Scaled time: 1.27 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_3_103_9 n: 349327979704661599779941625272810754908557163679461621704641746110472048389941659397248809139 skew: 1.89 deg: 5 c5: 7 c0: 170 m: 1000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:49098, AFBsize:49011, largePrimes:4196488 encountered Relations: rels:3702660, finalFF:250006 Max relations in full relation-set: 48 Initial matrix: 98174 x 250005 with sparse part having weight 17311302. Pruned matrix : 56789 x 57343 with weight 2371582. Total sieving time: 0.63 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.70 hours. --------- CPU info (if available) ----------
(19·10157+71)/9 = 2(1)1569<158> = 149 · 331 · 447977019071<12> · C141
C141 = P68 · P74
P68 = 77929169194250521052812225269081813650033303291080915556048887978241<68>
P74 = 12261427866582958791184193364468933936256879057608293595733557701239457191<74>
Number: n N=955522886778041600093440240348014365106179622949600182179310014977255835521154610734965233983597443817269068745577149968079675757884258981031 ( 141 digits) SNFS difficulty: 158 digits. Divisors found: Wed Jun 18 10:38:00 2008 prp68 factor: 77929169194250521052812225269081813650033303291080915556048887978241 Wed Jun 18 10:38:00 2008 prp74 factor: 12261427866582958791184193364468933936256879057608293595733557701239457191 Wed Jun 18 10:38:00 2008 elapsed time 01:11:42 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.86 hours. Scaled time: 51.68 units (timescale=1.441). Factorization parameters were as follows: name: KA_2_1_156_9 n: 955522886778041600093440240348014365106179622949600182179310014977255835521154610734965233983597443817269068745577149968079675757884258981031 skew: 0.52 deg: 5 c5: 1900 c0: 71 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1800167) Primes: RFBsize:216816, AFBsize:217002, largePrimes:7060869 encountered Relations: rels:6477932, finalFF:461756 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.65 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 35.86 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(7·10111+17)/3 = 2(3)1109<112> = 31 · 283 · C108
C108 = P42 · P67
P42 = 141365583583934397402332467178657836374287<42>
P67 = 1881416574075439492986128061851660298139048768985554696504455656689<67>
Number: n N=265967551958661043352710969261750066491887989665260838177742315437516622971997416315209544435578859379155743 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=141365583583934397402332467178657836374287 (pp42) r2=1881416574075439492986128061851660298139048768985554696504455656689 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.71 hours. Scaled time: 1.30 units (timescale=1.818). Factorization parameters were as follows: name: KA_2_3_110_9 n: 265967551958661043352710969261750066491887989665260838177742315437516622971997416315209544435578859379155743 skew: 0.75 deg: 5 c5: 70 c0: 17 m: 10000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:49098, AFBsize:49186, largePrimes:3947445 encountered Relations: rels:3357682, finalFF:166084 Max relations in full relation-set: 48 Initial matrix: 98351 x 166084 with sparse part having weight 12282582. Pruned matrix : 73535 x 74090 with weight 3129235. Total sieving time: 0.63 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(7·10113+17)/3 = 2(3)1129<114> = 19 · 29 · 10193 · 73999 · C102
C102 = P40 · P62
P40 = 8339601674524220895513383477312681123489<40>
P62 = 67321224002953796493692732850668437799328402691094933774632243<62>
Number: n N=561432192426053654517340771240223116430397943672531177239167575604615218442742295215856972269044055827 ( 102 digits) SNFS difficulty: 113 digits. Divisors found: r1=8339601674524220895513383477312681123489 (pp40) r2=67321224002953796493692732850668437799328402691094933774632243 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.10 hours. Scaled time: 1.58 units (timescale=1.443). Factorization parameters were as follows: name: KA_2_3_112_9 n: 561432192426053654517340771240223116430397943672531177239167575604615218442742295215856972269044055827 skew: 0.30 deg: 5 c5: 7000 c0: 17 m: 10000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 180001) Primes: RFBsize:49098, AFBsize:49326, largePrimes:3980336 encountered Relations: rels:3357490, finalFF:133469 Max relations in full relation-set: 28 Initial matrix: 98491 x 133469 with sparse part having weight 9073890. Pruned matrix : 84080 x 84636 with weight 3936525. Total sieving time: 0.94 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 1.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(19·10161+71)/9 = 2(1)1609<162> = 35 · C159
C159 = P30 · P57 · P74
P30 = 286786067147872235350150512053<30>
P57 = 112622410320040502526431761387219772249611150037774127671<57>
P74 = 26898121553328486879024622069541410307556323510188262663095503894721747591<74>
Number: n N=3029331282417286052913425605800649802144685572686579710389061333460545261055441205830769603801466446700995622384536686522670690561 ( 130 digits) SNFS difficulty: 162 digits. Divisors found: Wed Jun 18 21:16:51 2008 prp57 factor: 112622410320040502526431761387219772249611150037774127671 Wed Jun 18 21:16:51 2008 prp74 factor: 26898121553328486879024622069541410307556323510188262663095503894721747591 Wed Jun 18 21:16:51 2008 elapsed time 01:28:47 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.58 hours. Scaled time: 87.02 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_160_9 n: 3029331282417286052913425605800649802144685572686579710389061333460545261055441205830769603801466446700995622384536686522670690561 skew: 0.82 deg: 5 c5: 190 c0: 71 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300203) Primes: RFBsize:216816, AFBsize:216642, largePrimes:7501597 encountered Relations: rels:6884203, finalFF:446447 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.36 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 47.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By matsui / GGNFS
2·10174-7 = 1(9)1733<175> = 45162104857<11> · C164
C164 = P50 · P115
P50 = 15567016412456914292718994439665667659340737216997<50>
P115 = 2844791473480904522073711775181098198268760967308959673803332033658988249807406032658488263343289877533029503274317<115>
N=44284915557694729347765040994665790317727838758514044960205208090042409601502511298241282501081457510774761806182217110651884955832318902850555861105887073645966049 ( 164 digits) SNFS difficulty: 175 digits. Divisors found: r1=15567016412456914292718994439665667659340737216997 (pp50) r2=2844791473480904522073711775181098198268760967308959673803332033658988249807406032658488263343289877533029503274317 (pp115) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 243.25 hours. Scaled time: 308.92 units (timescale=1.270). Factorization parameters were as follows: n: 44284915557694729347765040994665790317727838758514044960205208090042409601502511298241282501081457510774761806182217110651884955832318902850555861105887073645966049 m: 100000000000000000000000000000000000 c5: 1 c0: -35 skew: 2.04 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11600001) Primes: RFBsize:501962, AFBsize:501746, largePrimes:6521482 encountered Relations: rels:6972572, finalFF:1128905 Max relations in full relation-set: 28 Initial matrix: 1003772 x 1128905 with sparse part having weight 73472770. Pruned matrix : 897602 x 902684 with weight 56663657. Total sieving time: 203.55 hours. Total relation processing time: 0.14 hours. Matrix solve time: 39.17 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 243.25 hours.
By suberi / GMP-ECM
(16·10247-61)/9 = 1(7)2461<248> = 11 · 1519462863204010887343118174303851<34> · C214
C214 = P40 · P174
P40 = 2446972297993506364536910147344312252817<40>
P174 = 434675983297164654943064917508776598208565289076376758993205934839973130416427780890879508995035601216645271796689898925197909151263983145235974828216649664885501680694980083<174>
By Sinkiti Sibata / GGNFS
(19·10152+71)/9 = 2(1)1519<153> = 32 · 5495167 · C145
C145 = P49 · P96
P49 = 4901819949628641796466086337480125061060531270983<49>
P96 = 870823883755497713499331899758122000845092549202887776729665908427056553088983618255881653274831<96>
Number: 21119_152 N=4268621886005792021144542126464362252040163679003165895314335328381610626839328108400852990174236765408001271564047120580100681827647844634528873 ( 145 digits) SNFS difficulty: 153 digits. Divisors found: r1=4901819949628641796466086337480125061060531270983 (pp49) r2=870823883755497713499331899758122000845092549202887776729665908427056553088983618255881653274831 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 35.70 hours. Scaled time: 71.08 units (timescale=1.991). Factorization parameters were as follows: name: 21119_152 n: 4268621886005792021144542126464362252040163679003165895314335328381610626839328108400852990174236765408001271564047120580100681827647844634528873 m: 1000000000000000000000000000000 c5: 1900 c0: 71 skew: 0.52 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:176824, largePrimes:5811367 encountered Relations: rels:5835518, finalFF:527410 Max relations in full relation-set: 28 Initial matrix: 353193 x 527410 with sparse part having weight 54511221. Pruned matrix : 293898 x 295727 with weight 31266050. Total sieving time: 33.99 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.40 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 35.70 hours. --------- CPU info (if available) ----------
The factor table of 233...339 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM
(19·10167+71)/9 = 2(1)1669<168> = 3 · 2243 · 235493 · C159
C159 = P44 · P116
P44 = 10766075811599655430741404354340972913661347<44>
P116 = 12374427833338457331814433209166661760078812457314883748540314012065840097373485608599199199387260515247162077378041<116>
By suberi / GMP-ECM
(17·10181+1)/9 = 1(8)1809<182> = 19 · 44839 · 48731 · 1008779 · 12003314779<11> · 5830558817883227437007237<25> · C130
C130 = P30 · C100
P30 = 758822763085731218605641418771<30>
C100 = [8492661409590470524891423727868139850632579649757129010224121294326903739481230882899276916193096537<100>]
(17·10190+1)/9 = 1(8)1899<191> = 13 · 649123 · 707912267722698978623<21> · C163
C163 = P32 · C132
P32 = 24592951456281913764228758669239<32>
C132 = [128571873140924523664948060149189103090155858942672937006248438418113765818485839629694932311203935787591124351688800743261858830663<132>]
By Sinkiti Sibata / GGNFS
(19·10178+71)/9 = 2(1)1779<179> = 7 · 73 · 107 · 173 · 35321990716170607082142191<26> · 3823874316784361716576388467133<31> · C116
C116 = P29 · P87
P29 = 27406547521000446067339104767<29>
P87 = 602916541684842867507687365160027289170544020368979297591614953242064948580130894740539<87>
Number: 21119_178 N=16523860850882892395144792212261432649907044400229056482377148949941650807074754921165115690888775495900605003049413 ( 116 digits) Divisors found: r1=27406547521000446067339104767 (pp29) r2=602916541684842867507687365160027289170544020368979297591614953242064948580130894740539 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 73.94 hours. Scaled time: 49.98 units (timescale=0.676). Factorization parameters were as follows: name: 21119_178 n: 16523860850882892395144792212261432649907044400229056482377148949941650807074754921165115690888775495900605003049413 skew: 40127.03 # norm 7.16e+15 c5: 40080 c4: -7945983226 c3: -232895586882496 c2: 10778743211792435213 c1: 140457272524332146727036 c0: -2681001619694258614734421287 # alpha -5.71 Y1: 2400596004961 Y0: -13275163457864381099522 # Murphy_E 4.83e-10 # M 4699310249935613700118238101142154720824295796173609648981454158679885067087264384430956907404713390557562756410728 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3630001) Primes: RFBsize:315948, AFBsize:315637, largePrimes:7499982 encountered Relations: rels:7511772, finalFF:737157 Max relations in full relation-set: 28 Initial matrix: 631664 x 737157 with sparse part having weight 56387280. Pruned matrix : 538707 x 541929 with weight 34822728. Polynomial selection time: 3.11 hours. Total sieving time: 56.46 hours. Total relation processing time: 0.53 hours. Matrix solve time: 13.40 hours. Time per square root: 0.44 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 73.94 hours. --------- CPU info (if available) ----------
(19·10151+71)/9 = 2(1)1509<152> = 389 · 46451 · 38559392769341<14> · C131
C131 = P42 · P90
P42 = 123898729947282037215260261192283618233521<42>
P90 = 244550965417535587962509097180011853513331875232412883300691306397524357045415864687563861<90>
Number: 21119_151 N=30299554022614350384504348767263079177531164143037702442023852003276625984676290612901044365561203878923175331353497936833698384581 ( 131 digits) SNFS difficulty: 152 digits. Divisors found: r1=123898729947282037215260261192283618233521 (pp42) r2=244550965417535587962509097180011853513331875232412883300691306397524357045415864687563861 (pp90) Version: GGNFS-0.77.1-20060513-k8 Total time: 35.56 hours. Scaled time: 70.79 units (timescale=1.991). Factorization parameters were as follows: name: 21119_151 n: 30299554022614350384504348767263079177531164143037702442023852003276625984676290612901044365561203878923175331353497936833698384581 m: 1000000000000000000000000000000 c5: 190 c0: 71 skew: 0.82 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:176344, largePrimes:5725559 encountered Relations: rels:5654649, finalFF:438134 Max relations in full relation-set: 28 Initial matrix: 352713 x 438134 with sparse part having weight 46113828. Pruned matrix : 323557 x 325384 with weight 31379717. Total sieving time: 33.71 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.52 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 35.56 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(82·10185-1)/9 = 9(1)185<186> = 773 · C184
C184 = P88 · P96
P88 = 4548789624633850866889146735134298403699896616070473264408962177272708854038293242583257<88>
P96 = 259117053935733073539510463672622076339997265026506332376996259338801062100873517406377001946451<96>
Number: n N=1178668966508552537013080350725887595227828086819031191605577116573235590053183843610751760816443869483972976857841023429639212304154089406353313209716831967802213597815150208423170907 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: Mon Jun 16 00:16:49 2008 prp88 factor: 4548789624633850866889146735134298403699896616070473264408962177272708854038293242583257 Mon Jun 16 00:16:49 2008 prp96 factor: 259117053935733073539510463672622076339997265026506332376996259338801062100873517406377001946451 Mon Jun 16 00:16:49 2008 elapsed time 02:53:05 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 96.97 hours. Scaled time: 81.16 units (timescale=0.837). Factorization parameters were as follows: name: KA_9_1_185 n: 1178668966508552537013080350725887595227828086819031191605577116573235590053183843610751760816443869483972976857841023429639212304154089406353313209716831967802213597815150208423170907 type: snfs skew: 0.41 deg: 5 c5: 82 c0: -1 m: 10000000000000000000000000000000000000 rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 13400077) Primes: RFBsize:476648, AFBsize:476605, largePrimes:9021915 encountered Relations: rels:8836726, finalFF:1037910 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 96.58 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,48,48,2.6,2.6,100000 total time: 96.97 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(19·10148+71)/9 = 2(1)1479<149> = 7 · 47 · 417006279637<12> · C135
C135 = P37 · P48 · P51
P37 = 1665401849509587677728439136819520339<37>
P48 = 396630940851504929651395216684056457143555288557<48>
P51 = 232952280196970654163617482290594633816545512331261<51>
Number: 21119_148 N=153876605963533264497237871153137488274836088714222638533355576644654978814571391424895423745228899363662939247215583153132173003687803 ( 135 digits) SNFS difficulty: 149 digits. Divisors found: r1=1665401849509587677728439136819520339 (pp37) r2=396630940851504929651395216684056457143555288557 (pp48) r3=232952280196970654163617482290594633816545512331261 (pp51) Version: GGNFS-0.77.1-20060513-k8 Total time: 41.46 hours. Scaled time: 83.04 units (timescale=2.003). Factorization parameters were as follows: name: 21119_148 n: 153876605963533264497237871153137488274836088714222638533355576644654978814571391424895423745228899363662939247215583153132173003687803 m: 100000000000000000000000000000 c5: 19000 c0: 71 skew: 0.33 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 5650001) Primes: RFBsize:114155, AFBsize:114198, largePrimes:3268956 encountered Relations: rels:3440669, finalFF:266667 Max relations in full relation-set: 28 Initial matrix: 228420 x 266667 with sparse part having weight 36402146. Pruned matrix : 218879 x 220085 with weight 29047573. Total sieving time: 40.45 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.70 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 41.46 hours. --------- CPU info (if available) ----------
By Kenji Ibusuki / GGNFS
(5·10175+1)/3 = 1(6)1747<176> = 827 · C173
C173 = P80 · P93
P80 = 74865668108657376632912517989779780300464176273350461362789666667834688689397123<80>
P93 = 269190999771828025899329511919947740033568840333403347746509215638814772035381976837532003227<93>
Number: 16667_175 N=20153164046755340588472390165255945183393792825473599355098750503829101168883514711809754131398629584844820636839983877468762595727529222087867795243853284965739621120515921 ( 173 digits) SNFS difficulty: 175 digits. Divisors found: r1=74865668108657376632912517989779780300464176273350461362789666667834688689397123 (pp80) r2=269190999771828025899329511919947740033568840333403347746509215638814772035381976837532003227 (pp93) Version: GGNFS-0.77.1 Total time: 127.09 hours. Scaled time: 369.83 units (timescale=2.910). Factorization parameters were as follows: n: 20153164046755340588472390165255945183393792825473599355098750503829101168883514711809754131398629584844820636839983877468762595727529222087867795243853284965739621120515921 m: 100000000000000000000000000000000000 c5: 5 c0: 1 skew: 0.725 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3700000, 9800001) Relations: rels:6928497, finalFF:1184727 Initial matrix: 1003098 x 1184727 with sparse part having weight 67068111. Pruned matrix : 926698 x 931777 with weight 43275106. Total sieving time: 122.35 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.46 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 127.09 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
10189-9 = (9)1881<189> = 680546965633716247679<21> · 210016417538123401200815971279<30> · C139
C139 = P49 · P90
P49 = 8147900155250040965434833800626154533552907527597<49>
P90 = 858702947397860145236409007951942850049599814990863975327405594646045661188912043740978083<90>
Number: 99991_189 N=6996625878416692438029157723410875624263386189411081125190307294339622079250688809160942796831099033973415942935043602179220749546094656551 ( 139 digits) SNFS difficulty: 190 digits. Divisors found: r1=8147900155250040965434833800626154533552907527597 (pp49) r2=858702947397860145236409007951942850049599814990863975327405594646045661188912043740978083 (pp90) Version: GGNFS-0.77.1-20060722-nocona Total time: 1147.35 hours. Scaled time: 2311.91 units (timescale=2.015). Factorization parameters were as follows: n: 6996625878416692438029157723410875624263386189411081125190307294339622079250688809160942796831099033973415942935043602179220749546094656551 m: 100000000000000000000000000000000000000 c5: 1 c0: -90 skew: 2.46 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 19900001) Primes: RFBsize:501962, AFBsize:502106, largePrimes:7170030 encountered Relations: rels:7740301, finalFF:1148030 Max relations in full relation-set: 32 Initial matrix: 1004132 x 1148030 with sparse part having weight 138656677. Pruned matrix : 902449 x 907533 with weight 118637521. Total sieving time: 1134.16 hours. Total relation processing time: 0.15 hours. Matrix solve time: 12.76 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1147.35 hours.
(7·10169-61)/9 = (7)1681<169> = 83 · 10855381 · C160
C160 = P34 · P37 · P90
P34 = 2283299320810328736384747634415821<34>
P37 = 7182607341442258629005707341782603917<37>
P90 = 526365474032812165742184427823758439905684973552785490890082763434216262625675882189775261<90>
Number: 77771_169 N=8632416125912358472599711150945987261239466130360599340201719910084255418766178636140990039845884947093500679833045032154108060156156409675885963645590464968677 ( 160 digits) SNFS difficulty: 170 digits. Divisors found: r1=2283299320810328736384747634415821 (pp34) r2=7182607341442258629005707341782603917 (pp37) r3=526365474032812165742184427823758439905684973552785490890082763434216262625675882189775261 (pp90) Version: GGNFS-0.77.1-20060722-nocona Total time: 169.71 hours. Scaled time: 340.62 units (timescale=2.007). Factorization parameters were as follows: n: 8632416125912358472599711150945987261239466130360599340201719910084255418766178636140990039845884947093500679833045032154108060156156409675885963645590464968677 m: 10000000000000000000000000000000000 c5: 7 c0: -610 skew: 2.44 type: snfsFactor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9400001) Primes: RFBsize:412849, AFBsize:413557, largePrimes:6523136 encountered Relations: rels:6974496, finalFF:1087069 Max relations in full relation-set: 32 Initial matrix: 826471 x 1087069 with sparse part having weight 90460735. Pruned matrix : 620311 x 624507 with weight 73420826. Total sieving time: 165.44 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.97 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 169.71 hours.
By Wataru Sakai / GGNFS
(8·10168-53)/9 = (8)1673<168> = 115509593 · C160
C160 = P25 · P36 · P100
P25 = 4168773560957646476042689<25>
P36 = 496029423131682367523442139895210347<36>
P100 = 3721462779361461935113578380790887976223197458450833632455359550260813918839667749389547619007630657<100>
Number: 88883_168 N=7695368547345577513106542492006606662434425588261651037839678725981563184010949539826435791258383958541771408448204720874472208458815095027552290733886395815531 ( 160 digits) SNFS difficulty: 168 digits. Divisors found: r1=4168773560957646476042689 (pp25) r2=496029423131682367523442139895210347 (pp36) r3=3721462779361461935113578380790887976223197458450833632455359550260813918839667749389547619007630657 (pp100) Version: GGNFS-0.77.1-20060722-nocona Total time: 143.40 hours. Scaled time: 283.22 units (timescale=1.975). Factorization parameters were as follows: n: 7695368547345577513106542492006606662434425588261651037839678725981563184010949539826435791258383958541771408448204720874472208458815095027552290733886395815531 m: 2000000000000000000000000000000000 c5: 250 c0: -53 skew: 0.73 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7750001) Primes: RFBsize:380800, AFBsize:380967, largePrimes:6441404 encountered Relations: rels:6900311, finalFF:1078860 Max relations in full relation-set: 32 Initial matrix: 761833 x 1078860 with sparse part having weight 88535141. Pruned matrix : 523358 x 527231 with weight 78341106. Total sieving time: 140.02 hours. Total relation processing time: 0.10 hours. Matrix solve time: 3.11 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 143.40 hours.
By Sinkiti Sibata / GGNFS
(19·10147+71)/9 = 2(1)1469<148> = 13 · 59 · 887 · C142
C142 = P46 · P96
P46 = 3726369897506049222488673132552815264516392147<46>
P96 = 832733708305847517955059751402619654460601103742913699994890502633673002797961698240750355056813<96>
Number: 21119_147 N=3103073823269493305608185320794955251225673330272722625540159409801891601138730101334958690738026912142670841770836038315449012332431972047511 ( 142 digits) SNFS difficulty: 148 digits. Divisors found: r1=3726369897506049222488673132552815264516392147 (pp46) r2=832733708305847517955059751402619654460601103742913699994890502633673002797961698240750355056813 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.77 hours. Scaled time: 65.86 units (timescale=2.010). Factorization parameters were as follows: name: 21119_147 n: 3103073823269493305608185320794955251225673330272722625540159409801891601138730101334958690738026912142670841770836038315449012332431972047511 m: 100000000000000000000000000000 c5: 1900 c0: 71 skew: 0.52 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4450001) Primes: RFBsize:114155, AFBsize:114603, largePrimes:3082436 encountered Relations: rels:3151468, finalFF:259813 Max relations in full relation-set: 28 Initial matrix: 228825 x 259813 with sparse part having weight 32779060. Pruned matrix : 220551 x 221759 with weight 26667026. Total sieving time: 31.77 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.74 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 32.77 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
8·10169-7 = 7(9)1683<170> = 73 · 8753 · C165
C165 = P39 · P47 · P79
P39 = 473048713356314168354682550298167494871<39>
P47 = 36110938960348331268870320405592134697102786337<47>
P79 = 7329351527850956899400617896031539095927171138622765905330195821735845789339911<79>
Number: n N=125201692100868743241064902992163939095636877532399850383977939461851826927440924364092780713931348782178791146362343087066821708095384909127046852038205296344580097 ( 165 digits) SNFS difficulty: 170 digits. Divisors found: Sat Jun 14 02:35:32 2008 prp39 factor: 473048713356314168354682550298167494871 Sat Jun 14 02:35:32 2008 prp47 factor: 36110938960348331268870320405592134697102786337 Sat Jun 14 02:35:32 2008 prp79 factor: 7329351527850956899400617896031539095927171138622765905330195821735845789339911 Sat Jun 14 02:35:32 2008 elapsed time 02:21:24 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 105.41 hours. Scaled time: 88.65 units (timescale=0.841). Factorization parameters were as follows: name: KA_7_9_168_3 n: 125201692100868743241064902992163939095636877532399850383977939461851826927440924364092780713931348782178791146362343087066821708095384909127046852038205296344580097 skew: 1.54 deg: 5 c5: 4 c0: -35 m: 10000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4500163) Primes: RFBsize:230209, AFBsize:230217, largePrimes:7834629 encountered Relations: rels:7288384, finalFF:441299 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 105.03 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 105.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
(4·10168+23)/9 = (4)1677<168> = 34 · 1265197 · C160
C160 = P79 · P82
P79 = 1058672780199082273664589389440212686058586452944274704237975222290582762325807<79>
P82 = 4096496258940085111741497387505341221216333433858971073571460415594977424825412453<82>
Number: n N=4336849083527239547972258343025079717439059867917162838793986325132038379037038505060451811007624025646486151026521390158802326996657968801408094232028341074571 ( 160 digits) SNFS difficulty: 168 digits. Divisors found: Fri Jun 13 23:45:43 2008 prp79 factor: 1058672780199082273664589389440212686058586452944274704237975222290582762325807 Fri Jun 13 23:45:43 2008 prp82 factor: 4096496258940085111741497387505341221216333433858971073571460415594977424825412453 Fri Jun 13 23:45:43 2008 elapsed time 02:28:18 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 70.39 hours. Scaled time: 101.99 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_167_7 n: 4336849083527239547972258343025079717439059867917162838793986325132038379037038505060451811007624025646486151026521390158802326996657968801408094232028341074571 skew: 0.71 deg: 5 c5: 125 c0: 23 m: 2000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500269) Primes: RFBsize:250150, AFBsize:250086, largePrimes:7571750 encountered Relations: rels:7011455, finalFF:533831 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 70.12 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 70.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
(19·10143+71)/9 = 2(1)1429<144> = 32 · 211 · C141
C141 = P63 · P78
P63 = 773537122612256721050443498792233896398463284176095668716900509<63>
P78 = 143715948709430888732671112113368641464136741032198092002947921700020431129809<78>
Number: 21119_143 N=111169621438183839447662512433444502954771517172780995845766777836288104850506114329179100111169621438183839447662512433444502954771517172781 ( 141 digits) SNFS difficulty: 144 digits. Divisors found: r1=773537122612256721050443498792233896398463284176095668716900509 (pp63) r2=143715948709430888732671112113368641464136741032198092002947921700020431129809 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 22.98 hours. Scaled time: 46.18 units (timescale=2.010). Factorization parameters were as follows: name: 21119_143 n: 111169621438183839447662512433444502954771517172780995845766777836288104850506114329179100111169621438183839447662512433444502954771517172781 m: 10000000000000000000000000000 c5: 19000 c0: 71 skew: 0.33 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3350001) Primes: RFBsize:100021, AFBsize:99934, largePrimes:3035935 encountered Relations: rels:3122816, finalFF:265596 Max relations in full relation-set: 28 Initial matrix: 200022 x 265596 with sparse part having weight 33581023. Pruned matrix : 184436 x 185500 with weight 22513251. Total sieving time: 22.36 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.38 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 22.98 hours. --------- CPU info (if available) ----------
(19·10144+71)/9 = 2(1)1439<145> = 1999 · 4507 · C138
C138 = P60 · P78
P60 = 279576733790481204623483289144205990927420007608424299189687<60>
P78 = 838126770218144510957697953206157504729388016127259238924760043036739444411909<78>
Number: 21119_144 N=234320744919953998644664146041415550365721035702132307679367874653003350034359437441275675680208765477825568110337741658838195568952782483 ( 138 digits) SNFS difficulty: 146 digits. Divisors found: r1=279576733790481204623483289144205990927420007608424299189687 (pp60) r2=838126770218144510957697953206157504729388016127259238924760043036739444411909 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 24.32 hours. Scaled time: 48.56 units (timescale=1.997). Factorization parameters were as follows: name: 21119_144 n: 234320744919953998644664146041415550365721035702132307679367874653003350034359437441275675680208765477825568110337741658838195568952782483 m: 100000000000000000000000000000 c5: 19 c0: 710 skew: 2.06 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3450001) Primes: RFBsize:114155, AFBsize:114373, largePrimes:2976517 encountered Relations: rels:3009909, finalFF:285451 Max relations in full relation-set: 28 Initial matrix: 228593 x 285451 with sparse part having weight 32777468. Pruned matrix : 212266 x 213472 with weight 22989071. Total sieving time: 23.51 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.56 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 24.32 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(19·10141+71)/9 = 2(1)1409<142> = 13 · 29 · 347 · 941 · 8111 · 16967418035004781<17> · C114
C114 = P48 · P66
P48 = 650231791063999630808600501041274974102363870523<48>
P66 = 191642700766968311023323590286528352074786023369003402963652968777<66>
Number: 21119_141 N=124612176564047940613189812872850872746123053929396105024813316924095670437315190625530573100811253768993389660371 ( 114 digits) SNFS difficulty: 142 digits. Divisors found: r1=650231791063999630808600501041274974102363870523 (pp48) r2=191642700766968311023323590286528352074786023369003402963652968777 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.56 hours. Scaled time: 37.06 units (timescale=1.997). Factorization parameters were as follows: name: 21119_141 n: 124612176564047940613189812872850872746123053929396105024813316924095670437315190625530573100811253768993389660371 m: 10000000000000000000000000000 c5: 190 c0: 71 skew: 0.82 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2750001) Primes: RFBsize:100021, AFBsize:100044, largePrimes:2926502 encountered Relations: rels:2964235, finalFF:258827 Max relations in full relation-set: 28 Initial matrix: 200132 x 258827 with sparse part having weight 31021926. Pruned matrix : 185082 x 186146 with weight 20907215. Total sieving time: 17.93 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.41 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 18.56 hours. --------- CPU info (if available) ----------
(19·10132+71)/9 = 2(1)1319<133> = 5750351 · 3070993112983<13> · 345044156871461<15> · C99
C99 = P32 · P68
P32 = 24188464339752121280456516669389<32>
P68 = 14323690221972322118217528148496229598451511026018742414164385860167<68>
Msieve v. 1.36 Wed Jun 11 20:43:23 2008 random seeds: 525b3299 f77d553e factoring 3464680701478336600321379322542504153075346018260327430665746703964294 14515780339704184084723327963 (99 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (99-digit input) using multiplier of 1 using 64kb Pentium 4 sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 2608121 (95294 primes) using large prime bound of 391218150 (28 bits) using double large prime bound of 2926537886090700 (43-52 bits) using trial factoring cutoff of 52 bits polynomial 'A' values have 13 factors sieving in progress (press Ctrl-C to pause) 95438 relations (21959 full + 73479 combined from 1457579 partial), need 95390 95438 relations (21959 full + 73479 combined from 1457579 partial), need 95390 sieving complete, commencing postprocessing begin with 1479538 relations reduce to 254860 relations in 12 passes attempting to read 254860 relations recovered 254860 relations recovered 246051 polynomials attempting to build 95438 cycles found 95438 cycles in 6 passes distribution of cycle lengths: length 1 : 21959 length 2 : 16209 length 3 : 15947 length 4 : 12888 length 5 : 10074 length 6 : 6948 length 7 : 4671 length 9+: 6742 largest cycle: 22 relations matrix is 95294 x 95438 (26.0 MB) with weight 6442385 (67.50/col) sparse part has weight 6442385 (67.50/col) filtering completed in 3 passes matrix is 91866 x 91930 (25.2 MB) with weight 6238098 (67.86/col) sparse part has weight 6238098 (67.86/col) saving the first 48 matrix rows for later matrix is 91818 x 91930 (14.9 MB) with weight 4870259 (52.98/col) sparse part has weight 3352459 (36.47/col) matrix includes 64 packed rows using block size 21845 for processor cache size 512 kB commencing Lanczos iteration memory use: 14.9 MB linear algebra completed 88334 out of 91930 dimensions (96.1%) lanczos halted after 1453 iterations (dim = 91814) recovered 14 nontrivial dependencies prp32 factor: 24188464339752121280456516669389 prp68 factor: 143236902219723221182175281484962295984515110260187424141643858601 67 elapsed time 17:08:08
(19·10142+71)/9 = 2(1)1419<143> = 7 · 97 · 2348733871051<13> · C128
C128 = P32 · P47 · P50
P32 = 16065327225299271269093343103523<32>
P47 = 35702000102923126067043311456968363449168793523<47>
P50 = 23079446206702040089175443834158184126317648059459<50>
Number: 21119_142 N=13237546736842859505402038877708992687784678505751658372756797808700605511230085366853429133351356265970701486042520921806832811 ( 128 digits) SNFS difficulty: 143 digits. Divisors found: r1=16065327225299271269093343103523 (pp32) r2=35702000102923126067043311456968363449168793523 (pp47) r3=23079446206702040089175443834158184126317648059459 (pp50) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.07 hours. Scaled time: 34.10 units (timescale=1.997). Factorization parameters were as follows: name: 21119_142 n: 13237546736842859505402038877708992687784678505751658372756797808700605511230085366853429133351356265970701486042520921806832811 m: 10000000000000000000000000000 c5: 1900 c0: 71 skew: 0.52 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2550001) Primes: RFBsize:100021, AFBsize:100279, largePrimes:2828872 encountered Relations: rels:2812879, finalFF:226712 Max relations in full relation-set: 28 Initial matrix: 200367 x 226712 with sparse part having weight 25694109. Pruned matrix : 193388 x 194453 with weight 20533623. Total sieving time: 16.39 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.49 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.07 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(19·10137+71)/9 = 2(1)1369<138> = 3 · 17 · 53 · 760317572544031769<18> · 6801356722860337047229446691<28> · C89
C89 = P37 · P52
P37 = 4250715591941833113363929326424495917<37>
P52 = 3553140787460875292162304042118460409815632172652911<52>
Msieve v. 1.36 Wed Jun 11 06:15:26 2008 random seeds: 842cce61 e20be948 factoring 1510339094562442555697562556990930700341045654578517230076181491079231 5112232985777664387 (89 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (89-digit input) using multiplier of 3 using 64kb Pentium 4 sieve core sieve interval: 14 blocks of size 65536 processing polynomials in batches of 8 using a sieve bound of 1533041 (58333 primes) using large prime bound of 122643280 (26 bits) using double large prime bound of 362709283500240 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors sieving in progress (press Ctrl-C to pause) 58569 relations (15723 full + 42846 combined from 617873 partial), need 58429 58569 relations (15723 full + 42846 combined from 617873 partial), need 58429 sieving complete, commencing postprocessing begin with 633596 relations reduce to 142553 relations in 9 passes attempting to read 142553 relations recovered 142553 relations recovered 122273 polynomials attempting to build 58569 cycles found 58569 cycles in 5 passes distribution of cycle lengths: length 1 : 15723 length 2 : 10979 length 3 : 10473 length 4 : 7863 length 5 : 5457 length 6 : 3524 length 7 : 2049 length 9+: 2501 largest cycle: 19 relations matrix is 58333 x 58569 (14.2 MB) with weight 3487711 (59.55/col) sparse part has weight 3487711 (59.55/col) filtering completed in 3 passes matrix is 54502 x 54566 (13.3 MB) with weight 3275180 (60.02/col) sparse part has weight 3275180 (60.02/col) saving the first 48 matrix rows for later matrix is 54454 x 54566 (9.3 MB) with weight 2650970 (48.58/col) sparse part has weight 2107434 (38.62/col) matrix includes 64 packed rows using block size 21826 for processor cache size 512 kB commencing Lanczos iteration memory use: 8.6 MB lanczos halted after 863 iterations (dim = 54450) recovered 15 nontrivial dependencies prp37 factor: 4250715591941833113363929326424495917 prp52 factor: 3553140787460875292162304042118460409815632172652911 elapsed time 01:41:49
(19·10136+71)/9 = 2(1)1359<137> = 7 · 151 · 5652617 · 847338798749<12> · 16543089495237673789393867<26> · C90
C90 = P42 · P49
P42 = 133603222497974916207566236359895495592119<42>
P49 = 1886669803486077342881805363901015169384078657663<49>
Msieve v. 1.36 Wed Jun 11 08:06:37 2008 random seeds: 96543fac dba2f462 factoring 2520651655353610024525327841485970561287114260186228248857235222627385 01167092198881757897 (90 digits) no P-1/P+1/ECM available, skipping commencing quadratic sieve (90-digit input) using multiplier of 17 using 64kb Pentium 4 sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 1575269 (59429 primes) using large prime bound of 126021520 (26 bits) using double large prime bound of 380890718607520 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 12 factors sieving in progress (press Ctrl-C to pause) 59947 relations (16155 full + 43792 combined from 629724 partial), need 59525 59947 relations (16155 full + 43792 combined from 629724 partial), need 59525 sieving complete, commencing postprocessing begin with 645879 relations reduce to 144865 relations in 10 passes attempting to read 144865 relations recovered 144865 relations recovered 123874 polynomials attempting to build 59947 cycles found 59947 cycles in 5 passes distribution of cycle lengths: length 1 : 16155 length 2 : 11799 length 3 : 10594 length 4 : 7866 length 5 : 5532 length 6 : 3513 length 7 : 2054 length 9+: 2434 largest cycle: 17 relations matrix is 59429 x 59947 (14.3 MB) with weight 3521971 (58.75/col) sparse part has weight 3521971 (58.75/col) filtering completed in 3 passes matrix is 55467 x 55530 (13.3 MB) with weight 3266995 (58.83/col) sparse part has weight 3266995 (58.83/col) saving the first 48 matrix rows for later matrix is 55419 x 55530 (8.1 MB) with weight 2513840 (45.27/col) sparse part has weight 1789178 (32.22/col) matrix includes 64 packed rows using block size 21845 for processor cache size 512 kB commencing Lanczos iteration memory use: 8.1 MB lanczos halted after 878 iterations (dim = 55419) recovered 18 nontrivial dependencies prp42 factor: 133603222497974916207566236359895495592119 prp49 factor: 1886669803486077342881805363901015169384078657663 elapsed time 02:05:15
(19·10112+71)/9 = 2(1)1119<113> = 7 · 565391 · C106
C106 = P45 · P62
P45 = 192943753209624529109523104943977732198649113<45>
P62 = 27646072217246202886997945868549461853782928111418179513056399<62>
Number: 21119_112 N=5334136935099808580284923205132405491095318135366526656801882265322610145927107109722326448450493580324087 ( 106 digits) SNFS difficulty: 113 digits. Divisors found: r1=192943753209624529109523104943977732198649113 (pp45) r2=27646072217246202886997945868549461853782928111418179513056399 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.53 hours. Scaled time: 1.72 units (timescale=0.677). Factorization parameters were as follows: name: 21119_112 n: 5334136935099808580284923205132405491095318135366526656801882265322610145927107109722326448450493580324087 m: 10000000000000000000000 c5: 1900 c0: 71 skew: 0.52 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64189, largePrimes:2361199 encountered Relations: rels:2768899, finalFF:523002 Max relations in full relation-set: 28 Initial matrix: 113354 x 523002 with sparse part having weight 43837723. Pruned matrix : 64947 x 65577 with weight 6285656. Total sieving time: 2.33 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.53 hours. --------- CPU info (if available) ----------
(19·10134+71)/9 = 2(1)1339<135> = 33 · 457257134670580393<18> · C116
C116 = P38 · P79
P38 = 10698206939899017923623609042878690937<38>
P79 = 1598364563201131516546710489349534778051921624547529288544666400228846159595517<79>
Number: 21119_134 N=17099634862527007633774249557468016889650724451448309765314701595321185322430397101421106833371432310268550373729429 ( 116 digits) SNFS difficulty: 136 digits. Divisors found: r1=10698206939899017923623609042878690937 (pp38) r2=1598364563201131516546710489349534778051921624547529288544666400228846159595517 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.94 hours. Scaled time: 19.86 units (timescale=1.997). Factorization parameters were as follows: name: 21119_134 n: 17099634862527007633774249557468016889650724451448309765314701595321185322430397101421106833371432310268550373729429 m: 1000000000000000000000000000 c5: 19 c0: 710 skew: 2.06 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:64144, largePrimes:1647026 encountered Relations: rels:1684261, finalFF:198191 Max relations in full relation-set: 28 Initial matrix: 142707 x 198191 with sparse part having weight 19597404. Pruned matrix : 128343 x 129120 with weight 11138560. Total sieving time: 9.69 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 9.94 hours. --------- CPU info (if available) ----------
(19·10114+71)/9 = 2(1)1139<115> = 73 · 691 · C110
C110 = P46 · P64
P46 = 8668069487682906600652956127049454670277290771<46>
P64 = 4828228328398470071417068118715193261966974633062620905686001823<64>
Number: 21119_114 N=41851418652957022998455902922330375098846442739549810897668875981030293818986006207226198106994253139407075533 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=8668069487682906600652956127049454670277290771 (pp46) r2=4828228328398470071417068118715193261966974633062620905686001823 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.38 hours. Scaled time: 1.62 units (timescale=0.678). Factorization parameters were as follows: name: 21119_114 n: 41851418652957022998455902922330375098846442739549810897668875981030293818986006207226198106994253139407075533 m: 100000000000000000000000 c5: 19 c0: 710 skew: 2.06 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64144, largePrimes:2134265 encountered Relations: rels:2237799, finalFF:245661 Max relations in full relation-set: 28 Initial matrix: 113307 x 245661 with sparse part having weight 20999251. Pruned matrix : 83577 x 84207 with weight 4754404. Total sieving time: 2.17 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.38 hours. --------- CPU info (if available) ----------
(19·10124+71)/9 = 2(1)1239<125> = 7 · 23 · 53 · 545437 · 2033243 · 384102041 · C100
C100 = P40 · P61
P40 = 1253918638360010980630156828555485474091<40>
P61 = 4631903386600872960769452069902828289819525693679554924387983<61>
Number: 21119_124 N=5808029987541690152973383463236766090906255370289806657893139849685671618439794418005456394778248453 ( 100 digits) SNFS difficulty: 126 digits. Divisors found: r1=1253918638360010980630156828555485474091 (pp40) r2=4631903386600872960769452069902828289819525693679554924387983 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 4.21 hours. Scaled time: 2.85 units (timescale=0.678). Factorization parameters were as follows: name: 21119_124 n: 5808029987541690152973383463236766090906255370289806657893139849685671618439794418005456394778248453 m: 10000000000000000000000000 c5: 19 c0: 710 skew: 2.06 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:64144, largePrimes:2250891 encountered Relations: rels:2388831, finalFF:237058 Max relations in full relation-set: 28 Initial matrix: 113307 x 237058 with sparse part having weight 23832349. Pruned matrix : 93307 x 93937 with weight 7260611. Total sieving time: 3.90 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.21 hours. --------- CPU info (if available) ----------
(19·10138+71)/9 = 2(1)1379<139> = 73 · 997 · 195919 · 66563467303261<14> · C115
C115 = P34 · P82
P34 = 1603870692511431841860591622009493<34>
P82 = 1386791687162605489137851193896744499618556517677168287616017596826355620762034277<82>
Number: 21119_138 N=2224234543658585009229052576859222565158549335853153762487314124689686259971732751014408988258302505370921285391561 ( 115 digits) SNFS difficulty: 139 digits. Divisors found: r1=1603870692511431841860591622009493 (pp34) r2=1386791687162605489137851193896744499618556517677168287616017596826355620762034277 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.15 hours. Scaled time: 34.34 units (timescale=2.003). Factorization parameters were as follows: name: 21119_138 n: 2224234543658585009229052576859222565158549335853153762487314124689686259971732751014408988258302505370921285391561 m: 1000000000000000000000000000 c5: 19000 c0: 71 skew: 0.33 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2725001) Primes: RFBsize:78498, AFBsize:63999, largePrimes:1750118 encountered Relations: rels:1816378, finalFF:175667 Max relations in full relation-set: 28 Initial matrix: 142564 x 175667 with sparse part having weight 21332623. Pruned matrix : 135273 x 136049 with weight 15303043. Total sieving time: 16.81 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.18 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 17.15 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS
(19·10102+71)/9 = 2(1)1019<103> = 23 · 47 · 101611 · 763513 · 100996333 · C81
C81 = P30 · P51
P30 = 980156943101230219900359753653<30>
P51 = 254288669710884780374892372181242723179308431072557<51>
(19·10108+71)/9 = 2(1)1079<109> = 8243 · 19120670782441660997<20> · C86
C86 = P36 · P50
P36 = 450603619990888308306431347840461433<36>
P50 = 29725419435685684489852635686211058845046578616633<50>
Number: n N=13394381603467477755945469483667385640135036286832826097295226247555419210533528815089 ( 86 digits) SNFS difficulty: 109 digits. Divisors found: r1=450603619990888308306431347840461433 (pp36) r2=29725419435685684489852635686211058845046578616633 (pp50) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.73 hours. Scaled time: 1.33 units (timescale=1.818). Factorization parameters were as follows: name: KA_2_1_107_9 n: 13394381603467477755945469483667385640135036286832826097295226247555419210533528815089 skew: 0.33 deg: 5 c5: 19000 c0: 71 m: 1000000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 180001) Primes: RFBsize:41538, AFBsize:41668, largePrimes:3476528 encountered Relations: rels:2873720, finalFF:99266 Max relations in full relation-set: 48 Initial matrix: 83273 x 99266 with sparse part having weight 7851229. Pruned matrix : 77272 x 77752 with weight 4272405. Total sieving time: 0.63 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Total square root time: 0.03 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.5,2.5,50000 total time: 0.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10125+71)/9 = 2(1)1249<126> = 32 · 107 · C123
C123 = P34 · P90
P34 = 1413942013724739012664646934719861<34>
P90 = 155043371987302231298493040834790288681640158330016874349793071994628235823840962820138833<90>
(86·10193+31)/9 = 9(5)1929<194> = 3 · 11 · 2699 · 46103930161<11> · 8491960607515969<16> · 193493468565567926104105693906747<33> · C131
C131 = P41 · P90
P41 = 14340220886360533482512595413716049258071<41>
P90 = 987577181992017289168545019941442943274336687209294613113211426445489576560981167267446169<90>
(19·10126+71)/9 = 2(1)1259<127> = 422096513 · 5145216763<10> · 3313220862453003712927<22> · C87
C87 = P37 · P50
P37 = 5784939440621316381615971654557277699<37>
P50 = 50716169772551226915531892187055375653717528087137<50>
Number: n N=293389970794478209096552836142598741462779930913674529100775827845706558862965578857763 ( 87 digits) SNFS difficulty: 127 digits. Divisors found: r1=5784939440621316381615971654557277699 (pp37) r2=50716169772551226915531892187055375653717528087137 (pp50) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.33 hours. Scaled time: 4.27 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_125_9 n: 293389970794478209096552836142598741462779930913674529100775827845706558862965578857763 skew: 0.82 deg: 5 c5: 190 c0: 71 m: 10000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:78498, AFBsize:78712, largePrimes:5072487 encountered Relations: rels:4367200, finalFF:184214 Max relations in full relation-set: 48 Initial matrix: 157277 x 184214 with sparse part having weight 17282688. Pruned matrix : 146383 x 147233 with weight 10383105. Total sieving time: 2.11 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.33 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
The factor table of 211...119 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By matsui
8·10171-3 = 7(9)1707<172> = 11 · 26691667 · C164
C164 = P57 · P108
P57 = 161588169710480273544767312890977071902081766318608100651<57>
P108 = 168621148114846076028702461887800700665968272691501216143530445055605532067216607241423609435786388774673031<108>
055605532067216607241423609435786388774673031 results=N=27247182698357778580381387467209420555384297551469051098504740347342384899649494625896811642647599614993221394799834992423937880210806139336567953109587620463243181 ( 164 digits) SNFS difficulty: 172 digits. Divisors found: r1=161588169710480273544767312890977071902081766318608100651 (pp57) r2=168621148114846076028702461887800700665968272691501216143530445055605532067216607241423609435786388774673031 (pp108) Version: GGNFS-0.77.1-20060513-prescott Total time: 109.34 hours. Scaled time: 185.99 units (timescale=1.701). Factorization parameters were as follows: n: 27247182698357778580381387467209420555384297551469051098504740347342384899649494625896811642647599614993221394799834992423937880210806139336567953109587620463243181 m: 20000000000000000000000000000000000 c5: 5 c0: -6 skew: 1.04 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7100001) Primes: RFBsize:412849, AFBsize:411941, largePrimes:6008728 encountered Relations: rels:6280371, finalFF:935359 Max relations in full relation-set: 28 Initial matrix: 824855 x 935359 with sparse part having weight 54634880. Pruned matrix : 732551 x 736739 with weight 40305644. Total sieving time: 100.86 hours. Total relation processing time: 0.17 hours. Matrix solve time: 8.11 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 109.34 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(19·10167+53)/9 = 2(1)1667<168> = 31 · 320083 · 17760384342751<14> · C148
C148 = P52 · P96
P52 = 2570425101530933072476288537139463003096717765694241<52>
P96 = 466046740920626307089573465132231484958654650900514236799839493101275990757147969483111772494719<96>
Number: n N=1197938241349061336458522844018218127092204612969583280105998588522712770492267602126630070931892286913675016319536632794797252743959696031541213279 ( 148 digits) SNFS difficulty: 168 digits. Divisors found: Tue Jun 10 16:41:52 2008 prp52 factor: 2570425101530933072476288537139463003096717765694241 Tue Jun 10 16:41:52 2008 prp96 factor: 466046740920626307089573465132231484958654650900514236799839493101275990757147969483111772494719 Tue Jun 10 16:41:52 2008 elapsed time 03:13:45 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 114.73 hours. Scaled time: 199.06 units (timescale=1.735). Factorization parameters were as follows: name: KA_2_1_166_7 n: 1197938241349061336458522844018218127092204612969583280105998588522712770492267602126630070931892286913675016319536632794797252743959696031541213279 type: snfs skew: 0.49 deg: 5 c5: 1900 c0: 53 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5300001) Primes: RFBsize:230209, AFBsize:229847, largePrimes:7977913 encountered Relations: rels:7375544, finalFF:472087 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 114.37 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 114.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(17·10168-53)/9 = 1(8)1673<169> = 3371 · 48487 · 520151 · C155
C155 = P39 · P117
P39 = 149492575450278766064355105465537861991<39>
P117 = 148618640254097296463041504915115243088101259415265146325211387004955010597261896312036315375075730295290862505541119<117>
By Robert Backstrom / GGNFS, Msieve
(19·10167+17)/9 = 2(1)1663<168> = 33 · 7 · 12719167273<11> · C155
C155 = P72 · P84
P72 = 331020430061825622240821487692762096553201092980731173026412142307290539<72>
P84 = 265299120281487299747115556364341636867465798157268399080428918610074877812977268511<84>
Number: n N=87819428890601930193174578949148272157511969157371746212193242682491669105644340286172556451630474536351991658958191443143132235435038495193586597492917429 ( 155 digits) SNFS difficulty: 168 digits. Divisors found: Mon Jun 09 13:43:34 2008 prp72 factor: 331020430061825622240821487692762096553201092980731173026412142307290539 Mon Jun 09 13:43:34 2008 prp84 factor: 265299120281487299747115556364341636867465798157268399080428918610074877812977268511 Mon Jun 09 13:43:34 2008 elapsed time 02:21:05 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 86.64 hours. Scaled time: 125.88 units (timescale=1.453). Factorization parameters were as follows: name: KA_2_1_166_3 n: 87819428890601930193174578949148272157511969157371746212193242682491669105644340286172556451630474536351991658958191443143132235435038495193586597492917429 skew: 0.39 deg: 5 c5: 1900 c0: 17 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4400001) Primes: RFBsize:250150, AFBsize:249376, largePrimes:7844574 encountered Relations: rels:7268414, finalFF:533461 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 86.33 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 86.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By matsui / GGNFS
8·10170-3 = 7(9)1697<171> = 19 · 283 · 313 · 12939739 · C158
C158 = P79 · P80
P79 = 1329287407066634342417708533382270111835295739849982262342044058728813534610871<79>
P80 = 27635110530649598980061095653778265322075333231930656337853079914922096864534713<80>
N=36735004421287046871645786893404694611759911810832769307831335234685028075163714623640129986468296706960744230461691070339391812014777047625593680940926665023 ( 158 digits) SNFS difficulty: 170 digits. Divisors found: r1=1329287407066634342417708533382270111835295739849982262342044058728813534610871 (pp79) r2=27635110530649598980061095653778265322075333231930656337853079914922096864534713 (pp80) Version: GGNFS-0.77.1-20060513-prescott Total time: 108.76 hours. Scaled time: 123.12 units (timescale=1.132). Factorization parameters were as follows: n: 36735004421287046871645786893404694611759911810832769307831335234685028075163714623640129986468296706960744230461691070339391812014777047625593680940926665023 m: 10000000000000000000000000000000000 c5: 8 c0: -3 skew: 0.82 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6800001) Primes: RFBsize:412849, AFBsize:412856, largePrimes:5993930 encountered Relations: rels:6267516, finalFF:937691 Max relations in full relation-set: 28 Initial matrix: 825770 x 937691 with sparse part having weight 51657631. Pruned matrix : 732164 x 736356 with weight 37657512. Total sieving time: 100.31 hours. Total relation processing time: 0.18 hours. Matrix solve time: 7.99 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 108.76 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(19·10171+53)/9 = 2(1)1707<172> = 29 · 73 · C168
C168 = P78 · P91
P78 = 168661868577202193078498353096651456486993533110668327480176859986366715725113<78>
P91 = 5912529573202205892596710183074556787793902601590008372374823072400078491492372186687664177<91>
Number: n N=997218285834251823859759617907941006665616963207893770009972182858342518238597596179079410066656169632078937700099721828583425182385975961790794100666561696320789377001 ( 168 digits) SNFS difficulty: 172 digits. Divisors found: Sat Jun 07 11:15:53 2008 prp78 factor: 168661868577202193078498353096651456486993533110668327480176859986366715725113 Sat Jun 07 11:15:53 2008 prp91 factor: 5912529573202205892596710183074556787793902601590008372374823072400078491492372186687664177 Sat Jun 07 11:15:53 2008 elapsed time 01:54:10 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 62.34 hours. Scaled time: 114.01 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_170_7 n: 997218285834251823859759617907941006665616963207893770009972182858342518238597596179079410066656169632078937700099721828583425182385975961790794100666561696320789377001 skew: 0.77 deg: 5 c5: 190 c0: 53 m: 10000000000000000000000000000000000 type: snfs rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 8399990) Primes: RFBsize:269987, AFBsize:270102, largePrimes:8759196 encountered Relations: rels:8275802, finalFF:614142 Max relations in full relation-set: 28 Initial matrix: 540156 x 614142 with sparse part having weight 104508632. Pruned matrix : Total sieving time: 62.04 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,48,48,2.5,2.5,100000 total time: 62.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(52·10166-7)/9 = 5(7)166<167> = 3 · 8537 · 255757 · 525541 · 542555873 · C143
C143 = P39 · P105
P39 = 194347402850767085232324193773663394853<39>
P105 = 159175768603678496522767736976312094223274142566031220136596573878529488740968790595578468802481799156919<105>
Number: n N=30935397224899588137032400403776143825219089737083473114490349480239274430387787920586369380476002430395991417734593542513905288852266803937907 ( 143 digits) SNFS difficulty: 168 digits. Divisors found: Sat Jun 07 21:27:14 2008 prp39 factor: 194347402850767085232324193773663394853 Sat Jun 07 21:27:14 2008 prp105 factor: 159175768603678496522767736976312094223274142566031220136596573878529488740968790595578468802481799156919 Sat Jun 07 21:27:14 2008 elapsed time 02:26:22 (Msieve 1.36) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 117.71 hours. Scaled time: 154.31 units (timescale=1.311). Factorization parameters were as follows: name: KA_5_7_166 n: 30935397224899588137032400403776143825219089737083473114490349480239274430387787920586369380476002430395991417734593542513905288852266803937907 skew: 0.84 deg: 5 c5: 65 c0: -28 m: 2000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4300573) Primes: RFBsize:216816, AFBsize:217161, largePrimes:7714153 encountered Relations: rels:7106257, finalFF:456914 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 117.23 hours. Total relation processing time: 0.48 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 117.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(82·10196-1)/9 = 9(1)196<197> = 6529 · 2016943147<10> · 4747717717776043<16> · 52903728369300534371<20> · 7068156580783016438441<22> · C127
C127 = P44 · P83
P44 = 81658001383391490714853549764552732910419977<44>
P83 = 47725989393250425685698093318853962668514004436283556924989693866905105524709738757<83>
By matsui / GGNFS
6·10171+7 = 6(0)1707<172> = 71 · 59218811 · C163
C163 = P33 · P130
P33 = 474552042132264250970127542339833<33>
P130 = 3007110393444661684023615721112945500024818563987365700417287479523557838981587406237779335223878760263992906197715985864050125259<130>
N=1427030378126320819926009326355609214191592305614026387757663739937321748163843163823614696626347803048833326070026186799440477847153697330073801556443529595141747 ( 163 digits) SNFS difficulty: 171 digits. Divisors found: r1=474552042132264250970127542339833 (pp33) r2=3007110393444661684023615721112945500024818563987365700417287479523557838981587406237779335223878760263992906197715985864050125259 (pp130) Version: GGNFS-0.77.1-20060513-prescott Total time: 263.39 hours. Scaled time: 447.23 units (timescale=1.698). Factorization parameters were as follows: n: 1427030378126320819926009326355609214191592305614026387757663739937321748163843163823614696626347803048833326070026186799440477847153697330073801556443529595141747 m: 10000000000000000000000000000000000 c5: 60 c0: 7 skew: 0.65 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9100001) Primes: RFBsize:412849, AFBsize:413211, largePrimes:6243772 encountered Relations: rels:6522967, finalFF:932713 Max relations in full relation-set: 28 Initial matrix: 826127 x 932713 with sparse part having weight 72156280. Pruned matrix : 744394 x 748588 with weight 56055920. Total sieving time: 252.14 hours. Total relation processing time: 0.27 hours. Matrix solve time: 10.74 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 263.39 hours.
By Robert Backstrom / GGNFS, Msieve
(19·10153+53)/9 = 2(1)1527<154> = 1879 · 18211 · 657339007961513351528016261555491<33> · C113
C113 = P41 · P73
P41 = 49440282722308466810657310201766051159457<41>
P73 = 1898366959062654878216846059729855418347441491497031988617483026838153539<73>
Number: n N=93855799166746640492272622125497718479246182956099212617130611814947101236895121008505256986359336706235937868323 ( 113 digits) Divisors found: Thu Jun 5 01:27:19 2008 prp41 factor: 49440282722308466810657310201766051159457 Thu Jun 5 01:27:19 2008 prp73 factor: 1898366959062654878216846059729855418347441491497031988617483026838153539 Thu Jun 5 01:27:19 2008 elapsed time 00:54:53 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.54 hours. Scaled time: 21.33 units (timescale=0.835). Factorization parameters were as follows: name: KA_2_1_152_7 n: 93855799166746640492272622125497718479246182956099212617130611814947101236895121008505256986359336706235937868323 skew: 11116.69 # norm 1.92e+15 c5: 103440 c4: 11953367872 c3: 15928492693912 c2: -722423903459076173 c1: 1332711082941591543402 c0: -5152737654335827118703105 # alpha -5.25 Y1: 725795780941 Y0: -3904385166972887532266 # Murphy_E 6.57e-10 # M 41592232628683845462355480330603808426187404799596563145996588259114680645002794406922771259457385042957096841561 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1600097) Primes: RFBsize:250150, AFBsize:250146, largePrimes:6949358 encountered Relations: rels:6614567, finalFF:545217 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 25.35 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 25.54 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(4·10166-7)/3 = 1(3)1651<167> = 29 · 53 · 277 · 617 · 5838767041<10> · 7353513077<10> · C139
C139 = P54 · P85
P54 = 192731134450942355826572331465468888732090323885616437<54>
P85 = 6133834322965081225387775111756706302035506281288803413842786108108282065805336181223<85>
Number: n N=1182180847599188046818857534724658900852626590739814972842019783607392083840022685023727597960406156943676045299525683368653969430899562451 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: Wed Jun 04 17:41:20 2008 prp54 factor: 192731134450942355826572331465468888732090323885616437 Wed Jun 04 17:41:20 2008 prp85 factor: 6133834322965081225387775111756706302035506281288803413842786108108282065805336181223 Wed Jun 04 17:41:20 2008 elapsed time 00:53:13 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.64 hours. Scaled time: 66.69 units (timescale=1.820). Factorization parameters were as follows: name: KA_1_3_165_1 n: 1182180847599188046818857534724658900852626590739814972842019783607392083840022685023727597960406156943676045299525683368653969430899562451 skew: 0.32 deg: 5 c5: 40 c0: -7 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500529) Primes: RFBsize:230209, AFBsize:229712, largePrimes:7212995 encountered Relations: rels:6635279, finalFF:484405 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 36.46 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 36.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(19·10143+53)/9 = 2(1)1427<144> = 29 · 642821741 · 4284759633206018989819201<25> · C109
C109 = P45 · P65
P45 = 113218888779812679914545263801430398846511411<45>
P65 = 23344102690036781800016467479390952616696847561433570010070708823<65>
Number: 21117_143 N=2642993366127800393414430806581459942303114996968280892797448071154662899280821918339828161151241489527879253 ( 109 digits) SNFS difficulty: 144 digits. Divisors found: r1=113218888779812679914545263801430398846511411 (pp45) r2=23344102690036781800016467479390952616696847561433570010070708823 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 29.34 hours. Scaled time: 19.86 units (timescale=0.677). Factorization parameters were as follows: name: 21117_143 n: 2642993366127800393414430806581459942303114996968280892797448071154662899280821918339828161151241489527879253 m: 10000000000000000000000000000 c5: 19000 c0: 53 skew: 0.31 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3550001) Primes: RFBsize:100021, AFBsize:100113, largePrimes:3009325 encountered Relations: rels:3070164, finalFF:227045 Max relations in full relation-set: 28 Initial matrix: 200201 x 227045 with sparse part having weight 29056454. Pruned matrix : 193665 x 194730 with weight 23731295. Total sieving time: 27.51 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.46 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 29.34 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
2·10169-1 = 1(9)169<170> = 9479 · 22528741 · C158
C158 = P47 · P112
P47 = 58898760265545578947543164298726379592443127301<47>
P112 = 1590099849864182210494369250009957128474833068460631622744916529265419584880420247201933949436069843089442684241<112>
N=93654909855430485828763065681998364104412095025723340870348581107002829762155361242962287920426721940792480679499437178241372396724687925920080647933909563541 ( 158 digits) SNFS difficulty: 170 digits. Divisors found: r1=58898760265545578947543164298726379592443127301 (pp47) r2=1590099849864182210494369250009957128474833068460631622744916529265419584880420247201933949436069843089442684241 (pp112) Version: GGNFS-0.77.1-20060513-prescott Total time: 177.49 hours. Scaled time: 151.40 units (timescale=0.853). Factorization parameters were as follows: n: 93654909855430485828763065681998364104412095025723340870348581107002829762155361242962287920426721940792480679499437178241372396724687925920080647933909563541 m: 10000000000000000000000000000000000 c5: 1 c0: -5 skew: 1.38 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6500001) Primes: RFBsize:412849, AFBsize:412271, largePrimes:5956885 encountered Relations: rels:6224596, finalFF:933623 Max relations in full relation-set: 28 Initial matrix: 825184 x 933623 with sparse part having weight 47674635. Pruned matrix : 733184 x 737373 with weight 34636533. Total sieving time: 165.67 hours. Total relation processing time: 0.23 hours. Matrix solve time: 11.27 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 177.49 hours.
GMP-ECM 6.2.1 has been released.
By Wataru Sakai / GGNFS
(10175+11)/3 = (3)1747<175> = 7 · 66593 · C169
C169 = P38 · P132
P38 = 31384625954292517272083270912284988437<38>
P132 = 227842725978933038527191595324104875211606210309617485656031157323032196340886078968896526888348315502943618148510280830511973874051<132>
Number: 33337_175 N=7150758731255179830855952970889976280933288426568501050803995557948676144282289072282014483146734284241229415647147240557959402282379171842028298412603069248662629348287 ( 169 digits) SNFS difficulty: 175 digits. Divisors found: r1=31384625954292517272083270912284988437 (pp38) r2=227842725978933038527191595324104875211606210309617485656031157323032196340886078968896526888348315502943618148510280830511973874051 (pp132) Version: GGNFS-0.77.1-20060722-nocona Total time: 176.55 hours. Scaled time: 353.46 units (timescale=2.002). Factorization parameters were as follows: n: 7150758731255179830855952970889976280933288426568501050803995557948676144282289072282014483146734284241229415647147240557959402282379171842028298412603069248662629348287 m: 100000000000000000000000000000000000 c5: 1 c0: 11 skew: 1.62 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9400001) Primes: RFBsize:501962, AFBsize:502027, largePrimes:6547456 encountered Relations: rels:7183440, finalFF:1298613 Max relations in full relation-set: 32 Initial matrix: 1004053 x 1298613 with sparse part having weight 71578861. Pruned matrix : 741890 x 746974 with weight 50609168. Total sieving time: 172.03 hours. Total relation processing time: 0.10 hours. Matrix solve time: 4.25 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 176.55 hours.
By Jo Yeong Uk / GGNFS
(19·10163+53)/9 = 2(1)1627<164> = 33 · 73 · 2689 · 10424563 · 923076685159<12> · 2946551431987<13> · 34825517084278748077301<23> · C103
C103 = P52 · P52
P52 = 1651232239649515659508639079209693572743461625197213<52>
P52 = 2442970742799471533588610599827101256283903212427009<52>
Number: 21117_163 N=4033912051031012261593993832795928814631065204377255803288434374957097404460879570195369709261992725917 ( 103 digits) Divisors found: r1=1651232239649515659508639079209693572743461625197213 (pp52) r2=2442970742799471533588610599827101256283903212427009 (pp52) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.38 hours. Scaled time: 12.75 units (timescale=2.370). Factorization parameters were as follows: name: 21117_163 n: 4033912051031012261593993832795928814631065204377255803288434374957097404460879570195369709261992725917 skew: 7340.12 # norm 1.81e+14 c5: 146160 c4: -398831628 c3: -29546363044896 c2: 15604863772449401 c1: 569711961235965527372 c0: 29241800285831870731743 # alpha -5.87 Y1: 45608002259 Y0: -30773715148705995392 # Murphy_E 2.35e-09 # M 3172093150204558832540147395143702792889572096330200074127881341980114758822844799745116817020563794105 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1680001) Primes: RFBsize:135072, AFBsize:135442, largePrimes:4395510 encountered Relations: rels:4347033, finalFF:334703 Max relations in full relation-set: 28 Initial matrix: 270597 x 334703 with sparse part having weight 27697377. Pruned matrix : 229725 x 231141 with weight 16357860. Polynomial selection time: 0.35 hours. Total sieving time: 4.66 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2440k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673811) Calibrating delay using timer specific routine.. 5214.21 BogoMIPS (lpj=2607107) Calibrating delay using timer specific routine.. 5344.19 BogoMIPS (lpj=2672095) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672350)
By Sinkiti Sibata / GGNFS
(19·10134+53)/9 = 2(1)1337<135> = 7 · 47 · 4597 · 8609 · C125
C125 = P43 · P82
P43 = 5403622215874456846832096554592058096621793<43>
P82 = 3000564753507592297355998545136918553987659979517034764910691658674627703147614257<82>
Number: 21117_134 N=16213918362223489302223535692633389562153429015595671952321814050862732998694287615956975520679013858527672865365139183702801 ( 125 digits) SNFS difficulty: 136 digits. Divisors found: r1=5403622215874456846832096554592058096621793 (pp43) r2=3000564753507592297355998545136918553987659979517034764910691658674627703147614257 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.54 hours. Scaled time: 20.86 units (timescale=1.979). Factorization parameters were as follows: name: 21117_134 n: 16213918362223489302223535692633389562153429015595671952321814050862732998694287615956975520679013858527672865365139183702801 m: 1000000000000000000000000000 c5: 19 c0: 530 skew: 1.95 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:64098, largePrimes:1614720 encountered Relations: rels:1625307, finalFF:171469 Max relations in full relation-set: 28 Initial matrix: 142661 x 171469 with sparse part having weight 16936085. Pruned matrix : 134817 x 135594 with weight 11860232. Total sieving time: 10.24 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.54 hours. --------- CPU info (if available) ----------
(19·10151+53)/9 = 2(1)1507<152> = 3 · 59 · 113 · 19777 · 496132729 · 255184099217<12> · C123
C123 = P35 · P39 · P50
P35 = 10802596959816835717153878679789093<35>
P39 = 510747305679292439904818708357078624189<39>
P50 = 76403494685203056879146028205246866036211171137461<50>
Number: 21117_151 N=421548434642298635067245499858189780855963517184294121673147892868581238049980895146232704403663085255385064268683122684997 ( 123 digits) SNFS difficulty: 152 digits. Divisors found: r1=10802596959816835717153878679789093 (pp35) r2=510747305679292439904818708357078624189 (pp39) r3=76403494685203056879146028205246866036211171137461 (pp50) Version: GGNFS-0.77.1-20060513-k8 Total time: 30.64 hours. Scaled time: 61.38 units (timescale=2.003). Factorization parameters were as follows: name: 21117_151 n: 421548434642298635067245499858189780855963517184294121673147892868581238049980895146232704403663085255385064268683122684997 m: 1000000000000000000000000000000 c5: 190 c0: 53 skew: 0.77 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176488, largePrimes:5745499 encountered Relations: rels:5739824, finalFF:530707 Max relations in full relation-set: 28 Initial matrix: 352857 x 530707 with sparse part having weight 50577699. Pruned matrix : 289862 x 291690 with weight 27680081. Total sieving time: 29.18 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.16 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.64 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(17·10185-53)/9 = 1(8)1843<186> = 33 · 31 · C183
C183 = P82 · P102
P82 = 1597997386322290245461276699108764584415883034598743632467843957463923933713820829<82>
P102 = 141222823208483395121283940637151729989074192145153563988529735450619888690572081943928291407031714371<102>
Number: n N=225673702376211336784813487322447895924598433559007035709544670118146820655781229257931766892340369042878003451480153989114562591265100225673702376211336784813487322447895924598433559 ( 183 digits) SNFS difficulty: 186 digits. Divisors found: Tue Jun 3 00:59:42 2008 prp82 factor: 1597997386322290245461276699108764584415883034598743632467843957463923933713820829 Tue Jun 3 00:59:42 2008 prp102 factor: 141222823208483395121283940637151729989074192145153563988529735450619888690572081943928291407031714371 Tue Jun 3 00:59:42 2008 elapsed time 03:01:31 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 96.19 hours. Scaled time: 80.61 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_8_184_3 n: 225673702376211336784813487322447895924598433559007035709544670118146820655781229257931766892340369042878003451480153989114562591265100225673702376211336784813487322447895924598433559 type: snfs deg: 5 c5: 17 c0: -53 skew: 1.26 m: 10000000000000000000000000000000000000 rlim: 7000000 alim: 7000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 13400077) Primes: RFBsize:476648, AFBsize:476034, largePrimes:6576115 encountered Relations: rels:6884940, finalFF:988009 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 95.96 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,48,48,2.5,2.5,100000 total time: 96.19 hours. --------- CPU info (if available) ----------
(19·10157+53)/9 = 2(1)1567<158> = 3 · 137 · 1669 · 2416956391<10> · C143
C143 = P43 · P100
P43 = 9327754593722757997158137149780069754362391<43>
P100 = 1365107984440039824790803736415625965715893749320105011201077904595167216578438035906087890833714123<100>
(19·10141+53)/9 = 2(1)1407<142> = 137 · 40690807 · C132
C132 = P41 · P92
P41 = 27198025104878136528579769327922885245327<41>
P92 = 13923770326764645462911775434681406383095756757842407468021553475546864212753687318351193869<92>
Number: n N=378699054901902081739421275414128653081310010809454075711845569972130486756125779321498871746559742832580196694097046465935403300163 ( 132 digits) SNFS difficulty: 142 digits. Divisors found: Tue Jun 03 04:22:47 2008 prp41 factor: 27198025104878136528579769327922885245327 Tue Jun 03 04:22:47 2008 prp92 factor: 13923770326764645462911775434681406383095756757842407468021553475546864212753687318351193869 Tue Jun 03 04:22:47 2008 elapsed time 00:24:28 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.78 hours. Scaled time: 10.50 units (timescale=1.817). Factorization parameters were as follows: name: KA_2_1_140_7 n: 378699054901902081739421275414128653081310010809454075711845569972130486756125779321498871746559742832580196694097046465935403300163 skew: 0.77 deg: 5 c5: 190 c0: 53 m: 10000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 960581) Primes: RFBsize:148933, AFBsize:149140, largePrimes:6361799 encountered Relations: rels:5656427, finalFF:321577 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 5.59 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 5.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10146+53)/9 = 2(1)1457<147> = 7 · 1190149 · C140
C140 = P68 · P72
P68 = 58331886632896092336330712812119256134195174608064860440080724285391<68>
P72 = 434415879950414804346950736783159062697316149855191019881795289997876609<72>
Number: n N=25340297860797394889344720836408011711272059346124022059556181754326692481494947404678035044484959579624197247704892546000676159168919319119 ( 140 digits) SNFS difficulty: 147 digits. Divisors found: r1=58331886632896092336330712812119256134195174608064860440080724285391 (pp68) r2=434415879950414804346950736783159062697316149855191019881795289997876609 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 9.19 hours. Scaled time: 16.71 units (timescale=1.819). Factorization parameters were as follows: name: KA_2_1_145_7 n: 25340297860797394889344720836408011711272059346124022059556181754326692481494947404678035044484959579624197247704892546000676159168919319119 skew: 0.77 deg: 5 c5: 190 c0: 53 m: 100000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:176302, AFBsize:176488, largePrimes:6869920 encountered Relations: rels:6255073, finalFF:414560 Max relations in full relation-set: 48 Initial matrix: 352857 x 414560 with sparse part having weight 36005432. Pruned matrix : 309414 x 311242 with weight 21939980. Total sieving time: 8.14 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.76 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.5,2.5,100000 total time: 9.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10160+53)/9 = 2(1)1597<161> = 3 · 173 · 4217 · 22205549 · 356050365606344610424786395461843<33> · C115
C115 = P40 · P75
P40 = 1942156014418176018702442345855437715753<40>
P75 = 628178499120351639880606186016433190873849204059410375565924824840997233549<75>
By Jo Yeong Uk / GMP-ECM, Msieve, GGNFS
(19·10139+53)/9 = 2(1)1387<140> = 3 · 73 · 269 · 1314345485719339431777602851<28> · C108
C108 = P33 · P36 · P39
P33 = 510099375329014604799283301482189<33>
P36 = 838519257079062659185170193098878123<36>
P39 = 637437084815224855533017008762999621951<39>
Mon Jun 2 11:12:44 2008 Mon Jun 2 11:12:44 2008 Mon Jun 2 11:12:44 2008 Msieve v. 1.34 Mon Jun 2 11:12:44 2008 random seeds: eb11b0bc f0692308 Mon Jun 2 11:12:44 2008 factoring 534503270793905799138212310001265257409229574257419045318153661011224477973 (75 digits) Mon Jun 2 11:12:44 2008 no P-1/P+1/ECM available, skipping Mon Jun 2 11:12:44 2008 commencing quadratic sieve (75-digit input) Mon Jun 2 11:12:44 2008 using multiplier of 29 Mon Jun 2 11:12:44 2008 using 32kb Intel Core sieve core Mon Jun 2 11:12:44 2008 sieve interval: 12 blocks of size 32768 Mon Jun 2 11:12:44 2008 processing polynomials in batches of 17 Mon Jun 2 11:12:44 2008 using a sieve bound of 667091 (26908 primes) Mon Jun 2 11:12:44 2008 using large prime bound of 66709100 (25 bits) Mon Jun 2 11:12:44 2008 using trial factoring cutoff of 26 bits Mon Jun 2 11:12:44 2008 polynomial 'A' values have 10 factors Mon Jun 2 11:15:58 2008 27434 relations (14226 full + 13208 combined from 147476 partial), need 27004 Mon Jun 2 11:15:58 2008 begin with 161702 relations Mon Jun 2 11:15:58 2008 reduce to 38984 relations in 2 passes Mon Jun 2 11:15:58 2008 attempting to read 38984 relations Mon Jun 2 11:15:58 2008 recovered 38984 relations Mon Jun 2 11:15:58 2008 recovered 30274 polynomials Mon Jun 2 11:15:58 2008 attempting to build 27434 cycles Mon Jun 2 11:15:58 2008 found 27434 cycles in 1 passes Mon Jun 2 11:15:58 2008 distribution of cycle lengths: Mon Jun 2 11:15:58 2008 length 1 : 14226 Mon Jun 2 11:15:58 2008 length 2 : 13208 Mon Jun 2 11:15:58 2008 largest cycle: 2 relations Mon Jun 2 11:15:58 2008 matrix is 26908 x 27434 (4.0 MB) with weight 827908 (30.18/col) Mon Jun 2 11:15:58 2008 sparse part has weight 827908 (30.18/col) Mon Jun 2 11:15:58 2008 filtering completed in 5 passes Mon Jun 2 11:15:58 2008 matrix is 23022 x 23086 (3.3 MB) with weight 677687 (29.35/col) Mon Jun 2 11:15:58 2008 sparse part has weight 677687 (29.35/col) Mon Jun 2 11:15:59 2008 saving the first 48 matrix rows for later Mon Jun 2 11:15:59 2008 matrix is 22974 x 23086 (2.3 MB) with weight 496279 (21.50/col) Mon Jun 2 11:15:59 2008 sparse part has weight 359701 (15.58/col) Mon Jun 2 11:15:59 2008 matrix includes 64 packed rows Mon Jun 2 11:15:59 2008 commencing Lanczos iteration Mon Jun 2 11:15:59 2008 memory use: 3.1 MB Mon Jun 2 11:16:04 2008 lanczos halted after 364 iterations (dim = 22967) Mon Jun 2 11:16:05 2008 recovered 14 nontrivial dependencies Mon Jun 2 11:16:05 2008 prp36 factor: 838519257079062659185170193098878123 Mon Jun 2 11:16:05 2008 prp39 factor: 637437084815224855533017008762999621951 Mon Jun 2 11:16:05 2008 elapsed time 00:03:21
(19·10158+53)/9 = 2(1)1577<159> = 72 · 551826959 · C148
C148 = P39 · P110
P39 = 460989874520911044064786431843221905337<39>
P110 = 16936384759591687512192175264040477850108231701305445403165968977141397799585486877387463283782557291612041451<110>
(19·10150+53)/9 = 2(1)1497<151> = C151
C151 = P31 · P120
P31 = 9985015037288028821227614289837<31>
P120 = 211427935083460583094406150513915501270969623409084899062206666680722548922350472589902425296793812587271223307267489441<120>
Number: 21117_150 N=2111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 151 digits) SNFS difficulty: 151 digits. Divisors found: r1=9985015037288028821227614289837 (pp31) r2=211427935083460583094406150513915501270969623409084899062206666680722548922350472589902425296793812587271223307267489441 (pp120) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.11 hours. Scaled time: 33.61 units (timescale=2.382). Factorization parameters were as follows: n: 2111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 1000000000000000000000000000000 c5: 19 c0: 53 skew: 1.23 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:177173, largePrimes:5510831 encountered Relations: rels:5384542, finalFF:442565 Max relations in full relation-set: 28 Initial matrix: 353540 x 442565 with sparse part having weight 39552834. Pruned matrix : 316742 x 318573 with weight 24798877. Total sieving time: 13.43 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.57 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 14.11 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2440k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.62 BogoMIPS (lpj=2673811) Calibrating delay using timer specific routine.. 5214.21 BogoMIPS (lpj=2607107) Calibrating delay using timer specific routine.. 5344.19 BogoMIPS (lpj=2672095) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672350)
By Sinkiti Sibata / GGNFS, Msieve
(19·10124+53)/9 = 2(1)1237<125> = 3 · 306525654222521<15> · C110
C110 = P52 · P58
P52 = 2320545677943061507893706868698246585867969028650453<52>
P58 = 9893111122056882575541062637026092122141686702534903437003<58>
Number: 21117_124 N=22957416255699530501295404822326167390114094473872188918375242049826145386407603389399279197768288688392912359 ( 110 digits) SNFS difficulty: 126 digits. Divisors found: r1=2320545677943061507893706868698246585867969028650453 (pp52) r2=9893111122056882575541062637026092122141686702534903437003 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.45 hours. Scaled time: 6.93 units (timescale=2.010). Factorization parameters were as follows: name: 21117_124 n: 22957416255699530501295404822326167390114094473872188918375242049826145386407603389399279197768288688392912359 m: 10000000000000000000000000 c5: 19 c0: 530 skew: 1.95 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:64098, largePrimes:2259309 encountered Relations: rels:2381189, finalFF:206711 Max relations in full relation-set: 28 Initial matrix: 113261 x 206711 with sparse part having weight 21468806. Pruned matrix : 99556 x 100186 with weight 8063758. Total sieving time: 3.27 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.45 hours. --------- CPU info (if available) ----------
(19·10108+53)/9 = 2(1)1077<109> = 262411 · 460121017 · C95
C95 = P32 · P63
P32 = 40715325956793234293671007002897<32>
P63 = 429436612371250961547371918499935905158308605193850743956973903<63>
Sun Jun 1 23:08:03 2008 Msieve v. 1.35 Sun Jun 1 23:08:03 2008 random seeds: a3301bb0 3d53df02 Sun Jun 1 23:08:03 2008 factoring 17484651650476548830770449081096030553402318344900536526344925522349690719762578371973674396991 (95 digits) Sun Jun 1 23:08:04 2008 searching for 15-digit factors Sun Jun 1 23:08:06 2008 commencing quadratic sieve (95-digit input) Sun Jun 1 23:08:06 2008 using multiplier of 11 Sun Jun 1 23:08:07 2008 using 64kb Pentium 4 sieve core Sun Jun 1 23:08:07 2008 sieve interval: 18 blocks of size 65536 Sun Jun 1 23:08:07 2008 processing polynomials in batches of 6 Sun Jun 1 23:08:07 2008 using a sieve bound of 2128183 (78667 primes) Sun Jun 1 23:08:07 2008 using large prime bound of 310714718 (28 bits) Sun Jun 1 23:08:07 2008 using double large prime bound of 1933086450144842 (43-51 bits) Sun Jun 1 23:08:07 2008 using trial factoring cutoff of 51 bits Sun Jun 1 23:08:07 2008 polynomial 'A' values have 12 factors Mon Jun 2 06:07:09 2008 78793 relations (19031 full + 59762 combined from 1177846 partial), need 78763 Mon Jun 2 06:07:13 2008 begin with 1196877 relations Mon Jun 2 06:07:15 2008 reduce to 206885 relations in 12 passes Mon Jun 2 06:07:15 2008 attempting to read 206885 relations Mon Jun 2 06:07:21 2008 recovered 206885 relations Mon Jun 2 06:07:21 2008 recovered 192966 polynomials Mon Jun 2 06:07:22 2008 attempting to build 78793 cycles Mon Jun 2 06:07:22 2008 found 78793 cycles in 6 passes Mon Jun 2 06:07:22 2008 distribution of cycle lengths: Mon Jun 2 06:07:22 2008 length 1 : 19031 Mon Jun 2 06:07:22 2008 length 2 : 13437 Mon Jun 2 06:07:22 2008 length 3 : 13297 Mon Jun 2 06:07:22 2008 length 4 : 10751 Mon Jun 2 06:07:22 2008 length 5 : 8138 Mon Jun 2 06:07:22 2008 length 6 : 5588 Mon Jun 2 06:07:22 2008 length 7 : 3479 Mon Jun 2 06:07:22 2008 length 9+: 5072 Mon Jun 2 06:07:22 2008 largest cycle: 21 relations Mon Jun 2 06:07:22 2008 matrix is 78667 x 78793 (21.6 MB) with weight 5352964 (67.94/col) Mon Jun 2 06:07:22 2008 sparse part has weight 5352964 (67.94/col) Mon Jun 2 06:07:24 2008 filtering completed in 3 passes Mon Jun 2 06:07:24 2008 matrix is 75293 x 75357 (20.8 MB) with weight 5158753 (68.46/col) Mon Jun 2 06:07:24 2008 sparse part has weight 5158753 (68.46/col) Mon Jun 2 06:07:25 2008 saving the first 48 matrix rows for later Mon Jun 2 06:07:25 2008 matrix is 75245 x 75357 (14.5 MB) with weight 4257881 (56.50/col) Mon Jun 2 06:07:25 2008 sparse part has weight 3344104 (44.38/col) Mon Jun 2 06:07:25 2008 matrix includes 64 packed rows Mon Jun 2 06:07:25 2008 using block size 21845 for processor cache size 512 kB Mon Jun 2 06:07:26 2008 commencing Lanczos iteration Mon Jun 2 06:07:26 2008 memory use: 13.1 MB Mon Jun 2 06:08:33 2008 lanczos halted after 1192 iterations (dim = 75245) Mon Jun 2 06:08:34 2008 recovered 18 nontrivial dependencies Mon Jun 2 06:08:35 2008 prp32 factor: 40715325956793234293671007002897 Mon Jun 2 06:08:35 2008 prp63 factor: 429436612371250961547371918499935905158308605193850743956973903 Mon Jun 2 06:08:35 2008 elapsed time 07:00:32
(19·10126+53)/9 = 2(1)1257<127> = 6903268719584384055121<22> · C105
C105 = P48 · P58
P48 = 103864082049619335708579914537850517920687452179<48>
P58 = 2944360108581633473932191940997116495964585541314631028463<58>
Number: 21117_126 N=305813259901348875505100926497148986989091453916083398966422966908277463737129647551735449182057900370877 ( 105 digits) SNFS difficulty: 127 digits. Divisors found: r1=103864082049619335708579914537850517920687452179 (pp48) r2=2944360108581633473932191940997116495964585541314631028463 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.39 hours. Scaled time: 6.76 units (timescale=1.997). Factorization parameters were as follows: name: 21117_126 n: 305813259901348875505100926497148986989091453916083398966422966908277463737129647551735449182057900370877 m: 10000000000000000000000000 c5: 190 c0: 53 skew: 0.77 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63698, largePrimes:2194925 encountered Relations: rels:2237426, finalFF:145939 Max relations in full relation-set: 28 Initial matrix: 112863 x 145939 with sparse part having weight 14497090. Pruned matrix : 107817 x 108445 with weight 8805731. Total sieving time: 3.20 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.39 hours. --------- CPU info (if available) ----------
(19·10127+53)/9 = 2(1)1267<128> = 32 · 6983 · 9613105129<10> · 61692263912471<14> · C99
C99 = P42 · P58
P42 = 291916727489587673555967133607481146004727<42>
P58 = 1940319099666381182533341297772978664273656217246287082027<58>
Number: 21117_127 N=566411601860153100701394847632673604425475046837779231967780131659685243669308032364681161978741629 ( 99 digits) SNFS difficulty: 128 digits. Divisors found: r1=291916727489587673555967133607481146004727 (pp42) r2=1940319099666381182533341297772978664273656217246287082027 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.45 hours. Scaled time: 8.94 units (timescale=2.010). Factorization parameters were as follows: name: 21117_127 n: 566411601860153100701394847632673604425475046837779231967780131659685243669308032364681161978741629 m: 10000000000000000000000000 c5: 1900 c0: 53 skew: 0.49 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63753, largePrimes:1434124 encountered Relations: rels:1402381, finalFF:144834 Max relations in full relation-set: 28 Initial matrix: 127771 x 144834 with sparse part having weight 9933985. Pruned matrix : 122878 x 123580 with weight 7074809. Total sieving time: 4.27 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.45 hours. --------- CPU info (if available) ----------
(19·10129+53)/9 = 2(1)1287<130> = 699157 · 830191 · C118
C118 = P38 · P81
P38 = 32446483245581804133518445040362730189<38>
P81 = 112096158128274832108557939489689899902140999040333373890236189338415740274281619<81>
Number: 21117_129 N=3637126116603157908916080743469907732373168181016890173585191244364727938683418468784020814756624198363984843499095991 ( 118 digits) SNFS difficulty: 131 digits. Divisors found: r1=32446483245581804133518445040362730189 (pp38) r2=112096158128274832108557939489689899902140999040333373890236189338415740274281619 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.11 hours. Scaled time: 12.20 units (timescale=1.997). Factorization parameters were as follows: name: 21117_129 n: 3637126116603157908916080743469907732373168181016890173585191244364727938683418468784020814756624198363984843499095991 m: 100000000000000000000000000 c5: 19 c0: 530 skew: 1.95 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:64098, largePrimes:1511991 encountered Relations: rels:1492598, finalFF:146143 Max relations in full relation-set: 28 Initial matrix: 128114 x 146143 with sparse part having weight 13064371. Pruned matrix : 123752 x 124456 with weight 9702245. Total sieving time: 5.90 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.11 hours. --------- CPU info (if available) ----------
(19·10138+53)/9 = 2(1)1377<139> = 49169 · 59530109 · 361883017 · 1553270333<10> · 1742932671511<13> · C96
C96 = P30 · P67
P30 = 153982827554613533780693879837<30>
P67 = 4780957545125991811271590664511031750645306007121798055625197067351<67>
Mon Jun 2 06:17:46 2008 Msieve v. 1.35 Mon Jun 2 06:17:46 2008 random seeds: fbc554e4 1547fed8 Mon Jun 2 06:17:46 2008 factoring 736185361217064049236247539127012918759713514368891194303392952937676728083414902290966389901787 (96 digits) Mon Jun 2 06:17:48 2008 searching for 15-digit factors Mon Jun 2 06:17:50 2008 commencing quadratic sieve (96-digit input) Mon Jun 2 06:17:50 2008 using multiplier of 3 Mon Jun 2 06:17:50 2008 using 64kb Pentium 4 sieve core Mon Jun 2 06:17:50 2008 sieve interval: 18 blocks of size 65536 Mon Jun 2 06:17:50 2008 processing polynomials in batches of 6 Mon Jun 2 06:17:50 2008 using a sieve bound of 2299951 (84630 primes) Mon Jun 2 06:17:50 2008 using large prime bound of 344992650 (28 bits) Mon Jun 2 06:17:50 2008 using double large prime bound of 2333767984535850 (43-52 bits) Mon Jun 2 06:17:50 2008 using trial factoring cutoff of 52 bits Mon Jun 2 06:17:50 2008 polynomial 'A' values have 12 factors Mon Jun 2 15:43:57 2008 84765 relations (20102 full + 64663 combined from 1294956 partial), need 84726 Mon Jun 2 15:44:02 2008 begin with 1315058 relations Mon Jun 2 15:44:04 2008 reduce to 225164 relations in 11 passes Mon Jun 2 15:44:04 2008 attempting to read 225164 relations Mon Jun 2 15:44:11 2008 recovered 225164 relations Mon Jun 2 15:44:11 2008 recovered 212776 polynomials Mon Jun 2 15:44:12 2008 attempting to build 84765 cycles Mon Jun 2 15:44:12 2008 found 84765 cycles in 6 passes Mon Jun 2 15:44:12 2008 distribution of cycle lengths: Mon Jun 2 15:44:12 2008 length 1 : 20102 Mon Jun 2 15:44:12 2008 length 2 : 14231 Mon Jun 2 15:44:12 2008 length 3 : 13930 Mon Jun 2 15:44:12 2008 length 4 : 11635 Mon Jun 2 15:44:12 2008 length 5 : 9103 Mon Jun 2 15:44:12 2008 length 6 : 6090 Mon Jun 2 15:44:12 2008 length 7 : 3877 Mon Jun 2 15:44:12 2008 length 9+: 5797 Mon Jun 2 15:44:12 2008 largest cycle: 19 relations Mon Jun 2 15:44:12 2008 matrix is 84630 x 84765 (23.9 MB) with weight 5923925 (69.89/col) Mon Jun 2 15:44:12 2008 sparse part has weight 5923925 (69.89/col) Mon Jun 2 15:44:14 2008 filtering completed in 3 passes Mon Jun 2 15:44:14 2008 matrix is 81223 x 81287 (23.1 MB) with weight 5721340 (70.38/col) Mon Jun 2 15:44:14 2008 sparse part has weight 5721340 (70.38/col) Mon Jun 2 15:44:15 2008 saving the first 48 matrix rows for later Mon Jun 2 15:44:15 2008 matrix is 81175 x 81287 (17.2 MB) with weight 4837727 (59.51/col) Mon Jun 2 15:44:15 2008 sparse part has weight 4015307 (49.40/col) Mon Jun 2 15:44:15 2008 matrix includes 64 packed rows Mon Jun 2 15:44:15 2008 using block size 21845 for processor cache size 512 kB Mon Jun 2 15:44:16 2008 commencing Lanczos iteration Mon Jun 2 15:44:16 2008 memory use: 15.0 MB Mon Jun 2 15:45:40 2008 lanczos halted after 1285 iterations (dim = 81173) Mon Jun 2 15:45:40 2008 recovered 16 nontrivial dependencies Mon Jun 2 15:45:42 2008 prp30 factor: 153982827554613533780693879837 Mon Jun 2 15:45:42 2008 prp67 factor: 4780957545125991811271590664511031750645306007121798055625197067351 Mon Jun 2 15:45:42 2008 elapsed time 09:27:56
(19·10148+53)/9 = 2(1)1477<149> = 3 · 109 · 163 · 24029 · 182617 · 368507 · 1351981 · 253573542341957<15> · 63117301189870715519<20> · C89
C89 = P39 · P50
P39 = 362057969379015044200712589221264255659<39>
P50 = 31264539269177925749669527557963065564867851547731<50>
Mon Jun 2 15:54:31 2008 Msieve v. 1.35 Mon Jun 2 15:54:31 2008 random seeds: 05a7b83d b339eb60 Mon Jun 2 15:54:31 2008 factoring 11319575601369034829580537568191960657052642282608078063135992672601045638966210825359729 (89 digits) Mon Jun 2 15:54:33 2008 searching for 15-digit factors Mon Jun 2 15:54:34 2008 commencing quadratic sieve (89-digit input) Mon Jun 2 15:54:34 2008 using multiplier of 1 Mon Jun 2 15:54:34 2008 using 64kb Pentium 4 sieve core Mon Jun 2 15:54:34 2008 sieve interval: 14 blocks of size 65536 Mon Jun 2 15:54:34 2008 processing polynomials in batches of 8 Mon Jun 2 15:54:34 2008 using a sieve bound of 1536389 (58333 primes) Mon Jun 2 15:54:34 2008 using large prime bound of 122911120 (26 bits) Mon Jun 2 15:54:34 2008 using double large prime bound of 364136361200880 (42-49 bits) Mon Jun 2 15:54:34 2008 using trial factoring cutoff of 49 bits Mon Jun 2 15:54:34 2008 polynomial 'A' values have 11 factors Mon Jun 2 17:24:07 2008 58499 relations (15792 full + 42707 combined from 617918 partial), need 58429 Mon Jun 2 17:24:09 2008 begin with 633710 relations Mon Jun 2 17:24:10 2008 reduce to 142214 relations in 11 passes Mon Jun 2 17:24:10 2008 attempting to read 142214 relations Mon Jun 2 17:24:13 2008 recovered 142214 relations Mon Jun 2 17:24:13 2008 recovered 118727 polynomials Mon Jun 2 17:24:14 2008 attempting to build 58499 cycles Mon Jun 2 17:24:14 2008 found 58499 cycles in 5 passes Mon Jun 2 17:24:14 2008 distribution of cycle lengths: Mon Jun 2 17:24:14 2008 length 1 : 15792 Mon Jun 2 17:24:14 2008 length 2 : 11349 Mon Jun 2 17:24:14 2008 length 3 : 10193 Mon Jun 2 17:24:14 2008 length 4 : 7776 Mon Jun 2 17:24:14 2008 length 5 : 5432 Mon Jun 2 17:24:14 2008 length 6 : 3467 Mon Jun 2 17:24:14 2008 length 7 : 2040 Mon Jun 2 17:24:14 2008 length 9+: 2450 Mon Jun 2 17:24:14 2008 largest cycle: 18 relations Mon Jun 2 17:24:14 2008 matrix is 58333 x 58499 (13.8 MB) with weight 3374198 (57.68/col) Mon Jun 2 17:24:14 2008 sparse part has weight 3374198 (57.68/col) Mon Jun 2 17:24:15 2008 filtering completed in 3 passes Mon Jun 2 17:24:15 2008 matrix is 54272 x 54335 (12.9 MB) with weight 3169633 (58.34/col) Mon Jun 2 17:24:15 2008 sparse part has weight 3169633 (58.34/col) Mon Jun 2 17:24:15 2008 saving the first 48 matrix rows for later Mon Jun 2 17:24:15 2008 matrix is 54224 x 54335 (8.5 MB) with weight 2506354 (46.13/col) Mon Jun 2 17:24:15 2008 sparse part has weight 1906309 (35.08/col) Mon Jun 2 17:24:15 2008 matrix includes 64 packed rows Mon Jun 2 17:24:15 2008 using block size 21734 for processor cache size 512 kB Mon Jun 2 17:24:16 2008 commencing Lanczos iteration Mon Jun 2 17:24:16 2008 memory use: 8.2 MB Mon Jun 2 17:24:47 2008 lanczos halted after 858 iterations (dim = 54222) Mon Jun 2 17:24:47 2008 recovered 15 nontrivial dependencies Mon Jun 2 17:24:48 2008 prp39 factor: 362057969379015044200712589221264255659 Mon Jun 2 17:24:48 2008 prp50 factor: 31264539269177925749669527557963065564867851547731 Mon Jun 2 17:24:48 2008 elapsed time 01:30:17
(19·10132+53)/9 = 2(1)1317<133> = 229637 · 624509 · 1096168133<10> · 2996578231<10> · C103
C103 = P30 · P74
P30 = 274774136419884955287483432737<30>
P74 = 16309921890964946701578150469724656682279803131647250107014492259289394799<74>
Number: 21117_132 N=4481544702665670260142350017053071939841557981489925134501982700492970878648611368462978938115754134863 ( 103 digits) SNFS difficulty: 133 digits. Divisors found: r1=274774136419884955287483432737 (pp30) r2=16309921890964946701578150469724656682279803131647250107014492259289394799 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.69 hours. Scaled time: 15.49 units (timescale=2.016). Factorization parameters were as follows: name: 21117_132 n: 4481544702665670260142350017053071939841557981489925134501982700492970878648611368462978938115754134863 m: 100000000000000000000000000 c5: 1900 c0: 53 skew: 0.49 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:63951, AFBsize:63753, largePrimes:1604706 encountered Relations: rels:1630922, finalFF:175301 Max relations in full relation-set: 28 Initial matrix: 127771 x 175301 with sparse part having weight 17797755. Pruned matrix : 117290 x 117992 with weight 10304530. Total sieving time: 7.45 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 7.69 hours. --------- CPU info (if available) ----------
(19·10144+53)/9 = 2(1)1437<145> = 43 · 9819072943<10> · 10619340031061<14> · 1221482300914250354995629197<28> · C93
C93 = P32 · P61
P32 = 59460061664238851775266882472133<32>
P61 = 6482792018674955359906067036006848637517667147841276577049253<61>
Mon Jun 2 17:39:49 2008 Msieve v. 1.35 Mon Jun 2 17:39:49 2008 random seeds: ecb5fe42 7f1f0941 Mon Jun 2 17:39:49 2008 factoring 385467213186848311654808549004712309847359247130531463837047964694710049428655567891140966649 (93 digits) Mon Jun 2 17:39:51 2008 searching for 15-digit factors Mon Jun 2 17:39:53 2008 commencing quadratic sieve (93-digit input) Mon Jun 2 17:39:53 2008 using multiplier of 1 Mon Jun 2 17:39:53 2008 using 64kb Pentium 4 sieve core Mon Jun 2 17:39:53 2008 sieve interval: 18 blocks of size 65536 Mon Jun 2 17:39:53 2008 processing polynomials in batches of 6 Mon Jun 2 17:39:53 2008 using a sieve bound of 1914511 (71765 primes) Mon Jun 2 17:39:53 2008 using large prime bound of 231655831 (27 bits) Mon Jun 2 17:39:53 2008 using double large prime bound of 1139509009637394 (42-51 bits) Mon Jun 2 17:39:53 2008 using trial factoring cutoff of 51 bits Mon Jun 2 17:39:53 2008 polynomial 'A' values have 12 factors Mon Jun 2 21:14:02 2008 72278 relations (18172 full + 54106 combined from 957428 partial), need 71861 Mon Jun 2 21:14:06 2008 begin with 975600 relations Mon Jun 2 21:14:07 2008 reduce to 184070 relations in 13 passes Mon Jun 2 21:14:07 2008 attempting to read 184070 relations Mon Jun 2 21:14:12 2008 recovered 184070 relations Mon Jun 2 21:14:12 2008 recovered 162815 polynomials Mon Jun 2 21:14:13 2008 attempting to build 72278 cycles Mon Jun 2 21:14:13 2008 found 72278 cycles in 6 passes Mon Jun 2 21:14:13 2008 distribution of cycle lengths: Mon Jun 2 21:14:13 2008 length 1 : 18172 Mon Jun 2 21:14:13 2008 length 2 : 13053 Mon Jun 2 21:14:13 2008 length 3 : 12368 Mon Jun 2 21:14:13 2008 length 4 : 9884 Mon Jun 2 21:14:13 2008 length 5 : 7240 Mon Jun 2 21:14:13 2008 length 6 : 4805 Mon Jun 2 21:14:13 2008 length 7 : 2998 Mon Jun 2 21:14:13 2008 length 9+: 3758 Mon Jun 2 21:14:13 2008 largest cycle: 22 relations Mon Jun 2 21:14:13 2008 matrix is 71765 x 72278 (17.3 MB) with weight 4257237 (58.90/col) Mon Jun 2 21:14:13 2008 sparse part has weight 4257237 (58.90/col) Mon Jun 2 21:14:15 2008 filtering completed in 3 passes Mon Jun 2 21:14:15 2008 matrix is 67846 x 67910 (16.3 MB) with weight 4001883 (58.93/col) Mon Jun 2 21:14:15 2008 sparse part has weight 4001883 (58.93/col) Mon Jun 2 21:14:15 2008 saving the first 48 matrix rows for later Mon Jun 2 21:14:15 2008 matrix is 67798 x 67910 (8.9 MB) with weight 2957170 (43.55/col) Mon Jun 2 21:14:15 2008 sparse part has weight 1922201 (28.31/col) Mon Jun 2 21:14:15 2008 matrix includes 64 packed rows Mon Jun 2 21:14:15 2008 using block size 21845 for processor cache size 512 kB Mon Jun 2 21:14:16 2008 commencing Lanczos iteration Mon Jun 2 21:14:16 2008 memory use: 9.6 MB Mon Jun 2 21:14:59 2008 lanczos halted after 1073 iterations (dim = 67795) Mon Jun 2 21:14:59 2008 recovered 15 nontrivial dependencies Mon Jun 2 21:15:02 2008 prp32 factor: 59460061664238851775266882472133 Mon Jun 2 21:15:02 2008 prp61 factor: 6482792018674955359906067036006848637517667147841276577049253 Mon Jun 2 21:15:02 2008 elapsed time 03:35:13
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(19·10128+53)/9 = 2(1)1277<129> = 7 · C128
C128 = P51 · P78
P51 = 271141390923736296890969959857913248646126105732399<51>
P78 = 111228794895475322398277643129562837424306229357728734610117553484069301696869<78>
Number: n N=30158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158731 ( 128 digits) SNFS difficulty: 129 digits. Divisors found: r1=271141390923736296890969959857913248646126105732399 (pp51) r2=111228794895475322398277643129562837424306229357728734610117553484069301696869 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.76 hours. Scaled time: 5.03 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_1_127_7 n: 30158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158730158731 skew: 0.49 deg: 5 c5: 19000 c0: 53 m: 10000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 420001) Primes: RFBsize:114155, AFBsize:114222, largePrimes:5215005 encountered Relations: rels:4612501, finalFF:288380 Max relations in full relation-set: 48 Initial matrix: 228444 x 288380 with sparse part having weight 17831781. Pruned matrix : 180854 x 182060 with weight 8358571. Total sieving time: 2.48 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.14 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 2.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(11·10172+61)/9 = 1(2)1719<173> = 7 · 17 · C171
C171 = P41 · P51 · P80
P41 = 12028479575122500852357107894999807304683<41>
P51 = 731295526744164282624207366517572340820823022344947<51>
P80 = 11676147223871752732879615382398657779764886931536666306447311056887715314521891<80>
Number: n N=102707749766573295985060690943043884220354808590102707749766573295985060690943043884220354808590102707749766573295985060690943043884220354808590102707749766573295985060691 ( 171 digits) SNFS difficulty: 173 digits. Divisors found: Mon Jun 02 12:00:46 2008 prp41 factor: 12028479575122500852357107894999807304683 Mon Jun 02 12:00:46 2008 prp51 factor: 731295526744164282624207366517572340820823022344947 Mon Jun 02 12:00:46 2008 prp80 factor: 11676147223871752732879615382398657779764886931536666306447311056887715314521891 Mon Jun 02 12:00:46 2008 elapsed time 02:16:33 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 132.61 hours. Scaled time: 241.74 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_2_171_9 n: 102707749766573295985060690943043884220354808590102707749766573295985060690943043884220354808590102707749766573295985060690943043884220354808590102707749766573295985060691 skew: 0.56 deg: 5 c5: 1100 c0: 61 m: 10000000000000000000000000000000000 type: snfs rlim: 3800000 alim: 3800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 8900279) Primes: RFBsize:269987, AFBsize:269319, largePrimes:8671566 encountered Relations: rels:8126828, finalFF:570564 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 132.21 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,3800000,3800000,28,28,48,48,2.5,2.5,100000 total time: 132.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10133+53)/9 = 2(1)1327<134> = 3 · 71 · 137 · C129
C129 = P37 · P93
P37 = 4513613610675304606872458634030936047<37>
P93 = 160282660468278098339555574832288507693386513616326522786634467104125332769066378678664671231<93>
Number: n N=723453997844868616946338751623011929375659199859878383575309657349340704948806110520924954974507765707518971629180326620441763857 ( 129 digits) SNFS difficulty: 134 digits. Divisors found: Mon Jun 02 13:50:41 2008 prp37 factor: 4513613610675304606872458634030936047 Mon Jun 02 13:50:41 2008 prp93 factor: 160282660468278098339555574832288507693386513616326522786634467104125332769066378678664671231 Mon Jun 02 13:50:41 2008 elapsed time 00:18:55 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.56 hours. Scaled time: 6.52 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_132_7 n: 723453997844868616946338751623011929375659199859878383575309657349340704948806110520924954974507765707518971629180326620441763857 skew: 0.31 deg: 5 c5: 19000 c0: 53 m: 100000000000000000000000000 type: snfs rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 560001) Primes: RFBsize:121127, AFBsize:121110, largePrimes:5674008 encountered Relations: rels:5002947, finalFF:281155 Max relations in full relation-set: 28 Initial matrix: 242304 x 281155 with sparse part having weight 20748030. Pruned matrix : Total sieving time: 3.46 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,48,48,2.5,2.5,75000 total time: 3.56 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10166+53)/9 = 2(1)1657<167> = 3 · 94597 · 2198191 · 12154976546378825893<20> · 22397921288742578946556385747021<32> · C105
C105 = P33 · P72
P33 = 334551636295269131863698068034581<33>
P72 = 371554093246116187712128253073382931231925606666989345072655834471049849<72>
By Tyler Cadigan / GGNFS, Msieve
8·10197+9 = 8(0)1969<198> = 7 · 12219247 · 15213705288655807<17> · 4865154059575323971503<22> · 37114608851460783280897610347<29> · C124
C124 = P62 · P63
P62 = 16621692800680584305294747562998773325126469691178650296201467<62>
P63 = 204831038833285778102275560455244890057538477743970633200511049<63>
Number: 80009_197 N=3404638603531151408492144608513648227826645811936364923836164689727994762576449290071236221548482768741339116814127863508883 ( 124 digits) Divisors found: r1=16621692800680584305294747562998773325126469691178650296201467 r2=204831038833285778102275560455244890057538477743970633200511049 Version: Total time: 81.57 hours. Scaled time: 206.94 units (timescale=2.537). Factorization parameters were as follows: name: 80009_197 n: 3404638603531151408492144608513648227826645811936364923836164689727994762576449290071236221548482768741339116814127863508883 skew: 70717.79 # norm 3.61e+017 c5: 478800 c4: 81917542588 c3: -13839480355966165 c2: -262680385946951499111 c1: 21383762814069117708461157 c0: 68693812172939743478896238955 # alpha -6.89 Y1: 27372789176161 Y0: -371862411727914405008552 # Murphy_E 1.72e-010 # M 1446656491575742184387572950846474116950583333787238843359449638130640620324693639485660327461752000793094567024696147419232 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 6100001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 737464 x 737712 Polynomial selection time: 9.10 hours. Total sieving time: 72.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 81.57 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(19·10117+53)/9 = 2(1)1167<118> = 137 · 173 · C113
C113 = P48 · P66
P48 = 340739379185554837829678627965128592230514605529<48>
P66 = 261409937598548866812402751089866267362790132318322972151795257473<66>
Number: 21117_117 N=89072659850264170756976967685376613269951103797776933931526564748791659048610232104599430872583904101561584368217 ( 113 digits) SNFS difficulty: 118 digits. Divisors found: r1=340739379185554837829678627965128592230514605529 (pp48) r2=261409937598548866812402751089866267362790132318322972151795257473 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.90 hours. Scaled time: 7.82 units (timescale=2.003). Factorization parameters were as follows: name: 21117_117 n: 89072659850264170756976967685376613269951103797776933931526564748791659048610232104599430872583904101561584368217 m: 100000000000000000000000 c5: 1900 c0: 53 skew: 0.49 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63753, largePrimes:2477594 encountered Relations: rels:2999016, finalFF:614924 Max relations in full relation-set: 28 Initial matrix: 112918 x 614924 with sparse part having weight 56713889. Pruned matrix : 73573 x 74201 with weight 7485835. Total sieving time: 3.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.90 hours. --------- CPU info (if available) ----------
(19·10118+53)/9 = 2(1)1177<119> = 32 · 647 · 16240958219<11> · C105
C105 = P36 · P69
P36 = 355681218568581823872236281324646653<36>
P69 = 627612694100122250224375210065246217931458194520185206310045788028397<69>
Number: 21117_118 N=223230047826642066205521963974483683939638118880420228496218591190724410961696681286005167031723555005241 ( 105 digits) SNFS difficulty: 119 digits. Divisors found: r1=355681218568581823872236281324646653 (pp36) r2=627612694100122250224375210065246217931458194520185206310045788028397 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.31 hours. Scaled time: 6.60 units (timescale=1.991). Factorization parameters were as follows: name: 21117_118 n: 223230047826642066205521963974483683939638118880420228496218591190724410961696681286005167031723555005241 m: 100000000000000000000000 c5: 19000 c0: 53 skew: 0.31 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63858, largePrimes:2468293 encountered Relations: rels:2965236, finalFF:582489 Max relations in full relation-set: 28 Initial matrix: 113023 x 582489 with sparse part having weight 56724991. Pruned matrix : 76137 x 76766 with weight 9107278. Total sieving time: 3.16 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.31 hours. --------- CPU info (if available) ----------
(16·10164-7)/9 = 1(7)164<165> = 3 · 2579 · 51439 · 4963080423026380935320657<25> · C131
C131 = P62 · P70
P62 = 27077574071931379632102132928358669855145747323367902682258041<62>
P70 = 3323925597838468353082294553807010837436662578376074591306828959271647<70>
Number: 17777_164 N=90003841585059920924224866844440249713658946274123664702277080206963969563210631887340234268972054822694480502697694149336669063527 ( 131 digits) SNFS difficulty: 165 digits. Divisors found: r1=27077574071931379632102132928358669855145747323367902682258041 (pp62) r2=3323925597838468353082294553807010837436662578376074591306828959271647 (pp70) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 131.28 hours. Scaled time: 88.88 units (timescale=0.677). Factorization parameters were as follows: name: 17777_164 n: 90003841585059920924224866844440249713658946274123664702277080206963969563210631887340234268972054822694480502697694149336669063527 m: 1000000000000000000000000000000000 c5: 8 c0: -35 skew: 1.34 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5500001) Primes: RFBsize:348513, AFBsize:349436, largePrimes:5872683 encountered Relations: rels:6032223, finalFF:800929 Max relations in full relation-set: 28 Initial matrix: 698014 x 800929 with sparse part having weight 49993017. Pruned matrix : 618137 x 621691 with weight 36216756. Total sieving time: 112.92 hours. Total relation processing time: 0.41 hours. Matrix solve time: 17.71 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 131.28 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(19·10105+53)/9 = 2(1)1047<106> = 753148849 · C97
C97 = P33 · P64
P33 = 911966845446144824010461085219467<33>
P64 = 3073627441612605884921881130730293562533139400059580806969126199<64>
(19·10113+53)/9 = 2(1)1127<114> = 55057 · C109
C109 = P38 · P71
P38 = 58757645619987456838275424826062650763<38>
P71 = 65258060544098108161363500386786898008268259644863574985134074625486487<71>
(19·10122+53)/9 = 2(1)1217<123> = 7 · 31 · 229 · 7699981 · 260740884419<12> · C100
C100 = P48 · P52
P48 = 589368244104645491805519232085371347662733937127<48>
P52 = 3590296830419907767433446957296372459019708981878273<52>
Number: n N=2116006938759055201081299150385079711667157232288061779372701201257089798938424952493683560749341671 ( 100 digits) SNFS difficulty: 123 digits. Divisors found: Mon Jun 02 00:23:15 2008 prp48 factor: 589368244104645491805519232085371347662733937127 Mon Jun 02 00:23:15 2008 prp52 factor: 3590296830419907767433446957296372459019708981878273 Mon Jun 02 00:23:15 2008 elapsed time 00:13:21 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.61 hours. Scaled time: 2.94 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_1_121_7 n: 2116006938759055201081299150385079711667157232288061779372701201257089798938424952493683560749341671 skew: 0.49 deg: 5 c5: 1900 c0: 53 m: 1000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 280337) Primes: RFBsize:78498, AFBsize:78301, largePrimes:4407787 encountered Relations: rels:3743887, finalFF:172633 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 1.55 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Wataru Sakai / GGNFS
(61·10167-7)/9 = 6(7)167<168> = 114611656331<12> · C157
C157 = P74 · P83
P74 = 93444174992472819257688502885450481471938296013132895952362893249876854697<74>
P83 = 63285804116327054211214121309466806760944769236184213402549280405475070400939982011<83>
Number: 67777_167 N=5913689754385421924941064638506622593709715696454659744653592670342697115329570254212974844663993897741044747015015353375643536731026442195443240180440855667 ( 157 digits) SNFS difficulty: 168 digits. Divisors found: r1=93444174992472819257688502885450481471938296013132895952362893249876854697 (pp74) r2=63285804116327054211214121309466806760944769236184213402549280405475070400939982011 (pp83) Version: GGNFS-0.77.1-20060722-nocona Total time: 150.31 hours. Scaled time: 302.28 units (timescale=2.011). Factorization parameters were as follows: n: 5913689754385421924941064638506622593709715696454659744653592670342697115329570254212974844663993897741044747015015353375643536731026442195443240180440855667 m: 1000000000000000000000000000000000 c5: 6100 c0: -7 skew: 0.26 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 8450001) Primes: RFBsize:380800, AFBsize:380633, largePrimes:6496633 encountered Relations: rels:6945548, finalFF:1064739 Max relations in full relation-set: 32 Initial matrix: 761500 x 1064739 with sparse part having weight 95376348. Pruned matrix : 538647 x 542518 with weight 86032135. Total sieving time: 146.14 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.87 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 150.31 hours.
The factor table of 211...117 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Wataru Sakai / GGNFS
(88·10186-7)/9 = 9(7)186<187> = 3 · 1409 · C184
C184 = P45 · P139
P45 = 558420727813527386131594937710331258974213667<45>
P139 = 4142346123281926087234853809987716740634386737763126789276317393359104216309692071188150104114601670997665342345732871848423998398042842953<139>
Number: 97777_186 N=2313171937018636805719843335173356465052703519701390531766685066897983860368530347238651000184002313171937018636805719843335173356465052703519701390531766685066897983860368530347238651 ( 184 digits) SNFS difficulty: 188 digits. Divisors found: r1=558420727813527386131594937710331258974213667 (pp45) r2=4142346123281926087234853809987716740634386737763126789276317393359104216309692071188150104114601670997665342345732871848423998398042842953 (pp139) Version: GGNFS-0.77.1-20060722-nocona Total time: 1038.03 hours. Scaled time: 2089.55 units (timescale=2.013). Factorization parameters were as follows: n: 2313171937018636805719843335173356465052703519701390531766685066897983860368530347238651000184002313171937018636805719843335173356465052703519701390531766685066897983860368530347238651 m: 20000000000000000000000000000000000000 c5: 55 c0: -14 skew: 0.76 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 18500001) Primes: RFBsize:501962, AFBsize:502197, largePrimes:7109241 encountered Relations: rels:7656762, finalFF:1148858 Max relations in full relation-set: 32 Initial matrix: 1004225 x 1148858 with sparse part having weight 131543991. Pruned matrix : 898696 x 903781 with weight 111532419. Total sieving time: 1027.27 hours. Total relation processing time: 0.15 hours. Matrix solve time: 10.30 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,188,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1038.03 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(31·10168-13)/9 = 3(4)1673<169> = 36649913 · C161
C161 = P65 · P97
P65 = 19121035045106931156034589094324433473093786433375865827509070283<65>
P97 = 4915128075224843895655346118121567445584594295484859874268072710814547659240553180841233721217017<97>
Number: n N=93982336177563216710622053712499793504133132442754896701786016366381127410710209447003174180643878866627717354866420677299955512703248284503279569707148948605811 ( 161 digits) SNFS difficulty: 169 digits. Divisors found: Sat May 31 11:47:02 2008 prp65 factor: 19121035045106931156034589094324433473093786433375865827509070283 Sat May 31 11:47:02 2008 prp97 factor: 4915128075224843895655346118121567445584594295484859874268072710814547659240553180841233721217017 Sat May 31 11:47:02 2008 elapsed time 01:26:56 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 85.06 hours. Scaled time: 71.28 units (timescale=0.838). Factorization parameters were as follows: name: KA_3_4_167_3 n: 93982336177563216710622053712499793504133132442754896701786016366381127410710209447003174180643878866627717354866420677299955512703248284503279569707148948605811 type: snfs deg: 5 c5: 31000 c0: -13 skew: 0.21 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5000399) Primes: RFBsize:250150, AFBsize:249832, largePrimes:5816711 encountered Relations: rels:5725824, finalFF:539421 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 84.83 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,48,48,2.5,2.5,100000 total time: 85.06 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
5·10176-1 = 4(9)176<177> = 48409 · 48550259 · C165
C165 = P49 · P117
P49 = 1685407140856189648612097538079896782968048556689<49>
P117 = 126225619910469676004414039354831078351797442441561563713439568704176968850333129983096588258532811794520832130928061<117>
N=212741561156104821848315308047573885814443504412799746904803957756367500051206620397368345024193419561880193183093279952257728632311539958871940330087867729139350029 ( 165 digits) SNFS difficulty: 176 digits. Divisors found: r1=1685407140856189648612097538079896782968048556689 (pp49) r2=126225619910469676004414039354831078351797442441561563713439568704176968850333129983096588258532811794520832130928061 (pp117) Version: GGNFS-0.77.1-20060513-prescott Total time: 224.48 hours. Scaled time: 191.48 units (timescale=0.853). Factorization parameters were as follows: n: 212741561156104821848315308047573885814443504412799746904803957756367500051206620397368345024193419561880193183093279952257728632311539958871940330087867729139350029 m: 100000000000000000000000000000000000 c5: 50 c0: -1 skew: 0.46 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11500001) Primes: RFBsize:501962, AFBsize:501581, largePrimes:6465156 encountered Relations: rels:6924137, finalFF:1134653 Max relations in full relation-set: 28 Initial matrix: 1003608 x 1134653 with sparse part having weight 71856558. Pruned matrix : 891266 x 896348 with weight 54923948. Total sieving time: 201.76 hours. Total relation processing time: 0.44 hours. Matrix solve time: 21.99 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 224.48 hours.
6·10169+1 = 6(0)1681<170> = 1163 · 50207 · C163
C163 = P45 · P118
P45 = 409692145250436913282056636020822590790365187<45>
P118 = 2508127593417771961783639597835041387496768657625863183136324428934170806705227815812321776714203987196208985026667903<118>
N=1027560174309142608757097293901442353677272223690396393496701814419515587240107125888332192941343217411815342435883798768712320331745747155358072952011347141492861 ( 163 digits) SNFS difficulty: 170 digits. Divisors found: r1=409692145250436913282056636020822590790365187 (pp45) r2=2508127593417771961783639597835041387496768657625863183136324428934170806705227815812321776714203987196208985026667903 (pp118) Version: GGNFS-0.77.1-20060513-prescott Total time: 153.02 hours. Scaled time: 177.66 units (timescale=1.161). Factorization parameters were as follows: n: 1027560174309142608757097293901442353677272223690396393496701814419515587240107125888332192941343217411815342435883798768712320331745747155358072952011347141492861 m: 10000000000000000000000000000000000 c5: 3 c0: 5 skew: 1.11 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7100001) Primes: RFBsize:412849, AFBsize:412211, largePrimes:6020639 encountered Relations: rels:6285070, finalFF:929842 Max relations in full relation-set: 28 Initial matrix: 825125 x 929842 with sparse part having weight 54766796. Pruned matrix : 737962 x 742151 with weight 40674202. Total sieving time: 140.47 hours. Total relation processing time: 0.20 hours. Matrix solve time: 12.05 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 153.02 hours.
By Tyler Cadigan / GGNFS, Msieve
(5·10190+13)/9 = (5)1897<190> = 811 · 907 · 10837804441<11> · 2785656325929626661973<22> · 141420727163771568086127494461<30> · C124
C124 = P59 · P65
P59 = 33459437467275085321414055603258376333697163788226609596037<59>
P65 = 52868721344425856941945570027921282052374118429357469698868995441<65>
Number: 55557_190 N=1768957675798608538570697178394242001598658689261756493802670073290117602123758045787374992447868719160331461600669004667317 ( 124 digits) Divisors found: r1=33459437467275085321414055603258376333697163788226609596037 r2=52868721344425856941945570027921282052374118429357469698868995441 Version: Total time: 60.52 hours. Scaled time: 155.16 units (timescale=2.564). Factorization parameters were as follows: name: 55557_190 n: 1768957675798608538570697178394242001598658689261756493802670073290117602123758045787374992447868719160331461600669004667317 skew: 59353.52 # norm 1.07e+017 c5: 491040 c4: 50867111448 c3: -4995511819788260 c2: -163948178132283273278 c1: 9083007404135601852054231 c0: -19006103892754768805129373210 # alpha -6.34 Y1: 76272196706117 Y0: -324577192860632699954327 # Murphy_E 1.84e-010 # M 995658799633167449149780343758990313985724368125209995426425707408614893747362482071898928066623208284832232387742176621524 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5440001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 717956 x 718204 Total sieving time: 60.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 60.52 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(19·10168+17)/9 = 2(1)1673<169> = C169
C169 = P72 · P97
P72 = 227487177154295025504685455361271692724662216695338616060397175372579537<72>
P97 = 9280132346445324494177855519611117213830193530355304266419412531346231676756164736608771764227449<97>
Number: 21113_168 N=2111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 169 digits) SNFS difficulty: 171 digits. Divisors found: r1=227487177154295025504685455361271692724662216695338616060397175372579537 (pp72) r2=9280132346445324494177855519611117213830193530355304266419412531346231676756164736608771764227449 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 99.00 hours. Scaled time: 233.44 units (timescale=2.358). Factorization parameters were as follows: n: 2111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 10000000000000000000000000000000000 c5: 19 c0: 1700 skew: 2.46 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [4000000, 9200001) Primes: RFBsize:539777, AFBsize:539370, largePrimes:9999580 encountered Relations: rels:9956522, finalFF:1241056 Max relations in full relation-set: 28 Initial matrix: 1079214 x 1241056 with sparse part having weight 74507988. Pruned matrix : 936892 x 942352 with weight 53685074. Total sieving time: 92.81 hours. Total relation processing time: 0.18 hours. Matrix solve time: 5.91 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,49,49,2.6,2.6,100000 total time: 99.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Sinkiti Sibata / GGNFS
(19·10161+17)/9 = 2(1)1603<162> = 3 · 7 · 36833 · 1060859273<10> · 14564381097589<14> · 4408021099498508159119<22> · C112
C112 = P33 · P79
P33 = 706991398277505775759368626955089<33>
P79 = 5668225218241225832747085084677390231483282542289051212302192258793615146195383<79>
Number: 21113_161 N=4007386472796184589094423777355566076795903284996272377907741299098845716620028610166554514234937212618360154087 ( 112 digits) SNFS difficulty: 162 digits. Divisors found: r1=706991398277505775759368626955089 (pp33) r2=5668225218241225832747085084677390231483282542289051212302192258793615146195383 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 83.43 hours. Scaled time: 167.11 units (timescale=2.003). Factorization parameters were as follows: name: 21113_161 n: 4007386472796184589094423777355566076795903284996272377907741299098845716620028610166554514234937212618360154087 m: 100000000000000000000000000000000 c5: 190 c0: 17 skew: 0.62 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4950001) Primes: RFBsize:315948, AFBsize:315511, largePrimes:5815229 encountered Relations: rels:5896613, finalFF:711219 Max relations in full relation-set: 28 Initial matrix: 631526 x 711219 with sparse part having weight 50842856. Pruned matrix : 575041 x 578262 with weight 38160172. Total sieving time: 78.98 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.97 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 83.43 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
8·10171-7 = 7(9)1703<172> = 17 · 1151 · C168
C168 = P77 · P92
P77 = 24647086395999836771837331424225869225743402319273339674995455701866527506633<77>
P92 = 16588234057078252813498282677454365397090590853140579319578237953322061447834122710199965663<92>
Number: n N=408851637961874584760055194971124853068942607451321101855164307252005928348750447181479020800327081310369499667808044155976899882455154085961056881484131445801604742679 ( 168 digits) SNFS difficulty: 172 digits. Divisors found: Thu May 29 01:44:12 2008 prp77 factor: 24647086395999836771837331424225869225743402319273339674995455701866527506633 Thu May 29 01:44:12 2008 prp92 factor: 16588234057078252813498282677454365397090590853140579319578237953322061447834122710199965663 Thu May 29 01:44:12 2008 elapsed time 02:24:36 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 112.41 hours. Scaled time: 162.21 units (timescale=1.443). Factorization parameters were as follows: name: KA_7_9_170_3 n: 408851637961874584760055194971124853068942607451321101855164307252005928348750447181479020800327081310369499667808044155976899882455154085961056881484131445801604742679 skew: 1.23 deg: 5 c5: 5 c0: -14 m: 20000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5600521) Primes: RFBsize:250150, AFBsize:251001, largePrimes:7971414 encountered Relations: rels:7366966, finalFF:511955 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 112.09 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 112.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(19·10159+17)/9 = 2(1)1583<160> = 12497 · C156
C156 = P60 · P96
P60 = 582369490753755763634044705532923835566861195555346804624251<60>
P96 = 290072599328501239090268348704294814519427609152777687487796440289248834506309310228248097076379<96>
Number: n N=168929431952557502689534377139402345451797320245747868377299440754670009691214780436193575346972162207818765392583108835009291118757390662647924390742667129 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: Thu May 29 15:37:16 2008 prp60 factor: 582369490753755763634044705532923835566861195555346804624251 Thu May 29 15:37:16 2008 prp96 factor: 290072599328501239090268348704294814519427609152777687487796440289248834506309310228248097076379 Thu May 29 15:37:16 2008 elapsed time 01:22:49 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 53.77 hours. Scaled time: 94.26 units (timescale=1.753). Factorization parameters were as follows: name: KA_2_1_158_3 n: 168929431952557502689534377139402345451797320245747868377299440754670009691214780436193575346972162207818765392583108835009291118757390662647924390742667129 type: snfs skew: 1.55 deg: 5 c5: 19 c0: 170 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700281) Primes: RFBsize:216816, AFBsize:217381, largePrimes:7215613 encountered Relations: rels:6592180, finalFF:463705 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 53.51 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 53.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
8·10190-1 = 7(9)190<191> = 1501424845230313<16> · 10411475502106841<17> · 103604998163265343797785903<27> · C134
C134 = P47 · P88
P47 = 32138196181722492086192711480655875703076973473<47>
P88 = 1536993045250756022561115557188611458176946430424547082249899017269102518555851907736337<88>
Number: 79999_190 N=49396184018211872703363301156464019861680357260098919357763832482898095600406839309173237178282301476725054664245512034332052427188401 ( 134 digits) Divisors found: r1=32138196181722492086192711480655875703076973473 (pp47) r2=1536993045250756022561115557188611458176946430424547082249899017269102518555851907736337 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 290.79 hours. Scaled time: 686.84 units (timescale=2.362). Factorization parameters were as follows: name: 79999_190 n: 49396184018211872703363301156464019861680357260098919357763832482898095600406839309173237178282301476725054664245512034332052427188401 skew: 242940.86 # norm 1.21e+18 c5: 85620 c4: -57151682624 c3: -22590728647291809 c2: 2381445185413331717122 c1: 409182909531414672114959920 c0: -32297630581163036627596487351520 # alpha -5.20 Y1: 459331903161439 Y0: -56522857115853633824740049 # Murphy_E 4.45e-11 # M 32787906899257365478808558482535562409527935353125941152465342791486689256008806739515137488792928799075273456259046471198536266016954 type: gnfs rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [5500000, 10200001) Primes: RFBsize:726517, AFBsize:726481, largePrimes:14857336 encountered Relations: rels:15289846, finalFF:1685493 Max relations in full relation-set: 28 Initial matrix: 1453075 x 1685493 with sparse part having weight 147115281. Pruned matrix : 1241084 x 1248413 with weight 99292092. Polynomial selection time: 19.85 hours. Total sieving time: 255.28 hours. Total relation processing time: 0.34 hours. Matrix solve time: 14.72 hours. Time per square root: 0.59 hours. Prototype def-par.txt line would be: gnfs,133,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,11000000,11000000,28,28,52,52,2.6,2.6,100000 total time: 290.79 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Robert Backstrom / GGNFS, Msieve
(14·10165-41)/9 = 1(5)1641<166> = 3 · 11 · 59 · 58451 · 5169785550529046037137<22> · C136
C136 = P63 · P74
P63 = 145830821819731044721528535735047502903441900884043243247216827<63>
P74 = 18130332859509736343289311799201732135771943135308657063773868356166511517<74>
Number: n N=2643961340767579204510392201562942474383505436157630831674023493387373870717733728070420140402288953838976680468196570012720491891696559 ( 136 digits) SNFS difficulty: 166 digits. Divisors found: Wed May 28 10:17:40 2008 prp63 factor: 145830821819731044721528535735047502903441900884043243247216827 Wed May 28 10:17:40 2008 prp74 factor: 18130332859509736343289311799201732135771943135308657063773868356166511517 Wed May 28 10:17:40 2008 elapsed time 00:53:14 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.95 hours. Scaled time: 65.76 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_5_164_1 n: 2643961340767579204510392201562942474383505436157630831674023493387373870717733728070420140402288953838976680468196570012720491891696559 skew: 1.24 deg: 5 c5: 14 c0: -41 m: 1000000000000000000000000000000000 type: snfs rlim: 3300000 alim: 3300000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500339) Primes: RFBsize:236900, AFBsize:237378, largePrimes:7332565 encountered Relations: rels:6804891, finalFF:530984 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.79 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3300000,3300000,28,28,48,48,2.5,2.5,100000 total time: 35.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(19·10143+17)/9 = 2(1)1423<144> = 3 · 72 · 51721 · 69073 · 445257779 · 44907917730197<14> · C110
C110 = P34 · P76
P34 = 7235857084230512962952890011521047<34>
P76 = 2778395777322023419518611783612670148440288856654912472918162716876208274883<76>
Number: 21113_143 N=20104074768131705952223948574828629453469311264939980616550632557451952625753174430604740451277750586715962501 ( 110 digits) SNFS difficulty: 144 digits. Divisors found: r1=7235857084230512962952890011521047 (pp34) r2=2778395777322023419518611783612670148440288856654912472918162716876208274883 (pp76) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 25.03 hours. Scaled time: 16.95 units (timescale=0.677). Factorization parameters were as follows: name: 21113_143 n: 20104074768131705952223948574828629453469311264939980616550632557451952625753174430604740451277750586715962501 m: 10000000000000000000000000000 c5: 19000 c0: 17 skew: 0.25 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3150001) Primes: RFBsize:100021, AFBsize:99493, largePrimes:2950613 encountered Relations: rels:2989844, finalFF:241915 Max relations in full relation-set: 28 Initial matrix: 199581 x 241915 with sparse part having weight 29623414. Pruned matrix : 188729 x 189790 with weight 21916761. Total sieving time: 23.39 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.32 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 25.03 hours. --------- CPU info (if available) ----------
(19·10153+17)/9 = 2(1)1523<154> = 631 · 28080280900663<14> · 15270966995993801<17> · 297851429000810929<18> · C104
C104 = P34 · P71
P34 = 1071730829955083205875392845598093<34>
P71 = 24441526913452149544679014625447927498593580679196528341183377269394693<71>
Number: 21113_153 N=26194737924323575364340387280235007936643629413751244947257148265834095820142465320158206394355665120449 ( 104 digits) SNFS difficulty: 154 digits. Divisors found: r1=1071730829955083205875392845598093 (pp34) r2=24441526913452149544679014625447927498593580679196528341183377269394693 (pp71) Version: GGNFS-0.77.1-20060513-k8 Total time: 39.96 hours. Scaled time: 80.56 units (timescale=2.016). Factorization parameters were as follows: name: 21113_153 n: 26194737924323575364340387280235007936643629413751244947257148265834095820142465320158206394355665120449 m: 1000000000000000000000000000000 c5: 19000 c0: 17 skew: 0.25 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2700001) Primes: RFBsize:176302, AFBsize:175753, largePrimes:5892888 encountered Relations: rels:5941175, finalFF:513449 Max relations in full relation-set: 28 Initial matrix: 352122 x 513449 with sparse part having weight 57240124. Pruned matrix : 298760 x 300584 with weight 34325060. Total sieving time: 38.09 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.54 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 39.96 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve
6·10192+7 = 6(0)1917<193> = 13 · 29 · 31 · 3208007417<10> · 15475455343<11> · 310826606681<12> · 40049826089950582237612221318425371<35> · C123
C123 = P53 · P71
P53 = 10102569630990212054844298716593986140238949067257353<53>
P71 = 82227811572357690683721133099265358362960911903422547606796172190078277<71>
Number: 6007_192 N=830712192013686323660709168931323872031297610912396291073166633804134415081608887012251142715040805151323146247750773820781 ( 123 digits) Divisors found: r1=10102569630990212054844298716593986140238949067257353 r2=82227811572357690683721133099265358362960911903422547606796172190078277 Version: Total time: 74.14 hours. Scaled time: 188.47 units (timescale=2.542). Factorization parameters were as follows: name: 6007_192 n: 830712192013686323660709168931323872031297610912396291073166633804134415081608887012251142715040805151323146247750773820781 skew: 77203.59 # norm 1.08e+017 c5: 172080 c4: 14838727404 c3: 1262193336427372 c2: -114796568745882147319 c1: -8195967742681946605855362 c0: -73190742726070200388319319520 # alpha -6.58 Y1: 23760673514311 Y0: -344146629317608937143053 # Murphy_E 1.96e-010 # M 283682133566270285574732015551287576199838655615985021782250332088258772742605296116457305471500075826863743323124395905458 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5800001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 746953 x 747201 Polynomial selection time: 7.91 hours. Total sieving time: 66.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 74.14 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(23·10178+1)/3 = 7(6)1777<179> = 41 · C178
C178 = P45 · P133
P45 = 790936180336816702545701154890239344559082933<45>
P133 = 2364184046291440600473811766553734828935527300679265758252039337569876107665435775119234232224612425238722596889930956255213593885639<133>
Number: 76667_178 N=1869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699187 ( 178 digits) SNFS difficulty: 179 digits. Divisors found: r1=790936180336816702545701154890239344559082933 (pp45) r2=2364184046291440600473811766553734828935527300679265758252039337569876107665435775119234232224612425238722596889930956255213593885639 (pp133) Version: GGNFS-0.77.1-20060513-k8 Total time: 423.45 hours. Scaled time: 845.63 units (timescale=1.997). Factorization parameters were as follows: name: 76667_178 n: 1869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699186991869918699187 m: 100000000000000000000000000000000000 c5: 23000 c0: 1 skew: 0.13 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 16000001) Primes: RFBsize:501962, AFBsize:502881, largePrimes:6769862 encountered Relations: rels:7271637, finalFF:1134889 Max relations in full relation-set: 28 Initial matrix: 1004910 x 1134889 with sparse part having weight 96349025. Pruned matrix : 901341 x 906429 with weight 77225160. Total sieving time: 408.94 hours. Total relation processing time: 0.88 hours. Matrix solve time: 13.25 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 423.45 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
3·10175-1 = 2(9)175<176> = 19 · 1358197 · C169
C169 = P69 · P100
P69 = 127908438358629022538945818383105074917390387700273693347951544125819<69>
P100 = 9088782074048181389749646028623925455114377328452874707792183747630337777668429784177679834126974147<100>
N=1162531921673404249588938400262298202380764622820586874789848135742497319298266281269250802040460528495536826821843494295048974176019655779723141472810916546754728201393 ( 169 digits) SNFS difficulty: 175 digits. Divisors found: r1=127908438358629022538945818383105074917390387700273693347951544125819 (pp69) r2=9088782074048181389749646028623925455114377328452874707792183747630337777668429784177679834126974147 (pp100) Version: GGNFS-0.77.1-20060513-prescott Total time: 170.28 hours. Scaled time: 289.65 units (timescale=1.701). Factorization parameters were as follows: n: 1162531921673404249588938400262298202380764622820586874789848135742497319298266281269250802040460528495536826821843494295048974176019655779723141472810916546754728201393 m: 100000000000000000000000000000000000 c5: 3 c0: -1 skew: 0.8 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10100001) Primes: RFBsize:501962, AFBsize:501561, largePrimes:6368718 encountered Relations: rels:6829866, finalFF:1143743 Max relations in full relation-set: 28 Initial matrix: 1003588 x 1143743 with sparse part having weight 64710672. Pruned matrix : 882352 x 887433 with weight 47911814. Total sieving time: 156.22 hours. Total relation processing time: 0.35 hours. Matrix solve time: 13.47 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 170.28 hours.
By Jo Yeong Uk / GMP-ECM
(19·10160+17)/9 = 2(1)1593<161> = 1091 · 13723 · 321889 · 24546888341483136439651<23> · C126
C126 = P35 · P91
P35 = 56346892794173538280415510697608311<35>
P91 = 3167121486201706714211853387395270653867058889451744908587689927499196954815248430586933829<91>
By Robert Backstrom / GGNFS, Msieve
(19·10152+17)/9 = 2(1)1513<153> = 3 · C152
C152 = P54 · P99
P54 = 356046920829177338700138389053899011999976498823798123<54>
P99 = 197643530258564893467617294435465707705350739812651298588563852360274701722217491033354235201386377<99>
Number: n N=70370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 ( 152 digits) SNFS difficulty: 153 digits. Divisors found: Tue May 27 02:50:46 2008 prp54 factor: 356046920829177338700138389053899011999976498823798123 Tue May 27 02:50:46 2008 prp99 factor: 197643530258564893467617294435465707705350739812651298588563852360274701722217491033354235201386377 Tue May 27 02:50:46 2008 elapsed time 00:31:20 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.60 hours. Scaled time: 30.36 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_1_151_3 n: 70370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 skew: 0.39 deg: 5 c5: 1900 c0: 17 m: 1000000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1300000) Primes: RFBsize:114155, AFBsize:113552, largePrimes:6914825 encountered Relations: rels:6240853, finalFF:256978 Max relations in full relation-set: 28 Initial matrix: 227774 x 256978 with sparse part having weight 40034553. Pruned matrix : Total sieving time: 16.46 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 16.60 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10168-61)/9 = 1(7)1671<169> = 97 · 238529 · C161
C161 = P63 · P99
P63 = 276893190703697940414783252826468932935031019517441970031773419<63>
P99 = 277493155611403703683054353264914582179810037056175052898430042343277972816202057969029288816183393<99>
Number: n N=76835965255679333973559409330624423751270416654595016187825171305664481341363095091369416050073652795282571393565786043425949148796049816924626372032818926630667 ( 161 digits) SNFS difficulty: 169 digits. Divisors found: Tue May 27 10:02:13 2008 prp63 factor: 276893190703697940414783252826468932935031019517441970031773419 Tue May 27 10:02:13 2008 prp99 factor: 277493155611403703683054353264914582179810037056175052898430042343277972816202057969029288816183393 Tue May 27 10:02:13 2008 elapsed time 01:01:22 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 72.06 hours. Scaled time: 60.46 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_7_167_1 n: 76835965255679333973559409330624423751270416654595016187825171305664481341363095091369416050073652795282571393565786043425949148796049816924626372032818926630667 type: snfs deg: 5 c5: 500 c0: -61 skew: 0.66 m: 2000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 4300447) Primes: RFBsize:250150, AFBsize:250362, largePrimes:5832541 encountered Relations: rels:5819193, finalFF:557034 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 71.86 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,48,48,2.5,2.5,100000 total time: 72.06 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
(19·10148+17)/9 = 2(1)1473<149> = 36373501 · 102958766380241<15> · C127
C127 = P32 · P96
P32 = 26224511757071848012274148820403<32>
P96 = 214958808080422153827853526584090210525279684543816668859493746840385486703480148495405135657631<96>
(19·10142+17)/9 = 2(1)1413<143> = 71 · 7109 · 115015969 · 189613733299<12> · 322231073053166813<18> · C100
C100 = P32 · P69
P32 = 11861150895327891743346144866743<32>
P69 = 501790053285023603948131322212264157408448417965160016833219189411523<69>
Number: 21113_142 N=5951807539788288225430884682457532216240948269068902899898204239271953616323682713929151105423679589 ( 100 digits) Divisors found: r1=11861150895327891743346144866743 (pp32) r2=501790053285023603948131322212264157408448417965160016833219189411523 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.25 hours. Scaled time: 7.74 units (timescale=2.380). Factorization parameters were as follows: name: 21113_142 n: 5951807539788288225430884682457532216240948269068902899898204239271953616323682713929151105423679589 skew: 7751.50 # norm 1.17e+14 c5: 89760 c4: 286433780 c3: -13296024916531 c2: -35606200466171418 c1: 108194047644569709036 c0: 685898863072462815714288 # alpha -6.78 Y1: 9344433943 Y0: -9211130300927092855 # Murphy_E 3.58e-09 # M 2709477439678778205764349730250602373095667669738940728520330933270108509389153091541589441957421898 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113795, largePrimes:3865589 encountered Relations: rels:3805363, finalFF:322396 Max relations in full relation-set: 28 Initial matrix: 228035 x 322396 with sparse part having weight 25128749. Pruned matrix : 170035 x 171239 with weight 11283215. Polynomial selection time: 0.25 hours. Total sieving time: 2.79 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 3.25 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Sinkiti Sibata / Msieve, GGNFS
(19·10105+17)/9 = 2(1)1043<106> = 237581 · 3150047 · C94
C94 = P42 · P52
P42 = 783359782782066587583950077100340582667033<42>
P52 = 3600983077686881125873890262969601465402154039814123<52>
Mon May 26 05:54:40 2008 Msieve v. 1.35 Mon May 26 05:54:40 2008 random seeds: a13198c8 f211c8f4 Mon May 26 05:54:40 2008 factoring 2820865321538692810538614558530976382470612956300835716173321479649426366217666289278919907059 (94 digits) Mon May 26 05:54:41 2008 searching for 15-digit factors Mon May 26 05:54:43 2008 commencing quadratic sieve (94-digit input) Mon May 26 05:54:43 2008 using multiplier of 1 Mon May 26 05:54:43 2008 using 64kb Pentium 4 sieve core Mon May 26 05:54:43 2008 sieve interval: 18 blocks of size 65536 Mon May 26 05:54:43 2008 processing polynomials in batches of 6 Mon May 26 05:54:43 2008 using a sieve bound of 2022583 (75294 primes) Mon May 26 05:54:43 2008 using large prime bound of 271026122 (28 bits) Mon May 26 05:54:43 2008 using double large prime bound of 1511541411162932 (42-51 bits) Mon May 26 05:54:43 2008 using trial factoring cutoff of 51 bits Mon May 26 05:54:43 2008 polynomial 'A' values have 12 factors Mon May 26 11:23:20 2008 75572 relations (18222 full + 57350 combined from 1082030 partial), need 75390 Mon May 26 11:23:23 2008 begin with 1100252 relations Mon May 26 11:23:25 2008 reduce to 198215 relations in 11 passes Mon May 26 11:23:25 2008 attempting to read 198215 relations Mon May 26 11:23:31 2008 recovered 198215 relations Mon May 26 11:23:31 2008 recovered 182210 polynomials Mon May 26 11:23:31 2008 attempting to build 75572 cycles Mon May 26 11:23:31 2008 found 75572 cycles in 6 passes Mon May 26 11:23:31 2008 distribution of cycle lengths: Mon May 26 11:23:31 2008 length 1 : 18222 Mon May 26 11:23:31 2008 length 2 : 13030 Mon May 26 11:23:31 2008 length 3 : 12664 Mon May 26 11:23:31 2008 length 4 : 10226 Mon May 26 11:23:31 2008 length 5 : 7717 Mon May 26 11:23:31 2008 length 6 : 5365 Mon May 26 11:23:31 2008 length 7 : 3504 Mon May 26 11:23:31 2008 length 9+: 4844 Mon May 26 11:23:31 2008 largest cycle: 22 relations Mon May 26 11:23:32 2008 matrix is 75294 x 75572 (19.5 MB) with weight 4796606 (63.47/col) Mon May 26 11:23:32 2008 sparse part has weight 4796606 (63.47/col) Mon May 26 11:23:33 2008 filtering completed in 3 passes Mon May 26 11:23:33 2008 matrix is 71948 x 72012 (18.6 MB) with weight 4589082 (63.73/col) Mon May 26 11:23:33 2008 sparse part has weight 4589082 (63.73/col) Mon May 26 11:23:34 2008 saving the first 48 matrix rows for later Mon May 26 11:23:34 2008 matrix is 71900 x 72012 (11.0 MB) with weight 3534900 (49.09/col) Mon May 26 11:23:34 2008 sparse part has weight 2463053 (34.20/col) Mon May 26 11:23:34 2008 matrix includes 64 packed rows Mon May 26 11:23:34 2008 using block size 21845 for processor cache size 512 kB Mon May 26 11:23:34 2008 commencing Lanczos iteration Mon May 26 11:23:34 2008 memory use: 11.1 MB Mon May 26 11:24:28 2008 lanczos halted after 1138 iterations (dim = 71898) Mon May 26 11:24:28 2008 recovered 16 nontrivial dependencies Mon May 26 11:24:29 2008 prp42 factor: 783359782782066587583950077100340582667033 Mon May 26 11:24:29 2008 prp52 factor: 3600983077686881125873890262969601465402154039814123 Mon May 26 11:24:29 2008 elapsed time 05:29:49
(19·10137+17)/9 = 2(1)1363<138> = 3 · 7 · 59 · 107 · 3137 · 10378477 · 52018972561<11> · C111
C111 = P54 · P58
P54 = 257906784564331830598010239861334619288706259471606201<54>
P58 = 3645720115445636970073274698358696904155253499404580769129<58>
Number: 21113_137 N=940255952396088864380528059344305845250199889392668041299317576046841164705609190752329635215726376937585768929 ( 111 digits) SNFS difficulty: 138 digits. Divisors found: r1=257906784564331830598010239861334619288706259471606201 (pp54) r2=3645720115445636970073274698358696904155253499404580769129 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.28 hours. Scaled time: 22.67 units (timescale=2.010). Factorization parameters were as follows: name: 21113_137 n: 940255952396088864380528059344305845250199889392668041299317576046841164705609190752329635215726376937585768929 m: 1000000000000000000000000000 c5: 1900 c0: 17 skew: 0.39 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1825001) Primes: RFBsize:78498, AFBsize:63278, largePrimes:1661033 encountered Relations: rels:1702175, finalFF:196033 Max relations in full relation-set: 28 Initial matrix: 141843 x 196033 with sparse part having weight 20035278. Pruned matrix : 128428 x 129201 with weight 11672377. Total sieving time: 11.00 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.28 hours. --------- CPU info (if available) ----------
(19·10121+17)/9 = 2(1)1203<122> = 1609 · 14898491627884431173138326429<29> · C90
C90 = P38 · P53
P38 = 36218395286981478538085535848918712611<38>
P53 = 24315518894413952771658466169562042509604178782165703<53>
Mon May 26 11:50:07 2008 Msieve v. 1.35 Mon May 26 11:50:07 2008 random seeds: d5e0c8e8 ebb720e0 Mon May 26 11:50:07 2008 factoring 880669074925951398734942256801317450090466445248385516105451227031149812348095397237780533 (90 digits) Mon May 26 11:50:08 2008 searching for 15-digit factors Mon May 26 11:50:10 2008 commencing quadratic sieve (90-digit input) Mon May 26 11:50:10 2008 using multiplier of 2 Mon May 26 11:50:10 2008 using 64kb Pentium 4 sieve core Mon May 26 11:50:10 2008 sieve interval: 18 blocks of size 65536 Mon May 26 11:50:10 2008 processing polynomials in batches of 6 Mon May 26 11:50:10 2008 using a sieve bound of 1615001 (61176 primes) Mon May 26 11:50:10 2008 using large prime bound of 135660084 (27 bits) Mon May 26 11:50:10 2008 using double large prime bound of 434924330062824 (42-49 bits) Mon May 26 11:50:10 2008 using trial factoring cutoff of 49 bits Mon May 26 11:50:10 2008 polynomial 'A' values have 12 factors Mon May 26 14:06:03 2008 61929 relations (16287 full + 45642 combined from 670328 partial), need 61272 Mon May 26 14:06:06 2008 begin with 686615 relations Mon May 26 14:06:07 2008 reduce to 151202 relations in 10 passes Mon May 26 14:06:07 2008 attempting to read 151202 relations Mon May 26 14:06:10 2008 recovered 151202 relations Mon May 26 14:06:10 2008 recovered 129702 polynomials Mon May 26 14:06:11 2008 attempting to build 61929 cycles Mon May 26 14:06:11 2008 found 61929 cycles in 5 passes Mon May 26 14:06:11 2008 distribution of cycle lengths: Mon May 26 14:06:11 2008 length 1 : 16287 Mon May 26 14:06:11 2008 length 2 : 11799 Mon May 26 14:06:11 2008 length 3 : 11002 Mon May 26 14:06:11 2008 length 4 : 8442 Mon May 26 14:06:11 2008 length 5 : 5835 Mon May 26 14:06:11 2008 length 6 : 3725 Mon May 26 14:06:11 2008 length 7 : 2334 Mon May 26 14:06:11 2008 length 9+: 2505 Mon May 26 14:06:11 2008 largest cycle: 17 relations Mon May 26 14:06:11 2008 matrix is 61176 x 61929 (15.2 MB) with weight 3728877 (60.21/col) Mon May 26 14:06:11 2008 sparse part has weight 3728877 (60.21/col) Mon May 26 14:06:12 2008 filtering completed in 4 passes Mon May 26 14:06:12 2008 matrix is 57269 x 57333 (14.0 MB) with weight 3437413 (59.96/col) Mon May 26 14:06:12 2008 sparse part has weight 3437413 (59.96/col) Mon May 26 14:06:13 2008 saving the first 48 matrix rows for later Mon May 26 14:06:13 2008 matrix is 57221 x 57333 (8.8 MB) with weight 2690503 (46.93/col) Mon May 26 14:06:13 2008 sparse part has weight 1954397 (34.09/col) Mon May 26 14:06:13 2008 matrix includes 64 packed rows Mon May 26 14:06:13 2008 using block size 21845 for processor cache size 512 kB Mon May 26 14:06:14 2008 commencing Lanczos iteration Mon May 26 14:06:14 2008 memory use: 8.6 MB Mon May 26 14:06:46 2008 lanczos halted after 907 iterations (dim = 57216) Mon May 26 14:06:47 2008 recovered 14 nontrivial dependencies Mon May 26 14:06:47 2008 prp38 factor: 36218395286981478538085535848918712611 Mon May 26 14:06:47 2008 prp53 factor: 24315518894413952771658466169562042509604178782165703 Mon May 26 14:06:47 2008 elapsed time 02:16:40
(19·10125+17)/9 = 2(1)1243<126> = 3 · 7 · 1987 · 3727 · 3160957 · 5400152789<10> · 21795220773379<14> · C88
C88 = P32 · P57
P32 = 21769371741788386995971686002193<32>
P57 = 167611083343969985171953195615674438687622824552784462787<57>
Mon May 26 14:25:38 2008 Msieve v. 1.35 Mon May 26 14:25:38 2008 random seeds: 8498d380 d66b9c6e Mon May 26 14:25:38 2008 factoring 3648787981358758376443619313888158885179582879218339340017561379606686032816905208891891 (88 digits) Mon May 26 14:25:40 2008 searching for 15-digit factors Mon May 26 14:25:42 2008 commencing quadratic sieve (88-digit input) Mon May 26 14:25:42 2008 using multiplier of 11 Mon May 26 14:25:42 2008 using 64kb Pentium 4 sieve core Mon May 26 14:25:42 2008 sieve interval: 13 blocks of size 65536 Mon May 26 14:25:42 2008 processing polynomials in batches of 8 Mon May 26 14:25:42 2008 using a sieve bound of 1517707 (57529 primes) Mon May 26 14:25:42 2008 using large prime bound of 121416560 (26 bits) Mon May 26 14:25:42 2008 using double large prime bound of 356205104400640 (42-49 bits) Mon May 26 14:25:42 2008 using trial factoring cutoff of 49 bits Mon May 26 14:25:42 2008 polynomial 'A' values have 11 factors Mon May 26 15:46:08 2008 57807 relations (16257 full + 41550 combined from 604944 partial), need 57625 Mon May 26 15:46:10 2008 begin with 621201 relations Mon May 26 15:46:11 2008 reduce to 137587 relations in 9 passes Mon May 26 15:46:11 2008 attempting to read 137587 relations Mon May 26 15:46:15 2008 recovered 137587 relations Mon May 26 15:46:15 2008 recovered 113718 polynomials Mon May 26 15:46:15 2008 attempting to build 57807 cycles Mon May 26 15:46:15 2008 found 57807 cycles in 5 passes Mon May 26 15:46:15 2008 distribution of cycle lengths: Mon May 26 15:46:15 2008 length 1 : 16257 Mon May 26 15:46:15 2008 length 2 : 11581 Mon May 26 15:46:15 2008 length 3 : 10022 Mon May 26 15:46:15 2008 length 4 : 7636 Mon May 26 15:46:15 2008 length 5 : 5168 Mon May 26 15:46:15 2008 length 6 : 3243 Mon May 26 15:46:15 2008 length 7 : 1807 Mon May 26 15:46:15 2008 length 9+: 2093 Mon May 26 15:46:15 2008 largest cycle: 16 relations Mon May 26 15:46:15 2008 matrix is 57529 x 57807 (13.6 MB) with weight 3346142 (57.88/col) Mon May 26 15:46:15 2008 sparse part has weight 3346142 (57.88/col) Mon May 26 15:46:16 2008 filtering completed in 3 passes Mon May 26 15:46:16 2008 matrix is 52880 x 52944 (12.6 MB) with weight 3088437 (58.33/col) Mon May 26 15:46:16 2008 sparse part has weight 3088437 (58.33/col) Mon May 26 15:46:17 2008 saving the first 48 matrix rows for later Mon May 26 15:46:17 2008 matrix is 52832 x 52944 (8.7 MB) with weight 2490713 (47.04/col) Mon May 26 15:46:17 2008 sparse part has weight 1970280 (37.21/col) Mon May 26 15:46:17 2008 matrix includes 64 packed rows Mon May 26 15:46:17 2008 using block size 21177 for processor cache size 512 kB Mon May 26 15:46:18 2008 commencing Lanczos iteration Mon May 26 15:46:18 2008 memory use: 8.2 MB Mon May 26 15:46:48 2008 lanczos halted after 837 iterations (dim = 52831) Mon May 26 15:46:48 2008 recovered 17 nontrivial dependencies Mon May 26 15:46:49 2008 prp32 factor: 21769371741788386995971686002193 Mon May 26 15:46:49 2008 prp57 factor: 167611083343969985171953195615674438687622824552784462787 Mon May 26 15:46:49 2008 elapsed time 01:21:11
(19·10132+17)/9 = 2(1)1313<133> = 31 · 911 · 333483323 · 46928703599228182185833657<26> · C94
C94 = P46 · P48
P46 = 4998028003187250350588924237218853249700597287<46>
P48 = 955695757724238214604079143204207742822053446549<48>
Number: 21113_132 N=4776594159633000514124122320061907346291707194004929543799695356781805365347420856122228912563 ( 94 digits) SNFS difficulty: 133 digits. Divisors found: r1=4998028003187250350588924237218853249700597287 (pp46) r2=955695757724238214604079143204207742822053446549 (pp48) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.35 hours. Scaled time: 12.80 units (timescale=2.016). Factorization parameters were as follows: name: 21113_132 n: 4776594159633000514124122320061907346291707194004929543799695356781805365347420856122228912563 m: 100000000000000000000000000 c5: 1900 c0: 17 skew: 0.39 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1250001) Primes: RFBsize:63951, AFBsize:63278, largePrimes:1568200 encountered Relations: rels:1587419, finalFF:178535 Max relations in full relation-set: 28 Initial matrix: 127296 x 178535 with sparse part having weight 16438184. Pruned matrix : 115008 x 115708 with weight 8856615. Total sieving time: 6.16 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.35 hours. --------- CPU info (if available) ----------
(19·10171+17)/9 = 2(1)1703<172> = 31633729472340713<17> · 291104186737583782427<21> · 6438741037805110785691<22> · 8577629963433708883037<22> · C91
C91 = P39 · P52
P39 = 730838499256988735456103400088494610213<39>
P52 = 5679662912466728551265886075488345660885194579796953<52>
Mon May 26 16:05:50 2008 Msieve v. 1.35 Mon May 26 16:05:50 2008 random seeds: f9076ce4 4dd5fde8 Mon May 26 16:05:50 2008 factoring 4150916319232761671539358595025702780677783501173809882863812208715661747821991680420080989 (91 digits) Mon May 26 16:05:51 2008 searching for 15-digit factors Mon May 26 16:05:53 2008 commencing quadratic sieve (91-digit input) Mon May 26 16:05:53 2008 using multiplier of 5 Mon May 26 16:05:53 2008 using 64kb Pentium 4 sieve core Mon May 26 16:05:53 2008 sieve interval: 18 blocks of size 65536 Mon May 26 16:05:53 2008 processing polynomials in batches of 6 Mon May 26 16:05:53 2008 using a sieve bound of 1715599 (64706 primes) Mon May 26 16:05:53 2008 using large prime bound of 164697504 (27 bits) Mon May 26 16:05:53 2008 using double large prime bound of 616646889281472 (42-50 bits) Mon May 26 16:05:53 2008 using trial factoring cutoff of 50 bits Mon May 26 16:05:53 2008 polynomial 'A' values have 12 factors Mon May 26 19:12:04 2008 65311 relations (16822 full + 48489 combined from 768000 partial), need 64802 Mon May 26 19:12:07 2008 begin with 784822 relations Mon May 26 19:12:08 2008 reduce to 163602 relations in 10 passes Mon May 26 19:12:08 2008 attempting to read 163602 relations Mon May 26 19:12:13 2008 recovered 163602 relations Mon May 26 19:12:13 2008 recovered 144384 polynomials Mon May 26 19:12:13 2008 attempting to build 65311 cycles Mon May 26 19:12:13 2008 found 65311 cycles in 5 passes Mon May 26 19:12:13 2008 distribution of cycle lengths: Mon May 26 19:12:13 2008 length 1 : 16822 Mon May 26 19:12:13 2008 length 2 : 11982 Mon May 26 19:12:13 2008 length 3 : 11293 Mon May 26 19:12:13 2008 length 4 : 8641 Mon May 26 19:12:13 2008 length 5 : 6470 Mon May 26 19:12:13 2008 length 6 : 4167 Mon May 26 19:12:13 2008 length 7 : 2635 Mon May 26 19:12:13 2008 length 9+: 3301 Mon May 26 19:12:13 2008 largest cycle: 19 relations Mon May 26 19:12:13 2008 matrix is 64706 x 65311 (16.2 MB) with weight 3988777 (61.07/col) Mon May 26 19:12:13 2008 sparse part has weight 3988777 (61.07/col) Mon May 26 19:12:15 2008 filtering completed in 3 passes Mon May 26 19:12:15 2008 matrix is 60989 x 61053 (15.1 MB) with weight 3724320 (61.00/col) Mon May 26 19:12:15 2008 sparse part has weight 3724320 (61.00/col) Mon May 26 19:12:15 2008 saving the first 48 matrix rows for later Mon May 26 19:12:15 2008 matrix is 60941 x 61053 (9.4 MB) with weight 2900914 (47.51/col) Mon May 26 19:12:15 2008 sparse part has weight 2093272 (34.29/col) Mon May 26 19:12:15 2008 matrix includes 64 packed rows Mon May 26 19:12:15 2008 using block size 21845 for processor cache size 512 kB Mon May 26 19:12:16 2008 commencing Lanczos iteration Mon May 26 19:12:16 2008 memory use: 9.3 MB Mon May 26 19:12:54 2008 lanczos halted after 965 iterations (dim = 60941) Mon May 26 19:12:54 2008 recovered 18 nontrivial dependencies Mon May 26 19:12:55 2008 prp39 factor: 730838499256988735456103400088494610213 Mon May 26 19:12:55 2008 prp52 factor: 5679662912466728551265886075488345660885194579796953 Mon May 26 19:12:55 2008 elapsed time 03:07:05
(19·10117+17)/9 = 2(1)1163<118> = 31 · 61 · 61231 · 704964570643<12> · C98
C98 = P47 · P51
P47 = 63460649118500649720004637763831639443635857911<47>
P51 = 407545788120013284598901938387320489819499387145561<51>
Number: 21113_117 N=25863120259606973612140943358534400942067297352716633976505979254681934314828742357338679670383071 ( 98 digits) SNFS difficulty: 118 digits. Divisors found: r1=63460649118500649720004637763831639443635857911 (pp47) r2=407545788120013284598901938387320489819499387145561 (pp51) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.34 hours. Scaled time: 1.58 units (timescale=0.677). Factorization parameters were as follows: name: 21113_117 n: 25863120259606973612140943358534400942067297352716633976505979254681934314828742357338679670383071 m: 100000000000000000000000 c5: 1900 c0: 17 skew: 0.39 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63278, largePrimes:2061617 encountered Relations: rels:2076260, finalFF:171414 Max relations in full relation-set: 28 Initial matrix: 112443 x 171414 with sparse part having weight 13981284. Pruned matrix : 94931 x 95557 with weight 5424242. Total sieving time: 2.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(8·10169-17)/9 = (8)1687<169> = 7 · 23 · 347651 · 570290792567<12> · C150
C150 = P34 · P42 · P75
P34 = 7647057099881162934899256947975591<34>
P42 = 288971669211010444364343532804847944865909<42>
P75 = 126017877051932162637963203064793127409653634778576315963511553718382954729<75>
Number: n N=36415596282124724946851084768003952823187763054201007070477049673615397913960005932770460940694364915011993122433661 ( 116 digits) Divisors found: Mon May 26 03:32:21 2008 prp42 factor: 288971669211010444364343532804847944865909 Mon May 26 03:32:21 2008 prp75 factor: 126017877051932162637963203064793127409653634778576315963511553718382954729 Mon May 26 03:32:21 2008 elapsed time 00:58:59 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.79 hours. Scaled time: 60.41 units (timescale=1.788). Factorization parameters were as follows: name: KA_8_168_7 n: 36415596282124724946851084768003952823187763054201007070477049673615397913960005932770460940694364915011993122433661 skew: 32602.77 # norm 9.87e+15 c5: 51240 c4: -17444291338 c3: -204845419034853 c2: 16621713388589075462 c1: 140528977229607893092002 c0: -7240200765027653070058015 # alpha -6.04 Y1: 1095222391577 Y0: -14802594722064352791642 # Murphy_E 4.67e-10 # M 7330779924285220432966678097907383861727993586497700469151769799760136608191069016539989636153384426399706445238266 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 2139990) Primes: RFBsize:315948, AFBsize:315812, largePrimes:6713940 encountered Relations: rels:6667215, finalFF:756278 Max relations in full relation-set: 28 Initial matrix: 631844 x 756278 with sparse part having weight 46156257. Pruned matrix : Total sieving time: 33.56 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 33.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10110+17)/9 = 2(1)1093<111> = 3 · 6607 · C107
C107 = P43 · P64
P43 = 2270199252456242699778729641333819680492093<43>
P64 = 4691606222865481103080585512540588248203889051546135228221187921<64>
Number: n N=10650880939968271586252515569906216190460174113874734428692352106912421730039408259477882604869134307608653 ( 107 digits) SNFS difficulty: 111 digits. Divisors found: r1=2270199252456242699778729641333819680492093 (pp43) r2=4691606222865481103080585512540588248203889051546135228221187921 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.77 hours. Scaled time: 1.34 units (timescale=1.754). Factorization parameters were as follows: name: KA_2_1_109_3 n: 10650880939968271586252515569906216190460174113874734428692352106912421730039408259477882604869134307608653 type: snfs skew: 0.98 deg: 5 c5: 19 c0: 17 m: 10000000000000000000000 rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:49098, AFBsize:49036, largePrimes:3053133 encountered Relations: rels:2566808, finalFF:139977 Max relations in full relation-set: 28 Initial matrix: 98201 x 139977 with sparse part having weight 6770974. Pruned matrix : 74778 x 75333 with weight 2487548. Total sieving time: 0.67 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.4,2.4,50000 total time: 0.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(16·10168-43)/9 = 1(7)1673<169> = 3 · 19 · 191 · 1162727 · 32142403 · C151
C151 = P40 · P43 · P69
P40 = 1135576527475659333289157303954971991389<40>
P43 = 7332359625542663552102105388324769736487451<43>
P69 = 524750651552389632583331633911460165026537808342751045471152014055281<69>
Number: n N=3847660490919948366761919261633749695877165825894476197911616472552930306305900066786080295040588420179076778731 ( 112 digits) Divisors found: Mon May 26 10:32:20 2008 prp43 factor: 7332359625542663552102105388324769736487451 Mon May 26 10:32:20 2008 prp69 factor: 524750651552389632583331633911460165026537808342751045471152014055281 Mon May 26 10:32:20 2008 elapsed time 00:41:20 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.45 hours. Scaled time: 33.75 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_7_167_3 n: 3847660490919948366761919261633749695877165825894476197911616472552930306305900066786080295040588420179076778731 skew: 36788.59 # norm 6.05e+15 c5: 78000 c4: -5631153824 c3: -347034960848259 c2: 5737219763925262545 c1: 298212253611090490023001 c0: 1359075478596552538555591221 # alpha -6.64 Y1: 390452078753 Y0: -2180828685196191746234 # Murphy_E 7.85e-10 # M 3106697242966918702106236308821846260072575737044410193218342945966571983336045922057382424617833389701926414309 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1300000) Primes: RFBsize:250150, AFBsize:249801, largePrimes:6529947 encountered Relations: rels:6131649, finalFF:518517 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 18.27 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 18.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10116+17)/9 = 2(1)1153<117> = 3 · 83 · 71527 · 5602253 · C103
C103 = P49 · P54
P49 = 2966325687678056937474314854464720978353817202219<49>
P54 = 713280224924002374089503089945616997448142074923965033<54>
Number: n N=2115821453704850469983635766404803392743827058719309562419615688657939260968947379262777059130246008227 ( 103 digits) SNFS difficulty: 117 digits. Divisors found: r1=2966325687678056937474314854464720978353817202219 (pp49) r2=713280224924002374089503089945616997448142074923965033 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.45 hours. Scaled time: 2.53 units (timescale=1.751). Factorization parameters were as follows: name: KA_2_1_115_3 n: 2115821453704850469983635766404803392743827058719309562419615688657939260968947379262777059130246008227 type: snfs skew: 0.62 deg: 5 c5: 190 c0: 17 m: 100000000000000000000000 rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 240001) Primes: RFBsize:56543, AFBsize:56433, largePrimes:3684144 encountered Relations: rels:3161105, finalFF:179094 Max relations in full relation-set: 28 Initial matrix: 113043 x 179094 with sparse part having weight 10761539. Pruned matrix : 84754 x 85383 with weight 3472881. Total sieving time: 1.29 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.05 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,700000,700000,28,28,48,48,2.4,2.4,50000 total time: 1.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(19·10124+17)/9 = 2(1)1233<125> = 223718153 · 834759311 · C108
C108 = P46 · P62
P46 = 2098106958390013566678652050706071014416820177<46>
P62 = 53879179111506794848560367490910458372207156743626422470530943<62>
Number: n N=113044280606194274951039755402217484921209733464583986651108663909704532766448392160888427078429686945236911 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=2098106958390013566678652050706071014416820177 (pp46) r2=53879179111506794848560367490910458372207156743626422470530943 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.99 hours. Scaled time: 3.63 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_1_123_3 n: 113044280606194274951039755402217484921209733464583986651108663909704532766448392160888427078429686945236911 skew: 1.55 deg: 5 c5: 19 c0: 170 m: 10000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:78498, AFBsize:78541, largePrimes:4987460 encountered Relations: rels:4343076, finalFF:223428 Max relations in full relation-set: 48 Initial matrix: 157104 x 223428 with sparse part having weight 18618193. Pruned matrix : 128827 x 129676 with weight 6954852. Total sieving time: 1.80 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Total square root time: 0.05 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.99 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(19·10145+17)/9 = 2(1)1443<146> = 28447 · 41017 · C137
C137 = P35 · P102
P35 = 78028900325725980152501066021599909<35>
P102 = 231875700865027574418442587619581173200268280817376948139532338530122326771487269224347720783283635043<102>
(19·10140+17)/9 = 2(1)1393<141> = 34 · 103142892767<12> · C128
C128 = P37 · P92
P37 = 1338967039267258903607662253178789037<37>
P92 = 18871954411427858011578814863318916834385230348366099626180972019620251580610578675135514787<92>
The factor table of 211...113 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS
6·10164+1 = 6(0)1631<165> = 127301 · 9028519 · 731813929840206967957739<24> · C129
C129 = P48 · P82
P48 = 369270152835869755547632504844697137215152321611<48>
P82 = 1931781669601575696400721360944887567321529473091599594216511185010148045718575651<82>
Number: 60001_164 N=713349312379305508790666689367172868406630219599967618257841050319008187812555276771966182501762848278868158748777307060785693761 ( 129 digits) SNFS difficulty: 165 digits. Divisors found: r1=369270152835869755547632504844697137215152321611 (pp48) r2=1931781669601575696400721360944887567321529473091599594216511185010148045718575651 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 109.83 hours. Scaled time: 74.35 units (timescale=0.677). Factorization parameters were as follows: name: 60001_164 n: 713349312379305508790666689367172868406630219599967618257841050319008187812555276771966182501762848278868158748777307060785693761 m: 1000000000000000000000000000000000 c5: 3 c0: 5 skew: 1.11 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5000001) Primes: RFBsize:348513, AFBsize:347746, largePrimes:5774254 encountered Relations: rels:5921824, finalFF:793765 Max relations in full relation-set: 28 Initial matrix: 696324 x 793765 with sparse part having weight 43434956. Pruned matrix : 618590 x 622135 with weight 30984281. Total sieving time: 93.90 hours. Total relation processing time: 0.36 hours. Matrix solve time: 15.32 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 109.83 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
(10175+53)/9 = (1)1747<175> = 7 · 193 · 3954197657<10> · C162
C162 = P37 · P125
P37 = 2610737759979808348888414895912745601<37>
P125 = 79667376637152748251187653628669585032369930493112417006130329078837954943743446933778194805256207158514266300958092844163331<125>
Number: 11117_175 N=207990628425147882873116937733374674024084023398128816882295841907268463261365926197669521747703201029768219977406412612707085785431852504776846402074903895756931 ( 162 digits) SNFS difficulty: 175 digits. Divisors found: r1=2610737759979808348888414895912745601 (pp37) r2=79667376637152748251187653628669585032369930493112417006130329078837954943743446933778194805256207158514266300958092844163331 (pp125) Version: GGNFS-0.77.1-20060722-nocona Total time: 229.61 hours. Scaled time: 462.67 units (timescale=2.015). Factorization parameters were as follows: n: 207990628425147882873116937733374674024084023398128816882295841907268463261365926197669521747703201029768219977406412612707085785431852504776846402074903895756931 m: 100000000000000000000000000000000000 c5: 1 c0: 53 skew: 2.21 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11500001) Primes: RFBsize:501962, AFBsize:502556, largePrimes:6722972 encountered Relations: rels:7341404, finalFF:1276844 Max relations in full relation-set: 32 Initial matrix: 1004582 x 1276844 with sparse part having weight 84011642. Pruned matrix : 767989 x 773075 with weight 63465184. Total sieving time: 223.38 hours. Total relation processing time: 0.10 hours. Matrix solve time: 5.93 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 229.61 hours.
By Robert Backstrom / GGNFS, Msieve
(5·10165-41)/9 = (5)1641<165> = 19 · 23 · 6579711991137624748790221<25> · C138
C138 = P68 · P70
P68 = 21083373136695693791397262348539885288424420557620875447965111556739<68>
P70 = 9164295383350239108257431989856648493254559513704497509580294208734917<70>
Number: n N=193214259102070796294938693019973703949380505820952443293645400138485561727618230806612603709067289274548366084025358207192680957655955663 ( 138 digits) SNFS difficulty: 165 digits. Divisors found: Wed May 21 17:27:32 2008 prp68 factor: 21083373136695693791397262348539885288424420557620875447965111556739 Wed May 21 17:27:32 2008 prp70 factor: 9164295383350239108257431989856648493254559513704497509580294208734917 Wed May 21 17:27:32 2008 elapsed time 00:46:27 (Msieve 1.36) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.38 hours. Scaled time: 55.56 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_164_1 n: 193214259102070796294938693019973703949380505820952443293645400138485561727618230806612603709067289274548366084025358207192680957655955663 skew: 1.52 deg: 5 c5: 5 c0: -41 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200000) Primes: RFBsize:230209, AFBsize:230198, largePrimes:8031343 encountered Relations: rels:7742603, finalFF:745531 Max relations in full relation-set: 28 Initial matrix: 460472 x 745531 with sparse part having weight 73265518. Pruned matrix : Total sieving time: 30.20 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 30.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(5·10168-23)/9 = (5)1673<168> = 127709 · 3157451059191428479609<22> · C142
C142 = P37 · P49 · P56
P37 = 4534229354659272615202786707505221491<37>
P49 = 5307729004237646738094282755789801851124238131627<49>
P56 = 57247580658584769147297015573859650130443012417569320109<56>
Number: n N=303854644284004501603054739515143078103688249906898718160532334889375027156095800934456094438098839987343 ( 105 digits) Divisors found: Wed May 21 00:10:06 2008 prp49 factor: 5307729004237646738094282755789801851124238131627 Wed May 21 00:10:06 2008 prp56 factor: 57247580658584769147297015573859650130443012417569320109 Wed May 21 00:10:06 2008 elapsed time 00:25:35 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 9.19 hours. Scaled time: 13.30 units (timescale=1.447). Factorization parameters were as follows: name: n n: 303854644284004501603054739515143078103688249906898718160532334889375027156095800934456094438098839987343 skew: 4247.77 # norm 1.75e+13 c5: 55080 c4: 365730018 c3: -2888912593427 c2: -4861785643557040 c1: 22243646095735652084 c0: 22141020713593788522960 # alpha -3.84 Y1: 103926725093 Y0: -88783796969622700957 # Murphy_E 2.08e-09 # M 123198688195128300348499142709450541348104311857436014602214916670286578204588240644864396042236949963164 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1300000) Primes: RFBsize:183072, AFBsize:182479, largePrimes:4258432 encountered Relations: rels:4351739, finalFF:511925 Max relations in full relation-set: 28 Initial matrix: 365631 x 511925 with sparse part having weight 32012362. Pruned matrix : Total sieving time: 9.03 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 9.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS, Msieve
(52·10168-7)/9 = 5(7)168<169> = 2273 · 4327 · C162
C162 = P68 · P95
P68 = 20752002809996857119171828649866996717199970697800523504969822088337<68>
P95 = 28308345385696301109711060065796518182592934915052319190743442789270172132944796227018696827351<95>
Number: n N=587454862990331204679340078964552962269954511449433145032585048015227824203092906924250259883817922025511831629019452313797736511559038665815896458549823159705287 ( 162 digits) SNFS difficulty: 171 digits. Divisors found: Tue May 20 09:17:49 2008 prp68 factor: 20752002809996857119171828649866996717199970697800523504969822088337 Tue May 20 09:17:49 2008 prp95 factor: 28308345385696301109711060065796518182592934915052319190743442789270172132944796227018696827351 Tue May 20 09:17:49 2008 elapsed time 01:32:25 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 84.28 hours. Scaled time: 154.14 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_7_168 n: 587454862990331204679340078964552962269954511449433145032585048015227824203092906924250259883817922025511831629019452313797736511559038665815896458549823159705287 skew: 1.68 deg: 5 c5: 13 c0: -175 m: 10000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5601451) Primes: RFBsize:250150, AFBsize:250051, largePrimes:8242669 encountered Relations: rels:7702797, finalFF:542216 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 83.96 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 84.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Wataru Sakai / GGNFS
(10174+53)/9 = (1)1737<174> = 32 · 24256521885311<14> · C159
C159 = P43 · P52 · P65
P43 = 2027653539543295031938083824511414251255561<43>
P52 = 8392517209536205849446943360188330150487682685953111<52>
P65 = 29908901503673913152403882822870481251319731298983207281605651573<65>
Number: 11117 N=508963282976766783534262853063054603099914669847218516424297079463077466707163153543756764845578381588268013787077522720355911520232708905656308189050983576283 ( 159 digits) SNFS difficulty: 175 digits. Divisors found: r1=2027653539543295031938083824511414251255561 (pp43) r2=8392517209536205849446943360188330150487682685953111 (pp52) r3=29908901503673913152403882822870481251319731298983207281605651573 (pp65) Version: GGNFS-0.77.1-20060722-nocona Total time: 269.79 hours. Scaled time: 543.10 units (timescale=2.013). Factorization parameters were as follows: n: 508963282976766783534262853063054603099914669847218516424297079463077466707163153543756764845578381588268013787077522720355911520232708905656308189050983576283 m: 100000000000000000000000000000000000 c5: 1 c0: 530 skew: 3.51 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12900001) Primes: RFBsize:501962, AFBsize:502251, largePrimes:6702326 encountered Relations: rels:7292639, finalFF:1245904 Max relations in full relation-set: 32 Initial matrix: 1004277 x 1245904 with sparse part having weight 85068839. Pruned matrix : 795304 x 800389 with weight 63132763. Total sieving time: 263.47 hours. Total relation processing time: 0.11 hours. Matrix solve time: 6.01 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 269.79 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
8·10182-1 = 7(9)182<183> = 6689 · 45833 · 64965178089572382042423526852742694223<38> · C137
C137 = P46 · P92
P46 = 2829679223950790825954049626119361318023850447<46>
P92 = 14194910762760110159567326572030778175180115767221826639366766883637151712659720504442682567<92>
Number: 79999_182 N=40167044071217756780187592392246187076622588646967716036404892251010744662016892972703963262216033825927684995558723281578766771102057449 ( 137 digits) SNFS difficulty: 182 digits. Divisors found: r1=2829679223950790825954049626119361318023850447 (pp46) r2=14194910762760110159567326572030778175180115767221826639366766883637151712659720504442682567 (pp92) Version: GGNFS-0.77.1-20050930-nocona Total time: 198.43 hours. Scaled time: 470.07 units (timescale=2.369). Factorization parameters were as follows: n: 40167044071217756780187592392246187076622588646967716036404892251010744662016892972703963262216033825927684995558723281578766771102057449 m: 2000000000000000000000000000000000000 c5: 25 c0: -1 skew: 0.53 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 8700001) Primes: RFBsize:664579, AFBsize:664195, largePrimes:11026461 encountered Relations: rels:11383611, finalFF:1565933 Max relations in full relation-set: 28 Initial matrix: 1328838 x 1565933 with sparse part having weight 91203312. Pruned matrix : 1110337 x 1117045 with weight 59728587. Total sieving time: 189.97 hours. Total relation processing time: 0.22 hours. Matrix solve time: 8.13 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 198.43 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Robert Backstrom / GGNFS
(17·10163-53)/9 = 1(8)1623<164> = 13 · 1733 · 23472466891217<14> · C146
C146 = P47 · P99
P47 = 37464998032005354061197314116355187433310192513<47>
P99 = 953410757092344732158061608063141390017470114019584701189414810489033337617424683715457001145387587<99>
Number: n N=35719532138157430052106995256408556683128572464714853419483400421642599338267848370829079226006677548827900672142510416094914152945325824970536131 ( 146 digits) SNFS difficulty: 164 digits. Divisors found: r1=37464998032005354061197314116355187433310192513 (pp47) r2=953410757092344732158061608063141390017470114019584701189414810489033337617424683715457001145387587 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 62.14 hours. Scaled time: 113.65 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_8_162_3 n: 35719532138157430052106995256408556683128572464714853419483400421642599338267848370829079226006677548827900672142510416094914152945325824970536131 skew: 0.32 deg: 5 c5: 17000 c0: -53 m: 100000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4000001) Primes: RFBsize:230209, AFBsize:230502, largePrimes:7910428 encountered Relations: rels:7389998, finalFF:540625 Max relations in full relation-set: 48 Initial matrix: 460778 x 540625 with sparse part having weight 70572678. Pruned matrix : 433405 x 435772 with weight 49582594. Total sieving time: 58.94 hours. Total relation processing time: 0.29 hours. Matrix solve time: 2.75 hours. Total square root time: 0.16 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 62.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
Msieve 1.36 has been released. The option "ECM=1" seems not to work with the latest GMP-ECM 6.2 on Cygwin.
By Wataru Sakai / GGNFS
(10192+53)/9 = (1)1917<192> = 32 · C191
C191 = P83 · P108
P83 = 14123720387393002847291410763872967484180831506670434762025325964606545058458745507<83>
P108 = 874109559926262470155627544776491563984637426442504930902793822720147512252658789539043366361166147669006359<108>
Number: 11117_192 N=12345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679013 ( 191 digits) SNFS difficulty: 192 digits. Divisors found: r1=14123720387393002847291410763872967484180831506670434762025325964606545058458745507 (pp83) r2=874109559926262470155627544776491563984637426442504930902793822720147512252658789539043366361166147669006359 (pp108) Version: GGNFS-0.77.1-20060722-nocona Total time: 1917.76 hours. Scaled time: 3607.30 units (timescale=1.881). Factorization parameters were as follows: n: 12345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679013 m: 100000000000000000000000000000000000000 c5: 100 c0: 53 skew: 0.88 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 33200001) Primes: RFBsize:501962, AFBsize:501086, largePrimes:7793203 encountered Relations: rels:8555123, finalFF:1127939 Max relations in full relation-set: 32 Initial matrix: 1003112 x 1127939 with sparse part having weight 174268786. Pruned matrix : 926899 x 931978 with weight 156610693. Total sieving time: 1901.26 hours. Total relation processing time: 0.23 hours. Matrix solve time: 15.94 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1917.76 hours. --------- CPU info (if available) ----------
10179-9 = (9)1781<179> = 569 · 8951 · 944482695820147111<18> · C155
C155 = P51 · P104
P51 = 546906270091264303592773419636796433846880957980999<51>
P104 = 38010997664106318499368894010475771853596823493322466917536870017901952887416421331572081502939677862201<104>
Number: 99991_179 N=20788452954924146764603039522194137117407445350777136241530147122589364351329595415517377430574666346326413082578657526895364119580095412547818049498318799 ( 155 digits) SNFS difficulty: 180 digits. Divisors found: r1=546906270091264303592773419636796433846880957980999 (pp51) r2=38010997664106318499368894010475771853596823493322466917536870017901952887416421331572081502939677862201 (pp104) Version: GGNFS-0.77.1-20060722-nocona Total time: 378.09 hours. Scaled time: 732.36 units (timescale=1.937). Factorization parameters were as follows: n: 20788452954924146764603039522194137117407445350777136241530147122589364351329595415517377430574666346326413082578657526895364119580095412547818049498318799 m: 1000000000000000000000000000000000000 c5: 1 c0: -90 skew: 2.46 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, ) Primes: RFBsize:501962, AFBsize:502106, largePrimes:6681820 encountered Relations: rels:7298544, finalFF:1280046 Max relations in full relation-set: 32 Initial matrix: 1004132 x 1280046 with sparse part having weight 79504127. Pruned matrix : 763803 x 768887 with weight 58674310. Total sieving time: 372.79 hours. Total relation processing time: 0.11 hours. Matrix solve time: 5.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 378.09 hours. --------- CPU info (if available) ----------
GMP-ECM 6.2 has been released.
By Wataru Sakai / GGNFS
10185-9 = (9)1841<185> = 43 · 68239 · C179
C179 = P46 · P62 · P72
P46 = 2538313576960440629507448895847540063266132079<46>
P62 = 29377049543046125556029128856057470051512089568061282636870001<62>
P72 = 457030771896922620319211488891391699946102749496004569879285614325665077<72>
Number: 99991_185 N=34079945417559419236834150286424901261878138975972616082258082655454819023561851863338055677770026483525583985424688943818187580790770605501798228319957522756031553939863209915083 ( 179 digits) SNFS difficulty: 185 digits. Divisors found: r1=2538313576960440629507448895847540063266132079 (pp46) r2=29377049543046125556029128856057470051512089568061282636870001 (pp62) r3=457030771896922620319211488891391699946102749496004569879285614325665077 (pp72) Version: GGNFS-0.77.1-20060722-nocona Total time: 551.24 hours. Scaled time: 1091.46 units (timescale=1.980). Factorization parameters were as follows: n: 34079945417559419236834150286424901261878138975972616082258082655454819023561851863338055677770026483525583985424688943818187580790770605501798228319957522756031553939863209915083 m: 10000000000000000000000000000000000000 c5: 1 c0: -9 skew: 1.55 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10800001) Primes: RFBsize:501962, AFBsize:501561, largePrimes:6796158 encountered Relations: rels:7433227, finalFF:1293690 Max relations in full relation-set: 32 Initial matrix: 1003587 x 1293690 with sparse part having weight 91676647. Pruned matrix : 758115 x 763196 with weight 74168224. Total sieving time: 544.72 hours. Total relation processing time: 0.12 hours. Matrix solve time: 6.19 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 551.24 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM, GGNFS
4·10195+3 = 4(0)1943<196> = 334619 · C191
C191 = P34 · C157
P34 = 1899148878726749048488989889567829<34>
C157 = [6294342673917283095296597333781389878764955396535221356317197348749861635004950569207387365842036953134093517964225806435213623451826519913911915772485876053<157>]
(31·10179-13)/9 = 3(4)1783<180> = 11 · C179
C179 = P68 · P112
P68 = 30083976209855206209867424244392759793889864427042762736211518417297<68>
P112 = 1040857468264898047169776135475785954744385602127018579283000666366877231179930173843719367433591547037710900129<112>
N=31313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313 ( 179 digits) SNFS difficulty: 181 digits. Divisors found: r1=30083976209855206209867424244392759793889864427042762736211518417297 (pp68) r2=1040857468264898047169776135475785954744385602127018579283000666366877231179930173843719367433591547037710900129 (pp112) Version: GGNFS-0.77.1-20060513-prescott Total time: 488.40 hours. Scaled time: 829.79 units (timescale=1.699). Factorization parameters were as follows: n: 31313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313131313 m: 1000000000000000000000000000000000000 c5: 31 c0: -130 skew: 1.33 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10000001) Primes: RFBsize:501962, AFBsize:503087, largePrimes:6595694 encountered Relations: rels:7075180, finalFF:1156780 Max relations in full relation-set: 28 Initial matrix: 1005114 x 1156780 with sparse part having weight 74860798. Pruned matrix : 877750 x 882839 with weight 57165750. Total sieving time: 473.22 hours. Total relation processing time: 0.16 hours. Matrix solve time: 14.75 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 488.40 hours.
(17·10151+1)/9 = 1(8)1509<152> = 1999 · 23053 · 136739 · 3036797 · 10115327 · 241307805079199<15> · C111
C111 = P44 · P68
P44 = 16052814829035632996593744878571920614918011<44>
P68 = 25191586207757365324351562684284330771481754244914451059244679310463<68>
Number: 18889_151 N=404395868642816960618253208929134675199315393867524038135573530299426396894733529649892305557335362882759449093 ( 111 digits) SNFS difficulty: 152 digits. Divisors found: r1=16052814829035632996593744878571920614918011 (pp44) r2=25191586207757365324351562684284330771481754244914451059244679310463 (pp68) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 34.49 hours. Scaled time: 23.32 units (timescale=0.676). Factorization parameters were as follows: name: 18889_151 n: 404395868642816960618253208929134675199315393867524038135573530299426396894733529649892305557335362882759449093 m: 1000000000000000000000000000000 c5: 170 c0: 1 skew: 0.36 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176638, largePrimes:5642853 encountered Relations: rels:5669604, finalFF:579959 Max relations in full relation-set: 28 Initial matrix: 353007 x 579959 with sparse part having weight 52116995. Pruned matrix : 262184 x 264013 with weight 25401214. Total sieving time: 31.27 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.85 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 34.49 hours. --------- CPU info (if available) ----------
(5·10195+7)/3 = 1(6)1949<196> = C196
C196 = P56 · P140
P56 = 70933856352032678645751387076184010145835868792093142469<56>
P140 = 23496067355978549054213838968500546792259877842124452223684145406670771881352881209782499995258163300154998364416791685762865175855683321801<140>
Number: 16669_195 N=1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 196 digits) SNFS difficulty: 195 digits. Divisors found: r1=70933856352032678645751387076184010145835868792093142469 (pp56) r2=23496067355978549054213838968500546792259877842124452223684145406670771881352881209782499995258163300154998364416791685762865175855683321801 (pp140) Version: GGNFS-0.77.1-20060513-k8 Total time: 2741.50 hours. Scaled time: 5510.41 units (timescale=2.010). Factorization parameters were as follows: name: 16669_195 n: 1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 1000000000000000000000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 37900000 ) Primes: RFBsize:501962, AFBsize:501136, largePrimes:8055645 encountered Relations: rels:8992598, finalFF:1135865 Max relations in full relation-set: 28 Initial matrix: 1003163 x 1135865 with sparse part having weight 171400953. Pruned matrix : 919129 x 924208 with weight 156929395. Total sieving time: 2711.16 hours. Total relation processing time: 3.34 hours. Matrix solve time: 26.46 hours. Time per square root: 0.54 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2741.50 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM
2·10193-7 = 1(9)1923<194> = 13 · 19 · 59 · 107 · C188
C188 = P34 · C154
P34 = 5988949810510825396976938071071359<34>
C154 = [2141640541578786521330418665807384878608009014861807243660439094425838336861612412560917549794060720323430428012100399379490077809110556314251517234498057<154>]
By Jo Yeong Uk / GGNFS
(17·10167+1)/9 = 1(8)1669<168> = 3 · 439 · 1869749428162746085682491<25> · 163609302509880042320150939<27> · C114
C114 = P47 · P67
P47 = 67491671682398385317058511254298691184136924241<47>
P67 = 6946708088484961654717938698979654691930307591413856517996301354013<67>
Number: 18889_167 N=468844941581488303298926571089388851951033336400850491856810847637557401770554274615923511541962492525097502329133 ( 114 digits) Divisors found: r1=67491671682398385317058511254298691184136924241 (pp47) r2=6946708088484961654717938698979654691930307591413856517996301354013 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.62 hours. Scaled time: 41.71 units (timescale=2.367). Factorization parameters were as follows: name: 18889_167 n: 468844941581488303298926571089388851951033336400850491856810847637557401770554274615923511541962492525097502329133 skew: 46684.93 # norm 8.48e+15 c5: 25920 c4: -676451736 c3: 130428591787688 c2: 3765533627980100596 c1: 36339129263182235163297 c0: -2557412519550371046968785290 # alpha -7.07 Y1: 636525890843 Y0: -7103609029808023059391 # Murphy_E 6.52e-10 # M 180139406609668129580026728876662211747894112506436949390916334295806210579842840786329647593722407771469041647991 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2730001) Primes: RFBsize:250150, AFBsize:251199, largePrimes:7420613 encountered Relations: rels:7298007, finalFF:609288 Max relations in full relation-set: 28 Initial matrix: 501430 x 609288 with sparse part having weight 49346372. Pruned matrix : 410627 x 413198 with weight 29226622. Polynomial selection time: 1.18 hours. Total sieving time: 15.33 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.87 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 17.62 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Robert Backstrom / GGNFS, Msieve
(16·10164+11)/9 = 1(7)1639<165> = 8837 · 591781793 · C152
C152 = P60 · P92
P60 = 819054711215580220780088216797582579278329688084587866978373<60>
P92 = 41504779040362072486741147317329424235777767852517739678824079973857105583247144975259600203<92>
Number: n N=33994684810970224044938855284325010320587366934543670749637725820422739011723947723559014858582979941037256593746246806758495085353818012064597627409719 ( 152 digits) SNFS difficulty: 166 digits. Divisors found: Fri May 16 01:29:50 2008 prp60 factor: 819054711215580220780088216797582579278329688084587866978373 Fri May 16 01:29:50 2008 prp92 factor: 41504779040362072486741147317329424235777767852517739678824079973857105583247144975259600203 Fri May 16 01:29:50 2008 elapsed time 01:08:56 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.96 hours. Scaled time: 73.43 units (timescale=1.413). Factorization parameters were as follows: name: KA_1_7_163_9 n: 33994684810970224044938855284325010320587366934543670749637725820422739011723947723559014858582979941037256593746246806758495085353818012064597627409719 skew: 1.47 deg: 5 c5: 1 c0: 220 m: 2000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400223) Primes: RFBsize:230209, AFBsize:230048, largePrimes:7594820 encountered Relations: rels:7045114, finalFF:515446 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 51.77 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 51.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Philippe Strohl / GMP-ECM, Msieve
(10198+71)/9 = (1)1979<198> = 4001 · 5031332503<10> · 58763767963<11> · 13275389735735891<17> · 1080515019909211499629<22> · C136
C136 = P41 · P42 · P55
P41 = 10069084871636180530120147336924416212569<41>
P42 = 372936171880615158098090212029283260211837<42>
P55 = 1743788007353172537521605567071655468363222761077697113<55>
By Jo Yeong Uk / GGNFS
(17·10160+1)/9 = 1(8)1599<161> = 13 · 2776731921313909477<19> · 23804872312724088177544609<26> · C116
C116 = P49 · P67
P49 = 3019027540589841111615402443598033601002863914943<49>
P67 = 7281086248778730252929784206334560094320704875958402009234594411847<67>
Number: 18889_160 N=21981799910472962006573451120284964892454411201578582142123383849630370984496422039098541921072986649975632919529721 ( 116 digits) SNFS difficulty: 161 digits. Divisors found: r1=3019027540589841111615402443598033601002863914943 (pp49) r2=7281086248778730252929784206334560094320704875958402009234594411847 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.37 hours. Scaled time: 58.03 units (timescale=2.381). Factorization parameters were as follows: n: 21981799910472962006573451120284964892454411201578582142123383849630370984496422039098541921072986649975632919529721 m: 100000000000000000000000000000000 c5: 17 c0: 1 skew: 0.57 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:282982, largePrimes:5612739 encountered Relations: rels:5636302, finalFF:651682 Max relations in full relation-set: 28 Initial matrix: 566193 x 651682 with sparse part having weight 40463301. Pruned matrix : 498218 x 501112 with weight 27564761. Total sieving time: 23.12 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.14 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.37 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673806) Calibrating delay using timer specific routine.. 5344.78 BogoMIPS (lpj=2672394) Calibrating delay using timer specific routine.. 5344.44 BogoMIPS (lpj=2672223) Calibrating delay using timer specific routine.. 5344.77 BogoMIPS (lpj=2672388)
By Sinkiti Sibata / GGNFS
(17·10150+1)/9 = 1(8)1499<151> = 12599100967<11> · 232362627870787<15> · C126
C126 = P50 · P77
P50 = 12255622955186676467421637879285692660200973908309<50>
P77 = 52645976406605495742233878007732625356159233240897545278160906703716316402849<77>
Number: 18889_150 N=645209236947010492147224285543187145714532531053986933972672816337481145452624873946152946638065994199823548790633407632372341 ( 126 digits) SNFS difficulty: 151 digits. Divisors found: r1=12255622955186676467421637879285692660200973908309 (pp50) r2=52645976406605495742233878007732625356159233240897545278160906703716316402849 (pp77) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 27.02 hours. Scaled time: 18.02 units (timescale=0.667). Factorization parameters were as follows: name: 18889_150 n: 645209236947010492147224285543187145714532531053986933972672816337481145452624873946152946638065994199823548790633407632372341 m: 1000000000000000000000000000000 c5: 17 c0: 1 skew: 0.57 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176118, largePrimes:5313564 encountered Relations: rels:5181418, finalFF:453835 Max relations in full relation-set: 28 Initial matrix: 352485 x 453835 with sparse part having weight 36996961. Pruned matrix : 294072 x 295898 with weight 21718071. Total sieving time: 23.62 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.06 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 27.02 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(17·10156+1)/9 = 1(8)1559<157> = 1570653419<10> · 413097321610859<15> · 67407421335827431871<20> · C113
C113 = P43 · P71
P43 = 1683915841330240179281702206131814655635817<43>
P71 = 25647531544462176640389814319070297296091174784612085044944710867824487<71>
Number: n N=43188284658736900485468870637293355701575449624772259430741937853997084709199848904019254042856968584304546850879 ( 113 digits) SNFS difficulty: 157 digits. Divisors found: r1=1683915841330240179281702206131814655635817 (pp43) r2=25647531544462176640389814319070297296091174784612085044944710867824487 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.48 hours. Scaled time: 33.68 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_155_9 n: 43188284658736900485468870637293355701575449624772259430741937853997084709199848904019254042856968584304546850879 skew: 0.36 deg: 5 c5: 170 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:148933, AFBsize:149105, largePrimes:6785053 encountered Relations: rels:6136287, finalFF:337877 Max relations in full relation-set: 48 Initial matrix: 298105 x 337877 with sparse part having weight 40377415. Pruned matrix : 280312 x 281866 with weight 28247297. Total sieving time: 17.45 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.83 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 18.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(13·10168+23)/9 = 1(4)1677<169> = 6197231736504198581<19> · 6827481749527884299<19> · C131
C131 = P57 · P75
P57 = 125991706661408379069740433560492000863719150637957632449<57>
P75 = 270957140149426777544289571433775011527741409316792143226462515238075645737<75>
Number: n N=34138352519520697488492384808044363669564458449619491153150511809519512581286624284223734680550286431913886638391088083143379719913 ( 131 digits) SNFS difficulty: 169 digits. Divisors found: Thu May 15 13:35:04 2008 prp57 factor: 125991706661408379069740433560492000863719150637957632449 Thu May 15 13:35:04 2008 prp75 factor: 270957140149426777544289571433775011527741409316792143226462515238075645737 Thu May 15 13:35:04 2008 elapsed time 01:35:31 (Msieve 1.35) Version: GGNFS-0.77.1-20050930-k8 Total time: 71.47 hours. Scaled time: 60.11 units (timescale=0.841). Factorization parameters were as follows: name: KA_1_4_167_7 n: 34138352519520697488492384808044363669564458449619491153150511809519512581286624284223734680550286431913886638391088083143379719913 type: snfs deg: 5 c5: 13000 c0: 23 skew: 0.28 m: 1000000000000000000000000000000000 rlim: 3400000 alim: 3400000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 9101657) Primes: RFBsize:243539, AFBsize:243864, largePrimes:6295660 encountered Relations: rels:6358983, finalFF:386411 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 71.23 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,48,48,2.5,2.5,100000 total time: 71.47 hours. --------- CPU info (if available) ----------
(17·10166+1)/9 = 1(8)1659<167> = 13 · 745033 · 7085413956200779<16> · 671347539145262415473123<24> · C120
C120 = P33 · P87
P33 = 878173932625410668935107562634861<33>
P87 = 466868291565041584191404564367635894529401621360028875543317445660814498485125130692393<87>
By Sinkiti Sibata / GGNFS
(17·10136+1)/9 = 1(8)1359<137> = 13 · 131 · 683 · 456409592321987984917<21> · C110
C110 = P45 · P66
P45 = 135271113016603325460958519014799560369771317<45>
P66 = 263033602744615290623211932004282702100555610794776909675214160549<66>
Number: 18889_136 N=35580848204031197632957661319571263404262342057907723715152309747795286599815779076172254024688540843253173033 ( 110 digits) SNFS difficulty: 137 digits. Divisors found: r1=135271113016603325460958519014799560369771317 (pp45) r2=263033602744615290623211932004282702100555610794776909675214160549 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.98 hours. Scaled time: 6.08 units (timescale=0.677). Factorization parameters were as follows: name: 18889_136 n: 35580848204031197632957661319571263404262342057907723715152309747795286599815779076172254024688540843253173033 m: 1000000000000000000000000000 c5: 170 c0: 1 skew: 0.36 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1300001) Primes: RFBsize:78498, AFBsize:63758, largePrimes:1536783 encountered Relations: rels:1537478, finalFF:174059 Max relations in full relation-set: 28 Initial matrix: 142323 x 174059 with sparse part having weight 14424184. Pruned matrix : 132346 x 133121 with weight 9309259. Total sieving time: 8.46 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.37 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.98 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(17·10146+1)/9 = 1(8)1459<147> = 32 · 7 · 171598487 · C137
C137 = P40 · P97
P40 = 3210829111399465992677672913074119450171<40>
P97 = 5441707777847825911517573089597079709549116073352279752874414335353976222031085839213018547986339<97>
Number: n N=17472393748842697564100529228848415796336457975702693130378453345976558074187660708043800543522486486548479317292793680457479225899213969 ( 137 digits) SNFS difficulty: 147 digits. Divisors found: r1=3210829111399465992677672913074119450171 (pp40) r2=5441707777847825911517573089597079709549116073352279752874414335353976222031085839213018547986339 (pp97) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.41 hours. Scaled time: 11.66 units (timescale=1.818). Factorization parameters were as follows: name: KA_1_8_145_9 n: 17472393748842697564100529228848415796336457975702693130378453345976558074187660708043800543522486486548479317292793680457479225899213969 skew: 0.36 deg: 5 c5: 170 c0: 1 m: 100000000000000000000000000000 type: snfs rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:121127, AFBsize:121025, largePrimes:6566213 encountered Relations: rels:5867774, finalFF:300967 Max relations in full relation-set: 48 Initial matrix: 242219 x 300967 with sparse part having weight 33169592. Pruned matrix : 220316 x 221591 with weight 18533404. Total sieving time: 5.78 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.40 hours. Total square root time: 0.11 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,48,48,2.5,2.5,100000 total time: 6.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS
(17·10155+1)/9 = 1(8)1549<156> = 32 · 233707265677436331129169<24> · C131
C131 = P43 · P89
P43 = 7432798877836175924862195765978994856188367<43>
P89 = 12082013223071163764032145160054775612064289873932471918156403070758301397897940923198927<89>
Number: 18889_155 N=89803174326445185097380030661135204861505848627374060515671755601306327312337475431786542613761787651305075448165637035599724282209 ( 131 digits) SNFS difficulty: 156 digits. Divisors found: r1=7432798877836175924862195765978994856188367 (pp43) r2=12082013223071163764032145160054775612064289873932471918156403070758301397897940923198927 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.92 hours. Scaled time: 37.90 units (timescale=2.380). Factorization parameters were as follows: n: 89803174326445185097380030661135204861505848627374060515671755601306327312337475431786542613761787651305075448165637035599724282209 m: 10000000000000000000000000000000 c5: 17 c0: 1 skew: 0.57 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216621, largePrimes:5652876 encountered Relations: rels:5672516, finalFF:606082 Max relations in full relation-set: 28 Initial matrix: 433502 x 606082 with sparse part having weight 47143850. Pruned matrix : 323248 x 325479 with weight 29229758. Total sieving time: 15.24 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.58 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 15.92 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.38 BogoMIPS (lpj=2672192) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672358)
By Sinkiti Sibata / GGNFS
(17·10138+1)/9 = 1(8)1379<139> = 4510061376844003663<19> · C120
C120 = P50 · P71
P50 = 31840264865105550282268277463062426428832090106619<50>
P71 = 13153680477112431114501007873566580075045768560448657392843078514243637<71>
Number: 18889_138 N=418816670342227751757005180681984987355373125957642242039607767360886430241132243704166233930906908148091812021472333303 ( 120 digits) SNFS difficulty: 139 digits. Divisors found: r1=31840264865105550282268277463062426428832090106619 (pp50) r2=13153680477112431114501007873566580075045768560448657392843078514243637 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 13.84 hours. Scaled time: 9.37 units (timescale=0.677). Factorization parameters were as follows: name: 18889_138 n: 418816670342227751757005180681984987355373125957642242039607767360886430241132243704166233930906908148091812021472333303 m: 1000000000000000000000000000 c5: 17000 c0: 1 skew: 0.14 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1900001) Primes: RFBsize:78498, AFBsize:63878, largePrimes:1627941 encountered Relations: rels:1648597, finalFF:175753 Max relations in full relation-set: 28 Initial matrix: 142443 x 175753 with sparse part having weight 18062658. Pruned matrix : 133976 x 134752 with weight 12318345. Total sieving time: 13.17 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.49 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 13.84 hours. --------- CPU info (if available) ----------
(17·10133+1)/9 = 1(8)1329<134> = 107 · 227 · 4813 · 685170157317962653049<21> · C105
C105 = P37 · P69
P37 = 1234014527104641903445029379611028313<37>
P69 = 191100667533990229020460551789426582958270387694681889491226478787821<69>
Number: 18889_133 N=235820999876338346487677767402600117955663203582401779655854919539426132493778302474140196027811550575973 ( 105 digits) SNFS difficulty: 134 digits. Divisors found: r1=1234014527104641903445029379611028313 (pp37) r2=191100667533990229020460551789426582958270387694681889491226478787821 (pp69) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.65 hours. Scaled time: 5.18 units (timescale=0.677). Factorization parameters were as follows: name: 18889_133 n: 235820999876338346487677767402600117955663203582401779655854919539426132493778302474140196027811550575973 m: 100000000000000000000000000 c5: 17000 c0: 1 skew: 0.14 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:78498, AFBsize:63878, largePrimes:1524268 encountered Relations: rels:1529587, finalFF:179780 Max relations in full relation-set: 28 Initial matrix: 142443 x 179780 with sparse part having weight 13890647. Pruned matrix : 129461 x 130237 with weight 8271331. Total sieving time: 7.21 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.30 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.65 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(17·10148+1)/9 = 1(8)1479<149> = 13 · 23 · 79 · 2579 · C141
C141 = P39 · P50 · P54
P39 = 125681550014263882017357848163817899931<39>
P50 = 20778615782132915248991027933944063474034054154181<50>
P54 = 118732236759698250781220009050291048271486353167257761<54>
Number: n N=310067887339372044057852532081215001964982278863308124029803280292445671423201078818835634127341864552129161310084319113472281721057927336871 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=125681550014263882017357848163817899931 (pp39) r2=20778615782132915248991027933944063474034054154181 (pp50) r3=118732236759698250781220009050291048271486353167257761 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.43 hours. Scaled time: 19.02 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_147_9 n: 310067887339372044057852532081215001964982278863308124029803280292445671423201078818835634127341864552129161310084319113472281721057927336871 skew: 1.43 deg: 5 c5: 17 c0: 100 m: 1000000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:114155, AFBsize:114282, largePrimes:6189604 encountered Relations: rels:5491469, finalFF:264671 Max relations in full relation-set: 48 Initial matrix: 228504 x 264671 with sparse part having weight 29914799. Pruned matrix : 213309 x 214515 with weight 19462184. Total sieving time: 9.85 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.39 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 10.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(13·10170+23)/9 = 1(4)1697<171> = 32 · 72 · C168
C168 = P42 · P126
P42 = 446315784615474862410026239878656530619417<42>
P126 = 733871474114925252241865494143887940469879995924979497675057972980625973036265099361056138544027803999139735087936933070351151<126>
Number: n N=327538422776518014613252708490803728898966994205089443184681279919375157470395565633660871756109851347946586041824137062232300327538422776518014613252708490803728898967 ( 168 digits) SNFS difficulty: 171 digits. Divisors found: Tue May 13 13:00:56 2008 prp42 factor: 446315784615474862410026239878656530619417 Tue May 13 13:00:56 2008 prp126 factor: 733871474114925252241865494143887940469879995924979497675057972980625973036265099361056138544027803999139735087936933070351151 Tue May 13 13:00:56 2008 elapsed time 01:20:02 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 62.30 hours. Scaled time: 113.95 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_4_169_7 n: 327538422776518014613252708490803728898966994205089443184681279919375157470395565633660871756109851347946586041824137062232300327538422776518014613252708490803728898967 skew: 1.12 deg: 5 c5: 13 c0: 23 m: 10000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4100573) Primes: RFBsize:250150, AFBsize:249461, largePrimes:7723547 encountered Relations: rels:7159466, finalFF:540371 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 62.05 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 62.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(17·10157+1)/9 = 1(8)1569<158> = 31 · 89 · 4993 · C151
C151 = P68 · P84
P68 = 10389319827483729125541276705287706636888901647006845589895676437721<68>
P84 = 131979363484273526432917168541620540675529931962287016158799908174443540210525526807<84>
Number: n N=1371175817865845012948456863812954583599996783382846088829463742090604184668894472478134040711645734175645025100300906146378680706732730562830651486847 ( 151 digits) SNFS difficulty: 158 digits. Divisors found: Tue May 13 23:42:18 2008 prp68 factor: 10389319827483729125541276705287706636888901647006845589895676437721 Tue May 13 23:42:18 2008 prp84 factor: 131979363484273526432917168541620540675529931962287016158799908174443540210525526807 Tue May 13 23:42:18 2008 elapsed time 00:51:03 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.44 hours. Scaled time: 39.71 units (timescale=1.447). Factorization parameters were as follows: name: KA_1_8_156_9 n: 1371175817865845012948456863812954583599996783382846088829463742090604184668894472478134040711645734175645025100300906146378680706732730562830651486847 skew: 0.23 deg: 5 c5: 1700 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1300001) Primes: RFBsize:203362, AFBsize:203472, largePrimes:7091762 encountered Relations: rels:6614208, finalFF:513664 Max relations in full relation-set: 28 Initial matrix: 406901 x 513664 with sparse part having weight 38635564. Pruned matrix : Total sieving time: 27.25 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 27.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS
(17·10158+1)/9 = 1(8)1579<159> = 3 · 72 · 5088556838519157777959041<25> · 773952255048761259605344760131<30> · C102
C102 = P50 · P53
P50 = 16713340926956566201930088601647275580275612424791<50>
P53 = 19521671710027297651795646344507570669558565769398567<53>
Number: 18889_158 N=326272354753809409783926743501951526769302667744497378253582147117816704691884198427382049596590674497 ( 102 digits) Divisors found: r1=16713340926956566201930088601647275580275612424791 (pp50) r2=19521671710027297651795646344507570669558565769398567 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.34 hours. Scaled time: 10.10 units (timescale=2.324). Factorization parameters were as follows: name: 18889_158 n: 326272354753809409783926743501951526769302667744497378253582147117816704691884198427382049596590674497 skew: 9707.57 # norm 1.66e+14 c5: 58140 c4: -1204082396 c3: -16047945750919 c2: 95250222814570675 c1: 627468897543127179213 c0: -2238096650248582827457545 # alpha -5.97 Y1: 22959935999 Y0: -22378083790384944344 # Murphy_E 2.69e-09 # M 198217674374385453969471597599128458274937908501156646603931004074576906134386477000765936111891797998 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135135, largePrimes:4297434 encountered Relations: rels:4209433, finalFF:333131 Max relations in full relation-set: 28 Initial matrix: 270296 x 333131 with sparse part having weight 25414943. Pruned matrix : 224093 x 225508 with weight 14231777. Polynomial selection time: 0.31 hours. Total sieving time: 3.72 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 4.34 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.38 BogoMIPS (lpj=2672192) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672358)
(17·10143+1)/9 = 1(8)1429<144> = 3 · 899753171 · 82020986669<11> · C123
C123 = P42 · P82
P42 = 651294001984968690031508343706506092549381<42>
P82 = 1309965033693254983247199110421891812341830657407559148798183964348719311977188577<82>
Number: 18889_143 N=853172369254454387976182331880392282540220002760894331827020690232607449767249084940972241338131506687593970016650921620837 ( 123 digits) SNFS difficulty: 146 digits. Divisors found: r1=651294001984968690031508343706506092549381 (pp42) r2=1309965033693254983247199110421891812341830657407559148798183964348719311977188577 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.26 hours. Scaled time: 17.35 units (timescale=2.389). Factorization parameters were as follows: n: 853172369254454387976182331880392282540220002760894331827020690232607449767249084940972241338131506687593970016650921620837 m: 100000000000000000000000000000 c5: 17 c0: 100 skew: 1.43 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1425001) Primes: RFBsize:135072, AFBsize:135058, largePrimes:3620149 encountered Relations: rels:3640316, finalFF:341971 Max relations in full relation-set: 28 Initial matrix: 270197 x 341971 with sparse part having weight 29294147. Pruned matrix : 237673 x 239087 with weight 16973507. Total sieving time: 6.98 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.21 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 7.26 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047200k/8912896k available (2439k kernel code, 339088k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 5347.61 BogoMIPS (lpj=2673805) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672348) Calibrating delay using timer specific routine.. 5344.38 BogoMIPS (lpj=2672192) Calibrating delay using timer specific routine.. 5344.71 BogoMIPS (lpj=2672358)
By Wataru Sakai / GGNFS
10181-9 = (9)1801<181> = 613 · 4721990197<10> · C169
C169 = P78 · P92
P78 = 118046288030005689138006772776064145473173086074955176614021148886231992477409<78>
P92 = 29265915150079883819125682044728327718073357005292178916251770323960139756081440411297901759<92>
Number: 99991 N=3454732649268037140651629992081894263362774944623633726957884046515864376096038447979084779442532000245131642678651564893028283221292314837219802797322498616193908862431 ( 169 digits) SNFS difficulty: 181 digits. Divisors found: r1=118046288030005689138006772776064145473173086074955176614021148886231992477409 (pp78) r2=29265915150079883819125682044728327718073357005292178916251770323960139756081440411297901759 (pp92) Version: GGNFS-0.77.1-20060722-nocona Total time: 438.14 hours. Scaled time: 880.23 units (timescale=2.009). Factorization parameters were as follows: n: 3454732649268037140651629992081894263362774944623633726957884046515864376096038447979084779442532000245131642678651564893028283221292314837219802797322498616193908862431 m: 1000000000000000000000000000000000000 c5: 10 c0: -9 skew: 0.98 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9400001) Primes: RFBsize:501962, AFBsize:501581, largePrimes:6755535 encountered Relations: rels:7413387, finalFF:1315241 Max relations in full relation-set: 32 Initial matrix: 1003610 x 1315241 with sparse part having weight 83791927. Pruned matrix : 736585 x 741667 with weight 65509568. Total sieving time: 433.29 hours. Total relation processing time: 0.11 hours. Matrix solve time: 4.53 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 438.14 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(43·10163-7)/9 = 4(7)163<164> = 17 · 665881683559<12> · 3731199745103581640718101353<28> · C124
C124 = P61 · P63
P61 = 4940707832454493415501651784634079823643014735022300729459783<61>
P63 = 228950862555947401946978886763873337701268538465930614150009641<63>
Number: 47777_163 N=1131179319877381526484592406638873153964107702611935425473131250001541648222905288588232080460486389335504040917062171767903 ( 124 digits) SNFS difficulty: 164 digits. Divisors found: r1=4940707832454493415501651784634079823643014735022300729459783 (pp61) r2=228950862555947401946978886763873337701268538465930614150009641 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 181.33 hours. Scaled time: 122.58 units (timescale=0.676). Factorization parameters were as follows: name: 47777_163 n: 1131179319877381526484592406638873153964107702611935425473131250001541648222905288588232080460486389335504040917062171767903 m: 100000000000000000000000000000000 c5: 43000 c0: -7 skew: 0.17 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6700001) Primes: RFBsize:348513, AFBsize:348291, largePrimes:6066233 encountered Relations: rels:6239037, finalFF:799065 Max relations in full relation-set: 28 Initial matrix: 696871 x 799065 with sparse part having weight 64573761. Pruned matrix : 622367 x 625915 with weight 49390580. Total sieving time: 156.93 hours. Total relation processing time: 0.57 hours. Matrix solve time: 23.53 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 181.33 hours. --------- CPU info (if available) ----------
(17·10119+1)/9 = 1(8)1189<120> = 32 · 29 · 47 · 71 · 2417 · 44567363 · C103
C103 = P41 · P62
P41 = 86639197230970329577098695493425102913119<41>
P62 = 23238157441907373887888004008759141749503788540363070255980273<62>
Number: 18889_119 N=2013335305893753905147239573058748417504252779225347674038251424889645608319577440321753664083296901487 ( 103 digits) SNFS difficulty: 121 digits. Divisors found: r1=86639197230970329577098695493425102913119 (pp41) r2=23238157441907373887888004008759141749503788540363070255980273 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.07 hours. Scaled time: 1.40 units (timescale=0.676). Factorization parameters were as follows: name: 18889_119 n: 2013335305893753905147239573058748417504252779225347674038251424889645608319577440321753664083296901487 m: 1000000000000000000000000 c5: 17 c0: 10 skew: 0.9 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2084723 encountered Relations: rels:2152414, finalFF:219464 Max relations in full relation-set: 28 Initial matrix: 112986 x 219464 with sparse part having weight 18433757. Pruned matrix : 86159 x 86787 with weight 4759705. Total sieving time: 1.86 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(17·10159-53)/9 = 1(8)1583<160> = 7 · 733 · C156
C156 = P47 · P109
P47 = 64373087450280690223885039799015227383176824847<47>
P109 = 5718736130150877068395855148563309851888644433107510229967183373492458900540607629747479591403697254369712119<109>
Number: n N=368132701011282184542757530479222157257627926113601420559128608241841529699647025704324476493644297191364039931570627341432252755581541393273999003876220793 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: Mon May 12 02:28:47 2008 prp47 factor: 64373087450280690223885039799015227383176824847 Mon May 12 02:28:47 2008 prp109 factor: 5718736130150877068395855148563309851888644433107510229967183373492458900540607629747479591403697254369712119 Mon May 12 02:28:47 2008 elapsed time 01:46:51 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.79 hours. Scaled time: 65.47 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_8_158_3 n: 368132701011282184542757530479222157257627926113601420559128608241841529699647025704324476493644297191364039931570627341432252755581541393273999003876220793 skew: 1.99 deg: 5 c5: 17 c0: -530 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400169) Primes: RFBsize:216816, AFBsize:217351, largePrimes:7254373 encountered Relations: rels:6651059, finalFF:451072 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.61 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 35.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10170+11)/9 = 1(7)1699<171> = 97 · C169
C169 = P48 · P121
P48 = 544927506016603202875320936707390870032381644203<48>
P121 = 3363310854033769132027671298925141168506829437495958093452712839551811960294973871579104443447473715330880252358213138169<121>
Number: n N=1832760595647193585337915234822451317296678121420389461626575028636884306987399770904925544100801832760595647193585337915234822451317296678121420389461626575028636884307 ( 169 digits) SNFS difficulty: 171 digits. Divisors found: Mon May 12 13:11:07 2008 prp48 factor: 544927506016603202875320936707390870032381644203 Mon May 12 13:11:07 2008 prp121 factor: 3363310854033769132027671298925141168506829437495958093452712839551811960294973871579104443447473715330880252358213138169 Mon May 12 13:11:07 2008 elapsed time 01:00:41 (Msieve 1.35) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.52 hours. Scaled time: 38.20 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_7_169_9 n: 1832760595647193585337915234822451317296678121420389461626575028636884306987399770904925544100801832760595647193585337915234822451317296678121420389461626575028636884307 type: snfs deg: 5 c5: 1 c0: 22 skew: 1.86 m: 20000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5399990) Primes: RFBsize:250150, AFBsize:250502, largePrimes:6093794 encountered Relations: rels:6215521, finalFF:628867 Max relations in full relation-set: 28 Initial matrix: 500716 x 628867 with sparse part having weight 69517955. Pruned matrix : Total sieving time: 45.32 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,48,48,2.5,2.5,100000 total time: 45.52 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(17·10154+1)/9 = 1(8)1539<155> = 13 · 71 · C152
C152 = P75 · P78
P75 = 140600607147819071282411043598609766109102241498072762816470647254054550719<75>
P78 = 145551777955531635886729066649473155038928609925267339235336817734887886875397<78>
Number: n N=20464668351992295654267485253400746358492837366076802696521006380161309738774527506921873119056217647766943541591428915372577344408330323823281569760443 ( 152 digits) SNFS difficulty: 156 digits. Divisors found: Mon May 12 18:53:45 2008 prp75 factor: 140600607147819071282411043598609766109102241498072762816470647254054550719 Mon May 12 18:53:45 2008 prp78 factor: 145551777955531635886729066649473155038928609925267339235336817734887886875397 Mon May 12 18:53:45 2008 elapsed time 00:43:24 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.12 hours. Scaled time: 27.69 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_8_153_9 n: 20464668351992295654267485253400746358492837366076802696521006380161309738774527506921873119056217647766943541591428915372577344408330323823281569760443 skew: 0.90 deg: 5 c5: 17 c0: 10 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 900000) Primes: RFBsize:203362, AFBsize:203567, largePrimes:6640756 encountered Relations: rels:6105592, finalFF:466574 Max relations in full relation-set: 28 Initial matrix: 406994 x 466574 with sparse part having weight 28924041. Pruned matrix : 355349 x 357447 with weight 18031557. Total sieving time: 18.96 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 19.12 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS, Msieve
(17·10132+1)/9 = 1(8)1319<133> = 8803 · 29339 · 78461252861251661<17> · C107
C107 = P33 · P75
P33 = 764434950764564155154419754456677<33>
P75 = 121936753814368589908864502423562855042102683681063541354324629952254041961<75>
Number: 18889_132 N=93212716398477633470908531852402735461671942666641846206285286787028561038608429955683517892828816714623597 ( 107 digits) SNFS difficulty: 133 digits. Divisors found: r1=764434950764564155154419754456677 (pp33) r2=121936753814368589908864502423562855042102683681063541354324629952254041961 (pp75) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.63 hours. Scaled time: 4.49 units (timescale=0.677). Factorization parameters were as follows: name: 18889_132 n: 93212716398477633470908531852402735461671942666641846206285286787028561038608429955683517892828816714623597 m: 100000000000000000000000000 c5: 1700 c0: 1 skew: 0.23 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63983, largePrimes:1499560 encountered Relations: rels:1488645, finalFF:158343 Max relations in full relation-set: 28 Initial matrix: 128001 x 158343 with sparse part having weight 12844094. Pruned matrix : 119794 x 120498 with weight 8038832. Total sieving time: 6.24 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.63 hours. --------- CPU info (if available) ----------
(17·10113+1)/9 = 1(8)1129<114> = 3 · 53 · 89 · 2220046208670695120267<22> · C88
C88 = P35 · P54
P35 = 18762080918146736784154405984746413<35>
P54 = 320461795922942801708809319235463489099097846767274609<54>
Sun May 11 03:36:19 2008 Msieve v. 1.35 Sun May 11 03:36:19 2008 random seeds: 9a6638be 9dc82e78 Sun May 11 03:36:19 2008 factoring 6012530146280878871724387278640046283639523062843790961849685220400824632099961998727517 (88 digits) Sun May 11 03:36:21 2008 searching for 15-digit factors Sun May 11 03:36:23 2008 commencing quadratic sieve (88-digit input) Sun May 11 03:36:23 2008 using multiplier of 13 Sun May 11 03:36:23 2008 using 64kb Pentium 4 sieve core Sun May 11 03:36:23 2008 sieve interval: 14 blocks of size 65536 Sun May 11 03:36:23 2008 processing polynomials in batches of 8 Sun May 11 03:36:23 2008 using a sieve bound of 1524241 (58000 primes) Sun May 11 03:36:23 2008 using large prime bound of 121939280 (26 bits) Sun May 11 03:36:23 2008 using double large prime bound of 358970217792320 (42-49 bits) Sun May 11 03:36:23 2008 using trial factoring cutoff of 49 bits Sun May 11 03:36:23 2008 polynomial 'A' values have 11 factors Sun May 11 04:48:35 2008 58535 relations (17055 full + 41480 combined from 603615 partial), need 58096 Sun May 11 04:48:38 2008 begin with 620670 relations Sun May 11 04:48:38 2008 reduce to 137330 relations in 11 passes Sun May 11 04:48:38 2008 attempting to read 137330 relations Sun May 11 04:48:42 2008 recovered 137330 relations Sun May 11 04:48:42 2008 recovered 107941 polynomials Sun May 11 04:48:42 2008 attempting to build 58535 cycles Sun May 11 04:48:42 2008 found 58534 cycles in 4 passes Sun May 11 04:48:42 2008 distribution of cycle lengths: Sun May 11 04:48:42 2008 length 1 : 17055 Sun May 11 04:48:42 2008 length 2 : 11927 Sun May 11 04:48:42 2008 length 3 : 10231 Sun May 11 04:48:42 2008 length 4 : 7473 Sun May 11 04:48:42 2008 length 5 : 4986 Sun May 11 04:48:42 2008 length 6 : 3101 Sun May 11 04:48:42 2008 length 7 : 1787 Sun May 11 04:48:42 2008 length 9+: 1974 Sun May 11 04:48:42 2008 largest cycle: 16 relations Sun May 11 04:48:43 2008 matrix is 58000 x 58534 (13.8 MB) with weight 3393855 (57.98/col) Sun May 11 04:48:43 2008 sparse part has weight 3393855 (57.98/col) Sun May 11 04:48:44 2008 filtering completed in 4 passes Sun May 11 04:48:44 2008 matrix is 52822 x 52886 (12.6 MB) with weight 3079016 (58.22/col) Sun May 11 04:48:44 2008 sparse part has weight 3079016 (58.22/col) Sun May 11 04:48:44 2008 saving the first 48 matrix rows for later Sun May 11 04:48:44 2008 matrix is 52774 x 52886 (9.2 MB) with weight 2535293 (47.94/col) Sun May 11 04:48:44 2008 sparse part has weight 2089021 (39.50/col) Sun May 11 04:48:44 2008 matrix includes 64 packed rows Sun May 11 04:48:44 2008 using block size 21154 for processor cache size 512 kB Sun May 11 04:48:45 2008 commencing Lanczos iteration Sun May 11 04:48:45 2008 memory use: 8.3 MB Sun May 11 04:49:16 2008 lanczos halted after 836 iterations (dim = 52774) Sun May 11 04:49:17 2008 recovered 18 nontrivial dependencies Sun May 11 04:49:17 2008 prp35 factor: 18762080918146736784154405984746413 Sun May 11 04:49:17 2008 prp54 factor: 320461795922942801708809319235463489099097846767274609 Sun May 11 04:49:17 2008 elapsed time 01:12:58
(17·10129+1)/9 = 1(8)1289<130> = 852239 · 273146271888899<15> · 30492449909076721<17> · C93
C93 = P31 · P62
P31 = 6729959298046035632672774532523<31>
P62 = 39540756448263316717593054313840418944154669628044642036622503<62>
Sun May 11 05:52:11 2008 Msieve v. 1.35 Sun May 11 05:52:11 2008 random seeds: 8b66ad6c bf0aea57 Sun May 11 05:52:11 2008 factoring 266107681510763448035340107082246050075465189572361909539503641703667818407790475101647165069 (93 digits) Sun May 11 05:52:13 2008 searching for 15-digit factors Sun May 11 05:52:14 2008 commencing quadratic sieve (93-digit input) Sun May 11 05:52:15 2008 using multiplier of 5 Sun May 11 05:52:15 2008 using 64kb Pentium 4 sieve core Sun May 11 05:52:15 2008 sieve interval: 18 blocks of size 65536 Sun May 11 05:52:15 2008 processing polynomials in batches of 6 Sun May 11 05:52:15 2008 using a sieve bound of 1909319 (71765 primes) Sun May 11 05:52:15 2008 using large prime bound of 231027599 (27 bits) Sun May 11 05:52:15 2008 using double large prime bound of 1133952533144101 (42-51 bits) Sun May 11 05:52:15 2008 using trial factoring cutoff of 51 bits Sun May 11 05:52:15 2008 polynomial 'A' values have 12 factors Sun May 11 10:31:39 2008 72146 relations (17646 full + 54500 combined from 969220 partial), need 71861 Sun May 11 10:31:44 2008 begin with 986866 relations Sun May 11 10:31:45 2008 reduce to 186840 relations in 11 passes Sun May 11 10:31:45 2008 attempting to read 186840 relations Sun May 11 10:31:51 2008 recovered 186840 relations Sun May 11 10:31:51 2008 recovered 170297 polynomials Sun May 11 10:31:51 2008 attempting to build 72146 cycles Sun May 11 10:31:51 2008 found 72146 cycles in 5 passes Sun May 11 10:31:51 2008 distribution of cycle lengths: Sun May 11 10:31:51 2008 length 1 : 17646 Sun May 11 10:31:51 2008 length 2 : 12583 Sun May 11 10:31:51 2008 length 3 : 12249 Sun May 11 10:31:51 2008 length 4 : 9903 Sun May 11 10:31:51 2008 length 5 : 7433 Sun May 11 10:31:51 2008 length 6 : 4817 Sun May 11 10:31:51 2008 length 7 : 3200 Sun May 11 10:31:51 2008 length 9+: 4315 Sun May 11 10:31:51 2008 largest cycle: 22 relations Sun May 11 10:31:51 2008 matrix is 71765 x 72146 (18.0 MB) with weight 4433526 (61.45/col) Sun May 11 10:31:51 2008 sparse part has weight 4433526 (61.45/col) Sun May 11 10:31:53 2008 filtering completed in 3 passes Sun May 11 10:31:53 2008 matrix is 68458 x 68522 (17.1 MB) with weight 4218924 (61.57/col) Sun May 11 10:31:53 2008 sparse part has weight 4218924 (61.57/col) Sun May 11 10:31:53 2008 saving the first 48 matrix rows for later Sun May 11 10:31:54 2008 matrix is 68410 x 68522 (10.0 MB) with weight 3180791 (46.42/col) Sun May 11 10:31:54 2008 sparse part has weight 2218415 (32.38/col) Sun May 11 10:31:54 2008 matrix includes 64 packed rows Sun May 11 10:31:54 2008 using block size 21845 for processor cache size 512 kB Sun May 11 10:31:54 2008 commencing Lanczos iteration Sun May 11 10:31:54 2008 memory use: 10.3 MB Sun May 11 10:32:41 2008 lanczos halted after 1084 iterations (dim = 68410) Sun May 11 10:32:41 2008 recovered 18 nontrivial dependencies Sun May 11 10:32:42 2008 prp31 factor: 6729959298046035632672774532523 Sun May 11 10:32:42 2008 prp62 factor: 39540756448263316717593054313840418944154669628044642036622503 Sun May 11 10:32:42 2008 elapsed time 04:40:31
(17·10140+1)/9 = 1(8)1399<141> = 3 · 7 · 3023 · 7121 · 142888091809<12> · 959922253880171<15> · 43808521896921204679<20> · C86
C86 = P30 · P56
P30 = 887678841787165579554448685089<30>
P56 = 78336004908801861872486359113613068126829797389465976247<56>
un May 11 10:42:17 2008 Msieve v. 1.35 Sun May 11 10:42:17 2008 random seeds: 9850883f 57e30385 Sun May 11 10:42:17 2008 factoring 69537214107678954149627935760226226356182538302600223483249920864963697363052857080983 (86 digits) Sun May 11 10:42:18 2008 searching for 15-digit factors Sun May 11 10:42:20 2008 commencing quadratic sieve (86-digit input) Sun May 11 10:42:20 2008 using multiplier of 7 Sun May 11 10:42:20 2008 using 64kb Pentium 4 sieve core Sun May 11 10:42:20 2008 sieve interval: 9 blocks of size 65536 Sun May 11 10:42:20 2008 processing polynomials in batches of 12 Sun May 11 10:42:20 2008 using a sieve bound of 1466053 (56000 primes) Sun May 11 10:42:20 2008 using large prime bound of 117284240 (26 bits) Sun May 11 10:42:20 2008 using double large prime bound of 334681134421600 (41-49 bits) Sun May 11 10:42:20 2008 using trial factoring cutoff of 49 bits Sun May 11 10:42:20 2008 polynomial 'A' values have 11 factors Sun May 11 11:33:39 2008 56345 relations (16828 full + 39517 combined from 574612 partial), need 56096 Sun May 11 11:33:42 2008 begin with 591440 relations Sun May 11 11:33:42 2008 reduce to 130331 relations in 10 passes Sun May 11 11:33:42 2008 attempting to read 130331 relations Sun May 11 11:33:46 2008 recovered 130331 relations Sun May 11 11:33:46 2008 recovered 102621 polynomials Sun May 11 11:33:46 2008 attempting to build 56345 cycles Sun May 11 11:33:46 2008 found 56344 cycles in 4 passes Sun May 11 11:33:46 2008 distribution of cycle lengths: Sun May 11 11:33:46 2008 length 1 : 16828 Sun May 11 11:33:46 2008 length 2 : 11654 Sun May 11 11:33:46 2008 length 3 : 10013 Sun May 11 11:33:46 2008 length 4 : 7125 Sun May 11 11:33:46 2008 length 5 : 4675 Sun May 11 11:33:46 2008 length 6 : 2828 Sun May 11 11:33:46 2008 length 7 : 1601 Sun May 11 11:33:46 2008 length 9+: 1620 Sun May 11 11:33:46 2008 largest cycle: 18 relations Sun May 11 11:33:46 2008 matrix is 56000 x 56344 (12.4 MB) with weight 3029132 (53.76/col) Sun May 11 11:33:46 2008 sparse part has weight 3029132 (53.76/col) Sun May 11 11:33:47 2008 filtering completed in 3 passes Sun May 11 11:33:47 2008 matrix is 50377 x 50441 (11.2 MB) with weight 2735941 (54.24/col) Sun May 11 11:33:47 2008 sparse part has weight 2735941 (54.24/col) Sun May 11 11:33:47 2008 saving the first 48 matrix rows for later Sun May 11 11:33:47 2008 matrix is 50329 x 50441 (6.9 MB) with weight 2087392 (41.38/col) Sun May 11 11:33:48 2008 sparse part has weight 1507293 (29.88/col) Sun May 11 11:33:48 2008 matrix includes 64 packed rows Sun May 11 11:33:48 2008 using block size 20176 for processor cache size 512 kB Sun May 11 11:33:48 2008 commencing Lanczos iteration Sun May 11 11:33:48 2008 memory use: 7.0 MB Sun May 11 11:34:14 2008 lanczos halted after 798 iterations (dim = 50327) Sun May 11 11:34:14 2008 recovered 16 nontrivial dependencies Sun May 11 11:34:16 2008 prp30 factor: 887678841787165579554448685089 Sun May 11 11:34:16 2008 prp56 factor: 78336004908801861872486359113613068126829797389465976247 Sun May 11 11:34:16 2008 elapsed time 00:51:59
By Robert Backstrom / GGNFS
(17·10115+1)/9 = 1(8)1149<116> = 4519 · C112
C112 = P38 · P74
P38 = 85206749882772292395357406238644765829<38>
P74 = 49055767028910420725937601905379783432564947652856091509002810221880045139<74>
Number: n N=4179882471539917877603206215731110619360232106414890216616262201568685304024980944653438568021440338324604755231 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=85206749882772292395357406238644765829 (pp38) r2=49055767028910420725937601905379783432564947652856091509002810221880045139 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.05 hours. Scaled time: 1.53 units (timescale=1.453). Factorization parameters were as follows: name: KA_1_8_114_9 n: 4179882471539917877603206215731110619360232106414890216616262201568685304024980944653438568021440338324604755231 skew: 0.90 deg: 5 c5: 17 c0: 1 m: 100000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:78498, AFBsize:78436, largePrimes:3886230 encountered Relations: rels:3300843, finalFF:184286 Max relations in full relation-set: 28 Initial matrix: 156999 x 184286 with sparse part having weight 7862251. Pruned matrix : 129226 x 130074 with weight 4084209. Total sieving time: 0.86 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.05 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(17·10134+1)/9 = 1(8)1339<135> = 3 · 7 · 409 · 1301 · C128
C128 = P38 · P91
P38 = 12714871233905837021626832695666376227<38>
P91 = 1329457769065054174158179915996114710331432479966297431062804648433587475807882771460823363<91>
Number: n N=16903884344577886690498956031018070938463188923151073763072432517978449357170634202219835990360450574429289316652620035949391401 ( 128 digits) SNFS difficulty: 136 digits. Divisors found: r1=12714871233905837021626832695666376227 (pp38) r2=1329457769065054174158179915996114710331432479966297431062804648433587475807882771460823363 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.82 hours. Scaled time: 5.52 units (timescale=1.447). Factorization parameters were as follows: name: KA_1_8_133_9 n: 16903884344577886690498956031018070938463188923151073763072432517978449357170634202219835990360450574429289316652620035949391401 skew: 0.90 deg: 5 c5: 17 c0: 10 m: 1000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 420001) Primes: RFBsize:148933, AFBsize:148425, largePrimes:5309234 encountered Relations: rels:4787842, finalFF:368807 Max relations in full relation-set: 28 Initial matrix: 297423 x 368807 with sparse part having weight 17430308. Pruned matrix : 230148 x 231699 with weight 8092085. Total sieving time: 3.08 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.59 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 3.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS
(17·10104+1)/9 = 1(8)1039<105> = 3 · 7 · 23 · C102
C102 = P48 · P55
P48 = 265864911884614770878329372513092064450057351103<48>
P55 = 1470951173457249660790510390603202909803884594187358861<55>
Number: n N=391074304117782378651943869335173682999769956291695422130204738900391074304117782378651943869335173683 ( 102 digits) SNFS difficulty: 106 digits. Divisors found: r1=265864911884614770878329372513092064450057351103 (pp48) r2=1470951173457249660790510390603202909803884594187358861 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 0.78 units (timescale=1.187). Factorization parameters were as follows: name: KA_1_8_103_9 n: 391074304117782378651943869335173682999769956291695422130204738900391074304117782378651943869335173683 skew: 0.90 deg: 5 c5: 17 c0: 10 m: 1000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 140001) Primes: RFBsize:63951, AFBsize:63823, largePrimes:3718009 encountered Relations: rels:3165750, finalFF:190127 Max relations in full relation-set: 28 Initial matrix: 127839 x 190127 with sparse part having weight 7841354. Pruned matrix : 76058 x 76761 with weight 2308544. Total sieving time: 0.56 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 0.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS, Msieve
(17·10165-53)/9 = 1(8)1643<166> = 7 · 29 · C163
C163 = P77 · P87
P77 = 43402480428621987030205003566889274936988593086053286493942371994002021584433<77>
P87 = 214385705193492725009349612317191476170118142711660225267764600968001857107379610049417<87>
Number: n N=9304871373836891078270388615216201423097974822112753147235905856595511767925561029009304871373836891078270388615216201423097974822112753147235905856595511767925561 ( 163 digits) SNFS difficulty: 166 digits. Divisors found: Sat May 10 22:25:30 2008 prp77 factor: 43402480428621987030205003566889274936988593086053286493942371994002021584433 Sat May 10 22:25:30 2008 prp87 factor: 214385705193492725009349612317191476170118142711660225267764600968001857107379610049417 Sat May 10 22:25:30 2008 elapsed time 01:40:15 (Msieve 1.35) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.69 hours. Scaled time: 92.60 units (timescale=1.454). Factorization parameters were as follows: name: KA_1_8_164_3 n: 9304871373836891078270388615216201423097974822112753147235905856595511767925561029009304871373836891078270388615216201423097974822112753147235905856595511767925561 skew: 1.26 deg: 5 c5: 17 c0: -53 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400001) Primes: RFBsize:216816, AFBsize:215951, largePrimes:7486111 encountered Relations: rels:6868633, finalFF:449713 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 63.43 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
The factor table of 188...889 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Wataru Sakai / GGNFS
(7·10196-43)/9 = (7)1953<196> = 32 · 773 · 1283808358934056767222095093<28> · 2620302803462725418522123017<28> · C138
C138 = P64 · P74
P64 = 3543854126479629404194342535389768714682873298488000234516262161<64>
P74 = 93779089025421898269355240230012909396341206292481875062343831519528856229<74>
Number: template N=332339411620241921667758139292075249481033920519211972712773710323231368221675760778894882184866260658051286208269366836796238604641850869 ( 138 digits) Divisors found: r1=3543854126479629404194342535389768714682873298488000234516262161 (pp64) r2=93779089025421898269355240230012909396341206292481875062343831519528856229 (pp74) Version: GGNFS-0.77.1-20060722-nocona Total time: 2441.17 hours. Scaled time: 4906.75 units (timescale=2.010). Factorization parameters were as follows: name: template n: 332339411620241921667758139292075249481033920519211972712773710323231368221675760778894882184866260658051286208269366836796238604641850869 skew: 633970.78 # norm 2.37e+19 c5: 139560 c4: 459904593894 c3: -126980206595135003 c2: -161343727948017254210674 c1: 28008909286869388566227571068 c0: 7362373410681343420678015225067305 # alpha -5.99 Y1: 524199648991469 Y0: -298788360335374199376115932 # Murphy_E 2.20e-11 # M 1149381156828760038636208504312778076181482399815369717819531744821170386726634917697242824590468521180129638888519451984000293384578269 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 38880001) Primes: RFBsize:374362, AFBsize:374845, largePrimes:11794582 encountered Relations: rels:17293160, finalFF:861795 Max relations in full relation-set: 32 Initial matrix: 749287 x 861795 with sparse part having weight 177161076. Pruned matrix : 694434 x 698244 with weight 162974487. Total sieving time: 2429.94 hours. Total relation processing time: 1.60 hours. Matrix solve time: 9.05 hours. Time per square root: 0.58 hours. Prototype def-par.txt line would be: gnfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 2441.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(14·10177+31)/9 = 1(5)1769<178> = C178
C178 = P70 · P109
P70 = 1096328539362005176413092222756577932801642557082525242167262230187171<70>
P109 = 1418877188457386922625323450174283086499815757388954272526173072437542925270309130364696618460095061630075629<109>
Number: 15559_177 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 178 digits) SNFS difficulty: 178 digits. Divisors found: r1=1096328539362005176413092222756577932801642557082525242167262230187171 (pp70) r2=1418877188457386922625323450174283086499815757388954272526173072437542925270309130364696618460095061630075629 (pp109) Version: GGNFS-0.77.1-20050930-nocona Total time: 219.39 hours. Scaled time: 522.80 units (timescale=2.383). Factorization parameters were as follows: n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 m: 200000000000000000000000000000000000 c5: 175 c0: 124 skew: 0.93 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4500000, 8700001) Primes: RFBsize:602489, AFBsize:602061, largePrimes:11158562 encountered Relations: rels:11397768, finalFF:1426718 Max relations in full relation-set: 28 Initial matrix: 1204617 x 1426718 with sparse part having weight 98668142. Pruned matrix : 1013971 x 1020058 with weight 71526964. Total sieving time: 210.79 hours. Total relation processing time: 0.24 hours. Matrix solve time: 8.25 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,178,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.6,2.6,100000 total time: 219.39 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.48 BogoMIPS (lpj=2672242) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672351)
By Robert Backstrom / GMP-ECM, Msieve
(4·10169+17)/3 = 1(3)1689<170> = 787 · 540101 · 1340039 · 33282371 · 1228724437<10> · 16622933878153<14> · C125
C125 = P35 · P43 · P48
P35 = 54993925552292230908242328636465353<35>
P43 = 2748027937502551074896604229460386066456913<43>
P48 = 227855381034873924333702464731031467728937974797<48>
Fri May 9 04:21:35 2008 Fri May 9 04:21:35 2008 Fri May 9 04:21:35 2008 Msieve v. 1.34 Fri May 9 04:21:35 2008 random seeds: 691b551c 6b560d30 Fri May 9 04:21:35 2008 factoring 12530661861321035695461437620308285858371167816021440960712419669439223860277708341 (83 digits) Fri May 9 04:21:35 2008 no P-1/P+1/ECM available, skipping Fri May 9 04:21:35 2008 commencing quadratic sieve (83-digit input) Fri May 9 04:21:35 2008 using multiplier of 61 Fri May 9 04:21:35 2008 using 64kb Opteron sieve core Fri May 9 04:21:35 2008 sieve interval: 6 blocks of size 65536 Fri May 9 04:21:35 2008 processing polynomials in batches of 17 Fri May 9 04:21:35 2008 using a sieve bound of 1359329 (52059 primes) Fri May 9 04:21:35 2008 using large prime bound of 125058268 (26 bits) Fri May 9 04:21:35 2008 using trial factoring cutoff of 27 bits Fri May 9 04:21:35 2008 polynomial 'A' values have 11 factors Fri May 9 04:35:11 2008 52262 relations (27275 full + 24987 combined from 270355 partial), need 52155 Fri May 9 04:35:11 2008 begin with 297630 relations Fri May 9 04:35:11 2008 reduce to 74125 relations in 2 passes Fri May 9 04:35:11 2008 attempting to read 74125 relations Fri May 9 04:35:12 2008 recovered 74125 relations Fri May 9 04:35:12 2008 recovered 66164 polynomials Fri May 9 04:35:12 2008 attempting to build 52262 cycles Fri May 9 04:35:12 2008 found 52262 cycles in 1 passes Fri May 9 04:35:12 2008 distribution of cycle lengths: Fri May 9 04:35:12 2008 length 1 : 27275 Fri May 9 04:35:12 2008 length 2 : 24987 Fri May 9 04:35:12 2008 largest cycle: 2 relations Fri May 9 04:35:12 2008 matrix is 52059 x 52262 (7.2 MB) with weight 1681414 (32.17/col) Fri May 9 04:35:12 2008 sparse part has weight 1681414 (32.17/col) Fri May 9 04:35:12 2008 filtering completed in 4 passes Fri May 9 04:35:12 2008 matrix is 44666 x 44730 (6.1 MB) with weight 1410257 (31.53/col) Fri May 9 04:35:12 2008 sparse part has weight 1410257 (31.53/col) Fri May 9 04:35:12 2008 saving the first 48 matrix rows for later Fri May 9 04:35:12 2008 matrix is 44618 x 44730 (3.7 MB) with weight 1022140 (22.85/col) Fri May 9 04:35:12 2008 sparse part has weight 706896 (15.80/col) Fri May 9 04:35:12 2008 matrix includes 64 packed rows Fri May 9 04:35:12 2008 commencing Lanczos iteration Fri May 9 04:35:12 2008 memory use: 5.4 MB Fri May 9 04:35:43 2008 lanczos halted after 707 iterations (dim = 44606) Fri May 9 04:35:44 2008 recovered 12 nontrivial dependencies Fri May 9 04:35:44 2008 prp35 factor: 54993925552292230908242328636465353 Fri May 9 04:35:44 2008 prp48 factor: 227855381034873924333702464731031467728937974797 Fri May 9 04:35:44 2008 elapsed time 00:14:09
By Justin Card / GGNFS
(17·10161-53)/9 = 1(8)1603<162> = 3 · 19 · 43 · 254355202674105893<18> · 3287574485420198704133928558179<31> · C110
C110 = P37 · P74
P37 = 6592109827352816863838466122643365447<37>
P74 = 13980491502316873967791731851571399701122210654779288236879044841952532537<74>
Number: worktodo N=92160935423645611317768122235971519726726074113585668724342529983025445149705393998167342865053046962449049039 ( 110 digits) Divisors found: r1=6592109827352816863838466122643365447 r2=13980491502316873967791731851571399701122210654779288236879044841952532537 Version: Total time: 24.24 hours. Scaled time: 48.91 units (timescale=2.018). Factorization parameters were as follows: name: worktodo n: 92160935423645611317768122235971519726726074113585668724342529983025445149705393998167342865053046962449049039 skew: 33082.85 # norm 4.09e+15 c5: 12600 c4: 2267365945 c3: -155321015926195 c2: -2349240279840559620 c1: 12982214017744131860983 c0: -31622288422337636799496945 # alpha -6.00 Y1: 379217522827 Y0: -1488782601061726047438 # Murphy_E 9.05e-10 # M 6562666969988531225364949784099942114382953390221344757651863751224118313342204937610904748802425250931949588 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 407644 x 407892 Total sieving time: 24.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 24.24 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
8·10181-1 = 7(9)181<182> = 7821454222070056969<19> · C164
C164 = P51 · P113
P51 = 788439573104899094381095893696862654025503474927799<51>
P113 = 12972810228209453983816901634265018328778556886502519239281435619824317355319728543086413776308502828632117225329<113>
Number: 79999_181 N=10228276958300330498080736507519279486105205969987660391195978740025086788072414219094013040085242030630292224665357961760845294364879206193081236289180022489020871 ( 164 digits) SNFS difficulty: 182 digits. Divisors found: r1=788439573104899094381095893696862654025503474927799 (pp51) r2=12972810228209453983816901634265018328778556886502519239281435619824317355319728543086413776308502828632117225329 (pp113) Version: GGNFS-0.77.1-20050930-nocona Total time: 191.88 hours. Scaled time: 453.03 units (timescale=2.361). Factorization parameters were as follows: n: 10228276958300330498080736507519279486105205969987660391195978740025086788072414219094013040085242030630292224665357961760845294364879206193081236289180022489020871 m: 2000000000000000000000000000000000000 c5: 5 c0: -2 skew: 0.83 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 8600001) Primes: RFBsize:664579, AFBsize:664045, largePrimes:11037168 encountered Relations: rels:11404548, finalFF:1577413 Max relations in full relation-set: 28 Initial matrix: 1328689 x 1577413 with sparse part having weight 92971068. Pruned matrix : 1097910 x 1104617 with weight 60006284. Total sieving time: 183.42 hours. Total relation processing time: 0.21 hours. Matrix solve time: 8.15 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 191.88 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.48 BogoMIPS (lpj=2672242) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672351)
By Justin Card / GGNFS
(17·10150-53)/9 = 1(8)1493<151> = 139 · 1109 · 19867 · 53699 · C137
C137 = P56 · P81
P56 = 58524777302241362713821490265536758164758485666839114161<56>
P81 = 196255486079589701227585169591220827496285377009347149826952814709503321846950741<81>
Number: 18883_150 N=11485808617151117068599663545151818379779946947029462334170568301636248776109389736647593871953122496252803763639449645494895547442543301 ( 137 digits) SNFS difficulty: 151 digits. Divisors found: r1=58524777302241362713821490265536758164758485666839114161 r2=196255486079589701227585169591220827496285377009347149826952814709503321846950741 Version: Total time: 21.46 hours. Scaled time: 43.31 units (timescale=2.018). Factorization parameters were as follows: n: 11485808617151117068599663545151818379779946947029462334170568301636248776109389736647593871953122496252803763639449645494895547442543301 m: 1000000000000000000000000000000 c5: 17 c0: -53 Y1: 1 Y0: -1000000000000000000000000000000 skew: 1.26 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1200000) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 336747 x 336995 Total sieving time: 21.46 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.29 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.46 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve
(14·10195+31)/9 = 1(5)1949<196> = 3517 · 72959 · 119831 · 174723560293<12> · 29908448484246570631<20> · 296464817923705928738027<24> · C128
C128 = P38 · P90
P38 = 67438308398974187180622772855468793089<38>
P90 = 484216870346117642180865357051076528493767653821960944086179418529064377186836629909208187<90>
(4·10188+11)/3 = 1(3)1877<189> = 647 · 3129923 · 26842061 · 6040965932401<13> · 14857068261935316657329056727<29> · C131
C131 = P34 · P98
P34 = 1736857011312162555994210469872451<34>
P98 = 15735529880735063854034395949750241973639121882661501326917621354847802201149038459287456328343941<98>
(11·10182+61)/9 = 1(2)1819<183> = 3 · 5287159 · 6837552090639889<16> · 215270056119179928842411146396979<33> · C127
C127 = P39 · P41 · P48
P39 = 386743518904360880703905991006429255227<39>
P41 = 15816269637526716768726379630499787809243<41>
P48 = 855845109201103507837814977690861986896119008947<48>
Thu May 8 22:23:43 2008 Thu May 8 22:23:43 2008 Thu May 8 22:23:43 2008 Msieve v. 1.34 Thu May 8 22:23:43 2008 random seeds: 447cc43b 31aa6ae9 Thu May 8 22:23:43 2008 factoring 13536277015083150708358105307944157502727791650822840210249683528781966042510629446297121 (89 digits) Thu May 8 22:23:43 2008 no P-1/P+1/ECM available, skipping Thu May 8 22:23:43 2008 commencing quadratic sieve (89-digit input) Thu May 8 22:23:44 2008 using multiplier of 1 Thu May 8 22:23:44 2008 using 64kb Opteron sieve core Thu May 8 22:23:44 2008 sieve interval: 14 blocks of size 65536 Thu May 8 22:23:44 2008 processing polynomials in batches of 8 Thu May 8 22:23:44 2008 using a sieve bound of 1520879 (58333 primes) Thu May 8 22:23:44 2008 using large prime bound of 121670320 (26 bits) Thu May 8 22:23:44 2008 using double large prime bound of 357546364197680 (42-49 bits) Thu May 8 22:23:44 2008 using trial factoring cutoff of 49 bits Thu May 8 22:23:44 2008 polynomial 'A' values have 11 factors Thu May 8 23:01:20 2008 58833 relations (15979 full + 42854 combined from 614451 partial), need 58429 Thu May 8 23:01:20 2008 begin with 630430 relations Thu May 8 23:01:20 2008 reduce to 142082 relations in 9 passes Thu May 8 23:01:20 2008 attempting to read 142082 relations Thu May 8 23:01:21 2008 recovered 142082 relations Thu May 8 23:01:21 2008 recovered 118230 polynomials Thu May 8 23:01:21 2008 attempting to build 58833 cycles Thu May 8 23:01:21 2008 found 58833 cycles in 5 passes Thu May 8 23:01:21 2008 distribution of cycle lengths: Thu May 8 23:01:21 2008 length 1 : 15979 Thu May 8 23:01:21 2008 length 2 : 11357 Thu May 8 23:01:21 2008 length 3 : 10582 Thu May 8 23:01:21 2008 length 4 : 7805 Thu May 8 23:01:21 2008 length 5 : 5245 Thu May 8 23:01:21 2008 length 6 : 3550 Thu May 8 23:01:21 2008 length 7 : 2031 Thu May 8 23:01:21 2008 length 9+: 2284 Thu May 8 23:01:21 2008 largest cycle: 18 relations Thu May 8 23:01:22 2008 matrix is 58333 x 58833 (14.0 MB) with weight 3422665 (58.18/col) Thu May 8 23:01:22 2008 sparse part has weight 3422665 (58.18/col) Thu May 8 23:01:22 2008 filtering completed in 3 passes Thu May 8 23:01:22 2008 matrix is 54281 x 54344 (12.9 MB) with weight 3170823 (58.35/col) Thu May 8 23:01:22 2008 sparse part has weight 3170823 (58.35/col) Thu May 8 23:01:22 2008 saving the first 48 matrix rows for later Thu May 8 23:01:22 2008 matrix is 54233 x 54344 (8.9 MB) with weight 2545096 (46.83/col) Thu May 8 23:01:22 2008 sparse part has weight 2008783 (36.96/col) Thu May 8 23:01:22 2008 matrix includes 64 packed rows Thu May 8 23:01:22 2008 using block size 21737 for processor cache size 1024 kB Thu May 8 23:01:23 2008 commencing Lanczos iteration Thu May 8 23:01:23 2008 memory use: 8.4 MB Thu May 8 23:01:41 2008 lanczos halted after 859 iterations (dim = 54229) Thu May 8 23:01:41 2008 recovered 14 nontrivial dependencies Thu May 8 23:01:42 2008 prp41 factor: 15816269637526716768726379630499787809243 Thu May 8 23:01:42 2008 prp48 factor: 855845109201103507837814977690861986896119008947 Thu May 8 23:01:42 2008 elapsed time 00:37:59
By Robert Backstrom / GGNFS, Msieve
(25·10185-1)/3 = 8(3)185<186> = 877 · 1380443 · 216888485620043<15> · 323366540549594477093<21> · C142
C142 = P60 · P83
P60 = 880905126532956667848805335238198593911413113053283385249717<60>
P83 = 11141405152029028996571436570066231843415229390926814860984551946924997119693480441<83>
Number: n N=9814520915203067108861318616106861980723536434273639929210502060032509597936265847719548119380237456211747556776071673719211139066269640285197 ( 142 digits) SNFS difficulty: 186 digits. Divisors found: Thu May 8 01:31:10 2008 prp60 factor: 880905126532956667848805335238198593911413113053283385249717 Thu May 8 01:31:10 2008 prp83 factor: 11141405152029028996571436570066231843415229390926814860984551946924997119693480441 Thu May 8 01:31:10 2008 elapsed time 02:13:43 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 80.43 hours. Scaled time: 67.16 units (timescale=0.835). Factorization parameters were as follows: name: KA_8_3_185 n: 9814520915203067108861318616106861980723536434273639929210502060032509597936265847719548119380237456211747556776071673719211139066269640285197 type: snfs deg: 5 c5: 25 c0: -1 skew: 0.53 m: 10000000000000000000000000000000000000 rlim: 7000000 alim: 7000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 9999990) Primes: RFBsize:476648, AFBsize:475734, largePrimes:6401443 encountered Relations: rels:6804178, finalFF:1070473 Max relations in full relation-set: 28 Initial matrix: 952446 x 1070473 with sparse part having weight 65768427. Pruned matrix : Total sieving time: 80.22 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,48,48,2.5,2.5,100000 total time: 80.43 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GMP-ECM, GGNFS
(17·10161-53)/9 = 1(8)1603<162> = 3 · 19 · 43 · 254355202674105893<18> · C141
C141 = P31 · C110
P31 = 3287574485420198704133928558179<31>
C110 = [92160935423645611317768122235971519726726074113585668724342529983025445149705393998167342865053046962449049039<110>]
(17·10164-53)/9 = 1(8)1633<165> = 3 · 3162156699067<13> · 262881178953307<15> · 105290032030122334034954183<27> · C111
C111 = P55 · P57
P55 = 1216259663201331434035013956830378303572945186485863881<55>
P57 = 591464542648869639542420113968295913254867921520280460903<57>
Number: 18883_164 N=719374465437643719673155958990646694072313754932899142898045569823974710056813761548010949545481947900800344543 ( 111 digits) Divisors found: r1=1216259663201331434035013956830378303572945186485863881 (pp55) r2=591464542648869639542420113968295913254867921520280460903 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.70 hours. Scaled time: 37.30 units (timescale=2.376). Factorization parameters were as follows: name: 18883_164 n: 719374465437643719673155958990646694072313754932899142898045569823974710056813761548010949545481947900800344543 skew: 18557.77 # norm 3.73e+15 c5: 64800 c4: 11133954640 c3: -106032251608850 c2: -5726041892371431773 c1: 10229939804823287742570 c0: -4521566322811507267369192 # alpha -6.05 Y1: 2901225613 Y0: -1618363130240665777689 # Murphy_E 8.01e-10 # M 111225469245920816024952471555682815374427338915935731619376144303250142866072342485964589906349848316772010006 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175934, largePrimes:7511808 encountered Relations: rels:7245607, finalFF:405867 Max relations in full relation-set: 28 Initial matrix: 352312 x 405867 with sparse part having weight 38930358. Pruned matrix : 317084 x 318909 with weight 27771207. Polynomial selection time: 0.84 hours. Total sieving time: 14.07 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.57 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 15.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673793) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.48 BogoMIPS (lpj=2672242) Calibrating delay using timer specific routine.. 5344.70 BogoMIPS (lpj=2672351)
By Jo Yeong Uk / GGNFS, GMP-ECM
(17·10149-53)/9 = 1(8)1483<150> = 32 · 131 · 255137 · 3375511 · C135
C135 = P40 · P95
P40 = 5388930257121078729270880943678492107897<40>
P95 = 34520499532221180433112166674230849735039209965903167809354543240545253834351079688548856476663<95>
Number: 18883_149 N=186028564420120763869411900228851597728893983321120725406369201290270575424216972614176528429421435137778820470318466817128999458507711 ( 135 digits) SNFS difficulty: 151 digits. Divisors found: r1=5388930257121078729270880943678492107897 (pp40) r2=34520499532221180433112166674230849735039209965903167809354543240545253834351079688548856476663 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.38 hours. Scaled time: 36.40 units (timescale=2.367). Factorization parameters were as follows: n: 186028564420120763869411900228851597728893983321120725406369201290270575424216972614176528429421435137778820470318466817128999458507711 m: 1000000000000000000000000000000 c5: 17 c0: -530 skew: 1.99 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176478, largePrimes:5642114 encountered Relations: rels:5569954, finalFF:478847 Max relations in full relation-set: 28 Initial matrix: 352845 x 478847 with sparse part having weight 44707797. Pruned matrix : 304861 x 306689 with weight 25872555. Total sieving time: 14.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.51 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 15.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10157-53)/9 = 1(8)1563<158> = 13 · 103 · 1606069667<10> · 96829103143<11> · C134
C134 = P40 · P95
P40 = 7966230062417543067682362213686161549493<40>
P95 = 11386826441643864898561421221923570419394152237250887959212635282363431012333153776133535984209<95>
By Robert Backstrom / GGNFS, Msieve
(64·10166+53)/9 = 7(1)1657<167> = 17 · 19 · 5483057904307<13> · 125102202163039<15> · C138
C138 = P57 · P82
P57 = 189017252553419561480806004528870537398168187166973127563<57>
P82 = 1698031369177711247850014025611530461767387472590376241897452371528925800729051521<82>
Number: n N=320957224151492255429082127231488936975920891075446305694396741711567954921815157690547768799927437761891217541762696415656265015932173323 ( 138 digits) SNFS difficulty: 167 digits. Divisors found: Tue May 06 11:05:04 2008 prp57 factor: 189017252553419561480806004528870537398168187166973127563 Tue May 06 11:05:04 2008 prp82 factor: 1698031369177711247850014025611530461767387472590376241897452371528925800729051521 Tue May 06 11:05:04 2008 elapsed time 02:14:27 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 95.69 hours. Scaled time: 123.35 units (timescale=1.289). Factorization parameters were as follows: name: KA_7_1_165_7 n: 320957224151492255429082127231488936975920891075446305694396741711567954921815157690547768799927437761891217541762696415656265015932173323 skew: 0.61 deg: 5 c5: 640 c0: 53 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4100293) Primes: RFBsize:216816, AFBsize:215751, largePrimes:7744522 encountered Relations: rels:7160434, finalFF:475852 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 95.27 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 95.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By matsui / GGNFS
10177-9 = (9)1761<177> = 1321 · 2376752857145462309881481<25> · C150
C150 = P60 · P91
P60 = 166539912927088863044604457888822597127041055210868917788027<60>
P91 = 1912470850607748174543437500075957519331332156283120157980757697449058309385972258440240133<91>
N=318502728935809954002509561087485010327351554728615657106064751195435717694394036448608577571954357904487482813391637647426139449497421967533072287591 ( 150 digits) SNFS difficulty: 177 digits. Divisors found: r1=166539912927088863044604457888822597127041055210868917788027 (pp60) r2=1912470850607748174543437500075957519331332156283120157980757697449058309385972258440240133 (pp91) Version: GGNFS-0.77.1-20060513-prescott Total time: 284.83 hours. Scaled time: 483.93 units (timescale=1.699). Factorization parameters were as follows: n: 318502728935809954002509561087485010327351554728615657106064751195435717694394036448608577571954357904487482813391637647426139449497421967533072287591 m: 100000000000000000000000000000000000 c5: 100 c0: -9 skew: 0.62 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 14800001) Primes: RFBsize:501962, AFBsize:501986, largePrimes:6735594 encountered Relations: rels:7221193, finalFF:1133995 Max relations in full relation-set: 28 Initial matrix: 1004012 x 1133995 with sparse part having weight 89857824. Pruned matrix : 899749 x 904833 with weight 71278579. Total sieving time: 266.47 hours. Total relation processing time: 0.17 hours. Matrix solve time: 17.92 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 284.83 hours.
By Justin Card / GGNFS
(10164+71)/9 = (1)1639<164> = 192 · 7831997 · 2098626111640319124673<22> · C133
C133 = P47 · P86
P47 = 28129977390358023629213634794275869491272177939<47>
P86 = 66569197414739914752363340066606515578290318079885508716380491999752942375601583635281<86>
Number: 11119_164 N=1872590018170913600366772304304121841458097175167099440399150522128818251133408166221876789031838225191954311628349902030957910265859 ( 133 digits) SNFS difficulty: 165 digits. Divisors found: r1=28129977390358023629213634794275869491272177939 (pp47) r2=66569197414739914752363340066606515578290318079885508716380491999752942375601583635281 (pp86) Version: GGNFS-0.77.1-20060722-k8 Total time: 107.01 hours. Scaled time: 215.94 units (timescale=2.018). Factorization parameters were as follows: n: 1872590018170913600366772304304121841458097175167099440399150522128818251133408166221876789031838225191954311628349902030957910265859 m: 1000000000000000000000000000000000 c5: 1 c0: 710 skew: 3.72 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6000001) Primes: RFBsize:348513, AFBsize:349267, largePrimes:5903324 encountered Relations: rels:6042140, finalFF:784177 Max relations in full relation-set: 32 Initial matrix: 697844 x 784177 with sparse part having weight 53680249. Pruned matrix : 633863 x 637416 with weight 40023983. Total sieving time: 99.60 hours. Total relation processing time: 0.12 hours. Matrix solve time: 7.19 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 107.01 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(17·10156-53)/9 = 1(8)1553<157> = C157
C157 = P77 · P80
P77 = 94115205417543442260889014109032287575728859357342112763830605058897534630713<77>
P80 = 20069965108281988776637007571562300370718669072099530779317161803679127900838091<80>
Number: n N=1888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 157 digits) SNFS difficulty: 157 digits. Divisors found: r1=94115205417543442260889014109032287575728859357342112763830605058897534630713 (pp77) r2=20069965108281988776637007571562300370718669072099530779317161803679127900838091 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.24 hours. Scaled time: 56.95 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_155_3 n: 1888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 skew: 0.79 deg: 5 c5: 170 c0: -53 m: 10000000000000000000000000000000 type: snfs rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2200001) Primes: RFBsize:135072, AFBsize:135633, largePrimes:7506713 encountered Relations: rels:6975775, finalFF:328656 Max relations in full relation-set: 48 Initial matrix: 270772 x 328656 with sparse part having weight 59693763. Pruned matrix : 260051 x 261468 with weight 42450536. Total sieving time: 29.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.14 hours. Total square root time: 0.16 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.5,2.5,100000 total time: 31.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10168-7)/3 = 1(3)1671<169> = 59 · 2383 · C163
C163 = P35 · P47 · P82
P35 = 40023304173544835675150634644920757<35>
P47 = 87704264899678723077483412253836681182971817527<47>
P82 = 2701649657888416586918373900392021989279527982766201328562651932265680628922403757<82>
Number: n N=236946197261572085292838556629037751292137492986711183144801139487713250729956995533124609056643740923364539938459175868023248939 ( 129 digits) SNFS difficulty: 168 digits. Divisors found: Mon May 05 12:27:06 2008 prp47 factor: 87704264899678723077483412253836681182971817527 Mon May 05 12:27:06 2008 prp82 factor: 2701649657888416586918373900392021989279527982766201328562651932265680628922403757 Mon May 05 12:27:06 2008 elapsed time 01:48:02 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 70.29 hours. Scaled time: 123.78 units (timescale=1.761). Factorization parameters were as follows: name: KA_1_3_167_1 n: 236946197261572085292838556629037751292137492986711183144801139487713250729956995533124609056643740923364539938459175868023248939 type: snfs skew: 0.56 deg: 5 c5: 125 c0: -7 m: 2000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3299990) Primes: RFBsize:230209, AFBsize:229892, largePrimes:7666340 encountered Relations: rels:7167828, finalFF:516796 Max relations in full relation-set: 28 Initial matrix: 460166 x 516796 with sparse part having weight 46524840. Pruned matrix : Total sieving time: 70.00 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 70.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
(17·10145-53)/9 = 1(8)1443<146> = 13 · 1693 · 21139 · 152839 · C132
C132 = P33 · P99
P33 = 906712254747545828169857551757513<33>
P99 = 292966518254180953679091271458567512967760755284807647661567847660425624429080931183692604031429719<99>
Number: 18883_145 N=265636332331786455948599830433367466549294462972153747320203357415347232538865457535237362193153091325035833595006246655618589728847 ( 132 digits) SNFS difficulty: 146 digits. Divisors found: r1=906712254747545828169857551757513 (pp33) r2=292966518254180953679091271458567512967760755284807647661567847660425624429080931183692604031429719 (pp99) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.04 hours. Scaled time: 21.60 units (timescale=2.388). Factorization parameters were as follows: n: 265636332331786455948599830433367466549294462972153747320203357415347232538865457535237362193153091325035833595006246655618589728847 m: 100000000000000000000000000000 c5: 17 c0: -53 skew: 1.26 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134618, largePrimes:3865067 encountered Relations: rels:4038075, finalFF:449877 Max relations in full relation-set: 28 Initial matrix: 269755 x 449877 with sparse part having weight 41845575. Pruned matrix : 210461 x 211873 with weight 18696046. Total sieving time: 8.75 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.22 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.04 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10154-53)/9 = 1(8)1533<155> = 971 · 102437 · 371631714756730591<18> · 101739334408004478253<21> · C109
C109 = P37 · P73
P37 = 1274109118835390829488419042276855939<37>
P73 = 3942049247854730324039591295348901289336792997888410316410784299138286157<73>
Number: 18883_154 N=5022600893589905636339499417613746611203498473826015438112127303240501238047489385556412100188188698846936423 ( 109 digits) Divisors found: r1=1274109118835390829488419042276855939 (pp37) r2=3942049247854730324039591295348901289336792997888410316410784299138286157 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.95 hours. Scaled time: 28.49 units (timescale=2.385). Factorization parameters were as follows: name: 18883_154 n: 5022600893589905636339499417613746611203498473826015438112127303240501238047489385556412100188188698846936423 skew: 13374.50 # norm 5.43e+14 c5: 30720 c4: 173704624 c3: -7232247169672 c2: -374569345942660446 c1: -1059675685050481945127 c0: 22995021347564797885400 # alpha -5.17 Y1: 208977619037 Y0: -696147622413157774917 # Murphy_E 1.15e-09 # M 4860478897446311097949180415020740955658616983891812118048734381297380893306393968043407480884279029213211245 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 1860001) Primes: RFBsize:176302, AFBsize:176443, largePrimes:7604035 encountered Relations: rels:7511229, finalFF:560575 Max relations in full relation-set: 28 Initial matrix: 352821 x 560575 with sparse part having weight 54604718. Pruned matrix : 235491 x 237319 with weight 27052759. Polynomial selection time: 0.71 hours. Total sieving time: 10.66 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.36 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 11.95 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
By Sinkiti Sibata / Msieve
(17·10140-53)/9 = 1(8)1393<141> = 32 · 31 · 43 · 89 · 10416211045177969<17> · 2199553991945068036403<22> · C97
C97 = P29 · P69
P29 = 38770123268705413047738066497<29>
P69 = 199160022643799127833796061370630292550733822605403852646915352573069<69>
Sun May 4 20:45:00 2008 Msieve v. 1.35 Sun May 4 20:45:00 2008 random seeds: dc0174df bdb499f0 Sun May 4 20:45:00 2008 factoring 7721458628098253520507907794388559567326852814475284956638057016810555515872552885560367973369293 (97 digits) Sun May 4 20:45:02 2008 searching for 15-digit factors Sun May 4 20:45:04 2008 commencing quadratic sieve (97-digit input) Sun May 4 20:45:04 2008 using multiplier of 53 Sun May 4 20:45:04 2008 using 64kb Pentium 4 sieve core Sun May 4 20:45:04 2008 sieve interval: 18 blocks of size 65536 Sun May 4 20:45:04 2008 processing polynomials in batches of 6 Sun May 4 20:45:04 2008 using a sieve bound of 2401409 (88235 primes) Sun May 4 20:45:04 2008 using large prime bound of 360211350 (28 bits) Sun May 4 20:45:04 2008 using double large prime bound of 2522337833647050 (43-52 bits) Sun May 4 20:45:04 2008 using trial factoring cutoff of 52 bits Sun May 4 20:45:04 2008 polynomial 'A' values have 13 factors Mon May 5 05:41:31 2008 88780 relations (22380 full + 66400 combined from 1309522 partial), need 88331 Mon May 5 05:41:37 2008 begin with 1331902 relations Mon May 5 05:41:38 2008 reduce to 228356 relations in 11 passes Mon May 5 05:41:39 2008 attempting to read 228356 relations Mon May 5 05:41:46 2008 recovered 228356 relations Mon May 5 05:41:46 2008 recovered 214407 polynomials Mon May 5 05:41:47 2008 attempting to build 88780 cycles Mon May 5 05:41:47 2008 found 88780 cycles in 6 passes Mon May 5 05:41:47 2008 distribution of cycle lengths: Mon May 5 05:41:47 2008 length 1 : 22380 Mon May 5 05:41:47 2008 length 2 : 15920 Mon May 5 05:41:47 2008 length 3 : 15021 Mon May 5 05:41:47 2008 length 4 : 11905 Mon May 5 05:41:47 2008 length 5 : 8961 Mon May 5 05:41:47 2008 length 6 : 5950 Mon May 5 05:41:47 2008 length 7 : 3672 Mon May 5 05:41:47 2008 length 9+: 4971 Mon May 5 05:41:47 2008 largest cycle: 19 relations Mon May 5 05:41:47 2008 matrix is 88235 x 88780 (23.4 MB) with weight 5776404 (65.06/col) Mon May 5 05:41:48 2008 sparse part has weight 5776404 (65.06/col) Mon May 5 05:41:49 2008 filtering completed in 3 passes Mon May 5 05:41:49 2008 matrix is 83760 x 83824 (22.1 MB) with weight 5457471 (65.11/col) Mon May 5 05:41:49 2008 sparse part has weight 5457471 (65.11/col) Mon May 5 05:41:50 2008 saving the first 48 matrix rows for later Mon May 5 05:41:50 2008 matrix is 83712 x 83824 (12.8 MB) with weight 4196289 (50.06/col) Mon May 5 05:41:50 2008 sparse part has weight 2865457 (34.18/col) Mon May 5 05:41:50 2008 matrix includes 64 packed rows Mon May 5 05:41:50 2008 using block size 21845 for processor cache size 512 kB Mon May 5 05:41:51 2008 commencing Lanczos iteration Mon May 5 05:41:51 2008 memory use: 12.9 MB Mon May 5 05:43:03 2008 lanczos halted after 1326 iterations (dim = 83712) Mon May 5 05:43:04 2008 recovered 18 nontrivial dependencies Mon May 5 05:43:05 2008 prp29 factor: 38770123268705413047738066497 Mon May 5 05:43:05 2008 prp69 factor: 199160022643799127833796061370630292550733822605403852646915352573069 Mon May 5 05:43:05 2008 elapsed time 08:58:05
By Jo Yeong Uk / GGNFS
(17·10143-53)/9 = 1(8)1423<144> = 3 · 19 · 82003 · 33747234085323696229891580573<29> · C109
C109 = P54 · P55
P54 = 284184304370485849583806799703613180155918074201814599<54>
P55 = 4213699332694306433921848962284585352045581816321987099<55>
Number: 18883_143 N=1197467213688111895850772536711179223052372690430306061875255929817187752960564141361063736311640807267858301 ( 109 digits) SNFS difficulty: 146 digits. Divisors found: r1=284184304370485849583806799703613180155918074201814599 (pp54) r2=4213699332694306433921848962284585352045581816321987099 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.08 hours. Scaled time: 23.75 units (timescale=2.356). Factorization parameters were as follows: n: 1197467213688111895850772536711179223052372690430306061875255929817187752960564141361063736311640807267858301 m: 100000000000000000000000000000 c5: 17 c0: -5300 skew: 3.15 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1650001) Primes: RFBsize:135072, AFBsize:135378, largePrimes:3801778 encountered Relations: rels:3847640, finalFF:337434 Max relations in full relation-set: 28 Initial matrix: 270517 x 337434 with sparse part having weight 31669794. Pruned matrix : 247287 x 248703 with weight 19935634. Total sieving time: 9.72 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.28 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
By Jo Yeong Uk / GGNFS
(17·10139-53)/9 = 1(8)1383<140> = 13 · 109363 · 10038594233<11> · 1303876585637<13> · C112
C112 = P46 · P66
P46 = 1093771935863111803994728995558734837426133433<46>
P66 = 928018175045653313023689862079602922263543547526513521806182993649<66>
Number: 18883_139 N=1015040235835836378728631986726903634233303583621327606120724533258279780022125161642706618871835169922865567017 ( 112 digits) SNFS difficulty: 141 digits. Divisors found: r1=1093771935863111803994728995558734837426133433 (pp46) r2=928018175045653313023689862079602922263543547526513521806182993649 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.77 hours. Scaled time: 16.07 units (timescale=2.374). Factorization parameters were as follows: n: 1015040235835836378728631986726903634233303583621327606120724533258279780022125161642706618871835169922865567017 m: 10000000000000000000000000000 c5: 17 c0: -530 skew: 1.99 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:114172, largePrimes:3312330 encountered Relations: rels:3279076, finalFF:271361 Max relations in full relation-set: 28 Initial matrix: 228392 x 271361 with sparse part having weight 24091352. Pruned matrix : 211946 x 213151 with weight 15991644. Total sieving time: 6.51 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.19 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.77 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10178-53)/9 = 1(8)1773<179> = 149 · 71023 · 2981057 · 738493163 · 18978130740089<14> · 43743537687611<14> · 93010512334718522114163289<26> · C104
C104 = P38 · P66
P38 = 40841462947354589786207930836285747643<38>
P66 = 257100965516938781704461385818273110825314784282900274223801951843<66>
Number: 18883_178 N=10500379556889145330246585114238768457291202943488725603741369894166236710397268265106651792985936756049 ( 104 digits) Divisors found: r1=40841462947354589786207930836285747643 (pp38) r2=257100965516938781704461385818273110825314784282900274223801951843 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.95 hours. Scaled time: 11.76 units (timescale=2.378). Factorization parameters were as follows: name: 18883_178 n: 10500379556889145330246585114238768457291202943488725603741369894166236710397268265106651792985936756049 skew: 14873.58 # norm 2.30e+14 c5: 16860 c4: 394657478 c3: 691223280664 c2: -129661333066021771 c1: 933196451921052844674 c0: 2280582783604846240475616 # alpha -6.26 Y1: 55451588929 Y0: -57394135822956993649 # Murphy_E 2.25e-09 # M 6839246963409309748766842326136220909111860140739734615850387672023936970225800943518710329636436932672 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1620001) Primes: RFBsize:135072, AFBsize:135010, largePrimes:4383712 encountered Relations: rels:4338342, finalFF:345714 Max relations in full relation-set: 28 Initial matrix: 270166 x 345714 with sparse part having weight 28239737. Pruned matrix : 220167 x 221581 with weight 15602253. Polynomial selection time: 0.39 hours. Total sieving time: 4.23 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 4.95 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
By Sinkiti Sibata / Msieve
(17·10189-53)/9 = 1(8)1883<190> = 7 · 1487 · 37763269 · 107409211127<12> · 1892069578404541<16> · 3090777110713708539900218209<28> · 18308463842770442763352292651<29> · C96
C96 = P34 · P63
P34 = 3425376722500250431425989302857061<34>
P63 = 121989164029539344478888387906348661308781361217618006478634011<63>
Sat May 3 19:48:17 2008 Msieve v. 1.35 Sat May 3 19:48:17 2008 random seeds: 695a6d9a 2c707a77 Sat May 3 19:48:17 2008 factoring 417858842864048922896196337118593534562428072576844463940803492716857825203006427509934866101671 (96 digits) Sat May 3 19:48:19 2008 searching for 15-digit factors Sat May 3 19:48:21 2008 commencing quadratic sieve (96-digit input) Sat May 3 19:48:21 2008 using multiplier of 1 Sat May 3 19:48:21 2008 using 64kb Pentium 4 sieve core Sat May 3 19:48:21 2008 sieve interval: 18 blocks of size 65536 Sat May 3 19:48:21 2008 processing polynomials in batches of 6 Sat May 3 19:48:21 2008 using a sieve bound of 2257987 (83529 primes) Sat May 3 19:48:21 2008 using large prime bound of 338698050 (28 bits) Sat May 3 19:48:21 2008 using double large prime bound of 2257682284654350 (43-52 bits) Sat May 3 19:48:21 2008 using trial factoring cutoff of 52 bits Sat May 3 19:48:21 2008 polynomial 'A' values have 12 factors Sun May 4 04:33:19 2008 83830 relations (19972 full + 63858 combined from 1268871 partial), need 83625 Sun May 4 04:33:24 2008 begin with 1288843 relations Sun May 4 04:33:26 2008 reduce to 222077 relations in 11 passes Sun May 4 04:33:26 2008 attempting to read 222077 relations Sun May 4 04:33:33 2008 recovered 222077 relations Sun May 4 04:33:33 2008 recovered 209059 polynomials Sun May 4 04:33:33 2008 attempting to build 83830 cycles Sun May 4 04:33:34 2008 found 83830 cycles in 6 passes Sun May 4 04:33:34 2008 distribution of cycle lengths: Sun May 4 04:33:34 2008 length 1 : 19972 Sun May 4 04:33:34 2008 length 2 : 14020 Sun May 4 04:33:34 2008 length 3 : 14057 Sun May 4 04:33:34 2008 length 4 : 11320 Sun May 4 04:33:34 2008 length 5 : 8801 Sun May 4 04:33:34 2008 length 6 : 6050 Sun May 4 04:33:34 2008 length 7 : 3976 Sun May 4 04:33:34 2008 length 9+: 5634 Sun May 4 04:33:34 2008 largest cycle: 19 relations Sun May 4 04:33:34 2008 matrix is 83529 x 83830 (23.4 MB) with weight 5800295 (69.19/col) Sun May 4 04:33:34 2008 sparse part has weight 5800295 (69.19/col) Sun May 4 04:33:36 2008 filtering completed in 3 passes Sun May 4 04:33:36 2008 matrix is 80180 x 80244 (22.5 MB) with weight 5574830 (69.47/col) Sun May 4 04:33:36 2008 sparse part has weight 5574830 (69.47/col) Sun May 4 04:33:37 2008 saving the first 48 matrix rows for later Sun May 4 04:33:37 2008 matrix is 80132 x 80244 (16.0 MB) with weight 4623887 (57.62/col) Sun May 4 04:33:37 2008 sparse part has weight 3724238 (46.41/col) Sun May 4 04:33:37 2008 matrix includes 64 packed rows Sun May 4 04:33:37 2008 using block size 21845 for processor cache size 512 kB Sun May 4 04:33:38 2008 commencing Lanczos iteration Sun May 4 04:33:38 2008 memory use: 14.4 MB Sun May 4 04:34:57 2008 lanczos halted after 1270 iterations (dim = 80131) Sun May 4 04:34:57 2008 recovered 17 nontrivial dependencies Sun May 4 04:34:59 2008 prp34 factor: 3425376722500250431425989302857061 Sun May 4 04:34:59 2008 prp63 factor: 121989164029539344478888387906348661308781361217618006478634011 Sun May 4 04:34:59 2008 elapsed time 08:46:42
(17·10130-53)/9 = 1(8)1293<131> = 59 · 433 · 479 · 12851536795962440562749361929843<32> · C93
C93 = P44 · P50
P44 = 11614451771081002807800660499716452065000621<44>
P50 = 10341349396259693395744386085621912743878339580497<50>
Sun May 4 06:17:09 2008 Msieve v. 1.35 Sun May 4 06:17:09 2008 random seeds: fc847c7a fd7eb40d Sun May 4 06:17:09 2008 factoring 120109103810755855073665089276825555209639255049591698558354393477251802397035257825184488637 (93 digits) Sun May 4 06:17:11 2008 searching for 15-digit factors Sun May 4 06:17:13 2008 commencing quadratic sieve (93-digit input) Sun May 4 06:17:13 2008 using multiplier of 13 Sun May 4 06:17:13 2008 using 64kb Pentium 4 sieve core Sun May 4 06:17:13 2008 sieve interval: 18 blocks of size 65536 Sun May 4 06:17:13 2008 processing polynomials in batches of 6 Sun May 4 06:17:13 2008 using a sieve bound of 1852271 (69412 primes) Sun May 4 06:17:13 2008 using large prime bound of 209306623 (27 bits) Sun May 4 06:17:13 2008 using double large prime bound of 949312700295976 (42-50 bits) Sun May 4 06:17:13 2008 using trial factoring cutoff of 50 bits Sun May 4 06:17:13 2008 polynomial 'A' values have 12 factors Sun May 4 09:46:15 2008 69873 relations (18535 full + 51338 combined from 881173 partial), need 69508 Sun May 4 09:46:19 2008 begin with 899708 relations Sun May 4 09:46:20 2008 reduce to 174000 relations in 11 passes Sun May 4 09:46:20 2008 attempting to read 174000 relations Sun May 4 09:46:25 2008 recovered 174000 relations Sun May 4 09:46:25 2008 recovered 154249 polynomials Sun May 4 09:46:25 2008 attempting to build 69873 cycles Sun May 4 09:46:25 2008 found 69873 cycles in 6 passes Sun May 4 09:46:25 2008 distribution of cycle lengths: Sun May 4 09:46:25 2008 length 1 : 18535 Sun May 4 09:46:25 2008 length 2 : 12855 Sun May 4 09:46:25 2008 length 3 : 12103 Sun May 4 09:46:25 2008 length 4 : 9383 Sun May 4 09:46:25 2008 length 5 : 6738 Sun May 4 09:46:25 2008 length 6 : 4286 Sun May 4 09:46:25 2008 length 7 : 2636 Sun May 4 09:46:25 2008 length 9+: 3337 Sun May 4 09:46:25 2008 largest cycle: 18 relations Sun May 4 09:46:26 2008 matrix is 69412 x 69873 (17.2 MB) with weight 4220263 (60.40/col) Sun May 4 09:46:26 2008 sparse part has weight 4220263 (60.40/col) Sun May 4 09:46:27 2008 filtering completed in 3 passes Sun May 4 09:46:27 2008 matrix is 65252 x 65314 (16.1 MB) with weight 3954945 (60.55/col) Sun May 4 09:46:27 2008 sparse part has weight 3954945 (60.55/col) Sun May 4 09:46:28 2008 saving the first 48 matrix rows for later Sun May 4 09:46:28 2008 matrix is 65204 x 65314 (9.4 MB) with weight 3024807 (46.31/col) Sun May 4 09:46:28 2008 sparse part has weight 2081515 (31.87/col) Sun May 4 09:46:28 2008 matrix includes 64 packed rows Sun May 4 09:46:28 2008 using block size 21845 for processor cache size 512 kB Sun May 4 09:46:28 2008 commencing Lanczos iteration Sun May 4 09:46:28 2008 memory use: 9.6 MB Sun May 4 09:47:10 2008 lanczos halted after 1032 iterations (dim = 65202) Sun May 4 09:47:11 2008 recovered 16 nontrivial dependencies Sun May 4 09:47:11 2008 prp44 factor: 11614451771081002807800660499716452065000621 Sun May 4 09:47:11 2008 prp50 factor: 10341349396259693395744386085621912743878339580497 Sun May 4 09:47:11 2008 elapsed time 03:30:02
By Robert Backstrom / GGNFS, GMP-ECM
(17·10138-53)/9 = 1(8)1373<139> = 1187 · 1979 · 100520408961365189<18> · C115
C115 = P41 · P75
P41 = 52269084438711395174858006507068213911373<41>
P75 = 153042044567989424299284094191024360306276834800651709136147324967796139843<75>
Number: n N=7999367550197271822646360963644905153246648798556416044418272601732208581583503314076806099132800234363381916134439 ( 115 digits) SNFS difficulty: 139 digits. Divisors found: Sun May 4 03:10:23 2008 prp41 factor: 52269084438711395174858006507068213911373 Sun May 4 03:10:23 2008 prp75 factor: 153042044567989424299284094191024360306276834800651709136147324967796139843 Sun May 4 03:10:23 2008 elapsed time 00:13:11 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 5.83 hours. Scaled time: 4.89 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_8_137_3 n: 7999367550197271822646360963644905153246648798556416044418272601732208581583503314076806099132800234363381916134439 type: snfs deg: 5 c5: 17000 c0: -53 skew: 0.32 m: 1000000000000000000000000000 rlim: 1100000 alim: 1100000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved special-q in [100000, 2349990) Primes: RFBsize:85714, AFBsize:85954, largePrimes:1723644 encountered Relations: rels:1751737, finalFF:207968 Max relations in full relation-set: 28 Initial matrix: 171735 x 207968 with sparse part having weight 17947252. Pruned matrix : Total sieving time: 5.74 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1100000,1100000,25,25,43,43,2.5,2.5,75000 total time: 5.83 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
6·10165-7 = 5(9)1643<166> = 13 · 79 · 113 · 7235159683<10> · 782556346460516558455522307<27> · C124
C124 = P56 · P69
P56 = 89114521059015530309415870009443429755507579670159234491<56>
P69 = 102468445422444548672703238249307270954451352766414703365751873047633<69>
Number: n N=9131426437483018250616136976167125291747020858040915201947647855343618380368524095147817529154557716728675938758146459509803 ( 124 digits) SNFS difficulty: 165 digits. Divisors found: Sun May 04 04:55:30 2008 prp56 factor: 89114521059015530309415870009443429755507579670159234491 Sun May 04 04:55:30 2008 prp69 factor: 102468445422444548672703238249307270954451352766414703365751873047633 Sun May 04 04:55:30 2008 elapsed time 01:53:48 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.25 hours. Scaled time: 91.53 units (timescale=1.447). Factorization parameters were as follows: name: KA_5_9_164_3 n: 9131426437483018250616136976167125291747020858040915201947647855343618380368524095147817529154557716728675938758146459509803 skew: 1.03 deg: 5 c5: 6 c0: -7 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300149) Primes: RFBsize:216816, AFBsize:217096, largePrimes:7508847 encountered Relations: rels:6918012, finalFF:470957 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 62.98 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(17·10148-53)/9 = 1(8)1473<149> = 599 · 1523 · 5449 · C139
C139 = P66 · P74
P66 = 196920964872399960571095869962957319355465848009092572272618008697<66>
P74 = 19296161407988911730535538884844824784794847267080297111232954814015304743<74>
Number: n N=3799818722794744250790994913866933739151845029327254261031147177170091191856457432267665149073674412679857372535547483357901361918279349871 ( 139 digits) SNFS difficulty: 149 digits. Divisors found: Sun May 04 15:08:17 2008 prp66 factor: 196920964872399960571095869962957319355465848009092572272618008697 Sun May 04 15:08:17 2008 prp74 factor: 19296161407988911730535538884844824784794847267080297111232954814015304743 Sun May 04 15:08:17 2008 elapsed time 00:32:29 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.67 hours. Scaled time: 23.17 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_8_147_3 n: 3799818722794744250790994913866933739151845029327254261031147177170091191856457432267665149073674412679857372535547483357901361918279349871 skew: 0.32 deg: 5 c5: 17000 c0: -53 m: 100000000000000000000000000000 type: snfs rlim: 1600000 alim: 1600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700001) Primes: RFBsize:121127, AFBsize:121430, largePrimes:7338873 encountered Relations: rels:6686800, finalFF:246342 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 12.49 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1600000,1600000,28,28,48,48,2.5,2.5,100000 total time: 12.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Justin Card / GGNFS
4·10164+3 = 4(0)1633<165> = 13 · 11467 · 9523399993242554891943426601<28> · C132
C132 = P56 · P76
P56 = 31445722457122043977687400352333915199796312519950578127<56>
P76 = 8960107578000945594964516537852622453791282510444775001014858922521752127659<76>
By Sinkiti Sibata / Msieve
(17·10109-53)/9 = 1(8)1083<110> = 13 · 29 · 1272 · 1489 · 6379 · C96
C96 = P33 · P64
P33 = 133163092855224104302363788449929<33>
P64 = 2455989164158808006628046290075502317087684176170758096093506249<64>
Sat May 3 07:03:12 2008 Msieve v. 1.35 Sat May 3 07:03:12 2008 random seeds: 6f29155d 3913c6e4 Sat May 3 07:03:12 2008 factoring 327047113118303586290974817149111522786499532420335382905249154650071096486259467066566385106321 (96 digits) Sat May 3 07:03:13 2008 searching for 15-digit factors Sat May 3 07:03:15 2008 commencing quadratic sieve (96-digit input) Sat May 3 07:03:16 2008 using multiplier of 1 Sat May 3 07:03:16 2008 using 64kb Pentium 4 sieve core Sat May 3 07:03:16 2008 sieve interval: 18 blocks of size 65536 Sat May 3 07:03:16 2008 processing polynomials in batches of 6 Sat May 3 07:03:16 2008 using a sieve bound of 2253037 (83529 primes) Sat May 3 07:03:16 2008 using large prime bound of 337955550 (28 bits) Sat May 3 07:03:16 2008 using double large prime bound of 2248781238410700 (43-51 bits) Sat May 3 07:03:16 2008 using trial factoring cutoff of 51 bits Sat May 3 07:03:16 2008 polynomial 'A' values have 12 factors Sat May 3 14:08:38 2008 83700 relations (20716 full + 62984 combined from 1232784 partial), need 83625 Sat May 3 14:08:43 2008 begin with 1253500 relations Sat May 3 14:08:44 2008 reduce to 217266 relations in 13 passes Sat May 3 14:08:44 2008 attempting to read 217266 relations Sat May 3 14:08:51 2008 recovered 217266 relations Sat May 3 14:08:51 2008 recovered 202315 polynomials Sat May 3 14:08:52 2008 attempting to build 83700 cycles Sat May 3 14:08:52 2008 found 83700 cycles in 5 passes Sat May 3 14:08:52 2008 distribution of cycle lengths: Sat May 3 14:08:52 2008 length 1 : 20716 Sat May 3 14:08:52 2008 length 2 : 14681 Sat May 3 14:08:52 2008 length 3 : 14201 Sat May 3 14:08:52 2008 length 4 : 11285 Sat May 3 14:08:52 2008 length 5 : 8445 Sat May 3 14:08:52 2008 length 6 : 5713 Sat May 3 14:08:52 2008 length 7 : 3597 Sat May 3 14:08:52 2008 length 9+: 5062 Sat May 3 14:08:52 2008 largest cycle: 20 relations Sat May 3 14:08:52 2008 matrix is 83529 x 83700 (22.5 MB) with weight 5575853 (66.62/col) Sat May 3 14:08:52 2008 sparse part has weight 5575853 (66.62/col) Sat May 3 14:08:54 2008 filtering completed in 3 passes Sat May 3 14:08:54 2008 matrix is 79665 x 79729 (21.6 MB) with weight 5347576 (67.07/col) Sat May 3 14:08:54 2008 sparse part has weight 5347576 (67.07/col) Sat May 3 14:08:55 2008 saving the first 48 matrix rows for later Sat May 3 14:08:55 2008 matrix is 79617 x 79729 (14.8 MB) with weight 4376564 (54.89/col) Sat May 3 14:08:55 2008 sparse part has weight 3401479 (42.66/col) Sat May 3 14:08:55 2008 matrix includes 64 packed rows Sat May 3 14:08:55 2008 using block size 21845 for processor cache size 512 kB Sat May 3 14:08:56 2008 commencing Lanczos iteration Sat May 3 14:08:56 2008 memory use: 13.6 MB Sat May 3 14:10:09 2008 lanczos halted after 1261 iterations (dim = 79617) Sat May 3 14:10:10 2008 recovered 17 nontrivial dependencies Sat May 3 14:10:12 2008 prp33 factor: 133163092855224104302363788449929 Sat May 3 14:10:12 2008 prp64 factor: 2455989164158808006628046290075502317087684176170758096093506249 Sat May 3 14:10:12 2008 elapsed time 07:07:00
(17·10114-53)/9 = 1(8)1133<115> = 23 · 135963488010063195216983<24> · C90
C90 = P44 · P47
P44 = 45407051110420976718615060333667020841308287<44>
P47 = 13302491197732416716475505613313966954879008701<47>
Sat May 3 14:29:59 2008 Msieve v. 1.35 Sat May 3 14:29:59 2008 random seeds: 06c7da98 e99f005e Sat May 3 14:29:59 2008 factoring 604026897711361001042648778953029296818263452928596668891224289618648285800606122496405187 (90 digits) Sat May 3 14:30:01 2008 searching for 15-digit factors Sat May 3 14:30:03 2008 commencing quadratic sieve (90-digit input) Sat May 3 14:30:03 2008 using multiplier of 3 Sat May 3 14:30:03 2008 using 64kb Pentium 4 sieve core Sat May 3 14:30:03 2008 sieve interval: 18 blocks of size 65536 Sat May 3 14:30:03 2008 processing polynomials in batches of 6 Sat May 3 14:30:03 2008 using a sieve bound of 1617893 (61176 primes) Sat May 3 14:30:03 2008 using large prime bound of 135903012 (27 bits) Sat May 3 14:30:03 2008 using double large prime bound of 436327220460936 (42-49 bits) Sat May 3 14:30:03 2008 using trial factoring cutoff of 49 bits Sat May 3 14:30:03 2008 polynomial 'A' values have 12 factors Sat May 3 16:46:42 2008 61740 relations (16397 full + 45343 combined from 662542 partial), need 61272 Sat May 3 16:46:45 2008 begin with 678939 relations Sat May 3 16:46:45 2008 reduce to 150588 relations in 11 passes Sat May 3 16:46:45 2008 attempting to read 150588 relations Sat May 3 16:46:49 2008 recovered 150588 relations Sat May 3 16:46:49 2008 recovered 129378 polynomials Sat May 3 16:46:50 2008 attempting to build 61740 cycles Sat May 3 16:46:50 2008 found 61740 cycles in 5 passes Sat May 3 16:46:50 2008 distribution of cycle lengths: Sat May 3 16:46:50 2008 length 1 : 16397 Sat May 3 16:46:50 2008 length 2 : 11886 Sat May 3 16:46:50 2008 length 3 : 10898 Sat May 3 16:46:50 2008 length 4 : 8182 Sat May 3 16:46:50 2008 length 5 : 5849 Sat May 3 16:46:50 2008 length 6 : 3702 Sat May 3 16:46:50 2008 length 7 : 2260 Sat May 3 16:46:50 2008 length 9+: 2566 Sat May 3 16:46:50 2008 largest cycle: 18 relations Sat May 3 16:46:50 2008 matrix is 61176 x 61740 (14.9 MB) with weight 3662101 (59.31/col) Sat May 3 16:46:50 2008 sparse part has weight 3662101 (59.31/col) Sat May 3 16:46:51 2008 filtering completed in 4 passes Sat May 3 16:46:51 2008 matrix is 57220 x 57284 (13.8 MB) with weight 3399691 (59.35/col) Sat May 3 16:46:51 2008 sparse part has weight 3399691 (59.35/col) Sat May 3 16:46:52 2008 saving the first 48 matrix rows for later Sat May 3 16:46:52 2008 matrix is 57172 x 57284 (8.5 MB) with weight 2623647 (45.80/col) Sat May 3 16:46:52 2008 sparse part has weight 1877380 (32.77/col) Sat May 3 16:46:52 2008 matrix includes 64 packed rows Sat May 3 16:46:52 2008 using block size 21845 for processor cache size 512 kB Sat May 3 16:46:52 2008 commencing Lanczos iteration Sat May 3 16:46:52 2008 memory use: 8.4 MB Sat May 3 16:47:25 2008 lanczos halted after 906 iterations (dim = 57172) Sat May 3 16:47:25 2008 recovered 18 nontrivial dependencies Sat May 3 16:47:27 2008 prp44 factor: 45407051110420976718615060333667020841308287 Sat May 3 16:47:27 2008 prp47 factor: 13302491197732416716475505613313966954879008701 Sat May 3 16:47:27 2008 elapsed time 02:17:28
(17·10116-53)/9 = 1(8)1153<117> = 3 · 3238037953<10> · 200976479996422199<18> · C89
C89 = P35 · P55
P35 = 40639575279507524445937749287780453<35>
P55 = 2380722773741498849314583916531534950249488824911854571<55>
Sat May 3 17:04:10 2008 Msieve v. 1.35 Sat May 3 17:04:10 2008 random seeds: f1ace691 41f2247d Sat May 3 17:04:10 2008 factoring 96751562383105601979686446490891285119918160039771268179072666138270111858671872512500663 (89 digits) Sat May 3 17:04:12 2008 searching for 15-digit factors Sat May 3 17:04:14 2008 commencing quadratic sieve (89-digit input) Sat May 3 17:04:14 2008 using multiplier of 3 Sat May 3 17:04:14 2008 using 64kb Pentium 4 sieve core Sat May 3 17:04:14 2008 sieve interval: 17 blocks of size 65536 Sat May 3 17:04:14 2008 processing polynomials in batches of 6 Sat May 3 17:04:14 2008 using a sieve bound of 1550147 (59333 primes) Sat May 3 17:04:14 2008 using large prime bound of 124011760 (26 bits) Sat May 3 17:04:14 2008 using double large prime bound of 370026785535040 (42-49 bits) Sat May 3 17:04:14 2008 using trial factoring cutoff of 49 bits Sat May 3 17:04:14 2008 polynomial 'A' values have 11 factors Sat May 3 19:36:18 2008 59471 relations (15268 full + 44203 combined from 634222 partial), need 59429 Sat May 3 19:36:20 2008 begin with 649490 relations Sat May 3 19:36:21 2008 reduce to 147167 relations in 10 passes Sat May 3 19:36:21 2008 attempting to read 147167 relations Sat May 3 19:36:25 2008 recovered 147167 relations Sat May 3 19:36:25 2008 recovered 129612 polynomials Sat May 3 19:36:25 2008 attempting to build 59471 cycles Sat May 3 19:36:25 2008 found 59471 cycles in 5 passes Sat May 3 19:36:25 2008 distribution of cycle lengths: Sat May 3 19:36:25 2008 length 1 : 15268 Sat May 3 19:36:25 2008 length 2 : 10961 Sat May 3 19:36:25 2008 length 3 : 10382 Sat May 3 19:36:25 2008 length 4 : 8027 Sat May 3 19:36:25 2008 length 5 : 5917 Sat May 3 19:36:25 2008 length 6 : 3876 Sat May 3 19:36:25 2008 length 7 : 2292 Sat May 3 19:36:25 2008 length 9+: 2748 Sat May 3 19:36:25 2008 largest cycle: 18 relations Sat May 3 19:36:25 2008 matrix is 59333 x 59471 (14.9 MB) with weight 3656207 (61.48/col) Sat May 3 19:36:25 2008 sparse part has weight 3656207 (61.48/col) Sat May 3 19:36:26 2008 filtering completed in 3 passes Sat May 3 19:36:26 2008 matrix is 55994 x 56058 (14.1 MB) with weight 3478766 (62.06/col) Sat May 3 19:36:26 2008 sparse part has weight 3478766 (62.06/col) Sat May 3 19:36:27 2008 saving the first 48 matrix rows for later Sat May 3 19:36:27 2008 matrix is 55946 x 56058 (10.5 MB) with weight 2924982 (52.18/col) Sat May 3 19:36:27 2008 sparse part has weight 2418502 (43.14/col) Sat May 3 19:36:27 2008 matrix includes 64 packed rows Sat May 3 19:36:27 2008 using block size 21845 for processor cache size 512 kB Sat May 3 19:36:28 2008 commencing Lanczos iteration Sat May 3 19:36:28 2008 memory use: 9.4 MB Sat May 3 19:37:04 2008 lanczos halted after 886 iterations (dim = 55944) Sat May 3 19:37:04 2008 recovered 16 nontrivial dependencies Sat May 3 19:37:05 2008 prp35 factor: 40639575279507524445937749287780453 Sat May 3 19:37:05 2008 prp55 factor: 2380722773741498849314583916531534950249488824911854571 Sat May 3 19:37:05 2008 elapsed time 02:32:55
By Jo Yeong Uk / GGNFS, GMP-ECM
(17·10111-53)/9 = 1(8)1103<112> = 7 · 741937667 · C102
C102 = P47 · P56
P47 = 21406727974433936850882602900693924335418266933<47>
P56 = 16989893695587092805835674132504936884778981121981724779<56>
Number: 18883_111 N=363698032655983000887109927310470195159725284363099792950451819884850031842151060166176791870362432807 ( 102 digits) SNFS difficulty: 112 digits. Divisors found: r1=21406727974433936850882602900693924335418266933 (pp47) r2=16989893695587092805835674132504936884778981121981724779 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.78 hours. Scaled time: 1.86 units (timescale=2.379). Factorization parameters were as follows: n: 363698032655983000887109927310470195159725284363099792950451819884850031842151060166176791870362432807 m: 10000000000000000000000 c5: 170 c0: -53 skew: 0.79 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 360001) Primes: RFBsize:30757, AFBsize:30774, largePrimes:1077150 encountered Relations: rels:997972, finalFF:91744 Max relations in full relation-set: 28 Initial matrix: 61598 x 91744 with sparse part having weight 4823069. Pruned matrix : 54393 x 54764 with weight 2049154. Total sieving time: 0.76 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.78 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10126-53)/9 = 1(8)1253<127> = 2539 · 333367 · 641721697 · C109
C109 = P36 · P73
P36 = 727894902607689657739464596480166721<36>
P73 = 4777555082205456186505940897215974516974069492382172337337363813495100943<73>
Number: 18883_126 N=3477557991264813287478908886327964502328581041382834256329695746849099622706974067359408570904712197364317903 ( 109 digits) SNFS difficulty: 127 digits. Divisors found: r1=727894902607689657739464596480166721 (pp36) r2=4777555082205456186505940897215974516974069492382172337337363813495100943 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.08 hours. Scaled time: 4.96 units (timescale=2.382). Factorization parameters were as follows: n: 3477557991264813287478908886327964502328581041382834256329695746849099622706974067359408570904712197364317903 m: 10000000000000000000000000 c5: 170 c0: -53 skew: 0.79 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 920001) Primes: RFBsize:63951, AFBsize:63898, largePrimes:1458294 encountered Relations: rels:1439137, finalFF:156132 Max relations in full relation-set: 28 Initial matrix: 127916 x 156132 with sparse part having weight 10680678. Pruned matrix : 119166 x 119869 with weight 6532998. Total sieving time: 2.01 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 2.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10128-53)/9 = 1(8)1273<129> = 3 · 313 · 2045697173576072885436493<25> · C101
C101 = P46 · P56
P46 = 4004240923599095557112102414494870267401405247<46>
P56 = 24557224171047782792269547057638686525422784224174595907<56>
Number: 18883_128 N=98333041995706407541101587203287053374224097813765416091275589460900030276042794110046704210174524029 ( 101 digits) SNFS difficulty: 131 digits. Divisors found: r1=4004240923599095557112102414494870267401405247 (pp46) r2=24557224171047782792269547057638686525422784224174595907 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.88 hours. Scaled time: 6.86 units (timescale=2.385). Factorization parameters were as follows: n: 98333041995706407541101587203287053374224097813765416091275589460900030276042794110046704210174524029 m: 100000000000000000000000000 c5: 17 c0: -5300 skew: 3.15 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 1200001) Primes: RFBsize:78498, AFBsize:78786, largePrimes:1601165 encountered Relations: rels:1619904, finalFF:194549 Max relations in full relation-set: 28 Initial matrix: 157351 x 194549 with sparse part having weight 13099468. Pruned matrix : 144276 x 145126 with weight 7867622. Total sieving time: 2.78 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.88 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10133-53)/9 = 1(8)1323<134> = 13 · 9293 · 8751737149<10> · 27537178718993<14> · C105
C105 = P34 · P72
P34 = 3764382625358250645569863551537179<34>
P72 = 172345383011769458501536322137290527842023267217164289309509635505102629<72>
Number: 18883_133 N=648773965370217964813793670013617787398115175546853715736855115418235213719596637355092244272371104143591 ( 105 digits) SNFS difficulty: 136 digits. Divisors found: r1=3764382625358250645569863551537179 (pp34) r2=172345383011769458501536322137290527842023267217164289309509635505102629 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.61 hours. Scaled time: 8.59 units (timescale=2.377). Factorization parameters were as follows: n: 648773965370217964813793670013617787398115175546853715736855115418235213719596637355092244272371104143591 m: 1000000000000000000000000000 c5: 17 c0: -5300 skew: 3.15 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1450001) Primes: RFBsize:107126, AFBsize:107538, largePrimes:2291876 encountered Relations: rels:2382392, finalFF:248342 Max relations in full relation-set: 28 Initial matrix: 214731 x 248342 with sparse part having weight 19852549. Pruned matrix : 203707 x 204844 with weight 13784270. Total sieving time: 3.40 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.15 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
(17·10142-53)/9 = 1(8)1413<143> = 1067029 · 1527173 · 244863342785827<15> · 180280219243349327<18> · C99
C99 = P31 · P68
P31 = 5812880350102104118685752874347<31>
P68 = 45172977411817853583314487385516736976079129109325013547106832353973<68>
(17·10135-53)/9 = 1(8)1343<136> = 7 · 12526489 · 6994006470802381<16> · C112
C112 = P40 · P73
P40 = 1347794481418895554693419393197617111453<40>
P73 = 2285226791368354411931518719607928339055696989105013365535936167657426597<73>
Number: 18883_135 N=3080016058196877858823811294679731916589946298223632245279662342289283579816083683606578447554446986742515515441 ( 112 digits) SNFS difficulty: 136 digits. Divisors found: r1=1347794481418895554693419393197617111453 (pp40) r2=2285226791368354411931518719607928339055696989105013365535936167657426597 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.16 hours. Scaled time: 7.54 units (timescale=2.386). Factorization parameters were as follows: n: 3080016058196877858823811294679731916589946298223632245279662342289283579816083683606578447554446986742515515441 m: 1000000000000000000000000000 c5: 17 c0: -53 skew: 1.26 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:106848, largePrimes:2339441 encountered Relations: rels:2497590, finalFF:307796 Max relations in full relation-set: 28 Initial matrix: 214039 x 307796 with sparse part having weight 24583959. Pruned matrix : 182104 x 183238 with weight 11697085. Total sieving time: 3.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
By Robert Backstrom / Msieve, GGNFS
(17·10107-53)/9 = 1(8)1063<108> = 3 · 19 · 9789899963<10> · 1060679948543<13> · C84
C84 = P41 · P43
P41 = 93231858661753747555233330990664897834019<41>
P43 = 3422981886629292384067736826750714955820389<43>
Sat May 03 01:00:14 2008 Sat May 03 01:00:14 2008 Sat May 03 01:00:14 2008 Msieve v. 1.34 Sat May 03 01:00:14 2008 random seeds: 58766b18 0f915d74 Sat May 03 01:00:14 2008 factoring 319130963455965377482501772162273692026572248526301173912434143259339755923298013391 (84 digits) Sat May 03 01:00:14 2008 searching for 15-digit factors Sat May 03 01:00:15 2008 commencing quadratic sieve (84-digit input) Sat May 03 01:00:15 2008 using multiplier of 3 Sat May 03 01:00:15 2008 using 64kb Opteron sieve core Sat May 03 01:00:15 2008 sieve interval: 6 blocks of size 65536 Sat May 03 01:00:15 2008 processing polynomials in batches of 17 Sat May 03 01:00:15 2008 using a sieve bound of 1398737 (53529 primes) Sat May 03 01:00:15 2008 using large prime bound of 120291382 (26 bits) Sat May 03 01:00:15 2008 using trial factoring cutoff of 27 bits Sat May 03 01:00:15 2008 polynomial 'A' values have 11 factors Sat May 03 01:20:55 2008 53671 relations (27000 full + 26671 combined from 282540 partial), need 53625 Sat May 03 01:20:55 2008 begin with 309539 relations Sat May 03 01:20:55 2008 reduce to 76978 relations in 2 passes Sat May 03 01:20:55 2008 attempting to read 76978 relations Sat May 03 01:20:56 2008 recovered 76978 relations Sat May 03 01:20:56 2008 recovered 71187 polynomials Sat May 03 01:20:56 2008 attempting to build 53671 cycles Sat May 03 01:20:56 2008 found 53671 cycles in 1 passes Sat May 03 01:20:56 2008 distribution of cycle lengths: Sat May 03 01:20:56 2008 length 1 : 27000 Sat May 03 01:20:56 2008 length 2 : 26671 Sat May 03 01:20:56 2008 largest cycle: 2 relations Sat May 03 01:20:56 2008 matrix is 53529 x 53671 (7.4 MB) with weight 1729380 (32.22/col) Sat May 03 01:20:56 2008 sparse part has weight 1729380 (32.22/col) Sat May 03 01:20:56 2008 filtering completed in 4 passes Sat May 03 01:20:56 2008 matrix is 46544 x 46608 (6.3 MB) with weight 1475595 (31.66/col) Sat May 03 01:20:56 2008 sparse part has weight 1475595 (31.66/col) Sat May 03 01:20:57 2008 saving the first 48 matrix rows for later Sat May 03 01:20:57 2008 matrix is 46496 x 46608 (4.1 MB) with weight 1106357 (23.74/col) Sat May 03 01:20:57 2008 sparse part has weight 783710 (16.81/col) Sat May 03 01:20:57 2008 matrix includes 64 packed rows Sat May 03 01:20:57 2008 commencing Lanczos iteration Sat May 03 01:20:57 2008 memory use: 5.8 MB Sat May 03 01:21:31 2008 lanczos halted after 736 iterations (dim = 46489) Sat May 03 01:21:31 2008 recovered 14 nontrivial dependencies Sat May 03 01:21:31 2008 prp41 factor: 93231858661753747555233330990664897834019 Sat May 03 01:21:31 2008 prp43 factor: 3422981886629292384067736826750714955820389 Sat May 03 01:21:31 2008 elapsed time 00:21:17
(17·10106-53)/9 = 1(8)1053<107> = C107
C107 = P49 · P58
P49 = 8630106820148450673420782464300565409835605393871<49>
P58 = 2188720172592715591130753702142474055753413658268136225373<58>
Number: n N=18888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 ( 107 digits) SNFS difficulty: 107 digits. Divisors found: r1=8630106820148450673420782464300565409835605393871 (pp49) r2=2188720172592715591130753702142474055753413658268136225373 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.68 hours. Scaled time: 1.24 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_105_3 n: 18888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888883 skew: 0.79 deg: 5 c5: 170 c0: -53 m: 1000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:49098, AFBsize:49096, largePrimes:3980929 encountered Relations: rels:3421632, finalFF:187238 Max relations in full relation-set: 48 Initial matrix: 98261 x 187238 with sparse part having weight 13120897. Pruned matrix : 67652 x 68207 with weight 2699659. Total sieving time: 0.61 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(17·10104-53)/9 = 1(8)1033<105> = 33 · 139 · 1215463 · C95
C95 = P32 · P64
P32 = 15853792454098265153552008138381<32>
P64 = 2611878293362696035834569502178477397915530892823191844676083137<64>
Number: n N=41408176378336565319566253850826344214275710089439512380007961638247320706460090919410156581197 ( 95 digits) SNFS difficulty: 106 digits. Divisors found: r1=15853792454098265153552008138381 (pp32) r2=2611878293362696035834569502178477397915530892823191844676083137 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.60 hours. Scaled time: 1.09 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_103_3 n: 41408176378336565319566253850826344214275710089439512380007961638247320706460090919410156581197 skew: 1.99 deg: 5 c5: 17 c0: -530 m: 1000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:49098, AFBsize:49241, largePrimes:3709422 encountered Relations: rels:3117179, finalFF:145044 Max relations in full relation-set: 48 Initial matrix: 98404 x 145044 with sparse part having weight 9101580. Pruned matrix : 76838 x 77394 with weight 2816172. Total sieving time: 0.53 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.60 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(23·10164+1)/3 = 7(6)1637<165> = 13 · 86369 · 41704840921<11> · 118056872720744949209<21> · C129
C129 = P51 · P79
P51 = 111436804245982124976494018826930500402933157080689<51>
P79 = 1244511588556699658378674981796798862545904148539310114593089804716974603547991<79>
Number: n N=138684394275849187828660560710673371912849390957781872773628671686689559292146610064299317211442794052605863374723378423270845799 ( 129 digits) SNFS difficulty: 166 digits. Divisors found: Sat May 03 10:40:40 2008 prp51 factor: 111436804245982124976494018826930500402933157080689 Sat May 03 10:40:40 2008 prp79 factor: 1244511588556699658378674981796798862545904148539310114593089804716974603547991 Sat May 03 10:40:40 2008 elapsed time 01:03:58 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.14 hours. Scaled time: 38.67 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_6_163_7 n: 138684394275849187828660560710673371912849390957781872773628671686689559292146610064299317211442794052605863374723378423270845799 skew: 0.85 deg: 5 c5: 23 c0: 10 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300000) Primes: RFBsize:216816, AFBsize:217411, largePrimes:7366557 encountered Relations: rels:6789767, finalFF:477036 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 20.99 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 21.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
4·10167-3 = 3(9)1667<168> = 13 · 17 · 139 · 4421 · 7873915303<10> · C150
C150 = P54 · P96
P54 = 618273762409165239603405636857538455481103354894431607<54>
P96 = 605007623043639365025444446465689291883809981765758204992885675613074765084447457982884602953543<96>
Number: n N=374060339385416889430110381945106309862426286979244992667492320805419072529582709129344665255156355799651740239660308846387388622669297398516411833601 ( 150 digits) SNFS difficulty: 167 digits. Divisors found: Sat May 3 12:45:02 2008 prp54 factor: 618273762409165239603405636857538455481103354894431607 Sat May 3 12:45:02 2008 prp96 factor: 605007623043639365025444446465689291883809981765758204992885675613074765084447457982884602953543 Sat May 3 12:45:02 2008 elapsed time 00:55:23 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.57 hours. Scaled time: 21.45 units (timescale=0.839). Factorization parameters were as follows: name: KA_3_9_166_7 n: 374060339385416889430110381945106309862426286979244992667492320805419072529582709129344665255156355799651740239660308846387388622669297398516411833601 type: snfs deg: 5 c5: 25 c0: -6 skew: 0.75 m: 2000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300203) Primes: RFBsize:216816, AFBsize:215956, largePrimes:5607000 encountered Relations: rels:5453742, finalFF:481499 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 25.40 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 25.57 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(17·10112-53)/9 = 1(8)1113<113> = 223 · 4001 · C107
C107 = P49 · P58
P49 = 8549198048140881562228719565616138334096186877231<49>
P58 = 2476324871342590569760961715536698238992882278782339631491<58>
Number: n N=21170591756644794954724198870561383072268803750731475078415249202148889783035058375416111094299170598481421 ( 107 digits) SNFS difficulty: 113 digits. Divisors found: r1=8549198048140881562228719565616138334096186877231 (pp49) r2=2476324871342590569760961715536698238992882278782339631491 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.93 hours. Scaled time: 1.70 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_8_111_3 n: 21170591756644794954724198870561383072268803750731475078415249202148889783035058375416111094299170598481421 skew: 0.50 deg: 5 c5: 1700 c0: -53 m: 10000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:49098, AFBsize:49416, largePrimes:4169529 encountered Relations: rels:3562039, finalFF:164380 Max relations in full relation-set: 48 Initial matrix: 98581 x 164380 with sparse part having weight 14493062. Pruned matrix : 78682 x 79238 with weight 3965425. Total sieving time: 0.84 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(17·10127-53)/9 = 1(8)1263<128> = 13 · 4003 · 540251 · C117
C117 = P51 · P67
P51 = 328798120789209691542180686790545783365122362891647<51>
P67 = 2043396115186747802808184830871608870858489870879968003790681182801<67>
Number: n N=671864802701374144242485442869363565197753682139350317263751143697120621763729277444117459175771975912204400562963247 ( 117 digits) SNFS difficulty: 128 digits. Divisors found: Sat May 3 20:42:58 2008 prp51 factor: 328798120789209691542180686790545783365122362891647 Sat May 3 20:42:58 2008 prp67 factor: 2043396115186747802808184830871608870858489870879968003790681182801 Sat May 3 20:42:58 2008 elapsed time 00:05:26 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.68 hours. Scaled time: 2.25 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_8_126_3 n: 671864802701374144242485442869363565197753682139350317263751143697120621763729277444117459175771975912204400562963247 type: snfs deg: 5 c5: 1700 c0: -53 skew: 0.50 m: 10000000000000000000000000 rlim: 800000 alim: 800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved special-q in [100000, 521243) Primes: RFBsize:63951, AFBsize:64318, largePrimes:1526929 encountered Relations: rels:1490361, finalFF:138680 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 2.62 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.5,2.5,50000 total time: 2.68 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Robert Backstrom / GMP-ECM
(16·10185+11)/9 = 1(7)1849<186> = 7 · C185
C185 = P29 · C156
P29 = 26956598084950821289292271647<29>
C156 = [942137628672209731441123765840597029595643313299719206072714213145836957181250058636962835363668375659087382552918820565633591241200675392898887129525086251<156>]
By Sinkiti Sibata / GGNFS
(13·10162+23)/9 = 1(4)1617<163> = 48440917801958347097<20> · 170569706737281090797<21> · C123
C123 = P37 · P86
P37 = 4896627844567999141056381026425997699<37>
P86 = 35701747916582274558191451115278830078250818431335984974373036683747660077947671049617<86>
Number: 14447_162 N=174818172948084317069323230611457205447676147430883678288697651601550278437647590631488396130094047936924771876587756831283 ( 123 digits) SNFS difficulty: 163 digits. Divisors found: r1=4896627844567999141056381026425997699 (pp37) r2=35701747916582274558191451115278830078250818431335984974373036683747660077947671049617 (pp86) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 134.15 hours. Scaled time: 90.82 units (timescale=0.677). Factorization parameters were as follows: name: 14447_162 n: 174818172948084317069323230611457205447676147430883678288697651601550278437647590631488396130094047936924771876587756831283 m: 100000000000000000000000000000000 c5: 1300 c0: 23 skew: 0.45 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5550001) Primes: RFBsize:315948, AFBsize:315066, largePrimes:5940702 encountered Relations: rels:6062603, finalFF:735486 Max relations in full relation-set: 28 Initial matrix: 631081 x 735486 with sparse part having weight 58557622. Pruned matrix : 557419 x 560638 with weight 43543481. Total sieving time: 115.98 hours. Total relation processing time: 0.49 hours. Matrix solve time: 17.44 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 134.15 hours. --------- CPU info (if available) ----------
The factor table of 188...883 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM, Msieve
(17·10179-71)/9 = 1(8)1781<180> = 7 · 11 · 103 · 239 · 9930637 · 14023579 · 1231364489<10> · 684907717263391040869653253<27> · C123
C123 = P40 · P42 · P43
P40 = 1187282062146192125179089986736275870419<40>
P42 = 375284494633543979200133045260994522261009<42>
P43 = 1904194805934835770754653293450160027271669<43>
Thu May 01 01:02:37 2008 Thu May 01 01:02:37 2008 Thu May 01 01:02:37 2008 Msieve v. 1.34 Thu May 01 01:02:37 2008 random seeds: 9e84d5d0 7d88e2a1 Thu May 01 01:02:37 2008 factoring 714614785429074193724941033575218868394451441841244639514764707813514033355369054021 (84 digits) Thu May 01 01:02:37 2008 searching for 15-digit factors Thu May 01 01:02:38 2008 commencing quadratic sieve (84-digit input) Thu May 01 01:02:38 2008 using multiplier of 29 Thu May 01 01:02:38 2008 using 64kb Opteron sieve core Thu May 01 01:02:38 2008 sieve interval: 6 blocks of size 65536 Thu May 01 01:02:38 2008 processing polynomials in batches of 17 Thu May 01 01:02:38 2008 using a sieve bound of 1405787 (53824 primes) Thu May 01 01:02:38 2008 using large prime bound of 119491895 (26 bits) Thu May 01 01:02:38 2008 using double large prime bound of 346106003521495 (41-49 bits) Thu May 01 01:02:38 2008 using trial factoring cutoff of 49 bits Thu May 01 01:02:38 2008 polynomial 'A' values have 11 factors Thu May 01 01:25:48 2008 54118 relations (15886 full + 38232 combined from 576589 partial), need 53920 Thu May 01 01:25:48 2008 begin with 592474 relations Thu May 01 01:25:49 2008 reduce to 127260 relations in 11 passes Thu May 01 01:25:49 2008 attempting to read 127260 relations Thu May 01 01:25:50 2008 recovered 127260 relations Thu May 01 01:25:50 2008 recovered 105898 polynomials Thu May 01 01:25:50 2008 attempting to build 54118 cycles Thu May 01 01:25:50 2008 found 54117 cycles in 5 passes Thu May 01 01:25:50 2008 distribution of cycle lengths: Thu May 01 01:25:50 2008 length 1 : 15886 Thu May 01 01:25:50 2008 length 2 : 10845 Thu May 01 01:25:50 2008 length 3 : 9537 Thu May 01 01:25:50 2008 length 4 : 6918 Thu May 01 01:25:50 2008 length 5 : 4661 Thu May 01 01:25:50 2008 length 6 : 2830 Thu May 01 01:25:50 2008 length 7 : 1579 Thu May 01 01:25:50 2008 length 9+: 1861 Thu May 01 01:25:50 2008 largest cycle: 18 relations Thu May 01 01:25:50 2008 matrix is 53824 x 54117 (11.4 MB) with weight 2766188 (51.11/col) Thu May 01 01:25:50 2008 sparse part has weight 2766188 (51.11/col) Thu May 01 01:25:51 2008 filtering completed in 3 passes Thu May 01 01:25:51 2008 matrix is 49265 x 49329 (10.4 MB) with weight 2532773 (51.34/col) Thu May 01 01:25:51 2008 sparse part has weight 2532773 (51.34/col) Thu May 01 01:25:51 2008 saving the first 48 matrix rows for later Thu May 01 01:25:51 2008 matrix is 49217 x 49329 (5.6 MB) with weight 1835858 (37.22/col) Thu May 01 01:25:51 2008 sparse part has weight 1172093 (23.76/col) Thu May 01 01:25:51 2008 matrix includes 64 packed rows Thu May 01 01:25:51 2008 commencing Lanczos iteration Thu May 01 01:25:51 2008 memory use: 7.5 MB Thu May 01 01:26:37 2008 lanczos halted after 779 iterations (dim = 49213) Thu May 01 01:26:37 2008 recovered 16 nontrivial dependencies Thu May 01 01:26:38 2008 prp42 factor: 375284494633543979200133045260994522261009 Thu May 01 01:26:38 2008 prp43 factor: 1904194805934835770754653293450160027271669 Thu May 01 01:26:38 2008 elapsed time 00:24:01
(2·10173+61)/9 = (2)1729<173> = 24029 · 783927755987291861663<21> · 79938271189022562029053<23> · C125
C125 = P39 · P87
P39 = 121842971281799818523533840048423370159<39>
P87 = 121121297489504812466235866743869623924667673289246788407622284113444086914024115748701<87>
(71·10190-17)/9 = 7(8)1897<191> = 15073 · 19403 · 89882231 · 27578264513<11> · 1005770645897839<16> · 11369559029669171813<20> · C130
C130 = P38 · P93
P38 = 54199323118774369622038618504219850957<38>
P93 = 175577976731131661812043593232506970976847183659624924342240801835328186189054850754452122509<93>
By Jo Yeong Uk / GGNFS
(16·10158+11)/9 = 1(7)1579<159> = 23 · 71483 · 882289667416631<15> · 1223089082743541046463<22> · C117
C117 = P34 · P41 · P43
P34 = 2134129586476034361751373376668327<34>
P41 = 28096861999607415883106912277348090679271<41>
P43 = 1671086683923658132629175023545298008290231<43>
Number: 17779_158 N=100202275398200758288755959759199695048283608989076012457803031165111105417145614149076922956946071387503593890491527 ( 117 digits) SNFS difficulty: 160 digits. Divisors found: r1=2134129586476034361751373376668327 (pp34) r2=28096861999607415883106912277348090679271 (pp41) r3=1671086683923658132629175023545298008290231 (pp43) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.59 hours. Scaled time: 53.61 units (timescale=2.373). Factorization parameters were as follows: n: 100202275398200758288755959759199695048283608989076012457803031165111105417145614149076922956946071387503593890491527 m: 100000000000000000000000000000000 c5: 4 c0: 275 skew: 2.33 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282328, largePrimes:5697960 encountered Relations: rels:5807108, finalFF:723224 Max relations in full relation-set: 28 Initial matrix: 565538 x 723224 with sparse part having weight 44336124. Pruned matrix : 436240 x 439131 with weight 27143298. Total sieving time: 21.63 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.85 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 22.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047208k/8912896k available (2434k kernel code, 339080k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 5347.58 BogoMIPS (lpj=2673792) Calibrating delay using timer specific routine.. 5344.68 BogoMIPS (lpj=2672342) Calibrating delay using timer specific routine.. 5344.03 BogoMIPS (lpj=2672015) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672346)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(28·10184+17)/9 = 3(1)1833<185> = 33 · C184
C184 = P42 · P60 · P82
P42 = 397173737675450362503394621695281766949091<42>
P60 = 382277231274590218916165085392883779524628449879451093458519<60>
P82 = 7589144149261590771957712617331762006980147309781393383050491171157371995675701711<82>
Number: n N=1152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707819 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: Wed Apr 30 04:16:48 2008 prp42 factor: 397173737675450362503394621695281766949091 Wed Apr 30 04:16:48 2008 prp60 factor: 382277231274590218916165085392883779524628449879451093458519 Wed Apr 30 04:16:48 2008 prp82 factor: 7589144149261590771957712617331762006980147309781393383050491171157371995675701711 Wed Apr 30 04:16:48 2008 elapsed time 04:15:04 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 83.28 hours. Scaled time: 108.02 units (timescale=1.297). Factorization parameters were as follows: name: KA_3_1_183_3 n: 1152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707818930041152263374485596707819 skew: 1.43 deg: 5 c5: 14 c0: 85 m: 10000000000000000000000000000000000000 type: snfs rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 6100319) Primes: RFBsize:476648, AFBsize:477009, largePrimes:9217175 encountered Relations: rels:8915077, finalFF:1033124 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 82.91 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,48,48,2.5,2.5,100000 total time: 83.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10197-1 = 5(9)197<198> = 1887671 · 21510659 · 29874643 · 51335819857675817<17> · 193601769040977856894563633949553<33> · C128
C128 = P40 · P89
P40 = 1977341005678468116703941828020617788403<40>
P89 = 25168487085362731602320955256733472748105735580583285164870970125177601063461429215617779<89>
(55·10181-1)/9 = 6(1)181<182> = 61 · 67 · 577 · 877 · 111781 · 143711 · 1586030472739<13> · 20195363842211281211<20> · C131
C131 = P38 · P94
P38 = 40766640584137816710957234478076320681<38>
P94 = 1408685357301870566274220078616240034649709444750645317100034544822179685039407926776633883623<94>
(16·10162+11)/9 = 1(7)1619<163> = 3 · 53 · 7253 · 70321 · C152
C152 = P40 · P56 · P57
P40 = 8738921168068223070819335162356745813567<40>
P56 = 13556939193433310268348957012659665344973696429079407199<56>
P57 = 185036823188116760892677166163881313320229342307235722089<57>
Number: n N=2508532960507369683116226125792753818248735064626633650889410151638428241599905078493703429185525506304829918711 ( 112 digits) Divisors found: Wed Apr 30 16:29:28 2008 prp56 factor: 13556939193433310268348957012659665344973696429079407199 Wed Apr 30 16:29:28 2008 prp57 factor: 185036823188116760892677166163881313320229342307235722089 Wed Apr 30 16:29:28 2008 elapsed time 00:49:00 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 20.01 hours. Scaled time: 16.71 units (timescale=0.835). Factorization parameters were as follows: name: KA_1_7_161_9 n: 2508532960507369683116226125792753818248735064626633650889410151638428241599905078493703429185525506304829918711 skew: 43366.64 # norm 5.45e+15 c5: 43920 c4: -4846848468 c3: -236249798478376 c2: 8406881964709630013 c1: 187479335648406438045156 c0: -3098499176790197889764617485 # alpha -6.91 Y1: 499363817177 Y0: -2245709765640471211154 # Murphy_E 8.54e-10 # M 1428327081851271319039963154859251667243927909391619659471900613331547899535708849353768931258657004078679706063 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1199990) Primes: RFBsize:250150, AFBsize:249777, largePrimes:6866749 encountered Relations: rels:6624270, finalFF:602658 Max relations in full relation-set: 28 Initial matrix: 500007 x 602658 with sparse part having weight 37395817. Pruned matrix : Total sieving time: 19.82 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 20.01 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Wataru Sakai / GGNFS
(10173+17)/9 = (1)1723<173> = 31 · 53 · 10668971 · C162
C162 = P48 · P115
P48 = 614269433286889380330990067993202633882411638463<48>
P115 = 1031902079348278117543760295595941783929099708583219958186262256627756188911338017448835857763642355585371803328367<115>
Number: 11113_173 N=633865905488829556896400642079141824365163309702470659600118424221394547036781255642529888084966541508328054517246866001820594204902217663114060440336321276179921 ( 162 digits) SNFS difficulty: 173 digits. Divisors found: r1=614269433286889380330990067993202633882411638463 (pp48) r2=1031902079348278117543760295595941783929099708583219958186262256627756188911338017448835857763642355585371803328367 (pp115) Version: GGNFS-0.77.1-20060722-nocona Total time: 188.18 hours. Scaled time: 379.19 units (timescale=2.015). Factorization parameters were as follows: n: 633865905488829556896400642079141824365163309702470659600118424221394547036781255642529888084966541508328054517246866001820594204902217663114060440336321276179921 m: 10000000000000000000000000000000000 c5: 1000 c0: 17 skew: 0.44 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10100001) Primes: RFBsize:501962, AFBsize:502426, largePrimes:6671675 encountered Relations: rels:7329088, finalFF:1319979 Max relations in full relation-set: 32 Initial matrix: 1004454 x 1319979 with sparse part having weight 79827464. Pruned matrix : 724483 x 729569 with weight 58377937. Total sieving time: 184.22 hours. Total relation processing time: 0.11 hours. Matrix solve time: 3.67 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 188.18 hours. --------- CPU info (if available) ----------
By Justin Card / GGNFS
(16·10108+11)/9 = 1(7)1079<109> = 3 · 65998337 · 365057178973<12> · C89
C89 = P39 · P50
P39 = 263637240968512413080732461825073633921<39>
P50 = 93294399702451015285120102344332879893080173318533<50>
Number: 17779_108 N=24595878135367791087706078241140290995475829227525763189262553146307598541431528166757893 ( 89 digits) SNFS difficulty: 109 digits. Divisors found: r1=263637240968512413080732461825073633921 (pp39) r2=93294399702451015285120102344332879893080173318533 (pp50) Version: GGNFS-0.77.1-20060722-k8 Total time: 1.32 hours. Scaled time: 2.66 units (timescale=2.016). Factorization parameters were as follows: n: 24595878135367791087706078241140290995475829227525763189262553146307598541431528166757893 m: 2000000000000000000000 c5: 500 c0: 11 skew: 0.47 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63914, largePrimes:2364436 encountered Relations: rels:2857998, finalFF:623070 Max relations in full relation-set: 32 Initial matrix: 113078 x 623070 with sparse part having weight 46023530. Pruned matrix : 55805 x 56434 with weight 4401643. Total sieving time: 1.22 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.32 hours. --------- CPU info (if available) ---------- Memory: 2783488k/2936036k available (1999k kernel code, 143628k reserved, 892k data, 148k init) Calibrating delay using timer specific routine.. 4975.48 BogoMIPS (lpj=9950968)
By matsui / GGNFS
2·10186-3 = 1(9)1857<187> = 19 · C186
C186 = P48 · P138
P48 = 536702269647034089326974744111747439562722018687<48>
P138 = 196129518818625224605331844109132005572907239230106882174824783188659356706656419547350123734666037979415918599396117880712943463613520849<138>
N=105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263 ( 186 digits) SNFS difficulty: 186 digits. Divisors found: r1=536702269647034089326974744111747439562722018687 (pp48) r2=196129518818625224605331844109132005572907239230106882174824783188659356706656419547350123734666037979415918599396117880712943463613520849 (pp138) Version: GGNFS-0.77.1-20060513-prescott Total time: 867.04 hours. Scaled time: 1474.84 units (timescale=1.701). Factorization parameters were as follows: n: 105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263157894736842105263 m: 10000000000000000000000000000000000000 c5: 20 c0: -3 skew: 0.68 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 15800001) Primes: RFBsize:501962, AFBsize:502546, largePrimes:6966429 encountered Relations: rels:7485469, finalFF:1145980 Max relations in full relation-set: 28 Initial matrix: 1004574 x 1145980 with sparse part having weight 110867418. Pruned matrix : 897006 x 902092 with weight 92492864. Total sieving time: 843.59 hours. Total relation processing time: 0.23 hours. Matrix solve time: 22.90 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 867.04 hours.
By Jo Yeong Uk / GGNFS
(16·10154+11)/9 = 1(7)1539<155> = 67 · 44257 · 434857 · 118980623 · 5586083449<10> · 5904045757<10> · C115
C115 = P39 · P76
P39 = 424574177680638046809321367987093479461<39>
P76 = 8275367395159157100758043906017743682611898325580244458730518452024285252847<76>
Number: 17779_154 N=3513507306804862810538722776440328397675041984180199354540267312541637491202827793705688552751190010953335386275467 ( 115 digits) SNFS difficulty: 156 digits. Divisors found: r1=424574177680638046809321367987093479461 (pp39) r2=8275367395159157100758043906017743682611898325580244458730518452024285252847 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.84 hours. Scaled time: 40.37 units (timescale=2.143). Factorization parameters were as follows: n: 3513507306804862810538722776440328397675041984180199354540267312541637491202827793705688552751190010953335386275467 m: 20000000000000000000000000000000 c5: 1 c0: 220 skew: 2.94 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216842, largePrimes:5504362 encountered Relations: rels:5391098, finalFF:491424 Max relations in full relation-set: 28 Initial matrix: 433721 x 491424 with sparse part having weight 37285454. Pruned matrix : 399502 x 401734 with weight 26928509. Total sieving time: 17.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.74 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 18.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
(16·10157+11)/9 = 1(7)1569<158> = 17 · 78300281 · 419383201693<12> · 6455324213993<13> · C124
C124 = P46 · P79
P46 = 4914350290219746139126636107283086748016976763<46>
P79 = 1003852793048281716132218328272508392055966130363433679564450662607859607459021<79>
Number: 17779_157 N=4933284264854726011199914777590554288912649583309790986348928487950729049522496039958276785689365379111664392646812831729023 ( 124 digits) SNFS difficulty: 158 digits. Divisors found: r1=4914350290219746139126636107283086748016976763 (pp46) r2=1003852793048281716132218328272508392055966130363433679564450662607859607459021 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 26.38 hours. Scaled time: 56.41 units (timescale=2.138). Factorization parameters were as follows: n: 4933284264854726011199914777590554288912649583309790986348928487950729049522496039958276785689365379111664392646812831729023 m: 20000000000000000000000000000000 c5: 50 c0: 11 skew: 0.74 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283028, largePrimes:5726623 encountered Relations: rels:5800542, finalFF:692066 Max relations in full relation-set: 28 Initial matrix: 566239 x 692066 with sparse part having weight 44440711. Pruned matrix : 466921 x 469816 with weight 28684118. Total sieving time: 25.29 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.96 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 26.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
By Justin Card / GGNFS
(16·10165+11)/9 = 1(7)1649<166> = 3 · 139 · 155609 · 92488378321<11> · 1521710760532564759<19> · 281473921296763649761469<24> · C105
C105 = P41 · P65
P41 = 29020234627925602195812824299370283577151<41>
P65 = 23831333665399274683827843453947996114011483468521275295280977823<65>
Number: 17779_165 N=691590894466269197730146910797393517066082048486545304291390199393830336725204059012699605334945540522273 ( 105 digits) Divisors found: r1=29020234627925602195812824299370283577151 (pp41) r2=23831333665399274683827843453947996114011483468521275295280977823 (pp65) Version: GGNFS-0.77.1-20060722-k8 Total time: 16.44 hours. Scaled time: 33.17 units (timescale=2.018). Factorization parameters were as follows: name: 17779_165 n: 691590894466269197730146910797393517066082048486545304291390199393830336725204059012699605334945540522273 skew: 15009.73 # norm 3.47e+14 c5: 16800 c4: 1595716796 c3: -4454616847204 c2: -293960595689521449 c1: -1548469487062960190204 c0: 36690328126755034441600 # alpha -5.82 Y1: 97184239787 Y0: -132709482478364848917 # Murphy_E 1.77e-09 # M 278220095968292048864566809319835243296760349851295271958673057244600229804999456623869010072640694735745 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183403, largePrimes:4536354 encountered Relations: rels:4756460, finalFF:577861 Max relations in full relation-set: 32 Initial matrix: 366556 x 577861 with sparse part having weight 45965216. Pruned matrix : 226843 x 228739 with weight 22348975. Total sieving time: 15.10 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.14 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 16.44 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(16·10144+11)/9 = 1(7)1439<145> = 3 · 89 · 313 · 119918389149593<15> · 9474242254151046271<19> · C107
C107 = P39 · P69
P39 = 119839803340528054651439296435684615981<39>
P69 = 156239383006847491926868354100145305520439669088317032907096506743443<69>
Number: 17779_144 N=18723696933586044238822912804459035527501235116307888482182981914368803208101426662639442126351540344762583 ( 107 digits) SNFS difficulty: 146 digits. Divisors found: r1=119839803340528054651439296435684615981 (pp39) r2=156239383006847491926868354100145305520439669088317032907096506743443 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.90 hours. Scaled time: 19.00 units (timescale=2.135). Factorization parameters were as follows: n: 18723696933586044238822912804459035527501235116307888482182981914368803208101426662639442126351540344762583 m: 200000000000000000000000000000 c5: 1 c0: 220 skew: 2.94 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135239, largePrimes:3797650 encountered Relations: rels:3966868, finalFF:457655 Max relations in full relation-set: 28 Initial matrix: 270375 x 457655 with sparse part having weight 41124222. Pruned matrix : 204905 x 206320 with weight 17448813. Total sieving time: 8.66 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 8.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
(16·10145+11)/9 = 1(7)1449<146> = 192 · 30519143 · C136
C136 = P33 · P48 · P56
P33 = 219688159837927926313717321649179<33>
P48 = 181683550514854037041455877867851313467232812473<48>
P56 = 40427387536757891148686148058262026542402816481494289519<56>
Number: 17779_145 N=1613607623978796108975503488209942683714546869329096238203971838817228567752709581275427586264502413452233709831637068300797031823380173 ( 136 digits) SNFS difficulty: 146 digits. Divisors found: r1=219688159837927926313717321649179 (pp33) r2=181683550514854037041455877867851313467232812473 (pp48) r3=40427387536757891148686148058262026542402816481494289519 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.81 hours. Scaled time: 16.64 units (timescale=2.130). Factorization parameters were as follows: n: 1613607623978796108975503488209942683714546869329096238203971838817228567752709581275427586264502413452233709831637068300797031823380173 m: 200000000000000000000000000000 c5: 1 c0: 22 skew: 1.86 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1425001) Primes: RFBsize:135072, AFBsize:134864, largePrimes:3695013 encountered Relations: rels:3765759, finalFF:378118 Max relations in full relation-set: 28 Initial matrix: 270000 x 378118 with sparse part having weight 32616641. Pruned matrix : 226218 x 227632 with weight 16299176. Total sieving time: 7.54 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.20 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 7.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
(16·10163+11)/9 = 1(7)1629<164> = 19 · 31 · 659 · 128339 · 42696731346006600727<20> · 33367508415177134907584971<26> · C108
C108 = P32 · P76
P32 = 59088108152824243798798734618151<32>
P76 = 4239353385152396199790986646873480940040953204280123465501575552424783987733<76>
By Sinkiti Sibata / Msieve
(16·10103+11)/9 = 1(7)1029<104> = 31 · 457 · 24203 · C95
C95 = P30 · P66
P30 = 331329502808201944657710910493<30>
P66 = 156484119198691203682352050843360865193448277522438180479674417403<66>
Sun Apr 27 17:53:55 2008 Msieve v. 1.33 Sun Apr 27 17:53:55 2008 random seeds: cc72b41b e55fc60c Sun Apr 27 17:53:55 2008 factoring 51847805411481765012285536782252654602695323913086773291749786111357201858764951982326454509679 (95 digits) Sun Apr 27 17:53:56 2008 searching for 15-digit factors Sun Apr 27 17:53:58 2008 commencing quadratic sieve (95-digit input) Sun Apr 27 17:53:59 2008 using multiplier of 1 Sun Apr 27 17:53:59 2008 using 64kb Pentium 4 sieve core Sun Apr 27 17:53:59 2008 sieve interval: 18 blocks of size 65536 Sun Apr 27 17:53:59 2008 processing polynomials in batches of 6 Sun Apr 27 17:53:59 2008 using a sieve bound of 2160127 (80000 primes) Sun Apr 27 17:53:59 2008 using large prime bound of 324019050 (28 bits) Sun Apr 27 17:53:59 2008 using double large prime bound of 2084620300746750 (43-51 bits) Sun Apr 27 17:53:59 2008 using trial factoring cutoff of 51 bits Sun Apr 27 17:53:59 2008 polynomial 'A' values have 12 factors Sun Apr 27 23:42:43 2008 80276 relations (20458 full + 59818 combined from 1185745 partial), need 80096 Sun Apr 27 23:42:47 2008 begin with 1206203 relations Sun Apr 27 23:42:49 2008 reduce to 206482 relations in 12 passes Sun Apr 27 23:42:49 2008 attempting to read 206482 relations Sun Apr 27 23:42:55 2008 recovered 206482 relations Sun Apr 27 23:42:55 2008 recovered 188456 polynomials Sun Apr 27 23:42:56 2008 attempting to build 80276 cycles Sun Apr 27 23:42:56 2008 found 80276 cycles in 7 passes Sun Apr 27 23:42:56 2008 distribution of cycle lengths: Sun Apr 27 23:42:56 2008 length 1 : 20458 Sun Apr 27 23:42:56 2008 length 2 : 14410 Sun Apr 27 23:42:56 2008 length 3 : 13520 Sun Apr 27 23:42:56 2008 length 4 : 10770 Sun Apr 27 23:42:56 2008 length 5 : 7925 Sun Apr 27 23:42:56 2008 length 6 : 5271 Sun Apr 27 23:42:56 2008 length 7 : 3408 Sun Apr 27 23:42:56 2008 length 9+: 4514 Sun Apr 27 23:42:56 2008 largest cycle: 24 relations Sun Apr 27 23:42:56 2008 matrix is 80000 x 80276 (21.4 MB) with weight 5291532 (65.92/col) Sun Apr 27 23:42:56 2008 sparse part has weight 5291532 (65.92/col) Sun Apr 27 23:42:58 2008 filtering completed in 3 passes Sun Apr 27 23:42:58 2008 matrix is 75601 x 75665 (20.3 MB) with weight 5013453 (66.26/col) Sun Apr 27 23:42:58 2008 sparse part has weight 5013453 (66.26/col) Sun Apr 27 23:42:58 2008 saving the first 48 matrix rows for later Sun Apr 27 23:42:59 2008 matrix is 75553 x 75665 (13.5 MB) with weight 4044903 (53.46/col) Sun Apr 27 23:42:59 2008 sparse part has weight 3073075 (40.61/col) Sun Apr 27 23:42:59 2008 matrix includes 64 packed rows Sun Apr 27 23:42:59 2008 using block size 21845 for processor cache size 512 kB Sun Apr 27 23:43:00 2008 commencing Lanczos iteration Sun Apr 27 23:43:00 2008 memory use: 12.5 MB Sun Apr 27 23:43:59 2008 lanczos halted after 1196 iterations (dim = 75553) Sun Apr 27 23:43:59 2008 recovered 18 nontrivial dependencies Sun Apr 27 23:44:00 2008 prp30 factor: 331329502808201944657710910493 Sun Apr 27 23:44:00 2008 prp66 factor: 156484119198691203682352050843360865193448277522438180479674417403 Sun Apr 27 23:44:00 2008 elapsed time 05:50:05
(16·10111+11)/9 = 1(7)1109<112> = 3 · 3067 · 16644371 · C101
C101 = P30 · P71
P30 = 311891772685877294689988053111<30>
P71 = 37219551555730460553756515602487763210155431764457159024923543299294359<71>
Mon Apr 28 01:26:31 2008 Msieve v. 1.33 Mon Apr 28 01:26:31 2008 random seeds: 780f0fe4 d2f66e36 Mon Apr 28 01:26:31 2008 factoring 11608471913290175427106165301392768225200713865227417729953035601937285096499113827092370346514700849 (101 digits) Mon Apr 28 01:26:33 2008 searching for 15-digit factors Mon Apr 28 01:26:35 2008 commencing quadratic sieve (101-digit input) Mon Apr 28 01:26:35 2008 using multiplier of 1 Mon Apr 28 01:26:35 2008 using 64kb Pentium 4 sieve core Mon Apr 28 01:26:35 2008 sieve interval: 18 blocks of size 65536 Mon Apr 28 01:26:35 2008 processing polynomials in batches of 6 Mon Apr 28 01:26:35 2008 using a sieve bound of 2825047 (102495 primes) Mon Apr 28 01:26:35 2008 using large prime bound of 423757050 (28 bits) Mon Apr 28 01:26:35 2008 using double large prime bound of 3379173047684850 (43-52 bits) Mon Apr 28 01:26:35 2008 using trial factoring cutoff of 52 bits Mon Apr 28 01:26:35 2008 polynomial 'A' values have 13 factors Mon Apr 28 19:30:31 2008 102795 relations (24275 full + 78520 combined from 1544216 partial), need 102591 Mon Apr 28 19:30:38 2008 begin with 1568491 relations Mon Apr 28 19:30:40 2008 reduce to 271830 relations in 12 passes Mon Apr 28 19:30:40 2008 attempting to read 271830 relations Mon Apr 28 19:30:50 2008 recovered 271830 relations Mon Apr 28 19:30:50 2008 recovered 261688 polynomials Mon Apr 28 19:30:50 2008 attempting to build 102795 cycles Mon Apr 28 19:30:51 2008 found 102795 cycles in 6 passes Mon Apr 28 19:30:51 2008 distribution of cycle lengths: Mon Apr 28 19:30:51 2008 length 1 : 24275 Mon Apr 28 19:30:51 2008 length 2 : 17638 Mon Apr 28 19:30:51 2008 length 3 : 16976 Mon Apr 28 19:30:51 2008 length 4 : 14225 Mon Apr 28 19:30:51 2008 length 5 : 10704 Mon Apr 28 19:30:51 2008 length 6 : 7374 Mon Apr 28 19:30:51 2008 length 7 : 4841 Mon Apr 28 19:30:51 2008 length 9+: 6762 Mon Apr 28 19:30:51 2008 largest cycle: 19 relations Mon Apr 28 19:30:51 2008 matrix is 102495 x 102795 (27.4 MB) with weight 6780827 (65.96/col) Mon Apr 28 19:30:51 2008 sparse part has weight 6780827 (65.96/col) Mon Apr 28 19:30:53 2008 filtering completed in 3 passes Mon Apr 28 19:30:53 2008 matrix is 98309 x 98373 (26.4 MB) with weight 6514221 (66.22/col) Mon Apr 28 19:30:53 2008 sparse part has weight 6514221 (66.22/col) Mon Apr 28 19:30:54 2008 saving the first 48 matrix rows for later Mon Apr 28 19:30:54 2008 matrix is 98261 x 98373 (15.4 MB) with weight 4981754 (50.64/col) Mon Apr 28 19:30:54 2008 sparse part has weight 3455551 (35.13/col) Mon Apr 28 19:30:54 2008 matrix includes 64 packed rows Mon Apr 28 19:30:54 2008 using block size 21845 for processor cache size 512 kB Mon Apr 28 19:30:55 2008 commencing Lanczos iteration Mon Apr 28 19:30:55 2008 memory use: 15.7 MB Mon Apr 28 19:32:32 2008 lanczos halted after 1556 iterations (dim = 98261) Mon Apr 28 19:32:33 2008 recovered 17 nontrivial dependencies Mon Apr 28 19:32:34 2008 prp30 factor: 311891772685877294689988053111 Mon Apr 28 19:32:34 2008 prp71 factor: 37219551555730460553756515602487763210155431764457159024923543299294359 Mon Apr 28 19:32:34 2008 elapsed time 18:06:03
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(16·10130+11)/9 = 1(7)1299<131> = C131
C131 = P51 · P80
P51 = 740649800611949626773509486419719295510999559861201<51>
P80 = 24002946821951728642362452236161911211145684438969667380651086125420098239262979<80>
Number: n N=17777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 131 digits) SNFS difficulty: 131 digits. Divisors found: Mon Apr 28 01:29:04 2008 prp51 factor: 740649800611949626773509486419719295510999559861201 Mon Apr 28 01:29:04 2008 prp80 factor: 24002946821951728642362452236161911211145684438969667380651086125420098239262979 Mon Apr 28 01:29:04 2008 elapsed time 00:03:59 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.04 hours. Scaled time: 1.70 units (timescale=0.835). Factorization parameters were as follows: name: KA_1_7_129_9 n: 17777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 type: snfs deg: 5 c5: 1 c0: 22 skew: 1.86 m: 200000000000000000000000000 rlim: 1000000 alim: 1000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved special-q in [100000, 439990) Primes: RFBsize:78498, AFBsize:78572, largePrimes:1538766 encountered Relations: rels:1564015, finalFF:194448 Max relations in full relation-set: 28 Initial matrix: 157134 x 194448 with sparse part having weight 10069071. Pruned matrix : Total sieving time: 1.99 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.5,2.5,50000 total time: 2.04 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(16·10135+11)/9 = 1(7)1349<136> = 3 · 31543 · C131
C131 = P42 · P90
P42 = 116913662942380963981152305353982462461229<42>
P90 = 160689668656667462774664759034224831860341321263111183165054495696018746338066716792796019<90>
Number: n N=18786817759648498639716976590450895367992663747664857261281190520641428925358798864806536873239469695101689522004647389043293047351 ( 131 digits) SNFS difficulty: 136 digits. Divisors found: Mon Apr 28 03:16:59 2008 prp42 factor: 116913662942380963981152305353982462461229 Mon Apr 28 03:16:59 2008 prp90 factor: 160689668656667462774664759034224831860341321263111183165054495696018746338066716792796019 Mon Apr 28 03:16:59 2008 elapsed time 00:05:27 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 3.72 hours. Scaled time: 3.10 units (timescale=0.833). Factorization parameters were as follows: name: KA_1_7_134_9 n: 18786817759648498639716976590450895367992663747664857261281190520641428925358798864806536873239469695101689522004647389043293047351 type: snfs deg: 5 c5: 1 c0: 22 skew: 1.86 m: 2000000000000000000000000000 rlim: 1200000 alim: 1200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved special-q in [100000, 760000) Primes: RFBsize:92938, AFBsize:93010, largePrimes:1459042 encountered Relations: rels:1486909, finalFF:209935 Max relations in full relation-set: 28 Initial matrix: 186012 x 209935 with sparse part having weight 8026945. Pruned matrix : 165211 x 166205 with weight 5314324. Total sieving time: 3.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1200000,1200000,25,25,43,43,2.5,2.5,75000 total time: 3.72 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(16·10137+11)/9 = 1(7)1369<138> = 7 · 28319 · 94698649 · C124
C124 = P44 · P81
P44 = 25057095028301441065470887673091378935372641<44>
P81 = 377943618185876629077139501895581334015847645792582347898293700223261113504154307<81>
Number: n N=9470169156223587389224065451365074531135004558489529786850901405282576799155265960697494003782555977979977594246624610114787 ( 124 digits) SNFS difficulty: 138 digits. Divisors found: r1=25057095028301441065470887673091378935372641 (pp44) r2=377943618185876629077139501895581334015847645792582347898293700223261113504154307 (pp81) Version: GGNFS-0.77.1-20051202-k8 Total time: 6.04 hours. Scaled time: 5.06 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_7_136_9 n: 9470169156223587389224065451365074531135004558489529786850901405282576799155265960697494003782555977979977594246624610114787 type: snfs deg: 5 c5: 50 c0: 11 skew: 0.74 m: 2000000000000000000000000000 rlim: 1000000 alim: 1000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [100000, 1240001) Primes: RFBsize:78498, AFBsize:78657, largePrimes:1532234 encountered Relations: rels:1527221, finalFF:178475 Max relations in full relation-set: 28 Initial matrix: 157220 x 178475 with sparse part having weight 11121586. Pruned matrix : 150304 x 151154 with weight 7874976. Total sieving time: 5.86 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,43,43,2.5,2.5,75000 total time: 6.04 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(16·10142+11)/9 = 1(7)1419<143> = 326017631 · C134
C134 = P38 · P46 · P51
P38 = 27671075944796408029522595003337759929<38>
P46 = 6590894924445613177053144476952932493083835323<46>
P51 = 298996394724726338639789823356192339064617460410927<51>
Number: n N=54530111525710024491828105387888600962742956002210131321940002004915426729721184244105429309673677672290606202760174580183296214976109 ( 134 digits) SNFS difficulty: 143 digits. Divisors found: Mon Apr 28 17:53:49 2008 prp38 factor: 27671075944796408029522595003337759929 Mon Apr 28 17:53:49 2008 prp46 factor: 6590894924445613177053144476952932493083835323 Mon Apr 28 17:53:49 2008 prp51 factor: 298996394724726338639789823356192339064617460410927 Mon Apr 28 17:53:49 2008 elapsed time 00:12:27 Version: GGNFS-0.77.1-20050930-k8 Total time: 7.73 hours. Scaled time: 6.48 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_7_141_9 n: 54530111525710024491828105387888600962742956002210131321940002004915426729721184244105429309673677672290606202760174580183296214976109 type: snfs deg: 5 c5: 50 c0: 11 skew: 0.74 m: 20000000000000000000000000000 rlim: 1000000 alim: 1000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved special-q in [100000, 1600897) Primes: RFBsize:78498, AFBsize:78657, largePrimes:2604383 encountered Relations: rels:2484203, finalFF:121506 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 7.63 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,45,45,2.5,2.5,100000 total time: 7.73 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(16·10168+11)/9 = 1(7)1679<169> = 32 · 71 · C166
C166 = P34 · P133
P34 = 1920233553146556380827007015720641<34>
P133 = 1448847117213251607625355567575003378529401722538088872843295916219662258839658830543803065160753377230243618938669969296230845983821<133>
By Jo Yeong Uk / GGNFS, GMP-ECM
(16·10136+11)/9 = 1(7)1359<137> = 23 · 53 · 441405097643<12> · 808610497337<12> · 2616087389059<13> · C98
C98 = P30 · P68
P30 = 878422995771064242156524199679<30>
P68 = 17780382705310184963084137750438109941582309771712168927829813727591<68>
Number: 17779_136 N=15618697041954592395199300036107685358583358819631114262492224881317156816884962005048828995643289 ( 98 digits) Divisors found: r1=878422995771064242156524199679 (pp30) r2=17780382705310184963084137750438109941582309771712168927829813727591 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.55 hours. Scaled time: 5.43 units (timescale=2.131). Factorization parameters were as follows: name: 17779_136 n: 15618697041954592395199300036107685358583358819631114262492224881317156816884962005048828995643289 skew: 2515.38 # norm 1.60e+13 c5: 227880 c4: -100766386 c3: -2631617626383 c2: 3483269386581489 c1: 8847300392404231453 c0: -10566367372676025532153 # alpha -5.45 Y1: 27021702347 Y0: -2329100152203075420 # Murphy_E 4.63e-09 # M 5611294509854701452427197899181609930823487150004322445320319899280321733814839177639706302297392 type: gnfs rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [650000, 1000001) Primes: RFBsize:100021, AFBsize:100521, largePrimes:3729833 encountered Relations: rels:3572357, finalFF:257700 Max relations in full relation-set: 28 Initial matrix: 200626 x 257700 with sparse part having weight 19363794. Pruned matrix : 163294 x 164361 with weight 9665215. Polynomial selection time: 0.20 hours. Total sieving time: 2.17 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,26,26,48,48,2.5,2.5,50000 total time: 2.55 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
(16·10169+11)/9 = 1(7)1689<170> = C170
C170 = P43 · P127
P43 = 2775860259573482934248483330570378457853049<43>
P127 = 6404421013797493046865420439571729954912032159024481277804152948807882071405358296499945494751597025942489791947474746224573771<127>
(16·10141+11)/9 = 1(7)1409<142> = 32 · 17 · 4799 · 4244407045105529<16> · C120
C120 = P37 · P83
P37 = 6522369570081283852203348349906721407<37>
P83 = 87460682613272569632304161894821897127960481192555515075521999576953130373280138819<83>
Number: 17779_141 N=570450894855346227484587960803916244029526110944038813634612710061479771528045222860658881615959667876449462506118998333 ( 120 digits) SNFS difficulty: 142 digits. Divisors found: r1=6522369570081283852203348349906721407 (pp37) r2=87460682613272569632304161894821897127960481192555515075521999576953130373280138819 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.91 hours. Scaled time: 12.68 units (timescale=2.144). Factorization parameters were as follows: n: 570450894855346227484587960803916244029526110944038813634612710061479771528045222860658881615959667876449462506118998333 m: 20000000000000000000000000000 c5: 5 c0: 11 skew: 1.17 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114558, largePrimes:3326212 encountered Relations: rels:3407379, finalFF:377949 Max relations in full relation-set: 28 Initial matrix: 228778 x 377949 with sparse part having weight 32131042. Pruned matrix : 176386 x 177593 with weight 12842783. Total sieving time: 5.74 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.91 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167428k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4957.34 BogoMIPS (lpj=2478671) Total of 4 processors activated (19393.17 BogoMIPS).
By Sinkiti Sibata / Msieve, GGNFS
(16·10122+11)/9 = 1(7)1219<123> = 2957 · 484877128152342319<18> · 8773066214071332211<19> · C83
C83 = P29 · P54
P29 = 64143200499177888756970894601<29>
P54 = 220339529129826668084568653822613720420620993023058483<54>
Sun Apr 27 06:13:50 2008 Msieve v. 1.33 Sun Apr 27 06:13:50 2008 random seeds: 34d55870 5576daea Sun Apr 27 06:13:50 2008 factoring 14133282594868918897014068537774654409902449086370890143333043941049463297651950283 (83 digits) Sun Apr 27 06:13:52 2008 searching for 15-digit factors Sun Apr 27 06:13:53 2008 commencing quadratic sieve (83-digit input) Sun Apr 27 06:13:53 2008 using multiplier of 1 Sun Apr 27 06:13:53 2008 using 64kb Pentium 4 sieve core Sun Apr 27 06:13:53 2008 sieve interval: 6 blocks of size 65536 Sun Apr 27 06:13:53 2008 processing polynomials in batches of 17 Sun Apr 27 06:13:53 2008 using a sieve bound of 1359077 (52059 primes) Sun Apr 27 06:13:53 2008 using large prime bound of 125035084 (26 bits) Sun Apr 27 06:13:53 2008 using trial factoring cutoff of 27 bits Sun Apr 27 06:13:53 2008 polynomial 'A' values have 10 factors Sun Apr 27 06:51:31 2008 52222 relations (26417 full + 25805 combined from 282787 partial), need 52155 Sun Apr 27 06:51:32 2008 begin with 309204 relations Sun Apr 27 06:51:32 2008 reduce to 74824 relations in 2 passes Sun Apr 27 06:51:32 2008 attempting to read 74824 relations Sun Apr 27 06:51:34 2008 recovered 74824 relations Sun Apr 27 06:51:34 2008 recovered 67842 polynomials Sun Apr 27 06:51:34 2008 attempting to build 52222 cycles Sun Apr 27 06:51:34 2008 found 52222 cycles in 1 passes Sun Apr 27 06:51:34 2008 distribution of cycle lengths: Sun Apr 27 06:51:34 2008 length 1 : 26417 Sun Apr 27 06:51:34 2008 length 2 : 25805 Sun Apr 27 06:51:34 2008 largest cycle: 2 relations Sun Apr 27 06:51:34 2008 matrix is 52059 x 52222 (7.0 MB) with weight 1615986 (30.94/col) Sun Apr 27 06:51:34 2008 sparse part has weight 1615986 (30.94/col) Sun Apr 27 06:51:35 2008 filtering completed in 4 passes Sun Apr 27 06:51:35 2008 matrix is 45234 x 45298 (5.9 MB) with weight 1376746 (30.39/col) Sun Apr 27 06:51:35 2008 sparse part has weight 1376746 (30.39/col) Sun Apr 27 06:51:35 2008 saving the first 48 matrix rows for later Sun Apr 27 06:51:35 2008 matrix is 45186 x 45298 (4.6 MB) with weight 1113733 (24.59/col) Sun Apr 27 06:51:35 2008 sparse part has weight 928738 (20.50/col) Sun Apr 27 06:51:35 2008 matrix includes 64 packed rows Sun Apr 27 06:51:35 2008 commencing Lanczos iteration Sun Apr 27 06:51:35 2008 memory use: 6.3 MB Sun Apr 27 06:52:36 2008 lanczos halted after 716 iterations (dim = 45172) Sun Apr 27 06:52:36 2008 recovered 10 nontrivial dependencies Sun Apr 27 06:52:37 2008 prp29 factor: 64143200499177888756970894601 Sun Apr 27 06:52:37 2008 prp54 factor: 220339529129826668084568653822613720420620993023058483 Sun Apr 27 06:52:37 2008 elapsed time 00:38:47
(16·10123+11)/9 = 1(7)1229<124> = 35 · 53 · C120
C120 = P46 · P74
P46 = 3127936728760055563783574813204076500296280377<46>
P74 = 44130349846097590297953030403378448580759948085469636863079649654491796613<74>
Number: 17779_123 N=138036942136639318097505845001768598321125691263124293639085160165989422919308780012250778614626739481153643743906963101 ( 120 digits) SNFS difficulty: 124 digits. Divisors found: r1=3127936728760055563783574813204076500296280377 (pp46) r2=44130349846097590297953030403378448580759948085469636863079649654491796613 (pp74) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.64 hours. Scaled time: 1.78 units (timescale=0.677). Factorization parameters were as follows: name: 17779_123 n: 138036942136639318097505845001768598321125691263124293639085160165989422919308780012250778614626739481153643743906963101 m: 2000000000000000000000000 c5: 500 c0: 11 skew: 0.47 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63914, largePrimes:2151100 encountered Relations: rels:2241438, finalFF:227478 Max relations in full relation-set: 28 Initial matrix: 113078 x 227478 with sparse part having weight 20178265. Pruned matrix : 88548 x 89177 with weight 5335089. Total sieving time: 2.40 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.64 hours. --------- CPU info (if available) ----------
(16·10124+11)/9 = 1(7)1239<125> = 12300377951<11> · 595919247296270033<18> · C97
C97 = P32 · P65
P32 = 51816470851532967590612913006763<32>
P65 = 46806242024873304391156980530608793867173799266257699394339756951<65>
Number: 17779_124 N=2425334275551645003990077583460898220356269581536513355431225872560438064950944002546028039259613 ( 97 digits) SNFS difficulty: 125 digits. Divisors found: r1=51816470851532967590612913006763 (pp32) r2=46806242024873304391156980530608793867173799266257699394339756951 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.05 hours. Scaled time: 2.07 units (timescale=0.677). Factorization parameters were as follows: name: 17779_124 n: 2425334275551645003990077583460898220356269581536513355431225872560438064950944002546028039259613 m: 10000000000000000000000000 c5: 8 c0: 55 skew: 1.47 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64019, largePrimes:2066221 encountered Relations: rels:2056554, finalFF:139191 Max relations in full relation-set: 28 Initial matrix: 113182 x 139191 with sparse part having weight 12160681. Pruned matrix : 105923 x 106552 with weight 7525402. Total sieving time: 2.72 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS
(16·10128+11)/9 = 1(7)1279<129> = C129
C129 = P29 · P100
P29 = 32710453956769251258301493239<29>
P100 = 5434891793697886900299526331565538939027676011247994752035924882091324105223592214028104168618741861<100>
(16·10140+11)/9 = 1(7)1399<141> = C141
C141 = P33 · P108
P33 = 325913857692204415401309983425939<33>
P108 = 545474743039838751488576360288698540556507517839459352048194572123867434191137681771453058583347982000134561<108>
(16·10115+11)/9 = 1(7)1149<116> = 4106117 · 31044253863947<14> · C96
C96 = P33 · P63
P33 = 376009549465429802217359002735787<33>
P63 = 370907873250938245237270331446578676378971815606577371756099183<63>
(16·10132+11)/9 = 1(7)1319<133> = 32 · 10258433 · 1163149133<10> · 4572945031709856547<19> · C97
C97 = P39 · P58
P39 = 393755777432321520680320952896244231087<39>
P58 = 9193811940508378094496295181426517692653384859674800617411<58>
(16·10117+11)/9 = 1(7)1169<118> = 3 · 54319 · C113
C113 = P45 · P68
P45 = 385663420156498117850474192254799661294286001<45>
P68 = 28287593603832924128934670018553127378252757220332340058030657206447<68>
Number: n N=10909490097251285785684430725760647150952568946272806800430652121588994506389892902899401546283852659154119048447 ( 113 digits) SNFS difficulty: 118 digits. Divisors found: r1=385663420156498117850474192254799661294286001 (pp45) r2=28287593603832924128934670018553127378252757220332340058030657206447 (pp68) Version: GGNFS-0.77.1-20051202-k8 Total time: 1.04 hours. Scaled time: 0.87 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_7_116_9 n: 10909490097251285785684430725760647150952568946272806800430652121588994506389892902899401546283852659154119048447 type: snfs deg: 5 c5: 50 c0: 11 skew: 0.74 m: 200000000000000000000000 rlim: 600000 alim: 600000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [100000, 220001) Primes: RFBsize:49098, AFBsize:49122, largePrimes:1775672 encountered Relations: rels:1748487, finalFF:152025 Max relations in full relation-set: 28 Initial matrix: 98285 x 152025 with sparse part having weight 11114209. Pruned matrix : 80390 x 80945 with weight 3947440. Total sieving time: 0.96 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.5,2.5,50000 total time: 1.04 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
The factor table of 177...779 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS
(85·10167+41)/9 = 9(4)1669<168> = 11 · 2179 · 466717 · C158
C158 = P75 · P84
P75 = 478777639625485469663091713680607336457292333499171590319017223759486984099<75>
P84 = 176335202682166386931839569414134269241546576483219882902726853160083292707756562887<84>
Number: n N=84425352123049197208177915165707899447036189177692463379021379908918745208076669939396868139201725618297748923996932993146192178295917212487074132321862533813 ( 158 digits) SNFS difficulty: 168 digits. Divisors found: Sat Apr 26 04:46:51 2008 prp75 factor: 478777639625485469663091713680607336457292333499171590319017223759486984099 Sat Apr 26 04:46:51 2008 prp84 factor: 176335202682166386931839569414134269241546576483219882902726853160083292707756562887 Sat Apr 26 04:46:51 2008 elapsed time 01:20:35 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 70.44 hours. Scaled time: 128.83 units (timescale=1.829). Factorization parameters were as follows: name: KA_9_4_166_9 n: 84425352123049197208177915165707899447036189177692463379021379908918745208076669939396868139201725618297748923996932993146192178295917212487074132321862533813 skew: 0.34 deg: 5 c5: 8500 c0: 41 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5000001) Primes: RFBsize:230209, AFBsize:229823, largePrimes:7938150 encountered Relations: rels:7368085, finalFF:505504 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 70.15 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 70.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10164-43)/9 = 1(7)1633<165> = 11063693333597774647989287<26> · C140
C140 = P53 · P87
P53 = 37825696522622096171083659643078327824572061489197777<53>
P87 = 424805772907959277493320907232824775148202682469380305573348520991402189391592516027227<87>
Number: n N=16068574247074387113577017620238159213093751526506479937667554421487231709771454916780284266738393304073675357872389785275140835203319874379 ( 140 digits) SNFS difficulty: 165 digits. Divisors found: Sat Apr 26 11:25:38 2008 prp53 factor: 37825696522622096171083659643078327824572061489197777 Sat Apr 26 11:25:38 2008 prp87 factor: 424805772907959277493320907232824775148202682469380305573348520991402189391592516027227 Sat Apr 26 11:25:38 2008 elapsed time 01:38:39 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 76.73 hours. Scaled time: 100.59 units (timescale=1.311). Factorization parameters were as follows: name: KA_1_7_163_3 n: 16068574247074387113577017620238159213093751526506479937667554421487231709771454916780284266738393304073675357872389785275140835203319874379 skew: 1.93 deg: 5 c5: 8 c0: -215 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500001) Primes: RFBsize:216816, AFBsize:216381, largePrimes:7668818 encountered Relations: rels:7112633, finalFF:424994 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 76.41 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 76.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS
(5·10166-11)/3 = 1(6)1653<167> = 17 · 19 · 73 · 756571 · 10397899 · C149
C149 = P70 · P80
P70 = 2332212323169386388539679035029940177328309787579459539882098944585367<70>
P80 = 38526539008572372320474777732088353752020424841256198151210841483240600452254379<80>
Number: n N=89852069044858560668750522416608538221723838872348015749209852062494094029896856524204751899820732855080213308886948940351550969450891700210565072093 ( 149 digits) SNFS difficulty: 166 digits. Divisors found: Fri Apr 25 04:39:41 2008 prp70 factor: 2332212323169386388539679035029940177328309787579459539882098944585367 Fri Apr 25 04:39:41 2008 prp80 factor: 38526539008572372320474777732088353752020424841256198151210841483240600452254379 Fri Apr 25 04:39:41 2008 elapsed time 01:01:06 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 49.93 hours. Scaled time: 91.03 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_6_165_3 n: 89852069044858560668750522416608538221723838872348015749209852062494094029896856524204751899820732855080213308886948940351550969450891700210565072093 skew: 0.74 deg: 5 c5: 50 c0: -11 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400247) Primes: RFBsize:230209, AFBsize:229978, largePrimes:7618075 encountered Relations: rels:7060809, finalFF:508891 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 49.69 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 49.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10162-43)/9 = 1(7)1613<163> = 3 · 6173 · 25301 · 172688383333<12> · C143
C143 = P66 · P77
P66 = 326773001141993809558562853170105920525309244037613952095021260743<66>
P77 = 67237717844254366899445055496166348279678953568775065861539166002421097389093<77>
Number: n N=21971470849905589781816163859762807759659618505769802309846316269757328765929790453755702044661205491733330322156227744695485489829202477276099 ( 143 digits) SNFS difficulty: 163 digits. Divisors found: Fri Apr 25 07:05:56 2008 prp66 factor: 326773001141993809558562853170105920525309244037613952095021260743 Fri Apr 25 07:05:56 2008 prp77 factor: 67237717844254366899445055496166348279678953568775065861539166002421097389093 Fri Apr 25 07:05:56 2008 elapsed time 01:24:53 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 49.89 hours. Scaled time: 72.29 units (timescale=1.449). Factorization parameters were as follows: name: KA_1_7_161_3 n: 21971470849905589781816163859762807759659618505769802309846316269757328765929790453755702044661205491733330322156227744695485489829202477276099 skew: 0.97 deg: 5 c5: 50 c0: -43 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500001) Primes: RFBsize:216816, AFBsize:217591, largePrimes:7367926 encountered Relations: rels:6812297, finalFF:451630 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 49.66 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 49.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS
8·10187-1 = 7(9)187<188> = 50221 · 718693111 · 5015358357341<13> · 153590809952823656448053791352618581<36> · C127
C127 = P39 · P89
P39 = 102746196181289754298239251281338562669<39>
P89 = 28004524047110445703490411149385111933719827225584358402128727994530576296739317131430321<89>
Number: 79999_187 N=2877358321708056371637969064791902153383448514723182208423678494914578167998439620341180341926287474457161806866745674265286749 ( 127 digits) Divisors found: r1=102746196181289754298239251281338562669 (pp39) r2=28004524047110445703490411149385111933719827225584358402128727994530576296739317131430321 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 105.29 hours. Scaled time: 225.52 units (timescale=2.142). Factorization parameters were as follows: name: 79999_187 n: 2877358321708056371637969064791902153383448514723182208423678494914578167998439620341180341926287474457161806866745674265286749 skew: 118531.10 # norm 1.27e+18 c5: 211680 c4: 27888457668 c3: -30707314002614800 c2: -457033680365705694301 c1: 74995606544574695438010410 c0: 1800229401639660547285944025875 # alpha -6.47 Y1: 79155702651047 Y0: -1685242049280354239419882 # Murphy_E 1.10e-10 # M 1590663983762522431907323915639751824626006268440442543393364548175785465778167857020397429970250589216784389782494022134624971 type: gnfs rlim: 10000000 alim: 10000000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved algebraic special-q in [5000000, 9400001) Primes: RFBsize:664579, AFBsize:664026, largePrimes:14317582 encountered Relations: rels:14420782, finalFF:1501288 Max relations in full relation-set: 28 Initial matrix: 1328687 x 1501288 with sparse part having weight 116492666. Pruned matrix : 1169118 x 1175825 with weight 77386664. Total sieving time: 94.61 hours. Total relation processing time: 0.38 hours. Matrix solve time: 9.80 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,126,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,10000000,10000000,28,28,52,52,2.5,2.5,100000 total time: 105.29 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407673) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.06 BogoMIPS).
By Sinkiti Sibata / GGNFS
(16·10157-43)/9 = 1(7)1563<158> = · 457 · 467333 · 4456892921623<13> · C136
C136 = P58 · P78
P58 = 2901114003506502307610374028265030500707093188178486117273<58>
P78 = 495215781372945896967601620398746944009945389531259589750405256931914950509179<78>
Number: 17773_157 N=1436677438098467843084575873801589371763127357660342525685576450844456202363206072561849265365343365545478507747923070405695314056948867 ( 136 digits) SNFS difficulty: 158 digits. Divisors found: r1=2901114003506502307610374028265030500707093188178486117273 (pp58) r2=495215781372945896967601620398746944009945389531259589750405256931914950509179 (pp78) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 66.41 hours. Scaled time: 44.96 units (timescale=0.677). Factorization parameters were as follows: name: 17773_157 n: 1436677438098467843084575873801589371763127357660342525685576450844456202363206072561849265365343365545478507747923070405695314056948867 m: 20000000000000000000000000000000 c5: 50 c0: -43 skew: 0.97 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283917, largePrimes:5731714 encountered Relations: rels:5820203, finalFF:703323 Max relations in full relation-set: 28 Initial matrix: 567128 x 703323 with sparse part having weight 45486140. Pruned matrix : 458529 x 461428 with weight 29111704. Total sieving time: 57.29 hours. Total relation processing time: 0.29 hours. Matrix solve time: 8.63 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 66.41 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
8·10172+3 = 8(0)1713<173> = 7 · 112 · 53 · 261587 · 13420331 · 14742878852145643127878371424312249<35> · C122
C122 = P41 · P82
P41 = 14102707670245966200868549502313038790457<41>
P82 = 2441555056445183184204788723617272663411410204503080174188931011979879367292787673<82>
By Robert Backstrom / GGNFS, Msieve
10184+3 = 1(0)1833<185> = 7 · C184
C184 = P67 · P117
P67 = 9818100172727968626557779746645595165748218531909597522519996742899<67>
P117 = 145503855474974097626225854491524811807124225128548763972026441569570512183910306970186124416727300719805279405934471<117>
Number: n N=1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 184 digits) SNFS difficulty: 185 digits. Divisors found: Wed Apr 23 01:45:47 2008 prp67 factor: 9818100172727968626557779746645595165748218531909597522519996742899 Wed Apr 23 01:45:47 2008 prp117 factor: 145503855474974097626225854491524811807124225128548763972026441569570512183910306970186124416727300719805279405934471 Wed Apr 23 01:45:47 2008 elapsed time 03:35:36 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 75.46 hours. Scaled time: 97.80 units (timescale=1.296). Factorization parameters were as follows: name: KA_1_0_183_3 n: 1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 skew: 1.97 deg: 5 c5: 1 c0: 30 m: 10000000000000000000000000000000000000 type: snfs rlim: 7000000 alim: 7000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4699990) Primes: RFBsize:476648, AFBsize:475219, largePrimes:9263849 encountered Relations: rels:9010978, finalFF:1072839 Max relations in full relation-set: 28 Initial matrix: 951931 x 1072839 with sparse part having weight 55004411. Pruned matrix : Total sieving time: 75.09 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7000000,7000000,28,28,48,48,2.5,2.5,100000 total time: 75.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Wataru Sakai / GGNFS
(16·10182-7)/9 = 1(7)182<183> = 3 · 227 · 30853 · 1396054142825212027<19> · 30844830282414589468929329921501<32> · C126
C126 = P50 · P76
P50 = 77353780133776529862472058000124963556450822141289<50>
P76 = 2540193343944179996047245110605127443108044311279781450571038782918768697763<76>
Number: template N=196493557424740682427240818584015055922748541801083874106162700859906957590919852245108331779080425865538457466900821724236507 ( 126 digits) Divisors found: r1=77353780133776529862472058000124963556450822141289 (pp50) r2=2540193343944179996047245110605127443108044311279781450571038782918768697763 (pp76) Version: GGNFS-0.77.1-20060722-nocona Total time: 175.25 hours. Scaled time: 353.13 units (timescale=2.015). Factorization parameters were as follows: name: template n: 196493557424740682427240818584015055922748541801083874106162700859906957590919852245108331779080425865538457466900821724236507 skew: 532555.37 # norm 4.26e+17 c5: 360 c4: -1530324443 c3: 3607202194095335 c2: 98272719477410458842 c1: -109507700429145984560920665 c0: 91593504604744425816368538465 # alpha -5.05 Y1: 33768739669423 Y0: -3527058784468384430641268 # Murphy_E 1.08e-10 # M 167783583878167419122603057044635014571958614459810334116778788696171969889816762212443121528709944125342409454564030436877113 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 9480001) Primes: RFBsize:374362, AFBsize:374330, largePrimes:9514076 encountered Relations: rels:10472238, finalFF:937321 Max relations in full relation-set: 32 Initial matrix: 748767 x 937321 with sparse part having weight 138147417. Pruned matrix : 617364 x 621171 with weight 115795060. Total sieving time: 169.06 hours. Total relation processing time: 0.25 hours. Matrix solve time: 5.52 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 175.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(5·10161-11)/3 = 1(6)1603<162> = 7 · 1259 · 29803 · 148639 · 6067219597<10> · 88884873097<11> · 405666641269<12> · C116
C116 = P33 · P84
P33 = 121384631786385382186720547431793<33>
P84 = 160761351830866943488566918884895797008739383646571499046004747235276493743031507551<84>
Number: 16663_161 N=19513957497471335445827696533813670496727362690069642235708411907732675763782069629125383015431683072942154136968943 ( 116 digits) Divisors found: r1=121384631786385382186720547431793 (pp33) r2=160761351830866943488566918884895797008739383646571499046004747235276493743031507551 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.38 hours. Scaled time: 54.26 units (timescale=2.138). Factorization parameters were as follows: name: 16663_161 n: 19513957497471335445827696533813670496727362690069642235708411907732675763782069629125383015431683072942154136968943 skew: 24827.25 # norm 1.19e+16 c5: 39600 c4: 13149981748 c3: -456242557359933 c2: -6241594165039819254 c1: 13965529947566801370158 c0: -32658529279555611788809464 # alpha -6.00 Y1: 4007171096653 Y0: -13756933333544773509065 # Murphy_E 4.99e-10 # M 9725444623948773597185089542966777252611422691702276753671161477699391779206570499114792041792732623559418709227838 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3080001) Primes: RFBsize:250150, AFBsize:251683, largePrimes:7620277 encountered Relations: rels:7585076, finalFF:636556 Max relations in full relation-set: 28 Initial matrix: 501916 x 636556 with sparse part having weight 57705817. Pruned matrix : 397719 x 400292 with weight 35269443. Polynomial selection time: 1.51 hours. Total sieving time: 22.62 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.96 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 25.38 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(16·10151-43)/9 = 1(7)1503<152> = 13 · 71 · 660625704667<12> · C137
C137 = P40 · P98
P40 = 2059807738909432649830264775862735198581<40>
P98 = 14154470212110609361234331264093140155481663019204352112608445144751444243122493047528117504605313<98>
Number: 17773_151 N=29155487283068471826109014159539684461899607166052702691944454477590659352794774953445901173552777684030303570065790988266341893082660853 ( 137 digits) SNFS difficulty: 152 digits. Divisors found: r1=2059807738909432649830264775862735198581 (pp40) r2=14154470212110609361234331264093140155481663019204352112608445144751444243122493047528117504605313 (pp98) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 34.51 hours. Scaled time: 23.33 units (timescale=0.676). Factorization parameters were as follows: name: 17773_151 n: 29155487283068471826109014159539684461899607166052702691944454477590659352794774953445901173552777684030303570065790988266341893082660853 m: 2000000000000000000000000000000 c5: 5 c0: -43 skew: 1.54 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175898, largePrimes:5380793 encountered Relations: rels:5213423, finalFF:415029 Max relations in full relation-set: 28 Initial matrix: 352265 x 415029 with sparse part having weight 35736426. Pruned matrix : 322290 x 324115 with weight 24241194. Total sieving time: 30.40 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.76 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 34.51 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM
(16·10191-43)/9 = 1(7)1903<192> = 678961553437<12> · 1221328889923<13> · C168
C168 = P38 · P130
P38 = 64024419926416439664546147244965522487<38>
P130 = 3348528562739821307034868195960668802228141828168170031835393402661109187594911879893998700809150934886296138950389462224621424829<130>
By Jo Yeong Uk / GGNFS
10175+3 = 1(0)1743<176> = 13 · 1550513 · C168
C168 = P41 · P127
P41 = 84605989629414611161564159889389410528733<41>
P127 = 5863813190635906011331311978267233281067998931182925784006119151460092105536944514992383719950101352924989857277216412589708939<127>
Number: 10003_175 N=496113717995766066307880533236915285953249517566617777967182970559272467092653056911337880281707260262099853899471187426851132992261767060817439627549571806730566444287 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=84605989629414611161564159889389410528733 (pp41) r2=5863813190635906011331311978267233281067998931182925784006119151460092105536944514992383719950101352924989857277216412589708939 (pp127) Version: GGNFS-0.77.1-20050930-nocona Total time: 105.85 hours. Scaled time: 226.62 units (timescale=2.141). Factorization parameters were as follows: n: 496113717995766066307880533236915285953249517566617777967182970559272467092653056911337880281707260262099853899471187426851132992261767060817439627549571806730566444287 m: 100000000000000000000000000000000000 c5: 1 c0: 3 skew: 1.25 type: snfs Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4200000, 6000001) Primes: RFBsize:564877, AFBsize:564406, largePrimes:10850911 encountered Relations: rels:11119170, finalFF:1442537 Max relations in full relation-set: 28 Initial matrix: 1129347 x 1442537 with sparse part having weight 89062627. Pruned matrix : 837022 x 842732 with weight 50559156. Total sieving time: 100.83 hours. Total relation processing time: 0.17 hours. Matrix solve time: 4.76 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,8400000,8400000,28,28,50,50,2.6,2.6,100000 total time: 105.85 hours. --------- CPU info (if available) ----------
(16·10159-43)/9 = 1(7)1583<160> = 3 · 225493 · 10664310082475575481<20> · C135
C135 = P50 · P85
P50 = 50742578999008560483591754078912162960258196529877<50>
P85 = 4856438048175192886765210965298149844959246658051867441833610068768177210758899421951<85>
Number: 17773_159 N=246428191313320666306972352915263184365357951694412511444685487421882568203843254315116845466116984910218199201031653835403409401130027 ( 135 digits) SNFS difficulty: 161 digits. Divisors found: r1=50742578999008560483591754078912162960258196529877 (pp50) r2=4856438048175192886765210965298149844959246658051867441833610068768177210758899421951 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 36.12 hours. Scaled time: 77.31 units (timescale=2.140). Factorization parameters were as follows: n: 246428191313320666306972352915263184365357951694412511444685487421882568203843254315116845466116984910218199201031653835403409401130027 m: 200000000000000000000000000000000 c5: 1 c0: -860 skew: 3.86 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4200001) Primes: RFBsize:283146, AFBsize:282747, largePrimes:5782527 encountered Relations: rels:5844803, finalFF:676274 Max relations in full relation-set: 28 Initial matrix: 565957 x 676274 with sparse part having weight 47468304. Pruned matrix : 489177 x 492070 with weight 33466786. Total sieving time: 34.67 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.32 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 36.12 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(16·10149-43)/9 = 1(7)1483<150> = 74257 · 1756286687473<13> · 40000271800450469<17> · C116
C116 = P34 · P82
P34 = 8451328395281915175077609691314123<34>
P82 = 4032336289143467545190727664762401688975731101155506963337129845941832951058267739<82>
Number: 17773_149 N=34078598179763894284357022031702951463430782892473350643743951375598986101203012608356279387739075999304334885977897 ( 116 digits) SNFS difficulty: 150 digits. Divisors found: r1=8451328395281915175077609691314123 (pp34) r2=4032336289143467545190727664762401688975731101155506963337129845941832951058267739 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 33.88 hours. Scaled time: 22.94 units (timescale=0.677). Factorization parameters were as follows: name: 17773_149 n: 34078598179763894284357022031702951463430782892473350643743951375598986101203012608356279387739075999304334885977897 m: 1000000000000000000000000000000 c5: 8 c0: -215 skew: 1.93 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175813, largePrimes:5492730 encountered Relations: rels:5379374, finalFF:457983 Max relations in full relation-set: 28 Initial matrix: 352180 x 457983 with sparse part having weight 40625337. Pruned matrix : 304476 x 306300 with weight 23877941. Total sieving time: 30.09 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.43 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 33.88 hours. --------- CPU info (if available) ----------
By Wataru Sakai / Msieve
(16·10163-43)/9 = 1(7)1623<164> = 13 · 1193 · 6396333453947<13> · 6011603269643265989<19> · 37780493521163729849057<23> · C105
C105 = P38 · P68
P38 = 13909049981855630404289973234462069073<38>
P68 = 56729267307243269741500070065132179405855567563697922136760577391119<68>
Thu Apr 17 23:17:26 2008 Msieve v. 1.35 Thu Apr 17 23:17:26 2008 random seeds: 610e60e2 1e46c7c2 Thu Apr 17 23:17:26 2008 factoring 789050214410495208081559944595870731751665549451986335130440150439214112960298838225645198526905114762687 (105 digits) Thu Apr 17 23:17:27 2008 searching for 15-digit factors Thu Apr 17 23:17:28 2008 commencing quadratic sieve (105-digit input) Thu Apr 17 23:17:28 2008 using multiplier of 7 Thu Apr 17 23:17:28 2008 using 32kb Intel Core sieve core Thu Apr 17 23:17:28 2008 sieve interval: 38 blocks of size 32768 Thu Apr 17 23:17:28 2008 processing polynomials in batches of 6 Thu Apr 17 23:17:28 2008 using a sieve bound of 4083571 (144667 primes) Thu Apr 17 23:17:28 2008 using large prime bound of 612535650 (29 bits) Thu Apr 17 23:17:28 2008 using double large prime bound of 6558982124812350 (44-53 bits) Thu Apr 17 23:17:28 2008 using trial factoring cutoff of 53 bits Thu Apr 17 23:17:28 2008 polynomial 'A' values have 14 factors Sat Apr 19 06:43:23 2008 144798 relations (34124 full + 110674 combined from 2149152 partial), need 144763 Sat Apr 19 06:43:26 2008 begin with 2183276 relations Sat Apr 19 06:43:27 2008 reduce to 381872 relations in 15 passes Sat Apr 19 06:43:27 2008 attempting to read 381872 relations Sat Apr 19 06:43:32 2008 recovered 381872 relations Sat Apr 19 06:43:32 2008 recovered 374155 polynomials Sat Apr 19 06:43:32 2008 attempting to build 144798 cycles Sat Apr 19 06:43:32 2008 found 144798 cycles in 6 passes Sat Apr 19 06:43:32 2008 distribution of cycle lengths: Sat Apr 19 06:43:32 2008 length 1 : 34124 Sat Apr 19 06:43:32 2008 length 2 : 24668 Sat Apr 19 06:43:32 2008 length 3 : 24516 Sat Apr 19 06:43:32 2008 length 4 : 19930 Sat Apr 19 06:43:32 2008 length 5 : 15205 Sat Apr 19 06:43:32 2008 length 6 : 10259 Sat Apr 19 06:43:32 2008 length 7 : 6779 Sat Apr 19 06:43:32 2008 length 9+: 9317 Sat Apr 19 06:43:32 2008 largest cycle: 21 relations Sat Apr 19 06:43:33 2008 matrix is 144667 x 144798 (40.5 MB) with weight 10044000 (69.37/col) Sat Apr 19 06:43:33 2008 sparse part has weight 10044000 (69.37/col) Sat Apr 19 06:43:33 2008 filtering completed in 3 passes Sat Apr 19 06:43:33 2008 matrix is 139120 x 139183 (39.2 MB) with weight 9715429 (69.80/col) Sat Apr 19 06:43:33 2008 sparse part has weight 9715429 (69.80/col) Sat Apr 19 06:43:34 2008 saving the first 48 matrix rows for later Sat Apr 19 06:43:34 2008 matrix is 139072 x 139183 (22.9 MB) with weight 7554305 (54.28/col) Sat Apr 19 06:43:34 2008 sparse part has weight 5178932 (37.21/col) Sat Apr 19 06:43:34 2008 matrix includes 64 packed rows Sat Apr 19 06:43:34 2008 using block size 55673 for processor cache size 6144 kB Sat Apr 19 06:43:35 2008 commencing Lanczos iteration Sat Apr 19 06:43:35 2008 memory use: 23.1 MB Sat Apr 19 06:45:04 2008 lanczos halted after 2201 iterations (dim = 139068) Sat Apr 19 06:45:04 2008 recovered 15 nontrivial dependencies Sat Apr 19 06:45:05 2008 prp38 factor: 13909049981855630404289973234462069073 Sat Apr 19 06:45:05 2008 prp68 factor: 56729267307243269741500070065132179405855567563697922136760577391119 Sat Apr 19 06:45:05 2008 elapsed time 31:27:39
By Robert Backstrom / GGNFS
(16·10145-43)/9 = 1(7)1443<146> = 13 · 59 · 113 · 6113 · 97900993 · C129
C129 = P65 · P65
P65 = 16622796863443524019743377225276094967799622716440295866198684081<65>
P65 = 20618547874697345788229642446357994038980128189862291645786008147<65>
Number: n N=342737932940279177877666996901874480937332396368251728885802533313270128140969346250666588135979889005893165891963390853345207907 ( 129 digits) SNFS difficulty: 146 digits. Divisors found: r1=16622796863443524019743377225276094967799622716440295866198684081 (pp65) r2=20618547874697345788229642446357994038980128189862291645786008147 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.98 hours. Scaled time: 10.86 units (timescale=1.818). Factorization parameters were as follows: name: KA_1_7_144_3 n: 342737932940279177877666996901874480937332396368251728885802533313270128140969346250666588135979889005893165891963390853345207907 skew: 1.22 deg: 5 c5: 16 c0: -43 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:114155, AFBsize:114182, largePrimes:6568235 encountered Relations: rels:5836571, finalFF:264019 Max relations in full relation-set: 48 Initial matrix: 228401 x 264019 with sparse part having weight 31268000. Pruned matrix : 216769 x 217975 with weight 21023686. Total sieving time: 5.41 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.41 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 5.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS, GMP-ECM
(16·10155-43)/9 = 1(7)1543<156> = 29 · 3673 · 234391757431997529389<21> · C130
C130 = P35 · P95
P35 = 88308179609882380758786014994362513<35>
P95 = 80633456936717508249547250917177803523254243013044383853109355147287095866161662111291070396717<95>
Number: 17773_155 N=7120593797733366076311318086086978160341727352661331057070689454547745192982183077839045352871475585630105847818565550177423069821 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: r1=88308179609882380758786014994362513 (pp35) r2=80633456936717508249547250917177803523254243013044383853109355147287095866161662111291070396717 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.46 hours. Scaled time: 43.68 units (timescale=2.135). Factorization parameters were as follows: n: 7120593797733366076311318086086978160341727352661331057070689454547745192982183077839045352871475585630105847818565550177423069821 m: 20000000000000000000000000000000 c5: 1 c0: -86 skew: 2.44 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:217561, largePrimes:5624338 encountered Relations: rels:5571441, finalFF:535073 Max relations in full relation-set: 28 Initial matrix: 434441 x 535073 with sparse part having weight 42701966. Pruned matrix : 379229 x 381465 with weight 27894484. Total sieving time: 19.62 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.72 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 20.46 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
By Wataru Sakai / GMP-ECM
(16·10177-43)/9 = 1(7)1763<178> = 3 · 39341 · 55469 · C168
C168 = P28 · P140
P28 = 3540849013711996267182661087<28>
P140 = 76692532456878501730549593664595518204648519628890706699390350654932773905434667749384344629111220283370888580298809813332301394964563882217<140>
By Robert Backstrom / GGNFS, Msieve
(16·10158-43)/9 = 1(7)1573<159> = 17 · 112897531 · C149
C149 = P39 · P111
P39 = 515585271951048556898212277218261286633<39>
P111 = 179656777145804708129547858060856269933397255736927677551557880399873254058579628363977016884753579212620803503<111>
Number: n N=92628388302568645595550127548210992985873169297302502712303507160362538255924552544689072063877202571563233471253199962663372400097705975507053475399 ( 149 digits) SNFS difficulty: 160 digits. Divisors found: Fri Apr 18 17:59:12 2008 prp39 factor: 515585271951048556898212277218261286633 Fri Apr 18 17:59:12 2008 prp111 factor: 179656777145804708129547858060856269933397255736927677551557880399873254058579628363977016884753579212620803503 Fri Apr 18 17:59:12 2008 elapsed time 00:35:03 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 29.43 hours. Scaled time: 24.66 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_7_157_3 n: 92628388302568645595550127548210992985873169297302502712303507160362538255924552544689072063877202571563233471253199962663372400097705975507053475399 type: snfs deg: 5 c5: 4 c0: -1075 skew: 2.44 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 1899990) Primes: RFBsize:216816, AFBsize:216841, largePrimes:5530400 encountered Relations: rels:5435017, finalFF:515675 Max relations in full relation-set: 28 Initial matrix: 433721 x 515675 with sparse part having weight 39258233. Pruned matrix : Total sieving time: 29.27 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 29.43 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS
(16·10118-43)/9 = 1(7)1173<119> = 7 · 1319 · 649573 · 3859171 · C102
C102 = P47 · P56
P47 = 47350955974127276757526684432655467293045031819<47>
P56 = 16221234355104901470997952766497166240721117007085516953<56>
Number: 17773_118 N=768090953794573057816630109157861769746161838397065624797169366829056643479552845083229414945948927507 ( 102 digits) SNFS difficulty: 119 digits. Divisors found: r1=47350955974127276757526684432655467293045031819 (pp47) r2=16221234355104901470997952766497166240721117007085516953 (pp56) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.26 hours. Scaled time: 1.53 units (timescale=0.677). Factorization parameters were as follows: name: 17773_118 n: 768090953794573057816630109157861769746161838397065624797169366829056643479552845083229414945948927507 m: 200000000000000000000000 c5: 500 c0: -43 skew: 0.61 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64058, largePrimes:2018699 encountered Relations: rels:2002457, finalFF:151962 Max relations in full relation-set: 28 Initial matrix: 113222 x 151962 with sparse part having weight 11986315. Pruned matrix : 100073 x 100703 with weight 5851889. Total sieving time: 1.99 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.26 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(16·10138-43)/9 = 1(7)1373<139> = 32 · 14639 · 51266269 · C126
C126 = P59 · P68
P59 = 11632544748654663205292509039845800240928717050619027960643<59>
P68 = 22626485891727523197151601650522464210578871505272726012964428807469<68>
Number: 17773_138 N=263203609640323824392458107325806099995043923027122226226760883014902997330558765169460769491743099274902294390038895556442567 ( 126 digits) SNFS difficulty: 140 digits. Divisors found: r1=11632544748654663205292509039845800240928717050619027960643 (pp59) r2=22626485891727523197151601650522464210578871505272726012964428807469 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.90 hours. Scaled time: 12.67 units (timescale=2.145). Factorization parameters were as follows: n: 263203609640323824392458107325806099995043923027122226226760883014902997330558765169460769491743099274902294390038895556442567 m: 10000000000000000000000000000 c5: 4 c0: -1075 skew: 3.06 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114037, largePrimes:3315183 encountered Relations: rels:3373564, finalFF:357868 Max relations in full relation-set: 28 Initial matrix: 228256 x 357868 with sparse part having weight 30397126. Pruned matrix : 180827 x 182032 with weight 12710286. Total sieving time: 5.73 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
8·10187-1 = 7(9)187<188> = 50221 · 718693111 · 5015358357341<13> · C162
C162 = P36 · C127
P36 = 153590809952823656448053791352618581<36>
C127 = [2877358321708056371637969064791902153383448514723182208423678494914578167998439620341180341926287474457161806866745674265286749<127>]
(16·10146-43)/9 = 1(7)1453<147> = 1759223 · 66378044054429<14> · C127
C127 = P55 · P73
P55 = 1056295968541772519047500174110259791732144028688415153<55>
P73 = 1441273845342654536010084697268847716723542480648916997795263989062923623<73>
Number: 17773_146 N=1522411752400144126632930397778883985122615881675977475582863474157301360548134270400340874386530077118346961505716336554859319 ( 127 digits) SNFS difficulty: 147 digits. Divisors found: r1=1056295968541772519047500174110259791732144028688415153 (pp55) r2=1441273845342654536010084697268847716723542480648916997795263989062923623 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.88 hours. Scaled time: 21.20 units (timescale=2.146). Factorization parameters were as follows: n: 1522411752400144126632930397778883985122615881675977475582863474157301360548134270400340874386530077118346961505716336554859319 m: 200000000000000000000000000000 c5: 5 c0: -43 skew: 1.54 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134733, largePrimes:3762790 encountered Relations: rels:3832797, finalFF:363069 Max relations in full relation-set: 28 Initial matrix: 269870 x 363069 with sparse part having weight 33914108. Pruned matrix : 236804 x 238217 with weight 18742821. Total sieving time: 9.56 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.24 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.88 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
8·10184-1 = 7(9)184<185> = 1999080062901581503437318550484654902159553<43> · C143
C143 = P35 · P109
P35 = 15637703450006173973828739274219217<35>
P109 = 2559097461890393718243754256765145837067277294067140964364353690368762236330319581826659779608172818332729999<109>
By Sinkiti Sibata / Msieve, GGNFS
(16·10126-43)/9 = 1(7)1253<127> = 3 · 17 · 109 · 2289551683<10> · C114
C114 = P34 · P80
P34 = 3874799090028982983788638177832431<34>
P80 = 36047998691929861569706472795198049716524625691428470311891766732822101755440039<80>
Number: 17773_126 N=139678752528855796515825665771919737666695102874942258747881123820068740828534251491647142474744904176151610104809 ( 114 digits) SNFS difficulty: 127 digits. Divisors found: r1=3874799090028982983788638177832431 (pp34) r2=36047998691929861569706472795198049716524625691428470311891766732822101755440039 (pp80) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.68 hours. Scaled time: 5.34 units (timescale=1.992). Factorization parameters were as follows: name: 17773_126 n: 139678752528855796515825665771919737666695102874942258747881123820068740828534251491647142474744904176151610104809 m: 20000000000000000000000000 c5: 5 c0: -43 skew: 1.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63728, largePrimes:2127400 encountered Relations: rels:2149094, finalFF:154047 Max relations in full relation-set: 28 Initial matrix: 112891 x 154047 with sparse part having weight 14322637. Pruned matrix : 103876 x 104504 with weight 7465249. Total sieving time: 2.51 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.68 hours. --------- CPU info (if available) ----------
(16·10125-43)/9 = 1(7)1243<126> = 139 · 467649979411443427<18> · C106
C106 = P31 · P32 · P44
P31 = 1103899759447808710603942658389<31>
P32 = 85253848617475439469702760423117<32>
P44 = 29060168036435085334340301632974120249835357<44>
Number: 17773_125 N=2734901902818018639322144720567010346065153400121065763221178022074487392487751189852112831885124154884141 ( 106 digits) SNFS difficulty: 126 digits. Divisors found: r1=1103899759447808710603942658389 (pp31) r2=85253848617475439469702760423117 (pp32) r3=29060168036435085334340301632974120249835357 (pp44) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.14 hours. Scaled time: 6.28 units (timescale=2.000). Factorization parameters were as follows: name: 17773_125 n: 2734901902818018639322144720567010346065153400121065763221178022074487392487751189852112831885124154884141 m: 20000000000000000000000000 c5: 1 c0: -86 skew: 2.44 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63853, largePrimes:2190075 encountered Relations: rels:2273813, finalFF:198568 Max relations in full relation-set: 28 Initial matrix: 113015 x 198568 with sparse part having weight 19369229. Pruned matrix : 97297 x 97926 with weight 6884251. Total sieving time: 2.99 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.14 hours. --------- CPU info (if available) ----------
(16·10119-43)/9 = 1(7)1183<120> = 96881956739185113311<20> · C100
C100 = P34 · P67
P34 = 1468279725698321121821741190940259<34>
P67 = 1249757551140585021286231031388970942154095925690579253003177838577<67>
Wed Apr 16 18:47:15 2008 Msieve v. 1.33 Wed Apr 16 18:47:15 2008 random seeds: b6b676bf 3e282a6a Wed Apr 16 18:47:15 2008 factoring 1834993674378103706510951864175520316649357398636129200483879762498449964268488473520406877952571443 (100 digits) Wed Apr 16 18:47:16 2008 searching for 15-digit factors Wed Apr 16 18:47:18 2008 commencing quadratic sieve (100-digit input) Wed Apr 16 18:47:18 2008 using multiplier of 7 Wed Apr 16 18:47:18 2008 using 64kb Pentium 4 sieve core Wed Apr 16 18:47:18 2008 sieve interval: 18 blocks of size 65536 Wed Apr 16 18:47:18 2008 processing polynomials in batches of 6 Wed Apr 16 18:47:18 2008 using a sieve bound of 2676997 (97647 primes) Wed Apr 16 18:47:18 2008 using large prime bound of 401549550 (28 bits) Wed Apr 16 18:47:18 2008 using double large prime bound of 3067117780557750 (43-52 bits) Wed Apr 16 18:47:18 2008 using trial factoring cutoff of 52 bits Wed Apr 16 18:47:18 2008 polynomial 'A' values have 13 factors Thu Apr 17 12:45:34 2008 97796 relations (22955 full + 74841 combined from 1478103 partial), need 97743 Thu Apr 17 12:45:40 2008 begin with 1501058 relations Thu Apr 17 12:45:42 2008 reduce to 259398 relations in 12 passes Thu Apr 17 12:45:42 2008 attempting to read 259398 relations Thu Apr 17 12:45:51 2008 recovered 259398 relations Thu Apr 17 12:45:51 2008 recovered 250343 polynomials Thu Apr 17 12:45:51 2008 attempting to build 97796 cycles Thu Apr 17 12:45:51 2008 found 97796 cycles in 6 passes Thu Apr 17 12:45:51 2008 distribution of cycle lengths: Thu Apr 17 12:45:51 2008 length 1 : 22955 Thu Apr 17 12:45:51 2008 length 2 : 16414 Thu Apr 17 12:45:51 2008 length 3 : 16469 Thu Apr 17 12:45:51 2008 length 4 : 13428 Thu Apr 17 12:45:51 2008 length 5 : 10245 Thu Apr 17 12:45:51 2008 length 6 : 7142 Thu Apr 17 12:45:51 2008 length 7 : 4639 Thu Apr 17 12:45:51 2008 length 9+: 6504 Thu Apr 17 12:45:51 2008 largest cycle: 22 relations Thu Apr 17 12:45:52 2008 matrix is 97647 x 97796 (26.6 MB) with weight 6573420 (67.22/col) Thu Apr 17 12:45:52 2008 sparse part has weight 6573420 (67.22/col) Thu Apr 17 12:45:54 2008 filtering completed in 3 passes Thu Apr 17 12:45:54 2008 matrix is 93857 x 93921 (25.6 MB) with weight 6345777 (67.57/col) Thu Apr 17 12:45:54 2008 sparse part has weight 6345777 (67.57/col) Thu Apr 17 12:45:55 2008 saving the first 48 matrix rows for later Thu Apr 17 12:45:55 2008 matrix is 93809 x 93921 (15.0 MB) with weight 4909957 (52.28/col) Thu Apr 17 12:45:55 2008 sparse part has weight 3371549 (35.90/col) Thu Apr 17 12:45:55 2008 matrix includes 64 packed rows Thu Apr 17 12:45:55 2008 using block size 21845 for processor cache size 512 kB Thu Apr 17 12:45:56 2008 commencing Lanczos iteration Thu Apr 17 12:45:56 2008 memory use: 15.1 MB Thu Apr 17 12:47:24 2008 lanczos halted after 1485 iterations (dim = 93807) Thu Apr 17 12:47:25 2008 recovered 17 nontrivial dependencies Thu Apr 17 12:47:26 2008 prp34 factor: 1468279725698321121821741190940259 Thu Apr 17 12:47:26 2008 prp67 factor: 1249757551140585021286231031388970942154095925690579253003177838577 Thu Apr 17 12:47:26 2008 elapsed time 18:00:11
(16·10120-43)/9 = 1(7)1193<121> = 34 · C119
C119 = P50 · P69
P50 = 85510357558761421141383126907634041186486316417099<50>
P69 = 256669185187810792308602187020497433738883870719060728193378032088567<69>
Number: 17773_120 N=21947873799725651577503429355281207133058984910836762688614540466392318244170096021947873799725651577503429355281207133 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=85510357558761421141383126907634041186486316417099 (pp50) r2=256669185187810792308602187020497433738883870719060728193378032088567 (pp69) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.59 hours. Scaled time: 1.75 units (timescale=0.677). Factorization parameters were as follows: name: 17773_120 n: 21947873799725651577503429355281207133058984910836762688614540466392318244170096021947873799725651577503429355281207133 m: 2000000000000000000000000 c5: 1 c0: -86 skew: 2.44 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63853, largePrimes:2194643 encountered Relations: rels:2335783, finalFF:263665 Max relations in full relation-set: 28 Initial matrix: 113015 x 263665 with sparse part having weight 24306850. Pruned matrix : 84489 x 85118 with weight 5577315. Total sieving time: 2.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(16·10144-43)/9 = 1(7)1433<145> = 3 · 227 · C142
C142 = P39 · P52 · P52
P39 = 122929344325063661695898389182280845929<39>
P52 = 3221391447437790783926804430055858823974940817522169<52>
P52 = 6592213962798872415463349088189519733800364363571333<52>
Number: n N=2610540055473976178821993799967368249306575297764725077500407896883667808777940936531244901288954152390275738293359438733888073095121553271333 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: r1=122929344325063661695898389182280845929 (pp39) r2=3221391447437790783926804430055858823974940817522169 (pp52) r3=6592213962798872415463349088189519733800364363571333 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.63 hours. Scaled time: 12.12 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_7_143_3 n: 2610540055473976178821993799967368249306575297764725077500407896883667808777940936531244901288954152390275738293359438733888073095121553271333 skew: 1.93 deg: 5 c5: 8 c0: -215 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:114155, AFBsize:114062, largePrimes:6704802 encountered Relations: rels:5987168, finalFF:270894 Max relations in full relation-set: 48 Initial matrix: 228282 x 270894 with sparse part having weight 34317305. Pruned matrix : 216547 x 217752 with weight 22303479. Total sieving time: 5.95 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.43 hours. Total square root time: 0.11 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 6.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10161-43)/9 = 1(7)1603<162> = 103 · 1021849 · 334680190961971<15> · 24695725106873857<17> · 218931718291791250301<21> · C102
C102 = P35 · P68
P35 = 36407080834751143443498565731037777<35>
P68 = 25639360582377136928119325942391403410234951772381760032053460807861<68>
Number: n N=933454273273936577612474901491001066341309617815789327012871967840898500121908855872904953600329564997 ( 102 digits) Divisors found: r1=36407080834751143443498565731037777 (pp35) r2=25639360582377136928119325942391403410234951772381760032053460807861 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.34 hours. Scaled time: 9.74 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_7_160_3 n: 933454273273936577612474901491001066341309617815789327012871967840898500121908855872904953600329564997 skew: 11093.37 # norm 3.99e+13 c5: 1800 c4: 372271082 c3: -473746083165 c2: -47756910272386885 c1: 76919695839272232985 c0: 206237387055222311017528 # alpha -5.02 Y1: 13814165629 Y0: -55329866672127928995 # Murphy_E 2.56e-09 # M 833706548574107714639820363179423211715410901127672776498804591771767671390163419824815462115955586024 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:169511, AFBsize:169583, largePrimes:4051501 encountered Relations: rels:4057067, finalFF:469111 Max relations in full relation-set: 48 Initial matrix: 339174 x 469111 with sparse part having weight 27040198. Pruned matrix : 217394 x 219153 with weight 8801689. Total sieving time: 4.95 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.19 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(14·10166-23)/9 = 1(5)1653<167> = 107 · 127 · 507742003 · C154
C154 = P40 · P42 · P73
P40 = 3383246862790582749480921165155169175417<40>
P42 = 432508300655604026409962871945358873577669<42>
P73 = 1540730929988680743737736570091962036281428096254323888738391539667343483<73>
Number: n N=666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 ( 114 digits) Divisors found: Thu Apr 17 22:20:15 2008 prp42 factor: 432508300655604026409962871945358873577669 Thu Apr 17 22:20:15 2008 prp73 factor: 1540730929988680743737736570091962036281428096254323888738391539667343483 Thu Apr 17 22:20:15 2008 elapsed time 00:44:24 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 26.74 hours. Scaled time: 22.39 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_5_165_3 n: 666378916296932729031689796754642939121851670277389480145678840927507410551912991473639321490092225320869301481127 skew: 21772.53 # norm 1.15e+16 c5: 127920 c4: -23604014380 c3: -521830973354640 c2: 13654652291457606849 c1: 43808656190295530955502 c0: -112301076362569465313946696 # alpha -6.55 Y1: 1193146480793 Y0: -5538090041817291334015 # Murphy_E 5.94e-10 # M 424840657608522257635537657543679823340115623023876770799204026916388698189137461913456436848462018965001840737620 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1500151) Primes: RFBsize:250150, AFBsize:250624, largePrimes:6967090 encountered Relations: rels:6656946, finalFF:539540 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 26.53 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 26.74 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GMP-ECM, GGNFS
(5·10172-11)/3 = 1(6)1713<173> = 449 · 613 · 14983621 · 640773929 · 765796020212228084429127317516663<33> · C118
C118 = P48 · P71
P48 = 320495677550936751308035792497362918849303147407<48>
P71 = 25697154737133609560344670840251726771651958436082806086312019002604671<71>
Number: 16663_172 N=8235827018608900184232630962747782531914857076776112095668712602895011246947560520007279169172594208954918011259738097 ( 118 digits) Divisors found: r1=320495677550936751308035792497362918849303147407 (pp48) r2=25697154737133609560344670840251726771651958436082806086312019002604671 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 36.65 hours. Scaled time: 78.44 units (timescale=2.140). Factorization parameters were as follows: name: 16663_172 n: 8235827018608900184232630962747782531914857076776112095668712602895011246947560520007279169172594208954918011259738097 skew: 23994.76 # norm 3.56e+15 c5: 81780 c4: -8722177613 c3: -172048388133462 c2: 5431487071876079458 c1: 32188035299275822248228 c0: -42858347921993434993922144 # alpha -4.89 Y1: 2047839378167 Y0: -39866902854599812345335 # Murphy_E 3.69e-10 # M 4397100284139661905595764503103251667391894199048783655171359813332510445129267787214586724263171904117759984428094451 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4125001) Primes: RFBsize:315948, AFBsize:315538, largePrimes:7637241 encountered Relations: rels:7680602, finalFF:728503 Max relations in full relation-set: 28 Initial matrix: 631569 x 728503 with sparse part having weight 61666293. Pruned matrix : 551228 x 554449 with weight 41570758. Polynomial selection time: 1.98 hours. Total sieving time: 32.52 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.82 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 36.65 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
(16·10133-43)/9 = 1(7)1323<134> = 13 · 233 · 25933 · 97813 · 71667448168957<14> · C107
C107 = P49 · P58
P49 = 3342143748489434590572597197368580584310674477981<49>
P58 = 9660103826638798656998936740469404831436423757669777126209<58>
Number: 17773_133 N=32285455613959725746999532746011021932043083571604268600338314952656034453773659817804519379721595428504029 ( 107 digits) SNFS difficulty: 135 digits. Divisors found: r1=3342143748489434590572597197368580584310674477981 (pp49) r2=9660103826638798656998936740469404831436423757669777126209 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.97 hours. Scaled time: 6.35 units (timescale=2.135). Factorization parameters were as follows: n: 32285455613959725746999532746011021932043083571604268600338314952656034453773659817804519379721595428504029 m: 1000000000000000000000000000 c5: 4 c0: -1075 skew: 3.06 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:107108, largePrimes:2273625 encountered Relations: rels:2404790, finalFF:294421 Max relations in full relation-set: 28 Initial matrix: 214298 x 294421 with sparse part having weight 21471334. Pruned matrix : 181853 x 182988 with weight 10321115. Total sieving time: 2.83 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
8·10194-1 = 7(9)194<195> = 17 · 50287 · 3097537 · 119605714808559453334057<24> · C160
C160 = P28 · P132
P28 = 5565233219278259235319671553<28>
P132 = 453872150920361109687290122732532032688530998219435391743981449214557842553014055993102429286314732251554440782531327487375989287353<132>
(16·10134-43)/9 = 1(7)1333<135> = 263 · 197047159 · C124
C124 = P58 · P67
P58 = 2863834785747777662736218202774989738378574194792058607181<58>
P67 = 1197853171614762586665272443737488891329168220783862099262703556449<67>
Number: 17773_134 N=3430453581088659560179837616813547764407849068970136086958872262619484904091371908295926398270918423889605423047490150260269 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=2863834785747777662736218202774989738378574194792058607181 (pp58) r2=1197853171614762586665272443737488891329168220783862099262703556449 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.41 hours. Scaled time: 7.33 units (timescale=2.147). Factorization parameters were as follows: n: 3430453581088659560179837616813547764407849068970136086958872262619484904091371908295926398270918423889605423047490150260269 m: 2000000000000000000000000000 c5: 1 c0: -860 skew: 3.86 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:106968, largePrimes:2335679 encountered Relations: rels:2477311, finalFF:295035 Max relations in full relation-set: 28 Initial matrix: 214158 x 295035 with sparse part having weight 23189974. Pruned matrix : 186064 x 187198 with weight 11633275. Total sieving time: 3.25 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
8·10178-1 = 7(9)178<179> = 17 · 54799 · C173
C173 = P40 · P134
P40 = 5885133257828395389165904720779636286561<40>
P134 = 14591909625581121136482174824446665198803833208568420920881318532185496567756234695562377208236552712810015744424723901294952789939873<134>
8·10185-1 = 7(9)185<186> = 1949 · 88692237787921626581<20> · C163
C163 = P34 · P129
P34 = 9213214841645127155231659857590189<34>
P129 = 502321002341718432286600942522787211853191175238165401879857931010912161900095448258817976719920746592180033543258552863249190139<129>
8·10182-1 = 7(9)182<183> = 6689 · 45833 · C175
C175 = P38 · C137
P38 = 64965178089572382042423526852742694223<38>
C137 = [40167044071217756780187592392246187076622588646967716036404892251010744662016892972703963262216033825927684995558723281578766771102057449<137>]
By Sinkiti Sibata / Msieve, GGNFS
(16·10112-43)/9 = 1(7)1113<113> = 72 · 193 · 20145617 · 175080692421274249<18> · C84
C84 = P37 · P48
P37 = 2746131666830462403852624787266510433<37>
P48 = 194081392436622661770145240283408879646755217701<48>
Wed Apr 16 12:58:21 2008 Msieve v. 1.33 Wed Apr 16 12:58:21 2008 random seeds: b6b6c24f 7a2fe73c Wed Apr 16 12:58:21 2008 factoring 532973057712759689286185744598002512654979895804101219214304241467155374801502774533 (84 digits) Wed Apr 16 12:58:22 2008 searching for 15-digit factors Wed Apr 16 12:58:24 2008 commencing quadratic sieve (84-digit input) Wed Apr 16 12:58:24 2008 using multiplier of 17 Wed Apr 16 12:58:24 2008 using 64kb Pentium 4 sieve core Wed Apr 16 12:58:24 2008 sieve interval: 6 blocks of size 65536 Wed Apr 16 12:58:24 2008 processing polynomials in batches of 17 Wed Apr 16 12:58:24 2008 using a sieve bound of 1409171 (53610 primes) Wed Apr 16 12:58:24 2008 using large prime bound of 119779535 (26 bits) Wed Apr 16 12:58:24 2008 using double large prime bound of 347607157783030 (41-49 bits) Wed Apr 16 12:58:24 2008 using trial factoring cutoff of 49 bits Wed Apr 16 12:58:24 2008 polynomial 'A' values have 11 factors Wed Apr 16 13:43:34 2008 54072 relations (15871 full + 38201 combined from 574707 partial), need 53706 Wed Apr 16 13:43:36 2008 begin with 590578 relations Wed Apr 16 13:43:37 2008 reduce to 126745 relations in 10 passes Wed Apr 16 13:43:37 2008 attempting to read 126745 relations Wed Apr 16 13:43:40 2008 recovered 126745 relations Wed Apr 16 13:43:40 2008 recovered 103500 polynomials Wed Apr 16 13:43:40 2008 attempting to build 54072 cycles Wed Apr 16 13:43:40 2008 found 54072 cycles in 6 passes Wed Apr 16 13:43:40 2008 distribution of cycle lengths: Wed Apr 16 13:43:40 2008 length 1 : 15871 Wed Apr 16 13:43:40 2008 length 2 : 11043 Wed Apr 16 13:43:40 2008 length 3 : 9527 Wed Apr 16 13:43:40 2008 length 4 : 6881 Wed Apr 16 13:43:40 2008 length 5 : 4611 Wed Apr 16 13:43:40 2008 length 6 : 2779 Wed Apr 16 13:43:40 2008 length 7 : 1614 Wed Apr 16 13:43:40 2008 length 9+: 1746 Wed Apr 16 13:43:40 2008 largest cycle: 23 relations Wed Apr 16 13:43:41 2008 matrix is 53610 x 54072 (11.5 MB) with weight 2792115 (51.64/col) Wed Apr 16 13:43:41 2008 sparse part has weight 2792115 (51.64/col) Wed Apr 16 13:43:41 2008 filtering completed in 3 passes Wed Apr 16 13:43:41 2008 matrix is 48794 x 48858 (10.4 MB) with weight 2519161 (51.56/col) Wed Apr 16 13:43:41 2008 sparse part has weight 2519161 (51.56/col) Wed Apr 16 13:43:41 2008 saving the first 48 matrix rows for later Wed Apr 16 13:43:41 2008 matrix is 48746 x 48858 (5.8 MB) with weight 1866562 (38.20/col) Wed Apr 16 13:43:41 2008 sparse part has weight 1221018 (24.99/col) Wed Apr 16 13:43:41 2008 matrix includes 64 packed rows Wed Apr 16 13:43:41 2008 commencing Lanczos iteration Wed Apr 16 13:43:41 2008 memory use: 7.6 MB Wed Apr 16 13:45:18 2008 lanczos halted after 773 iterations (dim = 48746) Wed Apr 16 13:45:18 2008 recovered 18 nontrivial dependencies Wed Apr 16 13:45:19 2008 prp37 factor: 2746131666830462403852624787266510433 Wed Apr 16 13:45:19 2008 prp48 factor: 194081392436622661770145240283408879646755217701 Wed Apr 16 13:45:19 2008 elapsed time 00:46:58
(16·10147-43)/9 = 1(7)1463<148> = 33 · 47 · 2309 · 4518779 · 603559456090055808011<21> · 6987589127253189423927781<25> · C89
C89 = P36 · P54
P36 = 215360073973402846985925692625318647<36>
P54 = 147828512122673638011891093090638637018899493413484911<54>
Wed Apr 16 13:56:32 2008 Msieve v. 1.33 Wed Apr 16 13:56:32 2008 random seeds: 051d1ddb 36376896 Wed Apr 16 13:56:32 2008 factoring 31836359306117074203320389250315624977093890041136677461587471134178603659539208101435417 (89 digits) Wed Apr 16 13:56:33 2008 searching for 15-digit factors Wed Apr 16 13:56:35 2008 commencing quadratic sieve (89-digit input) Wed Apr 16 13:56:35 2008 using multiplier of 1 Wed Apr 16 13:56:35 2008 using 64kb Pentium 4 sieve core Wed Apr 16 13:56:35 2008 sieve interval: 16 blocks of size 65536 Wed Apr 16 13:56:35 2008 processing polynomials in batches of 7 Wed Apr 16 13:56:35 2008 using a sieve bound of 1553807 (59000 primes) Wed Apr 16 13:56:35 2008 using large prime bound of 124304560 (26 bits) Wed Apr 16 13:56:35 2008 using double large prime bound of 371600775237280 (42-49 bits) Wed Apr 16 13:56:35 2008 using trial factoring cutoff of 49 bits Wed Apr 16 13:56:35 2008 polynomial 'A' values have 11 factors Wed Apr 16 15:44:03 2008 59162 relations (15809 full + 43353 combined from 628278 partial), need 59096 Wed Apr 16 15:44:05 2008 begin with 644087 relations Wed Apr 16 15:44:06 2008 reduce to 144799 relations in 10 passes Wed Apr 16 15:44:06 2008 attempting to read 144799 relations Wed Apr 16 15:44:09 2008 recovered 144799 relations Wed Apr 16 15:44:09 2008 recovered 122538 polynomials Wed Apr 16 15:44:10 2008 attempting to build 59162 cycles Wed Apr 16 15:44:10 2008 found 59162 cycles in 6 passes Wed Apr 16 15:44:10 2008 distribution of cycle lengths: Wed Apr 16 15:44:10 2008 length 1 : 15809 Wed Apr 16 15:44:10 2008 length 2 : 11122 Wed Apr 16 15:44:10 2008 length 3 : 10318 Wed Apr 16 15:44:10 2008 length 4 : 7943 Wed Apr 16 15:44:10 2008 length 5 : 5657 Wed Apr 16 15:44:10 2008 length 6 : 3567 Wed Apr 16 15:44:10 2008 length 7 : 2188 Wed Apr 16 15:44:10 2008 length 9+: 2558 Wed Apr 16 15:44:10 2008 largest cycle: 20 relations Wed Apr 16 15:44:10 2008 matrix is 59000 x 59162 (14.3 MB) with weight 3504517 (59.24/col) Wed Apr 16 15:44:10 2008 sparse part has weight 3504517 (59.24/col) Wed Apr 16 15:44:11 2008 filtering completed in 3 passes Wed Apr 16 15:44:11 2008 matrix is 55126 x 55190 (13.4 MB) with weight 3298366 (59.76/col) Wed Apr 16 15:44:11 2008 sparse part has weight 3298366 (59.76/col) Wed Apr 16 15:44:11 2008 saving the first 48 matrix rows for later Wed Apr 16 15:44:11 2008 matrix is 55078 x 55190 (9.4 MB) with weight 2687805 (48.70/col) Wed Apr 16 15:44:11 2008 sparse part has weight 2138294 (38.74/col) Wed Apr 16 15:44:11 2008 matrix includes 64 packed rows Wed Apr 16 15:44:11 2008 using block size 21845 for processor cache size 512 kB Wed Apr 16 15:44:12 2008 commencing Lanczos iteration Wed Apr 16 15:44:12 2008 memory use: 8.8 MB Wed Apr 16 15:44:43 2008 lanczos halted after 872 iterations (dim = 55078) Wed Apr 16 15:44:43 2008 recovered 17 nontrivial dependencies Wed Apr 16 15:44:44 2008 prp36 factor: 215360073973402846985925692625318647 Wed Apr 16 15:44:44 2008 prp54 factor: 147828512122673638011891093090638637018899493413484911 Wed Apr 16 15:44:44 2008 elapsed time 01:48:12
(16·10110-43)/9 = 1(7)1093<111> = 17 · 223 · 18191 · 2170920051541<13> · C91
C91 = P30 · P61
P30 = 644318852795425173737822057861<30>
P61 = 1842987738890828356532876930775288642859248655760493846825733<61>
Wed Apr 16 15:55:31 2008 Msieve v. 1.33 Wed Apr 16 15:55:31 2008 random seeds: c0087b2b 2066460a Wed Apr 16 15:55:31 2008 factoring 1187471745638173122414222944023909080821371944500674767638801121464815734387399444709737113 (91 digits) Wed Apr 16 15:55:32 2008 searching for 15-digit factors Wed Apr 16 15:55:34 2008 commencing quadratic sieve (91-digit input) Wed Apr 16 15:55:34 2008 using multiplier of 23 Wed Apr 16 15:55:34 2008 using 64kb Pentium 4 sieve core Wed Apr 16 15:55:34 2008 sieve interval: 18 blocks of size 65536 Wed Apr 16 15:55:34 2008 processing polynomials in batches of 6 Wed Apr 16 15:55:34 2008 using a sieve bound of 1652509 (62297 primes) Wed Apr 16 15:55:34 2008 using large prime bound of 145420792 (27 bits) Wed Apr 16 15:55:34 2008 using double large prime bound of 492864656290952 (42-49 bits) Wed Apr 16 15:55:34 2008 using trial factoring cutoff of 49 bits Wed Apr 16 15:55:34 2008 polynomial 'A' values have 12 factors Wed Apr 16 18:22:20 2008 62911 relations (16720 full + 46191 combined from 692900 partial), need 62393 Wed Apr 16 18:22:23 2008 begin with 709620 relations Wed Apr 16 18:22:23 2008 reduce to 152950 relations in 9 passes Wed Apr 16 18:22:23 2008 attempting to read 152950 relations Wed Apr 16 18:22:27 2008 recovered 152950 relations Wed Apr 16 18:22:27 2008 recovered 131618 polynomials Wed Apr 16 18:22:28 2008 attempting to build 62911 cycles Wed Apr 16 18:22:28 2008 found 62911 cycles in 5 passes Wed Apr 16 18:22:28 2008 distribution of cycle lengths: Wed Apr 16 18:22:28 2008 length 1 : 16720 Wed Apr 16 18:22:28 2008 length 2 : 12357 Wed Apr 16 18:22:28 2008 length 3 : 11143 Wed Apr 16 18:22:28 2008 length 4 : 8369 Wed Apr 16 18:22:28 2008 length 5 : 5829 Wed Apr 16 18:22:28 2008 length 6 : 3720 Wed Apr 16 18:22:28 2008 length 7 : 2165 Wed Apr 16 18:22:28 2008 length 9+: 2608 Wed Apr 16 18:22:28 2008 largest cycle: 20 relations Wed Apr 16 18:22:28 2008 matrix is 62297 x 62911 (15.4 MB) with weight 3773523 (59.98/col) Wed Apr 16 18:22:28 2008 sparse part has weight 3773523 (59.98/col) Wed Apr 16 18:22:29 2008 filtering completed in 3 passes Wed Apr 16 18:22:29 2008 matrix is 57938 x 58002 (14.2 MB) with weight 3482288 (60.04/col) Wed Apr 16 18:22:29 2008 sparse part has weight 3482288 (60.04/col) Wed Apr 16 18:22:30 2008 saving the first 48 matrix rows for later Wed Apr 16 18:22:30 2008 matrix is 57890 x 58002 (8.5 MB) with weight 2661136 (45.88/col) Wed Apr 16 18:22:30 2008 sparse part has weight 1882903 (32.46/col) Wed Apr 16 18:22:30 2008 matrix includes 64 packed rows Wed Apr 16 18:22:30 2008 using block size 21845 for processor cache size 512 kB Wed Apr 16 18:22:30 2008 commencing Lanczos iteration Wed Apr 16 18:22:30 2008 memory use: 8.5 MB Wed Apr 16 18:23:03 2008 lanczos halted after 917 iterations (dim = 57890) Wed Apr 16 18:23:03 2008 recovered 19 nontrivial dependencies Wed Apr 16 18:23:05 2008 prp30 factor: 644318852795425173737822057861 Wed Apr 16 18:23:05 2008 prp61 factor: 1842987738890828356532876930775288642859248655760493846825733 Wed Apr 16 18:23:05 2008 elapsed time 02:27:34
By Robert Backstrom / GMP-ECM, GGNFS
8·10167+9 = 8(0)1669<168> = 72 · 967 · 59723 · 85525507 · 104791781467<12> · C140
C140 = P38 · P102
P38 = 32070636141063417698309974804038142769<38>
P102 = 983547553579979304561951273616176372155814093748174239324385537878449421978287184323475247763731622141<102>
(16·10111-43)/9 = 1(7)1103<112> = 32 · 10274066749<11> · C101
C101 = P37 · P64
P37 = 2225084121385833837269896643903724031<37>
P64 = 8640644676536263769574342271241601366043048979121263003270936663<64>
Number: n N=19226161268297874886381163435979431186147422624412897339015610496841133983714092394936499375232048553 ( 101 digits) SNFS difficulty: 112 digits. Divisors found: r1=2225084121385833837269896643903724031 (pp37) r2=8640644676536263769574342271241601366043048979121263003270936663 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.67 hours. Scaled time: 1.22 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_7_110_3 n: 19226161268297874886381163435979431186147422624412897339015610496841133983714092394936499375232048553 skew: 1.54 deg: 5 c5: 5 c0: -43 m: 20000000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 170001) Primes: RFBsize:41538, AFBsize:41437, largePrimes:3529069 encountered Relations: rels:2913505, finalFF:95356 Max relations in full relation-set: 48 Initial matrix: 83040 x 95356 with sparse part having weight 7738673. Pruned matrix : 78525 x 79004 with weight 4764399. Total sieving time: 0.58 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.5,2.5,50000 total time: 0.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GMP-ECM
8·10170-1 = 7(9)170<171> = 79 · 5711 · 27751 · 271927760593<12> · C150
C150 = P32 · P119
P32 = 14008580624750494404998711251129<32>
P119 = 16773527998674156443599016288925581723244594369965881175195561165229044921073548889200126000428046790680088466419299393<119>
(16·10142-43)/9 = 1(7)1413<143> = 7 · 17 · 2709756296960221278752815673<28> · C113
C113 = P34 · P80
P34 = 5500591316638770792347012316501127<34>
P80 = 10022842335671191323150316599085734859085649805584448266612992605807362427757077<80>
8·10173-1 = 7(9)173<174> = 30169 · 829284774211<12> · 528320520638157539<18> · C140
C140 = P34 · P107
P34 = 2380128402987626355750914791239491<34>
P107 = 25428896472579987859772918652405527101836770281382986409039510776347763971977279943001852490967033956157589<107>
The factor table of 177...773 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
4·10194+3 = 4(0)1933<195> = 13 · 487 · 10747520347<11> · 1061459829998311<16> · 56889821479343939004524558081383<32> · C134
C134 = P37 · P98
P37 = 1097437743804222790112801602356295333<37>
P98 = 88707711400317344925950831681572035023026603223066152620648506409066689217254920192657566027207151<98>
(31·10165-13)/9 = 3(4)1643<166> = 11 · 167881116341<12> · 1805455694335159<16> · C139
C139 = P49 · P90
P49 = 7347822245464475165282519977448389173180184038157<49>
P90 = 140598010033950929058795866865500565051420080556908773879274375567266916603580233027144711<90>
Number: n N=1033089185795502125725549943468951191075287560678144964465240476031654211528331590947854279300951567277909959275083588067187997223584737627 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: Tue Apr 15 11:10:58 2008 prp49 factor: 7347822245464475165282519977448389173180184038157 Tue Apr 15 11:10:58 2008 prp90 factor: 140598010033950929058795866865500565051420080556908773879274375567266916603580233027144711 Tue Apr 15 11:10:58 2008 elapsed time 01:00:36 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 46.01 hours. Scaled time: 38.47 units (timescale=0.836). Factorization parameters were as follows: name: KA_3_4_164_3 n: 1033089185795502125725549943468951191075287560678144964465240476031654211528331590947854279300951567277909959275083588067187997223584737627 type: snfs deg: 5 c5: 31 c0: -13 skew: 0.84 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900189) Primes: RFBsize:230209, AFBsize:231088, largePrimes:5568743 encountered Relations: rels:5432587, finalFF:503551 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 45.83 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 46.01 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GGNFS
(5·10168-11)/3 = 1(6)1673<169> = 4120200831685709<16> · 23283723302621145827<20> · 7002077822382344086391<22> · C112
C112 = P36 · P76
P36 = 717427856562862178965744919216242153<36>
P76 = 3458380435415848667465634528539779826524512908443732339648083491542419594767<76>
Number: 16663_168 N=2481138462959330325490993384397680976466694579370363415914673815102702133510771942578531055673159342874803613351 ( 112 digits) Divisors found: r1=717427856562862178965744919216242153 (pp36) r2=3458380435415848667465634528539779826524512908443732339648083491542419594767 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.75 hours. Scaled time: 37.84 units (timescale=2.132). Factorization parameters were as follows: name: 16663_168 n: 2481138462959330325490993384397680976466694579370363415914673815102702133510771942578531055673159342874803613351 skew: 39431.34 # norm 3.83e+15 c5: 49140 c4: 25817859 c3: -129120732929669 c2: -13844558931293250 c1: -38168703002247717958437 c0: -14214612319618440379396535 # alpha -6.15 Y1: 948140859907 Y0: -2191003897547610215284 # Murphy_E 7.79e-10 # M 626313471121193201721002423945625760926830506962689097707011606329236140510462918777889081342378696446678369389 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2310001) Primes: RFBsize:203362, AFBsize:203549, largePrimes:7651451 encountered Relations: rels:7592999, finalFF:593633 Max relations in full relation-set: 28 Initial matrix: 406998 x 593633 with sparse part having weight 57772171. Pruned matrix : 279566 x 281664 with weight 33387440. Polynomial selection time: 0.93 hours. Total sieving time: 16.05 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.51 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 17.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
(5·10162-11)/3 = 1(6)1613<163> = 792 · 1703047673933057999<19> · 233440442843090372721489089<27> · C114
C114 = P52 · P63
P52 = 1306190477930074137492388256168123171756279944035161<52>
P63 = 514262846899694625766088991599592595724106922026482072425101233<63>
Number: 16663_162 N=671725233773592668158357861381849172992458792903099915618738967360228871501589617429534879024002483836109936453513 ( 114 digits) Divisors found: r1=1306190477930074137492388256168123171756279944035161 (pp52) r2=514262846899694625766088991599592595724106922026482072425101233 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.21 hours. Scaled time: 43.07 units (timescale=2.131). Factorization parameters were as follows: name: 16663_162 n: 671725233773592668158357861381849172992458792903099915618738967360228871501589617429534879024002483836109936453513 skew: 78136.67 # norm 7.46e+15 c5: 10200 c4: 383189044 c3: -309484053417710 c2: -2304352732987123077 c1: 541567228155987031479672 c0: 5146408181504792994975174915 # alpha -6.63 Y1: 790123132007 Y0: -9198521293021626091202 # Murphy_E 6.63e-10 # M 149167548420111073124963642693625400845864591092677417612563808371518751186252456902329787959070180331393959520234 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 70000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2800001) Primes: RFBsize:250150, AFBsize:249746, largePrimes:7531910 encountered Relations: rels:7489527, finalFF:657062 Max relations in full relation-set: 28 Initial matrix: 499975 x 657062 with sparse part having weight 55624613. Pruned matrix : 371906 x 374469 with weight 31096495. Polynomial selection time: 1.18 hours. Total sieving time: 17.97 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.78 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.4,2.4,70000 total time: 20.21 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(5·10165-11)/3 = 1(6)1643<166> = C166
C166 = P79 · P87
P79 = 2245517242112414977206809019850729467395498042626696714518847161837856305294667<79>
P87 = 742219491977176312144123372249810594188783117241757062443391872162301374408886058723989<87>
Number: n N=1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 166 digits) SNFS difficulty: 165 digits. Divisors found: Mon Apr 14 12:44:39 2008 prp79 factor: 2245517242112414977206809019850729467395498042626696714518847161837856305294667 Mon Apr 14 12:44:39 2008 prp87 factor: 742219491977176312144123372249810594188783117241757062443391872162301374408886058723989 Mon Apr 14 12:44:39 2008 elapsed time 01:37:42 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 60.64 hours. Scaled time: 79.13 units (timescale=1.305). Factorization parameters were as follows: name: KA_1_6_164_3 n: 1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 skew: 1.17 deg: 5 c5: 5 c0: -11 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700199) Primes: RFBsize:216816, AFBsize:217082, largePrimes:7364083 encountered Relations: rels:6800164, finalFF:446721 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 60.37 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 60.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10165-1 = 8(9)165<166> = 1139239 · 3500008777892854273507<22> · C139
C139 = P66 · P74
P66 = 107006813752674037531328510242074918993021462449577391740200262799<66>
P74 = 21093424816570316132097077241926854067827836439105917046567434042812717837<74>
Number: n N=2257140180752772341749697563476673520949004624616088331617541248692208685477716800333936267810500726303368685688650280142696027086834845763 ( 139 digits) SNFS difficulty: 165 digits. Divisors found: Mon Apr 14 14:15:03 2008 prp66 factor: 107006813752674037531328510242074918993021462449577391740200262799 Mon Apr 14 14:15:03 2008 prp74 factor: 21093424816570316132097077241926854067827836439105917046567434042812717837 Mon Apr 14 14:15:03 2008 elapsed time 00:46:12 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 38.69 hours. Scaled time: 32.38 units (timescale=0.837). Factorization parameters were as follows: name: KA_8_9_165 n: 2257140180752772341749697563476673520949004624616088331617541248692208685477716800333936267810500726303368685688650280142696027086834845763 type: snfs deg: 5 c5: 9 c0: -1 skew: 0.72 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500363) Primes: RFBsize:230209, AFBsize:230192, largePrimes:5532216 encountered Relations: rels:5417337, finalFF:495898 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 38.51 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 38.69 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(28·10170+17)/9 = 3(1)1693<171> = 1364116464566141004805456799576331094877<40> · C132
C132 = P35 · P97
P35 = 23585939755509836363182840530964787<35>
P97 = 9669652926621334818015115351221646782123712466665679277267133617240759474730728542857515285098287<97>
By Sinkiti Sibata / GGNFS
(5·10148-11)/3 = 1(6)1473<149> = 19 · 47 · 21136991855671866611141813801269<32> · C114
C114 = P44 · P71
P44 = 77581006255394308296816310422507819092440721<44>
P71 = 11381479025872568962993334130062892789418939418216468034738922176619159<71>
Number: 16663_148 N=882986595501858891160847091201028575717445778711899220284603910447793803044973296304248132142102675473785400373639 ( 114 digits) SNFS difficulty: 149 digits. Divisors found: r1=77581006255394308296816310422507819092440721 (pp44) r2=11381479025872568962993334130062892789418939418216468034738922176619159 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 30.17 hours. Scaled time: 20.43 units (timescale=0.677). Factorization parameters were as follows: name: 16663_148 n: 882986595501858891160847091201028575717445778711899220284603910447793803044973296304248132142102675473785400373639 m: 500000000000000000000000000000 c5: 8 c0: -55 skew: 1.47 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3650001) Primes: RFBsize:114155, AFBsize:114253, largePrimes:2934910 encountered Relations: rels:2944993, finalFF:258683 Max relations in full relation-set: 28 Initial matrix: 228473 x 258683 with sparse part having weight 30088083. Pruned matrix : 220063 x 221269 with weight 24230101. Total sieving time: 27.97 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.87 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 30.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(5·10170-11)/3 = 1(6)1693<171> = C171
C171 = P67 · P104
P67 = 2804670536816483766033030070325032866365359271873179603347962930801<67>
P104 = 59424686243485168857371524605765216738985593764108704179128271614469158986252195899906766898342583066263<104>
Number: 16663_170 N=166666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 ( 171 digits) SNFS difficulty: 170 digits. Divisors found: r1=2804670536816483766033030070325032866365359271873179603347962930801 (pp67) r2=59424686243485168857371524605765216738985593764108704179128271614469158986252195899906766898342583066263 (pp104) Version: GGNFS-0.77.1-20050930-nocona Total time: 77.89 hours. Scaled time: 167.32 units (timescale=2.148). Factorization parameters were as follows: n: 166666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666663 m: 10000000000000000000000000000000000 c5: 5 c0: -11 skew: 1.17 type: snfs Factor base limits: 7000000/7000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [3500000, 7400001) Primes: RFBsize:476648, AFBsize:476585, largePrimes:6660039 encountered Relations: rels:7150884, finalFF:1119821 Max relations in full relation-set: 28 Initial matrix: 953298 x 1119821 with sparse part having weight 64956325. Pruned matrix : 810449 x 815279 with weight 45109511. Total sieving time: 73.83 hours. Total relation processing time: 0.13 hours. Matrix solve time: 3.86 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,7000000,7000000,27,27,49,49,2.6,2.6,100000 total time: 77.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407670) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Total of 4 processors activated (19246.09 BogoMIPS).
Jason Papadopoulos's Msieve Version 1.35 was released.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(5·10159-11)/3 = 1(6)1583<160> = 66617 · 21944655402216352685141777<26> · C130
C130 = P57 · P73
P57 = 249338152176387828895115662897439191770188346492207387691<57>
P73 = 4572420640210901723153537570503316526388708355459392492824185811297632077<73>
Number: n N=1140078913403362475426734419368691054460014958124652265589751664211254989625522656680600371254324341321370031223969601514216564207 ( 130 digits) SNFS difficulty: 160 digits. Divisors found: r1=249338152176387828895115662897439191770188346492207387691 (pp57) r2=4572420640210901723153537570503316526388708355459392492824185811297632077 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.36 hours. Scaled time: 40.90 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_6_158_3 n: 1140078913403362475426734419368691054460014958124652265589751664211254989625522656680600371254324341321370031223969601514216564207 skew: 1.86 deg: 5 c5: 1 c0: -22 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216967, largePrimes:7093950 encountered Relations: rels:6596572, finalFF:526491 Max relations in full relation-set: 48 Initial matrix: 433847 x 526491 with sparse part having weight 41986594. Pruned matrix : 359802 x 362035 with weight 24165523. Total sieving time: 21.11 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.06 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 22.36 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
5·10164-3 = 4(9)1637<165> = 7 · 17 · 265628159462057789779216016761<30> · C134
C134 = P65 · P70
P65 = 14415395583187368964117409453669561022245725587364267441064003881<65>
P70 = 1097292384810779781467311229833121140205885608438153270649880660837643<70>
Number: n N=15817903797466449690025501204524752190149137263149117955395138235556021194425072941823375150554994336662924330944593886562016862892483 ( 134 digits) SNFS difficulty: 165 digits. Divisors found: Sun Apr 13 15:27:18 2008 prp65 factor: 14415395583187368964117409453669561022245725587364267441064003881 Sun Apr 13 15:27:18 2008 prp70 factor: 1097292384810779781467311229833121140205885608438153270649880660837643 Sun Apr 13 15:27:18 2008 elapsed time 00:48:41 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.01 hours. Scaled time: 51.37 units (timescale=1.834). Factorization parameters were as follows: name: KA_4_9_163_7 n: 15817903797466449690025501204524752190149137263149117955395138235556021194425072941823375150554994336662924330944593886562016862892483 skew: 1.43 deg: 5 c5: 1 c0: -6 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2000261) Primes: RFBsize:230209, AFBsize:230282, largePrimes:7108660 encountered Relations: rels:6564318, finalFF:502203 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 27.86 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 28.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(2·10177+43)/9 = (2)1767<177> = 5555233 · 4431534533<10> · 9207448973929<13> · 2993559071886717761227<22> · C126
C126 = P38 · P88
P38 = 96018067606635797646393749559985680613<38>
P88 = 3410758378305553129463494314744010333879148182725934296703293055767983843116651912665817<88>
By Sinkiti Sibata / GGNFS
(5·10145-11)/3 = 1(6)1443<146> = 13 · 29 · 136045673 · 524365382060364953<18> · C117
C117 = P48 · P69
P48 = 782208664539194981412341792228712859716363821171<48>
P69 = 792256901871551573562908486122649158368373345051205572768889156804581<69>
Number: 16663_145 N=619710213184906401442171112855315553108109013330960148072201601903639776804276018815261015424998164044556841277584351 ( 117 digits) SNFS difficulty: 145 digits. Divisors found: r1=782208664539194981412341792228712859716363821171 (pp48) r2=792256901871551573562908486122649158368373345051205572768889156804581 (pp69) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 16.78 hours. Scaled time: 11.36 units (timescale=0.677). Factorization parameters were as follows: name: 16663_145 n: 619710213184906401442171112855315553108109013330960148072201601903639776804276018815261015424998164044556841277584351 m: 100000000000000000000000000000 c5: 5 c0: -11 skew: 1.17 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2250001) Primes: RFBsize:100021, AFBsize:100464, largePrimes:2713581 encountered Relations: rels:2665288, finalFF:225945 Max relations in full relation-set: 28 Initial matrix: 200550 x 225945 with sparse part having weight 23304396. Pruned matrix : 193546 x 194612 with weight 18417270. Total sieving time: 15.37 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.17 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 16.78 hours. --------- CPU info (if available) ----------
(5·10134-11)/3 = 1(6)1333<135> = 17 · 73 · 50664461 · 775886330194411<15> · C109
C109 = P55 · P55
P55 = 1514562294684404165773916125751733937523450013323054647<55>
P55 = 2255736153622223157008861495416148949542640027113330839<55>
Number: 16663_134 N=3416452925032645934485143394771495867369932302980206841897365478739597445039157195025694908555018430187358833 ( 109 digits) SNFS difficulty: 135 digits. Divisors found: r1=1514562294684404165773916125751733937523450013323054647 (pp55) r2=2255736153622223157008861495416148949542640027113330839 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.96 hours. Scaled time: 4.71 units (timescale=0.677). Factorization parameters were as follows: name: 16663_134 n: 3416452925032645934485143394771495867369932302980206841897365478739597445039157195025694908555018430187358833 m: 1000000000000000000000000000 c5: 1 c0: -22 skew: 1.86 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64044, largePrimes:1509703 encountered Relations: rels:1514301, finalFF:179475 Max relations in full relation-set: 28 Initial matrix: 142606 x 179475 with sparse part having weight 12642214. Pruned matrix : 129762 x 130539 with weight 7432855. Total sieving time: 6.54 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.96 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(5·10153-11)/3 = 1(6)1523<154> = 3819031 · C147
C147 = P41 · P50 · P57
P41 = 24146838789382262583920577322514279965903<41>
P50 = 28350609396736902451470157465466104446889245761819<50>
P57 = 637489278118176076476491206382010478850794755031832879789<57>
Number: n N=436410876650822333378981911031009349404774841227176911281072781725696038253333546301841138934632022276505916465895842863455852195666038496850815473 ( 147 digits) SNFS difficulty: 154 digits. Divisors found: Sat Apr 12 10:45:05 2008 prp41 factor: 24146838789382262583920577322514279965903 Sat Apr 12 10:45:05 2008 prp50 factor: 28350609396736902451470157465466104446889245761819 Sat Apr 12 10:45:05 2008 prp57 factor: 637489278118176076476491206382010478850794755031832879789 Sat Apr 12 10:45:05 2008 elapsed time 00:27:23 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 16.36 hours. Scaled time: 13.73 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_6_152_3 n: 436410876650822333378981911031009349404774841227176911281072781725696038253333546301841138934632022276505916465895842863455852195666038496850815473 type: snfs deg: 5 c5: 8 c0: -55 skew: 1.47 m: 5000000000000000000000000000000 rlim: 2400000 alim: 2400000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 1099990) Primes: RFBsize:176302, AFBsize:176364, largePrimes:5290147 encountered Relations: rels:5091653, finalFF:422983 Max relations in full relation-set: 28 Initial matrix: 352731 x 422983 with sparse part having weight 32754194. Pruned matrix : Total sieving time: 16.23 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.5,2.5,100000 total time: 16.36 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(4·10167+11)/3 = 1(3)1667<168> = 9293 · C164
C164 = P45 · P53 · P67
P45 = 224864619045978638314145645571117372544626209<45>
P53 = 23565455558677248911299805619150071026683171590171297<53>
P67 = 2707608271774091657130405693450396883166513443249779410037377585533<67>
Number: n N=14347716919545177373650417877255281753291007568420675060081064600595430252161124861006492341906094192761576814089458014993364180924710355464686681731769432189102909 ( 164 digits) SNFS difficulty: 167 digits. Divisors found: Sat Apr 12 21:37:02 2008 prp45 factor: 224864619045978638314145645571117372544626209 Sat Apr 12 21:37:02 2008 prp53 factor: 23565455558677248911299805619150071026683171590171297 Sat Apr 12 21:37:02 2008 prp67 factor: 2707608271774091657130405693450396883166513443249779410037377585533 Sat Apr 12 21:37:02 2008 elapsed time 01:43:43 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.71 hours. Scaled time: 92.25 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_3_166_7 n: 14347716919545177373650417877255281753291007568420675060081064600595430252161124861006492341906094192761576814089458014993364180924710355464686681731769432189102909 skew: 0.97 deg: 5 c5: 25 c0: 22 m: 2000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300127) Primes: RFBsize:230209, AFBsize:229923, largePrimes:7513121 encountered Relations: rels:6955203, finalFF:510760 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 63.46 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 63.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(5·10143-11)/3 = 1(6)1423<144> = 72 · 67 · 331 · C138
C138 = P38 · P100
P38 = 28798534375392779303628140531657338781<38>
P100 = 5325734193132791638248472962622411091501534140325790522239722750062612132583107197711871318984210851<100>
Number: n N=153373339235139427101498488198995159230667060529401822504715463314784361686235571019678106170546858775976459032907476919613045200043312631 ( 138 digits) SNFS difficulty: 144 digits. Divisors found: Fri Apr 11 06:57:45 2008 prp38 factor: 28798534375392779303628140531657338781 Fri Apr 11 06:57:45 2008 prp100 factor: 5325734193132791638248472962622411091501534140325790522239722750062612132583107197711871318984210851 Fri Apr 11 06:57:45 2008 elapsed time 00:23:37 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.52 hours. Scaled time: 13.08 units (timescale=1.739). Factorization parameters were as follows: name: KA_1_6_142_3 n: 153373339235139427101498488198995159230667060529401822504715463314784361686235571019678106170546858775976459032907476919613045200043312631 type: snfs skew: 1.47 deg: 5 c5: 8 c0: -55 m: 50000000000000000000000000000 rlim: 1300000 alim: 1300000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1299990) Primes: RFBsize:100021, AFBsize:100094, largePrimes:5326819 encountered Relations: rels:4686212, finalFF:250627 Max relations in full relation-set: 28 Initial matrix: 200180 x 250627 with sparse part having weight 20240544. Pruned matrix : Total sieving time: 7.38 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,28,28,48,48,2.3,2.3,100000 total time: 7.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10166+17)/3 = 1(3)1659<167> = 23 · 14934599 · C158
C158 = P40 · P49 · P70
P40 = 4174243305008880150142804690262251278349<40>
P49 = 7364569572438135830466677565409660399752515893267<49>
P70 = 1262676814439812792538853247661616472122117327064522172690220773124829<70>
Number: n N=38816585897454376370203041341417520056828335718762951002257396990744760548637933715654773052226878857184125827938004994260332153467299638252418262869453947707 ( 158 digits) SNFS difficulty: 166 digits. Divisors found: Fri Apr 11 07:07:03 2008 prp40 factor: 4174243305008880150142804690262251278349 Fri Apr 11 07:07:03 2008 prp49 factor: 7364569572438135830466677565409660399752515893267 Fri Apr 11 07:07:03 2008 prp70 factor: 1262676814439812792538853247661616472122117327064522172690220773124829 Fri Apr 11 07:07:03 2008 elapsed time 00:55:29 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 54.76 hours. Scaled time: 45.78 units (timescale=0.836). Factorization parameters were as follows: name: KA_1_3_165_9 n: 38816585897454376370203041341417520056828335718762951002257396990744760548637933715654773052226878857184125827938004994260332153467299638252418262869453947707 type: snfs deg: 5 c5: 40 c0: 17 skew: 0.84 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300001) Primes: RFBsize:230209, AFBsize:230272, largePrimes:5779326 encountered Relations: rels:5745407, finalFF:535328 Max relations in full relation-set: 28 Initial matrix: 460547 x 535328 with sparse part having weight 49032993. Pruned matrix : Total sieving time: 54.57 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 54.76 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(4·10197+41)/9 = (4)1969<197> = 23 · 712 · 149 · 233 · 677664049 · 2468169467<10> · 22402204398569599<17> · 4434981126357605717<19> · C134
C134 = P40 · P95
P40 = 2078833007212834249538418304107943881613<40>
P95 = 31962386728259488329238937951744272406806378777600988877444685328307968295581798047594803451847<95>
(5·10150-11)/3 = 1(6)1493<151> = 17 · 73 · C148
C148 = P60 · P88
P60 = 421508304886553720011487693851764078006034468054366993384417<60>
P88 = 3186183852220802244203025392870376136376593039760043939060786645463566852296231191997279<88>
Number: n N=1343002954606500134300295460650013430029546065001343002954606500134300295460650013430029546065001343002954606500134300295460650013430029546065001343 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=421508304886553720011487693851764078006034468054366993384417 (pp60) r2=3186183852220802244203025392870376136376593039760043939060786645463566852296231191997279 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.06 hours. Scaled time: 18.40 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_6_149_3 n: 1343002954606500134300295460650013430029546065001343002954606500134300295460650013430029546065001343002954606500134300295460650013430029546065001343 skew: 1.17 deg: 5 c5: 5 c0: -11 m: 1000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:149461, largePrimes:6183051 encountered Relations: rels:5595336, finalFF:372683 Max relations in full relation-set: 48 Initial matrix: 298459 x 372683 with sparse part having weight 30927493. Pruned matrix : 243552 x 245108 with weight 16516457. Total sieving time: 9.53 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.40 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 10.06 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(5·10151-11)/3 = 1(6)1503<152> = 13 · 61 · 19826901180373766972341<23> · C127
C127 = P44 · P83
P44 = 46530459068806937674122576450802907831043811<44>
P83 = 22781555975659239394922705505015311151556624542606348511511085464549559681088943041<83>
Number: n N=1060036257849146338773355785054145385311743017990749268402929154561767396758361119623350696044828967927053540184320041754569251 ( 127 digits) SNFS difficulty: 151 digits. Divisors found: r1=46530459068806937674122576450802907831043811 (pp44) r2=22781555975659239394922705505015311151556624542606348511511085464549559681088943041 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.84 hours. Scaled time: 23.49 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_6_150_3 n: 1060036257849146338773355785054145385311743017990749268402929154561767396758361119623350696044828967927053540184320041754569251 skew: 0.74 deg: 5 c5: 50 c0: -11 m: 1000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:148933, AFBsize:149221, largePrimes:6479496 encountered Relations: rels:5837996, finalFF:344927 Max relations in full relation-set: 48 Initial matrix: 298219 x 344927 with sparse part having weight 33847276. Pruned matrix : 270062 x 271617 with weight 21493159. Total sieving time: 12.13 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.56 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 12.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / Msieve, GGNFS
(5·10154-11)/3 = 1(6)1533<155> = 20747 · 1103982904122717018242570941<28> · 514096729678132664523698534537<30> · C94
C94 = P45 · P49
P45 = 585300977028591004285181609982549579278364431<45>
P49 = 2418282339557813003254540703695423879556104787327<49>
Thu Apr 10 21:13:18 2008 Msieve v. 1.33 Thu Apr 10 21:13:18 2008 random seeds: 5f0a8418 665aa333 Thu Apr 10 21:13:18 2008 factoring 1415423016074174819521263294353965449508917291651641663096371423565430400347476027033656365937 (94 digits) Thu Apr 10 21:13:20 2008 searching for 15-digit factors Thu Apr 10 21:13:21 2008 commencing quadratic sieve (94-digit input) Thu Apr 10 21:13:22 2008 using multiplier of 1 Thu Apr 10 21:13:22 2008 using 64kb Pentium 4 sieve core Thu Apr 10 21:13:22 2008 sieve interval: 18 blocks of size 65536 Thu Apr 10 21:13:22 2008 processing polynomials in batches of 6 Thu Apr 10 21:13:22 2008 using a sieve bound of 1983061 (74118 primes) Thu Apr 10 21:13:22 2008 using large prime bound of 255814869 (27 bits) Thu Apr 10 21:13:22 2008 using double large prime bound of 1362279921846333 (42-51 bits) Thu Apr 10 21:13:22 2008 using trial factoring cutoff of 51 bits Thu Apr 10 21:13:22 2008 polynomial 'A' values have 12 factors Fri Apr 11 03:21:49 2008 74217 relations (17169 full + 57048 combined from 1052711 partial), need 74214 Fri Apr 11 03:21:52 2008 begin with 1069880 relations Fri Apr 11 03:21:54 2008 reduce to 197432 relations in 11 passes Fri Apr 11 03:21:54 2008 attempting to read 197432 relations Fri Apr 11 03:22:00 2008 recovered 197432 relations Fri Apr 11 03:22:00 2008 recovered 184174 polynomials Fri Apr 11 03:22:00 2008 attempting to build 74217 cycles Fri Apr 11 03:22:00 2008 found 74217 cycles in 5 passes Fri Apr 11 03:22:00 2008 distribution of cycle lengths: Fri Apr 11 03:22:00 2008 length 1 : 17169 Fri Apr 11 03:22:00 2008 length 2 : 12312 Fri Apr 11 03:22:00 2008 length 3 : 12345 Fri Apr 11 03:22:00 2008 length 4 : 10360 Fri Apr 11 03:22:00 2008 length 5 : 7835 Fri Apr 11 03:22:00 2008 length 6 : 5380 Fri Apr 11 03:22:00 2008 length 7 : 3675 Fri Apr 11 03:22:00 2008 length 9+: 5141 Fri Apr 11 03:22:00 2008 largest cycle: 19 relations Fri Apr 11 03:22:01 2008 matrix is 74118 x 74217 (19.0 MB) with weight 4695268 (63.26/col) Fri Apr 11 03:22:01 2008 sparse part has weight 4695268 (63.26/col) Fri Apr 11 03:22:02 2008 filtering completed in 3 passes Fri Apr 11 03:22:02 2008 matrix is 71310 x 71374 (18.4 MB) with weight 4545762 (63.69/col) Fri Apr 11 03:22:02 2008 sparse part has weight 4545762 (63.69/col) Fri Apr 11 03:22:03 2008 saving the first 48 matrix rows for later Fri Apr 11 03:22:03 2008 matrix is 71262 x 71374 (10.9 MB) with weight 3510302 (49.18/col) Fri Apr 11 03:22:03 2008 sparse part has weight 2421855 (33.93/col) Fri Apr 11 03:22:03 2008 matrix includes 64 packed rows Fri Apr 11 03:22:03 2008 using block size 21845 for processor cache size 512 kB Fri Apr 11 03:22:04 2008 commencing Lanczos iteration Fri Apr 11 03:22:04 2008 memory use: 11.1 MB Fri Apr 11 03:22:53 2008 lanczos halted after 1128 iterations (dim = 71260) Fri Apr 11 03:22:53 2008 recovered 15 nontrivial dependencies Fri Apr 11 03:22:54 2008 prp45 factor: 585300977028591004285181609982549579278364431 Fri Apr 11 03:22:54 2008 prp49 factor: 2418282339557813003254540703695423879556104787327 Fri Apr 11 03:22:54 2008 elapsed time 06:09:36
(5·10129-11)/3 = 1(6)1283<130> = 258787 · C124
C124 = P37 · P88
P37 = 5066833232812900348371444210929217377<37>
P88 = 1271070628221685741151778990506755714714922860599778130191770040148883980132610080516237<88>
Number: 16663_129 N=6440302900326008132814502531683070118153797009380945204614863446257604387649559934102820723864284785042010095818826551050349 ( 124 digits) SNFS difficulty: 130 digits. Divisors found: r1=5066833232812900348371444210929217377 (pp37) r2=1271070628221685741151778990506755714714922860599778130191770040148883980132610080516237 (pp88) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 4.48 hours. Scaled time: 3.03 units (timescale=0.677). Factorization parameters were as follows: name: 16663_129 n: 6440302900326008132814502531683070118153797009380945204614863446257604387649559934102820723864284785042010095818826551050349 m: 100000000000000000000000000 c5: 1 c0: -22 skew: 1.86 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:64044, largePrimes:1431982 encountered Relations: rels:1420951, finalFF:163891 Max relations in full relation-set: 28 Initial matrix: 128059 x 163891 with sparse part having weight 9321009. Pruned matrix : 116287 x 116991 with weight 5139628. Total sieving time: 4.18 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.48 hours. --------- CPU info (if available) ----------
(5·10133-11)/3 = 1(6)1323<134> = 13 · 5693 · 929178817187244089<18> · C111
C111 = P47 · P64
P47 = 26383737838315756222354254062173633796804502149<47>
P64 = 9186045454305410246170305021305223071642869327656871729015051787<64>
Number: 16663_133 N=242362215037246103331022315073602170502581559779716014453310837872533146895368113827105214017523348267987790263 ( 111 digits) SNFS difficulty: 134 digits. Divisors found: r1=26383737838315756222354254062173633796804502149 (pp47) r2=9186045454305410246170305021305223071642869327656871729015051787 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.41 hours. Scaled time: 5.02 units (timescale=0.677). Factorization parameters were as follows: name: 16663_133 n: 242362215037246103331022315073602170502581559779716014453310837872533146895368113827105214017523348267987790263 m: 500000000000000000000000000 c5: 8 c0: -55 skew: 1.47 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:78498, AFBsize:64019, largePrimes:1542285 encountered Relations: rels:1556716, finalFF:188341 Max relations in full relation-set: 28 Initial matrix: 142582 x 188341 with sparse part having weight 14359518. Pruned matrix : 127065 x 127841 with weight 7978424. Total sieving time: 6.99 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.41 hours. --------- CPU info (if available) ----------
By suberi / GGNFS
(61·10164-7)/9 = 6(7)164<165> = 317 · 3495769463<10> · 4497534330479<13> · 110614628030592113<18> · C124
C124 = P46 · P78
P46 = 5132819123667913656014282950111020599968382579<46>
P78 = 239520267690880254444053983762177434375240421775507117542386875504206305181039<78>
Number: 67777_164 N=1229414210509808080396481586136781304990112987408467724961865348285630111489772284606331844141937676322340980381636608719581 ( 124 digits) SNFS difficulty: 166 digits. Divisors found: r1=5132819123667913656014282950111020599968382579 (pp46) r2=239520267690880254444053983762177434375240421775507117542386875504206305181039 (pp78) Version: GGNFS-0.77.1-20060722-k8 Total time: 148.21 hours. Scaled time: 280.42 units (timescale=1.892). Factorization parameters were as follows: n: 1229414210509808080396481586136781304990112987408467724961865348285630111489772284606331844141937676322340980381636608719581 m: 1000000000000000000000000000000000 c5: 61 c0: -70 skew: 1.03 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, ) Primes: RFBsize:348513, AFBsize:347762, largePrimes:6076829 encountered Relations: rels:6274668, finalFF:827831 Max relations in full relation-set: 32 Initial matrix: 696340 x 827831 with sparse part having weight 69285818. Pruned matrix : 599091 x 602636 with weight 51254532. Total sieving time: 144.01 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.82 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 148.21 hours. --------- CPU info (if available) ---------- Memory: 896148k/915904k available (2823k kernel code, 19044k reserved, 1312k data, 204k init) Calibrating delay using timer specific routine.. 3594.37 BogoMIPS (lpj=7188757) Calibrating delay using timer specific routine.. 3591.04 BogoMIPS (lpj=7182090)
By Jo Yeong Uk / GMP-ECM, Msieve
(5·10141-11)/3 = 1(6)1403<142> = 149 · 173273 · 92704098020668750136839<23> · C111
C111 = P32 · P34 · P46
P32 = 15188722265464115071522657576259<32>
P34 = 7712334843403732256679766516486637<34>
P46 = 5944639679663139196197290964556363337121607987<46>
Thu Apr 10 09:23:24 2008 Thu Apr 10 09:23:24 2008 Thu Apr 10 09:23:24 2008 Msieve v. 1.34 Thu Apr 10 09:23:24 2008 random seeds: f379aa7d 8ca47774 Thu Apr 10 09:23:24 2008 factoring 45847051732946429718609863722692727709273793212213606054363232586927611237969719 (80 digits) Thu Apr 10 09:23:24 2008 no P-1/P+1/ECM available, skipping Thu Apr 10 09:23:24 2008 commencing quadratic sieve (80-digit input) Thu Apr 10 09:23:24 2008 using multiplier of 5 Thu Apr 10 09:23:24 2008 using 32kb Intel Core sieve core Thu Apr 10 09:23:24 2008 sieve interval: 12 blocks of size 32768 Thu Apr 10 09:23:24 2008 processing polynomials in batches of 17 Thu Apr 10 09:23:24 2008 using a sieve bound of 1262311 (48647 primes) Thu Apr 10 09:23:24 2008 using large prime bound of 126231100 (26 bits) Thu Apr 10 09:23:24 2008 using trial factoring cutoff of 27 bits Thu Apr 10 09:23:24 2008 polynomial 'A' values have 10 factors Thu Apr 10 09:38:17 2008 48752 relations (24624 full + 24128 combined from 267948 partial), need 48743 Thu Apr 10 09:38:17 2008 begin with 292572 relations Thu Apr 10 09:38:17 2008 reduce to 69970 relations in 2 passes Thu Apr 10 09:38:17 2008 attempting to read 69970 relations Thu Apr 10 09:38:18 2008 recovered 69970 relations Thu Apr 10 09:38:18 2008 recovered 60666 polynomials Thu Apr 10 09:38:18 2008 attempting to build 48752 cycles Thu Apr 10 09:38:18 2008 found 48752 cycles in 1 passes Thu Apr 10 09:38:18 2008 distribution of cycle lengths: Thu Apr 10 09:38:18 2008 length 1 : 24624 Thu Apr 10 09:38:18 2008 length 2 : 24128 Thu Apr 10 09:38:18 2008 largest cycle: 2 relations Thu Apr 10 09:38:18 2008 matrix is 48647 x 48752 (7.2 MB) with weight 1506429 (30.90/col) Thu Apr 10 09:38:18 2008 sparse part has weight 1506429 (30.90/col) Thu Apr 10 09:38:18 2008 filtering completed in 4 passes Thu Apr 10 09:38:18 2008 matrix is 41826 x 41890 (6.1 MB) with weight 1269861 (30.31/col) Thu Apr 10 09:38:18 2008 sparse part has weight 1269861 (30.31/col) Thu Apr 10 09:38:18 2008 saving the first 48 matrix rows for later Thu Apr 10 09:38:18 2008 matrix is 41778 x 41890 (4.4 MB) with weight 957728 (22.86/col) Thu Apr 10 09:38:18 2008 sparse part has weight 728581 (17.39/col) Thu Apr 10 09:38:18 2008 matrix includes 64 packed rows Thu Apr 10 09:38:18 2008 commencing Lanczos iteration Thu Apr 10 09:38:18 2008 memory use: 6.0 MB Thu Apr 10 09:38:40 2008 lanczos halted after 662 iterations (dim = 41759) Thu Apr 10 09:38:40 2008 recovered 8 nontrivial dependencies Thu Apr 10 09:38:41 2008 prp34 factor: 7712334843403732256679766516486637 Thu Apr 10 09:38:41 2008 prp46 factor: 5944639679663139196197290964556363337121607987 Thu Apr 10 09:38:41 2008 elapsed time 00:15:17
By matsui / GGNFS
8·10177-7 = 7(9)1763<178> = 19 · 73 · C175
C175 = P69 · P106
P69 = 845024513588440108342229237258611536863418925832842805605254098132291<69>
P106 = 6825653191658678389031719639341109854130190201976846345079951503520340161289026704590084570366199203022329<106>
N=5767844268204758471521268925739005046863734679163662581110310021629416005767844268204758471521268925739005046863734679163662581110310021629416005767844268204758471521268925739 ( 175 digits) SNFS difficulty: 177 digits. Divisors found: r1=845024513588440108342229237258611536863418925832842805605254098132291 (pp69) r2=6825653191658678389031719639341109854130190201976846345079951503520340161289026704590084570366199203022329 (pp106) Version: GGNFS-0.77.1-20060513-prescott Total time: 228.94 hours. Scaled time: 386.00 units (timescale=1.686). Factorization parameters were as follows: n: 5767844268204758471521268925739005046863734679163662581110310021629416005767844268204758471521268925739005046863734679163662581110310021629416005767844268204758471521268925739 m: 200000000000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12000001) Primes: RFBsize:501962, AFBsize:501206, largePrimes:6478564 encountered Relations: rels:6931375, finalFF:1126384 Max relations in full relation-set: 28 Initial matrix: 1003232 x 1126384 with sparse part having weight 71657504. Pruned matrix : 899663 x 904743 with weight 55336059. Total sieving time: 212.90 hours. Total relation processing time: 0.14 hours. Matrix solve time: 15.65 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 228.94 hours.
By Sinkiti Sibata / Msieve, GGNFS
(5·10144-11)/3 = 1(6)1433<145> = 372005757821<12> · 1993489673710399<16> · 164034934577678887904605096215469<33> · C86
C86 = P31 · P56
P31 = 1009810979515396265762537150309<31>
P56 = 13567775824120341503281816335779422365608641008294822157<56>
Thu Apr 10 06:45:04 2008 Msieve v. 1.33 Thu Apr 10 06:45:04 2008 random seeds: 4d5118a6 bb53e94c Thu Apr 10 06:45:04 2008 factoring 13700888994800274861698196701203613805538875258560664517465359702368373723918732596513 (86 digits) Thu Apr 10 06:45:05 2008 searching for 15-digit factors Thu Apr 10 06:45:07 2008 commencing quadratic sieve (86-digit input) Thu Apr 10 06:45:07 2008 using multiplier of 17 Thu Apr 10 06:45:07 2008 using 64kb Pentium 4 sieve core Thu Apr 10 06:45:07 2008 sieve interval: 6 blocks of size 65536 Thu Apr 10 06:45:07 2008 processing polynomials in batches of 17 Thu Apr 10 06:45:07 2008 using a sieve bound of 1442429 (54984 primes) Thu Apr 10 06:45:07 2008 using large prime bound of 115394320 (26 bits) Thu Apr 10 06:45:07 2008 using double large prime bound of 325036373888400 (41-49 bits) Thu Apr 10 06:45:07 2008 using trial factoring cutoff of 49 bits Thu Apr 10 06:45:07 2008 polynomial 'A' values have 11 factors Thu Apr 10 07:35:14 2008 55128 relations (16556 full + 38572 combined from 563178 partial), need 55080 Thu Apr 10 07:35:17 2008 begin with 579734 relations Thu Apr 10 07:35:17 2008 reduce to 127826 relations in 12 passes Thu Apr 10 07:35:17 2008 attempting to read 127826 relations Thu Apr 10 07:35:21 2008 recovered 127826 relations Thu Apr 10 07:35:21 2008 recovered 106966 polynomials Thu Apr 10 07:35:21 2008 attempting to build 55128 cycles Thu Apr 10 07:35:21 2008 found 55128 cycles in 5 passes Thu Apr 10 07:35:21 2008 distribution of cycle lengths: Thu Apr 10 07:35:21 2008 length 1 : 16556 Thu Apr 10 07:35:21 2008 length 2 : 11240 Thu Apr 10 07:35:21 2008 length 3 : 9653 Thu Apr 10 07:35:21 2008 length 4 : 7016 Thu Apr 10 07:35:21 2008 length 5 : 4631 Thu Apr 10 07:35:21 2008 length 6 : 2772 Thu Apr 10 07:35:21 2008 length 7 : 1589 Thu Apr 10 07:35:21 2008 length 9+: 1671 Thu Apr 10 07:35:21 2008 largest cycle: 20 relations Thu Apr 10 07:35:21 2008 matrix is 54984 x 55128 (12.1 MB) with weight 2963153 (53.75/col) Thu Apr 10 07:35:21 2008 sparse part has weight 2963153 (53.75/col) Thu Apr 10 07:35:22 2008 filtering completed in 3 passes Thu Apr 10 07:35:22 2008 matrix is 49629 x 49691 (11.1 MB) with weight 2706362 (54.46/col) Thu Apr 10 07:35:22 2008 sparse part has weight 2706362 (54.46/col) Thu Apr 10 07:35:22 2008 saving the first 48 matrix rows for later Thu Apr 10 07:35:22 2008 matrix is 49581 x 49691 (6.8 MB) with weight 2076867 (41.80/col) Thu Apr 10 07:35:22 2008 sparse part has weight 1488655 (29.96/col) Thu Apr 10 07:35:22 2008 matrix includes 64 packed rows Thu Apr 10 07:35:22 2008 commencing Lanczos iteration Thu Apr 10 07:35:22 2008 memory use: 8.7 MB Thu Apr 10 07:37:04 2008 lanczos halted after 786 iterations (dim = 49581) Thu Apr 10 07:37:05 2008 recovered 18 nontrivial dependencies Thu Apr 10 07:37:05 2008 prp31 factor: 1009810979515396265762537150309 Thu Apr 10 07:37:05 2008 prp56 factor: 13567775824120341503281816335779422365608641008294822157 Thu Apr 10 07:37:05 2008 elapsed time 00:52:01
(5·10138-11)/3 = 1(6)1373<139> = 337 · 17600112488381<14> · 64322575613083129<17> · 1246141681788805723<19> · C88
C88 = P36 · P52
P36 = 566733070758170868253771341604578479<36>
P52 = 6185773308782255639310478822145178597967633181529103<52>
Thu Apr 10 07:48:01 2008 Msieve v. 1.33 Thu Apr 10 07:48:01 2008 random seeds: 6c3c1403 9c5365fb Thu Apr 10 07:48:01 2008 factoring 3505682302300098820331687118529707211660926175889383687226721329786765058955918985974337 (88 digits) Thu Apr 10 07:48:02 2008 searching for 15-digit factors Thu Apr 10 07:48:04 2008 commencing quadratic sieve (88-digit input) Thu Apr 10 07:48:04 2008 using multiplier of 17 Thu Apr 10 07:48:04 2008 using 64kb Pentium 4 sieve core Thu Apr 10 07:48:04 2008 sieve interval: 13 blocks of size 65536 Thu Apr 10 07:48:04 2008 processing polynomials in batches of 8 Thu Apr 10 07:48:04 2008 using a sieve bound of 1510507 (57667 primes) Thu Apr 10 07:48:04 2008 using large prime bound of 120840560 (26 bits) Thu Apr 10 07:48:04 2008 using double large prime bound of 353169224858800 (42-49 bits) Thu Apr 10 07:48:04 2008 using trial factoring cutoff of 49 bits Thu Apr 10 07:48:04 2008 polynomial 'A' values have 11 factors Thu Apr 10 09:21:58 2008 58012 relations (16032 full + 41980 combined from 609335 partial), need 57763 Thu Apr 10 09:22:01 2008 begin with 625367 relations Thu Apr 10 09:22:01 2008 reduce to 139986 relations in 9 passes Thu Apr 10 09:22:01 2008 attempting to read 139986 relations Thu Apr 10 09:22:05 2008 recovered 139986 relations Thu Apr 10 09:22:05 2008 recovered 119002 polynomials Thu Apr 10 09:22:05 2008 attempting to build 58012 cycles Thu Apr 10 09:22:05 2008 found 58011 cycles in 4 passes Thu Apr 10 09:22:05 2008 distribution of cycle lengths: Thu Apr 10 09:22:05 2008 length 1 : 16032 Thu Apr 10 09:22:05 2008 length 2 : 11280 Thu Apr 10 09:22:05 2008 length 3 : 10151 Thu Apr 10 09:22:05 2008 length 4 : 7452 Thu Apr 10 09:22:05 2008 length 5 : 5389 Thu Apr 10 09:22:05 2008 length 6 : 3403 Thu Apr 10 09:22:05 2008 length 7 : 1988 Thu Apr 10 09:22:05 2008 length 9+: 2316 Thu Apr 10 09:22:05 2008 largest cycle: 18 relations Thu Apr 10 09:22:06 2008 matrix is 57667 x 58011 (14.0 MB) with weight 3443627 (59.36/col) Thu Apr 10 09:22:06 2008 sparse part has weight 3443627 (59.36/col) Thu Apr 10 09:22:07 2008 filtering completed in 3 passes Thu Apr 10 09:22:07 2008 matrix is 53492 x 53555 (13.0 MB) with weight 3196363 (59.68/col) Thu Apr 10 09:22:07 2008 sparse part has weight 3196363 (59.68/col) Thu Apr 10 09:22:07 2008 saving the first 48 matrix rows for later Thu Apr 10 09:22:07 2008 matrix is 53444 x 53555 (9.6 MB) with weight 2662668 (49.72/col) Thu Apr 10 09:22:07 2008 sparse part has weight 2200954 (41.10/col) Thu Apr 10 09:22:07 2008 matrix includes 64 packed rows Thu Apr 10 09:22:07 2008 using block size 21422 for processor cache size 512 kB Thu Apr 10 09:22:08 2008 commencing Lanczos iteration Thu Apr 10 09:22:08 2008 memory use: 8.7 MB Thu Apr 10 09:22:37 2008 lanczos halted after 846 iterations (dim = 53440) Thu Apr 10 09:22:38 2008 recovered 15 nontrivial dependencies Thu Apr 10 09:22:38 2008 prp36 factor: 566733070758170868253771341604578479 Thu Apr 10 09:22:38 2008 prp52 factor: 6185773308782255639310478822145178597967633181529103 Thu Apr 10 09:22:38 2008 elapsed time 01:34:37
(5·10136-11)/3 = 1(6)1353<137> = 79 · 367 · 134401 · 4789658941<10> · 396271367827<12> · 198762889748084687<18> · C89
C89 = P34 · P55
P34 = 8068301980104416383890347409737059<34>
P55 = 1405200720180081873965164341710238376930548187931746661<55>
Thu Apr 10 09:33:05 2008 Msieve v. 1.33 Thu Apr 10 09:33:05 2008 random seeds: 0142229e 3af44813 Thu Apr 10 09:33:05 2008 factoring 11337583753073106518116561988542402958930646986405793606004811557150675788314536611209999 (89 digits) Thu Apr 10 09:33:06 2008 searching for 15-digit factors Thu Apr 10 09:33:08 2008 commencing quadratic sieve (89-digit input) Thu Apr 10 09:33:08 2008 using multiplier of 3 Thu Apr 10 09:33:08 2008 using 64kb Pentium 4 sieve core Thu Apr 10 09:33:08 2008 sieve interval: 14 blocks of size 65536 Thu Apr 10 09:33:08 2008 processing polynomials in batches of 8 Thu Apr 10 09:33:08 2008 using a sieve bound of 1533307 (58333 primes) Thu Apr 10 09:33:08 2008 using large prime bound of 122664560 (26 bits) Thu Apr 10 09:33:08 2008 using double large prime bound of 362822632808640 (42-49 bits) Thu Apr 10 09:33:08 2008 using trial factoring cutoff of 49 bits Thu Apr 10 09:33:08 2008 polynomial 'A' values have 11 factors Thu Apr 10 11:40:42 2008 58719 relations (15129 full + 43590 combined from 628696 partial), need 58429 Thu Apr 10 11:40:45 2008 begin with 643825 relations Thu Apr 10 11:40:45 2008 reduce to 144836 relations in 11 passes Thu Apr 10 11:40:45 2008 attempting to read 144836 relations Thu Apr 10 11:40:49 2008 recovered 144836 relations Thu Apr 10 11:40:49 2008 recovered 127614 polynomials Thu Apr 10 11:40:49 2008 attempting to build 58719 cycles Thu Apr 10 11:40:49 2008 found 58719 cycles in 5 passes Thu Apr 10 11:40:49 2008 distribution of cycle lengths: Thu Apr 10 11:40:49 2008 length 1 : 15129 Thu Apr 10 11:40:49 2008 length 2 : 11176 Thu Apr 10 11:40:49 2008 length 3 : 10479 Thu Apr 10 11:40:49 2008 length 4 : 7871 Thu Apr 10 11:40:49 2008 length 5 : 5641 Thu Apr 10 11:40:49 2008 length 6 : 3557 Thu Apr 10 11:40:49 2008 length 7 : 2180 Thu Apr 10 11:40:49 2008 length 9+: 2686 Thu Apr 10 11:40:49 2008 largest cycle: 17 relations Thu Apr 10 11:40:50 2008 matrix is 58333 x 58719 (14.4 MB) with weight 3540941 (60.30/col) Thu Apr 10 11:40:50 2008 sparse part has weight 3540941 (60.30/col) Thu Apr 10 11:40:51 2008 filtering completed in 3 passes Thu Apr 10 11:40:51 2008 matrix is 54761 x 54825 (13.5 MB) with weight 3321850 (60.59/col) Thu Apr 10 11:40:51 2008 sparse part has weight 3321850 (60.59/col) Thu Apr 10 11:40:51 2008 saving the first 48 matrix rows for later Thu Apr 10 11:40:51 2008 matrix is 54713 x 54825 (9.5 MB) with weight 2731547 (49.82/col) Thu Apr 10 11:40:51 2008 sparse part has weight 2167317 (39.53/col) Thu Apr 10 11:40:51 2008 matrix includes 64 packed rows Thu Apr 10 11:40:51 2008 using block size 21845 for processor cache size 512 kB Thu Apr 10 11:40:52 2008 commencing Lanczos iteration Thu Apr 10 11:40:52 2008 memory use: 8.8 MB Thu Apr 10 11:41:28 2008 lanczos halted after 866 iterations (dim = 54712) Thu Apr 10 11:41:28 2008 recovered 17 nontrivial dependencies Thu Apr 10 11:41:29 2008 prp34 factor: 8068301980104416383890347409737059 Thu Apr 10 11:41:29 2008 prp55 factor: 1405200720180081873965164341710238376930548187931746661 Thu Apr 10 11:41:29 2008 elapsed time 02:08:24
(5·10119-11)/3 = 1(6)1183<120> = 7 · 733 · 34313 · C111
C111 = P39 · P73
P39 = 101104783942079007388364625845026040897<39>
P73 = 9363028368878613663743614793519812822060379795258031152047919513400120493<73>
Number: 16663_119 N=946646960279028659715896214466534268244143257606707337535752891397296333493000489535755981252974684242545802221 ( 111 digits) SNFS difficulty: 120 digits. Divisors found: r1=101104783942079007388364625845026040897 (pp39) r2=9363028368878613663743614793519812822060379795258031152047919513400120493 (pp73) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.13 hours. Scaled time: 1.43 units (timescale=0.675). Factorization parameters were as follows: name: 16663_119 n: 946646960279028659715896214466534268244143257606707337535752891397296333493000489535755981252974684242545802221 m: 1000000000000000000000000 c5: 1 c0: -22 skew: 1.86 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64044, largePrimes:2132126 encountered Relations: rels:2254968, finalFF:263067 Max relations in full relation-set: 28 Initial matrix: 113206 x 263067 with sparse part having weight 22310391. Pruned matrix : 81108 x 81738 with weight 4690802. Total sieving time: 1.92 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.13 hours. --------- CPU info (if available) ----------
(5·10124-11)/3 = 1(6)1233<125> = 155782489099<12> · C114
C114 = P35 · P79
P35 = 79040799952020878573456251998858247<35>
P79 = 1353563964903948324773516845167090881007930444243617150102530821798840472293571<79>
Number: 16663_124 N=106986778572237188918038053454011120432923406069133029873611126531552369406827118389351077489337777850129398430037 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=79040799952020878573456251998858247 (pp35) r2=1353563964903948324773516845167090881007930444243617150102530821798840472293571 (pp79) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.07 hours. Scaled time: 2.07 units (timescale=0.675). Factorization parameters were as follows: name: 16663_124 n: 106986778572237188918038053454011120432923406069133029873611126531552369406827118389351077489337777850129398430037 m: 10000000000000000000000000 c5: 1 c0: -22 skew: 1.86 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64044, largePrimes:2230601 encountered Relations: rels:2398863, finalFF:282622 Max relations in full relation-set: 28 Initial matrix: 113206 x 282622 with sparse part having weight 27237143. Pruned matrix : 84072 x 84702 with weight 6352895. Total sieving time: 2.83 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.13 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve, GGNFS
(5·10130-11)/3 = 1(6)1293<131> = 19 · 197 · 14107 · 191413 · 649724783 · 14480781147778646998269769<26> · C84
C84 = P38 · P46
P38 = 53531600126183563743099708638553112189<38>
P46 = 3274094258896914280404842697764802626556431917<46>
8·10163+9 = 8(0)1629<164> = 503 · 1087 · 399924341 · 29222738487023707<17> · C134
C134 = P56 · P78
P56 = 36035228405537339175432279337085862878520760605668457943<56>
P78 = 347429290363042316932943294898674175631435388823749992448700892981477531332209<78>
Number: n N=12519693833005982629763709812980179231976207191212881316914731579887782131176373995769271932131678712789550263792631222521491477786087 ( 134 digits) SNFS difficulty: 163 digits. Divisors found: Thu Apr 10 07:25:28 2008 prp56 factor: 36035228405537339175432279337085862878520760605668457943 Thu Apr 10 07:25:28 2008 prp78 factor: 347429290363042316932943294898674175631435388823749992448700892981477531332209 Thu Apr 10 07:25:28 2008 elapsed time 01:12:32 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.50 hours. Scaled time: 90.43 units (timescale=1.756). Factorization parameters were as follows: name: KA_8_0_162_9 n: 12519693833005982629763709812980179231976207191212881316914731579887782131176373995769271932131678712789550263792631222521491477786087 type: snfs skew: 0.51 deg: 5 c5: 250 c0: 9 m: 200000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2599990) Primes: RFBsize:230209, AFBsize:229672, largePrimes:7298720 encountered Relations: rels:6770473, finalFF:539596 Max relations in full relation-set: 28 Initial matrix: 459948 x 539596 with sparse part having weight 38448691. Pruned matrix : Total sieving time: 51.26 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 51.50 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10109-11)/3 = 1(6)1083<110> = 13 · 313 · 2312775383<10> · C97
C97 = P38 · P59
P38 = 58445511121979509375071556501778835511<38>
P59 = 30302359249263881160048008087323480234166016216705306154379<59>
(5·10125-11)/3 = 1(6)1243<126> = 7 · 89 · 556121386394051411573<21> · C102
C102 = P31 · P72
P31 = 2082317813011810225828417141867<31>
P72 = 231017080921821034361454488681781206591379258747165236540837184499456591<72>
(5·10115-11)/3 = 1(6)1143<116> = 13 · 243311 · 6251989363<10> · 415576023843179<15> · C85
C85 = P39 · P47
P39 = 101724403988483751381031110691554232729<39>
P47 = 19936539876112083560045113778507889458461515877<47>
Thu Apr 10 08:23:12 2008 Thu Apr 10 08:23:12 2008 Thu Apr 10 08:23:12 2008 Msieve v. 1.34 Thu Apr 10 08:23:12 2008 random seeds: 37c399e0 09f2c22c Thu Apr 10 08:23:12 2008 factoring 2028032636490141387528493438386065303545798771129933058079434458815434399092986538333 (85 digits) Thu Apr 10 08:23:12 2008 searching for 15-digit factors Thu Apr 10 08:23:13 2008 commencing quadratic sieve (85-digit input) Thu Apr 10 08:23:13 2008 using multiplier of 37 Thu Apr 10 08:23:13 2008 using 64kb Opteron sieve core Thu Apr 10 08:23:13 2008 sieve interval: 6 blocks of size 65536 Thu Apr 10 08:23:13 2008 processing polynomials in batches of 17 Thu Apr 10 08:23:13 2008 using a sieve bound of 1426129 (54372 primes) Thu Apr 10 08:23:13 2008 using large prime bound of 116942578 (26 bits) Thu Apr 10 08:23:13 2008 using double large prime bound of 332928269126164 (41-49 bits) Thu Apr 10 08:23:13 2008 using trial factoring cutoff of 49 bits Thu Apr 10 08:23:13 2008 polynomial 'A' values have 11 factors Thu Apr 10 08:47:08 2008 54480 relations (16137 full + 38343 combined from 569033 partial), need 54468 Thu Apr 10 08:47:08 2008 begin with 585169 relations Thu Apr 10 08:47:09 2008 reduce to 127178 relations in 10 passes Thu Apr 10 08:47:09 2008 attempting to read 127178 relations Thu Apr 10 08:47:10 2008 recovered 127178 relations Thu Apr 10 08:47:10 2008 recovered 106669 polynomials Thu Apr 10 08:47:10 2008 attempting to build 54480 cycles Thu Apr 10 08:47:10 2008 found 54480 cycles in 5 passes Thu Apr 10 08:47:10 2008 distribution of cycle lengths: Thu Apr 10 08:47:10 2008 length 1 : 16137 Thu Apr 10 08:47:10 2008 length 2 : 11237 Thu Apr 10 08:47:10 2008 length 3 : 9540 Thu Apr 10 08:47:10 2008 length 4 : 6859 Thu Apr 10 08:47:10 2008 length 5 : 4566 Thu Apr 10 08:47:10 2008 length 6 : 2788 Thu Apr 10 08:47:10 2008 length 7 : 1597 Thu Apr 10 08:47:10 2008 length 9+: 1756 Thu Apr 10 08:47:10 2008 largest cycle: 19 relations Thu Apr 10 08:47:11 2008 matrix is 54372 x 54480 (11.8 MB) with weight 2874410 (52.76/col) Thu Apr 10 08:47:11 2008 sparse part has weight 2874410 (52.76/col) Thu Apr 10 08:47:11 2008 filtering completed in 3 passes Thu Apr 10 08:47:11 2008 matrix is 49520 x 49584 (10.8 MB) with weight 2639553 (53.23/col) Thu Apr 10 08:47:11 2008 sparse part has weight 2639553 (53.23/col) Thu Apr 10 08:47:11 2008 saving the first 48 matrix rows for later Thu Apr 10 08:47:11 2008 matrix is 49472 x 49584 (6.4 MB) with weight 1990780 (40.15/col) Thu Apr 10 08:47:11 2008 sparse part has weight 1368376 (27.60/col) Thu Apr 10 08:47:11 2008 matrix includes 64 packed rows Thu Apr 10 08:47:11 2008 commencing Lanczos iteration Thu Apr 10 08:47:11 2008 memory use: 8.2 MB Thu Apr 10 08:47:59 2008 lanczos halted after 783 iterations (dim = 49462) Thu Apr 10 08:47:59 2008 recovered 11 nontrivial dependencies Thu Apr 10 08:47:59 2008 prp39 factor: 101724403988483751381031110691554232729 Thu Apr 10 08:47:59 2008 prp47 factor: 19936539876112083560045113778507889458461515877 Thu Apr 10 08:47:59 2008 elapsed time 00:24:47
(5·10102-11)/3 = 1(6)1013<103> = 17 · 47 · 73 · C98
C98 = P41 · P57
P41 = 42247654314238814538592060301512367110661<41>
P57 = 676357809987191111919877049341177444192239827754611671229<57>
Number: n N=28574530949074470942559477886170498511266937553220063892651202130517027562992553477234671192872369 ( 98 digits) SNFS difficulty: 102 digits. Divisors found: r1=42247654314238814538592060301512367110661 (pp41) r2=676357809987191111919877049341177444192239827754611671229 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.41 hours. Scaled time: 0.73 units (timescale=1.753). Factorization parameters were as follows: name: KA_1_6_101_3 n: 28574530949074470942559477886170498511266937553220063892651202130517027562992553477234671192872369 type: snfs skew: 0.47 deg: 5 c5: 500 c0: -11 m: 100000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 300001) Primes: RFBsize:41538, AFBsize:41853, largePrimes:2461385 encountered Relations: rels:1937861, finalFF:105591 Max relations in full relation-set: 28 Initial matrix: 83457 x 105591 with sparse part having weight 2650651. Pruned matrix : 56554 x 57035 with weight 1104019. Total sieving time: 0.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.2,2.2,20000 total time: 0.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10126-11)/3 = 1(6)1253<127> = 73 · 103 · 151 · 8036239 · C114
C114 = P42 · P73
P42 = 136601909891494683571867166667984462907181<42>
P73 = 1337217654640463702420039415634113857360702296152706815677177592790424453<73>
Number: n N=182666485564512480286199842770473113380890893561775030331297841982007142001745032870406824625614600794059331696993 ( 114 digits) SNFS difficulty: 126 digits. Divisors found: r1=136601909891494683571867166667984462907181 (pp42) r2=1337217654640463702420039415634113857360702296152706815677177592790424453 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.66 hours. Scaled time: 3.03 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_6_125_3 n: 182666485564512480286199842770473113380890893561775030331297841982007142001745032870406824625614600794059331696993 skew: 0.74 deg: 5 c5: 50 c0: -11 m: 10000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 25000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 300001) Primes: RFBsize:78498, AFBsize:78657, largePrimes:4602854 encountered Relations: rels:3926609, finalFF:176847 Max relations in full relation-set: 48 Initial matrix: 157220 x 176847 with sparse part having weight 12529569. Pruned matrix : 145751 x 146601 with weight 7887455. Total sieving time: 1.48 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(14·10170+31)/9 = 1(5)1699<171> = 34 · 173 · 241 · 1063 · 947388505673668601<18> · 329773997817300200297648891<27> · C117
C117 = P43 · P74
P43 = 4570257576393376741108870562574935143559999<43>
P74 = 30347219042826632639068219128539563087330388614267880782603290658707817769<74>
Number: n N=138694607752947776402054601038374261634077577246418128378721610395375037159280518817908354940816419747823675209822231 ( 117 digits) Divisors found: Thu Apr 10 19:09:13 2008 prp43 factor: 4570257576393376741108870562574935143559999 Thu Apr 10 19:09:13 2008 prp74 factor: 30347219042826632639068219128539563087330388614267880782603290658707817769 Thu Apr 10 19:09:13 2008 elapsed time 01:18:33 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 49.69 hours. Scaled time: 64.80 units (timescale=1.304). Factorization parameters were as follows: name: KA_1_5_169_9 n: 138694607752947776402054601038374261634077577246418128378721610395375037159280518817908354940816419747823675209822231 skew: 94836.36 # norm 1.77e+16 c5: 1920 c4: 4251138112 c3: -309124278511618 c2: -29561456463897609891 c1: 487127672626518629193186 c0: 32056092180814696347161000619 # alpha -6.09 Y1: 31913420429 Y0: -37303665233241543560500 # Murphy_E 4.26e-10 # M 30440368514637758849034089320960643934931022425993500010937446988681486641564356323500538790935064017609701630427635 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 2020001) Primes: RFBsize:315948, AFBsize:316044, largePrimes:6564918 encountered Relations: rels:6479500, finalFF:721077 Max relations in full relation-set: 28 Initial matrix: 632068 x 721077 with sparse part having weight 38916166. Pruned matrix : Total sieving time: 49.37 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 49.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10135-11)/3 = 1(6)1343<136> = 2309 · C132
C132 = P51 · P81
P51 = 769471589341802815698410458609829329351462222537643<51>
P81 = 938063477252786787981200026222114693270614493438014472876357993296728209029600049<81>
Number: n N=721813194745199942254944420384004619604446369279630431644290457629565468456763389634762523458928829218998123285693662480150137144507 ( 132 digits) SNFS difficulty: 135 digits. Divisors found: r1=769471589341802815698410458609829329351462222537643 (pp51) r2=938063477252786787981200026222114693270614493438014472876357993296728209029600049 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.40 hours. Scaled time: 4.40 units (timescale=1.834). Factorization parameters were as follows: name: KA_1_6_134_3 n: 721813194745199942254944420384004619604446369279630431644290457629565468456763389634762523458928829218998123285693662480150137144507 skew: 1.17 deg: 5 c5: 5 c0: -11 m: 1000000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 25000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 475001) Primes: RFBsize:92938, AFBsize:93450, largePrimes:5497865 encountered Relations: rels:4850841, finalFF:262120 Max relations in full relation-set: 48 Initial matrix: 186453 x 262120 with sparse part having weight 23107069. Pruned matrix : 153848 x 154844 with weight 9218030. Total sieving time: 2.18 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,75000 total time: 2.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
The factor table of 166...663 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS, Msieve
4·10164+9 = 4(0)1639<165> = 433 · 325501909 · 155697059191893120469<21> · C134
C134 = P58 · P76
P58 = 2480292169582768150613622571493155466576298122188305452881<58>
P76 = 7349119396569529045017568501654084454037447639806748910113839336437017179473<76>
Number: n N=18227963292640241073752649952343065729223968280713818502150062554437260230889566308369202243770405504513631798743471894619440521911713 ( 134 digits) SNFS difficulty: 165 digits. Divisors found: r1=2480292169582768150613622571493155466576298122188305452881 (pp58) r2=7349119396569529045017568501654084454037447639806748910113839336437017179473 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 46.42 hours. Scaled time: 84.63 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_0_163_9 n: 18227963292640241073752649952343065729223968280713818502150062554437260230889566308369202243770405504513631798743471894619440521911713 skew: 1.86 deg: 5 c5: 2 c0: 45 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3100001) Primes: RFBsize:230209, AFBsize:230302, largePrimes:7625564 encountered Relations: rels:7110539, finalFF:542315 Max relations in full relation-set: 48 Initial matrix: 460576 x 542315 with sparse part having weight 55660953. Pruned matrix : 428423 x 430789 with weight 36977980. Total sieving time: 44.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.04 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 46.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(16·10163-1)/3 = 5(3)163<164> = 9203 · 649751 · 754067 · 210126893 · 1470754547<10> · C131
C131 = P40 · P46 · P46
P40 = 5241938648266082638689856097053647927227<40>
P46 = 1203492293151321834268051001544618500679611569<46>
P46 = 6066739234889810264566998524928554913682222871<46>
Number: n N=38272829910055922554986494307292612701700316471903274256011625905419437445035817954191202482574294773808756113465281446661881046973 ( 131 digits) SNFS difficulty: 164 digits. Divisors found: Wed Apr 09 22:10:04 2008 prp40 factor: 5241938648266082638689856097053647927227 Wed Apr 09 22:10:04 2008 prp46 factor: 1203492293151321834268051001544618500679611569 Wed Apr 09 22:10:04 2008 prp46 factor: 6066739234889810264566998524928554913682222871 Wed Apr 09 22:10:04 2008 elapsed time 01:02:53 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.31 hours. Scaled time: 59.09 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_3_163 n: 38272829910055922554986494307292612701700316471903274256011625905419437445035817954191202482574294773808756113465281446661881046973 skew: 0.29 deg: 5 c5: 500 c0: -1 m: 200000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2299990) Primes: RFBsize:230209, AFBsize:229657, largePrimes:7314015 encountered Relations: rels:6796872, finalFF:529923 Max relations in full relation-set: 28 Initial matrix: 459932 x 529922 with sparse part having weight 46577315. Pruned matrix : Total sieving time: 32.13 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 32.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(14·10152+31)/9 = 1(5)1519<153> = 32 · 17 · 67 · 123377 · 127319953639<12> · 56178496930208414688605633<26> · C107
C107 = P39 · P69
P39 = 111313093274540417476741014421320134743<39>
P69 = 154479995522690870591367172547336505227910968599671963282858372345637<69>
Number: 15559_152 N=17195646150667874950992453422444333642975476026069684108426569369939091078615552957010779914767445808166291 ( 107 digits) SNFS difficulty: 153 digits. Divisors found: r1=111313093274540417476741014421320134743 (pp39) r2=154479995522690870591367172547336505227910968599671963282858372345637 (pp69) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 51.75 hours. Scaled time: 34.93 units (timescale=0.675). Factorization parameters were as follows: name: 15559_152 n: 17195646150667874950992453422444333642975476026069684108426569369939091078615552957010779914767445808166291 m: 1000000000000000000000000000000 c5: 1400 c0: 31 skew: 0.47 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2600001) Primes: RFBsize:176302, AFBsize:175914, largePrimes:5759456 encountered Relations: rels:5717101, finalFF:466652 Max relations in full relation-set: 28 Initial matrix: 352283 x 466652 with sparse part having weight 48829191. Pruned matrix : 312843 x 314668 with weight 30625407. Total sieving time: 46.57 hours. Total relation processing time: 0.28 hours. Matrix solve time: 4.73 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 51.75 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(14·10153+31)/9 = 1(5)1529<154> = 61 · 541 · 23624025645827704817<20> · C130
C130 = P62 · P69
P62 = 12618987396929809067039217391491187497627561020701168808432897<62>
P69 = 158117527310291680588589078011395917240084089263123655628504089737791<69>
Number: n N=1995283084362275608981993720845150085222935999336634693921193036336245407655677090547930521602073409192525797082004482958348510527 ( 130 digits) SNFS difficulty: 154 digits. Divisors found: r1=12618987396929809067039217391491187497627561020701168808432897 (pp62) r2=158117527310291680588589078011395917240084089263123655628504089737791 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.43 hours. Scaled time: 39.19 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_5_152_9 n: 1995283084362275608981993720845150085222935999336634693921193036336245407655677090547930521602073409192525797082004482958348510527 skew: 0.59 deg: 5 c5: 875 c0: 62 m: 2000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:183072, AFBsize:183212, largePrimes:7007383 encountered Relations: rels:6444936, finalFF:443762 Max relations in full relation-set: 48 Initial matrix: 366350 x 443762 with sparse part having weight 44001931. Pruned matrix : 316482 x 318377 with weight 26418976. Total sieving time: 19.91 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.94 hours. Total square root time: 0.41 hours, sqrts: 8. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 21.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(14·10164+31)/9 = 1(5)1639<165> = 3 · 3167 · 3557 · 2115203 · C151
C151 = P51 · P100
P51 = 292044997922927091627528286394099949348817998187813<51>
P100 = 7451273714795980303658961535674894947248661146078209917201810829662662013768700449007211187583249433<100>
Number: n N=2176107216560753301911443296557873067276016343298831494475440440002350484312812223305933949454487812090080679805129498136087304244961797327267959760029 ( 151 digits) SNFS difficulty: 165 digits. Divisors found: Mon Apr 7 19:21:33 2008 prp51 factor: 292044997922927091627528286394099949348817998187813 Mon Apr 7 19:21:33 2008 prp100 factor: 7451273714795980303658961535674894947248661146078209917201810829662662013768700449007211187583249433 Mon Apr 7 19:21:33 2008 elapsed time 00:56:16 (Msieve 1.34) Version: GGNFS-0.77.1-20050930-k8 Total time: 58.46 hours. Scaled time: 49.16 units (timescale=0.841). Factorization parameters were as follows: name: KA_1_5_163_9 n: 2176107216560753301911443296557873067276016343298831494475440440002350484312812223305933949454487812090080679805129498136087304244961797327267959760029 type: snfs deg: 5 c5: 7 c0: 155 skew: 1.86 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700369) Primes: RFBsize:230209, AFBsize:229318, largePrimes:5754763 encountered Relations: rels:5663009, finalFF:469183 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.27 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,48,48,2.5,2.5,100000 total time: 58.46 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(14·10165+31)/9 = 1(5)1649<166> = 76012247 · 1729666074743<13> · C146
C146 = P68 · P78
P68 = 67547527870814968644720759872728356155144540584072588165080323596693<68>
P78 = 175158101286561444194143776900975745196879694692553333454908567390260925183803<78>
Number: n N=11831496728453040368588747027393946948515280652340570548132594078197001463889134283214599455363721462782675641132374892459492277581995839067963479 ( 146 digits) SNFS difficulty: 166 digits. Divisors found: Mon Apr 07 20:40:51 2008 prp68 factor: 67547527870814968644720759872728356155144540584072588165080323596693 Mon Apr 07 20:40:51 2008 prp78 factor: 175158101286561444194143776900975745196879694692553333454908567390260925183803 Mon Apr 07 20:40:51 2008 elapsed time 01:01:41 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.67 hours. Scaled time: 92.93 units (timescale=1.834). Factorization parameters were as follows: name: KA_1_5_164_9 n: 11831496728453040368588747027393946948515280652340570548132594078197001463889134283214599455363721462782675641132374892459492277581995839067963479 skew: 1.17 deg: 5 c5: 14 c0: 31 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400001) Primes: RFBsize:230209, AFBsize:230543, largePrimes:7686963 encountered Relations: rels:7146455, finalFF:522792 Max relations in full relation-set: 28 Initial matrix: 460818 x 522792 with sparse part having weight 59672004. Pruned matrix : Total sieving time: 50.44 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 50.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(14·10157+31)/9 = 1(5)1569<158> = 93463993209661<14> · C144
C144 = P47 · P98
P47 = 16264286654890748144075190501147967098201002951<47>
P98 = 10233075398052231822492848466935430038785598384068263986570291327906585563875283488105494739268469<98>
Number: n N=166433671635031744544481049109629997491990532133453025037392323621256408259802421916610388923754892468719810052105215109107568842740899850252019 ( 144 digits) SNFS difficulty: 158 digits. Divisors found: Mon Apr 07 01:06:15 2008 prp47 factor: 16264286654890748144075190501147967098201002951 Mon Apr 07 01:06:15 2008 prp98 factor: 10233075398052231822492848466935430038785598384068263986570291327906585563875283488105494739268469 Mon Apr 07 01:06:15 2008 elapsed time 02:22:14 (Msieve 1.34, Dep=8) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.92 hours. Scaled time: 84.11 units (timescale=1.755). Factorization parameters were as follows: name: KA_1_5_156_9 n: 166433671635031744544481049109629997491990532133453025037392323621256408259802421916610388923754892468719810052105215109107568842740899850252019 type: snfs skew: 0.47 deg: 5 c5: 1400 c0: 31 m: 10000000000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400001) Primes: RFBsize:183072, AFBsize:182717, largePrimes:7075797 encountered Relations: rels:6427225, finalFF:371726 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.69 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.3,2.3,100000 total time: 47.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(46·10194-1)/9 = 5(1)194<195> = 7 · 73 · 59809 · 41535100907534041<17> · 735190796811265416174712160511408781<36> · C135
C135 = P34 · P102
P34 = 2131759063791372047774111469573847<34>
P102 = 256906108706152053755199843207572059233131041311072028161736752737669098210183763610380354496349308547<102>
By Jo Yeong Uk / GGNFS
(14·10156+31)/9 = 1(5)1559<157> = 846400273673407<15> · 5647119458626703<16> · C126
C126 = P39 · P88
P39 = 181595105240033914022977640506121267719<39>
P88 = 1792167585191447108689726343859434077154164335650452972726213569904570307167543559971441<88>
Number: 15559_156 N=325448861240618282863068539156450995311385946677891062779075151268243362097776381667860754237370696771018560283140022355213079 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=181595105240033914022977640506121267719 (pp39) r2=1792167585191447108689726343859434077154164335650452972726213569904570307167543559971441 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.96 hours. Scaled time: 53.59 units (timescale=2.147). Factorization parameters were as follows: n: 325448861240618282863068539156450995311385946677891062779075151268243362097776381667860754237370696771018560283140022355213079 m: 10000000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:216762, largePrimes:5719874 encountered Relations: rels:5700036, finalFF:548025 Max relations in full relation-set: 28 Initial matrix: 433645 x 548025 with sparse part having weight 48656988. Pruned matrix : 380612 x 382844 with weight 32093823. Total sieving time: 24.02 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.80 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 24.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4042900k/4718592k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19246.09 BogoMIPS).
(14·10166+31)/9 = 1(5)1659<167> = 14762153720019369394560342817<29> · 25959036563720881399909794087532397<35> · C104
C104 = P49 · P55
P49 = 9597033958947512940770715759079012159641836757583<49>
P55 = 4229706193320175468626508490317354141097461889488396877<55>
Number: 15559_166 N=40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291 ( 104 digits) Divisors found: r1=9597033958947512940770715759079012159641836757583 (pp49) r2=4229706193320175468626508490317354141097461889488396877 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.75 hours. Scaled time: 12.23 units (timescale=2.128). Factorization parameters were as follows: name: 15559_166 n: 40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291 skew: 26811.40 # norm 3.74e+14 c5: 15120 c4: 6077326 c3: -23724512303077 c2: 86864477756364696 c1: 8298547771000702870996 c0: 33119074129593578932976192 # alpha -6.43 Y1: 72405459907 Y0: -76873924976831669127 # Murphy_E 2.13e-09 # M 1233879129425926695567871031059691043818742592710023171099250854072614931552306628519699357283862227743 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1680001) Primes: RFBsize:135072, AFBsize:134910, largePrimes:4428331 encountered Relations: rels:4423357, finalFF:366133 Max relations in full relation-set: 28 Initial matrix: 270065 x 366133 with sparse part having weight 30992146. Pruned matrix : 212490 x 213904 with weight 16099938. Polynomial selection time: 0.39 hours. Total sieving time: 5.03 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4042900k/4718592k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19246.09 BogoMIPS).
By matsui / GGNFS
7·10175+3 = 7(0)1743<176> = 113 · 487 · 8389 · C168
C168 = P50 · P118
P50 = 15382421157285425929466447017738051797673565880227<50>
P118 = 9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771<118>
N=151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=15382421157285425929466447017738051797673565880227 (pp50) r2=9857249360937578381060501178705637693417639727420036892990380567114305681621039301876173072701917734426786021572283771 (pp118) Version: GGNFS-0.77.1-20060513-prescott Total time: 186.17 hours. Scaled time: 315.56 units (timescale=1.695). Factorization parameters were as follows: n: 151628361122324449605999010616279199054547780878970071028724500558327034384345390656706742598481954467220514093835588185333846845161508345996485657487401215720241896017 m: 100000000000000000000000000000000000 c5: 7 c0: 3 skew: 0.84 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10600001) Primes: RFBsize:501962, AFBsize:500771, largePrimes:6392766 encountered Relations: rels:6833029, finalFF:1124040 Max relations in full relation-set: 28 Initial matrix: 1002798 x 1124040 with sparse part having weight 66158404. Pruned matrix : 898702 x 903779 with weight 50386598. Total sieving time: 171.47 hours. Total relation processing time: 0.15 hours. Matrix solve time: 14.30 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 186.17 hours.
By Robert Backstrom / GMP-ECM
(52·10163-7)/9 = 5(7)163<164> = 3 · 19 · 89 · 4463 · 2537021 · 55830371 · 1248226627<10> · C134
C134 = P37 · P97
P37 = 6420478316845888866764229697079609081<37>
P97 = 2248089943587469434480299083386367776545352478097162371514379969035559192349878360635205285279419<97>
(14·10162+31)/9 = 1(5)1619<163> = 29 · 3806347 · 26170223 · C147
C147 = P38 · P40 · P70
P38 = 50365446354722171931533546718702257843<38>
P40 = 3543988444207413403410274704260989655419<40>
P70 = 3016801554260539634880325171364479046731365413823735186731506096436023<70>
By Sinkiti Sibata / GGNFS
(14·10130+31)/9 = 1(5)1299<131> = 523 · 517830371 · 22205400930628594589<20> · C100
C100 = P39 · P62
P39 = 223052339348662090783561338193275827047<39>
P62 = 11596606412490730336161701177308159280832170437567286305560181<62>
Number: 15559_130 N=2586650188811753255072196313522140231922638767244339815312972931926665126576983403300759137406015507 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=223052339348662090783561338193275827047 (pp39) r2=11596606412490730336161701177308159280832170437567286305560181 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.44 hours. Scaled time: 4.35 units (timescale=0.675). Factorization parameters were as follows: name: 15559_130 n: 2586650188811753255072196313522140231922638767244339815312972931926665126576983403300759137406015507 m: 100000000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63629, largePrimes:1507105 encountered Relations: rels:1507107, finalFF:169181 Max relations in full relation-set: 28 Initial matrix: 127646 x 169181 with sparse part having weight 13212589. Pruned matrix : 116035 x 116737 with weight 7300210. Total sieving time: 6.08 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.44 hours. --------- CPU info (if available) ----------
(14·10134+31)/9 = 1(5)1339<135> = 32 · 29 · 5014409 · 329843551356450621367<21> · C105
C105 = P40 · P66
P40 = 1306557661964407021017588295478647094717<40>
P66 = 275796458917595587577783322712081943077119699195249979743129914969<66>
Number: 15559_134 N=360343976541436324001467268397547805706577207259650798154874784983464628358958156247401923595203099118773 ( 105 digits) SNFS difficulty: 135 digits. Divisors found: r1=1306557661964407021017588295478647094717 (pp40) r2=275796458917595587577783322712081943077119699195249979743129914969 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 10.14 hours. Scaled time: 6.84 units (timescale=0.674). Factorization parameters were as follows: name: 15559_134 n: 360343976541436324001467268397547805706577207259650798154874784983464628358958156247401923595203099118773 m: 1000000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:78498, AFBsize:63449, largePrimes:1554550 encountered Relations: rels:1547172, finalFF:162708 Max relations in full relation-set: 28 Initial matrix: 142012 x 162708 with sparse part having weight 14524899. Pruned matrix : 135927 x 136701 with weight 10750022. Total sieving time: 9.55 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.43 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.14 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve
(25·10181-1)/3 = 8(3)181<182> = 69591715019881213<17> · 747152275895293013<18> · C148
C148 = P46 · P102
P46 = 1780413985668047124967711027196123828460629329<46>
P102 = 900183594319564916679896379547677509715284513197543620154816703452344181111024772817941782678605403333<102>
Number: 83333_181 N=1602699460995484998900532952740942402090779344283258132988336035926159888755217576890505832750581638436871049644705615184704800910461748317054153557 ( 148 digits) SNFS difficulty: 182 digits. Divisors found: r1=1780413985668047124967711027196123828460629329 r2=900183594319564916679896379547677509715284513197543620154816703452344181111024772817941782678605403333 Version: Total time: 331.70 hours. Scaled time: 850.47 units (timescale=2.564). Factorization parameters were as follows: n: 1602699460995484998900532952740942402090779344283258132988336035926159888755217576890505832750581638436871049644705615184704800910461748317054153557 m: 1000000000000000000000000000000000000 c5: 250 c0: -1 skew: 0.33 type: snfs Y0: -1000000000000000000000000000000000000 Y1: 1Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9300001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 873628 x 873876 Total sieving time: 331.70 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 331.70 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(14·10138+31)/9 = 1(5)1379<139> = 23 · 587 · 22085650154593<14> · 214708517662039<15> · C107
C107 = P38 · P70
P38 = 18889071044965985559683161450105284079<38>
P70 = 1286321494635454249284329017256606479419057950477955932294681889062123<70>
Number: 15559_138 N=24297418098835928184871286994621343003982194045684419344835498431243228852905498778636408028046235793839717 ( 107 digits) SNFS difficulty: 139 digits. Divisors found: r1=18889071044965985559683161450105284079 (pp38) r2=1286321494635454249284329017256606479419057950477955932294681889062123 (pp70) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 21.58 hours. Scaled time: 14.57 units (timescale=0.675). Factorization parameters were as follows: name: 15559_138 n: 24297418098835928184871286994621343003982194045684419344835498431243228852905498778636408028046235793839717 m: 2000000000000000000000000000 c5: 875 c0: 62 skew: 0.59 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2800001) Primes: RFBsize:78498, AFBsize:63759, largePrimes:1746679 encountered Relations: rels:1808224, finalFF:167624 Max relations in full relation-set: 28 Initial matrix: 142323 x 167624 with sparse part having weight 20269469. Pruned matrix : 136875 x 137650 with weight 15512291. Total sieving time: 20.76 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.59 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 21.58 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM
(14·10166+31)/9 = 1(5)1659<167> = 14762153720019369394560342817<29> · C139
C139 = P35 · C104
P35 = 25959036563720881399909794087532397<35>
C104 = [40592633973664338092756074639611100697720162425602675161336639117666924326656515110040772765234343268291<104>]
By Robert Backstrom / GGNFS, Msieve
(67·10163+23)/9 = 7(4)1627<164> = 7 · 11 · 15981307 · 550172091423481695139<21> · C135
C135 = P60 · P75
P60 = 173899319743099863715074733204526874599504106558134328664339<60>
P75 = 632314053644234448964586908637373660241500036550939211425372049855075000713<75>
Number: n N=109958983792734326039438991504943363864512677413094518012785059431448235356759293336664332882078371346096185002361452719220446762673707 ( 135 digits) SNFS difficulty: 164 digits. Divisors found: Fri Apr 4 07:32:32 2008 prp60 factor: 173899319743099863715074733204526874599504106558134328664339 Fri Apr 4 07:32:32 2008 prp75 factor: 632314053644234448964586908637373660241500036550939211425372049855075000713 Fri Apr 4 07:32:32 2008 elapsed time 00:45:38 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 43.82 hours. Scaled time: 36.68 units (timescale=0.837). Factorization parameters were as follows: name: KA_7_4_162_7 n: 109958983792734326039438991504943363864512677413094518012785059431448235356759293336664332882078371346096185002361452719220446762673707 type: snfs deg: 5 c5: 67000 c0: 23 skew: 0.20 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2699990) Primes: RFBsize:216816, AFBsize:217321, largePrimes:5672603 encountered Relations: rels:5598931, finalFF:511786 Max relations in full relation-set: 28 Initial matrix: 434204 x 511786 with sparse part having weight 45127507. Pruned matrix : Total sieving time: 43.62 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 43.82 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
7·10163+1 = 7(0)1621<164> = 2621 · 637097 · 6177922939<10> · 156791141329<12> · C134
C134 = P51 · P84
P51 = 402780568113496127134113047287312945816114000773181<51>
P84 = 107446665123360825440701365404164787206317314310967090805791720700790075639081056243<84>
Number: n N=43277428820287843704931976867461084748542006794075993513996138833643569977396426813266834171274514636681677977157534242400032147018983 ( 134 digits) SNFS difficulty: 163 digits. Divisors found: Fri Apr 4 12:59:40 2008 prp51 factor: 402780568113496127134113047287312945816114000773181 Fri Apr 4 12:59:40 2008 prp84 factor: 107446665123360825440701365404164787206317314310967090805791720700790075639081056243 Fri Apr 4 12:59:40 2008 elapsed time 00:46:52 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 46.82 hours. Scaled time: 39.19 units (timescale=0.837). Factorization parameters were as follows: name: KA_7_0_162_1 n: 43277428820287843704931976867461084748542006794075993513996138833643569977396426813266834171274514636681677977157534242400032147018983 type: snfs deg: 5 c5: 7000 c0: 1 skew: 0.17 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800000) Primes: RFBsize:216816, AFBsize:216861, largePrimes:5723566 encountered Relations: rels:5651846, finalFF:500770 Max relations in full relation-set: 28 Initial matrix: 433744 x 500770 with sparse part having weight 45553627. Pruned matrix : 406474 x 408706 with weight 33499165. Total sieving time: 46.61 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 46.82 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(13·10163+23)/9 = 1(4)1627<164> = 3517 · 18983905542455313683<20> · C141
C141 = P57 · P84
P57 = 290489182949177909802781675636329039795637507570364531197<57>
P84 = 744754172766735844931657694994085417458424028852613801213846101237458452241664067741<84>
Number: n N=216343031144999981427906166521244760111099649120079328867161315613682148972954519919802708175175124782467477196706782976510301435255515815977 ( 141 digits) SNFS difficulty: 164 digits. Divisors found: Fri Apr 04 22:01:13 2008 prp57 factor: 290489182949177909802781675636329039795637507570364531197 Fri Apr 04 22:01:13 2008 prp84 factor: 744754172766735844931657694994085417458424028852613801213846101237458452241664067741 Fri Apr 04 22:01:13 2008 elapsed time 01:07:56 (Msieve 1.34) Version: GGNFS-0.77.1-20051202-athlon Total time: 59.80 hours. Scaled time: 109.37 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_4_162_7 n: 216343031144999981427906166521244760111099649120079328867161315613682148972954519919802708175175124782467477196706782976510301435255515815977 skew: 0.28 deg: 5 c5: 13000 c0: 23 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4100293) Primes: RFBsize:216816, AFBsize:217281, largePrimes:7819749 encountered Relations: rels:7249599, finalFF:485822 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 59.59 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 59.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(22·10165-1)/3 = 7(3)165<166> = 23 · 17497 · 274487009 · 25658674533179<14> · C139
C139 = P65 · P75
P65 = 22933717666057774298302333628801575787136259295500785394358195651<65>
P75 = 112818292849299160345823913937988573038591955291961894176315107848186283963<75>
Number: n N=2587342875772451627047024007058209064159419996689996703791353347801727846113147460534304001711336122904729486466052945321623131575397644913 ( 139 digits) SNFS difficulty: 166 digits. Divisors found: Sat Apr 05 00:36:54 2008 prp65 factor: 22933717666057774298302333628801575787136259295500785394358195651 Sat Apr 05 00:36:54 2008 prp75 factor: 112818292849299160345823913937988573038591955291961894176315107848186283963 Sat Apr 05 00:36:54 2008 elapsed time 01:27:54 (Msieve 1.34) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 61.02 hours. Scaled time: 79.45 units (timescale=1.302). Factorization parameters were as follows: name: KA_7_3_165 n: 2587342875772451627047024007058209064159419996689996703791353347801727846113147460534304001711336122904729486466052945321623131575397644913 skew: 0.54 deg: 5 c5: 22 c0: -1 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800247) Primes: RFBsize:216816, AFBsize:216967, largePrimes:7383104 encountered Relations: rels:6815983, finalFF:485019 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 60.76 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 61.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By JMB / GMP-ECM
(14·10148+31)/9 = 1(5)1479<149> = 9949 · 54403 · 826856108189<12> · 64934003080483<14> · C114
C114 = P34 · P81
P34 = 2499113539947715325949124365216803<34>
P81 = 214188003419738864023748273782105619197066640540736946746378416198577330759441277<81>
By Sinkiti Sibata / GGNFS
(13·10160+41)/9 = 1(4)1599<161> = 13177488726749<14> · 107919830762963<15> · 6948432863413003<16> · C118
C118 = P44 · P74
P44 = 58318421562202336729024884964580815360748989<44>
P74 = 25065380822971939726203162891930045767767595089719334854800459231611917481<74>
Number: 14449_160 N=1461773445451219721817054132646300865765733841567085507878396932965774862914627039808990861227821796075443086622176709 ( 118 digits) SNFS difficulty: 161 digits. Divisors found: r1=58318421562202336729024884964580815360748989 (pp44) r2=25065380822971939726203162891930045767767595089719334854800459231611917481 (pp74) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 78.30 hours. Scaled time: 52.85 units (timescale=0.675). Factorization parameters were as follows: name: 14449_160 n: 1461773445451219721817054132646300865765733841567085507878396932965774862914627039808990861227821796075443086622176709 m: 100000000000000000000000000000000 c5: 13 c0: 41 skew: 1.26 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:282373, largePrimes:5738534 encountered Relations: rels:5817356, finalFF:694775 Max relations in full relation-set: 28 Initial matrix: 565586 x 694775 with sparse part having weight 46693987. Pruned matrix : 469450 x 472341 with weight 31381838. Total sieving time: 68.01 hours. Total relation processing time: 0.32 hours. Matrix solve time: 9.75 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 78.30 hours. --------- CPU info (if available) ----------
(14·10120+31)/9 = 1(5)1199<121> = 17 · 107 · 50466277 · C110
C110 = P49 · P62
P49 = 1421577012344853500890676274711460113354683750921<49>
P62 = 11920134834947284852618265683350810943104485024229298831379833<62>
Number: 15559_120 N=16945389665412174607218409292531530192930180494329638763325905364366947215583860888478225208800730066514576193 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=1421577012344853500890676274711460113354683750921 (pp49) r2=11920134834947284852618265683350810943104485024229298831379833 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.59 hours. Scaled time: 1.75 units (timescale=0.675). Factorization parameters were as follows: name: 15559_120 n: 16945389665412174607218409292531530192930180494329638763325905364366947215583860888478225208800730066514576193 m: 1000000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63629, largePrimes:2164814 encountered Relations: rels:2280226, finalFF:244401 Max relations in full relation-set: 28 Initial matrix: 112793 x 244401 with sparse part having weight 22393749. Pruned matrix : 86473 x 87100 with weight 5524265. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
(14·10129+31)/9 = 1(5)1289<130> = 331 · 647 · 1181 · 320796426397<12> · C110
C110 = P43 · P67
P43 = 4707523717355474776435082396044989377741827<43>
P67 = 4072689638852448957226819815433219768108727767837548269928546344633<67>
Number: 15559_129 N=19172283068325806568537723586178607998494065432808843189221587559772708200225606297331105435664949712841064491 ( 110 digits) SNFS difficulty: 130 digits. Divisors found: r1=4707523717355474776435082396044989377741827 (pp43) r2=4072689638852448957226819815433219768108727767837548269928546344633 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.23 hours. Scaled time: 4.21 units (timescale=0.675). Factorization parameters were as follows: name: 15559_129 n: 19172283068325806568537723586178607998494065432808843189221587559772708200225606297331105435664949712841064491 m: 100000000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63449, largePrimes:1489289 encountered Relations: rels:1474945, finalFF:157286 Max relations in full relation-set: 28 Initial matrix: 127465 x 157286 with sparse part having weight 12062069. Pruned matrix : 118994 x 119695 with weight 7467431. Total sieving time: 5.86 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.24 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.23 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GMP-ECM, GGNFS
(14·10158+31)/9 = 1(5)1579<159> = 3 · 53 · 127 · 7280174849<10> · 109124535209<12> · 21948898589324162190187<23> · 33736169926864163126149367<26> · C86
C86 = P41 · P45
P41 = 18462693075720592159694382676395345089159<41>
P45 = 709278681425545386232340021289077175661076813<45>
Thu Apr 03 02:41:55 2008 Thu Apr 03 02:41:55 2008 Thu Apr 03 02:41:55 2008 Msieve v. 1.33 Thu Apr 03 02:41:55 2008 random seeds: 42b0e064 b812c0af Thu Apr 03 02:41:55 2008 factoring 13095194600311648587363642228835280059379349527210239503556304027577051905401432570267 (86 digits) Thu Apr 03 02:41:56 2008 searching for 15-digit factors Thu Apr 03 02:41:57 2008 commencing quadratic sieve (86-digit input) Thu Apr 03 02:41:57 2008 using multiplier of 3 Thu Apr 03 02:41:57 2008 using 64kb Opteron sieve core Thu Apr 03 02:41:57 2008 sieve interval: 6 blocks of size 65536 Thu Apr 03 02:41:57 2008 processing polynomials in batches of 17 Thu Apr 03 02:41:57 2008 using a sieve bound of 1442509 (54992 primes) Thu Apr 03 02:41:57 2008 using large prime bound of 115400720 (26 bits) Thu Apr 03 02:41:57 2008 using double large prime bound of 325068826146400 (41-49 bits) Thu Apr 03 02:41:57 2008 using trial factoring cutoff of 49 bits Thu Apr 03 02:41:57 2008 polynomial 'A' values have 11 factors Thu Apr 03 03:20:45 2008 55145 relations (16138 full + 39007 combined from 573077 partial), need 55088 Thu Apr 03 03:20:45 2008 begin with 589214 relations Thu Apr 03 03:20:46 2008 reduce to 130017 relations in 10 passes Thu Apr 03 03:20:46 2008 attempting to read 130017 relations Thu Apr 03 03:20:47 2008 recovered 130017 relations Thu Apr 03 03:20:47 2008 recovered 111360 polynomials Thu Apr 03 03:20:47 2008 attempting to build 55144 cycles Thu Apr 03 03:20:47 2008 found 55143 cycles in 5 passes Thu Apr 03 03:20:48 2008 distribution of cycle lengths: Thu Apr 03 03:20:48 2008 length 1 : 16138 Thu Apr 03 03:20:48 2008 length 2 : 11055 Thu Apr 03 03:20:48 2008 length 3 : 9584 Thu Apr 03 03:20:48 2008 length 4 : 7023 Thu Apr 03 03:20:48 2008 length 5 : 4907 Thu Apr 03 03:20:48 2008 length 6 : 2885 Thu Apr 03 03:20:48 2008 length 7 : 1679 Thu Apr 03 03:20:48 2008 length 9+: 1872 Thu Apr 03 03:20:48 2008 largest cycle: 18 relations Thu Apr 03 03:20:48 2008 matrix is 54992 x 55143 (12.0 MB) with weight 2919220 (52.94/col) Thu Apr 03 03:20:48 2008 sparse part has weight 2919220 (52.94/col) Thu Apr 03 03:20:49 2008 filtering completed in 4 passes Thu Apr 03 03:20:49 2008 matrix is 50096 x 50160 (11.0 MB) with weight 2691005 (53.65/col) Thu Apr 03 03:20:49 2008 sparse part has weight 2691005 (53.65/col) Thu Apr 03 03:20:50 2008 saving the first 48 matrix rows for later Thu Apr 03 03:20:50 2008 matrix is 50048 x 50160 (6.5 MB) with weight 2016906 (40.21/col) Thu Apr 03 03:20:50 2008 sparse part has weight 1390909 (27.73/col) Thu Apr 03 03:20:50 2008 matrix includes 64 packed rows Thu Apr 03 03:20:50 2008 using block size 20064 for processor cache size 512 kB Thu Apr 03 03:20:50 2008 commencing Lanczos iteration Thu Apr 03 03:20:50 2008 memory use: 6.8 MB Thu Apr 03 03:21:10 2008 lanczos halted after 792 iterations (dim = 50039) Thu Apr 03 03:21:10 2008 recovered 12 nontrivial dependencies Thu Apr 03 03:21:11 2008 prp41 factor: 18462693075720592159694382676395345089159 Thu Apr 03 03:21:11 2008 prp45 factor: 709278681425545386232340021289077175661076813 Thu Apr 03 03:21:11 2008 elapsed time 00:39:16
(14·10122+31)/9 = 1(5)1219<123> = 3 · 157 · C120
C120 = P35 · P86
P35 = 10603836885495071034474476095145129<35>
P86 = 31145949892586395406949575512425987474943569710446787657049654966993983919833639672201<86>
(14·10147+31)/9 = 1(5)1469<148> = 781077391688879<15> · C133
C133 = P35 · P98
P35 = 48666565188027890092729966818877889<35>
P98 = 40922368653085930485059904571405162735697559903875161667841200639610533122749207940850079133777289<98>
(14·10150+31)/9 = 1(5)1499<151> = 39569 · 18139119101745599<17> · C130
C130 = P33 · P97
P33 = 335061822392136720484534754789419<33>
P97 = 6468287466652218202909758335139916011634361647250202124939424960816497412784711946727546397178331<97>
(14·10140+31)/9 = 1(5)1399<141> = 3 · 233 · 241 · 5903 · C132
C132 = P40 · P42 · P51
P40 = 3145814278159836132977122915782215478379<40>
P42 = 136993138600366227200200711944926574507283<42>
P51 = 362983287496566443500422296301603020385805008326731<51>
Number: n N=156429452288643464911081002531058371361509167836384377115150014761470851983993732172191342450556465613504105350691617341742398323867 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=3145814278159836132977122915782215478379 (pp40) r2=136993138600366227200200711944926574507283 (pp42) r3=362983287496566443500422296301603020385805008326731 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.22 hours. Scaled time: 12.66 units (timescale=1.752). Factorization parameters were as follows: name: KA_1_5_139_9 n: 156429452288643464911081002531058371361509167836384377115150014761470851983993732172191342450556465613504105350691617341742398323867 type: snfs skew: 1.17 deg: 5 c5: 14 c0: 31 m: 10000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 950001) Primes: RFBsize:148933, AFBsize:148581, largePrimes:5725582 encountered Relations: rels:5089339, finalFF:358359 Max relations in full relation-set: 28 Initial matrix: 297580 x 358359 with sparse part having weight 19209340. Pruned matrix : 245434 x 246985 with weight 10431835. Total sieving time: 6.09 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.87 hours. Total square root time: 0.12 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 7.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM, GGNFS
(14·10155+31)/9 = 1(5)1549<156> = 3 · 54905849 · 154308125187053473<18> · C130
C130 = P31 · P99
P31 = 7674360746381837411521751272723<31>
P99 = 797470552787996185165803170580988931064736161642896696883978483018377247210575889135871920756199543<99>
(14·10146+31)/9 = 1(5)1459<147> = 3 · 83 · 2017 · 157915345952665151<18> · 585854257405781501<18> · C106
C106 = P39 · P67
P39 = 788446662848643115165841844345577532321<39>
P67 = 4246137320921946481553619461943257958828954529607621070878133125813<67>
Number: 15559_146 N=3347852800677986669372738417402636472582245561438340610458401501686074563594432546426620601309782766901973 ( 106 digits) SNFS difficulty: 147 digits. Divisors found: r1=788446662848643115165841844345577532321 (pp39) r2=4246137320921946481553619461943257958828954529607621070878133125813 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.94 hours. Scaled time: 21.33 units (timescale=2.145). Factorization parameters were as follows: n: 3347852800677986669372738417402636472582245561438340610458401501686074563594432546426620601309782766901973 m: 100000000000000000000000000000 c5: 140 c0: 31 skew: 0.74 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134614, largePrimes:3693349 encountered Relations: rels:3686817, finalFF:304236 Max relations in full relation-set: 28 Initial matrix: 269753 x 304236 with sparse part having weight 27282670. Pruned matrix : 256253 x 257665 with weight 20349781. Total sieving time: 9.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.27 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Jo Yeong Uk / GGNFS, GMP-ECM
(14·10104+31)/9 = 1(5)1039<105> = 3 · 17 · 415039 · 960259 · C91
C91 = P31 · P61
P31 = 6123112702612974422656257278677<31>
P61 = 1249872758938303891586631981770280688173300314576830254317117<61>
Number: 15559_104 N=7653111766905052625714127478056069869442270615205235958642237021066340455316087033400214209 ( 91 digits) SNFS difficulty: 105 digits. Divisors found: r1=6123112702612974422656257278677 (pp31) r2=1249872758938303891586631981770280688173300314576830254317117 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.41 hours. Scaled time: 0.87 units (timescale=2.135). Factorization parameters were as follows: n: 7653111766905052625714127478056069869442270615205235958642237021066340455316087033400214209 m: 1000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 260001) Primes: RFBsize:30757, AFBsize:30265, largePrimes:962732 encountered Relations: rels:875648, finalFF:78657 Max relations in full relation-set: 28 Initial matrix: 61087 x 78657 with sparse part having weight 3216591. Pruned matrix : 52909 x 53278 with weight 1608056. Total sieving time: 0.39 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
(14·10109+31)/9 = 1(5)1089<110> = 19 · 55335037 · C101
C101 = P46 · P55
P46 = 9501681575912170966662527503987525172261786003<46>
P55 = 1557152862759509908452930886474382752596857671286405051<55>
Number: 15559_109 N=14795570666960928585241814337133228280279517122079409846942244753399146743476713502376399618540301153 ( 101 digits) SNFS difficulty: 110 digits. Divisors found: r1=9501681575912170966662527503987525172261786003 (pp46) r2=1557152862759509908452930886474382752596857671286405051 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.67 hours. Scaled time: 1.44 units (timescale=2.146). Factorization parameters were as follows: n: 14795570666960928585241814337133228280279517122079409846942244753399146743476713502376399618540301153 m: 10000000000000000000000 c5: 7 c0: 155 skew: 1.86 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 320001) Primes: RFBsize:30757, AFBsize:30265, largePrimes:1063994 encountered Relations: rels:991255, finalFF:96554 Max relations in full relation-set: 28 Initial matrix: 61087 x 96554 with sparse part having weight 4661689. Pruned matrix : 51141 x 51510 with weight 1737634. Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
(14·10180+31)/9 = 1(5)1799<181> = C181
C181 = P33 · P148
P33 = 224540162641475926200940032590041<33>
P148 = 6927738615916639493795372224802362230619590881114688329834073792904549303518808372499279890767099431963254595662524485909980595129219530776688881599<148>
(14·10110+31)/9 = 1(5)1099<111> = 3 · 241 · 4723 · C104
C104 = P46 · P59
P46 = 1303282840472408036468985773035703330564633891<46>
P59 = 34953494903639795656060613382861445837052916896715844002181<59>
Number: 15559_110 N=45554290122453511114807516366761624584426921010585482934533181273112904583513232105843701083030470516271 ( 104 digits) SNFS difficulty: 111 digits. Divisors found: r1=1303282840472408036468985773035703330564633891 (pp46) r2=34953494903639795656060613382861445837052916896715844002181 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.60 hours. Scaled time: 1.27 units (timescale=2.130). Factorization parameters were as follows: n: 45554290122453511114807516366761624584426921010585482934533181273112904583513232105843701083030470516271 m: 10000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30605, largePrimes:979923 encountered Relations: rels:884896, finalFF:73064 Max relations in full relation-set: 28 Initial matrix: 61428 x 73064 with sparse part having weight 3324838. Pruned matrix : 56970 x 57341 with weight 2019227. Total sieving time: 0.57 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.60 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
(14·10112+31)/9 = 1(5)1119<113> = 277 · 1367 · 332573 · C102
C102 = P37 · P65
P37 = 6092182038573200834431033938985160341<37>
P65 = 20275771240622793997064761967146282229636836482089466349375858957<65>
Number: 15559_112 N=123523689370341250516149913321329516008019385631608532341465796759702347383365229527627429013246024337 ( 102 digits) SNFS difficulty: 113 digits. Divisors found: r1=6092182038573200834431033938985160341 (pp37) r2=20275771240622793997064761967146282229636836482089466349375858957 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.81 hours. Scaled time: 1.72 units (timescale=2.135). Factorization parameters were as follows: n: 123523689370341250516149913321329516008019385631608532341465796759702347383365229527627429013246024337 m: 20000000000000000000000 c5: 175 c0: 124 skew: 0.93 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 375001) Primes: RFBsize:37706, AFBsize:37740, largePrimes:1287788 encountered Relations: rels:1247576, finalFF:110750 Max relations in full relation-set: 28 Initial matrix: 75513 x 110750 with sparse part having weight 8140654. Pruned matrix : 67086 x 67527 with weight 3384017. Total sieving time: 0.77 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
(14·10115+31)/9 = 1(5)1149<116> = 3279678159671671397<19> · C97
C97 = P39 · P59
P39 = 467835898086147901719587583613501434971<39>
P59 = 10138197686463485465002382573752151496026773591252758195457<59>
Number: 15559_115 N=4743012819621551624636543784883103395485170841183928305043751488713980500978238376905549993126747 ( 97 digits) SNFS difficulty: 116 digits. Divisors found: r1=467835898086147901719587583613501434971 (pp39) r2=10138197686463485465002382573752151496026773591252758195457 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.75 hours. Scaled time: 1.60 units (timescale=2.122). Factorization parameters were as follows: n: 4743012819621551624636543784883103395485170841183928305043751488713980500978238376905549993126747 m: 100000000000000000000000 c5: 14 c0: 31 skew: 1.17 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 375001) Primes: RFBsize:37706, AFBsize:37565, largePrimes:1292652 encountered Relations: rels:1256566, finalFF:114016 Max relations in full relation-set: 28 Initial matrix: 75337 x 114016 with sparse part having weight 8559587. Pruned matrix : 66510 x 66950 with weight 3395592. Total sieving time: 0.71 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167492k/8912896k available (2127k kernel code, 0k reserved, 1314k data, 212k init) Calibrating delay using timer specific routine.. 4815.33 BogoMIPS (lpj=2407668) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(14·10163+13)/9 = 1(5)1627<164> = 88001 · C159
C159 = P59 · P100
P59 = 49844159806140022457656033933584078006954093974713327381627<59>
P100 = 3546366690789890875339022615239880757403094877861401298222832779627443194683536889140462772150874591<100>
Number: n N=176765668066903280139493364343081959927223049233026392376854303423319684498534738872916848167129413933427524182174697509750520511761861291980267900996074539557 ( 159 digits) SNFS difficulty: 164 digits. Divisors found: Thu Apr 03 01:28:54 2008 prp59 factor: 49844159806140022457656033933584078006954093974713327381627 Thu Apr 03 01:28:54 2008 prp100 factor: 3546366690789890875339022615239880757403094877861401298222832779627443194683536889140462772150874591 Thu Apr 03 01:28:54 2008 elapsed time 02:02:23 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 70.94 hours. Scaled time: 124.29 units (timescale=1.752). Factorization parameters were as follows: name: KA_1_5_162_7 n: 176765668066903280139493364343081959927223049233026392376854303423319684498534738872916848167129413933427524182174697509750520511761861291980267900996074539557 type: snfs skew: 0.49 deg: 5 c5: 875 c0: 26 m: 200000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500383) Primes: RFBsize:216816, AFBsize:217331, largePrimes:7559625 encountered Relations: rels:6970216, finalFF:449362 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 70.68 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 70.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
The factor table of 155...559 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM
(13·10177+41)/9 = 1(4)1769<178> = 3 · 7 · 31 · 23894417 · 387048321879097<15> · 102901558413798602757536612189167<33> · C121
C121 = P45 · P76
P45 = 332959311000289726554119341499581353472911353<45>
P76 = 7002370898982811465985212519192627896899356817719697064270507631837030185901<76>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(13·10165+41)/9 = 1(4)1649<166> = 32 · 73 · 17 · 311 · C158
C158 = P35 · P124
P35 = 16314950226194202535821847388584579<35>
P124 = 5424617863803991143762455161408372822546229535063185548695922017790727738160207197999393097074876903892876721001455128856499<124>
(14·10152+13)/9 = 1(5)1517<153> = 63788093921<11> · C142
C142 = P54 · P89
P54 = 173460172689027899665086107807131828832709509246937443<54>
P89 = 14058731181313703042304048180548635368310516923726637061756330334276648276290706574486519<89>
Number: n N=2438629938499296133491619142929611093991847945494523527378368041823708212062716661647080595097808104570147460693796634688057769776161039830917 ( 142 digits) SNFS difficulty: 153 digits. Divisors found: Tue Apr 01 07:40:21 2008 prp54 factor: 173460172689027899665086107807131828832709509246937443 Tue Apr 01 07:40:21 2008 prp89 factor: 14058731181313703042304048180548635368310516923726637061756330334276648276290706574486519 Tue Apr 01 07:40:21 2008 elapsed time 00:53:45 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 29.91 hours. Scaled time: 39.03 units (timescale=1.305). Factorization parameters were as follows: name: KA_1_5_151_7 n: 2438629938499296133491619142929611093991847945494523527378368041823708212062716661647080595097808104570147460693796634688057769776161039830917 skew: 0.39 deg: 5 c5: 1400 c0: 13 m: 1000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000 ) Primes: RFBsize:203362, AFBsize:203057, largePrimes:7157192 encountered Relations: rels:6740859, finalFF:571144 Max relations in full relation-set: 28 Initial matrix: 406486 x 571144 with sparse part having weight 41884449. Pruned matrix : 277790 x 279886 with weight 22751566. Total sieving time: 27.09 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.62 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 29.91 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(14·10162-23)/9 = 1(5)1613<163> = 172 · 30817 · 372124977656909<15> · C141
C141 = P48 · P93
P48 = 472035414783518016243135774561543103921057694177<48>
P93 = 994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917<93>
Number: n N=469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309 ( 141 digits) SNFS difficulty: 163 digits. Divisors found: Tue Apr 1 16:01:03 2008 prp48 factor: 472035414783518016243135774561543103921057694177 Tue Apr 1 16:01:03 2008 prp93 factor: 994337733365949129428898253056275129686355332723981707011105870757951405338818661021405862917 Tue Apr 1 16:01:03 2008 elapsed time 00:46:15 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.68 hours. Scaled time: 31.61 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_5_161_3 n: 469362624404298939135494109270052332408386538926431489548931993834927472197048244992417935599677767202896447674317093792319483188200971134309 type: snfs deg: 5 c5: 1400 c0: -23 skew: 0.44 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400001) Primes: RFBsize:216816, AFBsize:216901, largePrimes:5556168 encountered Relations: rels:5418684, finalFF:465647 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.50 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 37.68 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(11·10165+61)/9 = 1(2)1649<166> = 409 · 80599 · C158
C158 = P50 · P54 · P55
P50 = 84487268400846963130771961910946989225423105211073<50>
P54 = 404346314135854308052527269390940411387810076224120869<54>
P55 = 1085306631461643435651060404463146659487393443172166287<55>
Number: n N=37076370572108520285117694169011671267321814898181595809391309168633542846173451775619238671177620592167679409414133382357732851260970228149682256009783901419 ( 158 digits) SNFS difficulty: 166 digits. Divisors found: Wed Apr 2 00:28:00 2008 prp50 factor: 84487268400846963130771961910946989225423105211073 Wed Apr 2 00:28:00 2008 prp54 factor: 404346314135854308052527269390940411387810076224120869 Wed Apr 2 00:28:00 2008 prp55 factor: 1085306631461643435651060404463146659487393443172166287 Wed Apr 2 00:28:00 2008 elapsed time 00:53:00 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.93 hours. Scaled time: 38.49 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_2_164_9 n: 37076370572108520285117694169011671267321814898181595809391309168633542846173451775619238671177620592167679409414133382357732851260970228149682256009783901419 type: snfs deg: 5 c5: 11 c0: 61 skew: 1.41 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900001) Primes: RFBsize:216816, AFBsize:216278, largePrimes:5612922 encountered Relations: rels:5482602, finalFF:460483 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 45.74 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 45.93 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GMP-ECM, Msieve
(14·10174+13)/9 = 1(5)1737<175> = 32 · 73 · 1693 · 93923 · 1821722621<10> · 1002239634413<13> · 403374339915168794569779581<27> · C116
C116 = P32 · P42 · P43
P32 = 31629929246645939988995179923731<32>
P42 = 169880476199414315120627039721035669406193<42>
P43 = 3762594880955972138233267550313660219155021<43>
Mon Mar 31 01:13:54 2008 Mon Mar 31 01:13:54 2008 Mon Mar 31 01:13:54 2008 Msieve v. 1.32 Mon Mar 31 01:13:54 2008 random seeds: 94f519b9 93265061 Mon Mar 31 01:13:54 2008 factoring 639191410122279163148017701746752433185828061621198481956163067234502766843284445053 (84 digits) Mon Mar 31 01:13:55 2008 no P-1/P+1/ECM available, skipping Mon Mar 31 01:13:55 2008 commencing quadratic sieve (84-digit input) Mon Mar 31 01:13:55 2008 using multiplier of 53 Mon Mar 31 01:13:55 2008 using 32kb Intel Core sieve core Mon Mar 31 01:13:55 2008 sieve interval: 12 blocks of size 32768 Mon Mar 31 01:13:55 2008 processing polynomials in batches of 17 Mon Mar 31 01:13:55 2008 using a sieve bound of 1406651 (53824 primes) Mon Mar 31 01:13:55 2008 using large prime bound of 119565335 (26 bits) Mon Mar 31 01:13:55 2008 using double large prime bound of 346488982123175 (41-49 bits) Mon Mar 31 01:13:55 2008 using trial factoring cutoff of 49 bits Mon Mar 31 01:13:55 2008 polynomial 'A' values have 11 factors Mon Mar 31 01:38:27 2008 54052 relations (16129 full + 37923 combined from 570254 partial), need 53920 Mon Mar 31 01:38:27 2008 begin with 586383 relations Mon Mar 31 01:38:28 2008 reduce to 126153 relations in 10 passes Mon Mar 31 01:38:28 2008 attempting to read 126153 relations Mon Mar 31 01:38:28 2008 recovered 126153 relations Mon Mar 31 01:38:28 2008 recovered 103827 polynomials Mon Mar 31 01:38:29 2008 attempting to build 54052 cycles Mon Mar 31 01:38:29 2008 found 54052 cycles in 5 passes Mon Mar 31 01:38:29 2008 distribution of cycle lengths: Mon Mar 31 01:38:29 2008 length 1 : 16129 Mon Mar 31 01:38:29 2008 length 2 : 11039 Mon Mar 31 01:38:29 2008 length 3 : 9492 Mon Mar 31 01:38:29 2008 length 4 : 6896 Mon Mar 31 01:38:29 2008 length 5 : 4448 Mon Mar 31 01:38:29 2008 length 6 : 2780 Mon Mar 31 01:38:29 2008 length 7 : 1585 Mon Mar 31 01:38:29 2008 length 9+: 1683 Mon Mar 31 01:38:29 2008 largest cycle: 17 relations Mon Mar 31 01:38:29 2008 matrix is 53824 x 54052 with weight 2770048 (avg 51.25/col) Mon Mar 31 01:38:29 2008 filtering completed in 3 passes Mon Mar 31 01:38:29 2008 matrix is 48951 x 49015 with weight 2526076 (avg 51.54/col) Mon Mar 31 01:38:30 2008 saving the first 48 matrix rows for later Mon Mar 31 01:38:30 2008 matrix is 48903 x 49015 with weight 1850677 (avg 37.76/col) Mon Mar 31 01:38:30 2008 matrix includes 64 packed rows Mon Mar 31 01:38:30 2008 commencing Lanczos iteration Mon Mar 31 01:39:09 2008 lanczos halted after 774 iterations (dim = 48897) Mon Mar 31 01:39:09 2008 recovered 13 nontrivial dependencies Mon Mar 31 01:39:09 2008 prp42 factor: 169880476199414315120627039721035669406193 Mon Mar 31 01:39:09 2008 prp43 factor: 3762594880955972138233267550313660219155021 Mon Mar 31 01:39:09 2008 elapsed time 00:25:15
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(14·10150+13)/9 = 1(5)1497<151> = 3 · 73 · 197 · 557 · 176419 · 311807 · C133
C133 = P47 · P86
P47 = 14358513758759727537788034211482912833199697379<47>
P86 = 81955722749024612832935938121912440352553752416715091318119876776484248323691661939801<86>
Number: n N=1176762372700967503894089274669101300884685882156992693160611125133501836249059891526266152790525198162083125242864944859765315481579 ( 133 digits) SNFS difficulty: 151 digits. Divisors found: r1=14358513758759727537788034211482912833199697379 (pp47) r2=81955722749024612832935938121912440352553752416715091318119876776484248323691661939801 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.00 hours. Scaled time: 27.51 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_5_149_7 n: 1176762372700967503894089274669101300884685882156992693160611125133501836249059891526266152790525198162083125242864944859765315481579 skew: 0.99 deg: 5 c5: 14 c0: 13 m: 1000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182921, largePrimes:6875726 encountered Relations: rels:6448717, finalFF:540389 Max relations in full relation-set: 28 Initial matrix: 366059 x 540389 with sparse part having weight 38593507. Pruned matrix : 232412 x 234306 with weight 19896749. Total sieving time: 17.18 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.60 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 19.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(14·10159+13)/9 = 1(5)1587<160> = 3 · 28901 · 517487 · C149
C149 = P63 · P86
P63 = 554744215891826596967898958649652091064445903153743400082444519<63>
P86 = 62497000567154822830083056990318365077569268883257990021576401794532332846554110732723<86>
Number: n N=34669849575217344310845040652106352293609204790812820723875869971786291483583767823534769101797762193083626549678947507787187663376379745032085295237 ( 149 digits) SNFS difficulty: 160 digits. Divisors found: r1=554744215891826596967898958649652091064445903153743400082444519 (pp63) r2=62497000567154822830083056990318365077569268883257990021576401794532332846554110732723 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.54 hours. Scaled time: 53.85 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_5_158_7 n: 34669849575217344310845040652106352293609204790812820723875869971786291483583767823534769101797762193083626549678947507787187663376379745032085295237 skew: 1.56 deg: 5 c5: 7 c0: 65 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:203362, AFBsize:203982, largePrimes:7130306 encountered Relations: rels:6561429, finalFF:456380 Max relations in full relation-set: 48 Initial matrix: 407409 x 456380 with sparse part having weight 44465696. Pruned matrix : 375407 x 377508 with weight 31102632. Total sieving time: 27.88 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.43 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 29.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(14·10160+13)/9 = 1(5)1597<161> = 61 · 10139 · 17681143 · C148
C148 = P45 · P103
P45 = 176720868675475223470096867570916437052715191<45>
P103 = 8049379325259462249231277994447239129423049602136274705815379461742465805843495476803214658460885605691<103>
Number: n N=1422493306658262792422596582282164491360765077603258821754623045986835929330369940044454657354844441330750682548671902495714714097457993700151751981 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: Mon Mar 31 18:59:06 2008 prp45 factor: 176720868675475223470096867570916437052715191 Mon Mar 31 18:59:06 2008 prp103 factor: 8049379325259462249231277994447239129423049602136274705815379461742465805843495476803214658460885605691 Mon Mar 31 18:59:06 2008 elapsed time 00:50:23 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.71 hours. Scaled time: 56.16 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_5_159_7 n: 1422493306658262792422596582282164491360765077603258821754623045986835929330369940044454657354844441330750682548671902495714714097457993700151751981 skew: 0.99 deg: 5 c5: 14 c0: 13 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100277) Primes: RFBsize:203362, AFBsize:202952, largePrimes:7188501 encountered Relations: rels:6611896, finalFF:448791 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 30.53 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 30.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(14·10165-23)/9 = 1(5)1643<166> = 1081741 · 348427632923<12> · C148
C148 = P39 · P109
P39 = 535728913589613419728258074511925624737<39>
P109 = 7703792187315390144299929098071704967894750175677556891822468858120439691344477047932722475841300620157500383<109>
By matsui / GGNFS
3·10170-7 = 2(9)1693<171> = 571 · 19364771 · C161
C161 = P46 · P115
P46 = 6500447580664317282363738571189216214014916119<46>
P115 = 4173779680365580296879466841090799172626675464658891545229584269857535434533778203229820960806843647214822728845567<115>
N=27131436025458323930591267505429410259473495251355363977569652855593983278520297559202448651242915986462611185758700258775413350613530637554314092810703209994473 ( 161 digits) SNFS difficulty: 170 digits. Divisors found: r1=6500447580664317282363738571189216214014916119 (pp46) r2=4173779680365580296879466841090799172626675464658891545229584269857535434533778203229820960806843647214822728845567 (pp115) Version: GGNFS-0.77.1-20060513-prescott Total time: 116.18 hours. Scaled time: 98.99 units (timescale=0.852). Factorization parameters were as follows: n: 27131436025458323930591267505429410259473495251355363977569652855593983278520297559202448651242915986462611185758700258775413350613530637554314092810703209994473 m: 10000000000000000000000000000000000 c5: 3 c0: -7 skew: 1.18 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7100001) Primes: RFBsize:412849, AFBsize:411971, largePrimes:6063193 encountered Relations: rels:6355607, finalFF:953328 Max relations in full relation-set: 28 Initial matrix: 824885 x 953328 with sparse part having weight 55798413. Pruned matrix : 718666 x 722854 with weight 40153351. Total sieving time: 107.72 hours. Total relation processing time: 0.12 hours. Matrix solve time: 8.05 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 116.18 hours.
By Jo Yeong Uk / GGNFS
(14·10159-23)/9 = 1(5)1583<160> = 2360483 · 226593244838333<15> · 118365524892972602913743693<27> · C113
C113 = P52 · P62
P52 = 2430749538295306145725728141599656700945070902478673<52>
P62 = 10108163321139107412078827980136296192052017344921530333358643<62>
Number: 15553_159 N=24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739 ( 113 digits) Divisors found: r1=2430749538295306145725728141599656700945070902478673 (pp52) r2=10108163321139107412078827980136296192052017344921530333358643 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.76 hours. Scaled time: 36.72 units (timescale=1.858). Factorization parameters were as follows: name: 15553_159 n: 24570413325872433726374752132935798567129323835655643445013749975132033066760666479547157867771337118765767720739 skew: 21469.36 # norm 6.53e+14 c5: 43920 c4: -1018208888 c3: -52825621881145 c2: 440927432653850745 c1: 9501511920375097228487 c0: -45005353793894983316532848 # alpha -4.95 Y1: 684329137657 Y0: -3544462736890836314475 # Murphy_E 7.69e-10 # M 19596200183058475987666150282800979262971493155179127731599566306585118493722288584774250903399448011868899771762 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2380001) Primes: RFBsize:203362, AFBsize:203762, largePrimes:7714693 encountered Relations: rels:7680934, finalFF:595056 Max relations in full relation-set: 28 Initial matrix: 407203 x 595056 with sparse part having weight 57185218. Pruned matrix : 284718 x 286818 with weight 34334574. Polynomial selection time: 1.06 hours. Total sieving time: 17.98 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.48 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 19.76 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.94 BogoMIPS (lpj=2406472) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405149) Calibrating delay using timer specific routine.. 4809.88 BogoMIPS (lpj=2404940) Calibrating delay using timer specific routine.. 4918.32 BogoMIPS (lpj=2459163)
By Sinkiti Sibata / GGNFS
(13·10151+41)/9 = 1(4)1509<152> = 293 · 313 · 1888625094100861<16> · C131
C131 = P48 · P84
P48 = 229099467826487034018759913891943497136975872769<48>
P84 = 364014806146565362202173145442854541103475488915524144605594396975532850513975154329<84>
Number: 14449_151 N=83395598369139965832168475774983316304583398622039903708156716045086640578730352860276260120758099296926726038305105508796243567001 ( 131 digits) SNFS difficulty: 152 digits. Divisors found: r1=229099467826487034018759913891943497136975872769 (pp48) r2=364014806146565362202173145442854541103475488915524144605594396975532850513975154329 (pp84) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 44.48 hours. Scaled time: 30.03 units (timescale=0.675). Factorization parameters were as follows: name: 14449_151 n: 83395598369139965832168475774983316304583398622039903708156716045086640578730352860276260120758099296926726038305105508796243567001 m: 1000000000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2400001) Primes: RFBsize:176302, AFBsize:175999, largePrimes:5654496 encountered Relations: rels:5576359, finalFF:468391 Max relations in full relation-set: 28 Initial matrix: 352368 x 468391 with sparse part having weight 45018980. Pruned matrix : 311238 x 313063 with weight 27264252. Total sieving time: 39.99 hours. Total relation processing time: 0.25 hours. Matrix solve time: 4.07 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 44.48 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(14·10145+13)/9 = 1(5)1447<146> = 17 · 351580221955260353971<21> · C124
C124 = P62 · P62
P62 = 34459589968363234442648214731087099673642284116938602851917257<62>
P62 = 75526970244148897784211551730428691782297907191091326903221343<62>
Number: 15557_145 N=2602628426166141865724615540157791063643988462510517691652800254234982874875625259606153468156270329530203198865116992416151 ( 124 digits) SNFS difficulty: 146 digits. Divisors found: r1=34459589968363234442648214731087099673642284116938602851917257 (pp62) r2=75526970244148897784211551730428691782297907191091326903221343 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.28 hours. Scaled time: 19.10 units (timescale=1.859). Factorization parameters were as follows: n: 2602628426166141865724615540157791063643988462510517691652800254234982874875625259606153468156270329530203198865116992416151 m: 100000000000000000000000000000 c5: 14 c0: 13 skew: 0.99 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134738, largePrimes:3901017 encountered Relations: rels:4097730, finalFF:468243 Max relations in full relation-set: 28 Initial matrix: 269876 x 468243 with sparse part having weight 45370850. Pruned matrix : 206519 x 207932 with weight 19996486. Total sieving time: 10.01 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.18 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.28 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.94 BogoMIPS (lpj=2406472) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405149) Calibrating delay using timer specific routine.. 4809.88 BogoMIPS (lpj=2404940) Calibrating delay using timer specific routine.. 4918.32 BogoMIPS (lpj=2459163)
(14·10158+13)/9 = 1(5)1577<159> = 73 · 157 · 995019451 · 208167547279001467<18> · 4497526422252317257<19> · C110
C110 = P46 · P65
P46 = 1210558913543004506210542223385032067495000517<46>
P65 = 12035351112751119719236488570794160664363849366208366689915448269<65>
Number: 15557_158 N=14569501567160585814901710440786511367556393436049973012285870292289222161159866566292118930478367602441755073 ( 110 digits) Divisors found: r1=1210558913543004506210542223385032067495000517 (pp46) r2=12035351112751119719236488570794160664363849366208366689915448269 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.56 hours. Scaled time: 27.06 units (timescale=1.859). Factorization parameters were as follows: name: 15557_158 n: 14569501567160585814901710440786511367556393436049973012285870292289222161159866566292118930478367602441755073 skew: 23466.91 # norm 4.30e+14 c5: 720 c4: -141763316 c3: -19615208060397 c2: 21839928663373314 c1: 1559345164302976886012 c0: -57832564243336272936728 # alpha -4.47 Y1: 336403296409 Y0: -1824843363352675883485 # Murphy_E 1.08e-09 # M 8863611329542007331398799307946931115871032908372565814999860843772890406313742186603022619801783138163488601 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 1920001) Primes: RFBsize:176302, AFBsize:176832, largePrimes:7632173 encountered Relations: rels:7526024, finalFF:533618 Max relations in full relation-set: 28 Initial matrix: 353208 x 533618 with sparse part having weight 52117188. Pruned matrix : 249410 x 251240 with weight 27367049. Polynomial selection time: 0.78 hours. Total sieving time: 13.25 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.32 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 14.56 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.94 BogoMIPS (lpj=2406472) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405149) Calibrating delay using timer specific routine.. 4809.88 BogoMIPS (lpj=2404940) Calibrating delay using timer specific routine.. 4918.32 BogoMIPS (lpj=2459163)
By Sinkiti Sibata / GGNFS, Msieve
(14·10137+13)/9 = 1(5)1367<138> = 19 · C136
C136 = P41 · P96
P41 = 11764073559559998843123355711907785474687<41>
P96 = 695943837946402020118337584433250306357753583192431662177817987316706993990755327964810915425369<96>
Number: 15557_137 N=8187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134503 ( 136 digits) SNFS difficulty: 138 digits. Divisors found: r1=11764073559559998843123355711907785474687 (pp41) r2=695943837946402020118337584433250306357753583192431662177817987316706993990755327964810915425369 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 12.38 hours. Scaled time: 24.38 units (timescale=1.969). Factorization parameters were as follows: name: 15557_137 n: 8187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134502923976608187134503 m: 1000000000000000000000000000 c5: 1400 c0: 13 skew: 0.39 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1975001) Primes: RFBsize:78498, AFBsize:63883, largePrimes:1650833 encountered Relations: rels:1672542, finalFF:169267 Max relations in full relation-set: 28 Initial matrix: 142448 x 169267 with sparse part having weight 18473523. Pruned matrix : 135850 x 136626 with weight 13522889. Total sieving time: 12.04 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.20 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.38 hours. --------- CPU info (if available) ----------
(14·10139+13)/9 = 1(5)1387<140> = 1228783 · 7130213 · 28968643363421<14> · C113
C113 = P32 · P82
P32 = 57299449684752614248272600835231<32>
P82 = 1069619274128639137021858419038897362426876526582588171608739640247634879294468933<82>
Number: 15557_139 N=61288595779775571881113368796770804969316105944305619154906190416003544310391843891264168410337157483134381378523 ( 113 digits) SNFS difficulty: 140 digits. Divisors found: r1=57299449684752614248272600835231 (pp32) r2=1069619274128639137021858419038897362426876526582588171608739640247634879294468933 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.24 hours. Scaled time: 20.48 units (timescale=1.999). Factorization parameters were as follows: name: 15557_139 n: 61288595779775571881113368796770804969316105944305619154906190416003544310391843891264168410337157483134381378523 m: 10000000000000000000000000000 c5: 7 c0: 65 skew: 1.56 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1750001) Primes: RFBsize:100021, AFBsize:100618, largePrimes:2719554 encountered Relations: rels:2699900, finalFF:266940 Max relations in full relation-set: 28 Initial matrix: 200704 x 266940 with sparse part having weight 24490485. Pruned matrix : 180448 x 181515 with weight 14444246. Total sieving time: 9.83 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.24 hours. --------- CPU info (if available) ----------
(14·10125+13)/9 = 1(5)1247<126> = 29 · 857 · 532964659 · 6612379979563<13> · C100
C100 = P31 · P70
P31 = 1189183889824656181212523560943<31>
P70 = 1493487098247526373754498223558905495812451565384158118329898981129999<70>
Fri Mar 28 23:21:28 2008 Msieve v. 1.33 Fri Mar 28 23:21:28 2008 random seeds: 5386582e d8e5e839 Fri Mar 28 23:21:28 2008 factoring 1776030796896931864902419817154526194496709500799185020793318268673546294348199531369033949482029057 (100 digits) Fri Mar 28 23:21:30 2008 searching for 15-digit factors Fri Mar 28 23:21:32 2008 commencing quadratic sieve (100-digit input) Fri Mar 28 23:21:32 2008 using multiplier of 1 Fri Mar 28 23:21:32 2008 using 64kb Pentium 4 sieve core Fri Mar 28 23:21:32 2008 sieve interval: 18 blocks of size 65536 Fri Mar 28 23:21:32 2008 processing polynomials in batches of 6 Fri Mar 28 23:21:32 2008 using a sieve bound of 2674031 (97647 primes) Fri Mar 28 23:21:32 2008 using large prime bound of 401104650 (28 bits) Fri Mar 28 23:21:32 2008 using double large prime bound of 3061003663568100 (43-52 bits) Fri Mar 28 23:21:32 2008 using trial factoring cutoff of 52 bits Fri Mar 28 23:21:32 2008 polynomial 'A' values have 13 factors Sat Mar 29 20:55:01 2008 97755 relations (22380 full + 75375 combined from 1494977 partial), need 97743 Sat Mar 29 20:55:06 2008 begin with 1517357 relations Sat Mar 29 20:55:08 2008 reduce to 261925 relations in 11 passes Sat Mar 29 20:55:08 2008 attempting to read 261925 relations Sat Mar 29 20:55:18 2008 recovered 261925 relations Sat Mar 29 20:55:18 2008 recovered 254042 polynomials Sat Mar 29 20:55:18 2008 attempting to build 97755 cycles Sat Mar 29 20:55:18 2008 found 97755 cycles in 6 passes Sat Mar 29 20:55:18 2008 distribution of cycle lengths: Sat Mar 29 20:55:18 2008 length 1 : 22380 Sat Mar 29 20:55:18 2008 length 2 : 16289 Sat Mar 29 20:55:18 2008 length 3 : 16175 Sat Mar 29 20:55:18 2008 length 4 : 13411 Sat Mar 29 20:55:18 2008 length 5 : 10254 Sat Mar 29 20:55:18 2008 length 6 : 7237 Sat Mar 29 20:55:18 2008 length 7 : 4951 Sat Mar 29 20:55:18 2008 length 9+: 7058 Sat Mar 29 20:55:18 2008 largest cycle: 20 relations Sat Mar 29 20:55:19 2008 matrix is 97647 x 97755 (25.5 MB) with weight 6299176 (64.44/col) Sat Mar 29 20:55:19 2008 sparse part has weight 6299176 (64.44/col) Sat Mar 29 20:55:21 2008 filtering completed in 3 passes Sat Mar 29 20:55:21 2008 matrix is 94278 x 94342 (24.7 MB) with weight 6109336 (64.76/col) Sat Mar 29 20:55:21 2008 sparse part has weight 6109336 (64.76/col) Sat Mar 29 20:55:22 2008 saving the first 48 matrix rows for later Sat Mar 29 20:55:22 2008 matrix is 94230 x 94342 (13.9 MB) with weight 4602553 (48.79/col) Sat Mar 29 20:55:22 2008 sparse part has weight 3082742 (32.68/col) Sat Mar 29 20:55:22 2008 matrix includes 64 packed rows Sat Mar 29 20:55:22 2008 using block size 21845 for processor cache size 512 kB Sat Mar 29 20:55:23 2008 commencing Lanczos iteration Sat Mar 29 20:55:23 2008 memory use: 14.7 MB Sat Mar 29 20:56:49 2008 lanczos halted after 1491 iterations (dim = 94229) Sat Mar 29 20:56:49 2008 recovered 16 nontrivial dependencies Sat Mar 29 20:56:51 2008 prp31 factor: 1189183889824656181212523560943 Sat Mar 29 20:56:51 2008 prp70 factor: 1493487098247526373754498223558905495812451565384158118329898981129999 Sat Mar 29 20:56:51 2008 elapsed time 21:35:23
By matsui / GGNFS
4·10170-3 = 3(9)1697<171> = 229 · 73679 · C164
C164 = P43 · P49 · P73
P43 = 1360033104762423088299063931973963977671913<43>
P49 = 3590519653945782877764230523114444807700131409621<49>
P73 = 4854829677573519382682020652046055052653649124445093405710647102555118179<73>
N=23707228529563299218829039529492118265169025723587584073981725638496414074246653917314283943017068434056358364630332296517449616657078080527647043936784438053634167 ( 164 digits) SNFS difficulty: 170 digits. Divisors found: r1=1360033104762423088299063931973963977671913 (pp43) r2=3590519653945782877764230523114444807700131409621 (pp49) r3=4854829677573519382682020652046055052653649124445093405710647102555118179 (pp73) Version: GGNFS-0.77.1-20060513-prescott Total time: 130.67 hours. Scaled time: 146.09 units (timescale=1.118). Factorization parameters were as follows: n: 23707228529563299218829039529492118265169025723587584073981725638496414074246653917314283943017068434056358364630332296517449616657078080527647043936784438053634167 m: 10000000000000000000000000000000000 c5: 4 c0: -3 skew: 0.94 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7100001) Primes: RFBsize:412849, AFBsize:412766, largePrimes:6063551 encountered Relations: rels:6355124, finalFF:952227 Max relations in full relation-set: 28 Initial matrix: 825682 x 952227 with sparse part having weight 57621045. Pruned matrix : 720478 x 724670 with weight 41769639. Total sieving time: 120.70 hours. Total relation processing time: 0.14 hours. Matrix solve time: 9.54 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 130.67 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(14·10153+13)/9 = 1(5)1527<154> = 3 · 29 · 1427 · 1587981827<10> · C139
C139 = P39 · P101
P39 = 460973496523002946310180089475028301423<39>
P101 = 17116730623418638738910176920615522214699754984748042446821276475378442415835456701206067027207625333<101>
(7·10168-61)/9 = (7)1671<168> = 32 · 17 · 23 · 47 · C163
C163 = P49 · P114
P49 = 9004468253267221996176999390369665257953454115627<49>
P114 = 522252267863776517383648685895265872874245070718524906770519125645126330038946823665531693031823946346738290819761<114>
Number: n N=4702603966176185072994490563553341300888053168984042721141631010851594552234845354868572296153874576177817548371320296371537959755115257464208145313149757110505147 ( 163 digits) SNFS difficulty: 168 digits. Divisors found: Sat Mar 29 12:07:22 2008 prp49 factor: 9004468253267221996176999390369665257953454115627 Sat Mar 29 12:07:22 2008 prp114 factor: 522252267863776517383648685895265872874245070718524906770519125645126330038946823665531693031823946346738290819761 Sat Mar 29 12:07:22 2008 elapsed time 01:18:21 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 53.48 hours. Scaled time: 44.81 units (timescale=0.838). Factorization parameters were as follows: name: KA_7_167_1 n: 4702603966176185072994490563553341300888053168984042721141631010851594552234845354868572296153874576177817548371320296371537959755115257464208145313149757110505147 type: snfs deg: 5 c5: 7000 c0: -61 skew: 0.39 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5900423) Primes: RFBsize:250150, AFBsize:250007, largePrimes:5947814 encountered Relations: rels:5883970, finalFF:552579 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 53.23 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,48,48,2.5,2.5,100000 total time: 53.48 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(13·10155+41)/9 = 1(4)1549<156> = 89 · 13367 · C150
C150 = P42 · P108
P42 = 454914555226406458961012387411117835014677<42>
P108 = 266899067010205212556633241991383306589388963910132941966984708011973578478898221181824191297352863936423299<108>
Number: n N=121416270359290357390659745192079138751431661272515363127578519668548525460104621598254669132724514794899433238189675937172497122667885312432549759423 ( 150 digits) SNFS difficulty: 156 digits. Divisors found: Fri Mar 28 14:54:39 2008 prp42 factor: 454914555226406458961012387411117835014677 Fri Mar 28 14:54:39 2008 prp108 factor: 266899067010205212556633241991383306589388963910132941966984708011973578478898221181824191297352863936423299 Fri Mar 28 14:54:39 2008 elapsed time 00:26:12 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 19.04 hours. Scaled time: 15.96 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_4_154_9 n: 121416270359290357390659745192079138751431661272515363127578519668548525460104621598254669132724514794899433238189675937172497122667885312432549759423 type: snfs deg: 5 c5: 13 c0: 41 skew: 1.26 m: 10000000000000000000000000000000 rlim: 2400000 alim: 2400000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:176302, AFBsize:175494, largePrimes:5415952 encountered Relations: rels:5271524, finalFF:461511 Max relations in full relation-set: 28 Initial matrix: 351863 x 461511 with sparse part having weight 38322948. Pruned matrix : 274203 x 276026 with weight 22148987. Total sieving time: 18.13 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.77 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.5,2.5,100000 total time: 19.04 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(13·10157+41)/9 = 1(4)1569<158> = 23 · 199 · C154
C154 = P51 · P103
P51 = 554967349862577519760631952619203509296695751946839<51>
P103 = 5686597597373431858875045737803935242817252645892081260193915454685731257129233895079087021649744633383<103>
Number: n N=3155875998349234093171169858956618843007307066734639380477265554827276479013424610977593280411720437938484694001408006214648119826184060398611414560726337 ( 154 digits) SNFS difficulty: 158 digits. Divisors found: Fri Mar 28 15:13:48 2008 prp51 factor: 554967349862577519760631952619203509296695751946839 Fri Mar 28 15:13:48 2008 prp103 factor: 5686597597373431858875045737803935242817252645892081260193915454685731257129233895079087021649744633383 Fri Mar 28 15:13:48 2008 elapsed time 00:45:02 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 28.18 hours. Scaled time: 23.73 units (timescale=0.842). Factorization parameters were as follows: name: KA_1_4_156_9 n: 3155875998349234093171169858956618843007307066734639380477265554827276479013424610977593280411720437938484694001408006214648119826184060398611414560726337 type: snfs deg: 5 c5: 1300 c0: 41 skew: 0.50 m: 10000000000000000000000000000000 rlim: 2800000 alim: 2800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:203362, AFBsize:203738, largePrimes:5556469 encountered Relations: rels:5457604, finalFF:504339 Max relations in full relation-set: 28 Initial matrix: 407167 x 504339 with sparse part having weight 41011748. Pruned matrix : 336332 x 338431 with weight 25630672. Total sieving time: 26.88 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.14 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,48,48,2.5,2.5,100000 total time: 28.18 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(13·10184+23)/9 = 1(4)1837<185> = C185
C185 = P45 · P66 · P75
P45 = 130313823514075667946558550056804849533881379<45>
P66 = 134178502432547024473255568544090457894328704524614680930133832431<66>
P75 = 826090095056379329198269351883150800396104341540990784443107295090242772603<75>
Number: n N=14444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 ( 185 digits) SNFS difficulty: 186 digits. Divisors found: r1=130313823514075667946558550056804849533881379 (pp45) r2=134178502432547024473255568544090457894328704524614680930133832431 (pp66) r3=826090095056379329198269351883150800396104341540990784443107295090242772603 (pp75) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 360.94 hours. Scaled time: 474.28 units (timescale=1.314). Factorization parameters were as follows: name: KA_1_4_183_7 n: 14444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 type: snfs deg: 5 c5: 13 c0: 230 skew: 1.78 m: 10000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 22200001) Primes: RFBsize:539777, AFBsize:538330, largePrimes:6770291 encountered Relations: rels:7309531, finalFF:1208038 Max relations in full relation-set: 28 Initial matrix: 1078172 x 1208038 with sparse part having weight 76505435. Pruned matrix : 964515 x 969969 with weight 57010962. Total sieving time: 339.65 hours. Total relation processing time: 0.54 hours. Matrix solve time: 20.19 hours. Total square root time: 0.57 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8000000,8000000,27,27,48,48,2.5,2.5,100000 total time: 360.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Tyler Cadigan / GGNFS, Msieve
(25·10179-1)/3 = 8(3)179<180> = 664507 · C175
C175 = P76 · P99
P76 = 2926458049828320152153838355641986293834526340146035098618125303277291517849<76>
P99 = 428525717516297107753879753190106264709390407138076594167027664710084445341842935008628078191572231<99>
Number: 83333_179 N=1254062535584024447196693689206183431225454861022281681507242712768011974792339784732641391788699492004348085623376929563320376359215679192744897094136455046121911933709251119 ( 175 digits) SNFS difficulty: 180 digits. Divisors found: r1=2926458049828320152153838355641986293834526340146035098618125303277291517849 r2=428525717516297107753879753190106264709390407138076594167027664710084445341842935008628078191572231 Version: Total time: 248.38 hours. Scaled time: 641.31 units (timescale=2.582). Factorization parameters were as follows: n: 1254062535584024447196693689206183431225454861022281681507242712768011974792339784732641391788699492004348085623376929563320376359215679192744897094136455046121911933709251119 m: 1000000000000000000000000000000000000 c5: 5 c0: -2 skew: 0.83 type: snfs Y0: -1000000000000000000000000000000000000 Y1: 1Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 7900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 826206 x 826454 Total sieving time: 248.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 248.38 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(14·10142+13)/9 = 1(5)1417<143> = 47 · 67 · 73 · 1553 · 40771 · 223602356241339263<18> · 2483578528016102363689<22> · C91
C91 = P34 · P57
P34 = 7467290566568150971516456465404349<34>
P57 = 257721032809974451455373522337667266256407960889221270449<57>
Fri Mar 28 07:33:40 2008 Msieve v. 1.33 Fri Mar 28 07:33:40 2008 random seeds: c299d4da fc74c7f6 Fri Mar 28 07:33:40 2008 factoring 1924477837108123147224947210103213537481957824666511682922405032895670732495495234269782701 (91 digits) Fri Mar 28 07:33:42 2008 searching for 15-digit factors Fri Mar 28 07:33:43 2008 commencing quadratic sieve (91-digit input) Fri Mar 28 07:33:44 2008 using multiplier of 1 Fri Mar 28 07:33:44 2008 using 64kb Pentium 4 sieve core Fri Mar 28 07:33:44 2008 sieve interval: 18 blocks of size 65536 Fri Mar 28 07:33:44 2008 processing polynomials in batches of 6 Fri Mar 28 07:33:44 2008 using a sieve bound of 1648187 (62353 primes) Fri Mar 28 07:33:44 2008 using large prime bound of 145040456 (27 bits) Fri Mar 28 07:33:44 2008 using double large prime bound of 490546837774928 (42-49 bits) Fri Mar 28 07:33:44 2008 using trial factoring cutoff of 49 bits Fri Mar 28 07:33:44 2008 polynomial 'A' values have 12 factors Fri Mar 28 10:12:04 2008 62951 relations (16059 full + 46892 combined from 705930 partial), need 62449 Fri Mar 28 10:12:06 2008 begin with 721989 relations Fri Mar 28 10:12:07 2008 reduce to 156795 relations in 10 passes Fri Mar 28 10:12:07 2008 attempting to read 156795 relations Fri Mar 28 10:12:11 2008 recovered 156795 relations Fri Mar 28 10:12:11 2008 recovered 137251 polynomials Fri Mar 28 10:12:12 2008 attempting to build 62951 cycles Fri Mar 28 10:12:12 2008 found 62951 cycles in 5 passes Fri Mar 28 10:12:12 2008 distribution of cycle lengths: Fri Mar 28 10:12:12 2008 length 1 : 16059 Fri Mar 28 10:12:12 2008 length 2 : 11660 Fri Mar 28 10:12:12 2008 length 3 : 10892 Fri Mar 28 10:12:12 2008 length 4 : 8647 Fri Mar 28 10:12:12 2008 length 5 : 6192 Fri Mar 28 10:12:12 2008 length 6 : 3994 Fri Mar 28 10:12:12 2008 length 7 : 2473 Fri Mar 28 10:12:12 2008 length 9+: 3034 Fri Mar 28 10:12:12 2008 largest cycle: 19 relations Fri Mar 28 10:12:12 2008 matrix is 62353 x 62951 (15.5 MB) with weight 3812304 (60.56/col) Fri Mar 28 10:12:12 2008 sparse part has weight 3812304 (60.56/col) Fri Mar 28 10:12:13 2008 filtering completed in 4 passes Fri Mar 28 10:12:13 2008 matrix is 58760 x 58824 (14.5 MB) with weight 3554457 (60.43/col) Fri Mar 28 10:12:13 2008 sparse part has weight 3554457 (60.43/col) Fri Mar 28 10:12:14 2008 saving the first 48 matrix rows for later Fri Mar 28 10:12:14 2008 matrix is 58712 x 58824 (9.1 MB) with weight 2809478 (47.76/col) Fri Mar 28 10:12:14 2008 sparse part has weight 2043760 (34.74/col) Fri Mar 28 10:12:14 2008 matrix includes 64 packed rows Fri Mar 28 10:12:14 2008 using block size 21845 for processor cache size 512 kB Fri Mar 28 10:12:15 2008 commencing Lanczos iteration Fri Mar 28 10:12:15 2008 memory use: 9.0 MB Fri Mar 28 10:12:47 2008 lanczos halted after 929 iterations (dim = 58708) Fri Mar 28 10:12:47 2008 recovered 15 nontrivial dependencies Fri Mar 28 10:12:49 2008 prp34 factor: 7467290566568150971516456465404349 Fri Mar 28 10:12:49 2008 prp57 factor: 257721032809974451455373522337667266256407960889221270449 Fri Mar 28 10:12:49 2008 elapsed time 02:39:09
(14·10135+13)/9 = 1(5)1347<136> = 3 · 1381 · 222396359378344723344489169<27> · C106
C106 = P45 · P61
P45 = 850464992838381187711643030456490530458087993<45>
P61 = 1985118687022080519125853658451963101859713733308921760886547<61>
Number: 15557_135 N=1688273949941570375095874217711031864364334175058727202308319719669742426148965973319064328338454215930171 ( 106 digits) SNFS difficulty: 136 digits. Divisors found: r1=850464992838381187711643030456490530458087993 (pp45) r2=1985118687022080519125853658451963101859713733308921760886547 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.33 hours. Scaled time: 16.63 units (timescale=1.996). Factorization parameters were as follows: name: 15557_135 n: 1688273949941570375095874217711031864364334175058727202308319719669742426148965973319064328338454215930171 m: 1000000000000000000000000000 c5: 14 c0: 13 skew: 0.99 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63758, largePrimes:1552807 encountered Relations: rels:1544617, finalFF:162642 Max relations in full relation-set: 28 Initial matrix: 142322 x 162642 with sparse part having weight 14896086. Pruned matrix : 136528 x 137303 with weight 11093629. Total sieving time: 8.09 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.33 hours. --------- CPU info (if available) ----------
(14·10141+13)/9 = 1(5)1407<142> = 3 · 58771 · 2195681 · 8652793169<10> · 3248156225927037467732225359<28> · C93
C93 = P45 · P48
P45 = 183423493947434274718688357884837548361877507<45>
P48 = 779441909528350662423303508331947392118799809777<48>
Fri Mar 28 10:32:18 2008 Msieve v. 1.33 Fri Mar 28 10:32:18 2008 random seeds: 272e5fe1 63dbf71a Fri Mar 28 10:32:18 2008 factoring 142967958374750041269888592393394485067234229144975090352486633805456865490049829790174985939 (93 digits) Fri Mar 28 10:32:20 2008 searching for 15-digit factors Fri Mar 28 10:32:21 2008 commencing quadratic sieve (93-digit input) Fri Mar 28 10:32:22 2008 using multiplier of 1 Fri Mar 28 10:32:22 2008 using 64kb Pentium 4 sieve core Fri Mar 28 10:32:22 2008 sieve interval: 18 blocks of size 65536 Fri Mar 28 10:32:22 2008 processing polynomials in batches of 6 Fri Mar 28 10:32:22 2008 using a sieve bound of 1882073 (70588 primes) Fri Mar 28 10:32:22 2008 using large prime bound of 220202541 (27 bits) Fri Mar 28 10:32:22 2008 using double large prime bound of 1040112169045794 (42-50 bits) Fri Mar 28 10:32:22 2008 using trial factoring cutoff of 50 bits Fri Mar 28 10:32:22 2008 polynomial 'A' values have 12 factors Fri Mar 28 14:10:29 2008 70703 relations (18168 full + 52535 combined from 917138 partial), need 70684 Fri Mar 28 14:10:32 2008 begin with 935306 relations Fri Mar 28 14:10:33 2008 reduce to 178180 relations in 11 passes Fri Mar 28 14:10:33 2008 attempting to read 178180 relations Fri Mar 28 14:10:38 2008 recovered 178180 relations Fri Mar 28 14:10:38 2008 recovered 158900 polynomials Fri Mar 28 14:10:38 2008 attempting to build 70703 cycles Fri Mar 28 14:10:38 2008 found 70703 cycles in 5 passes Fri Mar 28 14:10:38 2008 distribution of cycle lengths: Fri Mar 28 14:10:38 2008 length 1 : 18168 Fri Mar 28 14:10:38 2008 length 2 : 12994 Fri Mar 28 14:10:38 2008 length 3 : 12118 Fri Mar 28 14:10:38 2008 length 4 : 9543 Fri Mar 28 14:10:38 2008 length 5 : 6839 Fri Mar 28 14:10:38 2008 length 6 : 4582 Fri Mar 28 14:10:38 2008 length 7 : 2854 Fri Mar 28 14:10:38 2008 length 9+: 3605 Fri Mar 28 14:10:38 2008 largest cycle: 18 relations Fri Mar 28 14:10:39 2008 matrix is 70588 x 70703 (17.5 MB) with weight 4300534 (60.83/col) Fri Mar 28 14:10:39 2008 sparse part has weight 4300534 (60.83/col) Fri Mar 28 14:10:40 2008 filtering completed in 3 passes Fri Mar 28 14:10:40 2008 matrix is 66643 x 66705 (16.6 MB) with weight 4094844 (61.39/col) Fri Mar 28 14:10:40 2008 sparse part has weight 4094844 (61.39/col) Fri Mar 28 14:10:41 2008 saving the first 48 matrix rows for later Fri Mar 28 14:10:41 2008 matrix is 66595 x 66705 (9.7 MB) with weight 3134744 (46.99/col) Fri Mar 28 14:10:41 2008 sparse part has weight 2143080 (32.13/col) Fri Mar 28 14:10:41 2008 matrix includes 64 packed rows Fri Mar 28 14:10:41 2008 using block size 21845 for processor cache size 512 kB Fri Mar 28 14:10:41 2008 commencing Lanczos iteration Fri Mar 28 14:10:41 2008 memory use: 9.9 MB Fri Mar 28 14:11:23 2008 lanczos halted after 1055 iterations (dim = 66592) Fri Mar 28 14:11:23 2008 recovered 16 nontrivial dependencies Fri Mar 28 14:11:24 2008 prp45 factor: 183423493947434274718688357884837548361877507 Fri Mar 28 14:11:24 2008 prp48 factor: 779441909528350662423303508331947392118799809777 Fri Mar 28 14:11:24 2008 elapsed time 03:39:06
(14·10131+13)/9 = 1(5)1307<132> = 31 · 4337 · 1609599583<10> · 58700195699<11> · C107
C107 = P35 · P72
P35 = 56357955441055287971571773968585783<35>
P72 = 217281014777808196009137828237449697839477601469693193097765221967813121<72>
Number: 15557_131 N=12245513749034989852895705411736070721553443053147682733202564222569324669871927096396592972496605601458743 ( 107 digits) SNFS difficulty: 132 digits. Divisors found: r1=56357955441055287971571773968585783 (pp35) r2=217281014777808196009137828237449697839477601469693193097765221967813121 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.08 hours. Scaled time: 10.10 units (timescale=1.988). Factorization parameters were as follows: name: 15557_131 n: 12245513749034989852895705411736070721553443053147682733202564222569324669871927096396592972496605601458743 m: 100000000000000000000000000 c5: 140 c0: 13 skew: 0.62 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63398, largePrimes:1483814 encountered Relations: rels:1458460, finalFF:144699 Max relations in full relation-set: 28 Initial matrix: 127416 x 144699 with sparse part having weight 11561520. Pruned matrix : 123053 x 123754 with weight 8514307. Total sieving time: 4.88 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.08 hours. --------- CPU info (if available) ----------
(14·10127+13)/9 = 1(5)1267<128> = 179 · 1777 · C122
C122 = P41 · P82
P41 = 13425840129506340057442209524427842613367<41>
P82 = 3642533847136935011456148310820503413649474104862561436305997644166338839113473537<82>
Number: 15557_127 N=48904077097976174632267538835950225430329679849459278098972769860557010451849220346750865514835925074762107863531076969079 ( 122 digits) SNFS difficulty: 128 digits. Divisors found: r1=13425840129506340057442209524427842613367 (pp41) r2=3642533847136935011456148310820503413649474104862561436305997644166338839113473537 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.44 hours. Scaled time: 8.83 units (timescale=1.988). Factorization parameters were as follows: name: 15557_127 n: 48904077097976174632267538835950225430329679849459278098972769860557010451849220346750865514835925074762107863531076969079 m: 10000000000000000000000000 c5: 1400 c0: 13 skew: 0.39 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63883, largePrimes:1566066 encountered Relations: rels:1612994, finalFF:215096 Max relations in full relation-set: 28 Initial matrix: 127901 x 215096 with sparse part having weight 15848189. Pruned matrix : 104475 x 105178 with weight 6326007. Total sieving time: 4.30 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.44 hours. --------- CPU info (if available) ----------
(14·10155+13)/9 = 1(5)1547<156> = 19 · 1429 · 4003 · 62347 · 177383443 · 28629367194611<14> · 2853238433322186027101981<25> · C97
C97 = P43 · P54
P43 = 2306054698995868998921453543665437775116819<43>
P54 = 687014726607656415295394436693947860736093596616456341<54>
Fri Mar 28 14:24:16 2008 Msieve v. 1.33 Fri Mar 28 14:24:16 2008 random seeds: 8d254ebd b45fce0d Fri Mar 28 14:24:16 2008 factoring 1584293538572948347292846286312605310049603816960943641183522320318649105786798116802819088299279 (97 digits) Fri Mar 28 14:24:17 2008 searching for 15-digit factors Fri Mar 28 14:24:19 2008 commencing quadratic sieve (97-digit input) Fri Mar 28 14:24:20 2008 using multiplier of 31 Fri Mar 28 14:24:20 2008 using 64kb Pentium 4 sieve core Fri Mar 28 14:24:20 2008 sieve interval: 18 blocks of size 65536 Fri Mar 28 14:24:20 2008 processing polynomials in batches of 6 Fri Mar 28 14:24:20 2008 using a sieve bound of 2334881 (85814 primes) Fri Mar 28 14:24:20 2008 using large prime bound of 350232150 (28 bits) Fri Mar 28 14:24:20 2008 using double large prime bound of 2397953724173250 (43-52 bits) Fri Mar 28 14:24:20 2008 using trial factoring cutoff of 52 bits Fri Mar 28 14:24:20 2008 polynomial 'A' values have 13 factors Fri Mar 28 23:05:04 2008 86008 relations (21231 full + 64777 combined from 1284617 partial), need 85910 Fri Mar 28 23:05:09 2008 begin with 1305848 relations Fri Mar 28 23:05:10 2008 reduce to 223087 relations in 11 passes Fri Mar 28 23:05:10 2008 attempting to read 223087 relations Fri Mar 28 23:05:18 2008 recovered 223087 relations Fri Mar 28 23:05:18 2008 recovered 209473 polynomials Fri Mar 28 23:05:18 2008 attempting to build 86008 cycles Fri Mar 28 23:05:19 2008 found 86008 cycles in 5 passes Fri Mar 28 23:05:19 2008 distribution of cycle lengths: Fri Mar 28 23:05:19 2008 length 1 : 21231 Fri Mar 28 23:05:19 2008 length 2 : 15103 Fri Mar 28 23:05:19 2008 length 3 : 14640 Fri Mar 28 23:05:19 2008 length 4 : 11690 Fri Mar 28 23:05:19 2008 length 5 : 8817 Fri Mar 28 23:05:19 2008 length 6 : 5845 Fri Mar 28 23:05:19 2008 length 7 : 3640 Fri Mar 28 23:05:19 2008 length 9+: 5042 Fri Mar 28 23:05:19 2008 largest cycle: 20 relations Fri Mar 28 23:05:19 2008 matrix is 85814 x 86008 (23.1 MB) with weight 5717670 (66.48/col) Fri Mar 28 23:05:19 2008 sparse part has weight 5717670 (66.48/col) Fri Mar 28 23:05:21 2008 filtering completed in 3 passes Fri Mar 28 23:05:21 2008 matrix is 81869 x 81933 (22.2 MB) with weight 5481881 (66.91/col) Fri Mar 28 23:05:21 2008 sparse part has weight 5481881 (66.91/col) Fri Mar 28 23:05:22 2008 saving the first 48 matrix rows for later Fri Mar 28 23:05:22 2008 matrix is 81821 x 81933 (13.9 MB) with weight 4319361 (52.72/col) Fri Mar 28 23:05:22 2008 sparse part has weight 3151156 (38.46/col) Fri Mar 28 23:05:22 2008 matrix includes 64 packed rows Fri Mar 28 23:05:22 2008 using block size 21845 for processor cache size 512 kB Fri Mar 28 23:05:23 2008 commencing Lanczos iteration Fri Mar 28 23:05:23 2008 memory use: 13.4 MB Fri Mar 28 23:06:30 2008 lanczos halted after 1296 iterations (dim = 81820) Fri Mar 28 23:06:30 2008 recovered 17 nontrivial dependencies Fri Mar 28 23:06:32 2008 prp43 factor: 2306054698995868998921453543665437775116819 Fri Mar 28 23:06:32 2008 prp54 factor: 687014726607656415295394436693947860736093596616456341 Fri Mar 28 23:06:32 2008 elapsed time 08:42:16
By Jo Yeong Uk / GGNFS, GMP-ECM
(14·10140+13)/9 = 1(5)1397<141> = C141
C141 = P44 · P48 · P50
P44 = 18651903176326491578590588753852342945211347<44>
P48 = 252881043399032213036236815115213828278264819281<48>
P50 = 32979654314807824846613071587603169379763120964151<50>
Number: 15557_140 N=155555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 ( 141 digits) SNFS difficulty: 141 digits. Divisors found: r1=18651903176326491578590588753852342945211347 (pp44) r2=252881043399032213036236815115213828278264819281 (pp48) r3=32979654314807824846613071587603169379763120964151 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.85 hours. Scaled time: 12.72 units (timescale=1.858). Factorization parameters were as follows: n: 155555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557 m: 10000000000000000000000000000 c5: 14 c0: 13 skew: 0.99 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:113567, largePrimes:3340555 encountered Relations: rels:3374677, finalFF:329395 Max relations in full relation-set: 28 Initial matrix: 227788 x 329395 with sparse part having weight 29643874. Pruned matrix : 192119 x 193321 with weight 14135088. Total sieving time: 6.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.85 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
(14·10143+13)/9 = 1(5)1427<144> = 463 · 757473732247<12> · C129
C129 = P32 · P98
P32 = 31023256647461269459083296692481<32>
P98 = 14297153258489824550197407114241491781702207804512304053903211398529910877204888068953512227503277<98>
(13·10158+41)/9 = 1(4)1579<159> = 8395064813<10> · 6547652897573<13> · C136
C136 = P35 · P38 · P64
P35 = 16799381951211795792021653942974259<35>
P38 = 95310855936913632436908778587893374381<38>
P64 = 1641177169129370612168524976686946831629697557566826514744860519<64>
Number: 14449_158 N=2627792935900529823600728141082774214194696712267598876097811277856833048373726072482011878352451161589375769614853730389213107897394401 ( 136 digits) SNFS difficulty: 161 digits. Divisors found: r1=16799381951211795792021653942974259 (pp35) r2=95310855936913632436908778587893374381 (pp38) r3=1641177169129370612168524976686946831629697557566826514744860519 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 45.46 hours. Scaled time: 84.51 units (timescale=1.859). Factorization parameters were as follows: n: 2627792935900529823600728141082774214194696712267598876097811277856833048373726072482011878352451161589375769614853730389213107897394401 m: 100000000000000000000000000000000 c5: 13 c0: 4100 skew: 3.16 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4700001) Primes: RFBsize:283146, AFBsize:283233, largePrimes:5900455 encountered Relations: rels:5998416, finalFF:691121 Max relations in full relation-set: 28 Initial matrix: 566446 x 691121 with sparse part having weight 57637285. Pruned matrix : 482715 x 485611 with weight 41998325. Total sieving time: 43.81 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.49 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 45.46 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
(14·10148+13)/9 = 1(5)1477<149> = 23 · 127 · 9617431 · 28592942638103<14> · C125
C125 = P31 · P94
P31 = 2955942702886671963377337782719<31>
P94 = 6551489141217456900333363868481004414477273935372377844460384722109044250808853571620019992051<94>
(14·10144+13)/9 = 1(5)1437<145> = 3 · 177917731 · 7896795631<10> · C126
C126 = P35 · P91
P35 = 40279116793142065245222699843631961<35>
P91 = 9162504531036749318413204160760887020649789519572774169774160166578798106315855757126370539<91>
(14·10154+13)/9 = 1(5)1537<155> = 181 · 194674953680161<15> · 1859392175839927<16> · 49084445312330203738301<23> · C100
C100 = P41 · P59
P41 = 91289570793444294608922077211552637967747<41>
P59 = 52985961482047564535054459735932602456339456869443192968833<59>
Number: 15557_154 N=4837065681774093718251116801511046020210139612900427557252330234045588282189199187430521628630229251 ( 100 digits) Divisors found: r1=91289570793444294608922077211552637967747 (pp41) r2=52985961482047564535054459735932602456339456869443192968833 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.89 hours. Scaled time: 7.22 units (timescale=1.858). Factorization parameters were as follows: name: 15557_154 n: 4837065681774093718251116801511046020210139612900427557252330234045588282189199187430521628630229251 skew: 1367.70 # norm 2.96e+13 c5: 1198800 c4: 4597956255 c3: -6493910268984 c2: -5946587059349494 c1: 7130478681524009176 c0: 62082080180362892391 # alpha -5.23 Y1: 44023727389 Y0: -5262162593316141434 # Murphy_E 3.39e-09 # M 1269640190083716933541114628036959286252817572829869594382248791084356352137432559737845299331323783 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114143, largePrimes:3920628 encountered Relations: rels:3890336, finalFF:335002 Max relations in full relation-set: 28 Initial matrix: 228377 x 335002 with sparse part having weight 26931258. Pruned matrix : 170218 x 171423 with weight 11732275. Polynomial selection time: 0.25 hours. Total sieving time: 3.42 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 3.89 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
(14·10158-23)/9 = 1(5)1573<159> = 3 · 727 · C155
C155 = P53 · P103
P53 = 14588197216044197579705519152242955035773942876598287<53>
P103 = 4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499<103>
Number: 15553_158 N=71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213 ( 155 digits) SNFS difficulty: 160 digits. Divisors found: r1=14588197216044197579705519152242955035773942876598287 (pp53) r2=4889092283367864506268890541041439684319959055354301808203619167574234059984462242015485343648252218499 (pp103) Version: GGNFS-0.77.1-20050930-nocona Total time: 41.96 hours. Scaled time: 77.92 units (timescale=1.857). Factorization parameters were as follows: n: 71323042437210250140098833358805848489479851240511488104335422079576137347801721942024555504610525243262519741199246013551378063069947526618778338173111213 m: 100000000000000000000000000000000 c5: 7 c0: -1150 skew: 2.77 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4500001) Primes: RFBsize:283146, AFBsize:282822, largePrimes:5807321 encountered Relations: rels:5848810, finalFF:648376 Max relations in full relation-set: 28 Initial matrix: 566034 x 648376 with sparse part having weight 50939019. Pruned matrix : 513937 x 516831 with weight 38008732. Total sieving time: 40.30 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.50 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 41.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
The factor table of 155...557 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By matsui / GGNFS
5·10174+9 = 5(0)1739<175> = 72 · 282683 · C168
C168 = P55 · P113
P55 = 6932341858585301203147155694949322507634968456323255381<55>
P113 = 52070801363035000937721717804698385278518754334939026472475690096827289091076030500703551512192216650466491354767<113>
N=360972595899048093606258456234274680075402843612160358177224116405865169371590749196456952898923991227788363499692848418149499977150434679590255674723839720370412751227 ( 168 digits) SNFS difficulty: 175 digits. Divisors found: r1=6932341858585301203147155694949322507634968456323255381 (pp55) r2=52070801363035000937721717804698385278518754334939026472475690096827289091076030500703551512192216650466491354767 (pp113) Version: GGNFS-0.77.1-20060513-prescott Total time: 179.84 hours. Scaled time: 204.47 units (timescale=1.137). Factorization parameters were as follows: n: 360972595899048093606258456234274680075402843612160358177224116405865169371590749196456952898923991227788363499692848418149499977150434679590255674723839720370412751227 m: 100000000000000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10200001) Primes: RFBsize:501962, AFBsize:502056, largePrimes:6407087 encountered Relations: rels:6887568, finalFF:1161225 Max relations in full relation-set: 28 Initial matrix: 1004085 x 1161225 with sparse part having weight 66785490. Pruned matrix : 866238 x 871322 with weight 48815069. Total sieving time: 165.19 hours. Total relation processing time: 0.13 hours. Matrix solve time: 14.16 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 179.84 hours.
By Sinkiti Sibata / GGNFS
(13·10150+41)/9 = 1(4)1499<151> = 3 · 149 · 223 · 457 · 1436593 · 468280357 · 1327754658863<13> · C116
C116 = P37 · P79
P37 = 5273931011586111902421401925826174831<37>
P79 = 6731010863188734060301094219283696900836548322318543641341967238597466709527349<79>
Number: 14449_150 N=35498886930694068488696556445873016251270100374402327779600134140366575898525334967906326211481837444518708649953019 ( 116 digits) SNFS difficulty: 151 digits. Divisors found: r1=5273931011586111902421401925826174831 (pp37) r2=6731010863188734060301094219283696900836548322318543641341967238597466709527349 (pp79) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 30.51 hours. Scaled time: 20.60 units (timescale=0.675). Factorization parameters were as follows: name: 14449_150 n: 35498886930694068488696556445873016251270100374402327779600134140366575898525334967906326211481837444518708649953019 m: 1000000000000000000000000000000 c5: 13 c0: 41 skew: 1.26 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:175494, largePrimes:5501118 encountered Relations: rels:5456438, finalFF:525614 Max relations in full relation-set: 28 Initial matrix: 351863 x 525614 with sparse part having weight 45683886. Pruned matrix : 270724 x 272547 with weight 23014047. Total sieving time: 27.43 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.73 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.51 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(13·10153+41)/9 = 1(4)1529<154> = 3 · 7 · 65532938855809<14> · 162935348628421<15> · C124
C124 = P41 · P83
P41 = 64509374281942124842464642137452130975431<41>
P83 = 99858206116329719031014868769440016414121759112914631130939441108095968385953976191<83>
Number: 14449_153 N=6441790393481636167681455717217930089359769786440678435578407466998230206440351866658550195452745142800533270101709779963321 ( 124 digits) SNFS difficulty: 156 digits. Divisors found: r1=64509374281942124842464642137452130975431 (pp41) r2=99858206116329719031014868769440016414121759112914631130939441108095968385953976191 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.95 hours. Scaled time: 47.65 units (timescale=1.836). Factorization parameters were as follows: n: 6441790393481636167681455717217930089359769786440678435578407466998230206440351866658550195452745142800533270101709779963321 m: 10000000000000000000000000000000 c5: 13 c0: 4100 skew: 3.16 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:216987, largePrimes:5681241 encountered Relations: rels:5609321, finalFF:505447 Max relations in full relation-set: 28 Initial matrix: 433870 x 505447 with sparse part having weight 43815349. Pruned matrix : 402967 x 405200 with weight 31494206. Total sieving time: 24.96 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.86 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 25.95 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.92 BogoMIPS (lpj=2406460) Calibrating delay using timer specific routine.. 4810.27 BogoMIPS (lpj=2405136) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131)
By Sinkiti Sibata / GGNFS
(14·10149-23)/9 = 1(5)1483<150> = 3 · 19 · 61 · C146
C146 = P52 · P95
P52 = 3356563431989464838102279492452770144334227580418669<52>
P95 = 13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881<95>
Number: 15553_149 N=44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389 ( 146 digits) SNFS difficulty: 150 digits. Divisors found: r1=3356563431989464838102279492452770144334227580418669 (pp52) r2=13328644255702782199398300118670013826308047575946272170431865182527315159031646426963541568881 (pp95) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 34.05 hours. Scaled time: 22.99 units (timescale=0.675). Factorization parameters were as follows: name: 15553_149 n: 44738439906688396766049915316524462339820407119803150864410571054229380372607292365704790208672866136196593487361390726360527913590898923081839389 m: 1000000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176253, largePrimes:5595123 encountered Relations: rels:5569052, finalFF:530347 Max relations in full relation-set: 28 Initial matrix: 352620 x 530347 with sparse part having weight 46594351. Pruned matrix : 278318 x 280145 with weight 23634117. Total sieving time: 30.74 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.94 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 34.05 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(13·10176+41)/9 = 1(4)1759<177> = C177
C177 = P65 · P112
P65 = 27808173143646712634660391407710352012010711814864118729595098669<65>
P112 = 5194316206904279433881048138938401523659364545671879176946965575026753080885093603550898063065486182518914359621<112>
Number: 14449_176 N=144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 177 digits) SNFS difficulty: 177 digits. Divisors found: r1=27808173143646712634660391407710352012010711814864118729595098669 (pp65) r2=5194316206904279433881048138938401523659364545671879176946965575026753080885093603550898063065486182518914359621 (pp112) Version: GGNFS-0.77.1-20050930-nocona Total time: 204.63 hours. Scaled time: 380.21 units (timescale=1.858). Factorization parameters were as follows: n: 144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 m: 100000000000000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4500000, 7900001) Primes: RFBsize:602489, AFBsize:600866, largePrimes:10966505 encountered Relations: rels:11138115, finalFF:1368651 Max relations in full relation-set: 28 Initial matrix: 1203422 x 1368651 with sparse part having weight 91983625. Pruned matrix : 1058351 x 1064432 with weight 64848531. Total sieving time: 196.42 hours. Total relation processing time: 0.20 hours. Matrix solve time: 7.84 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.6,2.6,100000 total time: 204.63 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
By Sinkiti Sibata / GGNFS
(14·10146-23)/9 = 1(5)1453<147> = 32 · 17 · 9007 · 2781397012235323853321<22> · C119
C119 = P39 · P81
P39 = 105919920953310151356411194198742339101<39>
P81 = 383153944492844763111161253251402110359504657912538041799224423031962917815854683<81>
Number: 15553_146 N=40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983 ( 119 digits) SNFS difficulty: 147 digits. Divisors found: r1=105919920953310151356411194198742339101 (pp39) r2=383153944492844763111161253251402110359504657912538041799224423031962917815854683 (pp81) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 32.78 hours. Scaled time: 22.12 units (timescale=0.675). Factorization parameters were as follows: name: 15553_146 n: 40583635513631102698432965511202053180932113770520479983068613766399546890836472954025354188279221472737487682924859983 m: 100000000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3950001) Primes: RFBsize:114155, AFBsize:113947, largePrimes:3019088 encountered Relations: rels:3057061, finalFF:262687 Max relations in full relation-set: 28 Initial matrix: 228169 x 262687 with sparse part having weight 32216803. Pruned matrix : 218774 x 219978 with weight 25544316. Total sieving time: 30.47 hours. Total relation processing time: 0.26 hours. Matrix solve time: 1.93 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 32.78 hours. --------- CPU info (if available) ----------
Jason Papadopoulos's Msieve Version 1.34 was released.
By matsui / GGNFS
8·10175-3 = 7(9)1747<176> = 72 · 11 · C174
C174 = P35 · P139
P35 = 23845405656471461086656552291936781<35>
P139 = 6224385850428249598700767268572320083297682242040150160618374892128763951342044866744404597104779601236466339628501125503574499709383067683<139>
N=148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423 ( 174 digits) SNFS difficulty: 175 digits. Divisors found: r1=23845405656471461086656552291936781 (pp35) r2=6224385850428249598700767268572320083297682242040150160618374892128763951342044866744404597104779601236466339628501125503574499709383067683 (pp139) Version: GGNFS-0.77.1-20060513-prescott Total time: 164.37 hours. Scaled time: 191.16 units (timescale=1.163). Factorization parameters were as follows: n: 148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423005565862708719851576994434137291280148423 m: 100000000000000000000000000000000000 c5: 8 c0: -3 skew: 0.82 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9999999 ) Primes: RFBsize:501962, AFBsize:502156, largePrimes:6367552 encountered Relations: rels:6839182, finalFF:1153977 Max relations in full relation-set: 28 Initial matrix: 1004183 x 1153977 with sparse part having weight 64267694. Pruned matrix : 872629 x 877713 with weight 47053168. Total sieving time: 156.72 hours. Total relation processing time: 0.14 hours. Matrix solve time: 7.16 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 164.37 hours.
By Sinkiti Sibata / Msieve, GGNFS
(14·10172-23)/9 = 1(5)1713<173> = 146620853411992717<18> · 48732841755745228357<20> · 157497047898162804731<21> · 1087171254746335852469<22> · C95
C95 = P41 · P54
P41 = 59153305041058215728786305575326180793937<41>
P54 = 214940696862403157894398875584911842395797860592706359<54>
Number: 15553_154 N=29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353 ( 101 digits) SNFS difficulty: 155 digits. Divisors found: r1=95870625299777853092472666927690315569741 (pp41) r2=305957037399167054607851451384826644981270222698168907376933 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 40.32 hours. Scaled time: 80.60 units (timescale=1.999). Factorization parameters were as follows: name: 15553_154 n: 29332292490325663814719515383691975304656640266784115156065107203761488181559402971368249961736184353 m: 10000000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216496, largePrimes:5747979 encountered Relations: rels:5768604, finalFF:592648 Max relations in full relation-set: 28 Initial matrix: 433377 x 592648 with sparse part having weight 49565434. Pruned matrix : 350847 x 353077 with weight 30783997. Total sieving time: 38.33 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.66 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 40.32 hours. --------- CPU info (if available) ----------
(14·10154-23)/9 = 1(5)1533<155> = 151 · 10993 · 71999 · 525466275970973936861<21> · 8444521211546589929213<22> · C101
C101 = P41 · P60
P41 = 95870625299777853092472666927690315569741<41>
P60 = 305957037399167054607851451384826644981270222698168907376933<60>
Fri Mar 21 21:27:39 2008 Msieve v. 1.33 Fri Mar 21 21:27:39 2008 random seeds: 59a25932 53de64be Fri Mar 21 21:27:39 2008 factoring 12714452607239358532562745136775421026098425976970363512265686475547346928780346430570128545383 (95 digits) Fri Mar 21 21:27:41 2008 searching for 15-digit factors Fri Mar 21 21:27:43 2008 commencing quadratic sieve (95-digit input) Fri Mar 21 21:27:43 2008 using multiplier of 7 Fri Mar 21 21:27:43 2008 using 64kb Pentium 4 sieve core Fri Mar 21 21:27:43 2008 sieve interval: 18 blocks of size 65536 Fri Mar 21 21:27:43 2008 processing polynomials in batches of 6 Fri Mar 21 21:27:43 2008 using a sieve bound of 2093807 (77512 primes) Fri Mar 21 21:27:43 2008 using large prime bound of 297320594 (28 bits) Fri Mar 21 21:27:43 2008 using double large prime bound of 1785685485840044 (42-51 bits) Fri Mar 21 21:27:43 2008 using trial factoring cutoff of 51 bits Fri Mar 21 21:27:43 2008 polynomial 'A' values have 12 factors Sat Mar 22 02:44:08 2008 77717 relations (19430 full + 58287 combined from 1125756 partial), need 77608 Sat Mar 22 02:44:13 2008 begin with 1145186 relations Sat Mar 22 02:44:14 2008 reduce to 199983 relations in 10 passes Sat Mar 22 02:44:14 2008 attempting to read 199983 relations Sat Mar 22 02:44:20 2008 recovered 199983 relations Sat Mar 22 02:44:20 2008 recovered 182356 polynomials Sat Mar 22 02:44:21 2008 attempting to build 77717 cycles Sat Mar 22 02:44:21 2008 found 77717 cycles in 7 passes Sat Mar 22 02:44:21 2008 distribution of cycle lengths: Sat Mar 22 02:44:21 2008 length 1 : 19430 Sat Mar 22 02:44:21 2008 length 2 : 13873 Sat Mar 22 02:44:21 2008 length 3 : 13261 Sat Mar 22 02:44:21 2008 length 4 : 10546 Sat Mar 22 02:44:21 2008 length 5 : 7814 Sat Mar 22 02:44:21 2008 length 6 : 5092 Sat Mar 22 02:44:21 2008 length 7 : 3301 Sat Mar 22 02:44:21 2008 length 9+: 4400 Sat Mar 22 02:44:21 2008 largest cycle: 23 relations Sat Mar 22 02:44:21 2008 matrix is 77512 x 77717 (20.8 MB) with weight 5138619 (66.12/col) Sat Mar 22 02:44:21 2008 sparse part has weight 5138619 (66.12/col) Sat Mar 22 02:44:23 2008 filtering completed in 3 passes Sat Mar 22 02:44:23 2008 matrix is 73413 x 73476 (19.8 MB) with weight 4892739 (66.59/col) Sat Mar 22 02:44:23 2008 sparse part has weight 4892739 (66.59/col) Sat Mar 22 02:44:23 2008 saving the first 48 matrix rows for later Sat Mar 22 02:44:24 2008 matrix is 73365 x 73476 (13.6 MB) with weight 3977170 (54.13/col) Sat Mar 22 02:44:24 2008 sparse part has weight 3115293 (42.40/col) Sat Mar 22 02:44:24 2008 matrix includes 64 packed rows Sat Mar 22 02:44:24 2008 using block size 21845 for processor cache size 512 kB Sat Mar 22 02:44:25 2008 commencing Lanczos iteration Sat Mar 22 02:44:25 2008 memory use: 12.4 MB Sat Mar 22 02:45:22 2008 lanczos halted after 1163 iterations (dim = 73363) Sat Mar 22 02:45:22 2008 recovered 17 nontrivial dependencies Sat Mar 22 02:45:23 2008 prp41 factor: 59153305041058215728786305575326180793937 Sat Mar 22 02:45:23 2008 prp54 factor: 214940696862403157894398875584911842395797860592706359 Sat Mar 22 02:45:23 2008 elapsed time 05:17:44
By Sinkiti Sibata / GGNFS
(14·10132-23)/9 = 1(5)1313<133> = 59 · 71 · 97 · 7823 · 16007597 · C116
C116 = P34 · P82
P34 = 7196110320984271887768290805077603<34>
P82 = 4248211658617179794953002753092149992005253913469193885224487376180475161049101837<82>
Number: 15553_132 N=30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711 ( 116 digits) SNFS difficulty: 133 digits. Divisors found: r1=7196110320984271887768290805077603 (pp34) r2=4248211658617179794953002753092149992005253913469193885224487376180475161049101837 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.85 hours. Scaled time: 4.62 units (timescale=0.675). Factorization parameters were as follows: name: 15553_132 n: 30570599762300799760623180349250549785396977164422221332055957515459038129517087760322197185377808927798602234856711 m: 100000000000000000000000000 c5: 1400 c0: -23 skew: 0.44 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63708, largePrimes:1471928 encountered Relations: rels:1451773, finalFF:152003 Max relations in full relation-set: 28 Initial matrix: 127726 x 152003 with sparse part having weight 11651770. Pruned matrix : 121041 x 121743 with weight 7752542. Total sieving time: 6.45 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.85 hours. --------- CPU info (if available) ----------
(14·10153-23)/9 = 1(5)1523<154> = C154
C154 = P40 · P54 · P60
P40 = 3282864968103111044049116015189636325629<40>
P54 = 750520966883775487075871543212035736560922760348863037<54>
P60 = 631349262219539973921775256331377718345779965714457540134361<60>
Number: 15553_153 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 154 digits) SNFS difficulty: 154 digits. Divisors found: r1=3282864968103111044049116015189636325629 (pp40) r2=750520966883775487075871543212035736560922760348863037 (pp54) r3=631349262219539973921775256331377718345779965714457540134361 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 47.73 hours. Scaled time: 94.84 units (timescale=1.987). Factorization parameters were as follows: name: 15553_153 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 2000000000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2900001) Primes: RFBsize:176302, AFBsize:176403, largePrimes:5995663 encountered Relations: rels:6090467, finalFF:516187 Max relations in full relation-set: 28 Initial matrix: 352771 x 516187 with sparse part having weight 60940354. Pruned matrix : 300632 x 302459 with weight 37411755. Total sieving time: 45.67 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.70 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 47.73 hours. --------- CPU info (if available) ----------
(14·10134-23)/9 = 1(5)1333<135> = 3 · 43 · 1841849 · 6133187 · 266089199 · 1845161925989<13> · C99
C99 = P45 · P55
P45 = 215339786052217239372566579524945255357716889<45>
P55 = 1009647045755365143845638829136615216297983945249227441<55>
Number: 15553_134 N=217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049 ( 99 digits) SNFS difficulty: 135 digits. Divisors found: r1=215339786052217239372566579524945255357716889 (pp45) r2=1009647045755365143845638829136615216297983945249227441 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 10.16 hours. Scaled time: 6.86 units (timescale=0.675). Factorization parameters were as follows: name: 15553_134 n: 217417178821213519897591666112568676084285561292677561587515695663261258375232990435242424847951049 m: 1000000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1450001) Primes: RFBsize:78498, AFBsize:64213, largePrimes:1584221 encountered Relations: rels:1601133, finalFF:186184 Max relations in full relation-set: 28 Initial matrix: 142776 x 186184 with sparse part having weight 16736449. Pruned matrix : 129917 x 130694 with weight 10014781. Total sieving time: 9.64 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.35 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.16 hours. --------- CPU info (if available) ----------
By Kenji Ibusuki / GGNFS
4·10170+1 = 4(0)1691<171> = 89 · 809 · 12037 · 389533 · C157
C157 = P53 · P104
P53 = 50122020190096192578898087923762046470485403737718517<53>
P104 = 23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893<104>
Number: 40001_170 N=1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: r1=50122020190096192578898087923762046470485403737718517 (pp53) r2=23639069626409130088066491289529080774163216816334627185245521359044363228829638540915634190946573122893 (pp104) Version: GGNFS-0.77.1 Total time: 78.39 hours. Scaled time: 228.11 units (timescale=2.910). Factorization parameters were as follows: n: 1184837925089968078544520908542592436150696161669648582832799154284494683403914446462403262666786104631720001979278062769291401761650003730882381331682709681 m: 10000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 6700001) Relations: rels:6317037, finalFF:948920 Initial matrix: 825604 x 948920 with sparse part having weight 54336203. Pruned matrix : 777410 x 781602 with weight 36172201. Total sieving time: 75.20 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.98 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 78.39 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
(10170-7)/3 = (3)1691<170> = 1223 · 1338241 · 15591659 · 188781916091<12> · 31872508364263293913<20> · C123
C123 = P48 · P75
P48 = 580886318748190657139044362291165865116443036239<48>
P75 = 373729902486897603627174044597757752130374463217098463335616446710076649499<75>
N=217094587261734213548195463421530504205064288592142575659125525045291823980927102240839454448872345229344019259079758194261 ( 123 digits) SNFS difficulty: 170 digits. Divisors found: r1=580886318748190657139044362291165865116443036239 (pp48) r2=373729902486897603627174044597757752130374463217098463335616446710076649499 (pp75) Version: GGNFS-0.77.1-20060513-prescott Total time: 121.53 hours. Scaled time: 145.71 units (timescale=1.199). Factorization parameters were as follows: n: 217094587261734213548195463421530504205064288592142575659125525045291823980927102240839454448872345229344019259079758194261 m: 10000000000000000000000000000000000 c5: 1 c0: -7 skew: 1.48 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6700001) Primes: RFBsize:412849, AFBsize:412321, largePrimes:6051704 encountered Relations: rels:6370117, finalFF:976583 Max relations in full relation-set: 28 Initial matrix: 825236 x 976583 with sparse part having weight 54355320. Pruned matrix : 696718 x 700908 with weight 37929732. Total sieving time: 109.72 hours. Total relation processing time: 0.13 hours. Matrix solve time: 11.39 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 121.53 hours.
By Jo Yeong Uk / GMP-ECM
(14·10155-23)/9 = 1(5)1543<156> = 33 · 43 · 47 · 195929 · 39917387 · C138
C138 = P32 · P107
P32 = 27496531615303751255508385977877<32>
P107 = 13256128530106065804015121820004168812872800900839223596915403773061273707418701227696707739151908971363929<107>
(14·10151-23)/9 = 1(5)1503<152> = 13 · 2213 · 517619 · 7681936333<10> · 1717634052520051<16> · C116
C116 = P29 · P88
P29 = 16820895951350324317170195241<29>
P88 = 4706521871418196358281662023008824663095196031484100339389156478064745201226851468713141<88>
By Sinkiti Sibata / GGNFS, Msieve
(14·10136-23)/9 = 1(5)1353<137> = 2609 · 40819 · 2874721 · 14085762626082570811<20> · C103
C103 = P41 · P62
P41 = 86564637715095292547101787933942319569693<41>
P62 = 41670863835479319614069605921391221377496695827764326594084421<62>
Number: 15553_136 N=3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753 ( 103 digits) SNFS difficulty: 137 digits. Divisors found: r1=86564637715095292547101787933942319569693 (pp41) r2=41670863835479319614069605921391221377496695827764326594084421 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.88 hours. Scaled time: 23.46 units (timescale=1.974). Factorization parameters were as follows: name: 15553_136 n: 3607223231193333588521443657845306759593847350118466937436125963882416398551207258919445340876035052753 m: 1000000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1975001) Primes: RFBsize:78498, AFBsize:63933, largePrimes:1678180 encountered Relations: rels:1716318, finalFF:184796 Max relations in full relation-set: 28 Initial matrix: 142498 x 184796 with sparse part having weight 20279499. Pruned matrix : 132168 x 132944 with weight 13105300. Total sieving time: 11.59 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.15 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.88 hours. --------- CPU info (if available) ----------
(14·10107-23)/9 = 1(5)1063<108> = 3 · 1951 · 8748821 · C97
C97 = P38 · P59
P38 = 70116552119131233253697742765797176049<38>
P59 = 43324835157711520807946225794361876690197612007341872469969<59>
Wed Mar 19 21:19:59 2008 Msieve v. 1.33 Wed Mar 19 21:19:59 2008 random seeds: ba38696c 9d0b82cb Wed Mar 19 21:19:59 2008 factoring 3037788062388449092580779371481569043270450892455898354863806802156173024445878302412156758572481 (97 digits) Wed Mar 19 21:20:01 2008 searching for 15-digit factors Wed Mar 19 21:20:03 2008 commencing quadratic sieve (97-digit input) Wed Mar 19 21:20:03 2008 using multiplier of 41 Wed Mar 19 21:20:03 2008 using 64kb Pentium 4 sieve core Wed Mar 19 21:20:03 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 21:20:03 2008 processing polynomials in batches of 6 Wed Mar 19 21:20:03 2008 using a sieve bound of 2368859 (87059 primes) Wed Mar 19 21:20:03 2008 using large prime bound of 355328850 (28 bits) Wed Mar 19 21:20:03 2008 using double large prime bound of 2461131624868650 (43-52 bits) Wed Mar 19 21:20:03 2008 using trial factoring cutoff of 52 bits Wed Mar 19 21:20:03 2008 polynomial 'A' values have 13 factors Thu Mar 20 07:23:56 2008 87413 relations (21168 full + 66245 combined from 1314170 partial), need 87155 Thu Mar 20 07:24:01 2008 begin with 1335338 relations Thu Mar 20 07:24:02 2008 reduce to 228891 relations in 10 passes Thu Mar 20 07:24:02 2008 attempting to read 228891 relations Thu Mar 20 07:24:10 2008 recovered 228891 relations Thu Mar 20 07:24:10 2008 recovered 216532 polynomials Thu Mar 20 07:24:11 2008 attempting to build 87413 cycles Thu Mar 20 07:24:11 2008 found 87413 cycles in 6 passes Thu Mar 20 07:24:11 2008 distribution of cycle lengths: Thu Mar 20 07:24:11 2008 length 1 : 21168 Thu Mar 20 07:24:11 2008 length 2 : 15264 Thu Mar 20 07:24:11 2008 length 3 : 14623 Thu Mar 20 07:24:11 2008 length 4 : 11881 Thu Mar 20 07:24:11 2008 length 5 : 8950 Thu Mar 20 07:24:11 2008 length 6 : 6114 Thu Mar 20 07:24:11 2008 length 7 : 3907 Thu Mar 20 07:24:11 2008 length 9+: 5506 Thu Mar 20 07:24:11 2008 largest cycle: 19 relations Thu Mar 20 07:24:11 2008 matrix is 87059 x 87413 (23.6 MB) with weight 5834793 (66.75/col) Thu Mar 20 07:24:11 2008 sparse part has weight 5834793 (66.75/col) Thu Mar 20 07:24:13 2008 filtering completed in 3 passes Thu Mar 20 07:24:13 2008 matrix is 83194 x 83258 (22.5 MB) with weight 5570899 (66.91/col) Thu Mar 20 07:24:13 2008 sparse part has weight 5570899 (66.91/col) Thu Mar 20 07:24:14 2008 saving the first 48 matrix rows for later Thu Mar 20 07:24:14 2008 matrix is 83146 x 83258 (13.8 MB) with weight 4369149 (52.48/col) Thu Mar 20 07:24:14 2008 sparse part has weight 3120596 (37.48/col) Thu Mar 20 07:24:14 2008 matrix includes 64 packed rows Thu Mar 20 07:24:14 2008 using block size 21845 for processor cache size 512 kB Thu Mar 20 07:24:15 2008 commencing Lanczos iteration Thu Mar 20 07:24:15 2008 memory use: 13.5 MB Thu Mar 20 07:25:24 2008 lanczos halted after 1316 iterations (dim = 83143) Thu Mar 20 07:25:24 2008 recovered 16 nontrivial dependencies Thu Mar 20 07:25:28 2008 prp38 factor: 70116552119131233253697742765797176049 Thu Mar 20 07:25:28 2008 prp59 factor: 43324835157711520807946225794361876690197612007341872469969 Thu Mar 20 07:25:28 2008 elapsed time 10:05:29
(14·10131-23)/9 = 1(5)1303<132> = 3 · 19 · C130
C130 = P45 · P85
P45 = 468056747262877864591378985344497462087808873<45>
P85 = 5830585394328821340439305519151218975641216570980360445799468073046721537499689235073<85>
Number: 15553_131 N=2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729 ( 130 digits) SNFS difficulty: 132 digits. Divisors found: r1=468056747262877864591378985344497462087808873 (pp45) r2=5830585394328821340439305519151218975641216570980360445799468073046721537499689235073 (pp85) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.84 hours. Scaled time: 5.30 units (timescale=0.675). Factorization parameters were as follows: name: 15553_131 n: 2729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729044834307992202729 m: 100000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1250001) Primes: RFBsize:63951, AFBsize:63933, largePrimes:1536054 encountered Relations: rels:1530353, finalFF:157374 Max relations in full relation-set: 28 Initial matrix: 127951 x 157374 with sparse part having weight 14195039. Pruned matrix : 120613 x 121316 with weight 9276025. Total sieving time: 7.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.29 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 7.84 hours. --------- CPU info (if available) ----------
(14·10138-23)/9 = 1(5)1373<139> = 8111 · C135
C135 = P36 · P41 · P60
P36 = 108711266578758459613216246008874649<36>
P41 = 10324155343485704388884033718797007786067<41>
P60 = 170876381427759404236156771629665436841780455921013486760381<60>
Number: 15553_138 N=191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023 ( 135 digits) SNFS difficulty: 139 digits. Divisors found: r1=108711266578758459613216246008874649 (pp36) r2=10324155343485704388884033718797007786067 (pp41) r3=170876381427759404236156771629665436841780455921013486760381 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.92 hours. Scaled time: 39.85 units (timescale=2.000). Factorization parameters were as follows: name: 15553_138 n: 191783449088343675940766311867285853230866176248989712187838189564240606035699119166015972821545500623296209537116946807490513568679023 m: 2000000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 3175001) Primes: RFBsize:78498, AFBsize:63723, largePrimes:1800247 encountered Relations: rels:1887080, finalFF:161274 Max relations in full relation-set: 28 Initial matrix: 142287 x 161274 with sparse part having weight 20694509. Pruned matrix : 138410 x 139185 with weight 16896378. Total sieving time: 19.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 19.92 hours. --------- CPU info (if available) ----------
By Kenichiroh Yamaguchi / Msieve
(14·10183-23)/9 = 1(5)1823<184> = 173 · 22501 · 12153853259<11> · 989929583017<12> · 1872165481279<13> · 21311468009719<14> · 634859922851017<15> · 6013661672725536345979<22> · C93
C93 = P34 · P59
P34 = 8747097848694413689758101801203081<34>
P59 = 24927620489480658641554644061289498862540687696094550232089<59>
Thu Mar 20 00:47:44 2008 Thu Mar 20 00:47:44 2008 Thu Mar 20 00:47:44 2008 Msieve v. 1.33 Thu Mar 20 00:47:44 2008 random seeds: ec6f1bc8 e3913f34 Thu Mar 20 00:47:44 2008 factoring 218044335556607056762155154297125159650663090901409983335965799460624173261563216247971866209 (93 digits) Thu Mar 20 00:47:46 2008 searching for 15-digit factors Thu Mar 20 00:47:47 2008 commencing quadratic sieve (93-digit input) Thu Mar 20 00:47:48 2008 using multiplier of 1 Thu Mar 20 00:47:48 2008 using 32kb Pentium M sieve core Thu Mar 20 00:47:48 2008 sieve interval: 36 blocks of size 32768 Thu Mar 20 00:47:48 2008 processing polynomials in batches of 6 Thu Mar 20 00:47:48 2008 using a sieve bound of 1888307 (70588 primes) Thu Mar 20 00:47:48 2008 using large prime bound of 220931919 (27 bits) Thu Mar 20 00:47:48 2008 using double large prime bound of 1046321638060374 (42-50 bits) Thu Mar 20 00:47:48 2008 using trial factoring cutoff of 50 bits Thu Mar 20 00:47:48 2008 polynomial 'A' values have 12 factors Thu Mar 20 04:02:02 2008 71110 relations (18516 full + 52594 combined from 918052 partial), need 70684 Thu Mar 20 04:02:03 2008 begin with 936567 relations Thu Mar 20 04:02:04 2008 reduce to 178995 relations in 10 passes Thu Mar 20 04:02:04 2008 attempting to read 178995 relations Thu Mar 20 04:02:07 2008 recovered 178995 relations Thu Mar 20 04:02:07 2008 recovered 159948 polynomials Thu Mar 20 04:02:07 2008 attempting to build 71110 cycles Thu Mar 20 04:02:07 2008 found 71110 cycles in 6 passes Thu Mar 20 04:02:07 2008 distribution of cycle lengths: Thu Mar 20 04:02:07 2008 length 1 : 18516 Thu Mar 20 04:02:07 2008 length 2 : 12937 Thu Mar 20 04:02:07 2008 length 3 : 12446 Thu Mar 20 04:02:07 2008 length 4 : 9530 Thu Mar 20 04:02:07 2008 length 5 : 6740 Thu Mar 20 04:02:07 2008 length 6 : 4538 Thu Mar 20 04:02:07 2008 length 7 : 2826 Thu Mar 20 04:02:07 2008 length 9+: 3577 Thu Mar 20 04:02:07 2008 largest cycle: 19 relations Thu Mar 20 04:02:08 2008 matrix is 70588 x 71110 (17.4 MB) with weight 4281603 (60.21/col) Thu Mar 20 04:02:08 2008 sparse part has weight 4281603 (60.21/col) Thu Mar 20 04:02:08 2008 filtering completed in 3 passes Thu Mar 20 04:02:08 2008 matrix is 66351 x 66415 (16.3 MB) with weight 4003888 (60.29/col) Thu Mar 20 04:02:08 2008 sparse part has weight 4003888 (60.29/col) Thu Mar 20 04:02:09 2008 saving the first 48 matrix rows for later Thu Mar 20 04:02:09 2008 matrix is 66303 x 66415 (9.7 MB) with weight 3093727 (46.58/col) Thu Mar 20 04:02:09 2008 sparse part has weight 2156021 (32.46/col) Thu Mar 20 04:02:09 2008 matrix includes 64 packed rows Thu Mar 20 04:02:09 2008 using block size 26566 for processor cache size 2048 kB Thu Mar 20 04:02:09 2008 commencing Lanczos iteration Thu Mar 20 04:02:09 2008 memory use: 9.9 MB Thu Mar 20 04:02:45 2008 lanczos halted after 1050 iterations (dim = 66301) Thu Mar 20 04:02:45 2008 recovered 15 nontrivial dependencies Thu Mar 20 04:02:45 2008 prp34 factor: 8747097848694413689758101801203081 Thu Mar 20 04:02:45 2008 prp59 factor: 24927620489480658641554644061289498862540687696094550232089 Thu Mar 20 04:02:45 2008 elapsed time 03:15:01
By Sinkiti Sibata / GGNFS, Msieve
(14·10123-23)/9 = 1(5)1223<124> = 12211 · 657201752020148171<18> · C102
C102 = P44 · P59
P44 = 10753755444545527374527909643755701962882929<44>
P59 = 18025006361564828534200757555861583140142606308789337325697<59>
Number: 15553_123 N=193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513 ( 102 digits) SNFS difficulty: 124 digits. Divisors found: r1=10753755444545527374527909643755701962882929 (pp44) r2=18025006361564828534200757555861583140142606308789337325697 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.51 hours. Scaled time: 7.00 units (timescale=1.993). Factorization parameters were as follows: name: 15553_123 n: 193836510298645541604861266883321392503284953654360361313167961067989394247181929303493116733154326513 m: 2000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63723, largePrimes:2340173 encountered Relations: rels:2569764, finalFF:299018 Max relations in full relation-set: 28 Initial matrix: 112887 x 299018 with sparse part having weight 32153223. Pruned matrix : 90356 x 90984 with weight 8670527. Total sieving time: 3.34 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.51 hours. --------- CPU info (if available) ----------
(14·10113-23)/9 = 1(5)1123<114> = 3 · 192 · 43 · 107 · 7975586407<10> · 1923781173683<13> · C85
C85 = P33 · P53
P33 = 113861384206662076954599416574707<33>
P53 = 17869404599998095262189940211282723567677418286716373<53>
Wed Mar 19 09:31:21 2008 Msieve v. 1.33 Wed Mar 19 09:31:21 2008 random seeds: 98abfa35 0fbf67a6 Wed Mar 19 09:31:21 2008 factoring 2034635142704677792494468631959407918934723927715575304293361053666704254742074577711 (85 digits) Wed Mar 19 09:31:22 2008 searching for 15-digit factors Wed Mar 19 09:31:24 2008 commencing quadratic sieve (85-digit input) Wed Mar 19 09:31:24 2008 using multiplier of 39 Wed Mar 19 09:31:24 2008 using 64kb Pentium 4 sieve core Wed Mar 19 09:31:24 2008 sieve interval: 6 blocks of size 65536 Wed Mar 19 09:31:24 2008 processing polynomials in batches of 17 Wed Mar 19 09:31:24 2008 using a sieve bound of 1426127 (54401 primes) Wed Mar 19 09:31:24 2008 using large prime bound of 116942414 (26 bits) Wed Mar 19 09:31:24 2008 using double large prime bound of 332927451401090 (41-49 bits) Wed Mar 19 09:31:24 2008 using trial factoring cutoff of 49 bits Wed Mar 19 09:31:24 2008 polynomial 'A' values have 11 factors Wed Mar 19 10:18:33 2008 54724 relations (16675 full + 38049 combined from 565949 partial), need 54497 Wed Mar 19 10:18:35 2008 begin with 582624 relations Wed Mar 19 10:18:35 2008 reduce to 126334 relations in 10 passes Wed Mar 19 10:18:35 2008 attempting to read 126334 relations Wed Mar 19 10:18:39 2008 recovered 126334 relations Wed Mar 19 10:18:39 2008 recovered 104312 polynomials Wed Mar 19 10:18:39 2008 attempting to build 54724 cycles Wed Mar 19 10:18:39 2008 found 54724 cycles in 5 passes Wed Mar 19 10:18:39 2008 distribution of cycle lengths: Wed Mar 19 10:18:39 2008 length 1 : 16675 Wed Mar 19 10:18:39 2008 length 2 : 11194 Wed Mar 19 10:18:39 2008 length 3 : 9660 Wed Mar 19 10:18:39 2008 length 4 : 6962 Wed Mar 19 10:18:39 2008 length 5 : 4369 Wed Mar 19 10:18:39 2008 length 6 : 2716 Wed Mar 19 10:18:39 2008 length 7 : 1554 Wed Mar 19 10:18:39 2008 length 9+: 1594 Wed Mar 19 10:18:39 2008 largest cycle: 17 relations Wed Mar 19 10:18:39 2008 matrix is 54401 x 54724 (11.9 MB) with weight 2911019 (53.19/col) Wed Mar 19 10:18:39 2008 sparse part has weight 2911019 (53.19/col) Wed Mar 19 10:18:39 2008 filtering completed in 3 passes Wed Mar 19 10:18:39 2008 matrix is 49171 x 49235 (10.8 MB) with weight 2634621 (53.51/col) Wed Mar 19 10:18:39 2008 sparse part has weight 2634621 (53.51/col) Wed Mar 19 10:18:40 2008 saving the first 48 matrix rows for later Wed Mar 19 10:18:40 2008 matrix is 49123 x 49235 (6.5 MB) with weight 2016709 (40.96/col) Wed Mar 19 10:18:40 2008 sparse part has weight 1406841 (28.57/col) Wed Mar 19 10:18:40 2008 matrix includes 64 packed rows Wed Mar 19 10:18:40 2008 commencing Lanczos iteration Wed Mar 19 10:18:40 2008 memory use: 8.4 MB Wed Mar 19 10:20:19 2008 lanczos halted after 778 iterations (dim = 49121) Wed Mar 19 10:20:20 2008 recovered 17 nontrivial dependencies Wed Mar 19 10:20:21 2008 prp33 factor: 113861384206662076954599416574707 Wed Mar 19 10:20:21 2008 prp53 factor: 17869404599998095262189940211282723567677418286716373 Wed Mar 19 10:20:21 2008 elapsed time 00:49:00
(14·10126-23)/9 = 1(5)1253<127> = 1096928051<10> · 12498625107494737<17> · C102
C102 = P42 · P60
P42 = 363241471005671447535513678139960218287887<42>
P60 = 312355901867046413627024946541023325632565835499451550899237<60>
Number: 15553_126 N=113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219 ( 102 digits) SNFS difficulty: 127 digits. Divisors found: r1=363241471005671447535513678139960218287887 (pp42) r2=312355901867046413627024946541023325632565835499451550899237 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.44 hours. Scaled time: 6.89 units (timescale=2.004). Factorization parameters were as follows: name: 15553_126 n: 113460617271489095821001999614229916567009542616345391734366387186548576373031471892411915187394642219 m: 10000000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63933, largePrimes:2213987 encountered Relations: rels:2276628, finalFF:160025 Max relations in full relation-set: 28 Initial matrix: 113098 x 160025 with sparse part having weight 16087550. Pruned matrix : 105821 x 106450 with weight 8492782. Total sieving time: 3.25 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.44 hours. --------- CPU info (if available) ----------
(14·10112-23)/9 = 1(5)1113<113> = 19421 · 8916931 · 2328765211<10> · C92
C92 = P37 · P55
P37 = 8602097249074871783783820192981298307<37>
P55 = 4484029687158018042424643794202980992275372478191873239<55>
Wed Mar 19 10:47:13 2008 Msieve v. 1.33 Wed Mar 19 10:47:13 2008 random seeds: 40f75615 29c48224 Wed Mar 19 10:47:13 2008 factoring 38572059436672044932250519700222956042161785286721937826457048311314788122676721518589306373 (92 digits) Wed Mar 19 10:47:14 2008 searching for 15-digit factors Wed Mar 19 10:47:16 2008 commencing quadratic sieve (92-digit input) Wed Mar 19 10:47:16 2008 using multiplier of 5 Wed Mar 19 10:47:16 2008 using 64kb Pentium 4 sieve core Wed Mar 19 10:47:16 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 10:47:16 2008 processing polynomials in batches of 6 Wed Mar 19 10:47:16 2008 using a sieve bound of 1821679 (68077 primes) Wed Mar 19 10:47:16 2008 using large prime bound of 198563011 (27 bits) Wed Mar 19 10:47:16 2008 using double large prime bound of 863409753664201 (42-50 bits) Wed Mar 19 10:47:16 2008 using trial factoring cutoff of 50 bits Wed Mar 19 10:47:16 2008 polynomial 'A' values have 12 factors Wed Mar 19 14:27:08 2008 68403 relations (17106 full + 51297 combined from 870879 partial), need 68173 Wed Mar 19 14:27:11 2008 begin with 887985 relations Wed Mar 19 14:27:12 2008 reduce to 174296 relations in 10 passes Wed Mar 19 14:27:12 2008 attempting to read 174296 relations Wed Mar 19 14:27:17 2008 recovered 174296 relations Wed Mar 19 14:27:17 2008 recovered 156172 polynomials Wed Mar 19 14:27:18 2008 attempting to build 68403 cycles Wed Mar 19 14:27:18 2008 found 68403 cycles in 6 passes Wed Mar 19 14:27:18 2008 distribution of cycle lengths: Wed Mar 19 14:27:18 2008 length 1 : 17106 Wed Mar 19 14:27:18 2008 length 2 : 12193 Wed Mar 19 14:27:18 2008 length 3 : 11888 Wed Mar 19 14:27:18 2008 length 4 : 9338 Wed Mar 19 14:27:18 2008 length 5 : 6854 Wed Mar 19 14:27:18 2008 length 6 : 4505 Wed Mar 19 14:27:18 2008 length 7 : 2791 Wed Mar 19 14:27:18 2008 length 9+: 3728 Wed Mar 19 14:27:18 2008 largest cycle: 22 relations Wed Mar 19 14:27:18 2008 matrix is 68077 x 68403 (17.0 MB) with weight 4177014 (61.06/col) Wed Mar 19 14:27:18 2008 sparse part has weight 4177014 (61.06/col) Wed Mar 19 14:27:19 2008 filtering completed in 3 passes Wed Mar 19 14:27:19 2008 matrix is 64492 x 64556 (16.1 MB) with weight 3955024 (61.27/col) Wed Mar 19 14:27:19 2008 sparse part has weight 3955024 (61.27/col) Wed Mar 19 14:27:20 2008 saving the first 48 matrix rows for later Wed Mar 19 14:27:20 2008 matrix is 64444 x 64556 (9.5 MB) with weight 3034679 (47.01/col) Wed Mar 19 14:27:20 2008 sparse part has weight 2092995 (32.42/col) Wed Mar 19 14:27:20 2008 matrix includes 64 packed rows Wed Mar 19 14:27:20 2008 using block size 21845 for processor cache size 512 kB Wed Mar 19 14:27:21 2008 commencing Lanczos iteration Wed Mar 19 14:27:21 2008 memory use: 9.6 MB Wed Mar 19 14:27:59 2008 lanczos halted after 1020 iterations (dim = 64444) Wed Mar 19 14:28:00 2008 recovered 18 nontrivial dependencies Wed Mar 19 14:28:00 2008 prp37 factor: 8602097249074871783783820192981298307 Wed Mar 19 14:28:00 2008 prp55 factor: 4484029687158018042424643794202980992275372478191873239 Wed Mar 19 14:28:00 2008 elapsed time 03:40:47
(14·10128-23)/9 = 1(5)1273<129> = 33 · 10490799089<11> · 10003931977271<14> · C104
C104 = P33 · P72
P33 = 187409363464363718474869100062621<33>
P72 = 292921450878592546975162520988878794100375547144807005806036350434938361<72>
Number: 15553_128 N=54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181 ( 104 digits) SNFS difficulty: 129 digits. Divisors found: r1=187409363464363718474869100062621 (pp33) r2=292921450878592546975162520988878794100375547144807005806036350434938361 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.79 hours. Scaled time: 11.55 units (timescale=1.996). Factorization parameters were as follows: name: 15553_128 n: 54896222654214913716199732368230513011479825410843239174868664298416887368955153223689788344131375104181 m: 20000000000000000000000000 c5: 875 c0: -46 skew: 0.55 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:63723, largePrimes:1580931 encountered Relations: rels:1611418, finalFF:193201 Max relations in full relation-set: 28 Initial matrix: 127740 x 193201 with sparse part having weight 17142434. Pruned matrix : 111485 x 112187 with weight 8144756. Total sieving time: 5.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.79 hours. --------- CPU info (if available) ----------
(14·10129-23)/9 = 1(5)1283<130> = C130
C130 = P46 · P84
P46 = 5749413403024550933574604752036293641351380377<46>
P84 = 270559002547500945368356658064162976416834648929786395630819569640571746923377726089<84>
Number: 15553_129 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=5749413403024550933574604752036293641351380377 (pp46) r2=270559002547500945368356658064162976416834648929786395630819569640571746923377726089 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.45 hours. Scaled time: 8.83 units (timescale=1.986). Factorization parameters were as follows: name: 15553_129 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 100000000000000000000000000 c5: 7 c0: -115 skew: 1.75 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64213, largePrimes:1449116 encountered Relations: rels:1418473, finalFF:143850 Max relations in full relation-set: 28 Initial matrix: 128229 x 143850 with sparse part having weight 10566283. Pruned matrix : 124066 x 124771 with weight 7799437. Total sieving time: 4.26 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.45 hours. --------- CPU info (if available) ----------
(14·10118-23)/9 = 1(5)1173<119> = 331068349 · 5144266036542673<16> · C94
C94 = P40 · P55
P40 = 4090898917791232952071545697006570921621<40>
P55 = 2232675951016315988867127284632626987970566041942101009<55>
Wed Mar 19 14:37:35 2008 Msieve v. 1.33 Wed Mar 19 14:37:35 2008 random seeds: f6411e96 e5f28ecf Wed Mar 19 14:37:35 2008 factoring 9133651631791158911928100522746171669608341045686510741665627960105811317649914017350204015589 (94 digits) Wed Mar 19 14:37:37 2008 searching for 15-digit factors Wed Mar 19 14:37:39 2008 commencing quadratic sieve (94-digit input) Wed Mar 19 14:37:39 2008 using multiplier of 21 Wed Mar 19 14:37:39 2008 using 64kb Pentium 4 sieve core Wed Mar 19 14:37:39 2008 sieve interval: 18 blocks of size 65536 Wed Mar 19 14:37:39 2008 processing polynomials in batches of 6 Wed Mar 19 14:37:39 2008 using a sieve bound of 2093807 (77340 primes) Wed Mar 19 14:37:39 2008 using large prime bound of 297320594 (28 bits) Wed Mar 19 14:37:39 2008 using double large prime bound of 1785685485840044 (42-51 bits) Wed Mar 19 14:37:39 2008 using trial factoring cutoff of 51 bits Wed Mar 19 14:37:39 2008 polynomial 'A' values have 12 factors Wed Mar 19 21:09:10 2008 77649 relations (18843 full + 58806 combined from 1137793 partial), need 77436 Wed Mar 19 21:09:14 2008 begin with 1156636 relations Wed Mar 19 21:09:16 2008 reduce to 203477 relations in 12 passes Wed Mar 19 21:09:16 2008 attempting to read 203477 relations Wed Mar 19 21:09:22 2008 recovered 203477 relations Wed Mar 19 21:09:22 2008 recovered 189051 polynomials Wed Mar 19 21:09:23 2008 attempting to build 77649 cycles Wed Mar 19 21:09:23 2008 found 77648 cycles in 5 passes Wed Mar 19 21:09:23 2008 distribution of cycle lengths: Wed Mar 19 21:09:23 2008 length 1 : 18843 Wed Mar 19 21:09:23 2008 length 2 : 13506 Wed Mar 19 21:09:23 2008 length 3 : 13112 Wed Mar 19 21:09:23 2008 length 4 : 10424 Wed Mar 19 21:09:23 2008 length 5 : 7886 Wed Mar 19 21:09:23 2008 length 6 : 5463 Wed Mar 19 21:09:23 2008 length 7 : 3500 Wed Mar 19 21:09:23 2008 length 9+: 4914 Wed Mar 19 21:09:23 2008 largest cycle: 19 relations Wed Mar 19 21:09:23 2008 matrix is 77340 x 77648 (21.5 MB) with weight 5315713 (68.46/col) Wed Mar 19 21:09:23 2008 sparse part has weight 5315713 (68.46/col) Wed Mar 19 21:09:25 2008 filtering completed in 3 passes Wed Mar 19 21:09:25 2008 matrix is 73810 x 73874 (20.5 MB) with weight 5076979 (68.72/col) Wed Mar 19 21:09:25 2008 sparse part has weight 5076979 (68.72/col) Wed Mar 19 21:09:26 2008 saving the first 48 matrix rows for later Wed Mar 19 21:09:26 2008 matrix is 73762 x 73874 (14.4 MB) with weight 4199014 (56.84/col) Wed Mar 19 21:09:26 2008 sparse part has weight 3337062 (45.17/col) Wed Mar 19 21:09:26 2008 matrix includes 64 packed rows Wed Mar 19 21:09:26 2008 using block size 21845 for processor cache size 512 kB Wed Mar 19 21:09:27 2008 commencing Lanczos iteration Wed Mar 19 21:09:27 2008 memory use: 13.0 MB Wed Mar 19 21:10:26 2008 lanczos halted after 1168 iterations (dim = 73758) Wed Mar 19 21:10:27 2008 recovered 16 nontrivial dependencies Wed Mar 19 21:10:28 2008 prp40 factor: 4090898917791232952071545697006570921621 Wed Mar 19 21:10:28 2008 prp55 factor: 2232675951016315988867127284632626987970566041942101009 Wed Mar 19 21:10:28 2008 elapsed time 06:32:53
(14·10135-23)/9 = 1(5)1343<136> = C136
C136 = P36 · P100
P36 = 421082122543377471948099040072049191<36>
P100 = 3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783<100>
Number: 15553_135 N=1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 136 digits) SNFS difficulty: 136 digits. Divisors found: r1=421082122543377471948099040072049191 (pp36) r2=3694185699834148430250517608597883013280312326005666129435829336555704216470266353772323806409529783 (pp100) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.90 hours. Scaled time: 13.68 units (timescale=1.983). Factorization parameters were as follows: name: 15553_135 n: 1555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 1000000000000000000000000000 c5: 14 c0: -23 skew: 1.1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63993, largePrimes:1583247 encountered Relations: rels:1614463, finalFF:201783 Max relations in full relation-set: 28 Initial matrix: 142559 x 201783 with sparse part having weight 16529259. Pruned matrix : 124806 x 125582 with weight 8623929. Total sieving time: 6.66 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.90 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, Msieve, GGNFS
(14·10143-23)/9 = 1(5)1423<144> = 3 · 22139693374793<14> · C130
C130 = P31 · P99
P31 = 4033985856450760851705573910811<31>
P99 = 580574956790360292326396245650795930374736048470567567465451678105744062669016644038536851027792137<99>
(14·10147-23)/9 = 1(5)1463<148> = 179 · 415957 · 16374811 · 653133609550067634665059<24> · C109
C109 = P29 · P35 · P45
P29 = 56584859883732260957279040013<29>
P35 = 80733674721485964418028247214298861<35>
P45 = 427612866165966729085518073472242602764976743<45>
Wed Mar 19 10:25:07 2008 Wed Mar 19 10:25:07 2008 Wed Mar 19 10:25:07 2008 Msieve v. 1.32 Wed Mar 19 10:25:07 2008 random seeds: f8d730fa 637ad895 Wed Mar 19 10:25:07 2008 factoring 34522758043765468944146280720649561007338052832042965993511737760269487716389723 (80 digits) Wed Mar 19 10:25:07 2008 no P-1/P+1/ECM available, skipping Wed Mar 19 10:25:07 2008 commencing quadratic sieve (80-digit input) Wed Mar 19 10:25:07 2008 using multiplier of 13 Wed Mar 19 10:25:07 2008 using 32kb Intel Core sieve core Wed Mar 19 10:25:07 2008 sieve interval: 12 blocks of size 32768 Wed Mar 19 10:25:07 2008 processing polynomials in batches of 17 Wed Mar 19 10:25:07 2008 using a sieve bound of 1255967 (48647 primes) Wed Mar 19 10:25:07 2008 using large prime bound of 125596700 (26 bits) Wed Mar 19 10:25:07 2008 using trial factoring cutoff of 27 bits Wed Mar 19 10:25:07 2008 polynomial 'A' values have 10 factors Wed Mar 19 10:36:44 2008 48821 relations (25337 full + 23484 combined from 262308 partial), need 48743 Wed Mar 19 10:36:44 2008 begin with 287645 relations Wed Mar 19 10:36:44 2008 reduce to 69412 relations in 2 passes Wed Mar 19 10:36:44 2008 attempting to read 69412 relations Wed Mar 19 10:36:45 2008 recovered 69412 relations Wed Mar 19 10:36:45 2008 recovered 58119 polynomials Wed Mar 19 10:36:45 2008 attempting to build 48821 cycles Wed Mar 19 10:36:45 2008 found 48821 cycles in 1 passes Wed Mar 19 10:36:45 2008 distribution of cycle lengths: Wed Mar 19 10:36:45 2008 length 1 : 25337 Wed Mar 19 10:36:45 2008 length 2 : 23484 Wed Mar 19 10:36:45 2008 largest cycle: 2 relations Wed Mar 19 10:36:45 2008 matrix is 48647 x 48821 with weight 1508644 (avg 30.90/col) Wed Mar 19 10:36:45 2008 filtering completed in 4 passes Wed Mar 19 10:36:45 2008 matrix is 41292 x 41356 with weight 1250071 (avg 30.23/col) Wed Mar 19 10:36:45 2008 saving the first 48 matrix rows for later Wed Mar 19 10:36:45 2008 matrix is 41244 x 41356 with weight 912138 (avg 22.06/col) Wed Mar 19 10:36:45 2008 matrix includes 64 packed rows Wed Mar 19 10:36:45 2008 commencing Lanczos iteration Wed Mar 19 10:37:08 2008 lanczos halted after 654 iterations (dim = 41227) Wed Mar 19 10:37:08 2008 recovered 10 nontrivial dependencies Wed Mar 19 10:37:08 2008 prp35 factor: 80733674721485964418028247214298861 Wed Mar 19 10:37:08 2008 prp45 factor: 427612866165966729085518073472242602764976743 Wed Mar 19 10:37:08 2008 elapsed time 00:12:01
(14·10106-23)/9 = 1(5)1053<107> = 103 · 139 · C103
C103 = P37 · P66
P37 = 9347544516743237437692714740238292837<37>
P66 = 116234742855085529578876954254245021476557271363549685111789948257<66>
Number: 15553_106 N=1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109 ( 103 digits) SNFS difficulty: 107 digits. Divisors found: r1=9347544516743237437692714740238292837 (pp37) r2=116234742855085529578876954254245021476557271363549685111789948257 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.51 hours. Scaled time: 0.95 units (timescale=1.856). Factorization parameters were as follows: n: 1086509433230114937176472414301568453974684330205738321963788192746773455022389855106206297098243735109 m: 1000000000000000000000 c5: 140 c0: -23 skew: 0.7 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 280001) Primes: RFBsize:30757, AFBsize:30714, largePrimes:977479 encountered Relations: rels:888661, finalFF:78082 Max relations in full relation-set: 28 Initial matrix: 61538 x 78082 with sparse part having weight 3514921. Pruned matrix : 54793 x 55164 with weight 1839048. Total sieving time: 0.49 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.51 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
(14·10115-23)/9 = 1(5)1143<116> = 13 · 881 · 17189 · C107
C107 = P41 · P67
P41 = 21428391549316742681539165554993157989289<41>
P67 = 3687449493348667986819089625807553114935732965345671067328548973481<67>
Number: 15553_115 N=79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009 ( 107 digits) SNFS difficulty: 116 digits. Divisors found: r1=21428391549316742681539165554993157989289 (pp41) r2=3687449493348667986819089625807553114935732965345671067328548973481 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.70 hours. Scaled time: 1.29 units (timescale=1.852). Factorization parameters were as follows: n: 79016111561804901439724518048042668393209341149478405645387815768537964430607278443932418912722354943045009 m: 100000000000000000000000 c5: 14 c0: -23 skew: 1.1 type: snfs Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [225000, 350001) Primes: RFBsize:37706, AFBsize:37874, largePrimes:1330452 encountered Relations: rels:1334974, finalFF:152187 Max relations in full relation-set: 28 Initial matrix: 75648 x 152187 with sparse part having weight 10819504. Pruned matrix : 58958 x 59400 with weight 2741608. Total sieving time: 0.66 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,450000,450000,25,25,44,44,2.3,2.3,25000 total time: 0.70 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
The factor table of 155...553 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By matsui / GGNFS
(5·10169+7)/3 = 1(6)1689<170> = 269 · 72333221754181<14> · C153
C153 = P48 · P53 · P54
P48 = 133553343132611065513453492437199063759951936543<48>
P53 = 41410460248177205270577696479970680990973907664429989<53>
P54 = 154879464781860811388364739624524998886174833420229623<54>
N=856561717379015803405657536995682255393219509779765949997691370068391354702603316745078491194928969705420851888432244686858900220387445762659400177323821 ( 153 digits) SNFS difficulty: 170 digits. Divisors found: r1=133553343132611065513453492437199063759951936543 (pp48) r2=41410460248177205270577696479970680990973907664429989 (pp53) r3=154879464781860811388364739624524998886174833420229623 (pp54) Version: GGNFS-0.77.1-20060513-prescott Total time: 129.13 hours. Scaled time: 143.08 units (timescale=1.108). Factorization parameters were as follows: n: 856561717379015803405657536995682255393219509779765949997691370068391354702603316745078491194928969705420851888432244686858900220387445762659400177323821 m: 10000000000000000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6500001) Primes: RFBsize:412849, AFBsize:412741, largePrimes:5966140 encountered Relations: rels:6244816, finalFF:943149 Max relations in full relation-set: 28 Initial matrix: 825654 x 943149 with sparse part having weight 48340192. Pruned matrix : 725369 x 729561 with weight 34629757. Total sieving time: 117.73 hours. Total relation processing time: 0.14 hours. Matrix solve time: 11.00 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 129.13 hours.
By Robert Backstrom / GMP-ECM
(13·10164+41)/9 = 1(4)1639<165> = 1102271 · C159
C159 = P42 · P117
P42 = 310858280205973042295350064207669674079891<42>
P117 = 421550900452233303155039018641729142102897981293204893760745450029677022449219253781047183543781801689390473334874309<117>
By matsui / GGNFS
(32·10165-23)/9 = 3(5)1643<166> = 11 · 192 · 29 · 47 · 7487 · 26065774177<11> · 65884869659758319<17> · C128
C128 = P47 · P82
P47 = 30477371599865741466703860063313965404859571013<47>
P82 = 1676370705983994919127781209659746453528383554471372426173858599217463167063091237<82>
N=51091372945403489730523310016243629310252962374795853267961684716887552607352787611729710825690056622399766686516174317499513081 ( 128 digits) SNFS difficulty: 166 digits. Divisors found: r1=30477371599865741466703860063313965404859571013 (pp47) r2=1676370705983994919127781209659746453528383554471372426173858599217463167063091237 (pp82) Version: GGNFS-0.77.1-20060513-prescott Total time: 84.17 hours. Scaled time: 143.01 units (timescale=1.699). Factorization parameters were as follows: n: 51091372945403489730523310016243629310252962374795853267961684716887552607352787611729710825690056622399766686516174317499513081 m: 2000000000000000000000000000000000 c5: 1 c0: -23 skew: 1.87 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 4600001) Primes: RFBsize:348513, AFBsize:348066, largePrimes:5689503 encountered Relations: rels:5841604, finalFF:796947 Max relations in full relation-set: 28 Initial matrix: 696643 x 796947 with sparse part having weight 40407504. Pruned matrix : 610235 x 613782 with weight 27188343. Total sieving time: 79.40 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.48 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 84.17 hours.
By Tyler Cadigan / GGNFS, Msieve
(25·10183-1)/3 = 8(3)183<184> = 13 · 264283155301751969<18> · 3549264066261561396021839666828027<34> · C132
C132 = P64 · P68
P64 = 8935144544408999776115842763978720444245031871108628792866831079<64>
P68 = 76483195332826533787093208520476398502764772883004976691618763747133<68>
Number: 83333_183 N=683388405517072877233927862242245555525777832139299820368098214942685744600601296640806157169483609696082817414193194488909381546507 ( 132 digits) SNFS difficulty: 184 digits. Divisors found: r1=8935144544408999776115842763978720444245031871108628792866831079 r2=76483195332826533787093208520476398502764772883004976691618763747133 Version: Total time: 358.73 hours. Scaled time: 927.31 units (timescale=2.585). Factorization parameters were as follows: n: 683388405517072877233927862242245555525777832139299820368098214942685744600601296640806157169483609696082817414193194488909381546507 m: 5000000000000000000000000000000000000 c5: 8 c0: -1 skew: 0.66 type: snfs Y0: -5000000000000000000000000000000000000 Y1: 1Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 896227 x 896475 Total sieving time: 358.73 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,184,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 358.73 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(13·10156+41)/9 = 1(4)1559<157> = 32 · 945224161592701729<18> · 78240352765175835206467754968382924481389<41> · C97
C97 = P35 · P62
P35 = 56811743013055887298662901382398663<35>
P62 = 38199229693458428198506848714264339346199481273611746416402587<62>
Number: 14449_156 N=2170164820641453841771054721472954317615265554044202740819058596701382825101488628052277538541181 ( 97 digits) Divisors found: r1=56811743013055887298662901382398663 (pp35) r2=38199229693458428198506848714264339346199481273611746416402587 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.13 hours. Scaled time: 9.54 units (timescale=1.859). Factorization parameters were as follows: name: 14449_156 n: 2170164820641453841771054721472954317615265554044202740819058596701382825101488628052277538541181 m: 1296386468790859477 deg: 5 c5: 592680 c4: 2039452145 c3: -70890504460049 c2: -17771658792168670 c1: 66587067320650168689 c0: 30394714584259330224570 skew: 1379.250 type: gnfs # adj. I(F,S) = 47.320 # E(F1,F2) = 4.478483e-03 # GGNFS version 0.77.1-20050930-nocona polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1205573568. # maxskew=1500.0 # These parameters should be manually set: rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 type: gnfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [650000, 1450001) Primes: RFBsize:100021, AFBsize:99767, largePrimes:3951704 encountered Relations: rels:3905347, finalFF:266868 Max relations in full relation-set: 28 Initial matrix: 199871 x 266868 with sparse part having weight 26369457. Pruned matrix : 169463 x 170526 with weight 14580729. Polynomial selection time: 0.28 hours. Total sieving time: 4.61 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,26,26,48,48,2.5,2.5,50000 total time: 5.13 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178324k/8912896k available (2439k kernel code, 208016k reserved, 1234k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4809.52 BogoMIPS (lpj=2404760) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405116)
By Robert Backstrom / GMP-ECM
(13·10159+41)/9 = 1(4)1589<160> = 3 · 7 · C158
C158 = P36 · P123
P36 = 323994497004687485543951803426936081<36>
P123 = 212297027940180242688781043672877820471173117695010579301262769776723616074689965201258808111992813367497457405314499547149<123>
By Sinkiti Sibata / GGNFS, GMP-ECM
(13·10144+41)/9 = 1(4)1439<145> = 3 · 113 · C142
C142 = P33 · P43 · P67
P33 = 383015513599750490805951630014399<33>
P43 = 5624483396558590000322516765930782632188359<43>
P67 = 1977890027058051288896753962852997307409954782630180176907476871251<67>
Number: 14449_144 N=4260898066207800721075057358243198951163552933464437889216650278597181252048508685676827269747623729924614880367092756473287446738774172402491 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=383015513599750490805951630014399 (pp33) r2=5624483396558590000322516765930782632188359 (pp43) r3=1977890027058051288896753962852997307409954782630180176907476871251 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 29.36 hours. Scaled time: 19.79 units (timescale=0.674). Factorization parameters were as follows: name: 14449_144 n: 4260898066207800721075057358243198951163552933464437889216650278597181252048508685676827269747623729924614880367092756473287446738774172402491 m: 100000000000000000000000000000 c5: 13 c0: 410 skew: 1.99 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3550001) Primes: RFBsize:114155, AFBsize:114263, largePrimes:2973559 encountered Relations: rels:2997988, finalFF:273808 Max relations in full relation-set: 28 Initial matrix: 228483 x 273808 with sparse part having weight 31696103. Pruned matrix : 215545 x 216751 with weight 23512675. Total sieving time: 27.25 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.78 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 29.36 hours. --------- CPU info (if available) ----------
(11·10199+61)/9 = 1(2)1989<200> = 19 · 449 · C196
C196 = P31 · C165
P31 = 3841095258017395523843912468543<31>
C165 = [372988254599477911916222836024223504927065229009928696460004135733498615633072233566730189925228638215606368739612714868913553887169813562866201417920242857682106313<165>]
By Jo Yeong Uk / GMP-ECM
(13·10156+41)/9 = 1(4)1559<157> = 32 · 945224161592701729<18> · C138
C138 = P41 · C97
P41 = 78240352765175835206467754968382924481389<41>
C97 = [2170164820641453841771054721472954317615265554044202740819058596701382825101488628052277538541181<97>]
By Robert Backstrom / GGNFS
(13·10161+23)/9 = 1(4)1607<162> = 33 · 17 · 103 · 1724029 · 46124385028404659193551<23> · C128
C128 = P62 · P67
P62 = 19676012510318678785250017004699445567484314567847182516372343<62>
P67 = 1952714211361224583977547309784021653764745429767765757488007042063<67>
Number: n N=38421629251820527636078806431119924133505460598130764167098822263247643780007103800496891083800862720674047482882007176570863609 ( 128 digits) SNFS difficulty: 162 digits. Divisors found: Fri Mar 14 19:16:14 2008 prp62 factor: 19676012510318678785250017004699445567484314567847182516372343 Fri Mar 14 19:16:14 2008 prp67 factor: 1952714211361224583977547309784021653764745429767765757488007042063 Fri Mar 14 19:16:14 2008 elapsed time 01:25:31 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 60.45 hours. Scaled time: 106.09 units (timescale=1.755). Factorization parameters were as follows: name: KA_1_4_160_7 n: 38421629251820527636078806431119924133505460598130764167098822263247643780007103800496891083800862720674047482882007176570863609 type: snfs skew: 0.71 deg: 5 c5: 130 c0: 23 m: 100000000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000161) Primes: RFBsize:203362, AFBsize:203442, largePrimes:7433398 encountered Relations: rels:6842408, finalFF:440642 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 60.18 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,100000 total time: 60.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(13·10139+41)/9 = 1(4)1389<140> = 7237 · C136
C136 = P37 · P45 · P55
P37 = 1080444914227488251714735602663923887<37>
P45 = 310581946039662137936555730848539967041553081<45>
P55 = 5947896926520727366907749778159525455328262786721888891<55>
Number: 14449_139 N=1995916048700351588288578754241321603488247125113229852762808407412525140865613437120967865751615924339428553882056714722183839221285677 ( 136 digits) SNFS difficulty: 141 digits. Divisors found: r1=1080444914227488251714735602663923887 (pp37) r2=310581946039662137936555730848539967041553081 (pp45) r3=5947896926520727366907749778159525455328262786721888891 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.24 hours. Scaled time: 28.50 units (timescale=2.001). Factorization parameters were as follows: name: 14449_139 n: 1995916048700351588288578754241321603488247125113229852762808407412525140865613437120967865751615924339428553882056714722183839221285677 m: 10000000000000000000000000000 c5: 13 c0: 410 skew: 1.99 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2150001) Primes: RFBsize:100021, AFBsize:100074, largePrimes:2804952 encountered Relations: rels:2798715, finalFF:256766 Max relations in full relation-set: 28 Initial matrix: 200160 x 256766 with sparse part having weight 26772641. Pruned matrix : 184200 x 185264 with weight 17454800. Total sieving time: 13.62 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.42 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.24 hours. --------- CPU info (if available) ----------
(13·10149+41)/9 = 1(4)1489<150> = 17 · C148
C148 = P72 · P77
P72 = 137347660736329540541751855501034585413185542247087385476267638114996691<72>
P77 = 61862954058280063245229953724726901319795857549507692379899427183521908512267<77>
Number: 14449_149 N=8496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908497 ( 148 digits) SNFS difficulty: 151 digits. Divisors found: r1=137347660736329540541751855501034585413185542247087385476267638114996691 (pp72) r2=61862954058280063245229953724726901319795857549507692379899427183521908512267 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 25.99 hours. Scaled time: 50.86 units (timescale=1.957). Factorization parameters were as follows: name: 14449_149 n: 8496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908496732026143790849673202614379084967320261437908497 m: 1000000000000000000000000000000 c5: 13 c0: 410 skew: 1.99 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175984, largePrimes:5486687 encountered Relations: rels:5319822, finalFF:408667 Max relations in full relation-set: 28 Initial matrix: 352351 x 408667 with sparse part having weight 36707080. Pruned matrix : 328589 x 330414 with weight 26026219. Total sieving time: 24.40 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.30 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 25.99 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
2·10165-9 = 1(9)1641<166> = 11 · 457527644458064916785243595451<30> · C135
C135 = P50 · P86
P50 = 10380464989853334806493414428274868458216509448469<50>
P86 = 38282753110901991590906115105218234489358257188870210443245138602465182775068426383299<86>
N=397392778382916963637700048853965083487465415508744847291870178477993817516199866163976430024051422843226002208841256962925794882719231 ( 135 digits) SNFS difficulty: 165 digits. Divisors found: r1=10380464989853334806493414428274868458216509448469 (pp50) r2=38282753110901991590906115105218234489358257188870210443245138602465182775068426383299 (pp86) Version: GGNFS-0.77.1-20060513-prescott Total time: 59.33 hours. Scaled time: 68.94 units (timescale=1.162). Factorization parameters were as follows: n: 397392778382916963637700048853965083487465415508744847291870178477993817516199866163976430024051422843226002208841256962925794882719231 m: 1000000000000000000000000000000000 c5: 2 c0: -9 skew: 1.35 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 4800001) Primes: RFBsize:348513, AFBsize:348526, largePrimes:5812903 encountered Relations: rels:6016526, finalFF:840605 Max relations in full relation-set: 28 Initial matrix: 697104 x 840605 with sparse part having weight 45363679. Pruned matrix : 575958 x 579507 with weight 29914315. Total sieving time: 52.99 hours. Total relation processing time: 0.09 hours. Matrix solve time: 6.00 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 59.33 hours.
By Robert Backstrom / GGNFS, Msieve
(13·10128+41)/9 = 1(4)1279<129> = C129
C129 = P63 · P66
P63 = 879276544604910226814961729129827481250658463712668818370122309<63>
P66 = 164276467205602984226476216588935499461222868575837590383237340461<66>
Number: n N=144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 129 digits) SNFS difficulty: 129 digits. Divisors found: Thu Mar 13 15:18:03 2008 prp63 factor: 879276544604910226814961729129827481250658463712668818370122309 Thu Mar 13 15:18:03 2008 prp66 factor: 164276467205602984226476216588935499461222868575837590383237340461 Thu Mar 13 15:18:03 2008 elapsed time 00:11:24 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 3.16 hours. Scaled time: 2.64 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_4_127_9 n: 144444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 type: snfs deg: 5 c5: 13000 c0: 41 skew: 0.32 m: 10000000000000000000000000 rlim: 800000 alim: 800000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved special-q in [100000, 650833) Primes: RFBsize:63951, AFBsize:63689, largePrimes:1559983 encountered Relations: rels:1533763, finalFF:136673 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 3.08 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.5,2.5,50000 total time: 3.16 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / GGNFS
(13·10129+41)/9 = 1(4)1289<130> = 32 · 7 · 83 · 677 · 2287 · 506887362987697<15> · C105
C105 = P39 · P66
P39 = 403320046055777109046610052427009389053<39>
P66 = 872702249677073427449981915399492394603014246802684484605353730059<66>
Number: 14449_129 N=351978311532737548449964405792590044432251798869824835323670785490076165265575416679098233153448271644127 ( 105 digits) SNFS difficulty: 131 digits. Divisors found: r1=403320046055777109046610052427009389053 (pp39) r2=872702249677073427449981915399492394603014246802684484605353730059 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.68 hours. Scaled time: 4.51 units (timescale=0.675). Factorization parameters were as follows: name: 14449_129 n: 351978311532737548449964405792590044432251798869824835323670785490076165265575416679098233153448271644127 m: 100000000000000000000000000 c5: 13 c0: 410 skew: 1.99 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63919, largePrimes:1499538 encountered Relations: rels:1486985, finalFF:157544 Max relations in full relation-set: 28 Initial matrix: 127935 x 157544 with sparse part having weight 12577546. Pruned matrix : 119718 x 120421 with weight 7910460. Total sieving time: 6.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.68 hours. --------- CPU info (if available) ----------
(13·10143+41)/9 = 1(4)1429<144> = 547 · 4261 · 83933 · 101654957 · C124
C124 = P33 · P37 · P55
P33 = 468058260349480289619458523204589<33>
P37 = 4838491154143931941878764558030793391<37>
P55 = 3207235198502778015162165152178878034108309665144891213<55>
Number: 14449_143 N=7263411930756334431054815675240590460026383859273092312980615738433171499794833346952595861772049365179133319212109264595687 ( 124 digits) SNFS difficulty: 144 digits. Divisors found: r1=468058260349480289619458523204589 (pp33) r2=4838491154143931941878764558030793391 (pp37) r3=3207235198502778015162165152178878034108309665144891213 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 26.76 hours. Scaled time: 53.26 units (timescale=1.990). Factorization parameters were as follows: name: 14449_143 n: 7263411930756334431054815675240590460026383859273092312980615738433171499794833346952595861772049365179133319212109264595687 m: 10000000000000000000000000000 c5: 13000 c0: 41 skew: 0.32 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 3750001) Primes: RFBsize:100021, AFBsize:99689, largePrimes:3101893 encountered Relations: rels:3216219, finalFF:250113 Max relations in full relation-set: 28 Initial matrix: 199777 x 250113 with sparse part having weight 32911341. Pruned matrix : 187996 x 189058 with weight 23930321. Total sieving time: 26.00 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.49 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 26.76 hours. --------- CPU info (if available) ----------
(13·10133+41)/9 = 1(4)1329<134> = 17 · 6596820397<10> · 2010236816539094083<19> · C104
C104 = P42 · P63
P42 = 517649884092539390536611188644180047608897<42>
P63 = 123775280010902446150077540889220597396514583675408960720813351<63>
Number: 14449_133 N=64072259351165258960611191479962903530231838357246417129235599200904516844792796123931176281428583983847 ( 104 digits) SNFS difficulty: 134 digits. Divisors found: r1=517649884092539390536611188644180047608897 (pp42) r2=123775280010902446150077540889220597396514583675408960720813351 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 12.38 hours. Scaled time: 8.34 units (timescale=0.674). Factorization parameters were as follows: name: 14449_133 n: 64072259351165258960611191479962903530231838357246417129235599200904516844792796123931176281428583983847 m: 100000000000000000000000000 c5: 13000 c0: 41 skew: 0.32 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:63689, largePrimes:1620424 encountered Relations: rels:1639559, finalFF:180627 Max relations in full relation-set: 28 Initial matrix: 142254 x 180627 with sparse part having weight 17980539. Pruned matrix : 131501 x 132276 with weight 11572853. Total sieving time: 11.67 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.53 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.38 hours. --------- CPU info (if available) ----------
(13·10138+41)/9 = 1(4)1379<139> = 32 · 991 · 3784737996862957<16> · C119
C119 = P38 · P82
P38 = 39275505097585155078710771613618699661<38>
P82 = 1089499611449474155941188972488893793360282827843797035637321410126382085780847823<82>
Number: 14449_138 N=42790647543300868000531012460873380607706485262150894592544299144950220581224389005057327334131687329290331967382688003 ( 119 digits) SNFS difficulty: 139 digits. Divisors found: r1=39275505097585155078710771613618699661 (pp38) r2=1089499611449474155941188972488893793360282827843797035637321410126382085780847823 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.87 hours. Scaled time: 39.73 units (timescale=1.999). Factorization parameters were as follows: name: 14449_138 n: 42790647543300868000531012460873380607706485262150894592544299144950220581224389005057327334131687329290331967382688003 m: 1000000000000000000000000000 c5: 13000 c0: 41 skew: 0.32 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 3175001) Primes: RFBsize:78498, AFBsize:63689, largePrimes:1805783 encountered Relations: rels:1896587, finalFF:166064 Max relations in full relation-set: 28 Initial matrix: 142254 x 166064 with sparse part having weight 21301289. Pruned matrix : 137347 x 138122 with weight 16677403. Total sieving time: 19.49 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.19 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 19.87 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(13·10112+41)/9 = 1(4)1119<113> = 307 · C110
C110 = P46 · P64
P46 = 8572768217428917273838004418010090479942244487<46>
P64 = 5488344773042031843138651813870233083606331551067207445911659661<64>
Number: 14449_112 N=47050307636626854867897213174086138255519363011219688744118711545421643141512848353239232718060079623597538907 ( 110 digits) SNFS difficulty: 113 digits. Divisors found: r1=8572768217428917273838004418010090479942244487 (pp46) r2=5488344773042031843138651813870233083606331551067207445911659661 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.81 hours. Scaled time: 1.20 units (timescale=0.666). Factorization parameters were as follows: name: 14449_112 n: 47050307636626854867897213174086138255519363011219688744118711545421643141512848353239232718060079623597538907 m: 10000000000000000000000 c5: 1300 c0: 41 skew: 0.5 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64309, largePrimes:2003845 encountered Relations: rels:2009047, finalFF:176679 Max relations in full relation-set: 28 Initial matrix: 113474 x 176679 with sparse part having weight 13565947. Pruned matrix : 92176 x 92807 with weight 4749967. Total sieving time: 1.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.81 hours. --------- CPU info (if available) ----------
(13·10125+41)/9 = 1(4)1249<126> = 1554391 · 2591023 · C113
C113 = P39 · P74
P39 = 381289435910446427225910525930919899803<39>
P74 = 94062069350457232819353561152321954296011723467198330678707421280406128331<74>
Number: 14449_125 N=35864873363205130270954386390806827723737536465615384529439091825776660100342021248266317605381766728041679618793 ( 113 digits) SNFS difficulty: 126 digits. Divisors found: r1=381289435910446427225910525930919899803 (pp39) r2=94062069350457232819353561152321954296011723467198330678707421280406128331 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.79 hours. Scaled time: 5.59 units (timescale=2.001). Factorization parameters were as follows: name: 14449_125 n: 35864873363205130270954386390806827723737536465615384529439091825776660100342021248266317605381766728041679618793 m: 10000000000000000000000000 c5: 13 c0: 41 skew: 1.26 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64124, largePrimes:2267632 encountered Relations: rels:2464267, finalFF:301761 Max relations in full relation-set: 28 Initial matrix: 113289 x 301761 with sparse part having weight 29886474. Pruned matrix : 84010 x 84640 with weight 7199058. Total sieving time: 2.63 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.79 hours. --------- CPU info (if available) ----------
(13·10126+41)/9 = 1(4)1259<127> = 3 · 15605633977681604575639<23> · C104
C104 = P42 · P62
P42 = 904847641670711020711019082822834496093841<42>
P62 = 34097513719109247682145677399500333906397624571462875526708317<62>
Number: 14449_126 N=30853054875570717616725973948709528454911957351445666387478574633512858115600884689245414260005067175597 ( 104 digits) SNFS difficulty: 127 digits. Divisors found: r1=904847641670711020711019082822834496093841 (pp42) r2=34097513719109247682145677399500333906397624571462875526708317 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.69 hours. Scaled time: 9.36 units (timescale=1.995). Factorization parameters were as follows: name: 14449_126 n: 30853054875570717616725973948709528454911957351445666387478574633512858115600884689245414260005067175597 m: 10000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:49098, AFBsize:63954, largePrimes:2306923 encountered Relations: rels:2474799, finalFF:204406 Max relations in full relation-set: 28 Initial matrix: 113119 x 204406 with sparse part having weight 22772454. Pruned matrix : 98877 x 99506 with weight 9226871. Total sieving time: 4.48 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.69 hours. --------- CPU info (if available) ----------
(13·10124+41)/9 = 1(4)1239<125> = 59 · 3203 · C119
C119 = P31 · P41 · P48
P31 = 5175757663323323463917452916699<31>
P41 = 87280545998199448610509108990088503350991<41>
P48 = 169200056742758350400056102242352593752657930093<48>
Number: 14449_124 N=76434933586862128430679100866478166361220912833013776514837490511778917246249249614738536670835310352288608901847549937 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=5175757663323323463917452916699 (pp31) r2=87280545998199448610509108990088503350991 (pp41) r3=169200056742758350400056102242352593752657930093 (pp48) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 4.26 hours. Scaled time: 2.88 units (timescale=0.675). Factorization parameters were as follows: name: 14449_124 n: 76434933586862128430679100866478166361220912833013776514837490511778917246249249614738536670835310352288608901847549937 m: 10000000000000000000000000 c5: 13 c0: 410 skew: 1.99 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:63919, largePrimes:2203916 encountered Relations: rels:2274248, finalFF:176608 Max relations in full relation-set: 28 Initial matrix: 113082 x 176608 with sparse part having weight 17252242. Pruned matrix : 102053 x 102682 with weight 7545808. Total sieving time: 3.90 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.26 hours. --------- CPU info (if available) ----------
(13·10131+41)/9 = 1(4)1309<132> = 4651 · 22379822107417<14> · C115
C115 = P43 · P72
P43 = 2249090272651913721819392572240308879238027<43>
P72 = 617008271333123742480108012577387394787114276114628954373956069679259761<72>
Number: 14449_131 N=1387707301201101239142370408651903318062058439543780296573801125314505866008428422395864867644533736113263082131547 ( 115 digits) SNFS difficulty: 132 digits. Divisors found: r1=2249090272651913721819392572240308879238027 (pp43) r2=617008271333123742480108012577387394787114276114628954373956069679259761 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.47 hours. Scaled time: 12.90 units (timescale=1.995). Factorization parameters were as follows: name: 14449_131 n: 1387707301201101239142370408651903318062058439543780296573801125314505866008428422395864867644533736113263082131547 m: 100000000000000000000000000 c5: 130 c0: 41 skew: 0.79 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1250001) Primes: RFBsize:63951, AFBsize:63954, largePrimes:1541842 encountered Relations: rels:1537508, finalFF:155468 Max relations in full relation-set: 28 Initial matrix: 127972 x 155468 with sparse part having weight 14753604. Pruned matrix : 121290 x 121993 with weight 9959479. Total sieving time: 6.24 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.47 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
10171+7 = 1(0)1707<172> = 353 · 16139676313<11> · 2503433995697<13> · C146
C146 = P44 · P103
P44 = 18280520184492143617094205240248705703843689<44>
P103 = 3835356858729892849185282132443271335225604500851042024555355541432430314460970459178772287450451105111<103>
N=70112318470742189230991216185000433908480319262349860717935684928869182527261387878088634070747265932543928645509144531113608713830541790452994479 ( 146 digits) SNFS difficulty: 171 digits. Divisors found: r1=18280520184492143617094205240248705703843689 (pp44) r2=3835356858729892849185282132443271335225604500851042024555355541432430314460970459178772287450451105111 (pp103) Version: GGNFS-0.77.1-20060513-prescott Total time: 173.95 hours. Scaled time: 186.30 units (timescale=1.071). Factorization parameters were as follows: n: 70112318470742189230991216185000433908480319262349860717935684928869182527261387878088634070747265932543928645509144531113608713830541790452994479 m: 10000000000000000000000000000000000 c5: 10 c0: 7 skew: 0.93 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9100001) Primes: RFBsize:412849, AFBsize:412181, largePrimes:6263624 encountered Relations: rels:6537561, finalFF:925066 Max relations in full relation-set: 28 Initial matrix: 825096 x 925066 with sparse part having weight 73008744. Pruned matrix : 748237 x 752426 with weight 57526687. Total sieving time: 157.26 hours. Total relation processing time: 0.15 hours. Matrix solve time: 16.18 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 173.95 hours.
By Jo Yeong Uk / GGNFS, GMP-ECM
(13·10171+23)/9 = 1(4)1707<172> = C172
C172 = P79 · P93
P79 = 3983898590622918946099742220376300090916709488135066216815900242393474298893881<79>
P93 = 362570585467285289874408318951946873117767996253948597783388693466115940756746792298079012887<93>
Number: 14447_171 N=1444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 ( 172 digits) SNFS difficulty: 172 digits. Divisors found: r1=3983898590622918946099742220376300090916709488135066216815900242393474298893881 (pp79) r2=362570585467285289874408318951946873117767996253948597783388693466115940756746792298079012887 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 131.74 hours. Scaled time: 244.78 units (timescale=1.858). Factorization parameters were as follows: n: 1444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444447 m: 10000000000000000000000000000000000 c5: 130 c0: 23 skew: 0.71 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [4000000, 10200001) Primes: RFBsize:539777, AFBsize:539940, largePrimes:10162557 encountered Relations: rels:10122806, finalFF:1244958 Max relations in full relation-set: 28 Initial matrix: 1079784 x 1244958 with sparse part having weight 84970128. Pruned matrix : 939205 x 944667 with weight 62887516. Total sieving time: 124.92 hours. Total relation processing time: 0.21 hours. Matrix solve time: 6.48 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,49,49,2.6,2.6,100000 total time: 131.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.89 BogoMIPS (lpj=2406449) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115)
(13·10146+41)/9 = 1(4)1459<147> = 439 · 636164869 · 4027095081240337127431<22> · C114
C114 = P29 · P85
P29 = 77842537158874070251175271923<29>
P85 = 1649900575553862884781770255109051972716668375312218449809275241329788226651058294303<85>
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(2·10178+61)/9 = (2)1779<178> = 3 · 2027 · 20297 · 2066378869<10> · 3247837269569<13> · 163433233996276243474084319<27> · C122
C122 = P46 · P76
P46 = 9668963333839804970616649746421126785511167893<46>
P76 = 1697681163681159193851768896483106359487408211693779675029441305133012994731<76>
Number: n N=16414816924183620628070288142730847259538958407278070871366182577042951560674699400450759287353464473072300307093265371783 ( 122 digits) Divisors found: Wed Mar 12 04:59:52 2008 prp46 factor: 9668963333839804970616649746421126785511167893 Wed Mar 12 04:59:52 2008 prp76 factor: 1697681163681159193851768896483106359487408211693779675029441305133012994731 Wed Mar 12 04:59:52 2008 elapsed time 01:49:29 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 70.21 hours. Scaled time: 58.76 units (timescale=0.837). Factorization parameters were as follows: name: KA_2_177_9 n: 16414816924183620628070288142730847259538958407278070871366182577042951560674699400450759287353464473072300307093265371783 skew: 48529.68 # norm 1.17e+17 c5: 30240 c4: -49685839936 c3: 2178758267704620 c2: 9727614241047290652 c1: -1794383631406455012036071 c0: -18641026174809989700473846580 # alpha -6.51 Y1: 1447263605209 Y0: -222296067764273622309011 # Murphy_E 2.31e-10 # M 503199048986875789014469484545092288568881604151045417589810804443826108233596466928631049481635113331976691027497880165 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 3700093) Primes: RFBsize:348513, AFBsize:349115, largePrimes:7324235 encountered Relations: rels:7332295, finalFF:780478 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 69.95 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 70.21 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(13·10104+41)/9 = 1(4)1039<105> = 11959 · 232891 · 17284853 · C88
C88 = P34 · P55
P34 = 1079735338858603736315862602698429<34>
P55 = 2778883020604898417243505418183286377453379744603666533<55>
The factor table of 144...449 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Jo Yeong Uk / GMP-ECM, Msieve
7·10163-9 = 6(9)1621<164> = 83 · 2447 · 590732534224585594774305619<27> · C132
C132 = P42 · P45 · P47
P42 = 129176060038429313134294565540217914223913<42>
P45 = 120256406964389982245302914445931857545867029<45>
P47 = 37558205196955967532214995487858032886370144357<47>
Tue Mar 11 20:26:37 2008 Tue Mar 11 20:26:37 2008 Tue Mar 11 20:26:37 2008 Msieve v. 1.32 Tue Mar 11 20:26:37 2008 random seeds: d1acc543 915d5279 Tue Mar 11 20:26:37 2008 factoring 4516614809017203638734673756033070566719308001891393690896873800964334745942246243456705353 (91 digits) Tue Mar 11 20:26:37 2008 no P-1/P+1/ECM available, skipping Tue Mar 11 20:26:37 2008 commencing quadratic sieve (91-digit input) Tue Mar 11 20:26:38 2008 using multiplier of 1 Tue Mar 11 20:26:38 2008 using 32kb Intel Core sieve core Tue Mar 11 20:26:38 2008 sieve interval: 36 blocks of size 32768 Tue Mar 11 20:26:38 2008 processing polynomials in batches of 6 Tue Mar 11 20:26:38 2008 using a sieve bound of 1714723 (64706 primes) Tue Mar 11 20:26:38 2008 using large prime bound of 164613408 (27 bits) Tue Mar 11 20:26:38 2008 using double large prime bound of 616080330033312 (42-50 bits) Tue Mar 11 20:26:38 2008 using trial factoring cutoff of 50 bits Tue Mar 11 20:26:38 2008 polynomial 'A' values have 12 factors Tue Mar 11 22:05:45 2008 65009 relations (16375 full + 48634 combined from 767780 partial), need 64802 Tue Mar 11 22:05:45 2008 begin with 784155 relations Tue Mar 11 22:05:46 2008 reduce to 163081 relations in 12 passes Tue Mar 11 22:05:46 2008 attempting to read 163081 relations Tue Mar 11 22:05:47 2008 recovered 163081 relations Tue Mar 11 22:05:47 2008 recovered 143891 polynomials Tue Mar 11 22:05:47 2008 attempting to build 65009 cycles Tue Mar 11 22:05:47 2008 found 65009 cycles in 5 passes Tue Mar 11 22:05:48 2008 distribution of cycle lengths: Tue Mar 11 22:05:48 2008 length 1 : 16375 Tue Mar 11 22:05:48 2008 length 2 : 12106 Tue Mar 11 22:05:48 2008 length 3 : 11255 Tue Mar 11 22:05:48 2008 length 4 : 8787 Tue Mar 11 22:05:48 2008 length 5 : 6474 Tue Mar 11 22:05:48 2008 length 6 : 4192 Tue Mar 11 22:05:48 2008 length 7 : 2595 Tue Mar 11 22:05:48 2008 length 9+: 3225 Tue Mar 11 22:05:48 2008 largest cycle: 23 relations Tue Mar 11 22:05:48 2008 matrix is 64706 x 65009 with weight 3948865 (avg 60.74/col) Tue Mar 11 22:05:48 2008 filtering completed in 3 passes Tue Mar 11 22:05:48 2008 matrix is 61147 x 61211 with weight 3734333 (avg 61.01/col) Tue Mar 11 22:05:49 2008 saving the first 48 matrix rows for later Tue Mar 11 22:05:49 2008 matrix is 61099 x 61211 with weight 2944184 (avg 48.10/col) Tue Mar 11 22:05:49 2008 matrix includes 64 packed rows Tue Mar 11 22:05:49 2008 using block size 24484 for processor cache size 4096 kB Tue Mar 11 22:05:50 2008 commencing Lanczos iteration Tue Mar 11 22:06:05 2008 lanczos halted after 968 iterations (dim = 61099) Tue Mar 11 22:06:06 2008 recovered 17 nontrivial dependencies Tue Mar 11 22:06:06 2008 prp45 factor: 120256406964389982245302914445931857545867029 Tue Mar 11 22:06:06 2008 prp47 factor: 37558205196955967532214995487858032886370144357 Tue Mar 11 22:06:06 2008 elapsed time 01:39:29
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(13·10156+23)/9 = 1(4)1557<157> = 19 · C155
C155 = P42 · P53 · P61
P42 = 389980758750449231614133227379820419633329<42>
P53 = 91675205847127951535304492278434084611246814323398249<53>
P61 = 2126435275612637276891658087461597168753509864505325623463053<61>
Number: n N=76023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391813 ( 155 digits) SNFS difficulty: 157 digits. Divisors found: Mon Mar 10 12:45:32 2008 prp42 factor: 389980758750449231614133227379820419633329 Mon Mar 10 12:45:32 2008 prp53 factor: 91675205847127951535304492278434084611246814323398249 Mon Mar 10 12:45:32 2008 prp61 factor: 2126435275612637276891658087461597168753509864505325623463053 Mon Mar 10 12:45:32 2008 elapsed time 01:37:27 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 37.46 hours. Scaled time: 48.66 units (timescale=1.299). Factorization parameters were as follows: name: KA_1_4_155_7 n: 76023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391813 skew: 0.71 deg: 5 c5: 130 c0: 23 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700189) Primes: RFBsize:203362, AFBsize:203442, largePrimes:7079060 encountered Relations: rels:6512185, finalFF:431363 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.25 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 37.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(25·10172-7)/9 = 2(7)172<173> = 32 · 4937 · 205072881269<12> · 12416644610658474999659088434521057<35> · C123
C123 = P42 · P82
P42 = 116405331338301067025460027374215198811209<42>
P82 = 2109145336369723547308865649415737033622345460437054290338930752168934409301836277<82>
By Sinkiti Sibata / GGNFS
(13·10151+23)/9 = 1(4)1507<152> = 47 · 1459 · 1489 · 6550441069<10> · C134
C134 = P34 · P42 · P58
P34 = 2731118671267928548408841950780937<34>
P42 = 926226113280928870632802667563416935974873<42>
P58 = 8537384850979962295167735815770595423638734296748278114279<58>
Number: 14447_151 N=21596454139160159728583367398724798070601192188565630667951343431788486011447546922981570292793501563082365331104250185971848293598279 ( 134 digits) SNFS difficulty: 152 digits. Divisors found: r1=2731118671267928548408841950780937 (pp34) r2=926226113280928870632802667563416935974873 (pp42) r3=8537384850979962295167735815770595423638734296748278114279 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 30.82 hours. Scaled time: 61.71 units (timescale=2.002). Factorization parameters were as follows: name: 14447_151 n: 21596454139160159728583367398724798070601192188565630667951343431788486011447546922981570292793501563082365331104250185971848293598279 m: 1000000000000000000000000000000 c5: 130 c0: 23 skew: 0.71 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176533, largePrimes:5744567 encountered Relations: rels:5739630, finalFF:530151 Max relations in full relation-set: 28 Initial matrix: 352902 x 530151 with sparse part having weight 51970091. Pruned matrix : 290719 x 292547 with weight 28566604. Total sieving time: 29.39 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.10 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.82 hours. --------- CPU info (if available) ----------
(4·10163+11)/3 = 1(3)1627<164> = 457 · 3461 · 28350228528705291234487<23> · C135
C135 = P57 · P79
P57 = 139264282223215405733533065658698214852552428148010156791<57>
P79 = 2135131501215430631229036018332690103622289502314800149143766658044782641913293<79>
Number: 13337_163 N=297347555968943318517168374915449211547556632286503794637272357540890612022634850535944311114254649675656903511660872954505705157122763 ( 135 digits) SNFS difficulty: 163 digits. Divisors found: r1=139264282223215405733533065658698214852552428148010156791 (pp57) r2=2135131501215430631229036018332690103622289502314800149143766658044782641913293 (pp79) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 107.67 hours. Scaled time: 72.68 units (timescale=0.675). Factorization parameters were as follows: name: 13337_163 n: 297347555968943318517168374915449211547556632286503794637272357540890612022634850535944311114254649675656903511660872954505705157122763 m: 200000000000000000000000000000000 c5: 125 c0: 11 skew: 0.62 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4850001) Primes: RFBsize:315948, AFBsize:316157, largePrimes:5861775 encountered Relations: rels:6006525, finalFF:767511 Max relations in full relation-set: 28 Initial matrix: 632170 x 767511 with sparse part having weight 52013479. Pruned matrix : 529404 x 532628 with weight 36397514. Total sieving time: 93.52 hours. Total relation processing time: 0.40 hours. Matrix solve time: 13.52 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 107.67 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
3·10165+7 = 3(0)1647<166> = 71 · 739 · 24680319817<11> · 12015226484473081913<20> · C132
C132 = P46 · P86
P46 = 7814625344423111337812529497145365416512918941<46>
P86 = 24673318295604171900567002523536315906661600240732917021551158395138773289853506329223<86>
N=192812738483846806238630987193800388580669468550195254565079242547722043989395273633963041899135344900887963261307880863289858512843 ( 132 digits) SNFS difficulty: 165 digits. Divisors found: r1=7814625344423111337812529497145365416512918941 (pp46) r2=24673318295604171900567002523536315906661600240732917021551158395138773289853506329223 (pp86) Version: GGNFS-0.77.1-20060513-prescott Total time: 90.67 hours. Scaled time: 154.22 units (timescale=1.701). Factorization parameters were as follows: n: 192812738483846806238630987193800388580669468550195254565079242547722043989395273633963041899135344900887963261307880863289858512843 m: 1000000000000000000000000000000000 c5: 3 c0: 7 skew: 1.18 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5000001) Primes: RFBsize:348513, AFBsize:347701, largePrimes:5840417 encountered Relations: rels:6040079, finalFF:838247 Max relations in full relation-set: 28 Initial matrix: 696279 x 838247 with sparse part having weight 46329810. Pruned matrix : 579285 x 582830 with weight 31436435. Total sieving time: 86.39 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.93 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 90.67 hours.
By Sinkiti Sibata / GGNFS
(13·10149+23)/9 = 1(4)1487<150> = 3 · 59 · 642789047 · 8628460657<10> · 384131451857134907<18> · C111
C111 = P43 · P69
P43 = 1869299252728233162593593784842467695639821<43>
P69 = 204911855236147914759409599454283650327219283947887580206394976351047<69>
Number: 14447_149 N=383041577868087188812664780595180230412072536147911341266120897719996165650338793121853080533129917090568242587 ( 111 digits) SNFS difficulty: 151 digits. Divisors found: r1=1869299252728233162593593784842467695639821 (pp43) r2=204911855236147914759409599454283650327219283947887580206394976351047 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 26.05 hours. Scaled time: 51.80 units (timescale=1.988). Factorization parameters were as follows: name: 14447_149 n: 383041577868087188812664780595180230412072536147911341266120897719996165650338793121853080533129917090568242587 m: 1000000000000000000000000000000 c5: 13 c0: 230 skew: 1.78 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176123, largePrimes:5908890 encountered Relations: rels:6100436, finalFF:719350 Max relations in full relation-set: 28 Initial matrix: 352490 x 719350 with sparse part having weight 66689794. Pruned matrix : 236910 x 238736 with weight 31888992. Total sieving time: 24.90 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.86 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.05 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(13·10164+23)/9 = 1(4)1637<165> = 3 · 7 · C163
C163 = P30 · P38 · P96
P30 = 839545558995717980676973391993<30>
P38 = 20177046110532699947312283019200501521<38>
P96 = 406050166580568139538183636120785029941680983190292244345051790690796540227700452076761314334219<96>
(13·10199+23)/9 = 1(4)1987<200> = 88301 · 97171 · 14709557 · 9380701384113676637<19> · 96637000536716385619<20> · 57251133189500039825065474428151<32> · C112
C112 = P45 · P67
P45 = 333670648710684229453163570612770033938844831<45>
P67 = 6608731526570938248049146439234589449529372334618254009651625581707<67>
Number: n N=2205139735625675455818440066649785353479042891137898839136974049458833516499762054740029875402695374463985106517 ( 112 digits) Divisors found: Sun Mar 9 15:40:53 2008 prp45 factor: 333670648710684229453163570612770033938844831 Sun Mar 9 15:40:53 2008 prp67 factor: 6608731526570938248049146439234589449529372334618254009651625581707 Sun Mar 9 15:40:53 2008 elapsed time 00:47:41 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 22.43 hours. Scaled time: 18.82 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_4_198_7 n: 2205139735625675455818440066649785353479042891137898839136974049458833516499762054740029875402695374463985106517 skew: 12947.06 # norm 1.05e+15 c5: 79260 c4: 4596673684 c3: -60634614034228 c2: -616319288220440177 c1: 784693312699527700878 c0: 10872847761019001446446576 # alpha -5.24 Y1: 715729016893 Y0: -1944798252444552188581 # Murphy_E 8.28e-10 # M 306958205911432083419999205075881375379766157974305319669852638518609333434617979646532294229843553801664968650 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1300253) Primes: RFBsize:250150, AFBsize:250374, largePrimes:6817999 encountered Relations: rels:6507370, finalFF:555111 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 22.25 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 22.43 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(13·10154+23)/9 = 1(4)1537<155> = 19919 · 3679468548146533<16> · 7630751612715717403<19> · C116
C116 = P58 · P59
P58 = 2262802058462321464484841458672901509492655613223530140187<58>
P59 = 11413907115688684242996799010354104342118227296131335025701<59>
Number: n N=25827412516478093045584474130625154149704594415060748731377938994171532661092038308190184824436264190771407777946087 ( 116 digits) SNFS difficulty: 156 digits. Divisors found: Sun Mar 09 18:04:06 2008 prp58 factor: 2262802058462321464484841458672901509492655613223530140187 Sun Mar 09 18:04:06 2008 prp59 factor: 11413907115688684242996799010354104342118227296131335025701 Sun Mar 09 18:04:06 2008 elapsed time 01:05:20 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.24 hours. Scaled time: 36.50 units (timescale=1.446). Factorization parameters were as follows: name: KA_1_4_153_7 n: 25827412516478093045584474130625154149704594415060748731377938994171532661092038308190184824436264190771407777946087 skew: 1.78 deg: 5 c5: 13 c0: 230 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1399990) Primes: RFBsize:183072, AFBsize:182796, largePrimes:6936275 encountered Relations: rels:6366622, finalFF:410123 Max relations in full relation-set: 28 Initial matrix: 365933 x 410123 with sparse part having weight 33136403. Pruned matrix : Total sieving time: 25.06 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 25.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(34·10187-7)/9 = 3(7)187<188> = 37 · 181 · 339749 · 165027393137<12> · 2970433401408271<16> · 178766094923463611022611<24> · C129
C129 = P37 · P92
P37 = 7833169297986926978487842335902637991<37>
P92 = 24187968600683302527739149792104175270573397807449410184317187911155868346087250303023744367<92>
(13·10195+23)/9 = 1(4)1947<196> = 103 · 331 · 577 · 911725164517<12> · 563220168489614860626764656859<30> · 41654141427322616652855513644521<32> · C115
C115 = P50 · P65
P50 = 37391517136576492214407196832292095434789606457973<50>
P65 = 91809241027487944385754632122283696654344609873546408374196174673<65>
Number: n N=3432886809175397032196339913330534024884982534747861246146538642357430422156175510072541804926634570136593541517829 ( 115 digits) Divisors found: Sun Mar 09 22:18:21 2008 prp50 factor: 37391517136576492214407196832292095434789606457973 Sun Mar 09 22:18:21 2008 prp65 factor: 91809241027487944385754632122283696654344609873546408374196174673 Sun Mar 09 22:18:21 2008 elapsed time 01:09:35 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.63 hours. Scaled time: 50.54 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_4_194_7 n: 3432886809175397032196339913330534024884982534747861246146538642357430422156175510072541804926634570136593541517829 skew: 63552.14 # norm 2.83e+16 c5: 80640 c4: -8836498296 c3: -1373598062853518 c2: 37201918264484422373 c1: 1921950600134982397290562 c0: -16625469219239268679518449376 # alpha -7.09 Y1: 2512263133757 Y0: -8429942835838585877603 # Murphy_E 5.26e-10 # M 106777821378733491274746654241528362728436178840541836325753017700893053191371109931252808924794581284601019233135 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1700341) Primes: RFBsize:250150, AFBsize:250791, largePrimes:7112358 encountered Relations: rels:6818052, finalFF:557631 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 27.43 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 27.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / GGNFS
(13·10148+23)/9 = 1(4)1477<149> = 29 · 82893068831154629<17> · C130
C130 = P41 · P44 · P47
P41 = 10326766722762193030677743410047854627737<41>
P44 = 18781709518265729197727134979077408403048257<44>
P47 = 30980265889559158971246250118179234976988163463<47>
Number: 14447_148 N=6008756802119248777049510774562217755723689828737153396106397864957468248863689090466755395432392753749237979010664160141839808367 ( 130 digits) SNFS difficulty: 149 digits. Divisors found: r1=10326766722762193030677743410047854627737 (pp41) r2=18781709518265729197727134979077408403048257 (pp44) r3=30980265889559158971246250118179234976988163463 (pp47) Version: GGNFS-0.77.1-20060513-k8 Total time: 50.14 hours. Scaled time: 100.43 units (timescale=2.003). Factorization parameters were as follows: name: 14447_148 n: 6008756802119248777049510774562217755723689828737153396106397864957468248863689090466755395432392753749237979010664160141839808367 m: 100000000000000000000000000000 c5: 13000 c0: 23 skew: 0.28 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 6650001) Primes: RFBsize:114155, AFBsize:114567, largePrimes:3408107 encountered Relations: rels:3661191, finalFF:257461 Max relations in full relation-set: 28 Initial matrix: 228789 x 257461 with sparse part having weight 36674363. Pruned matrix : 222194 x 223401 with weight 30863209. Total sieving time: 49.04 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.72 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 50.14 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(4·10158+11)/3 = 1(3)1577<159> = 8233 · 1527862686242403797544393553027<31> · C125
C125 = P57 · P68
P57 = 287883469723032768443947642361131998993548767401991588961<57>
P68 = 36819642567197130462621523866484529898124568522097561899681003205787<68>
Number: n N=10599766456206583622902219875082963980035743593315729410558814794508496584089071087989307287849025249575541272349851000517307 ( 125 digits) SNFS difficulty: 158 digits. Divisors found: Sat Mar 08 06:26:55 2008 prp57 factor: 287883469723032768443947642361131998993548767401991588961 Sat Mar 08 06:26:55 2008 prp68 factor: 36819642567197130462621523866484529898124568522097561899681003205787 Sat Mar 08 06:26:55 2008 elapsed time 01:39:35 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.63 hours. Scaled time: 64.10 units (timescale=1.750). Factorization parameters were as follows: name: KA_1_3_157_7 n: 10599766456206583622902219875082963980035743593315729410558814794508496584089071087989307287849025249575541272349851000517307 type: snfs skew: 0.62 deg: 5 c5: 125 c0: 11 m: 20000000000000000000000000000000 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800000) Primes: RFBsize:176302, AFBsize:176929, largePrimes:7011112 encountered Relations: rels:6417268, finalFF:404337 Max relations in full relation-set: 28 Initial matrix: 353296 x 404337 with sparse part having weight 36767863. Pruned matrix : 325440 x 327270 with weight 26935597. Total sieving time: 36.43 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.3,2.3,100000 total time: 36.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10159+11)/3 = 1(3)1587<160> = 72 · 797 · 911291 · C149
C149 = P72 · P78
P72 = 204085081256816882314444265811755088306232143029920183782151756286272303<72>
P78 = 183576039185885640888108236068058657286106092960627488427886381858697479384073<78>
Number: n N=37465130874056071128739882858608333273867038510555797284685508890275122646470838126444335066949288631674709132239035959872852775412243385761599230119 ( 149 digits) SNFS difficulty: 160 digits. Divisors found: r1=204085081256816882314444265811755088306232143029920183782151756286272303 (pp72) r2=183576039185885640888108236068058657286106092960627488427886381858697479384073 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.35 hours. Scaled time: 42.71 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_158_7 n: 37465130874056071128739882858608333273867038510555797284685508890275122646470838126444335066949288631674709132239035959872852775412243385761599230119 skew: 1.94 deg: 5 c5: 2 c0: 55 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:203362, AFBsize:203108, largePrimes:7174383 encountered Relations: rels:6696120, finalFF:533294 Max relations in full relation-set: 48 Initial matrix: 406535 x 533294 with sparse part having weight 47341680. Pruned matrix : 315527 x 317623 with weight 26303198. Total sieving time: 22.28 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.89 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 23.35 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(13·10157+23)/9 = 1(4)1567<158> = 16927 · 2524139 · 1130777445877727136149<22> · C126
C126 = P38 · P43 · P46
P38 = 29470374557264323160093526813499099303<38>
P43 = 8608324398240878863428561563214391554918361<43>
P46 = 1178490710904896662118258002202295955986767897<46>
Sat Mar 08 17:12:46 2008 Sat Mar 08 17:12:46 2008 Sat Mar 08 17:12:46 2008 Msieve v. 1.33 Sat Mar 08 17:12:46 2008 random seeds: 523c0940 fc91d192 Sat Mar 08 17:12:46 2008 factoring 10144830339782860097185251752019345282487397788395193165545200757788964500311106090656817 (89 digits) Sat Mar 08 17:12:46 2008 searching for 15-digit factors Sat Mar 08 17:12:47 2008 commencing quadratic sieve (89-digit input) Sat Mar 08 17:12:47 2008 using multiplier of 5 Sat Mar 08 17:12:47 2008 using 64kb Opteron sieve core Sat Mar 08 17:12:47 2008 sieve interval: 14 blocks of size 65536 Sat Mar 08 17:12:47 2008 processing polynomials in batches of 8 Sat Mar 08 17:12:47 2008 using a sieve bound of 1536659 (58333 primes) Sat Mar 08 17:12:47 2008 using large prime bound of 122932720 (26 bits) Sat Mar 08 17:12:47 2008 using double large prime bound of 364251493350800 (42-49 bits) Sat Mar 08 17:12:47 2008 using trial factoring cutoff of 49 bits Sat Mar 08 17:12:47 2008 polynomial 'A' values have 11 factors Sat Mar 08 17:58:29 2008 58751 relations (15710 full + 43041 combined from 622765 partial), need 58429 Sat Mar 08 17:58:29 2008 begin with 638474 relations Sat Mar 08 17:58:30 2008 reduce to 143363 relations in 13 passes Sat Mar 08 17:58:30 2008 attempting to read 143363 relations Sat Mar 08 17:58:31 2008 recovered 143363 relations Sat Mar 08 17:58:31 2008 recovered 123286 polynomials Sat Mar 08 17:58:31 2008 attempting to build 58751 cycles Sat Mar 08 17:58:31 2008 found 58751 cycles in 6 passes Sat Mar 08 17:58:31 2008 distribution of cycle lengths: Sat Mar 08 17:58:31 2008 length 1 : 15710 Sat Mar 08 17:58:31 2008 length 2 : 11202 Sat Mar 08 17:58:31 2008 length 3 : 10379 Sat Mar 08 17:58:31 2008 length 4 : 7870 Sat Mar 08 17:58:31 2008 length 5 : 5483 Sat Mar 08 17:58:31 2008 length 6 : 3491 Sat Mar 08 17:58:31 2008 length 7 : 2100 Sat Mar 08 17:58:31 2008 length 9+: 2516 Sat Mar 08 17:58:31 2008 largest cycle: 18 relations Sat Mar 08 17:58:32 2008 matrix is 58333 x 58751 (14.3 MB) with weight 3525812 (60.01/col) Sat Mar 08 17:58:32 2008 sparse part has weight 3525812 (60.01/col) Sat Mar 08 17:58:32 2008 filtering completed in 3 passes Sat Mar 08 17:58:32 2008 matrix is 54292 x 54356 (13.3 MB) with weight 3271260 (60.18/col) Sat Mar 08 17:58:32 2008 sparse part has weight 3271260 (60.18/col) Sat Mar 08 17:58:32 2008 saving the first 48 matrix rows for later Sat Mar 08 17:58:32 2008 matrix is 54244 x 54356 (9.7 MB) with weight 2718251 (50.01/col) Sat Mar 08 17:58:32 2008 sparse part has weight 2219258 (40.83/col) Sat Mar 08 17:58:32 2008 matrix includes 64 packed rows Sat Mar 08 17:58:32 2008 using block size 21742 for processor cache size 1024 kB Sat Mar 08 17:58:33 2008 commencing Lanczos iteration Sat Mar 08 17:58:33 2008 memory use: 8.8 MB Sat Mar 08 17:58:51 2008 lanczos halted after 859 iterations (dim = 54239) Sat Mar 08 17:58:51 2008 recovered 15 nontrivial dependencies Sat Mar 08 17:58:52 2008 prp43 factor: 8608324398240878863428561563214391554918361 Sat Mar 08 17:58:52 2008 prp46 factor: 1178490710904896662118258002202295955986767897 Sat Mar 08 17:58:52 2008 elapsed time 00:46:06
By Tyler Cadigan / GGNFS, Msieve
(25·10169-1)/3 = 8(3)169<170> = 557 · 613961582036334773951<21> · C147
C147 = P73 · P75
P73 = 1502550005296206405957000095663916919632979691817218255829004648364096639<73>
P75 = 162178555506473282695383179715970565193863003032111870610103191330901171721<75>
Number: 83333_169 N=243681389435182535496184708589226424729855760913476797889743725884416113338127752125962521749882308307893002238055583876382795647110212672777945719 ( 147 digits) SNFS difficulty: 170 digits. Divisors found: r1=1502550005296206405957000095663916919632979691817218255829004648364096639 r2=162178555506473282695383179715970565193863003032111870610103191330901171721 Version: Total time: 78.18 hours. Scaled time: 202.08 units (timescale=2.585). Factorization parameters were as follows: n: 243681389435182535496184708589226424729855760913476797889743725884416113338127752125962521749882308307893002238055583876382795647110212672777945719 m: 10000000000000000000000000000000000 c5: 5 c0: -2 skew: 0.83 type: snfs Y0: -10000000000000000000000000000000000 Y1: 1Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 704024 x 704272 Total sieving time: 78.18 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 78.18 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
(55·10165-1)/9 = 6(1)165<166> = 32 · 7 · 89 · 57373 · 10715141 · 5243570455225517035661<22> · C129
C129 = P47 · P83
P47 = 22145408397734698123468423600952926184208679147<47>
P83 = 15267691382164727203242189694802421271145941451138137866402055973027833433215497983<83>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(17·10188-71)/9 = 1(8)1871<189> = 46281797 · C181
C181 = P28 · P35 · P46 · P73
P28 = 6703837968824142319548566209<28>
P35 = 18284711636540291744488699704039629<35>
P46 = 6046424374440345331609702538553541573262983367<46>
P73 = 5506630666650624530936151410813003802749830770712958032362796387418558279<73>
Number: n N=33295425883877024213133089544859699420354642783993157073687282792277335584942812196574757512858061420648601761497145393 ( 119 digits) Divisors found: r1=6046424374440345331609702538553541573262983367 (pp46) r2=5506630666650624530936151410813003802749830770712958032362796387418558279 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.37 hours. Scaled time: 46.26 units (timescale=1.823). Factorization parameters were as follows: name: KA_1_8_187_1 n: 33295425883877024213133089544859699420354642783993157073687282792277335584942812196574757512858061420648601761497145393 skew: 64252.80 # norm 8.56e+16 c5: 80640 c4: -29279627402 c3: -2582745450093933 c2: 100280207548859379378 c1: 2258234003440599349820122 c0: -63862789341497878474545813540 # alpha -6.91 Y1: 3752897193449 Y0: -52865099013389977999601 # Murphy_E 3.30e-10 # M 4584119993252203722295177747872564209385270252930595333008198134004344128971819458287365846308288885592951846116008855 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:315948, AFBsize:316483, largePrimes:8200805 encountered Relations: rels:7746394, finalFF:721237 Max relations in full relation-set: 48 Initial matrix: 632512 x 721237 with sparse part having weight 44335568. Pruned matrix : 545734 x 548960 with weight 25937410. Total sieving time: 23.18 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.77 hours. Total square root time: 0.18 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,28,28,49,49,2.4,2.4,60000 total time: 25.37 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10156+17)/3 = 1(3)1559<157> = 7 · 101062276260401384471623631<27> · C130
C130 = P63 · P67
P63 = 269480152008343856451946294957810061032767470763934370924086361<63>
P67 = 6993987264537114565683739230936559086147454821094183445847542744347<67>
Number: n N=1884740751191882668563906253662372628699360247371667353287240058299223854681737727018135369552948233020909693280492841805572551267 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: Fri Mar 07 11:25:48 2008 prp63 factor: 269480152008343856451946294957810061032767470763934370924086361 Fri Mar 07 11:25:48 2008 prp67 factor: 6993987264537114565683739230936559086147454821094183445847542744347 Fri Mar 07 11:25:48 2008 elapsed time 00:50:09 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.70 hours. Scaled time: 35.57 units (timescale=1.440). Factorization parameters were as follows: name: KA_1_3_155_9 n: 1884740751191882668563906253662372628699360247371667353287240058299223854681737727018135369552948233020909693280492841805572551267 skew: 0.84 deg: 5 c5: 40 c0: 17 m: 10000000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200001) Primes: RFBsize:176302, AFBsize:176288, largePrimes:7013324 encountered Relations: rels:6491415, finalFF:440292 Max relations in full relation-set: 28 Initial matrix: 352656 x 440292 with sparse part having weight 37857733. Pruned matrix : Total sieving time: 24.46 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.5,2.5,100000 total time: 24.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
(13·10146+23)/9 = 1(4)1457<147> = 3 · 7 · 3479557 · C139
C139 = P56 · P84
P56 = 19622489662095236649338844058215831256042080388367537519<56>
P84 = 100740356624526186007814934359778825461356811979856485445035129252550852026602460329<84>
Number: 14447_146 N=1976776606420552474604757697116868126281106151819578844915690956724341146553514392293869106578310652277539441623835125651592517920616583751 ( 139 digits) SNFS difficulty: 147 digits. Divisors found: r1=19622489662095236649338844058215831256042080388367537519 (pp56) r2=100740356624526186007814934359778825461356811979856485445035129252550852026602460329 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 29.62 hours. Scaled time: 59.31 units (timescale=2.002). Factorization parameters were as follows: name: 14447_146 n: 1976776606420552474604757697116868126281106151819578844915690956724341146553514392293869106578310652277539441623835125651592517920616583751 m: 100000000000000000000000000000 c5: 130 c0: 23 skew: 0.71 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4050001) Primes: RFBsize:114155, AFBsize:114037, largePrimes:3084976 encountered Relations: rels:3164913, finalFF:290275 Max relations in full relation-set: 28 Initial matrix: 228259 x 290275 with sparse part having weight 36106723. Pruned matrix : 211753 x 212958 with weight 25442972. Total sieving time: 28.63 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.71 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 29.62 hours. --------- CPU info (if available) ----------
By matsui / GGNFS
3·10169-7 = 2(9)1683<170> = 19 · 43055561 · 10073117473<11> · 310792818964334717<18> · C134
C134 = P54 · P80
P54 = 275860320126853307413096987739888963147811740022702997<54>
P80 = 42463353702343919630941476770580199897205148009535304984674887647746788420522251<80>
N=11713954345988395280440301043503701161036869491532050378454230366913521079611328147373022160571672903577472106907091023297491402886247 ( 134 digits) SNFS difficulty: 170 digits. Divisors found: r1=275860320126853307413096987739888963147811740022702997 (pp54) r2=42463353702343919630941476770580199897205148009535304984674887647746788420522251 (pp80) Version: GGNFS-0.77.1-20060513-prescott Total time: 161.74 hours. Scaled time: 179.53 units (timescale=1.110). Factorization parameters were as follows: n: 11713954345988395280440301043503701161036869491532050378454230366913521079611328147373022160571672903577472106907091023297491402886247 m: 10000000000000000000000000000000000 c5: 3 c0: -70 skew: 1.88 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9100001) Primes: RFBsize:412849, AFBsize:410791, largePrimes:6338389 encountered Relations: rels:6667763, finalFF:975562 Max relations in full relation-set: 28 Initial matrix: 823705 x 975562 with sparse part having weight 74465554. Pruned matrix : 701852 x 706034 with weight 56385039. Total sieving time: 145.54 hours. Total relation processing time: 0.16 hours. Matrix solve time: 15.65 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 161.74 hours.
By Sinkiti Sibata / GGNFS
(13·10140+23)/9 = 1(4)1397<141> = 3 · 7 · 97 · 116639 · 361213 · 235765177 · C118
C118 = P31 · P37 · P52
P31 = 1745882905442085615069163292717<31>
P37 = 1274538776841461345684727695080517503<37>
P52 = 3208151205533195406082282981411310434662624665968979<52>
Number: 14447_140 N=7138763506562734907929089171012437671823306257454994838166422259301218421238798466853549934921216720059849128421380329 ( 118 digits) SNFS difficulty: 141 digits. Divisors found: r1=1745882905442085615069163292717 (pp31) r2=1274538776841461345684727695080517503 (pp37) r3=3208151205533195406082282981411310434662624665968979 (pp52) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 10.31 hours. Scaled time: 6.96 units (timescale=0.675). Factorization parameters were as follows: name: 14447_140 n: 7138763506562734907929089171012437671823306257454994838166422259301218421238798466853549934921216720059849128421380329 m: 10000000000000000000000000000 c5: 13 c0: 23 skew: 1.12 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:99688, largePrimes:2626869 encountered Relations: rels:2591427, finalFF:265976 Max relations in full relation-set: 28 Initial matrix: 199774 x 265976 with sparse part having weight 20939938. Pruned matrix : 176848 x 177910 with weight 11548586. Total sieving time: 9.39 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.73 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.31 hours. --------- CPU info (if available) ----------
(13·10144+23)/9 = 1(4)1437<145> = 127 · 5309 · 698531 · 18250784633<11> · 489889502898266347<18> · C105
C105 = P46 · P59
P46 = 7974072093667475428695114878478870116137528321<46>
P59 = 43016877271613784214536967602395329942184013449106489386429<59>
Number: 14447_144 N=343019680608294166377258712561601712210065487114888595979284146082967927864376668302191058491283900555709 ( 105 digits) SNFS difficulty: 146 digits. Divisors found: r1=7974072093667475428695114878478870116137528321 (pp46) r2=43016877271613784214536967602395329942184013449106489386429 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.57 hours. Scaled time: 39.18 units (timescale=2.002). Factorization parameters were as follows: name: 14447_144 n: 343019680608294166377258712561601712210065487114888595979284146082967927864376668302191058491283900555709 m: 100000000000000000000000000000 c5: 13 c0: 230 skew: 1.78 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:113437, largePrimes:2875075 encountered Relations: rels:2875950, finalFF:280563 Max relations in full relation-set: 28 Initial matrix: 227657 x 280563 with sparse part having weight 29021959. Pruned matrix : 211417 x 212619 with weight 20180901. Total sieving time: 18.84 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.53 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 19.57 hours. --------- CPU info (if available) ----------
(13·10145+23)/9 = 1(4)1447<146> = 17 · 349 · 649123 · 1775611609<10> · C127
C127 = P40 · P41 · P46
P40 = 9343080165895605403209672061982422960039<40>
P41 = 89613447463680659731752405803506450728307<41>
P46 = 2522831592649101185126932192574929950666412669<46>
Number: 14447_145 N=2112280166645633371402320469707436810566363949074645713931457172472612598537165215521411575103320180556079680290992286560813937 ( 127 digits) SNFS difficulty: 146 digits. Divisors found: r1=9343080165895605403209672061982422960039 (pp40) r2=89613447463680659731752405803506450728307 (pp41) r3=2522831592649101185126932192574929950666412669 (pp46) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.85 hours. Scaled time: 29.66 units (timescale=1.997). Factorization parameters were as follows: name: 14447_145 n: 2112280166645633371402320469707436810566363949074645713931457172472612598537165215521411575103320180556079680290992286560813937 m: 100000000000000000000000000000 c5: 13 c0: 23 skew: 1.12 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2250001) Primes: RFBsize:114155, AFBsize:113862, largePrimes:2792569 encountered Relations: rels:2794001, finalFF:306269 Max relations in full relation-set: 28 Initial matrix: 228082 x 306269 with sparse part having weight 26826257. Pruned matrix : 201383 x 202587 with weight 15672670. Total sieving time: 14.25 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.38 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 14.85 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS, Msieve
4·10200+7 = 4(0)1997<201> = 11 · 37 · 1283 · 3862363 · 850829939689<12> · 7902206235541<13> · 2427955288687425440124619<25> · C140
C140 = P45 · P95
P45 = 744937326890658098750633812878347827267331909<45>
P95 = 16309261376519004401367144323776493633648587766960444190910507407496460267050598624335377069811<95>
Number: 40007_200 N=12149377573385122056574232610071460610855950465269956343856882780433448036952149168175437914747399741923901170515075147862469359004400899199 ( 140 digits) Divisors found: r1=744937326890658098750633812878347827267331909 r2=16309261376519004401367144323776493633648587766960444190910507407496460267050598624335377069811 Version: Total time: 897.57 hours. Scaled time: 2311.24 units (timescale=2.575). Factorization parameters were as follows: name: 40007_200 n: 12149377573385122056574232610071460610855950465269956343856882780433448036952149168175437914747399741923901170515075147862469359004400899199 skew: 223679.33 # norm 4.09e+019 c5: 2156280 c4: -61228026700 c3: -702373789849651771 c2: -6571146189541794526408 c1: 3301605854013914710688065716 c0: 152604628744953457221152044405968 # alpha -6.36 Y1: 5913557570755153 Y0: -354952153975377700897678475 # Murphy_E 2.08e-011 # M 3547188172572132846724638033940689355703420623635097032285416273587374461874203363023125145717872143374372253454257726653217575781190678802 type: gnfs rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.5 alambda: 2.5 qintsize: 60000 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [2700000, 18780001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1492185 x 1492433 Total sieving time: 897.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,139,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5400000,5400000,27,27,51,51,2.5,2.5,60000 total time: 897.57 hours. --------- CPU info (if available) ----------
C140 is the largest composite number factored by gnfs so far in our tables.
By Robert Backstrom / GGNFS, Msieve
(13·10138+23)/9 = 1(4)1377<139> = 19 · 599 · 1429883584413769044754647369821<31> · C104
C104 = P48 · P57
P48 = 586128798116731777961115493247664079920542415073<48>
P57 = 151435145516772344278889031078601478025961666278540775039<57>
Number: n N=88760499834378156773800488192000265442408738331560349865331863425464199466716830610347313449706255762847 ( 104 digits) SNFS difficulty: 139 digits. Divisors found: Thu Mar 06 02:47:26 2008 prp48 factor: 586128798116731777961115493247664079920542415073 Thu Mar 06 02:47:26 2008 prp57 factor: 151435145516772344278889031078601478025961666278540775039 Thu Mar 06 02:47:26 2008 elapsed time 00:45:26 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 9.08 hours. Scaled time: 11.82 units (timescale=1.302). Factorization parameters were as follows: name: KA_1_4_137_7 n: 88760499834378156773800488192000265442408738331560349865331863425464199466716830610347313449706255762847 skew: 0.28 deg: 5 c5: 13000 c0: 23 m: 1000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 900000) Primes: RFBsize:176302, AFBsize:176793, largePrimes:6399945 encountered Relations: rels:5818426, finalFF:424389 Max relations in full relation-set: 28 Initial matrix: 353162 x 424389 with sparse part having weight 24345376. Pruned matrix : 291445 x 293274 with weight 13197182. Total sieving time: 8.01 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.86 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.5,2.5,75000 total time: 9.08 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10150+17)/3 = 1(3)1499<151> = 7 · 334069789 · 334196431 · C133
C133 = P62 · P71
P62 = 57126890860326108568751429326137900970835253270245426672695033<62>
P71 = 29864902280999244026736715876111318231690393560147974398473655578471991<71>
Number: n N=1706089013160948065796653250284267745523856895624707272826723480789142535712807929895649433301290486998952660344553525854016075320703 ( 133 digits) SNFS difficulty: 150 digits. Divisors found: Thu Mar 6 21:59:20 2008 prp62 factor: 57126890860326108568751429326137900970835253270245426672695033 Thu Mar 6 21:59:20 2008 prp71 factor: 29864902280999244026736715876111318231690393560147974398473655578471991 Thu Mar 6 21:59:20 2008 elapsed time 00:17:18 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.81 hours. Scaled time: 9.91 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_3_149_9 n: 1706089013160948065796653250284267745523856895624707272826723480789142535712807929895649433301290486998952660344553525854016075320703 type: snfs deg: 5 c5: 4 c0: 17 skew: 1.34 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:149130, largePrimes:5287368 encountered Relations: rels:5151793, finalFF:463201 Max relations in full relation-set: 28 Initial matrix: 298127 x 463201 with sparse part having weight 38170491. Pruned matrix : Total sieving time: 11.69 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,27,27,48,48,2.5,2.5,100000 total time: 11.81 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Jo Yeong Uk / GGNFS
(11·10181+43)/9 = 1(2)1807<182> = C182
C182 = P86 · P96
P86 = 17516603088503986712003230092449997330331139625362369248432951964013027291978138942617<86>
P96 = 697750708882795525763097607759634404119636066233661493021512854651497704755817469884947029848331<96>
Number: 12227_181 N=12222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 182 digits) SNFS difficulty: 182 digits. Divisors found: r1=17516603088503986712003230092449997330331139625362369248432951964013027291978138942617 (pp86) r2=697750708882795525763097607759634404119636066233661493021512854651497704755817469884947029848331 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 281.88 hours. Scaled time: 523.45 units (timescale=1.857). Factorization parameters were as follows: n: 12222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 1000000000000000000000000000000000000 c5: 110 c0: 43 skew: 0.83 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 9700001) Primes: RFBsize:664579, AFBsize:664856, largePrimes:11128366 encountered Relations: rels:11398297, finalFF:1494512 Max relations in full relation-set: 28 Initial matrix: 1329502 x 1494512 with sparse part having weight 95004589. Pruned matrix : 1185360 x 1192071 with weight 70601132. Total sieving time: 270.41 hours. Total relation processing time: 0.24 hours. Matrix solve time: 11.09 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 281.88 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.89 BogoMIPS (lpj=2406449) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115)
By Sinkiti Sibata / GGNFS, Msieve
(13·10125+23)/9 = 1(4)1247<126> = 32 · C125
C125 = P48 · P77
P48 = 464247637731423992081446576515259298176781598923<48>
P77 = 34570736416615334709852602535504361723332346937596499346376073111611171864021<77>
Number: 14447_125 N=16049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049383 ( 125 digits) SNFS difficulty: 126 digits. Divisors found: r1=464247637731423992081446576515259298176781598923 (pp48) r2=34570736416615334709852602535504361723332346937596499346376073111611171864021 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.83 hours. Scaled time: 5.66 units (timescale=2.002). Factorization parameters were as follows: name: 14447_125 n: 16049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049382716049383 m: 10000000000000000000000000 c5: 13 c0: 23 skew: 1.12 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63813, largePrimes:2376187 encountered Relations: rels:2731413, finalFF:452003 Max relations in full relation-set: 28 Initial matrix: 112976 x 452003 with sparse part having weight 44179581. Pruned matrix : 76716 x 77344 with weight 8442795. Total sieving time: 2.68 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.83 hours. --------- CPU info (if available) ----------
(13·10113+23)/9 = 1(4)1127<114> = 3 · 17 · 1058632741<10> · C103
C103 = P49 · P54
P49 = 3726222878100481201794626013271269800973447843967<49>
P54 = 717986894749436893374924732971774453291142110739897151<54>
Number: 14447_113 N=2675379193391674015768106248403252111180850469561315262597489035104281804503651150211094236768275838017 ( 103 digits) SNFS difficulty: 114 digits. Divisors found: r1=3726222878100481201794626013271269800973447843967 (pp49) r2=717986894749436893374924732971774453291142110739897151 (pp54) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.39 hours. Scaled time: 1.61 units (timescale=0.675). Factorization parameters were as follows: name: 14447_113 n: 2675379193391674015768106248403252111180850469561315262597489035104281804503651150211094236768275838017 m: 10000000000000000000000 c5: 13000 c0: 23 skew: 0.28 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64288, largePrimes:2136650 encountered Relations: rels:2262567, finalFF:264304 Max relations in full relation-set: 28 Initial matrix: 113453 x 264304 with sparse part having weight 22736905. Pruned matrix : 81275 x 81906 with weight 4814859. Total sieving time: 2.17 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.39 hours. --------- CPU info (if available) ----------
(13·10120+23)/9 = 1(4)1197<121> = 19 · 29 · 1741 · 22441 · C110
C110 = P29 · P81
P29 = 76702542741648809846780802317<29>
P81 = 874779316283849878292104906255438129819684224118598047597761358345503878142800761<81>
Number: 14447_120 N=67097797896772318011892964303753466558069514586862341013698816283812181113638336610629295943339477297058163237 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=76702542741648809846780802317 (pp29) r2=874779316283849878292104906255438129819684224118598047597761358345503878142800761 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.18 hours. Scaled time: 4.36 units (timescale=1.996). Factorization parameters were as follows: name: 14447_120 n: 67097797896772318011892964303753466558069514586862341013698816283812181113638336610629295943339477297058163237 m: 1000000000000000000000000 c5: 13 c0: 23 skew: 1.12 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63813, largePrimes:2107928 encountered Relations: rels:2204496, finalFF:243834 Max relations in full relation-set: 28 Initial matrix: 112976 x 243834 with sparse part having weight 20361502. Pruned matrix : 82767 x 83395 with weight 4575859. Total sieving time: 2.06 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.18 hours. --------- CPU info (if available) ----------
(13·10122+23)/9 = 1(4)1217<123> = 3 · 7 · C121
C121 = P57 · P65
P57 = 275974403633615893708374712313364033866417253364443479869<57>
P65 = 24923713169568184598667917122586887747016051523773565479357462303<65>
Number: 14447_122 N=6878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878307 ( 121 digits) SNFS difficulty: 123 digits. Divisors found: r1=275974403633615893708374712313364033866417253364443479869 (pp57) r2=24923713169568184598667917122586887747016051523773565479357462303 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.80 hours. Scaled time: 5.56 units (timescale=1.989). Factorization parameters were as follows: name: 14447_122 n: 6878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878306878307 m: 1000000000000000000000000 c5: 1300 c0: 23 skew: 0.45 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63628, largePrimes:2267670 encountered Relations: rels:2437211, finalFF:267892 Max relations in full relation-set: 28 Initial matrix: 112793 x 267892 with sparse part having weight 26595405. Pruned matrix : 87574 x 88201 with weight 6983607. Total sieving time: 2.65 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.80 hours. --------- CPU info (if available) ----------
(13·10102+23)/9 = 1(4)1017<103> = 19 · 127 · 719 · C96
C96 = P32 · P65
P32 = 70434883300550025768921698856829<32>
P65 = 11820254604073182658618421398181422566578014985987820143827603769<65>
Number: 14447_102 N=832558253620683769846827853787144186216895642601442259875629886356438810202527480346341671788501 ( 96 digits) SNFS difficulty: 103 digits. Divisors found: r1=70434883300550025768921698856829 (pp32) r2=11820254604073182658618421398181422566578014985987820143827603769 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 0.99 hours. Scaled time: 0.67 units (timescale=0.675). Factorization parameters were as follows: name: 14447_102 n: 832558253620683769846827853787144186216895642601442259875629886356438810202527480346341671788501 m: 100000000000000000000 c5: 1300 c0: 23 skew: 0.45 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 330001) Primes: RFBsize:37706, AFBsize:41177, largePrimes:1166798 encountered Relations: rels:1153342, finalFF:152299 Max relations in full relation-set: 28 Initial matrix: 78950 x 152299 with sparse part having weight 5949155. Pruned matrix : 50513 x 50971 with weight 1512615. Total sieving time: 0.91 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.99 hours. --------- CPU info (if available) ----------
(13·10127+23)/9 = 1(4)1267<128> = 103 · 67089542389<11> · 202509386109599571491<21> · C95
C95 = P35 · P60
P35 = 14549579140164833600801209324805687<35>
P60 = 709435963265061108754917795311933782934023902804157269931073<60>
Wed Mar 5 10:06:03 2008 Msieve v. 1.33 Wed Mar 5 10:06:03 2008 random seeds: 27375a1b 327ed101 Wed Mar 5 10:06:03 2008 factoring 10321994692404078283128677812981837955842846798890256131362566317922455981262533583263608412151 (95 digits) Wed Mar 5 10:06:04 2008 searching for 15-digit factors Wed Mar 5 10:06:06 2008 commencing quadratic sieve (95-digit input) Wed Mar 5 10:06:06 2008 using multiplier of 7 Wed Mar 5 10:06:06 2008 using 64kb Pentium 4 sieve core Wed Mar 5 10:06:06 2008 sieve interval: 18 blocks of size 65536 Wed Mar 5 10:06:06 2008 processing polynomials in batches of 6 Wed Mar 5 10:06:06 2008 using a sieve bound of 2089273 (77647 primes) Wed Mar 5 10:06:06 2008 using large prime bound of 296676766 (28 bits) Wed Mar 5 10:06:06 2008 using double large prime bound of 1778731187411554 (42-51 bits) Wed Mar 5 10:06:06 2008 using trial factoring cutoff of 51 bits Wed Mar 5 10:06:06 2008 polynomial 'A' values have 12 factors Wed Mar 5 12:08:31 2008 12072 relations (7942 full + 4130 combined from 454959 partial), need 77743 Wed Mar 5 12:08:31 2008 elapsed time 02:02:28 Wed Mar 5 12:14:47 2008 Wed Mar 5 12:14:47 2008 Wed Mar 5 12:14:47 2008 Msieve v. 1.33 Wed Mar 5 12:14:47 2008 random seeds: 86a08dc3 c441004f Wed Mar 5 12:14:47 2008 factoring 10321994692404078283128677812981837955842846798890256131362566317922455981262533583263608412151 (95 digits) Wed Mar 5 12:14:49 2008 searching for 15-digit factors Wed Mar 5 12:14:50 2008 commencing quadratic sieve (95-digit input) Wed Mar 5 12:14:51 2008 using multiplier of 7 Wed Mar 5 12:14:51 2008 using 64kb Pentium 4 sieve core Wed Mar 5 12:14:51 2008 sieve interval: 18 blocks of size 65536 Wed Mar 5 12:14:51 2008 processing polynomials in batches of 6 Wed Mar 5 12:14:51 2008 using a sieve bound of 2089273 (77647 primes) Wed Mar 5 12:14:51 2008 using large prime bound of 296676766 (28 bits) Wed Mar 5 12:14:51 2008 using double large prime bound of 1778731187411554 (42-51 bits) Wed Mar 5 12:14:51 2008 using trial factoring cutoff of 51 bits Wed Mar 5 12:14:51 2008 polynomial 'A' values have 12 factors Wed Mar 5 12:14:53 2008 restarting with 7942 full and 454959 partial relations Wed Mar 5 15:14:40 2008 77879 relations (19845 full + 58034 combined from 1123077 partial), need 77743 Wed Mar 5 15:14:44 2008 begin with 1142922 relations Wed Mar 5 15:14:45 2008 reduce to 199389 relations in 11 passes Wed Mar 5 15:14:45 2008 attempting to read 199389 relations Wed Mar 5 15:14:52 2008 recovered 199389 relations Wed Mar 5 15:14:52 2008 recovered 180691 polynomials Wed Mar 5 15:14:52 2008 attempting to build 77879 cycles Wed Mar 5 15:14:52 2008 found 77879 cycles in 5 passes Wed Mar 5 15:14:52 2008 distribution of cycle lengths: Wed Mar 5 15:14:52 2008 length 1 : 19845 Wed Mar 5 15:14:52 2008 length 2 : 13964 Wed Mar 5 15:14:52 2008 length 3 : 13369 Wed Mar 5 15:14:52 2008 length 4 : 10242 Wed Mar 5 15:14:52 2008 length 5 : 7679 Wed Mar 5 15:14:52 2008 length 6 : 5238 Wed Mar 5 15:14:52 2008 length 7 : 3216 Wed Mar 5 15:14:52 2008 length 9+: 4326 Wed Mar 5 15:14:52 2008 largest cycle: 20 relations Wed Mar 5 15:14:53 2008 matrix is 77647 x 77879 (20.6 MB) with weight 5088222 (65.33/col) Wed Mar 5 15:14:53 2008 sparse part has weight 5088222 (65.33/col) Wed Mar 5 15:14:54 2008 filtering completed in 3 passes Wed Mar 5 15:14:54 2008 matrix is 73464 x 73528 (19.6 MB) with weight 4841271 (65.84/col) Wed Mar 5 15:14:54 2008 sparse part has weight 4841271 (65.84/col) Wed Mar 5 15:14:55 2008 saving the first 48 matrix rows for later Wed Mar 5 15:14:55 2008 matrix is 73416 x 73528 (13.1 MB) with weight 3903883 (53.09/col) Wed Mar 5 15:14:55 2008 sparse part has weight 2988911 (40.65/col) Wed Mar 5 15:14:55 2008 matrix includes 64 packed rows Wed Mar 5 15:14:55 2008 using block size 21845 for processor cache size 512 kB Wed Mar 5 15:14:56 2008 commencing Lanczos iteration Wed Mar 5 15:14:56 2008 memory use: 12.2 MB Wed Mar 5 15:15:52 2008 lanczos halted after 1163 iterations (dim = 73416) Wed Mar 5 15:15:52 2008 recovered 18 nontrivial dependencies Wed Mar 5 15:15:54 2008 prp35 factor: 14549579140164833600801209324805687 Wed Mar 5 15:15:54 2008 prp60 factor: 709435963265061108754917795311933782934023902804157269931073 Wed Mar 5 15:15:54 2008 elapsed time 03:01:07
(13·10128+23)/9 = 1(4)1277<129> = 3 · 74 · 359 · 66612700003<11> · C111
C111 = P40 · P72
P40 = 1331167551723961827044232908143687891357<40>
P72 = 629945850433649252006066469143506208365518616550926335658920273196015541<72>
Number: 14447_128 N=838563475440429911604775130570202481413951328063949760496483468128502165941145216382236679614537068220491579137 ( 111 digits) SNFS difficulty: 129 digits. Divisors found: r1=1331167551723961827044232908143687891357 (pp40) r2=629945850433649252006066469143506208365518616550926335658920273196015541 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.14 hours. Scaled time: 10.24 units (timescale=1.994). Factorization parameters were as follows: name: 14447_128 n: 838563475440429911604775130570202481413951328063949760496483468128502165941145216382236679614537068220491579137 m: 10000000000000000000000000 c5: 13000 c0: 23 skew: 0.28 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:64288, largePrimes:1511938 encountered Relations: rels:1504917, finalFF:163874 Max relations in full relation-set: 28 Initial matrix: 128306 x 163874 with sparse part having weight 13141347. Pruned matrix : 118297 x 119002 with weight 7752790. Total sieving time: 4.95 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.14 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GGNFS, GMP-ECM
(13·10111+23)/9 = 1(4)1107<112> = 863 · 386881426812688222963<21> · C88
C88 = P30 · P58
P30 = 536034555099477259492189339343<30>
P58 = 8070851920836102438701243831587152825693030353472471416341<58>
Tue Mar 04 23:42:15 2008 Tue Mar 04 23:42:15 2008 Tue Mar 04 23:42:15 2008 Msieve v. 1.33 Tue Mar 04 23:42:15 2008 random seeds: 57339918 0c0c728b Tue Mar 04 23:42:15 2008 factoring 4326255518659141629515683748908033460381740031260391059780038497503711961665328284403963 (88 digits) Tue Mar 04 23:42:16 2008 searching for 15-digit factors Tue Mar 04 23:42:17 2008 commencing quadratic sieve (88-digit input) Tue Mar 04 23:42:17 2008 using multiplier of 3 Tue Mar 04 23:42:17 2008 using 64kb Opteron sieve core Tue Mar 04 23:42:17 2008 sieve interval: 14 blocks of size 65536 Tue Mar 04 23:42:17 2008 processing polynomials in batches of 8 Tue Mar 04 23:42:17 2008 using a sieve bound of 1527521 (57923 primes) Tue Mar 04 23:42:17 2008 using large prime bound of 122201680 (26 bits) Tue Mar 04 23:42:17 2008 using double large prime bound of 360361878370480 (42-49 bits) Tue Mar 04 23:42:17 2008 using trial factoring cutoff of 49 bits Tue Mar 04 23:42:17 2008 polynomial 'A' values have 11 factors Wed Mar 05 00:49:17 2008 58176 relations (15416 full + 42760 combined from 618473 partial), need 58019 Wed Mar 05 00:49:17 2008 begin with 633888 relations Wed Mar 05 00:49:18 2008 reduce to 142616 relations in 9 passes Wed Mar 05 00:49:18 2008 attempting to read 142616 relations Wed Mar 05 00:49:20 2008 recovered 142616 relations Wed Mar 05 00:49:20 2008 recovered 122108 polynomials Wed Mar 05 00:49:20 2008 attempting to build 58176 cycles Wed Mar 05 00:49:20 2008 found 58176 cycles in 5 passes Wed Mar 05 00:49:20 2008 distribution of cycle lengths: Wed Mar 05 00:49:20 2008 length 1 : 15416 Wed Mar 05 00:49:20 2008 length 2 : 10978 Wed Mar 05 00:49:20 2008 length 3 : 10060 Wed Mar 05 00:49:20 2008 length 4 : 7766 Wed Mar 05 00:49:20 2008 length 5 : 5579 Wed Mar 05 00:49:20 2008 length 6 : 3567 Wed Mar 05 00:49:20 2008 length 7 : 2188 Wed Mar 05 00:49:20 2008 length 9+: 2622 Wed Mar 05 00:49:20 2008 largest cycle: 19 relations Wed Mar 05 00:49:20 2008 matrix is 57923 x 58176 (14.2 MB) with weight 3482798 (59.87/col) Wed Mar 05 00:49:20 2008 sparse part has weight 3482798 (59.87/col) Wed Mar 05 00:49:21 2008 filtering completed in 3 passes Wed Mar 05 00:49:21 2008 matrix is 54291 x 54355 (13.3 MB) with weight 3277175 (60.29/col) Wed Mar 05 00:49:21 2008 sparse part has weight 3277175 (60.29/col) Wed Mar 05 00:49:21 2008 saving the first 48 matrix rows for later Wed Mar 05 00:49:21 2008 matrix is 54243 x 54355 (9.4 MB) with weight 2674396 (49.20/col) Wed Mar 05 00:49:21 2008 sparse part has weight 2135619 (39.29/col) Wed Mar 05 00:49:21 2008 matrix includes 64 packed rows Wed Mar 05 00:49:21 2008 using block size 21742 for processor cache size 512 kB Wed Mar 05 00:49:22 2008 commencing Lanczos iteration Wed Mar 05 00:49:22 2008 memory use: 8.7 MB Wed Mar 05 00:49:50 2008 lanczos halted after 859 iterations (dim = 54239) Wed Mar 05 00:49:50 2008 recovered 16 nontrivial dependencies Wed Mar 05 00:49:50 2008 prp30 factor: 536034555099477259492189339343 Wed Mar 05 00:49:50 2008 prp58 factor: 8070851920836102438701243831587152825693030353472471416341 Wed Mar 05 00:49:50 2008 elapsed time 01:07:35
(13·10109+23)/9 = 1(4)1087<110> = 61 · 277 · 503 · 1831601 · 2156071 · C90
C90 = P41 · P49
P41 = 51656325972977006306990866008287770891019<41>
P49 = 8331166415227273953870412449749267635633640111533<49>
Tue Mar 04 23:46:07 2008 Tue Mar 04 23:46:07 2008 Tue Mar 04 23:46:07 2008 Msieve v. 1.33 Tue Mar 04 23:46:07 2008 random seeds: 8428a2f4 b1ad526f Tue Mar 04 23:46:07 2008 factoring 430357448080098369958342847236693571262718451457671118447147565165570370519810229948022127 (90 digits) Tue Mar 04 23:46:07 2008 searching for 15-digit factors Tue Mar 04 23:46:08 2008 commencing quadratic sieve (90-digit input) Tue Mar 04 23:46:09 2008 using multiplier of 2 Tue Mar 04 23:46:09 2008 using 64kb Opteron sieve core Tue Mar 04 23:46:09 2008 sieve interval: 18 blocks of size 65536 Tue Mar 04 23:46:09 2008 processing polynomials in batches of 6 Tue Mar 04 23:46:09 2008 using a sieve bound of 1574231 (60000 primes) Tue Mar 04 23:46:09 2008 using large prime bound of 125938480 (26 bits) Tue Mar 04 23:46:09 2008 using double large prime bound of 380439116353840 (42-49 bits) Tue Mar 04 23:46:09 2008 using trial factoring cutoff of 49 bits Tue Mar 04 23:46:09 2008 polynomial 'A' values have 11 factors Wed Mar 05 01:00:09 2008 60199 relations (16261 full + 43938 combined from 633692 partial), need 60096 Wed Mar 05 01:00:09 2008 begin with 649952 relations Wed Mar 05 01:00:10 2008 reduce to 146246 relations in 9 passes Wed Mar 05 01:00:10 2008 attempting to read 146246 relations Wed Mar 05 01:00:11 2008 recovered 146246 relations Wed Mar 05 01:00:11 2008 recovered 124895 polynomials Wed Mar 05 01:00:11 2008 attempting to build 60199 cycles Wed Mar 05 01:00:11 2008 found 60199 cycles in 5 passes Wed Mar 05 01:00:12 2008 distribution of cycle lengths: Wed Mar 05 01:00:12 2008 length 1 : 16261 Wed Mar 05 01:00:12 2008 length 2 : 11453 Wed Mar 05 01:00:12 2008 length 3 : 10730 Wed Mar 05 01:00:12 2008 length 4 : 8114 Wed Mar 05 01:00:12 2008 length 5 : 5490 Wed Mar 05 01:00:12 2008 length 6 : 3603 Wed Mar 05 01:00:12 2008 length 7 : 2053 Wed Mar 05 01:00:12 2008 length 9+: 2495 Wed Mar 05 01:00:12 2008 largest cycle: 18 relations Wed Mar 05 01:00:12 2008 matrix is 60000 x 60199 (15.0 MB) with weight 3689568 (61.29/col) Wed Mar 05 01:00:12 2008 sparse part has weight 3689568 (61.29/col) Wed Mar 05 01:00:13 2008 filtering completed in 3 passes Wed Mar 05 01:00:13 2008 matrix is 56104 x 56168 (14.1 MB) with weight 3476829 (61.90/col) Wed Mar 05 01:00:13 2008 sparse part has weight 3476829 (61.90/col) Wed Mar 05 01:00:14 2008 saving the first 48 matrix rows for later Wed Mar 05 01:00:14 2008 matrix is 56056 x 56168 (10.7 MB) with weight 2936910 (52.29/col) Wed Mar 05 01:00:14 2008 sparse part has weight 2473574 (44.04/col) Wed Mar 05 01:00:14 2008 matrix includes 64 packed rows Wed Mar 05 01:00:14 2008 using block size 21845 for processor cache size 512 kB Wed Mar 05 01:00:15 2008 commencing Lanczos iteration Wed Mar 05 01:00:15 2008 memory use: 9.5 MB Wed Mar 05 01:00:45 2008 lanczos halted after 888 iterations (dim = 56056) Wed Mar 05 01:00:45 2008 recovered 18 nontrivial dependencies Wed Mar 05 01:00:46 2008 prp41 factor: 51656325972977006306990866008287770891019 Wed Mar 05 01:00:46 2008 prp49 factor: 8331166415227273953870412449749267635633640111533 Wed Mar 05 01:00:46 2008 elapsed time 01:14:39
(13·10143+23)/9 = 1(4)1427<144> = 32 · 2389 · 72881353 · 6508800369946252997<19> · 8247464312828826073<19> · C94
C94 = P36 · P59
P36 = 123511028190274527084942581597557283<36>
P59 = 13902683100663382375897508514348828772415433347065218804613<59>
Wed Mar 05 03:26:30 2008 Wed Mar 05 03:26:30 2008 Wed Mar 05 03:26:30 2008 Msieve v. 1.33 Wed Mar 05 03:26:30 2008 random seeds: 65fa8740 8a59d135 Wed Mar 05 03:26:30 2008 factoring 1717134684366488291394731960743091276564277158246508109775225266573224151784451098838052146479 (94 digits) Wed Mar 05 03:26:30 2008 searching for 15-digit factors Wed Mar 05 03:26:31 2008 commencing quadratic sieve (94-digit input) Wed Mar 05 03:26:32 2008 using multiplier of 15 Wed Mar 05 03:26:32 2008 using 64kb Opteron sieve core Wed Mar 05 03:26:32 2008 sieve interval: 18 blocks of size 65536 Wed Mar 05 03:26:32 2008 processing polynomials in batches of 6 Wed Mar 05 03:26:32 2008 using a sieve bound of 1990243 (74118 primes) Wed Mar 05 03:26:32 2008 using large prime bound of 256741347 (27 bits) Wed Mar 05 03:26:32 2008 using double large prime bound of 1371173633837307 (42-51 bits) Wed Mar 05 03:26:32 2008 using trial factoring cutoff of 51 bits Wed Mar 05 03:26:32 2008 polynomial 'A' values have 12 factors Wed Mar 05 06:35:53 2008 74238 relations (18185 full + 56053 combined from 1032668 partial), need 74214 Wed Mar 05 06:35:57 2008 begin with 1050852 relations Wed Mar 05 06:35:58 2008 reduce to 191869 relations in 11 passes Wed Mar 05 06:35:58 2008 attempting to read 191869 relations Wed Mar 05 06:36:00 2008 recovered 191869 relations Wed Mar 05 06:36:00 2008 recovered 176205 polynomials Wed Mar 05 06:36:00 2008 attempting to build 74238 cycles Wed Mar 05 06:36:01 2008 found 74238 cycles in 6 passes Wed Mar 05 06:36:01 2008 distribution of cycle lengths: Wed Mar 05 06:36:01 2008 length 1 : 18185 Wed Mar 05 06:36:01 2008 length 2 : 13189 Wed Mar 05 06:36:01 2008 length 3 : 12714 Wed Mar 05 06:36:01 2008 length 4 : 10226 Wed Mar 05 06:36:01 2008 length 5 : 7472 Wed Mar 05 06:36:01 2008 length 6 : 5043 Wed Mar 05 06:36:01 2008 length 7 : 3156 Wed Mar 05 06:36:01 2008 length 9+: 4253 Wed Mar 05 06:36:01 2008 largest cycle: 24 relations Wed Mar 05 06:36:02 2008 matrix is 74118 x 74238 (19.7 MB) with weight 4865840 (65.54/col) Wed Mar 05 06:36:02 2008 sparse part has weight 4865840 (65.54/col) Wed Mar 05 06:36:03 2008 filtering completed in 3 passes Wed Mar 05 06:36:03 2008 matrix is 70536 x 70600 (18.9 MB) with weight 4665097 (66.08/col) Wed Mar 05 06:36:03 2008 sparse part has weight 4665097 (66.08/col) Wed Mar 05 06:36:04 2008 saving the first 48 matrix rows for later Wed Mar 05 06:36:04 2008 matrix is 70488 x 70600 (12.2 MB) with weight 3707945 (52.52/col) Wed Mar 05 06:36:04 2008 sparse part has weight 2783659 (39.43/col) Wed Mar 05 06:36:04 2008 matrix includes 64 packed rows Wed Mar 05 06:36:04 2008 using block size 21845 for processor cache size 512 kB Wed Mar 05 06:36:05 2008 commencing Lanczos iteration Wed Mar 05 06:36:05 2008 memory use: 11.6 MB Wed Mar 05 06:36:57 2008 lanczos halted after 1116 iterations (dim = 70488) Wed Mar 05 06:36:57 2008 recovered 19 nontrivial dependencies Wed Mar 05 06:36:58 2008 prp36 factor: 123511028190274527084942581597557283 Wed Mar 05 06:36:58 2008 prp59 factor: 13902683100663382375897508514348828772415433347065218804613 Wed Mar 05 06:36:58 2008 elapsed time 03:10:28
(13·10129+23)/9 = 1(4)1287<130> = 17 · 71986679 · 388579423 · 131638082375417<15> · C98
C98 = P47 · P52
P47 = 13768205563065773942619038565998211282092437391<47>
P52 = 1675950144686658660252724258618579568960643440587009<52>
Wed Mar 05 03:30:18 2008 Wed Mar 05 03:30:18 2008 Wed Mar 05 03:30:18 2008 Msieve v. 1.33 Wed Mar 05 03:30:18 2008 random seeds: d10cd0c0 9dd72070 Wed Mar 05 03:30:18 2008 factoring 23074826105495742506622674792561962201588789050204835605232101724517444864855960547764664620453519 (98 digits) Wed Mar 05 03:30:19 2008 searching for 15-digit factors Wed Mar 05 03:30:20 2008 commencing quadratic sieve (98-digit input) Wed Mar 05 03:30:20 2008 using multiplier of 11 Wed Mar 05 03:30:20 2008 using 64kb Opteron sieve core Wed Mar 05 03:30:20 2008 sieve interval: 18 blocks of size 65536 Wed Mar 05 03:30:20 2008 processing polynomials in batches of 6 Wed Mar 05 03:30:20 2008 using a sieve bound of 2473349 (90330 primes) Wed Mar 05 03:30:20 2008 using large prime bound of 371002350 (28 bits) Wed Mar 05 03:30:20 2008 using double large prime bound of 2659977403806750 (43-52 bits) Wed Mar 05 03:30:20 2008 using trial factoring cutoff of 52 bits Wed Mar 05 03:30:20 2008 polynomial 'A' values have 13 factors Wed Mar 05 12:38:05 2008 90750 relations (21941 full + 68809 combined from 1363815 partial), need 90426 Wed Mar 05 12:38:08 2008 begin with 1385755 relations Wed Mar 05 12:38:09 2008 reduce to 237350 relations in 11 passes Wed Mar 05 12:38:09 2008 attempting to read 237350 relations Wed Mar 05 12:38:14 2008 recovered 237350 relations Wed Mar 05 12:38:14 2008 recovered 225131 polynomials Wed Mar 05 12:38:14 2008 attempting to build 90750 cycles Wed Mar 05 12:38:14 2008 found 90750 cycles in 6 passes Wed Mar 05 12:38:14 2008 distribution of cycle lengths: Wed Mar 05 12:38:14 2008 length 1 : 21941 Wed Mar 05 12:38:14 2008 length 2 : 15721 Wed Mar 05 12:38:14 2008 length 3 : 15481 Wed Mar 05 12:38:14 2008 length 4 : 12234 Wed Mar 05 12:38:14 2008 length 5 : 9403 Wed Mar 05 12:38:14 2008 length 6 : 6298 Wed Mar 05 12:38:14 2008 length 7 : 4060 Wed Mar 05 12:38:14 2008 length 9+: 5612 Wed Mar 05 12:38:14 2008 largest cycle: 20 relations Wed Mar 05 12:38:15 2008 matrix is 90330 x 90750 (24.6 MB) with weight 6080981 (67.01/col) Wed Mar 05 12:38:15 2008 sparse part has weight 6080981 (67.01/col) Wed Mar 05 12:38:16 2008 filtering completed in 3 passes Wed Mar 05 12:38:16 2008 matrix is 86232 x 86294 (23.4 MB) with weight 5793589 (67.14/col) Wed Mar 05 12:38:16 2008 sparse part has weight 5793589 (67.14/col) Wed Mar 05 12:38:17 2008 saving the first 48 matrix rows for later Wed Mar 05 12:38:17 2008 matrix is 86184 x 86294 (14.4 MB) with weight 4567270 (52.93/col) Wed Mar 05 12:38:17 2008 sparse part has weight 3257116 (37.74/col) Wed Mar 05 12:38:17 2008 matrix includes 64 packed rows Wed Mar 05 12:38:17 2008 using block size 21845 for processor cache size 512 kB Wed Mar 05 12:38:18 2008 commencing Lanczos iteration Wed Mar 05 12:38:18 2008 memory use: 14.0 MB Wed Mar 05 12:39:35 2008 lanczos halted after 1364 iterations (dim = 86180) Wed Mar 05 12:39:35 2008 recovered 15 nontrivial dependencies Wed Mar 05 12:39:36 2008 prp47 factor: 13768205563065773942619038565998211282092437391 Wed Mar 05 12:39:36 2008 prp52 factor: 1675950144686658660252724258618579568960643440587009 Wed Mar 05 12:39:36 2008 elapsed time 09:09:18
(13·10182+23)/9 = 1(4)1817<183> = 3 · 7 · 431 · 504877 · 302900359194380622368791<24> · 620741362332478637843569<24> · 1652669751954615254434527463<28> · C99
C99 = P45 · P54
P45 = 102018902795014993632340869013035640829170549<45>
P54 = 997106370883333600948149656195325748620925984243486157<54>
Number: n N=101723697927436979167016362493984010049479223127573581459834966967550634921943382131172246473590193 ( 99 digits) Divisors found: r1=102018902795014993632340869013035640829170549 (pp45) r2=997106370883333600948149656195325748620925984243486157 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.25 hours. Scaled time: 6.15 units (timescale=1.447). Factorization parameters were as follows: name: KA_1_4_181_7 n: 101723697927436979167016362493984010049479223127573581459834966967550634921943382131172246473590193 skew: 6786.40 # norm 6.40e+12 c5: 6720 c4: -46547316 c3: -657241524361 c2: 745994210091040 c1: 19255522875488259842 c0: 27254605737004070974296 # alpha -4.83 Y1: 3483090343 Y0: -6855053980282929445 # Murphy_E 4.58e-09 # M 75668479141657735935132313982434429942620819883454237349454038312847628844105708453299769010362350 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:135072, AFBsize:135868, largePrimes:3060466 encountered Relations: rels:2953693, finalFF:326435 Max relations in full relation-set: 28 Initial matrix: 271017 x 326435 with sparse part having weight 13200354. Pruned matrix : 198762 x 200181 with weight 5770811. Total sieving time: 3.70 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.31 hours. Total square root time: 0.13 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(7·10167-1)/3 = 2(3)167<168> = 17 · 3747630585556522367279<22> · 206478253946877556425611<24> · C122
C122 = P43 · P80
P43 = 1475524985797736524823505686019457306026851<43>
P80 = 12021265864330860490642857097445746591366152448633295697093349156568276428128971<80>
The factor table of 144...447 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / PFGW
(4·1014296+17)/3 is PRP.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(4·10159+17)/3 = 1(3)1589<160> = 13 · 5336181127<10> · 74302623841<11> · 15962304105811289<17> · C122
C122 = P34 · P88
P34 = 6712335232775758523886486797289601<34>
P88 = 2414301214334435801406014836781291748305862176834703050235565295072747708123609133613961<88>
(4·10158+17)/3 = 1(3)1579<159> = 210713 · 247727401 · 8261945423<10> · 694394829684084648059<21> · C114
C114 = P37 · P78
P37 = 2314877192735084930952330849764046313<37>
P78 = 192334239043421111920406360429117553604774190411975262010918731321162335043383<78>
(2·10184-17)/3 = (6)1831<184> = 4219 · C181
C181 = P41 · P140
P41 = 28609253572869545857217493537739138154543<41>
P140 = 55232244030516686639554241888671996746003277183153779948952860532194772336143354262308238021016571932827843863807642854182781471008243425233<140>
Number: n N=1580153274867662163229833293829501461641779252587500987595796792288852018645808643438413526112032867188117247372995180532511653630402149008453820020541992573279608121987832819783519 ( 181 digits) SNFS difficulty: 185 digits. Divisors found: Mon Mar 03 02:24:58 2008 prp41 factor: 28609253572869545857217493537739138154543 Mon Mar 03 02:24:58 2008 prp140 factor: 55232244030516686639554241888671996746003277183153779948952860532194772336143354262308238021016571932827843863807642854182781471008243425233 Mon Mar 03 02:24:58 2008 elapsed time 03:13:48 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 265.53 hours. [ CPU 1 of 3 ] Scaled time: 384.49 units (timescale=1.448). Factorization parameters were as follows: name: KA_6_183_1 n: 1580153274867662163229833293829501461641779252587500987595796792288852018645808643438413526112032867188117247372995180532511653630402149008453820020541992573279608121987832819783519 type: snfs deg: 5 c5: 1 c0: -85 skew: 2.43 m: 10000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 10943909) Primes: RFBsize:539777, AFBsize:540420, largePrimes:4532205 encountered Relations: rels:4098423, finalFF:397632 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 265.37 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8000000,8000000,27,27,48,48,2.5,2.5,100000 total time: 265.53 hours. --------- CPU info (if available) ----------
10183+3 = 1(0)1823<184> = 151 · C181
C181 = P85 · P97
P85 = 6020764512776596637935748594527916970455883912337190641386916348913598221840340985957<85>
P97 = 1099946118510003646349468098078650177107070925385139448756306534652901227896353302429603211134929<97>
Number: n N=6622516556291390728476821192052980132450331125827814569536423841059602649006622516556291390728476821192052980132450331125827814569536423841059602649006622516556291390728476821192053 ( 181 digits) SNFS difficulty: 183 digits. Divisors found: Mon Mar 03 02:33:02 2008 prp85 factor: 6020764512776596637935748594527916970455883912337190641386916348913598221840340985957 Mon Mar 03 02:33:02 2008 prp97 factor: 1099946118510003646349468098078650177107070925385139448756306534652901227896353302429603211134929 Mon Mar 03 02:33:02 2008 elapsed time 01:55:13 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 267.26 hours. [ CPU 1 of 4 ] Scaled time: 225.03 units (timescale=0.842). Factorization parameters were as follows: name: KA_1_0_182_3 n: 6622516556291390728476821192052980132450331125827814569536423841059602649006622516556291390728476821192052980132450331125827814569536423841059602649006622516556291390728476821192053 type: snfs deg: 5 c5: 1000 c0: 3 skew: 0.31 m: 1000000000000000000000000000000000000 rlim: 8000000 alim: 8000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 18522211) Primes: RFBsize:539777, AFBsize:539335, largePrimes:5050824 encountered Relations: rels:4702361, finalFF:450163 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 267.12 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,8000000,8000000,27,27,48,48,2.5,2.5,100000 total time: 267.26 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By Sinkiti Sibata / PRIMO
(4·102668+17)/3 is prime.
By matsui / GGNFS
3·10180+1 = 3(0)1791<181> = 661 · C178
C178 = P54 · P55 · P70
P54 = 430259544631759600727768857693217721153099730144795861<54>
P55 = 1538326517326993101925943385140082111132168130040478949<55>
P70 = 6857104304052897516728603587977821413916030196167551914714888140645269<70>
N=4538577912254160363086232980332829046898638426626323751891074130105900151285930408472012102874432677760968229954614220877458396369137670196671709531013615733736762481089258698941 ( 178 digits) SNFS difficulty: 180 digits. Divisors found: r1=430259544631759600727768857693217721153099730144795861 (pp54) r2=1538326517326993101925943385140082111132168130040478949 (pp55) r3=6857104304052897516728603587977821413916030196167551914714888140645269 (pp70) Version: GGNFS-0.77.1-20060513-prescott Total time: 355.58 hours. Scaled time: 400.03 units (timescale=1.125). Factorization parameters were as follows: n: 4538577912254160363086232980332829046898638426626323751891074130105900151285930408472012102874432677760968229954614220877458396369137670196671709531013615733736762481089258698941 m: 1000000000000000000000000000000000000 c5: 3 c0: 1 skew: 0.80 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8000001) Primes: RFBsize:501962, AFBsize:501561, largePrimes:6416877 encountered Relations: rels:6927553, finalFF:1185317 Max relations in full relation-set: 28 Initial matrix: 1003588 x 1185317 with sparse part having weight 59042752. Pruned matrix : 844680 x 849761 with weight 42505130. Total sieving time: 338.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 16.32 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 355.58 hours.
By Sinkiti Sibata / PRIMO
(4·102668+17)/3 is prime.
By matsui / GGNFS
3·10180+1 = 3(0)1791<181> = 661 · C178
C178 = P54 · P55 · P70
P54 = 430259544631759600727768857693217721153099730144795861<54>
P55 = 1538326517326993101925943385140082111132168130040478949<55>
P70 = 6857104304052897516728603587977821413916030196167551914714888140645269<70>
N=4538577912254160363086232980332829046898638426626323751891074130105900151285930408472012102874432677760968229954614220877458396369137670196671709531013615733736762481089258698941 ( 178 digits) SNFS difficulty: 180 digits. Divisors found: r1=430259544631759600727768857693217721153099730144795861 (pp54) r2=1538326517326993101925943385140082111132168130040478949 (pp55) r3=6857104304052897516728603587977821413916030196167551914714888140645269 (pp70) Version: GGNFS-0.77.1-20060513-prescott Total time: 355.58 hours. Scaled time: 400.03 units (timescale=1.125). Factorization parameters were as follows: n: 4538577912254160363086232980332829046898638426626323751891074130105900151285930408472012102874432677760968229954614220877458396369137670196671709531013615733736762481089258698941 m: 1000000000000000000000000000000000000 c5: 3 c0: 1 skew: 0.80 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8000001) Primes: RFBsize:501962, AFBsize:501561, largePrimes:6416877 encountered Relations: rels:6927553, finalFF:1185317 Max relations in full relation-set: 28 Initial matrix: 1003588 x 1185317 with sparse part having weight 59042752. Pruned matrix : 844680 x 849761 with weight 42505130. Total sieving time: 338.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 16.32 hours. Time per square root: 0.38 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 355.58 hours.
By Kenji Ibusuki / GGNFS
4·10165+1 = 4(0)1641<166> = 23743 · 80900761 · 513790423 · 61142992571<11> · C134
C134 = P64 · P70
P64 = 7779120398579544883895822513251508700047607501669183213883240931<64>
P70 = 8521353913589854424771282379603548481995888227244581651836279018886769<70>
Number: 40001_165 N=66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939 ( 134 digits) SNFS difficulty: 165 digits. Divisors found: r1=7779120398579544883895822513251508700047607501669183213883240931 (pp64) r2=8521353913589854424771282379603548481995888227244581651836279018886769 (pp70) Version: GGNFS-0.77.1 Total time: 51.86 hours. Scaled time: 150.19 units (timescale=2.896). Factorization parameters were as follows: n: 66288638052722473026075484215560691185478806573826992792051302562378578914894418060101191373980449366238323280750797702826113435141939 m: 1000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 5000001) Relations: rels:6616882, finalFF:1050519 Initial matrix: 696753 x 1050519 with sparse part having weight 62728387. Pruned matrix : 562745 x 566292 with weight 26430629. Total sieving time: 50.22 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.47 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 51.86 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(4·102510+17)/3 is prime.
By Hugo Platzer / GGNFS, Msieve
(4·10115+17)/3 = 1(3)1149<116> = 44273161259577833937371461<26> · C90
C90 = P39 · P51
P39 = 319366236020566864959345447725369918009<39>
P51 = 942994595128733071671702794426078062922265699564311<51>
Number: pal/pal N=301160634434001859043915236810290858557068276203651269507515584105353054975494297092576799 ( 90 digits) SNFS difficulty: 115 digits. Divisors found: r1=319366236020566864959345447725369918009 (pp39) r2=942994595128733071671702794426078062922265699564311 (pp51) Version: GGNFS-0.77.0 Total time: 1.74 hours. Scaled time: 2.06 units (timescale=1.188). Factorization parameters were as follows: n: 301160634434001859043915236810290858557068276203651269507515584105353054975494297092576799 m: 100000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 410001) Relations: rels:1114412, finalFF:123645 Initial matrix: 79657 x 123645 with sparse part having weight 5708692. Pruned matrix : 71040 x 71502 with weight 1969930. Total sieving time: 1.65 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.74 hours. --------- CPU info (if available) ----------
(4·10102+17)/3 = 1(3)1019<103> = 7 · 90997 · C97
C97 = P36 · P61
P36 = 908549692702934028385232905262450753<36>
P61 = 2303906956496829188740684010099011404683762570088688116424697<61>
Number: pal/pal N=2093213957341346156362036006419887207165908661562364431689794064377841865011771711992598395446841 ( 97 digits) SNFS difficulty: 102 digits. Divisors found: r1=908549692702934028385232905262450753 (pp36) r2=2303906956496829188740684010099011404683762570088688116424697 (pp61) Version: GGNFS-0.77.0 Total time: 1.06 hours. Scaled time: 1.30 units (timescale=1.226). Factorization parameters were as follows: n: 2093213957341346156362036006419887207165908661562364431689794064377841865011771711992598395446841 m: 200000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 300000/350000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [175000, 255001) Relations: rels:834056, finalFF:65949 Initial matrix: 55703 x 65949 with sparse part having weight 1722162. Pruned matrix : 48155 x 48497 with weight 1039638. Total sieving time: 1.01 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,300000,350000,25,25,43,43,2.1,2.1,10000 total time: 1.06 hours. --------- CPU info (if available) ----------
(4·10105+17)/3 = 1(3)1049<106> = 13 · 61 · 103 · 109 · 269 · 761 · 821 · 24439 · C86
C86 = P37 · P50
P37 = 1130021764079074147902253763132106677<37>
P50 = 32266472809078491624666219453514850051247682267147<50>
Mon Feb 25 19:02:32 2008 Mon Feb 25 19:02:32 2008 Mon Feb 25 19:02:32 2008 Msieve v. 1.33 Mon Feb 25 19:02:32 2008 random seeds: 489d45ae e59eb9a7 Mon Feb 25 19:02:32 2008 factoring 36461816524324356163353669314329958450145184317692851469585242129594363032425616440519 (86 digits) Mon Feb 25 19:02:33 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 19:02:33 2008 commencing quadratic sieve (86-digit input) Mon Feb 25 19:02:33 2008 using multiplier of 5 Mon Feb 25 19:02:33 2008 using 64kb Pentium 4 sieve core Mon Feb 25 19:02:33 2008 sieve interval: 8 blocks of size 65536 Mon Feb 25 19:02:33 2008 processing polynomials in batches of 13 Mon Feb 25 19:02:33 2008 using a sieve bound of 1461401 (55581 primes) Mon Feb 25 19:02:33 2008 using large prime bound of 116912080 (26 bits) Mon Feb 25 19:02:33 2008 using double large prime bound of 332771997435520 (41-49 bits) Mon Feb 25 19:02:33 2008 using trial factoring cutoff of 49 bits Mon Feb 25 19:02:33 2008 polynomial 'A' values have 11 factors Mon Feb 25 19:55:41 2008 28010 relations (11626 full + 16384 combined from 433728 partial), need 55677 Mon Feb 25 19:55:41 2008 elapsed time 00:53:09 Tue Feb 26 14:33:17 2008 Tue Feb 26 14:33:17 2008 Tue Feb 26 14:33:17 2008 Msieve v. 1.33 Tue Feb 26 14:33:17 2008 random seeds: 1bd18fdc 512ff2e1 Tue Feb 26 14:33:17 2008 factoring 36461816524324356163353669314329958450145184317692851469585242129594363032425616440519 (86 digits) Tue Feb 26 14:33:18 2008 no P-1/P+1/ECM available, skipping Tue Feb 26 14:33:18 2008 commencing quadratic sieve (86-digit input) Tue Feb 26 14:33:19 2008 using multiplier of 5 Tue Feb 26 14:33:19 2008 using 64kb Pentium 4 sieve core Tue Feb 26 14:33:19 2008 sieve interval: 8 blocks of size 65536 Tue Feb 26 14:33:19 2008 processing polynomials in batches of 13 Tue Feb 26 14:33:19 2008 using a sieve bound of 1461401 (55581 primes) Tue Feb 26 14:33:19 2008 using large prime bound of 116912080 (26 bits) Tue Feb 26 14:33:19 2008 using double large prime bound of 332771997435520 (41-49 bits) Tue Feb 26 14:33:19 2008 using trial factoring cutoff of 49 bits Tue Feb 26 14:33:19 2008 polynomial 'A' values have 11 factors Tue Feb 26 14:33:19 2008 restarting with 11626 full and 433728 partial relations Tue Feb 26 14:52:43 2008 55935 relations (15723 full + 40212 combined from 587434 partial), need 55677 Tue Feb 26 14:52:43 2008 begin with 603157 relations Tue Feb 26 14:52:44 2008 reduce to 133993 relations in 11 passes Tue Feb 26 14:52:44 2008 attempting to read 133993 relations Tue Feb 26 14:52:47 2008 recovered 133993 relations Tue Feb 26 14:52:47 2008 recovered 114567 polynomials Tue Feb 26 14:52:47 2008 attempting to build 55935 cycles Tue Feb 26 14:52:47 2008 found 55935 cycles in 5 passes Tue Feb 26 14:52:47 2008 distribution of cycle lengths: Tue Feb 26 14:52:47 2008 length 1 : 15723 Tue Feb 26 14:52:47 2008 length 2 : 10989 Tue Feb 26 14:52:47 2008 length 3 : 9938 Tue Feb 26 14:52:47 2008 length 4 : 7222 Tue Feb 26 14:52:47 2008 length 5 : 4960 Tue Feb 26 14:52:47 2008 length 6 : 3120 Tue Feb 26 14:52:47 2008 length 7 : 1800 Tue Feb 26 14:52:47 2008 length 9+: 2183 Tue Feb 26 14:52:47 2008 largest cycle: 18 relations Tue Feb 26 14:52:47 2008 matrix is 55581 x 55935 (12.6 MB) with weight 3078328 (55.03/col) Tue Feb 26 14:52:47 2008 sparse part has weight 3078328 (55.03/col) Tue Feb 26 14:52:48 2008 filtering completed in 4 passes Tue Feb 26 14:52:48 2008 matrix is 51012 x 51076 (11.6 MB) with weight 2828283 (55.37/col) Tue Feb 26 14:52:48 2008 sparse part has weight 2828283 (55.37/col) Tue Feb 26 14:52:48 2008 saving the first 48 matrix rows for later Tue Feb 26 14:52:49 2008 matrix is 50964 x 51076 (6.8 MB) with weight 2143902 (41.97/col) Tue Feb 26 14:52:49 2008 sparse part has weight 1474804 (28.87/col) Tue Feb 26 14:52:49 2008 matrix includes 64 packed rows Tue Feb 26 14:52:49 2008 using block size 20430 for processor cache size 2048 kB Tue Feb 26 14:52:49 2008 commencing Lanczos iteration Tue Feb 26 14:52:49 2008 memory use: 7.0 MB Tue Feb 26 14:53:11 2008 lanczos halted after 807 iterations (dim = 50964) Tue Feb 26 14:53:11 2008 recovered 19 nontrivial dependencies Tue Feb 26 14:53:12 2008 prp37 factor: 1130021764079074147902253763132106677 Tue Feb 26 14:53:12 2008 prp50 factor: 32266472809078491624666219453514850051247682267147 Tue Feb 26 14:53:12 2008 elapsed time 00:19:55
(4·10103+17)/3 = 1(3)1029<104> = 71 · 272825425082537387<18> · C84
C84 = P34 · P51
P34 = 5999573294919686788638217605693019<34>
P51 = 114729521955095979857325671845756990670861614334053<51>
Mon Feb 25 16:51:57 2008 Mon Feb 25 16:51:57 2008 Mon Feb 25 16:51:57 2008 Msieve v. 1.33 Mon Feb 25 16:51:57 2008 random seeds: 865e6202 3cef8fa7 Mon Feb 25 16:51:57 2008 factoring 688328176060695733567653133817593886237944056362101592634801269296206820707236076007 (84 digits) Mon Feb 25 16:51:58 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 16:51:58 2008 commencing quadratic sieve (84-digit input) Mon Feb 25 16:51:58 2008 using multiplier of 7 Mon Feb 25 16:51:58 2008 using 64kb Pentium 4 sieve core Mon Feb 25 16:51:58 2008 sieve interval: 6 blocks of size 65536 Mon Feb 25 16:51:58 2008 processing polynomials in batches of 17 Mon Feb 25 16:51:58 2008 using a sieve bound of 1408987 (53824 primes) Mon Feb 25 16:51:58 2008 using large prime bound of 119763895 (26 bits) Mon Feb 25 16:51:58 2008 using double large prime bound of 347525361371830 (41-49 bits) Mon Feb 25 16:51:58 2008 using trial factoring cutoff of 49 bits Mon Feb 25 16:51:58 2008 polynomial 'A' values have 11 factors Mon Feb 25 17:34:06 2008 54044 relations (16264 full + 37780 combined from 570002 partial), need 53920 Mon Feb 25 17:34:07 2008 begin with 586266 relations Mon Feb 25 17:34:07 2008 reduce to 124740 relations in 10 passes Mon Feb 25 17:34:07 2008 attempting to read 124740 relations Mon Feb 25 17:34:09 2008 recovered 124740 relations Mon Feb 25 17:34:09 2008 recovered 97661 polynomials Mon Feb 25 17:34:10 2008 attempting to build 54044 cycles Mon Feb 25 17:34:10 2008 found 54044 cycles in 5 passes Mon Feb 25 17:34:10 2008 distribution of cycle lengths: Mon Feb 25 17:34:10 2008 length 1 : 16264 Mon Feb 25 17:34:10 2008 length 2 : 11387 Mon Feb 25 17:34:10 2008 length 3 : 9603 Mon Feb 25 17:34:10 2008 length 4 : 6775 Mon Feb 25 17:34:10 2008 length 5 : 4392 Mon Feb 25 17:34:10 2008 length 6 : 2597 Mon Feb 25 17:34:10 2008 length 7 : 1454 Mon Feb 25 17:34:10 2008 length 9+: 1572 Mon Feb 25 17:34:10 2008 largest cycle: 16 relations Mon Feb 25 17:34:10 2008 matrix is 53824 x 54044 (11.5 MB) with weight 2806436 (51.93/col) Mon Feb 25 17:34:10 2008 sparse part has weight 2806436 (51.93/col) Mon Feb 25 17:34:10 2008 filtering completed in 3 passes Mon Feb 25 17:34:10 2008 matrix is 48513 x 48577 (10.4 MB) with weight 2532665 (52.14/col) Mon Feb 25 17:34:10 2008 sparse part has weight 2532665 (52.14/col) Mon Feb 25 17:34:11 2008 saving the first 48 matrix rows for later Mon Feb 25 17:34:11 2008 matrix is 48465 x 48577 (6.2 MB) with weight 1903865 (39.19/col) Mon Feb 25 17:34:11 2008 sparse part has weight 1328744 (27.35/col) Mon Feb 25 17:34:11 2008 matrix includes 64 packed rows Mon Feb 25 17:34:11 2008 commencing Lanczos iteration Mon Feb 25 17:34:11 2008 memory use: 8.0 MB Mon Feb 25 17:35:38 2008 lanczos halted after 768 iterations (dim = 48457) Mon Feb 25 17:35:38 2008 recovered 13 nontrivial dependencies Mon Feb 25 17:35:39 2008 prp34 factor: 5999573294919686788638217605693019 Mon Feb 25 17:35:39 2008 prp51 factor: 114729521955095979857325671845756990670861614334053 Mon Feb 25 17:35:39 2008 elapsed time 00:43:42
By Jo Yeong Uk / GMP-ECM, Msieve
(4·10148+17)/3 = 1(3)1479<149> = 457 · 12401 · 545549 · C136
C136 = P33 · P103
P33 = 532912808365383321830732841180011<33>
P103 = 8092373263092864819628133138996361186520651603049089855317300239501384692261426760504261399767313194493<103>
(4·10154+17)/3 = 1(3)1539<155> = 28097 · C150
C150 = P36 · P115
P36 = 415104467682959200738565774465754443<36>
P115 = 1143197793410399407185698538514618525118222228412394584420498452315299754453223670868380083914065328519933881066609<115>
(4·10157+17)/3 = 1(3)1569<158> = 3989 · 13487875393271<14> · 2257449223315382094947915963<28> · C114
C114 = P29 · P37 · P48
P29 = 47215344192327994418258987129<29>
P37 = 7609598281654676371263513938560727761<37>
P48 = 305540140613631168561515299376375435879608838323<48>
Wed Feb 27 19:01:59 2008 Wed Feb 27 19:01:59 2008 Wed Feb 27 19:01:59 2008 Msieve v. 1.32 Wed Feb 27 19:01:59 2008 random seeds: df8c8585 3390fcdc Wed Feb 27 19:01:59 2008 factoring 2325037728990015935986003917297505539985894435563542929797489279175271175442666784803 (85 digits) Wed Feb 27 19:02:00 2008 no P-1/P+1/ECM available, skipping Wed Feb 27 19:02:00 2008 commencing quadratic sieve (85-digit input) Wed Feb 27 19:02:00 2008 using multiplier of 3 Wed Feb 27 19:02:00 2008 using 32kb Intel Core sieve core Wed Feb 27 19:02:00 2008 sieve interval: 12 blocks of size 32768 Wed Feb 27 19:02:00 2008 processing polynomials in batches of 17 Wed Feb 27 19:02:00 2008 using a sieve bound of 1424231 (54412 primes) Wed Feb 27 19:02:00 2008 using large prime bound of 116786942 (26 bits) Wed Feb 27 19:02:00 2008 using double large prime bound of 332131201862394 (41-49 bits) Wed Feb 27 19:02:00 2008 using trial factoring cutoff of 49 bits Wed Feb 27 19:02:00 2008 polynomial 'A' values have 11 factors Wed Feb 27 19:33:30 2008 54805 relations (15971 full + 38834 combined from 576753 partial), need 54508 Wed Feb 27 19:33:31 2008 begin with 592724 relations Wed Feb 27 19:33:31 2008 reduce to 130102 relations in 10 passes Wed Feb 27 19:33:31 2008 attempting to read 130102 relations Wed Feb 27 19:33:32 2008 recovered 130102 relations Wed Feb 27 19:33:32 2008 recovered 110815 polynomials Wed Feb 27 19:33:32 2008 attempting to build 54805 cycles Wed Feb 27 19:33:32 2008 found 54805 cycles in 5 passes Wed Feb 27 19:33:32 2008 distribution of cycle lengths: Wed Feb 27 19:33:32 2008 length 1 : 15971 Wed Feb 27 19:33:32 2008 length 2 : 10733 Wed Feb 27 19:33:32 2008 length 3 : 9599 Wed Feb 27 19:33:32 2008 length 4 : 7051 Wed Feb 27 19:33:32 2008 length 5 : 4787 Wed Feb 27 19:33:32 2008 length 6 : 2900 Wed Feb 27 19:33:32 2008 length 7 : 1741 Wed Feb 27 19:33:32 2008 length 9+: 2023 Wed Feb 27 19:33:32 2008 largest cycle: 16 relations Wed Feb 27 19:33:32 2008 matrix is 54412 x 54805 with weight 2920282 (avg 53.28/col) Wed Feb 27 19:33:33 2008 filtering completed in 3 passes Wed Feb 27 19:33:33 2008 matrix is 49677 x 49741 with weight 2662605 (avg 53.53/col) Wed Feb 27 19:33:33 2008 saving the first 48 matrix rows for later Wed Feb 27 19:33:33 2008 matrix is 49629 x 49741 with weight 2029250 (avg 40.80/col) Wed Feb 27 19:33:33 2008 matrix includes 64 packed rows Wed Feb 27 19:33:33 2008 commencing Lanczos iteration Wed Feb 27 19:34:24 2008 lanczos halted after 786 iterations (dim = 49629) Wed Feb 27 19:34:24 2008 recovered 18 nontrivial dependencies Wed Feb 27 19:34:25 2008 prp37 factor: 7609598281654676371263513938560727761 Wed Feb 27 19:34:25 2008 prp48 factor: 305540140613631168561515299376375435879608838323 Wed Feb 27 19:34:25 2008 elapsed time 00:32:26
By Sinkiti Sibata / GGNFS
(4·10137+17)/3 = 1(3)1369<138> = 6552669181<10> · C128
C128 = P31 · P98
P31 = 1714801068361452362148879871541<31>
P98 = 11866065698073971314555419688519586074878423197647649070453154014930648060685107891975630143616059<98>
Number: 13339_137 N=20347942136304429029183631746254234306862886526261416848618003401892376616431131460981554065323923352408492867165444245144676919 ( 128 digits) SNFS difficulty: 137 digits. Divisors found: r1=1714801068361452362148879871541 (pp31) r2=11866065698073971314555419688519586074878423197647649070453154014930648060685107891975630143616059 (pp98) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.83 hours. Scaled time: 21.50 units (timescale=1.986). Factorization parameters were as follows: name: 13339_137 n: 20347942136304429029183631746254234306862886526261416848618003401892376616431131460981554065323923352408492867165444245144676919 m: 2000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1825001) Primes: RFBsize:78498, AFBsize:63478, largePrimes:1643983 encountered Relations: rels:1666339, finalFF:176380 Max relations in full relation-set: 28 Initial matrix: 142040 x 176380 with sparse part having weight 18465089. Pruned matrix : 133405 x 134179 with weight 12556937. Total sieving time: 10.51 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.83 hours. --------- CPU info (if available) ----------
(4·10140+17)/3 = 1(3)1399<141> = 139 · 149 · 419 · 2656035623<10> · C124
C124 = P38 · P87
P38 = 26537771762988932797230520985691326549<38>
P87 = 217984339902061538043658310872268089617507279115184973919874854501815077478362601957973<87>
Number: 13339_140 N=5784818660226710392893078633225827009749351932038762240593991255227477040501870714437762806715702310280279904345671117125177 ( 124 digits) SNFS difficulty: 140 digits. Divisors found: r1=26537771762988932797230520985691326549 (pp38) r2=217984339902061538043658310872268089617507279115184973919874854501815077478362601957973 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.46 hours. Scaled time: 18.92 units (timescale=2.001). Factorization parameters were as follows: name: 13339_140 n: 5784818660226710392893078633225827009749351932038762240593991255227477040501870714437762806715702310280279904345671117125177 m: 10000000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:100163, largePrimes:2673595 encountered Relations: rels:2647843, finalFF:269918 Max relations in full relation-set: 28 Initial matrix: 200248 x 269918 with sparse part having weight 22264975. Pruned matrix : 177577 x 178642 with weight 12371339. Total sieving time: 9.05 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 9.46 hours. --------- CPU info (if available) ----------
(4·10142+17)/3 = 1(3)1419<143> = 1459 · 356837938640928229<18> · C122
C122 = P40 · P82
P40 = 4952433461126705550942268828114546821893<40>
P82 = 5171229039310035816298410533513362321815097567656651449551330364234046974538947393<82>
Number: 13339_142 N=25610167729429129154219135122692807752943626214310846468823181205165725036518490526562875573240011146514873716817667674949 ( 122 digits) SNFS difficulty: 142 digits. Divisors found: r1=4952433461126705550942268828114546821893 (pp40) r2=5171229039310035816298410533513362321815097567656651449551330364234046974538947393 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 17.78 hours. Scaled time: 12.00 units (timescale=0.675). Factorization parameters were as follows: name: 13339_142 n: 25610167729429129154219135122692807752943626214310846468823181205165725036518490526562875573240011146514873716817667674949 m: 20000000000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:99703, largePrimes:2800788 encountered Relations: rels:2789786, finalFF:244586 Max relations in full relation-set: 28 Initial matrix: 199788 x 244586 with sparse part having weight 26053579. Pruned matrix : 187306 x 188368 with weight 18253445. Total sieving time: 16.40 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.13 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.78 hours. --------- CPU info (if available) ----------
(4·10143+17)/3 = 1(3)1429<144> = 47 · 107 · 1019 · 3559 · C133
C133 = P53 · P81
P53 = 21530592730890687406724972323507960444311519390746899<53>
P81 = 339546253576180671194251388956900458789709973584370940213518247026860941408782729<81>
Number: 13339_143 N=7310632099048481632442417594674736817587577048810320179589357685324612306601759726202069186552803790311886326790976822657893721507371 ( 133 digits) SNFS difficulty: 143 digits. Divisors found: r1=21530592730890687406724972323507960444311519390746899 (pp53) r2=339546253576180671194251388956900458789709973584370940213518247026860941408782729 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.08 hours. Scaled time: 28.10 units (timescale=1.995). Factorization parameters were as follows: name: 13339_143 n: 7310632099048481632442417594674736817587577048810320179589357685324612306601759726202069186552803790311886326790976822657893721507371 m: 20000000000000000000000000000 c5: 125 c0: 17 skew: 0.67 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2150001) Primes: RFBsize:100021, AFBsize:100153, largePrimes:2776914 encountered Relations: rels:2762452, finalFF:254297 Max relations in full relation-set: 28 Initial matrix: 200239 x 254297 with sparse part having weight 25949347. Pruned matrix : 184883 x 185948 with weight 17064295. Total sieving time: 13.53 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.35 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.08 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(4·10150+11)/3 = 1(3)1497<151> = 67 · 97 · 181 · 51437 · 67069940098328863<17> · C128
C123 = P45 · P78
P45 = 842567218953103748778820051250784569042311499<45>
P78 = 389946940241801961370181471323403096587030785968251538514409936744648047951767<78>
Number: 13337_150 N=328556508978807216467909242087984532386542899298545695789839803490270877924857370271680502884986361766553459019686141468733 ( 123 digits) SNFS difficulty: 150 digits. Divisors found: r1=842567218953103748778820051250784569042311499 (pp45) r2=389946940241801961370181471323403096587030785968251538514409936744648047951767 (pp78) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 23.88 hours. Scaled time: 16.09 units (timescale=0.674). Factorization parameters were as follows: name: 13337_150 n: 328556508978807216467909242087984532386542899298545695789839803490270877924857370271680502884986361766553459019686141468733 m: 1000000000000000000000000000000 c5: 4 c0: 11 skew: 1.22 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1800001) Primes: RFBsize:176302, AFBsize:175914, largePrimes:5199684 encountered Relations: rels:5061012, finalFF:454047 Max relations in full relation-set: 28 Initial matrix: 352280 x 454047 with sparse part having weight 34543199. Pruned matrix : 283186 x 285011 with weight 20367249. Total sieving time: 20.94 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.64 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 23.88 hours. --------- CPU info (if available) ----------
(4·10128+17)/3 = 1(3)1279<129> = 30905143 · C121
C121 = P40 · P82
P40 = 2264647650843887046315670559789081872837<40>
P82 = 1905054208279908717959032447092198327666493476216888547860932106950160593631866329<82>
Number: 13339_128 N=4314276537511356389237006065085456272871260726194773903273423887193575947321561765086585534754954323729656689610960005373 ( 121 digits) SNFS difficulty: 128 digits. Divisors found: r1=2264647650843887046315670559789081872837 (pp40) r2=1905054208279908717959032447092198327666493476216888547860932106950160593631866329 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.50 hours. Scaled time: 8.93 units (timescale=1.986). Factorization parameters were as follows: name:13339_128 n: 4314276537511356389237006065085456272871260726194773903273423887193575947321561765086585534754954323729656689610960005373 m: 20000000000000000000000000 c5: 125 c0: 17 skew: 0.67 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64073, largePrimes:1650177 encountered Relations: rels:1772225, finalFF:282784 Max relations in full relation-set: 28 Initial matrix: 128089 x 282784 with sparse part having weight 20216596. Pruned matrix : 93487 x 94191 with weight 6406529. Total sieving time: 4.36 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.50 hours. --------- CPU info (if available) ----------
(4·10121+17)/3 = 1(3)1209<122> = 38737 · 198811 · C112
C112 = P49 · P64
P49 = 1066128263744179842966023845014133805371522028417<49>
P64 = 1623913477852878066050128577369053541152591491514652526106580081<64>
Number: 13339_121 N=1731300056614061539047787291401292101287271622335940759125354484590113946145583400138478407257787884223968161777 ( 112 digits) SNFS difficulty: 121 digits. Divisors found: r1=1066128263744179842966023845014133805371522028417 (pp49) r2=1623913477852878066050128577369053541152591491514652526106580081 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.64 hours. Scaled time: 1.78 units (timescale=0.675). Factorization parameters were as follows: name: 13339_121 n: 1731300056614061539047787291401292101287271622335940759125354484590113946145583400138478407257787884223968161777 m: 1000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:64053, largePrimes:2177636 encountered Relations: rels:2321030, finalFF:268528 Max relations in full relation-set: 28 Initial matrix: 113217 x 268528 with sparse part having weight 24912659. Pruned matrix : 83980 x 84610 with weight 5656348. Total sieving time: 2.40 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.64 hours. --------- CPU info (if available) ----------
(4·10135+17)/3 = 1(3)1349<136> = 13 · 179 · 4441 · 449193700977237001<18> · C111
C111 = P55 · P56
P55 = 4380977512855558196767027709308224937234411105284163883<55>
P56 = 65562710303983445700242735959728821688792651648307630519<56>
Number: 13339_135 N=287228759523614873835871623098592515574414650930219728909431025522262906433847741731199852827139960161808345277 ( 111 digits) SNFS difficulty: 135 digits. Divisors found: r1=4380977512855558196767027709308224937234411105284163883 (pp55) r2=65562710303983445700242735959728821688792651648307630519 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.81 hours. Scaled time: 11.63 units (timescale=2.001). Factorization parameters were as follows: name: 13339_135 n: 287228759523614873835871623098592515574414650930219728909431025522262906433847741731199852827139960161808345277 m: 1000000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64243, largePrimes:1496217 encountered Relations: rels:1480212, finalFF:161368 Max relations in full relation-set: 28 Initial matrix: 142805 x 161368 with sparse part having weight 12113242. Pruned matrix : 136801 x 137579 with weight 8839142. Total sieving time: 5.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.81 hours. --------- CPU info (if available) ----------
(4·10126+17)/3 = 1(3)1259<127> = 7 · 1451 · 484973620564064677<18> · C105
C105 = P45 · P61
P45 = 236131606868916230324368736021180849580845243<45>
P61 = 1146307265998928188707147607605206865081607528799744013788257<61>
Number: 13339_126 N=270679376685841095843311932998986459968041182656991480680590979940930784945538563824171799516828487711451 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=236131606868916230324368736021180849580845243 (pp45) r2=1146307265998928188707147607605206865081607528799744013788257 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.58 hours. Scaled time: 2.42 units (timescale=0.675). Factorization parameters were as follows: name: 13339_126 n: 270679376685841095843311932998986459968041182656991480680590979940930784945538563824171799516828487711451 m: 10000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 700001) Primes: RFBsize:49098, AFBsize:64053, largePrimes:2202658 encountered Relations: rels:2318750, finalFF:227942 Max relations in full relation-set: 28 Initial matrix: 113217 x 227942 with sparse part having weight 22222821. Pruned matrix : 92940 x 93570 with weight 6724861. Total sieving time: 3.29 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.58 hours. --------- CPU info (if available) ----------
(4·10136+17)/3 = 1(3)1359<137> = 499 · 7487 · C130
C130 = P30 · P100
P30 = 956208466723298533771784872423<30>
P100 = 3732310555325491082117959675188859828864096907351170143183605318022765214999058108875422540141456161<100>
Number: 13339_136 N=3568866953442970710576578115047601101316653162966331576826240522539223855305999559780261292809562850379089508878404152590832348103 ( 130 digits) SNFS difficulty: 136 digits. Divisors found: r1=956208466723298533771784872423 (pp30) r2=3732310555325491082117959675188859828864096907351170143183605318022765214999058108875422540141456161 (pp100) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.93 hours. Scaled time: 15.76 units (timescale=1.988). Factorization parameters were as follows: name: 13339_136 n: 3568866953442970710576578115047601101316653162966331576826240522539223855305999559780261292809562850379089508878404152590832348103 m: 1000000000000000000000000000 c5: 40 c0: 17 skew: 0.84 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:64053, largePrimes:1600737 encountered Relations: rels:1625919, finalFF:194313 Max relations in full relation-set: 28 Initial matrix: 142617 x 194313 with sparse part having weight 17340077. Pruned matrix : 127910 x 128687 with weight 9762916. Total sieving time: 7.66 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.93 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve, GGNFS, GMP-ECM
(4·10129+17)/3 = 1(3)1289<130> = 13 · 13254286387148048113<20> · 660386597469019359051247846799<30> · C80
C80 = P33 · P47
P33 = 365060056289000062010732444238977<33>
P47 = 32097888713326155328978718452411150896824316697<47>
Mon Feb 25 23:07:08 2008 Mon Feb 25 23:07:08 2008 Mon Feb 25 23:07:08 2008 Msieve v. 1.32 Mon Feb 25 23:07:08 2008 random seeds: ed514adf 848fe788 Mon Feb 25 23:07:08 2008 factoring 11717657060444906039226517298146590277694612229277754702118211578659202199298969 (80 digits) Mon Feb 25 23:07:09 2008 no P-1/P+1/ECM available, skipping Mon Feb 25 23:07:09 2008 commencing quadratic sieve (79-digit input) Mon Feb 25 23:07:09 2008 using multiplier of 1 Mon Feb 25 23:07:09 2008 using 32kb Intel Core sieve core Mon Feb 25 23:07:09 2008 sieve interval: 12 blocks of size 32768 Mon Feb 25 23:07:09 2008 processing polynomials in batches of 17 Mon Feb 25 23:07:09 2008 using a sieve bound of 1182691 (45941 primes) Mon Feb 25 23:07:09 2008 using large prime bound of 118269100 (26 bits) Mon Feb 25 23:07:09 2008 using trial factoring cutoff of 27 bits Mon Feb 25 23:07:09 2008 polynomial 'A' values have 10 factors Mon Feb 25 23:17:56 2008 46269 relations (23525 full + 22744 combined from 251467 partial), need 46037 Mon Feb 25 23:17:56 2008 begin with 274992 relations Mon Feb 25 23:17:56 2008 reduce to 66226 relations in 2 passes Mon Feb 25 23:17:56 2008 attempting to read 66226 relations Mon Feb 25 23:17:57 2008 recovered 66226 relations Mon Feb 25 23:17:57 2008 recovered 55745 polynomials Mon Feb 25 23:17:57 2008 attempting to build 46269 cycles Mon Feb 25 23:17:57 2008 found 46269 cycles in 1 passes Mon Feb 25 23:17:57 2008 distribution of cycle lengths: Mon Feb 25 23:17:57 2008 length 1 : 23525 Mon Feb 25 23:17:57 2008 length 2 : 22744 Mon Feb 25 23:17:57 2008 largest cycle: 2 relations Mon Feb 25 23:17:57 2008 matrix is 45941 x 46269 with weight 1371427 (avg 29.64/col) Mon Feb 25 23:17:57 2008 filtering completed in 4 passes Mon Feb 25 23:17:57 2008 matrix is 39547 x 39611 with weight 1149437 (avg 29.02/col) Mon Feb 25 23:17:57 2008 saving the first 48 matrix rows for later Mon Feb 25 23:17:57 2008 matrix is 39499 x 39611 with weight 837611 (avg 21.15/col) Mon Feb 25 23:17:57 2008 matrix includes 64 packed rows Mon Feb 25 23:17:57 2008 commencing Lanczos iteration Mon Feb 25 23:18:17 2008 lanczos halted after 626 iterations (dim = 39493) Mon Feb 25 23:18:17 2008 recovered 14 nontrivial dependencies Mon Feb 25 23:18:17 2008 prp33 factor: 365060056289000062010732444238977 Mon Feb 25 23:18:17 2008 prp47 factor: 32097888713326155328978718452411150896824316697 Mon Feb 25 23:18:17 2008 elapsed time 00:11:09
(4·10124+17)/3 = 1(3)1239<125> = 92152271 · 413087444597<12> · 23123862157206241782847<23> · C83
C83 = P41 · P42
P41 = 33682194968730310840375233374150796019583<41>
P42 = 449707304395848847455968925235148050890497<42>
Tue Feb 26 00:09:56 2008 Tue Feb 26 00:09:56 2008 Tue Feb 26 00:09:56 2008 Msieve v. 1.32 Tue Feb 26 00:09:56 2008 random seeds: 65ed768f 19de7d2d Tue Feb 26 00:09:56 2008 factoring 15147129105523130449266249388626985891346493244029314228392643742208865666200602751 (83 digits) Tue Feb 26 00:09:57 2008 no P-1/P+1/ECM available, skipping Tue Feb 26 00:09:57 2008 commencing quadratic sieve (82-digit input) Tue Feb 26 00:09:57 2008 using multiplier of 31 Tue Feb 26 00:09:57 2008 using 32kb Intel Core sieve core Tue Feb 26 00:09:57 2008 sieve interval: 12 blocks of size 32768 Tue Feb 26 00:09:57 2008 processing polynomials in batches of 17 Tue Feb 26 00:09:57 2008 using a sieve bound of 1350541 (52059 primes) Tue Feb 26 00:09:57 2008 using large prime bound of 124249772 (26 bits) Tue Feb 26 00:09:57 2008 using trial factoring cutoff of 27 bits Tue Feb 26 00:09:57 2008 polynomial 'A' values have 11 factors Tue Feb 26 00:26:53 2008 52429 relations (27593 full + 24836 combined from 269723 partial), need 52155 Tue Feb 26 00:26:54 2008 begin with 297316 relations Tue Feb 26 00:26:54 2008 reduce to 74133 relations in 2 passes Tue Feb 26 00:26:54 2008 attempting to read 74133 relations Tue Feb 26 00:26:54 2008 recovered 74133 relations Tue Feb 26 00:26:54 2008 recovered 65067 polynomials Tue Feb 26 00:26:54 2008 attempting to build 52429 cycles Tue Feb 26 00:26:54 2008 found 52429 cycles in 1 passes Tue Feb 26 00:26:54 2008 distribution of cycle lengths: Tue Feb 26 00:26:54 2008 length 1 : 27593 Tue Feb 26 00:26:54 2008 length 2 : 24836 Tue Feb 26 00:26:54 2008 largest cycle: 2 relations Tue Feb 26 00:26:54 2008 matrix is 52059 x 52429 with weight 1691215 (avg 32.26/col) Tue Feb 26 00:26:54 2008 filtering completed in 4 passes Tue Feb 26 00:26:54 2008 matrix is 44234 x 44298 with weight 1396136 (avg 31.52/col) Tue Feb 26 00:26:55 2008 saving the first 48 matrix rows for later Tue Feb 26 00:26:55 2008 matrix is 44186 x 44298 with weight 1030375 (avg 23.26/col) Tue Feb 26 00:26:55 2008 matrix includes 64 packed rows Tue Feb 26 00:26:55 2008 commencing Lanczos iteration Tue Feb 26 00:27:21 2008 lanczos halted after 700 iterations (dim = 44175) Tue Feb 26 00:27:21 2008 recovered 13 nontrivial dependencies Tue Feb 26 00:27:21 2008 prp41 factor: 33682194968730310840375233374150796019583 Tue Feb 26 00:27:21 2008 prp42 factor: 449707304395848847455968925235148050890497 Tue Feb 26 00:27:21 2008 elapsed time 00:17:25
(4·10117+17)/3 = 1(3)1169<118> = 13 · 5237 · 7919 · C109
C109 = P33 · P37 · P40
P33 = 723106245094697489786689511373211<33>
P37 = 1124531409652827761547009490788252799<37>
P40 = 3041366547432398229574496599264058102209<40>
Number: 13339_117 N=2473104498593961880619564636823302910234312758577257036607839368934660595840602892623273796477189635668904101 ( 109 digits) SNFS difficulty: 117 digits. Divisors found: r1=723106245094697489786689511373211 (pp33) r2=1124531409652827761547009490788252799 (pp37) r3=3041366547432398229574496599264058102209 (pp40) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.96 hours. Scaled time: 1.78 units (timescale=1.856). Factorization parameters were as follows: n: 2473104498593961880619564636823302910234312758577257036607839368934660595840602892623273796477189635668904101 m: 200000000000000000000000 c5: 25 c0: 34 skew: 1.06 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:48661, largePrimes:1872252 encountered Relations: rels:1911209, finalFF:182604 Max relations in full relation-set: 28 Initial matrix: 97823 x 182604 with sparse part having weight 15576316. Pruned matrix : 79563 x 80116 with weight 4540075. Total sieving time: 0.91 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406455) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4810.31 BogoMIPS (lpj=2405155) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
(4·10120+17)/3 = 1(3)1199<121> = 7 · 1163 · 3631 · 1113317 · C107
C107 = P42 · P66
P42 = 217864194199759946513098280992116925864009<42>
P66 = 185964493728313965614110121580783555616158402525331494591164931853<66>
Number: 13339_120 N=40515004575885434417965215165127114851969961825105124857145999259505190381310511895041336508050733630378677 ( 107 digits) SNFS difficulty: 120 digits. Divisors found: r1=217864194199759946513098280992116925864009 (pp42) r2=185964493728313965614110121580783555616158402525331494591164931853 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.80 hours. Scaled time: 1.48 units (timescale=1.858). Factorization parameters were as follows: n: 40515004575885434417965215165127114851969961825105124857145999259505190381310511895041336508050733630378677 m: 1000000000000000000000000 c5: 4 c0: 17 skew: 1.34 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49461, largePrimes:1837125 encountered Relations: rels:1852045, finalFF:164665 Max relations in full relation-set: 28 Initial matrix: 98623 x 164665 with sparse part having weight 13791456. Pruned matrix : 83260 x 83817 with weight 4715712. Total sieving time: 0.74 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.80 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406459) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405113) Calibrating delay using timer specific routine.. 4809.97 BogoMIPS (lpj=2404989) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(4·10197+17)/3 = 1(3)1969<198> = C198
C198 = P44 · C154
P44 = 30911517865801875999507572028613382077670753<44>
C154 = [4313386806567757392671601783903255857588579313081814644131577195810056098206845332856572255132864229461765584994838840653666401244846784162380204100450363<154>]
By Jo Yeong Uk / GGNFS
(4·10146+11)/3 = 1(3)1457<147> = 137 · 15868498319799913439<20> · C125
C125 = P34 · P34 · P58
P34 = 3373815312296460190139766384592183<34>
P34 = 6790688513659658695196059113391453<34>
P58 = 2676992930436323638563724011958164341185215909432586996541<58>
Number: 13337_146 N=61331323866859234793535149039669162933374982327254070525498118062757055024749503269364810023134339956117348152633622026641359 ( 125 digits) SNFS difficulty: 147 digits. Divisors found: r1=3373815312296460190139766384592183 (pp34) r2=6790688513659658695196059113391453 (pp34) r3=2676992930436323638563724011958164341185215909432586996541 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.35 hours. Scaled time: 17.36 units (timescale=1.857). Factorization parameters were as follows: n: 61331323866859234793535149039669162933374982327254070525498118062757055024749503269364810023134339956117348152633622026641359 m: 200000000000000000000000000000 c5: 5 c0: 44 skew: 1.54 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135714, largePrimes:3758274 encountered Relations: rels:3890188, finalFF:425896 Max relations in full relation-set: 28 Initial matrix: 270852 x 425896 with sparse part having weight 38438323. Pruned matrix : 214967 x 216385 with weight 17402299. Total sieving time: 9.07 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.20 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406455) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4810.31 BogoMIPS (lpj=2405155) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
The factor table of 133...339 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Hugo Platzer / Msieve
(4·10145+11)/3 = 1(3)1447<146> = 17 · 31 · 2003011 · 4749509160841<13> · 149747426454337<15> · C110
C110 = P42 · P69
P42 = 102626434436458488227945394792517443917521<42>
P69 = 173052329411585166509799947374407788780786872404668069218460927279653<69>
Sat Feb 23 16:13:24 2008 Sat Feb 23 16:13:24 2008 Sat Feb 23 16:13:24 2008 Msieve v. 1.33 Sat Feb 23 16:13:24 2008 random seeds: 175687d3 05d4ec8b Sat Feb 23 16:13:24 2008 factoring 17759743538434462005501867658007215151785228754151261903789786747070005048229801123394965288753029945833500213 (110 digits) Sat Feb 23 16:13:26 2008 no P-1/P+1/ECM available, skipping Sat Feb 23 16:13:26 2008 commencing number field sieve (110-digit input) Sat Feb 23 16:13:26 2008 R0: -100000000000000000000000000000 Sat Feb 23 16:13:26 2008 R1: 1 Sat Feb 23 16:13:26 2008 A0: 11 Sat Feb 23 16:13:26 2008 A1: 0 Sat Feb 23 16:13:26 2008 A2: 0 Sat Feb 23 16:13:26 2008 A3: 0 Sat Feb 23 16:13:26 2008 A4: 0 Sat Feb 23 16:13:26 2008 A5: 4 Sat Feb 23 16:13:26 2008 size score = 6.148189e-10, Murphy alpha = 0.264305, combined = 5.629699e-10 Sat Feb 23 16:13:31 2008 restarting with 2588237 relations Sat Feb 23 16:13:33 2008 added 11057 free relations Sat Feb 23 16:13:33 2008 Sat Feb 23 16:13:33 2008 commencing relation filtering Sat Feb 23 16:13:33 2008 commencing duplicate removal, pass 1 Sat Feb 23 16:14:06 2008 found 12443 hash collisions in 2599294 relations Sat Feb 23 16:14:06 2008 commencing duplicate removal, pass 2 Sat Feb 23 16:14:09 2008 found 0 duplicates and 2599294 unique relations Sat Feb 23 16:14:09 2008 memory use: 36.5 MB Sat Feb 23 16:14:10 2008 ignoring smallest 136043 rational and 135518 algebraic ideals Sat Feb 23 16:14:10 2008 filtering rational ideals above 1813985 Sat Feb 23 16:14:10 2008 filtering algebraic ideals above 1813985 Sat Feb 23 16:14:10 2008 need 461653 more relations than ideals Sat Feb 23 16:14:10 2008 commencing singleton removal, pass 1 Sat Feb 23 16:14:40 2008 relations with 0 large ideals: 83025 Sat Feb 23 16:14:40 2008 relations with 1 large ideals: 588085 Sat Feb 23 16:14:40 2008 relations with 2 large ideals: 1248703 Sat Feb 23 16:14:40 2008 relations with 3 large ideals: 577206 Sat Feb 23 16:14:40 2008 relations with 4 large ideals: 92848 Sat Feb 23 16:14:40 2008 relations with 5 large ideals: 5058 Sat Feb 23 16:14:40 2008 relations with 6 large ideals: 4369 Sat Feb 23 16:14:40 2008 relations with 7+ large ideals: 0 Sat Feb 23 16:14:40 2008 2599294 relations and about 2552882 large ideals Sat Feb 23 16:14:40 2008 commencing singleton removal, pass 2 Sat Feb 23 16:15:13 2008 found 1440752 singletons Sat Feb 23 16:15:13 2008 current dataset: 1158542 relations and about 817492 large ideals Sat Feb 23 16:15:13 2008 commencing singleton removal, pass 3 Sat Feb 23 16:15:29 2008 found 194821 singletons Sat Feb 23 16:15:29 2008 current dataset: 963721 relations and about 611281 large ideals Sat Feb 23 16:15:29 2008 commencing singleton removal, final pass Sat Feb 23 16:15:43 2008 memory use: 15.3 MB Sat Feb 23 16:15:43 2008 commencing in-memory singleton removal Sat Feb 23 16:15:44 2008 begin with 963721 relations and 623692 unique ideals Sat Feb 23 16:15:44 2008 reduce to 883576 relations and 542216 ideals in 10 passes Sat Feb 23 16:15:44 2008 max relations containing the same ideal: 28 Sat Feb 23 16:15:44 2008 dataset has 25.7% excess relations Sat Feb 23 16:15:46 2008 ignoring smallest 123430 rational and 122825 algebraic ideals Sat Feb 23 16:15:46 2008 filtering rational ideals above 1632586 Sat Feb 23 16:15:46 2008 filtering algebraic ideals above 1632586 Sat Feb 23 16:15:46 2008 need 307223 more relations than ideals Sat Feb 23 16:15:46 2008 commencing singleton removal, final pass Sat Feb 23 16:15:59 2008 memory use: 15.3 MB Sat Feb 23 16:15:59 2008 commencing in-memory singleton removal Sat Feb 23 16:15:59 2008 begin with 883577 relations and 567386 unique ideals Sat Feb 23 16:15:59 2008 reduce to 882237 relations and 566044 ideals in 7 passes Sat Feb 23 16:15:59 2008 max relations containing the same ideal: 28 Sat Feb 23 16:16:00 2008 dataset has 16.4% excess relations Sat Feb 23 16:16:01 2008 ignoring smallest 110719 rational and 110299 algebraic ideals Sat Feb 23 16:16:01 2008 filtering rational ideals above 1451187 Sat Feb 23 16:16:01 2008 filtering algebraic ideals above 1451187 Sat Feb 23 16:16:01 2008 need 293285 more relations than ideals Sat Feb 23 16:16:01 2008 commencing singleton removal, final pass Sat Feb 23 16:16:14 2008 memory use: 15.3 MB Sat Feb 23 16:16:14 2008 commencing in-memory singleton removal Sat Feb 23 16:16:14 2008 begin with 882238 relations and 591202 unique ideals Sat Feb 23 16:16:14 2008 reduce to 881380 relations and 590342 ideals in 6 passes Sat Feb 23 16:16:14 2008 max relations containing the same ideal: 28 Sat Feb 23 16:16:14 2008 dataset has 7.2% excess relations Sat Feb 23 16:16:15 2008 relations with 0 large ideals: 44235 Sat Feb 23 16:16:15 2008 relations with 1 large ideals: 181651 Sat Feb 23 16:16:15 2008 relations with 2 large ideals: 309586 Sat Feb 23 16:16:15 2008 relations with 3 large ideals: 241636 Sat Feb 23 16:16:15 2008 relations with 4 large ideals: 88087 Sat Feb 23 16:16:15 2008 relations with 5 large ideals: 12113 Sat Feb 23 16:16:15 2008 relations with 6 large ideals: 4072 Sat Feb 23 16:16:15 2008 relations with 7+ large ideals: 0 Sat Feb 23 16:16:15 2008 commencing 2-way merge Sat Feb 23 16:16:15 2008 reduce to 564943 relation sets and 273905 unique ideals Sat Feb 23 16:16:15 2008 commencing full merge Sat Feb 23 16:16:22 2008 memory use: 19.8 MB Sat Feb 23 16:16:22 2008 found 295769 cycles, need 232105 Sat Feb 23 16:16:22 2008 weight of 232105 cycles is about 12331805 (53.13/cycle) Sat Feb 23 16:16:22 2008 distribution of cycle lengths: Sat Feb 23 16:16:22 2008 1 relations: 45548 Sat Feb 23 16:16:22 2008 2 relations: 28579 Sat Feb 23 16:16:22 2008 3 relations: 26155 Sat Feb 23 16:16:22 2008 4 relations: 23813 Sat Feb 23 16:16:22 2008 5 relations: 22040 Sat Feb 23 16:16:22 2008 6 relations: 19736 Sat Feb 23 16:16:22 2008 7 relations: 17520 Sat Feb 23 16:16:22 2008 8 relations: 15457 Sat Feb 23 16:16:22 2008 9 relations: 13409 Sat Feb 23 16:16:22 2008 10+ relations: 19848 Sat Feb 23 16:16:22 2008 heaviest cycle: 13 relations Sat Feb 23 16:16:22 2008 matrix not dense enough, retrying Sat Feb 23 16:16:22 2008 dataset has 7.2% excess relations Sat Feb 23 16:16:24 2008 ignoring smallest 97887 rational and 97616 algebraic ideals Sat Feb 23 16:16:24 2008 filtering rational ideals above 1269789 Sat Feb 23 16:16:24 2008 filtering algebraic ideals above 1269789 Sat Feb 23 16:16:24 2008 need 293285 more relations than ideals Sat Feb 23 16:16:24 2008 commencing singleton removal, final pass Sat Feb 23 16:16:37 2008 memory use: 15.3 MB Sat Feb 23 16:16:37 2008 commencing in-memory singleton removal Sat Feb 23 16:16:37 2008 begin with 881381 relations and 615815 unique ideals Sat Feb 23 16:16:37 2008 reduce to 880876 relations and 615308 ideals in 7 passes Sat Feb 23 16:16:37 2008 max relations containing the same ideal: 31 Sat Feb 23 16:16:37 2008 dataset has -2.2% excess relations Sat Feb 23 16:16:38 2008 relations with 0 large ideals: 29853 Sat Feb 23 16:16:38 2008 relations with 1 large ideals: 135797 Sat Feb 23 16:16:38 2008 relations with 2 large ideals: 280412 Sat Feb 23 16:16:38 2008 relations with 3 large ideals: 275356 Sat Feb 23 16:16:38 2008 relations with 4 large ideals: 130074 Sat Feb 23 16:16:38 2008 relations with 5 large ideals: 24264 Sat Feb 23 16:16:38 2008 relations with 6 large ideals: 5118 Sat Feb 23 16:16:38 2008 relations with 7+ large ideals: 2 Sat Feb 23 16:16:38 2008 commencing 2-way merge Sat Feb 23 16:16:38 2008 reduce to 563895 relation sets and 298327 unique ideals Sat Feb 23 16:16:38 2008 commencing full merge Sat Feb 23 16:16:47 2008 memory use: 20.7 MB Sat Feb 23 16:16:47 2008 found 277379 cycles, need 216527 Sat Feb 23 16:16:47 2008 weight of 216527 cycles is about 13335440 (61.59/cycle) Sat Feb 23 16:16:47 2008 distribution of cycle lengths: Sat Feb 23 16:16:47 2008 1 relations: 32177 Sat Feb 23 16:16:47 2008 2 relations: 22556 Sat Feb 23 16:16:47 2008 3 relations: 22387 Sat Feb 23 16:16:47 2008 4 relations: 21245 Sat Feb 23 16:16:47 2008 5 relations: 20362 Sat Feb 23 16:16:47 2008 6 relations: 18654 Sat Feb 23 16:16:47 2008 7 relations: 17219 Sat Feb 23 16:16:47 2008 8 relations: 15456 Sat Feb 23 16:16:47 2008 9 relations: 13974 Sat Feb 23 16:16:47 2008 10+ relations: 32497 Sat Feb 23 16:16:47 2008 heaviest cycle: 15 relations Sat Feb 23 16:16:47 2008 commencing cycle optimization Sat Feb 23 16:16:48 2008 start with 1172495 relations Sat Feb 23 16:16:51 2008 pruned 41529 relations Sat Feb 23 16:16:51 2008 memory use: 29.2 MB Sat Feb 23 16:16:51 2008 distribution of cycle lengths: Sat Feb 23 16:16:51 2008 1 relations: 32177 Sat Feb 23 16:16:51 2008 2 relations: 23166 Sat Feb 23 16:16:51 2008 3 relations: 23482 Sat Feb 23 16:16:51 2008 4 relations: 22187 Sat Feb 23 16:16:51 2008 5 relations: 21489 Sat Feb 23 16:16:51 2008 6 relations: 19596 Sat Feb 23 16:16:51 2008 7 relations: 17994 Sat Feb 23 16:16:51 2008 8 relations: 16017 Sat Feb 23 16:16:51 2008 9 relations: 13859 Sat Feb 23 16:16:51 2008 10+ relations: 26560 Sat Feb 23 16:16:51 2008 heaviest cycle: 15 relations Sat Feb 23 16:16:51 2008 Sat Feb 23 16:16:51 2008 commencing linear algebra Sat Feb 23 16:16:52 2008 read 216527 cycles Sat Feb 23 16:16:52 2008 cycles contain 583896 unique relations Sat Feb 23 16:17:00 2008 read 583896 relations Sat Feb 23 16:17:01 2008 using 32 quadratic characters above 67093592 Sat Feb 23 16:17:16 2008 building initial matrix Sat Feb 23 16:17:28 2008 memory use: 71.2 MB Sat Feb 23 16:17:29 2008 read 216527 cycles Sat Feb 23 16:17:30 2008 matrix is 216207 x 216527 (53.4 MB) with weight 18522721 (85.54/col) Sat Feb 23 16:17:30 2008 sparse part has weight 12477653 (57.63/col) Sat Feb 23 16:17:34 2008 filtering completed in 3 passes Sat Feb 23 16:17:34 2008 matrix is 214854 x 215054 (53.1 MB) with weight 18423986 (85.67/col) Sat Feb 23 16:17:34 2008 sparse part has weight 12419321 (57.75/col) Sat Feb 23 16:17:37 2008 read 215054 cycles Sat Feb 23 16:17:38 2008 matrix is 214854 x 215054 (53.1 MB) with weight 18423986 (85.67/col) Sat Feb 23 16:17:38 2008 sparse part has weight 12419321 (57.75/col) Sat Feb 23 16:17:38 2008 saving the first 48 matrix rows for later Sat Feb 23 16:17:38 2008 matrix is 214806 x 215054 (50.4 MB) with weight 13723478 (63.81/col) Sat Feb 23 16:17:38 2008 sparse part has weight 11933368 (55.49/col) Sat Feb 23 16:17:38 2008 matrix includes 64 packed rows Sat Feb 23 16:17:38 2008 using block size 65536 for processor cache size 2048 kB Sat Feb 23 16:17:40 2008 commencing Lanczos iteration Sat Feb 23 16:17:40 2008 memory use: 50.1 MB Sat Feb 23 16:29:15 2008 lanczos halted after 3399 iterations (dim = 214804) Sat Feb 23 16:29:16 2008 recovered 50 nontrivial dependencies Sat Feb 23 16:29:16 2008 Sat Feb 23 16:29:16 2008 commencing square root phase Sat Feb 23 16:29:16 2008 reading relations for dependency 1 Sat Feb 23 16:29:16 2008 read 107635 cycles Sat Feb 23 16:29:17 2008 cycles contain 354348 unique relations Sat Feb 23 16:29:22 2008 read 354348 relations Sat Feb 23 16:29:25 2008 multiplying 564220 relations Sat Feb 23 16:30:31 2008 multiply complete, coefficients have about 12.42 million bits Sat Feb 23 16:30:32 2008 initial square root is modulo 13694671 Sat Feb 23 16:32:21 2008 reading relations for dependency 2 Sat Feb 23 16:32:21 2008 read 107185 cycles Sat Feb 23 16:32:21 2008 cycles contain 353436 unique relations Sat Feb 23 16:32:26 2008 read 353436 relations Sat Feb 23 16:32:29 2008 multiplying 562622 relations Sat Feb 23 16:33:36 2008 multiply complete, coefficients have about 12.39 million bits Sat Feb 23 16:33:36 2008 initial square root is modulo 13126801 Sat Feb 23 16:35:25 2008 prp42 factor: 102626434436458488227945394792517443917521 Sat Feb 23 16:35:25 2008 prp69 factor: 173052329411585166509799947374407788780786872404668069218460927279653 Sat Feb 23 16:35:25 2008 elapsed time 00:22:01
By matsui / GGNFS
8·10176+9 = 8(0)1759<177> = 17 · 3217 · C173
C173 = P81 · P93
P81 = 103961611179868503438377681867481435196874462689578948106251372965474787726477889<81>
P93 = 140707421063833161706485449146184930821888979205845979668829757316153913675077037413502917929<93>
N=14628170198760262575655067746713233008466053502532501965660370458410283603649728464590685512625939402804951635612280348881859240432262429373365759110607251915376035400171881 ( 173 digits) SNFS difficulty: 177 digits. Divisors found: r1=103961611179868503438377681867481435196874462689578948106251372965474787726477889 (pp81) r2=140707421063833161706485449146184930821888979205845979668829757316153913675077037413502917929 (pp93) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 228.46 hours. Scaled time: 435.44 units (timescale=1.906). Factorization parameters were as follows: n: 14628170198760262575655067746713233008466053502532501965660370458410283603649728464590685512625939402804951635612280348881859240432262429373365759110607251915376035400171881 m: 200000000000000000000000000000000000 c5: 5 c0: 18 skew: 1.29 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12000001) Primes: RFBsize:501962, AFBsize:501791, largePrimes:6541923 encountered Relations: rels:7040504, finalFF:1165775 Max relations in full relation-set: 28 Initial matrix: 1003819 x 1165775 with sparse part having weight 75529051. Pruned matrix : 866295 x 871378 with weight 56505835. Total sieving time: 204.60 hours. Total relation processing time: 0.16 hours. Matrix solve time: 23.41 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 228.46 hours.
By Sinkiti Sibata / GGNFS
(7·10162-1)/3 = 2(3)162<163> = 1376191 · 1156149411505234849191678643368749<34> · C124
C124 = P59 · P65
P59 = 18483157127083474363681317601965029524109620367701902163793<59>
P65 = 79342878811142759961839897023661739977240662042432474165513682759<65>
Number: 23333_162 N=1466506895981493687124535379820325804475916309373929762311497311107375702506795513963671876299233601761427778500890258144887 ( 124 digits) SNFS difficulty: 162 digits. Divisors found: r1=18483157127083474363681317601965029524109620367701902163793 (pp59) r2=79342878811142759961839897023661739977240662042432474165513682759 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 85.52 hours. Scaled time: 57.30 units (timescale=0.670). Factorization parameters were as follows: name: 23333_162 n: 1466506895981493687124535379820325804475916309373929762311497311107375702506795513963671876299233601761427778500890258144887 m: 100000000000000000000000000000000 c5: 700 c0: -1 skew: 0.27 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4250001) Primes: RFBsize:315948, AFBsize:315791, largePrimes:5746913 encountered Relations: rels:5875322, finalFF:758492 Max relations in full relation-set: 28 Initial matrix: 631806 x 758492 with sparse part having weight 45680761. Pruned matrix : 528671 x 531894 with weight 30022387. Total sieving time: 73.60 hours. Total relation processing time: 0.33 hours. Matrix solve time: 11.37 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 85.52 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(4·10144+11)/3 = 1(3)1437<145> = 33501037 · 19162171112298569164633600877<29> · C109
C109 = P54 · P55
P54 = 447889331573911295153276557347209198287124299467688541<54>
P55 = 4637298522548643845125317323631350351129872341828192293<55>
Number: 13337_144 N=2076996535572998507838714029821161997717606507974074306074404130017920430096263222528986801630708133180614513 ( 109 digits) SNFS difficulty: 145 digits. Divisors found: r1=447889331573911295153276557347209198287124299467688541 (pp54) r2=4637298522548643845125317323631350351129872341828192293 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 15.65 hours. Scaled time: 31.27 units (timescale=1.998). Factorization parameters were as follows: name: 13337_144 n: 2076996535572998507838714029821161997717606507974074306074404130017920430096263222528986801630708133180614513 m: 100000000000000000000000000000 c5: 2 c0: 55 skew: 1.94 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:99789, largePrimes:2823314 encountered Relations: rels:2832613, finalFF:264170 Max relations in full relation-set: 28 Initial matrix: 199875 x 264170 with sparse part having weight 28900389. Pruned matrix : 182618 x 183681 with weight 18326210. Total sieving time: 15.05 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.42 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 15.65 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
(4·10158+11)/3 = 1(3)1577<159> = 8233 · C155
C155 = P31 · C125
P31 = 1527862686242403797544393553027<31>
C125 = [10599766456206583622902219875082963980035743593315729410558814794508496584089071087989307287849025249575541272349851000517307<125>]
(4·10157+11)/3 = 1(3)1567<158> = C158
C158 = P73 · P85
P73 = 4766737278377335686560797181373572835442956918758084311522740015959165729<73>
P85 = 2797161361045722925353515065028853432915519784372454180355700451963746101938543639353<85>
Number: 13337_157 N=13333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 ( 158 digits) SNFS difficulty: 157 digits. Divisors found: r1=4766737278377335686560797181373572835442956918758084311522740015959165729 (pp73) r2=2797161361045722925353515065028853432915519784372454180355700451963746101938543639353 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 21.35 hours. Scaled time: 39.60 units (timescale=1.855). Factorization parameters were as follows: n: 13333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 m: 20000000000000000000000000000000 c5: 25 c0: 22 skew: 0.97 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216262, largePrimes:5564985 encountered Relations: rels:5470103, finalFF:504877 Max relations in full relation-set: 28 Initial matrix: 433141 x 504877 with sparse part having weight 39439439. Pruned matrix : 394545 x 396774 with weight 27271708. Total sieving time: 20.39 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.83 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 21.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2435k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.91 BogoMIPS (lpj=2406455) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405110) Calibrating delay using timer specific routine.. 4810.31 BogoMIPS (lpj=2405155) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Robert Backstrom / GGNFS, GMP-ECM
(4·10149+11)/3 = 1(3)1487<150> = 21313 · 758361679 · 1214454453872951<16> · C121
C121 = P37 · P85
P37 = 2717076605390979007381323216479100539<37>
P85 = 2499969194587184389860981086852270761643057631388490569409971104066011589674512322579<85>
Number: n N=6792607812810966812696054335486176763506067853623183131083234129992086750249270424315302728986609775323759382373740770081 ( 121 digits) SNFS difficulty: 150 digits. Divisors found: r1=2717076605390979007381323216479100539 (pp37) r2=2499969194587184389860981086852270761643057631388490569409971104066011589674512322579 (pp85) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.10 hours. Scaled time: 18.48 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_148_7 n: 6792607812810966812696054335486176763506067853623183131083234129992086750249270424315302728986609775323759382373740770081 skew: 1.94 deg: 5 c5: 2 c0: 55 m: 1000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 660001) Primes: RFBsize:183072, AFBsize:182867, largePrimes:6264948 encountered Relations: rels:5745258, finalFF:448309 Max relations in full relation-set: 48 Initial matrix: 366004 x 448309 with sparse part having weight 28960939. Pruned matrix : 296128 x 298022 with weight 15039151. Total sieving time: 9.34 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.60 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 10.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10138+11)/3 = 1(3)1377<139> = 137 · 229 · C134
C134 = P64 · P70
P64 = 4867627495557587497174692021304110944538390547912798179387518159<64>
P70 = 8731027407103137131104076747312662661769083489277298849485078143666291<70>
Number: n N=42499389071282100319807902761397804906554468279518481921822373803376576461713362870408737874393055599825752504807743388688787598678269 ( 134 digits) SNFS difficulty: 140 digits. Divisors found: r1=4867627495557587497174692021304110944538390547912798179387518159 (pp64) r2=8731027407103137131104076747312662661769083489277298849485078143666291 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.89 hours. Scaled time: 7.11 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_137_7 n: 42499389071282100319807902761397804906554468279518481921822373803376576461713362870408737874393055599825752504807743388688787598678269 skew: 3.08 deg: 5 c5: 1 c0: 275 m: 10000000000000000000000000000 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 580001) Primes: RFBsize:162662, AFBsize:163221, largePrimes:5751332 encountered Relations: rels:5168007, finalFF:374032 Max relations in full relation-set: 48 Initial matrix: 325947 x 374032 with sparse part having weight 20090079. Pruned matrix : 280278 x 281971 with weight 11315150. Total sieving time: 3.20 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.44 hours. Total square root time: 0.14 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,75000 total time: 3.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(8·10186-17)/9 = (8)1857<186> = 122041 · C181
C181 = P30 · C152
P30 = 600760122234227247339021404369<30>
C152 = [12123851911813520689442426339677939520762900296076844725658595042305449072115945719786865839939239072337205062999312826980398145833769450425203032477503<152>]
By Sinkiti Sibata / GGNFS
(4·10131+11)/3 = 1(3)1307<132> = 356287746791328491<18> · C114
C114 = P52 · P63
P52 = 1893443194224894718878463833501834090719818444796249<52>
P63 = 197644880595999725041267819674714849507845501682832456060475843<63>
Number: 13337_131 N=374229354037887632864664831865915772225602984855244535305283336279006481767188196074768411542491621513546121512907 ( 114 digits) SNFS difficulty: 131 digits. Divisors found: r1=1893443194224894718878463833501834090719818444796249 (pp52) r2=197644880595999725041267819674714849507845501682832456060475843 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.49 hours. Scaled time: 8.92 units (timescale=1.988). Factorization parameters were as follows: name: 13337_131 n: 374229354037887632864664831865915772225602984855244535305283336279006481767188196074768411542491621513546121512907 m: 100000000000000000000000000 c5: 40 c0: 11 skew: 0.77 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64254, largePrimes:1531023 encountered Relations: rels:1559054, finalFF:197232 Max relations in full relation-set: 28 Initial matrix: 128271 x 197232 with sparse part having weight 14484832. Pruned matrix : 109223 x 109928 with weight 6425650. Total sieving time: 4.33 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.49 hours. --------- CPU info (if available) ----------
(4·10127+11)/3 = 1(3)1267<128> = 29 · 131 · 18199825817<11> · C114
C114 = P36 · P39 · P39
P36 = 227060322506798993332149127795092037<36>
P39 = 913336927466122993434262778590061373449<39>
P39 = 929886502764280214041355493551431541603<39>
Number: 13337_127 N=192842259547018009597079694636074182400710045315079783185799547260078047160967977004619128485484268956703784377639 ( 114 digits) SNFS difficulty: 127 digits. Divisors found: r1=227060322506798993332149127795092037 (pp36) r2=913336927466122993434262778590061373449 (pp39) r3=929886502764280214041355493551431541603 (pp39) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.12 hours. Scaled time: 6.21 units (timescale=1.992). Factorization parameters were as follows: name: 13337_127 n: 192842259547018009597079694636074182400710045315079783185799547260078047160967977004619128485484268956703784377639 m: 20000000000000000000000000 c5: 25 c0: 22 skew: 0.97 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:63951, AFBsize:63939, largePrimes:1400313 encountered Relations: rels:1394145, finalFF:169686 Max relations in full relation-set: 28 Initial matrix: 127954 x 169686 with sparse part having weight 8194603. Pruned matrix : 110799 x 111502 with weight 4097518. Total sieving time: 3.00 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.12 hours. --------- CPU info (if available) ----------
(4·10151+11)/3 = 1(3)1507<152> = 633619426343<12> · 442973859605351119<18> · 3975218224563891047<19> · C104
C104 = P46 · P58
P46 = 2337821818609044897355108471584512338289378161<46>
P58 = 5111634251655468130247648332197620987017296367122312286583<58>
Number: 13337_151 N=11950090082269470772012979307480787589555936665450276418632716974465848898807642129099590952613093513863 ( 104 digits) Divisors found: r1=2337821818609044897355108471584512338289378161 (pp46) r2=5111634251655468130247648332197620987017296367122312286583 (pp58) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 14.67 hours. Scaled time: 9.91 units (timescale=0.675). Factorization parameters were as follows: name: 13337_151 n: 11950090082269470772012979307480787589555936665450276418632716974465848898807642129099590952613093513863 skew: 6800.61 # norm 1.74e+14 c5: 29640 c4: -1232540113 c3: 2169770658470 c2: -20196984656031629 c1: -134467529912451149353 c0: 32693537318913341764250 # alpha -5.44 Y1: 26651928809 Y0: -52613891591132659327 # Murphy_E 2.20e-09 # M 1484081719694419706365100096805128173093244655510772422378879253150230070968344633840020539840777333680 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: RFBsize:169511, AFBsize:170092, largePrimes:4530487 encountered Relations: rels:4761478, finalFF:578150 Max relations in full relation-set: 28 Initial matrix: 339686 x 578150 with sparse part having weight 44365745. Pruned matrix : 189798 x 191560 with weight 21055717. Polynomial selection time: 0.79 hours. Total sieving time: 12.20 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.27 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 14.67 hours. --------- CPU info (if available) ----------
(4·10143+11)/3 = 1(3)1427<144> = 19 · 394478557247107<15> · C128
C128 = P45 · P83
P45 = 540221890483900213100183282378870340497411947<45>
P83 = 32929835114364724990528981056819343712336652054415144940805074403713200462062903587<83>
Number: 13337_143 N=17789417778805232112908786998844581501787575892209776794081262433217844819211255327899323908514311530976008988829918089682953889 ( 128 digits) SNFS difficulty: 143 digits. Divisors found: r1=540221890483900213100183282378870340497411947 (pp45) r2=32929835114364724990528981056819343712336652054415144940805074403713200462062903587 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.31 hours. Scaled time: 26.61 units (timescale=1.999). Factorization parameters were as follows: name: 13337_143 n: 17789417778805232112908786998844581501787575892209776794081262433217844819211255327899323908514311530976008988829918089682953889 m: 20000000000000000000000000000 c5: 125 c0: 11 skew: 0.62 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2150001) Primes: RFBsize:100021, AFBsize:100439, largePrimes:2797871 encountered Relations: rels:2800510, finalFF:269837 Max relations in full relation-set: 28 Initial matrix: 200525 x 269837 with sparse part having weight 27631150. Pruned matrix : 181432 x 182498 with weight 16800760. Total sieving time: 12.78 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.35 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 13.31 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(4·10125+11)/3 = 1(3)1247<126> = 19 · 2225471936246839129<19> · C106
C106 = P38 · P69
P38 = 15803345655438486511972481152450794613<38>
P69 = 199532651776252834039911251067175851500401630254970536186458226795599<69>
Number: 13337_125 N=3153283465566365633508056367141023771988625666319413811577363839922534166099217033045727316239036281308187 ( 106 digits) SNFS difficulty: 125 digits. Divisors found: r1=15803345655438486511972481152450794613 (pp38) r2=199532651776252834039911251067175851500401630254970536186458226795599 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.95 hours. Scaled time: 3.86 units (timescale=1.981). Factorization parameters were as follows: name: 13337_125 n: 3153283465566365633508056367141023771988625666319413811577363839922534166099217033045727316239036281308187 m: 10000000000000000000000000 c5: 4 c0: 11 skew: 1.22 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63629, largePrimes:2080670 encountered Relations: rels:2108833, finalFF:178021 Max relations in full relation-set: 28 Initial matrix: 112791 x 178021 with sparse part having weight 15251272. Pruned matrix : 95760 x 96387 with weight 5778001. Total sieving time: 1.82 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.95 hours. --------- CPU info (if available) ----------
(4·10113+11)/3 = 1(3)1127<114> = 17 · 397 · C110
C110 = P39 · P71
P39 = 304155774352865478339206504203892550259<39>
P71 = 64953602405091887197954344906663271278940558317913767517079385452861407<71>
Number: 13337_113 N=19756013236528868474341877809058132068948486195485750975453153553612880920630216822245270904331505902108954413 ( 110 digits) SNFS difficulty: 113 digits. Divisors found: r1=304155774352865478339206504203892550259 (pp39) r2=64953602405091887197954344906663271278940558317913767517079385452861407 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.86 hours. Scaled time: 1.26 units (timescale=0.675). Factorization parameters were as follows: name: 13337_113 n: 19756013236528868474341877809058132068948486195485750975453153553612880920630216822245270904331505902108954413 m: 20000000000000000000000 c5: 125 c0: 11 skew: 0.62 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64204, largePrimes:2116619 encountered Relations: rels:2254082, finalFF:285131 Max relations in full relation-set: 28 Initial matrix: 113367 x 285131 with sparse part having weight 22834055. Pruned matrix : 74586 x 75216 with weight 4095384. Total sieving time: 1.68 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.86 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(4·10136+11)/3 = 1(3)1357<137> = C137 = P48 · P89
P48 = 645109945959932436794670252937099004445884900281<48>
P89 = 20668311528654469407072421372850207222818010052176468364973643563797095494823416253615777<89>
Number: 13337_136 N=13333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 ( 137 digits) SNFS difficulty: 137 digits. Divisors found: r1=645109945959932436794670252937099004445884900281 (pp48) r2=20668311528654469407072421372850207222818010052176468364973643563797095494823416253615777 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.28 hours. Scaled time: 6.10 units (timescale=1.857). Factorization parameters were as follows: n: 13333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333337 m: 2000000000000000000000000000 c5: 5 c0: 44 skew: 1.54 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:107659, largePrimes:2240727 encountered Relations: rels:2306072, finalFF:241669 Max relations in full relation-set: 28 Initial matrix: 214851 x 241669 with sparse part having weight 17262603. Pruned matrix : 203670 x 204808 with weight 12258523. Total sieving time: 3.06 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.28 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406452) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405111) Calibrating delay using timer specific routine.. 4809.73 BogoMIPS (lpj=2404867) Calibrating delay using timer specific routine.. 4714.04 BogoMIPS (lpj=2357021)
(4·10192-13)/9 = (4)1913<192> = C192
C192 = P89 · P104
P89 = 35045847515642783523626070569435470884822385339002400825581256172358614490951464260070747<89>
P104 = 12681800440011210614082687744739066189716084468441089520538508971989616998911936443662265342146313320769<104>
Number: 44443_192 N=444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: r1=35045847515642783523626070569435470884822385339002400825581256172358614490951464260070747 (pp89) r2=12681800440011210614082687744739066189716084468441089520538508971989616998911936443662265342146313320769 (pp104) Version: GGNFS-0.77.1-20050930-nocona Total time: 677.17 hours. Scaled time: 1257.51 units (timescale=1.857). Factorization parameters were as follows: n: 444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443 m: 200000000000000000000000000000000000000 c5: 25 c0: -26 skew: 1.01 type: snfs Factor base limits: 16000000/16000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved algebraic special-q in [8000000, 18400001) Primes: RFBsize:1031130, AFBsize:1032793, largePrimes:12950076 encountered Relations: rels:14092984, finalFF:2343105 Max relations in full relation-set: 28 Initial matrix: 2063987 x 2343105 with sparse part having weight 150351956. Pruned matrix : 1810027 x 1820410 with weight 111950679. Total sieving time: 646.41 hours. Total relation processing time: 0.41 hours. Matrix solve time: 30.15 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,16000000,16000000,28,28,51,51,2.6,2.6,100000 total time: 677.17 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406452) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405111) Calibrating delay using timer specific routine.. 4809.73 BogoMIPS (lpj=2404867) Calibrating delay using timer specific routine.. 4714.04 BogoMIPS (lpj=2357021)
By Robert Backstrom / GMP-ECM, GGNFS
(4·10102+11)/3 = 1(3)1017<103> = 307266829 · C94
C94 = P43 · P52
P43 = 1646560534466985058328605054610083645298993<43>
P52 = 2635392807135816561786044834867478808294813224484621<52>
Number: n N=4339333789047998192259579485338241093812743885000789764173773971980988983790805916551875286653 ( 94 digits) SNFS difficulty: 102 digits. Divisors found: r1=1646560534466985058328605054610083645298993 (pp43) r2=2635392807135816561786044834867478808294813224484621 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.43 hours. Scaled time: 0.79 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_101_7 n: 4339333789047998192259579485338241093812743885000789764173773971980988983790805916551875286653 skew: 1.00 deg: 5 c5: 25 c0: 22 m: 200000000000000000000 type: snfs rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 140001) Primes: RFBsize:41538, AFBsize:41568, largePrimes:3448580 encountered Relations: rels:2920109, finalFF:148659 Max relations in full relation-set: 48 Initial matrix: 83170 x 148659 with sparse part having weight 9271658. Pruned matrix : 58314 x 58793 with weight 1969435. Total sieving time: 0.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.5,2.5,20000 total time: 0.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10115+11)/3 = 1(3)1147<116> = 31 · 275416674221551<15> · C100
C100 = P46 · P54
P46 = 1805025368704280366962983811597818948051327631<46>
P54 = 865174086391486453505012758489951524756223702524904967<54>
Number: n N=1561661174282181750855560882405506568818194843939868509965372037918767188901167683328566806456243177 ( 100 digits) SNFS difficulty: 115 digits. Divisors found: r1=1805025368704280366962983811597818948051327631 (pp46) r2=865174086391486453505012758489951524756223702524904967 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.77 hours. Scaled time: 1.42 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_114_7 n: 1561661174282181750855560882405506568818194843939868509965372037918767188901167683328566806456243177 skew: 1.00 deg: 5 c5: 4 c0: 11 m: 100000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:63951, AFBsize:63629, largePrimes:4202404 encountered Relations: rels:3652012, finalFF:223982 Max relations in full relation-set: 48 Initial matrix: 127644 x 223982 with sparse part having weight 12430380. Pruned matrix : 80889 x 81591 with weight 2898267. Total sieving time: 0.70 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 0.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10122+11)/3 = 1(3)1217<123> = 137 · 311 · 75767110971407101<17> · C101
C101 = P34 · P67
P34 = 5272921641050465131362660361244101<34>
P67 = 7832956869217103170630125848353003163038606291478854203546482793191<67>
(4·10139+11)/3 = 1(3)1387<140> = 4311337 · 21247651 · 149032782893<12> · 175317660870361<15> · C100
C100 = P36 · P65
P36 = 337617990811478180020888640562676309<36>
P65 = 16499955819490232143991256389127069993152179641301496930299925443<65>
(4·10116+11)/3 = 1(3)1157<117> = 120383704907<12> · C106
C106 = P35 · P71
P35 = 28802954401798198620925160019003859<35>
P71 = 38453333520441584543202578333588710413505012991763189928723152862992649<71>
(4·10129+11)/3 = 1(3)1287<130> = 7 · 17 · C128
C128 = P31 · P97
P31 = 1623689600151579293848901161081<31>
P97 = 6900630386294950804431484242986375136955298070601334173121463514139852321236962540139980145351783<97>
(4·10124+11)/3 = 1(3)1237<125> = 157 · 257 · 863 · 3114563 · 734742979 · C102
C102 = P40 · P62
P40 = 2203938796192403342392271268196078673989<40>
P62 = 75921201152552818087132501075621030841933093815300464956718367<62>
Number: n N=167325680673638563081548947403636743907474465909076656035498500293151015645904444990307855678281455963 ( 102 digits) SNFS difficulty: 125 digits. Divisors found: r1=2203938796192403342392271268196078673989 (pp40) r2=75921201152552818087132501075621030841933093815300464956718367 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.44 hours. Scaled time: 2.63 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_3_123_7 n: 167325680673638563081548947403636743907474465909076656035498500293151015645904444990307855678281455963 skew: 1.94 deg: 5 c5: 2 c0: 55 m: 10000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 240001) Primes: RFBsize:114155, AFBsize:113953, largePrimes:4515312 encountered Relations: rels:3995223, finalFF:291897 Max relations in full relation-set: 48 Initial matrix: 228173 x 291897 with sparse part having weight 12613705. Pruned matrix : 166879 x 168083 with weight 5210343. Total sieving time: 1.28 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 1.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10130+11)/3 = 1(3)1297<131> = 23 · 31 · 137 · C126
C126 = P33 · P93
P33 = 586747933411274964170925848158487<33>
P93 = 232636079856833912272452423645428068658508651978665240250136011794304923321522084851723290271<93>
(4·10134+11)/3 = 1(3)1337<135> = 50604613 · C127
C127 = P40 · P87
P40 = 3820162630866551606713037132751079542817<40>
P87 = 689710403238257935905626272855854844006021482308071303691508206972486304337202234301797<87>
Number: n N=2634805908570693611140417837664983888590025050351305588155240577244081153892696172448415588779096746245907133670468605961542149 ( 127 digits) SNFS difficulty: 135 digits. Divisors found: r1=3820162630866551606713037132751079542817 (pp40) r2=689710403238257935905626272855854844006021482308071303691508206972486304337202234301797 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.69 hours. Scaled time: 4.92 units (timescale=1.828). Factorization parameters were as follows: name: KA_1_3_133_7 n: 2634805908570693611140417837664983888590025050351305588155240577244081153892696172448415588779096746245907133670468605961542149 skew: 1.94 deg: 5 c5: 2 c0: 55 m: 1000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 420001) Primes: RFBsize:148933, AFBsize:148701, largePrimes:5227610 encountered Relations: rels:4670599, finalFF:342239 Max relations in full relation-set: 48 Initial matrix: 297699 x 342239 with sparse part having weight 16564263. Pruned matrix : 253523 x 255075 with weight 9103303. Total sieving time: 2.32 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.25 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 2.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GMP-ECM
(4·10156+11)/3 = 1(3)1557<157> = 71 · 2161 · 14831 · 658453 · 394839461087<12> · 126692824237732751<18> · 1333267352305266238694551<25> · C89
C89 = P31 · P58
P31 = 3843061199517217692568521094769<31>
P58 = 3471868696924966252462632988741475891496853178404981998763<58>
The factor table of 133...337 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM
(79·10183-7)/9 = 8(7)183<184> = 1913 · C181
C181 = P32 · P37 · P114
P32 = 12153807173571949007375230348211<32>
P37 = 2375716400628936749079408376044022391<37>
P114 = 158914188404109477281052206971033581029810208002769801689981446299251940791541808338262878938295863778304036304629<114>
By Sinkiti Sibata / GGNFS
(11·10149+61)/9 = 1(2)1489<150> = 32 · 43 · C147
C147 = P31 · P55 · P61
P31 = 6242261523111451604167188855731<31>
P55 = 5345904564855449996407866180568566463290283484418398029<55>
P61 = 9464028719153806681139681352642106781803923220341415398103633<61>
Number: 12229_149 N=315819695664656904966982486362331323571633649153028997990238300315819695664656904966982486362331323571633649153028997990238300315819695664656904967 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=6242261523111451604167188855731 (pp31) r2=5345904564855449996407866180568566463290283484418398029 (pp55) r3=9464028719153806681139681352642106781803923220341415398103633 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 37.15 hours. Scaled time: 25.08 units (timescale=0.675). Factorization parameters were as follows: name: 12229_149 n: 315819695664656904966982486362331323571633649153028997990238300315819695664656904966982486362331323571633649153028997990238300315819695664656904967 m: 1000000000000000000000000000000 c5: 11 c0: 610 skew: 2.23 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175370, largePrimes:5628786 encountered Relations: rels:5580248, finalFF:504483 Max relations in full relation-set: 28 Initial matrix: 351737 x 504483 with sparse part having weight 45930839. Pruned matrix : 290346 x 292168 with weight 24671675. Total sieving time: 33.54 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.22 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 37.15 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(71·10184-17)/9 = 7(8)1837<185> = 584027 · 67972403356899191<17> · 12252647954833593078177200604809<32> · C132
C132 = P31 · P37 · P65
P31 = 2689572403442632769337374190077<31>
P37 = 1925866741774738582164323933510316983<37>
P65 = 31312003673636456198021235073960417940459037776283793591711449889<65>
Number: n N=60302746493384886847709617108784565070134687576182721026645805344525114269394313542409814350910164887 ( 101 digits) Divisors found: Sun Feb 17 10:05:35 2008 prp37 factor: 1925866741774738582164323933510316983 Sun Feb 17 10:05:35 2008 prp65 factor: 31312003673636456198021235073960417940459037776283793591711449889 Sun Feb 17 10:05:35 2008 elapsed time 00:11:39 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 5.51 hours. Scaled time: 4.60 units (timescale=0.835). Factorization parameters were as follows: name: KA_7_8_183 n: 60302746493384886847709617108784565070134687576182721026645805344525114269394313542409814350910164887 skew: 1591.76 # norm 2.54e+13 c5: 490680 c4: -2420530822 c3: 1607362527322 c2: 7712572522997431 c1: -1015553300418810242 c0: -2676058812104523333649 # alpha -5.19 Y1: 13671193657 Y0: -10420973927095743510 # Murphy_E 3.29e-09 # M 13575008737661884978698488583945020638176130417697145616183711579278417102206895065551839353226346846 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:136018, largePrimes:3464132 encountered Relations: rels:3423937, finalFF:377196 Max relations in full relation-set: 28 Initial matrix: 271178 x 377196 with sparse part having weight 20957178. Pruned matrix : 173729 x 175148 with weight 7500817. Polynomial selection time: 0.55 hours. Total sieving time: 4.69 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.14 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.51 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(46·10163-1)/9 = 5(1)163<164> = 3 · 199 · 1481 · 33637 · 65609 · 348944548907<12> · 3094508928368237<16> · C122
C122 = P50 · P72
P50 = 42383839285525795753607722140791837846064285912043<50>
P72 = 572343567840351351004052047916227199387688191587467882881579520189050963<72>
Number: n N=24258117795449882016463515363358612414330257454310490695425839412626146864798222116552055288007645093745929170939062447409 ( 122 digits) SNFS difficulty: 164 digits. Divisors found: Sun Feb 17 11:29:09 2008 prp50 factor: 42383839285525795753607722140791837846064285912043 Sun Feb 17 11:29:09 2008 prp72 factor: 572343567840351351004052047916227199387688191587467882881579520189050963 Sun Feb 17 11:29:09 2008 elapsed time 01:33:30 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 64.27 hours. Scaled time: 93.38 units (timescale=1.453). Factorization parameters were as follows: name: KA_5_1_163 n: 24258117795449882016463515363358612414330257454310490695425839412626146864798222116552055288007645093745929170939062447409 skew: 0.23 deg: 5 c5: 2875 c0: -2 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200001) Primes: RFBsize:216816, AFBsize:217086, largePrimes:7722673 encountered Relations: rels:7223944, finalFF:486300 Max relations in full relation-set: 28 Initial matrix: 433968 x 486300 with sparse part having weight 47481030. Pruned matrix : Total sieving time: 64.00 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 64.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By matsui / GGNFS
3·10179-1 = 2(9)179<180> = 7 · 83 · 269 · 8731 · 81853 · 116981 · 341557 · 12603850771<11> · 40741126949<11> · 135924365039<12> · C123
C123 = P59 · P65
P59 = 65229101266939367735801851025243606155752420471073669310383<59>
P65 = 14765247618055126790247356701740302955486828755600519733418471207<65>
N=963123832109553152595040489985247676605852097732313677970697180432654991239607824625799134317843703968468200269973831642281 ( 123 digits) Divisors found: r1=65229101266939367735801851025243606155752420471073669310383 (pp59) r2=14765247618055126790247356701740302955486828755600519733418471207 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 105.78 hours. Scaled time: 136.98 units (timescale=1.295). Factorization parameters were as follows: name: 3000 n: 963123832109553152595040489985247676605852097732313677970697180432654991239607824625799134317843703968468200269973831642281 skew: 96096.19 # norm 9.91e+16 c5: 66240 c4: -32279355888 c3: -2129454685216800 c2: 294388916535552239654 c1: 12148253690490472323530277 c0: 57066639980311126901329358611 # alpha -6.31 Y1: 16016640817309 Y0: -429055962076730058362034 # Murphy_E 1.89e-10 # M 61974167399733499335733838603131508133502921043676458000972502662641628379410764569675900458759902446519498408010415736179 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5920001) Primes: RFBsize:348513, AFBsize:348802, largePrimes:7933036 encountered Relations: rels:8259254, finalFF:863393 Max relations in full relation-set: 28 Initial matrix: 697393 x 863393 with sparse part having weight 88990510. Pruned matrix : 565520 x 569070 with weight 62336262. Total sieving time: 91.13 hours. Total relation processing time: 0.34 hours. Matrix solve time: 13.66 hours. Time per square root: 0.65 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,e StepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 105.78 hours.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(2·10179-17)/3 = (6)1781<179> = 7 · 1303 · 2113 · 29119157 · 5793684977<10> · 336644628636372600585073<24> · C131
C131 = P30 · P40 · P63
P30 = 117733382538191803231594866287<30>
P40 = 2026710201705934049640343657007900267053<40>
P63 = 255252584468709657651315972742139518142414624901650982711938171<63>
Number: n N=517323016954539519104299878861340926635621421290927921190677439277366154322066511600055544722124380063 ( 102 digits) Divisors found: Sat Feb 16 09:01:49 2008 prp40 factor: 2026710201705934049640343657007900267053 Sat Feb 16 09:01:49 2008 prp63 factor: 255252584468709657651315972742139518142414624901650982711938171 Sat Feb 16 09:01:49 2008 elapsed time 00:44:05 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 6.88 hours. Scaled time: 8.90 units (timescale=1.293). Factorization parameters were as follows: name: KA_6_178_1 n: 517323016954539519104299878861340926635621421290927921190677439277366154322066511600055544722124380063 skew: 15433.97 # norm 1.78e+14 c5: 11340 c4: -210213358 c3: 822174645868 c2: 75764522101157211 c1: 818325393752775442490 c0: -2819299342594052083394120 # alpha -6.47 Y1: 26670758489 Y0: -34027575905630961057 # Murphy_E 2.65e-09 # M 40674032749483108661264023893591174142795240211848184405971828080856584641743182758663277192319315897 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 800000) Primes: RFBsize:169511, AFBsize:169673, largePrimes:3882109 encountered Relations: rels:3787702, finalFF:401409 Max relations in full relation-set: 28 Initial matrix: 339268 x 401409 with sparse part having weight 19928409. Pruned matrix : 268583 x 270343 with weight 9451561. Total sieving time: 6.19 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.52 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 6.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10176+43)/9 = (2)1757<176> = 3 · 48971055909467<14> · 228716882727738050432210325227<30> C132
C132 = P36 · P97
P36 = 404075342846215616011831753904136079<36>
P97 = 1636689099026739176899658261871273953653786966383885960693665967442392548030342512207866446134919<97>
(4·10186+23)/9 = (4)1857<186> = 32 · 31 · 47 · 179 · 12743 · 18541 · 1519769856019001<16> · 2375090177092212015679433<25> · C132
C132 = P30 · P103
P30 = 118270750950320247085810333307<30>
P103 = 1877250672708337815991348552500624443658145975176294067599617799874145110659688921540769920338722450837<103>
By Sinkiti Sibata / GGNFS
(11·10158+61)/9 = 1(2)1579<159> = 32 · 29 · 2417 · 850637 · 20357861 · 34953302776819747<17> · C123
C123 = P35 · P37 · P52
P35 = 11920843112330238846091327134150343<35>
P37 = 5533180785858157565411447744926232573<37>
P52 = 4852734739010638529320321809660405214270996767425057<52>
Number: 12229_158 N=320087257170379743745512038306524681451620506378742376663804041998523402739301653903245691152522955108248039967344338259723 ( 123 digits) SNFS difficulty: 159 digits. Divisors found: r1=11920843112330238846091327134150343 (pp35) r2=5533180785858157565411447744926232573 (pp37) r3=4852734739010638529320321809660405214270996767425057 (pp52) Version: GGNFS-0.77.1-20060513-k8 Total time: 65.85 hours. Scaled time: 131.77 units (timescale=2.001). Factorization parameters were as follows: name: 12229_158 n: 320087257170379743745512038306524681451620506378742376663804041998523402739301653903245691152522955108248039967344338259723 m: 10000000000000000000000000000000 c5: 11000 c0: 61 skew: 0.35 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:284229, largePrimes:5875710 encountered Relations: rels:6004080, finalFF:729809 Max relations in full relation-set: 28 Initial matrix: 567442 x 729809 with sparse part having weight 53653069. Pruned matrix : 449842 x 452743 with weight 37603921. Total sieving time: 62.66 hours. Total relation processing time: 0.25 hours. Matrix solve time: 2.73 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 65.85 hours. --------- CPU info (if available) ----------
(11·10148+61)/9 = 1(2)1479<149> = 72 · 1633007 · 73216302241<11> · 2824656770917<13> · C117
C117 = P53 · P65
P53 = 11902378768854297574550472754083771786485974613585009<53>
P65 = 62052432086827128788540349410927173560773558990532128882788082911<65>
Number: 12229_148 N=738571550226024392405858563209788417084723191785980144725541056915264197135700547827962950228341820185276112038681199 ( 117 digits) SNFS difficulty: 149 digits. Divisors found: r1=11902378768854297574550472754083771786485974613585009 (pp53) r2=62052432086827128788540349410927173560773558990532128882788082911 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 49.88 hours. Scaled time: 33.72 units (timescale=0.676). Factorization parameters were as follows: name: 12229_148 n: 738571550226024392405858563209788417084723191785980144725541056915264197135700547827962950228341820185276112038681199 m: 100000000000000000000000000000 c5: 11000 c0: 61 skew: 0.35 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 5750001) Primes: RFBsize:114155, AFBsize:114409, largePrimes:3268022 encountered Relations: rels:3436305, finalFF:267502 Max relations in full relation-set: 28 Initial matrix: 228631 x 267502 with sparse part having weight 36416837. Pruned matrix : 219053 x 220260 with weight 28994291. Total sieving time: 47.18 hours. Total relation processing time: 0.37 hours. Matrix solve time: 2.20 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 49.88 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(65·10162+43)/9 = 7(2)1617<163> = 3 · 677 · 10193 · 1573237 · 10037269604188014489625787<26> · C125
C125 = P54 · P72
P54 = 137954707191964580423759095965459263169617010356229781<54>
P72 = 160144723690182851686046435792735566441355086416901397233226149694716271<72>
Number: n N=22092718465017248771037776619885496253769731032787367896536812757589874812967027353750731118374142593784616914591704075466651 ( 125 digits) SNFS difficulty: 163 digits. Divisors found: Fri Feb 15 11:54:20 2008 prp54 factor: 137954707191964580423759095965459263169617010356229781 Fri Feb 15 11:54:20 2008 prp72 factor: 160144723690182851686046435792735566441355086416901397233226149694716271 Fri Feb 15 11:54:20 2008 elapsed time 00:55:13 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.21 hours. Scaled time: 64.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_2_161_7 n: 22092718465017248771037776619885496253769731032787367896536812757589874812967027353750731118374142593784616914591704075466651 skew: 0.37 deg: 5 c5: 6500 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:230209, AFBsize:230052, largePrimes:7364839 encountered Relations: rels:6841139, finalFF:523751 Max relations in full relation-set: 28 Initial matrix: 460328 x 523751 with sparse part having weight 47945873. Pruned matrix : Total sieving time: 35.04 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 35.21 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS
(11·10169+43)/9 = 1(2)1687<170> = C170
C170 = P48 · P122
P48 = 227030126709317368877348740835730359515559877331<48>
P122 = 53835243803881555060152528124341137855983903787606163934998794151883156545332025716371870291431461909592002513314902039617<122>
Number: 12227_169 N=12222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 170 digits) SNFS difficulty: 171 digits. Divisors found: r1=227030126709317368877348740835730359515559877331 (pp48) r2=53835243803881555060152528124341137855983903787606163934998794151883156545332025716371870291431461909592002513314902039617 (pp122) Version: GGNFS-0.77.1-20050930-nocona Total time: 97.15 hours. Scaled time: 180.60 units (timescale=1.859). Factorization parameters were as follows: n: 12222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 10000000000000000000000000000000000 c5: 11 c0: 430 skew: 2.08 type: snfs Factor base limits: 8000000/8000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [4000000, 8500001) Primes: RFBsize:539777, AFBsize:539881, largePrimes:9820148 encountered Relations: rels:9752653, finalFF:1218038 Max relations in full relation-set: 28 Initial matrix: 1079723 x 1218038 with sparse part having weight 64331651. Pruned matrix : 958872 x 964334 with weight 46529221. Total sieving time: 91.68 hours. Total relation processing time: 0.17 hours. Matrix solve time: 5.20 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,8000000,8000000,28,28,49,49,2.6,2.6,100000 total time: 97.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406452) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405111) Calibrating delay using timer specific routine.. 4809.73 BogoMIPS (lpj=2404867) Calibrating delay using timer specific routine.. 4714.04 BogoMIPS (lpj=2357021)
By Robert Backstrom / GMP-ECM, Msieve
2·10174+9 = 2(0)1739<175> = 11 · 449 · 773713 · 2243296177<10> · 74158382575383580813200721<26> · C130
C130 = P34 · P46 · P50
P34 = 6474833169609810754024951641805051<34>
P46 = 6504635362555600808299400218239308558804216297<46>
P50 = 74698635967538385695610601830647283165089131842313<50>
Thu Feb 14 23:19:07 2008 Thu Feb 14 23:19:07 2008 Thu Feb 14 23:19:07 2008 Msieve v. 1.33 Thu Feb 14 23:19:07 2008 random seeds: a04a6710 79a96968 Thu Feb 14 23:19:07 2008 factoring 485887389049117890210490665624086802374006262683353795179735136350962989087028228699823748774961 (96 digits) Thu Feb 14 23:19:08 2008 no P-1/P+1/ECM available, skipping Thu Feb 14 23:19:08 2008 commencing quadratic sieve (96-digit input) Thu Feb 14 23:19:08 2008 using multiplier of 1 Thu Feb 14 23:19:08 2008 using 64kb Opteron sieve core Thu Feb 14 23:19:08 2008 sieve interval: 18 blocks of size 65536 Thu Feb 14 23:19:08 2008 processing polynomials in batches of 6 Thu Feb 14 23:19:08 2008 using a sieve bound of 2263381 (83529 primes) Thu Feb 14 23:19:08 2008 using large prime bound of 339507150 (28 bits) Thu Feb 14 23:19:08 2008 using double large prime bound of 2267399519796450 (43-52 bits) Thu Feb 14 23:19:08 2008 using trial factoring cutoff of 52 bits Thu Feb 14 23:19:08 2008 polynomial 'A' values have 12 factors Fri Feb 15 02:20:26 2008 83856 relations (20273 full + 63583 combined from 1263041 partial), need 83625 Fri Feb 15 02:20:27 2008 begin with 1283314 relations Fri Feb 15 02:20:28 2008 reduce to 220570 relations in 12 passes Fri Feb 15 02:20:28 2008 attempting to read 220570 relations Fri Feb 15 02:20:29 2008 recovered 220570 relations Fri Feb 15 02:20:29 2008 recovered 205365 polynomials Fri Feb 15 02:20:30 2008 attempting to build 83856 cycles Fri Feb 15 02:20:30 2008 found 83856 cycles in 5 passes Fri Feb 15 02:20:30 2008 distribution of cycle lengths: Fri Feb 15 02:20:30 2008 length 1 : 20273 Fri Feb 15 02:20:30 2008 length 2 : 14503 Fri Feb 15 02:20:30 2008 length 3 : 13852 Fri Feb 15 02:20:30 2008 length 4 : 11290 Fri Feb 15 02:20:30 2008 length 5 : 8508 Fri Feb 15 02:20:30 2008 length 6 : 6030 Fri Feb 15 02:20:30 2008 length 7 : 3857 Fri Feb 15 02:20:30 2008 length 9+: 5543 Fri Feb 15 02:20:30 2008 largest cycle: 20 relations Fri Feb 15 02:20:30 2008 matrix is 83529 x 83856 (22.9 MB) with weight 5672561 (67.65/col) Fri Feb 15 02:20:30 2008 sparse part has weight 5672561 (67.65/col) Fri Feb 15 02:20:31 2008 filtering completed in 3 passes Fri Feb 15 02:20:31 2008 matrix is 79794 x 79858 (21.9 MB) with weight 5427260 (67.96/col) Fri Feb 15 02:20:31 2008 sparse part has weight 5427260 (67.96/col) Fri Feb 15 02:20:31 2008 saving the first 48 matrix rows for later Fri Feb 15 02:20:31 2008 matrix is 79746 x 79858 (15.2 MB) with weight 4438378 (55.58/col) Fri Feb 15 02:20:31 2008 sparse part has weight 3514587 (44.01/col) Fri Feb 15 02:20:31 2008 matrix includes 64 packed rows Fri Feb 15 02:20:31 2008 using block size 31943 for processor cache size 1024 kB Fri Feb 15 02:20:32 2008 commencing Lanczos iteration Fri Feb 15 02:20:32 2008 memory use: 13.9 MB Fri Feb 15 02:21:17 2008 lanczos halted after 1263 iterations (dim = 79745) Fri Feb 15 02:21:17 2008 recovered 16 nontrivial dependencies Fri Feb 15 02:21:18 2008 prp46 factor: 6504635362555600808299400218239308558804216297 Fri Feb 15 02:21:18 2008 prp50 factor: 74698635967538385695610601830647283165089131842313 Fri Feb 15 02:21:18 2008 elapsed time 03:02:11
By Robert Backstrom / GMP-ECM, Msieve
(4·10173+23)/9 = (4)1727<173> = 13 · 547 · 3457 · 7742677 · 92344480022803<14> · 17066676439984957<17> · C129
C129 = P32 · P98
P32 = 11547865405892626687884211439681<32>
P98 = 12830236827967471491637490179825912863260274126012053520529623406724702467484496830797955662017043<98>
(71·10168-17)/9 = 7(8)1677<169> = 33 · 61 · 692912981 · 1573653452257<13> · 170069809907779157<18> · C128
C128 = P32 · P42 · P55
P32 = 81536190423163571092923033457303<32>
P42 = 115590451395574759743903097570647982150751<42>
P55 = 2740531773173258744191221418003242079036846153092673753<55>
Thu Feb 14 11:42:36 2008 Thu Feb 14 11:42:36 2008 Thu Feb 14 11:42:36 2008 Msieve v. 1.33 Thu Feb 14 11:42:36 2008 random seeds: ab969178 270d785b Thu Feb 14 11:42:36 2008 factoring 316779304725011877124301481980306957487837556226816564915372139752044167430993971558690106938503 (96 digits) Thu Feb 14 11:42:37 2008 searching for 15-digit factors Thu Feb 14 11:42:38 2008 commencing quadratic sieve (96-digit input) Thu Feb 14 11:42:38 2008 using multiplier of 5 Thu Feb 14 11:42:38 2008 using 64kb Opteron sieve core Thu Feb 14 11:42:38 2008 sieve interval: 18 blocks of size 65536 Thu Feb 14 11:42:38 2008 processing polynomials in batches of 6 Thu Feb 14 11:42:38 2008 using a sieve bound of 2265611 (83426 primes) Thu Feb 14 11:42:38 2008 using large prime bound of 339841650 (28 bits) Thu Feb 14 11:42:38 2008 using double large prime bound of 2271422065653900 (43-52 bits) Thu Feb 14 11:42:38 2008 using trial factoring cutoff of 52 bits Thu Feb 14 11:42:38 2008 polynomial 'A' values have 12 factors Thu Feb 14 16:54:45 2008 83627 relations (20300 full + 63327 combined from 1266567 partial), need 83522 Thu Feb 14 16:54:46 2008 begin with 1286866 relations Thu Feb 14 16:54:47 2008 reduce to 219798 relations in 11 passes Thu Feb 14 16:54:47 2008 attempting to read 219798 relations Thu Feb 14 16:54:50 2008 recovered 219798 relations Thu Feb 14 16:54:50 2008 recovered 206527 polynomials Thu Feb 14 16:54:50 2008 attempting to build 83627 cycles Thu Feb 14 16:54:50 2008 found 83627 cycles in 5 passes Thu Feb 14 16:54:51 2008 distribution of cycle lengths: Thu Feb 14 16:54:51 2008 length 1 : 20300 Thu Feb 14 16:54:51 2008 length 2 : 14221 Thu Feb 14 16:54:51 2008 length 3 : 14186 Thu Feb 14 16:54:51 2008 length 4 : 11367 Thu Feb 14 16:54:51 2008 length 5 : 8506 Thu Feb 14 16:54:51 2008 length 6 : 5896 Thu Feb 14 16:54:51 2008 length 7 : 3790 Thu Feb 14 16:54:51 2008 length 9+: 5361 Thu Feb 14 16:54:51 2008 largest cycle: 19 relations Thu Feb 14 16:54:51 2008 matrix is 83426 x 83627 (23.6 MB) with weight 5854011 (70.00/col) Thu Feb 14 16:54:51 2008 sparse part has weight 5854011 (70.00/col) Thu Feb 14 16:54:53 2008 filtering completed in 3 passes Thu Feb 14 16:54:53 2008 matrix is 79580 x 79644 (22.7 MB) with weight 5620651 (70.57/col) Thu Feb 14 16:54:53 2008 sparse part has weight 5620651 (70.57/col) Thu Feb 14 16:54:54 2008 saving the first 48 matrix rows for later Thu Feb 14 16:54:54 2008 matrix is 79532 x 79644 (17.0 MB) with weight 4764049 (59.82/col) Thu Feb 14 16:54:54 2008 sparse part has weight 3989892 (50.10/col) Thu Feb 14 16:54:54 2008 matrix includes 64 packed rows Thu Feb 14 16:54:54 2008 using block size 21845 for processor cache size 512 kB Thu Feb 14 16:54:55 2008 commencing Lanczos iteration Thu Feb 14 16:54:55 2008 memory use: 14.8 MB Thu Feb 14 16:56:09 2008 lanczos halted after 1258 iterations (dim = 79530) Thu Feb 14 16:56:09 2008 recovered 17 nontrivial dependencies Thu Feb 14 16:56:10 2008 prp42 factor: 115590451395574759743903097570647982150751 Thu Feb 14 16:56:10 2008 prp55 factor: 2740531773173258744191221418003242079036846153092673753 Thu Feb 14 16:56:10 2008 elapsed time 05:13:34
By Sinkiti Sibata / GGNFS
(11·10157+61)/9 = 1(2)1569<158> = 1499470118834882516029<22> · C136
C136 = P60 · P77
P60 = 298230907234615127467511105889531439850968018155959379903529<60>
P77 = 27331263575954269106179281929739251896488872337195589729335803802039679866769<77>
Number: 12229_157 N=8151027532125232953778580806805926102268082591328572421015894830608242951223091720643534080488498064269911620158916872675205886792927801 ( 136 digits) SNFS difficulty: 158 digits. Divisors found: r1=298230907234615127467511105889531439850968018155959379903529 (pp60) r2=27331263575954269106179281929739251896488872337195589729335803802039679866769 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 59.82 hours. Scaled time: 119.89 units (timescale=2.004). Factorization parameters were as follows: name: 12229_157 n: 8151027532125232953778580806805926102268082591328572421015894830608242951223091720643534080488498064269911620158916872675205886792927801 m: 10000000000000000000000000000000 c5: 1100 c0: 61 skew: 0.56 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:282319, largePrimes:5908492 encountered Relations: rels:6075893, finalFF:766526 Max relations in full relation-set: 28 Initial matrix: 565532 x 766526 with sparse part having weight 52202300. Pruned matrix : 420115 x 423006 with weight 36980807. Total sieving time: 56.81 hours. Total relation processing time: 0.25 hours. Matrix solve time: 2.56 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 59.82 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(11·10137+61)/9 = 1(2)1369<138> = 3 · C137
C137 = P37 · P46 · P55
P37 = 2608315158960413241863591725014062287<37>
P46 = 3302992739511359700540576991511204918126169779<46>
P55 = 4728912045866904847657086157801846080638041217325830291<55>
Number: 12229_137 N=40740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 137 digits) SNFS difficulty: 138 digits. Divisors found: r1=2608315158960413241863591725014062287 (pp37) r2=3302992739511359700540576991511204918126169779 (pp46) r3=4728912045866904847657086157801846080638041217325830291 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 16.64 hours. Scaled time: 11.25 units (timescale=0.676). Factorization parameters were as follows: name: 12229_137 n: 40740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 m: 1000000000000000000000000000 c5: 1100 c0: 61 skew: 0.56 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2200001) Primes: RFBsize:78498, AFBsize:63770, largePrimes:1670073 encountered Relations: rels:1697648, finalFF:166498 Max relations in full relation-set: 28 Initial matrix: 142335 x 166498 with sparse part having weight 18460835. Pruned matrix : 136551 x 137326 with weight 13956169. Total sieving time: 15.90 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.54 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 16.64 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM
(11·10131+61)/9 = 1(2)1309<132> = 32 · 23 · 128341229 · 587699374274461<15> · C106
C106 = P47 · P60
P47 = 27843156313687337057580167590404968827671407657<47>
P60 = 281151200709441301666481826274926616585678854755382437224859<60>
Number: n N=7828136829133856296228799392803241434599084869328918335227018985215989728730754311284916914786485163345363 ( 106 digits) SNFS difficulty: 132 digits. Divisors found: r1=27843156313687337057580167590404968827671407657 (pp47) r2=281151200709441301666481826274926616585678854755382437224859 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.23 hours. Scaled time: 9.15 units (timescale=1.749). Factorization parameters were as follows: name: KA_1_2_130_9 n: 7828136829133856296228799392803241434599084869328918335227018985215989728730754311284916914786485163345363 type: snfs skew: 0.89 deg: 5 c5: 110 c0: 61 m: 100000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 100000) Primes: RFBsize:114155, AFBsize:114754, largePrimes:4459635 encountered Relations: rels:3776537, finalFF:262915 Max relations in full relation-set: 28 Initial matrix: 228976 x 262915 with sparse part having weight 9371341. Pruned matrix : 190800 x 192008 with weight 5465175. Total sieving time: 4.71 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.38 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.2,2.2,50000 total time: 5.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10146+61)/9 = 1(2)1459<147> = 3 · C146
C146 = P71 · P75
P71 = 62188614383244022472029465985668051260768030696286619714122612487056057<71>
P75 = 655115749800623400328076022959829614473983866531716207736106837240179182399<75>
Number: n N=40740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 146 digits) SNFS difficulty: 147 digits. Divisors found: r1=62188614383244022472029465985668051260768030696286619714122612487056057 (pp71) r2=655115749800623400328076022959829614473983866531716207736106837240179182399 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.95 hours. Scaled time: 16.36 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_145_9 n: 40740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 skew: 0.89 deg: 5 c5: 110 c0: 61 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:183072, AFBsize:183928, largePrimes:6812996 encountered Relations: rels:6186693, finalFF:411405 Max relations in full relation-set: 48 Initial matrix: 367067 x 411405 with sparse part having weight 33106963. Pruned matrix : 334890 x 336789 with weight 21893831. Total sieving time: 7.91 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.80 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 8.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(11·10144+61)/9 = 1(2)1439<145> = C145
C145 = P45 · P100
P45 = 611795764847397761032073514896073448555427693<45>
P100 = 1997761822570127057468384244424067756878599815628503448366355433606752749308486975935581518284356553<100>
Number: n N=1222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 ( 145 digits) SNFS difficulty: 146 digits. Divisors found: r1=611795764847397761032073514896073448555427693 (pp45) r2=1997761822570127057468384244424067756878599815628503448366355433606752749308486975935581518284356553 (pp100) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 12.91 hours. Scaled time: 16.84 units (timescale=1.305). Factorization parameters were as follows: name: KA_1_2_143_9 n: 1222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222229 skew: 2.23 deg: 5 c5: 11 c0: 610 m: 100000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1250001) Primes: RFBsize:203362, AFBsize:202469, largePrimes:6738611 encountered Relations: rels:6158473, finalFF:455293 Max relations in full relation-set: 28 Initial matrix: 405896 x 455293 with sparse part having weight 25724138. Pruned matrix : 361436 x 363529 with weight 16686234. Total sieving time: 10.51 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.88 hours. Total square root time: 0.30 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 12.91 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10169+3 = 7(0)1683<170> = 61 · 73 · 1670391467493499<16> · 32397946134897073854757<23> · C129
C129 = P37 · P92
P37 = 5175216009374760485968852867656086119<37>
P92 = 56128200837449627643617345573916608964872045642509134587009683630669439311948801876882681303<92>
By Tyler Cadigan / GGNFS, Msieve
(16·10190-61)/9 = 1(7)1891<191> = 13 · 109 · 8353 · 1219891 · 61566587 · 195452790030217399<18> · 780043984544746420521955762987<30> · C123
C123 = P59 · P64
P59 = 34094621548106215029203735244490780734764543703560567350309<59>
P64 = 3847265829146448766592546059775321362358930468529413258124622339<64>
Number: 17771_190 N=131171072439709236017541566171110987272288625359372833448549849838030010503222808824551261610337811526472955528084539952751 ( 123 digits) Divisors found: r1=34094621548106215029203735244490780734764543703560567350309 r2=3847265829146448766592546059775321362358930468529413258124622339 Version: Total time: 66.45 hours. Scaled time: 171.78 units (timescale=2.585). Factorization parameters were as follows: name: 17771_190 n: 131171072439709236017541566171110987272288625359372833448549849838030010503222808824551261610337811526472955528084539952751 skew: 47294.61 # norm 4.29e+016 c5: 61560 c4: -17874778431 c3: -663111392301151 c2: -9801637011659482709 c1: 576431364686994339439656 c0: 1878564961861044229586185155 # alpha -5.56 Y1: 20572302513413 Y0: -292219818845037446106556 # Murphy_E 2.11e-010 # M 45786454644921295568793144589561397825475712419937552306625156200432901874416142023443502841645551053254909538820787308731 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5440001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 752592 x 752840 Polynomial selection time: 8.04 hours. Total sieving time: 58.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,122,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 66.45 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
(11·10160+61)/9 = 1(2)1599<161> = 7 · 316317381526758701<18> · C142
C142 = P34 · P109
P34 = 1483611984731557267694074530155063<34>
P109 = 3720563711585825353249049668598930117813079072610125563407773914202785970215359546760420442923601907083314569<109>
By Sinkiti Sibata / GGNFS
(11·10113+61)/9 = 1(2)1129<114> = 33 · 32797 · C108
C108 = P53 · P55
P53 = 89185329511743931743340432259475771218472031894737047<53>
P55 = 1547600532511926130818633628615142423602309348889997853<55>
Number: 12229_113 N=138023263444626509676497310867663169533598061952620126978892855175577511292498774416158458736878849829560091 ( 108 digits) SNFS difficulty: 114 digits. Divisors found: r1=89185329511743931743340432259475771218472031894737047 (pp53) r2=1547600532511926130818633628615142423602309348889997853 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.44 hours. Scaled time: 1.65 units (timescale=0.676). Factorization parameters were as follows: name:12229_113 n: 138023263444626509676497310867663169533598061952620126978892855175577511292498774416158458736878849829560091 m: 10000000000000000000000 c5: 11000 c0: 61 skew: 0.35 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63930, largePrimes:2203646 encountered Relations: rels:2410372, finalFF:336430 Max relations in full relation-set: 28 Initial matrix: 113095 x 336430 with sparse part having weight 29283357. Pruned matrix : 73057 x 73686 with weight 5021225. Total sieving time: 2.24 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.44 hours. --------- CPU info (if available) ----------
(11·10115+61)/9 = 1(2)1149<116> = 223 · 617 · C110
C110 = P34 · P77
P34 = 7212822845172862724558959691868961<34>
P77 = 12315580379654942378938247217218906466558770709724027914022290754605779304179<77>
Number: 12229_115 N=88830099513937846386916456906499859890706675743487744272679333838857354203561440953421533546687081438627688019 ( 110 digits) SNFS difficulty: 116 digits. Divisors found: r1=7212822845172862724558959691868961 (pp34) r2=12315580379654942378938247217218906466558770709724027914022290754605779304179 (pp77) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.61 hours. Scaled time: 1.09 units (timescale=0.675). Factorization parameters were as follows: name: 12229_115 n: 88830099513937846386916456906499859890706675743487744272679333838857354203561440953421533546687081438627688019 m: 100000000000000000000000 c5: 11 c0: 61 skew: 1.41 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64130, largePrimes:1981292 encountered Relations: rels:1990054, finalFF:180327 Max relations in full relation-set: 28 Initial matrix: 113295 x 180327 with sparse part having weight 13872256. Pruned matrix : 90740 x 91370 with weight 4669829. Total sieving time: 1.41 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.61 hours. --------- CPU info (if available) ----------
(11·10135+61)/9 = 1(2)1349<136> = 449 · C133
C133 = P41 · P92
P41 = 44733788040439743106075919870152803049769<41>
P92 = 60851061573677909538404481871209053051577251320251971454994510548611542213319025413140789709<92>
Number: 12229_135 N=2722098490472655283345706508290027220984904726552833457065082900272209849047265528334570650829002722098490472655283345706508290027221 ( 133 digits) SNFS difficulty: 136 digits. Divisors found: r1=44733788040439743106075919870152803049769 (pp41) r2=60851061573677909538404481871209053051577251320251971454994510548611542213319025413140789709 (pp92) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.34 hours. Scaled time: 5.63 units (timescale=0.675). Factorization parameters were as follows: name: 12229_135 n: 2722098490472655283345706508290027220984904726552833457065082900272209849047265528334570650829002722098490472655283345706508290027221 m: 1000000000000000000000000000 c5: 11 c0: 61 skew: 1.41 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:64130, largePrimes:1529572 encountered Relations: rels:1534791, finalFF:178563 Max relations in full relation-set: 28 Initial matrix: 142695 x 178563 with sparse part having weight 14130024. Pruned matrix : 131056 x 131833 with weight 8673274. Total sieving time: 7.84 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.35 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.34 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve, GGNFS
(11·10112+61)/9 = 1(2)1119<113> = 7 · 22171 · 289088113781<12> · C96
C96 = P41 · P56
P41 = 23364777919548735601339497408589195152559<41>
P56 = 11659366680299595782072792886752985694167830402696085083<56>
(11·10107+61)/9 = 1(2)1069<108> = 3 · 43 · 967491665150369<15> · C90
C90 = P43 · P48
P43 = 8254078063236444636671476566658758452630059<43>
P48 = 118643694302743846510055142733530124877331720031<48>
Tue Feb 12 09:14:45 2008 Tue Feb 12 09:14:45 2008 Tue Feb 12 09:14:45 2008 Msieve v. 1.33 Tue Feb 12 09:14:45 2008 random seeds: fbd5dde8 054b1945 Tue Feb 12 09:14:45 2008 factoring 979294314485608729379659265652592455768584086435122697907223765060392284274205698203011829 (90 digits) Tue Feb 12 09:14:46 2008 searching for 15-digit factors Tue Feb 12 09:14:46 2008 commencing quadratic sieve (90-digit input) Tue Feb 12 09:14:46 2008 using multiplier of 5 Tue Feb 12 09:14:46 2008 using 64kb Opteron sieve core Tue Feb 12 09:14:46 2008 sieve interval: 18 blocks of size 65536 Tue Feb 12 09:14:46 2008 processing polynomials in batches of 6 Tue Feb 12 09:14:46 2008 using a sieve bound of 1616231 (61176 primes) Tue Feb 12 09:14:46 2008 using large prime bound of 135763404 (27 bits) Tue Feb 12 09:14:46 2008 using double large prime bound of 435520718464356 (42-49 bits) Tue Feb 12 09:14:46 2008 using trial factoring cutoff of 49 bits Tue Feb 12 09:14:46 2008 polynomial 'A' values have 12 factors Tue Feb 12 10:14:53 2008 61405 relations (16554 full + 44851 combined from 665810 partial), need 61272 Tue Feb 12 10:14:53 2008 begin with 682363 relations Tue Feb 12 10:14:54 2008 reduce to 149843 relations in 12 passes Tue Feb 12 10:14:54 2008 attempting to read 149843 relations Tue Feb 12 10:14:55 2008 recovered 149843 relations Tue Feb 12 10:14:55 2008 recovered 130637 polynomials Tue Feb 12 10:14:55 2008 attempting to build 61405 cycles Tue Feb 12 10:14:55 2008 found 61405 cycles in 6 passes Tue Feb 12 10:14:56 2008 distribution of cycle lengths: Tue Feb 12 10:14:56 2008 length 1 : 16554 Tue Feb 12 10:14:56 2008 length 2 : 11742 Tue Feb 12 10:14:56 2008 length 3 : 10834 Tue Feb 12 10:14:56 2008 length 4 : 8104 Tue Feb 12 10:14:56 2008 length 5 : 5795 Tue Feb 12 10:14:56 2008 length 6 : 3613 Tue Feb 12 10:14:56 2008 length 7 : 2201 Tue Feb 12 10:14:56 2008 length 9+: 2562 Tue Feb 12 10:14:56 2008 largest cycle: 21 relations Tue Feb 12 10:14:56 2008 matrix is 61176 x 61405 (15.1 MB) with weight 3715538 (60.51/col) Tue Feb 12 10:14:56 2008 sparse part has weight 3715538 (60.51/col) Tue Feb 12 10:14:56 2008 filtering completed in 3 passes Tue Feb 12 10:14:56 2008 matrix is 57197 x 57261 (14.2 MB) with weight 3488523 (60.92/col) Tue Feb 12 10:14:56 2008 sparse part has weight 3488523 (60.92/col) Tue Feb 12 10:14:57 2008 saving the first 48 matrix rows for later Tue Feb 12 10:14:57 2008 matrix is 57149 x 57261 (9.3 MB) with weight 2781100 (48.57/col) Tue Feb 12 10:14:57 2008 sparse part has weight 2101395 (36.70/col) Tue Feb 12 10:14:57 2008 matrix includes 64 packed rows Tue Feb 12 10:14:57 2008 using block size 22904 for processor cache size 1024 kB Tue Feb 12 10:14:57 2008 commencing Lanczos iteration Tue Feb 12 10:14:57 2008 memory use: 8.9 MB Tue Feb 12 10:15:16 2008 lanczos halted after 905 iterations (dim = 57147) Tue Feb 12 10:15:16 2008 recovered 16 nontrivial dependencies Tue Feb 12 10:15:16 2008 prp43 factor: 8254078063236444636671476566658758452630059 Tue Feb 12 10:15:16 2008 prp48 factor: 118643694302743846510055142733530124877331720031 Tue Feb 12 10:15:16 2008 elapsed time 01:00:31
(11·10123+61)/9 = 1(2)1229<124> = 70607 · 133813186965299890511<21> · C99
C99 = P47 · P53
P47 = 10137105138517733202360425644260487744453606741<47>
P53 = 12761142295089496212129634669299067935927677632288097<53>
Number: n N=129361041132907711288024614211894650311321702762232554416003033514132326809107206608063968053261877 ( 99 digits) SNFS difficulty: 124 digits. Divisors found: Tue Feb 12 11:48:55 2008 prp47 factor: 10137105138517733202360425644260487744453606741 Tue Feb 12 11:48:55 2008 prp53 factor: 12761142295089496212129634669299067935927677632288097 Tue Feb 12 11:48:55 2008 elapsed time 00:09:53 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.11 hours. Scaled time: 1.77 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_2_122_9 n: 129361041132907711288024614211894650311321702762232554416003033514132326809107206608063968053261877 type: snfs deg: 5 c5: 11000 c0: 61 skew: 0.24 m: 1000000000000000000000000 rlim: 700000 alim: 700000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved special-q in [100000, 350001) Primes: RFBsize:56543, AFBsize:56425, largePrimes:2054212 encountered Relations: rels:2103983, finalFF:203790 Max relations in full relation-set: 28 Initial matrix: 113035 x 203790 with sparse part having weight 17909229. Pruned matrix : Total sieving time: 2.05 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.5,2.5,50000 total time: 2.11 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
(11·10119+61)/9 = 1(2)1189<120> = 3 · 761 · 457061314137360899<18> · C99
C99 = P42 · P57
P42 = 297331187884013676219113574010340108544431<42>
P57 = 393939323086765551889841121296691017236081365848804304827<57>
Tue Feb 12 15:42:39 2008 Tue Feb 12 15:42:39 2008 Tue Feb 12 15:42:39 2008 Msieve v. 1.33 Tue Feb 12 15:42:39 2008 random seeds: ac273248 99b8daf8 Tue Feb 12 15:42:39 2008 factoring 117130446887612254743317289337618603555793615683610795182304459859203598933750583971206477797268437 (99 digits) Tue Feb 12 15:42:40 2008 searching for 15-digit factors Tue Feb 12 15:42:41 2008 commencing quadratic sieve (99-digit input) Tue Feb 12 15:42:41 2008 using multiplier of 1 Tue Feb 12 15:42:41 2008 using 64kb Opteron sieve core Tue Feb 12 15:42:41 2008 sieve interval: 18 blocks of size 65536 Tue Feb 12 15:42:41 2008 processing polynomials in batches of 6 Tue Feb 12 15:42:41 2008 using a sieve bound of 2542919 (92845 primes) Tue Feb 12 15:42:41 2008 using large prime bound of 381437850 (28 bits) Tue Feb 12 15:42:41 2008 using double large prime bound of 2796164870269350 (43-52 bits) Tue Feb 12 15:42:41 2008 using trial factoring cutoff of 52 bits Tue Feb 12 15:42:41 2008 polynomial 'A' values have 13 factors Wed Feb 13 00:08:09 2008 93124 relations (21863 full + 71261 combined from 1412845 partial), need 92941 Wed Feb 13 00:08:11 2008 begin with 1434707 relations Wed Feb 13 00:08:12 2008 reduce to 247553 relations in 11 passes Wed Feb 13 00:08:12 2008 attempting to read 247553 relations Wed Feb 13 00:08:16 2008 recovered 247553 relations Wed Feb 13 00:08:16 2008 recovered 237150 polynomials Wed Feb 13 00:08:16 2008 attempting to build 93124 cycles Wed Feb 13 00:08:16 2008 found 93123 cycles in 5 passes Wed Feb 13 00:08:17 2008 distribution of cycle lengths: Wed Feb 13 00:08:17 2008 length 1 : 21863 Wed Feb 13 00:08:17 2008 length 2 : 15753 Wed Feb 13 00:08:17 2008 length 3 : 15456 Wed Feb 13 00:08:17 2008 length 4 : 12692 Wed Feb 13 00:08:17 2008 length 5 : 9820 Wed Feb 13 00:08:17 2008 length 6 : 6695 Wed Feb 13 00:08:17 2008 length 7 : 4456 Wed Feb 13 00:08:17 2008 length 9+: 6388 Wed Feb 13 00:08:17 2008 largest cycle: 21 relations Wed Feb 13 00:08:18 2008 matrix is 92845 x 93123 (25.1 MB) with weight 6203991 (66.62/col) Wed Feb 13 00:08:18 2008 sparse part has weight 6203991 (66.62/col) Wed Feb 13 00:08:20 2008 filtering completed in 3 passes Wed Feb 13 00:08:20 2008 matrix is 89183 x 89247 (24.1 MB) with weight 5972500 (66.92/col) Wed Feb 13 00:08:20 2008 sparse part has weight 5972500 (66.92/col) Wed Feb 13 00:08:21 2008 saving the first 48 matrix rows for later Wed Feb 13 00:08:21 2008 matrix is 89135 x 89247 (14.6 MB) with weight 4655973 (52.17/col) Wed Feb 13 00:08:21 2008 sparse part has weight 3297383 (36.95/col) Wed Feb 13 00:08:21 2008 matrix includes 64 packed rows Wed Feb 13 00:08:21 2008 using block size 21845 for processor cache size 512 kB Wed Feb 13 00:08:22 2008 commencing Lanczos iteration Wed Feb 13 00:08:22 2008 memory use: 14.5 MB Wed Feb 13 00:09:40 2008 lanczos halted after 1411 iterations (dim = 89133) Wed Feb 13 00:09:40 2008 recovered 15 nontrivial dependencies Wed Feb 13 00:09:41 2008 prp42 factor: 297331187884013676219113574010340108544431 Wed Feb 13 00:09:41 2008 prp57 factor: 393939323086765551889841121296691017236081365848804304827 Wed Feb 13 00:09:41 2008 elapsed time 08:27:02
By Robert Backstrom / GMP-ECM
(11·10134+61)/9 = 1(2)1339<135> = 3 · 887 · 35863 · 6443166705211<13> · 5420992073158442273512673551<28> · C86
C86 = P29 · P57
P29 = 72262687717088370908767938209<29>
P57 = 507418660021790002190944224034674082883979558173581771547<57>
(11·10117+61)/9 = 1(2)1169<118> = 199 · 6247 · 1710937 · 158006612980033<15> · C91
C91 = P33 · P59
P33 = 263003561317130722985502794515043<33>
P59 = 13827850710715765070628800684573938236616215726252446506831<59>
(11·10109+61)/9 = 1(2)1089<110> = 19 · 23 · 19389658353125041<17> · C91
C91 = P32 · P59
P32 = 25963864742768432702463389177291<32>
P59 = 55555779286126867906535634003991867240948718030556740625907<59>
(11·10147+61)/9 = 1(2)1469<148> = 227 · 50647 · 32830739197093<14> · 3144183907883242907077468873230638509<37> · C91
C91 = P35 · P56
P35 = 48362529052411789499072324359991381<35>
P56 = 21294771654514384272421899428463822955945910176527190253<56>
By Sinkiti Sibata / GGNFS
(11·10166+7)/9 = 1(2)1653<167> = 32443 · 121369 · 67617421 · C149
C149 = P42 · P108
P42 = 101989684325869449705527286805060691736463<42>
P108 = 450097442915430795779994542402496558803504752094572069564062884789059603979985386323743477433742726962278103<108>
Number: 12223_166 N=45905296118825831622186591617833147208955244311512453516285503045623177834727084405817833581225020542229541491682063403005260492580868462169391569689 ( 149 digits) SNFS difficulty: 167 digits. Divisors found: r1=101989684325869449705527286805060691736463 (pp42) r2=450097442915430795779994542402496558803504752094572069564062884789059603979985386323743477433742726962278103 (pp108) Version: GGNFS-0.77.1-20060513-k8 Total time: 143.84 hours. Scaled time: 286.53 units (timescale=1.992). Factorization parameters were as follows: name: 12223_166 n: 45905296118825831622186591617833147208955244311512453516285503045623177834727084405817833581225020542229541491682063403005260492580868462169391569689 m: 1000000000000000000000000000000000 c5: 110 c0: 7 skew: 0.58 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7050001) Primes: RFBsize:380800, AFBsize:381423, largePrimes:6105750 encountered Relations: rels:6346470, finalFF:883846 Max relations in full relation-set: 28 Initial matrix: 762290 x 883846 with sparse part having weight 64492068. Pruned matrix : 667219 x 671094 with weight 48020573. Total sieving time: 137.22 hours. Total relation processing time: 0.36 hours. Matrix solve time: 5.98 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 143.84 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, Msieve
9·10168-7 = 8(9)1673<169> = 11369 · 646974011 · 57572701889099<14> · 5558386317692349989<19> · C124
C124 = P44 · P80
P44 = 49210457799346902131698308801292711620150749<44>
P80 = 77698147296321048398209905863232249781232086869460260825621557916054516169171993<80>
(43·10169-7)/9 = 4(7)169<170> = 367 · 4950421240482181291<19> · 2775699859016352530477357<25> · C124
C124 = P34 · P91
P34 = 3156831836580797731306525780758247<34>
P91 = 3001191966934602598099805375944976471798484695463390773319663402408270737672035770264235879<91>
(88·10174-7)/9 = 9(7)174<175> = 3 · 17 · 95379796597<11> · 54666930292056143<17> · 511970441008370800237<21> · C125
C125 = P30 · P30 · P33 · P34
P30 = 173757058143498816926924955673<30>
P30 = 465925434517972487069313694967<30>
P33 = 412578114115540514069896286025893<33>
P34 = 2150200504074416197658991311110927<34>
4·10173+9 = 4(0)1729<174> = 241 · 2609 · 49277 · 37490161253921<14> · 817315416761140501205161<24> · C126
C126 = P39 · P88
P39 = 192750975747012200555324918025716343881<39>
P88 = 2185853367735352411488999932909611191071596551799121040574783002059359617054726183998413<88>
(5·10169-23)/9 = (5)1683<169> = 3 · 6774331 · 306184391 · 557012815014644105825820881<27> · C127
C127 = P31 · P35 · P62
P31 = 2087471764369186746744924457169<31>
P35 = 76293479821546473110280044511336659<35>
P62 = 10064299668743025389207488369674286100888124822116938935677981<62>
(13·10175-1)/3 = 4(3)175<176> = 53 · 1006333 · 5346101863<10> · 77007123278857<14> · 204401323997546371<18> · C127
C127 = P32 · P96
P32 = 28651730387084497770902398579711<32>
P96 = 336978213701637697571422651263830961732419798315444065386385634383590453793058262972127890968327<96>
4·10176+3 = 4(0)1753<177> = 132 · 14479 · 1727839 · 30175961085952909008534878737421283007<38> · C127
C127 = P34 · P93
P34 = 3661730251935283360279392267311779<34>
P93 = 856217277330621580192849824402420828954681540263284216581477838361242201893253167019116379159<93>
The factor table of 122...229 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Tyler Cadigan / GGNFS, Msieve
(64·10181-1)/9 = 7(1)181<182> = 2027 · 4241 · 706523 · 1094470049<10> · C161
C161 = P72 · P89
P72 = 902771192272967778558243776478070514120292619368690645567010419017401517<72>
P89 = 11849705735852950447627236292576531232583382440257054318850407174201209353635326074829147<89>
Number: 71111_181 N=10697572975239793063606032978084292467067822049528412583082347469153753461107302080860461265886162919093566187463970134567420022290339189108159132374275673615999 ( 161 digits) SNFS difficulty: 182 digits. Divisors found: r1=902771192272967778558243776478070514120292619368690645567010419017401517 r2=11849705735852950447627236292576531232583382440257054318850407174201209353635326074829147 Version: Total time: 306.07 hours. Scaled time: 790.28 units (timescale=2.582). Factorization parameters were as follows: n: 10697572975239793063606032978084292467067822049528412583082347469153753461107302080860461265886162919093566187463970134567420022290339189108159132374275673615999 m: 2000000000000000000000000000000000000 c5: 20 c4: 0 c3: 0 c2: 0 c1: 0 c0: -1 skew: 0.55 type: snfs Y1: 1 Y0: -2000000000000000000000000000000000000 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8900001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 860542 x 860790 Total sieving time: 306.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 306.07 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM
(2·10174+61)/9 = (2)1739<174> = 7 · 31 · 2039 · 2287 · 1601389 · 1020612252807407600156466188953<31> · C127
C127 = P31 · P97
P31 = 1020612252807407600156466188953<31>
P97 = 9267549867506020078240059593658577219817808702660486443916526167862619471929169641286722869220679<97>
(2·10178+61)/9 = (2)1779<178> = 3 · 2027 · 20297 · 2066378869<10> · 3247837269569<13> · C148
C148 = P27 · C122
P27 = 163433233996276243474084319<27>
C122 = [16414816924183620628070288142730847259538958407278070871366182577042951560674699400450759287353464473072300307093265371783<122>]
By Robert Backstrom / GMP-ECM, Msieve
(43·10167-7)/9 = 4(7)167<168> = 3 · 113 · 491 · 993431 · 3245863392116255245078685507<28> · C129
C129 = P29 · P101
P29 = 27530433290624738915011972223<29>
P101 = 32334322329331329096070235876248176740375231051072784305900774570153124823803731961300200455222281203<101>
5·10168-3 = 4(9)1677<169> = 2957 · 5297 · 38287 · 66179 · 1421954227<10> · 1694194073272983839<19> · C125
C125 = P34 · P91
P34 = 8731823085626565428330649512690831<34>
P91 = 5989126214432165607435098739078535035401301616100708973660232195133893598575906722810990487<91>
2·10167-3 = 1(9)1667<168> = 7 · 77550151291532631003351523<26> · C141
C141 = P37 · P105
P37 = 1416288347210403639057173330195587867<37>
P105 = 260134302671767920102022631505867541342722247157905131978577734973578865145671722044817281277952599937931<105>
(82·10169-1)/9 = 9(1)169<170> = 7 · 13 · 1193432857<10> · 478477940789<12> · 17915037325037174830484621<26> · C122
C122 = P32 · P91
P32 = 32484371140271987256060780720151<32>
P91 = 3012852418652154785011905762729241593097128731869132200674495589633594003211540806300169387<91>
9·10173-7 = 8(9)1723<174> = 317 · 31815104256736732410487<23> · 1143831950766122847147685783<28> · C122
C122 = P35 · P88
P35 = 32933203402548031161720747926069273<35>
P88 = 2368938010738226751172660755825073523676287922290421869222162020029734816560986221793413<88>
(10173+71)/9 = (1)1729<173> = 232 · 107 · 424722629 · 3163656490366535907132680457817794161<37> · C123
C123 = P36 · P40 · P47
P36 = 187679214118451681266132692899356843<36>
P40 = 9195777497317241672839400152874797906417<40>
P47 = 84648387182546183617852698023055943681186500107<47>
By JMB / GMP-ECM
(2·10168+61)/9 = (2)1679<168> = 7 · 14455081350043<14> · C154
C154 = P39 · P116
P39 = 124665318009842949761185556866477754527<39>
P116 = 17616647193806251861229772487131487378494707726207548488604765361306707918929630500734870981346369090407284002821927<116>
(2·10169+61)/9 = (2)1689<169> = 3 · 397 · 2174019307913<13> · C153
C153 = P33 · P121
P33 = 155563984348954661900854974395441<33>
P121 = 5517003634007995443119710663047195342439310806021769462472359559639148189247375617671640931735072033807669397978259390843<121>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(28·10166+17)/9 = 3(1)1653<167> = 32 · 3098612050986082314588917513<28> · C139
C139 = P35 · P104
P35 = 15690324817273401715948623986515369<35>
P104 = 71100699358036734069101432325185455650755867126782812613471077612512751318328514905837455085857243459281<104>
7·10167+1 = 7(0)1661<168> = 94126111912362384454419640507<29> · C139
C139 = P35 · P105
P35 = 45944168788570289296719424358942927<35>
P105 = 161866703314530544206931137643404221120769747950795429104385791774237543764981165611916824698958062426909<105>
8·10167-9 = 7(9)1661<168> = 2371 · 3152099 · 68098319 · 39805790809<11> · C140
C140 = P33 · P108
P33 = 328122692405400099376586451015551<33>
P108 = 120348219501465859000916415860703533989146155732677824787903392809000729377628019185401396804542816303837799<108>
(46·10199-1)/9 = 5(1)199<200> = 3 · 55921 · 341701 · 476351 · 614051 · 58174269328757521<17> · 582857153092184281963<21> · C140
C140 = P33 · P108
P33 = 152159122038178839896993789376937<33>
P108 = 590813353794208480835899546789264311537044346698701181714273385252084401898654909485599983690398143316984447<108>
(34·10166-43)/9 = 3(7)1653<167> = 33 · 334306839006823133579471153<27> · C139
C139 = P31 · P48 · P61
P31 = 6442347110462974423706047241203<31>
P48 = 482409865451456968711095592247299291866460859567<48>
P61 = 1346688281084137187308096903842451133318456201425034896421683<61>
Number: n N=649655712482852483347779169077738335847188574070186547360431816947990739875046547488854069593255264676791261 ( 108 digits) Divisors found: Sat Feb 9 22:44:45 2008 prp48 factor: 482409865451456968711095592247299291866460859567 Sat Feb 9 22:44:45 2008 prp61 factor: 1346688281084137187308096903842451133318456201425034896421683 Sat Feb 9 22:44:45 2008 elapsed time 00:20:13 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 7.97 hours. Scaled time: 6.67 units (timescale=0.837). Factorization parameters were as follows: name: n n: 649655712482852483347779169077738335847188574070186547360431816947990739875046547488854069593255264676791261 skew: 14944.95 # norm 2.97e+15 c5: 485280 c4: -211392396 c3: -172714567923928 c2: -549425193124079357 c1: -877342288911281723800 c0: 100702957185654776225441700 # alpha -8.28 Y1: 195526208023 Y0: -266279787393641041081 # Murphy_E 1.54e-09 # M 53391717093376356172982235894071299555959712989798205258165735547349383107399703860337342131677000333041742 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1150651) Primes: RFBsize:183072, AFBsize:183595, largePrimes:4066133 encountered Relations: rels:3988898, finalFF:410603 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 7.83 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 7.97 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6029.31 BogoMIPS (lpj=3014656) Total of 2 processors activated (11993.08 BogoMIPS).
By matsui / GGNFS
4·10175+1 = 4(0)1741<176> = 16811 · C172
C172 = P47 · P51 · P75
P47 = 33374333358396914109100082498630504183786129383<47>
P51 = 105371111708302205780401868932937382113312422601077<51>
P75 = 676600448832315856534571187702619060715236193076202145589311912099919790801<75>
N=2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291 ( 172 digits) SNFS difficulty: 175 digits. Divisors found: r1=33374333358396914109100082498630504183786129383 (pp47) r2=105371111708302205780401868932937382113312422601077 (pp51) r3=676600448832315856534571187702619060715236193076202145589311912099919790801 (pp75) Version: GGNFS-0.77.1-20060513-prescott Total time: 193.78 hours. Scaled time: 329.61 units (timescale=1.701). Factorization parameters were as follows: n: 2379394444113972993873059306406519540776872286003212182499553863541728630063648801380048777586104336446374397715781333650585925881863065849741240854202605436916304800428291 m: 100000000000000000000000000000000000 c5: 4 c0: 1 skew: 0.76 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 10400001) Primes: RFBsize:501962, AFBsize:501936, large Primes:6393125 encountered Relations: rels:6843406, finalFF:1132531 Max relations in full relation-set: 28 Initial matrix: 1003962 x 1132531 with sparse part having weight 66657298. Pruned matrix : 892499 x 897582 with weight 50296953. Total sieving time: 176.54 hours. Total relation processing time: 0.16 hours. Matrix solve time: 16.83 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 193.78 hours.
By Sinkiti Sibata / GGNFS
(11·10161+7)/9 = 1(2)1603<162> = 32 · 23 · 409 · 10077835316092177735308344255341<32> · C126
C126 = P39 · P87
P39 = 260689377498163087443735013320304256953<39>
P87 = 549497764648131597130953367858390114380546441669938042117834896217907773886247268939477<87>
Number: 12223_161 N=143248230202753553250627324007667704007774209136426780649557690599037990179649906991462317956463890376489091431485736813433581 ( 126 digits) SNFS difficulty: 162 digits. Divisors found: r1=260689377498163087443735013320304256953 (pp39) r2=549497764648131597130953367858390114380546441669938042117834896217907773886247268939477 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 78.87 hours. Scaled time: 157.58 units (timescale=1.998). Factorization parameters were as follows: name: 12223_161 n: 143248230202753553250627324007667704007774209136426780649557690599037990179649906991462317956463890376489091431485736813433581 m: 100000000000000000000000000000000 c5: 110 c0: 7 skew: 0.58 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4750001) Primes: RFBsize:315948, AFBsize:316567, largePrimes:5881541 encountered Relations: rels:6019866, finalFF:761148 Max relations in full relation-set: 28 Initial matrix: 632582 x 761148 with sparse part having weight 52817466. Pruned matrix : 536094 x 539320 with weight 37129453. Total sieving time: 74.82 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.51 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 78.87 hours. --------- CPU info (if available) ----------
(11·10159+7)/9 = 1(2)1583<160> = 19 · 1574569 · 140094047 · 1752430422887<13> · 3867814284039329713<19> · C113
C113 = P51 · P63
P51 = 411917824030997137139094198484004214186454078374563<51>
P63 = 104447539825442495437964036453728510925486296174666075535780023<63>
Number: 12223_159 N=43023803330287187273746316838635004481199686462719115124977818948619389370183740498431606534990591450192166754949 ( 113 digits) SNFS difficulty: 161 digits. Divisors found: r1=411917824030997137139094198484004214186454078374563 (pp51) r2=104447539825442495437964036453728510925486296174666075535780023 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 82.36 hours. Scaled time: 55.59 units (timescale=0.675). Factorization parameters were as follows: name: 12223_159 n: 43023803330287187273746316838635004481199686462719115124977818948619389370183740498431606534990591450192166754949 m: 100000000000000000000000000000000 c5: 11 c0: 70 skew: 1.45 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4000001) Primes: RFBsize:283146, AFBsize:282983, largePrimes:5738850 encountered Relations: rels:5793505, finalFF:674155 Max relations in full relation-set: 28 Initial matrix: 566194 x 674155 with sparse part having weight 43837589. Pruned matrix : 489774 x 492668 with weight 30368801. Total sieving time: 71.12 hours. Total relation processing time: 0.32 hours. Matrix solve time: 10.68 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 82.36 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(2·10167+61)/9 = (2)1669<167> = 2111 · 1832969 · 283308492690325304249221<24> · C134
C134 = P37 · P97
P37 = 5293786095595604399312089576073126581<37>
P97 = 3829289055393909099323406022568046034410055633038604578659954318885645966267504426432067768012731<97>
3·10167+7 = 3(0)1667<168> = 73 · 2820908683<10> · 47840528956935069857729<23> · C134
C134 = P40 · P95
P40 = 1357442863346680718028321638854705863851<40>
P95 = 22433231368448594492739585313305402233259675370737675880559365524717784659590253895181940293287<95>
9·10196-7 = 8(9)1953<197> = 731413 · 15089069 · 101668669 · 13688355513133121<17> · 20476877778258297685878989<26> · C135
C135 = P32 · P104
P32 = 23222917624869682986808856353387<32>
P104 = 12322489474660531695741954992123566822217378113251020935855509359836204616518712285683147287205008714067<104>
(11·10167+43)/9 = 1(2)1667<168> = 72 · 19 · C165
C165 = P75 · P90
P75 = 541971448192550699513304798616393006342507476379452171739705124200789773013<75>
P90 = 242227856921645093713988883275176251092372232052137498460161900833598670237188488521812109<90>
Number: n N=131280582408401957274137725265544814416994868122687671559852010979830528702709153836973385845566296694116242988423439551259100131280582408401957274137725265544814417 ( 165 digits) SNFS difficulty: 168 digits. Divisors found: Thu Feb 07 23:20:45 2008 prp75 factor: 541971448192550699513304798616393006342507476379452171739705124200789773013 Thu Feb 07 23:20:45 2008 prp90 factor: 242227856921645093713988883275176251092372232052137498460161900833598670237188488521812109 Thu Feb 07 23:20:45 2008 elapsed time 01:25:46 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 74.38 hours. Scaled time: 136.04 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_166_7 n: 131280582408401957274137725265544814416994868122687671559852010979830528702709153836973385845566296694116242988423439551259100131280582408401957274137725265544814417 skew: 0.55 deg: 5 c5: 1100 c0: 43 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5131969) Primes: RFBsize:250150, AFBsize:250467, largePrimes:8087111 encountered Relations: rels:7536817, finalFF:549247 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 74.14 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 74.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(37·10194-1)/9 = 4(1)194<195> = 32 · 137 · 937 · 1471 · 206291 · 756005167 · 3310998276737<13> · 86160185894982385604741<23> · C136
C136 = P33 · P104
P33 = 227665057537224694948644929138647<33>
P104 = 23882339520004120338160997543040692573102301514832723172916776549468348272189791118195375411520469002007<104>
By Robert Backstrom / GGNFS, Msieve
3·10165-1 = 2(9)165<166> = 17 · 563 · 10366352216620195513339<23> · C140
C140 = P59 · P81
P59 = 32537822232223537739373298666992795881162109492993066147359<59>
P81 = 929286216648341931114487283109312466413415118752186358498797622230367374713700369<81>
Number: n N=30236949720159319152255112676945296055617775960741404375126742070045530650217672185324750510281942081046922358241732522840944089077526675471 ( 140 digits) SNFS difficulty: 165 digits. Divisors found: Wed Feb 06 19:22:09 2008 prp59 factor: 32537822232223537739373298666992795881162109492993066147359 Wed Feb 06 19:22:09 2008 prp81 factor: 929286216648341931114487283109312466413415118752186358498797622230367374713700369 Wed Feb 06 19:22:09 2008 elapsed time 01:17:35 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 48.16 hours. Scaled time: 63.14 units (timescale=1.311). Factorization parameters were as follows: name: KA_2_9_165 n: 30236949720159319152255112676945296055617775960741404375126742070045530650217672185324750510281942081046922358241732522840944089077526675471 skew: 0.80 deg: 5 c5: 3 c0: -1 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100001) Primes: RFBsize:230209, AFBsize:230192, largePrimes:7367519 encountered Relations: rels:6892734, finalFF:544123 Max relations in full relation-set: 28 Initial matrix: 460466 x 544123 with sparse part having weight 41822415. Pruned matrix : Total sieving time: 47.92 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 48.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
(11·10195+7)/9 = 1(2)1943<196> = 19 · 1381 · 2084369471<10> · 579482349518918778349<21> · 5743319303613011520138439<25> · 19053471272924412355461223<26> · C111
C111 = P52 · P59
P52 = 4691572442730948975926971646226019258011380478343997<52>
P59 = 75116005013147098086271597306014879649488629658821732388887<59>
Number: 12223_195 N=352412179127720740013907904143564416698937087894671770725472299693443506152847629222680315553965315424565961339 ( 111 digits) Divisors found: r1=4691572442730948975926971646226019258011380478343997 (pp52) r2=75116005013147098086271597306014879649488629658821732388887 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.99 hours. Scaled time: 38.89 units (timescale=1.853). Factorization parameters were as follows: name: 12223_195 n: 352412179127720740013907904143564416698937087894671770725472299693443506152847629222680315553965315424565961339 skew: 34427.94 # norm 1.21e+15 c5: 2940 c4: -1952990832 c3: -13969156205551 c2: 2547772263330774383 c1: -2753925105065485237741 c0: -55382786679887219119766175 # alpha -5.69 Y1: 32531887111 Y0: -2604602399830499331596 # Murphy_E 8.81e-10 # M 309779091830781573053660742294457742119204166492528584961833291120202055958849242113189450704981453714341382827 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2040001) Primes: RFBsize:176302, AFBsize:175883, largePrimes:7508048 encountered Relations: rels:7241972, finalFF:409200 Max relations in full relation-set: 28 Initial matrix: 352265 x 409200 with sparse part having weight 39556757. Pruned matrix : 313974 x 315799 with weight 27717209. Total sieving time: 20.26 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.49 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 20.99 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Sinkiti Sibata / GGNFS
(11·10155+7)/9 = 1(2)1543<156> = 3 · 1979 · 2333 · 832109 · 4940333 · 484929907573939<15> · C121
C121 = P55 · P67
P55 = 4264116202467938770951293907576359430192576324566865877<55>
P67 = 1038063556762454948769332965821742017541903031000047864051013665693<67>
Number: 12223_155 N=4426423631582280997263144548425906821817226170288044990471077946959857011196243187970733067231824314700177486874047257761 ( 121 digits) SNFS difficulty: 156 digits. Divisors found: r1=4264116202467938770951293907576359430192576324566865877 (pp55) r2=1038063556762454948769332965821742017541903031000047864051013665693 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 27.06 hours. Scaled time: 54.16 units (timescale=2.002). Factorization parameters were as follows: name: 12223_155 n: 4426423631582280997263144548425906821817226170288044990471077946959857011196243187970733067231824314700177486874047257761 m: 10000000000000000000000000000000 c5: 11 c0: 7 skew: 0.91 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216272, largePrimes:5579968 encountered Relations: rels:5574910, finalFF:586449 Max relations in full relation-set: 28 Initial matrix: 433153 x 586449 with sparse part having weight 43927938. Pruned matrix : 323992 x 326221 with weight 27346196. Total sieving time: 25.55 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.23 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 27.06 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(11·10172+7)/9 = 1(2)1713<173> = 41 · 47 · 112217052089437<15> · 98927200774175682049<20> · 2356137621413028954776819<25> · C111
C111 = P36 · P76
P36 = 111487462047472904549551202867568979<36>
P76 = 2175039767542759059001773194327055783343681329625388358095052729519501204773<76>
Number: 12223_172 N=242489663535667639241651384176198619583752763717021557825727032888978929081904591019907021815847107960181536767 ( 111 digits) Divisors found: r1=111487462047472904549551202867568979 (pp36) r2=2175039767542759059001773194327055783343681329625388358095052729519501204773 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.82 hours. Scaled time: 31.26 units (timescale=1.858). Factorization parameters were as follows: name: 12223_172 n: 242489663535667639241651384176198619583752763717021557825727032888978929081904591019907021815847107960181536767 skew: 32353.91 # norm 3.37e+15 c5: 40320 c4: -2363866290 c3: 72861550321301 c2: 4433137019570566225 c1: -78112732505301434752569 c0: -447267567058045530535974555 # alpha -6.74 Y1: 109208032219 Y0: -1431643645502336882936 # Murphy_E 9.03e-10 # M 13490647646898210578774861483495916783026841972197418764250733041946106194943433052920323966293034641219362176 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2040001) Primes: RFBsize:176302, AFBsize:176469, largePrimes:7677263 encountered Relations: rels:7584793, finalFF:522842 Max relations in full relation-set: 28 Initial matrix: 352854 x 522842 with sparse part having weight 54628482. Pruned matrix : 258861 x 260689 with weight 29452672. Polynomial selection time: 0.86 hours. Total sieving time: 15.33 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.39 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 16.82 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Sinkiti Sibata / GGNFS
(11·10152+7)/9 = 1(2)1513<153> = 32 · 41 · 3209 · 1679541668501<13> · 4449251166733119007<19> · C116
C116 = P55 · P61
P55 = 8511935397927024191899434347488658797919067426392222579<55>
P61 = 1622736735024800828915830534770168951277226403012313894450871<61>
Number: 12223_152 N=13812630256374128058975491572338375909272705190772233288419791120726713032137426286286429659495567817867100412416309 ( 116 digits) SNFS difficulty: 153 digits. Divisors found: r1=8511935397927024191899434347488658797919067426392222579 (pp55) r2=1622736735024800828915830534770168951277226403012313894450871 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 33.22 hours. Scaled time: 66.25 units (timescale=1.994). Factorization parameters were as follows: name: 12223_152 n: 13812630256374128058975491572338375909272705190772233288419791120726713032137426286286429659495567817867100412416309 m: 1000000000000000000000000000000 c5: 1100 c0: 7 skew: 0.36 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:175784, largePrimes:5725226 encountered Relations: rels:5716673, finalFF:530496 Max relations in full relation-set: 28 Initial matrix: 352153 x 530496 with sparse part having weight 50516089. Pruned matrix : 288883 x 290707 with weight 27675748. Total sieving time: 31.64 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.29 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 33.22 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(11·10163+43)/9 = 1(2)1627<164> = 113 · 3451661 · 294424687 · C147
C147 = P34 · P44 · P69
P34 = 3212438113559117047787995708543127<34>
P44 = 85399350297534323459073364282519538599251337<44>
P69 = 387953825000560041646082303950754107610352645432704733536989058413903<69>
Number: n N=33131004600491156047449733045194672547442039666553616380896628350782674308658517596250464372112320545716472138311 ( 113 digits) Divisors found: r1=85399350297534323459073364282519538599251337 (pp44) r2=387953825000560041646082303950754107610352645432704733536989058413903 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.43 hours. Scaled time: 42.84 units (timescale=1.828). Factorization parameters were as follows: name: KA_1_2_162_7 n: 33131004600491156047449733045194672547442039666553616380896628350782674308658517596250464372112320545716472138311 skew: 28302.88 # norm 4.59e+15 c5: 67860 c4: -3555859626 c3: -286213861045720 c2: 2436750071245123937 c1: 62076746826681929023734 c0: -171681952438916685211104945 # alpha -6.04 Y1: 1026639632953 Y0: -3449256605174613017842 # Murphy_E 7.06e-10 # M 14313394424989021120980462687781058952527077536141995833789940857339061995942088651721890218689067737197530374193 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250126, largePrimes:9402281 encountered Relations: rels:8572818, finalFF:572608 Max relations in full relation-set: 48 Initial matrix: 500360 x 572608 with sparse part having weight 42902050. Pruned matrix : 432356 x 434921 with weight 24320488. Total sieving time: 21.70 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.33 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,28,28,50,50,2.6,2.6,100000 total time: 23.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(61·10188-7)/9 = 6(7)188<189> = 761 · 14923 · 34667944967<11> · 9342443007080306141<19> · 8519617172494291276031<22> · C131
C131 = P39 · P42 · P51
P39 = 824978914747918693560935356005485199233<39>
P42 = 240133410788291625341200280280267296905327<42>
P51 = 109179840536766784953562310705149908464858846735857<51>
Tue Feb 05 09:17:00 2008 Tue Feb 05 09:17:00 2008 Tue Feb 05 09:17:00 2008 Msieve v. 1.33 Tue Feb 05 09:17:00 2008 random seeds: 9b5e2ca0 656e7f58 Tue Feb 05 09:17:00 2008 factoring 90071066358372683019711240485258915593667540152249648664868090325489848213660787369997681 (89 digits) Tue Feb 05 09:17:00 2008 searching for 15-digit factors Tue Feb 05 09:17:01 2008 commencing quadratic sieve (89-digit input) Tue Feb 05 09:17:01 2008 using multiplier of 1 Tue Feb 05 09:17:01 2008 using 64kb Opteron sieve core Tue Feb 05 09:17:01 2008 sieve interval: 17 blocks of size 65536 Tue Feb 05 09:17:01 2008 processing polynomials in batches of 6 Tue Feb 05 09:17:01 2008 using a sieve bound of 1555153 (59333 primes) Tue Feb 05 09:17:01 2008 using large prime bound of 124412240 (26 bits) Tue Feb 05 09:17:01 2008 using double large prime bound of 372180460082400 (42-49 bits) Tue Feb 05 09:17:01 2008 using trial factoring cutoff of 49 bits Tue Feb 05 09:17:01 2008 polynomial 'A' values have 11 factors Tue Feb 05 09:59:23 2008 59447 relations (16301 full + 43146 combined from 623387 partial), need 59429 Tue Feb 05 09:59:24 2008 begin with 639687 relations Tue Feb 05 09:59:25 2008 reduce to 143634 relations in 10 passes Tue Feb 05 09:59:25 2008 attempting to read 143634 relations Tue Feb 05 09:59:26 2008 recovered 143634 relations Tue Feb 05 09:59:26 2008 recovered 118660 polynomials Tue Feb 05 09:59:26 2008 attempting to build 59447 cycles Tue Feb 05 09:59:26 2008 found 59447 cycles in 6 passes Tue Feb 05 09:59:26 2008 distribution of cycle lengths: Tue Feb 05 09:59:26 2008 length 1 : 16301 Tue Feb 05 09:59:26 2008 length 2 : 11449 Tue Feb 05 09:59:26 2008 length 3 : 10574 Tue Feb 05 09:59:26 2008 length 4 : 7994 Tue Feb 05 09:59:26 2008 length 5 : 5383 Tue Feb 05 09:59:26 2008 length 6 : 3363 Tue Feb 05 09:59:26 2008 length 7 : 1997 Tue Feb 05 09:59:26 2008 length 9+: 2386 Tue Feb 05 09:59:26 2008 largest cycle: 17 relations Tue Feb 05 09:59:26 2008 matrix is 59333 x 59447 (14.4 MB) with weight 3545673 (59.64/col) Tue Feb 05 09:59:26 2008 sparse part has weight 3545673 (59.64/col) Tue Feb 05 09:59:27 2008 filtering completed in 3 passes Tue Feb 05 09:59:27 2008 matrix is 55126 x 55189 (13.6 MB) with weight 3334863 (60.43/col) Tue Feb 05 09:59:27 2008 sparse part has weight 3334863 (60.43/col) Tue Feb 05 09:59:27 2008 saving the first 48 matrix rows for later Tue Feb 05 09:59:27 2008 matrix is 55078 x 55189 (10.1 MB) with weight 2797379 (50.69/col) Tue Feb 05 09:59:27 2008 sparse part has weight 2327254 (42.17/col) Tue Feb 05 09:59:27 2008 matrix includes 64 packed rows Tue Feb 05 09:59:27 2008 using block size 22075 for processor cache size 1024 kB Tue Feb 05 09:59:28 2008 commencing Lanczos iteration Tue Feb 05 09:59:28 2008 memory use: 9.1 MB Tue Feb 05 09:59:47 2008 lanczos halted after 872 iterations (dim = 55078) Tue Feb 05 09:59:48 2008 recovered 17 nontrivial dependencies Tue Feb 05 09:59:49 2008 prp39 factor: 824978914747918693560935356005485199233 Tue Feb 05 09:59:49 2008 prp51 factor: 109179840536766784953562310705149908464858846735857 Tue Feb 05 09:59:49 2008 elapsed time 00:42:49
(11·10162+43)/9 = 1(2)1617<163> = 3 · 29 · 326742809 · C152
C152 = P51 · P102
P51 = 318837544764593718793341618330869638110392459849809<51>
P102 = 134851390385127161706957990388292357099558851675798087663094956194342092914353779808237658244386936541<102>
Number: n N=42995686218485684425354382121193634172142999966913173892702721973494978030934860093628100416097942649000816546309174279218259378307775145242162473970669 ( 152 digits) SNFS difficulty: 163 digits. Divisors found: Tue Feb 5 10:34:00 2008 prp51 factor: 318837544764593718793341618330869638110392459849809 Tue Feb 5 10:34:00 2008 prp102 factor: 134851390385127161706957990388292357099558851675798087663094956194342092914353779808237658244386936541 Tue Feb 5 10:34:00 2008 elapsed time 01:01:47 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 50.89 hours. Scaled time: 42.55 units (timescale=0.836). Factorization parameters were as follows: name: KA_1_2_161_7 n: 42995686218485684425354382121193634172142999966913173892702721973494978030934860093628100416097942649000816546309174279218259378307775145242162473970669 type: snfs deg: 5 c5: 1100 c0: 43 skew: 0.52 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200191) Primes: RFBsize:216816, AFBsize:216802, largePrimes:5671714 encountered Relations: rels:5520680, finalFF:479300 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 50.71 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 50.89 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
(5·10189-17)/3 = 1(6)1881<190> = 11 · 139 · 308923723 · 4624276074181<13> · 26156789250217<14> · 2912928289309013648987<22> · C131
C131 = P41 · P43 · P48
P41 = 20868712662673929425351208727898548430827<41>
P43 = 1186280973757452857825332756781618820498731<43>
P48 = 404528197374300908699982328463045462331168395041<48>
Tue Feb 05 13:28:32 2008 Tue Feb 05 13:28:32 2008 Tue Feb 05 13:28:32 2008 Msieve v. 1.33 Tue Feb 05 13:28:32 2008 random seeds: 9aae636c ffa3d539 Tue Feb 05 13:28:32 2008 factoring 479884103893532766339493695699275521182139215549108179534976372846630679623126216447192971 (90 digits) Tue Feb 05 13:28:32 2008 searching for 15-digit factors Tue Feb 05 13:28:33 2008 commencing quadratic sieve (90-digit input) Tue Feb 05 13:28:33 2008 using multiplier of 41 Tue Feb 05 13:28:33 2008 using 64kb Opteron sieve core Tue Feb 05 13:28:33 2008 sieve interval: 18 blocks of size 65536 Tue Feb 05 13:28:33 2008 processing polynomials in batches of 6 Tue Feb 05 13:28:33 2008 using a sieve bound of 1582247 (60000 primes) Tue Feb 05 13:28:33 2008 using large prime bound of 126579760 (26 bits) Tue Feb 05 13:28:33 2008 using double large prime bound of 383933120608320 (42-49 bits) Tue Feb 05 13:28:33 2008 using trial factoring cutoff of 49 bits Tue Feb 05 13:28:33 2008 polynomial 'A' values have 12 factors Tue Feb 05 14:42:32 2008 60432 relations (16460 full + 43972 combined from 631008 partial), need 60096 Tue Feb 05 14:42:33 2008 begin with 647467 relations Tue Feb 05 14:42:34 2008 reduce to 144826 relations in 10 passes Tue Feb 05 14:42:34 2008 attempting to read 144826 relations Tue Feb 05 14:42:36 2008 recovered 144826 relations Tue Feb 05 14:42:36 2008 recovered 123295 polynomials Tue Feb 05 14:42:36 2008 attempting to build 60432 cycles Tue Feb 05 14:42:36 2008 found 60432 cycles in 5 passes Tue Feb 05 14:42:37 2008 distribution of cycle lengths: Tue Feb 05 14:42:37 2008 length 1 : 16460 Tue Feb 05 14:42:37 2008 length 2 : 11957 Tue Feb 05 14:42:37 2008 length 3 : 10793 Tue Feb 05 14:42:37 2008 length 4 : 8024 Tue Feb 05 14:42:37 2008 length 5 : 5471 Tue Feb 05 14:42:37 2008 length 6 : 3456 Tue Feb 05 14:42:37 2008 length 7 : 2003 Tue Feb 05 14:42:37 2008 length 9+: 2268 Tue Feb 05 14:42:37 2008 largest cycle: 18 relations Tue Feb 05 14:42:37 2008 matrix is 60000 x 60432 (14.8 MB) with weight 3642461 (60.27/col) Tue Feb 05 14:42:37 2008 sparse part has weight 3642461 (60.27/col) Tue Feb 05 14:42:38 2008 filtering completed in 3 passes Tue Feb 05 14:42:38 2008 matrix is 55611 x 55675 (13.7 MB) with weight 3372205 (60.57/col) Tue Feb 05 14:42:38 2008 sparse part has weight 3372205 (60.57/col) Tue Feb 05 14:42:39 2008 saving the first 48 matrix rows for later Tue Feb 05 14:42:39 2008 matrix is 55563 x 55675 (8.7 MB) with weight 2632003 (47.27/col) Tue Feb 05 14:42:39 2008 sparse part has weight 1939874 (34.84/col) Tue Feb 05 14:42:39 2008 matrix includes 64 packed rows Tue Feb 05 14:42:39 2008 using block size 21845 for processor cache size 512 kB Tue Feb 05 14:42:39 2008 commencing Lanczos iteration Tue Feb 05 14:42:39 2008 memory use: 8.4 MB Tue Feb 05 14:43:05 2008 lanczos halted after 880 iterations (dim = 55562) Tue Feb 05 14:43:06 2008 recovered 18 nontrivial dependencies Tue Feb 05 14:43:06 2008 prp43 factor: 1186280973757452857825332756781618820498731 Tue Feb 05 14:43:06 2008 prp48 factor: 404528197374300908699982328463045462331168395041 Tue Feb 05 14:43:06 2008 elapsed time 01:14:34
(2·10163+1)/3 = (6)1627<163> = 7 · 61 · 167 · 34963 · 12614592942079272049<20> · C135
C135 = P65 · P71
P65 = 10377754436587567376693516896966925177426777542616355517332761623<65>
P71 = 20425799928742290584344313773322626491010687290873847923471967649372363<71>
Number: n N=211973935831355323693477966455996075420736602698565413687534168539153599729601192528535499470177455623893501702677635272385313443225149 ( 135 digits) SNFS difficulty: 163 digits. Divisors found: Tue Feb 05 14:44:10 2008 prp65 factor: 10377754436587567376693516896966925177426777542616355517332761623 Tue Feb 05 14:44:10 2008 prp71 factor: 20425799928742290584344313773322626491010687290873847923471967649372363 Tue Feb 05 14:44:10 2008 elapsed time 01:07:48 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.47 hours. Scaled time: 72.75 units (timescale=1.754). Factorization parameters were as follows: name: KA_6_162_7 n: 211973935831355323693477966455996075420736602698565413687534168539153599729601192528535499470177455623893501702677635272385313443225149 type: snfs skew: 0.44 deg: 5 c5: 125 c0: 2 m: 200000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2099990) Primes: RFBsize:216816, AFBsize:216926, largePrimes:6940658 encountered Relations: rels:6381595, finalFF:492593 Max relations in full relation-set: 28 Initial matrix: 433807 x 492593 with sparse part having weight 32470962. Pruned matrix : Total sieving time: 41.26 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 41.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10199-1 = 8(9)199<200> = 311 · 18816601 · 7199849885356048147<19> · 8780607192536057363<19> · 6189868364159015753089<22> · C131
C131 = P39 · P92
P39 = 653013029588688183402047290771742842951<39>
P92 = 60185198005340312093913851920027593244762401225251579516624254991791230274129125334702673471<92>
(11·10165+7)/9 = 1(2)1643<166> = 2323037 · 3024071 · 801547104685055220907<21> · 2244551866593860631050339<25> · C107
C107 = P50 · P58
P50 = 22667491190849706134196427735425561647719849624523<50>
P58 = 4266187260102382245262999179515923658804140846831092944231<58>
Number: n N=96703762136885993527051098298870383339158901947010897471096334946417565075450884442730993018763399928976813 ( 107 digits) Divisors found: Tue Feb 5 21:58:19 2008 prp50 factor: 22667491190849706134196427735425561647719849624523 Tue Feb 5 21:58:19 2008 prp58 factor: 4266187260102382245262999179515923658804140846831092944231 Tue Feb 5 21:58:19 2008 elapsed time 00:31:25 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 10.14 hours. Scaled time: 8.49 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_2_164_3 n: 96703762136885993527051098298870383339158901947010897471096334946417565075450884442730993018763399928976813 skew: 5982.01 # norm 2.22e+14 c5: 408000 c4: 39585968 c3: -38249412823790 c2: -4391565209106421 c1: 696703255789243605102 c0: 645439348323787340602296 # alpha -4.96 Y1: 248694786263 Y0: -188346099305469065669 # Murphy_E 1.38e-09 # M 51061564494728018280537336885306695758903469801669314827242486514533346876854629373845711032256659328639940 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved special-q in [100000, 1600000) Primes: RFBsize:183072, AFBsize:183292, largePrimes:7923702 encountered Relations: rels:7188725, finalFF:454354 Max relations in full relation-set: 28 Initial matrix: 366442 x 454354 with sparse part having weight 31541384. Pruned matrix : 317266 x 319162 with weight 16959885. Total sieving time: 9.92 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,28,28,49,49,2.6,2.6,150000 total time: 10.14 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
By Jo Yeong Uk / GMP-ECM, GGNFS
(11·10144+7)/9 = 1(2)1433<145> = 59 · 1669 · 51429901 · 2361395713<10> · 65397750107<11> · C112
C112 = P34 · P78
P34 = 4258603296735103039935301521943217<34>
P78 = 366967307314766659198303919155557622909193203642497744426932236576610478647479<78>
(11·10156+7)/9 = 1(2)1553<157> = 12721 · 2742200326538945243417<22> · 9541792824687531700463092793<28> · C103
C103 = P41 · P63
P41 = 20014512109901815744898373231694000857379<41>
P63 = 183465645941118388677264534427318636676528636593091062790132837<63>
Number: 12223_156 N=3671975392439472899341330402417834604335376052564536472613853563638553912495032350819060859819301654223 ( 103 digits) Divisors found: r1=20014512109901815744898373231694000857379 (pp41) r2=183465645941118388677264534427318636676528636593091062790132837 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.31 hours. Scaled time: 9.87 units (timescale=1.858). Factorization parameters were as follows: name: 12223_156 n: 3671975392439472899341330402417834604335376052564536472613853563638553912495032350819060859819301654223 skew: 19530.82 # norm 1.35e+14 c5: 6720 c4: -442157698 c3: -8623263312341 c2: 181075102603430862 c1: 1613496398437236320040 c0: 174910907146950939185280 # alpha -6.11 Y1: 48802931441 Y0: -55912780045085853073 # Murphy_E 2.56e-09 # M 144302031692213904811710240983196039277303241981002758121166447200177541282832116968539726573935138066 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1560001) Primes: RFBsize:135072, AFBsize:134658, largePrimes:4325792 encountered Relations: rels:4231829, finalFF:317982 Max relations in full relation-set: 28 Initial matrix: 269812 x 317982 with sparse part having weight 25295169. Pruned matrix : 235496 x 236909 with weight 15884839. Polynomial selection time: 0.35 hours. Total sieving time: 4.63 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.31 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10175+43)/9 = 1(2)1747<176> = 431 · 563 · 16290121 · 38995664297<11> · 593004715928370319507<21> · 34213955179215476404658449<26> · C106
C106 = P47 · P59
P47 = 47531082292491978658661669522302345299666587893<47>
P59 = 82221376817115875746030616826703371178580921798546057059393<59>
Number: 12227_175 N=3908071027696326886864028499843206919992522378639674173594528479164089521830871500698729823982185555728949 ( 106 digits) Divisors found: r1=47531082292491978658661669522302345299666587893 (pp47) r2=82221376817115875746030616826703371178580921798546057059393 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.32 hours. Scaled time: 19.18 units (timescale=1.858). Factorization parameters were as follows: name: 12227_175 n: 3908071027696326886864028499843206919992522378639674173594528479164089521830871500698729823982185555728949 skew: 8608.29 # norm 1.20e+14 c5: 25260 c4: -60371188 c3: 5757318952065 c2: 46830095000041631 c1: -261301190147423580723 c0: 3535830573716278227215 # alpha -5.17 Y1: 25621186877 Y0: -172944140038548492006 # Murphy_E 1.75e-09 # M 2075970695538704841661361494941305006763486824834160907225439575126500475951541082025147569146320170113636 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135115, largePrimes:4655871 encountered Relations: rels:4809611, finalFF:441492 Max relations in full relation-set: 28 Initial matrix: 270272 x 441492 with sparse part having weight 44629901. Pruned matrix : 194914 x 196329 with weight 18507439. Polynomial selection time: 0.49 hours. Total sieving time: 9.52 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.32 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(8·10167-71)/9 = (8)1661<167> = 3 · 13 · 7480258613071537<16> · C150
C150 = P34 · P117
P34 = 2269232521002778040596096495435919<34>
P117 = 134272556782880983389435035962509777764315564283238280173555744073973109616249276693619292540182473602203459354521593<117>
(11·10159+43)/9 = 1(2)1587<160> = 36 · 607 · 1523 · 9672317 · C144
C144 = P41 · P103
P41 = 25040024464232789848294795392827328171553<41>
P103 = 7488050807888404363384367482738346838595043907027771100444640147357671594913324944576167521340548615683<103>
Number: n N=187500975418943751652660969335071540461164444315032750609349244011086201230476532801845590733194291631585853137616657120810227526386921690265699 ( 144 digits) SNFS difficulty: 161 digits. Divisors found: Tue Feb 05 00:24:40 2008 prp41 factor: 25040024464232789848294795392827328171553 Tue Feb 05 00:24:40 2008 prp103 factor: 7488050807888404363384367482738346838595043907027771100444640147357671594913324944576167521340548615683 Tue Feb 05 00:24:40 2008 elapsed time 01:23:19 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.04 hours. Scaled time: 57.97 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_2_158_7 n: 187500975418943751652660969335071540461164444315032750609349244011086201230476532801845590733194291631585853137616657120810227526386921690265699 skew: 2.08 deg: 5 c5: 11 c0: 430 m: 100000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2000001) Primes: RFBsize:183072, AFBsize:182932, largePrimes:7315120 encountered Relations: rels:6778458, finalFF:413850 Max relations in full relation-set: 28 Initial matrix: 366069 x 413850 with sparse part having weight 39217428. Pruned matrix : Total sieving time: 39.82 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 40.04 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Kurt Beschorner
10813+1 is divisible by 21765743514521277143440823504372166157<38>
By Yousuke Koide
101133+1 is divisible by 5571170781540045423292640754334163561<37>
(101327-1)/9 is divisible by 32902513329012026560826807111<29>
By Jo Yeong Uk / GGNFS
(11·10136+7)/9 = 1(2)1353<137> = 95561 · 155465684301056887579729<24> · C108
C108 = P44 · P65
P44 = 14334185432356752323140436045325276938680249<44>
P65 = 57393396768433653752614517111796708118174950424989467951382669983<65>
Number: 12223_136 N=822687591871552784709318643813197336735469821034016549030837174471470985203346819632076285577794861927265767 ( 108 digits) SNFS difficulty: 137 digits. Divisors found: r1=14334185432356752323140436045325276938680249 (pp44) r2=57393396768433653752614517111796708118174950424989467951382669983 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.35 hours. Scaled time: 8.07 units (timescale=1.857). Factorization parameters were as follows: n: 822687591871552784709318643813197336735469821034016549030837174471470985203346819632076285577794861927265767 m: 1000000000000000000000000000 c5: 110 c0: 7 skew: 0.58 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1500001) Primes: RFBsize:107126, AFBsize:107674, largePrimes:2376958 encountered Relations: rels:2529390, finalFF:284184 Max relations in full relation-set: 28 Initial matrix: 214867 x 284184 with sparse part having weight 25136993. Pruned matrix : 193207 x 194345 with weight 14316828. Total sieving time: 4.15 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.35 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10138+7)/9 = 1(2)1373<139> = 623766815165969<15> · 23752250570612018894611<23> · C101
C101 = P39 · P63
P39 = 160798003756692938654694712820528450413<39>
P63 = 513029679588668744253094982652790979172390866713850617213539769<63>
Number: 12223_138 N=82494148345793731369441602124244699834884418764952216407190783233269739489161851992590938580119974597 ( 101 digits) Divisors found: r1=160798003756692938654694712820528450413 (pp39) r2=513029679588668744253094982652790979172390866713850617213539769 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.18 hours. Scaled time: 7.76 units (timescale=1.859). Factorization parameters were as follows: name: 12223_138 n: 82494148345793731369441602124244699834884418764952216407190783233269739489161851992590938580119974597 skew: 4243.25 # norm 1.19e+14 c5: 193680 c4: -67658172 c3: -9221234168102 c2: -47361928099406800 c1: 41132723755137780999 c0: 104857604310820431424095 # alpha -5.94 Y1: 43351291357 Y0: -13361886298864081646 # Murphy_E 2.87e-09 # M 71500888182725105628880026829625266678105175754627294008919100390854775685964105360002187732656023157 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1350001) Primes: RFBsize:114155, AFBsize:113911, largePrimes:3839474 encountered Relations: rels:3720898, finalFF:269923 Max relations in full relation-set: 28 Initial matrix: 228148 x 269923 with sparse part having weight 21108901. Pruned matrix : 202141 x 203345 with weight 13187397. Polynomial selection time: 0.28 hours. Total sieving time: 3.64 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 4.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10142+7)/9 = 1(2)1413<143> = 41 · 154061 · 852989 · 641716583188361789950959757<27> · C103
C103 = P51 · P53
P51 = 213109970184769549110217954567545220770332311910759<51>
P53 = 16587584380176701656934488951246590820083044778169789<53>
Number: 12223_142 N=3534979612696805971561202559424469132527119933396271700242344599515181935142280999950609689873517859851 ( 103 digits) Divisors found: r1=213109970184769549110217954567545220770332311910759 (pp51) r2=16587584380176701656934488951246590820083044778169789 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.53 hours. Scaled time: 10.28 units (timescale=1.858). Factorization parameters were as follows: name: 12223_142 n: 3534979612696805971561202559424469132527119933396271700242344599515181935142280999950609689873517859851 skew: 2679.82 # norm 5.30e+13 c5: 264600 c4: 1519439634 c3: 5152788085665 c2: -11953194132301114 c1: -25402458644324276290 c0: 28335371836441837330020 # alpha -5.47 Y1: 61721076197 Y0: -26616948120759083489 # Murphy_E 2.59e-09 # M 1548383572242134576146617681526396291714054299406984080533713325745441083028013889105891537464365554166 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1620001) Primes: RFBsize:135072, AFBsize:134902, largePrimes:4460724 encountered Relations: rels:4495194, finalFF:394216 Max relations in full relation-set: 28 Initial matrix: 270054 x 394216 with sparse part having weight 33311263. Pruned matrix : 199211 x 200625 with weight 15737659. Polynomial selection time: 0.35 hours. Total sieving time: 4.89 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.15 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.53 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Sinkiti Sibata / Msieve
(11·10125+43)/9 = 1(2)1247<126> = 73 · 47 · 503 · 9791 · 319485419022834938413<21> · C94
C94 = P41 · P54
P41 = 26911423347030094859147806513779908366419<41>
P54 = 179050464360592207024627576920634186756605854426645477<54>
Sat Feb 02 08:18:48 2008 Msieve v. 1.30 Sat Feb 02 08:18:49 2008 random seeds: 9e0bea2a 4bbaab61 Sat Feb 02 08:18:49 2008 factoring 4818502846890221045374101350076711059884336292143407476048410706538319861125528494833125036863 (94 digits) Sat Feb 02 08:18:49 2008 commencing quadratic sieve (94-digit input) Sat Feb 02 08:18:50 2008 using multiplier of 2 Sat Feb 02 08:18:50 2008 using 64kb Pentium 2 sieve core Sat Feb 02 08:18:50 2008 sieve interval: 18 blocks of size 65536 Sat Feb 02 08:18:50 2008 processing polynomials in batches of 6 Sat Feb 02 08:18:50 2008 using a sieve bound of 2057791 (76471 primes) Sat Feb 02 08:18:50 2008 using large prime bound of 283975158 (28 bits) Sat Feb 02 08:18:50 2008 using double large prime bound of 1644010566805608 (42-51 bits) Sat Feb 02 08:18:50 2008 using trial factoring cutoff of 51 bits Sat Feb 02 08:18:50 2008 polynomial 'A' values have 12 factors Sun Feb 03 06:22:02 2008 76863 relations (18980 full + 57883 combined from 1103923 partial), need 76567 Sun Feb 03 06:22:22 2008 begin with 1122903 relations Sun Feb 03 06:23:45 2008 reduce to 199427 relations in 10 passes Sun Feb 03 06:23:46 2008 attempting to read 199427 relations Sun Feb 03 06:24:11 2008 recovered 199427 relations Sun Feb 03 06:24:11 2008 recovered 181755 polynomials Sun Feb 03 06:24:36 2008 attempting to build 76863 cycles Sun Feb 03 06:24:36 2008 found 76863 cycles in 6 passes Sun Feb 03 06:24:41 2008 distribution of cycle lengths: Sun Feb 03 06:24:41 2008 length 1 : 18980 Sun Feb 03 06:24:41 2008 length 2 : 13444 Sun Feb 03 06:24:41 2008 length 3 : 13097 Sun Feb 03 06:24:41 2008 length 4 : 10345 Sun Feb 03 06:24:41 2008 length 5 : 7787 Sun Feb 03 06:24:41 2008 length 6 : 5269 Sun Feb 03 06:24:42 2008 length 7 : 3401 Sun Feb 03 06:24:42 2008 length 9+: 4540 Sun Feb 03 06:24:42 2008 largest cycle: 20 relations Sun Feb 03 06:24:43 2008 matrix is 76471 x 76863 with weight 4943542 (avg 64.32/col) Sun Feb 03 06:24:48 2008 filtering completed in 3 passes Sun Feb 03 06:24:48 2008 matrix is 72682 x 72746 with weight 4694355 (avg 64.53/col) Sun Feb 03 06:24:51 2008 saving the first 48 matrix rows for later Sun Feb 03 06:24:52 2008 matrix is 72634 x 72746 with weight 3670006 (avg 50.45/col) Sun Feb 03 06:24:52 2008 matrix includes 64 packed rows Sun Feb 03 06:24:52 2008 using block size 10922 for processor cache size 256 kB Sun Feb 03 06:24:55 2008 commencing Lanczos iteration Sun Feb 03 06:29:16 2008 lanczos halted after 1149 iterations (dim = 72632) Sun Feb 03 06:29:17 2008 recovered 16 nontrivial dependencies Sun Feb 03 06:32:11 2008 prp41 factor: 26911423347030094859147806513779908366419 Sun Feb 03 06:32:11 2008 prp54 factor: 179050464360592207024627576920634186756605854426645477 Sun Feb 03 06:32:11 2008 elapsed time 22:13:22
By Robert Backstrom / GGNFS, Msieve
(11·10132+43)/9 = 1(2)1317<133> = 33 · 83 · C129
C129 = P57 · P73
P57 = 111112771172331750872514090492110122437339906630826550009<57>
P73 = 4908449645869942293694487080630525727438428859396006401801847501095827883<73>
Number: n N=545391442312459715404829193316475779661857305766274976449005900143785016609648470424909514601616341910853289702017948336556100947 ( 129 digits) SNFS difficulty: 133 digits. Divisors found: r1=111112771172331750872514090492110122437339906630826550009 (pp57) r2=4908449645869942293694487080630525727438428859396006401801847501095827883 (pp73) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 5.51 hours. Scaled time: 7.21 units (timescale=1.309). Factorization parameters were as follows: name: KA_1_2_131_7 n: 545391442312459715404829193316475779661857305766274976449005900143785016609648470424909514601616341910853289702017948336556100947 skew: 0.52 deg: 5 c5: 1100 c0: 43 m: 100000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 500001) Primes: RFBsize:148933, AFBsize:148846, largePrimes:5439382 encountered Relations: rels:4852705, finalFF:336542 Max relations in full relation-set: 28 Initial matrix: 297846 x 336542 with sparse part having weight 16711281. Pruned matrix : 259856 x 261409 with weight 10061932. Total sieving time: 4.37 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.95 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,50000 total time: 5.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10137+43)/9 = 1(2)1367<138> = 7 · C137
C137 = P39 · P98
P39 = 826947682191349154287338776865934602857<39>
P98 = 21114174253501663398552547882800994034080029605303708859438928706621453258063526161207848053837773<98>
Number: n N=17460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 ( 137 digits) SNFS difficulty: 138 digits. Divisors found: r1=826947682191349154287338776865934602857 (pp39) r2=21114174253501663398552547882800994034080029605303708859438928706621453258063526161207848053837773 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.20 hours. Scaled time: 12.62 units (timescale=1.753). Factorization parameters were as follows: name: KA_1_2_136_7 n: 17460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 type: snfs skew: 0.52 deg: 5 c5: 1100 c0: 43 m: 1000000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1000000) Primes: RFBsize:114155, AFBsize:114198, largePrimes:5398021 encountered Relations: rels:4770513, finalFF:299953 Max relations in full relation-set: 28 Initial matrix: 228420 x 299953 with sparse part having weight 19344439. Pruned matrix : 185538 x 186744 with weight 9834435. Total sieving time: 6.31 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.67 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.3,2.3,75000 total time: 7.20 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10133+43)/9 = 1(2)1327<134> = 1321 · 1410916038767<13> · 3759336512783<13> · C106
C106 = P37 · P69
P37 = 3516588143890561652644886771677592087<37>
P69 = 496036320496666194477662303711920463713480656308118096409742336798941<69>
Number: n N=1744355443597675135882479103597911072800396043417938417736429887625152088132861173319540054833362331579867 ( 106 digits) SNFS difficulty: 134 digits. Divisors found: r1=3516588143890561652644886771677592087 (pp37) r2=496036320496666194477662303711920463713480656308118096409742336798941 (pp69) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 5.91 hours. Scaled time: 7.74 units (timescale=1.309). Factorization parameters were as follows: name: KA_1_2_132_7 n: 1744355443597675135882479103597911072800396043417938417736429887625152088132861173319540054833362331579867 skew: 0.33 deg: 5 c5: 11000 c0: 43 m: 100000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:148933, AFBsize:149056, largePrimes:5686122 encountered Relations: rels:5129599, finalFF:373496 Max relations in full relation-set: 28 Initial matrix: 298056 x 373496 with sparse part having weight 20625775. Pruned matrix : 230995 x 232549 with weight 9849788. Total sieving time: 5.01 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.68 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 5.91 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10148+43)/9 = 1(2)1477<149> = 2237 · C145
C145 = P46 · P99
P46 = 5708590448834065059889081709749195794968604751<46>
P99 = 957095567805688585006539301709267550428734463658167833478066966464619925304020149513216150426243521<99>
Number: n N=5463666616996970148512392589281279491382307654100233447573635325088163711319723836487359062236129737247305418963890130631301842745740823523568271 ( 145 digits) SNFS difficulty: 149 digits. Divisors found: r1=5708590448834065059889081709749195794968604751 (pp46) r2=957095567805688585006539301709267550428734463658167833478066966464619925304020149513216150426243521 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.16 hours. Scaled time: 20.27 units (timescale=1.817). Factorization parameters were as follows: name: KA_1_2_147_7 n: 5463666616996970148512392589281279491382307654100233447573635325088163711319723836487359062236129737247305418963890130631301842745740823523568271 skew: 0.33 deg: 5 c5: 11000 c0: 43 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:183072, AFBsize:183037, largePrimes:7044436 encountered Relations: rels:6450847, finalFF:440285 Max relations in full relation-set: 48 Initial matrix: 366176 x 440285 with sparse part having weight 39436571. Pruned matrix : 321112 x 323006 with weight 23568462. Total sieving time: 10.11 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.84 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 11.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(11·10142+43)/9 = 1(2)1417<143> = 199 · 2711 · 25447 · C132
C132 = P55 · P78
P55 = 3068600121073799335852157386784751919947571513958188339<55>
P78 = 290128701364190538984568387515170669387068553760927649832295688847493293426071<78>
Number: n N=890288968133139258467427941637942626811916485305684466174890492674520641988294022763275638082211998002722782842984474256989590786069 ( 132 digits) SNFS difficulty: 143 digits. Divisors found: Sun Feb 3 19:04:45 2008 prp55 factor: 3068600121073799335852157386784751919947571513958188339 Sun Feb 3 19:04:45 2008 prp78 factor: 290128701364190538984568387515170669387068553760927649832295688847493293426071 Sun Feb 3 19:04:45 2008 elapsed time 00:16:14 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 10.62 hours. Scaled time: 8.91 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_2_141_7 n: 890288968133139258467427941637942626811916485305684466174890492674520641988294022763275638082211998002722782842984474256989590786069 type: snfs deg: 5 c5: 1100 c0: 43 skew: 0.52 m: 10000000000000000000000000000 rlim: 2000000 alim: 2000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:148933, AFBsize:148846, largePrimes:2743285 encountered Relations: rels:2743528, finalFF:343108 Max relations in full relation-set: 28 Initial matrix: 297846 x 343108 with sparse part having weight 16612589. Pruned matrix : 264132 x 265685 with weight 10944419. Total sieving time: 10.12 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.39 hours. Total time per square root: 0.00 hours, sqrts: 32. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,45,45,2.5,2.5,100000 total time: 10.62 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
By Sinkiti Sibata / Msieve, GGNFS
(11·10110+7)/9 = 1(2)1093<111> = 3 · 8874935947<10> · C100
C100 = P36 · P65
P36 = 192974421658293224031417306264104681<36>
P65 = 23788329512941257985749836483187483343956508948136539261231691863<65>
Fri Feb 1 13:49:44 2008 Msieve v. 1.33 Fri Feb 1 13:49:44 2008 random seeds: a1488afa bb05cf89 Fri Feb 1 13:49:44 2008 factoring 4590539129976747396207516622062302388438943934694827013914981750655415827841212558189152724567910703 (100 digits) Fri Feb 1 13:49:45 2008 searching for 15-digit factors Fri Feb 1 13:49:47 2008 commencing quadratic sieve (100-digit input) Fri Feb 1 13:49:48 2008 using multiplier of 23 Fri Feb 1 13:49:48 2008 using 64kb Pentium 4 sieve core Fri Feb 1 13:49:48 2008 sieve interval: 18 blocks of size 65536 Fri Feb 1 13:49:48 2008 processing polynomials in batches of 6 Fri Feb 1 13:49:48 2008 using a sieve bound of 2751493 (99912 primes) Fri Feb 1 13:49:48 2008 using large prime bound of 412723950 (28 bits) Fri Feb 1 13:49:48 2008 using double large prime bound of 3222459040502850 (43-52 bits) Fri Feb 1 13:49:48 2008 using trial factoring cutoff of 52 bits Fri Feb 1 13:49:48 2008 polynomial 'A' values have 13 factors Sat Feb 2 10:18:44 2008 100088 relations (23581 full + 76507 combined from 1507071 partial), need 100008 Sat Feb 2 10:18:50 2008 begin with 1530652 relations Sat Feb 2 10:18:52 2008 reduce to 264655 relations in 12 passes Sat Feb 2 10:18:52 2008 attempting to read 264655 relations Sat Feb 2 10:19:02 2008 recovered 264655 relations Sat Feb 2 10:19:02 2008 recovered 256120 polynomials Sat Feb 2 10:19:02 2008 attempting to build 100088 cycles Sat Feb 2 10:19:03 2008 found 100088 cycles in 6 passes Sat Feb 2 10:19:03 2008 distribution of cycle lengths: Sat Feb 2 10:19:03 2008 length 1 : 23581 Sat Feb 2 10:19:03 2008 length 2 : 16969 Sat Feb 2 10:19:03 2008 length 3 : 16869 Sat Feb 2 10:19:03 2008 length 4 : 13612 Sat Feb 2 10:19:03 2008 length 5 : 10500 Sat Feb 2 10:19:03 2008 length 6 : 7350 Sat Feb 2 10:19:03 2008 length 7 : 4635 Sat Feb 2 10:19:03 2008 length 9+: 6572 Sat Feb 2 10:19:03 2008 largest cycle: 20 relations Sat Feb 2 10:19:03 2008 matrix is 99912 x 100088 (28.1 MB) with weight 6958780 (69.53/col) Sat Feb 2 10:19:03 2008 sparse part has weight 6958780 (69.53/col) Sat Feb 2 10:19:06 2008 filtering completed in 4 passes Sat Feb 2 10:19:06 2008 matrix is 96049 x 96113 (27.1 MB) with weight 6726665 (69.99/col) Sat Feb 2 10:19:06 2008 sparse part has weight 6726665 (69.99/col) Sat Feb 2 10:19:07 2008 saving the first 48 matrix rows for later Sat Feb 2 10:19:07 2008 matrix is 96001 x 96113 (17.4 MB) with weight 5308583 (55.23/col) Sat Feb 2 10:19:07 2008 sparse part has weight 3978156 (41.39/col) Sat Feb 2 10:19:07 2008 matrix includes 64 packed rows Sat Feb 2 10:19:07 2008 using block size 21845 for processor cache size 512 kB Sat Feb 2 10:19:08 2008 commencing Lanczos iteration Sat Feb 2 10:19:08 2008 memory use: 16.5 MB Sat Feb 2 10:20:46 2008 lanczos halted after 1520 iterations (dim = 95999) Sat Feb 2 10:20:47 2008 recovered 16 nontrivial dependencies Sat Feb 2 10:20:50 2008 prp36 factor: 192974421658293224031417306264104681 Sat Feb 2 10:20:50 2008 prp65 factor: 23788329512941257985749836483187483343956508948136539261231691863 Sat Feb 2 10:20:50 2008 elapsed time 20:31:06
(11·10112+43)/9 = 1(2)1117<113> = 1392541 · 171740189 · C98
C98 = P42 · P57
P42 = 143286201861700132912700962874088411962741<42>
P57 = 356669421688691816769551532579943147017949354032325568303<57>
Number: 12227_112 N=51105806753981743159739057597763445623761010676640079468814415944058025931144285169076386486598523 ( 98 digits) SNFS difficulty: 113 digits. Divisors found: r1=143286201861700132912700962874088411962741 (pp42) r2=356669421688691816769551532579943147017949354032325568303 (pp57) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.46 hours. Scaled time: 1.66 units (timescale=0.676). Factorization parameters were as follows: name: 12227_112 n: 51105806753981743159739057597763445623761010676640079468814415944058025931144285169076386486598523 m: 10000000000000000000000 c5: 1100 c0: 43 skew: 0.52 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63799, largePrimes:2296912 encountered Relations: rels:2612701, finalFF:434420 Max relations in full relation-set: 28 Initial matrix: 112964 x 434420 with sparse part having weight 37514997. Pruned matrix : 67377 x 68005 with weight 5864456. Total sieving time: 2.26 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.46 hours. --------- CPU info (if available) ----------
(11·10138+43)/9 = 1(2)1377<139> = 3 · 353 · 3772770559<10> · 5375963324383<13> · 1780869062599870907<19> · C95
C95 = P37 · P58
P37 = 7463409413579206909424210728917778139<37>
P58 = 4281227127600524118339409264146075718886687783760343681913<58>
Sat Feb 2 14:26:10 2008 Msieve v. 1.33 Sat Feb 2 14:26:10 2008 random seeds: 518df1e8 4f66404b Sat Feb 2 14:26:10 2008 factoring 31952550845804420141668463672712528275349504043112878808043841079538101373805116809050521099907 (95 digits) Sat Feb 2 14:26:11 2008 searching for 15-digit factors Sat Feb 2 14:26:13 2008 commencing quadratic sieve (95-digit input) Sat Feb 2 14:26:14 2008 using multiplier of 3 Sat Feb 2 14:26:14 2008 using 64kb Pentium 4 sieve core Sat Feb 2 14:26:14 2008 sieve interval: 18 blocks of size 65536 Sat Feb 2 14:26:14 2008 processing polynomials in batches of 6 Sat Feb 2 14:26:14 2008 using a sieve bound of 2119673 (78824 primes) Sat Feb 2 14:26:14 2008 using large prime bound of 309472258 (28 bits) Sat Feb 2 14:26:14 2008 using double large prime bound of 1919194993237322 (43-51 bits) Sat Feb 2 14:26:14 2008 using trial factoring cutoff of 51 bits Sat Feb 2 14:26:14 2008 polynomial 'A' values have 12 factors Sat Feb 2 20:59:00 2008 79041 relations (18875 full + 60166 combined from 1164620 partial), need 78920 Sat Feb 2 20:59:05 2008 begin with 1183495 relations Sat Feb 2 20:59:06 2008 reduce to 207464 relations in 11 passes Sat Feb 2 20:59:06 2008 attempting to read 207464 relations Sat Feb 2 20:59:13 2008 recovered 207464 relations Sat Feb 2 20:59:13 2008 recovered 192697 polynomials Sat Feb 2 20:59:13 2008 attempting to build 79041 cycles Sat Feb 2 20:59:13 2008 found 79041 cycles in 5 passes Sat Feb 2 20:59:13 2008 distribution of cycle lengths: Sat Feb 2 20:59:13 2008 length 1 : 18875 Sat Feb 2 20:59:13 2008 length 2 : 13735 Sat Feb 2 20:59:13 2008 length 3 : 13435 Sat Feb 2 20:59:13 2008 length 4 : 10830 Sat Feb 2 20:59:13 2008 length 5 : 8231 Sat Feb 2 20:59:13 2008 length 6 : 5366 Sat Feb 2 20:59:13 2008 length 7 : 3632 Sat Feb 2 20:59:13 2008 length 9+: 4937 Sat Feb 2 20:59:13 2008 largest cycle: 19 relations Sat Feb 2 20:59:14 2008 matrix is 78824 x 79041 (21.5 MB) with weight 5328815 (67.42/col) Sat Feb 2 20:59:14 2008 sparse part has weight 5328815 (67.42/col) Sat Feb 2 20:59:15 2008 filtering completed in 3 passes Sat Feb 2 20:59:15 2008 matrix is 75388 x 75452 (20.7 MB) with weight 5113466 (67.77/col) Sat Feb 2 20:59:15 2008 sparse part has weight 5113466 (67.77/col) Sat Feb 2 20:59:16 2008 saving the first 48 matrix rows for later Sat Feb 2 20:59:16 2008 matrix is 75340 x 75452 (14.2 MB) with weight 4180469 (55.41/col) Sat Feb 2 20:59:16 2008 sparse part has weight 3274785 (43.40/col) Sat Feb 2 20:59:16 2008 matrix includes 64 packed rows Sat Feb 2 20:59:16 2008 using block size 21845 for processor cache size 512 kB Sat Feb 2 20:59:17 2008 commencing Lanczos iteration Sat Feb 2 20:59:17 2008 memory use: 13.0 MB Sat Feb 2 21:00:18 2008 lanczos halted after 1193 iterations (dim = 75337) Sat Feb 2 21:00:18 2008 recovered 16 nontrivial dependencies Sat Feb 2 21:00:22 2008 prp37 factor: 7463409413579206909424210728917778139 Sat Feb 2 21:00:22 2008 prp58 factor: 4281227127600524118339409264146075718886687783760343681913 Sat Feb 2 21:00:22 2008 elapsed time 06:34:12
By Jo Yeong Uk / GGNFS
(11·10135+7)/9 = 1(2)1343<136> = 131 · 318423851 · 8863447521283<13> · C112
C112 = P45 · P68
P45 = 146507265503071162570097163593367631761112907<45>
P68 = 22563758847479551553339931144774084951879508530066949268898335852143<68>
Number: 12223_135 N=3305754608214957636859188617439640563208150384163881738373873556942454204082790415027851957410195271119880909701 ( 112 digits) SNFS difficulty: 136 digits. Divisors found: r1=146507265503071162570097163593367631761112907 (pp45) r2=22563758847479551553339931144774084951879508530066949268898335852143 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.57 hours. Scaled time: 4.77 units (timescale=1.857). Factorization parameters were as follows: n: 3305754608214957636859188617439640563208150384163881738373873556942454204082790415027851957410195271119880909701 m: 1000000000000000000000000000 c5: 11 c0: 7 skew: 0.91 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1150001) Primes: RFBsize:107126, AFBsize:107064, largePrimes:2237518 encountered Relations: rels:2366180, finalFF:298235 Max relations in full relation-set: 28 Initial matrix: 214255 x 298235 with sparse part having weight 20597668. Pruned matrix : 176349 x 177484 with weight 9366601. Total sieving time: 2.43 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.57 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10119+43)/9 = 1(2)1187<120> = 7 · 131 · C117
C117 = P31 · P39 · P48
P31 = 7726724306485600711748047366001<31>
P39 = 125939710672765832787789653955253825423<39>
P48 = 136969141012293087278356134180738215385520447897<48>
Number: 12227_119 N=133284866109293590209620743971889010056948988246698170362292499697079849751605476796316490972979522597843208530231431 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=7726724306485600711748047366001 (pp31) r2=125939710672765832787789653955253825423 (pp39) r3=136969141012293087278356134180738215385520447897 (pp48) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.08 hours. Scaled time: 2.01 units (timescale=1.860). Factorization parameters were as follows: n: 133284866109293590209620743971889010056948988246698170362292499697079849751605476796316490972979522597843208530231431 m: 1000000000000000000000000 c5: 11 c0: 430 skew: 2.08 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:49742, largePrimes:1888339 encountered Relations: rels:1934625, finalFF:187269 Max relations in full relation-set: 28 Initial matrix: 98905 x 187269 with sparse part having weight 16529964. Pruned matrix : 80942 x 81500 with weight 4822120. Total sieving time: 1.03 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 1.08 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(11·10102+43)/9 = 1(2)1017<103> = 3 · 5351 · 7417 · C95
C95 = P29 · P66
P29 = 15986555733012893316173285293<29>
P66 = 642111998099621810502419011210481164093871271217524484541221231739<66>
(11·10122+43)/9 = 1(2)1217<123> = 1553 · 646855673 · 5495588970614054030497<22> · C89
C89 = P30 · P60
P30 = 202819334939982598056638072887<30>
P60 = 109156029776505315605230350032970862543603279732264658041597<60>
(11·10108+43)/9 = 1(2)1077<109> = 3 · 307 · 5179 · C102
C102 = P44 · P58
P44 = 52998473697593985191483510398970980470758279<44>
P58 = 4834830709525647808402348659617169367180675927813342017607<58>
Number: n N=256238648191114710565285519387936251830970731466532285801786220981002210384462564243979166307059018353 ( 102 digits) SNFS difficulty: 109 digits. Divisors found: r1=52998473697593985191483510398970980470758279 (pp44) r2=4834830709525647808402348659617169367180675927813342017607 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.70 hours. Scaled time: 1.29 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_107_7 n: 256238648191114710565285519387936251830970731466532285801786220981002210384462564243979166307059018353 skew: 0.33 deg: 5 c5: 11000 c0: 43 m: 1000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:78498, AFBsize:78512, largePrimes:3833985 encountered Relations: rels:3288688, finalFF:209248 Max relations in full relation-set: 48 Initial matrix: 157077 x 209248 with sparse part having weight 8669312. Pruned matrix : 107179 x 108028 with weight 3135973. Total sieving time: 0.60 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 0.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(5·10164+1)/3 = 1(6)1637<165> = 29 · 51109 · 145869523 · 45231717026801<14> · C137
C137 = P43 · P94
P43 = 4540862105110602564100033680942535811201803<43>
P94 = 3753249345081429166561888673069600257378807334363856510196087848823616338912185173489836353563<94>
Number: n N=17042987722111448842955391614860266963453207743477456801387216880523122192828388238421867929811195976610704666895602314168554390251074089 ( 137 digits) SNFS difficulty: 165 digits. Divisors found: Sat Feb 02 12:46:52 2008 prp43 factor: 4540862105110602564100033680942535811201803 Sat Feb 02 12:46:52 2008 prp94 factor: 3753249345081429166561888673069600257378807334363856510196087848823616338912185173489836353563 Sat Feb 02 12:46:52 2008 elapsed time 01:14:11 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 49.04 hours. Scaled time: 64.34 units (timescale=1.312). Factorization parameters were as follows: name: KA_1_6_163_7 n: 17042987722111448842955391614860266963453207743477456801387216880523122192828388238421867929811195976610704666895602314168554390251074089 skew: 1.15 deg: 5 c5: 1 c0: 2 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2000000) Primes: RFBsize:230209, AFBsize:230077, largePrimes:7364021 encountered Relations: rels:6905403, finalFF:556912 Max relations in full relation-set: 28 Initial matrix: 460350 x 556912 with sparse part having weight 41875479. Pruned matrix : 387141 x 389506 with weight 26752549. Total sieving time: 48.78 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 49.04 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10110+43)/9 = 1(2)1097<111> = 51977 · C106
C106 = P47 · P59
P47 = 81184110247381809060406319688698040691781701091<47>
P59 = 28964626395377574001973137610529281064629935087612238738761<59>
Number: n N=2351467422556558135756627397160709972145799530989134082810131831814499148127483737465075364530892937688251 ( 106 digits) SNFS difficulty: 111 digits. Divisors found: Sat Feb 2 12:50:25 2008 prp47 factor: 81184110247381809060406319688698040691781701091 Sat Feb 2 12:50:25 2008 prp59 factor: 28964626395377574001973137610529281064629935087612238738761 Sat Feb 2 12:50:25 2008 elapsed time 00:04:27 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 0.67 hours. Scaled time: 0.56 units (timescale=0.836). Factorization parameters were as follows: name: KA_1_2_109_7 n: 2351467422556558135756627397160709972145799530989134082810131831814499148127483737465075364530892937688251 type: snfs deg: 5 c5: 11 c0: 43 skew: 1.31 m: 10000000000000000000000 rlim: 1000000 alim: 1000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:78498, AFBsize:78392, largePrimes:1545266 encountered Relations: rels:1538936, finalFF:190994 Max relations in full relation-set: 28 Initial matrix: 156955 x 190994 with sparse part having weight 6912098. Pruned matrix : 119845 x 120693 with weight 3158427. Total sieving time: 0.60 hours. Total relation processing time: 0.03 hours. Total matrix solve time: 0.04 hours, sqrts: 32. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.5,2.5,50000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
(11·10123+43)/9 = 1(2)1227<124> = 32 · 71 · 21179 · 38026953214673<14> · C103
C103 = P36 · P67
P36 = 479001684843585031175534119002948761<36>
P67 = 4958100159903010190304866660512588272578698548918562249510374124639<67>
(11·10151+43)/9 = 1(2)1507<152> = 14454331 · 637792399301914965087547<24> · 235218918106668005373009596143<30> · C91
C91 = P42 · P49
P42 = 919097914080506766975348639423129323618987<42>
P49 = 6132517724267022835952150979164863488281978181871<49>
Number: n N=5636384248435557042913746716336205772629431650068022004880943778426067540786043932194784677 ( 91 digits) Divisors found: r1=919097914080506766975348639423129323618987 (pp42) r2=6132517724267022835952150979164863488281978181871 (pp49) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.32 hours. Scaled time: 4.80 units (timescale=1.445). Factorization parameters were as follows: name: KA_1_2_150_7 n: 5636384248435557042913746716336205772629431650068022004880943778426067540786043932194784677 m: 829092521266817765468 deg: 4 c4: 11928576 c3: 32904998720 c2: -68584145541624839 c1: -89054554649160018 c0: 84172890122121959585421 skew: 1635.250 type: gnfs # adj. I(F,S) = 51.742 # E(F1,F2) = 1.402664e-04 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1201912733. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 27 lpba: 27 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 20000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 44/44 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:56543, AFBsize:56816, largePrimes:2612032 encountered Relations: rels:2297204, finalFF:127409 Max relations in full relation-set: 28 Initial matrix: 113435 x 127409 with sparse part having weight 9286207. Pruned matrix : 107888 x 108519 with weight 6627776. Total sieving time: 3.02 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.15 hours. Total square root time: 0.07 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,90,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,27,27,44,44,2.4,2.4,40000 total time: 3.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(11·10147+7)/9 = 1(2)1463<148> = 41 · 359 · 17987 · C139
C139 = P59 · P80
P59 = 60639450252175372852507882819631652825439122617058853904357<59>
P80 = 76130359457876522538422881892238302321490455243664764661805980418638409324517663<80>
Number: n N=4616503145026132276328029386285299255606452544697679073230547318885072673351337200374052419135004823660330017098096533201835850513359157691 ( 139 digits) SNFS difficulty: 148 digits. Divisors found: Sat Feb 02 15:21:37 2008 prp59 factor: 60639450252175372852507882819631652825439122617058853904357 Sat Feb 02 15:21:37 2008 prp80 factor: 76130359457876522538422881892238302321490455243664764661805980418638409324517663 Sat Feb 02 15:21:37 2008 elapsed time 01:02:11 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.68 hours. Scaled time: 22.27 units (timescale=1.756). Factorization parameters were as follows: name: KA_1_2_146_3 n: 4616503145026132276328029386285299255606452544697679073230547318885072673351337200374052419135004823660330017098096533201835850513359157691 type: snfs skew: 0.36 deg: 5 c5: 1100 c0: 7 m: 100000000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1799990) Primes: RFBsize:183072, AFBsize:182582, largePrimes:6521885 encountered Relations: rels:5914180, finalFF:433290 Max relations in full relation-set: 28 Initial matrix: 365721 x 433290 with sparse part having weight 25005284. Pruned matrix : Total sieving time: 12.49 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.3,2.3,100000 total time: 12.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(11·10129+43)/9 = 1(2)1287<130> = 3 · 17 · 2269 · 8629 · 1012261 · C115
C115 = P33 · P82
P33 = 137168336280987058909192029624923<33>
P82 = 8815331708024940951855441988686640906430791155889863737109891988891471546179563959<82>
(11·10120+43)/9 = 1(2)1197<121> = 3 · 2939 · C117
C117 = P53 · P65
P53 = 10360202665625776591605886682977757294938234539486161<53>
P65 = 13380153130697716154258396236743209165877691612680584935690556371<65>
Number: n N=138621098131135558832054238655123309767746651040288331884112761962370672816402656484316913034163799730318954544881731 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=10360202665625776591605886682977757294938234539486161 (pp53) r2=13380153130697716154258396236743209165877691612680584935690556371 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.28 hours. Scaled time: 2.34 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_119_7 n: 138621098131135558832054238655123309767746651040288331884112761962370672816402656484316913034163799730318954544881731 skew: 1.31 deg: 5 c5: 11 c0: 43 m: 1000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 220001) Primes: RFBsize:114155, AFBsize:113573, largePrimes:4315307 encountered Relations: rels:3788011, finalFF:272120 Max relations in full relation-set: 48 Initial matrix: 227793 x 272120 with sparse part having weight 10596266. Pruned matrix : 179876 x 181078 with weight 5024465. Total sieving time: 1.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 1.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(11·10167+7)/9 = 1(2)1663<168> = 3 · 41 · 79 · C164
C164 = P38 · P40 · P87
P38 = 14423979966512432432545987637860750601<38>
P40 = 2524959991453561105199033616344355110857<40>
P87 = 345365030444882216665762967853873494551988141411835789407073140545858646627934040752067<87>
(11·10148+7)/9 = 1(2)1473<149> = 172 · 1241573 · 1620767868131<13> · C128
C128 = P61 · P67
P61 = 9977951392526419577166133150855561477582761570070861812038027<61>
P67 = 2106288571161423902638665809382880013459521046170628246982291811907<67>
Number: n N=21016444981682612225056203512237555804076311423045693833897029194807082815809370173856574425843518830726347224042488806215387489 ( 128 digits) SNFS difficulty: 149 digits. Divisors found: Sat Feb 2 23:03:45 2008 prp61 factor: 9977951392526419577166133150855561477582761570070861812038027 Sat Feb 2 23:03:45 2008 prp67 factor: 2106288571161423902638665809382880013459521046170628246982291811907 Sat Feb 2 23:03:45 2008 elapsed time 00:35:31 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.00 hours. Scaled time: 17.45 units (timescale=0.831). Factorization parameters were as follows: name: KA_1_2_147_3 n: 21016444981682612225056203512237555804076311423045693833897029194807082815809370173856574425843518830726347224042488806215387489 type: snfs deg: 5 c5: 11000 c0: 7 skew: 0.23 m: 100000000000000000000000000000 rlim: 2500000 alim: 2500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved special-q in [100000, 3200001) Primes: RFBsize:183072, AFBsize:182532, largePrimes:3031135 encountered Relations: rels:3055901, finalFF:404994 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 20.86 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2500000,2500000,26,26,45,45,2.5,2.5,100000 total time: 21.00 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
(11·10126+43)/9 = 1(2)1257<127> = 3 · 149 · 163 · 142067 · 214141744783562320063<21> · C96
C96 = P40 · P57
P40 = 1745478423811049629208332776515371425419<40>
P57 = 315897374831811624279270914479096464615835238536442426593<57>
Number: n N=551392051907478892905276839856959560249645709930693432714313355558298115017072124938461681767467 ( 96 digits) SNFS difficulty: 127 digits. Divisors found: r1=1745478423811049629208332776515371425419 (pp40) r2=315897374831811624279270914479096464615835238536442426593 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.72 hours. Scaled time: 3.93 units (timescale=1.446). Factorization parameters were as follows: name: KA_1_2_125_7 n: 551392051907478892905276839856959560249645709930693432714313355558298115017072124938461681767467 skew: 0.83 deg: 5 c5: 110 c0: 43 m: 10000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:114155, AFBsize:114453, largePrimes:4691482 encountered Relations: rels:4120461, finalFF:271046 Max relations in full relation-set: 28 Initial matrix: 228675 x 271046 with sparse part having weight 12982612. Pruned matrix : 188205 x 189412 with weight 6833727. Total sieving time: 2.23 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.35 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 2.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(11·10131+43)/9 = 1(2)1307<132> = 7 · 19 · C129
C129 = P32 · P48 · P50
P32 = 32415240075876389291454435280241<32>
P48 = 772883054289567450015728285748118755690584982373<48>
P50 = 36680521954763531909701891063601113368415398966683<50>
Number: n N=28349753841333173597883662813592007973807145936190394697664372879321221423868495390013541969278759 ( 98 digits) SNFS difficulty: 132 digits. Divisors found: Sun Feb 3 00:04:25 2008 prp48 factor: 772883054289567450015728285748118755690584982373 Sun Feb 3 00:04:25 2008 prp50 factor: 36680521954763531909701891063601113368415398966683 Sun Feb 3 00:04:25 2008 elapsed time 00:05:46 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 3.06 hours. Scaled time: 2.56 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_2_130_7 n: 28349753841333173597883662813592007973807145936190394697664372879321221423868495390013541969278759 type: snfs deg: 5 c5: 110 c0: 43 skew: 0.83 m: 100000000000000000000000000 rlim: 1500000 alim: 1500000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved special-q in [100000, 550337) Primes: RFBsize:114155, AFBsize:114453, largePrimes:1541470 encountered Relations: rels:1615701, finalFF:252787 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 3.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1500000,1500000,25,25,44,44,2.5,2.5,50000 total time: 3.06 hours. --------- CPU info (if available) ---------- CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Total of 2 processors activated (12009.47 BogoMIPS).
(11·10158+43)/9 = 1(2)1577<159> = 71 · C157
C157 = P29 · P30 · P98
P29 = 73609322750518380920243244497<29>
P30 = 699257274423233790983654844817<30>
P98 = 33444292414172749749400378136524476926764366571801070725522241132909588873350783579759308359249013<98>
(11·10136+43)/9 = 1(2)1357<137> = 17327 · 677426430691<12> · C121
C121 = P50 · P71
P50 = 15069402715240311151513397026733944991125470105653<50>
P71 = 69098500671942225559710465911019554432414961727090137082577263863265187<71>
Number: n N=1041273133644800638436966964039937301980376146456499962236974820226681909664960757201914741690067877385787858958446802111 ( 121 digits) SNFS difficulty: 137 digits. Divisors found: r1=15069402715240311151513397026733944991125470105653 (pp50) r2=69098500671942225559710465911019554432414961727090137082577263863265187 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.83 hours. Scaled time: 7.01 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_135_7 n: 1041273133644800638436966964039937301980376146456499962236974820226681909664960757201914741690067877385787858958446802111 skew: 0.83 deg: 5 c5: 110 c0: 43 m: 1000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:148933, AFBsize:149531, largePrimes:5785695 encountered Relations: rels:5177843, finalFF:352761 Max relations in full relation-set: 48 Initial matrix: 298531 x 352761 with sparse part having weight 20544999. Pruned matrix : 252227 x 253783 with weight 11036455. Total sieving time: 3.39 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.29 hours. Total square root time: 0.06 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 3.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
The factor table of 122...227 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS, Msieve
(11·10128+7)/9 = 1(2)1273<129> = 3 · 61 · 79 · 38841953 · 3001001404133<13> · C104
C104 = P47 · P58
P47 = 17820426575258291271812216801778273828263811949<47>
P58 = 4069927209397961264478571968552512687964124279931746688039<58>
Number: 12223_128 N=72527839001722245343433093247741785957812868472563178292041549315582239211939650085232450024037863578011 ( 104 digits) SNFS difficulty: 129 digits. Divisors found: r1=17820426575258291271812216801778273828263811949 (pp47) r2=4069927209397961264478571968552512687964124279931746688039 (pp58) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.18 hours. Scaled time: 4.18 units (timescale=0.676). Factorization parameters were as follows: name: 12223_128 n: 72527839001722245343433093247741785957812868472563178292041549315582239211939650085232450024037863578011 m: 10000000000000000000000000 c5: 11000 c0: 7 skew: 0.23 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63749, largePrimes:1505085 encountered Relations: rels:1503095, finalFF:170416 Max relations in full relation-set: 28 Initial matrix: 127767 x 170416 with sparse part having weight 12944744. Pruned matrix : 115378 x 116080 with weight 7079599. Total sieving time: 5.82 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.22 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.18 hours. --------- CPU info (if available) ----------
(11·10129+7)/9 = 1(2)1283<130> = 1459219821067<13> · 82785343995961669807<20> · C98
C98 = P47 · P51
P47 = 36382216950136191665275319616069319317105322207<47>
P51 = 278090938993464323621253478672588687018603974937181<51>
Number: 12223_129 N=10117564874327307322152950912916434067947268348447696910741179744918424161798658125524733589278467 ( 98 digits) SNFS difficulty: 131 digits. Divisors found: r1=36382216950136191665275319616069319317105322207 (pp47) r2=278090938993464323621253478672588687018603974937181 (pp51) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 5.73 hours. Scaled time: 3.88 units (timescale=0.676). Factorization parameters were as follows: name: 12223_129 n: 10117564874327307322152950912916434067947268348447696910741179744918424161798658125524733589278467 m: 100000000000000000000000000 c5: 11 c0: 70 skew: 1.45 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1000001) Primes: RFBsize:63951, AFBsize:63989, largePrimes:1484925 encountered Relations: rels:1479962, finalFF:166211 Max relations in full relation-set: 28 Initial matrix: 128005 x 166211 with sparse part having weight 12291328. Pruned matrix : 116824 x 117528 with weight 6896601. Total sieving time: 5.39 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.22 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.73 hours. --------- CPU info (if available) ----------
(11·10145+7)/9 = 1(2)1443<146> = 13 · 31 · 823 · 151593136619<12> · 28621596899570201856329127192281<32> · C97
C97 = P34 · P64
P34 = 1738141979248770825019597995643561<34>
P64 = 4886373338108512536231001803679542238062728247725780926025401273<64>
Thu Jan 31 09:05:46 2008 Msieve v. 1.30 Thu Jan 31 09:05:46 2008 random seeds: ed732f90 2131a286 Thu Jan 31 09:05:46 2008 factoring 8493210625248353223145884402754220986747232289349364818181442507813118382434252707555080903653153 (97 digits) Thu Jan 31 09:05:47 2008 commencing quadratic sieve (97-digit input) Thu Jan 31 09:05:48 2008 using multiplier of 1 Thu Jan 31 09:05:48 2008 using 64kb Pentium 2 sieve core Thu Jan 31 09:05:48 2008 sieve interval: 18 blocks of size 65536 Thu Jan 31 09:05:48 2008 processing polynomials in batches of 6 Thu Jan 31 09:05:48 2008 using a sieve bound of 2404033 (88167 primes) Thu Jan 31 09:05:48 2008 using large prime bound of 360604950 (28 bits) Thu Jan 31 09:05:48 2008 using double large prime bound of 2527301234494800 (43-52 bits) Thu Jan 31 09:05:48 2008 using trial factoring cutoff of 52 bits Thu Jan 31 09:05:48 2008 polynomial 'A' values have 13 factors Fri Feb 01 21:32:16 2008 88420 relations (21239 full + 67181 combined from 1335767 partial), need 88263 Fri Feb 01 21:32:44 2008 begin with 1357006 relations Fri Feb 01 21:34:37 2008 reduce to 233037 relations in 12 passes Fri Feb 01 21:34:38 2008 attempting to read 233037 relations Fri Feb 01 21:35:21 2008 recovered 233037 relations Fri Feb 01 21:35:21 2008 recovered 220181 polynomials Fri Feb 01 21:35:54 2008 attempting to build 88420 cycles Fri Feb 01 21:35:56 2008 found 88420 cycles in 6 passes Fri Feb 01 21:36:02 2008 distribution of cycle lengths: Fri Feb 01 21:36:02 2008 length 1 : 21239 Fri Feb 01 21:36:02 2008 length 2 : 15084 Fri Feb 01 21:36:02 2008 length 3 : 14823 Fri Feb 01 21:36:02 2008 length 4 : 12183 Fri Feb 01 21:36:02 2008 length 5 : 9263 Fri Feb 01 21:36:02 2008 length 6 : 6192 Fri Feb 01 21:36:02 2008 length 7 : 4006 Fri Feb 01 21:36:02 2008 length 9+: 5630 Fri Feb 01 21:36:02 2008 largest cycle: 18 relations Fri Feb 01 21:36:10 2008 matrix is 88167 x 88420 with weight 5866985 (avg 66.35/col) Fri Feb 01 21:36:58 2008 filtering completed in 3 passes Fri Feb 01 21:36:58 2008 matrix is 84507 x 84571 with weight 5639170 (avg 66.68/col) Fri Feb 01 21:37:03 2008 saving the first 48 matrix rows for later Fri Feb 01 21:37:03 2008 matrix is 84459 x 84571 with weight 4459365 (avg 52.73/col) Fri Feb 01 21:37:03 2008 matrix includes 64 packed rows Fri Feb 01 21:37:04 2008 using block size 10922 for processor cache size 256 kB Fri Feb 01 21:37:07 2008 commencing Lanczos iteration Fri Feb 01 21:43:24 2008 lanczos halted after 1337 iterations (dim = 84459) Fri Feb 01 21:43:25 2008 recovered 17 nontrivial dependencies Fri Feb 01 21:57:06 2008 prp34 factor: 1738141979248770825019597995643561 Fri Feb 01 21:57:06 2008 prp64 factor: 4886373338108512536231001803679542238062728247725780926025401273 Fri Feb 01 21:57:06 2008 elapsed time 36:51:20
By Jo Yeong Uk / GGNFS
(11·10127+7)/9 = 1(2)1263<128> = 13 · 41 · 39930894669768828456551609<26> · C99
C99 = P39 · P61
P39 = 131553635963448102867023745823633166713<39>
P61 = 4365269589315262899723003685730075290012150262832120397531843<61>
Number: 12223_127 N=574267086435090699768103539203445300361508173374549994005694693376903137493747861523667279345142059 ( 99 digits) SNFS difficulty: 128 digits. Divisors found: r1=131553635963448102867023745823633166713 (pp39) r2=4365269589315262899723003685730075290012150262832120397531843 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.18 hours. Scaled time: 4.05 units (timescale=1.859). Factorization parameters were as follows: n: 574267086435090699768103539203445300361508173374549994005694693376903137493747861523667279345142059 m: 10000000000000000000000000 c5: 1100 c0: 7 skew: 0.36 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78502, largePrimes:1568919 encountered Relations: rels:1614187, finalFF:218469 Max relations in full relation-set: 28 Initial matrix: 157067 x 218469 with sparse part having weight 11091121. Pruned matrix : 130554 x 131403 with weight 5278948. Total sieving time: 2.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10130+7)/9 = 1(2)1293<131> = 31 · 857 · 109891 · C121
C121 = P52 · P69
P52 = 6368333907666863327198144994659776908553310493558001<52>
P69 = 657384875534192380051162907704171430655174054549731898566209496449859<69>
Number: 12223_130 N=4186446393251757937089321095384294030882377489367556216227186001816279187420481326563415495130071266809768698299004771859 ( 121 digits) SNFS difficulty: 131 digits. Divisors found: r1=6368333907666863327198144994659776908553310493558001 (pp52) r2=657384875534192380051162907704171430655174054549731898566209496449859 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.93 hours. Scaled time: 3.60 units (timescale=1.860). Factorization parameters were as follows: n: 4186446393251757937089321095384294030882377489367556216227186001816279187420481326563415495130071266809768698299004771859 m: 100000000000000000000000000 c5: 11 c0: 7 skew: 0.91 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78392, largePrimes:1557066 encountered Relations: rels:1615830, finalFF:230414 Max relations in full relation-set: 28 Initial matrix: 156955 x 230414 with sparse part having weight 11524693. Pruned matrix : 122946 x 123794 with weight 5035615. Total sieving time: 1.87 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10132+7)/9 = 1(2)1313<133> = 17 · 41 · 241 · 249729043237740918459457607<27> · C101
C101 = P35 · P67
P35 = 15627040354064215471639879571774527<35>
P67 = 1864466429448898434587464768488764084002767058127712202281064401391<67>
Number: 12223_132 N=29136092131795957409269524543599123164049664084769673527820555195490040265768211379642590850877167057 ( 101 digits) SNFS difficulty: 133 digits. Divisors found: r1=15627040354064215471639879571774527 (pp35) r2=1864466429448898434587464768488764084002767058127712202281064401391 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.19 hours. Scaled time: 5.93 units (timescale=1.858). Factorization parameters were as follows: n: 29136092131795957409269524543599123164049664084769673527820555195490040265768211379642590850877167057 m: 100000000000000000000000000 c5: 1100 c0: 7 skew: 0.36 type: snfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1250001) Primes: RFBsize:92938, AFBsize:92875, largePrimes:1687326 encountered Relations: rels:1749659, finalFF:237564 Max relations in full relation-set: 28 Initial matrix: 185880 x 237564 with sparse part having weight 13207043. Pruned matrix : 163716 x 164709 with weight 7305591. Total sieving time: 3.08 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1200000,1200000,25,25,46,46,2.2,2.2,50000 total time: 3.19 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
(11·10133+7)/9 = 1(2)1323<134> = 132 · 216967 · 274877791810536202415819<24> · C103
C103 = P49 · P54
P49 = 7288838851121349921757605985046744807118531852797<49>
P54 = 166368762117567129996632571508461763704342293538361807<54>
Number: 12223_133 N=1212635096935489162985899520225286878375226922845226590025671623905132630667309062931776714979850924179 ( 103 digits) SNFS difficulty: 136 digits. Divisors found: r1=7288838851121349921757605985046744807118531852797 (pp49) r2=166368762117567129996632571508461763704342293538361807 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.81 hours. Scaled time: 7.07 units (timescale=1.858). Factorization parameters were as follows: n: 1212635096935489162985899520225286878375226922845226590025671623905132630667309062931776714979850924179 m: 1000000000000000000000000000 c5: 11 c0: 700 skew: 2.29 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1400001) Primes: RFBsize:107126, AFBsize:106864, largePrimes:2327353 encountered Relations: rels:2474302, finalFF:297230 Max relations in full relation-set: 28 Initial matrix: 214057 x 297230 with sparse part having weight 23663112. Pruned matrix : 186367 x 187501 with weight 11941864. Total sieving time: 3.64 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.81 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(11·10140+7)/9 = 1(2)1393<141> = 3 · 3461 · 1095607588589<13> · 834558173034127<15> · 4419964196853031<16> · C94
C94 = P47 · P48
P47 = 23791675036360545008892228841804329617387361131<47>
P48 = 122425505136829100536474798340818755144635369207<48>
Number: n N=2912707834377726580270175322931490941526698320396340756910726140921366521664757928917626093117 ( 94 digits) Divisors found: r1=23791675036360545008892228841804329617387361131 (pp47) r2=122425505136829100536474798340818755144635369207 (pp48) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.46 hours. Scaled time: 8.16 units (timescale=1.829). Factorization parameters were as follows: name: KA_1_2_139_3 n: 2912707834377726580270175322931490941526698320396340756910726140921366521664757928917626093117 m: 4536326114264324860543 deg: 4 c4: 6878280 c3: 33377034 c2: -62303463404508495 c1: -64779800640570195830 c0: -1496909709532791612456 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.762 # E(F1,F2) = 4.865863e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1201707937. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 940001) Primes: RFBsize:92938, AFBsize:92957, largePrimes:1797298 encountered Relations: rels:1838774, finalFF:224475 Max relations in full relation-set: 48 Initial matrix: 185979 x 224475 with sparse part having weight 15141846. Pruned matrix : 161730 x 162723 with weight 8462261. Polynomial selection time: 0.17 hours. Total sieving time: 4.09 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
6·10166-1 = 5(9)166<167> = 1415744095201<13> · 12712979409464320156621733<26> · C130
C130 = P35 · P38 · P58
P35 = 37154591566665333519909747568949477<35>
P38 = 64960406415076577673529410226373905391<38>
P58 = 1381204303898828183886023860415270650257402155513930927929<58>
Number: n N=89723592923520817279753844783907710962661690251065459520368194642257369051521960751508285565239 ( 95 digits) Divisors found: r1=64960406415076577673529410226373905391 (pp38) r2=1381204303898828183886023860415270650257402155513930927929 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.46 hours. Scaled time: 9.34 units (timescale=1.446). Factorization parameters were as follows: name: KA_5_9_166 n: 89723592923520817279753844783907710962661690251065459520368194642257369051521960751508285565239 m: 5984868794652303062657 deg: 4 c4: 69933960 c3: 104353378371 c2: 1096699571646412484 c1: -848692618763956120 c0: -668297857122058317044800 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.465 # E(F1,F2) = 3.088979e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1201785727. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 50000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:92938, AFBsize:93074, largePrimes:2445364 encountered Relations: rels:2348038, finalFF:215671 Max relations in full relation-set: 28 Initial matrix: 186089 x 215671 with sparse part having weight 14207860. Pruned matrix : 168592 x 169586 with weight 9112248. Total sieving time: 5.83 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.42 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,45,45,2.4,2.4,60000 total time: 6.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(5·10166-17)/3 = 1(6)1651<167> = 313 · 713279355969704807587<21> · C143
C143 = P43 · P101
P43 = 6906530378904595777299619718427335413392823<43>
P101 = 10808982929600989913554744120661733333612409183010564466357031082357367707270870872976077015961379497<101>
Number: n N=74652568968350432571858162428041298959592617781581769536102339784684274263627848893862771900886916705702120332595381912452867047041224239150031 ( 143 digits) SNFS difficulty: 166 digits. Divisors found: Fri Feb 1 15:09:29 2008 prp43 factor: 6906530378904595777299619718427335413392823 Fri Feb 1 15:09:29 2008 prp101 factor: 10808982929600989913554744120661733333612409183010564466357031082357367707270870872976077015961379497 Fri Feb 1 15:09:29 2008 elapsed time 00:49:24 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 46.58 hours. Scaled time: 39.13 units (timescale=0.840). Factorization parameters were as follows: name: KA_1_6_165_1 n: 74652568968350432571858162428041298959592617781581769536102339784684274263627848893862771900886916705702120332595381912452867047041224239150031 type: snfs deg: 5 c5: 50 c0: -17 skew: 0.81 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000469) Primes: RFBsize:216816, AFBsize:217226, largePrimes:5601777 encountered Relations: rels:5457799, finalFF:447969 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 46.40 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 46.58 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(11·10126+7)/9 = 1(2)1253<127> = 47 · C125
C125 = P34 · P39 · P54
P34 = 2028013358477151338981105966488181<34>
P39 = 100997020886744923001474572087204796497<39>
P54 = 126961762538913698290780642666257974194325729545261037<54>
Number: n N=12822759782960615911248464548662628250867681715191527970142640677251818434976713082328187389 ( 92 digits) Divisors found: r1=100997020886744923001474572087204796497 (pp39) r2=126961762538913698290780642666257974194325729545261037 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.79 hours. Scaled time: 5.48 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_2_125_3 n: 12822759782960615911248464548662628250867681715191527970142640677251818434976713082328187389 m: 828222499879303485153 deg: 4 c4: 27251688 c3: 116985641150 c2: -35161021028079089 c1: -401192335890363161 c0: 14492918840677471284545 skew: 1635.250 type: gnfs # adj. I(F,S) = 52.000 # E(F1,F2) = 1.265408e-04 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1201825203. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 26 lpba: 26 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 50000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 44/44 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:56543, AFBsize:56107, largePrimes:2044474 encountered Relations: rels:1905213, finalFF:138257 Max relations in full relation-set: 28 Initial matrix: 112725 x 138257 with sparse part having weight 10597229. Pruned matrix : 104195 x 104822 with weight 6271740. Total sieving time: 3.55 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.13 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,26,26,44,44,2.4,2.4,40000 total time: 3.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10192+3 = 7(0)1913<193> = 31 · 1105109 · 1243211 · 4470822866051487481<19> · 5290673163123042490177645270463<31> · C130
C130 = P39 · P92
P39 = 360922089125386739265100361213804922199<39>
P92 = 19251941213231301805507821363673906075280686340797762406923312617295075302212157369103874171<92>
9·10165+7 = 9(0)1647<166> = 43 · 23131 · 1418088383<10> · 35942958881<11> · C141
C141 = P45 · P47 · P49
P45 = 316632999964816314980011979278660259022505001<45>
P47 = 74603769316589492099122294657235536113237612649<47>
P49 = 7515287056062349794626336991939024137322161656577<49>
Number: n N=177526225727465427375076325956215494327313122747943829679376540302091740288043953526266170975409861004259333830654434655259996183735344107473 ( 141 digits) SNFS difficulty: 165 digits. Divisors found: Fri Feb 01 18:19:06 2008 prp45 factor: 316632999964816314980011979278660259022505001 Fri Feb 01 18:19:06 2008 prp47 factor: 74603769316589492099122294657235536113237612649 Fri Feb 01 18:19:06 2008 prp49 factor: 7515287056062349794626336991939024137322161656577 Fri Feb 01 18:19:06 2008 elapsed time 01:04:51 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.01 hours. Scaled time: 73.18 units (timescale=1.829). Factorization parameters were as follows: name: KA_9_0_164_7 n: 177526225727465427375076325956215494327313122747943829679376540302091740288043953526266170975409861004259333830654434655259996183735344107473 skew: 0.95 deg: 5 c5: 9 c0: 7 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000791) Primes: RFBsize:230209, AFBsize:230717, largePrimes:7426505 encountered Relations: rels:6885081, finalFF:513570 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 39.83 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 40.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Yousuke Koide
(101417-1)/9 is divisible by 57691258324093633641909137807790199<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
(4·10165+41)/9 = (4)1649<165> = 5849891987<10> · 12569892767983<14> · C142
C142 = P70 · P73
P70 = 1281570790751209261870606118509601319231489235378717382008982025914249<70>
P73 = 4716235264308885999918029689628367436288591731976079138987327132460971981<73>
Number: n N=6044189357049077446644490449750213711247494210862836335124304401771018375433568259682738692991215544680682817617072084546641347382952697657269 ( 142 digits) SNFS difficulty: 165 digits. Divisors found: Fri Feb 01 03:34:11 2008 prp70 factor: 1281570790751209261870606118509601319231489235378717382008982025914249 Fri Feb 01 03:34:11 2008 prp73 factor: 4716235264308885999918029689628367436288591731976079138987327132460971981 Fri Feb 01 03:34:11 2008 elapsed time 01:59:28 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 60.53 hours. Scaled time: 106.11 units (timescale=1.753). Factorization parameters were as follows: name: KA_4_164_9 n: 6044189357049077446644490449750213711247494210862836335124304401771018375433568259682738692991215544680682817617072084546641347382952697657269 type: snfs skew: 1.59 deg: 5 c5: 4 c0: 41 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900119) Primes: RFBsize:230209, AFBsize:230843, largePrimes:7459245 encountered Relations: rels:6912771, finalFF:514265 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 60.28 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 60.53 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(11·10107+7)/9 = 1(2)1063<108> = 32 · 41 · C105
C105 = P46 · P60
P46 = 1292550447331944890025042849241722436631493391<46>
P60 = 256257336153707341238146911505259598651293150772733923813137<60>
Number: 12223_107 N=331225534477566997892201144233664558867810900331225534477566997892201144233664558867810900331225534477567 ( 105 digits) SNFS difficulty: 108 digits. Divisors found: r1=1292550447331944890025042849241722436631493391 (pp46) r2=256257336153707341238146911505259598651293150772733923813137 (pp60) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.02 hours. Scaled time: 1.37 units (timescale=0.676). Factorization parameters were as follows: name: 12223_107 n: 331225534477566997892201144233664558867810900331225534477566997892201144233664558867810900331225534477567 m: 1000000000000000000000 c5: 1100 c0: 7 skew: 0.36 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64124, largePrimes:2429252 encountered Relations: rels:3033429, finalFF:718930 Max relations in full relation-set: 28 Initial matrix: 113289 x 718930 with sparse part having weight 53214391. Pruned matrix : 57627 x 58257 with weight 4923663. Total sieving time: 1.84 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.02 hours. --------- CPU info (if available) ----------
(11·10111+7)/9 = 1(2)1103<112> = 1666104019<10> · C102
C102 = P39 · P64
P39 = 235975824491022308928990780915762844819<39>
P64 = 3108712443286375789320997869432868788061093950925051865679921143<64>
Number: 12223_111 N=733580981910002956557433418100543110341193062221538415376826614702633534804661090144229597601266108117 ( 102 digits) SNFS difficulty: 112 digits. Divisors found: r1=235975824491022308928990780915762844819 (pp39) r2=3108712443286375789320997869432868788061093950925051865679921143 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.79 hours. Scaled time: 1.21 units (timescale=0.676). Factorization parameters were as follows: name: 12223_111 n: 733580981910002956557433418100543110341193062221538415376826614702633534804661090144229597601266108117 m: 10000000000000000000000 c5: 110 c0: 7 skew: 0.58 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64059, largePrimes:2021282 encountered Relations: rels:2053022, finalFF:193864 Max relations in full relation-set: 28 Initial matrix: 113224 x 193864 with sparse part having weight 15557092. Pruned matrix : 89133 x 89763 with weight 4789183. Total sieving time: 1.58 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.79 hours. --------- CPU info (if available) ----------
(11·10114+7)/9 = 1(2)1133<115> = 151 · 122621323170953<15> · C98
C98 = P43 · P55
P43 = 6707176161219300156417206391262616855238919<43>
P55 = 9841640960702845903948148581547115321867466062969048439<55>
Number: 12223_114 N=66009619638905539253901637431935754347497426208831751373830011892396353837800790236691341428997441 ( 98 digits) SNFS difficulty: 116 digits. Divisors found: r1=6707176161219300156417206391262616855238919 (pp43) r2=9841640960702845903948148581547115321867466062969048439 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.23 hours. Scaled time: 1.51 units (timescale=0.676). Factorization parameters were as follows: name: 12223_114 n: 66009619638905539253901637431935754347497426208831751373830011892396353837800790236691341428997441 m: 100000000000000000000000 c5: 11 c0: 70 skew: 1.45 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63989, largePrimes:2303070 encountered Relations: rels:2648109, finalFF:464927 Max relations in full relation-set: 28 Initial matrix: 113152 x 464927 with sparse part having weight 38989712. Pruned matrix : 65830 x 66459 with weight 5847898. Total sieving time: 2.03 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
(11·10149+7)/9 = 1(2)1483<150> = 3 · 5455414187<10> · C139
C139 = P31 · P109
P31 = 2490019097316894784751546161679<31>
P109 = 2999152258909011442964542293733101419514316878763530379221746764878442585998011725357379568000480610857964417<109>
(11·10150+7)/9 = 1(2)1493<151> = 14281 · 81937 · 44143109464746506290891<23> · C119
C119 = P32 · P33 · P55
P32 = 68241356669473223079132276622237<32>
P33 = 151148305752490290170716101146479<33>
P55 = 2294022325606514181685656134858589548523107480053902263<55>
Thu Jan 31 18:17:58 2008 Thu Jan 31 18:17:58 2008 Thu Jan 31 18:17:58 2008 Msieve v. 1.32 Thu Jan 31 18:17:58 2008 random seeds: 83626f43 2e9ca7e0 Thu Jan 31 18:17:58 2008 factoring 156547195729448570330739228648254921953631297430761643676132908131266366819040570422331 (87 digits) Thu Jan 31 18:17:59 2008 no P-1/P+1/ECM available, skipping Thu Jan 31 18:17:59 2008 commencing quadratic sieve (86-digit input) Thu Jan 31 18:17:59 2008 using multiplier of 3 Thu Jan 31 18:17:59 2008 using 32kb Intel Core sieve core Thu Jan 31 18:17:59 2008 sieve interval: 19 blocks of size 32768 Thu Jan 31 18:17:59 2008 processing polynomials in batches of 11 Thu Jan 31 18:17:59 2008 using a sieve bound of 1474127 (56333 primes) Thu Jan 31 18:17:59 2008 using large prime bound of 117930160 (26 bits) Thu Jan 31 18:17:59 2008 using double large prime bound of 338006235664960 (41-49 bits) Thu Jan 31 18:17:59 2008 using trial factoring cutoff of 49 bits Thu Jan 31 18:17:59 2008 polynomial 'A' values have 11 factors Thu Jan 31 18:56:57 2008 56548 relations (15649 full + 40899 combined from 592255 partial), need 56429 Thu Jan 31 18:56:57 2008 begin with 607904 relations Thu Jan 31 18:56:57 2008 reduce to 135305 relations in 10 passes Thu Jan 31 18:56:57 2008 attempting to read 135305 relations Thu Jan 31 18:56:58 2008 recovered 135305 relations Thu Jan 31 18:56:58 2008 recovered 114562 polynomials Thu Jan 31 18:56:58 2008 attempting to build 56548 cycles Thu Jan 31 18:56:58 2008 found 56548 cycles in 5 passes Thu Jan 31 18:56:59 2008 distribution of cycle lengths: Thu Jan 31 18:56:59 2008 length 1 : 15649 Thu Jan 31 18:56:59 2008 length 2 : 10984 Thu Jan 31 18:56:59 2008 length 3 : 10147 Thu Jan 31 18:56:59 2008 length 4 : 7618 Thu Jan 31 18:56:59 2008 length 5 : 5079 Thu Jan 31 18:56:59 2008 length 6 : 3170 Thu Jan 31 18:56:59 2008 length 7 : 1835 Thu Jan 31 18:56:59 2008 length 9+: 2066 Thu Jan 31 18:56:59 2008 largest cycle: 20 relations Thu Jan 31 18:56:59 2008 matrix is 56333 x 56548 with weight 3176684 (avg 56.18/col) Thu Jan 31 18:56:59 2008 filtering completed in 3 passes Thu Jan 31 18:56:59 2008 matrix is 51951 x 52015 with weight 2948955 (avg 56.69/col) Thu Jan 31 18:57:00 2008 saving the first 48 matrix rows for later Thu Jan 31 18:57:00 2008 matrix is 51903 x 52015 with weight 2312723 (avg 44.46/col) Thu Jan 31 18:57:00 2008 matrix includes 64 packed rows Thu Jan 31 18:57:00 2008 using block size 20806 for processor cache size 4096 kB Thu Jan 31 18:57:01 2008 commencing Lanczos iteration Thu Jan 31 18:57:11 2008 lanczos halted after 822 iterations (dim = 51901) Thu Jan 31 18:57:11 2008 recovered 16 nontrivial dependencies Thu Jan 31 18:57:11 2008 prp32 factor: 68241356669473223079132276622237 Thu Jan 31 18:57:11 2008 prp55 factor: 2294022325606514181685656134858589548523107480053902263 Thu Jan 31 18:57:11 2008 elapsed time 00:39:13
(11·10122+7)/9 = 1(2)1213<123> = 3 · 41 · 15619 · 1095251 · C110
C110 = P38 · P73
P38 = 48431758142731886716282698692789115637<38>
P73 = 1199355541668143121502827815414108595405173439839162449118989915332245617<73>
Number: 12223_122 N=58086897521216703275912831000039986472494161953461626501002431196310592545468815762540152169182614030699413029 ( 110 digits) SNFS difficulty: 123 digits. Divisors found: r1=48431758142731886716282698692789115637 (pp38) r2=1199355541668143121502827815414108595405173439839162449118989915332245617 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.53 hours. Scaled time: 2.85 units (timescale=1.857). Factorization parameters were as follows: n: 58086897521216703275912831000039986472494161953461626501002431196310592545468815762540152169182614030699413029 m: 1000000000000000000000000 c5: 1100 c0: 7 skew: 0.36 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 720001) Primes: RFBsize:63951, AFBsize:64124, largePrimes:1449343 encountered Relations: rels:1472423, finalFF:194913 Max relations in full relation-set: 28 Initial matrix: 128142 x 194913 with sparse part having weight 9661941. Pruned matrix : 101275 x 101979 with weight 3961287. Total sieving time: 1.48 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 1.53 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406453) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405114)
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(85·10195+41)/9 = 9(4)1949<196> = 11 · 251 · 2161031 · 27117551 · 1356870133<10> · 1739134559<10> · 25433652459414927499870617826399<32> · C129
C129 = P34 · P96
P34 = 7002080819084472935961485898736537<34>
P96 = 138896476007643400498736213707955873126885773149612346584374896337109150206915149170156100613749<96>
(11·10134+7)/9 = 1(2)1333<135> = 32 · 1909319 · 112657579 · 12870442303<11> · 35009213055361<14> · C96
C96 = P45 · P51
P45 = 250936660198033341179351798590647701228125319<45>
P51 = 558378674753209903140848242317261829328091333759211<51>
Number: n N=140117679768374411977764694698883397854653689968283909022051675788789766936274055898866478563309 ( 96 digits) Divisors found: r1=250936660198033341179351798590647701228125319 (pp45) r2=558378674753209903140848242317261829328091333759211 (pp51) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.95 hours. Scaled time: 10.00 units (timescale=1.438). Factorization parameters were as follows: name: KA_1_2_133_3 n: 140117679768374411977764694698883397854653689968283909022051675788789766936274055898866478563309 m: 7035295626774042355948 deg: 4 c4: 57195720 c3: 96456981219 c2: -312182490713950436 c1: -140354032571367830 c0: 208626920336365938460725 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.220 # E(F1,F2) = 3.549845e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1201709066. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1060001) Primes: RFBsize:92938, AFBsize:92678, largePrimes:1805383 encountered Relations: rels:1837680, finalFF:208790 Max relations in full relation-set: 28 Initial matrix: 185697 x 208790 with sparse part having weight 14018467. Pruned matrix : 172473 x 173465 with weight 9746709. Total sieving time: 6.36 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.47 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(11·10113+7)/9 = 1(2)1123<114> = 3 · 332779 · C108
C108 = P49 · P59
P49 = 2619324426169291429122454074993428764646076844357<49>
P59 = 46739462714767849044740338669006128168735950121361654313347<59>
Number: n N=122425816354820288361767842143707207307975385287956093205222507251781935581093580847171067707820327426732879 ( 108 digits) SNFS difficulty: 114 digits. Divisors found: r1=2619324426169291429122454074993428764646076844357 (pp49) r2=46739462714767849044740338669006128168735950121361654313347 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.28 hours. Scaled time: 1.86 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_2_112_3 n: 122425816354820288361767842143707207307975385287956093205222507251781935581093580847171067707820327426732879 skew: 0.23 deg: 5 c5: 11000 c0: 7 m: 10000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:78498, AFBsize:78252, largePrimes:4124095 encountered Relations: rels:3582159, finalFF:227837 Max relations in full relation-set: 28 Initial matrix: 156817 x 227837 with sparse part having weight 11132713. Pruned matrix : 101119 x 101967 with weight 3888696. Total sieving time: 1.12 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.07 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(11·10117+7)/9 = 1(2)1163<118> = 23 · 41 · 49742129 · C107
C107 = P30 · P78
P30 = 199547644984836153697911566023<30>
P78 = 130577246643745005872051606673712223079810458974387218354742399714928811490183<78>
By Sinkiti Sibata / PRIMO
102730+9 is prime.
By Tyler Cadigan / GGNFS, Msieve
9·10170+7 = 9(0)1697<171> = 11593 · C167
C167 = P45 · P51 · P72
P45 = 647317419452212964571902174202614495944617659<45>
P51 = 439565483361516384512985467534108059954554466647701<51>
P72 = 272838590381901265341010790500512053115606212399648275844615354818716361<72>
Number: 90007_170 N=77633054429397049943931682912102130596049340119037350125075476580695247131889933580608988182523936858449064090399378935564564823600448546536703182955231605279047701199 ( 167 digits) SNFS difficulty: 170 digits. Divisors found: r1=647317419452212964571902174202614495944617659 r2=439565483361516384512985467534108059954554466647701 r3=272838590381901265341010790500512053115606212399648275844615354818716361 Version: Total time: 93.71 hours. Scaled time: 242.25 units (timescale=2.585). Factorization parameters were as follows: n: 77633054429397049943931682912102130596049340119037350125075476580695247131889933580608988182523936858449064090399378935564564823600448546536703182955231605279047701199 m: 10000000000000000000000000000000000 c5: 9 c4: 0 c3: 0 c2: 0 c1: 0 c0: 7 skew: 0.95 type: snfs Y1: 1 Y0: -10000000000000000000000000000000000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7700001) Primes: rational ideals filtering, algebraic ideals filtering, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 745800 x 746047 Total sieving time: 93.71 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 93.71 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(32·10167-23)/9 = 3(5)1663<168> = 11 · 5867 · 8724407193127<13> · C150
C150 = P47 · P104
P47 = 35370681682761663696088257679173159323507380621<47>
P104 = 17853334356291297197483708874035153373989805242165023362167712280044355742973131910508838734976772818507<104>
Number: n N=631484606492292083872367262096114628708262907358211747146704361754234279408840465950023789885761252373596395216832756065677361490571843403991001952847 ( 150 digits) SNFS difficulty: 168 digits. Divisors found: Wed Jan 30 04:47:13 2008 prp47 factor: 35370681682761663696088257679173159323507380621 Wed Jan 30 04:47:13 2008 prp104 factor: 17853334356291297197483708874035153373989805242165023362167712280044355742973131910508838734976772818507 Wed Jan 30 04:47:13 2008 elapsed time 01:47:22 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 75.58 hours. Scaled time: 99.02 units (timescale=1.310). Factorization parameters were as follows: name: KA_3_5_166_3 n: 631484606492292083872367262096114628708262907358211747146704361754234279408840465950023789885761252373596395216832756065677361490571843403991001952847 skew: 0.75 deg: 5 c5: 100 c0: -23 m: 2000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600133) Primes: RFBsize:230209, AFBsize:230357, largePrimes:7604437 encountered Relations: rels:7042468, finalFF:511197 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 75.25 hours. Total relation processing time: 0.34 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 75.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10164-1 = 7(9)164<165> = 12954394367<11> · 506888062514609<15> · C141
C141 = P51 · P90
P51 = 136719084005415749015513821637101935561368136069713<51>
P90 = 891110722536656448479198244649382601120593416934422175200192460737138401437174420855050241<90>
Number: n N=121831841732615858077060884495408980012801655561808302844196831596094254357569474806622403580182271741991617248312179184985155377588893450833 ( 141 digits) SNFS difficulty: 165 digits. Divisors found: Wed Jan 30 06:26:42 2008 prp51 factor: 136719084005415749015513821637101935561368136069713 Wed Jan 30 06:26:42 2008 prp90 factor: 891110722536656448479198244649382601120593416934422175200192460737138401437174420855050241 Wed Jan 30 06:26:42 2008 elapsed time 00:50:07 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.94 hours. Scaled time: 56.59 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_9_164 n: 121831841732615858077060884495408980012801655561808302844196831596094254357569474806622403580182271741991617248312179184985155377588893450833 skew: 1.05 deg: 5 c5: 4 c0: -5 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2199990) Primes: RFBsize:230209, AFBsize:230262, largePrimes:7266385 encountered Relations: rels:6749996, finalFF:527344 Max relations in full relation-set: 28 Initial matrix: 460535 x 527344 with sparse part having weight 44818095. Pruned matrix : Total sieving time: 30.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 30.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(88·10184-7)/9 = 9(7)184<185> = 6277698227<10> · 177693190297546087<18> · 242984284590355995633538751051<30> · C129
C129 = P33 · P97
P33 = 319127484177447982424141312841577<33>
P97 = 1130385423636183718748628040572882785884593902791426607982038309444292046269569228004421072395199<97>
The factor table of 122...223 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(28·10190-1)/9 = 3(1)190<191> = 83 · 197 · 306898684974258906701022611<27> · 3903025884228757387157019754586401<34> · C127
C127 = P42 · P85
P42 = 566411654175336073779051055434185692429273<42>
P85 = 2804416823774290398535475890197371140903510729229348762350392625035735079960933230587<85>
8·10166-1 = 7(9)166<167> = 3099809 · 66319073 · 769195169 · C144
C144 = P71 · P74
P71 = 36016936302058360187537361721146449943796609862852885565964670381174623<71>
P74 = 14046667079478560713957129015435981397074694852066792830046818073901232961<74>
Number: n N=505917913457799458734266811971710885068794540173797125115673787463148323314430390867563858141920290003653553739065318013688362034376483144348703 ( 144 digits) SNFS difficulty: 167 digits. Divisors found: Tue Jan 29 15:17:36 2008 prp71 factor: 36016936302058360187537361721146449943796609862852885565964670381174623 Tue Jan 29 15:17:36 2008 prp74 factor: 14046667079478560713957129015435981397074694852066792830046818073901232961 Tue Jan 29 15:17:36 2008 elapsed time 01:05:44 (Msieve 1.33, sqrts: 5) Version: GGNFS-0.77.1-20050930-k8 Total time: 47.31 hours. Scaled time: 39.65 units (timescale=0.838). Factorization parameters were as follows: name: KA_7_9_166 n: 505917913457799458734266811971710885068794540173797125115673787463148323314430390867563858141920290003653553739065318013688362034376483144348703 type: snfs deg: 5 c5: 5 c0: -2 skew: 0.83 m: 2000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000317) Primes: RFBsize:216816, AFBsize:216391, largePrimes:5650975 encountered Relations: rels:5543339, finalFF:475811 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 47.14 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 47.31 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
2·10200-7 = 1(9)1993<201> = 1301 · 77494184407<11> · 29804123292653<14> · 19122300006570627091<20> · 348311486605878509660662409<27> · C127
C127 = P36 · P92
P36 = 182349040760987799564918359076342409<36>
P92 = 54801926834354290860267834669391833266360484125455715191587135759479195271787329085245083573<92>
5·10165+9 = 5(0)1649<166> = 521 · 291041 · 51554521 · 247260059 · C142
C142 = P34 · P47 · P62
P34 = 2818939442454687157524932103668483<34>
P47 = 54054662364681162784830736490034092875986992681<47>
P62 = 16976121589164324923231167526328949052941343024340689600524177<62>
Number: n N=917638520764052206896551340018795507931530546527901174784162865815188938411283681136417866187149051462548537 ( 108 digits) Divisors found: Tue Jan 29 22:25:04 2008 prp47 factor: 54054662364681162784830736490034092875986992681 Tue Jan 29 22:25:04 2008 prp62 factor: 16976121589164324923231167526328949052941343024340689600524177 Tue Jan 29 22:25:04 2008 elapsed time 00:34:55 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 10.53 hours. Scaled time: 6.85 units (timescale=0.651). Factorization parameters were as follows: name: KA_5_0_164_9 n: 917638520764052206896551340018795507931530546527901174784162865815188938411283681136417866187149051462548537 skew: 12661.24 # norm 8.65e+14 c5: 38640 c4: 1501673822 c3: -9563743305193 c2: 326542209276603545 c1: -784249620915261605303 c0: -3465551045340897498365887 # alpha -5.89 Y1: 180905640823 Y0: -473288130946733068878 # Murphy_E 1.29e-09 # M 615124226853032890747798413252407572674371891804947226660272403689813790259428441717994802080173114188169006 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1600253) Primes: RFBsize:183072, AFBsize:182897, largePrimes:4231691 encountered Relations: rels:4183086, finalFF:395397 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 10.38 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 10.53 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(5·10167+31)/9 = (5)1669<167> = 7 · 139 · 599 · 266019989 · 23813862167<11> · 1214077141347307<16> · C128
C128 = P34 · P94
P34 = 3086469830114575503416081453035859<34>
P94 = 4015460952029460285580689768666475042854516300138580007649352832352944445338548114829366485943<94>
8·10166-3 = 7(9)1657<167> = 73 · 263 · 4871 · 38923 · 10018333847<11> · 23260492026164711<17> · C128
C128 = P29 · P46 · P54
P29 = 18999269464663877966125576661<29>
P46 = 5307586564792536865694064565220881786182872779<46>
P54 = 935273344920036478019602994707096223631982392496166617<54>
Number: n N=4964044239906161870476855656801449522869998195582208895845589159358843507206718978911380698097818643 ( 100 digits) Divisors found: r1=5307586564792536865694064565220881786182872779 (pp46) r2=935273344920036478019602994707096223631982392496166617 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.17 hours. Scaled time: 7.63 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_9_165_7 n: 4964044239906161870476855656801449522869998195582208895845589159358843507206718978911380698097818643 skew: 11740.72 # norm 9.09e+13 c5: 18900 c4: -286790748 c3: -9341293608541 c2: 21518992260573429 c1: 507960725404261725909 c0: -1621065082208637890886413 # alpha -5.89 Y1: 14187730073 Y0: -12130433167648029208 # Murphy_E 3.39e-09 # M 2833834172188564969898722875963018176226523725892070100671241162145110381032161315411329682313695471 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:135007, largePrimes:3475063 encountered Relations: rels:3445984, finalFF:390014 Max relations in full relation-set: 48 Initial matrix: 270160 x 390014 with sparse part having weight 22376727. Pruned matrix : 161780 x 163194 with weight 7262992. Total sieving time: 3.89 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.10 hours. Total square root time: 0.08 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 4.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Alban Nonymous / Jan 24, 2008
101268+1 is divisible by 1068836516672887538001262066480057<34>
101376+1 is divisible by 8316321056168357161591149746561<31>
101393+1 is divisible by 2313690662340499476839285921303291<34>
101496+1 is divisible by 3112019096332789739503121888657089<34>
101513+1 is divisible by 9788270089405071134464024815801247<34>
101678+1 is divisible by 204080546955445025527141472026009<33>
101709+1 is divisible by 830662208135423938663117541699<30>
101745+1 is divisible by 5038152633461836859451917395541171<34>
101792+1 is divisible by 8803929888324104650587958648444417<34>
101839+1 is divisible by 2397103947161858599012200785150611<34>
101862+1 is divisible by 123202615416316140277937805321161<33>
References: Factorizations of numbers of the form 10n+1 (Alfred Reich)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(2·10164+7)/9 = (2)1633<164> = 59 · 697437560875820935427<21> · C141
C141 = P48 · P93
P48 = 544113926826738557075513436540781338666336584873<48>
P93 = 992522360499429901684593984914140940525360628309658561254022439588152781604125217695717239207<93>
Number: n N=540045239034688628751879697373871298969883014741235343144711185616205145128356800782052470756952541880048918185633946948049410617464398715711 ( 141 digits) SNFS difficulty: 165 digits. Divisors found: Mon Jan 28 03:37:34 2008 prp48 factor: 544113926826738557075513436540781338666336584873 Mon Jan 28 03:37:34 2008 prp93 factor: 992522360499429901684593984914140940525360628309658561254022439588152781604125217695717239207 Mon Jan 28 03:37:34 2008 elapsed time 00:57:20 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.52 hours. Scaled time: 68.41 units (timescale=1.823). Factorization parameters were as follows: name: KA_2_163_3 n: 540045239034688628751879697373871298969883014741235343144711185616205145128356800782052470756952541880048918185633946948049410617464398715711 skew: 2.04 deg: 5 c5: 1 c0: 35 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2516603) Primes: RFBsize:250150, AFBsize:249871, largePrimes:7416724 encountered Relations: rels:6907833, finalFF:557563 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.37 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 37.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
7·10193-3 = 6(9)1927<194> = 135391 · 308941571 · 784047751 · 6463670201813352033221<22> · 32665964050477191352790761<26> · C125
C125 = P36 · P42 · P47
P36 = 569756699704183297346120295651615869<36>
P42 = 296810751027062020613622711817064044961881<42>
P47 = 59778586616800168827028392336187139434362916103<47>
Mon Jan 28 09:08:45 2008 Mon Jan 28 09:08:45 2008 Mon Jan 28 09:08:45 2008 Msieve v. 1.33 Mon Jan 28 09:08:45 2008 random seeds: eaf4fd80 85d2fd47 Mon Jan 28 09:08:45 2008 factoring 17742927189068736669754163160818939750150478560748635115421055932744873894014336636069743 (89 digits) Mon Jan 28 09:08:46 2008 searching for 15-digit factors Mon Jan 28 09:08:47 2008 commencing quadratic sieve (89-digit input) Mon Jan 28 09:08:47 2008 using multiplier of 23 Mon Jan 28 09:08:47 2008 using 64kb Opteron sieve core Mon Jan 28 09:08:47 2008 sieve interval: 15 blocks of size 65536 Mon Jan 28 09:08:47 2008 processing polynomials in batches of 7 Mon Jan 28 09:08:47 2008 using a sieve bound of 1543813 (58667 primes) Mon Jan 28 09:08:47 2008 using large prime bound of 123505040 (26 bits) Mon Jan 28 09:08:47 2008 using double large prime bound of 367309670191840 (42-49 bits) Mon Jan 28 09:08:47 2008 using trial factoring cutoff of 49 bits Mon Jan 28 09:08:47 2008 polynomial 'A' values have 11 factors Mon Jan 28 10:14:23 2008 58789 relations (15537 full + 43252 combined from 619377 partial), need 58763 Mon Jan 28 10:14:24 2008 begin with 634913 relations Mon Jan 28 10:14:24 2008 reduce to 142871 relations in 9 passes Mon Jan 28 10:14:24 2008 attempting to read 142871 relations Mon Jan 28 10:14:26 2008 recovered 142871 relations Mon Jan 28 10:14:26 2008 recovered 122497 polynomials Mon Jan 28 10:14:26 2008 attempting to build 58789 cycles Mon Jan 28 10:14:26 2008 found 58789 cycles in 6 passes Mon Jan 28 10:14:27 2008 distribution of cycle lengths: Mon Jan 28 10:14:27 2008 length 1 : 15537 Mon Jan 28 10:14:27 2008 length 2 : 11431 Mon Jan 28 10:14:27 2008 length 3 : 10411 Mon Jan 28 10:14:27 2008 length 4 : 7960 Mon Jan 28 10:14:27 2008 length 5 : 5547 Mon Jan 28 10:14:27 2008 length 6 : 3403 Mon Jan 28 10:14:27 2008 length 7 : 2090 Mon Jan 28 10:14:27 2008 length 9+: 2410 Mon Jan 28 10:14:27 2008 largest cycle: 18 relations Mon Jan 28 10:14:27 2008 matrix is 58667 x 58789 (14.5 MB) with weight 3552843 (60.43/col) Mon Jan 28 10:14:27 2008 sparse part has weight 3552843 (60.43/col) Mon Jan 28 10:14:28 2008 filtering completed in 3 passes Mon Jan 28 10:14:28 2008 matrix is 54808 x 54872 (13.6 MB) with weight 3353779 (61.12/col) Mon Jan 28 10:14:28 2008 sparse part has weight 3353779 (61.12/col) Mon Jan 28 10:14:29 2008 saving the first 48 matrix rows for later Mon Jan 28 10:14:29 2008 matrix is 54760 x 54872 (10.2 MB) with weight 2800225 (51.03/col) Mon Jan 28 10:14:29 2008 sparse part has weight 2340902 (42.66/col) Mon Jan 28 10:14:29 2008 matrix includes 64 packed rows Mon Jan 28 10:14:29 2008 using block size 21845 for processor cache size 512 kB Mon Jan 28 10:14:29 2008 commencing Lanczos iteration Mon Jan 28 10:14:29 2008 memory use: 9.1 MB Mon Jan 28 10:14:58 2008 lanczos halted after 868 iterations (dim = 54760) Mon Jan 28 10:14:58 2008 recovered 18 nontrivial dependencies Mon Jan 28 10:14:59 2008 prp42 factor: 296810751027062020613622711817064044961881 Mon Jan 28 10:14:59 2008 prp47 factor: 59778586616800168827028392336187139434362916103 Mon Jan 28 10:14:59 2008 elapsed time 01:06:14
8·10166-7 = 7(9)1653<167> = 189105069674903884763<21> · C147
C147 = P46 · P102
P46 = 1522772221419401839524691150172700628024852433<46>
P102 = 277812555442990950898376801343060528596613057168376742703741533699762175389406425410348927877185643467<102>
Number: n N=423045242190124065978268840790986080931372264092805157767902165882183318614229422370170273292031889136860171886007619487987078786024585708825505211 ( 147 digits) SNFS difficulty: 167 digits. Divisors found: Mon Jan 28 11:47:25 2008 prp46 factor: 1522772221419401839524691150172700628024852433 Mon Jan 28 11:47:25 2008 prp102 factor: 277812555442990950898376801343060528596613057168376742703741533699762175389406425410348927877185643467 Mon Jan 28 11:47:25 2008 elapsed time 02:35:34 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 73.65 hours. Scaled time: 129.10 units (timescale=1.753). Factorization parameters were as follows: name: KA_7_9_165_3 n: 423045242190124065978268840790986080931372264092805157767902165882183318614229422370170273292031889136860171886007619487987078786024585708825505211 type: snfs skew: 1.23 deg: 5 c5: 5 c0: -14 m: 2000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300001) Primes: RFBsize:230209, AFBsize:230867, largePrimes:7595197 encountered Relations: rels:7039683, finalFF:510104 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 73.33 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 73.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(14·10179-41)/9 = 1(5)1781<180> = 11 · 4208178866231<13> · 15619110457642458343<20> · 351430029612999360197<21> · C126
C126 = P35 · P92
P35 = 20107693569497065346641840555374563<35>
P92 = 30446770005100168171382797846562982573356796889366415814698830439233930405861605026830253107<92>
5·10164-9 = 4(9)1631<165> = 2671 · 77632909 · 12338521168499<14> · C141
C141 = P34 · P49 · P59
P34 = 4339455695928017012813559346271651<34>
P49 = 2130438876068504052547916867650293287718131453411<49>
P59 = 21138920651137598568207584663615217929520666173979820026871<59>
Number: n N=45035178353310875346083151105578272111290713326972753456419802659112470613730247332180443661058076304606981 ( 107 digits) Divisors found: Mon Jan 28 16:51:00 2008 prp49 factor: 2130438876068504052547916867650293287718131453411 Mon Jan 28 16:51:00 2008 prp59 factor: 21138920651137598568207584663615217929520666173979820026871 Mon Jan 28 16:51:00 2008 elapsed time 00:37:13 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 8.58 hours. Scaled time: 7.17 units (timescale=0.836). Factorization parameters were as follows: name: KA_4_9_163_1 n: 45035178353310875346083151105578272111290713326972753456419802659112470613730247332180443661058076304606981 skew: 8115.52 # norm 1.71e+15 c5: 154560 c4: 307703758 c3: 145805345482189 c2: -157159415040315452 c1: -3632690209768005682794 c0: -1184546233994452070467176 # alpha -7.03 Y1: 323870616509 Y0: -196286607975166774105 # Murphy_E 1.51e-09 # M 37232403993864362254878977070445837812503056159276185148333904982476946194988434481797403305406657484158305 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1300289) Primes: RFBsize:183072, AFBsize:183409, largePrimes:4088051 encountered Relations: rels:4006302, finalFF:403691 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 8.44 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.58 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Bruce Dodson
(10381-1)/9 is divisible by 82548590511975869997227448819484483748713764399174373<53>, cofactor is prime.
References: The ECMNET Project (Paul Zimmermann)
By Sinkiti Sibata / PFGW
(43·1010732-7)/9, (43·1015972-7)/9 and (43·1018114-7)/9 are PRPs.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
4·10164-3 = 3(9)1637<165> = 21347 · 59377 · 1751822150967709<16> · 3934065255006277<16> · C125
C125 = P36 · P89
P36 = 618354792441051937903025593120469857<36>
P89 = 74051794299396180801895939838809464335023542105428143074269478481756813823421500448195263<89>
(46·10177-1)/9 = 5(1)177<178> = 17 · 23920583 · 143176470892200291319<21> · 2722757562808167831264949<25> · C125
C125 = P33 · P93
P33 = 181438620433318013127689602298557<33>
P93 = 177698711659907069705725103293869509281941495123735028737953271728984627792031730189561210103<93>
9·10167-7 = 8(9)1663<168> = 4102069211<10> · C159
C159 = P73 · P87
P73 = 1475840225808026944863592821406727235005191165802606042142091249608358711<73>
P87 = 148662072304606973843025284582176600459246392524700966245732210436802333527066765202333<87>
Number: n N=219401466359120384914441659331622622883141792996919768450976533267468558077432204495293680211871978578374113151939210418163761206222124856293654573347958072763 ( 159 digits) SNFS difficulty: 167 digits. Divisors found: Sun Jan 27 14:19:56 2008 prp73 factor: 1475840225808026944863592821406727235005191165802606042142091249608358711 Sun Jan 27 14:19:56 2008 prp87 factor: 148662072304606973843025284582176600459246392524700966245732210436802333527066765202333 Sun Jan 27 14:19:56 2008 elapsed time 01:34:48 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 92.12 hours. Scaled time: 77.29 units (timescale=0.839). Factorization parameters were as follows: name: KA_8_9_166_3 n: 219401466359120384914441659331622622883141792996919768450976533267468558077432204495293680211871978578374113151939210418163761206222124856293654573347958072763 type: snfs deg: 5 c5: 900 c0: -7 skew: 0.38 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5900001) Primes: RFBsize:216816, AFBsize:216321, largePrimes:6047622 encountered Relations: rels:5989690, finalFF:470608 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 91.85 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 92.12 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
7·10190+1 = 7(0)1891<191> = 29 · 18168419302228497779<20> · 102557119002802823101<21> · 73316966906831314464051823<26> · C125
C125 = P39 · P86
P39 = 355098879311614202406460897590438184483<39>
P86 = 49758043313543013512337916205691953866857075376389549242886554315519833104914284256879<86>
By Sinkiti Sibata / PRIMO
(7·102227-1)/3 is prime.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
8·10184-9 = 7(9)1831<185> = 17 · 41 · 53881 · 525199 · 19560201548737<14> · 47291522362212610363688449301629559<35> · C124
C124 = P38 · P87
P38 = 16036893578982114464326470006735731329<38>
P87 = 273414034698599650866625624274832254903897139353621479873467317551382470700435628639391<87>
3·10166-7 = 2(9)1653<167> = 25411 · 4718927 · 954512749 · C147
C147 = P54 · P93
P54 = 611255532829942634147397320551746694935812453256656449<54>
P93 = 428796965068732802120208918501494985696065115728677764830252574676814510715480757019757325969<93>
Number: n N=262104517358950568229392646975475073832192212584139002189008516545530131509021579305206164560915839602751144638772767618539909590293230081939024081 ( 147 digits) SNFS difficulty: 166 digits. Divisors found: Sat Jan 26 19:52:25 2008 prp54 factor: 611255532829942634147397320551746694935812453256656449 Sat Jan 26 19:52:25 2008 prp93 factor: 428796965068732802120208918501494985696065115728677764830252574676814510715480757019757325969 Sat Jan 26 19:52:25 2008 elapsed time 01:02:35 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 65.89 hours. Scaled time: 55.08 units (timescale=0.836). Factorization parameters were as follows: name: KA_2_9_165_3 n: 262104517358950568229392646975475073832192212584139002189008516545530131509021579305206164560915839602751144638772767618539909590293230081939024081 type: snfs deg: 5 c5: 30 c0: -7 skew: 0.75 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 4125767) Primes: RFBsize:216816, AFBsize:216451, largePrimes:5784372 encountered Relations: rels:5641483, finalFF:469726 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 65.66 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 65.89 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Robert Backstrom / GMP-ECM
(5·10177-17)/3 = 1(6)1761<178> = 11 · 187325868787<12> · 388369379195020879<18> · 379285042374911888951809<24> · C124
C124 = P34 · P90
P34 = 8697916583198815476581493494469319<34>
P90 = 631295035191337832585938232859170493922975996573273470112711910425120192821369762271447597<90>
By Yousuke Koide
101103+1 is divisible by 28335885146165932870615739992009<32>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / PRIMO
(2·102759+61)/9 is prime.
By Robert Backstrom / GGNFS, Msieve
(16·10167-1)/3 = 5(3)167<168> = 41 · 1867 · C163
C163 = P50 · P56 · P58
P50 = 40597113862788129876743745080216984123131298311427<50>
P56 = 90647476731104016968844622707762569866503500594961277609<56>
P58 = 1893301042298636909272719039593617589762226489198375358373<58>
Number: n N=6967396936958121589785796090419393749374022931445168763417682382501382592829677627252973118911692598447141407675458650676490696347777618108264639154158011853284039 ( 163 digits) SNFS difficulty: 168 digits. Divisors found: Fri Jan 25 16:25:02 2008 prp50 factor: 40597113862788129876743745080216984123131298311427 Fri Jan 25 16:25:02 2008 prp56 factor: 90647476731104016968844622707762569866503500594961277609 Fri Jan 25 16:25:02 2008 prp58 factor: 1893301042298636909272719039593617589762226489198375358373 Fri Jan 25 16:25:02 2008 elapsed time 01:52:38 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 65.44 hours. Scaled time: 85.59 units (timescale=1.308). Factorization parameters were as follows: name: KA_5_3_167 n: 6967396936958121589785796090419393749374022931445168763417682382501382592829677627252973118911692598447141407675458650676490696347777618108264639154158011853284039 skew: 0.46 deg: 5 c5: 50 c0: -1 m: 2000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3002683) Primes: RFBsize:230209, AFBsize:230262, largePrimes:7515348 encountered Relations: rels:6996341, finalFF:506931 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 65.16 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 65.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10166+9 = 8(0)1659<167> = 19 · 233 · C164
C164 = P39 · P125
P39 = 247318002448511232349795071846013961161<39>
P125 = 73067581878550869883137762289663789192178328142338528983715149951558468070091483340423029109213779504121706037391601196627747<125>
Number: n N=18070928393946238988028009939010616670431443415405466455839168737293878473006550711542805511633160153602891348543031398238084481590241698667269030946464874632934267 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: Fri Jan 25 17:43:51 2008 prp39 factor: 247318002448511232349795071846013961161 Fri Jan 25 17:43:51 2008 prp125 factor: 73067581878550869883137762289663789192178328142338528983715149951558468070091483340423029109213779504121706037391601196627747 Fri Jan 25 17:43:51 2008 elapsed time 01:14:29 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.49 hours. Scaled time: 70.60 units (timescale=1.834). Factorization parameters were as follows: name: KA_8_0_165_9 n: 18070928393946238988028009939010616670431443415405466455839168737293878473006550711542805511633160153602891348543031398238084481590241698667269030946464874632934267 skew: 0.65 deg: 5 c5: 80 c0: 9 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800001) Primes: RFBsize:250150, AFBsize:249916, largePrimes:7433182 encountered Relations: rels:6924228, finalFF:559097 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 38.31 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Robert Backstrom / GMP-ECM
(28·10179-1)/9 = 3(1)179<180> = 17 · 158980370820846386325091<24> · 130636323549165510465523960184309<33> · C123
C123 = P34 · P90
P34 = 7681520532229285847327407805697901<34>
P90 = 114712818212665930084237933685466980822542837060511859279956130473398076525563656416693357<90>
By Robert Backstrom / GGNFS, Msieve
3·10165-7 = 2(9)1643<166> = 389 · 72612871 · 4893118907011<13> · C143
C143 = P43 · P45 · P55
P43 = 9586550427068758139277418251508130186850823<43>
P45 = 763966565598162182661254838642609221002481461<45>
P55 = 2963709019423440832352969589339376348532317934047934059<55>
Number: n N=21705623988186509688790428902323610401675410826005059910283930842779622114834229639699870079593155974739505331652907856358417153429937020853777 ( 143 digits) SNFS difficulty: 165 digits. Divisors found: Thu Jan 24 15:26:22 2008 prp43 factor: 9586550427068758139277418251508130186850823 Thu Jan 24 15:26:22 2008 prp45 factor: 763966565598162182661254838642609221002481461 Thu Jan 24 15:26:22 2008 prp55 factor: 2963709019423440832352969589339376348532317934047934059 Thu Jan 24 15:26:22 2008 elapsed time 02:15:02 (Msieve 1.33, sqrts: 6) Version: GGNFS-0.77.1-20051202-athlon Total time: 49.56 hours. Scaled time: 86.88 units (timescale=1.753). Factorization parameters were as follows: name: KA_2_9_164_3 n: 21705623988186509688790428902323610401675410826005059910283930842779622114834229639699870079593155974739505331652907856358417153429937020853777 type: snfs skew: 1.18 deg: 5 c5: 3 c0: -7 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400109) Primes: RFBsize:230209, AFBsize:229717, largePrimes:7315297 encountered Relations: rels:6790830, finalFF:500470 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 49.24 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 49.56 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
7·10164+1 = 7(0)1631<165> = 1493 · 4603 · 119429 · 79514415457<11> · C143
C143 = P61 · P82
P61 = 4011137403054399824497281514214954974908736320403030763817761<61>
P82 = 2674077881194096559726374285341983014251581688108917524458192840920208139039746043<82>
Number: n N=10726093807938100380941104602089661772874937656392292672836679543626950747738348408334379189320094232984694581540360379030131023025802572869723 ( 143 digits) SNFS difficulty: 165 digits. Divisors found: r1=4011137403054399824497281514214954974908736320403030763817761 (pp61) r2=2674077881194096559726374285341983014251581688108917524458192840920208139039746043 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.39 hours. Scaled time: 93.99 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_0_163_1 n: 10726093807938100380941104602089661772874937656392292672836679543626950747738348408334379189320094232984694581540360379030131023025802572869723 skew: 1.07 deg: 5 c5: 7 c0: 10 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3400001) Primes: RFBsize:250150, AFBsize:250406, largePrimes:7753552 encountered Relations: rels:7254296, finalFF:580211 Max relations in full relation-set: 48 Initial matrix: 500621 x 580211 with sparse part having weight 54263099. Pruned matrix : 464913 x 467480 with weight 37063090. Total sieving time: 48.91 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.16 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 51.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10165-31)/9 = (4)1641<165> = 32 · 7 · 79 · 337 · 29959 · 213283087187<12> · C143
C143 = P43 · P101
P43 = 1430726570423886205441057904508188264305283<43>
P101 = 28985417905225412247112454549094232344842096588627794290356131149243691637467494402561338794411644631<101>
Number: n N=41470207551846257950116491850868348405236653748523626812527085979082127700219902135132902454773983973407894491568655258286753201587180691885573 ( 143 digits) SNFS difficulty: 165 digits. Divisors found: Wed Jan 23 16:28:15 2008 prp43 factor: 1430726570423886205441057904508188264305283 Wed Jan 23 16:28:15 2008 prp101 factor: 28985417905225412247112454549094232344842096588627794290356131149243691637467494402561338794411644631 Wed Jan 23 16:28:15 2008 elapsed time 00:55:20 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 49.93 hours. Scaled time: 41.89 units (timescale=0.839). Factorization parameters were as follows: name: KA_4_164_1 n: 41470207551846257950116491850868348405236653748523626812527085979082127700219902135132902454773983973407894491568655258286753201587180691885573 type: snfs deg: 5 c5: 4 c0: -31 skew: 1.51 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 100000) Primes: RFBsize:216816, AFBsize:217657, largePrimes:5723795 encountered Relations: rels:5649683, finalFF:500595 Max relations in full relation-set: 28 Initial matrix: 434537 x 500595 with sparse part having weight 44325199. Pruned matrix : 409247 x 411483 with weight 32710677. Total sieving time: 47.78 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.96 hours. Total square root time: 0.00 hours, sqrts: 32. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 49.93 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By JMB / GGNFS, Msieve
(8·10181+7)/3 = 2(6)1809<182> = 73 · 383 · 1063 · 73679 · 808737119 · 238190255383<12> · 28997879660064605217042319409<29> · C121
C121 = P49 · P73
P49 = 1081148321083352502456169169103040048126155984589<49>
P73 = 2016448909088811437437590767002243563539760000671212660803839912919962279<73>
By Robert Backstrom / GGNFS, Msieve
2·10164+9 = 2(0)1639<165> = 11 · 17 · 19 · 2124275874910691323<19> · C143
C143 = P62 · P81
P62 = 67130200642296191884709171155818744379421413745297802772910633<62>
P81 = 394735263859854699241113017883444812425244047937865162764408227983060854002018867<81>
Number: n N=26498657463501774710786304364562173257102193262370047211443501109678795224636984084060517451881873318073703378052692450542514081851319770912811 ( 143 digits) SNFS difficulty: 165 digits. Divisors found: Tue Jan 22 22:48:01 2008 prp62 factor: 67130200642296191884709171155818744379421413745297802772910633 Tue Jan 22 22:48:01 2008 prp81 factor: 394735263859854699241113017883444812425244047937865162764408227983060854002018867 Tue Jan 22 22:48:01 2008 elapsed time 00:36:37 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-k8 Total time: 30.93 hours. Scaled time: 25.89 units (timescale=0.837). Factorization parameters were as follows: name: KA_2_0_163_9 n: 26498657463501774710786304364562173257102193262370047211443501109678795224636984084060517451881873318073703378052692450542514081851319770912811 type: snfs deg: 5 c5: 1 c0: 45 skew: 2.14 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 100000) Primes: RFBsize:216816, AFBsize:216986, largePrimes:5519473 encountered Relations: rels:5435506, finalFF:523534 Max relations in full relation-set: 28 Initial matrix: 433866 x 523534 with sparse part having weight 39663812. Pruned matrix : 365732 x 367965 with weight 25276057. Total sieving time: 29.39 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.38 hours. Total square root time: 0.01 hours, sqrts: 32. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 30.93 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Jo Yeong Uk / GMP-ECM
(2·10165+7)/9 = (2)1643<165> = 1867 · 11462603 · 4855604094401<13> · C142
C142 = P36 · P107
P36 = 135175420835923295308837910165690077<36>
P107 = 15820453108988154482791229654640228746372406550518557422884079078297050679566535405743149235122673945634099<107>
By JMB / GMP-ECM
6·10167-1 = 5(9)167<168> = 173 · 1559 · 8623 · 92761 · 1458366583<10> · 919553016868249730947567<24> · C121
C121 = P34 · P87
P34 = 7293628624498449156699219017293493<34>
P87 = 284346639497725940029917594329688361811266078086355525897345582582328575687665394870903<87>
By Yousuke Koide
(101729-1)/9 is divisible by 940468712658622180120548555277<30>
(101917-1)/9 is divisible by 1510552624688788386453049<25>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
(86·10166+31)/9 = 9(5)1659<167> = 3 · 5524823 · 25729399 · 191756229961403<15> · 170453805976796449<18> · C121
C121 = P43 · P79
P43 = 4207775080549597799925358625476582357997273<43>
P79 = 1629213400252065933172781543589693668667463228952759374791851515131060589281919<79>
Number: n N=6855363546478120852508823668140569336220438309449632211103825793414564211312811099648902774037863458800459081558030206887 ( 121 digits) SNFS difficulty: 167 digits. Divisors found: Mon Jan 21 21:03:17 2008 prp43 factor: 4207775080549597799925358625476582357997273 Mon Jan 21 21:03:17 2008 prp79 factor: 1629213400252065933172781543589693668667463228952759374791851515131060589281919 Mon Jan 21 21:03:17 2008 elapsed time 02:50:05 (Msieve 1.33) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 117.31 hours. Scaled time: 153.56 units (timescale=1.309). Factorization parameters were as follows: name: KA_9_5_165_9 n: 6855363546478120852508823668140569336220438309449632211103825793414564211312811099648902774037863458800459081558030206887 skew: 0.51 deg: 5 c5: 860 c0: 31 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5110037) Primes: RFBsize:230209, AFBsize:230038, largePrimes:7978220 encountered Relations: rels:7387955, finalFF:484643 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 116.89 hours. Total relation processing time: 0.42 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 117.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / PFGW
8·1013447-9 is PRP.
By Robert Backstrom / GGNFS, Msieve
8·10158+9 = 8(0)1579<159> = 43 · 133397260513579219<18> · 167167903992258454388890478299<30> · C111
C111 = P49 · P63
P49 = 2033479913775371639587434065835085127837961461819<49>
P63 = 410281407262533748598335324491991573466072616789247908444678817<63>
Number: n N=834299000663855262700697358741077630803654699409180671446600595711970677159208132513234866970546095185263588123 ( 111 digits) Divisors found: Sun Jan 20 13:47:42 2008 prp49 factor: 2033479913775371639587434065835085127837961461819 Sun Jan 20 13:47:42 2008 prp63 factor: 410281407262533748598335324491991573466072616789247908444678817 Sun Jan 20 13:47:42 2008 elapsed time 00:38:14 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 17.62 hours. Scaled time: 14.80 units (timescale=0.840). Factorization parameters were as follows: name: n n: 834299000663855262700697358741077630803654699409180671446600595711970677159208132513234866970546095185263588123 skew: 58678.97 # norm 7.16e+15 c5: 1080 c4: 182319978 c3: 218777671087271 c2: 720093217709119301 c1: -192584130922452106377951 c0: 1924021866441673318910186961 # alpha -6.76 Y1: 160325997587 Y0: -3780758800577929514024 # Murphy_E 8.64e-10 # M 33078737459182277151461009133502300498047025913472764694038857216187874729045379963943227488355847412005621263 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1099990) Primes: RFBsize:230209, AFBsize:230298, largePrimes:8164286 encountered Relations: rels:9063518, finalFF:1450544 Max relations in full relation-set: 28 Initial matrix: 460588 x 1450544 with sparse part having weight 132062689. Pruned matrix : Total sieving time: 17.36 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 17.62 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
8·10165+9 = 8(0)1649<166> = 3089 · C163
C163 = P72 · P91
P72 = 314438682222884322729688296198134025767975025422514323112159291576842309<72>
P91 = 8236374989606056257892776904055137083699957579463131990199160763315628777145426750588217509<91>
Number: n N=2589834898025250890255746196179993525412754936872774360634509550016186468112657818064098413726124959533829718355454839753965684687601165425704111362900615085788281 ( 163 digits) SNFS difficulty: 165 digits. Divisors found: Sun Jan 20 15:06:59 2008 prp72 factor: 314438682222884322729688296198134025767975025422514323112159291576842309 Sun Jan 20 15:06:59 2008 prp91 factor: 8236374989606056257892776904055137083699957579463131990199160763315628777145426750588217509 Sun Jan 20 15:06:59 2008 elapsed time 00:53:55 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.69 hours. Scaled time: 59.79 units (timescale=1.829). Factorization parameters were as follows: name: KA_8_0_164_9 n: 2589834898025250890255746196179993525412754936872774360634509550016186468112657818064098413726124959533829718355454839753965684687601165425704111362900615085788281 skew: 1.02 deg: 5 c5: 8 c0: 9 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2399990) Primes: RFBsize:250150, AFBsize:250351, largePrimes:7431294 encountered Relations: rels:6960850, finalFF:588566 Max relations in full relation-set: 28 Initial matrix: 500566 x 588566 with sparse part having weight 45969560. Pruned matrix : Total sieving time: 32.52 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 32.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
8·10162+9 = 8(0)1619<163> = 4339 · 31891930524271969<17> · C143
C143 = P44 · P100
P44 = 21467718354271832026587974954408013867919721<44>
P100 = 2692983165965493372324419233124120624401536996288557907855362716504013533241417008457888322335917819<100>
Number: n N=57812204139742489271285991377047918106956344241296136018020163264497892626415364960802382490255087006871059445557673759660623134031508745408499 ( 143 digits) SNFS difficulty: 162 digits. Divisors found: Sun Jan 20 17:58:22 2008 prp44 factor: 21467718354271832026587974954408013867919721 Sun Jan 20 17:58:22 2008 prp100 factor: 2692983165965493372324419233124120624401536996288557907855362716504013533241417008457888322335917819 Sun Jan 20 17:58:22 2008 elapsed time 01:03:41 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 39.20 hours. Scaled time: 32.89 units (timescale=0.839). Factorization parameters were as follows: name: KA_8_0_161_9 n: 57812204139742489271285991377047918106956344241296136018020163264497892626415364960802382490255087006871059445557673759660623134031508745408499 type: snfs deg: 5 c5: 25 c0: 9 skew: 0.82 m: 200000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700187) Primes: RFBsize:216816, AFBsize:216596, largePrimes:5557225 encountered Relations: rels:5370833, finalFF:450084 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 39.08 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 39.20 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
8·10153+9 = 8(0)1529<154> = 47 · 61 · C151
C151 = P53 · P98
P53 = 48895464172194500888865555728935598425504411122071941<53>
P98 = 57068140361452359856128021667726448531461834024720351768797284045710734038067945628429182751862647<98>
Number: n N=2790373212417160795256365538890826648064178583885594698290896407394489012905476107429368678060690617370073247296825950470875479595395884199511684687827 ( 151 digits) SNFS difficulty: 153 digits. Divisors found: Mon Jan 21 00:02:56 2008 prp53 factor: 48895464172194500888865555728935598425504411122071941 Mon Jan 21 00:02:56 2008 prp98 factor: 57068140361452359856128021667726448531461834024720351768797284045710734038067945628429182751862647 Mon Jan 21 00:02:56 2008 elapsed time 00:50:57 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.84 hours. Scaled time: 38.38 units (timescale=1.757). Factorization parameters were as follows: name: KA_8_0_152_9 n: 2790373212417160795256365538890826648064178583885594698290896407394489012905476107429368678060690617370073247296825950470875479595395884199511684687827 type: snfs skew: 0.51 deg: 5 c5: 250 c0: 9 m: 2000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1199990) Primes: RFBsize:216816, AFBsize:216231, largePrimes:6128293 encountered Relations: rels:5616787, finalFF:504996 Max relations in full relation-set: 28 Initial matrix: 433114 x 504996 with sparse part having weight 23765859. Pruned matrix : Total sieving time: 21.68 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 21.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Kurt Beschorner / Jan 11, 2008
10723+1 is divisible by 1432840997383099816903558298765841755281<40>
By Yousuke Koide / Jan 19, 2008
(101519-1)/9 is divisible by 1949428804182808888625531087089<31>
By Yousuke Koide / Jan 10, 2008
101076+1 is divisible by 2943022282018927015773940725270857<34>
By Yousuke Koide / Jan 14, 2008
101088+1 is divisible by 6618913490111218105668231761297491201<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / PRIMO
8·102865-9 is prime.
By Robert Backstrom / GGNFS
8·10135+9 = 8(0)1349<136> = C136
C136 = P68 · P69
P68 = 14801185105213067737040565827661608911957391220799504238072333395727<68>
P69 = 540497260397233405983441758896201567297916533811770073388400426116967<69>
Number: n N=8000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 136 digits) SNFS difficulty: 135 digits. Divisors found: r1=14801185105213067737040565827661608911957391220799504238072333395727 (pp68) r2=540497260397233405983441758896201567297916533811770073388400426116967 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.58 hours. Scaled time: 6.27 units (timescale=1.752). Factorization parameters were as follows: name: KA_8_0_134_9 n: 8000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 type: snfs skew: 1.02 deg: 5 c5: 8 c0: 9 m: 1000000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 520001) Primes: RFBsize:114155, AFBsize:114197, largePrimes:4737996 encountered Relations: rels:4119531, finalFF:278781 Max relations in full relation-set: 28 Initial matrix: 228417 x 278781 with sparse part having weight 12620096. Pruned matrix : 181742 x 182948 with weight 6381214. Total sieving time: 3.06 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.35 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.3,2.3,75000 total time: 3.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
8·10161+9 = 8(0)1609<162> = 7 · 361469 · 2281823 · 93410043703<11> · 104070924106063664505185233829029<33> · C107
C107 = P42 · P65
P42 = 379610134970967214429953242481364208742167<42>
P65 = 37547251435502570973405299828344898136743364461002377728913347569<65>
Number: 80009_161 N=14253317185219973460389890832990183114112816437488046262223139768008252805218662703888332623114842777242023 ( 107 digits) Divisors found: r1=379610134970967214429953242481364208742167 (pp42) r2=37547251435502570973405299828344898136743364461002377728913347569 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.59 hours. Scaled time: 22.76 units (timescale=2.150). Factorization parameters were as follows: name: 80009_161 n: 14253317185219973460389890832990183114112816437488046262223139768008252805218662703888332623114842777242023 skew: 17252.92 # norm 1.36e+15 c5: 25740 c4: 1525971078 c3: -78399570652366 c2: -924627151537472927 c1: 5307909918257896333150 c0: -6383666319595918601313427 # alpha -6.14 Y1: 1794392251 Y0: -223183169083949077020 # Murphy_E 1.50e-09 # M 3259513081427069279902873066038332939958046926443042510831308470696793387168947203008701013843850761293813 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:134778, largePrimes:4529531 encountered Relations: rels:4544044, finalFF:350991 Max relations in full relation-set: 28 Initial matrix: 269934 x 350991 with sparse part having weight 32490968. Pruned matrix : 221679 x 223092 with weight 18081436. Polynomial selection time: 0.55 hours. Total sieving time: 9.69 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10157+9 = 8(0)1569<158> = 11489 · 716402649541<12> · 10593937852386983<17> · C126
C126 = P40 · P87
P40 = 3790480017172792738294451504361484879367<40>
P87 = 242046575091074164088712317063624793945838546238186463919115736744802008317537350438981<87>
Number: 80009_157 N=917472706107830464548023335426499676786648020601531299604889262480796085192109512368398576216119494573875335431375851279405027 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=3790480017172792738294451504361484879367 (pp40) r2=242046575091074164088712317063624793945838546238186463919115736744802008317537350438981 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.81 hours. Scaled time: 49.09 units (timescale=2.152). Factorization parameters were as follows: n: 917472706107830464548023335426499676786648020601531299604889262480796085192109512368398576216119494573875335431375851279405027 m: 20000000000000000000000000000000 c5: 25 c0: 9 skew: 0.82 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2900001) Primes: RFBsize:216816, AFBsize:216596, largePrimes:5641343 encountered Relations: rels:5610183, finalFF:554682 Max relations in full relation-set: 28 Initial matrix: 433476 x 554682 with sparse part having weight 45050664. Pruned matrix : 370085 x 372316 with weight 28747141. Total sieving time: 21.92 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.77 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 22.81 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
By Sinkiti Sibata / GGNFS
8·10169-9 = 7(9)1681<170> = 41 · 311 · 6744493062860975247569<22> · 153259559622294960992443672324849<33> · C112
C112 = P37 · P76
P37 = 4793749476605961545931498988840397341<37>
P76 = 1266174380191027066904884727886512981316500532551514322249230638281825634221<76>
Number: 79991_169 N=6069722772332613766716520417588435051267558844262481968159500137499985223028918430208947236222098739972967006361 ( 112 digits) SNFS difficulty: 170 digits. Divisors found: r1=4793749476605961545931498988840397341 (pp37) r2=1266174380191027066904884727886512981316500532551514322249230638281825634221 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 146.83 hours. Scaled time: 292.79 units (timescale=1.994). Factorization parameters were as follows: name: 79991_169 n: 6069722772332613766716520417588435051267558844262481968159500137499985223028918430208947236222098739972967006361 m: 10000000000000000000000000000000000 c5: 4 c0: -45 skew: 1.62 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7300001) Primes: RFBsize:412849, AFBsize:412326, largePrimes:6069244 encountered Relations: rels:6343174, finalFF:937345 Max relations in full relation-set: 28 Initial matrix: 825239 x 937345 with sparse part having weight 55828427. Pruned matrix : 731366 x 735556 with weight 41378296. Total sieving time: 140.28 hours. Total relation processing time: 0.29 hours. Matrix solve time: 6.01 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 146.83 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(82·10166+71)/9 = 9(1)1659<167> = 3 · 7 · 103 · 3559 · 657277553 · C152
C152 = P59 · P94
P59 = 13107171807510682605279428504965984440896588003160354566801<59>
P94 = 1373817494916889709450680140394462103187938380492405920907074652881504931172026794650480415619<94>
Number: n N=18006861938039607305322991457173802411519321448085804024087657304778709212270954053562588283400455269971589526621315846889887965055791590110119179264819 ( 152 digits) SNFS difficulty: 167 digits. Divisors found: Sat Jan 19 00:19:19 2008 prp59 factor: 13107171807510682605279428504965984440896588003160354566801 Sat Jan 19 00:19:19 2008 prp94 factor: 1373817494916889709450680140394462103187938380492405920907074652881504931172026794650480415619 Sat Jan 19 00:19:19 2008 elapsed time 01:14:13 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.08 hours. Scaled time: 57.96 units (timescale=0.839). Factorization parameters were as follows: name: KA_9_1_165_9 n: 18006861938039607305322991457173802411519321448085804024087657304778709212270954053562588283400455269971589526621315846889887965055791590110119179264819 type: snfs deg: 5 c5: 820 c0: 71 skew: 0.61 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5502187) Primes: RFBsize:216816, AFBsize:217798, largePrimes:5905376 encountered Relations: rels:5864793, finalFF:364046 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.91 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 69.08 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By matsui / GMP-ECM
(5·10200+7)/3 = 1(6)1999<201> = 13 · C200
C200 = P43 · C157
P43 = 1715594718690854847659598110202544048758877<43>
C157 = [7472926257488112167078933876668962989538550274994875554580903056006003718702207791126018309714959671296814070741865292739422577672509829862325988145378354069<157>]
By Sinkiti Sibata / GGNFS
8·10144+9 = 8(0)1439<145> = 17 · 5659 · C140
C140 = P49 · P92
P49 = 1783403562694297290006912071546504111216735779123<49>
P92 = 46628531887385325172139496576332321929456019180371596843235469372553694072124836083262715161<92>
Number: 80009_144 N=83157489891167635104934357556417159548039042441503903204681766680872737856407804330426286082554598089456669750423583464133135141315759383803 ( 140 digits) SNFS difficulty: 145 digits. Divisors found: r1=1783403562694297290006912071546504111216735779123 (pp49) r2=46628531887385325172139496576332321929456019180371596843235469372553694072124836083262715161 (pp92) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 17.72 hours. Scaled time: 11.96 units (timescale=0.675). Factorization parameters were as follows: name: 80009_144 n: 83157489891167635104934357556417159548039042441503903204681766680872737856407804330426286082554598089456669750423583464133135141315759383803 m: 100000000000000000000000000000 c5: 4 c0: 45 skew: 1.62 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:100108, largePrimes:2772356 encountered Relations: rels:2756638, finalFF:246870 Max relations in full relation-set: 28 Initial matrix: 200193 x 246870 with sparse part having weight 25827334. Pruned matrix : 187239 x 188303 with weight 17819215. Total sieving time: 16.37 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.10 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.72 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve
8·10142+9 = 8(0)1419<143> = 3329 · 29281922233<11> · 1795510682849862934729054445135297<34> · C96
C96 = P33 · P63
P33 = 627552504355594804282068645958259<33>
P63 = 728347356775380943407963675027056892979696390562810902400314219<63>
Fri Jan 18 00:19:37 2008 Fri Jan 18 00:19:37 2008 Fri Jan 18 00:19:37 2008 Msieve v. 1.32 Fri Jan 18 00:19:37 2008 random seeds: 181d3ee3 28f57196 Fri Jan 18 00:19:37 2008 factoring 457076207785168212371453509113670437822360245086692204469952475655630982399330567850785958184721 (96 digits) Fri Jan 18 00:19:38 2008 no P-1/P+1/ECM available, skipping Fri Jan 18 00:19:38 2008 commencing quadratic sieve (96-digit input) Fri Jan 18 00:19:38 2008 using multiplier of 41 Fri Jan 18 00:19:38 2008 using 32kb Intel Core sieve core Fri Jan 18 00:19:38 2008 sieve interval: 36 blocks of size 32768 Fri Jan 18 00:19:38 2008 processing polynomials in batches of 6 Fri Jan 18 00:19:38 2008 using a sieve bound of 2265589 (83442 primes) Fri Jan 18 00:19:38 2008 using large prime bound of 339838350 (28 bits) Fri Jan 18 00:19:38 2008 using double large prime bound of 2271382337631900 (43-52 bits) Fri Jan 18 00:19:38 2008 using trial factoring cutoff of 52 bits Fri Jan 18 00:19:38 2008 polynomial 'A' values have 13 factors Fri Jan 18 04:56:17 2008 84020 relations (20540 full + 63480 combined from 1255479 partial), need 83538 Fri Jan 18 04:56:17 2008 begin with 1276019 relations Fri Jan 18 04:56:18 2008 reduce to 218047 relations in 13 passes Fri Jan 18 04:56:18 2008 attempting to read 218047 relations Fri Jan 18 04:56:20 2008 recovered 218047 relations Fri Jan 18 04:56:20 2008 recovered 204713 polynomials Fri Jan 18 04:56:21 2008 attempting to build 84020 cycles Fri Jan 18 04:56:21 2008 found 84020 cycles in 6 passes Fri Jan 18 04:56:21 2008 distribution of cycle lengths: Fri Jan 18 04:56:21 2008 length 1 : 20540 Fri Jan 18 04:56:21 2008 length 2 : 14920 Fri Jan 18 04:56:21 2008 length 3 : 14308 Fri Jan 18 04:56:21 2008 length 4 : 11504 Fri Jan 18 04:56:21 2008 length 5 : 8432 Fri Jan 18 04:56:21 2008 length 6 : 5715 Fri Jan 18 04:56:21 2008 length 7 : 3656 Fri Jan 18 04:56:21 2008 length 9+: 4945 Fri Jan 18 04:56:21 2008 largest cycle: 22 relations Fri Jan 18 04:56:21 2008 matrix is 83442 x 84020 with weight 5533587 (avg 65.86/col) Fri Jan 18 04:56:22 2008 filtering completed in 4 passes Fri Jan 18 04:56:22 2008 matrix is 79418 x 79482 with weight 5234465 (avg 65.86/col) Fri Jan 18 04:56:23 2008 saving the first 48 matrix rows for later Fri Jan 18 04:56:23 2008 matrix is 79370 x 79482 with weight 4121997 (avg 51.86/col) Fri Jan 18 04:56:23 2008 matrix includes 64 packed rows Fri Jan 18 04:56:23 2008 using block size 31792 for processor cache size 4096 kB Fri Jan 18 04:56:25 2008 commencing Lanczos iteration Fri Jan 18 04:56:52 2008 lanczos halted after 1256 iterations (dim = 79365) Fri Jan 18 04:56:52 2008 recovered 15 nontrivial dependencies Fri Jan 18 04:56:53 2008 prp33 factor: 627552504355594804282068645958259 Fri Jan 18 04:56:53 2008 prp63 factor: 728347356775380943407963675027056892979696390562810902400314219 Fri Jan 18 04:56:53 2008 elapsed time 04:37:16
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
7·10164+9 = 7(0)1639<165> = 4967 · 340656502544310619<18> · C144
C144 = P50 · P95
P50 = 12939677343964955884740014469294611585657994552577<50>
P95 = 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029<95>
Number: n N=413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733 ( 144 digits) SNFS difficulty: 165 digits. Divisors found: Thu Jan 17 05:01:38 2008 prp50 factor: 12939677343964955884740014469294611585657994552577 Thu Jan 17 05:01:38 2008 prp95 factor: 31971554264779842589165734337945281912004539206121203124090877304667512724759902380130148456029 Thu Jan 17 05:01:38 2008 elapsed time 01:15:29 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.52 hours. Scaled time: 92.41 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_0_163_9 n: 413701596371317891466218325717451870444516473623608643198379811850920699346023699901441617183278752045530834118946731942880940904318389213136733 skew: 1.67 deg: 5 c5: 7 c0: 90 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200001) Primes: RFBsize:250150, AFBsize:250726, largePrimes:7700483 encountered Relations: rels:7192174, finalFF:570722 Max relations in full relation-set: 28 Initial matrix: 500942 x 570722 with sparse part having weight 52231117. Pruned matrix : Total sieving time: 50.35 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 50.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
8·10138+9 = 8(0)1379<139> = C139
C139 = P55 · P85
P55 = 2546678620364651588556275988984437932502588301075923203<55>
P85 = 3141346511502304521005861647877216134965756685545711187785868781031519564330138156803<85>
Number: n N=8000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 139 digits) SNFS difficulty: 138 digits. Divisors found: r1=2546678620364651588556275988984437932502588301075923203 (pp55) r2=3141346511502304521005861647877216134965756685545711187785868781031519564330138156803 (pp85) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.84 hours. Scaled time: 7.00 units (timescale=1.823). Factorization parameters were as follows: name: KA_8_0_137_9 n: 8000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 skew: 0.51 deg: 5 c5: 250 c0: 9 m: 2000000000000000000000000000 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:162662, AFBsize:162140, largePrimes:5837421 encountered Relations: rels:5298457, finalFF:413705 Max relations in full relation-set: 48 Initial matrix: 324869 x 413705 with sparse part having weight 21736846. Pruned matrix : 244542 x 246230 with weight 9611405. Total sieving time: 3.39 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.25 hours. Total square root time: 0.10 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,75000 total time: 3.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(68·10166+13)/9 = 7(5)1657<167> = 23 · 2477 · 47387 · 270272371 · C150
C150 = P35 · P57 · P59
P35 = 17985186201587473669314610148901419<35>
P57 = 397989410018895033644398024474036815977092109203982240519<57>
P59 = 14466558893742234502005420987466649404111592901097703772811<59>
Number: n N=5757537239124070718550706302077403581327869498093808787670412687981204498446980968064332802066081638503147134728909 ( 115 digits) SNFS difficulty: 168 digits. Divisors found: Thu Jan 17 18:45:16 2008 prp57 factor: 397989410018895033644398024474036815977092109203982240519 Thu Jan 17 18:45:16 2008 prp59 factor: 14466558893742234502005420987466649404111592901097703772811 Thu Jan 17 18:45:16 2008 elapsed time 02:21:00 (Msieve 1.33) Version: GGNFS-0.77.1-20051202-athlon Total time: 92.58 hours. Scaled time: 162.30 units (timescale=1.753). Factorization parameters were as follows: name: KA_7_5_165_7 n: 5757537239124070718550706302077403581327869498093808787670412687981204498446980968064332802066081638503147134728909 # n: 103550379308220275542310045522274995058308499116008352769830405684729022693055150581242133006534481024514566056854884998045901353617827387408730421871 type: snfs skew: 0.91 deg: 5 c5: 85 c0: 52 m: 2000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4100263) Primes: RFBsize:230209, AFBsize:229927, largePrimes:7782959 encountered Relations: rels:7221963, finalFF:514347 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 92.26 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 92.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10171+9 = 8(0)1709<172> = 1609 · 47441 · 179947 · 2675683 · 717143003 · 8834088052212443456467<22> · 113402724882979773257549023<27> · C96
C96 = P47 · P49
P47 = 66045585799722886585090670007395970328026662921<47>
P49 = 4587394211090038825215575348339222477208606014167<49>
Number: n N=302977137965699242280736032700812694716266941721901019359481957770507344407132716999451859601807 ( 96 digits) Divisors found: r1=66045585799722886585090670007395970328026662921 (pp47) r2=4587394211090038825215575348339222477208606014167 (pp49) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.94 hours. Scaled time: 9.03 units (timescale=1.829). Factorization parameters were as follows: name: KA_8_0_170_9 n: 302977137965699242280736032700812694716266941721901019359481957770507344407132716999451859601807 m: 10512455641630070932636 deg: 4 c4: 24808080 c3: 107490494716 c2: 237883365092106694 c1: -567116283863032245 c0: -93029552726751959402373 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.436 # E(F1,F2) = 3.324346e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1200539918. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1060001) Primes: RFBsize:92938, AFBsize:93341, largePrimes:1857869 encountered Relations: rels:1936762, finalFF:252332 Max relations in full relation-set: 48 Initial matrix: 186357 x 252332 with sparse part having weight 18488619. Pruned matrix : 154570 x 155565 with weight 8634865. Total sieving time: 4.69 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Total square root time: 0.06 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(83·10166+61)/9 = 9(2)1659<167> = 3 · 131 · 3571 · 20201 · C157
C157 = P78 · P79
P78 = 934362002948337010399886026756338182492289458726612819250096628684686778943023<78>
P79 = 3481489941299881313436648358877533150389619165412918752742979918506381341113641<79>
Number: n N=3252971914797445349054660398728776863568519850605226649656754557340236386460735898302316013890979678288381293137596702958878519747398343478609039579707076743 ( 157 digits) SNFS difficulty: 167 digits. Divisors found: Thu Jan 17 19:55:51 2008 prp78 factor: 934362002948337010399886026756338182492289458726612819250096628684686778943023 Thu Jan 17 19:55:51 2008 prp79 factor: 3481489941299881313436648358877533150389619165412918752742979918506381341113641 Thu Jan 17 19:55:51 2008 elapsed time 01:31:24 (Msieve 1.33) Version: GGNFS-0.77.1-20050930-k8 Total time: 119.15 hours. Scaled time: 99.73 units (timescale=0.837). Factorization parameters were as follows: name: KA_9_2_165_9 n: 3252971914797445349054660398728776863568519850605226649656754557340236386460735898302316013890979678288381293137596702958878519747398343478609039579707076743 type: snfs deg: 5 c5: 830 c0: 61 skew: 0.59 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 8900713) Primes: RFBsize:216816, AFBsize:216337, largePrimes:6552860 encountered Relations: rels:6849372, finalFF:293088 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 118.83 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 119.15 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Sinkiti Sibata / Msieve, GGNFS
8·10126+9 = 8(0)1259<127> = 401 · 389297 · 232424285281<12> · 9781973560753067<16> · C92
C92 = P46 · P46
P46 = 2728784228720769076664362884053977424213249851<46>
P46 = 8260139316381217641035166733618289230331842561<46>
Wed Jan 16 20:51:56 2008 Msieve v. 1.30 Wed Jan 16 20:51:56 2008 random seeds: cfffcf7b 8fc00eba Wed Jan 16 20:51:56 2008 factoring 22540137893577421722479220457850357073538436377154439147119377080504418319859512970688708411 (92 digits) Wed Jan 16 20:51:57 2008 commencing quadratic sieve (92-digit input) Wed Jan 16 20:51:57 2008 using multiplier of 1 Wed Jan 16 20:51:57 2008 using 64kb Pentium 4 sieve core Wed Jan 16 20:51:57 2008 sieve interval: 18 blocks of size 65536 Wed Jan 16 20:51:57 2008 processing polynomials in batches of 6 Wed Jan 16 20:51:57 2008 using a sieve bound of 1787701 (66803 primes) Wed Jan 16 20:51:57 2008 using large prime bound of 187708605 (27 bits) Wed Jan 16 20:51:57 2008 using double large prime bound of 780317810587350 (42-50 bits) Wed Jan 16 20:51:57 2008 using trial factoring cutoff of 50 bits Wed Jan 16 20:51:57 2008 polynomial 'A' values have 12 factors Thu Jan 17 03:35:28 2008 67110 relations (16704 full + 50406 combined from 841445 partial), need 66899 Thu Jan 17 03:35:31 2008 begin with 858149 relations Thu Jan 17 03:35:33 2008 reduce to 171422 relations in 10 passes Thu Jan 17 03:35:33 2008 attempting to read 171422 relations Thu Jan 17 03:35:38 2008 recovered 171422 relations Thu Jan 17 03:35:38 2008 recovered 153847 polynomials Thu Jan 17 03:35:39 2008 attempting to build 67110 cycles Thu Jan 17 03:35:39 2008 found 67110 cycles in 6 passes Thu Jan 17 03:35:39 2008 distribution of cycle lengths: Thu Jan 17 03:35:39 2008 length 1 : 16704 Thu Jan 17 03:35:39 2008 length 2 : 12264 Thu Jan 17 03:35:39 2008 length 3 : 11271 Thu Jan 17 03:35:39 2008 length 4 : 8988 Thu Jan 17 03:35:39 2008 length 5 : 6855 Thu Jan 17 03:35:39 2008 length 6 : 4505 Thu Jan 17 03:35:39 2008 length 7 : 2786 Thu Jan 17 03:35:39 2008 length 9+: 3737 Thu Jan 17 03:35:39 2008 largest cycle: 23 relations Thu Jan 17 03:35:39 2008 matrix is 66803 x 67110 with weight 4164343 (avg 62.05/col) Thu Jan 17 03:35:41 2008 filtering completed in 3 passes Thu Jan 17 03:35:41 2008 matrix is 63419 x 63483 with weight 3955932 (avg 62.31/col) Thu Jan 17 03:35:41 2008 saving the first 48 matrix rows for later Thu Jan 17 03:35:41 2008 matrix is 63371 x 63483 with weight 3075316 (avg 48.44/col) Thu Jan 17 03:35:41 2008 matrix includes 64 packed rows Thu Jan 17 03:35:42 2008 using block size 21845 for processor cache size 512 kB Thu Jan 17 03:35:42 2008 commencing Lanczos iteration Thu Jan 17 03:36:22 2008 lanczos halted after 1003 iterations (dim = 63369) Thu Jan 17 03:36:22 2008 recovered 17 nontrivial dependencies Thu Jan 17 03:36:23 2008 prp46 factor: 2728784228720769076664362884053977424213249851 Thu Jan 17 03:36:23 2008 prp46 factor: 8260139316381217641035166733618289230331842561 Thu Jan 17 03:36:23 2008 elapsed time 06:44:27
8·10121+9 = 8(0)1209<122> = 107 · 17321 · C116
C116 = P56 · P61
P56 = 39837349575609258121788494808572654717964321457787972441<56>
P61 = 1083534667380804556636556284146554026394969807509139591856667<61>
Number: 80009_121 N=43165149321740613063824529351492192233834246905733249089350240402903503769126882337738156966828122310608860618114147 ( 116 digits) SNFS difficulty: 122 digits. Divisors found: r1=39837349575609258121788494808572654717964321457787972441 (pp56) r2=1083534667380804556636556284146554026394969807509139591856667 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.09 hours. Scaled time: 1.41 units (timescale=0.675). Factorization parameters were as follows: name: 80009_121 n: 43165149321740613063824529351492192233834246905733249089350240402903503769126882337738156966828122310608860618114147 m: 2000000000000000000000000 c5: 5 c0: 18 skew: 1.29 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63758, largePrimes:1975769 encountered Relations: rels:1935048, finalFF:135159 Max relations in full relation-set: 28 Initial matrix: 112922 x 135159 with sparse part having weight 10397305. Pruned matrix : 104434 x 105062 with weight 6434318. Total sieving time: 1.80 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.09 hours. --------- CPU info (if available) ----------
8·10117+9 = 8(0)1169<118> = 570407 · 540758209 · 1090020499081<13> · C92
C92 = P31 · P61
P31 = 8959752026870266003989106938343<31>
P61 = 2655653222978175541447519201124671928388493948927052821291921<61>
Wed Jan 16 21:03:16 2008 Msieve v. 1.30 Wed Jan 16 21:03:16 2008 random seeds: 2dab32f1 b486c163 Wed Jan 16 21:03:16 2008 factoring 23793994347243262779610066748319237664501818933229988395230398510229558410776055302151026903 (92 digits) Wed Jan 16 21:03:17 2008 commencing quadratic sieve (92-digit input) Wed Jan 16 21:03:18 2008 using multiplier of 7 Wed Jan 16 21:03:18 2008 using 64kb Pentium 2 sieve core Wed Jan 16 21:03:18 2008 sieve interval: 18 blocks of size 65536 Wed Jan 16 21:03:18 2008 processing polynomials in batches of 6 Wed Jan 16 21:03:18 2008 using a sieve bound of 1777823 (67059 primes) Wed Jan 16 21:03:18 2008 using large prime bound of 186671415 (27 bits) Wed Jan 16 21:03:18 2008 using double large prime bound of 772573811846445 (42-50 bits) Wed Jan 16 21:03:18 2008 using trial factoring cutoff of 50 bits Wed Jan 16 21:03:18 2008 polynomial 'A' values have 12 factors Thu Jan 17 09:34:51 2008 67313 relations (18203 full + 49110 combined from 814645 partial), need 67155 Thu Jan 17 09:34:59 2008 begin with 832848 relations Thu Jan 17 09:35:08 2008 reduce to 165375 relations in 10 passes Thu Jan 17 09:35:08 2008 attempting to read 165375 relations Thu Jan 17 09:35:23 2008 recovered 165375 relations Thu Jan 17 09:35:23 2008 recovered 140039 polynomials Thu Jan 17 09:35:35 2008 attempting to build 67313 cycles Thu Jan 17 09:35:36 2008 found 67313 cycles in 5 passes Thu Jan 17 09:35:39 2008 distribution of cycle lengths: Thu Jan 17 09:35:39 2008 length 1 : 18203 Thu Jan 17 09:35:39 2008 length 2 : 12779 Thu Jan 17 09:35:39 2008 length 3 : 11589 Thu Jan 17 09:35:39 2008 length 4 : 9025 Thu Jan 17 09:35:39 2008 length 5 : 6318 Thu Jan 17 09:35:39 2008 length 6 : 4096 Thu Jan 17 09:35:39 2008 length 7 : 2477 Thu Jan 17 09:35:39 2008 length 9+: 2826 Thu Jan 17 09:35:39 2008 largest cycle: 18 relations Thu Jan 17 09:35:40 2008 matrix is 67059 x 67313 with weight 3998972 (avg 59.41/col) Thu Jan 17 09:35:45 2008 filtering completed in 3 passes Thu Jan 17 09:35:45 2008 matrix is 62553 x 62617 with weight 3752163 (avg 59.92/col) Thu Jan 17 09:35:47 2008 saving the first 48 matrix rows for later Thu Jan 17 09:35:48 2008 matrix is 62505 x 62617 with weight 2858139 (avg 45.64/col) Thu Jan 17 09:35:48 2008 matrix includes 64 packed rows Thu Jan 17 09:35:48 2008 using block size 10922 for processor cache size 256 kB Thu Jan 17 09:35:50 2008 commencing Lanczos iteration Thu Jan 17 09:38:48 2008 lanczos halted after 990 iterations (dim = 62503) Thu Jan 17 09:38:49 2008 recovered 16 nontrivial dependencies Thu Jan 17 09:39:30 2008 prp31 factor: 8959752026870266003989106938343 Thu Jan 17 09:39:30 2008 prp61 factor: 2655653222978175541447519201124671928388493948927052821291921 Thu Jan 17 09:39:30 2008 elapsed time 12:36:14
8·10133+9 = 8(0)1329<134> = 89 · 683 · 48247 · 28063523 · C117
C117 = P57 · P61
P57 = 419570597518623739301843398921438222427110769704939738021<57>
P61 = 2316656939278359599773662465108090166954145351342952510252907<61>
Number: 80009_133 N=972001136258687370985823047469769423820780268765457967270853419909277049455757306026026401291609436357811577033677047 ( 117 digits) SNFS difficulty: 133 digits. Divisors found: r1=419570597518623739301843398921438222427110769704939738021 (pp57) r2=2316656939278359599773662465108090166954145351342952510252907 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.79 hours. Scaled time: 4.59 units (timescale=0.675). Factorization parameters were as follows: name: 80009_133 n: 972001136258687370985823047469769423820780268765457967270853419909277049455757306026026401291609436357811577033677047 m: 200000000000000000000000000 c5: 250 c0: 9 skew: 0.51 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63828, largePrimes:1528267 encountered Relations: rels:1544425, finalFF:190502 Max relations in full relation-set: 28 Initial matrix: 142393 x 190502 with sparse part having weight 13662880. Pruned matrix : 125537 x 126312 with weight 7340552. Total sieving time: 6.39 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.79 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
8·10134+9 = 8(0)1339<135> = 59 · 16301584241<11> · C123
C123 = P41 · P83
P41 = 28571873631885209731492091721987844825451<41>
P83 = 29111825682462786935908160354061235293752365551347558913693510861695423975494302961<83>
Number: 80009_134 N=831779404592797152588463117329260488018172917231409494936913348568290837598995454362795783479947855559771496090953957460411 ( 123 digits) SNFS difficulty: 135 digits. Divisors found: r1=28571873631885209731492091721987844825451 (pp41) r2=29111825682462786935908160354061235293752365551347558913693510861695423975494302961 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.83 hours. Scaled time: 6.03 units (timescale=2.130). Factorization parameters were as follows: n: 831779404592797152588463117329260488018172917231409494936913348568290837598995454362795783479947855559771496090953957460411 m: 1000000000000000000000000000 c5: 4 c0: 45 skew: 1.62 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:107233, largePrimes:2282220 encountered Relations: rels:2420613, finalFF:301201 Max relations in full relation-set: 28 Initial matrix: 214423 x 301201 with sparse part having weight 21861579. Pruned matrix : 178535 x 179671 with weight 10032422. Total sieving time: 2.69 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.83 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10141+9 = 8(0)1409<142> = 389 · 32563 · C135
C135 = P55 · P81
P55 = 4990867357422239873844609760866802279933879758965510129<55>
P81 = 126543531026932811719775808439501974442746850624376305592456058350578392937456103<81>
Number: 80009_141 N=631561978295267382421119685178985059375115210720259331979527602692569760165128194845080609807825952886897433624217622994919004939367287 ( 135 digits) SNFS difficulty: 142 digits. Divisors found: r1=4990867357422239873844609760866802279933879758965510129 (pp55) r2=126543531026932811719775808439501974442746850624376305592456058350578392937456103 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.10 hours. Scaled time: 13.13 units (timescale=2.152). Factorization parameters were as follows: n: 631561978295267382421119685178985059375115210720259331979527602692569760165128194845080609807825952886897433624217622994919004939367287 m: 20000000000000000000000000000 c5: 5 c0: 18 skew: 1.29 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:113902, largePrimes:3363009 encountered Relations: rels:3471113, finalFF:400013 Max relations in full relation-set: 28 Initial matrix: 228123 x 400013 with sparse part having weight 33816000. Pruned matrix : 169664 x 170868 with weight 12859155. Total sieving time: 5.93 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.10 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10158+9 = 8(0)1579<159> = 43 · 133397260513579219<18> · C141
C141 = P30 · C111
P30 = 167167903992258454388890478299<30>
C111 = [834299000663855262700697358741077630803654699409180671446600595711970677159208132513234866970546095185263588123<111>]
8·10161+9 = 8(0)1609<162> = 7 · 361469 · 2281823 · 93410043703<11> · C139
C139 = P33 · C107
P33 = 104070924106063664505185233829029<33>
C107 = [14253317185219973460389890832990183114112816437488046262223139768008252805218662703888332623114842777242023<107>]
8·10143+9 = 8(0)1429<144> = 7 · 383 · C141
C141 = P69 · P72
P69 = 341296326661470018931101663238896398460963020877249035438454385737449<69>
P72 = 874302175383230664843059392215687849285838943004522735011833597504969961<72>
Number: 80009_143 N=298396120850428944423722491607609101081685938082804923535994032077582991421111525550167847817978366281238343901529280119358448340171577769489 ( 141 digits) SNFS difficulty: 145 digits. Divisors found: r1=341296326661470018931101663238896398460963020877249035438454385737449 (pp69) r2=874302175383230664843059392215687849285838943004522735011833597504969961 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.48 hours. Scaled time: 16.07 units (timescale=2.150). Factorization parameters were as follows: n: 298396120850428944423722491607609101081685938082804923535994032077582991421111525550167847817978366281238343901529280119358448340171577769489 m: 100000000000000000000000000000 c5: 2 c0: 225 skew: 2.57 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113882, largePrimes:3338731 encountered Relations: rels:3372927, finalFF:333484 Max relations in full relation-set: 28 Initial matrix: 228102 x 333484 with sparse part having weight 29484204. Pruned matrix : 191664 x 192868 with weight 13878389. Total sieving time: 7.28 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 7.48 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
By Jo Yeong Uk / GGNFS, GMP-ECM
(64·10173-1)/9 = 7(1)173<174> = 32 · 1383089 · 2544133 · 4732520529573831035803<22> · C139
C139 = P61 · P79
P61 = 1909861565401470161137659936941982422346862092020573206552679<61>
P79 = 2484337649409539669664989360715143924562307337363563977630662091731238984022991<79>
Number: 71111_173 N=4744740992087112195864762816440374455308257317012861173239758256887368325321090061827164414472315846815098000336885604806637133029988642889 ( 139 digits) SNFS difficulty: 176 digits. Divisors found: r1=1909861565401470161137659936941982422346862092020573206552679 (pp61) r2=2484337649409539669664989360715143924562307337363563977630662091731238984022991 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 130.26 hours. Scaled time: 279.55 units (timescale=2.146). Factorization parameters were as follows: n: 4744740992087112195864762816440374455308257317012861173239758256887368325321090061827164414472315846815098000336885604806637133029988642889 m: 200000000000000000000000000000000000 c5: 1 c0: -50 skew: 2.19 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [4500000, 6500001) Primes: RFBsize:602489, AFBsize:602205, largePrimes:10863804 encountered Relations: rels:11191485, finalFF:1513162 Max relations in full relation-set: 28 Initial matrix: 1204758 x 1513162 with sparse part having weight 89597218. Pruned matrix : 913804 x 919891 with weight 49944003. Total sieving time: 124.75 hours. Total relation processing time: 0.17 hours. Matrix solve time: 5.25 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,50,50,2.6,2.6,100000 total time: 130.26 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10115+9 = 8(0)1149<116> = 23 · 164754409 · 1219038421<10> · C98
C98 = P45 · P53
P45 = 562467957547373531345562723972322221908786381<45>
P53 = 30790016732270191561933012796406982113872329442024087<53>
Number: 80009_115 N=17318397824249470808770799132908237419565642366974059924207959257121120487219216176994046339559147 ( 98 digits) SNFS difficulty: 116 digits. Divisors found: r1=562467957547373531345562723972322221908786381 (pp45) r2=30790016732270191561933012796406982113872329442024087 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.61 hours. Scaled time: 1.31 units (timescale=2.147). Factorization parameters were as follows: n: 17318397824249470808770799132908237419565642366974059924207959257121120487219216176994046339559147 m: 200000000000000000000000 c5: 1 c0: 36 skew: 2.05 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 390001) Primes: RFBsize:49098, AFBsize:49231, largePrimes:1769889 encountered Relations: rels:1784790, finalFF:176199 Max relations in full relation-set: 28 Initial matrix: 98393 x 176199 with sparse part having weight 13245210. Pruned matrix : 77376 x 77931 with weight 3716378. Total sieving time: 0.57 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.61 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10142+9 = 8(0)1419<143> = 3329 · 29281922233<11> · C129
C129 = P34 · C96
P34 = 1795510682849862934729054445135297<34>
C96 = [457076207785168212371453509113670437822360245086692204469952475655630982399330567850785958184721<96>]
8·10175+9 = 8(0)1749<176> = 29 · 9907 · 828349 · 149397358667<12> · 3432767866354222343<19> · 75056191036086198203<20> · C115
C115 = P30 · P86
P30 = 266890443093272218468549330943<30>
P86 = 32721226544458263861906681169586495852149103259513363783751003948859549712960564477403<86>
By Jo Yeong Uk / GGNFS, GMP-ECM
8·10164-9 = 7(9)1631<165> = 7 · 41 · 1143403361<10> · 261891714717420247<18> · 11046278788929908087<20> · C117
C117 = P39 · P79
P39 = 308636832720759777975330569373913552783<39>
P79 = 2730380120299666574824672795496309223735144601900062623583012669777090797192599<79>
Number: 79991_164 N=842695872453016151605622018022638106849233137887964461947572705754837909988138005741669220163798173899089414403453017 ( 117 digits) Divisors found: r1=308636832720759777975330569373913552783 (pp39) r2=2730380120299666574824672795496309223735144601900062623583012669777090797192599 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 32.49 hours. Scaled time: 69.91 units (timescale=2.152). Factorization parameters were as follows: name: 79991_164 n: 842695872453016151605622018022638106849233137887964461947572705754837909988138005741669220163798173899089414403453017 skew: 39822.29 # norm 1.28e+16 c5: 53100 c4: -1234949190 c3: -584057431279291 c2: 113539236838916353 c1: 172914044835050143787073 c0: 1186521124802802637136030280 # alpha -5.74 Y1: 3702589636013 Y0: -27549615417740198203969 # Murphy_E 4.20e-10 # M 398711343419018151458526581075477856479282773180178871103100914140391572713644277776727739442770855281441383627371216 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3825001) Primes: RFBsize:315948, AFBsize:317384, largePrimes:7631001 encountered Relations: rels:7736677, finalFF:795523 Max relations in full relation-set: 28 Initial matrix: 633411 x 795523 with sparse part having weight 61742503. Pruned matrix : 492974 x 496205 with weight 35425385. Polynomial selection time: 1.75 hours. Total sieving time: 29.00 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.41 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 32.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
7·10161-9 = 6(9)1601<162> = 31 · 238529 · 16165785424707406853881795571381<32> · C124
C124 = P34 · P91
P34 = 1154734515303355813588848626575829<34>
P91 = 5071263789375496111006719685471610072718773087775179235920085143775708329815366365895324241<91>
By Robert Backstrom / GMP-ECM
8·10156-9 = 7(9)1551<157> = 13001 · C153
C153 = P34 · P120
P34 = 1295988165151587695336675852925431<34>
P120 = 474801621105532083834700125189778681342962201400810891482867919304452802278015894667986382020302929101025045361916944761<120>
The factor table of 800...009 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Jo Yeong Uk / GMP-ECM
8·10180-9 = 7(9)1791<181> = C181
C181 = P39 · C142
P39 = 826115977894170609050375729157582021497<39>
C142 = [9683870320959750397301131599191235511655411576027658067144718311274518875633720728729028560156827649352670707054841461900759820696819277771503<142>]
8·10195-9 = 7(9)1941<196> = 3889 · 15610275261869941441<20> · 435897677914358674687851179<27> · 1045513792226296340499906371<28> · C120
C120 = P32 · P89
P32 = 19119580804026448034824934992231<32>
P89 = 15123377562818027057411188140424291585847836807190418568871815626881749196170735312717121<89>
By matsui / GMP-ECM
(14·10193-41)/9 = 1(5)1921<194> = 11 · 331 · C190
C190 = P32 · C158
P32 = 62526939757042506698769902098831<32>
C158 = [68327837135788697792225797137899512369957580856225051975788498022627748463669114687246453722274284444945237019649575567790089868646790503352013257536766804281<158>]
(8·10195-53)/9 = (8)1943<195> = 23 · 29 · C193
C193 = P33 · C160
P33 = 144590681557580521442564517528323<33>
C160 = [9216824939736569669228358640580173977056399699297573655614497386963756277829507934369338603231828859333521137520519483912139878643422967809749001298287897524163<160>]
By Sinkiti Sibata / GGNFS
8·10151-9 = 7(9)1501<152> = 81001 · 1259231 · 1739471 · 87802863301<11> · C124
C124 = P47 · P78
P47 = 30791592289433442832144020953926711999042958399<47>
P78 = 166777008939323811795992782279128050360042974145183252503836734575392545775709<78>
Number: 79991_151 N=5135329662510855451262747808996030428811545227752914475018951225716569545596080341020197792116773744210930101595349671729891 ( 124 digits) SNFS difficulty: 152 digits. Divisors found: r1=30791592289433442832144020953926711999042958399 (pp47) r2=166777008939323811795992782279128050360042974145183252503836734575392545775709 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.10 hours. Scaled time: 42.15 units (timescale=1.998). Factorization parameters were as follows: name: 79991_151 n: 5135329662510855451262747808996030428811545227752914475018951225716569545596080341020197792116773744210930101595349671729891 m: 2000000000000000000000000000000 c5: 5 c0: -18 skew: 1.29 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176263, largePrimes:5423196 encountered Relations: rels:5343061, finalFF:492291 Max relations in full relation-set: 28 Initial matrix: 352631 x 492291 with sparse part having weight 42349212. Pruned matrix : 286234 x 288061 with weight 22574991. Total sieving time: 19.86 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.98 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.10 hours. --------- CPU info (if available) ----------
8·10152-9 = 7(9)1511<153> = 7 · 17 · 4660787009<10> · 138804112174759<15> · C128
C128 = P49 · P79
P49 = 8716632273706955002066316578892953673433856501001<49>
P79 = 1192154963555103648416832707448716501053570407831671868210179818737805091325919<79>
Number: 79991_152 N=10391576430584355190373677199759407351446517692328060162305724930882541948962841610590261491446581131649370344311873473040744919 ( 128 digits) SNFS difficulty: 152 digits. Divisors found: r1=8716632273706955002066316578892953673433856501001 (pp49) r2=1192154963555103648416832707448716501053570407831671868210179818737805091325919 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 25.77 hours. Scaled time: 51.56 units (timescale=2.001). Factorization parameters were as follows: name: 79991_152 n: 10391576430584355190373677199759407351446517692328060162305724930882541948962841610590261491446581131649370344311873473040744919 m: 2000000000000000000000000000000 c5: 25 c0: -9 skew: 0.82 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176228, largePrimes:5853695 encountered Relations: rels:6051618, finalFF:728881 Max relations in full relation-set: 28 Initial matrix: 352594 x 728881 with sparse part having weight 65846116. Pruned matrix : 233861 x 235687 with weight 30991348. Total sieving time: 24.73 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.78 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 25.77 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(71·10166-17)/9 = 7(8)1657<167> = 134850917 · C159
C159 = P42 · P117
P42 = 651848668311457681434595316282892913713581<42>
P117 = 897460106491496446614435004796283119759388322955462991597812172002637625312740762585824492525266076716658116988493431<117>
Number: n N=585008175279140956000239055763253644681473607546093949727378486339020511732144089823941567181844887928265915232069863409893526262701564638888505955720633986411 ( 159 digits) SNFS difficulty: 167 digits. Divisors found: Tue Jan 15 05:36:06 2008 prp42 factor: 651848668311457681434595316282892913713581 Tue Jan 15 05:36:06 2008 prp117 factor: 897460106491496446614435004796283119759388322955462991597812172002637625312740762585824492525266076716658116988493431 Tue Jan 15 05:36:06 2008 elapsed time 03:06:55 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 124.47 hours. Scaled time: 162.43 units (timescale=1.305). Factorization parameters were as follows: name: KA_7_8_165_7 n: 585008175279140956000239055763253644681473607546093949727378486339020511732144089823941567181844887928265915232069863409893526262701564638888505955720633986411 skew: 0.47 deg: 5 c5: 710 c0: -17 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5001307) Primes: RFBsize:230209, AFBsize:229783, largePrimes:8029739 encountered Relations: rels:7472162, finalFF:393297 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 124.03 hours. Total relation processing time: 0.44 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 124.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10165-3 = 1(9)1647<166> = 53 · 71881 · 238245737904007<15> · C145
C145 = P37 · P52 · P57
P37 = 1403781958927021896724841424949479359<37>
P52 = 2551589809127749396488652666886417210600862321179209<52>
P57 = 615183048749711493044799857844699363803138896771654939937<57>
Number: n N=1569694797937903300551110733526778314018254369305286389639105161479391032809561453871065828543212923908169833 ( 109 digits) Divisors found: Tue Jan 15 14:40:26 2008 prp52 factor: 2551589809127749396488652666886417210600862321179209 Tue Jan 15 14:40:26 2008 prp57 factor: 615183048749711493044799857844699363803138896771654939937 Tue Jan 15 14:40:26 2008 elapsed time 00:47:23 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.42 hours. Scaled time: 9.56 units (timescale=0.837). Factorization parameters were as follows: name: KA_1_9_164_7 n: 1569694797937903300551110733526778314018254369305286389639105161479391032809561453871065828543212923908169833 skew: 8306.36 # norm 2.76e+14 c5: 66240 c4: -3742036824 c3: -9666955114689 c2: 233645416862500981 c1: 389670328960034369953 c0: -1807187513145699342603261 # alpha -5.10 Y1: 357931261909 Y0: -473088827202633755566 # Murphy_E 1.24e-09 # M 794377935712316731005078895413010160819638922615293091642026246376800976490609919453234209027858723238419702 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 2800001) Primes: RFBsize:230209, AFBsize:230661, largePrimes:7168024 encountered Relations: rels:6884920, finalFF:517695 Max relations in full relation-set: 28 Initial matrix: 460952 x 517695 with sparse part having weight 37788957. Pruned matrix : 413293 x 415661 with weight 25450233. Total sieving time: 11.25 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 11.42 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
8·10149-9 = 7(9)1481<150> = 41 · 387128561 · C140
C140 = P42 · P47 · P52
P42 = 506448962913497763293952892565556348977959<42>
P47 = 51909484898783796991431617515193618122604873161<47>
P52 = 1917204817158045773364919500838723218822870408926609<52>
Number: n N=50402365228617734335016222043145796714084216637046821048037371523707138598899480824205970221639614758238464126637047456747868817464881438991 ( 140 digits) SNFS difficulty: 150 digits. Divisors found: Tue Jan 15 21:21:09 2008 prp42 factor: 506448962913497763293952892565556348977959 Tue Jan 15 21:21:09 2008 prp47 factor: 51909484898783796991431617515193618122604873161 Tue Jan 15 21:21:09 2008 prp52 factor: 1917204817158045773364919500838723218822870408926609 Tue Jan 15 21:21:09 2008 elapsed time 00:47:51 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 14.51 hours. Scaled time: 19.05 units (timescale=1.313). Factorization parameters were as follows: name: KA_7_9_148_1 n: 50402365228617734335016222043145796714084216637046821048037371523707138598899480824205970221639614758238464126637047456747868817464881438991 skew: 1.62 deg: 5 c5: 4 c0: -45 m: 1000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 799990) Primes: RFBsize:203362, AFBsize:203002, largePrimes:6263890 encountered Relations: rels:5792386, finalFF:494582 Max relations in full relation-set: 28 Initial matrix: 406428 x 494582 with sparse part having weight 27219008. Pruned matrix : Total sieving time: 14.35 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 14.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Irvine
10375+1 is divisible by 4709825349852110182615878875374419529306990314325041101342026868334001<70>, cofactor is prime.
Reference: The Cunningham Project (Sam Wagstaff)
By Yousuke Koide
(101279-1)/9 is divisible by 2320223789459953862122440032213<31>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / Msieve, GGNFS
8·10158-9 = 7(9)1571<159> = 7 · 4323841 · 4714903 · 462997341128773543<18> · 410562561244534563981430142949031<33> · C95
C95 = P47 · P48
P47 = 46763860302718914140271163284841847599644741791<47>
P48 = 630639651843465146374746113429199687582690077977<48>
Sun Jan 13 22:37:33 2008 Sun Jan 13 22:37:33 2008 Sun Jan 13 22:37:33 2008 Msieve v. 1.32 Sun Jan 13 22:37:33 2008 random seeds: 22de54b1 e3793a1d Sun Jan 13 22:37:33 2008 factoring 29491144580163096639800559468991908217808992070869327114070748537704128510842764288695820636807 (95 digits) Sun Jan 13 22:37:34 2008 no P-1/P+1/ECM available, skipping Sun Jan 13 22:37:34 2008 commencing quadratic sieve (95-digit input) Sun Jan 13 22:37:34 2008 using multiplier of 23 Sun Jan 13 22:37:34 2008 using 32kb Intel Core sieve core Sun Jan 13 22:37:34 2008 sieve interval: 36 blocks of size 32768 Sun Jan 13 22:37:34 2008 processing polynomials in batches of 6 Sun Jan 13 22:37:34 2008 using a sieve bound of 2117419 (78824 primes) Sun Jan 13 22:37:34 2008 using large prime bound of 309143174 (28 bits) Sun Jan 13 22:37:34 2008 using double large prime bound of 1915522827320368 (43-51 bits) Sun Jan 13 22:37:34 2008 using trial factoring cutoff of 51 bits Sun Jan 13 22:37:34 2008 polynomial 'A' values have 12 factors Mon Jan 14 02:03:04 2008 79124 relations (19503 full + 59621 combined from 1162555 partial), need 78920 Mon Jan 14 02:03:05 2008 begin with 1182058 relations Mon Jan 14 02:03:06 2008 reduce to 205345 relations in 12 passes Mon Jan 14 02:03:06 2008 attempting to read 205345 relations Mon Jan 14 02:03:07 2008 recovered 205345 relations Mon Jan 14 02:03:07 2008 recovered 189496 polynomials Mon Jan 14 02:03:08 2008 attempting to build 79124 cycles Mon Jan 14 02:03:08 2008 found 79122 cycles in 5 passes Mon Jan 14 02:03:08 2008 distribution of cycle lengths: Mon Jan 14 02:03:08 2008 length 1 : 19503 Mon Jan 14 02:03:08 2008 length 2 : 13950 Mon Jan 14 02:03:08 2008 length 3 : 13238 Mon Jan 14 02:03:08 2008 length 4 : 10765 Mon Jan 14 02:03:08 2008 length 5 : 8092 Mon Jan 14 02:03:08 2008 length 6 : 5469 Mon Jan 14 02:03:08 2008 length 7 : 3396 Mon Jan 14 02:03:08 2008 length 9+: 4709 Mon Jan 14 02:03:08 2008 largest cycle: 21 relations Mon Jan 14 02:03:08 2008 matrix is 78824 x 79122 with weight 5358756 (avg 67.73/col) Mon Jan 14 02:03:08 2008 filtering completed in 3 passes Mon Jan 14 02:03:08 2008 matrix is 75111 x 75175 with weight 5115448 (avg 68.05/col) Mon Jan 14 02:03:10 2008 saving the first 48 matrix rows for later Mon Jan 14 02:03:10 2008 matrix is 75063 x 75175 with weight 4227524 (avg 56.24/col) Mon Jan 14 02:03:10 2008 matrix includes 64 packed rows Mon Jan 14 02:03:10 2008 using block size 30070 for processor cache size 4096 kB Mon Jan 14 02:03:12 2008 commencing Lanczos iteration Mon Jan 14 02:03:40 2008 lanczos halted after 1188 iterations (dim = 75062) Mon Jan 14 02:03:40 2008 recovered 17 nontrivial dependencies Mon Jan 14 02:03:41 2008 prp47 factor: 46763860302718914140271163284841847599644741791 Mon Jan 14 02:03:41 2008 prp48 factor: 630639651843465146374746113429199687582690077977 Mon Jan 14 02:03:41 2008 elapsed time 03:26:08
8·10154-9 = 7(9)1531<155> = 41 · 59281 · 547957391 · 12119965852433<14> · C127
C127 = P39 · P89
P39 = 461939553236586484114536733702650233023<39>
P89 = 10728951295727690102209746621884683736435695534177888595486933153914001471840926288450159<89>
Number: 79991_154 N=4956126968245544840829612126947542016537069480457201107807317941718490806281289773378008927417668578515244674558217734871400657 ( 127 digits) SNFS difficulty: 155 digits. Divisors found: r1=461939553236586484114536733702650233023 (pp39) r2=10728951295727690102209746621884683736435695534177888595486933153914001471840926288450159 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.01 hours. Scaled time: 38.75 units (timescale=2.151). Factorization parameters were as follows: n: 4956126968245544840829612126947542016537069480457201107807317941718490806281289773378008927417668578515244674558217734871400657 m: 10000000000000000000000000000000 c5: 4 c0: -45 skew: 1.62 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216516, largePrimes:5592938 encountered Relations: rels:5575870, finalFF:574005 Max relations in full relation-set: 28 Initial matrix: 433396 x 574005 with sparse part having weight 43815050. Pruned matrix : 340472 x 342702 with weight 27481926. Total sieving time: 17.33 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.57 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 18.01 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
3·10164+1 = 3(0)1631<165> = 7 · 153643579 · 3358957632992895950040793<25> · C131
C131 = P37 · P94
P37 = 9126754553793380350961701881130062943<37>
P94 = 9098879264948989983429360562774153133639098883364585761384303273204226621258077428446473075683<94>
By Sinkiti Sibata / GGNFS
8·10145-9 = 7(9)1441<146> = 31 · 3769 · 7489 · 279971682391<12> · C126
C126 = P55 · P71
P55 = 7742337301078104200488978966281420202696958368400348371<55>
P71 = 42178597070720342821424007221144098406947930977765023595765919575211661<71>
Number: 79991_145 N=326560925407781770767774075639791745382030213521430418350721109651781264744036225782582623040049517265875742904382248461554231 ( 126 digits) SNFS difficulty: 145 digits. Divisors found: r1=7742337301078104200488978966281420202696958368400348371 (pp55) r2=42178597070720342821424007221144098406947930977765023595765919575211661 (pp71) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.98 hours. Scaled time: 27.74 units (timescale=1.985). Factorization parameters were as follows: name: 79991_145 n: 326560925407781770767774075639791745382030213521430418350721109651781264744036225782582623040049517265875742904382248461554231 m: 100000000000000000000000000000 c5: 8 c0: -9 skew: 1.02 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2150001) Primes: RFBsize:100021, AFBsize:99978, largePrimes:2778825 encountered Relations: rels:2779522, finalFF:267636 Max relations in full relation-set: 28 Initial matrix: 200064 x 267636 with sparse part having weight 27367024. Pruned matrix : 181507 x 182571 with weight 16750604. Total sieving time: 13.45 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.36 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 13.98 hours. --------- CPU info (if available) ----------
8·10148-9 = 7(9)1471<149> = 23 · 2351 · 5417 · 18204143 · 1811121196799<13> · 1947542272318766199929<22> · C100
C100 = P37 · P64
P37 = 1698869895271211983854184427647893889<37>
P64 = 2503720935946036989300856832502895816091759303149812092199359903<64>
Sat Jan 12 20:55:23 2008 Msieve v. 1.30 Sat Jan 12 20:55:23 2008 random seeds: 45d02a07 42588f3f Sat Jan 12 20:55:23 2008 factoring 4253496124238984707734842877964977170209510988448548351661975134912047668525960763545100431865332767 (100 digits) Sat Jan 12 20:55:24 2008 commencing quadratic sieve (100-digit input) Sat Jan 12 20:55:24 2008 using multiplier of 3 Sat Jan 12 20:55:24 2008 using 64kb Pentium 4 sieve core Sat Jan 12 20:55:24 2008 sieve interval: 18 blocks of size 65536 Sat Jan 12 20:55:24 2008 processing polynomials in batches of 6 Sat Jan 12 20:55:24 2008 using a sieve bound of 2704027 (98824 primes) Sat Jan 12 20:55:24 2008 using large prime bound of 405604050 (28 bits) Sat Jan 12 20:55:24 2008 using double large prime bound of 3123087099560100 (43-52 bits) Sat Jan 12 20:55:24 2008 using trial factoring cutoff of 52 bits Sat Jan 12 20:55:24 2008 polynomial 'A' values have 13 factors Sun Jan 13 07:55:59 2008 9287 relations (6915 full + 2372 combined from 447278 partial), need 98920 Sun Jan 13 07:55:59 2008 elapsed time 11:00:36 Sun Jan 13 08:10:19 2008 Sun Jan 13 08:10:19 2008 Sun Jan 13 08:10:19 2008 Msieve v. 1.30 Sun Jan 13 08:10:19 2008 random seeds: 8ded5200 352a1059 Sun Jan 13 08:10:19 2008 factoring 4253496124238984707734842877964977170209510988448548351661975134912047668525960763545100431865332767 (100 digits) Sun Jan 13 08:10:20 2008 commencing quadratic sieve (100-digit input) Sun Jan 13 08:10:20 2008 using multiplier of 3 Sun Jan 13 08:10:20 2008 using 64kb Pentium 4 sieve core Sun Jan 13 08:10:20 2008 sieve interval: 18 blocks of size 65536 Sun Jan 13 08:10:20 2008 processing polynomials in batches of 6 Sun Jan 13 08:10:20 2008 using a sieve bound of 2704027 (98824 primes) Sun Jan 13 08:10:20 2008 using large prime bound of 405604050 (28 bits) Sun Jan 13 08:10:20 2008 using double large prime bound of 3123087099560100 (43-52 bits) Sun Jan 13 08:10:20 2008 using trial factoring cutoff of 52 bits Sun Jan 13 08:10:20 2008 polynomial 'A' values have 13 factors Sun Jan 13 08:10:22 2008 restarting with 6915 full and 447278 partial relations Mon Jan 14 09:57:41 2008 98999 relations (23067 full + 75932 combined from 1497061 partial), need 98920 Mon Jan 14 09:57:47 2008 begin with 1520128 relations Mon Jan 14 09:57:50 2008 reduce to 263703 relations in 11 passes Mon Jan 14 09:57:50 2008 attempting to read 263703 relations Mon Jan 14 09:58:00 2008 recovered 263703 relations Mon Jan 14 09:58:00 2008 recovered 255071 polynomials Mon Jan 14 09:58:01 2008 attempting to build 98999 cycles Mon Jan 14 09:58:01 2008 found 98999 cycles in 6 passes Mon Jan 14 09:58:01 2008 distribution of cycle lengths: Mon Jan 14 09:58:01 2008 length 1 : 23067 Mon Jan 14 09:58:01 2008 length 2 : 16643 Mon Jan 14 09:58:01 2008 length 3 : 16544 Mon Jan 14 09:58:01 2008 length 4 : 13575 Mon Jan 14 09:58:01 2008 length 5 : 10481 Mon Jan 14 09:58:01 2008 length 6 : 7268 Mon Jan 14 09:58:01 2008 length 7 : 4607 Mon Jan 14 09:58:01 2008 length 9+: 6814 Mon Jan 14 09:58:01 2008 largest cycle: 21 relations Mon Jan 14 09:58:02 2008 matrix is 98824 x 98999 with weight 6671927 (avg 67.39/col) Mon Jan 14 09:58:04 2008 filtering completed in 3 passes Mon Jan 14 09:58:04 2008 matrix is 95182 x 95246 with weight 6452945 (avg 67.75/col) Mon Jan 14 09:58:05 2008 saving the first 48 matrix rows for later Mon Jan 14 09:58:05 2008 matrix is 95134 x 95246 with weight 5001470 (avg 52.51/col) Mon Jan 14 09:58:05 2008 matrix includes 64 packed rows Mon Jan 14 09:58:05 2008 using block size 21845 for processor cache size 512 kB Mon Jan 14 09:58:07 2008 commencing Lanczos iteration Mon Jan 14 09:59:41 2008 lanczos halted after 1506 iterations (dim = 95134) Mon Jan 14 09:59:41 2008 recovered 18 nontrivial dependencies Mon Jan 14 09:59:43 2008 prp37 factor: 1698869895271211983854184427647893889 Mon Jan 14 09:59:43 2008 prp64 factor: 2503720935946036989300856832502895816091759303149812092199359903 Mon Jan 14 09:59:43 2008 elapsed time 25:49:24
8·10144-9 = 7(9)1431<145> = 41 · 356977 · 12418519760749442070754470311<29> · C110
C110 = P34 · P77
P34 = 1202396689032442891861982410658929<34>
P77 = 36605664115474603832272688375093831327326195191011201019483886504026399481577<77>
Number: 79991_144 N=44014529332280370913945784430768068918614841536502394721741885965309300374132997959530907498071104444566051033 ( 110 digits) SNFS difficulty: 145 digits. Divisors found: r1=1202396689032442891861982410658929 (pp34) r2=36605664115474603832272688375093831327326195191011201019483886504026399481577 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 15.54 hours. Scaled time: 30.96 units (timescale=1.992). Factorization parameters were as follows: name: 79991_144 n: 44014529332280370913945784430768068918614841536502394721741885965309300374132997959530907498071104444566051033 m: 100000000000000000000000000000 c5: 4 c0: -45 skew: 1.62 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:100108, largePrimes:2834967 encountered Relations: rels:2856600, finalFF:275497 Max relations in full relation-set: 28 Initial matrix: 200193 x 275497 with sparse part having weight 29783015. Pruned matrix : 180481 x 181545 with weight 17934606. Total sieving time: 14.99 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.35 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 15.54 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(2·10163-11)/9 = (2)1621<163> = 17 · 37877640361436692050097<23> · C139
C139 = P64 · P76
P64 = 2220078767826668361325983014056277664531569885622229234531374787<64>
P76 = 1554487611393771714900494781481020302062202220737078357519127682939670142767<76>
Number: n N=3451084940904905586708196728200554661963901726244208158350060888692051925846967926091130062961315383616227129749369913889451806441074215629 ( 139 digits) SNFS difficulty: 163 digits. Divisors found: r1=2220078767826668361325983014056277664531569885622229234531374787 (pp64) r2=1554487611393771714900494781481020302062202220737078357519127682939670142767 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.74 hours. Scaled time: 70.85 units (timescale=1.829). Factorization parameters were as follows: name: KA_2_162_1 n: 3451084940904905586708196728200554661963901726244208158350060888692051925846967926091130062961315383616227129749369913889451806441074215629 skew: 0.71 deg: 5 c5: 125 c0: -22 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:216816, AFBsize:216697, largePrimes:7455704 encountered Relations: rels:6931886, finalFF:513994 Max relations in full relation-set: 48 Initial matrix: 433578 x 513994 with sparse part having weight 52499854. Pruned matrix : 395935 x 398166 with weight 33837805. Total sieving time: 36.93 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.57 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 38.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
8·10160-9 = 7(9)1591<161> = 31 · 57073 · C155
C155 = P39 · P117
P39 = 162324131850327948485434438093621716953<39>
P117 = 278557273407351934069599866763595027872975703442508848781459154897177077473859196381772941462840739464361826004563169<117>
8·10165-9 = 7(9)1641<166> = 281 · C164
C164 = P29 · P136
P29 = 18039899370116253132365185259<29>
P136 = 1578154639645101849715900601142746848194561974023738373087552898239995805944710078341227436286841880064814566233260954631456666425083629<136>
5·10162-1 = 4(9)162<163> = 7898189142101<13> · 456514351349672851<18> · C133
C133 = P46 · P87
P46 = 7739832354657573536230860093069953953660396661<46>
P87 = 179166366257503162309509372277349334970926729613420475526494728627218732934704149702509<87>
Number: n N=1386717638426251931934033806378717686203165786751271889807208433424201191175011460788311942354451703713581361177260630054458086922449 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: Mon Jan 14 10:32:34 2008 prp46 factor: 7739832354657573536230860093069953953660396661 Mon Jan 14 10:32:34 2008 prp87 factor: 179166366257503162309509372277349334970926729613420475526494728627218732934704149702509 Mon Jan 14 10:32:34 2008 elapsed time 00:57:29 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 39.69 hours. Scaled time: 33.26 units (timescale=0.838). Factorization parameters were as follows: name: KA_4_9_162 n: 1386717638426251931934033806378717686203165786751271889807208433424201191175011460788311942354451703713581361177260630054458086922449 type: snfs deg: 5 c5: 500 c0: -1 skew: 0.29 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700000) Primes: RFBsize:216816, AFBsize:216391, largePrimes:5827763 encountered Relations: rels:5828091, finalFF:514396 Max relations in full relation-set: 28 Initial matrix: 433273 x 514396 with sparse part having weight 53218789. Pruned matrix : 400490 x 402720 with weight 39410526. Total sieving time: 39.57 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 39.69 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
8·10155-9 = 7(9)1541<156> = 89 · 39076948619<11> · 17285468921447286611<20> · C125
C125 = P33 · P92
P33 = 630937457078491523522125157973689<33>
P92 = 21091713323420107009957029361942912268853049172167108976864637180884556752573488461477765719<92>
By matsui / GMP-ECM
5·10190-9 = 4(9)1891<191> = 61 · 409 · C187
C187 = P32 · P155
P32 = 47568134021252279670958230004481<32>
P155 = 42130900895096262260841447387806243682255781771378005956259860699611715275397274609349024640992587587106601079256289499605009903500893334162184491530113339<155>
(34·10197-43)/9 = 3(7)1963<198> = 11 · 433 · C194
C194 = P30 · C165
P30 = 175552370499658335275248396363<30>
C165 = [451803018305522330975120918157248100722684575456134658825674860937758490095206379652486712157977804105105296752082281189878524588429897592043870795445824300265839717<165>]
By matsui / GMP-ECM
(73·10200-1)/9 = 8(1)200<201> = 487 · C199
C199 = P36 · C164
P36 = 116587695911853113400792854475193411<36>
C164 = [14285606062277732309168156983256445884072165236631874368716790782839231122943523363577821850787245917630279558418605214545784622225512312628692589974007175489848523<164>]
By Sinkiti Sibata / GGNFS, Msieve
8·10134-9 = 7(9)1331<135> = 7 · 41 · 2991559 · 51611423 · C119
C119 = P51 · P68
P51 = 547886259883585498357025117689672145168225517346471<51>
P68 = 32951430664648770389924301340174201074562936491053050907418208102919<68>
Number: 79991_134 N=18053636104667704643286239945614946302235180121774908791993905279361217947079393873400776543238916285526231963749448849 ( 119 digits) SNFS difficulty: 135 digits. Divisors found: r1=547886259883585498357025117689672145168225517346471 (pp51) r2=32951430664648770389924301340174201074562936491053050907418208102919 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.77 hours. Scaled time: 11.57 units (timescale=2.004). Factorization parameters were as follows: name: 79991_134 n: 18053636104667704643286239945614946302235180121774908791993905279361217947079393873400776543238916285526231963749448849 m: 1000000000000000000000000000 c5: 4 c0: -45 skew: 1.62 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64108, largePrimes:1539429 encountered Relations: rels:1553166, finalFF:188124 Max relations in full relation-set: 28 Initial matrix: 142670 x 188124 with sparse part having weight 14083615. Pruned matrix : 127526 x 128303 with weight 7818342. Total sieving time: 5.59 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.77 hours. --------- CPU info (if available) ----------
8·10127-9 = 7(9)1261<128> = 379 · 162668538905134917251<21> · C106
C106 = P42 · P64
P42 = 657946460633670262464217847012752777057361<42>
P64 = 1972225892515966800861803327069244574222166958428213389132029239<64>
Number: 79991_127 N=1297619045550961749053867427793399261073676933317173039733022282273362765727795424832044173656449032178279 ( 106 digits) SNFS difficulty: 127 digits. Divisors found: r1=657946460633670262464217847012752777057361 (pp42) r2=1972225892515966800861803327069244574222166958428213389132029239 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.10 hours. Scaled time: 6.18 units (timescale=1.996). Factorization parameters were as follows: name: 79991_127 n: 1297619045550961749053867427793399261073676933317173039733022282273362765727795424832044173656449032178279 m: 20000000000000000000000000 c5: 25 c0: -9 skew: 0.82 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:63951, AFBsize:63968, largePrimes:1468206 encountered Relations: rels:1493823, finalFF:197352 Max relations in full relation-set: 28 Initial matrix: 127983 x 197352 with sparse part having weight 9951716. Pruned matrix : 104345 x 105048 with weight 4227563. Total sieving time: 2.98 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.10 hours. --------- CPU info (if available) ----------
8·10162-9 = 7(9)1611<163> = 103 · 885679 · 27972713 · 20174793473<11> · 128513348641<12> · 6739247979073<13> · 1849901488629672000658219697<28> · C86
C86 = P32 · P55
P32 = 29004454390043890346738171836159<32>
P55 = 3343949795648324158059774855467139266458728235931156713<55>
Sun Jan 13 08:25:03 2008 Msieve v. 1.30 Sun Jan 13 08:25:03 2008 random seeds: 4905ce6d 0961e9c8 Sun Jan 13 08:25:03 2008 factoring 96989439330478405638385934491360121476455014414443770871154615953823073607951988985367 (86 digits) Sun Jan 13 08:25:04 2008 commencing quadratic sieve (86-digit input) Sun Jan 13 08:25:04 2008 using multiplier of 1 Sun Jan 13 08:25:04 2008 using 64kb Pentium 2 sieve core Sun Jan 13 08:25:04 2008 sieve interval: 9 blocks of size 65536 Sun Jan 13 08:25:05 2008 processing polynomials in batches of 12 Sun Jan 13 08:25:05 2008 using a sieve bound of 1466767 (56000 primes) Sun Jan 13 08:25:05 2008 using large prime bound of 117341360 (26 bits) Sun Jan 13 08:25:05 2008 using double large prime bound of 334974615074720 (41-49 bits) Sun Jan 13 08:25:05 2008 using trial factoring cutoff of 49 bits Sun Jan 13 08:25:05 2008 polynomial 'A' values have 11 factors Sun Jan 13 14:10:11 2008 56141 relations (16063 full + 40078 combined from 585521 partial), need 56096 Sun Jan 13 14:10:16 2008 begin with 601584 relations Sun Jan 13 14:10:23 2008 reduce to 133024 relations in 9 passes Sun Jan 13 14:10:23 2008 attempting to read 133024 relations Sun Jan 13 14:10:32 2008 recovered 133024 relations Sun Jan 13 14:10:32 2008 recovered 109251 polynomials Sun Jan 13 14:10:58 2008 attempting to build 56141 cycles Sun Jan 13 14:10:58 2008 found 56141 cycles in 5 passes Sun Jan 13 14:11:02 2008 distribution of cycle lengths: Sun Jan 13 14:11:02 2008 length 1 : 16063 Sun Jan 13 14:11:02 2008 length 2 : 11348 Sun Jan 13 14:11:02 2008 length 3 : 9829 Sun Jan 13 14:11:02 2008 length 4 : 7247 Sun Jan 13 14:11:02 2008 length 5 : 4933 Sun Jan 13 14:11:02 2008 length 6 : 3080 Sun Jan 13 14:11:02 2008 length 7 : 1688 Sun Jan 13 14:11:02 2008 length 9+: 1953 Sun Jan 13 14:11:02 2008 largest cycle: 20 relations Sun Jan 13 14:11:04 2008 matrix is 56000 x 56141 with weight 3038483 (avg 54.12/col) Sun Jan 13 14:11:08 2008 filtering completed in 4 passes Sun Jan 13 14:11:09 2008 matrix is 51087 x 51151 with weight 2800152 (avg 54.74/col) Sun Jan 13 14:11:11 2008 saving the first 48 matrix rows for later Sun Jan 13 14:11:12 2008 matrix is 51039 x 51151 with weight 2114035 (avg 41.33/col) Sun Jan 13 14:11:12 2008 matrix includes 64 packed rows Sun Jan 13 14:11:12 2008 using block size 10922 for processor cache size 256 kB Sun Jan 13 14:11:14 2008 commencing Lanczos iteration Sun Jan 13 14:13:38 2008 lanczos halted after 809 iterations (dim = 51034) Sun Jan 13 14:13:39 2008 recovered 15 nontrivial dependencies Sun Jan 13 14:14:05 2008 prp32 factor: 29004454390043890346738171836159 Sun Jan 13 14:14:05 2008 prp55 factor: 3343949795648324158059774855467139266458728235931156713 Sun Jan 13 14:14:05 2008 elapsed time 05:49:02
8·10147-9 = 7(9)1461<148> = 71569 · 15914071 · 77519441 · 211293311 · 3128994342837361<16> · C105
C105 = P45 · P60
P45 = 757574316234139695166249827153995203794288161<45>
P60 = 180907822053975968030490364262581021587417735195779858011279<60>
Number: 79991_147 N=137051119593948261370044705690083652684958246482044222007487026886745761271810395403932044275256914167919 ( 105 digits) SNFS difficulty: 147 digits. Divisors found: r1=757574316234139695166249827153995203794288161 (pp45) r2=180907822053975968030490364262581021587417735195779858011279 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.13 hours. Scaled time: 42.15 units (timescale=1.995). Factorization parameters were as follows: name: 79991_147 n: 137051119593948261370044705690083652684958246482044222007487026886745761271810395403932044275256914167919 m: 200000000000000000000000000000 c5: 25 c0: -9 skew: 0.82 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3050001) Primes: RFBsize:114155, AFBsize:114087, largePrimes:2932834 encountered Relations: rels:2973016, finalFF:311516 Max relations in full relation-set: 28 Initial matrix: 228306 x 311516 with sparse part having weight 33697415. Pruned matrix : 204714 x 205919 with weight 20792624. Total sieving time: 20.36 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.57 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 21.13 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
8·10136-9 = 7(9)1351<137> = 17 · 4337 · 31319 · 22064536663081199635553<23> · C106
C106 = P45 · P61
P45 = 414874359200499062591640749476962066365515367<45>
P61 = 3784707754227857968375340111961975566863294728841184192955991<61>
Number: 79991_136 N=1570178204296442471478760889548334038176734874175207254303092147557263103549956249477642039440313865213697 ( 106 digits) SNFS difficulty: 137 digits. Divisors found: r1=414874359200499062591640749476962066365515367 (pp45) r2=3784707754227857968375340111961975566863294728841184192955991 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.02 hours. Scaled time: 6.42 units (timescale=2.126). Factorization parameters were as follows: n: 1570178204296442471478760889548334038176734874175207254303092147557263103549956249477642039440313865213697 m: 2000000000000000000000000000 c5: 5 c0: -18 skew: 1.29 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:106673, largePrimes:2293144 encountered Relations: rels:2442022, finalFF:309970 Max relations in full relation-set: 28 Initial matrix: 213865 x 309970 with sparse part having weight 23128338. Pruned matrix : 176160 x 177293 with weight 10368683. Total sieving time: 2.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10140-9 = 7(9)1391<141> = 7 · 2445390769<10> · 37242387217387908233<20> · C112
C112 = P33 · P79
P33 = 388536296915994985391902206726511<33>
P79 = 3229792119842628898676018383831983166364802105671842667810158223564146032892279<79>
Number: 79991_140 N=1254891470052116520828269206319513146161103905631639479267954114925778079057809127052812483177258998970076508569 ( 112 digits) SNFS difficulty: 141 digits. Divisors found: r1=388536296915994985391902206726511 (pp33) r2=3229792119842628898676018383831983166364802105671842667810158223564146032892279 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.41 hours. Scaled time: 11.62 units (timescale=2.148). Factorization parameters were as follows: n: 1254891470052116520828269206319513146161103905631639479267954114925778079057809127052812483177258998970076508569 m: 20000000000000000000000000000 c5: 1 c0: -36 skew: 2.05 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1100001) Primes: RFBsize:114155, AFBsize:114197, largePrimes:3313249 encountered Relations: rels:3414814, finalFF:399605 Max relations in full relation-set: 28 Initial matrix: 228416 x 399605 with sparse part having weight 33303166. Pruned matrix : 167030 x 168236 with weight 12188509. Total sieving time: 5.25 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10161-9 = 7(9)1601<162> = 29 · 199 · 571 · 1692365724601<13> · C144
C144 = P33 · P111
P33 = 428383815004193749871857607077279<33>
P111 = 334869450332200636093078292799339933789697545275221769023019937305594987180395275406031737563279818152065360169<111>
8·10158-9 = 7(9)1571<159> = 7 · 4323841 · 4714903 · 462997341128773543<18> · C128
C128 = P33 · C95
P33 = 410562561244534563981430142949031<33>
C95 = [29491144580163096639800559468991908217808992070869327114070748537704128510842764288695820636807<95>]
8·10150-9 = 7(9)1491<151> = 193 · 247601 · 3624571477934606884159<22> · C122
C122 = P53 · P69
P53 = 96315157891755373030439425392135709447474977307786081<53>
P69 = 479544565961051555887991852543525630193846540227492360552478340319353<69>
Number: 79991_150 N=46187410586671979793763904423352571432961215465785614036273142323402790039945056505520163118222449815563959534158948325593 ( 122 digits) SNFS difficulty: 151 digits. Divisors found: r1=96315157891755373030439425392135709447474977307786081 (pp53) r2=479544565961051555887991852543525630193846540227492360552478340319353 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.20 hours. Scaled time: 24.03 units (timescale=2.146). Factorization parameters were as follows: n: 46187410586671979793763904423352571432961215465785614036273142323402790039945056505520163118222449815563959534158948325593 m: 2000000000000000000000000000000 c5: 1 c0: -36 skew: 2.05 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176388, largePrimes:5294283 encountered Relations: rels:5193470, finalFF:481776 Max relations in full relation-set: 28 Initial matrix: 352754 x 481776 with sparse part having weight 38435562. Pruned matrix : 281271 x 283098 with weight 21037307. Total sieving time: 10.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.34 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 11.20 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
By Sinkiti Sibata / GGNFS, Msieve
8·10115-9 = 7(9)1141<116> = 31 · C115
C115 = P34 · P39 · P43
P34 = 1952641829846445891880391633628571<34>
P39 = 183792537662905341244235989253778248189<39>
P43 = 7190810275475399982758739592384651846401319<43>
Number: 79991_115 N=2580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161 ( 115 digits) SNFS difficulty: 115 digits. Divisors found: r1=1952641829846445891880391633628571 (pp34) r2=183792537662905341244235989253778248189 (pp39) r3=7190810275475399982758739592384651846401319 (pp43) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.28 hours. Scaled time: 2.57 units (timescale=2.003). Factorization parameters were as follows: name: 79991_115 n: 2580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161 m: 100000000000000000000000 c5: 8 c0: -9 skew: 1.02 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:64008, largePrimes:2120520 encountered Relations: rels:2265866, finalFF:291540 Max relations in full relation-set: 28 Initial matrix: 113171 x 291540 with sparse part having weight 22877031. Pruned matrix : 73769 x 74398 with weight 3980313. Total sieving time: 1.19 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.28 hours. --------- CPU info (if available) ----------
8·10113-9 = 7(9)1121<114> = 60281424871<11> · C104
C104 = P48 · P56
P48 = 390808792124933992905008532836460473489137122991<48>
P56 = 33958003771356934218524016876132944905551552683170456031<56>
Number: 79991_113 N=13271086436857956665003795278321466204613927762908668489758134204339053238368831986794926070452804708721 ( 104 digits) SNFS difficulty: 113 digits. Divisors found: r1=390808792124933992905008532836460473489137122991 (pp48) r2=33958003771356934218524016876132944905551552683170456031 (pp56) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.88 hours. Scaled time: 1.27 units (timescale=0.675). Factorization parameters were as follows: name:79991_113 n: 13271086436857956665003795278321466204613927762908668489758134204339053238368831986794926070452804708721 m: 20000000000000000000000 c5: 250 c0: -9 skew: 0.51 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63828, largePrimes:2133195 encountered Relations: rels:2279375, finalFF:293525 Max relations in full relation-set: 28 Initial matrix: 112993 x 293525 with sparse part having weight 23279201. Pruned matrix : 72949 x 73577 with weight 4016180. Total sieving time: 1.70 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.88 hours. --------- CPU info (if available) ----------
8·10121-9 = 7(9)1201<122> = 19 · 16931 · C117
C117 = P53 · P64
P53 = 66190937999157259563309327452865130078561271454954931<53>
P64 = 3757121508638448333172650338258137145904700516674921367147594549<64>
Number: 79991_121 N=248687396833587719816344357438395468915629692031744946205807472434556357227011181607080130187852242383171323856271119 ( 117 digits) SNFS difficulty: 122 digits. Divisors found: r1=66190937999157259563309327452865130078561271454954931 (pp53) r2=3757121508638448333172650338258137145904700516674921367147594549 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.07 hours. Scaled time: 4.17 units (timescale=2.010). Factorization parameters were as follows: name: 79991_121 n: 248687396833587719816344357438395468915629692031744946205807472434556357227011181607080130187852242383171323856271119 m: 2000000000000000000000000 c5: 5 c0: -18 skew: 1.29 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63758, largePrimes:1984467 encountered Relations: rels:1952225, finalFF:141050 Max relations in full relation-set: 28 Initial matrix: 112922 x 141050 with sparse part having weight 10926246. Pruned matrix : 102413 x 103041 with weight 6162277. Total sieving time: 1.93 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
8·10108-9 = 7(9)1071<109> = 11897 · 6595030913<10> · 74285794073<11> · C85
C85 = P32 · P54
P32 = 10784808302586663079660355798191<32>
P54 = 127267493166302734542256662357223329760676931011149417<54>
By Jo Yeong Uk / GMP-ECM, Msieve, GGNFS
8·10191-9 = 7(9)1901<192> = C192
C192 = P34 · C159
P34 = 2838215384488977187840273748749501<34>
C159 = [281867262214153842659280716998882524780880662933308691584296839537167821919759679358142157019600539866645046737600020701546566244595946561032467565638861495491<159>]
8·10126-9 = 7(9)1251<127> = 23 · C126
C126 = P39 · P88
P39 = 217581248286592871920703441696601910487<39>
P88 = 1598603233024812172766526043763336942138049668499189186436388071437141249364595430510791<88>
Number: 79991_126 N=347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217 ( 126 digits) SNFS difficulty: 127 digits. Divisors found: r1=217581248286592871920703441696601910487 (pp39) r2=1598603233024812172766526043763336942138049668499189186436388071437141249364595430510791 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.48 hours. Scaled time: 3.18 units (timescale=2.151). Factorization parameters were as follows: n: 347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217 m: 20000000000000000000000000 c5: 5 c0: -18 skew: 1.29 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 720001) Primes: RFBsize:63951, AFBsize:63758, largePrimes:1391980 encountered Relations: rels:1386131, finalFF:169407 Max relations in full relation-set: 28 Initial matrix: 127775 x 169407 with sparse part having weight 8164693. Pruned matrix : 109759 x 110461 with weight 4063548. Total sieving time: 1.42 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 1.48 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406451) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121)
8·10137-9 = 7(9)1361<138> = 281 · 45259 · 6783449 · 146011951 · C116
C116 = P31 · P34 · P52
P31 = 9029523373784041010808525557981<31>
P34 = 1221423363891302373996983840134301<34>
P52 = 5758491037866755216905701730446521364185825908289891<52>
Sat Jan 12 21:44:58 2008 Sat Jan 12 21:44:58 2008 Sat Jan 12 21:44:58 2008 Msieve v. 1.28 Sat Jan 12 21:44:58 2008 random seeds: 5b6f6980 09f90c48 Sat Jan 12 21:44:58 2008 factoring 7033555494409129235621750952426445415239612600830862521555814673561206967670680651191 (85 digits) Sat Jan 12 21:44:58 2008 commencing quadratic sieve (85-digit input) Sat Jan 12 21:44:58 2008 using multiplier of 7 Sat Jan 12 21:44:58 2008 using 32kb Intel Core sieve core Sat Jan 12 21:44:58 2008 sieve interval: 12 blocks of size 32768 Sat Jan 12 21:44:58 2008 processing polynomials in batches of 17 Sat Jan 12 21:44:58 2008 using a sieve bound of 1434241 (54480 primes) Sat Jan 12 21:44:58 2008 using large prime bound of 116173521 (26 bits) Sat Jan 12 21:44:58 2008 using double large prime bound of 328997602795950 (41-49 bits) Sat Jan 12 21:44:58 2008 using trial factoring cutoff of 49 bits Sat Jan 12 21:44:58 2008 polynomial 'A' values have 11 factors Sat Jan 12 22:09:30 2008 54635 relations (15866 full + 38769 combined from 573370 partial), need 54576 Sat Jan 12 22:09:30 2008 begin with 589236 relations Sat Jan 12 22:09:31 2008 reduce to 128767 relations in 9 passes Sat Jan 12 22:09:31 2008 attempting to read 128767 relations Sat Jan 12 22:09:32 2008 recovered 128767 relations Sat Jan 12 22:09:32 2008 recovered 108972 polynomials Sat Jan 12 22:09:32 2008 attempting to build 54635 cycles Sat Jan 12 22:09:32 2008 found 54635 cycles in 5 passes Sat Jan 12 22:09:32 2008 distribution of cycle lengths: Sat Jan 12 22:09:32 2008 length 1 : 15866 Sat Jan 12 22:09:32 2008 length 2 : 11089 Sat Jan 12 22:09:32 2008 length 3 : 9652 Sat Jan 12 22:09:32 2008 length 4 : 6995 Sat Jan 12 22:09:32 2008 length 5 : 4741 Sat Jan 12 22:09:32 2008 length 6 : 2779 Sat Jan 12 22:09:32 2008 length 7 : 1683 Sat Jan 12 22:09:32 2008 length 9+: 1830 Sat Jan 12 22:09:32 2008 largest cycle: 17 relations Sat Jan 12 22:09:32 2008 matrix is 54480 x 54635 with weight 2902839 (avg 53.13/col) Sat Jan 12 22:09:32 2008 filtering completed in 3 passes Sat Jan 12 22:09:32 2008 matrix is 49839 x 49903 with weight 2674857 (avg 53.60/col) Sat Jan 12 22:09:33 2008 saving the first 48 matrix rows for later Sat Jan 12 22:09:33 2008 matrix is 49791 x 49903 with weight 2017488 (avg 40.43/col) Sat Jan 12 22:09:33 2008 matrix includes 64 packed rows Sat Jan 12 22:09:33 2008 commencing Lanczos iteration Sat Jan 12 22:10:15 2008 lanczos halted after 789 iterations Sat Jan 12 22:10:15 2008 recovered 15 nontrivial dependencies Sat Jan 12 22:10:16 2008 prp34 factor: 1221423363891302373996983840134301 Sat Jan 12 22:10:16 2008 prp52 factor: 5758491037866755216905701730446521364185825908289891 Sat Jan 12 22:10:16 2008 elapsed time 00:25:18
8·10146-9 = 7(9)1451<147> = 72 · 74209 · 233102762089<12> · 458430639997432973730641<24> · C106
C106 = P34 · P72
P34 = 2237064275354436560413927703682193<34>
P72 = 920317772467855578861737276438457302528107277025704935144084694913195343<72>
By matsui / GMP-ECM
5·10200-9 = 4(9)1991<201> = 79 · C199
C199 = P34 · C166
P34 = 4565579173849692757873296750073841<34>
C166 = [1386267477366716881025736493978991704108086368524410882780963548849099077745191410286959757712217661501763612288987394960172120415770934106869087379738850488433099369<166>]
By Sinkiti Sibata / GGNFS
(46·10186-1)/9 = 5(1)186<187> = 73 · C185
C185 = P40 · P43 · P43 · P61
P40 = 2825392120613905556303145902353338583991<40>
P43 = 1414261240340299364785702351487807687732347<43>
P43 = 1940352243663463704570905682634709845035983<43>
P61 = 9030327814966384090537560378864803219811293177354264381962277<61>
Number: 51111_186 N=70015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207 ( 185 digits) SNFS difficulty: 187 digits. Divisors found: r1=2825392120613905556303145902353338583991 (pp40) r2=1414261240340299364785702351487807687732347 (pp43) r3=1940352243663463704570905682634709845035983 (pp43) r4=9030327814966384090537560378864803219811293177354264381962277 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 826.01 hours. Scaled time: 1644.60 units (timescale=1.991). Factorization parameters were as follows: name: 51111_186 n: 70015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207001522070015220700152207 m: 10000000000000000000000000000000000000 c5: 460 c0: -1 skew: 0.29 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 13200001) Primes: RFBsize:501962, AFBsize:501266, largePrimes:6770607 encountered Relations: rels:7281007, finalFF:1163691 Max relations in full relation-set: 28 Initial matrix: 1003295 x 1163691 with sparse part having weight 97320435. Pruned matrix : 873987 x 879067 with weight 77783757. Total sieving time: 811.78 hours. Total relation processing time: 0.72 hours. Matrix solve time: 13.15 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 826.01 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(67·10166+23)/9 = 7(4)1657<167> = 83 · 199 · C163
C163 = P81 · P83
P81 = 367004643653966872365696265950784599299328674117914006464687180669547532610783737<81>
P83 = 12280882187472171359124427810998046557688853247533252193235475312651380187494652843<83>
Number: n N=4507140790969573436123051670669276772079944568895346881664009471722736843521489643666794481107007594868586574102103556604979381512650266055848183353178206965214291 ( 163 digits) SNFS difficulty: 167 digits. Divisors found: Sat Jan 12 06:34:13 2008 prp81 factor: 367004643653966872365696265950784599299328674117914006464687180669547532610783737 Sat Jan 12 06:34:13 2008 prp83 factor: 12280882187472171359124427810998046557688853247533252193235475312651380187494652843 Sat Jan 12 06:34:13 2008 elapsed time 01:13:19 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 60.51 hours. Scaled time: 110.67 units (timescale=1.829). Factorization parameters were as follows: name: KA_7_4_165_7 n: 4507140790969573436123051670669276772079944568895346881664009471722736843521489643666794481107007594868586574102103556604979381512650266055848183353178206965214291 skew: 0.51 deg: 5 c5: 670 c0: 23 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4100000) Primes: RFBsize:250150, AFBsize:249316, largePrimes:7893359 encountered Relations: rels:7379758, finalFF:577015 Max relations in full relation-set: 28 Initial matrix: 499533 x 577015 with sparse part having weight 63713644. Pruned matrix : 468271 x 470832 with weight 45026970. Total sieving time: 60.30 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 60.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
4·10164+7 = 4(0)1637<165> = 11 · 37 · 43 · 6449 · 238291 · 18515813 · C144
C144 = P69 · P76
P69 = 196948146026549213753598998945340356169909690257113074987708892318543<69>
P76 = 4078518408615435716369982093154238241123860446542160172985649100147392724947<76>
Number: n N=803256639111961948349569451134375723264862953628626206118805410285163427541196501369025854991877728369841645329293165617105583432513049506792221 ( 144 digits) SNFS difficulty: 165 digits. Divisors found: Sat Jan 12 07:34:52 2008 prp69 factor: 196948146026549213753598998945340356169909690257113074987708892318543 Sat Jan 12 07:34:52 2008 prp76 factor: 4078518408615435716369982093154238241123860446542160172985649100147392724947 Sat Jan 12 07:34:52 2008 elapsed time 01:31:42 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.02 hours. Scaled time: 68.52 units (timescale=1.756). Factorization parameters were as follows: name: KA_4_0_163_7 n: 803256639111961948349569451134375723264862953628626206118805410285163427541196501369025854991877728369841645329293165617105583432513049506792221 type: snfs skew: 1.77 deg: 5 c5: 2 c0: 35 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:230209, AFBsize:229267, largePrimes:7099618 encountered Relations: rels:6578698, finalFF:504591 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 38.81 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 39.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / PFGW
7·1013145+9 = 7(0)131449<13146> is PRP.
7·1016646+9 = 7(0)166459<16647> is PRP.
7·1020891+9 = 7(0)208909<20892> is PRP.
The factor table of 799...991 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS, Msieve
(5·10163-17)/3 = 1(6)1621<164> = 11 · 47 · 579620986471812630953<21> · C140
C140 = P59 · P82
P59 = 33002739048257539876683509719350404697818409337940816248091<59>
P82 = 1685249160148384416019014327429980236270130559391192098286783927630082498099632571<82>
Number: n N=55617838263672310701551004098935263046156702544564899044762593157589752112781293997694541379125158139575071938101345124582616379953880171961 ( 140 digits) SNFS difficulty: 164 digits. Divisors found: Fri Jan 11 08:30:33 2008 prp59 factor: 33002739048257539876683509719350404697818409337940816248091 Fri Jan 11 08:30:33 2008 prp82 factor: 1685249160148384416019014327429980236270130559391192098286783927630082498099632571 Fri Jan 11 08:30:33 2008 elapsed time 00:50:42 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-k8 Total time: 38.98 hours. Scaled time: 32.67 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_6_162_1 n: 55617838263672310701551004098935263046156702544564899044762593157589752112781293997694541379125158139575071938101345124582616379953880171961 type: snfs deg: 5 c5: 8 c0: -85 skew: 1.60 m: 500000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3600001) Primes: RFBsize:216816, AFBsize:216871, largePrimes:5732678 encountered Relations: rels:5698376, finalFF:511733 Max relations in full relation-set: 28 Initial matrix: 433752 x 511733 with sparse part having weight 49865175. Pruned matrix : 401349 x 403581 with weight 36480624. Total sieving time: 36.68 hours. Total relation processing time: 0.11 hours. Matrix solve time: 2.19 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 38.98 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(14·10161-41)/9 = 1(5)1601<162> = 11 · 79 · 2411 · 2528269 · 298614421769978987<18> · C131
C131 = P49 · P83
P49 = 1237731289012386762849485097499340001383842403737<49>
P83 = 79452599632851028607355803437954089119988633926215410442037070045079459127725856399<83>
Number: n N=98340968558953790892585585889392535669496255284578280374020149122636303507627134972206826846954930393394612505752654421559042963063 ( 131 digits) SNFS difficulty: 162 digits. Divisors found: Fri Jan 11 22:44:54 2008 prp49 factor: 1237731289012386762849485097499340001383842403737 Fri Jan 11 22:44:54 2008 prp83 factor: 79452599632851028607355803437954089119988633926215410442037070045079459127725856399 Fri Jan 11 22:44:54 2008 elapsed time 00:58:45 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 40.38 hours. Scaled time: 33.84 units (timescale=0.838). Factorization parameters were as follows: name: KA_1_5_160_1 n: 98340968558953790892585585889392535669496255284578280374020149122636303507627134972206826846954930393394612505752654421559042963063 type: snfs deg: 5 c5: 140 c0: -41 skew: 0.78 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3900001) Primes: RFBsize:216816, AFBsize:216922, largePrimes:5786060 encountered Relations: rels:5738816, finalFF:470992 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 40.25 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 40.38 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By matsui / GMP-ECM
(55·10183-1)/9 = 6(1)183<184> = 33 · 7 · 29 · C181
C181 = P31 · C150
P31 = 1814486819606228803034309724019<31>
C150 = [614478313503825526186774142080138780423238442508754732017910702305971084132729055650327224394349460485381313575366771621956040706591459972940854945749<150>]
By Jo Yeong Uk / GGNFS
(86·10171+31)/9 = 9(5)1709<172> = 11 · 17 · 1381 · 10267 · 37781 · 215134273 · 6394987531<10> · 148336234710094457893<21> · C120
C120 = P43 · P78
P43 = 1096966381258354525082396230206423839135069<43>
P78 = 426102195310162589018569755129159308229685168412082711285523685052681229610341<78>
Number: 95559_171 N=467419783235629658103214304014991608228915825261793443002931643083874160506685464483702892779307242690217664321338148529 ( 120 digits) Divisors found: r1=1096966381258354525082396230206423839135069 (pp43) r2=426102195310162589018569755129159308229685168412082711285523685052681229610341 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 48.00 hours. Scaled time: 103.06 units (timescale=2.147). Factorization parameters were as follows: name: 95559_171 n: 467419783235629658103214304014991608228915825261793443002931643083874160506685464483702892779307242690217664321338148529 skew: 34824.01 # norm 1.82e+16 c5: 30660 c4: -7605601439 c3: -528135056994814 c2: 12643616123032503853 c1: -80969674776601688470101 c0: 4409842209862057154181171 # alpha -4.95 Y1: 1049506019249 Y0: -108799574192722567741550 # Murphy_E 2.79e-10 # M 391493396307864520630205026286345938563037358745772478822904461270085767891754310654812573400414010370216518282741011494 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4800001) Primes: RFBsize:315948, AFBsize:316768, largePrimes:7779738 encountered Relations: rels:7883829, finalFF:717826 Max relations in full relation-set: 28 Initial matrix: 632799 x 717826 with sparse part having weight 68095105. Pruned matrix : 566163 x 569390 with weight 50169037. Total sieving time: 45.46 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.17 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 48.00 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Yousuke Koide
(101019-1)/9 is divisible by 19546240918513258853789109982103832107<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Kurt Beschorner / Jan 3, 2008
10506+1 is divisible by 69691163546816853278309618463969524441<38>
Reference: Factorizations of numbers of the form 10n+1 (Alfred Reich)
By Sinkiti Sibata / GGNFS
7·10161+9 = 7(0)1609<162> = 15371116800042997500203<23> · 57118997757210264206905876447<29> · C111
C111 = P54 · P58
P54 = 139490464604623382674750512013106688318266001541875221<54>
P58 = 5715674892138940064628738708170977544099888345108701283569<58>
Number: 70009_161 N=797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749 ( 111 digits) SNFS difficulty: 161 digits. Divisors found: r1=139490464604623382674750512013106688318266001541875221 (pp54) r2=5715674892138940064628738708170977544099888345108701283569 (pp58) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 89.61 hours. Scaled time: 60.58 units (timescale=0.676). Factorization parameters were as follows: name: 70009_161 n: 797282146233441389637438465879864974174079631931857291117873335595617292138291581776356920378174414625935543749 m: 100000000000000000000000000000000 c5: 70 c0: 9 skew: 0.66 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316621, largePrimes:5728840 encountered Relations: rels:5815604, finalFF:721506 Max relations in full relation-set: 28 Initial matrix: 632637 x 721506 with sparse part having weight 43287861. Pruned matrix : 561950 x 565177 with weight 30874466. Total sieving time: 75.81 hours. Total relation processing time: 0.37 hours. Matrix solve time: 13.19 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 89.61 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
4·10163+9 = 4(0)1629<164> = 7 · 1303 · 257837 · 959561 · 5915543 · C142
C142 = P66 · P76
P66 = 878200471969328827561876462072079282958405245015115821377184281733<66>
P76 = 3412018883530127490227807989559980166714774210829016758904628027464337410663<76>
Number: n N=2996436593884420368599350071793146725644507391872863126806932222472234937356674817826792539332714575692570318811933890006862102836684710318979 ( 142 digits) SNFS difficulty: 165 digits. Divisors found: Wed Jan 09 05:18:19 2008 prp66 factor: 878200471969328827561876462072079282958405245015115821377184281733 Wed Jan 09 05:18:19 2008 prp76 factor: 3412018883530127490227807989559980166714774210829016758904628027464337410663 Wed Jan 09 05:18:19 2008 elapsed time 01:27:31 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 52.44 hours. Scaled time: 68.75 units (timescale=1.311). Factorization parameters were as follows: name: KA_4_0_162_9 n: 2996436593884420368599350071793146725644507391872863126806932222472234937356674817826792539332714575692570318811933890006862102836684710318979 skew: 2.95 deg: 5 c5: 1 c0: 225 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500213) Primes: RFBsize:230209, AFBsize:229862, largePrimes:7327517 encountered Relations: rels:6805231, finalFF:503679 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 52.15 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 52.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10164+3 = 5(0)1633<165> = 557 · 217837300066202477<18> · C145
C145 = P64 · P82
P64 = 1196687247426772242533735797290481529635161715296376005028120547<64>
P82 = 3443514377361480174374528664126918435300112338137700545497427175846407441531435641<82>
Number: n N=4120809741719225186741054484135263928241671284276174640242932170788013428862000974905621445274870595945310435532020747550508457434928692920215627 ( 145 digits) SNFS difficulty: 165 digits. Divisors found: Wed Jan 9 16:25:56 2008 prp64 factor: 1196687247426772242533735797290481529635161715296376005028120547 Wed Jan 9 16:25:56 2008 prp82 factor: 3443514377361480174374528664126918435300112338137700545497427175846407441531435641 Wed Jan 9 16:25:56 2008 elapsed time 00:57:08 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 38.58 hours. Scaled time: 32.37 units (timescale=0.839). Factorization parameters were as follows: name: KA_5_0_163_3 n: 4120809741719225186741054484135263928241671284276174640242932170788013428862000974905621445274870595945310435532020747550508457434928692920215627 type: snfs deg: 5 c5: 1 c0: 6 skew: 1.43 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3800001) Primes: RFBsize:216816, AFBsize:216821, largePrimes:5658666 encountered Relations: rels:5541692, finalFF:429370 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 38.47 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 38.58 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
(73·10164-1)/9 = 8(1)164<165> = 61 · 373 · 3620158294151899<16> · C145
C145 = P67 · P79
P67 = 1043995987473037595727834603195896693955428946648402327832492964027<67>
P79 = 9432249792339282259291436913130955217924127892296499942188495834211334121986719<79>
Number: n N=9847230936045602785233094889585613069848563625548151842425600774026787507620946164685576203283969203986063171766643656802199995825880290238757413 ( 145 digits) SNFS difficulty: 166 digits. Divisors found: Wed Jan 09 19:08:01 2008 prp67 factor: 1043995987473037595727834603195896693955428946648402327832492964027 Wed Jan 09 19:08:01 2008 prp79 factor: 9432249792339282259291436913130955217924127892296499942188495834211334121986719 Wed Jan 09 19:08:01 2008 elapsed time 01:57:05 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 74.89 hours. Scaled time: 131.21 units (timescale=1.752). Factorization parameters were as follows: name: KA_8_1_164 n: 9847230936045602785233094889585613069848563625548151842425600774026787507620946164685576203283969203986063171766643656802199995825880290238757413 type: snfs skew: 0.67 deg: 5 c5: 73 c0: -10 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500269) Primes: RFBsize:230209, AFBsize:230027, largePrimes:7684684 encountered Relations: rels:7147678, finalFF:483126 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 74.61 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 74.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
(52·10161-7)/9 = 5(7)161<162> = 67 · 211 · 399657043 · 41884981582841233<17> · C133
C133 = P57 · P76
P57 = 303583120466432755281692462570253330795169293513976483517<57>
P76 = 8042297897793284514496513202115956001841463193178478887769004032896132968527<76>
Number: n N=2441505891532717595222421523167960460997180306913825571010358957513150181867983231904207917169754437950011734144951653882157895269459 ( 133 digits) SNFS difficulty: 162 digits. Divisors found: Tue Jan 8 23:59:06 2008 prp57 factor: 303583120466432755281692462570253330795169293513976483517 Tue Jan 8 23:59:06 2008 prp76 factor: 8042297897793284514496513202115956001841463193178478887769004032896132968527 Tue Jan 8 23:59:06 2008 elapsed time 00:57:39 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 43.17 hours. Scaled time: 36.18 units (timescale=0.838). Factorization parameters were as follows: name: KA_5_7_161 n: 2441505891532717595222421523167960460997180306913825571010358957513150181867983231904207917169754437950011734144951653882157895269459 type: snfs deg: 5 c5: 520 c0: -7 skew: 0.42 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 4000001) Primes: RFBsize:216816, AFBsize:217161, largePrimes:5742071 encountered Relations: rels:5648051, finalFF:422567 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 43.05 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 43.17 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By matsui / GMP-ECM
(4·10192-7)/3 = 1(3)1911<193> = 53 · 113 · C189
C189 = P39 · C151
P39 = 208077415143242929300081213865119997527<39>
C151 = [1069940136279591667980810496981378274903150054006469796842841376740519957678800554460072994496458619358697351060409992237703368110891340267099632894977<151>]
By Robert Backstrom / GGNFS, Msieve
7·10166+9 = 7(0)1659<167> = 21991 · 972833 · 1082531 · C151
C151 = P68 · P84
P68 = 21801158658206841112555253752829902500472040092585365034962893355053<68>
P84 = 138642011235137555584320880412798358499970719485097366270743949931671229392787022521<84>
Number: n N=3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613 ( 151 digits) SNFS difficulty: 166 digits. Divisors found: Tue Jan 08 02:23:48 2008 prp68 factor: 21801158658206841112555253752829902500472040092585365034962893355053 Tue Jan 08 02:23:48 2008 prp84 factor: 138642011235137555584320880412798358499970719485097366270743949931671229392787022521 Tue Jan 08 02:23:48 2008 elapsed time 01:22:44 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.47 hours. Scaled time: 88.50 units (timescale=1.826). Factorization parameters were as follows: name: KA_7_0_165_9 n: 3022556483630129261598847253569879921858042829617050352190156557137315012023902736896851269624585181616682870685916160325557846898137814787523960148613 skew: 0.66 deg: 5 c5: 70 c0: 9 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200001) Primes: RFBsize:250150, AFBsize:250721, largePrimes:7669339 encountered Relations: rels:7156943, finalFF:567239 Max relations in full relation-set: 28 Initial matrix: 500939 x 567239 with sparse part having weight 51971046. Pruned matrix : Total sieving time: 48.24 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 48.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(4·10167-7)/3 = 1(3)1661<168> = 11 · 1453 · 65789 · 65585573 · C151
C151 = P41 · P110
P41 = 44513060255051568150273475384941022348961<41>
P110 = 43434155511436613056459493128340863687385119966755835981223737071050592042248993684052667503664574707092147821<110>
Number: n N=1933387181407858117653716396964261130297665698862132685796900976269788635641054996450601322919821997858497612243316173533210563965043659752396057763981 ( 151 digits) SNFS difficulty: 167 digits. Divisors found: r1=44513060255051568150273475384941022348961 (pp41) r2=43434155511436613056459493128340863687385119966755835981223737071050592042248993684052667503664574707092147821 (pp110) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.09 hours. Scaled time: 80.15 units (timescale=1.818). Factorization parameters were as follows: name: KA_1_3_166_1 n: 1933387181407858117653716396964261130297665698862132685796900976269788635641054996450601322919821997858497612243316173533210563965043659752396057763981 skew: 0.89 deg: 5 c5: 25 c0: -14 m: 2000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:250150, AFBsize:250081, largePrimes:7547303 encountered Relations: rels:7067753, finalFF:589532 Max relations in full relation-set: 48 Initial matrix: 500295 x 589532 with sparse part having weight 48687984. Pruned matrix : 435661 x 438226 with weight 31937138. Total sieving time: 42.02 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.71 hours. Total square root time: 0.17 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 44.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS
7·10163+9 = 7(0)1629<164> = 10463 · 17394388742849265431<20> · 21685605887741051661689<23> · C119
C119 = P35 · P84
P35 = 18751242705828780547597219322844983<35>
P84 = 945869076252608429463531219474556440073685963101828788499278956282259958157147275519<84>
Number: 70009_163 N=17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177 ( 119 digits) Divisors found: r1=18751242705828780547597219322844983 (pp35) r2=945869076252608429463531219474556440073685963101828788499278956282259958157147275519 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.06 hours. Scaled time: 81.90 units (timescale=2.152). Factorization parameters were as follows: name: 70009_163 n: 17736220616750730441171459656279219097305026284234519209128657392107895275988306959156196633013809260456105154427871177 skew: 221395.86 # norm 1.00e+16 c5: 900 c4: -368936484 c3: -64515235009570 c2: -6637800111968368825 c1: 1003631229460161110538300 c0: 64280742149364474007670220864 # alpha -5.48 Y1: 2264490571433 Y0: -114531360207998065534985 # Murphy_E 3.62e-10 # M 13078825261663832417425027932008595424256843732315959701340945098020013622714623701968577018374575816455494749105625740 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4125001) Primes: RFBsize:315948, AFBsize:315634, largePrimes:7634260 encountered Relations: rels:7677465, finalFF:728561 Max relations in full relation-set: 28 Initial matrix: 631658 x 728561 with sparse part having weight 60105103. Pruned matrix : 551454 x 554676 with weight 40275843. Polynomial selection time: 2.27 hours. Total sieving time: 33.75 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.72 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 38.06 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Robert Backstrom / GGNFS, Msieve
7·10159+9 = 7(0)1589<160> = 47 · 71 · 92371871 · 102843119 · C141
C141 = P64 · P77
P64 = 4231538071496958890327182029936342614194854003919814193922731887<64>
P77 = 52182946885757635675346604057724856979445602984378050368353799424430749322239<77>
Number: n N=220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993 ( 141 digits) SNFS difficulty: 160 digits. Divisors found: Mon Jan 7 10:52:24 2008 prp64 factor: 4231538071496958890327182029936342614194854003919814193922731887 Mon Jan 7 10:52:24 2008 prp77 factor: 52182946885757635675346604057724856979445602984378050368353799424430749322239 Mon Jan 7 10:52:24 2008 elapsed time 00:47:28 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.69 hours. Scaled time: 31.55 units (timescale=0.837). Factorization parameters were as follows: name: KA_7_0_158_9 n: 220814126429987102417525345115212994015254781641465598720037588384391899194205728399759788601386125925513113788312586671462061961060563534993 type: snfs deg: 5 c5: 7 c0: 90 skew: 1.66 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600000) Primes: RFBsize:216816, AFBsize:217356, largePrimes:5850727 encountered Relations: rels:5857858, finalFF:519585 Max relations in full relation-set: 28 Initial matrix: 434238 x 519585 with sparse part having weight 53804158. Pruned matrix : 399638 x 401873 with weight 39322056. Total sieving time: 37.57 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 37.69 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Jo Yeong Uk / GGNFS
7·10152+9 = 7(0)1519<153> = 1926832847437<13> · 6720374834881<13> · 63639889190749<14> · C114
C114 = P44 · P71
P44 = 77865850690669784859431617592698851037196011<44>
P71 = 10908977710449886619312815188508141739609220654946251183378377187561523<71>
Number: 70009_152 N=849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753 ( 114 digits) SNFS difficulty: 152 digits. Divisors found: r1=77865850690669784859431617592698851037196011 (pp44) r2=10908977710449886619312815188508141739609220654946251183378377187561523 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.38 hours. Scaled time: 37.41 units (timescale=2.153). Factorization parameters were as follows: n: 849436829589735592329176864706011392830693305217572069249710802758273465640411056591506419610722308940760472684753 m: 1000000000000000000000000000000 c5: 700 c0: 9 skew: 0.42 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176233, largePrimes:5591809 encountered Relations: rels:5524453, finalFF:488152 Max relations in full relation-set: 28 Initial matrix: 352603 x 488152 with sparse part having weight 45172811. Pruned matrix : 301081 x 302908 with weight 25623922. Total sieving time: 16.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.45 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 17.38 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Sibata / GGNFS
7·10178+9 = 7(0)1779<179> = 2521 · 956113 · 1743745060873<13> · 425228655272117<15> · 1456142266504809349962840467<28> · C116
C116 = P47 · P70
P47 = 13724946734647014417463514389532708012499306431<47>
P70 = 1959728831003640657417517089713455927810208846008120710768293127210569<70>
Number: 70009_178 N=26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239 ( 116 digits) Divisors found: r1=13724946734647014417463514389532708012499306431 (pp47) r2=1959728831003640657417517089713455927810208846008120710768293127210569 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 46.23 hours. Scaled time: 92.32 units (timescale=1.997). Factorization parameters were as follows: name: 70009_178 n: 26897173819877028591110438652440673484340131396511460906841522339126291846561419391159526937917846026688166192869239 skew: 65128.70 # norm 2.59e+16 c5: 75240 c4: -13181039364 c3: -658562293775890 c2: 51710009653767333541 c1: 1420986165414594796991522 c0: -33687414893484683332845870465 # alpha -6.85 Y1: 2035177406489 Y0: -12901908954921655902182 # Murphy_E 4.88e-10 # M 8982289048165742481213259840673138009408130390316621262097418188889777156561626476495961720222603100592888454691430 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3510001) Primes: RFBsize:315948, AFBsize:315985, largePrimes:7448433 encountered Relations: rels:7438490, finalFF:727459 Max relations in full relation-set: 28 Initial matrix: 632017 x 727459 with sparse part having weight 54906751. Pruned matrix : 548769 x 551993 with weight 34635393. Total sieving time: 42.35 hours. Total relation processing time: 0.31 hours. Matrix solve time: 3.15 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 46.23 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
7·10146+9 = 7(0)1459<147> = 1904249 · C141
C141 = P50 · P92
P50 = 29348460735839486849597048687491482266220440029873<50>
P92 = 12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817<92>
Number: n N=367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241 ( 141 digits) SNFS difficulty: 146 digits. Divisors found: r1=29348460735839486849597048687491482266220440029873 (pp50) r2=12525324190779213411439080213347337398023495842703998477149462377348409081784748884226366817 (pp92) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 11.17 hours. Scaled time: 14.57 units (timescale=1.305). Factorization parameters were as follows: name: KA_7_0_145_9 n: 367598985216744238804904190575917330139073198935643395375289681128885980772472507534466343424625666076232677554248420243361031041633735924241 skew: 0.66 deg: 5 c5: 70 c0: 9 m: 100000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:203362, AFBsize:203847, largePrimes:6878552 encountered Relations: rels:6404033, finalFF:539587 Max relations in full relation-set: 28 Initial matrix: 407277 x 539587 with sparse part having weight 31365500. Pruned matrix : 292139 x 294239 with weight 15013733. Total sieving time: 9.38 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.42 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 11.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10157+9 = 7(0)1569<158> = 79 · 96857225721671<14> · C142
C142 = P54 · P89
P54 = 643687030404506197051806584898109829074806677658713563<54>
P89 = 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627<89>
Number: n N=9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001 ( 142 digits) SNFS difficulty: 157 digits. Divisors found: Sun Jan 06 15:50:12 2008 prp54 factor: 643687030404506197051806584898109829074806677658713563 Sun Jan 06 15:50:12 2008 prp89 factor: 14212293404416947433671925044120391584277610010545822637985641678790000790685720922856627 Sun Jan 06 15:50:12 2008 elapsed time 00:47:37 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.73 hours. Scaled time: 39.50 units (timescale=1.818). Factorization parameters were as follows: name: KA_7_0_156_9 n: 9148268936726694531651576219628786925034862262185737873387878910253280521430132640027051308022147551977228490456289749680469055617015909332001 skew: 0.42 deg: 5 c5: 700 c0: 9 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1599990) Primes: RFBsize:203362, AFBsize:203497, largePrimes:7016855 encountered Relations: rels:6475989, finalFF:479308 Max relations in full relation-set: 28 Initial matrix: 406927 x 479308 with sparse part having weight 42290325. Pruned matrix : Total sieving time: 21.58 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 21.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(5·10167-17)/3 = 1(6)1661<168> = 11 · 103 · 57165172409<11> · C154
C154 = P55 · P100
P55 = 1432799642868764623313581007575666255213214630794733651<55>
P100 = 1795981494721534844168356589654494543435236348703608448307880333492214100092285485025785978171053563<100>
Number: n N=2573281644235925201154863504962616769184191842715562123978441074187952616988817531559698378059022788805862098468838043405885073260394546721714390639548513 ( 154 digits) SNFS difficulty: 167 digits. Divisors found: Sun Jan 6 18:26:05 2008 prp55 factor: 1432799642868764623313581007575666255213214630794733651 Sun Jan 6 18:26:05 2008 prp100 factor: 1795981494721534844168356589654494543435236348703608448307880333492214100092285485025785978171053563 Sun Jan 6 18:26:05 2008 elapsed time 01:17:38 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 54.16 hours. Scaled time: 45.44 units (timescale=0.839). Factorization parameters were as follows: name: KA_1_6_166_1 n: 2573281644235925201154863504962616769184191842715562123978441074187952616988817531559698378059022788805862098468838043405885073260394546721714390639548513 type: snfs deg: 5 c5: 500 c0: -17 skew: 0.51 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 4700001) Primes: RFBsize:216816, AFBsize:215811, largePrimes:5752099 encountered Relations: rels:5651567, finalFF:380784 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 54.03 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 54.16 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Maksym Voznyy / PRIMO
(61·102116-7)/9 is prime.
(61·102180-7)/9 is prime.
(61·1017878-7)/9 is PRP.
(61·1022093-7)/9 is PRP.
By Paul Zimmermann
(10333-1)/9 is divisible by 378910432397861194405369041242690342635541471617136043289<57>, cofactor is prime.
By Jo Yeong Uk / GGNFS
7·10141+9 = 7(0)1409<142> = 17627 · 98299 · C133
C133 = P39 · P95
P39 = 101414229444075792057935393801590219007<39>
P95 = 39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119<95>
Number: 70009_141 N=4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833 ( 133 digits) SNFS difficulty: 141 digits. Divisors found: r1=101414229444075792057935393801590219007 (pp39) r2=39835625472292178795478811905988720116944029945084978719281689145836957513895091630614531075119 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.92 hours. Scaled time: 14.86 units (timescale=2.146). Factorization parameters were as follows: n: 4039899261695309109005048398359631685685486063939556024524503957895943660252833528639281309585610432411465854402366497268246378586833 m: 10000000000000000000000000000 c5: 70 c0: 9 skew: 0.66 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:114417, largePrimes:3355192 encountered Relations: rels:3424431, finalFF:361194 Max relations in full relation-set: 28 Initial matrix: 228640 x 361194 with sparse part having weight 32688347. Pruned matrix : 183772 x 184979 with weight 14082163. Total sieving time: 6.73 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.92 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
7·10142+9 = 7(0)1419<143> = 113 · 337 · 614934441575413662824970403<27> · C112
C112 = P38 · P75
P38 = 19435116457349819947354128996919945157<38>
P75 = 153806160331310217740660239181144108766898224889935222716697800849639765959<75>
Number: 70009_142 N=2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563 ( 112 digits) SNFS difficulty: 142 digits. Divisors found: r1=19435116457349819947354128996919945157 (pp38) r2=153806160331310217740660239181144108766898224889935222716697800849639765959 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.54 hours. Scaled time: 16.22 units (timescale=2.152). Factorization parameters were as follows: n: 2989240637896832248093598836643841444086092572084139927456736533426375053444720175992103186377912235052595510563 m: 10000000000000000000000000000 c5: 700 c0: 9 skew: 0.42 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:114082, largePrimes:3285538 encountered Relations: rels:3277670, finalFF:296280 Max relations in full relation-set: 28 Initial matrix: 228305 x 296280 with sparse part having weight 26224627. Pruned matrix : 203393 x 204598 with weight 14737735. Total sieving time: 7.32 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 7.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Sinkiti Sibata / Msieve, GGNFS
7·10149+9 = 7(0)1489<150> = 17 · 131 · 449 · 619 · 859 · 907 · 3347 · 43481 · 3089727089<10> · 1140505032437<13> · 3687919471679<13> · C93
C93 = P45 · P49
P45 = 239837507703455294015342234963512005413275037<45>
P49 = 3200142279977988684517610934831971048558705274893<49>
Fri Jan 4 14:41:22 2008 Msieve v. 1.30 Fri Jan 4 14:41:22 2008 random seeds: 89fffcd3 bf362a6f Fri Jan 4 14:41:22 2008 factoring 767514148726373849421756982578139971558958367374633360077892901949480634454258309618499746041 (93 digits) Fri Jan 4 14:41:23 2008 commencing quadratic sieve (93-digit input) Fri Jan 4 14:41:23 2008 using multiplier of 1 Fri Jan 4 14:41:23 2008 using 64kb Pentium 4 sieve core Fri Jan 4 14:41:23 2008 sieve interval: 18 blocks of size 65536 Fri Jan 4 14:41:23 2008 processing polynomials in batches of 6 Fri Jan 4 14:41:23 2008 using a sieve bound of 1956883 (72780 primes) Fri Jan 4 14:41:23 2008 using large prime bound of 244610375 (27 bits) Fri Jan 4 14:41:23 2008 using double large prime bound of 1256766767596625 (42-51 bits) Fri Jan 4 14:41:23 2008 using trial factoring cutoff of 51 bits Fri Jan 4 14:41:23 2008 polynomial 'A' values have 12 factors Fri Jan 4 22:12:21 2008 73205 relations (18541 full + 54664 combined from 996755 partial), need 72876 Fri Jan 4 22:12:25 2008 begin with 1015296 relations Fri Jan 4 22:12:27 2008 reduce to 187278 relations in 10 passes Fri Jan 4 22:12:27 2008 attempting to read 187278 relations Fri Jan 4 22:12:34 2008 recovered 187278 relations Fri Jan 4 22:12:34 2008 recovered 167179 polynomials Fri Jan 4 22:12:34 2008 attempting to build 73205 cycles Fri Jan 4 22:12:34 2008 found 73205 cycles in 6 passes Fri Jan 4 22:12:34 2008 distribution of cycle lengths: Fri Jan 4 22:12:34 2008 length 1 : 18541 Fri Jan 4 22:12:34 2008 length 2 : 13029 Fri Jan 4 22:12:34 2008 length 3 : 12466 Fri Jan 4 22:12:34 2008 length 4 : 9874 Fri Jan 4 22:12:34 2008 length 5 : 7323 Fri Jan 4 22:12:34 2008 length 6 : 5045 Fri Jan 4 22:12:34 2008 length 7 : 2957 Fri Jan 4 22:12:34 2008 length 9+: 3970 Fri Jan 4 22:12:34 2008 largest cycle: 21 relations Fri Jan 4 22:12:35 2008 matrix is 72780 x 73205 with weight 4304451 (avg 58.80/col) Fri Jan 4 22:12:37 2008 filtering completed in 4 passes Fri Jan 4 22:12:37 2008 matrix is 68783 x 68847 with weight 4056821 (avg 58.93/col) Fri Jan 4 22:12:37 2008 saving the first 48 matrix rows for later Fri Jan 4 22:12:37 2008 matrix is 68735 x 68847 with weight 3005294 (avg 43.65/col) Fri Jan 4 22:12:37 2008 matrix includes 64 packed rows Fri Jan 4 22:12:37 2008 using block size 21845 for processor cache size 512 kB Fri Jan 4 22:12:38 2008 commencing Lanczos iteration Fri Jan 4 22:13:22 2008 lanczos halted after 1088 iterations (dim = 68733) Fri Jan 4 22:13:22 2008 recovered 15 nontrivial dependencies Fri Jan 4 22:13:23 2008 prp45 factor: 239837507703455294015342234963512005413275037 Fri Jan 4 22:13:23 2008 prp49 factor: 3200142279977988684517610934831971048558705274893 Fri Jan 4 22:13:23 2008 elapsed time 07:32:01
7·10119+9 = 7(0)1189<120> = 31991 · C116
C116 = P44 · P73
P44 = 12429111900259089222404905377487364334851383<44>
P73 = 1760476070227298881000250830892187832585839053412152708131162759974648953<73>
Number: 70009_119 N=21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=12429111900259089222404905377487364334851383 (pp44) r2=1760476070227298881000250830892187832585839053412152708131162759974648953 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.00 hours. Scaled time: 4.04 units (timescale=2.016). Factorization parameters were as follows: name: 70009_119 n: 21881154074583476602794535963239661154699759307305179581757369260104404363727298302647619643024600668938138851551999 m: 1000000000000000000000000 c5: 7 c0: 90 skew: 1.67 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64083, largePrimes:2159262 encountered Relations: rels:2257962, finalFF:227231 Max relations in full relation-set: 28 Initial matrix: 113247 x 227231 with sparse part having weight 20803966. Pruned matrix : 89761 x 90391 with weight 5658124. Total sieving time: 1.87 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.00 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
7·10137+9 = 7(0)1369<138> = 260202808401992767<18> · C121
C121 = P55 · P67
P55 = 1529173935702381764254152743534663932887976167416684647<55>
P67 = 1759256536718344842192906040610542540050982219751847395727987528241<67>
Number: n N=2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927 ( 121 digits) SNFS difficulty: 137 digits. Divisors found: r1=1529173935702381764254152743534663932887976167416684647 (pp55) r2=1759256536718344842192906040610542540050982219751847395727987528241 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.64 hours. Scaled time: 8.43 units (timescale=1.817). Factorization parameters were as follows: name: KA_7_0_136_9 n: 2690209242163733079058961856013706690488883800070139975077938579898447635548085461020149959227339603250033223472503615927 skew: 0.42 deg: 5 c5: 700 c0: 9 m: 1000000000000000000000000000 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:162662, AFBsize:162645, largePrimes:6524001 encountered Relations: rels:6138409, finalFF:570651 Max relations in full relation-set: 48 Initial matrix: 325375 x 570651 with sparse part having weight 34157269. Pruned matrix : 163092 x 164782 with weight 16077087. Total sieving time: 4.22 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.20 hours. Total square root time: 0.10 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,75000 total time: 4.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
7·10162+9 = 7(0)1619<163> = 23 · 39293 · C157
C157 = P33 · P125
P33 = 296777596371098420029084738265707<33>
P125 = 26099002118993499083959038032360499646655560409399625783207929493736469419962227821932572864657403345682890557765228381684833<125>
4·10167-9 = 3(9)1661<168> = 43 · 443 · 3803 · 8363 · C156
C156 = P50 · P107
P50 = 42090948879771092306041949813824861415659616231911<50>
P107 = 15685944386992125078642922951658875275870814395996579224833998729276744713659512994944344360612430130357121<107>
Number: n N=660236283323817840290544661230842159865224455940162022712927557130000768016670936364065296896675298786703649800998664393561639053390956010241141686786288231 ( 156 digits) SNFS difficulty: 167 digits. Divisors found: Sat Jan 5 07:57:07 2008 prp50 factor: 42090948879771092306041949813824861415659616231911 Sat Jan 5 07:57:07 2008 prp107 factor: 15685944386992125078642922951658875275870814395996579224833998729276744713659512994944344360612430130357121 Sat Jan 5 07:57:07 2008 elapsed time 01:13:32 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 108.68 hours. Scaled time: 91.07 units (timescale=0.838). Factorization parameters were as follows: name: KA_3_9_166_1 n: 660236283323817840290544661230842159865224455940162022712927557130000768016670936364065296896675298786703649800998664393561639053390956010241141686786288231 type: snfs deg: 5 c5: 25 c0: -18 skew: 0.94 m: 2000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 8200447) Primes: RFBsize:216816, AFBsize:216551, largePrimes:6419024 encountered Relations: rels:6664364, finalFF:480851 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 108.48 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 108.68 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
5·10161+9 = 5(0)1609<162> = 19 · 499 · 81412523 · 290804753657827<15> · C136
C136 = P49 · P87
P49 = 2886044097090709483188406135551437413159237776161<49>
P87 = 771827378327791401197721327141510578461690263003677335551724101499521451664262614805569<87>
Number: n N=2227527849195920167072818742245789804891947494234442788537785061825357198187109192712412964898187206347293193995545098532526760958240609 ( 136 digits) SNFS difficulty: 161 digits. Divisors found: r1=2886044097090709483188406135551437413159237776161 (pp49) r2=771827378327791401197721327141510578461690263003677335551724101499521451664262614805569 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.60 hours. Scaled time: 48.65 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_0_160_9 n: 2227527849195920167072818742245789804891947494234442788537785061825357198187109192712412964898187206347293193995545098532526760958240609 skew: 0.71 deg: 5 c5: 50 c0: 9 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:216816, AFBsize:215821, largePrimes:7227690 encountered Relations: rels:6738236, finalFF:537059 Max relations in full relation-set: 48 Initial matrix: 432702 x 537059 with sparse part having weight 46858226. Pruned matrix : 354338 x 356565 with weight 27479185. Total sieving time: 25.31 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.09 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.60 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(55·10166-1)/9 = 6(1)166<167> = 181 · 201007 · C160
C160 = P48 · P113
P48 = 120497742595657450620499053585177186485899649981<48>
P113 = 13939638538030391821504360100234375955821869881112474237487787326972602160821849566450875175021582057328890814793<113>
Number: n N=1679694976432092896000986170298599345420424491720406293294233454751764399703600413660619639537885616394138141834622650400292843519374730307792835204884596968933 ( 160 digits) SNFS difficulty: 167 digits. Divisors found: Sat Jan 05 18:06:27 2008 recovered 43 nontrivial dependencies ... Sat Jan 05 19:46:20 2008 reading relations for dependency 7 ... Sat Jan 05 20:02:44 2008 prp48 factor: 120497742595657450620499053585177186485899649981 Sat Jan 05 20:02:44 2008 prp113 factor: 13939638538030391821504360100234375955821869881112474237487787326972602160821849566450875175021582057328890814793 Sat Jan 05 20:02:44 2008 elapsed time 03:57:05 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 85.32 hours. Scaled time: 149.14 units (timescale=1.748). Factorization parameters were as follows: name: KA_6_1_166 n: 1679694976432092896000986170298599345420424491720406293294233454751764399703600413660619639537885616394138141834622650400292843519374730307792835204884596968933 type: snfs skew: 0.28 deg: 5 c5: 550 c0: -1 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3900307) Primes: RFBsize:230209, AFBsize:229923, largePrimes:7742476 encountered Relations: rels:7182048, finalFF:512843 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 85.01 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 85.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10153+9 = 7(0)1529<154> = 229 · 383 · 8814412231<10> · 659762031526680767195090417<27> · C113
C113 = P33 · P81
P33 = 104956686158012241596645982785813<33>
P81 = 130759423488435528873829580092903272449089541268530772072226531544627524905762137<81>
By Robert Backstrom / GGNFS, Msieve
2·10167-1 = 1(9)167<168> = 4909 · 16729 · 76379 · C155
C155 = P55 · P101
P55 = 2075226395886463745978813668503914095832906194613111381<55>
P101 = 15364821936988404978129042011260705176086625946572656434503802043499982149928090393044705627002582341<101>
Number: n N=31885484051733722430122978922374052186415647731414717844225369532026181178111894309739525314658565183166345642115120914615241018237573142523944303656722921 ( 155 digits) SNFS difficulty: 167 digits. Divisors found: Sat Jan 05 01:30:35 2008 prp55 factor: 2075226395886463745978813668503914095832906194613111381 Sat Jan 05 01:30:35 2008 prp101 factor: 15364821936988404978129042011260705176086625946572656434503802043499982149928090393044705627002582341 Sat Jan 05 01:30:35 2008 elapsed time 02:45:45 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 68.62 hours. Scaled time: 89.89 units (timescale=1.310). Factorization parameters were as follows: name: KA_1_9_167 n: 31885484051733722430122978922374052186415647731414717844225369532026181178111894309739525314658565183166345642115120914615241018237573142523944303656722921 skew: 0.35 deg: 5 c5: 200 c0: -1 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3101069) Primes: RFBsize:230209, AFBsize:229657, largePrimes:7516432 encountered Relations: rels:6973016, finalFF:484541 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.25 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 68.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
7·10168-9 = 6(9)1671<169> = 9843923 · 117894475991<12> · 1261779092388631<16> · 27635543446430167<17> · C120
C120 = P52 · P69
P52 = 1537937361615581169410967292004327295366166873569433<52>
P69 = 112472511207691888590129843674497489028548891319841138462050561658307<69>
Number: 69991_168 N=172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931 ( 120 digits) Divisors found: r1=1537937361615581169410967292004327295366166873569433 (pp52) r2=112472511207691888590129843674497489028548891319841138462050561658307 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 45.59 hours. Scaled time: 97.92 units (timescale=2.148). Factorization parameters were as follows: name: 69991_168 n: 172975677141036546015229400354180589109448912005422828633671122239020593886199741604134349538195365917741806140785729931 skew: 67391.34 # norm 5.09e+16 c5: 17280 c4: -30345414866 c3: -366826887495445 c2: 155289263798816555595 c1: 1928173509479924180946865 c0: -5273396086403893411410733594 # alpha -6.54 Y1: 1609298589041 Y0: -100020889963331680840305 # Murphy_E 2.83e-10 # M 2243431063636352947101853464256196889266586342162306354589158668527910371904618647504604110166117078652154422036894215 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4500001) Primes: RFBsize:315948, AFBsize:316323, largePrimes:7733678 encountered Relations: rels:7843528, finalFF:762917 Max relations in full relation-set: 28 Initial matrix: 632354 x 762917 with sparse part having weight 66957880. Pruned matrix : 527399 x 530624 with weight 44323563. Polynomial selection time: 2.69 hours. Total sieving time: 40.77 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.78 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 45.59 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Robert Backstrom / GMP-ECM
7·10127+9 = 7(0)1269<128> = 44879 · C124
C124 = P32 · P37 · P56
P32 = 75697857002716999529892478650803<32>
P37 = 1098672696747497143987400806595400953<37>
P56 = 18754390384244538050938832102972339330160248332842058469<56>
7·10134+9 = 7(0)1339<135> = 1373 · 5167 · 3601349599733<13> · C116
C116 = P31 · P86
P31 = 1439181583139272216526486427199<31>
P86 = 19037423273913052788182876625430173418517933868978126334120252095713816138227879752697<86>
By Sinkiti Sibata / Msieve, GGNFS
7·10148+9 = 7(0)1479<149> = 854417 · 1403083059087052553974969<25> · 47025413165450464962041376031<29> · C91
C91 = P40 · P51
P40 = 9370251329536055623552717563916135025857<40>
P51 = 132513742186678071112443165485840454095701370690399<51>
Fri Jan 4 08:23:13 2008 Msieve v. 1.30 Fri Jan 4 08:23:13 2008 random seeds: 2a1795f6 2f265fbe Fri Jan 4 08:23:13 2008 factoring 1241687068906518298633710848308113944954223996000579428139069580827675959567636029806646943 (91 digits) Fri Jan 4 08:23:14 2008 commencing quadratic sieve (90-digit input) Fri Jan 4 08:23:14 2008 using multiplier of 2 Fri Jan 4 08:23:14 2008 using 64kb Pentium 4 sieve core Fri Jan 4 08:23:14 2008 sieve interval: 18 blocks of size 65536 Fri Jan 4 08:23:14 2008 processing polynomials in batches of 6 Fri Jan 4 08:23:14 2008 using a sieve bound of 1652503 (62277 primes) Fri Jan 4 08:23:14 2008 using large prime bound of 145420264 (27 bits) Fri Jan 4 08:23:14 2008 using double large prime bound of 492861412574344 (42-49 bits) Fri Jan 4 08:23:14 2008 using trial factoring cutoff of 49 bits Fri Jan 4 08:23:14 2008 polynomial 'A' values have 12 factors Fri Jan 4 12:29:01 2008 62747 relations (16982 full + 45765 combined from 694116 partial), need 62373 Fri Jan 4 12:29:04 2008 begin with 711098 relations Fri Jan 4 12:29:05 2008 reduce to 152534 relations in 10 passes Fri Jan 4 12:29:05 2008 attempting to read 152534 relations Fri Jan 4 12:29:10 2008 recovered 152534 relations Fri Jan 4 12:29:10 2008 recovered 128623 polynomials Fri Jan 4 12:29:10 2008 attempting to build 62747 cycles Fri Jan 4 12:29:10 2008 found 62747 cycles in 5 passes Fri Jan 4 12:29:10 2008 distribution of cycle lengths: Fri Jan 4 12:29:10 2008 length 1 : 16982 Fri Jan 4 12:29:10 2008 length 2 : 12077 Fri Jan 4 12:29:10 2008 length 3 : 10920 Fri Jan 4 12:29:10 2008 length 4 : 8357 Fri Jan 4 12:29:10 2008 length 5 : 5867 Fri Jan 4 12:29:10 2008 length 6 : 3794 Fri Jan 4 12:29:10 2008 length 7 : 2182 Fri Jan 4 12:29:10 2008 length 9+: 2568 Fri Jan 4 12:29:10 2008 largest cycle: 19 relations Fri Jan 4 12:29:11 2008 matrix is 62277 x 62747 with weight 3737470 (avg 59.56/col) Fri Jan 4 12:29:12 2008 filtering completed in 3 passes Fri Jan 4 12:29:12 2008 matrix is 57933 x 57997 with weight 3465014 (avg 59.74/col) Fri Jan 4 12:29:13 2008 saving the first 48 matrix rows for later Fri Jan 4 12:29:13 2008 matrix is 57885 x 57997 with weight 2675909 (avg 46.14/col) Fri Jan 4 12:29:13 2008 matrix includes 64 packed rows Fri Jan 4 12:29:13 2008 using block size 21845 for processor cache size 512 kB Fri Jan 4 12:29:13 2008 commencing Lanczos iteration Fri Jan 4 12:29:46 2008 lanczos halted after 916 iterations (dim = 57883) Fri Jan 4 12:29:46 2008 recovered 17 nontrivial dependencies Fri Jan 4 12:29:47 2008 prp40 factor: 9370251329536055623552717563916135025857 Fri Jan 4 12:29:47 2008 prp51 factor: 132513742186678071112443165485840454095701370690399 Fri Jan 4 12:29:47 2008 elapsed time 04:06:34
7·10120+9 = 7(0)1199<121> = 3613 · C118
C118 = P30 · P43 · P45
P30 = 830640561618524856111311045749<30>
P43 = 5267270292924611350420925089608485692597297<43>
P45 = 442824191940348923348965981442994565437113881<45>
Number: 70009_120 N=1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093 ( 118 digits) SNFS difficulty: 120 digits. Divisors found: r1=830640561618524856111311045749 (pp30) r2=5267270292924611350420925089608485692597297 (pp43) r3=442824191940348923348965981442994565437113881 (pp45) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.11 hours. Scaled time: 4.22 units (timescale=2.003). Factorization parameters were as follows: name: 70009_120 n: 1937448104068641018544146138942706891779684472737337392748408524771657902020481594243011347910323830611680044284528093 m: 1000000000000000000000000 c5: 7 c0: 9 skew: 1.05 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63908, largePrimes:1993457 encountered Relations: rels:1958903, finalFF:135849 Max relations in full relation-set: 28 Initial matrix: 113072 x 135849 with sparse part having weight 10934243. Pruned matrix : 104688 x 105317 with weight 6771158. Total sieving time: 1.96 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.11 hours. --------- CPU info (if available) ----------
By JMB / GGNFS / Dec 30, 2007
7·10156-9 = 6(9)1551<157> = 2260571 · 21161214882893<14> · 625086523594801<15> · C123
C123 = P35 · P89
P35 = 15854608314307477257889614412447463<35>
P89 = 14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519<89>
Number: 7*10^156-9 N=234098782427839665196883000012361900130395680636725922006376080346982807010226027831376517657752445555625517266741812986297 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=15854608314307477257889614412447463 (pp35) r2=14765346313638338741527800132362791570551309344130945927519948485674768514606278097831519 (pp89) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 42.32 hours.
By matsui / GGNFS
3·10165+1 = 3(0)1641<166> = 116891557 · 518126347 · 1922556849772274468793737<25> · C125
C125 = P40 · P86
P40 = 1996780824920828139624227695148118615121<40>
P86 = 12903063841818771390850986103947680780972868837668201185568690923523136035069365410047<86>
N=25764590462072996269405677531284515063243873374651180669095169968451099335117503157111422341924469479276733945373461939520687 ( 125 digits) SNFS difficulty: 165 digits. Divisors found: r1=1996780824920828139624227695148118615121 (pp40) r2=12903063841818771390850986103947680780972868837668201185568690923523136035069365410047 (pp86) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 71.33 hours. Scaled time: 92.01 units (timescale=1.290). Factorization parameters were as follows: n: 25764590462072996269405677531284515063243873374651180669095169968451099335117503157111422341924469479276733945373461939520687 m: 1000000000000000000000000000000000 c5: 3 c0: 1 skew: 0.8 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 4800001) Primes: RFBsize:348513, AFBsize:348501, largePrimes:5801459 encountered Relations: rels:5977721, finalFF:817358 Max relations in full relation-set: 28 Initial matrix: 697079 x 817358 with sparse part having weight 44467712. Pruned matrix : 598008 x 601557 with weight 30414881. Total sieving time: 59.58 hours. Total relation processing time: 0.11 hours. Matrix solve time: 11.37 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 71.33 hours.
The factor table of 700...009 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / PFGW
(19·1010819+11)/3 and (19·1016036+11)/3 are PRPs.
By Robert Backstrom / GGNFS, Msieve
(2·10166-17)/3 = (6)1651<166> = 3842906236981734253<19> · C148
C148 = P64 · P85
P64 = 1100602829068959264051293759364233221830412643879055222397047131<64>
P85 = 1576225422633670819910453271096401900701665607593218926957327204082110519610002697627<85>
Number: n N=1734798159401034080171951805732663587453115538866372203257419337379268789106327611243635763708787379629924381790161230793926643180172168189060858137 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: Wed Jan 2 20:49:51 2008 prp64 factor: 1100602829068959264051293759364233221830412643879055222397047131 Wed Jan 2 20:49:51 2008 prp85 factor: 1576225422633670819910453271096401900701665607593218926957327204082110519610002697627 Wed Jan 2 20:49:51 2008 elapsed time 01:07:33 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 70.81 hours. Scaled time: 59.62 units (timescale=0.842). Factorization parameters were as follows: name: KA_6_165_1 n: 1734798159401034080171951805732663587453115538866372203257419337379268789106327611243635763708787379629924381790161230793926643180172168189060858137 type: snfs deg: 5 c5: 20 c0: -17 skew: 0.97 m: 1000000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 5600001) Primes: RFBsize:216816, AFBsize:216481, largePrimes:5965439 encountered Relations: rels:5938781, finalFF:342850 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 70.66 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 70.81 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
3·10167+1 = 3(0)1661<168> = 132 · 23 · 11240783 · C157
C157 = P48 · P110
P48 = 107653808874199343653823320575009810381715666999<48>
P110 = 63779447095061318423367850224578695523579815789150289866244003646649681085810329261922617536898003393691354119<110>
Number: n N=6866100407673839710882458256002676877960427288936869306360920082777722078076735615102261401273652713425168105724751281057680269387071669463168216273591018881 ( 157 digits) SNFS difficulty: 167 digits. Divisors found: Wed Jan 02 22:42:17 2008 prp48 factor: 107653808874199343653823320575009810381715666999 Wed Jan 02 22:42:17 2008 prp110 factor: 63779447095061318423367850224578695523579815789150289866244003646649681085810329261922617536898003393691354119 Wed Jan 02 22:42:17 2008 elapsed time 01:12:16 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.99 hours. Scaled time: 89.01 units (timescale=1.817). Factorization parameters were as follows: name: KA_3_0_166_1 n: 6866100407673839710882458256002676877960427288936869306360920082777722078076735615102261401273652713425168105724751281057680269387071669463168216273591018881 skew: 0.32 deg: 5 c5: 300 c0: 1 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400000) Primes: RFBsize:250150, AFBsize:250021, largePrimes:7702844 encountered Relations: rels:7199778, finalFF:579094 Max relations in full relation-set: 28 Initial matrix: 500237 x 579094 with sparse part having weight 53234607. Pruned matrix : 463022 x 465587 with weight 36385180. Total sieving time: 48.80 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 48.99 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Jo Yeong Uk / GGNFS
(73·10166-1)/9 = 8(1)166<167> = 3 · 19 · 213287 · 4111361 · 5929768853<10> · 3669810243913628169910801<25> · C119
C119 = P55 · P64
P55 = 8223492567479697862048124640209449367402873621875410421<55>
P64 = 9068131722716584529229143545406928460604605774689721826341970753<64>
Number: 81111_166 N=74571713822686701323900979192571029758253172648119389362012248244916093237432632041053581859169646820908120119853417013 ( 119 digits) Divisors found: r1=8223492567479697862048124640209449367402873621875410421 (pp55) r2=9068131722716584529229143545406928460604605774689721826341970753 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.36 hours. Scaled time: 82.33 units (timescale=2.146). Factorization parameters were as follows: name: 81111_166 n: 74571713822686701323900979192571029758253172648119389362012248244916093237432632041053581859169646820908120119853417013 skew: 63934.65 # norm 5.02e+16 c5: 44700 c4: -8672528716 c3: -1167204485490759 c2: -23508456169732693191 c1: 1360412238556341935907211 c0: -4184003940301627376220420525 # alpha -6.83 Y1: 4470191423393 Y0: -69896334002934700208002 # Murphy_E 3.51e-10 # M 46104542136265429012421759151830318936477223069350986501594276445394325180456204984475629741637253392362953793618722669 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4125001) Primes: RFBsize:315948, AFBsize:316441, largePrimes:7685412 encountered Relations: rels:7784882, finalFF:771369 Max relations in full relation-set: 28 Initial matrix: 632470 x 771369 with sparse part having weight 64136043. Pruned matrix : 516540 x 519766 with weight 40029222. Polynomial selection time: 2.27 hours. Total sieving time: 34.13 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.63 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 38.36 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory for crash kernel (0x0 to 0x0) notwithin permissible range Memory: 8178280k/8912896k available (2434k kernel code, 208060k reserved, 1235k data, 192k init) Calibrating delay using timer specific routine.. 4812.90 BogoMIPS (lpj=2406450) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4809.83 BogoMIPS (lpj=2404916) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117)
By Bruce Dodson
10278+1 is divisible by 538978365796508304569088931293097537674917585678041<51>
(10333-1)/9 is divisible by 2391225903192434229494639627847286709185128947978708401<55>
References: Factoring and Prime Identification (Torbjörn Granlund), The ECMNET Project (Paul Zimmermann)
By Sinkiti Sibata / PFGW
(2·102505+61)/9 is prime.
By matsui / GGNFS
(5·10168+7)/3 = 1(6)1679<169> = 331935313 · 683366047897543<15> · 154074768697553552249<21> · C125
C125 = P60 · P66
P60 = 389150024577353540408352254416982467679044312048033653164543<60>
P66 = 122544354335196425279257869050817022387231657467995884738591164013<66>
N=47688138501357609774618672532490299817298311966335834818528738503217271683915586390382658927785128435204674599608535389191059 ( 125 digits) SNFS difficulty: 169 digits. Divisors found: r1=389150024577353540408352254416982467679044312048033653164543 (pp60) r2=122544354335196425279257869050817022387231657467995884738591164013 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 230.78 hours. Scaled time: 292.87 units (timescale=1.269). Factorization parameters were as follows: n: 47688138501357609774618672532490299817298311966335834818528738503217271683915586390382658927785128435204674599608535389191059 m: 5000000000000000000000000000000000 c5: 8 c0: 35 skew: 1.34 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7300001) Primes: RFBsize:412849, AFBsize:413746, largePrimes:6138486 encountered Relations: rels:6454072, finalFF:972179 Max relations in full relation-set: 28 Initial matrix: 826660 x 972179 with sparse part having weight 59419918. Pruned matrix : 704813 x 709010 with weight 42613207. Total sieving time: 211.34 hours. Total relation processing time: 0.28 hours. Matrix solve time: 18.83 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,169,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 230.78 hours.