Factor tables of this page will be updated in mid-January. Until then, contributions are kept on the web server. You can reserve numbers as usual. If you forgot your reservation keys, tell so by email.
My Pentium 4 processor could not withstand demanding programs and broke down. Take care for your CPU!
I'm afraid that I can't update this page for several days or a week because my computer crashed yesterday.
By Robert Backstrom / GGNFS, Msieve
(38·10145+61)/9 = 4(2)1449<146> = 7 · 89 · 4211 · 240030140333<12> · 6318701319397581967<19> · C110
C110 = P42 · P68
P42 = 959520805192593881541714464704553517162347<42>
P68 = 11059100304528524565462268921955338143239467920276603381903889550329<68>
Number: n N=10611436828906870090522936495968919633890384936146829850407470739275500463086914188108300526561796213920262163 ( 110 digits) SNFS difficulty: 146 digits. Divisors found: Thu Dec 25 11:57:28 2008 prp42 factor: 959520805192593881541714464704553517162347 Thu Dec 25 11:57:28 2008 prp68 factor: 11059100304528524565462268921955338143239467920276603381903889550329 Thu Dec 25 11:57:28 2008 elapsed time 00:35:41 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.47 hours. Scaled time: 13.66 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_2_144_9 n: 10611436828906870090522936495968919633890384936146829850407470739275500463086914188108300526561796213920262163 type: snfs skew: 1.10 deg: 5 c5: 38 c0: 61 m: 100000000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1870001) Primes: RFBsize:114155, AFBsize:114048, largePrimes:12063139 encountered Relations: rels:11157151, finalFF:260073 Max relations in full relation-set: 28 Initial matrix: 228269 x 260073 with sparse part having weight 43425032. Pruned matrix : 222316 x 223521 with weight 33941924. Msieve: found 1169180 hash collisions in 12167702 relations Msieve: matrix is 285178 x 285426 (74.7 MB) Total sieving time: 7.09 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,56,56,2.5,2.5,100000 total time: 7.47 hours. --------- CPU info (if available) ----------
(8·10188+1)/9 = (8)1879<188> = 10867 · C184
C184 = P72 · P113
P72 = 200566861506992331136426364484679792245665453316940240273757774540395067<72>
P113 = 40782949523419614037769977548545749947635754809093559084419918633991991426423339650836469118542851487206338102201<113>
Number: n N=8179708188910360622884778585523961432675889287649663098268969254521844933182008731838491661809964929501140046828829381511814566015357402124679202069466171794321237589848982137562242467 ( 184 digits) SNFS difficulty: 190 digits. Divisors found: Thu Dec 25 21:52:08 2008 prp72 factor: 200566861506992331136426364484679792245665453316940240273757774540395067 Thu Dec 25 21:52:08 2008 prp113 factor: 40782949523419614037769977548545749947635754809093559084419918633991991426423339650836469118542851487206338102201 Thu Dec 25 21:52:08 2008 elapsed time 04:14:57 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.18 hours. Scaled time: 139.12 units (timescale=2.011). Factorization parameters were as follows: name: KA_8_187_9 n: 8179708188910360622884778585523961432675889287649663098268969254521844933182008731838491661809964929501140046828829381511814566015357402124679202069466171794321237589848982137562242467 type: snfs skew: 1.66 deg: 5 c5: 2 c0: 25 m: 100000000000000000000000000000000000000 rlim: 9000000 alim: 9000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 8600001) Primes: RFBsize:602489, AFBsize:602100, largePrimes:34905775 encountered Relations: rels:31238877, finalFF:727045 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3975978 hash collisions in 36541534 relations Msieve: matrix is 1696807 x 1697055 (460.7 MB) Total sieving time: 68.38 hours. Total relation processing time: 0.80 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,9000000,9000000,29,29,58,58,2.5,2.5,100000 total time: 69.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / Msieve
(38·10143+61)/9 = 4(2)1429<144> = 32 · 23 · 8898879841<10> · 576568337208290100918143<24> · C108
C108 = P51 · P58
P51 = 247067337455777187755752491982412454361833257217269<51>
P58 = 1609049019393037299239339702182176490310075105569308816401<58>
Number: 42229_143 N=397543457057266918884845579618051966809384919381927176588582112286687485108113865531283414443127005287628869 ( 108 digits) SNFS difficulty: 145 digits. Divisors found: r1=247067337455777187755752491982412454361833257217269 r2=1609049019393037299239339702182176490310075105569308816401 Version: Total time: 9.34 hours. Scaled time: 18.43 units (timescale=1.972). Factorization parameters were as follows: name: 42229_143 n: 397543457057266918884845579618051966809384919381927176588582112286687485108113865531283414443127005287628869 m: 50000000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262775 x 263023 Total sieving time: 9.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 9.34 hours. --------- CPU info (if available) ----------
(38·10147+61)/9 = 4(2)1469<148> = 167 · 2369773339<10> · 294392469467<12> · C125
C125 = P39 · P86
P39 = 390767166238674756702854534057738664529<39>
P86 = 92741271271455106967496554922563178454113145520981313433082313450604481966509315597931<86>
Number: 42229_147 N=36240243768118729202943463309695426736944896402283016562377648348010345900851403545823189583259160747606835955616325055489499 ( 125 digits) SNFS difficulty: 149 digits. Divisors found: r1=390767166238674756702854534057738664529 r2=92741271271455106967496554922563178454113145520981313433082313450604481966509315597931 Version: Total time: 11.97 hours. Scaled time: 30.70 units (timescale=2.564). Factorization parameters were as follows: name: 42229_147 n: 36240243768118729202943463309695426736944896402283016562377648348010345900851403545823189583259160747606835955616325055489499 m: 200000000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 357888 x 358136 Total sieving time: 11.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.97 hours. --------- CPU info (if available) ----------
(13·10149-7)/3 = 4(3)1481<150> = 137 · 23119651 · C141
C141 = P57 · P84
P57 = 188970213715321747672299761534754833377917059582227123669<57>
P84 = 723980555610444002576019194415271366760489277242380215274116190741913804171160915877<84>
Number: 43331_149 N=136810760319442984511388306121793604504251223416095814639746515650962970987884593570645608634044828921380847408566690807883000354617384592713 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=188970213715321747672299761534754833377917059582227123669 r2=723980555610444002576019194415271366760489277242380215274116190741913804171160915877 Version: Total time: 17.52 hours. Scaled time: 36.01 units (timescale=2.055). Factorization parameters were as follows: name: 43331_149 n: 136810760319442984511388306121793604504251223416095814639746515650962970987884593570645608634044828921380847408566690807883000354617384592713 m: 1000000000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 449125 x 449373 Total sieving time: 17.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(13·10157-7)/3 = 4(3)1561<158> = 173 · 67 · 137 · 769 · C148
C148 = P45 · P104
P45 = 123302230368263597667057025479304489207485833<45>
P104 = 10134041800873407971458001266515153364324752965728397706141656301510332896590942027080433617388959869489<104>
SNFS difficulty: 159 digits. Divisors found: r1=123302230368263597667057025479304489207485833 (pp45) r2=10134041800873407971458001266515153364324752965728397706141656301510332896590942027080433617388959869489 (pp104) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.525). Factorization parameters were as follows: n: 1249549956692905843078530648495289271477668421273383397930121240701021840408969782908108656684854663018608144097023393943249861817083459645496449337 m: 20000000000000000000000000000000 deg: 5 c5: 325 c0: -56 skew: 0.70 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1550000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 577511 x 577759 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
(38·10173-11)/9 = 4(2)1721<174> = 383 · C172
C172 = P77 · P95
P77 = 21373934917885229960501801036667767687297501292726057634758836826598560231947<77>
P95 = 51577208181595520712952190859726794005821242274496299179553509825685887968828943498649093422521<95>
SNFS difficulty: 175 digits. Divisors found: r1=21373934917885229960501801036667767687297501292726057634758836826598560231947 (pp77) r2=51577208181595520712952190859726794005821242274496299179553509825685887968828943498649093422521 (pp95) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1102407890919640266898752538439222512329561937917029300841311285175514940527995358282564548883086742094574992747316507107629823034522773426167682042355671598491441833478387 m: 50000000000000000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 6000000 alim: 6000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [3000000, 8200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1149407 x 1149655 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,52,52,2.5,2.5,200000 total time: 70.00 hours.
(38·10163+43)/9 = 4(2)1627<164> = 1409 · C161
C161 = P52 · P109
P52 = 4810957160735656694134600221951725247720036705800339<52>
P109 = 6228717072530466781791563604942513648430182164800452761903679474999292240561911205887774266569403833476578177<109>
SNFS difficulty: 165 digits. Divisors found: r1=4810957160735656694134600221951725247720036705800339 (pp52) r2=6228717072530466781791563604942513648430182164800452761903679474999292240561911205887774266569403833476578177 (pp109) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 29966091002286885892279788660200299660910022868858922797886602002996609100228688589227978866020029966091002286885892279788660200299660910022868858922797886602003 m: 500000000000000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 813692 x 813940 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,100000 total time: 56.00 hours.
(13·10165-7)/3 = 4(3)1641<166> = 137 · C164
C164 = P79 · P85
P79 = 6085843468199487275442039551130758294656791892404326335166720315393967284370157<79>
P85 = 5197335501903661657599518956480061122136436218334285817046668712234291023306740922759<85>
SNFS difficulty: 166 digits. Divisors found: r1=6085843468199487275442039551130758294656791892404326335166720315393967284370157 (pp79) r2=5197335501903661657599518956480061122136436218334285817046668712234291023306740922759 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 31630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163017031630170316301703163 m: 1000000000000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 4100000 alim: 4100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4100000/4100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2050000, 4050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 746923 x 747171 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4100000,4100000,27,27,52,52,2.4,2.4,200000 total time: 36.00 hours.
By Jo Yeong Uk / GGNFS / Msieve v1.39
(13·10129-7)/3 = 4(3)1281<130> = 103993 · 9537211 · 799114214868023969<18> · C100
C100 = P39 · P62
P39 = 346643489439315219050321521524858945557<39>
P62 = 15772651068440529298755132621651886781971748870337901617836909<62>
Number: 43331_129 N=5467486804072968524263441446230274033369319439416686948461744728066650046424741948248473440936163313 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=346643489439315219050321521524858945557 r2=15772651068440529298755132621651886781971748870337901617836909 Version: Total time: 1.74 hours. Scaled time: 4.16 units (timescale=2.391). Factorization parameters were as follows: n: 5467486804072968524263441446230274033369319439416686948461744728066650046424741948248473440936163313 m: 100000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 1000001) Primes: rational ideals reading, algebraic ideals reading, Relations: 2953047 Max relations in full relation-set: Initial matrix: Pruned matrix : 157950 x 158195 Total sieving time: 1.54 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 1.74 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(13·10154-7)/3 = 4(3)1531<155> = 4299968837<10> · 5420661282707945028204253<25> · 4248099842885959289351740481<28> · C93
C93 = P43 · P50
P43 = 6196057801656421501364047194416498849394697<43>
P50 = 70630835377785084555386441008655114290296665265803<50>
Tue Dec 23 22:52:12 2008 Msieve v. 1.39 Tue Dec 23 22:52:12 2008 random seeds: 4415d7f4 e16d18f3 Tue Dec 23 22:52:12 2008 factoring 437632738580035654262129319099138766292963493690866696448476387894541006903564451451163646691 (93 digits) Tue Dec 23 22:52:13 2008 searching for 15-digit factors Tue Dec 23 22:52:14 2008 commencing quadratic sieve (93-digit input) Tue Dec 23 22:52:14 2008 using multiplier of 19 Tue Dec 23 22:52:14 2008 using 32kb Intel Core sieve core Tue Dec 23 22:52:14 2008 sieve interval: 36 blocks of size 32768 Tue Dec 23 22:52:14 2008 processing polynomials in batches of 6 Tue Dec 23 22:52:14 2008 using a sieve bound of 1923137 (71699 primes) Tue Dec 23 22:52:14 2008 using large prime bound of 232699577 (27 bits) Tue Dec 23 22:52:14 2008 using double large prime bound of 1148767303677169 (42-51 bits) Tue Dec 23 22:52:14 2008 using trial factoring cutoff of 51 bits Tue Dec 23 22:52:14 2008 polynomial 'A' values have 12 factors Wed Dec 24 01:24:11 2008 71822 relations (18303 full + 53519 combined from 959170 partial), need 71795 Wed Dec 24 01:24:12 2008 begin with 977473 relations Wed Dec 24 01:24:13 2008 reduce to 182815 relations in 10 passes Wed Dec 24 01:24:13 2008 attempting to read 182815 relations Wed Dec 24 01:24:15 2008 recovered 182815 relations Wed Dec 24 01:24:15 2008 recovered 165366 polynomials Wed Dec 24 01:24:15 2008 attempting to build 71822 cycles Wed Dec 24 01:24:15 2008 found 71822 cycles in 5 passes Wed Dec 24 01:24:15 2008 distribution of cycle lengths: Wed Dec 24 01:24:15 2008 length 1 : 18303 Wed Dec 24 01:24:15 2008 length 2 : 13016 Wed Dec 24 01:24:15 2008 length 3 : 12483 Wed Dec 24 01:24:15 2008 length 4 : 9444 Wed Dec 24 01:24:15 2008 length 5 : 7095 Wed Dec 24 01:24:15 2008 length 6 : 4692 Wed Dec 24 01:24:15 2008 length 7 : 2928 Wed Dec 24 01:24:15 2008 length 9+: 3861 Wed Dec 24 01:24:15 2008 largest cycle: 22 relations Wed Dec 24 01:24:16 2008 matrix is 71699 x 71822 (18.6 MB) with weight 4599586 (64.04/col) Wed Dec 24 01:24:16 2008 sparse part has weight 4599586 (64.04/col) Wed Dec 24 01:24:17 2008 filtering completed in 3 passes Wed Dec 24 01:24:17 2008 matrix is 67741 x 67805 (17.7 MB) with weight 4379423 (64.59/col) Wed Dec 24 01:24:17 2008 sparse part has weight 4379423 (64.59/col) Wed Dec 24 01:24:17 2008 saving the first 48 matrix rows for later Wed Dec 24 01:24:17 2008 matrix is 67693 x 67805 (11.6 MB) with weight 3510908 (51.78/col) Wed Dec 24 01:24:17 2008 sparse part has weight 2623737 (38.70/col) Wed Dec 24 01:24:17 2008 matrix includes 64 packed rows Wed Dec 24 01:24:17 2008 using block size 27122 for processor cache size 1024 kB Wed Dec 24 01:24:18 2008 commencing Lanczos iteration Wed Dec 24 01:24:18 2008 memory use: 10.9 MB Wed Dec 24 01:24:47 2008 lanczos halted after 1071 iterations (dim = 67691) Wed Dec 24 01:24:47 2008 recovered 16 nontrivial dependencies Wed Dec 24 01:24:48 2008 prp43 factor: 6196057801656421501364047194416498849394697 Wed Dec 24 01:24:48 2008 prp50 factor: 70630835377785084555386441008655114290296665265803 Wed Dec 24 01:24:48 2008 elapsed time 02:32:36
(38·10136+61)/9 = 4(2)1359<137> = 112 · 507571 · 990643 · C123
C123 = P32 · P46 · P47
P32 = 12994371931234232563572230204953<32>
P46 = 2821341889370461231082316680328888029873454389<46>
P47 = 18929133352137533796090816854860634959299355049<47>
Number: 42229_136 N=693971668979787672360221564933897224316140193326896041334006376981172056648340109892525747331357177578992585148159179582133 ( 123 digits) SNFS difficulty: 137 digits. Divisors found: r1=12994371931234232563572230204953 r2=2821341889370461231082316680328888029873454389 r3=18929133352137533796090816854860634959299355049 Version: Total time: 6.24 hours. Scaled time: 12.28 units (timescale=1.967). Factorization parameters were as follows: name: 42229_136 n: 693971668979787672360221564933897224316140193326896041334006376981172056648340109892525747331357177578992585148159179582133 m: 1000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1360001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 193020 x 193268 Total sieving time: 6.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 6.24 hours. --------- CPU info (if available) ----------
(38·10137+61)/9 = 4(2)1369<138> = 3 · 127 · 151 · C133
C133 = P37 · P47 · P50
P37 = 6456539318974069952317840383913635547<37>
P47 = 84353085074939403498494219218028513808174498829<47>
P50 = 13475298467557402274192836515690867490289089049393<50>
Number: 42229_137 N=7339038470080864615984812053018758968594709325793436968281834527858410634653008329808663541781339142761680176291429354995084775550959 ( 133 digits) SNFS difficulty: 139 digits. Divisors found: r1=6456539318974069952317840383913635547 r2=84353085074939403498494219218028513808174498829 r3=13475298467557402274192836515690867490289089049393 Version: Total time: 5.42 hours. Scaled time: 13.96 units (timescale=2.575). Factorization parameters were as follows: name: 42229_137 n: 7339038470080864615984812053018758968594709325793436968281834527858410634653008329808663541781339142761680176291429354995084775550959 m: 2000000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 1480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 206320 x 206568 Total sieving time: 5.42 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.3,2.3,75000 total time: 5.42 hours. --------- CPU info (if available) ----------
(38·10132+61)/9 = 4(2)1319<133> = 11 · 776001532639<12> · C120
C120 = P49 · P72
P49 = 2969872220720596372610570814567592219469836109293<49>
P72 = 166551312272968076499268266318802432077753188457365327152386424859382757<72>
Number: 42229_132 N=494636115644049218819442914466771717713015102938955522069569580741406160381239875380518653429265348791970272174371660801 ( 120 digits) SNFS difficulty: 134 digits. Divisors found: r1=2969872220720596372610570814567592219469836109293 r2=166551312272968076499268266318802432077753188457365327152386424859382757 Version: Total time: 4.08 hours. Scaled time: 9.61 units (timescale=2.357). Factorization parameters were as follows: name: 42229_132 n: 494636115644049218819442914466771717713015102938955522069569580741406160381239875380518653429265348791970272174371660801 m: 200000000000000000000000000 deg: 5 c5: 475 c0: 244 skew: 0.88 type: snfs lss: 1 rlim: 1210000 alim: 1210000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1210000/1210000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [605000, 1130001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 162582 x 162827 Total sieving time: 4.08 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1210000,1210000,26,26,47,47,2.3,2.3,75000 total time: 4.08 hours. --------- CPU info (if available) ----------
(38·10133+61)/9 = 4(2)1329<134> = 7 · 17 · 31 · 7446191 · 92316751817<11> · C113
C113 = P52 · P61
P52 = 3454354056951432918786575190491331483927052530924391<52>
P61 = 4820042812404022801199777592890218362440628066520836743662493<61>
Number: 42229_133 N=16650134443707430675722745496325348238405457625575494554061037823950827364147409161145258157135657400068205566763 ( 113 digits) SNFS difficulty: 135 digits. Divisors found: r1=3454354056951432918786575190491331483927052530924391 r2=4820042812404022801199777592890218362440628066520836743662493 Version: Total time: 4.36 hours. Scaled time: 8.73 units (timescale=2.003). Factorization parameters were as follows: name: 42229_133 n: 16650134443707430675722745496325348238405457625575494554061037823950827364147409161145258157135657400068205566763 m: 500000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1095001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 149895 x 150143 Total sieving time: 4.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 4.36 hours. --------- CPU info (if available) ----------
(13·10138-7)/3 = 4(3)1371<139> = 1003753 · 217066632061<12> · C122
C122 = P57 · P65
P57 = 272710477884165309368820146712980890078113632640440282561<57>
P65 = 72929015177053713033881917987365982816088025384408340890063152887<65>
Number: 43331_138 N=19888506580555862802074130987443151078615717105176811792365248436258887922009032248563497555435293494812111456084822903607 ( 122 digits) SNFS difficulty: 140 digits. Divisors found: r1=272710477884165309368820146712980890078113632640440282561 r2=72929015177053713033881917987365982816088025384408340890063152887 Version: Total time: 4.53 hours. Scaled time: 11.65 units (timescale=2.575). Factorization parameters were as follows: name: 43331_138 n: 19888506580555862802074130987443151078615717105176811792365248436258887922009032248563497555435293494812111456084822903607 m: 5000000000000000000000000000 deg: 5 c5: 104 c0: -175 skew: 1.11 type: snfs lss: 1 rlim: 1540000 alim: 1540000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1540000/1540000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [770000, 1370001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 229684 x 229931 Total sieving time: 4.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1540000,1540000,26,26,48,48,2.3,2.3,100000 total time: 4.53 hours. --------- CPU info (if available) ----------
(13·10126-7)/3 = 4(3)1251<127> = 41 · 113 · 612958849049<12> · 3602570233447<13> · C99
C99 = P32 · P68
P32 = 30490364046617984017424864824609<32>
P68 = 13891636547419071980552984173367140215460386040448597016954924515941<68>
Wed Dec 24 06:14:06 2008 Msieve v. 1.39 Wed Dec 24 06:14:06 2008 random seeds: 638a2880 0697d978 Wed Dec 24 06:14:06 2008 factoring 423561055534110855772718836647845940152748087470775841943157918715306066768867674318721107189592069 (99 digits) Wed Dec 24 06:14:07 2008 searching for 15-digit factors Wed Dec 24 06:14:09 2008 commencing quadratic sieve (99-digit input) Wed Dec 24 06:14:09 2008 using multiplier of 1 Wed Dec 24 06:14:09 2008 using 32kb Intel Core sieve core Wed Dec 24 06:14:09 2008 sieve interval: 36 blocks of size 32768 Wed Dec 24 06:14:09 2008 processing polynomials in batches of 6 Wed Dec 24 06:14:09 2008 using a sieve bound of 2612251 (95257 primes) Wed Dec 24 06:14:09 2008 using large prime bound of 391837650 (28 bits) Wed Dec 24 06:14:09 2008 using double large prime bound of 2934884765895450 (43-52 bits) Wed Dec 24 06:14:09 2008 using trial factoring cutoff of 52 bits Wed Dec 24 06:14:09 2008 polynomial 'A' values have 13 factors Wed Dec 24 14:57:37 2008 95665 relations (22800 full + 72865 combined from 1444038 partial), need 95353 Wed Dec 24 14:57:39 2008 begin with 1466838 relations Wed Dec 24 14:57:40 2008 reduce to 252523 relations in 11 passes Wed Dec 24 14:57:40 2008 attempting to read 252523 relations Wed Dec 24 14:57:45 2008 recovered 252523 relations Wed Dec 24 14:57:45 2008 recovered 241794 polynomials Wed Dec 24 14:57:45 2008 attempting to build 95665 cycles Wed Dec 24 14:57:45 2008 found 95665 cycles in 6 passes Wed Dec 24 14:57:45 2008 distribution of cycle lengths: Wed Dec 24 14:57:45 2008 length 1 : 22800 Wed Dec 24 14:57:45 2008 length 2 : 16294 Wed Dec 24 14:57:45 2008 length 3 : 15927 Wed Dec 24 14:57:45 2008 length 4 : 13040 Wed Dec 24 14:57:45 2008 length 5 : 10046 Wed Dec 24 14:57:45 2008 length 6 : 6811 Wed Dec 24 14:57:45 2008 length 7 : 4397 Wed Dec 24 14:57:45 2008 length 9+: 6350 Wed Dec 24 14:57:45 2008 largest cycle: 23 relations Wed Dec 24 14:57:45 2008 matrix is 95257 x 95665 (25.5 MB) with weight 6314404 (66.01/col) Wed Dec 24 14:57:45 2008 sparse part has weight 6314404 (66.01/col) Wed Dec 24 14:57:47 2008 filtering completed in 3 passes Wed Dec 24 14:57:47 2008 matrix is 91395 x 91459 (24.5 MB) with weight 6046936 (66.12/col) Wed Dec 24 14:57:47 2008 sparse part has weight 6046936 (66.12/col) Wed Dec 24 14:57:47 2008 saving the first 48 matrix rows for later Wed Dec 24 14:57:47 2008 matrix is 91347 x 91459 (14.3 MB) with weight 4688883 (51.27/col) Wed Dec 24 14:57:47 2008 sparse part has weight 3211621 (35.12/col) Wed Dec 24 14:57:47 2008 matrix includes 64 packed rows Wed Dec 24 14:57:47 2008 using block size 36583 for processor cache size 1024 kB Wed Dec 24 14:57:48 2008 commencing Lanczos iteration Wed Dec 24 14:57:48 2008 memory use: 14.5 MB Wed Dec 24 14:58:43 2008 lanczos halted after 1447 iterations (dim = 91341) Wed Dec 24 14:58:43 2008 recovered 13 nontrivial dependencies Wed Dec 24 14:58:44 2008 prp32 factor: 30490364046617984017424864824609 Wed Dec 24 14:58:44 2008 prp68 factor: 13891636547419071980552984173367140215460386040448597016954924515941 Wed Dec 24 14:58:44 2008 elapsed time 08:44:38
(38·10139+61)/9 = 4(2)1389<140> = 7 · 43 · 79 · 118751 · 13963483 · C124
C124 = P41 · P83
P41 = 40995216861330514782493424946046859932427<41>
P83 = 26120607663077197279728695742834580519372241488994079940765343709210850548980030161<83>
Number: 42229_139 N=1070819975697581372026915209957136700305843805306366832768537504626396109208627745838362563415637931633490196373116881930747 ( 124 digits) SNFS difficulty: 141 digits. Divisors found: r1=40995216861330514782493424946046859932427 r2=26120607663077197279728695742834580519372241488994079940765343709210850548980030161 Version: Total time: 6.97 hours. Scaled time: 14.00 units (timescale=2.010). Factorization parameters were as follows: name: 42229_139 n: 1070819975697581372026915209957136700305843805306366832768537504626396109208627745838362563415637931633490196373116881930747 m: 10000000000000000000000000000 deg: 5 c5: 19 c0: 305 skew: 1.74 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 208332 x 208580 Total sieving time: 6.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.97 hours. --------- CPU info (if available) ----------
(13·10139-7)/3 = 4(3)1381<140> = 35561357833129779817<20> · 339685932960896082541<21> · C100
C100 = P42 · P58
P42 = 580227981425170480885365056415884167587353<42>
P58 = 6182548491273330202741775652459471890874048806489022017791<58>
Number: 43331_139 N=3587287631154757617814951158449886668895226167431297560934889849904751035171338016447415764312597223 ( 100 digits) SNFS difficulty: 141 digits. Divisors found: r1=580227981425170480885365056415884167587353 r2=6182548491273330202741775652459471890874048806489022017791 Version: Total time: 7.16 hours. Scaled time: 18.36 units (timescale=2.564). Factorization parameters were as follows: name: 43331_139 n: 3587287631154757617814951158449886668895226167431297560934889849904751035171338016447415764312597223 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 267552 x 267800 Total sieving time: 7.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 7.16 hours. --------- CPU info (if available) ----------
(13·10136-7)/3 = 4(3)1351<137> = 41 · 461 · 1097 · 1144019 · 6912769 · C117
C117 = P39 · P79
P39 = 153868017024233492936781291144992798777<39>
P79 = 1717501200001193868071551512936241855900994787663081370386972669289649929323709<79>
Number: 43331_136 N=264268503880925151311871568681403279980594971164576904562485281555967178805595058087289716052263653659523810732303893 ( 117 digits) SNFS difficulty: 138 digits. Divisors found: r1=153868017024233492936781291144992798777 r2=1717501200001193868071551512936241855900994787663081370386972669289649929323709 Version: Total time: 4.87 hours. Scaled time: 12.50 units (timescale=2.564). Factorization parameters were as follows: name: 43331_136 n: 264268503880925151311871568681403279980594971164576904562485281555967178805595058087289716052263653659523810732303893 m: 2000000000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 1410000 alim: 1410000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1410000/1410000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [705000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194934 x 195182 Total sieving time: 4.87 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1410000,1410000,26,26,48,48,2.3,2.3,75000 total time: 4.87 hours. --------- CPU info (if available) ----------
(38·10140+61)/9 = 4(2)1399<141> = 3 · 11 · 132 · 409 · 66376463 · C127
C127 = P61 · P66
P61 = 4363189719756629305373249732984127052389932144242640081636599<61>
P66 = 639144315774237606362299455808713290546585132219180798704818559069<66>
Number: 42229_140 N=2788707908027038368820676356991699645995675322839068899344297739110534039864931465687628595805788445793745961473494234473766331 ( 127 digits) SNFS difficulty: 141 digits. Divisors found: r1=4363189719756629305373249732984127052389932144242640081636599 r2=639144315774237606362299455808713290546585132219180798704818559069 Version: Total time: 6.86 hours. Scaled time: 13.78 units (timescale=2.010). Factorization parameters were as follows: name: 42227_140 n: 2788707908027038368820676356991699645995675322839068899344297739110534039864931465687628595805788445793745961473494234473766331 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 249081 x 249329 Total sieving time: 6.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 6.86 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
(13·10124-7)/3 = 4(3)1231<125> = 67 · 1697 · 60793 · C115
C115 = P43 · P73
P43 = 1498047185326462845874791264840983789868623<43>
P73 = 4184912521601170246850918800640022065043403650310690001096570127074950871<73>
Number: n N=6269196423822103232539740936099023112203802212838271361405353100480408276012089605380855071374200647972655269420633 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=1498047185326462845874791264840983789868623 (pp43) r2=4184912521601170246850918800640022065043403650310690001096570127074950871 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.99 hours. Scaled time: 3.64 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_123_1 n: 6269196423822103232539740936099023112203802212838271361405353100480408276012089605380855071374200647972655269420633 type: snfs skew: 1.40 deg: 5 c5: 13 c0: -70 m: 10000000000000000000000000 rlim: 650000 alim: 650000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 650000/650000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [325000, 605001) Primes: RFBsize:52831, AFBsize:53207, largePrimes:6633415 encountered Relations: rels:5890129, finalFF:152374 Max relations in full relation-set: 48 Initial matrix: 106103 x 152374 with sparse part having weight 24339461. Pruned matrix : 100481 x 101075 with weight 12235988. Total sieving time: 1.78 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.08 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,650000,650000,28,28,56,56,2.5,2.5,50000 total time: 1.99 hours. --------- CPU info (if available) ----------
(13·10135-7)/3 = 4(3)1341<136> = 21521 · 376824788300183<15> · C117
C117 = P46 · P71
P46 = 7462194341926544919338500194924283255312005077<46>
P71 = 71606695242654519563333342916952318853502485124430637614152778256430721<71>
Number: n N=534343076083794997371281760082808935626601181033359381519995052241174855210527261550171279430169719357538447850770517 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=7462194341926544919338500194924283255312005077 (pp46) r2=71606695242654519563333342916952318853502485124430637614152778256430721 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.56 hours. Scaled time: 6.51 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_134_1 n: 534343076083794997371281760082808935626601181033359381519995052241174855210527261550171279430169719357538447850770517 type: snfs skew: 0.88 deg: 5 c5: 13 c0: -7 m: 1000000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [500000, 1020001) Primes: RFBsize:78498, AFBsize:78306, largePrimes:9031572 encountered Relations: rels:8076284, finalFF:178919 Max relations in full relation-set: 48 Initial matrix: 156869 x 178919 with sparse part having weight 27811347. Pruned matrix : 154011 x 154859 with weight 21176060. Total sieving time: 3.13 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.26 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,56,56,2.5,2.5,75000 total time: 3.56 hours. --------- CPU info (if available) ----------
(34·10185+11)/9 = 3(7)1849<186> = 1039 · C183
C183 = P36 · P56 · P91
P36 = 553108953256060747840665463564358923<36>
P56 = 84899358098754026519470500100735842692276241566795948069<56>
P91 = 7742937698796390773077022171625908268690825320600198553953076059596260413718230752249653803<91>
GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 363597476205753395358785156667736071008448294300074858303924713934338573414608063308737033472355897764944925676398246176879478130681210565714896802481018072933376109507004598438669661 (183 digits) Using B1=1830000, B2=1986068894, polynomial Dickson(6), sigma=2182743119 Step 1 took 41688ms Step 2 took 20734ms ********** Factor found in step 2: 553108953256060747840665463564358923 Found probable prime factor of 36 digits: 553108953256060747840665463564358923 Composite cofactor 657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 has 147 digits Number: n N=657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 ( 147 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 24 13:32:23 2008 prp56 factor: 84899358098754026519470500100735842692276241566795948069 Wed Dec 24 13:32:23 2008 prp91 factor: 7742937698796390773077022171625908268690825320600198553953076059596260413718230752249653803 Wed Dec 24 13:32:23 2008 elapsed time 20:34:53 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 70.68 hours. Scaled time: 46.58 units (timescale=0.659). Factorization parameters were as follows: name: KA_3_7_184_9 n: 657370440426457224196909528676015642805819843550172264758862997221749950147843630565666366392439605388006719253164554952138526942848104848416356407 type: snfs skew: 0.80 deg: 5 c5: 34 c0: 11 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 3150001) Primes: RFBsize:571119, AFBsize:571308, largePrimes:32711526 encountered Relations: rels:29594547, finalFF:1086092 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 4539192 hash collisions in 33167915 relations Msieve: matrix is 1455727 x 1455975 (395.1 MB) Total sieving time: 68.38 hours. Total relation processing time: 2.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 70.68 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39, Msieve-1.39+pol51 gnfs
(38·10144+61)/9 = 4(2)1439<145> = 11 · 503 · 919 · 16719328669<11> · 5872408641739<13> · C115
C115 = P33 · P39 · P45
P33 = 185958730996919530697610925218379<33>
P39 = 435936853888932377299397412491753686571<39>
P45 = 104325299889160694313575763049847352543268633<45>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1036791296 Step 1 took 8186ms Step 2 took 9254ms ********** Factor found in step 2: 185958730996919530697610925218379 Found probable prime factor of 33 digits: 185958730996919530697610925218379 Composite cofactor has 83 digits Tue Dec 23 05:15:51 2008 Tue Dec 23 05:15:51 2008 Msieve v. 1.39 Tue Dec 23 05:15:51 2008 random seeds: 90094d45 a7ce150a Tue Dec 23 05:15:51 2008 factoring 45479243014700098733299390696402372968311259821857132401813685792934459068137627443 (83 digits) Tue Dec 23 05:15:52 2008 searching for 15-digit factors Tue Dec 23 05:15:52 2008 commencing quadratic sieve (83-digit input) Tue Dec 23 05:15:52 2008 using multiplier of 3 Tue Dec 23 05:15:52 2008 using 64kb Opteron sieve core Tue Dec 23 05:15:52 2008 sieve interval: 6 blocks of size 65536 Tue Dec 23 05:15:52 2008 processing polynomials in batches of 17 Tue Dec 23 05:15:52 2008 using a sieve bound of 1368329 (52647 primes) Tue Dec 23 05:15:52 2008 using large prime bound of 121781281 (26 bits) Tue Dec 23 05:15:52 2008 using trial factoring cutoff of 27 bits Tue Dec 23 05:15:52 2008 polynomial 'A' values have 11 factors Tue Dec 23 05:38:35 2008 52767 relations (26541 full + 26226 combined from 280810 partial), need 52743 Tue Dec 23 05:38:35 2008 begin with 307351 relations Tue Dec 23 05:38:35 2008 reduce to 75673 relations in 2 passes Tue Dec 23 05:38:35 2008 attempting to read 75673 relations Tue Dec 23 05:38:36 2008 recovered 75673 relations Tue Dec 23 05:38:36 2008 recovered 69585 polynomials Tue Dec 23 05:38:36 2008 attempting to build 52767 cycles Tue Dec 23 05:38:36 2008 found 52767 cycles in 1 passes Tue Dec 23 05:38:36 2008 distribution of cycle lengths: Tue Dec 23 05:38:36 2008 length 1 : 26541 Tue Dec 23 05:38:36 2008 length 2 : 26226 Tue Dec 23 05:38:36 2008 largest cycle: 2 relations Tue Dec 23 05:38:36 2008 matrix is 52647 x 52767 (8.0 MB) with weight 1682549 (31.89/col) Tue Dec 23 05:38:36 2008 sparse part has weight 1682549 (31.89/col) Tue Dec 23 05:38:37 2008 filtering completed in 3 passes Tue Dec 23 05:38:37 2008 matrix is 38828 x 38887 (6.4 MB) with weight 1373197 (35.31/col) Tue Dec 23 05:38:37 2008 sparse part has weight 1373197 (35.31/col) Tue Dec 23 05:38:37 2008 saving the first 48 matrix rows for later Tue Dec 23 05:38:37 2008 matrix is 38780 x 38887 (4.3 MB) with weight 1039749 (26.74/col) Tue Dec 23 05:38:37 2008 sparse part has weight 747149 (19.21/col) Tue Dec 23 05:38:37 2008 matrix includes 64 packed rows Tue Dec 23 05:38:37 2008 using block size 15554 for processor cache size 1024 kB Tue Dec 23 05:38:37 2008 commencing Lanczos iteration Tue Dec 23 05:38:37 2008 memory use: 4.3 MB Tue Dec 23 05:38:42 2008 lanczos halted after 615 iterations (dim = 38778) Tue Dec 23 05:38:42 2008 recovered 17 nontrivial dependencies Tue Dec 23 05:38:42 2008 prp39 factor: 435936853888932377299397412491753686571 Tue Dec 23 05:38:42 2008 prp45 factor: 104325299889160694313575763049847352543268633 Tue Dec 23 05:38:42 2008 elapsed time 00:22:51
(38·10145+43)/9 = 4(2)1447<146> = 1663 · 1723 · C140
C140 = P48 · P93
P48 = 143361658105740544577121897169041849714893542691<48>
P93 = 102785190506482758977581155294308544825255338892896261035565418692162299061389923861016260253<93>
SNFS difficulty: 146 digits. Divisors found: r1=143361658105740544577121897169041849714893542691 (pp48) r2=102785190506482758977581155294308544825255338892896261035565418692162299061389923861016260253 (pp93) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.286). Factorization parameters were as follows: n: 14735455339723790094059125859440585500133569147151785776260491207954850254618973891914116647648234899910001267636934356764995196823221960823 m: 100000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2570001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 336574 x 336822 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 11.00 hours.
(38·10153+43)/9 = 4(2)1527<154> = 32 · C153
C153 = P69 · P85
P69 = 429658841311150490118038632706779529774463197589532158877111287918973<69>
P85 = 1091879783126345287514741812724212614608670024173592287059530931202710184194869602711<85>
SNFS difficulty: 155 digits. Divisors found: r1=429658841311150490118038632706779529774463197589532158877111287918973 (pp69) r2=1091879783126345287514741812724212614608670024173592287059530931202710184194869602711 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135802469135803 m: 5000000000000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 565118 x 565366 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 12.00 hours.
(38·10146+61)/9 = 4(2)1459<147> = 3 · 11 · 13 · 743 · C142
C142 = P35 · P107
P35 = 29371295975761612541641795908618293<35>
P107 = 45099515002463330270041583910624200505787042854484125648106218811048271349055997284919050293096397504594099<107>
SNFS difficulty: 147 digits. Divisors found: r1=29371295975761612541641795908618293 (pp35) r2=45099515002463330270041583910624200505787042854484125648106218811048271349055997284919050293096397504594099 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1324631203500651683693406439032280216667834433648700135914133222343181966331360678601593810207538336744258682347511418843854913841454891253007 m: 100000000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 2000000 alim: 2000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1000000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 294682 x 294930 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,26,26,49,49,2.3,2.3,200000 total time: 6.00 hours.
(13·10145-7)/3 = 4(3)1441<146> = 3709 · 3847 · 2170109 · 39052045075867533488696837658421<32> · C101
C101 = P35 · P66
P35 = 78208945654866767181969270770471203<35>
P66 = 458206575016335709488301915918886731111651833495759452288453585491<66>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3061227314 Step 1 took 8259ms Step 2 took 8999ms ********** Factor found in step 2: 78208945654866767181969270770471203 Found probable prime factor of 35 digits: 78208945654866767181969270770471203 Probable prime cofactor 458206575016335709488301915918886731111651833495759452288453585491 has 66 digits
(13·10162-7)/3 = 4(3)1611<163> = 97 · 4001 · 239027 · 365699 · 179076571 · 30747058603981<14> · C125
C125 = P32 · P93
P32 = 35369121000324091221140788630633<32>
P93 = 655910323226196685402316639620192425902591627772168768126116843748558306589316695535468462797<93>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3840470679 Step 1 took 9843ms Step 2 took 10386ms ********** Factor found in step 2: 35369121000324091221140788630633 Found probable prime factor of 32 digits: 35369121000324091221140788630633 Probable prime cofactor 655910323226196685402316639620192425902591627772168768126116843748558306589316695535468462797 has 93 digits
(13·10140-7)/3 = 4(3)1391<141> = 4152577859<10> · C132
C132 = P46 · P86
P46 = 1618888627972634184177225680705039794519589281<46>
P86 = 64459560671406830134081826137348849162306203510285790506146547055011181477654430473489<86>
SNFS difficulty: 141 digits. Divisors found: r1=1618888627972634184177225680705039794519589281 (pp46) r2=64459560671406830134081826137348849162306203510285790506146547055011181477654430473489 (pp86) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.673). Factorization parameters were as follows: n: 104352849735052573600242117298572566832474972586259539976354079321149059118299684921894039635232118915300832492670990117450639071409 m: 10000000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [785000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 261172 x 261420 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,49,49,2.3,2.3,100000 total time: 3.90 hours.
(38·10154+61)/9 = 4(2)1539<155> = 11 · 3598943 · C148
C148 = P56 · P92
P56 = 15141979967594079491718919468985969669399230154355609013<56>
P92 = 70435364495469228989127803857011940423160477324626942530227526262722573852534558759089710621<92>
SNFS difficulty: 156 digits. Divisors found: r1=15141979967594079491718919468985969669399230154355609013 (pp56) r2=70435364495469228989127803857011940423160477324626942530227526262722573852534558759089710621 (pp92) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.307). Factorization parameters were as follows: n: 1066530878200582333156814053010519584177460948501779101207877934822484930669472630820726636637030327622259753443826100714526010508747662406389427073 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: 305 skew: 1.74 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 470528 x 470776 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 17.00 hours.
(13·10194-7)/3 = 4(3)1931<195> = 3881 · 4040009 · 12429749 · 4005775577929<13> · 66007507859850270736596089399561<32> · C133
C133 = P31 · P103
P31 = 4448855391179499901841920088701<31>
P103 = 1890190271245129714956635517993862966113876278013600663354393732491301918077570212567736137795152565619<103>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1699384495 Step 1 took 9871ms Step 2 took 10861ms ********** Factor found in step 2: 4448855391179499901841920088701 Found probable prime factor of 31 digits: 4448855391179499901841920088701 Probable prime cofactor has 103 digits
(38·10174+61)/9 = 4(2)1739<175> = 11 · 557 · 23333 · 59218732301<11> · C156
C156 = P42 · C115
P42 = 262088313569048659823633945899080702035203<42>
C115 = [1902899549437374369035951375932780225773552267114939321874434723505133347794160411662937567103887497100312817310473<115>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=113264461 Step 1 took 13984ms Step 2 took 13062ms ********** Factor found in step 2: 262088313569048659823633945899080702035203 Found probable prime factor of 42 digits: 262088313569048659823633945899080702035203 Composite cofactor has 115 digits
(13·10203-7)/3 = 4(3)2021<204> = 127 · 259042595353901<15> · C188
C188 = P38 · P150
P38 = 63444856538474819856481993655770160539<38>
P150 = 207611197901601014143416821146774403219826219131558291970037945989725439970919940184172631734257013957795695677276118342125803124864277075013790561427<150>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3263277877 Step 1 took 12681ms Step 2 took 11857ms ********** Factor found in step 2: 63444856538474819856481993655770160539 Found probable prime factor of 38 digits: 63444856538474819856481993655770160539 Probable prime cofactor has 150 digits
(13·10152-7)/3 = 4(3)1511<153> = 233 · 40277009 · C143
C143 = P41 · P103
P41 = 20031893966274074423596077442708505693053<41>
P103 = 2305085038050452143230599323022197163476467261349173660893918734016736964140945346920717888247983995591<103>
SNFS difficulty: 154 digits. Divisors found: r1=20031893966274074423596077442708505693053 (pp41) r2=2305085038050452143230599323022197163476467261349173660893918734016736964140945346920717888247983995591 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.689). Factorization parameters were as follows: n: 46175219065471497544696430236163828161418409151702714305658788678833996656676372801075680683544452514045855985835996777599255062948253551329323 m: 2000000000000000000000000000000 deg: 5 c5: 325 c0: -56 skew: 0.70 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 503364 x 503612 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
(16·10220-61)/9 = 1(7)2191<221> = 13 · 353 · 1877 · 16492937 · 1805034167<10> · 937019983238111<15> · 55949358235598934650206505967480781<35> · C148
C148 = P63 · P85
P63 = 502302273034882362079860646223768728379203876736278008316737227<63>
P85 = 2632707497199637986790781217412309087011431749152792902304523313521897147926180843269<85>
Number: 17771_220 N=1322414960079354351709834861520621170706984511895469829631709464819715591749118547779968053941698236864151284187903149814300379387206849149544675063 ( 148 digits) Divisors found: r1=502302273034882362079860646223768728379203876736278008316737227 (pp63) r2=2632707497199637986790781217412309087011431749152792902304523313521897147926180843269 (pp85) Version: Msieve-1.39 Total time: 1400.00 hours. Scaled time: 3830.40 units (timescale=2.736). Factorization parameters were as follows: name: 17771_220 n: 1322414960079354351709834861520621170706984511895469829631709464819715591749118547779968053941698236864151284187903149814300379387206849149544675063 skew: 190966.40 c5: 24166860 c4: -17657193107092 c3: -2881381445141050978 c2: 749005469110315625842208 c1: -28000830886921387321901315893 c0: 8308569654994887332138921957235 Y1: 253242919256012579 Y0: -8864032069059734770877792666 # norm 2.53e+20 # alpha -5.85 # Murphy_E 7.15e-12 type: gnfs rlim: 36000000 alim: 36000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 36000000/36000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved algebraic special-q in [18000000, 19000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 3086519 x 3086767 Total sieving time: 1280.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 30.00 hours (4 cpu) Time per square root: 1.50 hours. Prototype def-par.txt line would be: gnfs,147,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,36000000,36000000,29,29,58,58,2.6,2.6,100000 total time: 1400.00 hours.
C148 is the largest number which was factored by GNFS in our tables so far. Congratulations!
By Serge Batalov / GMP-ECM 6.2.1
(38·10205+61)/9 = 4(2)2049<206> = 7 · 996172031694311<15> · C190
C190 = P39 · C152
P39 = 604708101318908926128095438473785832727<39>
C152 = [10012970019827499748751154328820037782074317676296066223065340785954584373285105326974194401949500349014357279371189711576864463523554910181915957776451<152>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3954599440 Step 1 took 16015ms Step 2 took 15053ms ********** Factor found in step 2: 604708101318908926128095438473785832727 Found probable prime factor of 39 digits: 604708101318908926128095438473785832727 Composite cofactor has 152 digits
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10129+61)/9 = 4(2)1289<130> = 113 · 212476189 · 206782920150614243<18> · C102
C102 = P31 · P72
P31 = 6877800995261078438976596986477<31>
P72 = 123648287482431227866137204018035742921025020239320352409776567579513327<72>
Factor found in step 1: 6877800995261078438976596986477
(38·10151+61)/9 = 4(2)1509<152> = 7 · 1117 · 20743 · 192637 · 82137278791<11> · C128
C128 = P29 · P99
P29 = 56185303161233834414804494597<29>
P99 = 292829995865447732444269891383468434429946313251210428873631095088198685156325342448697256025078463<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3917450993 Step 1 took 9731ms Step 2 took 10584ms ********** Factor found in step 2: 56185303161233834414804494597 Found probable prime factor of 29 digits: 56185303161233834414804494597 Probable prime cofactor 292829995865447732444269891383468434429946313251210428873631095088198685156325342448697256025078463 has 99 digits
(13·10145-7)/3 = 4(3)1441<146> = 3709 · 3847 · 2170109 · C133
C133 = P32 · C101
P32 = 39052045075867533488696837658421<32>
C101 = [35835853124155232087376837262708155018312446867976450226551174108265579054212486580985798592914115673<101>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2266195174 Step 1 took 9764ms Step 2 took 10698ms ********** Factor found in step 2: 39052045075867533488696837658421 Found probable prime factor of 32 digits: 39052045075867533488696837658421 Composite cofactor has 101 digits
(13·10186-7)/3 = 4(3)1851<187> = 29 · 41 · 1723 · 2881969280353873<16> · C165
C165 = P34 · C132
P34 = 2267180036234447141280701752917889<34>
C132 = [323727512032728409566065549304498685213258027853771402670265835962965506247762803100126933161757433369766377101984695411470824717509<132>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=980914334 Step 1 took 13664ms Step 2 took 13602ms ********** Factor found in step 2: 2267180036234447141280701752917889 Found probable prime factor of 34 digits: 2267180036234447141280701752917889 Composite cofactor has 132 digits
(13·10194-7)/3 = 4(3)1931<195> = 3881 · 4040009 · 12429749 · 4005775577929<13> · C165
C165 = P32 · C133
P32 = 66007507859850270736596089399561<32>
C133 = [8409183178583936583030174346844415915814492342050749419119294169308338808320971385476178209350780286513505479940764510332776202970919<133>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=230614363 Step 1 took 13630ms Step 2 took 13457ms ********** Factor found in step 2: 66007507859850270736596089399561 Found probable prime factor of 32 digits: 66007507859850270736596089399561 Composite cofactor 8409183178583936583030174346844415915814492342050749419119294169308338808320971385476178209350780286513505479940764510332776202970919 has 133 digits
(38·10180+61)/9 = 4(2)1799<181> = 112 · 193 · 2125621 · 9206214079<10> · 61673945456472526189<20> · C141
C141 = P32 · P109
P32 = 37615930741760579786512667771617<32>
P109 = 3982519964961393426250352239850021980260372565021485335616685544317069003492639457212340339450474841652800179<109>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1328187747 Step 1 took 11835ms Step 2 took 11587ms ********** Factor found in step 2: 37615930741760579786512667771617 Found probable prime factor of 32 digits: 37615930741760579786512667771617 Probable prime cofactor 3982519964961393426250352239850021980260372565021485335616685544317069003492639457212340339450474841652800179 has 109 digits
(38·10175+61)/9 = 4(2)1749<176> = 7 · 48661 · C171
C171 = P31 · C140
P31 = 1740394642983557583386337035393<31>
C140 = [71222018811833964655417651567953033432448526235056638873220031832622185237876237006720634532335848847765089902608605674576837157124980845239<140>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=205899236 Step 1 took 13705ms ********** Factor found in step 1: 1740394642983557583386337035393 Found probable prime factor of 31 digits: 1740394642983557583386337035393 Composite cofactor has 140 digits
(13·10204-7)/3 = 4(3)2031<205> = 119179 · 279991 · 11574691 · 21512664293<11> · C177
C177 = P32 · P146
P32 = 26308325916731982485427287860457<32>
P146 = 19823551780928035006602671905281634246612561791914656475871110593336489297213306083897826212562111916418038463405766923512493202714696938292099769<146>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1594125605 Step 1 took 16110ms Step 2 took 14725ms ********** Factor found in step 2: 26308325916731982485427287860457 Found probable prime factor of 32 digits: 26308325916731982485427287860457 Probable prime cofactor has 146 digits
(13·10193-7)/3 = 4(3)1921<194> = 151 · 10209190744703<14> · C179
C179 = P31 · C148
P31 = 7709568588244219307028066227297<31>
C148 = [3646059534317701069724515171275791765391252664992167269599666190068435969269326867841860958544963686066522189227458537555849678015726858695874479291<148>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2528423854 Step 1 took 15951ms Step 2 took 14697ms ********** Factor found in step 2: 7709568588244219307028066227297 Found probable prime factor of 31 digits: 7709568588244219307028066227297 Composite cofactor has 148 digits
(13·10125-7)/3 = 4(3)1241<126> = 17 · 19 · 137 · 3943 · 80849611 · C110
C110 = P39 · P71
P39 = 756960282992795240590601586497232434921<39>
P71 = 40580855963552503455078830310304821124582047703016518551277824518526757<71>
SNFS difficulty: 126 digits. Divisors found: r1=756960282992795240590601586497232434921 (pp39) r2=40580855963552503455078830310304821124582047703016518551277824518526757 (pp71) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 30718096214260565396870102557694086018037165181434351721059131933001350211212314245444509148935415858799681197 m: 10000000000000000000000000 deg: 5 c5: 13 c0: -7 skew: 0.88 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [445000, 695001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 125763 x 125999 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,49,49,2.3,2.3,50000 total time: 1.30 hours.
By Sinkiti Sibata / Msieve
(38·10155+43)/9 = 4(2)1547<156> = 13 · 648404825447551<15> · C140
C140 = P62 · P78
P62 = 68502326768501726934975760518634987979255867421670311224348881<62>
P78 = 731216821236048149998573343592774757206363666972266538567208965878323259710609<78>
Number: 42227_155 N=50090053626936883206705630949905665484857244831913664200001658149686866574332055065172584204637245327813337676459217261678272501746512978529 ( 140 digits) SNFS difficulty: 156 digits. Divisors found: r1=68502326768501726934975760518634987979255867421670311224348881 r2=731216821236048149998573343592774757206363666972266538567208965878323259710609 Version: Total time: 32.15 hours. Scaled time: 82.43 units (timescale=2.564). Factorization parameters were as follows: name: 42227_155 n: 50090053626936883206705630949905665484857244831913664200001658149686866574332055065172584204637245327813337676459217261678272501746512978529 m: 10000000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 560105 x 560353 Total sieving time: 32.15 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 32.15 hours. --------- CPU info (if available) ----------
(37·10156+17)/9 = 4(1)1553<157> = 33 · 29 · 10189769 · 13778351 · 2556268457<10> · C131
C131 = P34 · P97
P34 = 3797525954125859456188033584306947<34>
P97 = 3852375905322761719761070474805539193083531228124173816698883017752530486655049572263981171562611<97>
Number: 42227_156 N=14629497485512292314226146150939449758591397444048985543210067506643763064342654028641902815319618485210777765254764855395452758617 ( 131 digits) SNFS difficulty: 158 digits. Divisors found: r1=3797525954125859456188033584306947 r2=3852375905322761719761070474805539193083531228124173816698883017752530486655049572263981171562611 Version: Total time: 30.38 hours. Scaled time: 60.50 units (timescale=1.991). Factorization parameters were as follows: name: 42227_156 n: 14629497485512292314226146150939449758591397444048985543210067506643763064342654028641902815319618485210777765254764855395452758617 m: 20000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 579590 x 579838 Total sieving time: 30.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 30.38 hours. --------- CPU info (if available) ----------
(38·10111+61)/9 = 4(2)1109<112> = 11339154493<11> · 7499477233123<13> · C89
C89 = P37 · P52
P37 = 7397064209141958485367330886373433809<37>
P52 = 6712279544020820708812321814113647261175372549034179<52>
Tue Dec 23 17:27:13 2008 Msieve v. 1.39 Tue Dec 23 17:27:13 2008 random seeds: 7cbef738 6f66a5b2 Tue Dec 23 17:27:13 2008 factoring 49651162776832117853392950700141070758766904970016036759288163519498755604332466735157811 (89 digits) Tue Dec 23 17:27:14 2008 searching for 15-digit factors Tue Dec 23 17:27:16 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 17:27:16 2008 using multiplier of 11 Tue Dec 23 17:27:16 2008 using 32kb Intel Core sieve core Tue Dec 23 17:27:16 2008 sieve interval: 32 blocks of size 32768 Tue Dec 23 17:27:16 2008 processing polynomials in batches of 7 Tue Dec 23 17:27:16 2008 using a sieve bound of 1556189 (58842 primes) Tue Dec 23 17:27:16 2008 using large prime bound of 124495120 (26 bits) Tue Dec 23 17:27:16 2008 using double large prime bound of 372626841652480 (42-49 bits) Tue Dec 23 17:27:16 2008 using trial factoring cutoff of 49 bits Tue Dec 23 17:27:16 2008 polynomial 'A' values have 11 factors Tue Dec 23 18:38:03 2008 59083 relations (15371 full + 43712 combined from 629948 partial), need 58938 Tue Dec 23 18:38:04 2008 begin with 645319 relations Tue Dec 23 18:38:04 2008 reduce to 144756 relations in 9 passes Tue Dec 23 18:38:04 2008 attempting to read 144756 relations Tue Dec 23 18:38:06 2008 recovered 144756 relations Tue Dec 23 18:38:06 2008 recovered 124039 polynomials Tue Dec 23 18:38:06 2008 attempting to build 59083 cycles Tue Dec 23 18:38:06 2008 found 59083 cycles in 5 passes Tue Dec 23 18:38:06 2008 distribution of cycle lengths: Tue Dec 23 18:38:06 2008 length 1 : 15371 Tue Dec 23 18:38:06 2008 length 2 : 11272 Tue Dec 23 18:38:06 2008 length 3 : 10572 Tue Dec 23 18:38:06 2008 length 4 : 7903 Tue Dec 23 18:38:06 2008 length 5 : 5658 Tue Dec 23 18:38:06 2008 length 6 : 3490 Tue Dec 23 18:38:06 2008 length 7 : 2178 Tue Dec 23 18:38:06 2008 length 9+: 2639 Tue Dec 23 18:38:06 2008 largest cycle: 20 relations Tue Dec 23 18:38:07 2008 matrix is 58842 x 59083 (14.7 MB) with weight 3621608 (61.30/col) Tue Dec 23 18:38:07 2008 sparse part has weight 3621608 (61.30/col) Tue Dec 23 18:38:07 2008 filtering completed in 3 passes Tue Dec 23 18:38:07 2008 matrix is 55011 x 55075 (13.8 MB) with weight 3403270 (61.79/col) Tue Dec 23 18:38:07 2008 sparse part has weight 3403270 (61.79/col) Tue Dec 23 18:38:08 2008 saving the first 48 matrix rows for later Tue Dec 23 18:38:08 2008 matrix is 54963 x 55075 (10.5 MB) with weight 2875828 (52.22/col) Tue Dec 23 18:38:08 2008 sparse part has weight 2420144 (43.94/col) Tue Dec 23 18:38:08 2008 matrix includes 64 packed rows Tue Dec 23 18:38:08 2008 using block size 22030 for processor cache size 1024 kB Tue Dec 23 18:38:08 2008 commencing Lanczos iteration Tue Dec 23 18:38:08 2008 memory use: 9.3 MB Tue Dec 23 18:38:29 2008 lanczos halted after 871 iterations (dim = 54961) Tue Dec 23 18:38:29 2008 recovered 17 nontrivial dependencies Tue Dec 23 18:38:29 2008 prp37 factor: 7397064209141958485367330886373433809 Tue Dec 23 18:38:29 2008 prp52 factor: 6712279544020820708812321814113647261175372549034179 Tue Dec 23 18:38:29 2008 elapsed time 01:11:16
(38·10157+43)/9 = 4(2)1567<158> = 3833 · 5659 · C151
C151 = P59 · P92
P59 = 91465142275684836616097261496147067070594607462692509039543<59>
P92 = 21281731504266448543814676309892699432806272010865082270499088002856980384586766615972344087<92>
Number: 42227_157 N=1946536599910654994557048257147197041338131628011548883606705701794496211816949357822976664975587383170602105211092084740339931779936681520738685232241 ( 151 digits) SNFS difficulty: 159 digits. Divisors found: r1=91465142275684836616097261496147067070594607462692509039543 r2=21281731504266448543814676309892699432806272010865082270499088002856980384586766615972344087 Version: Total time: 34.06 hours. Scaled time: 85.63 units (timescale=2.514). Factorization parameters were as follows: name:42227_157 n: 1946536599910654994557048257147197041338131628011548883606705701794496211816949357822976664975587383170602105211092084740339931779936681520738685232241 m: 20000000000000000000000000000000 deg: 5 c5: 475 c0: 172 skew: 0.82 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 522055 x 522303 Total sieving time: 34.06 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 34.06 hours. --------- CPU info (if available) ----------
(13·10116-7)/3 = 4(3)1151<117> = 41 · 105225587 · C108
C108 = P47 · P61
P47 = 20912340313401736804695249831314117167056127139<47>
P61 = 4803018351672359716761183080233491333287524164537900935628787<61>
Number: 43331_116 N=100442354301686248318155650268889154362152020216994424474504576240621884645894815542260238572668695980350393 ( 108 digits) SNFS difficulty: 118 digits. Divisors found: r1=20912340313401736804695249831314117167056127139 r2=4803018351672359716761183080233491333287524164537900935628787 Version: Total time: 1.52 hours. Scaled time: 3.02 units (timescale=1.991). Factorization parameters were as follows: name: 43331_116 n: 100442354301686248318155650268889154362152020216994424474504576240621884645894815542260238572668695980350393 m: 200000000000000000000000 deg: 5 c5: 65 c0: -112 skew: 1.11 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 530001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 68965 x 69199 Total sieving time: 1.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.52 hours. --------- CPU info (if available) ----------
(38·10122+61)/9 = 4(2)1219<123> = 3 · 11 · 13 · 1447 · 8190245732611<13> · 42734715820119503<17> · C88
C88 = P38 · P51
P38 = 17894098175364997990374216358774504223<38>
P51 = 108599467479248166102092723780312641021472824805237<51>
Tue Dec 23 18:47:15 2008 Msieve v. 1.39 Tue Dec 23 18:47:15 2008 random seeds: 160947d4 cef27f46 Tue Dec 23 18:47:15 2008 factoring 1943289532866025046805189916901455945080339390486360112365850271499631585958241209015851 (88 digits) Tue Dec 23 18:47:16 2008 searching for 15-digit factors Tue Dec 23 18:47:17 2008 commencing quadratic sieve (88-digit input) Tue Dec 23 18:47:17 2008 using multiplier of 19 Tue Dec 23 18:47:17 2008 using 32kb Intel Core sieve core Tue Dec 23 18:47:17 2008 sieve interval: 24 blocks of size 32768 Tue Dec 23 18:47:17 2008 processing polynomials in batches of 9 Tue Dec 23 18:47:17 2008 using a sieve bound of 1506511 (57333 primes) Tue Dec 23 18:47:17 2008 using large prime bound of 120520880 (26 bits) Tue Dec 23 18:47:17 2008 using double large prime bound of 351489263807840 (42-49 bits) Tue Dec 23 18:47:17 2008 using trial factoring cutoff of 49 bits Tue Dec 23 18:47:17 2008 polynomial 'A' values have 11 factors Tue Dec 23 19:37:18 2008 57729 relations (16066 full + 41663 combined from 603363 partial), need 57429 Tue Dec 23 19:37:19 2008 begin with 619429 relations Tue Dec 23 19:37:19 2008 reduce to 138258 relations in 10 passes Tue Dec 23 19:37:19 2008 attempting to read 138258 relations Tue Dec 23 19:37:21 2008 recovered 138258 relations Tue Dec 23 19:37:21 2008 recovered 115980 polynomials Tue Dec 23 19:37:21 2008 attempting to build 57729 cycles Tue Dec 23 19:37:21 2008 found 57729 cycles in 5 passes Tue Dec 23 19:37:21 2008 distribution of cycle lengths: Tue Dec 23 19:37:21 2008 length 1 : 16066 Tue Dec 23 19:37:21 2008 length 2 : 11406 Tue Dec 23 19:37:21 2008 length 3 : 10192 Tue Dec 23 19:37:21 2008 length 4 : 7446 Tue Dec 23 19:37:21 2008 length 5 : 5239 Tue Dec 23 19:37:21 2008 length 6 : 3296 Tue Dec 23 19:37:21 2008 length 7 : 1905 Tue Dec 23 19:37:21 2008 length 9+: 2179 Tue Dec 23 19:37:21 2008 largest cycle: 19 relations Tue Dec 23 19:37:21 2008 matrix is 57333 x 57729 (13.8 MB) with weight 3385288 (58.64/col) Tue Dec 23 19:37:21 2008 sparse part has weight 3385288 (58.64/col) Tue Dec 23 19:37:22 2008 filtering completed in 3 passes Tue Dec 23 19:37:22 2008 matrix is 52973 x 53036 (12.7 MB) with weight 3125748 (58.94/col) Tue Dec 23 19:37:22 2008 sparse part has weight 3125748 (58.94/col) Tue Dec 23 19:37:22 2008 saving the first 48 matrix rows for later Tue Dec 23 19:37:22 2008 matrix is 52925 x 53036 (9.3 MB) with weight 2584488 (48.73/col) Tue Dec 23 19:37:22 2008 sparse part has weight 2112719 (39.84/col) Tue Dec 23 19:37:22 2008 matrix includes 64 packed rows Tue Dec 23 19:37:22 2008 using block size 21214 for processor cache size 1024 kB Tue Dec 23 19:37:23 2008 commencing Lanczos iteration Tue Dec 23 19:37:23 2008 memory use: 8.5 MB Tue Dec 23 19:37:40 2008 lanczos halted after 838 iterations (dim = 52924) Tue Dec 23 19:37:41 2008 recovered 17 nontrivial dependencies Tue Dec 23 19:37:42 2008 prp38 factor: 17894098175364997990374216358774504223 Tue Dec 23 19:37:42 2008 prp51 factor: 108599467479248166102092723780312641021472824805237 Tue Dec 23 19:37:42 2008 elapsed time 00:50:27
(13·10119-7)/3 = 4(3)1181<120> = 23 · 127 · C117
C117 = P48 · P70
P48 = 113514518603811468544415778265029062834435682901<48>
P70 = 1306890282973394626750519136011642653347252960413338529753654668995311<70>
Number: 43331_119 N=148351021339723838867967591007645783407508844003195252767317128837156225037087755334930959716991897751911445851877211 ( 117 digits) SNFS difficulty: 121 digits. Divisors found: r1=113514518603811468544415778265029062834435682901 r2=1306890282973394626750519136011642653347252960413338529753654668995311 Version: Total time: 2.19 hours. Scaled time: 4.38 units (timescale=1.997). Factorization parameters were as follows: name: 43331_119 n: 148351021339723838867967591007645783407508844003195252767317128837156225037087755334930959716991897751911445851877211 m: 1000000000000000000000000 deg: 5 c5: 13 c0: -70 skew: 1.40 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 87580 x 87818 Total sieving time: 2.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.19 hours. --------- CPU info (if available) ----------
(38·10124+61)/9 = 4(2)1239<125> = 11 · 472 · 383 · 170711 · 1500390189343255882395007<25> · C89
C89 = P41 · P48
P41 = 63555308651323802072448928885255075100069<41>
P48 = 278699608001282959114888883431789684547614379749<48>
Tue Dec 23 20:12:21 2008 Msieve v. 1.39 Tue Dec 23 20:12:21 2008 random seeds: 7df503ec db120c14 Tue Dec 23 20:12:21 2008 factoring 17712839607524491181194896261236888181051603158412905861666362722760429830774699542102681 (89 digits) Tue Dec 23 20:12:22 2008 searching for 15-digit factors Tue Dec 23 20:12:24 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 20:12:24 2008 using multiplier of 1 Tue Dec 23 20:12:24 2008 using 32kb Intel Core sieve core Tue Dec 23 20:12:24 2008 sieve interval: 30 blocks of size 32768 Tue Dec 23 20:12:24 2008 processing polynomials in batches of 7 Tue Dec 23 20:12:24 2008 using a sieve bound of 1546837 (58547 primes) Tue Dec 23 20:12:24 2008 using large prime bound of 123746960 (26 bits) Tue Dec 23 20:12:24 2008 using double large prime bound of 368605688486800 (42-49 bits) Tue Dec 23 20:12:24 2008 using trial factoring cutoff of 49 bits Tue Dec 23 20:12:24 2008 polynomial 'A' values have 11 factors Tue Dec 23 21:02:17 2008 58671 relations (16518 full + 42153 combined from 614508 partial), need 58643 Tue Dec 23 21:02:18 2008 begin with 631026 relations Tue Dec 23 21:02:19 2008 reduce to 139761 relations in 11 passes Tue Dec 23 21:02:19 2008 attempting to read 139761 relations Tue Dec 23 21:02:20 2008 recovered 139761 relations Tue Dec 23 21:02:20 2008 recovered 112916 polynomials Tue Dec 23 21:02:20 2008 attempting to build 58671 cycles Tue Dec 23 21:02:21 2008 found 58671 cycles in 6 passes Tue Dec 23 21:02:21 2008 distribution of cycle lengths: Tue Dec 23 21:02:21 2008 length 1 : 16518 Tue Dec 23 21:02:21 2008 length 2 : 11650 Tue Dec 23 21:02:21 2008 length 3 : 10419 Tue Dec 23 21:02:21 2008 length 4 : 7564 Tue Dec 23 21:02:21 2008 length 5 : 5203 Tue Dec 23 21:02:21 2008 length 6 : 3267 Tue Dec 23 21:02:21 2008 length 7 : 1916 Tue Dec 23 21:02:21 2008 length 9+: 2134 Tue Dec 23 21:02:21 2008 largest cycle: 19 relations Tue Dec 23 21:02:21 2008 matrix is 58547 x 58671 (13.9 MB) with weight 3403013 (58.00/col) Tue Dec 23 21:02:21 2008 sparse part has weight 3403013 (58.00/col) Tue Dec 23 21:02:21 2008 filtering completed in 3 passes Tue Dec 23 21:02:21 2008 matrix is 53864 x 53928 (12.9 MB) with weight 3170121 (58.78/col) Tue Dec 23 21:02:21 2008 sparse part has weight 3170121 (58.78/col) Tue Dec 23 21:02:22 2008 saving the first 48 matrix rows for later Tue Dec 23 21:02:22 2008 matrix is 53816 x 53928 (9.1 MB) with weight 2584186 (47.92/col) Tue Dec 23 21:02:22 2008 sparse part has weight 2066484 (38.32/col) Tue Dec 23 21:02:22 2008 matrix includes 64 packed rows Tue Dec 23 21:02:22 2008 using block size 21571 for processor cache size 1024 kB Tue Dec 23 21:02:22 2008 commencing Lanczos iteration Tue Dec 23 21:02:22 2008 memory use: 8.4 MB Tue Dec 23 21:02:40 2008 lanczos halted after 853 iterations (dim = 53814) Tue Dec 23 21:02:40 2008 recovered 16 nontrivial dependencies Tue Dec 23 21:02:41 2008 prp41 factor: 63555308651323802072448928885255075100069 Tue Dec 23 21:02:41 2008 prp48 factor: 278699608001282959114888883431789684547614379749 Tue Dec 23 21:02:41 2008 elapsed time 00:50:20
(38·10123+61)/9 = 4(2)1229<124> = 59 · 29050033885209937<17> · C106
C106 = P38 · P68
P38 = 90758930904109184231531507553783048527<38>
P68 = 27142700885477796848302781645863411898017548539507764956042342567569<68>
Number: 42229_123 N=2463442514215982536119131591935078249728878201624727560526653267928776465809352361520806512445821303420863 ( 106 digits) SNFS difficulty: 125 digits. Divisors found: r1=90758930904109184231531507553783048527 r2=27142700885477796848302781645863411898017548539507764956042342567569 Version: Total time: 1.88 hours. Scaled time: 4.84 units (timescale=2.575). Factorization parameters were as follows: name: 42229_123 n: 2463442514215982536119131591935078249728878201624727560526653267928776465809352361520806512445821303420863 m: 5000000000000000000000000 deg: 5 c5: 304 c0: 1525 skew: 1.38 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 111021 x 111261 Total sieving time: 1.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.88 hours. --------- CPU info (if available) ----------
(38·10131+61)/9 = 4(2)1309<132> = 3 · 661 · C129
C129 = P62 · P68
P62 = 18931593415430636447428825920870807172531523070990639092291417<62>
P68 = 11246857801195903571673445644347018389968064581167169333729364888739<68>
Number: 42229_131 N=212920939093405054070712164509441362694010197792346052557852860424721241665265871014736370258306718215946657701574494312769653163 ( 129 digits) SNFS difficulty: 132 digits. Divisors found: r1=18931593415430636447428825920870807172531523070990639092291417 r2=11246857801195903571673445644347018389968064581167169333729364888739 Version: Total time: 3.43 hours. Scaled time: 7.84 units (timescale=2.282). Factorization parameters were as follows: name: 42229_131 n: 212920939093405054070712164509441362694010197792346052557852860424721241665265871014736370258306718215946657701574494312769653163 m: 100000000000000000000000000 deg: 5 c5: 380 c0: 61 skew: 0.69 type: snfs lss: 1 rlim: 1130000 alim: 1130000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1130000/1130000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [565000, 1015001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 159415 x 159663 Total sieving time: 3.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1130000,1130000,26,26,47,47,2.3,2.3,50000 total time: 3.43 hours. --------- CPU info (if available) ----------
(38·10125+61)/9 = 4(2)1249<126> = 34 · 23789 · C120
C120 = P48 · P72
P48 = 375555149263134842089555204601763364829365781719<48>
P72 = 583453381194914039518484879886709379205169265358315351203669660340202799<72>
Number: 42229_125 N=219118921662736653480897241240879679435937152310888693873048609053267290890344184505974190904823332197951341875626831481 ( 120 digits) SNFS difficulty: 126 digits. Divisors found: r1=375555149263134842089555204601763364829365781719 r2=583453381194914039518484879886709379205169265358315351203669660340202799 Version: Total time: 2.23 hours. Scaled time: 4.43 units (timescale=1.991). Factorization parameters were as follows: name: 42229_125 n: 219118921662736653480897241240879679435937152310888693873048609053267290890344184505974190904823332197951341875626831481 m: 10000000000000000000000000 deg: 5 c5: 38 c0: 61 skew: 1.10 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123791 x 124029 Total sieving time: 2.23 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.23 hours. --------- CPU info (if available) ----------
(13·10174-7)/3 = 4(3)1731<175> = 2661733 · 2981915448269<13> · 57373034177700817<17> · 210183647146556081<18> · 1886441303582244311116568671646101<34> · C89
C89 = P37 · P53
P37 = 1154850117862112282943626662349224241<37>
P53 = 20781965619296732780146962236360397468436031673870679<53>
ue Dec 23 21:17:52 2008 Msieve v. 1.39 Tue Dec 23 21:17:52 2008 random seeds: 9d7994a0 f4a4cbfc Tue Dec 23 21:17:52 2008 factoring 24000055444851197132978321002485393490269394924989129370986539182893234062802945405929639 (89 digits) Tue Dec 23 21:17:53 2008 searching for 15-digit factors Tue Dec 23 21:17:54 2008 commencing quadratic sieve (89-digit input) Tue Dec 23 21:17:54 2008 using multiplier of 39 Tue Dec 23 21:17:54 2008 using 32kb Intel Core sieve core Tue Dec 23 21:17:54 2008 sieve interval: 30 blocks of size 32768 Tue Dec 23 21:17:54 2008 processing polynomials in batches of 7 Tue Dec 23 21:17:54 2008 using a sieve bound of 1545007 (58667 primes) Tue Dec 23 21:17:54 2008 using large prime bound of 123600560 (26 bits) Tue Dec 23 21:17:54 2008 using double large prime bound of 367821176096160 (42-49 bits) Tue Dec 23 21:17:54 2008 using trial factoring cutoff of 49 bits Tue Dec 23 21:17:54 2008 polynomial 'A' values have 12 factors Tue Dec 23 22:28:02 2008 58882 relations (15618 full + 43264 combined from 622557 partial), need 58763 Tue Dec 23 22:28:03 2008 begin with 638175 relations Tue Dec 23 22:28:03 2008 reduce to 143131 relations in 9 passes Tue Dec 23 22:28:03 2008 attempting to read 143131 relations Tue Dec 23 22:28:05 2008 recovered 143131 relations Tue Dec 23 22:28:05 2008 recovered 124085 polynomials Tue Dec 23 22:28:05 2008 attempting to build 58882 cycles Tue Dec 23 22:28:05 2008 found 58881 cycles in 5 passes Tue Dec 23 22:28:05 2008 distribution of cycle lengths: Tue Dec 23 22:28:05 2008 length 1 : 15618 Tue Dec 23 22:28:05 2008 length 2 : 11396 Tue Dec 23 22:28:05 2008 length 3 : 10604 Tue Dec 23 22:28:05 2008 length 4 : 7945 Tue Dec 23 22:28:05 2008 length 5 : 5461 Tue Dec 23 22:28:05 2008 length 6 : 3495 Tue Dec 23 22:28:05 2008 length 7 : 2019 Tue Dec 23 22:28:05 2008 length 9+: 2343 Tue Dec 23 22:28:05 2008 largest cycle: 17 relations Tue Dec 23 22:28:06 2008 matrix is 58667 x 58881 (14.2 MB) with weight 3480054 (59.10/col) Tue Dec 23 22:28:06 2008 sparse part has weight 3480054 (59.10/col) Tue Dec 23 22:28:06 2008 filtering completed in 3 passes Tue Dec 23 22:28:06 2008 matrix is 54828 x 54892 (13.3 MB) with weight 3262907 (59.44/col) Tue Dec 23 22:28:06 2008 sparse part has weight 3262907 (59.44/col) Tue Dec 23 22:28:06 2008 saving the first 48 matrix rows for later Tue Dec 23 22:28:06 2008 matrix is 54780 x 54892 (8.1 MB) with weight 2523354 (45.97/col) Tue Dec 23 22:28:06 2008 sparse part has weight 1787841 (32.57/col) Tue Dec 23 22:28:06 2008 matrix includes 64 packed rows Tue Dec 23 22:28:06 2008 using block size 21956 for processor cache size 1024 kB Tue Dec 23 22:28:07 2008 commencing Lanczos iteration Tue Dec 23 22:28:07 2008 memory use: 8.0 MB Tue Dec 23 22:28:24 2008 lanczos halted after 868 iterations (dim = 54778) Tue Dec 23 22:28:24 2008 recovered 17 nontrivial dependencies Tue Dec 23 22:28:24 2008 prp37 factor: 1154850117862112282943626662349224241 Tue Dec 23 22:28:24 2008 prp53 factor: 20781965619296732780146962236360397468436031673870679 Tue Dec 23 22:28:24 2008 elapsed time 01:10:32
By Jo Yeong Uk / GGNFS / Msieve v1.39
(38·10158+7)/9 = 4(2)1573<159> = 3 · 41 · 227 · 457 · 719 · 11692937714243057<17> · C133
C133 = P60 · P74
P60 = 261684502017364426401172993314582377543873715761538550838501<60>
P74 = 15040538615515346545319103996178595611693408558594037216409591162891195973<74>
I've used Greg Childer's x64 binaries that is about 30% faster. Number: 42223_158 N=3935875857674073259892366744726611131660458011927081245662043080032693008432327787653104908465235028172227775906183483719689864556473 ( 133 digits) SNFS difficulty: 161 digits. Divisors found: r1=261684502017364426401172993314582377543873715761538550838501 r2=15040538615515346545319103996178595611693408558594037216409591162891195973 Version: Total time: 16.42 hours. Scaled time: 39.20 units (timescale=2.387). Factorization parameters were as follows: n: 3935875857674073259892366744726611131660458011927081245662043080032693008432327787653104908465235028172227775906183483719689864556473 m: 100000000000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9164673 Max relations in full relation-set: Initial matrix: Pruned matrix : 657541 x 657789 Total sieving time: 14.77 hours. Total relation processing time: 0.62 hours. Matrix solve time: 0.95 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 16.42 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(13·10163-7)/3 = 4(3)1621<164> = 23 · 181 · 201977806379599<15> · 256380435467453624357<21> · 3848836599303511776161<22> · C104
C104 = P40 · P65
P40 = 2484322471920498002597770188046418572961<40>
P65 = 21022759073577810522071683163551125750312379421937000260369560979<65>
Number: 43331_163 N=52227312788259904783285448177771151215979194504591185340103120146351292794322523024425734515127250088819 ( 104 digits) Divisors found: r1=2484322471920498002597770188046418572961 r2=21022759073577810522071683163551125750312379421937000260369560979 Version: Total time: 3.98 hours. Scaled time: 9.53 units (timescale=2.391). Factorization parameters were as follows: name: 43331_163 n: 52227312788259904783285448177771151215979194504591185340103120146351292794322523024425734515127250088819 skew: 22078.67 # norm 5.99e+14 c5: 21240 c4: -1497386772 c3: -38425098620186 c2: 845882405351926079 c1: 8026727642520429063354 c0: 1072508182475386490862336 # alpha -6.69 Y1: 84046748929 Y0: -75536254703912113145 # Murphy_E 2.05e-09 # M 14288233827694019863237397998856850064401035115600452898033582468342007884707128037624699464864009909031 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: 5069392 Max relations in full relation-set: Initial matrix: Pruned matrix : 241075 x 241323 Total sieving time: 3.46 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 3.98 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(13·10106-7)/3 = 4(3)1051<107> = 41 · 13774823 · 49522433 · C91
C91 = P32 · P59
P32 = 57847164065344667246749592041001<32>
P59 = 26783551748975471064496580057189581449979924547068814782949<59>
Number: n N=1549352512275633183368088459353775952136320751322520942606357553923121412953602781723691949 ( 91 digits) SNFS difficulty: 107 digits. Divisors found: r1=57847164065344667246749592041001 (pp32) r2=26783551748975471064496580057189581449979924547068814782949 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 1.18 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_3_105_1 n: 1549352512275633183368088459353775952136320751322520942606357553923121412953602781723691949 type: snfs skew: 0.56 deg: 5 c5: 130 c0: -7 m: 1000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 2000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [225000, 271001) Primes: RFBsize:37706, AFBsize:37704, largePrimes:4143192 encountered Relations: rels:3498691, finalFF:97136 Max relations in full relation-set: 48 Initial matrix: 75477 x 97136 with sparse part having weight 10956977. Pruned matrix : 70519 x 70960 with weight 5601496. Total sieving time: 0.56 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
(38·10116+61)/9 = 4(2)1159<117> = 32 · 11 · 13 · 6271 · 7643257 · 44775959 · 883573237 · C87
C87 = P40 · P47
P40 = 4242755187407345742527427668930198334521<40>
P47 = 40776679208206304454293512576431198414080057327<47>
Tue Dec 23 18:19:00 2008 Tue Dec 23 18:19:00 2008 Tue Dec 23 18:19:00 2008 Msieve v. 1.39 Tue Dec 23 18:19:00 2008 random seeds: 96cc2620 f2dff84d Tue Dec 23 18:19:00 2008 factoring 173005467235862557859424523342614033694193668612191137256544163118007289277935603085367 (87 digits) Tue Dec 23 18:19:01 2008 searching for 15-digit factors Tue Dec 23 18:19:02 2008 commencing quadratic sieve (87-digit input) Tue Dec 23 18:19:02 2008 using multiplier of 7 Tue Dec 23 18:19:02 2008 using 64kb Opteron sieve core Tue Dec 23 18:19:02 2008 sieve interval: 10 blocks of size 65536 Tue Dec 23 18:19:02 2008 processing polynomials in batches of 11 Tue Dec 23 18:19:02 2008 using a sieve bound of 1480243 (56254 primes) Tue Dec 23 18:19:02 2008 using large prime bound of 118419440 (26 bits) Tue Dec 23 18:19:02 2008 using double large prime bound of 340534638927600 (41-49 bits) Tue Dec 23 18:19:02 2008 using trial factoring cutoff of 49 bits Tue Dec 23 18:19:02 2008 polynomial 'A' values have 11 factors Tue Dec 23 18:48:34 2008 56642 relations (16217 full + 40425 combined from 588342 partial), need 56350 Tue Dec 23 18:48:34 2008 begin with 604559 relations Tue Dec 23 18:48:34 2008 reduce to 134247 relations in 11 passes Tue Dec 23 18:48:34 2008 attempting to read 134247 relations Tue Dec 23 18:48:35 2008 recovered 134247 relations Tue Dec 23 18:48:35 2008 recovered 109821 polynomials Tue Dec 23 18:48:35 2008 attempting to build 56642 cycles Tue Dec 23 18:48:36 2008 found 56642 cycles in 5 passes Tue Dec 23 18:48:36 2008 distribution of cycle lengths: Tue Dec 23 18:48:36 2008 length 1 : 16217 Tue Dec 23 18:48:36 2008 length 2 : 11293 Tue Dec 23 18:48:36 2008 length 3 : 10010 Tue Dec 23 18:48:36 2008 length 4 : 7280 Tue Dec 23 18:48:36 2008 length 5 : 5006 Tue Dec 23 18:48:36 2008 length 6 : 3000 Tue Dec 23 18:48:36 2008 length 7 : 1762 Tue Dec 23 18:48:36 2008 length 9+: 2074 Tue Dec 23 18:48:36 2008 largest cycle: 17 relations Tue Dec 23 18:48:36 2008 matrix is 56254 x 56642 (12.9 MB) with weight 3166386 (55.90/col) Tue Dec 23 18:48:36 2008 sparse part has weight 3166386 (55.90/col) Tue Dec 23 18:48:37 2008 filtering completed in 3 passes Tue Dec 23 18:48:37 2008 matrix is 51309 x 51373 (11.8 MB) with weight 2892193 (56.30/col) Tue Dec 23 18:48:37 2008 sparse part has weight 2892193 (56.30/col) Tue Dec 23 18:48:37 2008 saving the first 48 matrix rows for later Tue Dec 23 18:48:37 2008 matrix is 51261 x 51373 (7.7 MB) with weight 2276433 (44.31/col) Tue Dec 23 18:48:37 2008 sparse part has weight 1699820 (33.09/col) Tue Dec 23 18:48:37 2008 matrix includes 64 packed rows Tue Dec 23 18:48:37 2008 using block size 20549 for processor cache size 1024 kB Tue Dec 23 18:48:37 2008 commencing Lanczos iteration Tue Dec 23 18:48:37 2008 memory use: 7.5 MB Tue Dec 23 18:48:51 2008 lanczos halted after 812 iterations (dim = 51259) Tue Dec 23 18:48:51 2008 recovered 16 nontrivial dependencies Tue Dec 23 18:48:52 2008 prp40 factor: 4242755187407345742527427668930198334521 Tue Dec 23 18:48:52 2008 prp47 factor: 40776679208206304454293512576431198414080057327 Tue Dec 23 18:48:52 2008 elapsed time 00:29:52
(13·10134-7)/3 = 4(3)1331<135> = 8849 · 48271117 · 8224435209442541<16> · 423468662193971749903<21> · C87
C87 = P32 · P55
P32 = 69478828398569728593459721798867<32>
P55 = 4192380641004827675507764758323249935285647811508989127<55>
Tue Dec 23 19:41:18 2008 Tue Dec 23 19:41:18 2008 Tue Dec 23 19:41:18 2008 Msieve v. 1.39 Tue Dec 23 19:41:18 2008 random seeds: baed84ac 587f7957 Tue Dec 23 19:41:18 2008 factoring 291281695137860183482012662507685449765126395405237570140944533477572342538205183919109 (87 digits) Tue Dec 23 19:41:18 2008 searching for 15-digit factors Tue Dec 23 19:41:19 2008 commencing quadratic sieve (87-digit input) Tue Dec 23 19:41:19 2008 using multiplier of 29 Tue Dec 23 19:41:19 2008 using 64kb Opteron sieve core Tue Dec 23 19:41:19 2008 sieve interval: 10 blocks of size 65536 Tue Dec 23 19:41:19 2008 processing polynomials in batches of 11 Tue Dec 23 19:41:19 2008 using a sieve bound of 1489667 (56642 primes) Tue Dec 23 19:41:19 2008 using large prime bound of 119173360 (26 bits) Tue Dec 23 19:41:19 2008 using double large prime bound of 344447000754720 (42-49 bits) Tue Dec 23 19:41:19 2008 using trial factoring cutoff of 49 bits Tue Dec 23 19:41:19 2008 polynomial 'A' values have 11 factors Tue Dec 23 20:13:40 2008 56750 relations (16023 full + 40727 combined from 592860 partial), need 56738 Tue Dec 23 20:13:40 2008 begin with 608883 relations Tue Dec 23 20:13:41 2008 reduce to 135001 relations in 8 passes Tue Dec 23 20:13:41 2008 attempting to read 135001 relations Tue Dec 23 20:13:42 2008 recovered 135001 relations Tue Dec 23 20:13:42 2008 recovered 113426 polynomials Tue Dec 23 20:13:42 2008 attempting to build 56750 cycles Tue Dec 23 20:13:42 2008 found 56750 cycles in 6 passes Tue Dec 23 20:13:42 2008 distribution of cycle lengths: Tue Dec 23 20:13:42 2008 length 1 : 16023 Tue Dec 23 20:13:42 2008 length 2 : 11360 Tue Dec 23 20:13:42 2008 length 3 : 9954 Tue Dec 23 20:13:42 2008 length 4 : 7463 Tue Dec 23 20:13:42 2008 length 5 : 5058 Tue Dec 23 20:13:42 2008 length 6 : 3100 Tue Dec 23 20:13:42 2008 length 7 : 1796 Tue Dec 23 20:13:42 2008 length 9+: 1996 Tue Dec 23 20:13:42 2008 largest cycle: 19 relations Tue Dec 23 20:13:42 2008 matrix is 56642 x 56750 (13.3 MB) with weight 3250880 (57.28/col) Tue Dec 23 20:13:42 2008 sparse part has weight 3250880 (57.28/col) Tue Dec 23 20:13:43 2008 filtering completed in 3 passes Tue Dec 23 20:13:43 2008 matrix is 52021 x 52085 (12.3 MB) with weight 3026197 (58.10/col) Tue Dec 23 20:13:43 2008 sparse part has weight 3026197 (58.10/col) Tue Dec 23 20:13:43 2008 saving the first 48 matrix rows for later Tue Dec 23 20:13:43 2008 matrix is 51973 x 52085 (8.6 MB) with weight 2442834 (46.90/col) Tue Dec 23 20:13:43 2008 sparse part has weight 1949032 (37.42/col) Tue Dec 23 20:13:43 2008 matrix includes 64 packed rows Tue Dec 23 20:13:43 2008 using block size 20834 for processor cache size 1024 kB Tue Dec 23 20:13:44 2008 commencing Lanczos iteration Tue Dec 23 20:13:44 2008 memory use: 8.0 MB Tue Dec 23 20:13:59 2008 lanczos halted after 823 iterations (dim = 51967) Tue Dec 23 20:13:59 2008 recovered 13 nontrivial dependencies Tue Dec 23 20:14:00 2008 prp32 factor: 69478828398569728593459721798867 Tue Dec 23 20:14:00 2008 prp55 factor: 4192380641004827675507764758323249935285647811508989127 Tue Dec 23 20:14:00 2008 elapsed time 00:32:42
(13·10109-7)/3 = 4(3)1081<110> = 17 · 137 · 977 · C104
C104 = P31 · P73
P31 = 3407814690944317539762588740159<31>
P73 = 5588330392801960092177439750747650769278886747644606354321657148324217573<73>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 19043994410441148270827281371648092179964575240551285550193450360143908141146468972425614524063478614107 (104 digits) Using B1=714000, B2=696728352, polynomial Dickson(3), sigma=1623556616 Step 1 took 4969ms Step 2 took 2609ms ********** Factor found in step 2: 3407814690944317539762588740159 Found probable prime factor of 31 digits: 3407814690944317539762588740159 Probable prime cofactor 5588330392801960092177439750747650769278886747644606354321657148324217573 has 73 digits
(38·10109+61)/9 = 4(2)1089<110> = 7 · 199 · 881 · 580373 · C98
C98 = P44 · P55
P44 = 26751738096440014307990911916120465357207011<44>
P55 = 2215923985067384009560418171449180919028006614390617771<55>
Number: n N=59279818090142310194468555816137740448324236376809698473858515326593093225915093020485675422392481 ( 98 digits) SNFS difficulty: 111 digits. Divisors found: Wed Dec 24 00:30:23 2008 prp44 factor: 26751738096440014307990911916120465357207011 Wed Dec 24 00:30:23 2008 prp55 factor: 2215923985067384009560418171449180919028006614390617771 Wed Dec 24 00:30:23 2008 elapsed time 00:05:05 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.65 hours. Scaled time: 1.20 units (timescale=1.828). Factorization parameters were as follows: name: KA_4_2_108_9 n: 59279818090142310194468555816137740448324236376809698473858515326593093225915093020485675422392481 type: snfs skew: 1.74 deg: 5 c5: 19 c0: 305 m: 10000000000000000000000 rlim: 450000 alim: 450000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 5000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 275001) Primes: RFBsize:37706, AFBsize:37830, largePrimes:4770991 encountered Relations: rels:3870829, finalFF:81071 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 105623 hash collisions in 3950766 relations Msieve: matrix is 89786 x 90033 (23.6 MB) Total sieving time: 0.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,450000,450000,29,29,58,58,2.5,2.5,50000 total time: 0.65 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10149+43)/9 = 4(2)1487<150> = 13 · 113453640491<12> · C138
C138 = P39 · P47 · P53
P39 = 123132274553465756860058461410327710779<39>
P47 = 27267256871151239064440712042018508774862667557<47>
P53 = 85264047995684401299884905037961478641338880822995323<53>
Number: 42227_149 N=286272281242565584871308935586551398963328947291933211769489506901789407053841847782020315712273819190869798534111037762948452697250984669 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=123132274553465756860058461410327710779 r2=27267256871151239064440712042018508774862667557 r3=85264047995684401299884905037961478641338880822995323 Version: Total time: 17.03 hours. Scaled time: 33.49 units (timescale=1.967). Factorization parameters were as follows: name: 42227_149 n: 286272281242565584871308935586551398963328947291933211769489506901789407053841847782020315712273819190869798534111037762948452697250984669 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 326210 x 326458 Total sieving time: 17.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 17.03 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(38·10179+43)/9 = 4(2)1787<180> = 13 · 190548791 · C171
C171 = P32 · C139
P32 = 83693711822605989870189783269927<32>
C139 = [2036567026754301909068906536670007279613488322697273803941595712633680899678332169392476463478230146670448373216770032371376154711024549247<139>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=28284232 Step 1 took 50467ms Step 2 took 24270ms ********** Factor found in step 2: 83693711822605989870189783269927 Found probable prime factor of 32 digits: 83693711822605989870189783269927 Composite cofactor has 139 digits
(38·10195+43)/9 = 4(2)1947<196> = 3 · 1409 · 36583 · 2631581 · C182
C182 = P37 · P145
P37 = 1110098676846052025875562910419707159<37>
P145 = 9346547020444687949473270005207416033036409081717352834060726263287081343511433873690747964630107753834169432220989123151666306482271859585653093<145>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3282926492 Step 1 took 58616ms Step 2 took 26203ms ********** Factor found in step 2: 1110098676846052025875562910419707159 Found probable prime factor of 37 digits: 1110098676846052025875562910419707159 Probable prime cofactor has 145 digits
By Robert Backstrom / GMP-ECM
(11·10166-17)/3 = 3(6)1651<167> = 31 · 9645541 · C159
C159 = P40 · P120
P40 = 1116427148631667120168455525371131408601<40>
P120 = 109838035390645973298719203114797829250387790912028941879398460215801086922957023513075842014334465944683742916668887991<120>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 122626164662483025347743472836949508140489448044728201240835654816634849691809178531191224129656978175172463918374192254346624590463586353818380837812123010591 (159 digits) Using B1=2860000, B2=4281671950, polynomial Dickson(6), sigma=2445717877 Step 1 took 37615ms Step 2 took 13651ms ********** Factor found in step 2: 1116427148631667120168455525371131408601 Found probable prime factor of 40 digits: 1116427148631667120168455525371131408601 Probable prime cofactor 109838035390645973298719203114797829250387790912028941879398460215801086922957023513075842014334465944683742916668887991 has 120 digits
Factorizations of 422...229 and Factorizations of 433...331 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GMP-ECM, Msieve
(37·10190+53)/9 = 4(1)1897<191> = 59 · 33366083669<11> · 1038688946123696607997710239<28> · 228822554008790119385212155709949<33> · C119
C119 = P37 · P41 · P42
P37 = 6700559039122072293901319740648826129<37>
P41 = 94122795556702802098640504555138641771009<41>
P42 = 139319457310594504389225773069331905769337<42>
GMP-ECM 6.2.1 [powered by GMP 4.2.3] [ECM] Input number is 87865347299839227077677777536365983116150872999131750437968032584396075641901842890425376739301590272179304048017141257 (119 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2495475907 Step 1 took 13322ms Step 2 took 9282ms ********** Factor found in step 2: 6700559039122072293901319740648826129 Found probable prime factor of 37 digits: 6700559039122072293901319740648826129 Composite cofactor 13113136797515870136423584090069674988260781902340888649157796440990324986327751033 has 83 digits Mon Dec 22 22:59:56 2008 Mon Dec 22 22:59:56 2008 Mon Dec 22 22:59:56 2008 Msieve v. 1.39 Mon Dec 22 22:59:56 2008 random seeds: 5344db90 d0343cf0 Mon Dec 22 22:59:56 2008 factoring 13113136797515870136423584090069674988260781902340888649157796440990324986327751033 (83 digits) Mon Dec 22 22:59:57 2008 searching for 15-digit factors Mon Dec 22 22:59:58 2008 commencing quadratic sieve (83-digit input) Mon Dec 22 22:59:58 2008 using multiplier of 1 Mon Dec 22 22:59:58 2008 using VC8 32kb sieve core Mon Dec 22 22:59:58 2008 sieve interval: 12 blocks of size 32768 Mon Dec 22 22:59:58 2008 processing polynomials in batches of 17 Mon Dec 22 22:59:58 2008 using a sieve bound of 1357919 (52059 primes) Mon Dec 22 22:59:58 2008 using large prime bound of 124928548 (26 bits) Mon Dec 22 22:59:58 2008 using trial factoring cutoff of 27 bits Mon Dec 22 22:59:58 2008 polynomial 'A' values have 10 factors Mon Dec 22 23:15:29 2008 52266 relations (26562 full + 25704 combined from 277983 partial), need 52155 Mon Dec 22 23:15:29 2008 begin with 304545 relations Mon Dec 22 23:15:29 2008 reduce to 74683 relations in 2 passes Mon Dec 22 23:15:29 2008 attempting to read 74683 relations Mon Dec 22 23:15:30 2008 recovered 74683 relations Mon Dec 22 23:15:30 2008 recovered 66029 polynomials Mon Dec 22 23:15:30 2008 attempting to build 52266 cycles Mon Dec 22 23:15:30 2008 found 52266 cycles in 1 passes Mon Dec 22 23:15:30 2008 distribution of cycle lengths: Mon Dec 22 23:15:30 2008 length 1 : 26562 Mon Dec 22 23:15:30 2008 length 2 : 25704 Mon Dec 22 23:15:30 2008 largest cycle: 2 relations Mon Dec 22 23:15:30 2008 matrix is 52059 x 52266 (7.7 MB) with weight 1591401 (30.45/col) Mon Dec 22 23:15:30 2008 sparse part has weight 1591401 (30.45/col) Mon Dec 22 23:15:30 2008 filtering completed in 3 passes Mon Dec 22 23:15:30 2008 matrix is 37218 x 37282 (6.0 MB) with weight 1276780 (34.25/col) Mon Dec 22 23:15:30 2008 sparse part has weight 1276780 (34.25/col) Mon Dec 22 23:15:30 2008 saving the first 48 matrix rows for later Mon Dec 22 23:15:30 2008 matrix is 37170 x 37282 (4.8 MB) with weight 1060890 (28.46/col) Mon Dec 22 23:15:30 2008 sparse part has weight 894883 (24.00/col) Mon Dec 22 23:15:30 2008 matrix includes 64 packed rows Mon Dec 22 23:15:30 2008 using block size 14912 for processor cache size 4096 kB Mon Dec 22 23:15:30 2008 commencing Lanczos iteration Mon Dec 22 23:15:30 2008 memory use: 4.5 MB Mon Dec 22 23:15:35 2008 lanczos halted after 589 iterations (dim = 37168) Mon Dec 22 23:15:35 2008 recovered 15 nontrivial dependencies Mon Dec 22 23:15:35 2008 prp41 factor: 94122795556702802098640504555138641771009 Mon Dec 22 23:15:35 2008 prp42 factor: 139319457310594504389225773069331905769337 Mon Dec 22 23:15:35 2008 elapsed time 00:15:39
By Serge Batalov / GMP-ECM 6.2.1
(38·10176+43)/9 = 4(2)1757<177> = 7 · 953 · 18013 · 276447312401475563<18> · C152
C152 = P36 · C116
P36 = 178756426448137413914826142437964919<36>
C116 = [71103349768243348700450905945142994417179643820598258646824953982535526988209326934630523825762360058327976339721717<116>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1342266695 Step 1 took 43401ms Step 2 took 21416ms ********** Factor found in step 2: 178756426448137413914826142437964919 Found probable prime factor of 36 digits: 178756426448137413914826142437964919 Composite cofactor has 116 digits
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v1.39
(38·10156+7)/9 = 4(2)1553<157> = 1571 · 20627 · 161999 · 31370407 · C137
C137 = P40 · P97
P40 = 3151311867708119352908892784260206809733<40>
P97 = 8135888003589561713984004929583919997606982433878122227315798705604256568191678963555861658276451<97>
Number: 42223_156 N=25638720420055904175047718597666401571261026682120717702745767511977789529191792514452212244210202584659272309033290926661594350071497583 ( 137 digits) SNFS difficulty: 157 digits. Divisors found: r1=3151311867708119352908892784260206809733 r2=8135888003589561713984004929583919997606982433878122227315798705604256568191678963555861658276451 Version: Total time: 17.75 hours. Scaled time: 42.36 units (timescale=2.387). Factorization parameters were as follows: n: 25638720420055904175047718597666401571261026682120717702745767511977789529191792514452212244210202584659272309033290926661594350071497583 m: 10000000000000000000000000000000 deg: 5 c5: 380 c0: 7 skew: 0.45 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8115178 Max relations in full relation-set: Initial matrix: Pruned matrix : 565574 x 565822 Total sieving time: 16.58 hours. Total relation processing time: 0.41 hours. Matrix solve time: 0.68 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 17.75 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(35·10186-17)/9 = 3(8)1857<187> = 157 · 24359 · 61381 · 8547631 · 741825421 · 12281370259<11> · 1354976246545216979406271187005039<34> · C117
C117 = P43 · P74
P43 = 5120353883635458429190544130895666258719013<43>
P74 = 30662425523328166855980476520758336325858134810791000702868819091594477883<74>
Number: 38887_186 N=157002469610056383002517699709502160585077480848188350871607152214104956824868980051866840757039680270434992140089479 ( 117 digits) Divisors found: r1=5120353883635458429190544130895666258719013 r2=30662425523328166855980476520758336325858134810791000702868819091594477883 Version: Total time: 22.72 hours. Scaled time: 54.15 units (timescale=2.384). Factorization parameters were as follows: name: 38887_186 n: 157002469610056383002517699709502160585077480848188350871607152214104956824868980051866840757039680270434992140089479 skew: 90503.15 # norm 3.19e+16 c5: 7200 c4: -1050000632 c3: 784336535541926 c2: 6556944883925153517 c1: -2168736184919240296891976 c0: 307461253102532191921522760 # alpha -7.15 Y1: 2113994864537 Y0: -29357272872032918557839 # Murphy_E 4.67e-10 # M 22297279247945908317688117096806927032070203219509894621581388695827552723266532914832455914310598281190746054030867 type: gnfs rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1650000, 2925001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9009334 Max relations in full relation-set: Initial matrix: Pruned matrix : 505641 x 505889 Polynomial selection time: 1.73 hours. Total sieving time: 19.51 hours. Total relation processing time: 0.70 hours. Matrix solve time: 0.67 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3300000,3300000,27,27,52,52,2.4,2.4,75000 total time: 22.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(38·10150+43)/9 = 4(2)1497<151> = 3 · 5404033 · 1315507653822793<16> · 1793543806775351758201343<25> · C105
C105 = P46 · P59
P46 = 1474436240860335083889521243713798444857541487<46>
P59 = 74863559958939232893634955690188665701792653148056199268121<59>
Number: 42227_150 N=110381545923280664073717632487428289003590698192574383665984937129689496720053069202801052883676794035927 ( 105 digits) Divisors found: r1=1474436240860335083889521243713798444857541487 (pp46) r2=74863559958939232893634955690188665701792653148056199268121 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 15.61 hours. Scaled time: 7.37 units (timescale=0.472). Factorization parameters were as follows: name: 42227_150 n: 110381545923280664073717632487428289003590698192574383665984937129689496720053069202801052883676794035927 skew: 13420.60 # norm 9.52e+14 c5: 107460 c4: -360905256 c3: -62359547385495 c2: -486725426096074673 c1: 4105199284466708023171 c0: -86832314907525862615335 # alpha -6.88 Y1: 67446069691 Y0: -63435188891743035196 # Murphy_E 1.97e-09 # M 69240885770336502168462731026371669070686911436648784413026709589522938575061457362992740606116577231612 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: RFBsize:183072, AFBsize:182694, largePrimes:4397803 encountered Relations: rels:4492136, finalFF:486116 Max relations in full relation-set: 28 Initial matrix: 365843 x 486116 with sparse part having weight 33668090. Pruned matrix : 267920 x 269813 with weight 16505009. Total sieving time: 13.47 hours. Total relation processing time: 0.27 hours. Matrix solve time: 1.68 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 15.61 hours. --------- CPU info (if available) ----------
(38·10140+43)/9 = 4(2)1397<141> = 7 · 2039 · 16902410577105783452297695849<29> · C109
C109 = P44 · P66
P44 = 12699265945218353733988416402502984096925867<44>
P66 = 137815655861186307456994950037515633314473360940130795156807220753<66>
Number: 42227_140 N=1750157665195895484648268135865022403532332639214085226117860426329641105594587945290563927802167775344917851 ( 109 digits) SNFS difficulty: 141 digits. Divisors found: r1=12699265945218353733988416402502984096925867 r2=137815655861186307456994950037515633314473360940130795156807220753 Version: Total time: 10.29 hours. Scaled time: 20.61 units (timescale=2.003). Factorization parameters were as follows: name: 42227_140 n: 1750157665195895484648268135865022403532332639214085226117860426329641105594587945290563927802167775344917851 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: 43 skew: 1.03 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 255864 x 256112 Total sieving time: 10.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 10.29 hours. --------- CPU info (if available) ----------
(38·10144+43)/9 = 4(2)1437<145> = 33 · 31 · 1606157397847<13> · C130
C130 = P59 · P71
P59 = 43754364299985865542408997922500687052406885856436424436163<59>
P71 = 71780445327028706891060593598257035580865296056623661966850183987404811<71>
Number: 42227_144 N=3140707754454032100209047495164969064451607130248949747422702757390517541777485585989335253410516591681046770886049171734308580193 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=43754364299985865542408997922500687052406885856436424436163 r2=71780445327028706891060593598257035580865296056623661966850183987404811 Version: Total time: 10.43 hours. Scaled time: 20.90 units (timescale=2.003). Factorization parameters were as follows: name: 42227_144 n: 3140707754454032100209047495164969064451607130248949747422702757390517541777485585989335253410516591681046770886049171734308580193 m: 100000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1920000 alim: 1920000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1920000/1920000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [960000, 1960001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 262590 x 262838 Total sieving time: 10.43 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1920000,1920000,26,26,49,49,2.3,2.3,100000 total time: 10.43 hours. --------- CPU info (if available) ----------
(38·10146+43)/9 = 4(2)1457<147> = 72 · 9222235349<10> · 81823735257070026169067<23> · C113
C113 = P54 · P59
P54 = 324669516616670697087399863175104643086264125364574157<54>
P59 = 35171265133319275701635037151479684144701079965460533176633<59>
Number: 42227_146 N=11419037649631533302730167351422803394561213724399974201383070218486899102995497193219122768932079190766508073381 ( 113 digits) SNFS difficulty: 148 digits. Divisors found: r1=324669516616670697087399863175104643086264125364574157 r2=35171265133319275701635037151479684144701079965460533176633 Version: Total time: 13.24 hours. Scaled time: 31.31 units (timescale=2.366). Factorization parameters were as follows: name: 42227_146 n: 11419037649631533302730167351422803394561213724399974201383070218486899102995497193219122768932079190766508073381 m: 200000000000000000000000000000 deg: 5 c5: 95 c0: 344 skew: 1.29 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 362115 x 362360 Total sieving time: 13.24 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 13.24 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(37·10186+71)/9 = 4(1)1859<187> = 32 · 592 · C183
C183 = P47 · P136
P47 = 55044224415250538928921553264661339723266003429<47>
P136 = 2383970764021785908203194996945240916853952320935449385966474798602815965953926289351897727903544055041607935420772339895475891591817859<136>
Number: n N=131223821734211468962019570082387280510425200648316611162536662871815605704334996683938558878710176230045999269402506020336145779026177379141086887902936930994002716687768875837438511 ( 183 digits) SNFS difficulty: 187 digits. Divisors found: Mon Dec 22 05:04:18 2008 prp47 factor: 55044224415250538928921553264661339723266003429 Mon Dec 22 05:04:18 2008 prp136 factor: 2383970764021785908203194996945240916853952320935449385966474798602815965953926289351897727903544055041607935420772339895475891591817859 Mon Dec 22 05:04:19 2008 elapsed time 06:55:19 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 93.76 hours. Scaled time: 192.30 units (timescale=2.051). Factorization parameters were as follows: name: KA_4_1_185_9 n: 131223821734211468962019570082387280510425200648316611162536662871815605704334996683938558878710176230045999269402506020336145779026177379141086887902936930994002716687768875837438511 type: snfs skew: 0.72 deg: 5 c5: 370 c0: 71 m: 10000000000000000000000000000000000000 rlim: 8800000 alim: 8800000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8800000/8800000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 5700001) Primes: RFBsize:590006, AFBsize:589651, largePrimes:33470457 encountered Relations: rels:31004910, finalFF:1017105 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7398741 hash collisions in 38005293 relations Msieve: matrix is 1645242 x 1645490 (446.2 MB) Total sieving time: 91.92 hours. Total relation processing time: 1.84 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,8800000,8800000,29,29,58,58,2.5,2.5,100000 total time: 93.76 hours. --------- CPU info (if available) ----------
(2·10186+7)/9 = (2)1853<186> = 61 · 7247 · C180
C180 = P64 · P117
P64 = 1000296869048935293617966311639974939939901074399500816397239041<64>
P117 = 502539820663756223904404112395960972646821102101410044844975062438931281776309797410654017639319069448362694337047509<117>
Number: n N=502689009182368786229739433665535365051501745713256638071202379327618261987938982602687425711989861768062809986319318615101833482757641312792455040123379990413720594892227246598869 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: Mon Dec 22 17:13:51 2008 prp64 factor: 1000296869048935293617966311639974939939901074399500816397239041 Mon Dec 22 17:13:51 2008 prp117 factor: 502539820663756223904404112395960972646821102101410044844975062438931281776309797410654017639319069448362694337047509 Mon Dec 22 17:13:51 2008 elapsed time 03:54:27 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 45.86 hours. Scaled time: 92.19 units (timescale=2.010). Factorization parameters were as follows: name: KA_2_185_3 n: 502689009182368786229739433665535365051501745713256638071202379327618261987938982602687425711989861768062809986319318615101833482757641312792455040123379990413720594892227246598869 type: snfs skew: 0.81 deg: 5 c5: 20 c0: 7 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 6750001) Primes: RFBsize:571119, AFBsize:570202, largePrimes:34438043 encountered Relations: rels:31297614, finalFF:904990 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 3087212 hash collisions in 32883378 relations Msieve: matrix is 1657566 x 1657814 (456.2 MB) Total sieving time: 45.11 hours. Total relation processing time: 0.76 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 45.86 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(38·10154-11)/9 = 4(2)1531<155> = 277 · 719 · 6091 · 33053 · 207502704317<12> · 237956979619<12> · C119
C119 = P59 · P60
P59 = 51587834613479025493547275460082123019777651055195321608609<59>
P60 = 413393303095561319836967443404945417817696145003663940983647<60>
Number: n N=21326065350413624233193962291332887661551544452586939041686174287451002112206135225323163185190177586449359373803417023 ( 119 digits) SNFS difficulty: 156 digits. Divisors found: Sun Dec 21 11:31:14 2008 prp59 factor: 51587834613479025493547275460082123019777651055195321608609 Sun Dec 21 11:31:14 2008 prp60 factor: 413393303095561319836967443404945417817696145003663940983647 Sun Dec 21 11:31:14 2008 elapsed time 01:19:32 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.64 hours. Scaled time: 37.54 units (timescale=1.819). Factorization parameters were as follows: name: KA_4_2_153_1 n: 21326065350413624233193962291332887661551544452586939041686174287451002112206135225323163185190177586449359373803417023 type: snfs skew: 1.23 deg: 5 c5: 19 c0: -55 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2550001) Primes: RFBsize:216816, AFBsize:216782, largePrimes:16418732 encountered Relations: rels:15539332, finalFF:525467 Max relations in full relation-set: 28 Initial matrix: 433663 x 525467 with sparse part having weight 80415786. Pruned matrix : 404065 x 406297 with weight 54293410. Msieve: found 1223712 hash collisions in 16391218 relations Msieve: matrix is 523190 x 523438 (139.4 MB) Total sieving time: 20.24 hours. Total relation processing time: 0.40 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,56,56,2.5,2.5,100000 total time: 20.64 hours. --------- CPU info (if available) ----------
(38·10141+43)/9 = 4(2)1407<142> = 3 · 173 · 21157 · 180243689 · 173456622431<12> · C116
C116 = P40 · P76
P40 = 1755675497577629798819125718774504104057<40>
P76 = 7005262960181509629676894759365346286335418889322710401815129565027157909263<76>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 12298968533278811763657986664253858669350572760397013486487978589390414885086829887869288821107164783220801116179991 (116 digits) Using B1=2986000, B2=5706890290, polynomial Dickson(6), sigma=3859119621 Step 1 took 23235ms Step 2 took 10750ms ********** Factor found in step 2: 1755675497577629798819125718774504104057 Found probable prime factor of 40 digits: 1755675497577629798819125718774504104057 Probable prime cofactor 7005262960181509629676894759365346286335418889322710401815129565027157909263 has 76 digits
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(38·10155-11)/9 = 4(2)1541<156> = 103 · 2111 · 58267513 · 7551094801<10> · C133
C133 = P58 · P75
P58 = 8170250646439144324324539951122523668008977214876413918613<58>
P75 = 540186647223365813208039585829871641900469751792558202249175396131868628473<75>
Number: 42221_155 N=4413460303674498541861344363652947120119783104812592625476960256960945509230348423050843447267531724857326155033566161392143756467949 ( 133 digits) SNFS difficulty: 156 digits. Divisors found: r1=8170250646439144324324539951122523668008977214876413918613 r2=540186647223365813208039585829871641900469751792558202249175396131868628473 Version: Total time: 13.44 hours. Scaled time: 32.11 units (timescale=2.389). Factorization parameters were as follows: n: 4413460303674498541861344363652947120119783104812592625476960256960945509230348423050843447267531724857326155033566161392143756467949 m: 10000000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2100001) Primes: rational ideals reading, algebraic ideals reading, Relations: 7818933 Max relations in full relation-set: Initial matrix: Pruned matrix : 471139 x 471387 Total sieving time: 12.38 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.51 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 13.44 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10173+17)/9 = 4(1)1723<174> = C174
C174 = P82 · P93
P82 = 2309642251320926628434349570227406190719013760451867200648957231633000117723292239<82>
P93 = 177997744402185728430025384772804913156559791188015710518448917566430790426321615278811044967<93>
Number: 41113_173 N=411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 ( 174 digits) SNFS difficulty: 176 digits. Divisors found: r1=2309642251320926628434349570227406190719013760451867200648957231633000117723292239 (pp82) r2=177997744402185728430025384772804913156559791188015710518448917566430790426321615278811044967 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 135.17 hours. Scaled time: 322.66 units (timescale=2.387). Factorization parameters were as follows: n: 411111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113 m: 100000000000000000000000000000000000 deg: 5 c5: 37 c0: 1700 skew: 2.15 type: snfs lss: 1 rlim: 5600000 alim: 5600000 lpbr: 28 lpba: 28 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 Factor base limits: 5600000/5600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 52/52 Sieved rational special-q in [2800000, 5400001) Primes: RFBsize:387202, AFBsize:386654, largePrimes:16029251 encountered Relations: rels:16426603, finalFF:927524 Max relations in full relation-set: 28 Initial matrix: 773923 x 927524 with sparse part having weight 115621215. Pruned matrix : 697149 x 701082 with weight 92001068. Total sieving time: 129.09 hours. Total relation processing time: 0.26 hours. Matrix solve time: 5.71 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,5600000,5600000,28,28,52,52,2.5,2.5,100000 total time: 135.17 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(38·10116+43)/9 = 4(2)1157<117> = 7 · C116
C116 = P49 · P68
P49 = 1259410019485966740729222522666084595106750113901<49>
P68 = 47893425797961438500296126851957768875428420854455429268527512319561<68>
Number: 42227_116 N=60317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 ( 116 digits) SNFS difficulty: 118 digits. Divisors found: r1=1259410019485966740729222522666084595106750113901 r2=47893425797961438500296126851957768875428420854455429268527512319561 Version: Total time: 1.82 hours. Scaled time: 3.62 units (timescale=1.985). Factorization parameters were as follows: name: 42227_116 n: 60317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317460317461 m: 200000000000000000000000 deg: 5 c5: 95 c0: 344 skew: 1.29 type: snfs lss: 1 rlim: 660000 alim: 660000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 660000/660000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [330000, 580001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77068 x 77307 Total sieving time: 1.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,660000,660000,25,25,45,45,2.2,2.2,50000 total time: 1.82 hours. --------- CPU info (if available) ----------
(38·10122+43)/9 = 4(2)1217<123> = 7 · 17 · 61 · 149 · C117
C117 = P57 · P60
P57 = 421173275667591299966378819510053262339263564370298327557<57>
P60 = 926866564584146824501549658874176921660428292030357582201921<60>
Number: 42227_122 N=390371427112672185902270102305050820709697309077296521718673900043752418633496601046257062255716090668489495772636997 ( 117 digits) SNFS difficulty: 124 digits. Divisors found: r1=421173275667591299966378819510053262339263564370298327557 r2=926866564584146824501549658874176921660428292030357582201921 Version: Total time: 2.34 hours. Scaled time: 4.65 units (timescale=1.985). Factorization parameters were as follows: name: 42227_122 n: 390371427112672185902270102305050820709697309077296521718673900043752418633496601046257062255716090668489495772636997 m: 2000000000000000000000000 deg: 5 c5: 475 c0: 172 skew: 0.82 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [410000, 710001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 91077 x 91317 Total sieving time: 2.34 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,46,46,2.2,2.2,50000 total time: 2.34 hours. --------- CPU info (if available) ----------
(38·10101+43)/9 = 4(2)1007<102> = 13 · 115879 · C96
C96 = P36 · P61
P36 = 149610333136568974573076601882886309<36>
P61 = 1873403840352829086869098148580338599604466026363314354447189<61>
Sun Dec 21 06:00:54 2008 Msieve v. 1.39 Sun Dec 21 06:00:54 2008 random seeds: 2932d9f0 724ffcd1 Sun Dec 21 06:00:54 2008 factoring 280280572654514438616821274593606077308905258749492821240074840813542390186993609529185431635401 (96 digits) Sun Dec 21 06:00:55 2008 searching for 15-digit factors Sun Dec 21 06:00:56 2008 commencing quadratic sieve (96-digit input) Sun Dec 21 06:00:57 2008 using multiplier of 1 Sun Dec 21 06:00:57 2008 using 32kb Intel Core sieve core Sun Dec 21 06:00:57 2008 sieve interval: 36 blocks of size 32768 Sun Dec 21 06:00:57 2008 processing polynomials in batches of 6 Sun Dec 21 06:00:57 2008 using a sieve bound of 2245951 (83529 primes) Sun Dec 21 06:00:57 2008 using large prime bound of 336892650 (28 bits) Sun Dec 21 06:00:57 2008 using double large prime bound of 2236066681946550 (43-51 bits) Sun Dec 21 06:00:57 2008 using trial factoring cutoff of 51 bits Sun Dec 21 06:00:57 2008 polynomial 'A' values have 12 factors Sun Dec 21 10:26:20 2008 83888 relations (20624 full + 63264 combined from 1250885 partial), need 83625 Sun Dec 21 10:26:21 2008 begin with 1271509 relations Sun Dec 21 10:26:23 2008 reduce to 219257 relations in 14 passes Sun Dec 21 10:26:23 2008 attempting to read 219257 relations Sun Dec 21 10:26:26 2008 recovered 219257 relations Sun Dec 21 10:26:26 2008 recovered 203786 polynomials Sun Dec 21 10:26:26 2008 attempting to build 83888 cycles Sun Dec 21 10:26:26 2008 found 83888 cycles in 5 passes Sun Dec 21 10:26:26 2008 distribution of cycle lengths: Sun Dec 21 10:26:26 2008 length 1 : 20624 Sun Dec 21 10:26:26 2008 length 2 : 14487 Sun Dec 21 10:26:26 2008 length 3 : 14122 Sun Dec 21 10:26:26 2008 length 4 : 11284 Sun Dec 21 10:26:26 2008 length 5 : 8549 Sun Dec 21 10:26:26 2008 length 6 : 5869 Sun Dec 21 10:26:26 2008 length 7 : 3664 Sun Dec 21 10:26:26 2008 length 9+: 5289 Sun Dec 21 10:26:26 2008 largest cycle: 18 relations Sun Dec 21 10:26:27 2008 matrix is 83529 x 83888 (22.8 MB) with weight 5628323 (67.09/col) Sun Dec 21 10:26:27 2008 sparse part has weight 5628323 (67.09/col) Sun Dec 21 10:26:28 2008 filtering completed in 3 passes Sun Dec 21 10:26:28 2008 matrix is 79673 x 79736 (21.7 MB) with weight 5371984 (67.37/col) Sun Dec 21 10:26:28 2008 sparse part has weight 5371984 (67.37/col) Sun Dec 21 10:26:28 2008 saving the first 48 matrix rows for later Sun Dec 21 10:26:28 2008 matrix is 79625 x 79736 (15.2 MB) with weight 4447552 (55.78/col) Sun Dec 21 10:26:28 2008 sparse part has weight 3513534 (44.06/col) Sun Dec 21 10:26:28 2008 matrix includes 64 packed rows Sun Dec 21 10:26:28 2008 using block size 31894 for processor cache size 1024 kB Sun Dec 21 10:26:29 2008 commencing Lanczos iteration Sun Dec 21 10:26:29 2008 memory use: 13.8 MB Sun Dec 21 10:27:14 2008 lanczos halted after 1261 iterations (dim = 79624) Sun Dec 21 10:27:14 2008 recovered 16 nontrivial dependencies Sun Dec 21 10:27:15 2008 prp36 factor: 149610333136568974573076601882886309 Sun Dec 21 10:27:15 2008 prp61 factor: 1873403840352829086869098148580338599604466026363314354447189 Sun Dec 21 10:27:15 2008 elapsed time 04:26:21
(38·10129+43)/9 = 4(2)1287<130> = 3 · 31 · 58189 · C123
C123 = P37 · P87
P37 = 1232507627891317146613035330415084249<37>
P87 = 633034863906915936488414072851613985408624063435282028990273697724896163138531480627299<87>
Number: 42227_129 N=780220298486415738373901401055962471239385898458475638842840492193351812645781852909460998563306448789737672072710454313451 ( 123 digits) SNFS difficulty: 131 digits. Divisors found: r1=1232507627891317146613035330415084249 r2=633034863906915936488414072851613985408624063435282028990273697724896163138531480627299 Version: Total time: 2.82 hours. Scaled time: 5.67 units (timescale=2.010). Factorization parameters were as follows: name: 42227_129 n: 780220298486415738373901401055962471239385898458475638842840492193351812645781852909460998563306448789737672072710454313451 m: 100000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [540000, 840001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 148817 x 149065 Total sieving time: 2.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,47,47,2.3,2.3,50000 total time: 2.82 hours. --------- CPU info (if available) ----------
(38·10134+43)/9 = 4(2)1337<135> = 7 · 179 · 199 · C130
C130 = P36 · P40 · P54
P36 = 976249081765964679035742823768959109<36>
P40 = 2341296925239378772934166687655885634501<40>
P54 = 740832125045200102183124573455647869445175399351741849<54>
Number: 42227_134 N=1693311819361059977550250142260473245004841534978252083330548280998857905738678316651983870759312212387645418722592299976427317041 ( 130 digits) SNFS difficulty: 136 digits. Divisors found: r1=976249081765964679035742823768959109 r2=2341296925239378772934166687655885634501 r3=740832125045200102183124573455647869445175399351741849 Version: Total time: 4.33 hours. Scaled time: 8.49 units (timescale=1.960). Factorization parameters were as follows: name: 42227_134 n: 1693311819361059977550250142260473245004841534978252083330548280998857905738678316651983870759312212387645418722592299976427317041 m: 1000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1105001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 170006 x 170254 Total sieving time: 4.33 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 4.33 hours. --------- CPU info (if available) ----------
(38·10154+7)/9 = 4(2)1533<155> = 109 · 21407 · 153487 · 1581644833984969930562339<25> · C119
C119 = P57 · P63
P57 = 321166027817848058882563135857714158627714576218012383011<57>
P63 = 232085824426105456188431120454237300232428792761128210394472227<63>
Number: 42223_154 N=74538082343762785448110691159984807842440835697113941110272639034909759506082539134491568195318220352077422549926135497 ( 119 digits) SNFS difficulty: 156 digits. Divisors found: r1=321166027817848058882563135857714158627714576218012383011 r2=232085824426105456188431120454237300232428792761128210394472227 Version: Total time: 21.67 hours. Scaled time: 55.56 units (timescale=2.564). Factorization parameters were as follows: name: 42223_154 n: 74538082343762785448110691159984807842440835697113941110272639034909759506082539134491568195318220352077422549926135497 m: 10000000000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 460519 x 460767 Total sieving time: 21.67 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 21.67 hours. --------- CPU info (if available) ----------
(38·10114+43)/9 = 4(2)1137<115> = 3 · 31 · 270737 · 5986022611<10> · C98
C98 = P40 · P58
P40 = 8392236225335848609185007290798128808749<40>
P58 = 3338062573732403028949060455916560045484897247255070478873<58>
Sun Dec 21 14:24:23 2008 Msieve v. 1.39 Sun Dec 21 14:24:23 2008 random seeds: 4496b508 55cd2144 Sun Dec 21 14:24:23 2008 factoring 28013809653714889828606582246638760452158805911349423981945536736639371761734654695622944462059877 (98 digits) Sun Dec 21 14:24:24 2008 searching for 15-digit factors Sun Dec 21 14:24:26 2008 commencing quadratic sieve (98-digit input) Sun Dec 21 14:24:26 2008 using multiplier of 13 Sun Dec 21 14:24:26 2008 using 32kb Intel Core sieve core Sun Dec 21 14:24:26 2008 sieve interval: 36 blocks of size 32768 Sun Dec 21 14:24:26 2008 processing polynomials in batches of 6 Sun Dec 21 14:24:26 2008 using a sieve bound of 2472797 (90588 primes) Sun Dec 21 14:24:26 2008 using large prime bound of 370919550 (28 bits) Sun Dec 21 14:24:26 2008 using double large prime bound of 2658908975208750 (43-52 bits) Sun Dec 21 14:24:26 2008 using trial factoring cutoff of 52 bits Sun Dec 21 14:24:26 2008 polynomial 'A' values have 13 factors Sun Dec 21 21:45:00 2008 90841 relations (22207 full + 68634 combined from 1358298 partial), need 90684 Sun Dec 21 21:45:01 2008 begin with 1380505 relations Sun Dec 21 21:45:03 2008 reduce to 237264 relations in 13 passes Sun Dec 21 21:45:03 2008 attempting to read 237264 relations Sun Dec 21 21:45:07 2008 recovered 237264 relations Sun Dec 21 21:45:07 2008 recovered 225925 polynomials Sun Dec 21 21:45:07 2008 attempting to build 90841 cycles Sun Dec 21 21:45:07 2008 found 90841 cycles in 6 passes Sun Dec 21 21:45:07 2008 distribution of cycle lengths: Sun Dec 21 21:45:07 2008 length 1 : 22207 Sun Dec 21 21:45:07 2008 length 2 : 16089 Sun Dec 21 21:45:07 2008 length 3 : 15123 Sun Dec 21 21:45:07 2008 length 4 : 12342 Sun Dec 21 21:45:07 2008 length 5 : 9156 Sun Dec 21 21:45:07 2008 length 6 : 6348 Sun Dec 21 21:45:07 2008 length 7 : 4061 Sun Dec 21 21:45:07 2008 length 9+: 5515 Sun Dec 21 21:45:07 2008 largest cycle: 24 relations Sun Dec 21 21:45:08 2008 matrix is 90588 x 90841 (24.3 MB) with weight 6018077 (66.25/col) Sun Dec 21 21:45:08 2008 sparse part has weight 6018077 (66.25/col) Sun Dec 21 21:45:09 2008 filtering completed in 3 passes Sun Dec 21 21:45:09 2008 matrix is 86557 x 86621 (23.3 MB) with weight 5762657 (66.53/col) Sun Dec 21 21:45:09 2008 sparse part has weight 5762657 (66.53/col) Sun Dec 21 21:45:09 2008 saving the first 48 matrix rows for later Sun Dec 21 21:45:09 2008 matrix is 86509 x 86621 (14.0 MB) with weight 4514781 (52.12/col) Sun Dec 21 21:45:09 2008 sparse part has weight 3151662 (36.38/col) Sun Dec 21 21:45:09 2008 matrix includes 64 packed rows Sun Dec 21 21:45:09 2008 using block size 34648 for processor cache size 1024 kB Sun Dec 21 21:45:10 2008 commencing Lanczos iteration Sun Dec 21 21:45:10 2008 memory use: 13.8 MB Sun Dec 21 21:45:59 2008 lanczos halted after 1370 iterations (dim = 86505) Sun Dec 21 21:45:59 2008 recovered 16 nontrivial dependencies Sun Dec 21 21:46:00 2008 prp40 factor: 8392236225335848609185007290798128808749 Sun Dec 21 21:46:00 2008 prp58 factor: 3338062573732403028949060455916560045484897247255070478873 Sun Dec 21 21:46:00 2008 elapsed time 07:21:37
(38·10139+43)/9 = 4(2)1387<140> = 23 · 47 · 157 · 1091 · 490913 · 95099288952186151<17> · C109
C109 = P34 · P76
P34 = 1393980093270082701445581996312139<34>
P76 = 3503907362859903751937502287009860162839613179165479888499563514926963907713<76>
Number: 42227_139 N=4884377112489178144273156295792950485073388003515582263988391522853491148860966070259939401017505922337628107 ( 109 digits) SNFS difficulty: 141 digits. Divisors found: r1=1393980093270082701445581996312139 r2=3503907362859903751937502287009860162839613179165479888499563514926963907713 Version: Total time: 6.96 hours. Scaled time: 13.90 units (timescale=1.997). Factorization parameters were as follows: name: 42227_139 n: 4884377112489178144273156295792950485073388003515582263988391522853491148860966070259939401017505922337628107 m: 10000000000000000000000000000 deg: 5 c5: 19 c0: 215 skew: 1.62 type: snfs lss: 1 rlim: 1580000 alim: 1580000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1580000/1580000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [790000, 1490001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 200308 x 200556 Total sieving time: 6.96 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1580000,1580000,26,26,48,48,2.3,2.3,100000 total time: 6.96 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10123+43)/9 = 4(2)1227<124> = 3 · 523 · 4981091 · 595375639 · C105
C105 = P37 · P69
P37 = 6625236622908351129130519627635150409<37>
P69 = 136962354440508632796329576785523794043541101927468396673154669332863<69>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2291580702 Step 1 took 8167ms Step 2 took 5212ms ********** Factor found in step 2: 6625236622908351129130519627635150409 Found probable prime factor of 37 digits: 6625236622908351129130519627635150409 Probable prime cofactor 136962354440508632796329576785523794043541101927468396673154669332863 has 69 digits
(38·10102+43)/9 = 4(2)1017<103> = 3 · 283 · C100
C100 = P46 · P55
P46 = 2339819275170388413017198578896211823485991939<46>
P55 = 2125450928489942711483795575495927297447161644376716257<55>
SNFS difficulty: 103 digits. Divisors found: r1=2339819275170388413017198578896211823485991939 (pp46) r2=2125450928489942711483795575495927297447161644376716257 (pp55) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.732). Factorization parameters were as follows: n: 4973171050909566810626881298259390132181651616280591545609213453736421934301792959036775291192252323 m: 20000000000000000000000000 deg: 4 c4: 475 c0: 86 skew: 0.65 type: snfs lss: 1 rlim: 380000 alim: 380000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 380000/380000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [190000, 250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 37602 x 37840 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,103,4,0,0,0,0,0,0,0,0,380000,380000,25,25,44,44,2.2,2.2,20000 total time: 0.30 hours.
(38·10152+43)/9 = 4(2)1517<153> = 7 · 113 · 140869 · 549053809 · 611191649 · C128
C128 = P34 · P94
P34 = 3311927853322341988197805383433981<34>
P94 = 3409384512902395854395804534112932958824831083076127506595975133098149114787081693316069646053<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=965743905 Step 1 took 9800ms Step 2 took 5995ms ********** Factor found in step 2: 3311927853322341988197805383433981 Found probable prime factor of 34 digits: 3311927853322341988197805383433981 Probable prime cofactor 3409384512902395854395804534112932958824831083076127506595975133098149114787081693316069646053 has 94 digits
(38·10169+43)/9 = 4(2)1687<170> = 59 · 337 · 977 · 39198743 · 227965993 · C147
C147 = P28 · P119
P28 = 2655820141606970410062410591<28>
P119 = 91584872364486444849043172878832212662987223413797999591678382550522470542734022451786510752287876994744879249741744633<119>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3830038547 Step 1 took 11702ms Step 2 took 6882ms ********** Factor found in step 2: 2655820141606970410062410591 Found probable prime factor of 28 digits: 2655820141606970410062410591 Probable prime cofactor 91584872364486444849043172878832212662987223413797999591678382550522470542734022451786510752287876994744879249741744633 has 119 digits
(38·10113+43)/9 = 4(2)1127<114> = 13 · 25237 · 1575809689<10> · C99
C99 = P41 · P59
P41 = 49735454513288675927478118921779346906991<41>
P59 = 16420642634281376632440806439033280504579372286731350984533<59>
SNFS difficulty: 115 digits. Divisors found: r1=49735454513288675927478118921779346906991 (pp41) r2=16420642634281376632440806439033280504579372286731350984533 (pp59) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.727). Factorization parameters were as follows: n: 816688124816270146188018767143009804753821509031817108709323199602796756189812586828039616230570203 m: 50000000000000000000000 deg: 5 c5: 304 c0: 1075 skew: 1.29 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 47 mfba: 47 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved rational special-q in [300000, 550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69513 x 69761 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,47,47,2.2,2.2,50000 total time: 0.90 hours.
(38·10205+43)/9 = 4(2)2047<206> = 23 · 39769717773101<14> · 8283027066071539<16> · C175
C175 = P37 · P138
P37 = 7446927812275566885066367640755661501<37>
P138 = 748332346108083517204496076352281303579644183334234639264171266650967495931706368107585190904256579382948621638256477256434360566405057791<138>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2569832959 Step 1 took 16203ms Step 2 took 8239ms ********** Factor found in step 2: 7446927812275566885066367640755661501 Found probable prime factor of 37 digits: 7446927812275566885066367640755661501 Probable prime cofactor has 138 digits
(38·10191+43)/9 = 4(2)1907<192> = 13 · 717303940796383<15> · C176
C176 = P35 · C142
P35 = 12195699723660604747700062962777713<35>
C142 = [3712682365398479438282243464664815196302016944064203440914178876499906302165494535438255401453384930597328776467752153773796030078075034987601<142>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2348945104 Step 1 took 16054ms Step 2 took 8272ms ********** Factor found in step 2: 12195699723660604747700062962777713 Found probable prime factor of 35 digits: 12195699723660604747700062962777713 Composite cofactor has 142 digits
(38·10172+43)/9 = 4(2)1717<173> = 78904708409084059771<20> · C153
C153 = P33 · C121
P33 = 203557052143526710221580765970953<33>
C121 = [2628766520436983600848734312946145497452786791325720620424489826049404434795255603834058064887550987569889245091927009729<121>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1531914312 Step 1 took 11706ms Step 2 took 6748ms ********** Factor found in step 2: 203557052143526710221580765970953 Found probable prime factor of 33 digits: 203557052143526710221580765970953 Composite cofactor has 121 digits
Factorizations of 422...227 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(37·10186+53)/9 = 4(1)1857<187> = 139 · 2017 · 109199 · 4908232860071<13> · 704264442759638437<18> · 10378488878367712824242152948117<32> · C115
C115 = P49 · P67
P49 = 2689929817698759709554943418445374763129549819167<49>
P67 = 1391502082959891862381969553973756799821963452576981458534155488297<67>
Number: 41117_186 N=3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599 ( 115 digits) Divisors found: r1=2689929817698759709554943418445374763129549819167 r2=1391502082959891862381969553973756799821963452576981458534155488297 Version: Total time: 23.49 hours. Scaled time: 56.17 units (timescale=2.391). Factorization parameters were as follows: name: 41117_186 n: 3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599 skew: 19576.61 # norm 1.71e+15 c5: 71040 c4: 5792275644 c3: -75240063274582 c2: -1887877505352075585 c1: 13052664014638656996786 c0: 93295585212988908690842265 # alpha -4.74 Y1: 612224461663 Y0: -8797188109558810865144 # Murphy_E 5.31e-10 # M 2485795306113775412739937617463062509924090181073194909416249828870954543475074827476885729509114857968585428779381 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2730001) Primes: rational ideals reading, algebraic ideals reading, Relations: 9452756 Max relations in full relation-set: Initial matrix: Pruned matrix : 554579 x 554827 Polynomial selection time: 1.33 hours. Total sieving time: 20.54 hours. Total relation processing time: 0.81 hours. Matrix solve time: 0.69 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 23.49 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Erik Branger / GGNFS, Msieve
(37·10155+53)/9 = 4(1)1547<156> = 3 · 72 · 6133 · 5060729981<10> · C140
C140 = P66 · P75
P66 = 269367314763042914282201634549081377562001210180121850198455089769<66>
P75 = 334511345691997716865981461494206580384756565786245263349384660653593436903<75>
Number: 41117_155 N=90106422946825408363604857144748861894415378687351286417994381988145740514085075549840680353930716088170577060545290073747118283014102345407 ( 140 digits) SNFS difficulty: 156 digits. Divisors found: r1=269367314763042914282201634549081377562001210180121850198455089769 r2=334511345691997716865981461494206580384756565786245263349384660653593436903 Version: Total time: 23.50 hours. Scaled time: 50.72 units (timescale=2.158). Factorization parameters were as follows: n: 90106422946825408363604857144748861894415378687351286417994381988145740514085075549840680353930716088170577060545290073747118283014102345407 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 464074 x 464322 Total sieving time: 23.50 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.50 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(29·10184+43)/9 = 3(2)1837<185> = 13 · 37 · C182
C182 = P84 · P99
P84 = 111279443625051066686752583950724085052587338038048389915997789891205474859639594563<84>
P99 = 601998579502120043908560040845175574623627224208589111827646965534334972535100226307763607247653009<99>
Number: n N=66990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990067 ( 182 digits) SNFS difficulty: 186 digits. Divisors found: Sat Dec 20 12:36:23 2008 prp84 factor: 111279443625051066686752583950724085052587338038048389915997789891205474859639594563 Sat Dec 20 12:36:23 2008 prp99 factor: 601998579502120043908560040845175574623627224208589111827646965534334972535100226307763607247653009 Sat Dec 20 12:36:23 2008 elapsed time 02:46:43 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 75.44 hours. Scaled time: 151.78 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_2_183_7 n: 66990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990066990067 type: snfs skew: 1.71 deg: 5 c5: 29 c0: 430 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 5000001) Primes: RFBsize:571119, AFBsize:570987, largePrimes:30886821 encountered Relations: rels:27632037, finalFF:860192 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 7185617 hash collisions in 37455763 relations Msieve: matrix is 1392558 x 1392806 (375.4 MB) Total sieving time: 74.58 hours. Total relation processing time: 0.85 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 75.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
(38·10149+7)/9 = 4(2)1483<150> = 3 · 942700533825610283281<21> · 20730491537768293860737<23> · C106
C106 = P52 · P54
P52 = 9200186247536074110725736408181370462425062932285921<52>
P54 = 782780251568680203916999787491470260852006980070718293<54>
Number: 42223_149 N=7201724105325000015271685446739135051345465751365130548241989191456787699852270086959653138717414921052853 ( 106 digits) SNFS difficulty: 151 digits. Divisors found: r1=9200186247536074110725736408181370462425062932285921 (pp52) r2=782780251568680203916999787491470260852006980070718293 (pp54) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 32.37 hours. Scaled time: 15.28 units (timescale=0.472). Factorization parameters were as follows: name: 42223_149 n: 7201724105325000015271685446739135051345465751365130548241989191456787699852270086959653138717414921052853 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: RFBsize:169511, AFBsize:169171, largePrimes:7064924 encountered Relations: rels:7144749, finalFF:554927 Max relations in full relation-set: 28 Initial matrix: 338747 x 554927 with sparse part having weight 60132314. Pruned matrix : 271443 x 273200 with weight 27469857. Total sieving time: 29.50 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.48 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 32.37 hours. --------- CPU info (if available) ----------
(38·10150+7)/9 = 4(2)1493<151> = 863 · 354115717612803949610519013179<30> · C119
C119 = P44 · P75
P44 = 15431000559815206035395680817815150310335313<44>
P75 = 895346212652991183542440571902343530844413019287198941007927920963839486323<75>
Number: 42223_150 N=13816087908676731462588855160525165982813315669594685075162160784517590741668791402353425690447665556919582119807424099 ( 119 digits) SNFS difficulty: 151 digits. Divisors found: r1=15431000559815206035395680817815150310335313 r2=895346212652991183542440571902343530844413019287198941007927920963839486323 Version: Total time: 14.72 hours. Scaled time: 37.91 units (timescale=2.575). Factorization parameters were as follows: name: 42223_150 n: 13816087908676731462588855160525165982813315669594685075162160784517590741668791402353425690447665556919582119807424099 m: 1000000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 390910 x 391158 Total sieving time: 14.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 14.72 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(38·10170+7)/9 = 4(2)1693<171> = 3 · 157 · 2753 · 196771 · C160
C160 = P42 · P55 · P64
P42 = 153476075151060773153342076445236124223591<42>
P55 = 1917702948548351014972144075788906674953668710503672193<55>
P64 = 5622518013204771026946571224850334036846250412736550122129247077<64>
SNFS difficulty: 171 digits. Divisors found: r1=153476075151060773153342076445236124223591 (pp42) r2=1917702948548351014972144075788906674953668710503672193 (pp55) r3=5622518013204771026946571224850334036846250412736550122129247077 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 1654828058268818266826261750512835223969607670110340280285501032823035481764827422126230743258275115337701206453136677726673505147628725557203557147602078050851 m: 10000000000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 5100000 alim: 5100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5100000/5100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2550000, 5550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 874715 x 874963 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5100000,5100000,27,27,52,52,2.4,2.4,200000 total time: 55.00 hours.
(37·10166+53)/9 = 4(1)1657<167> = 173898349349<12> · C156
C156 = P69 · P87
P69 = 538011999070133912246986997440759766268356209654134229710176541138511<69>
P87 = 439411878873081543610582036653852567797126398884022586714170752552913700796583215412903<87>
SNFS difficulty: 167 digits. Divisors found: r1=538011999070133912246986997440759766268356209654134229710176541138511 (pp69) r2=439411878873081543610582036653852567797126398884022586714170752552913700796583215412903 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.309). Factorization parameters were as follows: n: 236408863367670142721103299844704445499417936577501671655105982078525215703490151195127495684341517913294975327058250115806342823270262708415877058579607433 m: 1000000000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 4300000 alim: 4300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4300000/4300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2150000, 5650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 954792 x 955039 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,4300000,4300000,27,27,52,52,2.4,2.4,100000 total time: 45.00 hours.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(37·10175+71)/9 = 4(1)1749<176> = 7 · 1277 · 131517606982631<15> · 705741823656784897<18> · 4900621212089152019167274959<28> · C113
C113 = P47 · P66
P47 = 27453836811193533274952439583072078790856233791<47>
P66 = 368286958765672743643689545618535973113755495971514753154648801787<66>
Number: 41119_175 N=10110890065643541273876685037705613811147665442907802879999742534726910408194518400360771008434790950557690584517 ( 113 digits) Divisors found: r1=27453836811193533274952439583072078790856233791 r2=368286958765672743643689545618535973113755495971514753154648801787 Version: Total time: 17.05 hours. Scaled time: 40.67 units (timescale=2.385). Factorization parameters were as follows: name: 41119_175 n: 10110890065643541273876685037705613811147665442907802879999742534726910408194518400360771008434790950557690584517 skew: 31984.13 # norm 1.63e+15 c5: 30360 c4: 1656856535 c3: -70094780515248 c2: -2243626268782858410 c1: 50520317420498134325496 c0: -50669818649517852164082573 # alpha -5.19 Y1: 1865253410543 Y0: -3195175792034622680434 # Murphy_E 7.24e-10 # M 5786324711396589223504645891167661672681231097769903942441373431869606174401351108406813980815335802242941075202 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved algebraic special-q in [1200000, 2160001) Primes: rational ideals reading, algebraic ideals reading, Relations: 8619601 Max relations in full relation-set: Initial matrix: Pruned matrix : 412092 x 412340 Polynomial selection time: 1.04 hours. Total sieving time: 14.87 hours. Total relation processing time: 0.63 hours. Matrix solve time: 0.36 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,51,51,2.6,2.6,60000 total time: 17.05 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve
(38·10165-11)/9 = 4(2)1641<166> = 32 · 7 · 29 · 433 · 14103704127121829141<20> · 512830241895585414353418585991<30> · C111
C111 = P46 · P66
P46 = 2929181820706174355164874093534364725713662073<46>
P66 = 251919332497036727931045115049442101193333340434130266632902737037<66>
Number: n N=737917529034754159507563986949881633271119592299813842582578872003532723125311534918896755506803917146199297701 ( 111 digits) Divisors found: Fri Dec 19 10:35:19 2008 prp46 factor: 2929181820706174355164874093534364725713662073 Fri Dec 19 10:35:19 2008 prp66 factor: 251919332497036727931045115049442101193333340434130266632902737037 Fri Dec 19 10:35:19 2008 elapsed time 01:12:51 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 14.05 hours. Scaled time: 25.30 units (timescale=1.801). Factorization parameters were as follows: n: 737917529034754159507563986949881633271119592299813842582578872003532723125311534918896755506803917146199297701 Y0: -2383114440365214673050 Y1: 666243497711 c0: -312209647156954433244650149 c1: 14556975766321877839966 c2: 843009328727785431 c3: -27567575689852 c4: 956954044 c5: 9600 skew: 23510.92 name: KA_4_2_164_1 type: gnfs rlim: 3400000 alim: 3400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2300001) Primes: RFBsize:243539, AFBsize:244085, largePrimes:15000202 encountered Relations: rels:13799352, finalFF:770852 Max relations in full relation-set: 28 Initial matrix: 487700 x 770852 with sparse part having weight 92119394. Pruned matrix : Msieve: found 810713 hash collisions in 14297157 relations Msieve: matrix is 402030 x 402276 (111.7 MB) Total sieving time: 13.69 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3400000,3400000,28,28,56,56,2.5,2.5,100000 total time: 14.05 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10136+7)/9 = 4(2)1353<137> = 409 · 6361 · C131
C131 = P49 · P82
P49 = 8594000668119493432759132571049781552594004445247<49>
P82 = 1888413082581267978490482365718941523363737007376231943020350468156526437976112641<82>
Number: 42223_136 N=16229023293389009133139106090876295081397306947333103820777599984556803097659300782781313782997714996228246862748288574754789067327 ( 131 digits) SNFS difficulty: 138 digits. Divisors found: r1=8594000668119493432759132571049781552594004445247 r2=1888413082581267978490482365718941523363737007376231943020350468156526437976112641 Version: Total time: 4.82 hours. Scaled time: 12.40 units (timescale=2.575). Factorization parameters were as follows: name: 42223_136 n: 16229023293389009133139106090876295081397306947333103820777599984556803097659300782781313782997714996228246862748288574754789067327 m: 2000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 1420000 alim: 1420000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1420000/1420000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [710000, 1385001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 222874 x 223122 Total sieving time: 4.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1420000,1420000,26,26,48,48,2.3,2.3,75000 total time: 4.82 hours. --------- CPU info (if available) ----------
(38·10146+7)/9 = 4(2)1453<147> = 32 · 96157 · 541469 · 22900003348416823<17> · C119
C119 = P53 · P67
P53 = 13474293956396481663403791718049203306600304054932849<53>
P67 = 2920132186621567969038207626747820838665582277038474633583932183017<67>
Number: 42223_146 N=39346719474073836211165386970759767038358231641254866087382141856300037559614084744521490143159896516392312603913225433 ( 119 digits) SNFS difficulty: 148 digits. Divisors found: r1=13474293956396481663403791718049203306600304054932849 r2=2920132186621567969038207626747820838665582277038474633583932183017 Version: Total time: 11.92 hours. Scaled time: 30.69 units (timescale=2.575). Factorization parameters were as follows: 42223_146 n: 39346719474073836211165386970759767038358231641254866087382141856300037559614084744521490143159896516392312603913225433 m: 200000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 332704 x 332952 Total sieving time: 11.92 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 11.92 hours. --------- CPU info (if available) ----------
(38·10120+7)/9 = 4(2)1193<121> = 29 · 4924903 · 245566854496031743<18> · C96
C96 = P41 · P55
P41 = 19955093527642430225778981756086814003767<41>
P55 = 6032841192967150543154636232473256336681085904002749509<55>
Fri Dec 19 07:35:03 2008 Msieve v. 1.39 Fri Dec 19 07:35:03 2008 random seeds: 6b80e7dc 791eff7b Fri Dec 19 07:35:03 2008 factoring 120385910243073423257026243810404870767812331654226840017936550483511807178296703100252683400403 (96 digits) Fri Dec 19 07:35:04 2008 searching for 15-digit factors Fri Dec 19 07:35:05 2008 commencing quadratic sieve (96-digit input) Fri Dec 19 07:35:05 2008 using multiplier of 37 Fri Dec 19 07:35:05 2008 using 32kb Intel Core sieve core Fri Dec 19 07:35:05 2008 sieve interval: 36 blocks of size 32768 Fri Dec 19 07:35:05 2008 processing polynomials in batches of 6 Fri Dec 19 07:35:06 2008 using a sieve bound of 2192963 (81176 primes) Fri Dec 19 07:35:06 2008 using large prime bound of 328944450 (28 bits) Fri Dec 19 07:35:06 2008 using double large prime bound of 2142005338065300 (43-51 bits) Fri Dec 19 07:35:06 2008 using trial factoring cutoff of 51 bits Fri Dec 19 07:35:06 2008 polynomial 'A' values have 12 factors Fri Dec 19 07:35:06 2008 restarting with 1596 full and 94647 partial relations Fri Dec 19 11:27:17 2008 81338 relations (20175 full + 61163 combined from 1215310 partial), need 81272 Fri Dec 19 11:27:18 2008 begin with 1235485 relations Fri Dec 19 11:27:20 2008 reduce to 211262 relations in 11 passes Fri Dec 19 11:27:20 2008 attempting to read 211262 relations Fri Dec 19 11:27:23 2008 recovered 211262 relations Fri Dec 19 11:27:23 2008 recovered 196167 polynomials Fri Dec 19 11:27:23 2008 attempting to build 81338 cycles Fri Dec 19 11:27:23 2008 found 81338 cycles in 5 passes Fri Dec 19 11:27:23 2008 distribution of cycle lengths: Fri Dec 19 11:27:23 2008 length 1 : 20175 Fri Dec 19 11:27:23 2008 length 2 : 14340 Fri Dec 19 11:27:23 2008 length 3 : 13606 Fri Dec 19 11:27:23 2008 length 4 : 10935 Fri Dec 19 11:27:23 2008 length 5 : 8292 Fri Dec 19 11:27:23 2008 length 6 : 5597 Fri Dec 19 11:27:23 2008 length 7 : 3511 Fri Dec 19 11:27:23 2008 length 9+: 4882 Fri Dec 19 11:27:23 2008 largest cycle: 19 relations Fri Dec 19 11:27:24 2008 matrix is 81176 x 81338 (22.8 MB) with weight 5643868 (69.39/col) Fri Dec 19 11:27:24 2008 sparse part has weight 5643868 (69.39/col) Fri Dec 19 11:27:25 2008 filtering completed in 3 passes Fri Dec 19 11:27:25 2008 matrix is 77244 x 77308 (21.8 MB) with weight 5404103 (69.90/col) Fri Dec 19 11:27:25 2008 sparse part has weight 5404103 (69.90/col) Fri Dec 19 11:27:25 2008 saving the first 48 matrix rows for later Fri Dec 19 11:27:25 2008 matrix is 77196 x 77308 (16.0 MB) with weight 4523024 (58.51/col) Fri Dec 19 11:27:25 2008 sparse part has weight 3722876 (48.16/col) Fri Dec 19 11:27:25 2008 matrix includes 64 packed rows Fri Dec 19 11:27:25 2008 using block size 30923 for processor cache size 1024 kB Fri Dec 19 11:27:26 2008 commencing Lanczos iteration Fri Dec 19 11:27:26 2008 memory use: 14.0 MB Fri Dec 19 11:28:10 2008 lanczos halted after 1222 iterations (dim = 77195) Fri Dec 19 11:28:11 2008 recovered 18 nontrivial dependencies Fri Dec 19 11:28:12 2008 prp41 factor: 19955093527642430225778981756086814003767 Fri Dec 19 11:28:12 2008 prp55 factor: 6032841192967150543154636232473256336681085904002749509 Fri Dec 19 11:28:12 2008 elapsed time 03:53:09
(38·10151+7)/9 = 4(2)1503<152> = 23 · 1176371562578041651<19> · C133
C133 = P63 · P70
P63 = 485460562826957331754454944330962706119706627186220853762299653<63>
P70 = 3214509981924084416777889458865269747634632549732810562486889213808567<70>
Number: 42223_151 N=1560517825037738459854438489255803864062404112623963858125778119538120217593954522496759798220909008287552424483930190183364432527251 ( 133 digits) SNFS difficulty: 153 digits. Divisors found: r1=485460562826957331754454944330962706119706627186220853762299653 r2=3214509981924084416777889458865269747634632549732810562486889213808567 Version: Total time: 22.29 hours. Scaled time: 43.45 units (timescale=1.949). Factorization parameters were as follows: name: 42223_151 n: 1560517825037738459854438489255803864062404112623963858125778119538120217593954522496759798220909008287552424483930190183364432527251 m: 2000000000000000000000000000000 deg: 5 c5: 95 c0: 56 skew: 0.90 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 2050001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 438175 x 438423 Total sieving time: 22.29 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 22.29 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10162+7)/9 = 4(2)1613<163> = 22666112659648690795351599407939<32> · C132
C132 = P34 · P98
P34 = 5160396681170916091071232604105399<34>
P98 = 36097818491499062140649356899516517790791368456473008648453082759802006328144553713905393610559843<98>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1554662117 Step 1 took 9808ms Step 2 took 5990ms ********** Factor found in step 2: 5160396681170916091071232604105399 Found probable prime factor of 34 digits: 5160396681170916091071232604105399 Probable prime cofactor 36097818491499062140649356899516517790791368456473008648453082759802006328144553713905393610559843 has 98 digits
(38·10191-11)/9 = 4(2)1901<192> = 41 · 2687 · 774334507 · 375832150285823251963801943606447<33> · C146
C146 = P39 · P107
P39 = 956276603516830937978406238709621853569<39>
P107 = 13771571192961589841833862853688482747346196734485423041265570383728431701766189556898870971868907507954463<107>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2975364834 Step 1 took 11760ms Step 2 took 6495ms ********** Factor found in step 2: 956276603516830937978406238709621853569 Found probable prime factor of 39 digits: 956276603516830937978406238709621853569 Probable prime cofactor 13771571192961589841833862853688482747346196734485423041265570383728431701766189556898870971868907507954463 has 107 digits
(38·10157+7)/9 = 4(2)1563<158> = 17 · 937 · C154
C154 = P48 · P107
P48 = 174202237292790959315768467382894756765173949951<48>
P107 = 15215942083033820802184377816467863773879005591771502744651031164528244378458407456255021493967981424428537<107>
SNFS difficulty: 159 digits. Divisors found: r1=174202237292790959315768467382894756765173949951 (pp48) r2=15215942083033820802184377816467863773879005591771502744651031164528244378458407456255021493967981424428537 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.293). Factorization parameters were as follows: n: 2650651153382021609782297835534071330417617064613109562572805714245854869873954562258912814503247047662892976471983314848529237379761580904151059214151687 m: 20000000000000000000000000000000 deg: 5 c5: 475 c0: 28 skew: 0.57 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1550000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 616516 x 616764 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
By Jo Yeong Uk / GGNFS
(35·10189+1)/9 = 3(8)1889<190> = C190
C190 = P56 · P135
P56 = 20293470058904574878183102843477356409653799265487560509<56>
P135 = 191632524038562972599764005358059709580489479276799676408280772785787623231363395916154199246135197563472355670762941811936146063579821<135>
Number: 38889_189 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 190 digits) SNFS difficulty: 190 digits. Divisors found: r1=20293470058904574878183102843477356409653799265487560509 (pp56) r2=191632524038562972599764005358059709580489479276799676408280772785787623231363395916154199246135197563472355670762941811936146063579821 (pp135) Version: GGNFS-0.77.1-20050930-nocona Total time: 242.97 hours. Scaled time: 568.30 units (timescale=2.339). Factorization parameters were as follows: n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 100000000000000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 11000000 alim: 11000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5500000, 9600001) Primes: RFBsize:726517, AFBsize:725838, largePrimes:19522578 encountered Relations: rels:20498731, finalFF:1670579 Max relations in full relation-set: 28 Initial matrix: 1452420 x 1670579 with sparse part having weight 185962661. Pruned matrix : 1271563 x 1278889 with weight 148415716. Total sieving time: 220.23 hours. Total relation processing time: 0.43 hours. Matrix solve time: 22.12 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,54,54,2.5,2.5,100000 total time: 242.97 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(38·10104+7)/9 = 4(2)1033<105> = 3 · 61 · 236169149 · C94
C94 = P41 · P54
P41 = 43086254634327649365606923085903856891003<41>
P54 = 226739972183122477267800170574550311949755005078106823<54>
Thu Dec 18 13:46:28 2008 Msieve v. 1.39 Thu Dec 18 13:46:28 2008 random seeds: a062d230 7342cb8e Thu Dec 18 13:46:28 2008 factoring 9769376177262383140812846225412865846706679693162836475583025059828022012012145065217901613469 (94 digits) Thu Dec 18 13:46:29 2008 searching for 15-digit factors Thu Dec 18 13:46:31 2008 commencing quadratic sieve (94-digit input) Thu Dec 18 13:46:31 2008 using multiplier of 1 Thu Dec 18 13:46:31 2008 using 32kb Intel Core sieve core Thu Dec 18 13:46:31 2008 sieve interval: 36 blocks of size 32768 Thu Dec 18 13:46:31 2008 processing polynomials in batches of 6 Thu Dec 18 13:46:31 2008 using a sieve bound of 2090227 (77647 primes) Thu Dec 18 13:46:31 2008 using large prime bound of 296812234 (28 bits) Thu Dec 18 13:46:31 2008 using double large prime bound of 1780193407171906 (42-51 bits) Thu Dec 18 13:46:31 2008 using trial factoring cutoff of 51 bits Thu Dec 18 13:46:31 2008 polynomial 'A' values have 12 factors Thu Dec 18 14:13:12 2008 2642 relations (2371 full + 271 combined from 141243 partial), need 77743 Thu Dec 18 14:13:12 2008 elapsed time 00:26:44 Thu Dec 18 14:32:42 2008 Thu Dec 18 14:32:42 2008 Thu Dec 18 14:32:42 2008 Msieve v. 1.39 Thu Dec 18 14:32:42 2008 random seeds: fba8aee8 1a77b463 Thu Dec 18 14:32:42 2008 factoring 9769376177262383140812846225412865846706679693162836475583025059828022012012145065217901613469 (94 digits) Thu Dec 18 14:32:43 2008 searching for 15-digit factors Thu Dec 18 14:32:44 2008 commencing quadratic sieve (94-digit input) Thu Dec 18 14:32:44 2008 using multiplier of 1 Thu Dec 18 14:32:44 2008 using 32kb Intel Core sieve core Thu Dec 18 14:32:44 2008 sieve interval: 36 blocks of size 32768 Thu Dec 18 14:32:44 2008 processing polynomials in batches of 6 Thu Dec 18 14:32:44 2008 using a sieve bound of 2090227 (77647 primes) Thu Dec 18 14:32:44 2008 using large prime bound of 296812234 (28 bits) Thu Dec 18 14:32:44 2008 using double large prime bound of 1780193407171906 (42-51 bits) Thu Dec 18 14:32:44 2008 using trial factoring cutoff of 51 bits Thu Dec 18 14:32:44 2008 polynomial 'A' values have 12 factors Thu Dec 18 14:32:45 2008 restarting with 2371 full and 141243 partial relations Thu Dec 18 17:41:26 2008 77942 relations (18849 full + 59093 combined from 1146357 partial), need 77743 Thu Dec 18 17:41:27 2008 begin with 1165206 relations Thu Dec 18 17:41:29 2008 reduce to 204517 relations in 12 passes Thu Dec 18 17:41:29 2008 attempting to read 204517 relations Thu Dec 18 17:41:32 2008 recovered 204517 relations Thu Dec 18 17:41:32 2008 recovered 188574 polynomials Thu Dec 18 17:41:32 2008 attempting to build 77942 cycles Thu Dec 18 17:41:32 2008 found 77942 cycles in 5 passes Thu Dec 18 17:41:32 2008 distribution of cycle lengths: Thu Dec 18 17:41:32 2008 length 1 : 18849 Thu Dec 18 17:41:32 2008 length 2 : 13493 Thu Dec 18 17:41:32 2008 length 3 : 13130 Thu Dec 18 17:41:32 2008 length 4 : 10465 Thu Dec 18 17:41:32 2008 length 5 : 7976 Thu Dec 18 17:41:32 2008 length 6 : 5543 Thu Dec 18 17:41:32 2008 length 7 : 3515 Thu Dec 18 17:41:32 2008 length 9+: 4971 Thu Dec 18 17:41:32 2008 largest cycle: 19 relations Thu Dec 18 17:41:32 2008 matrix is 77647 x 77942 (20.2 MB) with weight 4982155 (63.92/col) Thu Dec 18 17:41:32 2008 sparse part has weight 4982155 (63.92/col) Thu Dec 18 17:41:34 2008 filtering completed in 3 passes Thu Dec 18 17:41:34 2008 matrix is 74265 x 74329 (19.3 MB) with weight 4766944 (64.13/col) Thu Dec 18 17:41:34 2008 sparse part has weight 4766944 (64.13/col) Thu Dec 18 17:41:34 2008 saving the first 48 matrix rows for later Thu Dec 18 17:41:34 2008 matrix is 74217 x 74329 (12.1 MB) with weight 3736169 (50.27/col) Thu Dec 18 17:41:34 2008 sparse part has weight 2737005 (36.82/col) Thu Dec 18 17:41:34 2008 matrix includes 64 packed rows Thu Dec 18 17:41:34 2008 using block size 29731 for processor cache size 1024 kB Thu Dec 18 17:41:34 2008 commencing Lanczos iteration Thu Dec 18 17:41:34 2008 memory use: 11.8 MB Thu Dec 18 17:42:10 2008 lanczos halted after 1175 iterations (dim = 74213) Thu Dec 18 17:42:10 2008 recovered 15 nontrivial dependencies Thu Dec 18 17:42:11 2008 prp41 factor: 43086254634327649365606923085903856891003 Thu Dec 18 17:42:11 2008 prp54 factor: 226739972183122477267800170574550311949755005078106823 Thu Dec 18 17:42:11 2008 elapsed time 03:09:29
(38·10176+7)/9 = 4(2)1753<177> = 3 · 29 · 54540943 · 4287368772178003<16> · 8965485210842005636106031659<28> · 2471951484413682939511067832881908139<37> · C87
C87 = P43 · P45
P43 = 4366496618391640554655712516621488728265579<43>
P45 = 214467496461094603037698726459970575067475919<45>
Thu Dec 18 17:51:17 2008 Msieve v. 1.39 Thu Dec 18 17:51:17 2008 random seeds: 480a71e4 42ef3d6d Thu Dec 18 17:51:17 2008 factoring 936471598052290722011809167208477610429304981302335238497256676307528852425786219092101 (87 digits) Thu Dec 18 17:51:18 2008 searching for 15-digit factors Thu Dec 18 17:51:20 2008 commencing quadratic sieve (87-digit input) Thu Dec 18 17:51:20 2008 using multiplier of 1 Thu Dec 18 17:51:20 2008 using 32kb Intel Core sieve core Thu Dec 18 17:51:20 2008 sieve interval: 22 blocks of size 32768 Thu Dec 18 17:51:20 2008 processing polynomials in batches of 10 Thu Dec 18 17:51:20 2008 using a sieve bound of 1493299 (57000 primes) Thu Dec 18 17:51:20 2008 using large prime bound of 119463920 (26 bits) Thu Dec 18 17:51:20 2008 using double large prime bound of 345960105556960 (42-49 bits) Thu Dec 18 17:51:20 2008 using trial factoring cutoff of 49 bits Thu Dec 18 17:51:20 2008 polynomial 'A' values have 11 factors Thu Dec 18 18:41:03 2008 57227 relations (15776 full + 41451 combined from 604798 partial), need 57096 Thu Dec 18 18:41:04 2008 begin with 620574 relations Thu Dec 18 18:41:05 2008 reduce to 138470 relations in 12 passes Thu Dec 18 18:41:05 2008 attempting to read 138470 relations Thu Dec 18 18:41:06 2008 recovered 138470 relations Thu Dec 18 18:41:06 2008 recovered 117589 polynomials Thu Dec 18 18:41:07 2008 attempting to build 57227 cycles Thu Dec 18 18:41:07 2008 found 57227 cycles in 5 passes Thu Dec 18 18:41:07 2008 distribution of cycle lengths: Thu Dec 18 18:41:07 2008 length 1 : 15776 Thu Dec 18 18:41:07 2008 length 2 : 11054 Thu Dec 18 18:41:07 2008 length 3 : 9940 Thu Dec 18 18:41:07 2008 length 4 : 7535 Thu Dec 18 18:41:07 2008 length 5 : 5176 Thu Dec 18 18:41:07 2008 length 6 : 3384 Thu Dec 18 18:41:07 2008 length 7 : 2077 Thu Dec 18 18:41:07 2008 length 9+: 2285 Thu Dec 18 18:41:07 2008 largest cycle: 18 relations Thu Dec 18 18:41:07 2008 matrix is 57000 x 57227 (13.2 MB) with weight 3225637 (56.37/col) Thu Dec 18 18:41:07 2008 sparse part has weight 3225637 (56.37/col) Thu Dec 18 18:41:08 2008 filtering completed in 4 passes Thu Dec 18 18:41:08 2008 matrix is 52801 x 52864 (12.3 MB) with weight 3004794 (56.84/col) Thu Dec 18 18:41:08 2008 sparse part has weight 3004794 (56.84/col) Thu Dec 18 18:41:08 2008 saving the first 48 matrix rows for later Thu Dec 18 18:41:08 2008 matrix is 52753 x 52864 (7.8 MB) with weight 2373010 (44.89/col) Thu Dec 18 18:41:08 2008 sparse part has weight 1740382 (32.92/col) Thu Dec 18 18:41:08 2008 matrix includes 64 packed rows Thu Dec 18 18:41:08 2008 using block size 21145 for processor cache size 1024 kB Thu Dec 18 18:41:08 2008 commencing Lanczos iteration Thu Dec 18 18:41:08 2008 memory use: 7.7 MB Thu Dec 18 18:41:24 2008 lanczos halted after 835 iterations (dim = 52753) Thu Dec 18 18:41:24 2008 recovered 17 nontrivial dependencies Thu Dec 18 18:41:25 2008 prp43 factor: 4366496618391640554655712516621488728265579 Thu Dec 18 18:41:25 2008 prp45 factor: 214467496461094603037698726459970575067475919 Thu Dec 18 18:41:25 2008 elapsed time 00:50:08
(38·10130+7)/9 = 4(2)1293<131> = C131
C131 = P33 · P98
P33 = 678551793747462240865698141675319<33>
P98 = 62224022707301452482853572488992317799268371175008642178618762222983732884341974062619005483162217<98>
Number: 42223_130 N=42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 ( 131 digits) SNFS difficulty: 131 digits. Divisors found: r1=678551793747462240865698141675319 (prp33) r2=62224022707301452482853572488992317799268371175008642178618762222983732884341974062619005483162217 (prp98) Version: Total time: 3.60 hours. Scaled time: 7.17 units (timescale=1.991). Factorization parameters were as follows: name: 42223_130 n: 42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222223 m: 100000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 945001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 154826 x 155074 Total sieving time: 3.60 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 3.60 hours. --------- CPU info (if available) ----------
(38·10155+7)/9 = 4(2)1543<156> = 34 · 21247 · 405706541 · 8153054611907549<16> · 3631636673976858283592464277485606931<37> · C89
C89 = P34 · P56
P34 = 1420456107051505106563089043040989<34>
P56 = 14377913877137253365446313866748979093357534901514687119<56>
Thu Dec 18 19:12:15 2008 Msieve v. 1.39 Thu Dec 18 19:12:15 2008 random seeds: 766c50d8 0938bf95 Thu Dec 18 19:12:15 2008 factoring 20423195573440195206551390289801512611298882650218935717368875142211566032360322627320691 (89 digits) Thu Dec 18 19:12:16 2008 searching for 15-digit factors Thu Dec 18 19:12:17 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 19:12:17 2008 using multiplier of 1 Thu Dec 18 19:12:17 2008 using 32kb Intel Core sieve core Thu Dec 18 19:12:17 2008 sieve interval: 30 blocks of size 32768 Thu Dec 18 19:12:17 2008 processing polynomials in batches of 7 Thu Dec 18 19:12:17 2008 using a sieve bound of 1546837 (58348 primes) Thu Dec 18 19:12:17 2008 using large prime bound of 123746960 (26 bits) Thu Dec 18 19:12:17 2008 using double large prime bound of 368605688486800 (42-49 bits) Thu Dec 18 19:12:17 2008 using trial factoring cutoff of 49 bits Thu Dec 18 19:12:17 2008 polynomial 'A' values have 11 factors Thu Dec 18 20:18:08 2008 58635 relations (15460 full + 43175 combined from 627841 partial), need 58444 Thu Dec 18 20:18:09 2008 begin with 643301 relations Thu Dec 18 20:18:09 2008 reduce to 144114 relations in 9 passes Thu Dec 18 20:18:09 2008 attempting to read 144114 relations Thu Dec 18 20:18:11 2008 recovered 144114 relations Thu Dec 18 20:18:11 2008 recovered 123018 polynomials Thu Dec 18 20:18:11 2008 attempting to build 58635 cycles Thu Dec 18 20:18:11 2008 found 58635 cycles in 5 passes Thu Dec 18 20:18:11 2008 distribution of cycle lengths: Thu Dec 18 20:18:11 2008 length 1 : 15460 Thu Dec 18 20:18:11 2008 length 2 : 11059 Thu Dec 18 20:18:11 2008 length 3 : 10232 Thu Dec 18 20:18:11 2008 length 4 : 7813 Thu Dec 18 20:18:12 2008 length 5 : 5624 Thu Dec 18 20:18:12 2008 length 6 : 3705 Thu Dec 18 20:18:12 2008 length 7 : 2187 Thu Dec 18 20:18:12 2008 length 9+: 2555 Thu Dec 18 20:18:12 2008 largest cycle: 18 relations Thu Dec 18 20:18:12 2008 matrix is 58348 x 58635 (14.3 MB) with weight 3505595 (59.79/col) Thu Dec 18 20:18:12 2008 sparse part has weight 3505595 (59.79/col) Thu Dec 18 20:18:13 2008 filtering completed in 3 passes Thu Dec 18 20:18:13 2008 matrix is 54671 x 54735 (13.4 MB) with weight 3293020 (60.16/col) Thu Dec 18 20:18:13 2008 sparse part has weight 3293020 (60.16/col) Thu Dec 18 20:18:13 2008 saving the first 48 matrix rows for later Thu Dec 18 20:18:13 2008 matrix is 54623 x 54735 (9.1 MB) with weight 2631716 (48.08/col) Thu Dec 18 20:18:13 2008 sparse part has weight 2059013 (37.62/col) Thu Dec 18 20:18:13 2008 matrix includes 64 packed rows Thu Dec 18 20:18:13 2008 using block size 21894 for processor cache size 1024 kB Thu Dec 18 20:18:13 2008 commencing Lanczos iteration Thu Dec 18 20:18:13 2008 memory use: 8.6 MB Thu Dec 18 20:18:32 2008 lanczos halted after 865 iterations (dim = 54621) Thu Dec 18 20:18:32 2008 recovered 16 nontrivial dependencies Thu Dec 18 20:18:33 2008 prp34 factor: 1420456107051505106563089043040989 Thu Dec 18 20:18:33 2008 prp56 factor: 14377913877137253365446313866748979093357534901514687119 Thu Dec 18 20:18:33 2008 elapsed time 01:06:18
(38·10135+7)/9 = 4(2)1343<136> = 509 · C133
C133 = P38 · P46 · P51
P38 = 15913952422398244721190280306070085331<38>
P46 = 1442361694262586816326270806420410498472186067<46>
P51 = 361385788135949331769346686225100381937997477289411<51>
Number: 42223_135 N=8295132067234228334424798079022047587862912027941497489631084915957214581969002401222440515171359965073128137961143855053481772538747 ( 133 digits) SNFS difficulty: 136 digits. Divisors found: r1=15913952422398244721190280306070085331 (prp38) r2=1442361694262586816326270806420410498472186067 (prp46) r3=361385788135949331769346686225100381937997477289411 (prp51) Version: Total time: 5.58 hours. Scaled time: 11.15 units (timescale=1.997). Factorization parameters were as follows: name: 42223_135 n: 8295132067234228334424798079022047587862912027941497489631084915957214581969002401222440515171359965073128137961143855053481772538747 m: 1000000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1260001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 183860 x 184108 Total sieving time: 5.58 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 5.58 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1
(38·10142+7)/9 = 4(2)1413<143> = 59 · 5563 · 605464278196827737125597251068803<33> · C105
C105 = P36 · P70
P36 = 108086691733104157882816618677785281<36>
P70 = 1965709180424130529255869068846906640336734489270747363351530402366733<70>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=519687493 Step 1 took 8384ms Step 2 took 5062ms ********** Factor found in step 2: 108086691733104157882816618677785281 Found probable prime factor of 36 digits: 108086691733104157882816618677785281 Probable prime cofactor 1965709180424130529255869068846906640336734489270747363351530402366733 has 70 digits
By Serge Batalov / PFGW
(8·1053411+1)/9 = (8)534109<53411> is PRP.
By Tyler Cadigan / GGNFS, Msieve
(43·10185-7)/9 = 4(7)185<186> = 3 · 29 · 47 · 58170373640018484872008409<26> · C157
C157 = P75 · P82
P75 = 711289181722006572964993391864934683586891620256502264874981119795063837321<75>
P82 = 2823974552229371081708878262515141661878349230272684194999664683868033689289786137<82>
Number: 47777_185 N=2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 ( 157 digits) SNFS difficulty: 186 digits. Divisors found: r1=711289181722006572964993391864934683586891620256502264874981119795063837321 r2=2823974552229371081708878262515141661878349230272684194999664683868033689289786137 Version: Total time: 284.19 hours. Scaled time: 728.96 units (timescale=2.565). Factorization parameters were as follows: n: 2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977 m: 10000000000000000000000000000000000000 deg: 5 c5: 43 c0: -7 skew: 0.70 type: snfs lss: 1 rlim: 9000000 alim: 9000000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Y0: 10000000000000000000000000000000000000 Y1: -1 qintsize: 1000000Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4500000, 8500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1277651 x 1277899 Total sieving time: 284.19 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,54,54,2.5,2.5,100000 total time: 284.19 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(38·10108+7)/9 = 4(2)1073<109> = 41 · 499 · C105
C105 = P47 · P59
P47 = 10295641543941343571168747279625193234146247799<47>
P59 = 20044871255305051171624283732903041074399663885329714243003<59>
Number: n N=206374809239074354671402425447100162384389374955873807235066338639338297190587136332285166539040139900397 ( 105 digits) SNFS difficulty: 109 digits. Divisors found: r1=10295641543941343571168747279625193234146247799 (pp47) r2=20044871255305051171624283732903041074399663885329714243003 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.93 hours. Scaled time: 1.70 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_2_107_3 n: 206374809239074354671402425447100162384389374955873807235066338639338297190587136332285166539040139900397 type: snfs skew: 0.36 deg: 5 c5: 2375 c0: 14 m: 2000000000000000000000 rlim: 450000 alim: 450000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 450000/450000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [225000, 305001) Primes: RFBsize:37706, AFBsize:38049, largePrimes:4928369 encountered Relations: rels:4458518, finalFF:266912 Max relations in full relation-set: 48 Initial matrix: 75821 x 266912 with sparse part having weight 35358891. Pruned matrix : 56879 x 57322 with weight 4347894. Total sieving time: 0.83 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,109,5,0,0,0,0,0,0,0,0,450000,450000,28,28,56,56,2.5,2.5,50000 total time: 0.93 hours. --------- CPU info (if available) ----------
(38·10116+7)/9 = 4(2)1153<117> = 3 · 352637 · C111
C111 = P43 · P68
P43 = 5573083583773648271800694651315923853073163<43>
P68 = 71613747018533179366658876906680060578395225670235050033207926163611<68>
Number: n N=399109397881506310287181267821416189284563845372835921190177833695104996755135566434437511494088087015091271593 ( 111 digits) SNFS difficulty: 117 digits. Divisors found: r1=5573083583773648271800694651315923853073163 (pp43) r2=71613747018533179366658876906680060578395225670235050033207926163611 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.18 hours. Scaled time: 2.15 units (timescale=1.822). Factorization parameters were as follows: name: KA_4_2_115_3 n: 399109397881506310287181267821416189284563845372835921190177833695104996755135566434437511494088087015091271593 type: snfs skew: 0.45 deg: 5 c5: 380 c0: 7 m: 100000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [250000, 370001) Primes: RFBsize:41538, AFBsize:41837, largePrimes:5004377 encountered Relations: rels:4345290, finalFF:125163 Max relations in full relation-set: 48 Initial matrix: 83442 x 125163 with sparse part having weight 17533216. Pruned matrix : 76901 x 77382 with weight 7526306. Total sieving time: 1.04 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.03 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.18 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(37·10153+53)/9 = 4(1)1527<154> = 29 · 167 · 2259934847<10> · 699672253367<12> · C129
C129 = P34 · P95
P34 = 8719756215598888403735903369151727<34>
P95 = 61567260829717922876129222772484051350518977065235325715293890266317345837386780159662510836353<95>
Number: 41117_153 N=536851505297330833256720241859282105348047475598159487710492234018066473949983864532710775744234875425075826135015294154924331631 ( 129 digits) SNFS difficulty: 155 digits. Divisors found: r1=8719756215598888403735903369151727 (pp34) r2=61567260829717922876129222772484051350518977065235325715293890266317345837386780159662510836353 (pp95) Version: GGNFS-0.77.1-20060513-k8 Total time: 38.61 hours. Scaled time: 75.95 units (timescale=1.967). Factorization parameters were as follows: name: 41117_153 n: 536851505297330833256720241859282105348047475598159487710492234018066473949983864532710775744234875425075826135015294154924331631 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: RFBsize:203362, AFBsize:203817, largePrimes:8308051 encountered Relations: rels:8752937, finalFF:805926 Max relations in full relation-set: 28 Initial matrix: 407246 x 805926 with sparse part having weight 93645918. Pruned matrix : 300178 x 302278 with weight 40667714. Total sieving time: 36.68 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.51 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 38.61 hours. --------- CPU info (if available) ----------
(38·10151-11)/9 = 4(2)1501<152> = 41 · 53 · 26021 · 2914313 · C138
C138 = P46 · P92
P46 = 3159193923314794886124358434419958776363525831<46>
P92 = 81104490278796803941574903528473981354882683238348933245451788515578216046199936350435152579<92>
Number: 42221_151 N=256224812842318717545533857825918618214117908238051230838133636289935308342853369546321111379845635992526213941974521284389129356892768149 ( 138 digits) SNFS difficulty: 153 digits. Divisors found: r1=3159193923314794886124358434419958776363525831 (prp46) r2=81104490278796803941574903528473981354882683238348933245451788515578216046199936350435152579 (prp92) Version: Total time: 15.14 hours. Scaled time: 38.51 units (timescale=2.544). Factorization parameters were as follows: name: 42221_151 n: 256224812842318717545533857825918618214117908238051230838133636289935308342853369546321111379845635992526213941974521284389129356892768149 m: 2000000000000000000000000000000 deg: 5 c5: 95 c0: -88 skew: 0.98 type: snfs lss: 1 rlim: 2500000 alim: 2500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1250000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 458616 x 458864 Total sieving time: 15.14 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,27,27,50,50,2.4,2.4,100000 total time: 15.14 hours. --------- CPU info (if available) ----------
(38·10141+7)/9 = 4(2)1403<142> = 17 · 10799 · 14431 · 10551421125799<14> · 3918960185104132736939080334753<31> · C89
C89 = P37 · P53
P37 = 1208319630248751570624525558000988741<37>
P53 = 31896906018545036923695174984522863360635051803331813<53>
Thu Dec 18 08:07:13 2008 Msieve v. 1.39 Thu Dec 18 08:07:13 2008 random seeds: ba6ae35c e186a9eb Thu Dec 18 08:07:13 2008 factoring 38541657686407517624151652150298002272942905139355928279567042796973174434731732100117433 (89 digits) Thu Dec 18 08:07:14 2008 searching for 15-digit factors Thu Dec 18 08:07:16 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 08:07:16 2008 using multiplier of 1 Thu Dec 18 08:07:16 2008 using 32kb Intel Core sieve core Thu Dec 18 08:07:16 2008 sieve interval: 32 blocks of size 32768 Thu Dec 18 08:07:16 2008 processing polynomials in batches of 7 Thu Dec 18 08:07:16 2008 using a sieve bound of 1556189 (58802 primes) Thu Dec 18 08:07:16 2008 using large prime bound of 124495120 (26 bits) Thu Dec 18 08:07:16 2008 using double large prime bound of 372626841652480 (42-49 bits) Thu Dec 18 08:07:16 2008 using trial factoring cutoff of 49 bits Thu Dec 18 08:07:16 2008 polynomial 'A' values have 11 factors Thu Dec 18 09:14:07 2008 59134 relations (15874 full + 43260 combined from 629696 partial), need 58898 Thu Dec 18 09:14:08 2008 begin with 645570 relations Thu Dec 18 09:14:08 2008 reduce to 144306 relations in 11 passes Thu Dec 18 09:14:08 2008 attempting to read 144306 relations Thu Dec 18 09:14:10 2008 recovered 144306 relations Thu Dec 18 09:14:10 2008 recovered 122188 polynomials Thu Dec 18 09:14:10 2008 attempting to build 59134 cycles Thu Dec 18 09:14:10 2008 found 59134 cycles in 5 passes Thu Dec 18 09:14:10 2008 distribution of cycle lengths: Thu Dec 18 09:14:10 2008 length 1 : 15874 Thu Dec 18 09:14:10 2008 length 2 : 11011 Thu Dec 18 09:14:10 2008 length 3 : 10357 Thu Dec 18 09:14:10 2008 length 4 : 8156 Thu Dec 18 09:14:10 2008 length 5 : 5506 Thu Dec 18 09:14:10 2008 length 6 : 3538 Thu Dec 18 09:14:10 2008 length 7 : 2140 Thu Dec 18 09:14:10 2008 length 9+: 2552 Thu Dec 18 09:14:10 2008 largest cycle: 17 relations Thu Dec 18 09:14:11 2008 matrix is 58802 x 59134 (14.2 MB) with weight 3496057 (59.12/col) Thu Dec 18 09:14:11 2008 sparse part has weight 3496057 (59.12/col) Thu Dec 18 09:14:12 2008 filtering completed in 3 passes Thu Dec 18 09:14:12 2008 matrix is 54893 x 54957 (13.3 MB) with weight 3263166 (59.38/col) Thu Dec 18 09:14:12 2008 sparse part has weight 3263166 (59.38/col) Thu Dec 18 09:14:12 2008 saving the first 48 matrix rows for later Thu Dec 18 09:14:12 2008 matrix is 54845 x 54957 (9.1 MB) with weight 2632975 (47.91/col) Thu Dec 18 09:14:12 2008 sparse part has weight 2067716 (37.62/col) Thu Dec 18 09:14:12 2008 matrix includes 64 packed rows Thu Dec 18 09:14:12 2008 using block size 21982 for processor cache size 1024 kB Thu Dec 18 09:14:12 2008 commencing Lanczos iteration Thu Dec 18 09:14:12 2008 memory use: 8.6 MB Thu Dec 18 09:14:31 2008 lanczos halted after 869 iterations (dim = 54843) Thu Dec 18 09:14:31 2008 recovered 16 nontrivial dependencies Thu Dec 18 09:14:32 2008 prp37 factor: 1208319630248751570624525558000988741 Thu Dec 18 09:14:32 2008 prp53 factor: 31896906018545036923695174984522863360635051803331813 Thu Dec 18 09:14:32 2008 elapsed time 01:07:19
(38·10112+7)/9 = 4(2)1113<113> = 11677705261<11> · C103
C103 = P46 · P58
P46 = 1945013057622469055928792403006550216266423129<46>
P58 = 1858921524805644843829335015271915581157210985408240421667<58>
Number: 42223_112 N=3615626638842449735144263478960074279461832207842552622738456544970528368794580610388486685596801536043 ( 103 digits) SNFS difficulty: 114 digits. Divisors found: r1=1945013057622469055928792403006550216266423129 (prp46) r2=1858921524805644843829335015271915581157210985408240421667 (prp58) Version: Total time: 1.45 hours. Scaled time: 2.90 units (timescale=2.003). Factorization parameters were as follows: name: 42223_112 n: 3615626638842449735144263478960074279461832207842552622738456544970528368794580610388486685596801536043 m: 20000000000000000000000 deg: 5 c5: 475 c0: 28 skew: 0.57 type: snfs lss: 1 rlim: 560000 alim: 560000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 560000/560000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [280000, 480001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60412 x 60652 Total sieving time: 1.45 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,5,0,0,0,0,0,0,0,0,560000,560000,25,25,45,45,2.2,2.2,50000 total time: 1.45 hours. --------- CPU info (if available) ----------
(38·10115+7)/9 = 4(2)1143<116> = 251 · 15331533874127<14> · C101
C101 = P34 · P67
P34 = 1634864409020671635063265717434331<34>
P67 = 6711197497648071834292573110422804102757555587356032161168057878729<67>
Number: 42223_115 N=10971897930813425274869156495205138122741990801162120520681589565626234907052249695702572980219245299 ( 101 digits) SNFS difficulty: 116 digits. Divisors found: r1=1634864409020671635063265717434331 (prp34) r2=6711197497648071834292573110422804102757555587356032161168057878729 (prp67) Version: Total time: 1.49 hours. Scaled time: 2.96 units (timescale=1.985). Factorization parameters were as follows: name: 42223_115 n: 10971897930813425274869156495205138122741990801162120520681589565626234907052249695702572980219245299 m: 100000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 62313 x 62551 Total sieving time: 1.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.49 hours. --------- CPU info (if available) ----------
(38·10123+7)/9 = 4(2)1223<124> = 41 · 16901347 · C115
C115 = P29 · P34 · P53
P29 = 95138006685886098469807972853<29>
P34 = 1360440358306411252248900367385263<34>
P53 = 47076303835257146062311650641289379426604433502131591<53>
Number: 42223_123 N=6093066417149952780747582444056262558825062765883750556112368024929007747021759924212567087284879117048960830224349 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=95138006685886098469807972853 (prp29) r2=1360440358306411252248900367385263 (prp34) r3=47076303835257146062311650641289379426604433502131591 (prp53) Version: Total time: 1.98 hours. Scaled time: 5.07 units (timescale=2.564). Factorization parameters were as follows: name: 42223_123 n: 6093066417149952780747582444056262558825062765883750556112368024929007747021759924212567087284879117048960830224349 m: 10000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 122288 x 122535 Total sieving time: 1.98 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 1.98 hours. --------- CPU info (if available) ----------
(37·10148+71)/9 = 4(1)1479<149> = 13 · 263 · 54907 · 83365277 · 4787540677386989927<19> · C114
C114 = P45 · P69
P45 = 624271176245120850697276336102200832129446533<45>
P69 = 878944475221714294164277298235867536498240189330190166674377210066449<69>
Number: 42221_148 N=548699701400810060635961055722374030806191032906197312251591427155898046660410692341082608508184132862882522671317 ( 114 digits) SNFS difficulty: 150 digits. Divisors found: r1=624271176245120850697276336102200832129446533 (pp45) r2=878944475221714294164277298235867536498240189330190166674377210066449 (pp69) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.14 hours. Scaled time: 17.10 units (timescale=0.473). Factorization parameters were as follows: name: 42221_148 n: 548699701400810060635961055722374030806191032906197312251591427155898046660410692341082608508184132862882522671317 m: 500000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:170002, largePrimes:7101805 encountered Relations: rels:7231912, finalFF:593333 Max relations in full relation-set: 28 Initial matrix: 339580 x 593333 with sparse part having weight 65156158. Pruned matrix : 267308 x 269069 with weight 28342252. Total sieving time: 33.22 hours. Total relation processing time: 0.32 hours. Matrix solve time: 2.48 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 36.14 hours. --------- CPU info (if available) ----------
(38·10117+7)/9 = 4(2)1163<118> = 2657947 · 1142969897<10> · 95220609140821<14> · C89
C89 = P41 · P48
P41 = 69563816005530066987621201677220218900731<41>
P48 = 209819392365296826977778796234537568048688935347<48>
Thu Dec 18 12:29:54 2008 Msieve v. 1.39 Thu Dec 18 12:29:54 2008 random seeds: 83cedefc 8d8bdba6 Thu Dec 18 12:29:54 2008 factoring 14595837604891628552348108255737179313931799325177429616056819579069705362946879070038657 (89 digits) Thu Dec 18 12:29:55 2008 searching for 15-digit factors Thu Dec 18 12:29:56 2008 commencing quadratic sieve (89-digit input) Thu Dec 18 12:29:56 2008 using multiplier of 73 Thu Dec 18 12:29:56 2008 using 32kb Intel Core sieve core Thu Dec 18 12:29:56 2008 sieve interval: 28 blocks of size 32768 Thu Dec 18 12:29:56 2008 processing polynomials in batches of 8 Thu Dec 18 12:29:56 2008 using a sieve bound of 1537153 (58242 primes) Thu Dec 18 12:29:56 2008 using large prime bound of 122972240 (26 bits) Thu Dec 18 12:29:56 2008 using double large prime bound of 364462296550480 (42-49 bits) Thu Dec 18 12:29:56 2008 using trial factoring cutoff of 49 bits Thu Dec 18 12:29:56 2008 polynomial 'A' values have 12 factors Thu Dec 18 13:23:00 2008 58458 relations (16648 full + 41810 combined from 606551 partial), need 58338 Thu Dec 18 13:23:01 2008 begin with 623199 relations Thu Dec 18 13:23:01 2008 reduce to 137918 relations in 9 passes Thu Dec 18 13:23:01 2008 attempting to read 137918 relations Thu Dec 18 13:23:03 2008 recovered 137918 relations Thu Dec 18 13:23:03 2008 recovered 115182 polynomials Thu Dec 18 13:23:03 2008 attempting to build 58458 cycles Thu Dec 18 13:23:03 2008 found 58458 cycles in 5 passes Thu Dec 18 13:23:03 2008 distribution of cycle lengths: Thu Dec 18 13:23:03 2008 length 1 : 16648 Thu Dec 18 13:23:03 2008 length 2 : 11814 Thu Dec 18 13:23:03 2008 length 3 : 10413 Thu Dec 18 13:23:03 2008 length 4 : 7579 Thu Dec 18 13:23:03 2008 length 5 : 5155 Thu Dec 18 13:23:03 2008 length 6 : 3172 Thu Dec 18 13:23:03 2008 length 7 : 1719 Thu Dec 18 13:23:03 2008 length 9+: 1958 Thu Dec 18 13:23:03 2008 largest cycle: 15 relations Thu Dec 18 13:23:04 2008 matrix is 58242 x 58458 (13.7 MB) with weight 3359561 (57.47/col) Thu Dec 18 13:23:04 2008 sparse part has weight 3359561 (57.47/col) Thu Dec 18 13:23:04 2008 filtering completed in 3 passes Thu Dec 18 13:23:04 2008 matrix is 53596 x 53660 (12.7 MB) with weight 3108809 (57.94/col) Thu Dec 18 13:23:04 2008 sparse part has weight 3108809 (57.94/col) Thu Dec 18 13:23:04 2008 saving the first 48 matrix rows for later Thu Dec 18 13:23:04 2008 matrix is 53548 x 53660 (7.8 MB) with weight 2389963 (44.54/col) Thu Dec 18 13:23:04 2008 sparse part has weight 1717555 (32.01/col) Thu Dec 18 13:23:04 2008 matrix includes 64 packed rows Thu Dec 18 13:23:04 2008 using block size 21464 for processor cache size 1024 kB Thu Dec 18 13:23:05 2008 commencing Lanczos iteration Thu Dec 18 13:23:05 2008 memory use: 7.7 MB Thu Dec 18 13:23:21 2008 lanczos halted after 848 iterations (dim = 53545) Thu Dec 18 13:23:21 2008 recovered 15 nontrivial dependencies Thu Dec 18 13:23:22 2008 prp41 factor: 69563816005530066987621201677220218900731 Thu Dec 18 13:23:22 2008 prp48 factor: 209819392365296826977778796234537568048688935347 Thu Dec 18 13:23:22 2008 elapsed time 00:53:28
(38·10119+7)/9 = 4(2)1183<120> = 32 · C119
C119 = P32 · P88
P32 = 17796655303796507065144186379611<32>
P88 = 2636089728439345957807003412593302655340134489266022323067968446022844599735148064148277<88>
Number: 42223_119 N=46913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=17796655303796507065144186379611 (prp32) r2=2636089728439345957807003412593302655340134489266022323067968446022844599735148064148277 (prp88) Version: Total time: 1.91 hours. Scaled time: 3.77 units (timescale=1.978). Factorization parameters were as follows: name: 42223_119 n: 46913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580246913580247 m: 1000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 740000 alim: 740000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 740000/740000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [370000, 620001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 81734 x 81967 Total sieving time: 1.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,740000,740000,25,25,46,46,2.2,2.2,50000 total time: 1.91 hours. --------- CPU info (if available) ----------
(37·10153+71)/9 = 4(1)1529<154> = 3 · 47 · 42829 · 3356641 · C141
C141 = P36 · P48 · P58
P36 = 267585967846317503969097730621906439<36>
P48 = 169083349998879656324913041735201585866792484537<48>
P58 = 4482632066041583145692570283513003585998276879951383228217<58>
Number: 41119_153 N=202813692784995100304654547000616001388351317469991900616989696292083774391262123814153905948868605435039400406739699971898527486293769126231 ( 141 digits) SNFS difficulty: 155 digits. Divisors found: r1=267585967846317503969097730621906439 (prp36) r2=169083349998879656324913041735201585866792484537 (prp48) r3=4482632066041583145692570283513003585998276879951383228217 (prp58) Version: Total time: 23.52 hours. Scaled time: 60.31 units (timescale=2.564). Factorization parameters were as follows: name: 41119_152 n: 202813692784995100304654547000616001388351317469991900616989696292083774391262123814153905948868605435039400406739699971898527486293769126231 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 481081 x 481329 Total sieving time: 23.52 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 23.52 hours. --------- CPU info (if available) ----------
(38·10125+7)/9 = 4(2)1243<126> = 3 · 17 · 1901 · 32672306313541<14> · C108
C108 = P45 · P64
P45 = 116295998349478982853156680832900513953293021<45>
P64 = 1146157315974285019595546328596583393702116364957884428638802393<64>
Number: 42223_125 N=133293509326788711666710854874444178050766096891403697830905172109269902185821542440145829581270460044999253 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=116295998349478982853156680832900513953293021 (prp45) r2=1146157315974285019595546328596583393702116364957884428638802393 (prp64) Version: Total time: 2.03 hours. Scaled time: 5.24 units (timescale=2.575). Factorization parameters were as follows: name: 42223_125 n: 133293509326788711666710854874444178050766096891403697830905172109269902185821542440145829581270460044999253 m: 10000000000000000000000000 deg: 5 c5: 38 c0: 7 skew: 0.71 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 112736 x 112984 Total sieving time: 2.03 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.03 hours. --------- CPU info (if available) ----------
(38·10124+7)/9 = 4(2)1233<125> = 7529 · C121
C121 = P49 · P73
P49 = 2711151477562038629795543684920467598635043008193<49>
P73 = 2068473716730609939247632473759947310004060663074300121852699702217549559<73>
Number: 42223_124 N=5607945573412434881421466625344962441522409645666386269387996044922595593335399418544590546184383347353197266864420536887 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=2711151477562038629795543684920467598635043008193 (prp49) r2=2068473716730609939247632473759947310004060663074300121852699702217549559 (prp73) Version: Total time: 2.63 hours. Scaled time: 5.29 units (timescale=2.010). Factorization parameters were as follows: name: 42223_124 n: 5607945573412434881421466625344962441522409645666386269387996044922595593335399418544590546184383347353197266864420536887 m: 10000000000000000000000000 deg: 5 c5: 19 c0: 35 skew: 1.13 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 745001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 113109 x 113351 Total sieving time: 2.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 2.63 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(38·10103+7)/9 = 4(2)1023<104> = 41 · 163 · 4120903 · C94
C94 = P35 · P60
P35 = 15228969283328568516002938499690549<35>
P60 = 100671542589360374820010743674518363883167127317682185376623<60>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2296685655 Step 1 took 1812ms Step 2 took 1504ms ********** Factor found in step 2: 15228969283328568516002938499690549 Found probable prime factor of 35 digits: 15228969283328568516002938499690549 Probable prime cofactor 100671542589360374820010743674518363883167127317682185376623 has 60 digits
(38·10143+7)/9 = 4(2)1423<144> = 3 · 413 · 54667 · 84584933 · 2220749942527<13> · C114
C114 = P28 · P86
P28 = 4866734418829920193805385751<28>
P86 = 40861349391788987053960663317374360811603887138536668614277435169890368201323389007843<86>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3725277577 Step 1 took 2220ms Step 2 took 1784ms ********** Factor found in step 2: 4866734418829920193805385751 Found probable prime factor of 28 digits: 4866734418829920193805385751 Probable prime cofactor 40861349391788987053960663317374360811603887138536668614277435169890368201323389007843 has 86 digits
(38·10134+7)/9 = 4(2)1333<135> = 3 · 274355461 · 7475083489<10> · C116
C116 = P29 · P88
P29 = 13297128789458489611981711367<29>
P88 = 5160981478476877174528191139543584005394929170028975707947883782299690148268479826942487<88>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2193296238 Step 1 took 3614ms Step 2 took 2463ms ********** Factor found in step 2: 13297128789458489611981711367 Found probable prime factor of 29 digits: 13297128789458489611981711367 Probable prime cofactor 5160981478476877174528191139543584005394929170028975707947883782299690148268479826942487 has 88 digits
(38·10176+7)/9 = 4(2)1753<177> = 3 · 29 · 54540943 · 4287368772178003<16> · 8965485210842005636106031659<28> · C124
C124 = P37 · C87
P37 = 2471951484413682939511067832881908139<37>
C87 = [936471598052290722011809167208477610429304981302335238497256676307528852425786219092101<87>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1864500341 Step 1 took 3285ms Step 2 took 2524ms ********** Factor found in step 2: 2471951484413682939511067832881908139 Found probable prime factor of 37 digits: 2471951484413682939511067832881908139 Composite cofactor has 87 digits
(38·10188+7)/9 = 4(2)1873<189> = 3 · 41 · 161837827 · C179
C179 = P34 · C145
P34 = 4517407346651943696614538983948377<34>
C145 = [4695336080119231002572034438003134103984773018851208689382346363956946707607387905336610628296559396105847033548036718431918869359857064027844119<145>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=2813434907 Step 1 took 5311ms Step 2 took 3484ms ********** Factor found in step 2: 4517407346651943696614538983948377 Found probable prime factor of 34 digits: 4517407346651943696614538983948377
(38·10162+7)/9 = 4(2)1613<163> = C163
C163 = P32 · C132
P32 = 22666112659648690795351599407939<32>
C132 = [186279062741041885017985574573968873226228250750405652759785192197613040280790635024373857044630449303253807700550767095880568892357<132>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=4290004477 Step 1 took 4562ms Step 2 took 2074ms ********** Factor found in step 2: 22666112659648690795351599407939 Found probable prime factor of 32 digits: 22666112659648690795351599407939 Composite cofactor has 132 digits
(38·10155+7)/9 = 4(2)1543<156> = 34 · 21247 · 405706541 · 8153054611907549<16> · C125
C125 = P37 · C89
P37 = 3631636673976858283592464277485606931<37>
C89 = [20423195573440195206551390289801512611298882650218935717368875142211566032360322627320691<89>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2443936897 Step 1 took 9742ms Step 2 took 5797ms ********** Factor found in step 2: 3631636673976858283592464277485606931 Found probable prime factor of 37 digits: 3631636673976858283592464277485606931 Composite cofactor has 89 digits
(38·10142+7)/9 = 4(2)1413<143> = 59 · 5563 · C138
C138 = P33 · C105
P33 = 605464278196827737125597251068803<33>
C105 = [212467002221435818816699426054912524005576609275217237202725667730873122816617802499885558317173191456973<105>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=855237390 Step 1 took 11861ms Step 2 took 6523ms ********** Factor found in step 2: 605464278196827737125597251068803 Found probable prime factor of 33 digits: 605464278196827737125597251068803 Composite cofactor has 105 digits
(38·10153+7)/9 = 4(2)1523<154> = 41 · C153
C153 = P29 · P45 · P79
P29 = 56625770021249037961199832163<29>
P45 = 188621649452113576484103965715195827806438457<45>
P79 = 9641654643505460294402314031716939370932298867900541134767060848222202356644933<79>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=485009599 Step 1 took 11845ms Step 2 took 6774ms ********** Factor found in step 2: 56625770021249037961199832163 Found probable prime factor of 29 digits: 56625770021249037961199832163 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1546770427 Step 1 took 11724ms Step 2 took 6721ms ********** Factor found in step 2: 188621649452113576484103965715195827806438457 Found probable prime factor of 45 digits: 188621649452113576484103965715195827806438457
(38·10178+7)/9 = 4(2)1773<179> = 41 · C178
C178 = P31 · C147
P31 = 3831638300420149104517799143979<31>
C147 = [268765007905380748598617247784989569226788294214434773423165473690567346198193202300914071893455165689330378310000725717652182828907168758369414757<147>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1830987632 Step 1 took 15973ms Step 2 took 8310ms ********** Factor found in step 2: 3831638300420149104517799143979 Found probable prime factor of 31 digits: 3831638300420149104517799143979 Composite cofactor has 147 digits
(38·10195+7)/9 = 4(2)1943<196> = 23 · 18553 · 3149252376494183<16> · C175
C175 = P32 · P143
P32 = 42889893988079578415478220866263<32>
P143 = 73254898010487591881808968625718488656302684170273081444857108882017914768115541121202852664845950871593721116081377554264061422226124415883473<143>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=400399179 Step 1 took 16303ms Step 2 took 8309ms ********** Factor found in step 2: 42889893988079578415478220866263 Found probable prime factor of 32 digits: 42889893988079578415478220866263 Probable prime cofactor has 143 digits
(38·10197+7)/9 = 4(2)1963<198> = 3 · 181 · C195
C195 = P32 · C164
P32 = 27947028349698781437164987540699<32>
C164 = [27823106755181784284339819113194093003006848773401981584784546486000626197936927250194729311161601729645412862762131763250467738959280736054302716529829833142273539<164>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4094683216 Step 1 took 18445ms ********** Factor found in step 1: 27947028349698781437164987540699 Found probable prime factor of 32 digits: 27947028349698781437164987540699 Composite cofactor has 164 digits
(38·10128+7)/9 = 4(2)1273<129> = 33 · 41 · 1567 · 9613 · 22153 · C115
C115 = P57 · P58
P57 = 205996789767280236842224092563294819222483899476019914763<57>
P58 = 5548460870468833125139443648463825083675241175547040412381<58>
SNFS difficulty: 131 digits. Divisors found: r1=205996789767280236842224092563294819222483899476019914763 (pp57) r2=5548460870468833125139443648463825083675241175547040412381 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.294). Factorization parameters were as follows: n: 1142965127465948919158699701485164461510638059759591797889499511512820592383071296850919410053462850517519989880703 m: 100000000000000000000000000 deg: 5 c5: 19 c0: 350 skew: 1.79 type: snfs lss: 1 rlim: 1080000 alim: 1080000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1080000/1080000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [540000, 940001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 166698 x 166946 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1080000,1080000,26,26,49,49,2.3,2.3,50000 total time: 2.50 hours.
(38·10161+7)/9 = 4(2)1603<162> = 3 · 71 · 199 · 18133 · 3953923 · 102948767865281369<18> · 223103459630440120241113301<27> · C103
C103 = P36 · P68
P36 = 515054520953638018081451448555001699<36>
P68 = 11744374101790571418852539848321630821275916011828441771173016482301<68>
Number: 42223_161 N=6048992976898055544701500924282843318487253300729386621852067578882185467974673849952876192480058429399 ( 103 digits) Divisors found: r1=515054520953638018081451448555001699 (pp36) r2=11744374101790571418852539848321630821275916011828441771173016482301 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.947). Factorization parameters were as follows: name: 42223_161 n: 6048992976898055544701500924282843318487253300729386621852067578882185467974673849952876192480058429399 skew: 9508.02 # norm 1.32e+14 c5: 65640 c4: 494004046 c3: -12223958194410 c2: -80219580147807645 c1: 377628040081781466140 c0: -5661552501923811834276 # alpha -5.67 Y1: 148027261 Y0: -39165430004865054515 # Murphy_E 2.38e-09 # M 1376237156667498328491122275652318259924145043912891828309343895588198824682229544879829222474450612280 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 251057 x 251305 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 5.00 hours.
(38·10164+7)/9 = 4(2)1633<165> = 32 · 61 · 7682881 · 40818499 · 4453252165552267529490497<25> · C123
C123 = P36 · P88
P36 = 425438812577715228012820656931311881<36>
P88 = 1294414025611891599260150096076852317064818033104359921919372175404128601450000975774169<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1663009270 Step 1 took 10333ms Step 2 took 5828ms ********** Factor found in step 2: 425438812577715228012820656931311881 Found probable prime factor of 36 digits: 425438812577715228012820656931311881 Probable prime cofactor 1294414025611891599260150096076852317064818033104359921919372175404128601450000975774169 has 88 digits
(38·10186+7)/9 = 4(2)1853<187> = 47 · 2767 · 359878883096258333<18> · C164
C164 = P32 · C133
P32 = 17220926929820735919650444522083<32>
C133 = [5238671693611155393110256636771215165291040871189770033614443601009113065979421595887797051522376438298628830110390256780678267308393<133>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2089980357 Step 1 took 13584ms Step 2 took 7373ms ********** Factor found in step 2: 17220926929820735919650444522083 Found probable prime factor of 32 digits: 17220926929820735919650444522083 Composite cofactor has 133 digits
Factorizations of 422...223 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / Msieve
(37·10151+53)/9 = 4(1)1507<152> = 17 · 19 · 5424157 · 3012826135843<13> · C130
C130 = P41 · P90
P41 = 30714188652462505796370832052921572228561<41>
P90 = 253577854611776783427342074390532895866761571131753872950109269776119129811679765690447289<90>
Number: 41117_151 N=7788438064632821574690358496362360897296483820042841122084535900504402571465752730134408241556280290071228582891922842992630821129 ( 130 digits) SNFS difficulty: 152 digits. Divisors found: r1=30714188652462505796370832052921572228561 (prp41) r2=253577854611776783427342074390532895866761571131753872950109269776119129811679765690447289 (prp90) Version: Total time: 28.65 hours. Scaled time: 56.71 units (timescale=1.979). Factorization parameters were as follows: name: 41117_151 n: 7788438064632821574690358496362360897296483820042841122084535900504402571465752730134408241556280290071228582891922842992630821129 m: 1000000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 499116 x 499364 Total sieving time: 28.65 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 28.65 hours. --------- CPU info (if available) ----------
(38·10138-11)/9 = 4(2)1371<139> = 32 · 53 · 1021 · C133
C133 = P44 · P90
P44 = 51707817722286821429454583067769802912986421<44>
P90 = 167664360523445916239872708231359971038766019984240649261322234707681832432375540040788753<90>
Number: 42221_138 N=8669558192470123675810540950772195266740631686824530195500818702883517869442385424373732790071439440968636048068593544418823618523013 ( 133 digits) SNFS difficulty: 140 digits. Divisors found: r1=51707817722286821429454583067769802912986421 (prp44) r2=167664360523445916239872708231359971038766019984240649261322234707681832432375540040788753 (prp90) Version: Total time: 9.44 hours. Scaled time: 18.50 units (timescale=1.960). Factorization parameters were as follows: name: 42221_138 n: 8669558192470123675810540950772195266740631686824530195500818702883517869442385424373732790071439440968636048068593544418823618523013 m: 5000000000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 239659 x 239907 Total sieving time: 9.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 9.44 hours. --------- CPU info (if available) ----------
(38·10142-11)/9 = 4(2)1411<143> = 421 · 2062883 · 364018747 · C126
C126 = P60 · P66
P60 = 226667704464855786266160319294497767450305082964541295658331<60>
P66 = 589211205531103317422879572675077629800058220084069542829565675771<66>
Number: 42221_142 N=133555151402705527771020532470635570480603171803939263654479802422770269818472340168044144200161160806498395618241264340998201 ( 126 digits) SNFS difficulty: 144 digits. Divisors found: r1=226667704464855786266160319294497767450305082964541295658331 (prp60) r2=589211205531103317422879572675077629800058220084069542829565675771 (prp66) Version: Total time: 9.54 hours. Scaled time: 24.47 units (timescale=2.564). Factorization parameters were as follows: name: 42221_142 n: 133555151402705527771020532470635570480603171803939263654479802422770269818472340168044144200161160806498395618241264340998201 m: 20000000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 1770000 alim: 1770000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1770000/1770000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [885000, 2185001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 317247 x 317495 Total sieving time: 9.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1770000,1770000,26,26,49,49,2.3,2.3,100000 total time: 9.54 hours. --------- CPU info (if available) ----------
(38·10149-11)/9 = 4(2)1481<150> = C150
C150 = P34 · P53 · P65
P34 = 2156877309792813337917367804096273<34>
P53 = 10692962417405779727963760437122579230977363713174343<53>
P65 = 18307017852353217144257078631568701474589782475479036325318027739<65>
Number: 42221_149 N=422222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 150 digits) SNFS difficulty: 151 digits. Divisors found: r1=2156877309792813337917367804096273 (prp34) r2=10692962417405779727963760437122579230977363713174343 (prp53) r3=18307017852353217144257078631568701474589782475479036325318027739 (prp65) Version: Total time: 16.63 hours. Scaled time: 42.47 units (timescale=2.554). Factorization parameters were as follows: name: 42221_149 n: 422222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 1000000000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 376776 x 377024 Total sieving time: 16.63 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 16.63 hours. --------- CPU info (if available) ----------
(38·10140-11)/9 = 4(2)1391<141> = 167 · 569 · 101402387 · C128
C128 = P39 · P89
P39 = 804607420655732570446552759744605618923<39>
P89 = 54460313579417670846316649744291707051749895931971216643706261352702388356635007215995827<89>
Number: 42221_140 N=43819172437237618652820907786713083938238055391217746877124393262556917756829365265010678060634024257185753881011836909120234321 ( 128 digits) SNFS difficulty: 141 digits. Divisors found: r1=804607420655732570446552759744605618923 (prp39) r2=54460313579417670846316649744291707051749895931971216643706261352702388356635007215995827 (prp89) Version: Total time: 5.35 hours. Scaled time: 13.57 units (timescale=2.534). Factorization parameters were as follows: name: 42221_140 n: 43819172437237618652820907786713083938238055391217746877124393262556917756829365265010678060634024257185753881011836909120234321 m: 10000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 218142 x 218390 Total sieving time: 5.35 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 5.35 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(38·10152-11)/9 = 4(2)1511<153> = 47 · 740549 · 1388627 · C139
C139 = P55 · P85
P55 = 2244475534182952124033053975047362318980113940838127137<55>
P85 = 3892144435855376728741091997536320056326825112992346851623166566331315178926518146493<85>
SNFS difficulty: 154 digits. Divisors found: r1=2244475534182952124033053975047362318980113940838127137 (pp55) r2=3892144435855376728741091997536320056326825112992346851623166566331315178926518146493 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.280). Factorization parameters were as follows: n: 8735822961783701521595509383320306982142781207790003682501701235482336432672547155076594232653301349910915673274832506173076799918724680541 m: 2000000000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 512153 x 512401 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 18.00 hours.
(38·10162-11)/9 = 4(2)1611<163> = 3 · 151 · 601 · 673 · 28551353 · 10361935027<11> · 15788755231694576119999<23> · C115
C115 = P39 · P77
P39 = 393004019300720895064649178102671858011<39>
P77 = 12552808589729656412640688337363128700026916814005950670291119358728810118951<77>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3477203104 Step 1 took 6473ms Step 2 took 4044ms ********** Factor found in step 2: 393004019300720895064649178102671858011 Found probable prime factor of 39 digits: 393004019300720895064649178102671858011 Probable prime cofactor has 77 digits
(38·10156-11)/9 = 4(2)1551<157> = 32 · 41 · 61 · 205450383023983<15> · 868117700586089<15> · C124
C124 = P36 · P88
P36 = 273415711927335176935345351670676383<36>
P88 = 3846589586178820725082205888583716939157891153434790937819112111477628162272406784535689<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=324217118 Step 1 took 7748ms Step 2 took 4473ms ********** Factor found in step 2: 273415711927335176935345351670676383 Found probable prime factor of 36 digits: 273415711927335176935345351670676383 Probable prime cofactor 3846589586178820725082205888583716939157891153434790937819112111477628162272406784535689 has 88 digits
By Robert Backstrom / GGNFS, Msieve
(31·10185+41)/9 = 3(4)1849<186> = 7 · 188753 · C180
C180 = P59 · P122
P59 = 11462491287896624764009877866815918899950651066846725626897<59>
P122 = 22743026785569236152077669009125297268693301386451793502974838936091495987844715921550687164968936573229303616204234222327<122>
Number: n N=260691746389986947752917035524464280563521370290004430918747512391057129418903801297723513529355025914021002840783188645209381303642057113525116682682390247303122860067650349129319 ( 180 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 17 02:46:14 2008 prp59 factor: 11462491287896624764009877866815918899950651066846725626897 Wed Dec 17 02:46:14 2008 prp122 factor: 22743026785569236152077669009125297268693301386451793502974838936091495987844715921550687164968936573229303616204234222327 Wed Dec 17 02:46:14 2008 elapsed time 03:13:45 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 58.50 hours. Scaled time: 117.71 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_4_184_9 n: 260691746389986947752917035524464280563521370290004430918747512391057129418903801297723513529355025914021002840783188645209381303642057113525116682682390247303122860067650349129319 type: snfs skew: 1.06 deg: 5 c5: 31 c0: 41 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 4100001) Primes: RFBsize:571119, AFBsize:571584, largePrimes:29344877 encountered Relations: rels:26217521, finalFF:1026972 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 5676222 hash collisions in 31554904 relations Msieve: matrix is 1493389 x 1493637 (408.6 MB) Total sieving time: 57.58 hours. Total relation processing time: 0.93 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 58.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(34·10184+11)/9 = 3(7)1839<185> = 3 · 7 · C184
C184 = P70 · P114
P70 = 3153381182245925815602116031604202495320047121667445799461559645437791<70>
P114 = 570480286072025881760890891024077848976969633603699632299856594817956338766406814897528070489702511123803391082489<114>
Number: n N=1798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941799 ( 184 digits) SNFS difficulty: 186 digits. Divisors found: Wed Dec 17 12:43:05 2008 prp70 factor: 3153381182245925815602116031604202495320047121667445799461559645437791 Wed Dec 17 12:43:05 2008 prp114 factor: 570480286072025881760890891024077848976969633603699632299856594817956338766406814897528070489702511123803391082489 Wed Dec 17 12:43:05 2008 elapsed time 04:13:42 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.87 hours. Scaled time: 59.05 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_7_183_9 n: 1798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941798941799 type: snfs skew: 1.26 deg: 5 c5: 17 c0: 55 m: 10000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 4550001) Primes: RFBsize:571119, AFBsize:571718, largePrimes:31863919 encountered Relations: rels:29900533, finalFF:1289293 Max relations in full relation-set: 28 Initial matrix: 1142902 x 1289291 with sparse part having weight 139239900. Pruned matrix : 1020687 x 1026465 with weight 109219622. Msieve: found 5898080 hash collisions in 35099131 relations Msieve: matrix is 1215906 x 1216154 (330.1 MB) Total sieving time: 27.66 hours. Total relation processing time: 1.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,186,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 28.87 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(11·10204-17)/3 = 3(6)2031<205> = C205
C205 = P48 · P71 · P88
P48 = 221505090182582524572671341559157703350533777731<48>
P71 = 13194273781235111004047017055681434596445649290434332958327191748518633<71>
P88 = 1254591174776189824004158294987313249694792007124710608846927570746687005326132416330207<88>
Number: n N=3666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 205 digits) SNFS difficulty: 206 digits. Divisors found: Tue Dec 16 14:36:52 2008 prp48 factor: 221505090182582524572671341559157703350533777731 Tue Dec 16 14:36:52 2008 prp71 factor: 13194273781235111004047017055681434596445649290434332958327191748518633 Tue Dec 16 14:36:52 2008 prp88 factor: 1254591174776189824004158294987313249694792007124710608846927570746687005326132416330207 Tue Dec 16 14:36:52 2008 elapsed time 17:19:44 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 175.28 hours. Scaled time: 352.66 units (timescale=2.012). Factorization parameters were as follows: name: KA_3_6_203_1 n: 3666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 type: snfs skew: 0.98 deg: 5 c5: 11 c0: -170 m: 100000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 29800001) Primes: RFBsize:664579, AFBsize:664171, largePrimes:34554940 encountered Relations: rels:27185260, finalFF:103021 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 13574584 hash collisions in 52206683 relations Msieve: matrix is 3208382 x 3208630 (877.7 MB) Total sieving time: 172.35 hours. Total relation processing time: 2.93 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 175.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(37·10168+53)/9 = 4(1)1677<169> = 61 · 48589 · 101917 · C158
C158 = P49 · P52 · P58
P49 = 1155470698301302268611468354403836671616459816573<49>
P52 = 6382078797307035347345673498114642379600251847737301<52>
P58 = 1845540960763765864183039787801984859962999384752383870553<58>
SNFS difficulty: 170 digits. Divisors found: r1=1155470698301302268611468354403836671616459816573 (pp49) r2=6382078797307035347345673498114642379600251847737301 (pp52) r3=1845540960763765864183039787801984859962999384752383870553 (pp58) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 13609582016862291049453137524723009045974398678080754559936713443116025299342216519110899671138279626636611560178417519813777040628623124578030888993199988569 m: 5000000000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 4900000 alim: 4900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4900000/4900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2450000, 5450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 919522 x 919770 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,4900000,4900000,27,27,52,52,2.4,2.4,200000 total time: 70.00 hours.
10245+3 = 1(0)2443<246> = 397 · C243
C243 = P37 · C207
P37 = 1523139408975506847609408057356772403<37>
C207 = [165374992782288143099098664420190855135065524201790567845531019468290719579509530782801360420860492125166999904737069490397081057711442662739511913130562317785089919433785439437190546446326948947840039161333<207>]
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1013441708 Step 1 took 88160ms Step 2 took 36093ms ********** Factor found in step 2: 1523139408975506847609408057356772403 Found probable prime factor of 37 digits: 1523139408975506847609408057356772403 Composite cofactor has 207 digits
(38·10160-11)/9 = 4(2)1591<161> = C161
C161 = P58 · P103
P58 = 4232810193853545342342065250180631557044686896193443565813<58>
P103 = 9974985952248230050213644193474437703849918356907673850080379830337390210326473820200577856401733781817<103>
SNFS difficulty: 161 digits. Divisors found: r1=4232810193853545342342065250180631557044686896193443565813 (pp58) r2=9974985952248230050213644193474437703849918356907673850080379830337390210326473820200577856401733781817 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.883). Factorization parameters were as follows: n: 42222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 100000000000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 2950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 559579 x 559827 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,200000 total time: 20.00 hours.
By Sinkiti Sibata / Msieve, GGNFS
(38·10153-11)/9 = 4(2)1521<154> = 3 · 7 · 17 · 78517 · 4943441 · 129735240245090347741<21> · 3871855789967261077355383<25> · C95
C95 = P41 · P55
P41 = 15061311339269694752966969737951939626793<41>
P55 = 4027540334331000455649132757502438402057856590453203831<55>
Mon Dec 15 21:24:24 2008 Msieve v. 1.39 Mon Dec 15 21:24:24 2008 random seeds: d578aff0 13fce78b Mon Dec 15 21:24:24 2008 factoring 60660038906825554637414355681564907507415461749948153955759950113103673417179000748613297843983 (95 digits) Mon Dec 15 21:24:25 2008 searching for 15-digit factors Mon Dec 15 21:24:27 2008 commencing quadratic sieve (95-digit input) Mon Dec 15 21:24:27 2008 using multiplier of 7 Mon Dec 15 21:24:27 2008 using 64kb Pentium 4 sieve core Mon Dec 15 21:24:27 2008 sieve interval: 18 blocks of size 65536 Mon Dec 15 21:24:27 2008 processing polynomials in batches of 6 Mon Dec 15 21:24:27 2008 using a sieve bound of 2162071 (79904 primes) Mon Dec 15 21:24:27 2008 using large prime bound of 324310650 (28 bits) Mon Dec 15 21:24:27 2008 using double large prime bound of 2087998231332900 (43-51 bits) Mon Dec 15 21:24:27 2008 using trial factoring cutoff of 51 bits Mon Dec 15 21:24:27 2008 polynomial 'A' values have 12 factors Tue Dec 16 03:39:39 2008 80356 relations (19851 full + 60505 combined from 1194222 partial), need 80000 Tue Dec 16 03:39:44 2008 begin with 1214073 relations Tue Dec 16 03:39:45 2008 reduce to 208410 relations in 12 passes Tue Dec 16 03:39:45 2008 attempting to read 208410 relations Tue Dec 16 03:39:52 2008 recovered 208410 relations Tue Dec 16 03:39:52 2008 recovered 191316 polynomials Tue Dec 16 03:39:52 2008 attempting to build 80356 cycles Tue Dec 16 03:39:53 2008 found 80356 cycles in 7 passes Tue Dec 16 03:39:53 2008 distribution of cycle lengths: Tue Dec 16 03:39:53 2008 length 1 : 19851 Tue Dec 16 03:39:53 2008 length 2 : 14166 Tue Dec 16 03:39:53 2008 length 3 : 13601 Tue Dec 16 03:39:53 2008 length 4 : 10899 Tue Dec 16 03:39:53 2008 length 5 : 8038 Tue Dec 16 03:39:53 2008 length 6 : 5507 Tue Dec 16 03:39:53 2008 length 7 : 3514 Tue Dec 16 03:39:53 2008 length 9+: 4780 Tue Dec 16 03:39:53 2008 largest cycle: 22 relations Tue Dec 16 03:39:53 2008 matrix is 79904 x 80356 (21.8 MB) with weight 5402198 (67.23/col) Tue Dec 16 03:39:53 2008 sparse part has weight 5402198 (67.23/col) Tue Dec 16 03:39:56 2008 filtering completed in 4 passes Tue Dec 16 03:39:56 2008 matrix is 75825 x 75889 (20.6 MB) with weight 5108863 (67.32/col) Tue Dec 16 03:39:56 2008 sparse part has weight 5108863 (67.32/col) Tue Dec 16 03:39:56 2008 saving the first 48 matrix rows for later Tue Dec 16 03:39:56 2008 matrix is 75777 x 75889 (14.5 MB) with weight 4195500 (55.28/col) Tue Dec 16 03:39:56 2008 sparse part has weight 3350889 (44.16/col) Tue Dec 16 03:39:56 2008 matrix includes 64 packed rows Tue Dec 16 03:39:56 2008 using block size 21845 for processor cache size 512 kB Tue Dec 16 03:39:57 2008 commencing Lanczos iteration Tue Dec 16 03:39:57 2008 memory use: 13.1 MB Tue Dec 16 03:40:59 2008 lanczos halted after 1200 iterations (dim = 75775) Tue Dec 16 03:40:59 2008 recovered 16 nontrivial dependencies Tue Dec 16 03:41:01 2008 prp41 factor: 15061311339269694752966969737951939626793 Tue Dec 16 03:41:01 2008 prp55 factor: 4027540334331000455649132757502438402057856590453203831 Tue Dec 16 03:41:01 2008 elapsed time 06:16:37
(38·10125-11)/9 = 4(2)1241<126> = 53 · 2801 · 349499 · 1447098722403233<16> · C100
C100 = P47 · P54
P47 = 26028553070102555153152006678575895714988264141<47>
P54 = 216051847743155505973228004187461561967298916530089431<54>
Mon Dec 15 19:29:51 2008 Msieve v. 1.39 Mon Dec 15 19:29:51 2008 random seeds: b14ae2d8 9d6205d9 Mon Dec 15 19:29:51 2008 factoring 5623516984876440046820940447597024505155242882926050220394806682266805082143873407184438266180393771 (100 digits) Mon Dec 15 19:29:52 2008 searching for 15-digit factors Mon Dec 15 19:29:53 2008 commencing quadratic sieve (100-digit input) Mon Dec 15 19:29:53 2008 using multiplier of 19 Mon Dec 15 19:29:53 2008 using 32kb Intel Core sieve core Mon Dec 15 19:29:53 2008 sieve interval: 36 blocks of size 32768 Mon Dec 15 19:29:53 2008 processing polynomials in batches of 6 Mon Dec 15 19:29:53 2008 using a sieve bound of 2747231 (100000 primes) Mon Dec 15 19:29:53 2008 using large prime bound of 412084650 (28 bits) Mon Dec 15 19:29:53 2008 using double large prime bound of 3213479781672900 (43-52 bits) Mon Dec 15 19:29:53 2008 using trial factoring cutoff of 52 bits Mon Dec 15 19:29:53 2008 polynomial 'A' values have 13 factors Tue Dec 16 09:38:14 2008 100131 relations (23083 full + 77048 combined from 1514856 partial), need 100096 Tue Dec 16 09:38:16 2008 begin with 1537939 relations Tue Dec 16 09:38:18 2008 reduce to 266334 relations in 11 passes Tue Dec 16 09:38:18 2008 attempting to read 266334 relations Tue Dec 16 09:38:23 2008 recovered 266334 relations Tue Dec 16 09:38:23 2008 recovered 258695 polynomials Tue Dec 16 09:38:23 2008 attempting to build 100131 cycles Tue Dec 16 09:38:23 2008 found 100131 cycles in 7 passes Tue Dec 16 09:38:23 2008 distribution of cycle lengths: Tue Dec 16 09:38:23 2008 length 1 : 23083 Tue Dec 16 09:38:23 2008 length 2 : 16942 Tue Dec 16 09:38:23 2008 length 3 : 16845 Tue Dec 16 09:38:23 2008 length 4 : 13748 Tue Dec 16 09:38:23 2008 length 5 : 10569 Tue Dec 16 09:38:23 2008 length 6 : 7270 Tue Dec 16 09:38:23 2008 length 7 : 4676 Tue Dec 16 09:38:23 2008 length 9+: 6998 Tue Dec 16 09:38:23 2008 largest cycle: 23 relations Tue Dec 16 09:38:24 2008 matrix is 100000 x 100131 (28.5 MB) with weight 7076937 (70.68/col) Tue Dec 16 09:38:24 2008 sparse part has weight 7076937 (70.68/col) Tue Dec 16 09:38:26 2008 filtering completed in 3 passes Tue Dec 16 09:38:26 2008 matrix is 96437 x 96501 (27.6 MB) with weight 6861401 (71.10/col) Tue Dec 16 09:38:26 2008 sparse part has weight 6861401 (71.10/col) Tue Dec 16 09:38:26 2008 saving the first 48 matrix rows for later Tue Dec 16 09:38:26 2008 matrix is 96389 x 96501 (17.9 MB) with weight 5506767 (57.06/col) Tue Dec 16 09:38:26 2008 sparse part has weight 4110435 (42.59/col) Tue Dec 16 09:38:26 2008 matrix includes 64 packed rows Tue Dec 16 09:38:26 2008 using block size 38600 for processor cache size 1024 kB Tue Dec 16 09:38:27 2008 commencing Lanczos iteration Tue Dec 16 09:38:27 2008 memory use: 16.8 MB Tue Dec 16 09:39:35 2008 lanczos halted after 1525 iterations (dim = 96384) Tue Dec 16 09:39:35 2008 recovered 14 nontrivial dependencies Tue Dec 16 09:39:36 2008 prp47 factor: 26028553070102555153152006678575895714988264141 Tue Dec 16 09:39:36 2008 prp54 factor: 216051847743155505973228004187461561967298916530089431 Tue Dec 16 09:39:36 2008 elapsed time 14:09:45
(37·10150+71)/9 = 4(1)1499<151> = 33 · 883 · 4889 · 1221948250643<13> · C131
C131 = P64 · P67
P64 = 3287070246072146574864034007439682346444251917611909212297051483<64>
P67 = 8781180623418817074662056980380019977887522124119819322642913307399<67>
Number: 41119_150 N=28864357552625256507880498508537587718402715194719806825118503206248327918753286810133287358446407710796717272680968736991307822717 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=3287070246072146574864034007439682346444251917611909212297051483 (prp64) r2=8781180623418817074662056980380019977887522124119819322642913307399 (prp67) Version: Total time: 16.83 hours. Scaled time: 43.33 units (timescale=2.575). Factorization parameters were as follows: name: 41119_150 n: 28864357552625256507880498508537587718402715194719806825118503206248327918753286810133287358446407710796717272680968736991307822717 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 2000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 389350 x 389598 Total sieving time: 16.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 16.83 hours. --------- CPU info (if available) ----------
(37·10148+53)/9 = 4(1)1477<149> = 22669 · 107310918012420977<18> · C128
C128 = P39 · P42 · P48
P39 = 244860118170382215335072280041384558599<39>
P42 = 446917873259314622190911021433246558748781<42>
P48 = 154431953041875888316954780441581808091078491811<48>
Number: 41117_148 N=16899853584033955114950120383965912952947644853307839909495057609897055375198928097686899001618067828768496519047079737942880209 ( 128 digits) SNFS difficulty: 150 digits. Divisors found: r1=244860118170382215335072280041384558599 (prp39) r2=446917873259314622190911021433246558748781 (prp42) r3=154431953041875888316954780441581808091078491811 (prp48) Version: Total time: 14.74 hours. Scaled time: 37.79 units (timescale=2.564). Factorization parameters were as follows: name: 41117_148 n: 16899853584033955114950120383965912952947644853307839909495057609897055375198928097686899001618067828768496519047079737942880209 m: 500000000000000000000000000000 deg: 5 c5: 296 c0: 1325 skew: 1.35 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 405122 x 405370 Total sieving time: 14.74 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 14.74 hours. --------- CPU info (if available) ----------
(38·10108-11)/9 = 4(2)1071<109> = 3 · C109
C109 = P39 · P70
P39 = 247611047803078395531865562134423674323<39>
P70 = 5683944314660381557602633851722612401459653226858370362546598490499509<70>
Number: 42221_108 N=1407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 ( 109 digits) SNFS difficulty: 110 digits. Divisors found: r1=247611047803078395531865562134423674323 (pp39) r2=5683944314660381557602633851722612401459653226858370362546598490499509 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 1.47 hours. Scaled time: 0.70 units (timescale=0.474). Factorization parameters were as follows: name: 42221_108 n: 1407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407407 m: 5000000000000000000000 deg: 5 c5: 304 c0: -275 skew: 0.98 type: snfs lss: 1 rlim: 500000 alim: 500000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [250000, 400001) Primes: RFBsize:41538, AFBsize:41548, largePrimes:1113852 encountered Relations: rels:1058520, finalFF:113369 Max relations in full relation-set: 28 Initial matrix: 83153 x 113369 with sparse part having weight 4921853. Pruned matrix : 70547 x 71026 with weight 2259018. Total sieving time: 1.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,50000 total time: 1.47 hours. --------- CPU info (if available) ----------
(37·10150+53)/9 = 4(1)1497<151> = 1953649038355327<16> · C136
C136 = P68 · P69
P68 = 15528730282738141460510651909659560854080390256835141132996522651323<68>
P69 = 135511677020391780462271499218014916556072164255270934647592478198377<69>
Number: 41117_150 N=2104324282611188159960451123666380806055558797064658637231912660210061374031014998130279654083126691286869690704509007375842722395502771 ( 136 digits) SNFS difficulty: 151 digits. Divisors found: r1=15528730282738141460510651909659560854080390256835141132996522651323 (prp68) r2=135511677020391780462271499218014916556072164255270934647592478198377 (prp69) Version: Total time: 19.54 hours. Scaled time: 39.28 units (timescale=2.010). Factorization parameters were as follows: name: 41117_150 n: 2104324282611188159960451123666380806055558797064658637231912660210061374031014998130279654083126691286869690704509007375842722395502771 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 350594 x 350842 Total sieving time: 19.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 19.54 hours. --------- CPU info (if available) ----------
(38·10134-11)/9 = 4(2)1331<135> = 1491649 · 2946860149<10> · C119
C119 = P52 · P68
P52 = 4149907820957241490972920909065030923841515609684853<52>
P68 = 23146027777754951736573466939039243760546766431014482234227004890357<68>
Number: 42221_134 N=96053881698998834395407603696803899148417871409640815733762490089278910746043202961580105229793209375622816062588662521 ( 119 digits) SNFS difficulty: 136 digits. Divisors found: r1=4149907820957241490972920909065030923841515609684853 (pp52) r2=23146027777754951736573466939039243760546766431014482234227004890357 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 8.31 hours. Scaled time: 3.93 units (timescale=0.473). Factorization parameters were as follows: name: 42221_134 n: 96053881698998834395407603696803899148417871409640815733762490089278910746043202961580105229793209375622816062588662521 m: 1000000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 1310000 alim: 1310000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1310000/1310000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [655000, 1330001) Primes: RFBsize:100730, AFBsize:100660, largePrimes:3230980 encountered Relations: rels:3174985, finalFF:257716 Max relations in full relation-set: 28 Initial matrix: 201455 x 257716 with sparse part having weight 22148514. Pruned matrix : 185025 x 186096 with weight 12827971. Total sieving time: 7.51 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.60 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1310000,1310000,26,26,48,48,2.3,2.3,75000 total time: 8.31 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona / Msieve v1.39
(38·10120-11)/9 = 4(2)1191<121> = 34 · C119
C119 = P42 · P78
P42 = 509139097395824952151373035566844707911509<42>
P78 = 102381059598382098870388221982891747034455666681264121668445411723287964967049<78>
Number: 42221_120 N=52126200274348422496570644718792866941015089163237311385459533607681755829903978052126200274348422496570644718792866941 ( 119 digits) SNFS difficulty: 121 digits. Divisors found: r1=509139097395824952151373035566844707911509 r2=102381059598382098870388221982891747034455666681264121668445411723287964967049 Version: Total time: 0.90 hours. Scaled time: 2.14 units (timescale=2.383). Factorization parameters were as follows: n: 52126200274348422496570644718792866941015089163237311385459533607681755829903978052126200274348422496570644718792866941 m: 1000000000000000000000000 deg: 5 c5: 38 c0: -11 skew: 0.78 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [300000, 510001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 69377 x 69607 Total sieving time: 0.84 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.2,2.2,30000 total time: 0.90 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(38·10129-11)/9 = 4(2)1281<130> = 32 · 7 · 482513 · 6402719 · 23270251 · C108
C108 = P42 · P67
P42 = 125271917239803673135317586548283560303451<42>
P67 = 7441702172870640836699293639239075973261209560036712761186574811061<67>
Number: 42221_129 N=932236298723118086065258271081642050028750773492236275008624201179184424782920531697686204455679770151271511 ( 108 digits) SNFS difficulty: 131 digits. Divisors found: r1=125271917239803673135317586548283560303451 r2=7441702172870640836699293639239075973261209560036712761186574811061 Version: Total time: 2.16 hours. Scaled time: 5.17 units (timescale=2.393). Factorization parameters were as follows: n: 932236298723118086065258271081642050028750773492236275008624201179184424782920531697686204455679770151271511 m: 100000000000000000000000000 deg: 5 c5: 19 c0: -55 skew: 1.24 type: snfs lss: 1 rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [500000, 950001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 147643 x 147891 Total sieving time: 1.98 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.04 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,26,26,47,47,2.3,2.3,50000 total time: 2.16 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(38·10132-11)/9 = 4(2)1311<133> = 3 · 588953 · 1230907 · C121
C121 = P50 · P71
P50 = 26254955460944566172921225572697038732496864651657<50>
P71 = 73943953476055737169732831407296594260590759605785391982027707547550781<71>
Number: 42221_132 N=1941395205120000513014345070903776490531439352431330068809619602452852526039131860535958662912632755808985780565083294117 ( 121 digits) SNFS difficulty: 134 digits. Divisors found: r1=26254955460944566172921225572697038732496864651657 r2=73943953476055737169732831407296594260590759605785391982027707547550781 Version: Total time: 3.02 hours. Scaled time: 7.21 units (timescale=2.390). Factorization parameters were as follows: n: 1941395205120000513014345070903776490531439352431330068809619602452852526039131860535958662912632755808985780565083294117 m: 200000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [650000, 1250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 208908 x 209156 Total sieving time: 2.72 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,47,47,2.3,2.3,50000 total time: 3.02 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Wataru Sakai / Msieve
(8·10199-17)/9 = (8)1987<199> = 7 · C199
C199 = P60 · P66 · P74
P60 = 165915290595704680698485074656900719922152047067184299154427<60>
P66 = 209149051828140486987606736849824369901235273907179420942848736473<66>
P74 = 36593767584410672419943796220646382293763887819649513105939916736712122971<74>
Number: 88887_199 N=1269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=165915290595704680698485074656900719922152047067184299154427 r2=209149051828140486987606736849824369901235273907179420942848736473 r3=36593767584410672419943796220646382293763887819649513105939916736712122971 Version: Total time: 755.47 hours. Scaled time: 1492.80 units (timescale=1.976). Factorization parameters were as follows: n: 1269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: -85 skew: 1.84 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 15500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2674720 x 2674968 Total sieving time: 755.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 755.47 hours. --------- CPU info (if available) ----------
(34·10194+11)/9 = 3(7)1939<195> = C195
C195 = P49 · P147
P49 = 2691197740780502992199450526686456932840409619277<49>
P147 = 140375332534358627509741440328961748053188124694231767125239461652617980761194328247328425405232588742773325753465604320143168823613280390506804927<147>
Number: 37779_194 N=377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 195 digits) SNFS difficulty: 196 digits. Divisors found: r1=2691197740780502992199450526686456932840409619277 r2=140375332534358627509741440328961748053188124694231767125239461652617980761194328247328425405232588742773325753465604320143168823613280390506804927 Version: Total time: 658.53 hours. Scaled time: 1313.11 units (timescale=1.994). Factorization parameters were as follows: n: 377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 m: 1000000000000000000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 13600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2061273 x 2061521 Total sieving time: 658.53 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,55,55,2.5,2.5,100000 total time: 658.53 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
(38·10103-11)/9 = 4(2)1021<104> = 733 · 1621 · 6029 · 367134413 · C86
C86 = P41 · P45
P41 = 28306816444502368825148383991347799490833<41>
P45 = 567143149328791314070560484701937139507375317<45>
Mon Dec 15 15:27:04 2008 Msieve v. 1.39 Mon Dec 15 15:27:04 2008 random seeds: 651d427f 9761b85e Mon Dec 15 15:27:04 2008 factoring 16054017025807092569396169499940205222006738243601515768240784071360787770700831969061 (86 digits) Mon Dec 15 15:27:06 2008 searching for 15-digit factors Mon Dec 15 15:27:07 2008 commencing quadratic sieve (86-digit input) Mon Dec 15 15:27:07 2008 using multiplier of 29 Mon Dec 15 15:27:07 2008 using 64kb Pentium 4 sieve core Mon Dec 15 15:27:07 2008 sieve interval: 7 blocks of size 65536 Mon Dec 15 15:27:07 2008 processing polynomials in batches of 15 Mon Dec 15 15:27:07 2008 using a sieve bound of 1451119 (55333 primes) Mon Dec 15 15:27:07 2008 using large prime bound of 116089520 (26 bits) Mon Dec 15 15:27:07 2008 using double large prime bound of 328569561530240 (41-49 bits) Mon Dec 15 15:27:07 2008 using trial factoring cutoff of 49 bits Mon Dec 15 15:27:07 2008 polynomial 'A' values have 11 factors Mon Dec 15 16:19:16 2008 55637 relations (16439 full + 39198 combined from 566957 partial), need 55429 Mon Dec 15 16:19:19 2008 begin with 583396 relations Mon Dec 15 16:19:19 2008 reduce to 129329 relations in 9 passes Mon Dec 15 16:19:19 2008 attempting to read 129329 relations Mon Dec 15 16:19:22 2008 recovered 129329 relations Mon Dec 15 16:19:22 2008 recovered 107195 polynomials Mon Dec 15 16:19:23 2008 attempting to build 55637 cycles Mon Dec 15 16:19:23 2008 found 55637 cycles in 5 passes Mon Dec 15 16:19:23 2008 distribution of cycle lengths: Mon Dec 15 16:19:23 2008 length 1 : 16439 Mon Dec 15 16:19:23 2008 length 2 : 11435 Mon Dec 15 16:19:23 2008 length 3 : 9924 Mon Dec 15 16:19:23 2008 length 4 : 7013 Mon Dec 15 16:19:23 2008 length 5 : 4754 Mon Dec 15 16:19:23 2008 length 6 : 2805 Mon Dec 15 16:19:23 2008 length 7 : 1625 Mon Dec 15 16:19:23 2008 length 9+: 1642 Mon Dec 15 16:19:23 2008 largest cycle: 19 relations Mon Dec 15 16:19:23 2008 matrix is 55333 x 55637 (12.3 MB) with weight 2995743 (53.84/col) Mon Dec 15 16:19:23 2008 sparse part has weight 2995743 (53.84/col) Mon Dec 15 16:19:24 2008 filtering completed in 3 passes Mon Dec 15 16:19:24 2008 matrix is 49885 x 49949 (11.1 MB) with weight 2716273 (54.38/col) Mon Dec 15 16:19:24 2008 sparse part has weight 2716273 (54.38/col) Mon Dec 15 16:19:24 2008 saving the first 48 matrix rows for later Mon Dec 15 16:19:24 2008 matrix is 49837 x 49949 (6.8 MB) with weight 2078163 (41.61/col) Mon Dec 15 16:19:24 2008 sparse part has weight 1495961 (29.95/col) Mon Dec 15 16:19:24 2008 matrix includes 64 packed rows Mon Dec 15 16:19:24 2008 using block size 19979 for processor cache size 512 kB Mon Dec 15 16:19:25 2008 commencing Lanczos iteration Mon Dec 15 16:19:25 2008 memory use: 6.9 MB Mon Dec 15 16:19:48 2008 lanczos halted after 789 iterations (dim = 49837) Mon Dec 15 16:19:48 2008 recovered 18 nontrivial dependencies Mon Dec 15 16:19:49 2008 prp41 factor: 28306816444502368825148383991347799490833 Mon Dec 15 16:19:49 2008 prp45 factor: 567143149328791314070560484701937139507375317 Mon Dec 15 16:19:49 2008 elapsed time 00:52:45
(38·10105-11)/9 = 4(2)1041<106> = 3 · 72 · 17 · 347 · 140986765379<12> · C89
C89 = P41 · P48
P41 = 43871068211571581561965777755726137512439<41>
P48 = 787206733759095811393840080371004503026881448697<48>
Mon Dec 15 15:34:20 2008 Msieve v. 1.39 Mon Dec 15 15:34:20 2008 random seeds: 389128b0 b431d9bf Mon Dec 15 15:34:20 2008 factoring 34535600313353761637815551285629476040788202504999833839791741988242343476339596177841983 (89 digits) Mon Dec 15 15:34:21 2008 searching for 15-digit factors Mon Dec 15 15:34:23 2008 commencing quadratic sieve (89-digit input) Mon Dec 15 15:34:23 2008 using multiplier of 7 Mon Dec 15 15:34:23 2008 using 32kb Intel Core sieve core Mon Dec 15 15:34:23 2008 sieve interval: 32 blocks of size 32768 Mon Dec 15 15:34:23 2008 processing polynomials in batches of 7 Mon Dec 15 15:34:23 2008 using a sieve bound of 1555999 (59000 primes) Mon Dec 15 15:34:23 2008 using large prime bound of 124479920 (26 bits) Mon Dec 15 15:34:23 2008 using double large prime bound of 372544998335040 (42-49 bits) Mon Dec 15 15:34:23 2008 using trial factoring cutoff of 49 bits Mon Dec 15 15:34:23 2008 polynomial 'A' values have 11 factors Mon Dec 15 16:35:25 2008 59266 relations (15945 full + 43321 combined from 625351 partial), need 59096 Mon Dec 15 16:35:26 2008 begin with 641296 relations Mon Dec 15 16:35:27 2008 reduce to 144178 relations in 10 passes Mon Dec 15 16:35:27 2008 attempting to read 144178 relations Mon Dec 15 16:35:29 2008 recovered 144178 relations Mon Dec 15 16:35:29 2008 recovered 120576 polynomials Mon Dec 15 16:35:29 2008 attempting to build 59266 cycles Mon Dec 15 16:35:29 2008 found 59266 cycles in 6 passes Mon Dec 15 16:35:29 2008 distribution of cycle lengths: Mon Dec 15 16:35:29 2008 length 1 : 15945 Mon Dec 15 16:35:29 2008 length 2 : 11323 Mon Dec 15 16:35:29 2008 length 3 : 10530 Mon Dec 15 16:35:29 2008 length 4 : 7966 Mon Dec 15 16:35:29 2008 length 5 : 5549 Mon Dec 15 16:35:29 2008 length 6 : 3419 Mon Dec 15 16:35:29 2008 length 7 : 2034 Mon Dec 15 16:35:29 2008 length 9+: 2500 Mon Dec 15 16:35:29 2008 largest cycle: 21 relations Mon Dec 15 16:35:29 2008 matrix is 59000 x 59266 (14.5 MB) with weight 3552330 (59.94/col) Mon Dec 15 16:35:29 2008 sparse part has weight 3552330 (59.94/col) Mon Dec 15 16:35:30 2008 filtering completed in 4 passes Mon Dec 15 16:35:30 2008 matrix is 54944 x 55008 (13.5 MB) with weight 3325067 (60.45/col) Mon Dec 15 16:35:30 2008 sparse part has weight 3325067 (60.45/col) Mon Dec 15 16:35:30 2008 saving the first 48 matrix rows for later Mon Dec 15 16:35:30 2008 matrix is 54896 x 55008 (9.8 MB) with weight 2725550 (49.55/col) Mon Dec 15 16:35:30 2008 sparse part has weight 2235862 (40.65/col) Mon Dec 15 16:35:30 2008 matrix includes 64 packed rows Mon Dec 15 16:35:30 2008 using block size 22003 for processor cache size 1024 kB Mon Dec 15 16:35:31 2008 commencing Lanczos iteration Mon Dec 15 16:35:31 2008 memory use: 8.9 MB Mon Dec 15 16:35:50 2008 lanczos halted after 870 iterations (dim = 54892) Mon Dec 15 16:35:50 2008 recovered 15 nontrivial dependencies Mon Dec 15 16:35:51 2008 prp41 factor: 43871068211571581561965777755726137512439 Mon Dec 15 16:35:51 2008 prp48 factor: 787206733759095811393840080371004503026881448697 Mon Dec 15 16:35:51 2008 elapsed time 01:01:31
(38·10127-11)/9 = 4(2)1261<128> = 499 · 2386393 · 1606241281<10> · 272625457405895818536527<24> · C86
C86 = P35 · P52
P35 = 17366429354635051553800208947550843<35>
P52 = 4662414176865757064462443642505119553194330890299483<52>
Mon Dec 15 17:43:30 2008 Msieve v. 1.39 Mon Dec 15 17:43:30 2008 random seeds: 68905814 d1f19330 Mon Dec 15 17:43:30 2008 factoring 80969486424588104569192172741595063682559812789268173368043734892383445616679639114169 (86 digits) Mon Dec 15 17:43:31 2008 searching for 15-digit factors Mon Dec 15 17:43:33 2008 commencing quadratic sieve (86-digit input) Mon Dec 15 17:43:33 2008 using multiplier of 1 Mon Dec 15 17:43:33 2008 using 32kb Intel Core sieve core Mon Dec 15 17:43:33 2008 sieve interval: 17 blocks of size 32768 Mon Dec 15 17:43:33 2008 processing polynomials in batches of 12 Mon Dec 15 17:43:33 2008 using a sieve bound of 1469129 (56000 primes) Mon Dec 15 17:43:33 2008 using large prime bound of 117530320 (26 bits) Mon Dec 15 17:43:33 2008 using double large prime bound of 335946198551280 (41-49 bits) Mon Dec 15 17:43:33 2008 using trial factoring cutoff of 49 bits Mon Dec 15 17:43:33 2008 polynomial 'A' values have 11 factors Mon Dec 15 18:13:35 2008 56158 relations (16674 full + 39484 combined from 575315 partial), need 56096 Mon Dec 15 18:13:36 2008 begin with 591989 relations Mon Dec 15 18:13:37 2008 reduce to 130896 relations in 8 passes Mon Dec 15 18:13:37 2008 attempting to read 130896 relations Mon Dec 15 18:13:38 2008 recovered 130896 relations Mon Dec 15 18:13:38 2008 recovered 102453 polynomials Mon Dec 15 18:13:38 2008 attempting to build 56158 cycles Mon Dec 15 18:13:38 2008 found 56158 cycles in 4 passes Mon Dec 15 18:13:38 2008 distribution of cycle lengths: Mon Dec 15 18:13:38 2008 length 1 : 16674 Mon Dec 15 18:13:38 2008 length 2 : 11381 Mon Dec 15 18:13:38 2008 length 3 : 10137 Mon Dec 15 18:13:38 2008 length 4 : 7151 Mon Dec 15 18:13:38 2008 length 5 : 4629 Mon Dec 15 18:13:38 2008 length 6 : 2845 Mon Dec 15 18:13:38 2008 length 7 : 1598 Mon Dec 15 18:13:38 2008 length 9+: 1743 Mon Dec 15 18:13:38 2008 largest cycle: 18 relations Mon Dec 15 18:13:39 2008 matrix is 56000 x 56158 (12.1 MB) with weight 2944603 (52.43/col) Mon Dec 15 18:13:39 2008 sparse part has weight 2944603 (52.43/col) Mon Dec 15 18:13:39 2008 filtering completed in 3 passes Mon Dec 15 18:13:39 2008 matrix is 50465 x 50527 (11.0 MB) with weight 2682817 (53.10/col) Mon Dec 15 18:13:39 2008 sparse part has weight 2682817 (53.10/col) Mon Dec 15 18:13:39 2008 saving the first 48 matrix rows for later Mon Dec 15 18:13:39 2008 matrix is 50417 x 50527 (6.4 MB) with weight 2003995 (39.66/col) Mon Dec 15 18:13:39 2008 sparse part has weight 1381607 (27.34/col) Mon Dec 15 18:13:39 2008 matrix includes 64 packed rows Mon Dec 15 18:13:39 2008 using block size 20210 for processor cache size 1024 kB Mon Dec 15 18:13:40 2008 commencing Lanczos iteration Mon Dec 15 18:13:40 2008 memory use: 6.8 MB Mon Dec 15 18:13:53 2008 lanczos halted after 798 iterations (dim = 50413) Mon Dec 15 18:13:54 2008 recovered 14 nontrivial dependencies Mon Dec 15 18:13:54 2008 prp35 factor: 17366429354635051553800208947550843 Mon Dec 15 18:13:54 2008 prp52 factor: 4662414176865757064462443642505119553194330890299483 Mon Dec 15 18:13:54 2008 elapsed time 00:30:24
(37·10143+71)/9 = 4(1)1429<144> = 31 · 151 · 1282121 · C134
C134 = P40 · P95
P40 = 3615287439291684894508158182767387665977<40>
P95 = 18947360908062300940159800563451894341618031529231267746815252549335160149680738911882646397847<95>
Number: 41119_143 N=68500155898643929386073770112198146916568725842649511299081359558885873252281044837718846546767740555072432009399126924327815887951519 ( 134 digits) SNFS difficulty: 145 digits. Divisors found: r1=3615287439291684894508158182767387665977 (prp40) r2=18947360908062300940159800563451894341618031529231267746815252549335160149680738911882646397847 (prp95) Version: Total time: 9.91 hours. Scaled time: 25.40 units (timescale=2.564). Factorization parameters were as follows: name: 41119_143 n: 68500155898643929386073770112198146916568725842649511299081359558885873252281044837718846546767740555072432009399126924327815887951519 m: 50000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 1900000 alim: 1900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1900000/1900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [950000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 328954 x 329202 Total sieving time: 9.91 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1900000,1900000,26,26,49,49,2.3,2.3,100000 total time: 9.91 hours. --------- CPU info (if available) ----------
(37·10138+71)/9 = 4(1)1379<139> = 3 · 969010793 · C130
C130 = P61 · P69
P61 = 3476796762562889019061094719588926077162359713038881374966959<61>
P69 = 406752322152161834672358389592055437109529103077857683960073230597779<69>
Number: 41119_138 N=1414195156823573553705887742749187696994382569658716247518999894535096649197353543171908066013017432273708813448035939853943784061 ( 130 digits) SNFS difficulty: 140 digits. Divisors found: r1=3476796762562889019061094719588926077162359713038881374966959 (prp61) r2=406752322152161834672358389592055437109529103077857683960073230597779(prp69)Version: Total time: 9.36 hours. Scaled time: 18.63 units (timescale=1.991). Factorization parameters were as follows: name: 41119_138 n: 1414195156823573553705887742749187696994382569658716247518999894535096649197353543171908066013017432273708813448035939853943784061 m: 5000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 1785001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 237971 x 238219 Total sieving time: 9.36 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 9.36 hours. --------- CPU info (if available) ----------
(37·10141+53)/9 = 4(1)1407<142> = 43 · C140
C140 = P43 · P98
P43 = 2344853697342225768244701403474970076911147<43>
P98 = 40773219775069496196274797925205475166939330156666714576604063888238857689344930254975648637575477<98>
Number: 41117_141 N=95607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142119 ( 140 digits) SNFS difficulty: 142 digits. Divisors found: r1=2344853697342225768244701403474970076911147 (prp43) r2=40773219775069496196274797925205475166939330156666714576604063888238857689344930254975648637575477 (prp98) Version: Total time: 10.54 hours. Scaled time: 26.09 units (timescale=2.475). Factorization parameters were as follows: name: 41117_141 n: 95607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142118863049095607235142119 m: 10000000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 2330001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 306636 x 306884 Total sieving time: 10.54 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 10.54 hours. --------- CPU info (if available) ----------
(37·10145+53)/9 = 4(1)1447<146> = 619 · 4360973 · 23951846117<11> · C126
C126 = P59 · P68
P59 = 38350460235070243587880442271327734428299906979443252142693<59>
P68 = 16579659029211224705104833603108275078319308270761472069498739409211<68>
Number: 41117_145 N=635837554310788391204818689459763367605246338531582846149485015459484002376721164224273149663384689094348905037164216690545223 ( 126 digits) SNFS difficulty: 146 digits. Divisors found: r1=38350460235070243587880442271327734428299906979443252142693 (prp59) r2=16579659029211224705104833603108275078319308270761472069498739409211 (prp68) Version: Total time: 11.28 hours. Scaled time: 22.53 units (timescale=1.997). Factorization parameters were as follows: name: 41117_145 n: 635837554310788391204818689459763367605246338531582846149485015459484002376721164224273149663384689094348905037164216690545223 m: 100000000000000000000000000000 deg: 5 c5: 37 c0: 53 skew: 1.07 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2070001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 307574 x 307822 Total sieving time: 11.28 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 11.28 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, msieve-1.39, GMP-ECM 6.2.1+msieve, Msieve-1.39
(38·10145-11)/9 = 4(2)1441<146> = 389 · 785143 · 541988574965639<15> · 11348765752211748977<20> · C104
C104 = P34 · P35 · P36
P34 = 1325404641036859296643530875431267<34>
P35 = 36103065167888294499984392024763463<35>
P36 = 469690089725626719012031234061716021<36>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2865957120 Step 1 took 8207ms Step 2 took 4973ms ********** Factor found in step 2: 36103065167888294499984392024763463 Found probable prime factor of 35 digits: 36103065167888294499984392024763463 Composite cofactor has 69 digits Sun Dec 14 22:43:05 2008 Sun Dec 14 22:43:05 2008 Msieve v. 1.39 Sun Dec 14 22:43:05 2008 random seeds: ecc3aec6 9d478ede Sun Dec 14 22:43:05 2008 factoring 622529424771364516359872641106451889809872987897208805215742458228607 (69 digits) Sun Dec 14 22:43:05 2008 searching for 15-digit factors Sun Dec 14 22:43:05 2008 commencing quadratic sieve (69-digit input) Sun Dec 14 22:43:05 2008 using multiplier of 7 Sun Dec 14 22:43:05 2008 using 64kb Opteron sieve core Sun Dec 14 22:43:05 2008 sieve interval: 6 blocks of size 65536 Sun Dec 14 22:43:05 2008 processing polynomials in batches of 17 Sun Dec 14 22:43:06 2008 using a sieve bound of 204517 (9095 primes) Sun Dec 14 22:43:06 2008 using large prime bound of 18406530 (24 bits) Sun Dec 14 22:43:06 2008 using trial factoring cutoff of 24 bits Sun Dec 14 22:43:06 2008 polynomial 'A' values have 9 factors Sun Dec 14 22:44:53 2008 9225 relations (4203 full + 5022 combined from 51864 partial), need 9191 Sun Dec 14 22:44:53 2008 begin with 56067 relations Sun Dec 14 22:44:53 2008 reduce to 13607 relations in 2 passes Sun Dec 14 22:44:53 2008 attempting to read 13607 relations Sun Dec 14 22:44:53 2008 recovered 13607 relations Sun Dec 14 22:44:53 2008 recovered 11821 polynomials Sun Dec 14 22:44:53 2008 attempting to build 9225 cycles Sun Dec 14 22:44:53 2008 found 9225 cycles in 1 passes Sun Dec 14 22:44:53 2008 distribution of cycle lengths: Sun Dec 14 22:44:53 2008 length 1 : 4203 Sun Dec 14 22:44:53 2008 length 2 : 5022 Sun Dec 14 22:44:53 2008 largest cycle: 2 relations Sun Dec 14 22:44:53 2008 matrix is 9095 x 9225 (1.3 MB) with weight 267721 (29.02/col) Sun Dec 14 22:44:53 2008 sparse part has weight 267721 (29.02/col) Sun Dec 14 22:44:53 2008 filtering completed in 3 passes Sun Dec 14 22:44:53 2008 matrix is 8379 x 8443 (1.2 MB) with weight 242533 (28.73/col) Sun Dec 14 22:44:53 2008 sparse part has weight 242533 (28.73/col) Sun Dec 14 22:44:53 2008 commencing Lanczos iteration Sun Dec 14 22:44:53 2008 memory use: 1.6 MB Sun Dec 14 22:44:54 2008 lanczos halted after 134 iterations (dim = 8375) Sun Dec 14 22:44:54 2008 recovered 63 nontrivial dependencies Sun Dec 14 22:44:54 2008 prp34 factor: 1325404641036859296643530875431267 Sun Dec 14 22:44:54 2008 prp36 factor: 469690089725626719012031234061716021 Sun Dec 14 22:44:54 2008 elapsed time 00:01:49
(38·10163-11)/9 = 4(2)1621<164> = 977 · 1399 · 126913957 · 1065053831<10> · 1894635371<10> · 1451688987955948106334132287<28> · C104
C104 = P32 · P73
P32 = 15325232869025743468160027097037<32>
P73 = 5421775857181523778303366997185264829240061910861849089673960276292566569<73>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1701068307 Step 1 took 8199ms Step 2 took 5108ms ********** Factor found in step 2: 15325232869025743468160027097037 Found probable prime factor of 32 digits: 15325232869025743468160027097037 Probable prime cofactor 5421775857181523778303366997185264829240061910861849089673960276292566569 has 73 digits
(38·10128-11)/9 = 4(2)1271<129> = 83 · 7143462642221693<16> · C111
C111 = P28 · P84
P28 = 3980015878546287994687508077<28>
P84 = 178924335183058703221158270546770884637344930166891465712261296911583661673906338967<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3096623199 Step 1 took 8208ms Step 2 took 5205ms ********** Factor found in step 2: 3980015878546287994687508077 Found probable prime factor of 28 digits: 3980015878546287994687508077 Probable prime cofactor has 84 digits
(38·10147-11)/9 = 4(2)1461<148> = 33 · 72 · 47045659 · C137
C137 = P28 · P29 · P36 · P46
P28 = 2551902873964888480833926621<28>
P29 = 25651567516317837264646215281<29>
P36 = 140164536628756188314004991027646939<36>
P46 = 7393421921628468039493253474311183298582706427<46>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4033410296 Step 1 took 10041ms Step 2 took 5472ms ********** Factor found in step 2: 2551902873964888480833926621 Found probable prime factor of 28 digits: 2551902873964888480833926621 Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3869496862 Step 1 took 6981ms Step 2 took 4380ms ********** Factor found in step 2: 25651567516317837264646215281 Found probable prime factor of 29 digits: 25651567516317837264646215281 Sun Dec 14 23:32:12 2008 Msieve v. 1.39 Sun Dec 14 23:32:12 2008 random seeds: c480db8c b034535a Sun Dec 14 23:32:12 2008 factoring 1036295557745942373186723249313381729835841778863922580350252672039512028042176953 (82 digits) Sun Dec 14 23:32:13 2008 searching for 15-digit factors Sun Dec 14 23:32:14 2008 commencing quadratic sieve (82-digit input) Sun Dec 14 23:32:14 2008 using multiplier of 1 Sun Dec 14 23:32:14 2008 using 64kb Opteron sieve core Sun Dec 14 23:32:14 2008 sieve interval: 6 blocks of size 65536 Sun Dec 14 23:32:14 2008 processing polynomials in batches of 17 Sun Dec 14 23:32:14 2008 using a sieve bound of 1334341 (51025 primes) Sun Dec 14 23:32:14 2008 using large prime bound of 126762395 (26 bits) Sun Dec 14 23:32:14 2008 using trial factoring cutoff of 27 bits Sun Dec 14 23:32:14 2008 polynomial 'A' values have 10 factors Sun Dec 14 23:54:47 2008 51205 relations (26457 full + 24748 combined from 273052 partial), need 51121 Sun Dec 14 23:54:47 2008 begin with 299509 relations Sun Dec 14 23:54:47 2008 reduce to 72932 relations in 2 passes Sun Dec 14 23:54:47 2008 attempting to read 72932 relations Sun Dec 14 23:54:48 2008 recovered 72932 relations Sun Dec 14 23:54:48 2008 recovered 63151 polynomials Sun Dec 14 23:54:48 2008 attempting to build 51205 cycles Sun Dec 14 23:54:48 2008 found 51205 cycles in 1 passes Sun Dec 14 23:54:48 2008 distribution of cycle lengths: Sun Dec 14 23:54:48 2008 length 1 : 26457 Sun Dec 14 23:54:48 2008 length 2 : 24748 Sun Dec 14 23:54:48 2008 largest cycle: 2 relations Sun Dec 14 23:54:49 2008 matrix is 51025 x 51205 (7.5 MB) with weight 1547321 (30.22/col) Sun Dec 14 23:54:49 2008 sparse part has weight 1547321 (30.22/col) Sun Dec 14 23:54:49 2008 filtering completed in 4 passes Sun Dec 14 23:54:49 2008 matrix is 36298 x 36362 (5.8 MB) with weight 1237357 (34.03/col) Sun Dec 14 23:54:49 2008 sparse part has weight 1237357 (34.03/col) Sun Dec 14 23:54:49 2008 saving the first 48 matrix rows for later Sun Dec 14 23:54:49 2008 matrix is 36250 x 36362 (4.4 MB) with weight 984802 (27.08/col) Sun Dec 14 23:54:49 2008 sparse part has weight 795660 (21.88/col) Sun Dec 14 23:54:49 2008 matrix includes 64 packed rows Sun Dec 14 23:54:49 2008 using block size 14544 for processor cache size 1024 kB Sun Dec 14 23:54:50 2008 commencing Lanczos iteration Sun Dec 14 23:54:50 2008 memory use: 4.2 MB Sun Dec 14 23:54:58 2008 lanczos halted after 575 iterations (dim = 36249) Sun Dec 14 23:54:59 2008 recovered 16 nontrivial dependencies Sun Dec 14 23:54:59 2008 prp36 factor: 140164536628756188314004991027646939 Sun Dec 14 23:54:59 2008 prp46 factor: 7393421921628468039493253474311183298582706427 Sun Dec 14 23:54:59 2008 elapsed time 00:22:47
(38·10135-11)/9 = 4(2)1341<136> = 3 · 7 · 67 · 10709 · C129
C129 = P30 · P99
P30 = 937437808317976970693932416403<30>
P99 = 298920435195374668796858613681629028190698771165759803331918105970884920720033436834219559330152989<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4218461253 Step 1 took 8577ms Step 2 took 4940ms ********** Factor found in step 2: 937437808317976970693932416403 Found probable prime factor of 30 digits: 937437808317976970693932416403 Probable prime cofactor 298920435195374668796858613681629028190698771165759803331918105970884920720033436834219559330152989 has 99 digits
(38·10133-11)/9 = 4(2)1321<134> = 1259 · C131
C131 = P36 · P96
P36 = 227346354804397997449555013421517819<36>
P96 = 147512003565082160996670532501548152339461769615196128904934077918830260161327461047769915156101<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2551179353 Step 1 took 8385ms Step 2 took 4932ms ********** Factor found in step 2: 227346354804397997449555013421517819 Found probable prime factor of 36 digits: 227346354804397997449555013421517819 Probable prime cofactor 147512003565082160996670532501548152339461769615196128904934077918830260161327461047769915156101 has 96 digits
(38·10191-11)/9 = 4(2)1901<192> = 41 · 2687 · 774334507 · C178
C178 = P33 · C146
P33 = 375832150285823251963801943606447<33>
C146 = [13169431325495540700522931115085114511012173448511242545734463676942758815655542079711578357374161512954053203286078300190494821013860645706028447<146>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3279824311 Step 1 took 15916ms Step 2 took 8379ms ********** Factor found in step 2: 375832150285823251963801943606447 Found probable prime factor of 33 digits: 375832150285823251963801943606447 Composite cofactor has 146 digits
(38·10174-11)/9 = 4(2)1731<175> = 33 · 7629737812981<13> · 31668315658185358241<20> · C141
C141 = P38 · C104
P38 = 64583320974668012969282589628685014327<38>
C104 = [10021260930390560266594511156264428707661578748567959642375971936717369835041789453030241615860197033469<104>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3366280551 Step 1 took 14481ms Step 2 took 6856ms ********** Factor found in step 2: 64583320974668012969282589628685014327 Found probable prime factor of 38 digits: 64583320974668012969282589628685014327 Composite cofactor has 104 digits
(38·10122-11)/9 = 4(2)1211<123> = 23 · C122
C122 = P41 · P81
P41 = 22983221156969608220878678122685099656223<41>
P81 = 798734337425041424415227498048707151445996691869167022100770362401392131327274149<81>
SNFS difficulty: 124 digits. Divisors found: r1=22983221156969608220878678122685099656223 (pp41) r2=798734337425041424415227498048707151445996691869167022100770362401392131327274149 (pp81) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.728). Factorization parameters were as follows: n: 18357487922705314009661835748792270531400966183574879227053140096618357487922705314009661835748792270531400966183574879227 m: 2000000000000000000000000 deg: 5 c5: 475 c0: -44 skew: 0.62 type: snfs lss: 1 rlim: 820000 alim: 820000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 820000/820000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [410000, 810001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 101881 x 102120 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,820000,820000,25,25,48,48,2.2,2.2,50000 total time: 1.20 hours.
(38·10183-11)/9 = 4(2)1821<184> = 32 · 7 · 6514450079635017199<19> · C164
C164 = P35 · P129
P35 = 75782147652784397005420137353528113<35>
P129 = 135755010714898869452949025678199105972122459983334039812159735676716342059338321962469593013630612819204264542435169763895315341<129>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=821134725 Step 1 took 11704ms Step 2 took 6053ms ********** Factor found in step 2: 75782147652784397005420137353528113 Found probable prime factor of 35 digits: 75782147652784397005420137353528113 Probable prime cofactor 135755010714898869452949025678199105972122459983334039812159735676716342059338321962469593013630612819204264542435169763895315341 has 129 digits
(37·10160+71)/9 = 4(1)1599<161> = 13 · 1164433 · 1927633 · C148
C148 = P34 · P49 · P67
P34 = 1302813942596384285247378345758543<34>
P49 = 1023739102807287331415444498937198533190476003389<49>
P67 = 1056343867181512794323328678468277917562204780290353805173030837321<67>
SNFS difficulty: 161 digits. Divisors found: r1=1302813942596384285247378345758543 (pp34) r2=1023739102807287331415444498937198533190476003389 (pp49) r3=1056343867181512794323328678468277917562204780290353805173030837321 (pp67) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.174). Factorization parameters were as follows: n: 1408889734971532832959813943795077767526643347374927297662390319135412350788559621130563324497189583241140762438987075704505540800628177844802413867 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 3250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 662073 x 662321 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,100000 total time: 35.00 hours.
(38·10193-11)/9 = 4(2)1921<194> = 29 · 143251879 · C185
C185 = P32 · C153
P32 = 92238676107852763259816729714369<32>
C153 = [110186833103092390774649090660008487821406637141568965549388610139834253319507062767249752482557653014855888025715777277839734871796910969834280443874599<153>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4093897938 Step 1 took 13765ms Step 2 took 7000ms ********** Factor found in step 2: 92238676107852763259816729714369 Found probable prime factor of 32 digits: 92238676107852763259816729714369 Composite cofactor has 153 digits
By Jo Yeong Uk / GGNFS, Msieve
(11·10191-17)/3 = 3(6)1901<192> = C192
C192 = P50 · P142
P50 = 49192191343990162417715955038848218978279791366327<50>
P142 = 7453757530390289043345066089546327493410373894631714762602742698136076516003603270057275757770990426540518320236664138941399118042301680339843<142>
Number: 36661_191 N=366666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: r1=49192191343990162417715955038848218978279791366327 (pp50) r2=7453757530390289043345066089546327493410373894631714762602742698136076516003603270057275757770990426540518320236664138941399118042301680339843 (pp142) Version: GGNFS-0.77.1-20050930-nocona Total time: 333.93 hours. Scaled time: 792.08 units (timescale=2.372). Factorization parameters were as follows: n: 366666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 100000000000000000000000000000000000000 deg: 5 c5: 110 c0: -17 skew: 0.69 type: snfs lss: 1 rlim: 13000000 alim: 13000000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5 Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6500000, 11800001) Primes: RFBsize:849252, AFBsize:848849, largePrimes:20997970 encountered Relations: rels:22348036, finalFF:1980622 Max relations in full relation-set: 28 Initial matrix: 1698168 x 1980622 with sparse part having weight 222660520. Pruned matrix : 1459606 x 1468160 with weight 178804439. Total sieving time: 302.57 hours. Total relation processing time: 0.57 hours. Matrix solve time: 30.49 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,55,55,2.5,2.5,100000 total time: 333.93 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10179+53)/9 = 4(1)1787<180> = 34 · 7 · 23 · 4751018479457<13> · 13962759095755291<17> · 49208248701391080839818523<26> · 2119493083661110697017153309<28> · C94
C94 = P43 · P52
P43 = 1231767907813054570880909901881618539628959<43>
P52 = 3699061547272506851328690176815392273739868519354327<52>
Sun Dec 14 23:07:19 2008 Sun Dec 14 23:07:19 2008 Sun Dec 14 23:07:19 2008 Msieve v. 1.39 Sun Dec 14 23:07:19 2008 random seeds: efc8f9c0 4a2a88b6 Sun Dec 14 23:07:19 2008 factoring 4556385302955576221884023543638349856512194802012137833352589947767890040676035957132831155593 (94 digits) Sun Dec 14 23:07:20 2008 searching for 15-digit factors Sun Dec 14 23:07:21 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 23:07:21 2008 using multiplier of 1 Sun Dec 14 23:07:21 2008 using VC8 32kb sieve core Sun Dec 14 23:07:21 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 23:07:21 2008 processing polynomials in batches of 6 Sun Dec 14 23:07:21 2008 using a sieve bound of 2059511 (76377 primes) Sun Dec 14 23:07:21 2008 using large prime bound of 284212518 (28 bits) Sun Dec 14 23:07:21 2008 using double large prime bound of 1646484896014146 (42-51 bits) Sun Dec 14 23:07:21 2008 using trial factoring cutoff of 51 bits Sun Dec 14 23:07:21 2008 polynomial 'A' values have 12 factors Mon Dec 15 02:09:04 2008 76723 relations (18644 full + 58079 combined from 1105235 partial), need 76473 Mon Dec 15 02:09:06 2008 begin with 1123879 relations Mon Dec 15 02:09:06 2008 reduce to 199758 relations in 11 passes Mon Dec 15 02:09:06 2008 attempting to read 199758 relations Mon Dec 15 02:09:09 2008 recovered 199758 relations Mon Dec 15 02:09:09 2008 recovered 183205 polynomials Mon Dec 15 02:09:09 2008 attempting to build 76723 cycles Mon Dec 15 02:09:09 2008 found 76723 cycles in 5 passes Mon Dec 15 02:09:09 2008 distribution of cycle lengths: Mon Dec 15 02:09:09 2008 length 1 : 18644 Mon Dec 15 02:09:09 2008 length 2 : 13569 Mon Dec 15 02:09:09 2008 length 3 : 12956 Mon Dec 15 02:09:09 2008 length 4 : 10464 Mon Dec 15 02:09:09 2008 length 5 : 7806 Mon Dec 15 02:09:09 2008 length 6 : 5369 Mon Dec 15 02:09:09 2008 length 7 : 3303 Mon Dec 15 02:09:09 2008 length 9+: 4612 Mon Dec 15 02:09:09 2008 largest cycle: 18 relations Mon Dec 15 02:09:10 2008 matrix is 76377 x 76723 (20.7 MB) with weight 4802821 (62.60/col) Mon Dec 15 02:09:10 2008 sparse part has weight 4802821 (62.60/col) Mon Dec 15 02:09:11 2008 filtering completed in 3 passes Mon Dec 15 02:09:11 2008 matrix is 72800 x 72864 (19.7 MB) with weight 4576855 (62.81/col) Mon Dec 15 02:09:11 2008 sparse part has weight 4576855 (62.81/col) Mon Dec 15 02:09:11 2008 saving the first 48 matrix rows for later Mon Dec 15 02:09:11 2008 matrix is 72752 x 72864 (12.2 MB) with weight 3552283 (48.75/col) Mon Dec 15 02:09:11 2008 sparse part has weight 2460376 (33.77/col) Mon Dec 15 02:09:11 2008 matrix includes 64 packed rows Mon Dec 15 02:09:11 2008 using block size 29145 for processor cache size 4096 kB Mon Dec 15 02:09:11 2008 commencing Lanczos iteration Mon Dec 15 02:09:11 2008 memory use: 11.2 MB Mon Dec 15 02:09:41 2008 lanczos halted after 1151 iterations (dim = 72748) Mon Dec 15 02:09:41 2008 recovered 14 nontrivial dependencies Mon Dec 15 02:09:41 2008 prp43 factor: 1231767907813054570880909901881618539628959 Mon Dec 15 02:09:41 2008 prp52 factor: 3699061547272506851328690176815392273739868519354327 Mon Dec 15 02:09:41 2008 elapsed time 03:02:22
(37·10181+71)/9 = 4(1)1809<182> = 7 · 42323 · 33379705157<11> · 24127822888595769062376049807<29> · 47573256735105102134774568941200081<35> · C103
C103 = P38 · P66
P38 = 10427180460429420252723196144751715523<38>
P66 = 347339620026515181041293360623135033853462919353750340536712007667<66>
Number: 41119_181 N=3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841 ( 103 digits) Divisors found: r1=10427180460429420252723196144751715523 (pp38) r2=347339620026515181041293360623135033853462919353750340536712007667 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.29 hours. Scaled time: 10.21 units (timescale=2.382). Factorization parameters were as follows: name: 41119_181 n: 3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841 skew: 9782.55 # norm 4.14e+14 c5: 73080 c4: -2514835704 c3: 8790142461548 c2: 263294977153601755 c1: 196917554526018178456 c0: -2679866085058324682790127 # alpha -6.43 Y1: 7813826537 Y0: -34595945979182260752 # Murphy_E 2.51e-09 # M 1396009132050224762205095102224607140116956259471065740878701764748997185483488045420616203276518767234 type: gnfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:107413, largePrimes:4760133 encountered Relations: rels:4585963, finalFF:244161 Max relations in full relation-set: 28 Initial matrix: 214630 x 244161 with sparse part having weight 22152773. Pruned matrix : 200512 x 201649 with weight 15853660. Polynomial selection time: 0.25 hours. Total sieving time: 3.76 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1400000,1400000,26,26,50,50,2.6,2.6,50000 total time: 4.29 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.39
(37·10158+71)/9 = 4(1)1579<159> = 31 · C158
C158 = P38 · P47 · P73
P38 = 56252524761237276570987106972917336289<38>
P47 = 37279445348853727722204385871231176114193568127<47>
P73 = 6323915511918555012521989947661747244518565340773117237921653166093351183<73>
SNFS difficulty: 160 digits. Divisors found: r1=56252524761237276570987106972917336289 (pp38) r2=37279445348853727722204385871231176114193568127 (pp47) r3=6323915511918555012521989947661747244518565340773117237921653166093351183 (pp73) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.559). Factorization parameters were as follows: n: 13261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261648745519713261649 m: 50000000000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 3200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 646811 x 647059 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 21.00 hours.
(37·10159+53)/9 = 4(1)1587<160> = 8473427 · C153
C153 = P42 · P42 · P70
P42 = 443323695339234757494089624823618634934581<42>
P42 = 452780513252055747543767753370086491619059<42>
P70 = 2417082367680574707369031567295805948468828136719998084989731464459249<70>
SNFS difficulty: 161 digits. Divisors found: r1=443323695339234757494089624823618634934581 (pp42) r2=452780513252055747543767753370086491619059 (pp42) r3=2417082367680574707369031567295805948468828136719998084989731464459249 (pp70) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.692). Factorization parameters were as follows: n: 485176907892298017214417627143198508833688082886783719398433610286736536599785554429289484775299428567816907033141503562975300443505456660110615352101471 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1750000, 3650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 723565 x 723813 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,52,52,2.4,2.4,100000 total time: 26.00 hours.
By Robert Backstrom / GGNFS, Msieve
(37·10120+71)/9 = 4(1)1199<121> = 3 · 17 · 257 · 169244578693<12> · C106
C106 = P47 · P60
P47 = 15718212115607084073455098063640139764109946061<47>
P60 = 117906569540261494882234034595775781192538671358262630919029<60>
Number: n N=1853280469857407409649560238135051795272682028566957745455654946359544378927120317253367823242200048494769 ( 106 digits) SNFS difficulty: 121 digits. Divisors found: r1=15718212115607084073455098063640139764109946061 (pp47) r2=117906569540261494882234034595775781192538671358262630919029 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.52 hours. Scaled time: 2.79 units (timescale=1.829). Factorization parameters were as follows: name: KA_4_1_119_9 n: 1853280469857407409649560238135051795272682028566957745455654946359544378927120317253367823242200048494769 type: snfs skew: 1.14 deg: 5 c5: 37 c0: 71 m: 1000000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [250000, 450001) Primes: RFBsize:41538, AFBsize:41148, largePrimes:5521859 encountered Relations: rels:4970497, finalFF:209320 Max relations in full relation-set: 48 Initial matrix: 82751 x 209320 with sparse part having weight 32997515. Pruned matrix : 71450 x 71927 with weight 7104504. Total sieving time: 1.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.03 hours. Total square root time: 0.14 hours, sqrts: 10. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.52 hours. --------- CPU info (if available) ----------
(37·10129+71)/9 = 4(1)1289<130> = 3 · 27774323 · 13031386588706799664801<23> · C100
C100 = P42 · P59
P42 = 128123426410502970074948895719212965675887<42>
P59 = 29551212498200826094631393040780112047335950040214922506473<59>
Number: n N=3786202599854369175101763795740950150675265207939197580619648859764781300033378615291421350577516551 ( 100 digits) SNFS difficulty: 131 digits. Divisors found: r1=128123426410502970074948895719212965675887 (pp42) r2=29551212498200826094631393040780112047335950040214922506473 (pp59) Version: GGNFS-0.77.1-20051202-k8 Total time: 3.83 hours. Scaled time: 7.71 units (timescale=2.013). Factorization parameters were as follows: name: KA_4_1_128_9 n: 3786202599854369175101763795740950150675265207939197580619648859764781300033378615291421350577516551 type: snfs skew: 1.81 deg: 5 c5: 37 c0: 710 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:71274, AFBsize:71376, largePrimes:7510334 encountered Relations: rels:6777003, finalFF:229584 Max relations in full relation-set: 28 Initial matrix: 142715 x 229584 with sparse part having weight 24217375. Pruned matrix : 123653 x 124430 with weight 10406862. Total sieving time: 3.63 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.06 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.5,2.5,50000 total time: 3.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(37·10131+53)/9 = 4(1)1307<132> = 3 · 7 · 26317 · 3455435628958223<16> · C111
C111 = P49 · P62
P49 = 7972700383759441503881272449579513196474094885429<49>
P62 = 27001959963243168853430820841180310949496723141495794009982343<62>
Number: n N=215278536561205887322108876493270186092609401846280407032882268561731174025745829832628911912346191386897980147 ( 111 digits) SNFS difficulty: 132 digits. Divisors found: r1=7972700383759441503881272449579513196474094885429 (pp49) r2=27001959963243168853430820841180310949496723141495794009982343 (pp62) Version: GGNFS-0.77.1-20051202-k8 Total time: 4.34 hours. Scaled time: 8.72 units (timescale=2.010). Factorization parameters were as follows: name: KA_4_1_130_7 n: 215278536561205887322108876493270186092609401846280407032882268561731174025745829832628911912346191386897980147 type: snfs skew: 0.68 deg: 5 c5: 370 c0: 53 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:71274, AFBsize:70980, largePrimes:7870308 encountered Relations: rels:7124914, finalFF:201480 Max relations in full relation-set: 28 Initial matrix: 142321 x 201480 with sparse part having weight 21993173. Pruned matrix : 129753 x 130528 with weight 11883302. Total sieving time: 4.11 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,56,56,2.5,2.5,50000 total time: 4.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
(37·10134+53)/9 = 4(1)1337<135> = 32 · 24986991259982899490059<23> · C112
C112 = P50 · P62
P50 = 26997291767926798159853751308242719224871556251223<50>
P62 = 67714634740461212531416188452742326805525020387462321160332809<62>
Number: n N=1828111751046823473729867845947611785538650552102639379539486366668748152605479610053566238562881946543093275407 ( 112 digits) SNFS difficulty: 136 digits. Divisors found: Mon Dec 15 05:57:05 2008 prp50 factor: 26997291767926798159853751308242719224871556251223 Mon Dec 15 05:57:05 2008 prp62 factor: 67714634740461212531416188452742326805525020387462321160332809 Mon Dec 15 05:57:05 2008 elapsed time 00:12:49 (Msieve 1.39 - dependency 4) Version: GGNFS-0.77.1-20050930-k8 Total time: 4.50 hours. Scaled time: 9.05 units (timescale=2.012). Factorization parameters were as follows: name: KA_4_1_133_7 n: 1828111751046823473729867845947611785538650552102639379539486366668748152605479610053566238562881946543093275407 type: snfs skew: 1.70 deg: 5 c5: 37 c0: 530 m: 1000000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 800001) Primes: RFBsize:78498, AFBsize:78716, largePrimes:7741734 encountered Relations: rels:6703606, finalFF:108763 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 4.37 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,56,56,2.5,2.5,75000 total time: 4.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Sinkiti Sibata / Msieve
(37·10126+53)/9 = 4(1)1257<127> = 23429971 · C120
C120 = P55 · P65
P55 = 2385657431444900902593170998853579105307250401833124431<55>
P65 = 73549442015086715345246777178084396489992122857979924708529445617<65>
Number: 41117_126 N=175463772921917449710505877754228168319589943628658828092920435587014218289519483874355248289087131653347377643408568927 ( 120 digits) SNFS difficulty: 127 digits. Divisors found: r1=2385657431444900902593170998853579105307250401833124431 (prp55) r2=73549442015086715345246777178084396489992122857979924708529445617 (prp65) Version: Total time: 4.07 hours. Scaled time: 7.96 units (timescale=1.955). Factorization parameters were as follows: name: 41117_126 n: 175463772921917449710505877754228168319589943628658828092920435587014218289519483874355248289087131653347377643408568927 m: 10000000000000000000000000 deg: 5 c5: 370 c0: 53 skew: 0.68 type: snfs lss: 1 rlim: 940000 alim: 940000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 940000/940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [470000, 970001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 156346 x 156594 Total sieving time: 4.07 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,940000,940000,26,26,46,46,2.3,2.3,50000 total time: 4.07 hours. --------- CPU info (if available) ----------
(37·10121+53)/9 = 4(1)1207<122> = 4133 · 12448496033<11> · 96559317121<11> · C97
C97 = P42 · P56
P42 = 581119780975231635970058042786794126786889<42>
P56 = 14240232483206706578295465829097659023799330370860981537<56>
Sun Dec 14 17:44:52 2008 Msieve v. 1.39 Sun Dec 14 17:44:52 2008 random seeds: 558fa890 5a21134c Sun Dec 14 17:44:52 2008 factoring 8275280781677460242495252428407518810499554171453232349711921873570895749085623666102478562668393 (97 digits) Sun Dec 14 17:44:53 2008 searching for 15-digit factors Sun Dec 14 17:44:55 2008 commencing quadratic sieve (97-digit input) Sun Dec 14 17:44:55 2008 using multiplier of 1 Sun Dec 14 17:44:55 2008 using 32kb Intel Core sieve core Sun Dec 14 17:44:55 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 17:44:55 2008 processing polynomials in batches of 6 Sun Dec 14 17:44:55 2008 using a sieve bound of 2404009 (88075 primes) Sun Dec 14 17:44:55 2008 using large prime bound of 360601350 (28 bits) Sun Dec 14 17:44:55 2008 using double large prime bound of 2527255810204800 (43-52 bits) Sun Dec 14 17:44:55 2008 using trial factoring cutoff of 52 bits Sun Dec 14 17:44:55 2008 polynomial 'A' values have 13 factors Mon Dec 15 00:37:14 2008 88421 relations (20973 full + 67448 combined from 1337165 partial), need 88171 Mon Dec 15 00:37:16 2008 begin with 1358138 relations Mon Dec 15 00:37:17 2008 reduce to 233452 relations in 11 passes Mon Dec 15 00:37:17 2008 attempting to read 233452 relations Mon Dec 15 00:37:21 2008 recovered 233452 relations Mon Dec 15 00:37:21 2008 recovered 221954 polynomials Mon Dec 15 00:37:21 2008 attempting to build 88421 cycles Mon Dec 15 00:37:21 2008 found 88421 cycles in 7 passes Mon Dec 15 00:37:21 2008 distribution of cycle lengths: Mon Dec 15 00:37:21 2008 length 1 : 20973 Mon Dec 15 00:37:21 2008 length 2 : 15237 Mon Dec 15 00:37:21 2008 length 3 : 14842 Mon Dec 15 00:37:21 2008 length 4 : 12145 Mon Dec 15 00:37:21 2008 length 5 : 9070 Mon Dec 15 00:37:21 2008 length 6 : 6180 Mon Dec 15 00:37:21 2008 length 7 : 4123 Mon Dec 15 00:37:21 2008 length 9+: 5851 Mon Dec 15 00:37:21 2008 largest cycle: 21 relations Mon Dec 15 00:37:22 2008 matrix is 88075 x 88421 (23.7 MB) with weight 5862504 (66.30/col) Mon Dec 15 00:37:22 2008 sparse part has weight 5862504 (66.30/col) Mon Dec 15 00:37:23 2008 filtering completed in 3 passes Mon Dec 15 00:37:23 2008 matrix is 84357 x 84421 (22.7 MB) with weight 5613631 (66.50/col) Mon Dec 15 00:37:23 2008 sparse part has weight 5613631 (66.50/col) Mon Dec 15 00:37:23 2008 saving the first 48 matrix rows for later Mon Dec 15 00:37:23 2008 matrix is 84309 x 84421 (13.9 MB) with weight 4399038 (52.11/col) Mon Dec 15 00:37:23 2008 sparse part has weight 3132727 (37.11/col) Mon Dec 15 00:37:23 2008 matrix includes 64 packed rows Mon Dec 15 00:37:23 2008 using block size 33768 for processor cache size 1024 kB Mon Dec 15 00:37:24 2008 commencing Lanczos iteration Mon Dec 15 00:37:24 2008 memory use: 13.6 MB Mon Dec 15 00:38:11 2008 lanczos halted after 1334 iterations (dim = 84309) Mon Dec 15 00:38:11 2008 recovered 17 nontrivial dependencies Mon Dec 15 00:38:12 2008 prp42 factor: 581119780975231635970058042786794126786889 Mon Dec 15 00:38:12 2008 prp56 factor: 14240232483206706578295465829097659023799330370860981537 Mon Dec 15 00:38:12 2008 elapsed time 06:53:20
(37·10135+71)/9 = 4(1)1349<136> = 3 · 157 · 217858747 · C125
C125 = P39 · P86
P39 = 448527358525322314639414749099497098067<39>
P86 = 89325276139362337612461557618510248967981249045371777169481861806222799110277558174761<86>
Number: 41119_135 N=40064830156333189911356119025116378434156345249498865836143135288895502259163405215369647868960104691528229503292492741286987 ( 125 digits) SNFS difficulty: 136 digits. Divisors found: r1=448527358525322314639414749099497098067 (prp39) r2=89325276139362337612461557618510248967981249045371777169481861806222799110277558174761 (prp86) Version: Total time: 4.72 hours. Scaled time: 12.09 units (timescale=2.564). Factorization parameters were as follows: name: 41119_135 n: 40064830156333189911356119025116378434156345249498865836143135288895502259163405215369647868960104691528229503292492741286987 m: 1000000000000000000000000000 deg: 5 c5: 37 c0: 71 skew: 1.14 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 193544 x 193792 Total sieving time: 4.72 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 4.72 hours. --------- CPU info (if available) ----------
(37·10136+71)/9 = 4(1)1359<137> = 13 · 17 · 641 · C132
C132 = P56 · P76
P56 = 97340949537081992813353491071448672787822775697068133607<56>
P76 = 2981352535792632774733519282793371700345256565006961199069479457120577812397<76>
Number: 41119_136 N=290207686738842102703715991776925978999944311497950114082994692336713076366191902578063906870000290207686738842102703715991776925979 ( 132 digits) SNFS difficulty: 137 digits. Divisors found: r1=97340949537081992813353491071448672787822775697068133607 (prp56) r2=2981352535792632774733519282793371700345256565006961199069479457120577812397 (prp76) Version: Total time: 6.11 hours. Scaled time: 15.68 units (timescale=2.564). Factorization parameters were as follows: name: 41119_136 n: 290207686738842102703715991776925978999944311497950114082994692336713076366191902578063906870000290207686738842102703715991776925979 m: 1000000000000000000000000000 deg: 5 c5: 370 c0: 71 skew: 0.72 type: snfs lss: 1 rlim: 1370000 alim: 1370000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1370000/1370000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [685000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 235989 x 236237 Total sieving time: 6.11 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1370000,1370000,26,26,48,48,2.3,2.3,75000 total time: 6.11 hours. --------- CPU info (if available) ----------
(37·10137+53)/9 = 4(1)1367<138> = 3 · 7 · 71 · 349 · 17099 · 19001790168617<14> · C115
C115 = P41 · P75
P41 = 19452637518709047440619598197258467357591<41>
P75 = 125000692705880011030652701485196569731361764165251859204813732182028498671<75>
Number: 41117_137 N=2431593164795021863019909687564068078352019780269255567935109822583356900993305863658209861643608160856750225261561 ( 115 digits) SNFS difficulty: 139 digits. Divisors found: r1=19452637518709047440619598197258467357591 (prp41) r2=125000692705880011030652701485196569731361764165251859204813732182028498671 (prp75) Version: Total time: 8.30 hours. Scaled time: 16.37 units (timescale=1.972). Factorization parameters were as follows: name: 41117_137 n: 2431593164795021863019909687564068078352019780269255567935109822583356900993305863658209861643608160856750225261561 m: 2000000000000000000000000000 deg: 5 c5: 925 c0: 424 skew: 0.86 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1640001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 247956 x 248204 Total sieving time: 8.30 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 8.30 hours. --------- CPU info (if available) ----------
(37·10143+53)/9 = 4(1)1427<144> = 32 · 7 · 1093 · 6362389073<10> · 224734168564901<15> · 3210362852397241<16> · C100
C100 = P42 · P58
P42 = 418741748016711844962144967395757153592003<42>
P58 = 3106052477718236853520927156215139113532043711670312169297<58>
Mon Dec 15 00:48:04 2008 Msieve v. 1.39 Mon Dec 15 00:48:04 2008 random seeds: dc2fd100 c9e6d64e Mon Dec 15 00:48:04 2008 factoring 1300633843951373418973286402129012722051843503962648717536449548299399464906466570381194546601331891 (100 digits) Mon Dec 15 00:48:05 2008 searching for 15-digit factors Mon Dec 15 00:48:06 2008 commencing quadratic sieve (100-digit input) Mon Dec 15 00:48:06 2008 using multiplier of 59 Mon Dec 15 00:48:06 2008 using 32kb Intel Core sieve core Mon Dec 15 00:48:06 2008 sieve interval: 36 blocks of size 32768 Mon Dec 15 00:48:06 2008 processing polynomials in batches of 6 Mon Dec 15 00:48:06 2008 using a sieve bound of 2671787 (97647 primes) Mon Dec 15 00:48:06 2008 using large prime bound of 400768050 (28 bits) Mon Dec 15 00:48:06 2008 using double large prime bound of 3056381387395500 (43-52 bits) Mon Dec 15 00:48:06 2008 using trial factoring cutoff of 52 bits Mon Dec 15 00:48:06 2008 polynomial 'A' values have 13 factors Mon Dec 15 12:57:16 2008 97874 relations (23045 full + 74829 combined from 1471490 partial), need 97743 Mon Dec 15 12:57:18 2008 begin with 1494535 relations Mon Dec 15 12:57:20 2008 reduce to 259594 relations in 11 passes Mon Dec 15 12:57:20 2008 attempting to read 259594 relations Mon Dec 15 12:57:25 2008 recovered 259594 relations Mon Dec 15 12:57:25 2008 recovered 251345 polynomials Mon Dec 15 12:57:25 2008 attempting to build 97874 cycles Mon Dec 15 12:57:25 2008 found 97874 cycles in 6 passes Mon Dec 15 12:57:25 2008 distribution of cycle lengths: Mon Dec 15 12:57:25 2008 length 1 : 23045 Mon Dec 15 12:57:25 2008 length 2 : 16691 Mon Dec 15 12:57:25 2008 length 3 : 16220 Mon Dec 15 12:57:25 2008 length 4 : 13422 Mon Dec 15 12:57:25 2008 length 5 : 10290 Mon Dec 15 12:57:25 2008 length 6 : 7121 Mon Dec 15 12:57:25 2008 length 7 : 4546 Mon Dec 15 12:57:25 2008 length 9+: 6539 Mon Dec 15 12:57:25 2008 largest cycle: 23 relations Mon Dec 15 12:57:25 2008 matrix is 97647 x 97874 (27.4 MB) with weight 6794219 (69.42/col) Mon Dec 15 12:57:25 2008 sparse part has weight 6794219 (69.42/col) Mon Dec 15 12:57:27 2008 filtering completed in 3 passes Mon Dec 15 12:57:27 2008 matrix is 93927 x 93990 (26.4 MB) with weight 6556190 (69.75/col) Mon Dec 15 12:57:27 2008 sparse part has weight 6556190 (69.75/col) Mon Dec 15 12:57:27 2008 saving the first 48 matrix rows for later Mon Dec 15 12:57:27 2008 matrix is 93879 x 93990 (16.5 MB) with weight 5222311 (55.56/col) Mon Dec 15 12:57:27 2008 sparse part has weight 3768024 (40.09/col) Mon Dec 15 12:57:27 2008 matrix includes 64 packed rows Mon Dec 15 12:57:27 2008 using block size 37596 for processor cache size 1024 kB Mon Dec 15 12:57:28 2008 commencing Lanczos iteration Mon Dec 15 12:57:28 2008 memory use: 15.9 MB Mon Dec 15 12:58:34 2008 lanczos halted after 1485 iterations (dim = 93877) Mon Dec 15 12:58:34 2008 recovered 16 nontrivial dependencies Mon Dec 15 12:58:35 2008 prp42 factor: 418741748016711844962144967395757153592003 Mon Dec 15 12:58:35 2008 prp58 factor: 3106052477718236853520927156215139113532043711670312169297 Mon Dec 15 12:58:35 2008 elapsed time 12:10:31
Factorizations of 100...003 have been extended up to n=250. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
Factorizations of 422...221 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Serge Batalov / PFGW
(8·1012260+1)/9 = (8)122599<12260> is PRP.
(8·1012341+1)/9 = (8)123409<12341> is PRP.
(8·1013760+1)/9 = (8)137599<13760> is PRP.
By Robert Backstrom / Msieve, GMP-ECM
(37·10165+71)/9 = 4(1)1649<166> = 3 · 5857 · 24499 · 299407691567021461<18> · 64864715580932555437<20> · 214518310799772616827199181657<30> · C91
C91 = P37 · P54
P37 = 2456479326290440166586254085782156353<37>
P54 = 933180006098833852846401252904487652104420827030262863<54>
Sun Dec 14 14:20:07 2008 Sun Dec 14 14:20:07 2008 Sun Dec 14 14:20:07 2008 Msieve v. 1.39 Sun Dec 14 14:20:07 2008 random seeds: a9642068 c7f4fd37 Sun Dec 14 14:20:07 2008 factoring 2292337392689372228652417839233158652643250786585474807666277446662451849304779576555418639 (91 digits) Sun Dec 14 14:20:08 2008 searching for 15-digit factors Sun Dec 14 14:20:09 2008 commencing quadratic sieve (91-digit input) Sun Dec 14 14:20:09 2008 using multiplier of 1 Sun Dec 14 14:20:09 2008 using 64kb Opteron sieve core Sun Dec 14 14:20:09 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 14:20:09 2008 processing polynomials in batches of 6 Sun Dec 14 14:20:09 2008 using a sieve bound of 1682287 (63529 primes) Sun Dec 14 14:20:09 2008 using large prime bound of 154770404 (27 bits) Sun Dec 14 14:20:09 2008 using double large prime bound of 551363682974648 (42-49 bits) Sun Dec 14 14:20:09 2008 using trial factoring cutoff of 49 bits Sun Dec 14 14:20:09 2008 polynomial 'A' values have 12 factors Sun Dec 14 15:25:56 2008 64164 relations (16520 full + 47644 combined from 732118 partial), need 63625 Sun Dec 14 15:25:57 2008 begin with 748638 relations Sun Dec 14 15:25:57 2008 reduce to 159269 relations in 9 passes Sun Dec 14 15:25:57 2008 attempting to read 159269 relations Sun Dec 14 15:25:59 2008 recovered 159269 relations Sun Dec 14 15:25:59 2008 recovered 138487 polynomials Sun Dec 14 15:25:59 2008 attempting to build 64164 cycles Sun Dec 14 15:25:59 2008 found 64164 cycles in 5 passes Sun Dec 14 15:26:00 2008 distribution of cycle lengths: Sun Dec 14 15:26:00 2008 length 1 : 16520 Sun Dec 14 15:26:00 2008 length 2 : 12059 Sun Dec 14 15:26:00 2008 length 3 : 11161 Sun Dec 14 15:26:00 2008 length 4 : 8627 Sun Dec 14 15:26:00 2008 length 5 : 6320 Sun Dec 14 15:26:00 2008 length 6 : 4020 Sun Dec 14 15:26:00 2008 length 7 : 2506 Sun Dec 14 15:26:00 2008 length 9+: 2951 Sun Dec 14 15:26:00 2008 largest cycle: 18 relations Sun Dec 14 15:26:00 2008 matrix is 63529 x 64164 (16.0 MB) with weight 3927565 (61.21/col) Sun Dec 14 15:26:00 2008 sparse part has weight 3927565 (61.21/col) Sun Dec 14 15:26:01 2008 filtering completed in 4 passes Sun Dec 14 15:26:01 2008 matrix is 59617 x 59681 (14.8 MB) with weight 3649747 (61.15/col) Sun Dec 14 15:26:01 2008 sparse part has weight 3649747 (61.15/col) Sun Dec 14 15:26:01 2008 saving the first 48 matrix rows for later Sun Dec 14 15:26:01 2008 matrix is 59569 x 59681 (9.5 MB) with weight 2881639 (48.28/col) Sun Dec 14 15:26:01 2008 sparse part has weight 2126116 (35.62/col) Sun Dec 14 15:26:01 2008 matrix includes 64 packed rows Sun Dec 14 15:26:01 2008 using block size 23872 for processor cache size 1024 kB Sun Dec 14 15:26:01 2008 commencing Lanczos iteration Sun Dec 14 15:26:01 2008 memory use: 9.2 MB Sun Dec 14 15:26:22 2008 lanczos halted after 944 iterations (dim = 59567) Sun Dec 14 15:26:22 2008 recovered 16 nontrivial dependencies Sun Dec 14 15:26:23 2008 prp37 factor: 2456479326290440166586254085782156353 Sun Dec 14 15:26:23 2008 prp54 factor: 933180006098833852846401252904487652104420827030262863 Sun Dec 14 15:26:23 2008 elapsed time 01:06:16
(37·10142+53)/9 = 4(1)1417<143> = 229 · 293 · 311363441 · 4290945583<10> · 247255819459871080939110673<27> · C94
C94 = P44 · P51
P44 = 16862793440103708198532263801272697174262183<44>
P51 = 109991581016708918525866831687260181943473154034893<51>
Sun Dec 14 18:57:25 2008 Sun Dec 14 18:57:25 2008 Sun Dec 14 18:57:25 2008 Msieve v. 1.39 Sun Dec 14 18:57:25 2008 random seeds: 0a9bc040 124024ef Sun Dec 14 18:57:25 2008 factoring 1854765310835194710428440106540308919972924293904205223172756617211856527940960640436712351419 (94 digits) Sun Dec 14 18:57:26 2008 searching for 15-digit factors Sun Dec 14 18:57:26 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 18:57:27 2008 using multiplier of 11 Sun Dec 14 18:57:27 2008 using 64kb Opteron sieve core Sun Dec 14 18:57:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 18:57:27 2008 processing polynomials in batches of 6 Sun Dec 14 18:57:27 2008 using a sieve bound of 1991609 (73982 primes) Sun Dec 14 18:57:27 2008 using large prime bound of 256917561 (27 bits) Sun Dec 14 18:57:27 2008 using double large prime bound of 1372868018887893 (42-51 bits) Sun Dec 14 18:57:27 2008 using trial factoring cutoff of 51 bits Sun Dec 14 18:57:27 2008 polynomial 'A' values have 12 factors Sun Dec 14 21:16:14 2008 74176 relations (17786 full + 56390 combined from 1040543 partial), need 74078 Sun Dec 14 21:16:16 2008 begin with 1058329 relations Sun Dec 14 21:16:17 2008 reduce to 194080 relations in 12 passes Sun Dec 14 21:16:17 2008 attempting to read 194080 relations Sun Dec 14 21:16:20 2008 recovered 194080 relations Sun Dec 14 21:16:20 2008 recovered 179104 polynomials Sun Dec 14 21:16:20 2008 attempting to build 74176 cycles Sun Dec 14 21:16:20 2008 found 74176 cycles in 5 passes Sun Dec 14 21:16:21 2008 distribution of cycle lengths: Sun Dec 14 21:16:21 2008 length 1 : 17786 Sun Dec 14 21:16:21 2008 length 2 : 12925 Sun Dec 14 21:16:21 2008 length 3 : 12410 Sun Dec 14 21:16:21 2008 length 4 : 10031 Sun Dec 14 21:16:21 2008 length 5 : 7751 Sun Dec 14 21:16:21 2008 length 6 : 5177 Sun Dec 14 21:16:21 2008 length 7 : 3373 Sun Dec 14 21:16:21 2008 length 9+: 4723 Sun Dec 14 21:16:21 2008 largest cycle: 20 relations Sun Dec 14 21:16:21 2008 matrix is 73982 x 74176 (19.3 MB) with weight 4766529 (64.26/col) Sun Dec 14 21:16:21 2008 sparse part has weight 4766529 (64.26/col) Sun Dec 14 21:16:22 2008 filtering completed in 3 passes Sun Dec 14 21:16:22 2008 matrix is 70626 x 70690 (18.5 MB) with weight 4567849 (64.62/col) Sun Dec 14 21:16:22 2008 sparse part has weight 4567849 (64.62/col) Sun Dec 14 21:16:22 2008 saving the first 48 matrix rows for later Sun Dec 14 21:16:22 2008 matrix is 70578 x 70690 (11.4 MB) with weight 3550378 (50.22/col) Sun Dec 14 21:16:22 2008 sparse part has weight 2567736 (36.32/col) Sun Dec 14 21:16:22 2008 matrix includes 64 packed rows Sun Dec 14 21:16:22 2008 using block size 28276 for processor cache size 1024 kB Sun Dec 14 21:16:23 2008 commencing Lanczos iteration Sun Dec 14 21:16:23 2008 memory use: 11.2 MB Sun Dec 14 21:16:55 2008 lanczos halted after 1117 iterations (dim = 70576) Sun Dec 14 21:16:55 2008 recovered 17 nontrivial dependencies Sun Dec 14 21:16:56 2008 prp44 factor: 16862793440103708198532263801272697174262183 Sun Dec 14 21:16:56 2008 prp51 factor: 109991581016708918525866831687260181943473154034893 Sun Dec 14 21:16:56 2008 elapsed time 02:19:31
(37·10124+53)/9 = 4(1)1237<125> = 1277 · 47309 · 28722607534355557<17> · C101
C101 = P36 · P66
P36 = 195169974164679173582454440992292441<36>
P66 = 121391333009391162020765580291934643735513437889339216293015715737<66>
GMP-ECM 6.2.1 [powered by GMP 4.2.4] [ECM] Input number is 23691943327258839247481664570054627580787232775552733193324809100671477449073888934217058100029844017 (101 digits) Using B1=1752000, B2=2140281790, polynomial Dickson(6), sigma=1759735969 Step 1 took 16760ms Step 2 took 5941ms ********** Factor found in step 2: 195169974164679173582454440992292441 Found probable prime factor of 36 digits: 195169974164679173582454440992292441 Probable prime cofactor 121391333009391162020765580291934643735513437889339216293015715737 has 66 digits
By Justin Card / ggnfs / msieve
(10185+17)/9 = (1)1843<185> = 107 · 42403 · 4463369 · 97950977 · C163
C163 = P47 · P53 · P64
P47 = 15114737110291755253865525542276220443845732191<47>
P53 = 62215924351208704620214741244687970502124398308107141<53>
P64 = 5956668182002404597436168891848003944513400860278422888622352051<64>
Sieve time, ~ Thu Dec 11 06:25:45 2008 Msieve v. 1.39 Thu Dec 11 06:25:45 2008 random seeds: c119b89d 3c60b76b Thu Dec 11 06:25:45 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Thu Dec 11 06:25:47 2008 searching for 15-digit factors Thu Dec 11 06:25:48 2008 commencing number field sieve (163-digit input) Thu Dec 11 06:25:48 2008 R0: -10000000000000000000000000000000000000 Thu Dec 11 06:25:48 2008 R1: 1 Thu Dec 11 06:25:48 2008 A0: 17 Thu Dec 11 06:25:48 2008 A1: 0 Thu Dec 11 06:25:48 2008 A2: 0 Thu Dec 11 06:25:48 2008 A3: 0 Thu Dec 11 06:25:48 2008 A4: 0 Thu Dec 11 06:25:48 2008 A5: 1 Thu Dec 11 06:25:48 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Thu Dec 11 06:25:48 2008 Thu Dec 11 06:25:48 2008 commencing relation filtering Thu Dec 11 06:25:48 2008 commencing duplicate removal, pass 1 Thu Dec 11 06:28:46 2008 error -9 reading relation 14190429 Thu Dec 11 06:28:55 2008 error -9 reading relation 14949426 Thu Dec 11 06:29:13 2008 error -15 reading relation 16595032 Thu Dec 11 06:29:25 2008 error -9 reading relation 17527780 Thu Dec 11 06:29:35 2008 error -15 reading relation 18356803 Thu Dec 11 06:30:11 2008 found 3465609 hash collisions in 21585522 relations Thu Dec 11 06:31:19 2008 added 24327 free relations Thu Dec 11 06:31:19 2008 commencing duplicate removal, pass 2 Thu Dec 11 06:31:37 2008 found 3270865 duplicates and 18338984 unique relations Thu Dec 11 06:31:37 2008 memory use: 94.6 MB Thu Dec 11 06:31:37 2008 reading rational ideals above 8716288 Thu Dec 11 06:31:37 2008 reading algebraic ideals above 8716288 Thu Dec 11 06:31:37 2008 commencing singleton removal, pass 1 Thu Dec 11 06:35:35 2008 relations with 0 large ideals: 230675 Thu Dec 11 06:35:35 2008 relations with 1 large ideals: 1542279 Thu Dec 11 06:35:35 2008 relations with 2 large ideals: 4605346 Thu Dec 11 06:35:35 2008 relations with 3 large ideals: 6337724 Thu Dec 11 06:35:35 2008 relations with 4 large ideals: 3878423 Thu Dec 11 06:35:35 2008 relations with 5 large ideals: 969234 Thu Dec 11 06:35:35 2008 relations with 6 large ideals: 771397 Thu Dec 11 06:35:35 2008 relations with 7+ large ideals: 3906 Thu Dec 11 06:35:35 2008 18338984 relations and about 18219864 large ideals Thu Dec 11 06:35:35 2008 commencing singleton removal, pass 2 Thu Dec 11 06:39:35 2008 found 6773463 singletons Thu Dec 11 06:39:35 2008 current dataset: 11565521 relations and about 9662777 large ideals Thu Dec 11 06:39:35 2008 commencing singleton removal, pass 3 Thu Dec 11 06:41:58 2008 found 1929828 singletons Thu Dec 11 06:41:58 2008 current dataset: 9635693 relations and about 7596307 large ideals Thu Dec 11 06:41:58 2008 commencing singleton removal, pass 4 Thu Dec 11 06:43:59 2008 found 559893 singletons Thu Dec 11 06:43:59 2008 current dataset: 9075800 relations and about 7022668 large ideals Thu Dec 11 06:43:59 2008 commencing singleton removal, pass 5 Thu Dec 11 06:45:52 2008 found 175568 singletons Thu Dec 11 06:45:52 2008 current dataset: 8900232 relations and about 6845659 large ideals Thu Dec 11 06:45:52 2008 commencing singleton removal, final pass Thu Dec 11 06:47:54 2008 memory use: 157.8 MB Thu Dec 11 06:47:55 2008 commencing in-memory singleton removal Thu Dec 11 06:47:56 2008 begin with 8900232 relations and 7598828 unique ideals Thu Dec 11 06:48:16 2008 reduce to 7009060 relations and 5642900 ideals in 18 passes Thu Dec 11 06:48:16 2008 max relations containing the same ideal: 24 Thu Dec 11 06:48:18 2008 reading rational ideals above 720000 Thu Dec 11 06:48:18 2008 reading algebraic ideals above 720000 Thu Dec 11 06:48:18 2008 commencing singleton removal, final pass Thu Dec 11 06:50:15 2008 keeping 6366128 ideals with weight <= 20, new excess is 589025 Thu Dec 11 06:50:21 2008 memory use: 183.7 MB Thu Dec 11 06:50:21 2008 commencing in-memory singleton removal Thu Dec 11 06:50:22 2008 begin with 7033399 relations and 6366128 unique ideals Thu Dec 11 06:50:37 2008 reduce to 7004721 relations and 6218178 ideals in 11 passes Thu Dec 11 06:50:37 2008 max relations containing the same ideal: 20 Thu Dec 11 06:50:43 2008 removing 599456 relations and 547819 ideals in 51637 cliques Thu Dec 11 06:50:44 2008 commencing in-memory singleton removal Thu Dec 11 06:50:45 2008 begin with 6405265 relations and 6218178 unique idealsThu Dec 11 06:50:57 2008 reduce to 6365591 relations and 5630271 ideals in 10 passes Thu Dec 11 06:50:57 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:03 2008 removing 432595 relations and 380958 ideals in 51637 cliques Thu Dec 11 06:51:03 2008 commencing in-memory singleton removal Thu Dec 11 06:51:04 2008 begin with 5932996 relations and 5630271 unique ideals Thu Dec 11 06:51:13 2008 reduce to 5909684 relations and 5225798 ideals in 8 passes Thu Dec 11 06:51:13 2008 max relations containing the same ideal: 20 Thu Dec 11 06:51:20 2008 relations with 0 large ideals: 43999 Thu Dec 11 06:51:20 2008 relations with 1 large ideals: 279962 Thu Dec 11 06:51:20 2008 relations with 2 large ideals: 938340 Thu Dec 11 06:51:20 2008 relations with 3 large ideals: 1640855 Thu Dec 11 06:51:20 2008 relations with 4 large ideals: 1630210 Thu Dec 11 06:51:20 2008 relations with 5 large ideals: 952681 Thu Dec 11 06:51:20 2008 relations with 6 large ideals: 358387 Thu Dec 11 06:51:20 2008 relations with 7+ large ideals: 65250 Thu Dec 11 06:51:20 2008 commencing 2-way merge Thu Dec 11 06:51:27 2008 reduce to 3478218 relation sets and 2794332 unique ideals Thu Dec 11 06:51:27 2008 commencing full merge Thu Dec 11 06:52:41 2008 memory use: 269.3 MB Thu Dec 11 06:52:42 2008 found 1701886 cycles, need 1614532 Thu Dec 11 06:52:43 2008 weight of 1614532 cycles is about 113141746 (70.08/cycle) Thu Dec 11 06:52:43 2008 distribution of cycle lengths: Thu Dec 11 06:52:43 2008 1 relations: 209342 Thu Dec 11 06:52:43 2008 2 relations: 191075 Thu Dec 11 06:52:43 2008 3 relations: 185586 Thu Dec 11 06:52:43 2008 4 relations: 165144 Thu Dec 11 06:52:43 2008 5 relations: 146133 Thu Dec 11 06:52:43 2008 6 relations: 126188 Thu Dec 11 06:52:43 2008 7 relations: 106578 Thu Dec 11 06:52:43 2008 8 relations: 93386 Thu Dec 11 06:52:43 2008 9 relations: 78985 Thu Dec 11 06:52:43 2008 10+ relations: 312115 Thu Dec 11 06:52:43 2008 heaviest cycle: 20 relations Thu Dec 11 06:52:44 2008 commencing cycle optimization Thu Dec 11 06:52:48 2008 start with 9412575 relations Thu Dec 11 06:53:15 2008 pruned 235166 relations Thu Dec 11 06:53:15 2008 memory use: 315.3 MB Thu Dec 11 06:53:15 2008 distribution of cycle lengths: Thu Dec 11 06:53:15 2008 1 relations: 209342 Thu Dec 11 06:53:15 2008 2 relations: 195784 Thu Dec 11 06:53:15 2008 3 relations: 192349 Thu Dec 11 06:53:15 2008 4 relations: 169452 Thu Dec 11 06:53:15 2008 5 relations: 149844 Thu Dec 11 06:53:15 2008 6 relations: 127591 Thu Dec 11 06:53:15 2008 7 relations: 107695 Thu Dec 11 06:53:15 2008 8 relations: 93119 Thu Dec 11 06:53:15 2008 9 relations: 78380 Thu Dec 11 06:53:15 2008 10+ relations: 290976 Thu Dec 11 06:53:15 2008 heaviest cycle: 20 relations Thu Dec 11 06:53:21 2008 elapsed time 00:27:36 Fri Dec 12 20:24:42 2008 Msieve v. 1.39 Fri Dec 12 20:24:42 2008 random seeds: 8a67411e b53fa8c3 Fri Dec 12 20:24:42 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Fri Dec 12 20:24:45 2008 searching for 15-digit factors Fri Dec 12 20:24:46 2008 commencing number field sieve (163-digit input) Fri Dec 12 20:24:46 2008 R0: -10000000000000000000000000000000000000 Fri Dec 12 20:24:46 2008 R1: 1 Fri Dec 12 20:24:46 2008 A0: 17 Fri Dec 12 20:24:46 2008 A1: 0 Fri Dec 12 20:24:46 2008 A2: 0 Fri Dec 12 20:24:46 2008 A3: 0 Fri Dec 12 20:24:46 2008 A4: 0 Fri Dec 12 20:24:46 2008 A5: 1 Fri Dec 12 20:24:46 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Fri Dec 12 20:24:46 2008 Fri Dec 12 20:24:46 2008 commencing linear algebra Fri Dec 12 20:24:47 2008 read 1599998 cycles Fri Dec 12 20:24:54 2008 cycles contain 5294098 unique relations Fri Dec 12 20:26:00 2008 read 5294098 relations Fri Dec 12 20:26:14 2008 using 20 quadratic characters above 268434548 Fri Dec 12 20:27:04 2008 building initial matrix Fri Dec 12 20:28:25 2008 memory use: 643.5 MB Fri Dec 12 20:28:27 2008 read 1599998 cycles Fri Dec 12 20:28:29 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:29 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:28:55 2008 filtering completed in 1 passes Fri Dec 12 20:28:55 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:28:55 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:10 2008 read 1599998 cycles Fri Dec 12 20:29:12 2008 matrix is 1599798 x 1599998 (480.2 MB) with weight 141340528 (88.34/col) Fri Dec 12 20:29:12 2008 sparse part has weight 108280053 (67.68/col) Fri Dec 12 20:29:12 2008 saving the first 48 matrix rows for later Fri Dec 12 20:29:13 2008 matrix is 1599750 x 1599998 (452.7 MB) with weight 111950279 (69.97/col) Fri Dec 12 20:29:13 2008 sparse part has weight 102665798 (64.17/col) Fri Dec 12 20:29:13 2008 matrix includes 64 packed rows Fri Dec 12 20:29:13 2008 using block size 10922 for processor cache size 256 kB Fri Dec 12 20:29:23 2008 commencing Lanczos iteration (2 threads) Fri Dec 12 20:29:23 2008 memory use: 448.0 MB Sat Dec 13 00:51:35 2008 lanczos error: submatrix is not invertible Sat Dec 13 00:51:35 2008 lanczos halted after 7210 iterations (dim = 455967) Sat Dec 13 00:51:35 2008 linear algebra failed; retrying... Sat Dec 13 00:51:35 2008 commencing Lanczos iteration (2 threads) Sat Dec 13 00:51:35 2008 memory use: 448.0 MB Sat Dec 13 16:07:31 2008 lanczos halted after 25302 iterations (dim = 1599744) Sat Dec 13 16:07:38 2008 recovered 31 nontrivial dependencies Sat Dec 13 16:07:38 2008 elapsed time 19:42:56 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Sat Dec 13 18:12:48 2008 Msieve v. 1.39 Sat Dec 13 18:12:48 2008 random seeds: 595748d8 c5a6942b Sat Dec 13 18:12:48 2008 factoring 5601515784080136495058260409669476551922366725684158384351571184319213658664583664274625015281983236076984038434575826619948188356950956656183633054869264464184481 (163 digits) Sat Dec 13 18:12:49 2008 searching for 15-digit factors Sat Dec 13 18:12:51 2008 commencing number field sieve (163-digit input) Sat Dec 13 18:12:51 2008 R0: -10000000000000000000000000000000000000 Sat Dec 13 18:12:51 2008 R1: 1 Sat Dec 13 18:12:51 2008 A0: 17 Sat Dec 13 18:12:51 2008 A1: 0 Sat Dec 13 18:12:51 2008 A2: 0 Sat Dec 13 18:12:51 2008 A3: 0 Sat Dec 13 18:12:51 2008 A4: 0 Sat Dec 13 18:12:51 2008 A5: 1 Sat Dec 13 18:12:51 2008 skew 0.00, size 1.649244e-12, alpha 1.047729, combined = 1.163083e-12 Sat Dec 13 18:12:51 2008 Sat Dec 13 18:12:51 2008 commencing square root phase Sat Dec 13 18:12:51 2008 reading relations for dependency 1 Sat Dec 13 18:12:51 2008 read 800041 cycles Sat Dec 13 18:12:54 2008 cycles contain 3218627 unique relations Sat Dec 13 18:13:39 2008 read 3218627 relations Sat Dec 13 18:14:03 2008 multiplying 2646900 relations Sat Dec 13 18:18:29 2008 multiply complete, coefficients have about 59.07 million bits Sat Dec 13 18:18:31 2008 initial square root is modulo 301859771 Sat Dec 13 18:27:26 2008 reading relations for dependency 2 Sat Dec 13 18:27:27 2008 read 799909 cycles Sat Dec 13 18:27:30 2008 cycles contain 3215839 unique relations Sat Dec 13 18:28:13 2008 read 3215839 relations Sat Dec 13 18:28:37 2008 multiplying 2645928 relations Sat Dec 13 18:33:02 2008 multiply complete, coefficients have about 59.05 million bits Sat Dec 13 18:33:04 2008 initial square root is modulo 299845591 Sat Dec 13 18:41:52 2008 Newton iteration failed to converge Sat Dec 13 18:41:52 2008 algebraic square root failed Sat Dec 13 18:41:52 2008 reading relations for dependency 3 Sat Dec 13 18:41:53 2008 read 800016 cycles Sat Dec 13 18:41:56 2008 cycles contain 3214264 unique relations Sat Dec 13 18:42:37 2008 read 3214264 relations Sat Dec 13 18:43:02 2008 multiplying 2644520 relations Sat Dec 13 18:47:26 2008 multiply complete, coefficients have about 59.01 million bits Sat Dec 13 18:47:28 2008 initial square root is modulo 296690551 Sat Dec 13 18:56:23 2008 prp47 factor: 15114737110291755253865525542276220443845732191 Sat Dec 13 18:56:23 2008 prp53 factor: 62215924351208704620214741244687970502124398308107141 Sat Dec 13 18:56:23 2008 prp64 factor: 5956668182002404597436168891848003944513400860278422888622352051 Sat Dec 13 18:56:23 2008 elapsed time 00:43:35
By Serge Batalov / GMP-ECM 6.2.1, GMP-ECM 6.2.1; msieve/QS, Msieve-1.39
(37·10191+71)/9 = 4(1)1909<192> = 19 · 163 · 227 · 8221 · 220274727766969<15> · 47092463385596851290407<23> · 256080813541464866622802649<27> · 16242434872628753856635344333<29> · C91
C91 = P31 · P60
P31 = 4636700600036784458682270386851<31>
P60 = 355561060921631143485837742682771800699261664861095825932721<60>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2648465071 Step 1 took 5340ms Step 2 took 3444ms ********** Factor found in step 2: 4636700600036784458682270386851 Found probable prime factor of 31 digits: 4636700600036784458682270386851 Probable prime cofactor 355561060921631143485837742682771800699261664861095825932721 has 60 digits
(37·10144+71)/9 = 4(1)1439<145> = 3 · 23 · 7400711 · 408887911 · 20186612443<11> · 29905721311256110223<20> · C98
C98 = P36 · P62
P36 = 618775808407328473965636674049547033<36>
P62 = 52708584683780887941137184058447905146401641743810396364826463<62>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3429082305 Step 1 took 6624ms Step 2 took 3648ms ********** Factor found in step 2: 618775808407328473965636674049547033 Found probable prime factor of 36 digits: 618775808407328473965636674049547033 Probable prime cofactor 52708584683780887941137184058447905146401641743810396364826463 has 62 digits
(37·10176+53)/9 = 4(1)1757<177> = 3 · 45963274037027449<17> · 218721874752653920697929367<27> · 167559923470916489335366527497<30> · C104
C104 = P32 · P32 · P41
P32 = 15102382275566300653137564378239<32>
P32 = 91977583043394794293256969720219<32>
P41 = 58564869249345584602048726485816313603829<41>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3150125923 Step 1 took 6465ms ********** Factor found in step 1: 91977583043394794293256969720219 Found probable prime factor of 32 digits: 91977583043394794293256969720219 Composite cofactor has 72 digits Sat Dec 13 15:36:47 2008 Msieve v. 1.39 Sat Dec 13 15:36:47 2008 random seeds: ff568006 9809a85b Sat Dec 13 15:36:47 2008 factoring 884469043322174635950314079773456828426465440667479238633610773754677131 (72 digits) Sat Dec 13 15:36:47 2008 searching for 15-digit factors Sat Dec 13 15:36:48 2008 commencing quadratic sieve (72-digit input) Sat Dec 13 15:36:48 2008 using multiplier of 1 Sat Dec 13 15:36:48 2008 using 64kb Opteron sieve core Sat Dec 13 15:36:48 2008 sieve interval: 6 blocks of size 65536 Sat Dec 13 15:36:48 2008 processing polynomials in batches of 17 Sat Dec 13 15:36:48 2008 using a sieve bound of 414311 (17438 primes) Sat Dec 13 15:36:48 2008 using large prime bound of 41431100 (25 bits) Sat Dec 13 15:36:48 2008 using trial factoring cutoff of 25 bits Sat Dec 13 15:36:48 2008 polynomial 'A' values have 9 factors Sat Dec 13 15:39:26 2008 17777 relations (8871 full + 8906 combined from 97264 partial), need 17534 Sat Dec 13 15:39:27 2008 begin with 106135 relations Sat Dec 13 15:39:27 2008 reduce to 25588 relations in 2 passes Sat Dec 13 15:39:27 2008 attempting to read 25588 relations Sat Dec 13 15:39:27 2008 recovered 25588 relations Sat Dec 13 15:39:27 2008 recovered 19369 polynomials Sat Dec 13 15:39:27 2008 attempting to build 17777 cycles Sat Dec 13 15:39:27 2008 found 17777 cycles in 1 passes Sat Dec 13 15:39:27 2008 distribution of cycle lengths: Sat Dec 13 15:39:27 2008 length 1 : 8871 Sat Dec 13 15:39:27 2008 length 2 : 8906 Sat Dec 13 15:39:27 2008 largest cycle: 2 relations Sat Dec 13 15:39:27 2008 matrix is 17438 x 17777 (2.5 MB) with weight 515169 (28.98/col) Sat Dec 13 15:39:27 2008 sparse part has weight 515169 (28.98/col) Sat Dec 13 15:39:27 2008 filtering completed in 3 passes Sat Dec 13 15:39:27 2008 matrix is 12817 x 12880 (2.0 MB) with weight 411137 (31.92/col) Sat Dec 13 15:39:27 2008 sparse part has weight 411137 (31.92/col) Sat Dec 13 15:39:27 2008 saving the first 48 matrix rows for later Sat Dec 13 15:39:27 2008 matrix is 12769 x 12880 (1.4 MB) with weight 303997 (23.60/col) Sat Dec 13 15:39:27 2008 sparse part has weight 226977 (17.62/col) Sat Dec 13 15:39:27 2008 matrix includes 64 packed rows Sat Dec 13 15:39:27 2008 commencing Lanczos iteration Sat Dec 13 15:39:27 2008 memory use: 1.8 MB Sat Dec 13 15:39:31 2008 lanczos halted after 203 iterations (dim = 12764) Sat Dec 13 15:39:31 2008 recovered 15 nontrivial dependencies Sat Dec 13 15:39:31 2008 prp32 factor: 15102382275566300653137564378239 Sat Dec 13 15:39:31 2008 prp41 factor: 58564869249345584602048726485816313603829 Sat Dec 13 15:39:31 2008 elapsed time 00:02:44
(37·10133+53)/9 = 4(1)1327<134> = 192 · 15163783 · 1587776027<10> · C115
C115 = P32 · P84
P32 = 13869327544356415887390661584931<32>
P84 = 341035670790310249149005077592957449976141974679492733387937361436382697840615082307<84>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3785622199 Step 1 took 6436ms Step 2 took 4048ms ********** Factor found in step 2: 13869327544356415887390661584931 Found probable prime factor of 32 digits: 13869327544356415887390661584931 Probable prime cofactor 341035670790310249149005077592957449976141974679492733387937361436382697840615082307 has 84 digits
(37·10179+53)/9 = 4(1)1787<180> = 34 · 7 · 23 · 4751018479457<13> · 13962759095755291<17> · 49208248701391080839818523<26> · C121
C121 = P28 · C94
P28 = 2119493083661110697017153309<28>
C94 = [4556385302955576221884023543638349856512194802012137833352589947767890040676035957132831155593<94>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1915012220 Step 1 took 7824ms Step 2 took 4376ms ********** Factor found in step 2: 2119493083661110697017153309 Found probable prime factor of 28 digits: 2119493083661110697017153309 Composite cofactor has 94 digits
(37·10181+71)/9 = 4(1)1809<182> = 7 · 42323 · 33379705157<11> · 24127822888595769062376049807<29> · C138
C138 = P35 · C103
P35 = 47573256735105102134774568941200081<35>
C103 = [3621772899073458445059701652864566407076358975646712173315673909567467074401737345715255403591778914841<103>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=721560188 Step 1 took 9244ms Step 2 took 4985ms ********** Factor found in step 2: 47573256735105102134774568941200081 Found probable prime factor of 35 digits: 47573256735105102134774568941200081 Composite cofactor has 103 digits
(37·10104+53)/9 = 4(1)1037<105> = 3 · 1289213 · C99
C99 = P35 · P64
P35 = 22837832423823428406549535979434663<35>
P64 = 4654343177283332444580397105529579718882636552190002130060404781<64>
SNFS difficulty: 105 digits. Divisors found: r1=22837832423823428406549535979434663 (pp35) r2=4654343177283332444580397105529579718882636552190002130060404781 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 106295109525762645146331162528641145440696794895053832870935242692275859021773001852321561322323803 m: 100000000000000000000000000 deg: 4 c4: 37 c0: 53 skew: 1.09 type: snfs lss: 1 rlim: 400000 alim: 400000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 400000/400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [200000, 250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 42219 x 42456 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,4,0,0,0,0,0,0,0,0,400000,400000,25,25,45,45,2.2,2.2,50000 total time: 0.50 hours.
(37·10109+53)/9 = 4(1)1087<110> = 151 · C108
C108 = P39 · P69
P39 = 345934149021961984853714355585332061497<39>
P69 = 787025550240151752957429692905459301021394747512814523416460876641811<69>
SNFS difficulty: 111 digits. Divisors found: r1=345934149021961984853714355585332061497 (pp39) r2=787025550240151752957429692905459301021394747512814523416460876641811 (pp69) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 272259013980868285504047093451066961000735835172921265636497424576894775570272259013980868285504047093451067 m: 10000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 510000 alim: 510000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.2 alambda: 2.2 Factor base limits: 510000/510000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved rational special-q in [255000, 405001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63238 x 63485 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,510000,510000,25,25,44,44,2.2,2.2,50000 total time: 0.50 hours.
(37·10194+71)/9 = 4(1)1939<195> = 116269 · 575551 · 474471463 · 16349135082988589810249<23> · C153
C153 = P31 · C123
P31 = 7590690876337436335686621759791<31>
C123 = [104333861145851641332524267483514811395721107982807617312384858364100696592011759800416745004248697924636939449966193271653<123>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3439223145 Step 1 took 9237ms Step 2 took 5184ms ********** Factor found in step 2: 7590690876337436335686621759791 Found probable prime factor of 31 digits: 7590690876337436335686621759791 Composite cofactor has 123 digits
(37·10186+53)/9 = 4(1)1857<187> = 139 · 2017 · 109199 · 4908232860071<13> · 704264442759638437<18> · C146
C146 = P32 · C115
P32 = 10378488878367712824242152948117<32>
C115 = [3743042944343746327051073365541314201342334703437542556352179663331113160500440981418270935251237401012936934788599<115>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1287780505 Step 1 took 11689ms Step 2 took 6736ms ********** Factor found in step 2: 10378488878367712824242152948117 Found probable prime factor of 32 digits: 10378488878367712824242152948117 Composite cofactor has 115 digits
(37·10182+71)/9 = 4(1)1819<183> = 6554489 · 1825044564102727319125284089<28> · C149
C149 = P37 · P112
P37 = 8755789092289348926356821244998051583<37>
P112 = 3925107994217788084008788634318649563433570976255456089438348678247691568468116466972296949254207197157811247233<112>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3972661220 Step 1 took 11736ms Step 2 took 6719ms ********** Factor found in step 2: 8755789092289348926356821244998051583 Found probable prime factor of 37 digits: 8755789092289348926356821244998051583 Probable prime cofactor has 112 digits
(37·10169+53)/9 = 4(1)1687<170> = 19 · C169
C169 = P33 · C136
P33 = 291511918341504324969778930777933<33>
C136 = [7422484481487542405434963871001284300917097043855519001904556196162796366335291956314614258679614931018465138599301201369883800196508571<136>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=104395819 Step 1 took 10737ms Step 2 took 2968ms ********** Factor found in step 2: 291511918341504324969778930777933 Found probable prime factor of 33 digits: 291511918341504324969778930777933 Composite cofactor has 136 digits
(37·10195+71)/9 = 4(1)1949<196> = 32 · 251 · 2291104455149<13> · C180
C180 = P31 · C150
P31 = 2450016983244960343376200468679<31>
C150 = [324211935613233135510755071528084489947422054060634139633546393659957487226795682741016274539652285925049436071103008421381656621387039362598589743471<150>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=45812530 Step 1 took 12433ms Step 2 took 6316ms ********** Factor found in step 2: 2450016983244960343376200468679 Found probable prime factor of 31 digits: 2450016983244960343376200468679 Composite cofactor has 150 digits
(37·10141+71)/9 = 4(1)1409<142> = 32 · 3816740789<10> · C132
C132 = P39 · P94
P39 = 116328262062925150698065808106966699829<39>
P94 = 1028818580921946643296788098261946277585679831371276345580742344707061170637149919562915568911<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1887761298 Step 1 took 7593ms Step 2 took 4548ms ********** Factor found in step 2: 116328262062925150698065808106966699829 Found probable prime factor of 39 digits: 116328262062925150698065808106966699829 Probable prime cofactor 1028818580921946643296788098261946277585679831371276345580742344707061170637149919562915568911 has 94 digits
(37·10190+53)/9 = 4(1)1897<191> = 59 · 33366083669<11> · 1038688946123696607997710239<28> · C152
C152 = P33 · C119
P33 = 228822554008790119385212155709949<33>
C119 = [87865347299839227077677777536365983116150872999131750437968032584396075641901842890425376739301590272179304048017141257<119>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1937590972 Step 1 took 9284ms Step 2 took 5233ms ********** Factor found in step 2: 228822554008790119385212155709949 Found probable prime factor of 33 digits: 228822554008790119385212155709949 Composite cofactor has 119 digits
(37·10151+71)/9 = 4(1)1509<152> = 7 · 29 · 719 · C147
C147 = P36 · P111
P36 = 493619702531188780719146460090685151<36>
P111 = 570613182110476873637098969632150989726981775506952535058010084196523573240634138994101843197569157770130203517<111>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1976020518 Step 1 took 9117ms Step 2 took 5172ms ********** Factor found in step 2: 493619702531188780719146460090685151 Found probable prime factor of 36 digits: 493619702531188780719146460090685151 Probable prime cofactor 570613182110476873637098969632150989726981775506952535058010084196523573240634138994101843197569157770130203517 has 111 digits
(37·10205+71)/9 = 4(1)2049<206> = 7 · 2136133 · 64219024439<11> · C188
C188 = P33 · P155
P33 = 811192614843691594162179215721103<33>
P155 = 52777059952387829531805686963212177397005658748073113430271392340308625968747192771664150630058513871014711473629321309366475928080999258279957374370363597<155>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2220468459 Step 1 took 15901ms Step 2 took 8896ms ********** Factor found in step 2: 811192614843691594162179215721103 Found probable prime factor of 33 digits: 811192614843691594162179215721103 Probable prime cofactor has 155 digits
(37·10202+71)/9 = 4(1)2019<203> = 13 · 331 · 617 · 385329041 · 13678610652367342939958859931<29> · C160
C160 = P33 · P128
P33 = 240415440947317746742029988668383<33>
P128 = 12219870898197088877898626768426211369986433162099804061070145673200443592688273807744355365435476148474134453244176088463782133<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=939060094 Step 1 took 10797ms Step 2 took 5572ms ********** Factor found in step 2: 240415440947317746742029988668383 Found probable prime factor of 33 digits: 240415440947317746742029988668383 Probable prime cofactor 12219870898197088877898626768426211369986433162099804061070145673200443592688273807744355365435476148474134453244176088463782133 has 128 digits
(37·10112+53)/9 = 4(1)1117<113> = 67619 · 1002388368083<13> · C96
C96 = P37 · P60
P37 = 1809172218365498113906379744251961009<37>
P60 = 335254443186106734337422576507034330357097141008436045500069<60>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1919125461 Step 1 took 6853ms Step 2 took 4585ms ********** Factor found in step 2: 1809172218365498113906379744251961009 Found probable prime factor of 37 digits: 1809172218365498113906379744251961009 Probable prime cofactor 335254443186106734337422576507034330357097141008436045500069 has 60 digits
(37·10202+53)/9 = 4(1)2017<203> = 83 · 103969 · C196
C196 = P35 · C161
P35 = 83073232889032830958318021005925831<35>
C161 = [57347718339390154926339184530294156960878348876030304573157521297170923496818684614574091715773458560271341921644399653208512139175830624309009733603768798562441<161>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2223104446 Step 1 took 14353ms Step 2 took 7001ms ********** Factor found in step 2: 83073232889032830958318021005925831 Found probable prime factor of 35 digits: 83073232889032830958318021005925831 Composite cofactor has 161 digits
(37·10169+71)/9 = 4(1)1689<170> = 72 · 253366636945487563<18> · C151
C151 = P32 · P119
P32 = 37501399965585490651118726058947<32>
P119 = 88301123028773088784112825094403290394334942803635440323854002374944693073141336324975710529936256947568638512598023071<119>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1399304808 Step 1 took 11746ms Step 2 took 6891ms ********** Factor found in step 2: 37501399965585490651118726058947 Found probable prime factor of 32 digits: 37501399965585490651118726058947 Probable prime cofactor 88301123028773088784112825094403290394334942803635440323854002374944693073141336324975710529936256947568638512598023071 has 119 digits
By Sinkiti Sibata / GGNFS, Msieve
(37·10162+17)/9 = 4(1)1613<163> = 3 · 19290329 · 66993539 · 288466127633<12> · 2388806425599695184089<22> · C115
C115 = P57 · P59
P57 = 130111273985304522814275954174641281081665867559899941167<57>
P59 = 11827002600902938664289039732901650255844924476182741339279<59>
Number: 41113_162 N=1538826375830991453057437176484248990299753945815650506175461641309026854092360282091108310398235858496090886198593 ( 115 digits) Divisors found: r1=130111273985304522814275954174641281081665867559899941167 (pp57) r2=11827002600902938664289039732901650255844924476182741339279 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 57.40 hours. Scaled time: 27.15 units (timescale=0.473). Factorization parameters were as follows: name: 41113_162 n: 1538826375830991453057437176484248990299753945815650506175461641309026854092360282091108310398235858496090886198593 skew: 68560.79 # norm 5.34e+15 c5: 16380 c4: -491501907 c3: -284502307743748 c2: 2095670281966397398 c1: 491009361245004074554604 c0: -4355927952840396465531407136 # alpha -5.95 Y1: 2733249033247 Y0: -9875881410257126254633 # Murphy_E 5.70e-10 # M 1019663148516304371654520437573394188902720054438743156392681884195776859271800520987608419626613033809430724205437 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: RFBsize:250150, AFBsize:250583, largePrimes:7640929 encountered Relations: rels:7618928, finalFF:654352 Max relations in full relation-set: 28 Initial matrix: 500815 x 654352 with sparse part having weight 58437435. Pruned matrix : 379734 x 382302 with weight 34243244. Total sieving time: 50.65 hours. Total relation processing time: 0.58 hours. Matrix solve time: 5.82 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 57.40 hours. --------- CPU info (if available) ----------
(37·10103+53)/9 = 4(1)1027<104> = 17 · 113 · 89983 · 4032812257<10> · C86
C86 = P38 · P49
P38 = 35314393767842084307850317582733171637<38>
P49 = 1669981352997280313025282068382464491328210820391<49>
Sun Dec 14 06:13:22 2008 Msieve v. 1.39 Sun Dec 14 06:13:22 2008 random seeds: 1925d00c b04ad9d7 Sun Dec 14 06:13:22 2008 factoring 58974379084699647746013481661671328339377519785913665155065638330419588046029182450067 (86 digits) Sun Dec 14 06:13:22 2008 searching for 15-digit factors Sun Dec 14 06:13:24 2008 commencing quadratic sieve (86-digit input) Sun Dec 14 06:13:24 2008 using multiplier of 23 Sun Dec 14 06:13:24 2008 using 32kb Intel Core sieve core Sun Dec 14 06:13:24 2008 sieve interval: 16 blocks of size 32768 Sun Dec 14 06:13:24 2008 processing polynomials in batches of 13 Sun Dec 14 06:13:24 2008 using a sieve bound of 1452827 (55667 primes) Sun Dec 14 06:13:24 2008 using large prime bound of 116226160 (26 bits) Sun Dec 14 06:13:24 2008 using double large prime bound of 329266038078320 (41-49 bits) Sun Dec 14 06:13:24 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:13:24 2008 polynomial 'A' values have 11 factors Sun Dec 14 06:55:41 2008 55968 relations (15882 full + 40086 combined from 584002 partial), need 55763 Sun Dec 14 06:55:41 2008 begin with 599884 relations Sun Dec 14 06:55:42 2008 reduce to 133031 relations in 9 passes Sun Dec 14 06:55:42 2008 attempting to read 133031 relations Sun Dec 14 06:55:43 2008 recovered 133031 relations Sun Dec 14 06:55:43 2008 recovered 113790 polynomials Sun Dec 14 06:55:44 2008 attempting to build 55968 cycles Sun Dec 14 06:55:44 2008 found 55968 cycles in 5 passes Sun Dec 14 06:55:44 2008 distribution of cycle lengths: Sun Dec 14 06:55:44 2008 length 1 : 15882 Sun Dec 14 06:55:44 2008 length 2 : 10993 Sun Dec 14 06:55:44 2008 length 3 : 9934 Sun Dec 14 06:55:44 2008 length 4 : 7402 Sun Dec 14 06:55:44 2008 length 5 : 4990 Sun Dec 14 06:55:44 2008 length 6 : 3014 Sun Dec 14 06:55:44 2008 length 7 : 1771 Sun Dec 14 06:55:44 2008 length 9+: 1982 Sun Dec 14 06:55:44 2008 largest cycle: 18 relations Sun Dec 14 06:55:44 2008 matrix is 55667 x 55968 (12.8 MB) with weight 3143787 (56.17/col) Sun Dec 14 06:55:44 2008 sparse part has weight 3143787 (56.17/col) Sun Dec 14 06:55:44 2008 filtering completed in 3 passes Sun Dec 14 06:55:44 2008 matrix is 51132 x 51196 (11.9 MB) with weight 2902891 (56.70/col) Sun Dec 14 06:55:44 2008 sparse part has weight 2902891 (56.70/col) Sun Dec 14 06:55:44 2008 saving the first 48 matrix rows for later Sun Dec 14 06:55:45 2008 matrix is 51084 x 51196 (7.8 MB) with weight 2292166 (44.77/col) Sun Dec 14 06:55:45 2008 sparse part has weight 1727978 (33.75/col) Sun Dec 14 06:55:45 2008 matrix includes 64 packed rows Sun Dec 14 06:55:45 2008 using block size 20478 for processor cache size 1024 kB Sun Dec 14 06:55:45 2008 commencing Lanczos iteration Sun Dec 14 06:55:45 2008 memory use: 7.5 MB Sun Dec 14 06:56:00 2008 lanczos halted after 809 iterations (dim = 51081) Sun Dec 14 06:56:00 2008 recovered 15 nontrivial dependencies Sun Dec 14 06:56:01 2008 prp38 factor: 35314393767842084307850317582733171637 Sun Dec 14 06:56:01 2008 prp49 factor: 1669981352997280313025282068382464491328210820391 Sun Dec 14 06:56:01 2008 elapsed time 00:42:39
(37·10102+71)/9 = 4(1)1019<103> = 3 · 1244232153403207<16> · C88
C88 = P34 · P54
P34 = 2649665594353355667701413432585159<34>
P54 = 415666929362892300678012893291131874171779345720654421<54>
Sun Dec 14 06:32:50 2008 Msieve v. 1.39 Sun Dec 14 06:32:50 2008 random seeds: 62e79a6d 45d19e2c Sun Dec 14 06:32:50 2008 factoring 1101378361443362334800454697333708457237190352894806247424401857396076767882135292337939 (88 digits) Sun Dec 14 06:32:51 2008 searching for 15-digit factors Sun Dec 14 06:32:52 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 06:32:53 2008 using multiplier of 11 Sun Dec 14 06:32:53 2008 using 32kb Intel Core sieve core Sun Dec 14 06:32:53 2008 sieve interval: 24 blocks of size 32768 Sun Dec 14 06:32:53 2008 processing polynomials in batches of 9 Sun Dec 14 06:32:53 2008 using a sieve bound of 1508383 (57226 primes) Sun Dec 14 06:32:53 2008 using large prime bound of 120670640 (26 bits) Sun Dec 14 06:32:53 2008 using double large prime bound of 352275850752880 (42-49 bits) Sun Dec 14 06:32:53 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:32:53 2008 polynomial 'A' values have 11 factors Sun Dec 14 07:22:11 2008 57405 relations (15925 full + 41480 combined from 602836 partial), need 57322 Sun Dec 14 07:22:13 2008 begin with 618761 relations Sun Dec 14 07:22:13 2008 reduce to 137376 relations in 9 passes Sun Dec 14 07:22:13 2008 attempting to read 137376 relations Sun Dec 14 07:22:16 2008 recovered 137376 relations Sun Dec 14 07:22:16 2008 recovered 114537 polynomials Sun Dec 14 07:22:16 2008 attempting to build 57405 cycles Sun Dec 14 07:22:16 2008 found 57405 cycles in 6 passes Sun Dec 14 07:22:16 2008 distribution of cycle lengths: Sun Dec 14 07:22:16 2008 length 1 : 15925 Sun Dec 14 07:22:16 2008 length 2 : 11211 Sun Dec 14 07:22:16 2008 length 3 : 10151 Sun Dec 14 07:22:16 2008 length 4 : 7733 Sun Dec 14 07:22:16 2008 length 5 : 5182 Sun Dec 14 07:22:16 2008 length 6 : 3216 Sun Dec 14 07:22:16 2008 length 7 : 1838 Sun Dec 14 07:22:16 2008 length 9+: 2149 Sun Dec 14 07:22:16 2008 largest cycle: 20 relations Sun Dec 14 07:22:16 2008 matrix is 57226 x 57405 (13.5 MB) with weight 3317254 (57.79/col) Sun Dec 14 07:22:16 2008 sparse part has weight 3317254 (57.79/col) Sun Dec 14 07:22:17 2008 filtering completed in 3 passes Sun Dec 14 07:22:17 2008 matrix is 52706 x 52770 (12.6 MB) with weight 3079370 (58.35/col) Sun Dec 14 07:22:17 2008 sparse part has weight 3079370 (58.35/col) Sun Dec 14 07:22:17 2008 saving the first 48 matrix rows for later Sun Dec 14 07:22:17 2008 matrix is 52658 x 52770 (8.6 MB) with weight 2474966 (46.90/col) Sun Dec 14 07:22:17 2008 sparse part has weight 1945695 (36.87/col) Sun Dec 14 07:22:17 2008 matrix includes 64 packed rows Sun Dec 14 07:22:17 2008 using block size 21108 for processor cache size 2048 kB Sun Dec 14 07:22:17 2008 commencing Lanczos iteration Sun Dec 14 07:22:17 2008 memory use: 8.1 MB Sun Dec 14 07:22:33 2008 lanczos halted after 834 iterations (dim = 52656) Sun Dec 14 07:22:33 2008 recovered 17 nontrivial dependencies Sun Dec 14 07:22:33 2008 prp34 factor: 2649665594353355667701413432585159 Sun Dec 14 07:22:33 2008 prp54 factor: 415666929362892300678012893291131874171779345720654421 Sun Dec 14 07:22:33 2008 elapsed time 00:49:43
(37·10110+71)/9 = 4(1)1099<111> = 163 · 3253 · 4993 · 115781 · 322350781 · C88
C88 = P38 · P50
P38 = 43729720990949949880600834845372658547<38>
P50 = 95144404324151060163204535145958036377440540232891<50>
Sun Dec 14 06:38:51 2008 Msieve v. 1.39 Sun Dec 14 06:38:51 2008 random seeds: 706bda11 1a3ccd2d Sun Dec 14 06:38:51 2008 factoring 4160638254945257795077203040399477793071467096507626461078106980750015463188979201669377 (88 digits) Sun Dec 14 06:38:52 2008 searching for 15-digit factors Sun Dec 14 06:38:54 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 06:38:54 2008 using multiplier of 1 Sun Dec 14 06:38:54 2008 using 64kb Pentium 4 sieve core Sun Dec 14 06:38:54 2008 sieve interval: 14 blocks of size 65536 Sun Dec 14 06:38:54 2008 processing polynomials in batches of 8 Sun Dec 14 06:38:54 2008 using a sieve bound of 1518589 (58000 primes) Sun Dec 14 06:38:54 2008 using large prime bound of 121487120 (26 bits) Sun Dec 14 06:38:54 2008 using double large prime bound of 356577817808960 (42-49 bits) Sun Dec 14 06:38:54 2008 using trial factoring cutoff of 49 bits Sun Dec 14 06:38:54 2008 polynomial 'A' values have 11 factors Sun Dec 14 08:02:47 2008 58224 relations (16052 full + 42172 combined from 612983 partial), need 58096 Sun Dec 14 08:02:50 2008 begin with 629035 relations Sun Dec 14 08:02:50 2008 reduce to 140474 relations in 9 passes Sun Dec 14 08:02:50 2008 attempting to read 140474 relations Sun Dec 14 08:02:54 2008 recovered 140474 relations Sun Dec 14 08:02:54 2008 recovered 114957 polynomials Sun Dec 14 08:02:54 2008 attempting to build 58224 cycles Sun Dec 14 08:02:54 2008 found 58224 cycles in 6 passes Sun Dec 14 08:02:54 2008 distribution of cycle lengths: Sun Dec 14 08:02:54 2008 length 1 : 16052 Sun Dec 14 08:02:54 2008 length 2 : 11306 Sun Dec 14 08:02:54 2008 length 3 : 10232 Sun Dec 14 08:02:54 2008 length 4 : 7703 Sun Dec 14 08:02:54 2008 length 5 : 5269 Sun Dec 14 08:02:54 2008 length 6 : 3373 Sun Dec 14 08:02:54 2008 length 7 : 1952 Sun Dec 14 08:02:54 2008 length 9+: 2337 Sun Dec 14 08:02:54 2008 largest cycle: 17 relations Sun Dec 14 08:02:54 2008 matrix is 58000 x 58224 (13.7 MB) with weight 3353101 (57.59/col) Sun Dec 14 08:02:54 2008 sparse part has weight 3353101 (57.59/col) Sun Dec 14 08:02:56 2008 filtering completed in 3 passes Sun Dec 14 08:02:56 2008 matrix is 53684 x 53747 (12.7 MB) with weight 3122843 (58.10/col) Sun Dec 14 08:02:56 2008 sparse part has weight 3122843 (58.10/col) Sun Dec 14 08:02:56 2008 saving the first 48 matrix rows for later Sun Dec 14 08:02:56 2008 matrix is 53636 x 53747 (8.7 MB) with weight 2504409 (46.60/col) Sun Dec 14 08:02:56 2008 sparse part has weight 1952885 (36.33/col) Sun Dec 14 08:02:56 2008 matrix includes 64 packed rows Sun Dec 14 08:02:56 2008 using block size 21498 for processor cache size 512 kB Sun Dec 14 08:02:57 2008 commencing Lanczos iteration Sun Dec 14 08:02:57 2008 memory use: 8.2 MB Sun Dec 14 08:03:27 2008 lanczos halted after 849 iterations (dim = 53632) Sun Dec 14 08:03:27 2008 recovered 14 nontrivial dependencies Sun Dec 14 08:03:28 2008 prp38 factor: 43729720990949949880600834845372658547 Sun Dec 14 08:03:28 2008 prp50 factor: 95144404324151060163204535145958036377440540232891 Sun Dec 14 08:03:28 2008 elapsed time 01:24:37
(37·10134+71)/9 = 4(1)1339<135> = 22541 · 25579 · 9712652137<10> · 44720537897489<14> · 275014982787607<15> · C88
C88 = P44 · P44
P44 = 76781171389640257460964238610947216532089199<44>
P44 = 77740357280063944340382379702634468726758129<44>
Sun Dec 14 08:13:01 2008 Msieve v. 1.39 Sun Dec 14 08:13:01 2008 random seeds: 9c481be0 3d650de5 Sun Dec 14 08:13:01 2008 factoring 5968995696212457427044842553502875786013425970251737697198124448731278272530146726348671 (88 digits) Sun Dec 14 08:13:03 2008 searching for 15-digit factors Sun Dec 14 08:13:05 2008 commencing quadratic sieve (88-digit input) Sun Dec 14 08:13:05 2008 using multiplier of 1 Sun Dec 14 08:13:05 2008 using 64kb Pentium 4 sieve core Sun Dec 14 08:13:05 2008 sieve interval: 14 blocks of size 65536 Sun Dec 14 08:13:05 2008 processing polynomials in batches of 8 Sun Dec 14 08:13:05 2008 using a sieve bound of 1527443 (57997 primes) Sun Dec 14 08:13:05 2008 using large prime bound of 122195440 (26 bits) Sun Dec 14 08:13:05 2008 using double large prime bound of 360328813713040 (42-49 bits) Sun Dec 14 08:13:05 2008 using trial factoring cutoff of 49 bits Sun Dec 14 08:13:05 2008 polynomial 'A' values have 11 factors Sun Dec 14 09:46:40 2008 58202 relations (15835 full + 42367 combined from 613321 partial), need 58093 Sun Dec 14 09:46:42 2008 begin with 629156 relations Sun Dec 14 09:46:43 2008 reduce to 141005 relations in 9 passes Sun Dec 14 09:46:43 2008 attempting to read 141005 relations Sun Dec 14 09:46:46 2008 recovered 141005 relations Sun Dec 14 09:46:46 2008 recovered 118767 polynomials Sun Dec 14 09:46:46 2008 attempting to build 58202 cycles Sun Dec 14 09:46:46 2008 found 58202 cycles in 6 passes Sun Dec 14 09:46:46 2008 distribution of cycle lengths: Sun Dec 14 09:46:46 2008 length 1 : 15835 Sun Dec 14 09:46:46 2008 length 2 : 11324 Sun Dec 14 09:46:46 2008 length 3 : 10272 Sun Dec 14 09:46:46 2008 length 4 : 7605 Sun Dec 14 09:46:46 2008 length 5 : 5453 Sun Dec 14 09:46:46 2008 length 6 : 3261 Sun Dec 14 09:46:47 2008 length 7 : 2085 Sun Dec 14 09:46:47 2008 length 9+: 2367 Sun Dec 14 09:46:47 2008 largest cycle: 17 relations Sun Dec 14 09:46:47 2008 matrix is 57997 x 58202 (13.9 MB) with weight 3398010 (58.38/col) Sun Dec 14 09:46:47 2008 sparse part has weight 3398010 (58.38/col) Sun Dec 14 09:46:48 2008 filtering completed in 4 passes Sun Dec 14 09:46:48 2008 matrix is 53933 x 53997 (12.9 MB) with weight 3176190 (58.82/col) Sun Dec 14 09:46:48 2008 sparse part has weight 3176190 (58.82/col) Sun Dec 14 09:46:48 2008 saving the first 48 matrix rows for later Sun Dec 14 09:46:48 2008 matrix is 53885 x 53997 (8.5 MB) with weight 2513844 (46.56/col) Sun Dec 14 09:46:48 2008 sparse part has weight 1912992 (35.43/col) Sun Dec 14 09:46:48 2008 matrix includes 64 packed rows Sun Dec 14 09:46:48 2008 using block size 21598 for processor cache size 512 kB Sun Dec 14 09:46:49 2008 commencing Lanczos iteration Sun Dec 14 09:46:49 2008 memory use: 8.2 MB Sun Dec 14 09:47:17 2008 lanczos halted after 853 iterations (dim = 53880) Sun Dec 14 09:47:17 2008 recovered 14 nontrivial dependencies Sun Dec 14 09:47:18 2008 prp44 factor: 76781171389640257460964238610947216532089199 Sun Dec 14 09:47:18 2008 prp44 factor: 77740357280063944340382379702634468726758129 Sun Dec 14 09:47:18 2008 elapsed time 01:34:17
(37·10102+53)/9 = 4(1)1017<103> = 71 · 11839 · 7469039 · C90
C90 = P34 · P56
P34 = 7516248271660755869850274614285353<34>
P56 = 87120428179153067595948563227353363024319865790575626979<56>
un Dec 14 09:26:56 2008 Msieve v. 1.39 Sun Dec 14 09:26:56 2008 random seeds: 2832f164 98fb12c3 Sun Dec 14 09:26:56 2008 factoring 654818767727904256865639176292309801451437776014272230779785284420421232481315337991338587 (90 digits) Sun Dec 14 09:26:57 2008 searching for 15-digit factors Sun Dec 14 09:26:59 2008 commencing quadratic sieve (90-digit input) Sun Dec 14 09:26:59 2008 using multiplier of 3 Sun Dec 14 09:26:59 2008 using 32kb Intel Core sieve core Sun Dec 14 09:26:59 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 09:26:59 2008 processing polynomials in batches of 6 Sun Dec 14 09:26:59 2008 using a sieve bound of 1613867 (61176 primes) Sun Dec 14 09:26:59 2008 using large prime bound of 135564828 (27 bits) Sun Dec 14 09:26:59 2008 using double large prime bound of 434374788405180 (42-49 bits) Sun Dec 14 09:26:59 2008 using trial factoring cutoff of 49 bits Sun Dec 14 09:26:59 2008 polynomial 'A' values have 12 factors Sun Dec 14 10:29:25 2008 61573 relations (17144 full + 44429 combined from 653984 partial), need 61272 Sun Dec 14 10:29:26 2008 begin with 671128 relations Sun Dec 14 10:29:26 2008 reduce to 146946 relations in 11 passes Sun Dec 14 10:29:26 2008 attempting to read 146946 relations Sun Dec 14 10:29:28 2008 recovered 146946 relations Sun Dec 14 10:29:28 2008 recovered 120493 polynomials Sun Dec 14 10:29:28 2008 attempting to build 61573 cycles Sun Dec 14 10:29:29 2008 found 61573 cycles in 5 passes Sun Dec 14 10:29:29 2008 distribution of cycle lengths: Sun Dec 14 10:29:29 2008 length 1 : 17144 Sun Dec 14 10:29:29 2008 length 2 : 12393 Sun Dec 14 10:29:29 2008 length 3 : 10791 Sun Dec 14 10:29:29 2008 length 4 : 8064 Sun Dec 14 10:29:29 2008 length 5 : 5463 Sun Dec 14 10:29:29 2008 length 6 : 3441 Sun Dec 14 10:29:29 2008 length 7 : 1974 Sun Dec 14 10:29:29 2008 length 9+: 2303 Sun Dec 14 10:29:29 2008 largest cycle: 18 relations Sun Dec 14 10:29:29 2008 matrix is 61176 x 61573 (14.7 MB) with weight 3596232 (58.41/col) Sun Dec 14 10:29:29 2008 sparse part has weight 3596232 (58.41/col) Sun Dec 14 10:29:30 2008 filtering completed in 3 passes Sun Dec 14 10:29:30 2008 matrix is 56580 x 56644 (13.5 MB) with weight 3322339 (58.65/col) Sun Dec 14 10:29:30 2008 sparse part has weight 3322339 (58.65/col) Sun Dec 14 10:29:30 2008 saving the first 48 matrix rows for later Sun Dec 14 10:29:30 2008 matrix is 56532 x 56644 (8.3 MB) with weight 2561002 (45.21/col) Sun Dec 14 10:29:30 2008 sparse part has weight 1840625 (32.49/col) Sun Dec 14 10:29:30 2008 matrix includes 64 packed rows Sun Dec 14 10:29:30 2008 using block size 22657 for processor cache size 1024 kB Sun Dec 14 10:29:30 2008 commencing Lanczos iteration Sun Dec 14 10:29:30 2008 memory use: 8.3 MB Sun Dec 14 10:29:48 2008 lanczos halted after 895 iterations (dim = 56529) Sun Dec 14 10:29:48 2008 recovered 16 nontrivial dependencies Sun Dec 14 10:29:49 2008 prp34 factor: 7516248271660755869850274614285353 Sun Dec 14 10:29:49 2008 prp56 factor: 87120428179153067595948563227353363024319865790575626979 Sun Dec 14 10:29:49 2008 elapsed time 01:02:53
(37·10105+53)/9 = 4(1)1047<106> = 111733 · 546863 · C95
C95 = P45 · P51
P45 = 204636041354677447482853109425426041565256449<45>
P51 = 328788855581546082125121238993357453012048109411927<51>
Sun Dec 14 08:15:04 2008 Msieve v. 1.39 Sun Dec 14 08:15:04 2008 random seeds: 868f8b33 3eb24c1e Sun Dec 14 08:15:04 2008 factoring 67282049847742334963616862975582700215581962408551703345462075578114834596968610334356334267223 (95 digits) Sun Dec 14 08:15:05 2008 searching for 15-digit factors Sun Dec 14 08:15:06 2008 commencing quadratic sieve (95-digit input) Sun Dec 14 08:15:06 2008 using multiplier of 3 Sun Dec 14 08:15:06 2008 using 32kb Intel Core sieve core Sun Dec 14 08:15:06 2008 sieve interval: 36 blocks of size 32768 Sun Dec 14 08:15:06 2008 processing polynomials in batches of 6 Sun Dec 14 08:15:06 2008 using a sieve bound of 2196599 (80826 primes) Sun Dec 14 08:15:06 2008 using large prime bound of 329489850 (28 bits) Sun Dec 14 08:15:06 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 14 08:15:06 2008 using trial factoring cutoff of 51 bits Sun Dec 14 08:15:06 2008 polynomial 'A' values have 12 factors Sun Dec 14 13:22:18 2008 81008 relations (19048 full + 61960 combined from 1237185 partial), need 80922 Sun Dec 14 13:22:23 2008 begin with 1256233 relations Sun Dec 14 13:22:23 2008 reduce to 215120 relations in 13 passes Sun Dec 14 13:22:23 2008 attempting to read 215120 relations Sun Dec 14 13:22:29 2008 recovered 215120 relations Sun Dec 14 13:22:29 2008 recovered 202169 polynomials Sun Dec 14 13:22:29 2008 attempting to build 81008 cycles Sun Dec 14 13:22:29 2008 found 81008 cycles in 6 passes Sun Dec 14 13:22:29 2008 distribution of cycle lengths: Sun Dec 14 13:22:29 2008 length 1 : 19048 Sun Dec 14 13:22:29 2008 length 2 : 13883 Sun Dec 14 13:22:29 2008 length 3 : 13540 Sun Dec 14 13:22:29 2008 length 4 : 11060 Sun Dec 14 13:22:29 2008 length 5 : 8465 Sun Dec 14 13:22:29 2008 length 6 : 5764 Sun Dec 14 13:22:29 2008 length 7 : 3725 Sun Dec 14 13:22:29 2008 length 9+: 5523 Sun Dec 14 13:22:29 2008 largest cycle: 20 relations Sun Dec 14 13:22:30 2008 matrix is 80826 x 81008 (22.2 MB) with weight 5506807 (67.98/col) Sun Dec 14 13:22:30 2008 sparse part has weight 5506807 (67.98/col) Sun Dec 14 13:22:30 2008 filtering completed in 3 passes Sun Dec 14 13:22:30 2008 matrix is 77469 x 77533 (21.4 MB) with weight 5302804 (68.39/col) Sun Dec 14 13:22:30 2008 sparse part has weight 5302804 (68.39/col) Sun Dec 14 13:22:31 2008 saving the first 48 matrix rows for later Sun Dec 14 13:22:31 2008 matrix is 77421 x 77533 (14.7 MB) with weight 4320453 (55.72/col) Sun Dec 14 13:22:31 2008 sparse part has weight 3383624 (43.64/col) Sun Dec 14 13:22:31 2008 matrix includes 64 packed rows Sun Dec 14 13:22:31 2008 using block size 31013 for processor cache size 2048 kB Sun Dec 14 13:22:31 2008 commencing Lanczos iteration Sun Dec 14 13:22:31 2008 memory use: 13.5 MB Sun Dec 14 13:23:10 2008 lanczos halted after 1226 iterations (dim = 77418) Sun Dec 14 13:23:10 2008 recovered 15 nontrivial dependencies Sun Dec 14 13:23:11 2008 prp45 factor: 204636041354677447482853109425426041565256449 Sun Dec 14 13:23:11 2008 prp51 factor: 328788855581546082125121238993357453012048109411927 Sun Dec 14 13:23:11 2008 elapsed time 05:08:07
(37·10114+53)/9 = 4(1)1137<115> = C115
C115 = P54 · P62
P54 = 337537008280418766192929438347918809616735002757194727<54>
P62 = 12179734400251853325768968702888321780028003904068045443286571<62>
Number: 41117_114 N=4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: r1=337537008280418766192929438347918809616735002757194727 (prp54) r2=12179734400251853325768968702888321780028003904068045443286571 (prp62) Version: Total time: 1.79 hours. Scaled time: 3.50 units (timescale=1.960). Factorization parameters were as follows: name: 41117_114 n: 4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 100000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 555001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79057 x 79305 Total sieving time: 1.79 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.79 hours. --------- CPU info (if available) ----------
(37·10123+71)/9 = 4(1)1229<124> = 34 · 29 · 449 · C118
C118 = P41 · P78
P41 = 20695535029248947852717006458822002729677<41>
P78 = 188344610965528230197952413898521617583890420834456669268656909688180223321047<78>
Number: 41119_123 N=3897892493807354986020787987411703517026257784064973021843262793067524455851574153348779522453388316794154088325611819 ( 118 digits) SNFS difficulty: 125 digits. Divisors found: r1=20695535029248947852717006458822002729677 (prp41) r2=188344610965528230197952413898521617583890420834456669268656909688180223321047 (prp78) Version: Total time: 1.94 hours. Scaled time: 5.00 units (timescale=2.575). Factorization parameters were as follows: name: 41119_123 n: 3897892493807354986020787987411703517026257784064973021843262793067524455851574153348779522453388316794154088325611819 m: 5000000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 880000 alim: 880000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 880000/880000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [440000, 740001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123693 x 123934 Total sieving time: 1.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,880000,880000,26,26,46,46,2.3,2.3,50000 total time: 1.94 hours. --------- CPU info (if available) ----------
(37·10155+71)/9 = 4(1)1549<156> = 192 · 449 · 203388431 · 434667323 · 21723500418352373<17> · 195139313557545220666189<24> · C94
C94 = P47 · P48
P47 = 14213129565745445748264000298044322650674765341<47>
P48 = 476165733177193357196365532265201544599028821671<48>
Sun Dec 14 10:37:40 2008 Msieve v. 1.39 Sun Dec 14 10:37:40 2008 random seeds: 992e376c 7d2779b2 Sun Dec 14 10:37:40 2008 factoring 6767805260415624010155217671358645841863341122871686405813495731920030225435926539273660504811 (94 digits) Sun Dec 14 10:37:41 2008 searching for 15-digit factors Sun Dec 14 10:37:43 2008 commencing quadratic sieve (94-digit input) Sun Dec 14 10:37:43 2008 using multiplier of 3 Sun Dec 14 10:37:43 2008 using 64kb Pentium 4 sieve core Sun Dec 14 10:37:43 2008 sieve interval: 18 blocks of size 65536 Sun Dec 14 10:37:43 2008 processing polynomials in batches of 6 Sun Dec 14 10:37:43 2008 using a sieve bound of 2059517 (76466 primes) Sun Dec 14 10:37:43 2008 using large prime bound of 284213346 (28 bits) Sun Dec 14 10:37:43 2008 using double large prime bound of 1646493387513360 (42-51 bits) Sun Dec 14 10:37:43 2008 using trial factoring cutoff of 51 bits Sun Dec 14 10:37:43 2008 polynomial 'A' values have 12 factors Sun Dec 14 17:31:24 2008 76647 relations (18095 full + 58552 combined from 1115782 partial), need 76562 Sun Dec 14 17:31:28 2008 begin with 1133877 relations Sun Dec 14 17:31:29 2008 reduce to 202780 relations in 11 passes Sun Dec 14 17:31:29 2008 attempting to read 202780 relations Sun Dec 14 17:31:35 2008 recovered 202780 relations Sun Dec 14 17:31:35 2008 recovered 189693 polynomials Sun Dec 14 17:31:36 2008 attempting to build 76647 cycles Sun Dec 14 17:31:36 2008 found 76647 cycles in 6 passes Sun Dec 14 17:31:36 2008 distribution of cycle lengths: Sun Dec 14 17:31:36 2008 length 1 : 18095 Sun Dec 14 17:31:36 2008 length 2 : 12837 Sun Dec 14 17:31:36 2008 length 3 : 13006 Sun Dec 14 17:31:36 2008 length 4 : 10582 Sun Dec 14 17:31:36 2008 length 5 : 8026 Sun Dec 14 17:31:36 2008 length 6 : 5541 Sun Dec 14 17:31:36 2008 length 7 : 3467 Sun Dec 14 17:31:36 2008 length 9+: 5093 Sun Dec 14 17:31:36 2008 largest cycle: 19 relations Sun Dec 14 17:31:36 2008 matrix is 76466 x 76647 (20.3 MB) with weight 5027332 (65.59/col) Sun Dec 14 17:31:36 2008 sparse part has weight 5027332 (65.59/col) Sun Dec 14 17:31:38 2008 filtering completed in 3 passes Sun Dec 14 17:31:38 2008 matrix is 73269 x 73333 (19.6 MB) with weight 4838460 (65.98/col) Sun Dec 14 17:31:38 2008 sparse part has weight 4838460 (65.98/col) Sun Dec 14 17:31:38 2008 saving the first 48 matrix rows for later Sun Dec 14 17:31:38 2008 matrix is 73221 x 73333 (12.3 MB) with weight 3830611 (52.24/col) Sun Dec 14 17:31:38 2008 sparse part has weight 2772583 (37.81/col) Sun Dec 14 17:31:38 2008 matrix includes 64 packed rows Sun Dec 14 17:31:38 2008 using block size 21845 for processor cache size 512 kB Sun Dec 14 17:31:39 2008 commencing Lanczos iteration Sun Dec 14 17:31:39 2008 memory use: 11.9 MB Sun Dec 14 17:32:34 2008 lanczos halted after 1159 iterations (dim = 73221) Sun Dec 14 17:32:34 2008 recovered 18 nontrivial dependencies Sun Dec 14 17:32:35 2008 prp47 factor: 14213129565745445748264000298044322650674765341 Sun Dec 14 17:32:35 2008 prp48 factor: 476165733177193357196365532265201544599028821671 Sun Dec 14 17:32:35 2008 elapsed time 06:54:55
(37·10118+71)/9 = 4(1)1179<119> = 13 · 61 · C116
C116 = P35 · P81
P35 = 69418872032971825675387608033297539<35>
P81 = 746807162673007794573024730772402779877228065547662481262643057695893171999373197<81>
Number: 41119_118 N=51842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=69418872032971825675387608033297539 (prp35) r2=746807162673007794573024730772402779877228065547662481262643057695893171999373197 (prp81) Version: Total time: 2.26 hours. Scaled time: 4.42 units (timescale=1.955). Factorization parameters were as follows: name: 41119_118 n: 51842510858904301527252346924478072019055625613002662182990051842510858904301527252346924478072019055625613002662183 m: 500000000000000000000000 deg: 5 c5: 296 c0: 1775 skew: 1.43 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [365000, 665001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 79104 x 79347 Total sieving time: 2.26 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,730000,730000,25,25,46,46,2.2,2.2,50000 total time: 2.26 hours. --------- CPU info (if available) ----------
(37·10129+53)/9 = 4(1)1287<130> = C130
C130 = P51 · P80
P51 = 145844390655749562788875940659676939529907563875789<51>
P80 = 28188338904407774606901579652067711359624010893822103546405700927331945019978753<80>
Number: 41117_129 N=4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 130 digits) SNFS difficulty: 131 digits. Divisors found: r1=145844390655749562788875940659676939529907563875789 (prp51) r2=28188338904407774606901579652067711359624010893822103546405700927331945019978753 (prp80) Version: Total time: 3.90 hours. Scaled time: 10.05 units (timescale=2.575). Factorization parameters were as follows: name: 41117_129 n: 4111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 100000000000000000000000000 deg: 5 c5: 37 c0: 530 skew: 1.70 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 1145001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 168454 x 168702 Total sieving time: 3.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 3.90 hours. --------- CPU info (if available) ----------
Factorizations of 411...117 and Factorizations of 411...119 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(37·10160+17)/9 = 4(1)1593<161> = 2211071263<10> · 230520570756165931<18> · C134
C134 = P51 · P84
P51 = 182534298451988745491465996097413122160200468742407<51>
P84 = 441877926343855694297910384601660321631744164035971667970314416322997130688858619603<84>
Number: 41113_160 N=80657877286595255360501423871032632999300536701774910703390394464930393749780818957506729438603944423745442718258274615558035407604421 ( 134 digits) SNFS difficulty: 161 digits. Divisors found: r1=182534298451988745491465996097413122160200468742407 (pp51) r2=441877926343855694297910384601660321631744164035971667970314416322997130688858619603 (pp84) Version: GGNFS-0.77.1-20060513-nocona Total time: 46.00 hours. Scaled time: 117.48 units (timescale=2.554). Factorization parameters were as follows: name: 41113_160 n: 80657877286595255360501423871032632999300536701774910703390394464930393749780818957506729438603944423745442718258274615558035407604421 m: 100000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1750000, 3050001) Primes: RFBsize:250150, AFBsize:250081, largePrimes:9043720 encountered Relations: rels:9246377, finalFF:577662 Max relations in full relation-set: 28 Initial matrix: 500296 x 577662 with sparse part having weight 61823295. Pruned matrix : 466400 x 468965 with weight 47236517. Total sieving time: 43.14 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.53 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,27,27,51,51,2.4,2.4,100000 total time: 46.00 hours. --------- CPU info (if available) ----------
(37·10157+17)/9 = 4(1)1563<158> = 863 · 73607 · 2627737972449370281351927889<28> · C123
C123 = P49 · P75
P49 = 2352669523486813031676403292583158308856321454209<49>
P75 = 104685448438146196434694486111792280502604118654516603864565957058052394593<75>
Number: 41113_157 N=246290264092976747496854725207962020306973824437463180894048095584859846285349289378058603553803801996749502615192448691937 ( 123 digits) SNFS difficulty: 159 digits. Divisors found: r1=2352669523486813031676403292583158308856321454209 (pp49) r2=104685448438146196434694486111792280502604118654516603864565957058052394593 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 51.04 hours. Scaled time: 99.79 units (timescale=1.955). Factorization parameters were as follows: name: 41113_157 n: 246290264092976747496854725207962020306973824437463180894048095584859846285349289378058603553803801996749502615192448691937 m: 20000000000000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1600000, 3100001) Primes: RFBsize:230209, AFBsize:229217, largePrimes:8087006 encountered Relations: rels:8152494, finalFF:518868 Max relations in full relation-set: 28 Initial matrix: 459493 x 518868 with sparse part having weight 54487834. Pruned matrix : 437407 x 439768 with weight 42949203. Total sieving time: 47.24 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.31 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,27,27,50,50,2.4,2.4,100000 total time: 51.04 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(34·10180+11)/9 = 3(7)1799<181> = C181
C181 = P64 · P117
P64 = 5574632468914608146858989470643476643459042798240453257348585029<64>
P117 = 677672976441677150691405869835421581232568399868727814349136619956892166941871909050801747283982312193551902356049751<117>
Number: n N=3777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 ( 181 digits) SNFS difficulty: 181 digits. Divisors found: Sat Dec 13 03:26:24 2008 prp64 factor: 5574632468914608146858989470643476643459042798240453257348585029 Sat Dec 13 03:26:24 2008 prp117 factor: 677672976441677150691405869835421581232568399868727814349136619956892166941871909050801747283982312193551902356049751 Sat Dec 13 03:26:24 2008 elapsed time 03:25:41 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.44 hours. Scaled time: 75.29 units (timescale=2.011). Factorization parameters were as follows: name: KA_3_7_179_9 n: 3777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777779 type: snfs skew: 0.80 deg: 5 c5: 34 c0: 11 m: 1000000000000000000000000000000000000 rlim: 8500000 alim: 8500000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 2900077) Primes: RFBsize:571119, AFBsize:571308, largePrimes:28026071 encountered Relations: rels:25436113, finalFF:1245495 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: 26132343 relations and about 26488749 large ideals Msieve: matrix is 1120238 x 1120486 (303.3 MB) Total sieving time: 36.85 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,8500000,8500000,29,29,58,58,2.5,2.5,100000 total time: 37.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU1: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU2: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 CPU3: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz stepping 07 Memory: 3321556k/3407296k available (2912k kernel code, 84428k reserved, 1794k data, 1544k init, 2502088k highmem) Calibrating delay loop (skipped), value calculated using timer frequency.. 5660.98 BogoMIPS (lpj=2830490) Calibrating delay using timer specific routine.. 5660.89 BogoMIPS (lpj=2830449) Calibrating delay using timer specific routine.. 5660.91 BogoMIPS (lpj=2830457) Calibrating delay using timer specific routine.. 5660.92 BogoMIPS (lpj=2830462) Total of 4 processors activated (22643.71 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(35·10163+1)/9 = 3(8)1629<164> = 3 · 13 · 22027 · C158
C158 = P61 · P98
P61 = 3772305601451741110693896034844369021299802372207123480191799<61>
P98 = 12000482490194027628192717775525574707938989420059163916800025995974556673997774191103348024966187<98>
Number: n N=45269487317882469287563036144322747128394742686293964270992463665092711263320061613065653561408770924365422027382348806056074408550914657057118581611249700413 ( 158 digits) SNFS difficulty: 165 digits. Divisors found: Sat Dec 13 01:50:12 2008 prp61 factor: 3772305601451741110693896034844369021299802372207123480191799 Sat Dec 13 01:50:12 2008 prp98 factor: 12000482490194027628192717775525574707938989420059163916800025995974556673997774191103348024966187 Sat Dec 13 01:50:12 2008 elapsed time 02:21:03 (Msieve 1.39 - dependency 2) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.93 hours. Scaled time: 54.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_8_162_9 n: 45269487317882469287563036144322747128394742686293964270992463665092711263320061613065653561408770924365422027382348806056074408550914657057118581611249700413 type: snfs skew: 0.62 deg: 5 c5: 56 c0: 5 m: 500000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3850001) Primes: RFBsize:348513, AFBsize:347941, largePrimes:18240387 encountered Relations: rels:17162345, finalFF:870976 Max relations in full relation-set: 28 Initial matrix: 696520 x 870976 with sparse part having weight 111651568. Pruned matrix : 577183 x 580729 with weight 75582274. Msieve: found 1208921 hash collisions in 17899689 relations Msieve: matrix is 725299 x 725547 (195.7 MB) Total sieving time: 29.38 hours. Total relation processing time: 0.54 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 29.93 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(37·10150+17)/9 = 4(1)1493<151> = 3 · 35322799 · 301866832776298641101058383<27> · C117
C117 = P55 · P62
P55 = 2594925527914511341596318466274576379113700104320912139<55>
P62 = 49527060558983801304162718190994337266256570404149672188885417<62>
Number: 41113_150 N=128519033767075013780786115315087147448685727330032367627926634125513383045933845733508432136406988335267399195376963 ( 117 digits) SNFS difficulty: 151 digits. Divisors found: r1=2594925527914511341596318466274576379113700104320912139 (pp55) r2=49527060558983801304162718190994337266256570404149672188885417 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 23.56 hours. Scaled time: 47.36 units (timescale=2.010). Factorization parameters were as follows: name: 41113_146 n: 128519033767075013780786115315087147448685727330032367627926634125513383045933845733508432136406988335267399195376963 m: 1000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175998, largePrimes:6927169 encountered Relations: rels:6882552, finalFF:472100 Max relations in full relation-set: 28 Initial matrix: 352365 x 472100 with sparse part having weight 48448512. Pruned matrix : 304761 x 306586 with weight 28267595. Total sieving time: 21.83 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.40 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,49,49,2.4,2.4,100000 total time: 23.56 hours. --------- CPU info (if available) ----------
(35·10163-17)/9 = 3(8)1627<164> = 37 · 859433 · C157
C157 = P48 · P109
P48 = 307872788703161951907149258898808205952508429619<48>
P109 = 3972285727489072042775156135135899166170668429731548228973478147815338273608566491300580895913110250732250113<109>
Number: 41113_163 N=1222958684447829035016168859062953192454852270102557210452764847348252919135117049323275986669177296020807964147351859948420704174788553675564064971965296947 ( 157 digits) SNFS difficulty: 165 digits. Divisors found: r1=307872788703161951907149258898808205952508429619 (pp48) r2=3972285727489072042775156135135899166170668429731548228973478147815338273608566491300580895913110250732250113 (pp109) Version: GGNFS-0.77.1-20060513-nocona Total time: 64.73 hours. Scaled time: 165.98 units (timescale=2.564). Factorization parameters were as follows: name: 41113_163 n: 1222958684447829035016168859062953192454852270102557210452764847348252919135117049323275986669177296020807964147351859948420704174788553675564064971965296947 m: 500000000000000000000000000000000 deg: 5 c5: 56 c0: -85 skew: 1.09 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:282122, largePrimes:9360953 encountered Relations: rels:9842272, finalFF:670189 Max relations in full relation-set: 28 Initial matrix: 565334 x 670189 with sparse part having weight 77009409. Pruned matrix : 517749 x 520639 with weight 58596730. Total sieving time: 61.13 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.23 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,51,51,2.4,2.4,100000 total time: 64.73 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(37·10164+17)/9 = 4(1)1633<165> = 7 · 293 · 76091 · C157
C157 = P77 · P80
P77 = 39322735725815644225314040621429171304048596658405725916552678760370150874401<77>
P80 = 66991011921022211860576233057936764080376246489288267299249722416243173674326393<80>
SNFS difficulty: 166 digits. Divisors found: r1=39322735725815644225314040621429171304048596658405725916552678760370150874401 (pp77) r2=66991011921022211860576233057936764080376246489288267299249722416243173674326393 (pp80) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.944). Factorization parameters were as follows: n: 2634269857775321840869725580967908335673437123950190687283775436756264499657615758989437524071575279256687134437966554155078736051321283939511898373622365593 m: 1000000000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4700001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 805341 x 805588 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,200000 total time: 47.00 hours.
By matsui / GMP-ECM
(31·10189+41)/9 = 3(4)1889<190> = 232 · 97 · C185
C185 = P39 · P147
P39 = 235132531583386114575877377394239306961<39>
P147 = 285482215410488202454571268720246728545289583107834402404220895987309744040548884129366032393397755755971466525084701732853813236763453026420960993<147>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 67126156031501655417622131710179573294183626847863980754281457806880214457241721287869437461158857296288356643432355240279158194696167529562575652260527438357617844297633045123934372273 = 235132531583386114575877377394239306961* 285482215410488202454571268720246728545289583107834402404220895987309744040548884129366032393397755755971466525084701732853813236763453026420960993
By Nechaev Sergey / Msieve v. 1.39
6·10175+1 = 6(0)1741<176> = 31 · 227 · 18229 · 142965322616087752221825023<27> · C142
C142 = P35 · P107
P35 = 78834246190375597401811445588639063<35>
P107 = 41500681309919383885445995508284685803042892144778268185725040022437427106594917277468373401274522948400313<107>
Wed Dec 10 22:56:36 2008 Msieve v. 1.39 Wed Dec 10 22:56:36 2008 random seeds: 37be8f74 a454187c Wed Dec 10 22:56:36 2008 factoring 3271674927454503946351778908731093597432135074118241825266750809997264745464837343269894562027727499605259733648083021004609399100642593226719 (142 digits) Wed Dec 10 22:56:41 2008 searching for 15-digit factors Wed Dec 10 22:56:49 2008 searching for 20-digit factors Wed Dec 10 22:58:23 2008 searching for 25-digit factors Wed Dec 10 23:25:03 2008 searching for 30-digit factors Thu Dec 11 02:28:30 2008 searching for 35-digit factors Thu Dec 11 05:51:33 2008 ECM stage 2 factor found Thu Dec 11 05:51:34 2008 prp35 factor: 78834246190375597401811445588639063 Thu Dec 11 05:51:34 2008 prp107 factor: 41500681309919383885445995508284685803042892144778268185725040022437427106594917277468373401274522948400313 Thu Dec 11 05:51:34 2008 elapsed time 06:54:58
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(34·10161+11)/9 = 3(7)1609<162> = 127 · 5981 · C156
C156 = P36 · P56 · P65
P36 = 452260176298104765469994838125306203<36>
P56 = 39385795018549293522153408826555650505362558093119041313<56>
P65 = 27920996888392742207968069111544861147664525260952212315370251203<65>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 497346291837245473892757219091134758464504760847378612032298838418479749887475401471823211531763679180630760897405797858280589027692387807818956587958690417 (156 digits) Using B1=2720000, B2=4281513610, polynomial Dickson(6), sigma=232161349 Step 1 took 34781ms Step 2 took 14375ms ********** Factor found in step 2: 452260176298104765469994838125306203 Found probable prime factor of 36 digits: 452260176298104765469994838125306203 Composite cofactor 1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 has 121 digits Number: n N=1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 ( 121 digits) SNFS difficulty: 162 digits. Divisors found: Thu Dec 11 11:21:39 2008 prp56 factor: 39385795018549293522153408826555650505362558093119041313 Thu Dec 11 11:21:39 2008 prp65 factor: 27920996888392742207968069111544861147664525260952212315370251203 Thu Dec 11 11:21:39 2008 elapsed time 02:54:48 (Msieve 1.39 - dependency 9) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.55 hours. Scaled time: 57.52 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_7_160_9 n: 1099690660159789190804806713972128415259313977562867994302360024355993049387317737924061850452700979364367080663344949539 type: snfs skew: 0.50 deg: 5 c5: 340 c0: 11 m: 100000000000000000000000000000000 rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 3350001) Primes: RFBsize:315948, AFBsize:316667, largePrimes:16423876 encountered Relations: rels:14735760, finalFF:661281 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Msieve: found 1689980 hash collisions in 16193584 relations Msieve: matrix is 714185 x 714433 (191.3 MB) Total sieving time: 31.04 hours. Total relation processing time: 0.51 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,56,56,2.5,2.5,100000 total time: 31.55 hours. --------- CPU info (if available) ----------
(37·10149+17)/9 = 4(1)1483<150> = 127 · 11282083 · 2109610728710016200472049234081<31> · C111
C111 = P34 · P77
P34 = 1422639995218516766085174683074889<34>
P77 = 95602415156372339326148758212848196389050952859263144734499019891465623985877<77>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 136007819440940199626993346046725191626984715365734593965157745676287529081814105333269047742828239066669342653 (111 digits) Using B1=1474000, B2=2140044280, polynomial Dickson(6), sigma=4067917861 Step 1 took 11515ms Step 2 took 6016ms ********** Factor found in step 2: 1422639995218516766085174683074889 Found probable prime factor of 34 digits: 1422639995218516766085174683074889 Probable prime cofactor 95602415156372339326148758212848196389050952859263144734499019891465623985877 has 77 digits
By Sinkiti Sibata / GGNFS
(37·10139+17)/9 = 4(1)1383<140> = 263 · 1129 · C135
C135 = P54 · P81
P54 = 776571400668482335948948936970269317882230994910909567<54>
P81 = 178290470791338198590566039041674126404436054299479729486821730640619604606479657<81>
Number: 41113_139 N=138455280628272643144985505228932064484237240503932317071573521812132649139724952971980019031988034470126027983683232279688647752178519 ( 135 digits) SNFS difficulty: 141 digits. Divisors found: r1=776571400668482335948948936970269317882230994910909567 (pp54) r2=178290470791338198590566039041674126404436054299479729486821730640619604606479657 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.11 hours. Scaled time: 25.69 units (timescale=1.960). Factorization parameters were as follows: name: 4113_139 n: 138455280628272643144985505228932064484237240503932317071573521812132649139724952971980019031988034470126027983683232279688647752178519 m: 10000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1900001) Primes: RFBsize:121127, AFBsize:121245, largePrimes:3766307 encountered Relations: rels:3795612, finalFF:280228 Max relations in full relation-set: 28 Initial matrix: 242437 x 280228 with sparse part having weight 27780523. Pruned matrix : 230429 x 231705 with weight 20668622. Total sieving time: 12.18 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.70 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 13.11 hours. --------- CPU info (if available) ----------
(37·10131+17)/9 = 4(1)1303<132> = 23 · 71699265203561<14> · C117
C117 = P51 · P66
P51 = 960213857480717092820466634798010164748470829921701<51>
P66 = 259626312129121757923718106411025688347436635718952611864568981371<66>
Number: 41113_131 N=249296782672996691184964141338283467690861101743854481919392655376932888711640627577602280819968177366623021257632071 ( 117 digits) SNFS difficulty: 133 digits. Divisors found: r1=960213857480717092820466634798010164748470829921701 (pp51) r2=259626312129121757923718106411025688347436635718952611864568981371 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 6.36 hours. Scaled time: 3.00 units (timescale=0.472). Factorization parameters were as follows: name: 41113_131 n: 249296782672996691184964141338283467690861101743854481919392655376932888711640627577602280819968177366623021257632071 m: 200000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 1190000 alim: 1190000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1190000/1190000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [595000, 1120001) Primes: RFBsize:92225, AFBsize:92052, largePrimes:3078150 encountered Relations: rels:3091713, finalFF:318832 Max relations in full relation-set: 28 Initial matrix: 184344 x 318832 with sparse part having weight 25571817. Pruned matrix : 147637 x 148622 with weight 8816635. Total sieving time: 5.87 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.32 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1190000,1190000,26,26,47,47,2.3,2.3,75000 total time: 6.36 hours. --------- CPU info (if available) ----------
(37·10153+17)/9 = 4(1)1523<154> = 3 · 23 · 53069057 · 287828909 · C136
C136 = P57 · P80
P57 = 147798446122814265682532579169586489229599427021466891689<57>
P80 = 26391524244025315181901986791051403695472473000891951978687175963298942219564161<80>
Number: 41113_153 N=3900626274079522038818045807979827636445703910575290215266426929996301350563243058786329016398052678670849180356191187091400100973157929 ( 136 digits) SNFS difficulty: 155 digits. Divisors found: r1=147798446122814265682532579169586489229599427021466891689 (pp57) r2=26391524244025315181901986791051403695472473000891951978687175963298942219564161 (pp80) Version: GGNFS-0.77.1-20060513-nocona Total time: 41.73 hours. Scaled time: 106.57 units (timescale=2.554). Factorization parameters were as follows: name: 41113_153 n: 3900626274079522038818045807979827636445703910575290215266426929996301350563243058786329016398052678670849180356191187091400100973157929 m: 5000000000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:203142, largePrimes:8729745 encountered Relations: rels:9617308, finalFF:1012297 Max relations in full relation-set: 28 Initial matrix: 406571 x 1012297 with sparse part having weight 128521276. Pruned matrix : 295909 x 298005 with weight 56250693. Total sieving time: 40.10 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.34 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 41.73 hours. --------- CPU info (if available) ----------
(37·10146+17)/9 = 4(1)1453<147> = 7 · 71 · 7717 · 334793 · 627732433 · 356693996625943<15> · C112
C112 = P49 · P63
P49 = 1766069054027965440964145667998262780071429651417<49>
P63 = 809654824638086357101658646633649047759620702589883621852808083<63>
Number: 41113_146 N=1429906330237763419256584585374257947640589473325192065862091090909240113617417060828411324961594265051290003611 ( 112 digits) SNFS difficulty: 148 digits. Divisors found: r1=1766069054027965440964145667998262780071429651417 (pp49) r2=809654824638086357101658646633649047759620702589883621852808083 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 18.72 hours. Scaled time: 37.16 units (timescale=1.985). Factorization parameters were as follows: name: 41113_146 n: 1429906330237763419256584585374257947640589473325192065862091090909240113617417060828411324961594265051290003611 m: 200000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 2100000 alim: 2100000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 2100000/2100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [1050000, 2550001) Primes: RFBsize:155805, AFBsize:155967, largePrimes:4338843 encountered Relations: rels:4571767, finalFF:444860 Max relations in full relation-set: 28 Initial matrix: 311839 x 444860 with sparse part having weight 45290513. Pruned matrix : 265410 x 267033 with weight 24710851. Total sieving time: 17.66 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.78 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2100000,2100000,26,26,49,49,2.3,2.3,100000 total time: 18.72 hours. --------- CPU info (if available) ----------
(37·10154+17)/9 = 4(1)1533<155> = 21089 · 2363861 · 474284206163<12> · C133
C133 = P66 · P68
P66 = 131233336262996763208529705822455103762873856738445745721093470207<66>
P68 = 13249468585707739286382083178667357680893222111820417576063166951417<68>
Number: 41113_154 N=1738771966214195899844411429013914390022469286286495172486315067514102830946952647912317598944637037955520844369709805096681505933319 ( 133 digits) SNFS difficulty: 156 digits. Divisors found: r1=131233336262996763208529705822455103762873856738445745721093470207 (pp66) r2=13249468585707739286382083178667357680893222111820417576063166951417 (pp68) Version: GGNFS-0.77.1-20060513-nocona Total time: 41.45 hours. Scaled time: 106.29 units (timescale=2.564). Factorization parameters were as follows: name: 41113_154 n: 1738771966214195899844411429013914390022469286286495172486315067514102830946952647912317598944637037955520844369709805096681505933319 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1400000, 2700001) Primes: RFBsize:203362, AFBsize:203707, largePrimes:8480197 encountered Relations: rels:8996442, finalFF:695451 Max relations in full relation-set: 28 Initial matrix: 407134 x 695451 with sparse part having weight 87013355. Pruned matrix : 330217 x 332316 with weight 45838888. Total sieving time: 39.80 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.37 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,50,50,2.4,2.4,100000 total time: 41.45 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve
8·10190+9 = 8(0)1899<191> = 10979 · 93384737 · 1829065993<10> · 33295915167128085016755403<26> · C145
C145 = P39 · P49 · P57
P39 = 538680813586121424240758361537710132899<39>
P49 = 6350022202664860146059913355300429133521100785097<49>
P57 = 374562434586295016714727912805051180637746786286264130259<57>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] Input number is 1281241420783814236840813769192768768968282355514739105615102519730239311445959678569274101458614659494795859882596971403016242617149021527396577 (145 digits) Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=329758939 Step 1 took 13980ms Step 2 took 6087ms ********** Factor found in step 2: 538680813586121424240758361537710132899 Found probable prime factor of 39 digits: 538680813586121424240758361537710132899 Composite cofactor 2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 has 106 digits Number: 80009_190 N=2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 ( 106 digits) Divisors found: r1=6350022202664860146059913355300429133521100785097 (pp49) r2=374562434586295016714727912805051180637746786286264130259 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.41 hours. Scaled time: 19.97 units (timescale=2.376). Factorization parameters were as follows: name: 80009_190 n: 2378479775907177676028084193338783974397321241121097388182329404628516816089088946894571346712074773950123 skew: 19335.04 # norm 1.36e+15 c5: 65520 c4: 27471564 c3: -107204221150694 c2: 210564676395091900 c1: 9948647454800704699109 c0: 23207652976387495420816781 # alpha -6.59 Y1: 21237383893 Y0: -129415146671552584386 # Murphy_E 1.68e-09 # M 824103466569355914939858143207610722275937838736571265540824437757076304596016719605159834285168869476384 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113854, largePrimes:5081953 encountered Relations: rels:5214262, finalFF:385976 Max relations in full relation-set: 28 Initial matrix: 228095 x 385976 with sparse part having weight 41605213. Pruned matrix : 170451 x 171655 with weight 16999266. Polynomial selection time: 0.38 hours. Total sieving time: 7.76 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,50,50,2.6,2.6,50000 total time: 8.41 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(37·10152+17)/9 = 4(1)1513<153> = 7 · 19 · 44959 · 203910624271<12> · 507610655507<12> · 14460141021394288398859618298437<32> · C92
C92 = P42 · P51
P42 = 151493134078234480918166746651747002165127<42>
P51 = 303217922469936086150886963014441185305391540464493<51>
Thu Dec 11 00:23:15 2008 Thu Dec 11 00:23:15 2008 Thu Dec 11 00:23:15 2008 Msieve v. 1.39 Thu Dec 11 00:23:15 2008 random seeds: e8ff7218 79ab8c9f Thu Dec 11 00:23:15 2008 factoring 45935433383661735240212241640772496532456843193944056659319372052651886889596389102266335611 (92 digits) Thu Dec 11 00:23:16 2008 searching for 15-digit factors Thu Dec 11 00:23:16 2008 commencing quadratic sieve (92-digit input) Thu Dec 11 00:23:16 2008 using multiplier of 7 Thu Dec 11 00:23:16 2008 using VC8 32kb sieve core Thu Dec 11 00:23:16 2008 sieve interval: 36 blocks of size 32768 Thu Dec 11 00:23:16 2008 processing polynomials in batches of 6 Thu Dec 11 00:23:16 2008 using a sieve bound of 1815199 (68235 primes) Thu Dec 11 00:23:16 2008 using large prime bound of 197856691 (27 bits) Thu Dec 11 00:23:16 2008 using double large prime bound of 857889398643883 (42-50 bits) Thu Dec 11 00:23:16 2008 using trial factoring cutoff of 50 bits Thu Dec 11 00:23:16 2008 polynomial 'A' values have 12 factors Thu Dec 11 02:03:10 2008 68560 relations (18147 full + 50413 combined from 851687 partial), need 68331 Thu Dec 11 02:03:15 2008 begin with 869834 relations Thu Dec 11 02:03:16 2008 reduce to 170582 relations in 12 passes Thu Dec 11 02:03:16 2008 attempting to read 170582 relations Thu Dec 11 02:03:18 2008 recovered 170582 relations Thu Dec 11 02:03:18 2008 recovered 148573 polynomials Thu Dec 11 02:03:18 2008 attempting to build 68560 cycles Thu Dec 11 02:03:18 2008 found 68560 cycles in 5 passes Thu Dec 11 02:03:18 2008 distribution of cycle lengths: Thu Dec 11 02:03:18 2008 length 1 : 18147 Thu Dec 11 02:03:18 2008 length 2 : 12790 Thu Dec 11 02:03:18 2008 length 3 : 11984 Thu Dec 11 02:03:18 2008 length 4 : 9132 Thu Dec 11 02:03:18 2008 length 5 : 6502 Thu Dec 11 02:03:18 2008 length 6 : 4199 Thu Dec 11 02:03:18 2008 length 7 : 2537 Thu Dec 11 02:03:18 2008 length 9+: 3269 Thu Dec 11 02:03:18 2008 largest cycle: 19 relations Thu Dec 11 02:03:18 2008 matrix is 68235 x 68560 (18.0 MB) with weight 4182462 (61.00/col) Thu Dec 11 02:03:18 2008 sparse part has weight 4182462 (61.00/col) Thu Dec 11 02:03:19 2008 filtering completed in 4 passes Thu Dec 11 02:03:19 2008 matrix is 63856 x 63920 (16.9 MB) with weight 3920443 (61.33/col) Thu Dec 11 02:03:19 2008 sparse part has weight 3920443 (61.33/col) Thu Dec 11 02:03:19 2008 saving the first 48 matrix rows for later Thu Dec 11 02:03:19 2008 matrix is 63808 x 63920 (10.8 MB) with weight 3072139 (48.06/col) Thu Dec 11 02:03:19 2008 sparse part has weight 2189768 (34.26/col) Thu Dec 11 02:03:19 2008 matrix includes 64 packed rows Thu Dec 11 02:03:19 2008 using block size 25568 for processor cache size 4096 kB Thu Dec 11 02:03:20 2008 commencing Lanczos iteration Thu Dec 11 02:03:20 2008 memory use: 9.7 MB Thu Dec 11 02:03:46 2008 lanczos halted after 1011 iterations (dim = 63805) Thu Dec 11 02:03:46 2008 recovered 16 nontrivial dependencies Thu Dec 11 02:03:47 2008 prp42 factor: 151493134078234480918166746651747002165127 Thu Dec 11 02:03:47 2008 prp51 factor: 303217922469936086150886963014441185305391540464493 Thu Dec 11 02:03:47 2008 elapsed time 01:40:32
By JMB / GPM-ECM 6.1.3
(10173+11)/3 = (3)1727<173> = 37 · 811 · 242712712761419<15> · C154
C154 = P30 · C125
P30 = 381814249723112484682790856461<30>
C125 = [11987027729406341483972295989694296404186466424267385001709299847430322285161979459109911425907788839466142164158747992679649<125>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1501931023 Step 1 took 18828ms Step 2 took 12468ms ********** Factor found in step 2: 381814249723112484682790856461 Found probable prime factor of 30 digits: 381814249723112484682790856461 Composite cofactor 11987027729406341483972295989694296404186466424267385001709299847430322285161979459109911425907788839466142164158747992679649 has 125 digits
By Serge Batalov / Msieve-1.39
(37·10166+17)/9 = 4(1)1653<167> = 61 · C165
C165 = P79 · P87
P79 = 4188456316799221800062368322618682657246331640966662822479121968077244812718221<79>
P87 = 160907167268914976547336082636897002177991578144842220208538078678074396886300458033073<87>
SNFS difficulty: 168 digits. Divisors found: r1=4188456316799221800062368322618682657246331640966662822479121968077244812718221 (pp79) r2=160907167268914976547336082636897002177991578144842220208538078678074396886300458033073 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.949). Factorization parameters were as follows: n: 673952641165755919854280510018214936247723132969034608378870673952641165755919854280510018214936247723132969034608378870673952641165755919854280510018214936247723133 m: 2000000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4650001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 806657 x 806905 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,200000 total time: 42.00 hours.
(37·10155+17)/9 = 4(1)1543<156> = 457 · 1521973 · C147
C147 = P43 · P51 · P54
P43 = 4812749602630778901982598117461876860320447<43>
P51 = 150708074931584761567153708706295660448302303155627<51>
P54 = 814903676675932977298347920721395104373594560096382057<54>
SNFS difficulty: 156 digits. Divisors found: r1=4812749602630778901982598117461876860320447 (pp43) r2=150708074931584761567153708706295660448302303155627 (pp51) r3=814903676675932977298347920721395104373594560096382057 (pp54) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.730). Factorization parameters were as follows: n: 591066120352941893887663346036595083426801534338445775875833713878874483567579011073947892692959927688804698516989496494173497266774234406515458333 m: 10000000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 506992 x 507240 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 11.00 hours.
(35·10161+1)/9 = 3(8)1609<162> = 157 · 3499 · 2162183 · C150
C150 = P42 · P108
P42 = 571876901252956296758416030882298904111353<42>
P108 = 572515087772493770133642628444432834628357213143562046017527857271537229085382174829411992559101277600579177<108>
SNFS difficulty: 164 digits. Divisors found: r1=571876901252956296758416030882298904111353 (pp42) r2=572515087772493770133642628444432834628357213143562046017527857271537229085382174829411992559101277600579177 (pp108) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.535). Factorization parameters were as follows: n: 327408154315898026747083437461024067322294520449969657609780219617982316838421582776349431696677974649965426793135033707538303180431672196979301096481 m: 500000000000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 3900000 alim: 3900000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3900000/3900000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1950000, 3750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 701421 x 701669 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3900000,3900000,27,27,52,52,2.4,2.4,100000 total time: 22.00 hours.
By Erik Branger / Msieve
(37·10127+17)/9 = 4(1)1263<128> = 43 · 2287 · 5402086163<10> · 1496014728227396684836493981<28> · C86
C86 = P33 · P54
P33 = 192989518424688578863761535141003<33>
P54 = 268036227003025546179556250126925130151642985964735177<54>
Tue Dec 09 17:21:54 2008 Msieve v. 1.38 Tue Dec 09 17:21:54 2008 random seeds: faf2f160 6a6e1ca0 Tue Dec 09 17:21:54 2008 factoring 51728182369684409028798805980087503755843503122413956066416778922363534304002249162531 (86 digits) Tue Dec 09 17:21:55 2008 searching for 15-digit factors Tue Dec 09 17:21:56 2008 commencing quadratic sieve (86-digit input) Tue Dec 09 17:21:56 2008 using multiplier of 19 Tue Dec 09 17:21:56 2008 using 64kb Pentium 4 sieve core Tue Dec 09 17:21:56 2008 sieve interval: 8 blocks of size 65536 Tue Dec 09 17:21:56 2008 processing polynomials in batches of 13 Tue Dec 09 17:21:56 2008 using a sieve bound of 1461403 (55606 primes) Tue Dec 09 17:21:56 2008 using large prime bound of 116912240 (26 bits) Tue Dec 09 17:21:56 2008 using double large prime bound of 332772803587280 (41-49 bits) Tue Dec 09 17:21:56 2008 using trial factoring cutoff of 49 bits Tue Dec 09 17:21:57 2008 polynomial 'A' values have 11 factors Tue Dec 09 18:17:14 2008 55945 relations (16016 full + 39929 combined from 580933 partial), need 55702 Tue Dec 09 18:17:16 2008 begin with 596949 relations Tue Dec 09 18:17:17 2008 reduce to 132179 relations in 10 passes Tue Dec 09 18:17:17 2008 attempting to read 132179 relations Tue Dec 09 18:17:22 2008 recovered 132179 relations Tue Dec 09 18:17:22 2008 recovered 110384 polynomials Tue Dec 09 18:17:22 2008 attempting to build 55945 cycles Tue Dec 09 18:17:22 2008 found 55945 cycles in 5 passes Tue Dec 09 18:17:22 2008 distribution of cycle lengths: Tue Dec 09 18:17:22 2008 length 1 : 16016 Tue Dec 09 18:17:22 2008 length 2 : 11292 Tue Dec 09 18:17:22 2008 length 3 : 9885 Tue Dec 09 18:17:22 2008 length 4 : 7218 Tue Dec 09 18:17:22 2008 length 5 : 4903 Tue Dec 09 18:17:22 2008 length 6 : 2998 Tue Dec 09 18:17:22 2008 length 7 : 1772 Tue Dec 09 18:17:22 2008 length 9+: 1861 Tue Dec 09 18:17:22 2008 largest cycle: 18 relations Tue Dec 09 18:17:22 2008 matrix is 55606 x 55945 (12.6 MB) with weight 3080958 (55.07/col) Tue Dec 09 18:17:22 2008 sparse part has weight 3080958 (55.07/col) Tue Dec 09 18:17:23 2008 filtering completed in 3 passes Tue Dec 09 18:17:23 2008 matrix is 50632 x 50696 (11.5 MB) with weight 2810111 (55.43/col) Tue Dec 09 18:17:23 2008 sparse part has weight 2810111 (55.43/col) Tue Dec 09 18:17:23 2008 saving the first 48 matrix rows for later Tue Dec 09 18:17:23 2008 matrix is 50584 x 50696 (7.2 MB) with weight 2173490 (42.87/col) Tue Dec 09 18:17:23 2008 sparse part has weight 1570727 (30.98/col) Tue Dec 09 18:17:23 2008 matrix includes 64 packed rows Tue Dec 09 18:17:23 2008 using block size 20278 for processor cache size 512 kB Tue Dec 09 18:17:24 2008 commencing Lanczos iteration Tue Dec 09 18:17:24 2008 memory use: 7.2 MB Tue Dec 09 18:17:48 2008 lanczos halted after 802 iterations (dim = 50583) Tue Dec 09 18:17:48 2008 recovered 17 nontrivial dependencies Tue Dec 09 18:17:48 2008 prp33 factor: 192989518424688578863761535141003 Tue Dec 09 18:17:48 2008 prp54 factor: 268036227003025546179556250126925130151642985964735177 Tue Dec 09 18:17:48 2008 elapsed time 00:55:54
(37·10172-1)/9 = 4(1)172<173> = 72 · 49675493159<11> · 581693342027508474141681883<27> · 284058421196271016127648080138696939<36> · C99
C99 = P47 · P52
P47 = 14637743314961305869395629399473422598403387829<47>
P52 = 6983048497779176869298171805227564784303332803867877<52>
Wed Dec 10 23:12:11 2008 Msieve v. 1.39 Wed Dec 10 23:12:11 2008 random seeds: dc7b48e4 819504a7 Wed Dec 10 23:12:12 2008 factoring 102216071466417735574182221688508636681384173985648829721984676231139297698278652475301191705869033 (99 digits) Wed Dec 10 23:12:12 2008 searching for 15-digit factors Wed Dec 10 23:12:13 2008 commencing quadratic sieve (99-digit input) Wed Dec 10 23:12:13 2008 using multiplier of 1 Wed Dec 10 23:12:13 2008 using 64kb Opteron sieve core Wed Dec 10 23:12:13 2008 sieve interval: 18 blocks of size 65536 Wed Dec 10 23:12:13 2008 processing polynomials in batches of 6 Wed Dec 10 23:12:13 2008 using a sieve bound of 2532769 (92941 primes) Wed Dec 10 23:12:13 2008 using large prime bound of 379915350 (28 bits) Wed Dec 10 23:12:13 2008 using double large prime bound of 2776107567720900 (43-52 bits) Wed Dec 10 23:12:13 2008 using trial factoring cutoff of 52 bits Wed Dec 10 23:12:13 2008 polynomial 'A' values have 13 factors Thu Dec 11 05:03:51 2008 93374 relations (22224 full + 71150 combined from 1407528 partial), need 93037 Thu Dec 11 05:03:52 2008 begin with 1429752 relations Thu Dec 11 05:03:53 2008 reduce to 246150 relations in 10 passes Thu Dec 11 05:03:53 2008 attempting to read 246150 relations Thu Dec 11 05:03:56 2008 recovered 246150 relations Thu Dec 11 05:03:56 2008 recovered 235407 polynomials Thu Dec 11 05:03:56 2008 attempting to build 93374 cycles Thu Dec 11 05:03:56 2008 found 93374 cycles in 5 passes Thu Dec 11 05:03:56 2008 distribution of cycle lengths: Thu Dec 11 05:03:56 2008 length 1 : 22224 Thu Dec 11 05:03:56 2008 length 2 : 15847 Thu Dec 11 05:03:56 2008 length 3 : 15723 Thu Dec 11 05:03:56 2008 length 4 : 12743 Thu Dec 11 05:03:56 2008 length 5 : 9757 Thu Dec 11 05:03:56 2008 length 6 : 6633 Thu Dec 11 05:03:56 2008 length 7 : 4390 Thu Dec 11 05:03:56 2008 length 9+: 6057 Thu Dec 11 05:03:56 2008 largest cycle: 19 relations Thu Dec 11 05:03:56 2008 matrix is 92941 x 93374 (25.0 MB) with weight 6190895 (66.30/col) Thu Dec 11 05:03:56 2008 sparse part has weight 6190895 (66.30/col) Thu Dec 11 05:03:58 2008 filtering completed in 3 passes Thu Dec 11 05:03:58 2008 matrix is 89064 x 89128 (23.9 MB) with weight 5921326 (66.44/col) Thu Dec 11 05:03:58 2008 sparse part has weight 5921326 (66.44/col) Thu Dec 11 05:03:58 2008 saving the first 48 matrix rows for later Thu Dec 11 05:03:58 2008 matrix is 89016 x 89128 (14.5 MB) with weight 4633284 (51.98/col) Thu Dec 11 05:03:58 2008 sparse part has weight 3268814 (36.68/col) Thu Dec 11 05:03:58 2008 matrix includes 64 packed rows Thu Dec 11 05:03:58 2008 using block size 21845 for processor cache size 512 kB Thu Dec 11 05:03:59 2008 commencing Lanczos iteration Thu Dec 11 05:03:59 2008 memory use: 14.4 MB Thu Dec 11 05:04:53 2008 lanczos halted after 1409 iterations (dim = 89012) Thu Dec 11 05:04:53 2008 recovered 14 nontrivial dependencies Thu Dec 11 05:04:53 2008 prp47 factor: 14637743314961305869395629399473422598403387829 Thu Dec 11 05:04:53 2008 prp52 factor: 6983048497779176869298171805227564784303332803867877 Thu Dec 11 05:04:53 2008 elapsed time 05:52:42
By matsui / GMP-ECM
(16·10187+11)/9 = 1(7)1869<188> = 61 · 67 · C184
C184 = P37 · P148
P37 = 1951924232335499171056484276290444999<37>
P148 = 2228485844780820932821393203006312484951026177190765804027858301239457423520513255838839227297015998784342612223367264656633254640127530604744244083<148>
GMP-ECM 6.2.1 [powered by GMP 4.2.2] [ECM] 4349835521844330261261996030775086317048636598428621917733735693119103933882500067966180028817660332218687980860723703884946850447217464589620204985998966914063561971562950275942690917 = 1951924232335499171056484276290444999* 2228485844780820932821393203006312484951026177190765804027858301239457423520513255838839227297015998784342612223367264656633254640127530604744244083
By Sinkiti Sibata / GGNFS, Msieve
(35·10160+1)/9 = 3(8)1599<161> = 3 · 48889 · 14158995281<11> · C146
C146 = P52 · P94
P52 = 3104396736833870181492437190327522026318664958142209<52>
P94 = 6032307486523415111941507522986185399490762371629962271727902737700672557187363638130272688123<94>
Number: 38889_160 N=18726675676741815199689758347265826045166743883791788145195661841811544319555874854046399069162508683551760254528733032677079437502130842539283707 ( 146 digits) SNFS difficulty: 161 digits. Divisors found: r1=3104396736833870181492437190327522026318664958142209 (pp52) r2=6032307486523415111941507522986185399490762371629962271727902737700672557187363638130272688123 (pp94) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.77 hours. Scaled time: 117.35 units (timescale=2.564). Factorization parameters were as follows: name: 38889_160 n: 18726675676741815199689758347265826045166743883791788145195661841811544319555874854046399069162508683551760254528733032677079437502130842539283707 m: 100000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:243354, largePrimes:9454508 encountered Relations: rels:10260641, finalFF:981249 Max relations in full relation-set: 28 Initial matrix: 486959 x 981249 with sparse part having weight 118899122. Pruned matrix : 354854 x 357352 with weight 58839652. Total sieving time: 43.59 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.86 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.77 hours. --------- CPU info (if available) ----------
(37·10138+17)/9 = 4(1)1373<139> = 32 · C138
C138 = P45 · P93
P45 = 510775719844408392390465528501098122071849389<45>
P93 = 894306651059953932405219537564294331814846472823973070870460522554892046315226837865094032613<93>
Number: 41113_138 N=456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123457 ( 138 digits) SNFS difficulty: 140 digits. Divisors found: r1=510775719844408392390465528501098122071849389 (pp45) r2=894306651059953932405219537564294331814846472823973070870460522554892046315226837865094032613 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 13.91 hours. Scaled time: 35.81 units (timescale=2.575). Factorization parameters were as follows: name: 41113_138 n: 456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123456790123457 m: 5000000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 1570000 alim: 1570000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1570000/1570000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [785000, 2085001) Primes: RFBsize:119057, AFBsize:119140, largePrimes:4269723 encountered Relations: rels:4901265, finalFF:728520 Max relations in full relation-set: 28 Initial matrix: 238264 x 728520 with sparse part having weight 84654973. Pruned matrix : 173166 x 174421 with weight 29237746. Total sieving time: 13.48 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.28 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1570000,1570000,26,26,48,48,2.3,2.3,100000 total time: 13.91 hours. --------- CPU info (if available) ----------
(37·10130+17)/9 = 4(1)1293<131> = 733 · 2755861 · C122
C122 = P43 · P79
P43 = 7976815312434325655010026496828210010899659<43>
P79 = 2551340330232941042791734672815796033637758911848411720302531081819024948523739<79>
Number: 41113_130 N=20351570613433373197016275791874020012092224506120029900085311127306483973869120833832723060768618756333861528591308505001 ( 122 digits) SNFS difficulty: 131 digits. Divisors found: r1=7976815312434325655010026496828210010899659 (pp43) r2=2551340330232941042791734672815796033637758911848411720302531081819024948523739 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.22 hours. Scaled time: 10.40 units (timescale=1.991). Factorization parameters were as follows: name: 41113_130 n: 20351570613433373197016275791874020012092224506120029900085311127306483973869120833832723060768618756333861528591308505001 m: 100000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1090000 alim: 1090000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1090000/1090000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [545000, 995001) Primes: RFBsize:84976, AFBsize:84613, largePrimes:3064841 encountered Relations: rels:3134879, finalFF:357436 Max relations in full relation-set: 28 Initial matrix: 169654 x 357436 with sparse part having weight 29515736. Pruned matrix : 129023 x 129935 with weight 8435848. Total sieving time: 4.95 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.12 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1090000,1090000,26,26,47,47,2.3,2.3,50000 total time: 5.22 hours. --------- CPU info (if available) ----------
(37·10140+17)/9 = 4(1)1393<141> = 72 · 463 · 259452516097<12> · 12224976615594643753028840051569<32> · C94
C94 = P42 · P53
P42 = 349677359272427213877770746562063814121121<42>
P53 = 16338369215819639791633317799316136066415149505855783<53>
Wed Dec 10 08:05:54 2008 Msieve v. 1.39 Wed Dec 10 08:05:54 2008 random seeds: 6ad396f0 4eea3e53 Wed Dec 10 08:05:54 2008 factoring 5713157802205729067441731387747770291115643749641748842990579584482566967465904050235120292743 (94 digits) Wed Dec 10 08:05:55 2008 searching for 15-digit factors Wed Dec 10 08:05:56 2008 commencing quadratic sieve (94-digit input) Wed Dec 10 08:05:56 2008 using multiplier of 2 Wed Dec 10 08:05:56 2008 using 32kb Intel Core sieve core Wed Dec 10 08:05:56 2008 sieve interval: 36 blocks of size 32768 Wed Dec 10 08:05:56 2008 processing polynomials in batches of 6 Wed Dec 10 08:05:56 2008 using a sieve bound of 2059517 (76366 primes) Wed Dec 10 08:05:56 2008 using large prime bound of 284213346 (28 bits) Wed Dec 10 08:05:56 2008 using double large prime bound of 1646493387513360 (42-51 bits) Wed Dec 10 08:05:56 2008 using trial factoring cutoff of 51 bits Wed Dec 10 08:05:56 2008 polynomial 'A' values have 12 factors Wed Dec 10 11:37:41 2008 76516 relations (18643 full + 57873 combined from 1110238 partial), need 76462 Wed Dec 10 11:37:42 2008 begin with 1128881 relations Wed Dec 10 11:37:43 2008 reduce to 200010 relations in 10 passes Wed Dec 10 11:37:43 2008 attempting to read 200010 relations Wed Dec 10 11:37:46 2008 recovered 200010 relations Wed Dec 10 11:37:46 2008 recovered 184776 polynomials Wed Dec 10 11:37:46 2008 attempting to build 76516 cycles Wed Dec 10 11:37:46 2008 found 76516 cycles in 5 passes Wed Dec 10 11:37:46 2008 distribution of cycle lengths: Wed Dec 10 11:37:46 2008 length 1 : 18643 Wed Dec 10 11:37:46 2008 length 2 : 13452 Wed Dec 10 11:37:46 2008 length 3 : 12666 Wed Dec 10 11:37:46 2008 length 4 : 10268 Wed Dec 10 11:37:46 2008 length 5 : 7802 Wed Dec 10 11:37:46 2008 length 6 : 5394 Wed Dec 10 11:37:46 2008 length 7 : 3439 Wed Dec 10 11:37:46 2008 length 9+: 4852 Wed Dec 10 11:37:46 2008 largest cycle: 19 relations Wed Dec 10 11:37:46 2008 matrix is 76366 x 76516 (20.2 MB) with weight 4995764 (65.29/col) Wed Dec 10 11:37:46 2008 sparse part has weight 4995764 (65.29/col) Wed Dec 10 11:37:48 2008 filtering completed in 3 passes Wed Dec 10 11:37:48 2008 matrix is 72912 x 72975 (19.4 MB) with weight 4801996 (65.80/col) Wed Dec 10 11:37:48 2008 sparse part has weight 4801996 (65.80/col) Wed Dec 10 11:37:48 2008 saving the first 48 matrix rows for later Wed Dec 10 11:37:48 2008 matrix is 72864 x 72975 (12.3 MB) with weight 3807587 (52.18/col) Wed Dec 10 11:37:48 2008 sparse part has weight 2779634 (38.09/col) Wed Dec 10 11:37:48 2008 matrix includes 64 packed rows Wed Dec 10 11:37:48 2008 using block size 29190 for processor cache size 1024 kB Wed Dec 10 11:37:48 2008 commencing Lanczos iteration Wed Dec 10 11:37:48 2008 memory use: 11.8 MB Wed Dec 10 11:38:25 2008 lanczos halted after 1154 iterations (dim = 72861) Wed Dec 10 11:38:25 2008 recovered 16 nontrivial dependencies Wed Dec 10 11:38:26 2008 prp42 factor: 349677359272427213877770746562063814121121 Wed Dec 10 11:38:26 2008 prp53 factor: 16338369215819639791633317799316136066415149505855783 Wed Dec 10 11:38:26 2008 elapsed time 03:32:32
(35·10145+1)/9 = 3(8)1449<146> = 3 · 13 · 173 · 46301 · 17045617 · 1842706471<10> · 74365896181<11> · C110
C110 = P47 · P63
P47 = 80482065692066908416612753751129845520716852307<47>
P63 = 662190027785962142176186013718138487763144980919115337331166223<63>
Number: 38889_145 N=53294421316901416528304760731530435279940035842458663214979262606185267085546269558410831973396800689958026461 ( 110 digits) SNFS difficulty: 146 digits. Divisors found: r1=80482065692066908416612753751129845520716852307 (pp47) r2=662190027785962142176186013718138487763144980919115337331166223 (pp63) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 16.16 hours. Scaled time: 7.64 units (timescale=0.473). Factorization parameters were as follows: name: 38889_145 n: 53294421316901416528304760731530435279940035842458663214979262606185267085546269558410831973396800689958026461 m: 100000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2170001) Primes: RFBsize:144810, AFBsize:144951, largePrimes:4110184 encountered Relations: rels:4268857, finalFF:420980 Max relations in full relation-set: 28 Initial matrix: 289827 x 420980 with sparse part having weight 39373462. Pruned matrix : 245719 x 247232 with weight 19897514. Total sieving time: 14.30 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.58 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 16.16 hours. --------- CPU info (if available) ----------
(37·10135+17)/9 = 4(1)1343<136> = 3 · 233 · 35533039 · C126
C126 = P38 · P89
P38 = 14641719656254489741568420087470167181<38>
P89 = 11304662450032683330928990275564458178851499064755153440882955206425538566141385065716793<89>
Number: 41113_135 N=165519698401965577994313589899056412124998401475059473398292465613085453691521316341029149043281052537325330258204555309170533 ( 126 digits) SNFS difficulty: 136 digits. Divisors found: r1=14641719656254489741568420087470167181 (pp38) r2=11304662450032683330928990275564458178851499064755153440882955206425538566141385065716793 (pp89) Version: GGNFS-0.77.1-20060513-nocona Total time: 8.28 hours. Scaled time: 21.24 units (timescale=2.564). Factorization parameters were as follows: name: 41113_135 n: 165519698401965577994313589899056412124998401475059473398292465613085453691521316341029149043281052537325330258204555309170533 m: 1000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1320000 alim: 1320000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1320000/1320000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [660000, 1335001) Primes: RFBsize:101433, AFBsize:100876, largePrimes:3892874 encountered Relations: rels:4437698, finalFF:763666 Max relations in full relation-set: 28 Initial matrix: 202374 x 763666 with sparse part having weight 76985798. Pruned matrix : 137533 x 138608 with weight 18297906. Total sieving time: 8.03 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1320000,1320000,26,26,48,48,2.3,2.3,75000 total time: 8.28 hours. --------- CPU info (if available) ----------
(37·10128+17)/9 = 4(1)1273<129> = 7 · 29 · 139 · 366317336179<12> · C113
C113 = P43 · P70
P43 = 5892987442010330386722922517752335244214957<43>
P70 = 6749248030263033399317509977913277782333557881183738908126529217567863<70>
Number: 41113_128 N=39773233885353014121246197866071226793184898803915251469110066826582204106553428084166597044517372637684307126891 ( 113 digits) SNFS difficulty: 130 digits. Divisors found: r1=5892987442010330386722922517752335244214957 (pp43) r2=6749248030263033399317509977913277782333557881183738908126529217567863 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.06 hours. Scaled time: 9.91 units (timescale=1.960). Factorization parameters were as follows: name: 41113_128 n: 39773233885353014121246197866071226793184898803915251469110066826582204106553428084166597044517372637684307126891 m: 50000000000000000000000000 deg: 5 c5: 296 c0: 425 skew: 1.08 type: snfs lss: 1 rlim: 1070000 alim: 1070000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1070000/1070000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [535000, 985001) Primes: RFBsize:83548, AFBsize:83486, largePrimes:2816037 encountered Relations: rels:2727760, finalFF:222088 Max relations in full relation-set: 28 Initial matrix: 167101 x 222088 with sparse part having weight 17817301. Pruned matrix : 151342 x 152241 with weight 9260045. Total sieving time: 4.76 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1070000,1070000,26,26,47,47,2.3,2.3,50000 total time: 5.06 hours. --------- CPU info (if available) ----------
(37·10124+17)/9 = 4(1)1233<125> = 468623 · C119
C119 = P42 · P78
P42 = 112530124858026319235276321085291537757319<42>
P78 = 779590994951787401614222560214997243616363930234312099703490458459408464798049<78>
Number: 41113_124 N=87727472000117602232735292785695774878977581363081007784746184269895227317291535223646963787759267281185752963706670631 ( 119 digits) SNFS difficulty: 126 digits. Divisors found: r1=112530124858026319235276321085291537757319 (pp42) r2=779590994951787401614222560214997243616363930234312099703490458459408464798049 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.54 hours. Scaled time: 7.10 units (timescale=2.003). Factorization parameters were as follows: name: 41113_124 n: 87727472000117602232735292785695774878977581363081007784746184269895227317291535223646963787759267281185752963706670631 m: 10000000000000000000000000 deg: 5 c5: 37 c0: 170 skew: 1.36 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: RFBsize:71274, AFBsize:71110, largePrimes:2584163 encountered Relations: rels:2495928, finalFF:206678 Max relations in full relation-set: 28 Initial matrix: 142449 x 206678 with sparse part having weight 16626795. Pruned matrix : 126344 x 127120 with weight 7462678. Total sieving time: 3.33 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 3.54 hours. --------- CPU info (if available) ----------
(37·10137+17)/9 = 4(1)1363<138> = 37745119 · C131
C131 = P64 · P67
P64 = 3219321487884923385567438048156219294654507482548165761458705309<64>
P67 = 3383249819657721642586538439401357021436968537987233098257618204803<67>
Number: 41113_137 N=10891768843306895154075712706353134324761596621568767901118846945776250198366340058726827993603917664456458889720578470321185399127 ( 131 digits) SNFS difficulty: 139 digits. Divisors found: r1=3219321487884923385567438048156219294654507482548165761458705309 (pp64) r2=3383249819657721642586538439401357021436968537987233098257618204803 (pp67) Version: GGNFS-0.77.1-20060513-nocona Total time: 10.43 hours. Scaled time: 26.63 units (timescale=2.554). Factorization parameters were as follows: name: 41113_137 n: 10891768843306895154075712706353134324761596621568767901118846945776250198366340058726827993603917664456458889720578470321185399127 m: 2000000000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 1480000 alim: 1480000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1480000/1480000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [740000, 1715001) Primes: RFBsize:112752, AFBsize:112144, largePrimes:3960082 encountered Relations: rels:4364610, finalFF:588426 Max relations in full relation-set: 28 Initial matrix: 224963 x 588426 with sparse part having weight 63687211. Pruned matrix : 163887 x 165075 with weight 21080585. Total sieving time: 10.11 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1480000,1480000,26,26,48,48,2.3,2.3,75000 total time: 10.43 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
5·10188+9 = 5(0)1879<189> = 89 · 20644698707<11> · 2095779451075181845289<22> · C156
C156 = P35 · C121
P35 = 17069365974029360492115172688628301<35>
C121 = [7606913553087904523289891655928436341384431709516903459521491661869372564112334503851881776661479063881775251744140099647<121>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3476476497 Step 1 took 4752ms Step 2 took 3258ms ********** Factor found in step 2: 17069365974029360492115172688628301 Found probable prime factor of 35 digits: 17069365974029360492115172688628301 Composite cofactor has 121 digits
(37·10169+17)/9 = 4(1)1683<170> = 43 · 4651579 · 1017191121592337384843<22> · 87039115464799111997365977317<29> · C112
C112 = P31 · P81
P31 = 8425498979072827488852800911267<31>
P81 = 275535586632481005658474330785623147493947560810087737672451637475014017044809677<81>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1331634998 Step 1 took 2729ms Step 2 took 2284ms ********** Factor found in step 2: 8425498979072827488852800911267 Found probable prime factor of 31 digits: 8425498979072827488852800911267 Probable prime cofactor 275535586632481005658474330785623147493947560810087737672451637475014017044809677 has 81 digits
(37·10151+17)/9 = 4(1)1503<152> = 8353 · 34386593 · 2039773586951292013<19> · C122
C122 = P36 · P87
P36 = 273368539496778091201031494207412509<36>
P87 = 256682989397362158875629863353292151892741767670591065562820018228860886687460955569841<87>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3498479059 Step 1 took 3272ms Step 2 took 2434ms ********** Factor found in step 2: 273368539496778091201031494207412509 Found probable prime factor of 36 digits: 273368539496778091201031494207412509 Probable prime cofactor 256682989397362158875629863353292151892741767670591065562820018228860886687460955569841 has 87 digits
(37·10149+17)/9 = 4(1)1483<150> = 127 · 11282083 · C141
C141 = P31 · C111
P31 = 2109610728710016200472049234081<31>
C111 = [136007819440940199626993346046725191626984715365734593965157745676287529081814105333269047742828239066669342653<111>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=640405658 Step 1 took 3933ms Step 2 took 2762ms ********** Factor found in step 2: 2109610728710016200472049234081 Found probable prime factor of 31 digits: 2109610728710016200472049234081 Composite cofactor has 111 digits
(37·10152+17)/9 = 4(1)1513<153> = 7 · 19 · 44959 · 203910624271<12> · 507610655507<12> · C123
C123 = P32 · C92
P32 = 14460141021394288398859618298437<32>
C92 = [45935433383661735240212241640772496532456843193944056659319372052651886889596389102266335611<92>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2586452568 Step 1 took 9809ms Step 2 took 5755ms ********** Factor found in step 2: 14460141021394288398859618298437 Found probable prime factor of 32 digits: 14460141021394288398859618298437 Composite cofactor has 92 digits
(37·10203+17)/9 = 4(1)2023<204> = 72317555052941212202437<23> · 14037327305061710827375833007<29> · C153
C153 = P34 · P119
P34 = 6140930812850915255314216030096973<34>
P119 = 65947274112224700593650870901927012395470632038377646836641194000390957486841353488687312767513602066729431644202380359<119>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=1350806540 Step 1 took 6113ms Step 2 took 4038ms ********** Factor found in step 2: 6140930812850915255314216030096973 Found probable prime factor of 34 digits: 6140930812850915255314216030096973
(37·10125+17)/9 = 4(1)1243<126> = 223 · 8663 · C120
C120 = P54 · P67
P54 = 126466623195854517098346870112753670547872292270689591<54>
P67 = 1682713250659195660607781542641572535401816555627858765330728147207<67>
SNFS difficulty: 126 digits. Divisors found: r1=126466623195854517098346870112753670547872292270689591 (pp54) r2=1682713250659195660607781542641572535401816555627858765330728147207 (pp67) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.725). Factorization parameters were as follows: n: 212807062617787990216166538436032583867119589114424114468113766195552090826514448650547279373859505122352270343650622337 m: 10000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [450000, 750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 129306 x 129554 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,49,49,2.3,2.3,50000 total time: 1.50 hours.
(37·10145+17)/9 = 4(1)1443<146> = 353 · 2131 · C140
C140 = P45 · P47 · P49
P45 = 527010246557101099424149801137279030430573559<45>
P47 = 31339397888629582441406376485402492357432031637<47>
P49 = 3308958741102845839413788208190473225543080012977<49>
SNFS difficulty: 146 digits. Divisors found: r1=527010246557101099424149801137279030430573559 (pp45) r2=31339397888629582441406376485402492357432031637 (pp47) r3=3308958741102845839413788208190473225543080012977 (pp49) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.315). Factorization parameters were as follows: n: 54651370781929657186721725707133348015350240694976372144521266546994935294992590308066822969587102985486220690802189068041990568355054299091 m: 100000000000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 1940000 alim: 1940000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1940000/1940000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [970000, 2270001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 299480 x 299728 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1940000,1940000,26,26,49,49,2.3,2.3,100000 total time: 8.00 hours.
(37·10161+17)/9 = 4(1)1603<162> = 45293 · C157
C157 = P54 · P104
P54 = 154488738576400451457982464398604103495508054393481467<54>
P104 = 58753169523647679059266422943937672486812220399742768615027955753094899381427335186690263375374322360023<104>
SNFS difficulty: 163 digits. Divisors found: r1=154488738576400451457982464398604103495508054393481467 (pp54) r2=58753169523647679059266422943937672486812220399742768615027955753094899381427335186690263375374322360023 (pp104) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 9076703047073744532512995630916722476124591241717508469545208114081891486788490740536310491932773521539997595900274018305502199260616676111344161594752193741 m: 200000000000000000000000000000000 deg: 5 c5: 185 c0: 272 skew: 1.08 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1900000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 728927 x 729175 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,52,52,2.4,2.4,200000 total time: 28.00 hours.
(37·10172-1)/9 = 4(1)172<173> = 72 · 49675493159<11> · 581693342027508474141681883<27> · C134
C134 = P36 · C99
P36 = 284058421196271016127648080138696939<36>
C99 = [102216071466417735574182221688508636681384173985648829721984676231139297698278652475301191705869033<99>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2130306508 Step 1 took 9769ms Step 2 took 5973ms ********** Factor found in step 2: 284058421196271016127648080138696939 Found probable prime factor of 36 digits: 284058421196271016127648080138696939 Composite cofactor has 99 digits
By Robert Backstrom / GGNFS, Msieve
(37·10108+17)/9 = 4(1)1073<109> = 3 · 279294958181<12> · C97
C97 = P48 · P50
P48 = 104182055552360290276887991646980292952367714049<48>
P50 = 47095774354938298478289361041793337607914469549959<50>
Number: n N=4906534580127606927180094373743665249849469033907932112519677702181464751954187623632870631673991 ( 97 digits) SNFS difficulty: 111 digits. Divisors found: Wed Dec 10 07:21:09 2008 prp48 factor: 104182055552360290276887991646980292952367714049 Wed Dec 10 07:21:09 2008 prp50 factor: 47095774354938298478289361041793337607914469549959 Wed Dec 10 07:21:09 2008 elapsed time 00:06:28 (Msieve 1.39 - dependency 6) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.66 hours. Scaled time: 1.20 units (timescale=1.827). Factorization parameters were as follows: name: KA_4_1_107_3 n: 4906534580127606927180094373743665249849469033907932112519677702181464751954187623632870631673991 type: snfs skew: 2.15 deg: 5 c5: 37 c0: 1700 m: 10000000000000000000000 rlim: 460000 alim: 460000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 460000/460000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 180001) Primes: RFBsize:38458, AFBsize:38218, largePrimes:3390727 encountered Relations: rels:2783996, finalFF:78182 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 0.62 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,460000,460000,28,28,56,56,2.5,2.5,50000 total time: 0.66 hours. --------- CPU info (if available) ----------
(37·10118+17)/9 = 4(1)1173<119> = 59 · 109 · 780433 · C109
C109 = P30 · P80
P30 = 369285778102739495137261341581<30>
P80 = 22181070269155109783562069123105623896282019970639176229640191423908175990898051<80>
Number: n N=8191153793496486080155243826095227511849929831854706641774851002194663429312462621657955270889565525258158631 ( 109 digits) SNFS difficulty: 121 digits. Divisors found: r1=369285778102739495137261341581 (pp30) r2=22181070269155109783562069123105623896282019970639176229640191423908175990898051 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.40 hours. Scaled time: 2.56 units (timescale=1.823). Factorization parameters were as follows: name: KA_4_1_117_3 n: 8191153793496486080155243826095227511849929831854706641774851002194663429312462621657955270889565525258158631 type: snfs skew: 2.15 deg: 5 c5: 37 c0: 1700 m: 1000000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 10000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 280001) Primes: RFBsize:41538, AFBsize:41217, largePrimes:4239950 encountered Relations: rels:3579601, finalFF:93820 Max relations in full relation-set: 48 Initial matrix: 82822 x 93820 with sparse part having weight 11495097. Pruned matrix : 80528 x 81006 with weight 8340084. Total sieving time: 1.29 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,500000,500000,28,28,56,56,2.5,2.5,50000 total time: 1.40 hours. --------- CPU info (if available) ----------
(35·10157+1)/9 = 3(8)1569<158> = 32 · 13 · 19 · C155
C155 = P47 · P108
P47 = 48490980049404849877083686413436375909387700361<47>
P108 = 360765592388035467312597513412831108601623865988953111824323565795743335616112041862817403331969655385010463<108>
Number: n N=17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 ( 155 digits) SNFS difficulty: 159 digits. Divisors found: Thu Dec 11 00:28:30 2008 prp47 factor: 48490980049404849877083686413436375909387700361 Thu Dec 11 00:28:30 2008 prp108 factor: 360765592388035467312597513412831108601623865988953111824323565795743335616112041862817403331969655385010463 Thu Dec 11 00:28:30 2008 elapsed time 01:44:59 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.89 hours. Scaled time: 36.05 units (timescale=1.813). Factorization parameters were as follows: name: KA_3_8_156_9 n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 type: snfs skew: 0.98 deg: 5 c5: 28 c0: 25 m: 50000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 2650001) Primes: RFBsize:283146, AFBsize:283487, largePrimes:14859643 encountered Relations: rels:13076319, finalFF:601852 Max relations in full relation-set: 28 Msieve: found 1275837 hash collisions in 14147350 relations Msieve: matrix is 569553 x 569801 (153.6 MB) Initial matrix: Pruned matrix : Total sieving time: 19.53 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,56,56,2.5,2.5,100000 total time: 19.89 hours. --------- CPU info (if available) ----------
By Erik Branger / Msieve, GGNFS
(37·10109+17)/9 = 4(1)1083<110> = 23 · 22115353963<11> · 74107818511<11> · C88
C88 = P29 · P59
P29 = 20288855357221307444588716847<29>
P59 = 53754633920485650751518557177632083869545213561233239872861<59>
Tue Dec 09 18:19:49 2008 Msieve v. 1.38 Tue Dec 09 18:19:49 2008 random seeds: 04da1f68 d6132000 Tue Dec 09 18:19:49 2008 factoring 1090619992393115507959322991878114317418422491212703526318350782022189627286829408789267 (88 digits) Tue Dec 09 18:19:50 2008 searching for 15-digit factors Tue Dec 09 18:19:52 2008 commencing quadratic sieve (88-digit input) Tue Dec 09 18:19:52 2008 using multiplier of 3 Tue Dec 09 18:19:52 2008 using 64kb Pentium 4 sieve core Tue Dec 09 18:19:52 2008 sieve interval: 12 blocks of size 65536 Tue Dec 09 18:19:52 2008 processing polynomials in batches of 9 Tue Dec 09 18:19:52 2008 using a sieve bound of 1501873 (57333 primes) Tue Dec 09 18:19:52 2008 using large prime bound of 120149840 (26 bits) Tue Dec 09 18:19:52 2008 using double large prime bound of 349543879472720 (42-49 bits) Tue Dec 09 18:19:52 2008 using trial factoring cutoff of 49 bits Tue Dec 09 18:19:52 2008 polynomial 'A' values have 11 factors Tue Dec 09 19:32:43 2008 57703 relations (15932 full + 41771 combined from 603821 partial), need 57429 Tue Dec 09 19:32:44 2008 begin with 619753 relations Tue Dec 09 19:32:45 2008 reduce to 138230 relations in 10 passes Tue Dec 09 19:32:45 2008 attempting to read 138230 relations Tue Dec 09 19:32:49 2008 recovered 138230 relations Tue Dec 09 19:32:49 2008 recovered 115824 polynomials Tue Dec 09 19:32:49 2008 attempting to build 57703 cycles Tue Dec 09 19:32:49 2008 found 57703 cycles in 5 passes Tue Dec 09 19:32:49 2008 distribution of cycle lengths: Tue Dec 09 19:32:49 2008 length 1 : 15932 Tue Dec 09 19:32:49 2008 length 2 : 11388 Tue Dec 09 19:32:49 2008 length 3 : 10191 Tue Dec 09 19:32:49 2008 length 4 : 7570 Tue Dec 09 19:32:49 2008 length 5 : 5222 Tue Dec 09 19:32:49 2008 length 6 : 3299 Tue Dec 09 19:32:49 2008 length 7 : 1926 Tue Dec 09 19:32:49 2008 length 9+: 2175 Tue Dec 09 19:32:49 2008 largest cycle: 17 relations Tue Dec 09 19:32:50 2008 matrix is 57333 x 57703 (13.6 MB) with weight 3330045 (57.71/col) Tue Dec 09 19:32:50 2008 sparse part has weight 3330045 (57.71/col) Tue Dec 09 19:32:50 2008 filtering completed in 3 passes Tue Dec 09 19:32:50 2008 matrix is 52889 x 52953 (12.6 MB) with weight 3080639 (58.18/col) Tue Dec 09 19:32:50 2008 sparse part has weight 3080639 (58.18/col) Tue Dec 09 19:32:51 2008 saving the first 48 matrix rows for later Tue Dec 09 19:32:51 2008 matrix is 52841 x 52953 (8.5 MB) with weight 2479242 (46.82/col) Tue Dec 09 19:32:51 2008 sparse part has weight 1920939 (36.28/col) Tue Dec 09 19:32:51 2008 matrix includes 64 packed rows Tue Dec 09 19:32:51 2008 using block size 21181 for processor cache size 512 kB Tue Dec 09 19:32:52 2008 commencing Lanczos iteration Tue Dec 09 19:32:52 2008 memory use: 8.1 MB Tue Dec 09 19:33:19 2008 lanczos halted after 837 iterations (dim = 52841) Tue Dec 09 19:33:20 2008 recovered 18 nontrivial dependencies Tue Dec 09 19:33:20 2008 prp29 factor: 20288855357221307444588716847 Tue Dec 09 19:33:20 2008 prp59 factor: 53754633920485650751518557177632083869545213561233239872861 Tue Dec 09 19:33:20 2008 elapsed time 01:13:31
(37·10115+17)/9 = 4(1)1143<116> = 269 · 322463 · C108
C108 = P46 · P62
P46 = 5497749320430187878858053736352893214180573673<46>
P62 = 86206916448515400419165649243334368387994159291444142145800123<62>
Number: 41113_115 N=473944016321207528193875966209651546329520519049447684665186406286999056081568726718516936228666551733961779 ( 108 digits) SNFS difficulty: 116 digits. Divisors found: r1=5497749320430187878858053736352893214180573673 r2=86206916448515400419165649243334368387994159291444142145800123 Version: Total time: 1.75 hours. Scaled time: 1.38 units (timescale=0.788). Factorization parameters were as follows: n: 473944016321207528193875966209651546329520519049447684665186406286999056081568726718516936228666551733961779 m: 100000000000000000000000 deg: 5 c5: 37 c0: 17 skew: 0.86 type: snfs lss: 1 rlim: 610000 alim: 610000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 610000/610000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [305000, 505001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 63339 x 63557 Total sieving time: 1.75 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,610000,610000,25,25,45,45,2.2,2.2,50000 total time: 1.75 hours. --------- CPU info (if available) ----------
(37·10117+17)/9 = 4(1)1163<118> = 3 · C118
C118 = P39 · P80
P39 = 134559089698345633832840039614067963863<39>
P80 = 10184153099151195348037371312804759219593045915950096947235927280552420123916917<80>
Number: 41113_117 N=1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 ( 118 digits) SNFS difficulty: 119 digits. Divisors found: r1=134559089698345633832840039614067963863 r2=10184153099151195348037371312804759219593045915950096947235927280552420123916917 Version: Total time: 2.12 hours. Scaled time: 1.68 units (timescale=0.790). Factorization parameters were as follows: n: 1370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370370371 m: 200000000000000000000000 deg: 5 c5: 925 c0: 136 skew: 0.68 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 595001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 83361 x 83606 Total sieving time: 2.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 2.12 hours. --------- CPU info (if available) ----------
(34·10169-61)/9 = 3(7)1681<170> = C170
C170 = P56 · P115
P56 = 11317942006879836402511210783641114135063226371491831011<56>
P115 = 3337866350155691145550968735711381661348565396657188332750832547393613263199497115692457216756403748695193991635161<115>
Number: 37771_169 N=37777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 ( 170 digits) SNFS difficulty: 171 digits. Divisors found: r1=11317942006879836402511210783641114135063226371491831011 r2=3337866350155691145550968735711381661348565396657188332750832547393613263199497115692457216756403748695193991635161 Version: Total time: 107.44 hours. Scaled time: 231.85 units (timescale=2.158). Factorization parameters were as follows: n: 37777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771 m: 10000000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 6000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 998386 x 998633 Total sieving time: 107.44 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 107.44 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / ggnfs, msieve
(43·10189-7)/9 = 4(7)189<190> = 409889 · 10279043 · 23144637364386847695553<23> · C155
C155 = P53 · P103
P53 = 29909335929237981822985403260970890761599739765839699<53>
P103 = 1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833<103>
Number: 47777_189 N=48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 ( 155 digits) SNFS difficulty: 191 digits. Divisors found: r1=29909335929237981822985403260970890761599739765839699 r2=1638135600527218522474084632256993846436678807085787257035715605380077124636341859263839470084034319833 Version: Total time: 497.51 hours. Scaled time: 1275.61 units (timescale=2.564). Factorization parameters were as follows: n: 48995547973812574793179189250193418592905049952135556886116149139211425752282423974271146284116043931349369118869012729947615449980688775331671793574450267 m: 100000000000000000000000000000000000000 deg: 5 c5: 43 c0: -70 Y0: 100000000000000000000000000000000000000 Y1: -1 skew: 1.10 type: snfs lss: 1 rlim: 10900000 alim: 10900000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 qintsize: 1000000Factor base limits: 10900000/10900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [5450000, 12450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1711650 x 1711898 Total sieving time: 497.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,10900000,10900000,28,28,54,54,2.5,2.5,100000 total time: 497.51 hours. --------- CPU info (if available) ----------
Factorizations of 411...113 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Wataru Sakai / Msieve
10196+3 = 1(0)1953<197> = 7 · C196
C196 = P64 · P132
P64 = 2752508262761669324008667413574517577856587387092720436281875809<64>
P132 = 519007135382076014806320192315848747738324564942772903565586965269516034842355760568492424090789108493561735010406846967181255450181<132>
Number: 10003_196 N=1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 196 digits) SNFS difficulty: 196 digits. Divisors found: r1=2752508262761669324008667413574517577856587387092720436281875809 r2=519007135382076014806320192315848747738324564942772903565586965269516034842355760568492424090789108493561735010406846967181255450181 Version: Total time: 642.69 hours. Scaled time: 1295.02 units (timescale=2.015). Factorization parameters were as follows: n: 1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000000000000000000 deg: 5 c5: 10 c0: 3 skew: 0.79 type: snfs lss: 1 rlim: 12900000 alim: 12900000 lpbr: 28 lpba: 28 mfbr: 55 mfba: 55 rlambda: 2.5 alambda: 2.5Factor base limits: 12900000/12900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 55/55 Sieved rational special-q in [6450000, 13550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1916050 x 1916298 Total sieving time: 642.69 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,196,5,0,0,0,0,0,0,0,0,12900000,12900000,28,28,55,55,2.5,2.5,100000 total time: 642.69 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
(35·10151-17)/9 = 3(8)1507<152> = 37 · 7607 · 549302680970858401<18> · C129
C129 = P57 · P73
P57 = 118123717349038913397400950983195020461774566916898370759<57>
P73 = 2129421183757089787810934958106849683297394566265161960072723588038834827<73>
Number: 38887_151 N=251535146027178326982950809546578110289828500616900011712244631703787557941136548834954935449597346585500550412166434897007623693 ( 129 digits) SNFS difficulty: 153 digits. Divisors found: r1=118123717349038913397400950983195020461774566916898370759 (prp 57) r2=2129421183757089787810934958106849683297394566265161960072723588038834827 (prp 73) Version: Total time: 18.97 hours. Scaled time: 48.86 units (timescale=2.575). Factorization parameters were as follows: name: 38887_151 n: 251535146027178326982950809546578110289828500616900011712244631703787557941136548834954935449597346585500550412166434897007623693 m: 2000000000000000000000000000000 deg: 5 c5: 175 c0: -272 skew: 1.09 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2200001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 416757 x 417005 Total sieving time: 18.97 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 18.97 hours. --------- CPU info (if available) ----------
(35·10152-17)/9 = 3(8)1517<153> = 3 · 32348688376499948062857708229<29> · C124
C124 = P59 · P65
P59 = 42240598854390378377688655800680354702163772637296451470451<59>
P65 = 94867517757021778096754297616255666172836797900280601682198483651<65>
Number: 38887_152 N=4007260761886112998004137793495368715983783239142951653462846839189446808093663647938802239278248752261124422355781433096601 ( 124 digits) SNFS difficulty: 154 digits. Divisors found: r1=42240598854390378377688655800680354702163772637296451470451 (prp 59) r2=94867517757021778096754297616255666172836797900280601682198483651 (prp 65) Version: Total time: 19.04 hours. Scaled time: 48.82 units (timescale=2.564). Factorization parameters were as follows: name: 38887_152 n: 4007260761886112998004137793495368715983783239142951653462846839189446808093663647938802239278248752261124422355781433096601 m: 5000000000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1350000, 2250001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 521934 x 522182 Total sieving time: 19.04 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,50,50,2.4,2.4,100000 total time: 19.04 hours. --------- CPU info (if available) ----------
(35·10156-17)/9 = 3(8)1557<157> = 19 · 58096309927<11> · 1859651820102671746966417186881408253<37> · C109
C109 = P52 · P58
P52 = 1076928618506846748863383858027045833094779104071139<52>
P58 = 1759157919925246744872768718883007727648687170851865993997<58>
Number: 38887_156 N=1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583 ( 109 digits) Divisors found: r1=1076928618506846748863383858027045833094779104071139 (pp52) r2=1759157919925246744872768718883007727648687170851865993997 (pp58) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 25.17 hours. Scaled time: 11.91 units (timescale=0.473). Factorization parameters were as follows: name: 38887_156 n: 1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583 skew: 44524.45 # norm 3.17e+15 c5: 10320 c4: 2068196878 c3: -65703351504663 c2: -745065446135219667 c1: 75575430184751883893503 c0: -677900066464869477272057091 # alpha -7.08 Y1: 258066449773 Y0: -712452811785165984766 # Murphy_E 1.22e-09 # M 409044238670812684725748569170621213081722672516267442206910112806419631766964042691786034651274577905956326 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2700001) Primes: RFBsize:230209, AFBsize:230882, largePrimes:7115195 encountered Relations: rels:6825408, finalFF:526305 Max relations in full relation-set: 28 Initial matrix: 461173 x 526305 with sparse part having weight 38038048. Pruned matrix : 405124 x 407493 with weight 24200477. Polynomial selection time: 1.37 hours. Total sieving time: 17.86 hours. Total relation processing time: 0.49 hours. Matrix solve time: 5.16 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 25.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10169-17)/9 = 3(8)1687<170> = 37 · 9283 · 616717 · 7261187 · 2690791161620814877<19> · 1203662182305387631696435974379<31> · C103
C103 = P45 · P59
P45 = 111228175619580244012703383781260734185184707<45>
P59 = 70184707899453055525548085720106885156447759916870224213803<59>
Number: 38887_169 N=7806517016049305310583814338478114902043743974196109326508338472232780809105051328581261539459413910721 ( 103 digits) Divisors found: r1=111228175619580244012703383781260734185184707 (pp45) r2=70184707899453055525548085720106885156447759916870224213803 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.67 hours. Scaled time: 11.14 units (timescale=2.388). Factorization parameters were as follows: name: 38887_169 n: 7806517016049305310583814338478114902043743974196109326508338472232780809105051328581261539459413910721 skew: 6435.65 # norm 4.25e+14 c5: 327600 c4: 1341580360 c3: -28087535201805 c2: 27505657027816968 c1: -434236182625700756620 c0: -443139871734227666744928 # alpha -6.84 Y1: 24295412119 Y0: -29882876112108691223 # Murphy_E 2.39e-09 # M 5943626666779991075222796907480430371988929735998081121571940013048844424323463430802335138075319426611 type: gnfs rlim: 1400000 alim: 1400000 lpbr: 26 lpba: 26 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 50/50 Sieved algebraic special-q in [700000, 1400001) Primes: RFBsize:107126, AFBsize:107324, largePrimes:4895616 encountered Relations: rels:4876186, finalFF:317090 Max relations in full relation-set: 28 Initial matrix: 214535 x 317090 with sparse part having weight 31970719. Pruned matrix : 174914 x 176050 with weight 15170674. Polynomial selection time: 0.35 hours. Total sieving time: 4.07 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1400000,1400000,26,26,50,50,2.6,2.6,50000 total time: 4.67 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / GMP-ECM 6.2.1, GMP-ECM 6.2.1+Msieve-1.39/QS
(25·10197-43)/9 = 2(7)1963<198> = 32 · 557 · 69708090293108587957264033909<29> · 295129451897746307965079731115042417503<39> · C127
C127 = P44 · P84
P44 = 10098350951856973961514524512537529605446767<44>
P84 = 266718781518006085466517991346999437292650105384546657225926327572273641244537096069<84>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=510398281 Step 1 took 36142ms Step 2 took 18423ms ********** Factor found in step 2: 10098350951856973961514524512537529605446767 Found probable prime factor of 44 digits: 10098350951856973961514524512537529605446767 Probable prime cofactor 266718781518006085466517991346999437292650105384546657225926327572273641244537096069 has 84 digits
(22·10181+23)/9 = 2(4)1807<182> = 32 · 1858573 · 19707749 · 23468960719226551<17> · 785195612198167577972729<24> · C127
C127 = P38 · P39 · P51
P38 = 17785632801658181817419234383456954573<38>
P39 = 828838352497750545369169782925386115193<39>
P51 = 272966991471668803728822291820565994032634354475909<51>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1242344107 Step 1 took 36137ms Step 2 took 4961ms ********** Factor found in step 2: 828838352497750545369169782925386115193 Found probable prime factor of 39 digits: 828838352497750545369169782925386115193 Composite cofactor has 88 digits Mon Dec 8 10:17:24 2008 Mon Dec 8 10:17:24 2008 Msieve v. 1.39 Mon Dec 8 10:17:24 2008 random seeds: dc424cf8 f5bcfa1e Mon Dec 8 10:17:24 2008 factoring 4854890677288461848350056488138030029095188175960364440787486140231466977493816635881857 (88 digits) Mon Dec 8 10:17:24 2008 searching for 15-digit factors Mon Dec 8 10:17:25 2008 commencing quadratic sieve (88-digit input) Mon Dec 8 10:17:25 2008 using multiplier of 1 Mon Dec 8 10:17:25 2008 using 64kb Opteron sieve core Mon Dec 8 10:17:25 2008 sieve interval: 14 blocks of size 65536 Mon Dec 8 10:17:25 2008 processing polynomials in batches of 8 Mon Dec 8 10:17:25 2008 using a sieve bound of 1524851 (58000 primes) Mon Dec 8 10:17:25 2008 using large prime bound of 121988080 (26 bits) Mon Dec 8 10:17:25 2008 using double large prime bound of 359228912138960 (42-49 bits) Mon Dec 8 10:17:25 2008 using trial factoring cutoff of 49 bits Mon Dec 8 10:17:25 2008 polynomial 'A' values have 11 factors Mon Dec 8 11:03:38 2008 58445 relations (15726 full + 42719 combined from 617079 partial), need 58096 Mon Dec 8 11:03:38 2008 begin with 632805 relations Mon Dec 8 11:03:38 2008 reduce to 141869 relations in 9 passes Mon Dec 8 11:03:38 2008 attempting to read 141869 relations Mon Dec 8 11:03:39 2008 recovered 141869 relations Mon Dec 8 11:03:39 2008 recovered 117476 polynomials Mon Dec 8 11:03:40 2008 attempting to build 58445 cycles Mon Dec 8 11:03:40 2008 found 58445 cycles in 5 passes Mon Dec 8 11:03:40 2008 distribution of cycle lengths: Mon Dec 8 11:03:40 2008 length 1 : 15726 Mon Dec 8 11:03:40 2008 length 2 : 11364 Mon Dec 8 11:03:40 2008 length 3 : 10248 Mon Dec 8 11:03:40 2008 length 4 : 7718 Mon Dec 8 11:03:40 2008 length 5 : 5531 Mon Dec 8 11:03:40 2008 length 6 : 3430 Mon Dec 8 11:03:40 2008 length 7 : 2045 Mon Dec 8 11:03:40 2008 length 9+: 2383 Mon Dec 8 11:03:40 2008 largest cycle: 18 relations Mon Dec 8 11:03:40 2008 matrix is 58000 x 58445 (14.6 MB) with weight 3355288 (57.41/col) Mon Dec 8 11:03:40 2008 sparse part has weight 3355288 (57.41/col) Mon Dec 8 11:03:41 2008 filtering completed in 3 passes Mon Dec 8 11:03:41 2008 matrix is 53938 x 54001 (13.5 MB) with weight 3108334 (57.56/col) Mon Dec 8 11:03:41 2008 sparse part has weight 3108334 (57.56/col) Mon Dec 8 11:03:41 2008 saving the first 48 matrix rows for later Mon Dec 8 11:03:41 2008 matrix is 53890 x 54001 (9.1 MB) with weight 2445936 (45.29/col) Mon Dec 8 11:03:41 2008 sparse part has weight 1852810 (34.31/col) Mon Dec 8 11:03:41 2008 matrix includes 64 packed rows Mon Dec 8 11:03:41 2008 using block size 21600 for processor cache size 1024 kB Mon Dec 8 11:03:41 2008 commencing Lanczos iteration Mon Dec 8 11:03:41 2008 memory use: 8.1 MB Mon Dec 8 11:03:57 2008 lanczos halted after 854 iterations (dim = 53890) Mon Dec 8 11:03:57 2008 recovered 17 nontrivial dependencies Mon Dec 8 11:03:58 2008 prp38 factor: 17785632801658181817419234383456954573 Mon Dec 8 11:03:58 2008 prp51 factor: 272966991471668803728822291820565994032634354475909 Mon Dec 8 11:03:58 2008 elapsed time 00:46:34
(35·10139+1)/9 = 3(8)1389<140> = 32 · 13 · 19 · C137
C137 = P37 · P100
P37 = 4711525053547959827836928818968407243<37>
P100 = 3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301<100>
SNFS difficulty: 140 digits. Divisors found: r1=4711525053547959827836928818968407243 (pp37) r2=3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301 (pp100) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.314). Factorization parameters were as follows: n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [780000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194565 x 194813 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,49,49,2.3,2.3,100000 total time: 3.00 hours.
(35·10155+1)/9 = 3(8)1549<156> = 17328426330280651<17> · C140
C140 = P55 · P85
P55 = 8737120079789454811139398762185632204595767732620207073<55>
P85 = 2568609627631786308344700400368235052270213245925487584490856911668202549658932772843<85>
SNFS difficulty: 156 digits. Divisors found: r1=8737120079789454811139398762185632204595767732620207073 (pp55) r2=2568609627631786308344700400368235052270213245925487584490856911668202549658932772843 (pp85) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.733). Factorization parameters were as follows: n: 22442250754722194601748660361573267317561028049968809187627893076057064731116896384383693819340329032336152489251152638084249145424730918539 m: 10000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2300001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 485185 x 485433 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 13.00 hours.
(35·10159-17)/9 = 3(8)1587<160> = 132 · 65257 · 14268157 · C146
C146 = P36 · P44 · P66
P36 = 900723308910475183047680333245858277<36>
P44 = 93911989316878837694411058288113772487947233<44>
P66 = 292167163732202035035400549617558221929515408022408002322526037047<66>
SNFS difficulty: 160 digits. Divisors found: r1=900723308910475183047680333245858277 (pp36) r2=93911989316878837694411058288113772487947233 (pp44) r3=292167163732202035035400549617558221929515408022408002322526037047 (pp66) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 24714045752811968491542850976384650377766399465017040896140429801589203784478666528272728610806543632806391272680689057714714781765469735273001427 m: 100000000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 556589 x 556837 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,200000 total time: 20.00 hours.
(10188+71)/9 = (1)1879<188> = 5051 · 11593 · 25889 · C175
C175 = P32 · C143
P32 = 77117398087105878766860647707673<32>
C143 = [95042235417061342709137038769115156978823101279373950507224840278843986985720234251760664055691722544383397021632330291947586450809724093964989<143>]
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=285739272 Step 1 took 5633ms Step 2 took 3514ms ********** Factor found in step 2: 77117398087105878766860647707673 Found probable prime factor of 32 digits: 77117398087105878766860647707673 Composite cofactor has 143 digits
By Robert Backstrom / GGNFS
(35·10142-17)/9 = 3(8)1417<143> = 37 · 24851 · 1638208606894922829008039249<28> · C110
C110 = P51 · P60
P51 = 226680845566547999740279589713872828602549663480669<51>
P60 = 113892706687805799382922156923032816068749972971507800267021<60>
Number: n N=25817295055854654959004012619776998646132580075897349544869694038625052469240774647237550816394496410471717049 ( 110 digits) SNFS difficulty: 144 digits. Divisors found: r1=226680845566547999740279589713872828602549663480669 (pp51) r2=113892706687805799382922156923032816068749972971507800267021 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.50 hours. Scaled time: 11.85 units (timescale=1.824). Factorization parameters were as follows: name: KA_3_8_141_7 n: 25817295055854654959004012619776998646132580075897349544869694038625052469240774647237550816394496410471717049 type: snfs skew: 1.72 deg: 5 c5: 28 c0: -425 m: 50000000000000000000000000000 rlim: 1400000 alim: 1400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:107126, AFBsize:106958, largePrimes:9584465 encountered Relations: rels:8444842, finalFF:240314 Max relations in full relation-set: 48 Initial matrix: 214151 x 240314 with sparse part having weight 34092867. Pruned matrix : 207603 x 208737 with weight 25906468. Total sieving time: 5.70 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.46 hours. Total square root time: 0.16 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1400000,1400000,28,28,56,56,2.5,2.5,100000 total time: 6.50 hours. --------- CPU info (if available) ----------
By Serge Batalov / PFGW
(28·1096743+71)/9 = 3(1)967429<96744> is PRP.
It's the largest unprovable PRP in our tables so far. Congratulations!
By Justin Card / msieve 1.39
(29·10102+61)/9 = 3(2)1019<103> = 41232703 · C95
C95 = P35 · P61
P35 = 64818012805041651210696411371692207<35>
P61 = 1205640894111136574747224703848636622066787269446361488487749<61>
Sun Dec 7 16:27:13 2008 Sun Dec 7 16:27:13 2008 Sun Dec 7 16:27:13 2008 Msieve v. 1.39 Sun Dec 7 16:27:13 2008 random seeds: 246e521a 2bff3da1 Sun Dec 7 16:27:13 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 16:27:13 2008 searching for 15-digit factors Sun Dec 7 16:27:14 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 16:27:14 2008 using multiplier of 3 Sun Dec 7 16:27:14 2008 using 64kb Opteron sieve core Sun Dec 7 16:27:14 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 16:27:14 2008 processing polynomials in batches of 6 Sun Dec 7 16:27:14 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 16:27:14 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 16:27:14 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 16:27:14 2008 using trial factoring cutoff of 51 bits Sun Dec 7 16:27:14 2008 polynomial 'A' values have 12 factors Sun Dec 7 16:27:26 2008 Sun Dec 7 16:27:26 2008 Sun Dec 7 16:27:26 2008 Msieve v. 1.39 Sun Dec 7 16:27:26 2008 random seeds: 666dd84d c9507886 Sun Dec 7 16:27:26 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 16:27:26 2008 searching for 15-digit factors Sun Dec 7 16:27:27 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 16:27:27 2008 using multiplier of 3 Sun Dec 7 16:27:27 2008 using 64kb Opteron sieve core Sun Dec 7 16:27:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 16:27:27 2008 processing polynomials in batches of 6 Sun Dec 7 16:27:27 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 16:27:27 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 16:27:27 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 16:27:27 2008 using trial factoring cutoff of 51 bits Sun Dec 7 16:27:27 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:49:22 2008 6019 relations (4845 full + 1174 combined from 298966 partial), need 81242 Sun Dec 7 17:49:22 2008 elapsed time 01:21:56 Sun Dec 7 17:49:42 2008 4760 relations (4760 full + 0 combined from 295056 partial), need 81242 Sun Dec 7 17:49:42 2008 elapsed time 01:22:29 Sun Dec 7 17:50:05 2008 Sun Dec 7 17:50:05 2008 Sun Dec 7 17:50:05 2008 Msieve v. 1.39 Sun Dec 7 17:50:05 2008 random seeds: 70f2f3d1 b7dd4591 Sun Dec 7 17:50:05 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:50:06 2008 searching for 15-digit factors Sun Dec 7 17:50:06 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:50:07 2008 using multiplier of 3 Sun Dec 7 17:50:07 2008 using 64kb Opteron sieve core Sun Dec 7 17:50:07 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:50:07 2008 processing polynomials in batches of 6 Sun Dec 7 17:50:07 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:50:07 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:50:07 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:50:07 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:50:07 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:50:07 2008 restarting with 9605 full and 594022 partial relations Sun Dec 7 17:50:12 2008 Sun Dec 7 17:50:12 2008 Sun Dec 7 17:50:12 2008 Msieve v. 1.39 Sun Dec 7 17:50:12 2008 random seeds: a05eca4c 9a78ecf8 Sun Dec 7 17:50:12 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:50:13 2008 searching for 15-digit factors Sun Dec 7 17:50:13 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:50:13 2008 using multiplier of 3 Sun Dec 7 17:50:13 2008 using 64kb Opteron sieve core Sun Dec 7 17:50:13 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:50:13 2008 processing polynomials in batches of 6 Sun Dec 7 17:50:13 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:50:13 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:50:13 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:50:13 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:50:13 2008 polynomial 'A' values have 12 factors Sun Dec 7 17:50:14 2008 restarting with 4760 full and 295056 partial relations Sun Dec 7 17:53:50 2008 4992 relations (4992 full + 0 combined from 308433 partial), need 81242 Sun Dec 7 17:53:50 2008 elapsed time 00:03:38 Sun Dec 7 17:53:58 2008 Sun Dec 7 17:53:58 2008 Sun Dec 7 17:53:58 2008 Msieve v. 1.39 Sun Dec 7 17:53:58 2008 random seeds: 6485572e dc777515 Sun Dec 7 17:53:58 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 17:53:59 2008 searching for 15-digit factors Sun Dec 7 17:54:00 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 17:54:00 2008 using multiplier of 3 Sun Dec 7 17:54:00 2008 using 64kb Opteron sieve core Sun Dec 7 17:54:00 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 17:54:00 2008 processing polynomials in batches of 6 Sun Dec 7 17:54:00 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 17:54:00 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 17:54:00 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 17:54:00 2008 using trial factoring cutoff of 51 bits Sun Dec 7 17:54:00 2008 polynomial 'A' values have 12 factors Sun Dec 7 18:45:27 2008 3104 relations (3104 full + 0 combined from 194276 partial), need 81242 Sun Dec 7 18:45:27 2008 elapsed time 00:51:29 Sun Dec 7 18:45:30 2008 28866 relations (12746 full + 16120 combined from 797473 partial), need 81242 Sun Dec 7 18:45:30 2008 elapsed time 00:55:25 Sun Dec 7 18:46:11 2008 Sun Dec 7 18:46:11 2008 Sun Dec 7 18:46:11 2008 Msieve v. 1.39 Sun Dec 7 18:46:11 2008 random seeds: edef846a 24c3dbe7 Sun Dec 7 18:46:11 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 18:46:11 2008 searching for 15-digit factors Sun Dec 7 18:46:12 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 18:46:12 2008 using multiplier of 3 Sun Dec 7 18:46:12 2008 using 64kb Opteron sieve core Sun Dec 7 18:46:12 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 18:46:12 2008 processing polynomials in batches of 6 Sun Dec 7 18:46:12 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 18:46:12 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 18:46:12 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 18:46:12 2008 using trial factoring cutoff of 51 bits Sun Dec 7 18:46:12 2008 polynomial 'A' values have 12 factors Sun Dec 7 18:46:13 2008 restarting with 15850 full and 991749 partial relations Sun Dec 7 18:49:30 2008 Sun Dec 7 18:49:30 2008 Sun Dec 7 18:49:30 2008 Msieve v. 1.39 Sun Dec 7 18:49:30 2008 random seeds: f2f6d37b b6eddc32 Sun Dec 7 18:49:30 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 18:49:30 2008 searching for 15-digit factors Sun Dec 7 18:49:31 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 18:49:31 2008 using multiplier of 3 Sun Dec 7 18:49:31 2008 using 64kb Opteron sieve core Sun Dec 7 18:49:31 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 18:49:31 2008 processing polynomials in batches of 6 Sun Dec 7 18:49:31 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 18:49:31 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 18:49:31 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 18:49:31 2008 using trial factoring cutoff of 51 bits Sun Dec 7 18:49:31 2008 polynomial 'A' values have 12 factors Sun Dec 7 19:43:14 2008 79041 relations (19345 full + 59696 combined from 1210075 partial), need 81242 Sun Dec 7 19:43:14 2008 elapsed time 00:57:03 Sun Dec 7 19:43:18 2008 3309 relations (3309 full + 0 combined from 204475 partial), need 81242 Sun Dec 7 19:43:18 2008 elapsed time 00:53:48 Sun Dec 7 19:43:26 2008 Sun Dec 7 19:43:26 2008 Sun Dec 7 19:43:26 2008 Msieve v. 1.39 Sun Dec 7 19:43:26 2008 random seeds: 865ca451 35158040 Sun Dec 7 19:43:26 2008 factoring 78147246912777515997974283233922894218752096417792988789074105139850332446607301544655518272043 (95 digits) Sun Dec 7 19:43:26 2008 searching for 15-digit factors Sun Dec 7 19:43:27 2008 commencing quadratic sieve (95-digit input) Sun Dec 7 19:43:27 2008 using multiplier of 3 Sun Dec 7 19:43:27 2008 using 64kb Opteron sieve core Sun Dec 7 19:43:27 2008 sieve interval: 18 blocks of size 65536 Sun Dec 7 19:43:27 2008 processing polynomials in batches of 6 Sun Dec 7 19:43:27 2008 using a sieve bound of 2196599 (81146 primes) Sun Dec 7 19:43:27 2008 using large prime bound of 329489850 (28 bits) Sun Dec 7 19:43:27 2008 using double large prime bound of 2148402323041500 (43-51 bits) Sun Dec 7 19:43:27 2008 using trial factoring cutoff of 51 bits Sun Dec 7 19:43:27 2008 polynomial 'A' values have 12 factors Sun Dec 7 19:43:28 2008 restarting with 22654 full and 1414550 partial relations Sun Dec 7 19:43:28 2008 119699 relations (22654 full + 97045 combined from 1414550 partial), need 81242 Sun Dec 7 19:43:29 2008 begin with 1437204 relations Sun Dec 7 19:43:31 2008 reduce to 316559 relations in 11 passes Sun Dec 7 19:43:31 2008 attempting to read 316559 relations Sun Dec 7 19:43:34 2008 recovered 316559 relations Sun Dec 7 19:43:34 2008 recovered 292182 polynomials Sun Dec 7 19:43:34 2008 attempting to build 119699 cycles Sun Dec 7 19:43:34 2008 found 119699 cycles in 6 passes Sun Dec 7 19:43:34 2008 distribution of cycle lengths: Sun Dec 7 19:43:34 2008 length 1 : 22654 Sun Dec 7 19:43:34 2008 length 2 : 18504 Sun Dec 7 19:43:34 2008 length 3 : 20280 Sun Dec 7 19:43:34 2008 length 4 : 17688 Sun Dec 7 19:43:34 2008 length 5 : 14417 Sun Dec 7 19:43:34 2008 length 6 : 10278 Sun Dec 7 19:43:34 2008 length 7 : 6738 Sun Dec 7 19:43:34 2008 length 9+: 9140 Sun Dec 7 19:43:34 2008 largest cycle: 21 relations Sun Dec 7 19:43:35 2008 matrix is 81146 x 119699 (37.0 MB) with weight 8736674 (72.99/col) Sun Dec 7 19:43:35 2008 sparse part has weight 8736674 (72.99/col) Sun Dec 7 19:43:38 2008 filtering completed in 4 passes Sun Dec 7 19:43:38 2008 matrix is 74044 x 74108 (17.5 MB) with weight 4003119 (54.02/col) Sun Dec 7 19:43:38 2008 sparse part has weight 4003119 (54.02/col) Sun Dec 7 19:43:38 2008 saving the first 48 matrix rows for later Sun Dec 7 19:43:38 2008 matrix is 73996 x 74108 (12.4 MB) with weight 3237909 (43.69/col) Sun Dec 7 19:43:38 2008 sparse part has weight 2512684 (33.91/col) Sun Dec 7 19:43:38 2008 matrix includes 64 packed rows Sun Dec 7 19:43:38 2008 using block size 10922 for processor cache size 256 kB Sun Dec 7 19:43:38 2008 commencing Lanczos iteration Sun Dec 7 19:43:38 2008 memory use: 11.0 MB Sun Dec 7 19:44:13 2008 lanczos halted after 1171 iterations (dim = 73996) Sun Dec 7 19:44:13 2008 recovered 18 nontrivial dependencies Sun Dec 7 19:44:15 2008 prp35 factor: 64818012805041651210696411371692207 Sun Dec 7 19:44:15 2008 prp61 factor: 1205640894111136574747224703848636622066787269446361488487749 Sun Dec 7 19:44:15 2008 elapsed time 00:00:49
By Sinkiti Sibata /
(35·10138-17)/9 = 3(8)1377<139> = 19 · 1049 · 309769 · 470663 · C124
C124 = P56 · P68
P56 = 38057395340621219550760269513883685643294306836546403397<56>
P68 = 35164898775576928212777153301681488449949331239308314024794822219503<68>
Number: 38887_138 N=1338284454815058216196354013354479303825956017779159462864869199752050231785163301790065223124319268085524058511255518851691 ( 124 digits) SNFS difficulty: 140 digits. Divisors found: r1=38057395340621219550760269513883685643294306836546403397 (prp56) r2=35164898775576928212777153301681488449949331239308314024794822219503 (prp68) Version: Total time: 5.90 hours. Scaled time: 15.19 units (timescale=2.575). Factorization parameters were as follows: name:38887_138 n: 1338284454815058216196354013354479303825956017779159462864869199752050231785163301790065223124319268085524058511255518851691 m: 5000000000000000000000000000 deg: 5 c5: 56 c0: -85 skew: 1.09 type: snfs lss: 1 rlim: 1520000 alim: 1520000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1520000/1520000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [760000, 1585001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 251726 x 251974 Total sieving time: 5.90 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1520000,1520000,26,26,48,48,2.3,2.3,75000 total time: 5.90 hours. --------- CPU info (if available) ----------
(35·10141-17)/9 = 3(8)1407<142> = 13 · 2879 · 24457822001458490363244626531<29> · C109
C109 = P53 · P56
P53 = 73820734517195491206986826554621892806273334976028047<53>
P56 = 57549873803153056003497272592233619822725268242612595233<56>
Number: 38887_141 N=4248373955520665359043123124769657924122696491420890193547031337963357606208311364487248645291710324866499951 ( 109 digits) SNFS difficulty: 143 digits. Divisors found: r1=73820734517195491206986826554621892806273334976028047 (prp 53) r2=57549873803153056003497272592233619822725268242612595233 (prp 56) Version: Total time: 8.16 hours. Scaled time: 20.91 units (timescale=2.564). Factorization parameters were as follows: name: 38887_141 n: 4248373955520665359043123124769657924122696491420890193547031337963357606208311364487248645291710324866499951 m: 20000000000000000000000000000 deg: 5 c5: 175 c0: -272 skew: 1.09 type: snfs lss: 1 rlim: 1740000 alim: 1740000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1740000/1740000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [870000, 1970001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 264690 x 264938 Total sieving time: 8.16 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1740000,1740000,26,26,48,48,2.3,2.3,100000 total time: 8.16 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(35·10150+1)/9 = 3(8)1499<151> = 449 · 2251 · 670051 · C139
C139 = P49 · P91
P49 = 2672290540824465915914614009423625553247516207069<49>
P91 = 2148880004904170262568464197161540753125392466048489311759094604779127603367722353590597069<91>
SNFS difficulty: 151 digits. Divisors found: r1=2672290540824465915914614009423625553247516207069 (pp49) r2=2148880004904170262568464197161540753125392466048489311759094604779127603367722353590597069 (pp91) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 5742431710472246120644939956303442596465371964729863375287394745063218499520351618003208616411038581580501974256356707777534416781948480761 m: 1000000000000000000000000000000 deg: 5 c5: 35 c0: 1 skew: 0.49 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 419644 x 419892 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,51,51,2.4,2.4,100000 total time: 9.00 hours.
(31·10169+41)/9 = 3(4)1689<170> = 32 · 13 · 211 · 353 · C163
C163 = P48 · P52 · P64
P48 = 272869429905872532325536091824056889627588294853<48>
P52 = 1797604110257900740437824679232652384721954009407117<52>
P64 = 8057999312340717756148290734205967665222488391182536291058446159<64>
SNFS difficulty: 171 digits. Divisors found: r1=272869429905872532325536091824056889627588294853 (pp48) r2=1797604110257900740437824679232652384721954009407117 (pp52) r3=8057999312340717756148290734205967665222488391182536291058446159 (pp64) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.732). Factorization parameters were as follows: n: 3952538982903853634982438423044556882703394882907881399707274962926140599793200610389320117266986574971842303537679216245690027179315562794566952115206974257585359 m: 10000000000000000000000000000000000 deg: 5 c5: 31 c0: 410 skew: 1.68 type: snfs lss: 1 rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2500000, 5800001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 977723 x 977971 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,52,52,2.4,2.4,100000 total time: 49.00 hours.
By Justin Card / GGNFS, msieve
(29·10114+61)/9 = 3(2)1139<115> = 19 · 529043 · 131498189 · C100
C100 = P35 · P66
P35 = 13627837353418736230548561825683197<35>
P66 = 178880994899876454053601851276075491188480810887295136045474447189<66>
Number: 32229_114 N=2437761104113242789158014351988528630173349071448713576584407698125610142992752078271723965821183233 ( 100 digits) SNFS difficulty: 116 digits. Divisors found: r1=13627837353418736230548561825683197 r2=178880994899876454053601851276075491188480810887295136045474447189 Version: Total time: 0.38 hours. Scaled time: 0.00 units (timescale=2.093). Factorization parameters were as follows: n: 2437761104113242789158014351988528630173349071448713576584407698125610142992752078271723965821183233 m: 50000000000000000000000 deg: 5 c5: 464 c0: 305 skew: 0.92 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60867 x 61101 Total sieving time: 0.00 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.00 hours. --------- CPU info (if available) ---------- [ 26.316871] Memory: 3054544k/3111872k available (2523k kernel code, 56940k reserved, 1328k data, 328k init) [ 26.463157] Calibrating delay using timer specific routine.. 3982.78 BogoMIPS (lpj=19913938) [ 27.245296] Calibrating delay using timer specific routine.. 3979.63 BogoMIPS (lpj=19898169)
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10181-17)/9 = 3(8)1807<182> = 37 · 5783 · 8291 · 6221154558239353306655743<25> · 1259634470484335012059329643<28> · C121
C121 = P36 · P86
P36 = 100287270379262073062534543329774973<36>
P86 = 27893458439383066549646630630840407002770488829451805100233906262131129518370132230671<86>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=730062768 Step 1 took 9937ms Step 2 took 5714ms ********** Factor found in step 2: 100287270379262073062534543329774973 Found probable prime factor of 36 digits: 100287270379262073062534543329774973 Probable prime cofactor 27893458439383066549646630630840407002770488829451805100233906262131129518370132230671 has 86 digits
(35·10159+1)/9 = 3(8)1589<160> = 7829 · 1982316236372128463169333701<28> · C129
C129 = P41 · P89
P41 = 20276996658433163995117586251763240946991<41>
P89 = 12357843020120421119265960598992168176546184213774282216299622263920595989161202430965951<89>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=758478317 Step 1 took 9850ms Step 2 took 6023ms ********** Factor found in step 2: 20276996658433163995117586251763240946991 Found probable prime factor of 41 digits: 20276996658433163995117586251763240946991 Probable prime cofactor 12357843020120421119265960598992168176546184213774282216299622263920595989161202430965951 has 89 digits
(35·10187-17)/9 = 3(8)1867<188> = 37 · 293 · 44819 · 22323411871<11> · 23575219891<11> · C159
C159 = P31 · P128
P31 = 5405268658708132199635096286107<31>
P128 = 28135874568677300735640012694914520710640214152856963017290900531616339376629182034845122781934860626430793955513760673461885739<128>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3147506786 Step 1 took 10865ms Step 2 took 5612ms ********** Factor found in step 2: 5405268658708132199635096286107 Found probable prime factor of 31 digits: 5405268658708132199635096286107 Probable prime cofactor 28135874568677300735640012694914520710640214152856963017290900531616339376629182034845122781934860626430793955513760673461885739 has 128 digits
(35·10164+1)/9 = 3(8)1639<165> = 282833 · 347981 · C154
C154 = P31 · C124
P31 = 1195263561592703068137949500679<31>
C124 = [3305797470684590126516118944166244859718767479459168848484632525243758609790874378955530593175883268566507494694347289345867<124>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1440214857 Step 1 took 9229ms Step 2 took 5176ms ********** Factor found in step 2: 1195263561592703068137949500679 Found probable prime factor of 31 digits: 1195263561592703068137949500679 Composite cofactor has 124 digits
(34·10165+11)/9 = 3(7)1649<166> = 23 · 541 · 11059 · C158
C158 = P45 · P51 · P63
P45 = 132305034338835795699004205791407388620792643<45>
P51 = 547267159590746377431429613203845746240770116543947<51>
P63 = 379157534695536082042970312038325842573501978968316577268679027<63>
SNFS difficulty: 166 digits. Divisors found: r1=132305034338835795699004205791407388620792643 (pp45) r2=547267159590746377431429613203845746240770116543947 (pp51) r3=379157534695536082042970312038325842573501978968316577268679027 (pp63) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.726). Factorization parameters were as follows: n: 27453356418408572643857693062662714781848689852313239957734007486674021695384722507363682581215084634583871749164999906783743184612421503819077187673614470867 m: 1000000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2100000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 732615 x 732863 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,52,52,2.4,2.4,100000 total time: 27.00 hours.
(35·10196+1)/9 = 3(8)1959<197> = 3 · 332179 · C191
C191 = P35 · C157
P35 = 11088048895176551020181292564409681<35>
C157 = [3519467624159191575455544285483961051122934211187407132902172790668680150206026331946662339397093151348832771154819848849822738248941373366285643225728428337<157>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2788871739 Step 1 took 16422ms Step 2 took 8551ms ********** Factor found in step 2: 11088048895176551020181292564409681 Found probable prime factor of 35 digits: 11088048895176551020181292564409681 Composite cofactor has 157 digits
(35·10176-17)/9 = 3(8)1757<177> = 3 · 379 · 577 · 16633 · 8626865492539519<16> · 72485366745861100910529372318687451<35> · C116
C116 = P35 · P82
P35 = 16287071657624667201329691914058751<35>
P82 = 3499228437398053869070314749177548455789874474953667584190158156018462102243163469<82>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1452233116 Step 1 took 10696ms Step 2 took 5610ms ********** Factor found in step 2: 16287071657624667201329691914058751 Found probable prime factor of 35 digits: 16287071657624667201329691914058751 Probable prime cofactor 3499228437398053869070314749177548455789874474953667584190158156018462102243163469 has 82 digits
(35·10158+1)/9 = 3(8)1579<159> = 6479735363<10> · C149
C149 = P43 · P107
P43 = 1930617658092374610982383853322441180442017<43>
P107 = 31086511703887452946743635557423166013615764652218926546381262043929479546241125975302646673487898198639859<107>
SNFS difficulty: 160 digits. Divisors found: r1=1930617658092374610982383853322441180442017 (pp43) r2=31086511703887452946743635557423166013615764652218926546381262043929479546241125975302646673487898198639859 (pp107) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.698). Factorization parameters were as follows: n: 60016168424020388329073322510144754022555425291507987297549899784215753764400901026255212035406836859255372168644055917579436629361137829061814555603 m: 100000000000000000000000000000000 deg: 5 c5: 7 c0: 20 skew: 1.23 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 555526 x 555774 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
By Robert Backstrom / GGNFS, Msieve
(35·10149-71)/9 = 3(8)1481<150> = 32 · 2203 · 669283 · 3873391 · 825404825109791<15> · C118
C118 = P53 · P66
P53 = 21904388228641440264076699571380925440070866529091293<53>
P66 = 418474754978414314848577390358111307476223571900094192394791077277<66>
Number: n N=9166433496932789469618650418665606801499463302417877899339615168342547900124545005831172681724367567313089423350849161 ( 118 digits) SNFS difficulty: 150 digits. Divisors found: r1=21904388228641440264076699571380925440070866529091293 (pp53) r2=418474754978414314848577390358111307476223571900094192394791077277 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.17 hours. Scaled time: 18.59 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_8_148_1 n: 9166433496932789469618650418665606801499463302417877899339615168342547900124545005831172681724367567313089423350849161 type: snfs skew: 1.83 deg: 5 c5: 7 c0: -142 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:148933, AFBsize:148781, largePrimes:9739262 encountered Relations: rels:8588387, finalFF:411950 Max relations in full relation-set: 48 Initial matrix: 297779 x 411950 with sparse part having weight 46016329. Pruned matrix : 243037 x 244589 with weight 20701272. Total sieving time: 9.51 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.46 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,56,56,2.5,2.5,100000 total time: 10.17 hours. --------- CPU info (if available) ----------
(35·10184+1)/9 = 3(8)1839<185> = 32 · 17 · 227 · 1237 · 3028427 · 6880873 · 106942088993<12> · 938679944328740548919086924469<30> · 8184269571777502631981099728373<31> · C92
C92 = P44 · P48
P44 = 73116907767253706535802059911323219242216637<44>
P48 = 723125958039174656868976766045499019103903811041<48>
Mon Dec 08 04:06:31 2008 Mon Dec 08 04:06:31 2008 Mon Dec 08 04:06:31 2008 Msieve v. 1.39 Mon Dec 08 04:06:31 2008 random seeds: 65016500 55b5b456 Mon Dec 08 04:06:31 2008 factoring 52872733978057307340855511944849149533604403870713397705309533293503411357398195660834489117 (92 digits) Mon Dec 08 04:06:31 2008 searching for 15-digit factors Mon Dec 08 04:06:32 2008 commencing quadratic sieve (92-digit input) Mon Dec 08 04:06:32 2008 using multiplier of 17 Mon Dec 08 04:06:32 2008 using 64kb Opteron sieve core Mon Dec 08 04:06:32 2008 sieve interval: 18 blocks of size 65536 Mon Dec 08 04:06:32 2008 processing polynomials in batches of 6 Mon Dec 08 04:06:32 2008 using a sieve bound of 1821649 (68071 primes) Mon Dec 08 04:06:32 2008 using large prime bound of 198559741 (27 bits) Mon Dec 08 04:06:32 2008 using double large prime bound of 863384216847394 (42-50 bits) Mon Dec 08 04:06:32 2008 using trial factoring cutoff of 50 bits Mon Dec 08 04:06:32 2008 polynomial 'A' values have 12 factors Mon Dec 08 05:39:54 2008 68410 relations (17341 full + 51069 combined from 862287 partial), need 68167 Mon Dec 08 05:39:56 2008 begin with 879628 relations Mon Dec 08 05:39:56 2008 reduce to 173079 relations in 9 passes Mon Dec 08 05:39:56 2008 attempting to read 173079 relations Mon Dec 08 05:39:58 2008 recovered 173079 relations Mon Dec 08 05:39:58 2008 recovered 155795 polynomials Mon Dec 08 05:39:59 2008 attempting to build 68410 cycles Mon Dec 08 05:39:59 2008 found 68410 cycles in 6 passes Mon Dec 08 05:39:59 2008 distribution of cycle lengths: Mon Dec 08 05:39:59 2008 length 1 : 17341 Mon Dec 08 05:39:59 2008 length 2 : 12441 Mon Dec 08 05:39:59 2008 length 3 : 11719 Mon Dec 08 05:39:59 2008 length 4 : 9251 Mon Dec 08 05:39:59 2008 length 5 : 6736 Mon Dec 08 05:39:59 2008 length 6 : 4614 Mon Dec 08 05:39:59 2008 length 7 : 2755 Mon Dec 08 05:39:59 2008 length 9+: 3553 Mon Dec 08 05:39:59 2008 largest cycle: 20 relations Mon Dec 08 05:39:59 2008 matrix is 68071 x 68410 (16.5 MB) with weight 4054670 (59.27/col) Mon Dec 08 05:39:59 2008 sparse part has weight 4054670 (59.27/col) Mon Dec 08 05:40:00 2008 filtering completed in 3 passes Mon Dec 08 05:40:00 2008 matrix is 64574 x 64638 (15.6 MB) with weight 3842697 (59.45/col) Mon Dec 08 05:40:00 2008 sparse part has weight 3842697 (59.45/col) Mon Dec 08 05:40:00 2008 saving the first 48 matrix rows for later Mon Dec 08 05:40:00 2008 matrix is 64526 x 64638 (8.6 MB) with weight 2872762 (44.44/col) Mon Dec 08 05:40:00 2008 sparse part has weight 1861575 (28.80/col) Mon Dec 08 05:40:00 2008 matrix includes 64 packed rows Mon Dec 08 05:40:00 2008 using block size 25855 for processor cache size 1024 kB Mon Dec 08 05:40:01 2008 commencing Lanczos iteration Mon Dec 08 05:40:01 2008 memory use: 9.2 MB Mon Dec 08 05:40:22 2008 lanczos halted after 1022 iterations (dim = 64525) Mon Dec 08 05:40:22 2008 recovered 17 nontrivial dependencies Mon Dec 08 05:40:23 2008 prp44 factor: 73116907767253706535802059911323219242216637 Mon Dec 08 05:40:23 2008 prp48 factor: 723125958039174656868976766045499019103903811041 Mon Dec 08 05:40:23 2008 elapsed time 01:33:52
(35·10187+1)/9 = 3(8)1869<188> = 3 · 13 · 229 · 6803 · 165946619 · 555455585147537219<18> · 4965159428650814398623665321<28> · 38675511208479660394046433269<29> · C98
C98 = P38 · P61
P38 = 29605251527267858956304593927958498437<38>
P61 = 1221431769936255690871056105778224165151337790826816109487361<61>
Number: n N=36160794772358817923915172072137409410750681709608392276080587830286144849317269422486703389754757 ( 98 digits) Divisors found: r1=29605251527267858956304593927958498437 (pp38) r2=1221431769936255690871056105778224165151337790826816109487361 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.53 hours. Scaled time: 6.43 units (timescale=1.822). Factorization parameters were as follows: name: KA_3_8_186_9 n: 36160794772358817923915172072137409410750681709608392276080587830286144849317269422486703389754757 type: gnfs deg: 5 Y0: -7718508806807778569 Y1: 8556960283 c0: -1881440187227872704236700 c1: -245159569682553927924 c2: 9366265390438051 c3: 211495474264 c4: -8181476 c5: 1320 skew: 17788.81 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:135072, AFBsize:135391, largePrimes:6590723 encountered Relations: rels:5511512, finalFF:306759 Max relations in full relation-set: 48 Initial matrix: 270544 x 306759 with sparse part having weight 15239130. Pruned matrix : 219444 x 220860 with weight 8001157. Total sieving time: 3.19 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.16 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,28,28,56,56,2.5,2.5,100000 total time: 3.53 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(35·10126+1)/9 = 3(8)1259<127> = 191 · 67114366454671786121<20> · C105
C105 = P35 · P71
P35 = 11448376571066039089838683423737211<35>
P71 = 26499200218749713130300387657045233622273874435357161710361980927082109<71>
Number: 38889_126 N=303372822936322273777801299985029471666532868396285446603379082502561345006703126181202303899414235657999 ( 105 digits) SNFS difficulty: 129 digits. Divisors found: r1=11448376571066039089838683423737211 r2=26499200218749713130300387657045233622273874435357161710361980927082109 Version: Total time: 3.51 hours. Scaled time: 2.74 units (timescale=0.781). Factorization parameters were as follows: n: 303372822936322273777801299985029471666532868396285446603379082502561345006703126181202303899414235657999 m: 50000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 1010000 alim: 1010000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1010000/1010000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [505000, 855001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 146499 x 146741 Total sieving time: 3.51 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1010000,1010000,26,26,47,47,2.3,2.3,50000 total time: 3.51 hours. --------- CPU info (if available) ----------
(35·10133+1)/9 = 3(8)1329<134> = 3 · 13 · C132
C132 = P40 · P93
P40 = 2447766620080220042610121031721960294871<40>
P93 = 407371760432911602911335890107629294263445550349909740419175681492591667237407264967405890681<93>
Number: 38889_133 N=997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997151 ( 132 digits) SNFS difficulty: 135 digits. Divisors found: r1=2447766620080220042610121031721960294871 r2=407371760432911602911335890107629294263445550349909740419175681492591667237407264967405890681 Version: Total time: 3.86 hours. Scaled time: 8.25 units (timescale=2.137). Factorization parameters were as follows: n: 997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997150997151 m: 1000000000000000000000000000 deg: 5 c5: 7 c0: 20 skew: 1.23 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1020001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 153527 x 153775 Total sieving time: 3.86 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 3.86 hours. --------- CPU info (if available) ----------
(35·10139+1)/9 = 3(8)1389<140> = 32 · 13 · 19 · C137
C137 = P37 · P100
P37 = 4711525053547959827836928818968407243<37>
P100 = 3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301<100>
Number: 38889_139 N=17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 ( 137 digits) SNFS difficulty: 140 digits. Divisors found: r1=4711525053547959827836928818968407243 r2=3712996735489369150035175179729829418336017039152098603856719661184231606787193174795497182427779301 Version: Total time: 6.83 hours. Scaled time: 5.38 units (timescale=0.788). Factorization parameters were as follows: n: 17493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877142999950017493877143 m: 10000000000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1380001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 194234 x 194482 Total sieving time: 6.83 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 6.83 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10130-17)/9 = 3(8)1297<131> = 37 · 1613 · 86467 · C121
C121 = P45 · P77
P45 = 127277577316998781516401903357718924380855137<45>
P77 = 59208921733784673577031498471236697681202219803320125271724133270956593801213<77>
Number: 38887_130 N=7535968113827908337130239897584722312102906490692631968995615240726178304140148339589240934436247096730415908026327881181 ( 121 digits) SNFS difficulty: 131 digits. Divisors found: r1=127277577316998781516401903357718924380855137 (pp45) r2=59208921733784673577031498471236697681202219803320125271724133270956593801213 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.96 hours. Scaled time: 4.69 units (timescale=2.390). Factorization parameters were as follows: n: 7535968113827908337130239897584722312102906490692631968995615240726178304140148339589240934436247096730415908026327881181 m: 100000000000000000000000000 deg: 5 c5: 35 c0: -17 skew: 0.87 type: snfs lss: 1 rlim: 1100000 alim: 1100000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1100000/1100000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [550000, 950001) Primes: RFBsize:85714, AFBsize:85279, largePrimes:2780587 encountered Relations: rels:2677317, finalFF:215170 Max relations in full relation-set: 28 Initial matrix: 171059 x 215170 with sparse part having weight 16356712. Pruned matrix : 154672 x 155591 with weight 9196114. Total sieving time: 1.85 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1100000,1100000,26,26,47,47,2.3,2.3,50000 total time: 1.96 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
(35·10153+1)/9 = 3(8)1529<154> = 337 · 171847463083151491501<21> · 38559715265314947042590710270001<32> · C100
C100 = P47 · P54
P47 = 17390443877201234143891250701031139775259666719<47>
P54 = 100140100604561495228549337527256127066996322341408163<54>
Number: 38889_153 N=1741480799420912060381633191641537647280854501099135630013427896115275142592545214586443180526027197 ( 100 digits) Divisors found: r1=17390443877201234143891250701031139775259666719 (pp47) r2=100140100604561495228549337527256127066996322341408163 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.09 hours. Scaled time: 7.37 units (timescale=2.384). Factorization parameters were as follows: name: 38889_153 n: 1741480799420912060381633191641537647280854501099135630013427896115275142592545214586443180526027197 skew: 4056.81 # norm 1.30e+14 c5: 257760 c4: 2090628702 c3: -3214280028439 c2: 537488420607485 c1: -74787744966472671293 c0: -1601189094816443285975 # alpha -6.48 Y1: 47075126663 Y0: -5833577188547807742 # Murphy_E 3.59e-09 # M 697301709306757961896643942013299387594224137239616960663069866613643106139141792408406178409303908 type: gnfs rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [600000, 1100001) Primes: RFBsize:92938, AFBsize:92632, largePrimes:4255351 encountered Relations: rels:4164335, finalFF:279051 Max relations in full relation-set: 28 Initial matrix: 185648 x 279051 with sparse part having weight 25553704. Pruned matrix : 147853 x 148845 with weight 10911122. Polynomial selection time: 0.25 hours. Total sieving time: 2.67 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,26,26,49,49,2.5,2.5,50000 total time: 3.09 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(35·10127-17)/9 = 3(8)1267<128> = 37 · 1649510569739<13> · C114
C114 = P48 · P67
P48 = 390752729727494409677256101481138223351378730947<48>
P67 = 1630672275638178028977091023427467641772116201128430345768992206347<67>
Number: 38887_127 N=637189642996563245953103567105248123427011935586142479971519211497758129098842890558651615968037793670342418720609 ( 114 digits) SNFS difficulty: 129 digits. Divisors found: r1=390752729727494409677256101481138223351378730947 (pp48) r2=1630672275638178028977091023427467641772116201128430345768992206347 (pp67) Version: Total time: 2.68 hours. Scaled time: 6.87 units (timescale=2.564). Factorization parameters were as follows: name: 38887_127 n: 637189642996563245953103567105248123427011935586142479971519211497758129098842890558651615968037793670342418720609 m: 50000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 1030000 alim: 1030000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1030000/1030000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [515000, 915001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 137200 x 137448 Total sieving time: 2.68 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1030000,1030000,26,26,47,47,2.3,2.3,50000 total time: 2.68 hours. --------- CPU info (if available) ----------
(35·10127+1)/9 = 3(8)1269<128> = 3 · 13 · 599 · 7151 · 35509 · 3897717493<10> · 1968303984853<13> · C93
C93 = P45 · P49
P45 = 157350569567152147220378732576837537803910029<45>
P49 = 5430727809728405538160402721839618815472716167071<49>
Mon Dec 08 00:32:03 2008 Msieve v. 1.39 Mon Dec 08 00:32:03 2008 random seeds: e7b531dc ad242115 Mon Dec 08 00:32:03 2008 factoring 854528114024937285149180181082706516562243298748907804692499306233913113780933046705816455059 (93 digits) Mon Dec 08 00:32:04 2008 searching for 15-digit factors Mon Dec 08 00:32:06 2008 commencing quadratic sieve (93-digit input) Mon Dec 08 00:32:06 2008 using multiplier of 1 Mon Dec 08 00:32:06 2008 using 32kb Intel Core sieve core Mon Dec 08 00:32:06 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 00:32:06 2008 processing polynomials in batches of 6 Mon Dec 08 00:32:06 2008 using a sieve bound of 1955507 (72941 primes) Mon Dec 08 00:32:06 2008 using large prime bound of 244438375 (27 bits) Mon Dec 08 00:32:06 2008 using double large prime bound of 1255176633760875 (42-51 bits) Mon Dec 08 00:32:06 2008 using trial factoring cutoff of 51 bits Mon Dec 08 00:32:06 2008 polynomial 'A' values have 12 factors Mon Dec 08 00:32:07 2008 restarting with 18545 full and 992963 partial relations Mon Dec 08 00:32:07 2008 73156 relations (18545 full + 54611 combined from 992963 partial), need 73037 Mon Dec 08 00:32:09 2008 begin with 1011508 relations Mon Dec 08 00:32:09 2008 reduce to 186763 relations in 11 passes Mon Dec 08 00:32:09 2008 attempting to read 186763 relations Mon Dec 08 00:32:12 2008 recovered 186763 relations Mon Dec 08 00:32:12 2008 recovered 167544 polynomials Mon Dec 08 00:32:12 2008 attempting to build 73156 cycles Mon Dec 08 00:32:12 2008 found 73156 cycles in 6 passes Mon Dec 08 00:32:12 2008 distribution of cycle lengths: Mon Dec 08 00:32:12 2008 length 1 : 18545 Mon Dec 08 00:32:12 2008 length 2 : 13105 Mon Dec 08 00:32:12 2008 length 3 : 12618 Mon Dec 08 00:32:12 2008 length 4 : 9872 Mon Dec 08 00:32:12 2008 length 5 : 7239 Mon Dec 08 00:32:12 2008 length 6 : 4869 Mon Dec 08 00:32:12 2008 length 7 : 2996 Mon Dec 08 00:32:12 2008 length 9+: 3912 Mon Dec 08 00:32:12 2008 largest cycle: 20 relations Mon Dec 08 00:32:13 2008 matrix is 72941 x 73156 (17.9 MB) with weight 4398131 (60.12/col) Mon Dec 08 00:32:13 2008 sparse part has weight 4398131 (60.12/col) Mon Dec 08 00:32:14 2008 filtering completed in 3 passes Mon Dec 08 00:32:14 2008 matrix is 69011 x 69075 (17.0 MB) with weight 4177621 (60.48/col) Mon Dec 08 00:32:14 2008 sparse part has weight 4177621 (60.48/col) Mon Dec 08 00:32:14 2008 saving the first 48 matrix rows for later Mon Dec 08 00:32:14 2008 matrix is 68963 x 69075 (9.5 MB) with weight 3140818 (45.47/col) Mon Dec 08 00:32:14 2008 sparse part has weight 2063060 (29.87/col) Mon Dec 08 00:32:14 2008 matrix includes 64 packed rows Mon Dec 08 00:32:14 2008 using block size 27630 for processor cache size 1024 kB Mon Dec 08 00:32:14 2008 commencing Lanczos iteration Mon Dec 08 00:32:14 2008 memory use: 10.0 MB Mon Dec 08 00:32:42 2008 lanczos halted after 1092 iterations (dim = 68963) Mon Dec 08 00:32:42 2008 recovered 18 nontrivial dependencies Mon Dec 08 00:32:46 2008 prp45 factor: 157350569567152147220378732576837537803910029 Mon Dec 08 00:32:46 2008 prp49 factor: 5430727809728405538160402721839618815472716167071 Mon Dec 08 00:32:46 2008 elapsed time 00:00:43
(35·10123+1)/9 = 3(8)1229<124> = 1381587624671<13> · 163716152369726009<18> · C95
C95 = P47 · P49
P47 = 10384299710970978120359331535825259223245131889<47>
P49 = 1655687449944933127582920897860547628511068233359<49>
Mon Dec 08 00:41:26 2008 Msieve v. 1.39 Mon Dec 08 00:41:26 2008 random seeds: 990eccb8 bafb8508 Mon Dec 08 00:41:26 2008 factoring 17193154707921444880778784466587728861787010649828655825384072319952296591978219433508184485151 (95 digits) Mon Dec 08 00:41:27 2008 searching for 15-digit factors Mon Dec 08 00:41:28 2008 commencing quadratic sieve (95-digit input) Mon Dec 08 00:41:29 2008 using multiplier of 1 Mon Dec 08 00:41:29 2008 using 32kb Intel Core sieve core Mon Dec 08 00:41:29 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 00:41:29 2008 processing polynomials in batches of 6 Mon Dec 08 00:41:29 2008 using a sieve bound of 2121809 (78824 primes) Mon Dec 08 00:41:29 2008 using large prime bound of 309784114 (28 bits) Mon Dec 08 00:41:29 2008 using double large prime bound of 1922677272029798 (43-51 bits) Mon Dec 08 00:41:29 2008 using trial factoring cutoff of 51 bits Mon Dec 08 00:41:29 2008 polynomial 'A' values have 12 factors Mon Dec 08 03:57:17 2008 79248 relations (19467 full + 59781 combined from 1165661 partial), need 78920 Mon Dec 08 03:57:18 2008 begin with 1185128 relations Mon Dec 08 03:57:19 2008 reduce to 205915 relations in 10 passes Mon Dec 08 03:57:19 2008 attempting to read 205915 relations Mon Dec 08 03:57:22 2008 recovered 205915 relations Mon Dec 08 03:57:22 2008 recovered 187922 polynomials Mon Dec 08 03:57:22 2008 attempting to build 79248 cycles Mon Dec 08 03:57:23 2008 found 79248 cycles in 6 passes Mon Dec 08 03:57:23 2008 distribution of cycle lengths: Mon Dec 08 03:57:23 2008 length 1 : 19467 Mon Dec 08 03:57:23 2008 length 2 : 14006 Mon Dec 08 03:57:23 2008 length 3 : 13415 Mon Dec 08 03:57:23 2008 length 4 : 10803 Mon Dec 08 03:57:23 2008 length 5 : 7969 Mon Dec 08 03:57:23 2008 length 6 : 5401 Mon Dec 08 03:57:23 2008 length 7 : 3458 Mon Dec 08 03:57:23 2008 length 9+: 4729 Mon Dec 08 03:57:23 2008 largest cycle: 18 relations Mon Dec 08 03:57:23 2008 matrix is 78824 x 79248 (20.8 MB) with weight 5128928 (64.72/col) Mon Dec 08 03:57:23 2008 sparse part has weight 5128928 (64.72/col) Mon Dec 08 03:57:24 2008 filtering completed in 3 passes Mon Dec 08 03:57:24 2008 matrix is 74893 x 74957 (19.7 MB) with weight 4864632 (64.90/col) Mon Dec 08 03:57:24 2008 sparse part has weight 4864632 (64.90/col) Mon Dec 08 03:57:24 2008 saving the first 48 matrix rows for later Mon Dec 08 03:57:25 2008 matrix is 74845 x 74957 (12.3 MB) with weight 3834680 (51.16/col) Mon Dec 08 03:57:25 2008 sparse part has weight 2778669 (37.07/col) Mon Dec 08 03:57:25 2008 matrix includes 64 packed rows Mon Dec 08 03:57:25 2008 using block size 29982 for processor cache size 1024 kB Mon Dec 08 03:57:25 2008 commencing Lanczos iteration Mon Dec 08 03:57:25 2008 memory use: 11.9 MB Mon Dec 08 03:58:03 2008 lanczos halted after 1185 iterations (dim = 74843) Mon Dec 08 03:58:03 2008 recovered 16 nontrivial dependencies Mon Dec 08 03:58:03 2008 prp47 factor: 10384299710970978120359331535825259223245131889 Mon Dec 08 03:58:03 2008 prp49 factor: 1655687449944933127582920897860547628511068233359 Mon Dec 08 03:58:03 2008 elapsed time 03:16:37
(35·10113-17)/9 = 3(8)1127<114> = 3 · 23 · 67 · 2361307315329023<16> · C95
C95 = P39 · P56
P39 = 510712342028689440749924324396136884587<39>
P56 = 69754587631347514921265069039903044640326990855644594869<56>
Sun Dec 07 20:48:43 2008 Msieve v. 1.39 Sun Dec 07 20:48:43 2008 random seeds: 9d53de6c 2ca7d064 Sun Dec 07 20:48:43 2008 factoring 35624528816450942070204177663612725669850609496941878573455438512547059853912180811111425384103 (95 digits) Sun Dec 07 20:48:45 2008 searching for 15-digit factors Sun Dec 07 20:48:46 2008 commencing quadratic sieve (95-digit input) Sun Dec 07 20:48:47 2008 using multiplier of 2 Sun Dec 07 20:48:47 2008 using 64kb Pentium 4 sieve core Sun Dec 07 20:48:47 2008 sieve interval: 18 blocks of size 65536 Sun Dec 07 20:48:47 2008 processing polynomials in batches of 6 Sun Dec 07 20:48:47 2008 using a sieve bound of 2158631 (80000 primes) Sun Dec 07 20:48:47 2008 using large prime bound of 323794650 (28 bits) Sun Dec 07 20:48:47 2008 using double large prime bound of 2082022265125500 (43-51 bits) Sun Dec 07 20:48:47 2008 using trial factoring cutoff of 51 bits Sun Dec 07 20:48:47 2008 polynomial 'A' values have 12 factors Mon Dec 08 03:33:54 2008 80284 relations (19242 full + 61042 combined from 1208021 partial), need 80096 Mon Dec 08 03:33:58 2008 begin with 1227263 relations Mon Dec 08 03:34:00 2008 reduce to 211385 relations in 11 passes Mon Dec 08 03:34:00 2008 attempting to read 211385 relations Mon Dec 08 03:34:03 2008 recovered 211385 relations Mon Dec 08 03:34:03 2008 recovered 196533 polynomials Mon Dec 08 03:34:03 2008 attempting to build 80284 cycles Mon Dec 08 03:34:03 2008 found 80284 cycles in 6 passes Mon Dec 08 03:34:03 2008 distribution of cycle lengths: Mon Dec 08 03:34:03 2008 length 1 : 19242 Mon Dec 08 03:34:03 2008 length 2 : 13846 Mon Dec 08 03:34:03 2008 length 3 : 13272 Mon Dec 08 03:34:03 2008 length 4 : 10949 Mon Dec 08 03:34:03 2008 length 5 : 8330 Mon Dec 08 03:34:03 2008 length 6 : 5672 Mon Dec 08 03:34:03 2008 length 7 : 3678 Mon Dec 08 03:34:03 2008 length 9+: 5295 Mon Dec 08 03:34:03 2008 largest cycle: 19 relations Mon Dec 08 03:34:04 2008 matrix is 80000 x 80284 (21.6 MB) with weight 5346435 (66.59/col) Mon Dec 08 03:34:04 2008 sparse part has weight 5346435 (66.59/col) Mon Dec 08 03:34:06 2008 filtering completed in 3 passes Mon Dec 08 03:34:06 2008 matrix is 76631 x 76695 (20.7 MB) with weight 5129508 (66.88/col) Mon Dec 08 03:34:06 2008 sparse part has weight 5129508 (66.88/col) Mon Dec 08 03:34:06 2008 saving the first 48 matrix rows for later Mon Dec 08 03:34:06 2008 matrix is 76583 x 76695 (13.4 MB) with weight 4075545 (53.14/col) Mon Dec 08 03:34:06 2008 sparse part has weight 3055081 (39.83/col) Mon Dec 08 03:34:06 2008 matrix includes 64 packed rows Mon Dec 08 03:34:06 2008 using block size 21845 for processor cache size 512 kB Mon Dec 08 03:34:08 2008 commencing Lanczos iteration Mon Dec 08 03:34:08 2008 memory use: 12.7 MB Mon Dec 08 03:35:14 2008 lanczos halted after 1213 iterations (dim = 76581) Mon Dec 08 03:35:14 2008 recovered 16 nontrivial dependencies Mon Dec 08 03:35:17 2008 prp39 factor: 510712342028689440749924324396136884587 Mon Dec 08 03:35:17 2008 prp56 factor: 69754587631347514921265069039903044640326990855644594869 Mon Dec 08 03:35:17 2008 elapsed time 06:46:34
(35·10136+1)/9 = 3(8)1359<137> = 3 · 17 · 5417 · 1119871 · 358467107 · C117
C117 = P39 · P78
P39 = 951810720294636454280684312778970536173<39>
P78 = 368407634918623356591770151280494496467035113520864797303587770043237865921507<78>
Number: 38889_136 N=350654336353938357728785501942232737329533148552772496868237294826954356212463033993097425351850866108036592522172711 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=951810720294636454280684312778970536173 (pp39) r2=368407634918623356591770151280494496467035113520864797303587770043237865921507 (pp78) Version: Total time: 5.38 hours. Scaled time: 13.86 units (timescale=2.575). Factorization parameters were as follows: name: 38889_136 n: 350654336353938357728785501942232737329533148552772496868237294826954356212463033993097425351850866108036592522172711 m: 5000000000000000000000000000 deg: 5 c5: 14 c0: 125 skew: 1.55 type: snfs lss: 1 rlim: 1490000 alim: 1490000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1490000/1490000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [745000, 1495001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 217203 x 217451 Total sieving time: 5.38 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1490000,1490000,26,26,48,48,2.3,2.3,75000 total time: 5.38 hours. --------- CPU info (if available) ----------
(35·10144-17)/9 = 3(8)1437<145> = 107590361 · 376107998117<12> · C125
C125 = P59 · P67
P59 = 21426550966873432966355113684930427555362915856005664850821<59>
P67 = 4485257002846199926844351970859416404519415299681016964991792241031<67>
Number: 38887_144 N=96103587771010081120816982038935197024462227340896770922811350265604804162609970300269923694765800293325172370070865890236451 ( 125 digits) SNFS difficulty: 145 digits. Divisors found: r1=21426550966873432966355113684930427555362915856005664850821 (pp59) r2=4485257002846199926844351970859416404519415299681016964991792241031 (pp67) Version: Total time: 7.82 hours. Scaled time: 20.06 units (timescale=2.564). Factorization parameters were as follows: name: 38887_144 n: 96103587771010081120816982038935197024462227340896770922811350265604804162609970300269923694765800293325172370070865890236451 m: 100000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 1890000 alim: 1890000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1890000/1890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [945000, 1945001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 308413 x 308661 Total sieving time: 7.82 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1890000,1890000,26,26,49,49,2.3,2.3,100000 total time: 7.82 hours. --------- CPU info (if available) ----------
(35·10128-17)/9 = 3(8)1277<129> = 32 · 43 · 2557 · 1744978463<10> · 479702072115780301<18> · C96
C96 = P48 · P48
P48 = 614114184448342236450430905615224850081743454187<48>
P48 = 764492180582182386904576547379784128078297585553<48>
Mon Dec 08 06:06:03 2008 Msieve v. 1.39 Mon Dec 08 06:06:03 2008 random seeds: 44322e90 aab5a9bf Mon Dec 08 06:06:03 2008 factoring 469485491995361715464158650599678862392194433114786077454834953798678154555724651083604368560411 (96 digits) Mon Dec 08 06:06:04 2008 searching for 15-digit factors Mon Dec 08 06:06:05 2008 commencing quadratic sieve (96-digit input) Mon Dec 08 06:06:05 2008 using multiplier of 1 Mon Dec 08 06:06:05 2008 using 32kb Intel Core sieve core Mon Dec 08 06:06:05 2008 sieve interval: 36 blocks of size 32768 Mon Dec 08 06:06:05 2008 processing polynomials in batches of 6 Mon Dec 08 06:06:05 2008 using a sieve bound of 2258279 (83529 primes) Mon Dec 08 06:06:05 2008 using large prime bound of 338741850 (28 bits) Mon Dec 08 06:06:05 2008 using double large prime bound of 2258207977125450 (43-52 bits) Mon Dec 08 06:06:05 2008 using trial factoring cutoff of 52 bits Mon Dec 08 06:06:05 2008 polynomial 'A' values have 12 factors Mon Dec 08 10:51:26 2008 83650 relations (19810 full + 63840 combined from 1265744 partial), need 83625 Mon Dec 08 10:51:28 2008 begin with 1285554 relations Mon Dec 08 10:51:29 2008 reduce to 220757 relations in 10 passes Mon Dec 08 10:51:29 2008 attempting to read 220757 relations Mon Dec 08 10:51:32 2008 recovered 220757 relations Mon Dec 08 10:51:32 2008 recovered 206454 polynomials Mon Dec 08 10:51:32 2008 attempting to build 83650 cycles Mon Dec 08 10:51:32 2008 found 83650 cycles in 6 passes Mon Dec 08 10:51:32 2008 distribution of cycle lengths: Mon Dec 08 10:51:32 2008 length 1 : 19810 Mon Dec 08 10:51:33 2008 length 2 : 14243 Mon Dec 08 10:51:33 2008 length 3 : 14030 Mon Dec 08 10:51:33 2008 length 4 : 11306 Mon Dec 08 10:51:33 2008 length 5 : 8908 Mon Dec 08 10:51:33 2008 length 6 : 6070 Mon Dec 08 10:51:33 2008 length 7 : 3862 Mon Dec 08 10:51:33 2008 length 9+: 5421 Mon Dec 08 10:51:33 2008 largest cycle: 21 relations Mon Dec 08 10:51:33 2008 matrix is 83529 x 83650 (23.4 MB) with weight 5791731 (69.24/col) Mon Dec 08 10:51:33 2008 sparse part has weight 5791731 (69.24/col) Mon Dec 08 10:51:34 2008 filtering completed in 3 passes Mon Dec 08 10:51:34 2008 matrix is 80003 x 80067 (22.5 MB) with weight 5587408 (69.78/col) Mon Dec 08 10:51:34 2008 sparse part has weight 5587408 (69.78/col) Mon Dec 08 10:51:34 2008 saving the first 48 matrix rows for later Mon Dec 08 10:51:34 2008 matrix is 79955 x 80067 (16.1 MB) with weight 4638087 (57.93/col) Mon Dec 08 10:51:34 2008 sparse part has weight 3734057 (46.64/col) Mon Dec 08 10:51:34 2008 matrix includes 64 packed rows Mon Dec 08 10:51:34 2008 using block size 32026 for processor cache size 1024 kB Mon Dec 08 10:51:35 2008 commencing Lanczos iteration Mon Dec 08 10:51:35 2008 memory use: 14.4 MB Mon Dec 08 10:52:21 2008 lanczos halted after 1266 iterations (dim = 79955) Mon Dec 08 10:52:22 2008 recovered 18 nontrivial dependencies Mon Dec 08 10:52:22 2008 prp48 factor: 614114184448342236450430905615224850081743454187 Mon Dec 08 10:52:22 2008 prp48 factor: 764492180582182386904576547379784128078297585553 Mon Dec 08 10:52:22 2008 elapsed time 04:46:19
By Erik Branger / GGNFS, Msieve
(35·10134-17)/9 = 3(8)1337<135> = 3 · C135
C135 = P63 · P72
P63 = 969728384217945564797275207754143001546059800826738657962986323<63>
P72 = 133676224950527476034793786904878991749286703030637898637843016107605423<72>
Number: 38887_134 N=129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 ( 135 digits) SNFS difficulty: 135 digits. Divisors found: r1=969728384217945564797275207754143001546059800826738657962986323 r2=133676224950527476034793786904878991749286703030637898637843016107605423 Version: Total time: 5.12 hours. Scaled time: 10.84 units (timescale=2.116). Factorization parameters were as follows: n: 129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629 m: 1000000000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 1290000 alim: 1290000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1290000/1290000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [645000, 1170001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 169326 x 169574 Total sieving time: 5.12 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1290000,1290000,26,26,47,47,2.3,2.3,75000 total time: 5.12 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10167+1)/9 = 3(8)1669<168> = 9399905186263<13> · 1641584855370881<16> · 117604162223291467981<21> · 127461987854538798090991<24> · C97
C97 = P39 · P58
P39 = 233497123122207430579337078165623812031<39>
P58 = 7200353378046645802084948687027325444285796669256644994363<58>
Number: 38889_167 N=1681261799237159840181193611414121235472148120751084549550605549646798210799635338358074566581253 ( 97 digits) Divisors found: r1=233497123122207430579337078165623812031 (pp39) r2=7200353378046645802084948687027325444285796669256644994363 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.18 hours. Scaled time: 5.22 units (timescale=2.390). Factorization parameters were as follows: name: 38889_167 n: 1681261799237159840181193611414121235472148120751084549550605549646798210799635338358074566581253 skew: 3433.58 # norm 1.68e+13 c5: 91320 c4: 360438986 c3: -610587742497 c2: -6706059088479814 c1: -187956054008070948 c0: 23649595112677456900133 # alpha -5.65 Y1: 10539400673 Y0: -1790654797890799296 # Murphy_E 5.13e-09 # M 511710912310871436142349479089457306917743183735526473683559315200237212626896620639101168005244 type: gnfs rlim: 1000000 alim: 1000000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78521, largePrimes:3968793 encountered Relations: rels:3760914, finalFF:213126 Max relations in full relation-set: 28 Initial matrix: 157102 x 213126 with sparse part having weight 18320617. Pruned matrix : 132960 x 133809 with weight 8773894. Polynomial selection time: 0.18 hours. Total sieving time: 1.87 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: gnfs,96,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,1000000,26,26,49,49,2.5,2.5,50000 total time: 2.18 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / Msieve
(35·10132-17)/9 = 3(8)1317<133> = 61 · 167 · 197 · 1087 · 917117 · 349527261719<12> · 381821911376033779003<21> · C86
C86 = P37 · P49
P37 = 2618098890081871199911145483496466417<37>
P49 = 5563278048469018825873033722128510859501955470983<49>
Sun Dec 07 17:50:29 2008 Msieve v. 1.38 Sun Dec 07 17:50:29 2008 random seeds: 53c431d4 fec442a7 Sun Dec 07 17:50:29 2008 factoring 14565212083913576636674787221762602499347453906972766910220957675632824256961477477911 (86 digits) Sun Dec 07 17:50:32 2008 searching for 15-digit factors Sun Dec 07 17:50:37 2008 commencing quadratic sieve (86-digit input) Sun Dec 07 17:50:38 2008 using multiplier of 11 Sun Dec 07 17:50:38 2008 using 64kb Pentium 2 sieve core Sun Dec 07 17:50:38 2008 sieve interval: 6 blocks of size 65536 Sun Dec 07 17:50:38 2008 processing polynomials in batches of 17 Sun Dec 07 17:50:38 2008 using a sieve bound of 1438057 (55000 primes) Sun Dec 07 17:50:38 2008 using large prime bound of 115044560 (26 bits) Sun Dec 07 17:50:38 2008 using double large prime bound of 323265089678720 (41-49 bits) Sun Dec 07 17:50:38 2008 using trial factoring cutoff of 49 bits Sun Dec 07 17:50:38 2008 polynomial 'A' values have 11 factors Sun Dec 07 22:58:04 2008 55301 relations (15869 full + 39432 combined from 573043 partial), need 55096 Sun Dec 07 22:58:09 2008 begin with 588912 relations Sun Dec 07 22:58:10 2008 reduce to 130015 relations in 9 passes Sun Dec 07 22:58:10 2008 attempting to read 130015 relations Sun Dec 07 22:58:16 2008 recovered 130015 relations Sun Dec 07 22:58:16 2008 recovered 112568 polynomials Sun Dec 07 22:58:17 2008 attempting to build 55301 cycles Sun Dec 07 22:58:17 2008 found 55301 cycles in 5 passes Sun Dec 07 22:58:20 2008 distribution of cycle lengths: Sun Dec 07 22:58:20 2008 length 1 : 15869 Sun Dec 07 22:58:20 2008 length 2 : 11102 Sun Dec 07 22:58:20 2008 length 3 : 9828 Sun Dec 07 22:58:20 2008 length 4 : 7335 Sun Dec 07 22:58:20 2008 length 5 : 4744 Sun Dec 07 22:58:20 2008 length 6 : 2982 Sun Dec 07 22:58:20 2008 length 7 : 1670 Sun Dec 07 22:58:20 2008 length 9+: 1771 Sun Dec 07 22:58:20 2008 largest cycle: 19 relations Sun Dec 07 22:58:21 2008 matrix is 55000 x 55301 (12.5 MB) with weight 3043221 (55.03/col) Sun Dec 07 22:58:21 2008 sparse part has weight 3043221 (55.03/col) Sun Dec 07 22:58:25 2008 filtering completed in 3 passes Sun Dec 07 22:58:25 2008 matrix is 49878 x 49941 (11.3 MB) with weight 2772025 (55.51/col) Sun Dec 07 22:58:26 2008 sparse part has weight 2772025 (55.51/col) Sun Dec 07 22:58:28 2008 saving the first 48 matrix rows for later Sun Dec 07 22:58:28 2008 matrix is 49830 x 49941 (7.3 MB) with weight 2195446 (43.96/col) Sun Dec 07 22:58:28 2008 sparse part has weight 1610296 (32.24/col) Sun Dec 07 22:58:28 2008 matrix includes 64 packed rows Sun Dec 07 22:58:28 2008 using block size 5461 for processor cache size 128 kB Sun Dec 07 22:58:29 2008 commencing Lanczos iteration Sun Dec 07 22:58:29 2008 memory use: 7.3 MB Sun Dec 07 23:00:40 2008 lanczos halted after 789 iterations (dim = 49826) Sun Dec 07 23:00:41 2008 recovered 15 nontrivial dependencies Sun Dec 07 23:00:44 2008 prp37 factor: 2618098890081871199911145483496466417 Sun Dec 07 23:00:44 2008 prp49 factor: 5563278048469018825873033722128510859501955470983 Sun Dec 07 23:00:44 2008 elapsed time 05:10:15
By Erik Branger / GGNFS, Msieve
(23·10177+31)/9 = 2(5)1769<178> = 33 · 53 · 20521 · 25177684816667351<17> · C154
C154 = P42 · P112
P42 = 519620774710320798463766416667482050915119<42>
P112 = 6651887165827614470553363180110159612057894005166560172816585853798701521249789037346745006909602267998822481361<112>
Number: 25559_177 N=3456458762392985184684090100084040703301574082824617112870666857245245353646180549347304821656855905830979532981615933356972470985629517509741500370596959 ( 154 digits) SNFS difficulty: 179 digits. Divisors found: r1=519620774710320798463766416667482050915119 r2=6651887165827614470553363180110159612057894005166560172816585853798701521249789037346745006909602267998822481361 Version: Total time: 210.17 hours. Scaled time: 444.73 units (timescale=2.116). Factorization parameters were as follows: n: 3456458762392985184684090100084040703301574082824617112870666857245245353646180549347304821656855905830979532981615933356972470985629517509741500370596959 m: 200000000000000000000000000000000000 deg: 5 c5: 575 c0: 248 skew: 0.85 type: snfs lss: 1 rlim: 6800000 alim: 6800000 lpbr: 28 lpba: 28 mfbr: 53 mfba: 53 rlambda: 2.5 alambda: 2.5 Factor base limits: 6800000/6800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 53/53 Sieved rational special-q in [3400000, 9900001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1532523 x 1532771 Total sieving time: 210.17 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,6800000,6800000,28,28,53,53,2.5,2.5,100000 total time: 210.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(35·10168-71)/9 = 3(8)1671<169> = 10873724311<11> · 14303299735272000932427365334907044020341<41> · C119
C119 = P49 · P70
P49 = 9393326677884059649378589506343491190606750272193<49>
P70 = 2661898864995912156338864781434885655844161180750727978984078940447867<70>
Number: 38881_168 N=25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331 ( 119 digits) Divisors found: r1=9393326677884059649378589506343491190606750272193 (pp49) r2=2661898864995912156338864781434885655844161180750727978984078940447867 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 33.72 hours. Scaled time: 80.17 units (timescale=2.378). Factorization parameters were as follows: name: 38881_168 n: 25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331 skew: 55789.87 # norm 2.91e+16 c5: 50400 c4: -22670790084 c3: -576283113585857 c2: 77180010939996291587 c1: 1122099080230336208850255 c0: 321885631905066599984363475 # alpha -6.81 Y1: 3012571527971 Y0: -54842625079834511542186 # Murphy_E 3.61e-10 # M 11373750039980250020583137353018721562472880609089940211327385554674139944690464666740219551261430950451632264704464388 type: gnfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:282457, largePrimes:9377636 encountered Relations: rels:9555591, finalFF:780301 Max relations in full relation-set: 28 Initial matrix: 565684 x 780301 with sparse part having weight 80887021. Pruned matrix : 416351 x 419243 with weight 55103470. Polynomial selection time: 2.27 hours. Total sieving time: 29.64 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.49 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4000000,4000000,27,27,52,52,2.4,2.4,100000 total time: 33.72 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS, Msieve
(35·10165-71)/9 = 3(8)1641<166> = 347 · 683 · C161
C161 = P59 · P103
P59 = 13731007978254981814404167377815346660212103899723511183019<59>
P103 = 1195013845155755906706283527067698572345276426831342688089512781690087911568759714098174429125702367099<103>
Number: 38881_165 N=16408744641958847806080518178779367550722945847860932607410470373073906392331209104134112889350209023965674781494124028543714536600642566440179108480086113091881 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: r1=13731007978254981814404167377815346660212103899723511183019 (pp59) r2=1195013845155755906706283527067698572345276426831342688089512781690087911568759714098174429125702367099 (pp103) Version: GGNFS-0.77.1-20060513-nocona Total time: 84.76 hours. Scaled time: 218.25 units (timescale=2.575). Factorization parameters were as follows: name: 38881_165 n: 16408744641958847806080518178779367550722945847860932607410470373073906392331209104134112889350209023965674781494124028543714536600642566440179108480086113091881 m: 1000000000000000000000000000000000 deg: 5 c5: 35 c0: -71 skew: 1.15 type: snfs lss: 1 rlim: 4200000 alim: 4200000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 4200000/4200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [2100000, 5000001) Primes: RFBsize:296314, AFBsize:295812, largePrimes:9820806 encountered Relations: rels:10979704, finalFF:994308 Max relations in full relation-set: 28 Initial matrix: 592192 x 994308 with sparse part having weight 129937602. Pruned matrix : 457177 x 460201 with weight 81941478. Total sieving time: 81.00 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.38 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4200000,4200000,27,27,51,51,2.4,2.4,100000 total time: 84.76 hours. --------- CPU info (if available) ----------
(35·10117+1)/9 = 3(8)1169<118> = 23671 · 27783859669<11> · 586508325901909<15> · C89
C89 = P43 · P46
P43 = 2220068530298034077903598290054113895052823<43>
P46 = 4541253968601200953821721286835487419928638673<46>
Sun Dec 07 17:46:57 2008 Msieve v. 1.39 Sun Dec 07 17:46:57 2008 random seeds: 3fb265a8 0d06a882 Sun Dec 07 17:46:57 2008 factoring 10081895023782582796843701887427849048952509971025379579156894880001019382626551815623879 (89 digits) Sun Dec 07 17:46:58 2008 searching for 15-digit factors Sun Dec 07 17:46:59 2008 commencing quadratic sieve (89-digit input) Sun Dec 07 17:46:59 2008 using multiplier of 1 Sun Dec 07 17:46:59 2008 using 32kb Intel Core sieve core Sun Dec 07 17:46:59 2008 sieve interval: 28 blocks of size 32768 Sun Dec 07 17:46:59 2008 processing polynomials in batches of 8 Sun Dec 07 17:46:59 2008 using a sieve bound of 1531987 (58333 primes) Sun Dec 07 17:46:59 2008 using large prime bound of 122558960 (26 bits) Sun Dec 07 17:46:59 2008 using double large prime bound of 362260509321760 (42-49 bits) Sun Dec 07 17:46:59 2008 using trial factoring cutoff of 49 bits Sun Dec 07 17:46:59 2008 polynomial 'A' values have 11 factors Sun Dec 07 18:41:15 2008 58459 relations (15782 full + 42677 combined from 616373 partial), need 58429 Sun Dec 07 18:41:16 2008 begin with 632155 relations Sun Dec 07 18:41:16 2008 reduce to 141998 relations in 9 passes Sun Dec 07 18:41:16 2008 attempting to read 141998 relations Sun Dec 07 18:41:18 2008 recovered 141998 relations Sun Dec 07 18:41:18 2008 recovered 118175 polynomials Sun Dec 07 18:41:18 2008 attempting to build 58459 cycles Sun Dec 07 18:41:18 2008 found 58459 cycles in 5 passes Sun Dec 07 18:41:18 2008 distribution of cycle lengths: Sun Dec 07 18:41:18 2008 length 1 : 15782 Sun Dec 07 18:41:18 2008 length 2 : 11280 Sun Dec 07 18:41:18 2008 length 3 : 10154 Sun Dec 07 18:41:18 2008 length 4 : 7755 Sun Dec 07 18:41:18 2008 length 5 : 5534 Sun Dec 07 18:41:18 2008 length 6 : 3408 Sun Dec 07 18:41:18 2008 length 7 : 2047 Sun Dec 07 18:41:18 2008 length 9+: 2499 Sun Dec 07 18:41:18 2008 largest cycle: 19 relations Sun Dec 07 18:41:18 2008 matrix is 58333 x 58459 (13.8 MB) with weight 3395424 (58.08/col) Sun Dec 07 18:41:18 2008 sparse part has weight 3395424 (58.08/col) Sun Dec 07 18:41:19 2008 filtering completed in 3 passes Sun Dec 07 18:41:19 2008 matrix is 54314 x 54378 (13.0 MB) with weight 3193846 (58.73/col) Sun Dec 07 18:41:19 2008 sparse part has weight 3193846 (58.73/col) Sun Dec 07 18:41:19 2008 saving the first 48 matrix rows for later Sun Dec 07 18:41:19 2008 matrix is 54266 x 54378 (8.4 MB) with weight 2474532 (45.51/col) Sun Dec 07 18:41:19 2008 sparse part has weight 1876656 (34.51/col) Sun Dec 07 18:41:19 2008 matrix includes 64 packed rows Sun Dec 07 18:41:19 2008 using block size 21751 for processor cache size 1024 kB Sun Dec 07 18:41:20 2008 commencing Lanczos iteration Sun Dec 07 18:41:20 2008 memory use: 8.2 MB Sun Dec 07 18:41:37 2008 lanczos halted after 859 iterations (dim = 54264) Sun Dec 07 18:41:37 2008 recovered 16 nontrivial dependencies Sun Dec 07 18:41:38 2008 prp43 factor: 2220068530298034077903598290054113895052823 Sun Dec 07 18:41:38 2008 prp46 factor: 4541253968601200953821721286835487419928638673 Sun Dec 07 18:41:38 2008 elapsed time 00:54:41
(35·10161-17)/9 = 3(8)1607<162> = 3 · 192799 · 242197863343<12> · 13253282881361993<17> · 186251389998046129<18> · 2113037716029191144429<22> · C90
C90 = P32 · P59
P32 = 28742297975313337803187625016407<32>
P59 = 18517291741272127549515342256010461522539595944240811661567<59>
Sun Dec 07 18:48:52 2008 Msieve v. 1.39 Sun Dec 07 18:48:52 2008 random seeds: 798680a8 b317973b Sun Dec 07 18:48:52 2008 factoring 532229516923452263105571093994631719385926239719641669143819829745142516262461505306329769 (90 digits) Sun Dec 07 18:48:53 2008 searching for 15-digit factors Sun Dec 07 18:48:54 2008 commencing quadratic sieve (90-digit input) Sun Dec 07 18:48:54 2008 using multiplier of 1 Sun Dec 07 18:48:54 2008 using 32kb Intel Core sieve core Sun Dec 07 18:48:54 2008 sieve interval: 36 blocks of size 32768 Sun Dec 07 18:48:54 2008 processing polynomials in batches of 6 Sun Dec 07 18:48:54 2008 using a sieve bound of 1617079 (61176 primes) Sun Dec 07 18:48:54 2008 using large prime bound of 135834636 (27 bits) Sun Dec 07 18:48:54 2008 using double large prime bound of 435932059795260 (42-49 bits) Sun Dec 07 18:48:54 2008 using trial factoring cutoff of 49 bits Sun Dec 07 18:48:54 2008 polynomial 'A' values have 11 factors Sun Dec 07 20:08:01 2008 61571 relations (16101 full + 45470 combined from 671969 partial), need 61272 Sun Dec 07 20:08:02 2008 begin with 688070 relations Sun Dec 07 20:08:03 2008 reduce to 151577 relations in 10 passes Sun Dec 07 20:08:03 2008 attempting to read 151577 relations Sun Dec 07 20:08:05 2008 recovered 151577 relations Sun Dec 07 20:08:05 2008 recovered 129782 polynomials Sun Dec 07 20:08:05 2008 attempting to build 61571 cycles Sun Dec 07 20:08:05 2008 found 61571 cycles in 5 passes Sun Dec 07 20:08:05 2008 distribution of cycle lengths: Sun Dec 07 20:08:05 2008 length 1 : 16101 Sun Dec 07 20:08:05 2008 length 2 : 11543 Sun Dec 07 20:08:05 2008 length 3 : 10855 Sun Dec 07 20:08:05 2008 length 4 : 8134 Sun Dec 07 20:08:05 2008 length 5 : 5893 Sun Dec 07 20:08:05 2008 length 6 : 3892 Sun Dec 07 20:08:05 2008 length 7 : 2429 Sun Dec 07 20:08:05 2008 length 9+: 2724 Sun Dec 07 20:08:05 2008 largest cycle: 16 relations Sun Dec 07 20:08:05 2008 matrix is 61176 x 61571 (15.3 MB) with weight 3752165 (60.94/col) Sun Dec 07 20:08:05 2008 sparse part has weight 3752165 (60.94/col) Sun Dec 07 20:08:06 2008 filtering completed in 3 passes Sun Dec 07 20:08:06 2008 matrix is 57444 x 57508 (14.3 MB) with weight 3515270 (61.13/col) Sun Dec 07 20:08:06 2008 sparse part has weight 3515270 (61.13/col) Sun Dec 07 20:08:06 2008 saving the first 48 matrix rows for later Sun Dec 07 20:08:06 2008 matrix is 57396 x 57508 (10.7 MB) with weight 2954201 (51.37/col) Sun Dec 07 20:08:06 2008 sparse part has weight 2467234 (42.90/col) Sun Dec 07 20:08:06 2008 matrix includes 64 packed rows Sun Dec 07 20:08:06 2008 using block size 23003 for processor cache size 1024 kB Sun Dec 07 20:08:07 2008 commencing Lanczos iteration Sun Dec 07 20:08:07 2008 memory use: 9.6 MB Sun Dec 07 20:08:29 2008 lanczos halted after 909 iterations (dim = 57394) Sun Dec 07 20:08:29 2008 recovered 16 nontrivial dependencies Sun Dec 07 20:08:30 2008 prp32 factor: 28742297975313337803187625016407 Sun Dec 07 20:08:30 2008 prp59 factor: 18517291741272127549515342256010461522539595944240811661567 Sun Dec 07 20:08:30 2008 elapsed time 01:19:38
(35·10103+1)/9 = 3(8)1029<104> = 32 · 13 · 19 · 7549 · 11351 · 167597 · C88
C88 = P42 · P47
P42 = 100755942974597228137872420680604757516957<42>
P47 = 12089980789218005875422642451041062453834791133<47>
Sun Dec 07 18:38:53 2008 Msieve v. 1.39 Sun Dec 07 18:38:53 2008 random seeds: e1c72794 2f91d1cc Sun Dec 07 18:38:53 2008 factoring 1218137414962425390751738719549946610485828619899062995091669939678138120168291800742281 (88 digits) Sun Dec 07 18:38:54 2008 searching for 15-digit factors Sun Dec 07 18:38:56 2008 commencing quadratic sieve (88-digit input) Sun Dec 07 18:38:57 2008 using multiplier of 29 Sun Dec 07 18:38:57 2008 using 64kb Pentium 4 sieve core Sun Dec 07 18:38:57 2008 sieve interval: 12 blocks of size 65536 Sun Dec 07 18:38:57 2008 processing polynomials in batches of 9 Sun Dec 07 18:38:57 2008 using a sieve bound of 1505519 (57333 primes) Sun Dec 07 18:38:57 2008 using large prime bound of 120441520 (26 bits) Sun Dec 07 18:38:57 2008 using double large prime bound of 351072818700640 (42-49 bits) Sun Dec 07 18:38:57 2008 using trial factoring cutoff of 49 bits Sun Dec 07 18:38:57 2008 polynomial 'A' values have 11 factors Sun Dec 07 20:11:02 2008 57705 relations (16284 full + 41421 combined from 602881 partial), need 57429 Sun Dec 07 20:11:03 2008 begin with 619165 relations Sun Dec 07 20:11:04 2008 reduce to 137443 relations in 10 passes Sun Dec 07 20:11:04 2008 attempting to read 137443 relations Sun Dec 07 20:11:05 2008 recovered 137443 relations Sun Dec 07 20:11:05 2008 recovered 114473 polynomials Sun Dec 07 20:11:06 2008 attempting to build 57705 cycles Sun Dec 07 20:11:06 2008 found 57705 cycles in 5 passes Sun Dec 07 20:11:06 2008 distribution of cycle lengths: Sun Dec 07 20:11:06 2008 length 1 : 16284 Sun Dec 07 20:11:06 2008 length 2 : 11518 Sun Dec 07 20:11:06 2008 length 3 : 10106 Sun Dec 07 20:11:06 2008 length 4 : 7429 Sun Dec 07 20:11:06 2008 length 5 : 5198 Sun Dec 07 20:11:06 2008 length 6 : 3293 Sun Dec 07 20:11:06 2008 length 7 : 1795 Sun Dec 07 20:11:06 2008 length 9+: 2082 Sun Dec 07 20:11:06 2008 largest cycle: 17 relations Sun Dec 07 20:11:06 2008 matrix is 57333 x 57705 (13.6 MB) with weight 3344070 (57.95/col) Sun Dec 07 20:11:06 2008 sparse part has weight 3344070 (57.95/col) Sun Dec 07 20:11:07 2008 filtering completed in 3 passes Sun Dec 07 20:11:07 2008 matrix is 52715 x 52779 (12.5 MB) with weight 3076848 (58.30/col) Sun Dec 07 20:11:07 2008 sparse part has weight 3076848 (58.30/col) Sun Dec 07 20:11:07 2008 saving the first 48 matrix rows for later Sun Dec 07 20:11:07 2008 matrix is 52667 x 52779 (8.8 MB) with weight 2504264 (47.45/col) Sun Dec 07 20:11:07 2008 sparse part has weight 1986421 (37.64/col) Sun Dec 07 20:11:07 2008 matrix includes 64 packed rows Sun Dec 07 20:11:07 2008 using block size 21111 for processor cache size 512 kB Sun Dec 07 20:11:08 2008 commencing Lanczos iteration Sun Dec 07 20:11:08 2008 memory use: 8.2 MB Sun Dec 07 20:11:36 2008 lanczos halted after 834 iterations (dim = 52667) Sun Dec 07 20:11:36 2008 recovered 18 nontrivial dependencies Sun Dec 07 20:11:37 2008 prp42 factor: 100755942974597228137872420680604757516957 Sun Dec 07 20:11:37 2008 prp47 factor: 12089980789218005875422642451041062453834791133 Sun Dec 07 20:11:37 2008 elapsed time 01:32:44
(35·10114-17)/9 = 3(8)1137<115> = C115
C115 = P49 · P66
P49 = 4110160586637253424951061483322223671294257236029<49>
P66 = 946164707416116073991311909742053789197323995598219236310578275203<66>
Number: 38887_114 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 115 digits) SNFS difficulty: 115 digits. Divisors found: r1=4110160586637253424951061483322223671294257236029 r2=946164707416116073991311909742053789197323995598219236310578275203 Version: Total time: 0.88 hours. Scaled time: 2.25 units (timescale=2.554). Factorization parameters were as follows: name: 38887_114 n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 100000000000000000000000 deg: 5 c5: 7 c0: -34 skew: 1.37 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 60810 x 61046 Total sieving time: 0.88 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.2,2.2,50000 total time: 0.88 hours. --------- CPU info (if available) ----------
(35·10123-17)/9 = 3(8)1227<124> = 13 · 32514646135566929765652027227651<32> · C91
C91 = P38 · P54
P38 = 11000509236102085663313836629757193677<38>
P54 = 836354428344066072261132208793124499586090114853277237<54>
Sun Dec 07 20:37:42 2008 Msieve v. 1.39 Sun Dec 07 20:37:42 2008 random seeds: 812bc180 6e8de99a Sun Dec 07 20:37:42 2008 factoring 9200324613653778810285796898822436094804743580470879018126211975558105040781619379584430449 (91 digits) Sun Dec 07 20:37:43 2008 searching for 15-digit factors Sun Dec 07 20:37:44 2008 commencing quadratic sieve (91-digit input) Sun Dec 07 20:37:44 2008 using multiplier of 1 Sun Dec 07 20:37:44 2008 using 32kb Intel Core sieve core Sun Dec 07 20:37:44 2008 sieve interval: 36 blocks of size 32768 Sun Dec 07 20:37:44 2008 processing polynomials in batches of 6 Sun Dec 07 20:37:44 2008 using a sieve bound of 1748993 (65882 primes) Sun Dec 07 20:37:44 2008 using large prime bound of 176648293 (27 bits) Sun Dec 07 20:37:44 2008 using double large prime bound of 699514874899490 (42-50 bits) Sun Dec 07 20:37:44 2008 using trial factoring cutoff of 50 bits Sun Dec 07 20:37:44 2008 polynomial 'A' values have 12 factors Sun Dec 07 21:34:58 2008 66992 relations (19108 full + 47884 combined from 769023 partial), need 65978 Sun Dec 07 21:34:59 2008 begin with 788131 relations Sun Dec 07 21:35:00 2008 reduce to 159524 relations in 11 passes Sun Dec 07 21:35:00 2008 attempting to read 159524 relations Sun Dec 07 21:35:02 2008 recovered 159524 relations Sun Dec 07 21:35:02 2008 recovered 122737 polynomials Sun Dec 07 21:35:02 2008 attempting to build 66992 cycles Sun Dec 07 21:35:02 2008 found 66992 cycles in 5 passes Sun Dec 07 21:35:02 2008 distribution of cycle lengths: Sun Dec 07 21:35:02 2008 length 1 : 19108 Sun Dec 07 21:35:02 2008 length 2 : 13518 Sun Dec 07 21:35:02 2008 length 3 : 11776 Sun Dec 07 21:35:02 2008 length 4 : 8599 Sun Dec 07 21:35:02 2008 length 5 : 5743 Sun Dec 07 21:35:02 2008 length 6 : 3648 Sun Dec 07 21:35:02 2008 length 7 : 2110 Sun Dec 07 21:35:02 2008 length 9+: 2490 Sun Dec 07 21:35:02 2008 largest cycle: 18 relations Sun Dec 07 21:35:03 2008 matrix is 65882 x 66992 (15.8 MB) with weight 3873042 (57.81/col) Sun Dec 07 21:35:03 2008 sparse part has weight 3873042 (57.81/col) Sun Dec 07 21:35:04 2008 filtering completed in 4 passes Sun Dec 07 21:35:04 2008 matrix is 60137 x 60201 (14.1 MB) with weight 3450170 (57.31/col) Sun Dec 07 21:35:04 2008 sparse part has weight 3450170 (57.31/col) Sun Dec 07 21:35:04 2008 saving the first 48 matrix rows for later Sun Dec 07 21:35:04 2008 matrix is 60089 x 60201 (8.5 MB) with weight 2622071 (43.56/col) Sun Dec 07 21:35:04 2008 sparse part has weight 1870073 (31.06/col) Sun Dec 07 21:35:04 2008 matrix includes 64 packed rows Sun Dec 07 21:35:04 2008 using block size 24080 for processor cache size 1024 kB Sun Dec 07 21:35:04 2008 commencing Lanczos iteration Sun Dec 07 21:35:04 2008 memory use: 8.6 MB Sun Dec 07 21:35:24 2008 lanczos halted after 952 iterations (dim = 60088) Sun Dec 07 21:35:25 2008 recovered 16 nontrivial dependencies Sun Dec 07 21:35:28 2008 prp38 factor: 11000509236102085663313836629757193677 Sun Dec 07 21:35:28 2008 prp54 factor: 836354428344066072261132208793124499586090114853277237 Sun Dec 07 21:35:28 2008 elapsed time 00:57:46
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10139-17)/9 = 3(8)1387<140> = 37 · 23957 · 13997909 · 531167603 · 5324940143<10> · 3808548267229<13> · C96
C96 = P34 · P63
P34 = 1234471249886739306632069758085923<34>
P63 = 235690164383998395752830997318697209446208726758860398731520089<63>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1486614879 Step 1 took 6831ms Step 2 took 4506ms ********** Factor found in step 2: 1234471249886739306632069758085923 Found probable prime factor of 34 digits: 1234471249886739306632069758085923 Probable prime cofactor 235690164383998395752830997318697209446208726758860398731520089 has 63 digits
(35·10199+1)/9 = 3(8)1989<200> = 3 · 132 · 4861 · 152840603 · 1156566239497<13> · 2515923827839<13> · 217505594603821<15> · 6497775628529706959<19> · 24582654665588546304875938307<29> · C100
C100 = P33 · P67
P33 = 521482237316465123045134535692157<33>
P67 = 1958311477916142932716389871913675734578597034889255207588628076663<67>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1731595855 Step 1 took 6408ms Step 2 took 3796ms ********** Factor found in step 2: 521482237316465123045134535692157 Found probable prime factor of 33 digits: 521482237316465123045134535692157 Probable prime cofactor 1958311477916142932716389871913675734578597034889255207588628076663 has 67 digits
(35·10103-17)/9 = 3(8)1027<104> = 37 · 131 · 1481 · 38299 · C93
C93 = P45 · P48
P45 = 202254561854416559848922039163312240405477011<45>
P48 = 699377564266339266150223417648152119745082832369<48>
SNFS difficulty: 104 digits. Divisors found: r1=202254561854416559848922039163312240405477011 (pp45) r2=699377564266339266150223417648152119745082832369 (pp48) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.723). Factorization parameters were as follows: n: 141452302831497507848239580701056914824087857520121014274963999456081757918276165376396169059 m: 100000000000000000000000000 deg: 4 c4: 7 c0: -34 skew: 1.48 type: snfs lss: 1 rlim: 390000 alim: 390000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 390000/390000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [195000, 235001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 35012 x 35253 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,104,4,0,0,0,0,0,0,0,0,390000,390000,25,25,48,48,2.2,2.2,20000 total time: 0.20 hours.
(35·10204+1)/9 = 3(8)2039<205> = 71 · 359 · 10399 · 114531542096417446468313<24> · C174
C174 = P32 · P142
P32 = 84236514375392918434791697369357<32>
P142 = 1520742429925480309249157950965972233006436876279608768273203997250036059628029585673421815262936750036842572532516227046661639296824396080139<142>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1498511238 Step 1 took 14159ms Step 2 took 7539ms ********** Factor found in step 2: 84236514375392918434791697369357 Found probable prime factor of 32 digits: 84236514375392918434791697369357 Probable prime cofactor 1520742429925480309249157950965972233006436876279608768273203997250036059628029585673421815262936750036842572532516227046661639296824396080139 has 142 digits
(35·10185-17)/9 = 3(8)1847<186> = 3 · 3242017 · 78781626947123<14> · C165
C165 = P31 · C134
P31 = 5308091521661172993909954169669<31>
C134 = [95614915315976341449915814671226342958300199565786370767219809757828964280275892186523976522697083942736597836961138778025419700393251<134>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2815757366 Step 1 took 13757ms Step 2 took 7741ms ********** Factor found in step 2: 5308091521661172993909954169669 Found probable prime factor of 31 digits: 5308091521661172993909954169669 Composite cofactor has 134 digits
(35·10166-17)/9 = 3(8)1657<167> = 37 · 9967 · 37307 · 2354535121<10> · 132127952267<12> · 141133482721793<15> · C122
C122 = P28 · P94
P28 = 8226444157972988141710931167<28>
P94 = 7825767400812519208912071922939339970412517548592436550077410265971108080505948124839410842387<94>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3714132238 Step 1 took 7741ms Step 2 took 4408ms ********** Factor found in step 2: 8226444157972988141710931167 Found probable prime factor of 28 digits: 8226444157972988141710931167 Probable prime cofactor 7825767400812519208912071922939339970412517548592436550077410265971108080505948124839410842387 has 94 digits
(35·10178-17)/9 = 3(8)1777<179> = 37 · 32969 · 189583 · 517981 · 3942871 · 10985291 · 22070273 · C141
C141 = P28 · P113
P28 = 6669335981879766458758192517<28>
P113 = 50920232656772421298875597231096960594307229219521852623019622483583930275126623970795438847629543847126898487473<113>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4196366601 Step 1 took 11768ms Step 2 took 6458ms ********** Factor found in step 2: 6669335981879766458758192517 Found probable prime factor of 28 digits: 6669335981879766458758192517 Probable prime cofactor 50920232656772421298875597231096960594307229219521852623019622483583930275126623970795438847629543847126898487473 has 113 digits
(35·10114+1)/9 = 3(8)1139<115> = 832687381 · 15259609591<11> · C96
C96 = P39 · P57
P39 = 690449786536111858913383994784646317701<39>
P57 = 443269683332469302110610036873532000388386015468986749559<57>
SNFS difficulty: 115 digits. Divisors found: r1=690449786536111858913383994784646317701 (pp39) r2=443269683332469302110610036873532000388386015468986749559 (pp57) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.701). Factorization parameters were as follows: n: 306055458234833330425157231700400712933522790705374343481284656815000659951581236253030435643859 m: 100000000000000000000000 deg: 5 c5: 7 c0: 2 skew: 0.78 type: snfs lss: 1 rlim: 600000 alim: 600000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [300000, 450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 51956 x 52170 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,48,48,2.2,2.2,50000 total time: 0.50 hours.
(35·10156+1)/9 = 3(8)1559<157> = 42879765185315430497<20> · C137
C137 = P39 · P99
P39 = 292878855232275740887814418726995651773<39>
P99 = 309660006169512256602650575144116413031660682773563091399663989195394753951491151864966823095355469<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2088941172 Step 1 took 12424ms Step 2 took 6633ms ********** Factor found in step 2: 292878855232275740887814418726995651773 Found probable prime factor of 39 digits: 292878855232275740887814418726995651773 Probable prime cofactor 309660006169512256602650575144116413031660682773563091399663989195394753951491151864966823095355469 has 99 digits
(35·10194+1)/9 = 3(8)1939<195> = 1089969148057409<16> · 10219198755552835523723<23> · 9323979225759446991275928931<28> · C130
C130 = P35 · P96
P35 = 12643344099626450719036094127714479<35>
P96 = 296163291907625435082616666878492839479545213079224774475849163360422699627509912557439311446423<96>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=1697095651 Step 1 took 7693ms Step 2 took 4596ms ********** Factor found in step 2: 12643344099626450719036094127714479 Found probable prime factor of 35 digits: 12643344099626450719036094127714479 Probable prime cofactor 296163291907625435082616666878492839479545213079224774475849163360422699627509912557439311446423 has 96 digits
(35·10122-17)/9 = 3(8)1217<123> = 3 · 1667 · 200131 · 19180783 · C107
C107 = P49 · P59
P49 = 1127206542851648414760167029508360310343210538429<49>
P59 = 17971506403106683410565933523865358418769645819039526418711<59>
SNFS difficulty: 124 digits. Divisors found: r1=1127206542851648414760167029508360310343210538429 (pp49) r2=17971506403106683410565933523865358418769645819039526418711 (pp59) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.724). Factorization parameters were as follows: n: 20257599602482147603370790428086817735513085831236870307396235699167569456996686633362298322208972410145019 m: 5000000000000000000000000 deg: 5 c5: 28 c0: -425 skew: 1.72 type: snfs lss: 1 rlim: 850000 alim: 850000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 850000/850000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [425000, 775001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 99712 x 99953 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,850000,850000,25,25,48,48,2.2,2.2,50000 total time: 1.10 hours.
(35·10149+1)/9 = 3(8)1489<150> = 26091809 · 11465034896004908807461<23> · C121
C121 = P34 · P88
P34 = 1088707817387439431350379964842563<34>
P88 = 1194083292946011325405761931527911769362936033665647008316544335094461381186494573304247<88>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2177793751 Step 1 took 9949ms Step 2 took 5702ms ********** Factor found in step 2: 1088707817387439431350379964842563 Found probable prime factor of 34 digits: 1088707817387439431350379964842563 Probable prime cofactor 1194083292946011325405761931527911769362936033665647008316544335094461381186494573304247 has 88 digits
(35·10142+1)/9 = 3(8)1419<143> = 3 · 1061 · C140
C140 = P41 · P99
P41 = 15860642001115756856472209121303190876727<41>
P99 = 770314607968882846559673942076146333468438492173211262631406081919930865891145617675420812966181729<99>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=4239433639 Step 1 took 9320ms Step 2 took 5009ms ********** Factor found in step 2: 15860642001115756856472209121303190876727 Found probable prime factor of 41 digits: 15860642001115756856472209121303190876727 Probable prime cofactor 770314607968882846559673942076146333468438492173211262631406081919930865891145617675420812966181729 has 99 digits
(35·10156-17)/9 = 3(8)1557<157> = 19 · 58096309927<11> · C145
C145 = P37 · C109
P37 = 1859651820102671746966417186881408253<37>
C109 = [1894487508440474112716213669780549012421849506804151246935164488038515303188473619404856596787335933634952583<109>]
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=3652731674 Step 1 took 9300ms Step 2 took 4985ms ********** Factor found in step 2: 1859651820102671746966417186881408253 Found probable prime factor of 37 digits: 1859651820102671746966417186881408253 Composite cofactor has 109 digits
(35·10157-17)/9 = 3(8)1567<158> = 23 · 37 · 2069 · 1151733944305984141<19> · 53292721252355927483<20> · C114
C114 = P45 · P69
P45 = 951140256289141598794249013986046916487726837<45>
P69 = 378330066980404354259155145077482265252602731240864591664915709201643<69>
Using B1=3000000, B2=5706890290, polynomial Dickson(6), sigma=2131351972 Step 1 took 8217ms Step 2 took 5288ms ********** Factor found in step 2: 951140256289141598794249013986046916487726837 Found probable prime factor of 45 digits: 951140256289141598794249013986046916487726837 Probable prime cofactor 378330066980404354259155145077482265252602731240864591664915709201643 has 69 digits
Factorizations of 388...887 and Factorizations of 388...889 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Sinkiti Sibata / GGNFS
(34·10156+11)/9 = 3(7)1559<157> = 431 · 20428085369379755054381161567133<32> · C123
C123 = P40 · P84
P40 = 1641290498119364233612216509348496842037<40>
P84 = 261424338685306378465746420265055797130828604401971263690053114734342542603363295229<84>
Number: 37779_156 N=429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 ( 123 digits) SNFS difficulty: 158 digits. Divisors found: r1=1641290498119364233612216509348496842037 (pp40) r2=261424338685306378465746420265055797130828604401971263690053114734342542603363295229 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 50.25 hours. Scaled time: 98.85 units (timescale=1.967). Factorization parameters were as follows: name: 37779_156 n: 429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 m: 20000000000000000000000000000000 deg: 5 c5: 85 c0: 88 skew: 1.01 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 3050001) Primes: RFBsize:223492, AFBsize:224096, largePrimes:8479610 encountered Relations: rels:9014923, finalFF:825935 Max relations in full relation-set: 28 Initial matrix: 447655 x 825935 with sparse part having weight 98632766. Pruned matrix : 343747 x 346049 with weight 49427794. Total sieving time: 47.33 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.44 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 50.25 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10167-71)/9 = 3(8)1661<168> = 34 · 146222004002926974466791407216706971<36> · C131
C131 = P38 · P41 · P52
P38 = 81341906412392977262829851074413415931<38>
P41 = 41635795095299879483137183719197356361501<41>
P52 = 9694972354607531461319586026968019249490464567538301<52>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=4289341784 Step 1 took 36615ms Step 2 took 19160ms ********** Factor found in step 2: 41635795095299879483137183719197356361501 Found probable prime factor of 41 digits: 41635795095299879483137183719197356361501 Msieve v. 1.39 Sat Dec 6 12:40:47 2008 random seeds: 55056cf5 fb864dee factoring 788607533939223004816128108651343184586583380585738621712061138366496488305796633086073231 (90 digits) searching for 15-digit factors commencing quadratic sieve (90-digit input) using multiplier of 1 using 64kb Opteron sieve core sieve interval: 18 blocks of size 65536 processing polynomials in batches of 6 using a sieve bound of 1608661 (61176 primes) using large prime bound of 135127524 (27 bits) using double large prime bound of 431855810609412 (42-49 bits) using trial factoring cutoff of 49 bits polynomial 'A' values have 11 factors sieving in progress (press Ctrl-C to pause) 61329 relations (15844 full + 45485 combined from 667610 partial), need 61272 61329 relations (15844 full + 45485 combined from 667610 partial), need 61272 sieving complete, commencing postprocessing begin with 683454 relations reduce to 151862 relations in 10 passes attempting to read 151862 relations recovered 151862 relations recovered 132888 polynomials attempting to build 61329 cycles found 61329 cycles in 6 passes distribution of cycle lengths: length 1 : 15844 length 2 : 11503 length 3 : 10595 length 4 : 8174 length 5 : 5986 length 6 : 4006 length 7 : 2285 length 9+: 2936 largest cycle: 20 relations matrix is 61176 x 61329 (16.5 MB) with weight 3840633 (62.62/col) sparse part has weight 3840633 (62.62/col) filtering completed in 3 passes matrix is 57546 x 57610 (15.6 MB) with weight 3639842 (63.18/col) sparse part has weight 3639842 (63.18/col) saving the first 48 matrix rows for later matrix is 57498 x 57610 (12.1 MB) with weight 3077780 (53.42/col) sparse part has weight 2589368 (44.95/col) matrix includes 64 packed rows using block size 23044 for processor cache size 1024 kB commencing Lanczos iteration memory use: 9.9 MB lanczos halted after 911 iterations (dim = 57497) recovered 17 nontrivial dependencies prp38 factor: 81341906412392977262829851074413415931 prp52 factor: 9694972354607531461319586026968019249490464567538301 elapsed time 01:13:27
(16·10172-7)/9 = 1(7)172<173> = 29 · 13646237777<11> · 38365512482221<14> · C148
C148 = P74 · P75
P74 = 11028341891571566346970754072658129784323506979873488661401005556161967581<74>
P75 = 106173299975901986267593348697479150345163312613129043156754080131224341469<75>
# a quasi-nice split (when factors r2/10<r1<r2) :-) # i.e. within 1 order of magnitude, BUT not the same length # SNFS difficulty: 173 digits. Divisors found: r1=11028341891571566346970754072658129784323506979873488661401005556161967581 (pp74) r2=106173299975901986267593348697479150345163312613129043156754080131224341469 (pp75) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.699). Factorization parameters were as follows: n: 1170915451890634250878062812897650274435783395035731292758702557401427814481884711786286345110790218975486899180727931490597815191244770920051916489 m: 20000000000000000000000000000000000 deg: 5 c5: 50 c0: -7 skew: 0.67 type: snfs lss: 1 rlim: 5400000 alim: 5400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5400000/5400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2700000, 6100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1012460 x 1012702 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,173,5,0,0,0,0,0,0,0,0,5400000,5400000,27,27,52,52,2.4,2.4,100000 total time: 0.00 hours.
By Robert Backstrom / GGNFS, Msieve
(32·10204-41)/9 = 3(5)2031<205> = 73 · 863 · C200
C200 = P47 · P62 · P92
P47 = 14248427654041308826650517475730475139675651291<47>
P62 = 39913387700709211382964131171098547802886843448472175066153267<62>
P92 = 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817<92>
Number: n N=56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 ( 200 digits) SNFS difficulty: 206 digits. Divisors found: Sun Dec 07 04:22:58 2008 prp47 factor: 14248427654041308826650517475730475139675651291 Sun Dec 07 04:22:58 2008 prp62 factor: 39913387700709211382964131171098547802886843448472175066153267 Sun Dec 07 04:22:58 2008 prp92 factor: 99240348514737227891488012650045657725921855844817056668365570013539644495922325704459609817 Sun Dec 07 04:22:59 2008 elapsed time 28:19:21 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 153.01 hours. Scaled time: 312.90 units (timescale=2.045). Factorization parameters were as follows: name: KA_3_5_203_1 n: 56438285616526540985659384364125709226425110804227933071248044501588208631177567192424571113121725036199869133725226679083089502302505683511731226774322696480191043596811942341236457016072565525731449 type: snfs skew: 3.33 deg: 5 c5: 1 c0: -410 m: 200000000000000000000000000000000000000000 rlim: 10000000 alim: 10000000 lpbr: 29 lpba: 29 mfbr: 58 mfba: 58 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 58/58 Sieved special-q in [100000, 25400001) Primes: RFBsize:664579, AFBsize:665006, largePrimes:36354193 encountered Relations: rels:27543760, finalFF:133156 Max relations in full relation-set: 28 Msieve: found 9558761 hash collisions in 45411678 relations Msieve: matrix is 2874359 x 2874607 (781.1 MB) Initial matrix: Pruned matrix : Total sieving time: 150.52 hours. Total relation processing time: 2.49 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,206,5,0,0,0,0,0,0,0,0,10000000,10000000,29,29,58,58,2.5,2.5,100000 total time: 153.01 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(34·10159-61)/9 = 3(7)1581<160> = 3 · 461 · 1424499695196759996786287319127759813<37> · C121
C121 = P44 · P77
P44 = 70223475270970631308833714247375703978882183<44>
P77 = 27306720714056958176389348613507388851630448512655938025187958253361469703103<77>
Number: 37771_159 N=1917572826794880301937743521661713539970375827079494046314123580541938102384192570367828862969420055823648457470826513849 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: r1=70223475270970631308833714247375703978882183 (pp44) r2=27306720714056958176389348613507388851630448512655938025187958253361469703103 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.67 hours. Scaled time: 70.50 units (timescale=2.376). Factorization parameters were as follows: n: 1917572826794880301937743521661713539970375827079494046314123580541938102384192570367828862969420055823648457470826513849 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1800000, 3600001) Primes: RFBsize:256726, AFBsize:257467, largePrimes:9103348 encountered Relations: rels:9343195, finalFF:597134 Max relations in full relation-set: 28 Initial matrix: 514258 x 597134 with sparse part having weight 64218803. Pruned matrix : 481231 x 483866 with weight 48798972. Total sieving time: 27.66 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.83 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,51,51,2.4,2.4,100000 total time: 29.67 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Serge Batalov / Msieve-1.39, GMP-ECM 6.2.1
(35·10164-71)/9 = 3(8)1631<165> = 3 · 40639 · C160
C160 = P64 · P96
P64 = 6729192217450863728598048618087237613653798990636162581422405139<64>
P96 = 474021820032276344490729878036508269662859504739325818203395008676857889810899763775201694993287<96>
SNFS difficulty: 165 digits. Divisors found: r1=6729192217450863728598048618087237613653798990636162581422405139 (pp64) r2=474021820032276344490729878036508269662859504739325818203395008676857889810899763775201694993287 (pp96) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 3189783942263087911356815611349433539940196107916770334644790217023785763174035523256714723040173961702542622348719939703969822821172509895165472320421999301893 m: 500000000000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2000000, 3600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 717162 x 717410 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,52,52,2.4,2.4,200000 total time: 33.00 hours.
(35·10153-71)/9 = 3(8)1521<154> = 97 · 29683 · C148
C148 = P71 · P77
P71 = 27062252094015893891367821833925557921914470068002173930604051639604273<71>
P77 = 49909368320669392065207112067360020697367464724002460386090056808636455973147<77>
SNFS difficulty: 155 digits. Divisors found: r1=27062252094015893891367821833925557921914470068002173930604051639604273 (pp71) r2=49909368320669392065207112067360020697367464724002460386090056808636455973147 (pp77) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.568). Factorization parameters were as follows: n: 1350659907347045772976683480838901814704202200116936275749800517179255608103944007969047814479838294365058443633045152676473460941365962498194457131 m: 5000000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 2700000 alim: 2700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2700000/2700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1350000, 2350001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 594251 x 594499 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2700000,2700000,27,27,52,52,2.4,2.4,100000 total time: 16.00 hours.
(35·10200-71)/9 = 3(8)1991<201> = 3 · 16553 · 7927223 · 22704073853<11> · 3979963552476295781<19> · C161
C161 = P36 · P125
P36 = 395164945190857945350101909540564167<36>
P125 = 27665924809055869339926234061280855054857483038403980884226624743443037940825917222475596589660592881576057076851168755649043<125>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3549987951 Step 1 took 50820ms Step 2 took 23819ms ********** Factor found in step 2: 395164945190857945350101909540564167 Found probable prime factor of 36 digits: 395164945190857945350101909540564167 Probable prime cofactor has 125 digits
(35·10199-71)/9 = 3(8)1981<200> = 433 · 5039 · 140389427623<12> · 8357290475369752537<19> · C164
C164 = P40 · P124
P40 = 1861468120897201492992872990658651081937<40>
P124 = 8160894744665296943921251395162584241097643099470088044534647763466723548653244079777378652912656058510639793059446322808049<124>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=449619090 Step 1 took 40186ms Step 2 took 18013ms ********** Factor found in step 2: 1861468120897201492992872990658651081937 Found probable prime factor of 40 digits: 1861468120897201492992872990658651081937 Probable prime cofactor has 124 digits
(35·10177-71)/9 = 3(8)1761<178> = 19 · 431 · 14192094360547<14> · C161
C161 = P41 · P121
P41 = 16344822089886294631376367252687044228611<41>
P121 = 2047236311811775237853370064349460550471296836642857788077745439397058049721082870618229704024096730530929819770762123837<121>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=3439074722 Step 1 took 39858ms Step 2 took 17981ms ********** Factor found in step 2: 16344822089886294631376367252687044228611 Found probable prime factor of 41 digits: 16344822089886294631376367252687044228611 Probable prime cofactor 2047236311811775237853370064349460550471296836642857788077745439397058049721082870618229704024096730530929819770762123837 has 121 digits
(35·10179-71)/9 = 3(8)1781<180> = 3 · 26269883 · 8834314133<10> · C162
C162 = P36 · P127
P36 = 160020693433359773518143219603912809<36>
P127 = 3490576460850053450847907349976182625659172933180934406601688040579959555205761204584348481290922830235197726475366791229889077<127>
Using B1=11000000, B2=35133391030, polynomial Dickson(12), sigma=1303534847 Step 1 took 51179ms Step 2 took 23917ms ********** Factor found in step 2: 160020693433359773518143219603912809 Found probable prime factor of 36 digits: 160020693433359773518143219603912809 Probable prime cofactor 3490576460850053450847907349976182625659172933180934406601688040579959555205761204584348481290922830235197726475366791229889077 has 127 digits
By Sinkiti Sibata / GGNFS, Msieve
(35·10157-71)/9 = 3(8)1561<158> = 2389 · 333630907000621<15> · 589449675624851<15> · 17403193705595170453363<23> · C103
C103 = P42 · P62
P42 = 316077293436539492798483427174028217764847<42>
P62 = 15047838586998004833845001684573837704128871608268602161556759<62>
Number: 38881_157 N=4756280092648250188764199475728532994664874904397340967740470473080958604184638935560577270528905450873 ( 103 digits) Divisors found: r1=316077293436539492798483427174028217764847 (pp42) r2=15047838586998004833845001684573837704128871608268602161556759 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 12.31 hours. Scaled time: 5.82 units (timescale=0.473). Factorization parameters were as follows: name: 38881_157 n: 4756280092648250188764199475728532994664874904397340967740470473080958604184638935560577270528905450873 skew: 3602.91 # norm 2.89e+13 c5: 124320 c4: 635767801 c3: -5358051732169 c2: -6064988245481505 c1: 20352909303228765418 c0: -12588858375220797134080 # alpha -5.28 Y1: 10112432209 Y0: -32850739271467085601 # Murphy_E 2.80e-09 # M 4222018691528632760447361348847040396549466575631545691946562696264792403080906743535614308110637954375 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: RFBsize:169511, AFBsize:168817, largePrimes:4255453 encountered Relations: rels:4207348, finalFF:391895 Max relations in full relation-set: 28 Initial matrix: 338411 x 391895 with sparse part having weight 26409720. Pruned matrix : 291880 x 293636 with weight 15689274. Polynomial selection time: 0.70 hours. Total sieving time: 9.38 hours. Total relation processing time: 0.28 hours. Matrix solve time: 1.77 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 12.31 hours. --------- CPU info (if available) ----------
(35·10148-71)/9 = 3(8)1471<149> = 23 · 139 · 167 · 359 · 24859 · 1899647 · C130
C130 = P47 · P84
P47 = 11005429562821160352220822132656618449470600567<47>
P84 = 390398751300760287606065533166549932446704337286288865468217757117600799730398985751<84>
Number: 38881_148 N=4296505958853853198420117289707372789332643113650127011567313181181692972509393851525932474511053618295318863339773930029645520817 ( 130 digits) SNFS difficulty: 150 digits. Divisors found: r1=11005429562821160352220822132656618449470600567 (pp47) r2=390398751300760287606065533166549932446704337286288865468217757117600799730398985751 (pp84) Version: GGNFS-0.77.1-20060513-nocona Total time: 31.44 hours. Scaled time: 80.61 units (timescale=2.564). Factorization parameters were as follows: name: 38881_148 n: 4296505958853853198420117289707372789332643113650127011567313181181692972509393851525932474511053618295318863339773930029645520817 m: 500000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 2000001) Primes: RFBsize:162662, AFBsize:162346, largePrimes:8114482 encountered Relations: rels:9417140, finalFF:1578049 Max relations in full relation-set: 28 Initial matrix: 325074 x 1578049 with sparse part having weight 192518771. Pruned matrix : 222168 x 223857 with weight 36995244. Total sieving time: 30.70 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.50 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 31.44 hours. --------- CPU info (if available) ----------
(35·10105-71)/9 = 3(8)1041<106> = 19 · 67 · C103
C103 = P49 · P55
P49 = 1562267463406113328722074385809274805765951155247<49>
P55 = 1955427611138011473211547323006830547632965613911300951<55>
Fri Dec 05 17:00:31 2008 Msieve v. 1.39 Fri Dec 05 17:00:31 2008 random seeds: fc5576e8 64ab5ee6 Fri Dec 05 17:00:31 2008 factoring 3054900933926856943353408396613424107532512874225364406039975560792528585144453172732827092607139739897 (103 digits) Fri Dec 05 17:00:32 2008 searching for 15-digit factors Fri Dec 05 17:00:34 2008 commencing quadratic sieve (103-digit input) Fri Dec 05 17:00:34 2008 using multiplier of 2 Fri Dec 05 17:00:34 2008 using 32kb Intel Core sieve core Fri Dec 05 17:00:34 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 17:00:34 2008 processing polynomials in batches of 6 Fri Dec 05 17:00:34 2008 using a sieve bound of 3415309 (122500 primes) Fri Dec 05 17:00:34 2008 using large prime bound of 512296350 (28 bits) Fri Dec 05 17:00:34 2008 using double large prime bound of 4754865765116250 (44-53 bits) Fri Dec 05 17:00:34 2008 using trial factoring cutoff of 53 bits Fri Dec 05 17:00:34 2008 polynomial 'A' values have 13 factors Sat Dec 06 10:39:04 2008 122696 relations (29594 full + 93102 combined from 1817556 partial), need 122596 Sat Dec 06 10:39:06 2008 begin with 1847150 relations Sat Dec 06 10:39:09 2008 reduce to 320816 relations in 14 passes Sat Dec 06 10:39:09 2008 attempting to read 320816 relations Sat Dec 06 10:39:15 2008 recovered 320816 relations Sat Dec 06 10:39:15 2008 recovered 311130 polynomials Sat Dec 06 10:39:15 2008 attempting to build 122696 cycles Sat Dec 06 10:39:15 2008 found 122696 cycles in 6 passes Sat Dec 06 10:39:15 2008 distribution of cycle lengths: Sat Dec 06 10:39:15 2008 length 1 : 29594 Sat Dec 06 10:39:15 2008 length 2 : 21278 Sat Dec 06 10:39:15 2008 length 3 : 20624 Sat Dec 06 10:39:15 2008 length 4 : 16624 Sat Dec 06 10:39:15 2008 length 5 : 12623 Sat Dec 06 10:39:15 2008 length 6 : 8645 Sat Dec 06 10:39:15 2008 length 7 : 5696 Sat Dec 06 10:39:15 2008 length 9+: 7612 Sat Dec 06 10:39:15 2008 largest cycle: 21 relations Sat Dec 06 10:39:16 2008 matrix is 122500 x 122696 (36.3 MB) with weight 9015392 (73.48/col) Sat Dec 06 10:39:16 2008 sparse part has weight 9015392 (73.48/col) Sat Dec 06 10:39:18 2008 filtering completed in 3 passes Sat Dec 06 10:39:18 2008 matrix is 117311 x 117374 (34.9 MB) with weight 8688006 (74.02/col) Sat Dec 06 10:39:18 2008 sparse part has weight 8688006 (74.02/col) Sat Dec 06 10:39:18 2008 saving the first 48 matrix rows for later Sat Dec 06 10:39:18 2008 matrix is 117263 x 117374 (25.5 MB) with weight 7294140 (62.14/col) Sat Dec 06 10:39:18 2008 sparse part has weight 5973790 (50.90/col) Sat Dec 06 10:39:18 2008 matrix includes 64 packed rows Sat Dec 06 10:39:18 2008 using block size 43690 for processor cache size 1024 kB Sat Dec 06 10:39:20 2008 commencing Lanczos iteration Sat Dec 06 10:39:20 2008 memory use: 22.3 MB Sat Dec 06 10:41:08 2008 lanczos halted after 1856 iterations (dim = 117263) Sat Dec 06 10:41:08 2008 recovered 18 nontrivial dependencies Sat Dec 06 10:41:10 2008 prp49 factor: 1562267463406113328722074385809274805765951155247 Sat Dec 06 10:41:10 2008 prp55 factor: 1955427611138011473211547323006830547632965613911300951 Sat Dec 06 10:41:10 2008 elapsed time 17:40:39
(35·10151-71)/9 = 3(8)1501<152> = 31 · 1210922113<10> · 4834258445689<13> · C129
C129 = P53 · P77
P53 = 12358500842512959654534882662579877414220284948569179<53>
P77 = 17340115058960026817035095906197024842383922831776749394279438959223915036517<77>
Number: 38881_151 N=214297826565429150492910064568361695812555353202466228632291289065314164253707324199225375072353391618673584558585674182685709543 ( 129 digits) SNFS difficulty: 152 digits. Divisors found: r1=12358500842512959654534882662579877414220284948569179 (pp53) r2=17340115058960026817035095906197024842383922831776749394279438959223915036517 (pp77) Version: GGNFS-0.77.1-20060513-nocona Total time: 32.66 hours. Scaled time: 83.74 units (timescale=2.564). Factorization parameters were as follows: name: 38881_151 n: 214297826565429150492910064568361695812555353202466228632291289065314164253707324199225375072353391618673584558585674182685709543 m: 1000000000000000000000000000000 deg: 5 c5: 350 c0: -71 skew: 0.73 type: snfs lss: 1 rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176209, largePrimes:8615759 encountered Relations: rels:9485023, finalFF:1053292 Max relations in full relation-set: 28 Initial matrix: 352578 x 1053292 with sparse part having weight 135303276. Pruned matrix : 253374 x 255200 with weight 47792421. Total sieving time: 31.55 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.85 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 32.66 hours. --------- CPU info (if available) ----------
(35·10158-71)/9 = 3(8)1571<159> = 32 · 872731 · 11263537857560226125063933208259<32> · C121
C121 = P52 · P69
P52 = 5021903696133745830067411705044711834566746760809363<52>
P69 = 875305020815140943837780270287316610643722751592004225362380010464867<69>
Number: 38881_158 N=4395697519275981635190971269779667210646649147252567630493794524731924375810616348513154465968256408807779438490796149721 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=5021903696133745830067411705044711834566746760809363 (pp52) r2=875305020815140943837780270287316610643722751592004225362380010464867 (pp69) Version: GGNFS-0.77.1-20060513-k8 Total time: 57.95 hours. Scaled time: 113.58 units (timescale=1.960). Factorization parameters were as follows: name: 38881_158 n: 4395697519275981635190971269779667210646649147252567630493794524731924375810616348513154465968256408807779438490796149721 m: 50000000000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3350001) Primes: RFBsize:236900, AFBsize:236893, largePrimes:9198456 encountered Relations: rels:9588051, finalFF:598468 Max relations in full relation-set: 28 Initial matrix: 473859 x 598468 with sparse part having weight 69907364. Pruned matrix : 429011 x 431444 with weight 48235210. Total sieving time: 54.00 hours. Total relation processing time: 0.29 hours. Matrix solve time: 3.41 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 57.95 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
4·10200-3 = 3(9)1997<201> = 397 · C199
C199 = P55 · P144
P55 = 1591080945026496112917339112958930463606304590528911569<55>
P144 = 633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729<144>
Number: 39997_200 N=1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=1591080945026496112917339112958930463606304590528911569 r2=633252932990278223069090414959637564981283096491029523470488470154265459768968029261042716837602446043281857774800232294214750266149540233317729 Version: Total time: 626.57 hours. Scaled time: 1243.74 units (timescale=1.985). Factorization parameters were as follows: n: 1007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801007556675062972292191435768261964735516372795969773299748110831234256926952141057934508816120906801 m: 10000000000000000000000000000000000000000 deg: 5 c5: 4 c0: -3 skew: 0.94 type: snfs lss: 1 rlim: 15400000 alim: 15400000 lpbr: 29 lpba: 29 mfbr: 56 mfba: 56 rlambda: 2.6 alambda: 2.6 Factor base limits: 15400000/15400000 Large primes per side: 3 Large prime bits: 29/29 Max factor residue bits: 56/56 Sieved rational special-q in [7700000, 14100001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 2802786 x 2803034 Total sieving time: 626.57 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,200,5,0,0,0,0,0,0,0,0,15400000,15400000,29,29,56,56,2.6,2.6,100000 total time: 626.57 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS
10172+3 = 1(0)1713<173> = 7 · 103 · 4840357 · C163
C163 = P58 · P105
P58 = 6217133466469352588076049198728375528009389334759580516393<58>
P105 = 460889856884875870260428947472281235450995348075280309946390712729504236795643811044642178283027609350143<105>
Number: 10003_172 N=2865413753595232129398903356928690817897991056612143717989082187335148180002496503194474860373667312145337549589856896300037556662872859812044497192419895088394199 ( 163 digits) SNFS difficulty: 172 digits. Divisors found: r1=6217133466469352588076049198728375528009389334759580516393 (pp58) r2=460889856884875870260428947472281235450995348075280309946390712729504236795643811044642178283027609350143 (pp105) Version: GGNFS-0.77.1-20060722-nocona Total time: 103.49 hours. Scaled time: 208.53 units (timescale=2.015). Factorization parameters were as follows: n: 2865413753595232129398903356928690817897991056612143717989082187335148180002496503194474860373667312145337549589856896300037556662872859812044497192419895088394199 m: 20000000000000000000000000000000000 deg: 5 c5: 25 c0: 24 skew: 0.99 type: snfs lss: 1 rlim: 5300000 alim: 5300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5300000/5300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2650000, 5550001) Primes: RFBsize:367900, AFBsize:368047, largePrimes:10352551 encountered Relations: rels:11115160, finalFF:896590 Max relations in full relation-set: 32 Initial matrix: 736012 x 896590 with sparse part having weight 113714104. Pruned matrix : 642276 x 646020 with weight 89259004. Total sieving time: 98.38 hours. Total relation processing time: 0.16 hours. Matrix solve time: 4.75 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5300000,5300000,27,27,52,52,2.4,2.4,100000 total time: 103.49 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(32·10164+31)/9 = 3(5)1639<165> = 26711 · C161
C161 = P55 · P106
P55 = 9750124430174322079990785274701676614927947079446672633<55>
P106 = 1365234213461941186730471721006005384005878692179369864168580091088793810524096380552387838598296089911993<106>
Number: n N=13311203457585098107729233482668397123116152729420671467019413558292671766521491353957379190429244713996314460542681125961422468479486187546537215213041651587569 ( 161 digits) SNFS difficulty: 166 digits. Divisors found: Fri Dec 05 18:46:41 2008 prp55 factor: 9750124430174322079990785274701676614927947079446672633 Fri Dec 05 18:46:41 2008 prp106 factor: 1365234213461941186730471721006005384005878692179369864168580091088793810524096380552387838598296089911993 Fri Dec 05 18:46:41 2008 elapsed time 02:08:47 (Msieve 1.39 - dependency 1) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.27 hours. Scaled time: 57.00 units (timescale=1.823). Factorization parameters were as follows: name: KA_3_5_163_9 n: 13311203457585098107729233482668397123116152729420671467019413558292671766521491353957379190429244713996314460542681125961422468479486187546537215213041651587569 type: snfs skew: 3.15 deg: 5 c5: 1 c0: 310 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1900001) Primes: RFBsize:348513, AFBsize:349532, largePrimes:14897284 encountered Relations: rels:13440474, finalFF:731215 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 30.82 hours. Total relation processing time: 0.45 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 31.27 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
(35·10117-71)/9 = 3(8)1161<118> = 375643 · C113
C113 = P49 · P64
P49 = 2407192503767726283938093397877279814867330840593<49>
P64 = 4300702608253451422223050521702143454051375448060420057356800819<64>
Number: 38881_117 N=10352619079522016619207302914972164765186330875029985621691044126707775438085865805802021836927318994068540845667 ( 113 digits) SNFS difficulty: 119 digits. Divisors found: r1=2407192503767726283938093397877279814867330840593 (pp49) r2=4300702608253451422223050521702143454051375448060420057356800819 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.98 hours. Scaled time: 5.99 units (timescale=2.010). Factorization parameters were as follows: name: 38881_117 n: 10352619079522016619207302914972164765186330875029985621691044126707775438085865805802021836927318994068540845667 m: 200000000000000000000000 deg: 5 c5: 875 c0: -568 skew: 0.92 type: snfs lss: 1 rlim: 690000 alim: 690000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.2 alambda: 2.2 Factor base limits: 690000/690000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved rational special-q in [345000, 695001) Primes: RFBsize:55815, AFBsize:56064, largePrimes:1490570 encountered Relations: rels:1555639, finalFF:231675 Max relations in full relation-set: 28 Initial matrix: 111946 x 231675 with sparse part having weight 13074136. Pruned matrix : 84612 x 85235 with weight 3834904. Total sieving time: 2.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,690000,690000,25,25,45,45,2.2,2.2,50000 total time: 2.98 hours. --------- CPU info (if available) ----------
(35·10133-71)/9 = 3(8)1321<134> = 626636045531<12> · C122
C122 = P57 · P65
P57 = 664661136625342072710172593992343671372176190170793922127<57>
P65 = 93370541208729459632002309204427506540981356824207695672872397613<65>
Number: 38881_133 N=62059770047117463525210261016827144517283034923743649863583909877584256653942798017061503606657721825998117614322502682851 ( 122 digits) SNFS difficulty: 135 digits. Divisors found: r1=664661136625342072710172593992343671372176190170793922127 (pp57) r2=93370541208729459632002309204427506540981356824207695672872397613 (pp65) Version: GGNFS-0.77.1-20060513-nocona Total time: 6.39 hours. Scaled time: 16.46 units (timescale=2.575). Factorization parameters were as follows: name: 38881_133 n: 62059770047117463525210261016827144517283034923743649863583909877584256653942798017061503606657721825998117614322502682851 m: 500000000000000000000000000 deg: 5 c5: 56 c0: -355 skew: 1.45 type: snfs lss: 1 rlim: 1260000 alim: 1260000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1260000/1260000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [630000, 1305001) Primes: RFBsize:97182, AFBsize:96764, largePrimes:3257937 encountered Relations: rels:3274946, finalFF:296830 Max relations in full relation-set: 28 Initial matrix: 194012 x 296830 with sparse part having weight 27557581. Pruned matrix : 168007 x 169041 with weight 12453978. Total sieving time: 6.15 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1260000,1260000,26,26,47,47,2.3,2.3,75000 total time: 6.39 hours. --------- CPU info (if available) ----------
(35·10125-71)/9 = 3(8)1241<126> = 3 · 55061 · C121
C121 = P42 · P80
P42 = 193777002671305679513189401385663005139429<42>
P80 = 12149487304698154777013912556623553448883532470722295647430245883133644361392483<80>
Number: 38881_125 N=2354291233897488778438997287183843911836501873006840225016429589539413189546677859639847253584744730928054877856007512207 ( 121 digits) SNFS difficulty: 126 digits. Divisors found: r1=193777002671305679513189401385663005139429 (pp42) r2=12149487304698154777013912556623553448883532470722295647430245883133644361392483 (pp80) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.60 hours. Scaled time: 7.20 units (timescale=1.997). Factorization parameters were as follows: name: 38881_125 n: 2354291233897488778438997287183843911836501873006840225016429589539413189546677859639847253584744730928054877856007512207 m: 10000000000000000000000000 deg: 5 c5: 35 c0: -71 skew: 1.15 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 800001) Primes: RFBsize:71274, AFBsize:71106, largePrimes:2741634 encountered Relations: rels:2774104, finalFF:312654 Max relations in full relation-set: 28 Initial matrix: 142446 x 312654 with sparse part having weight 25875141. Pruned matrix : 108667 x 109443 with weight 6866036. Total sieving time: 3.42 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 3.60 hours. --------- CPU info (if available) ----------
(35·10143-71)/9 = 3(8)1421<144> = 3 · 24877 · 2449308294863<13> · 738760692290080903<18> · 3043277453107840967<19> · C90
C90 = P43 · P48
P43 = 6518639221073681222625258143211300772137541<43>
P48 = 145164541708841951682791434372335409586197147397<48>
Fri Dec 05 08:27:47 2008 Msieve v. 1.39 Fri Dec 05 08:27:47 2008 random seeds: 46401fa0 55a4e33b Fri Dec 05 08:27:47 2008 factoring 946275275092443409644573949876196092691119058392272946735399730110850546130079032334130777 (90 digits) Fri Dec 05 08:27:48 2008 searching for 15-digit factors Fri Dec 05 08:27:50 2008 commencing quadratic sieve (90-digit input) Fri Dec 05 08:27:50 2008 using multiplier of 1 Fri Dec 05 08:27:50 2008 using 32kb Intel Core sieve core Fri Dec 05 08:27:50 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 08:27:50 2008 processing polynomials in batches of 6 Fri Dec 05 08:27:50 2008 using a sieve bound of 1616401 (61176 primes) Fri Dec 05 08:27:50 2008 using large prime bound of 135777684 (27 bits) Fri Dec 05 08:27:50 2008 using double large prime bound of 435603187807956 (42-49 bits) Fri Dec 05 08:27:50 2008 using trial factoring cutoff of 49 bits Fri Dec 05 08:27:50 2008 polynomial 'A' values have 11 factors Fri Dec 05 10:03:38 2008 61574 relations (15651 full + 45923 combined from 675984 partial), need 61272 Fri Dec 05 10:03:39 2008 begin with 691635 relations Fri Dec 05 10:03:39 2008 reduce to 153317 relations in 10 passes Fri Dec 05 10:03:39 2008 attempting to read 153317 relations Fri Dec 05 10:03:41 2008 recovered 153317 relations Fri Dec 05 10:03:41 2008 recovered 135213 polynomials Fri Dec 05 10:03:41 2008 attempting to build 61574 cycles Fri Dec 05 10:03:42 2008 found 61574 cycles in 6 passes Fri Dec 05 10:03:42 2008 distribution of cycle lengths: Fri Dec 05 10:03:42 2008 length 1 : 15651 Fri Dec 05 10:03:42 2008 length 2 : 11589 Fri Dec 05 10:03:42 2008 length 3 : 10729 Fri Dec 05 10:03:42 2008 length 4 : 8341 Fri Dec 05 10:03:42 2008 length 5 : 5978 Fri Dec 05 10:03:42 2008 length 6 : 3884 Fri Dec 05 10:03:42 2008 length 7 : 2496 Fri Dec 05 10:03:42 2008 length 9+: 2906 Fri Dec 05 10:03:42 2008 largest cycle: 18 relations Fri Dec 05 10:03:42 2008 matrix is 61176 x 61574 (15.5 MB) with weight 3815112 (61.96/col) Fri Dec 05 10:03:42 2008 sparse part has weight 3815112 (61.96/col) Fri Dec 05 10:03:43 2008 filtering completed in 3 passes Fri Dec 05 10:03:43 2008 matrix is 57748 x 57812 (14.6 MB) with weight 3596094 (62.20/col) Fri Dec 05 10:03:43 2008 sparse part has weight 3596094 (62.20/col) Fri Dec 05 10:03:43 2008 saving the first 48 matrix rows for later Fri Dec 05 10:03:43 2008 matrix is 57700 x 57812 (11.1 MB) with weight 3052248 (52.80/col) Fri Dec 05 10:03:43 2008 sparse part has weight 2564465 (44.36/col) Fri Dec 05 10:03:43 2008 matrix includes 64 packed rows Fri Dec 05 10:03:43 2008 using block size 23124 for processor cache size 1024 kB Fri Dec 05 10:03:43 2008 commencing Lanczos iteration Fri Dec 05 10:03:43 2008 memory use: 9.9 MB Fri Dec 05 10:04:06 2008 lanczos halted after 914 iterations (dim = 57697) Fri Dec 05 10:04:06 2008 recovered 15 nontrivial dependencies Fri Dec 05 10:04:07 2008 prp43 factor: 6518639221073681222625258143211300772137541 Fri Dec 05 10:04:07 2008 prp48 factor: 145164541708841951682791434372335409586197147397 Fri Dec 05 10:04:07 2008 elapsed time 01:36:20
(35·10134-71)/9 = 3(8)1331<135> = 3 · 212281 · 552762764247593<15> · C115
C115 = P50 · P65
P50 = 11472041308740830128226004319952938850730656734007<50>
P65 = 96297203056272637468217470840571551206356271026255352522783960317<65>
Number: 38881_134 N=1104725491377763414833483395718902424741972769207169290516839727448955235136688880837880013087427391950464312400219 ( 115 digits) SNFS difficulty: 135 digits. Divisors found: r1=11472041308740830128226004319952938850730656734007 (pp50) r2=96297203056272637468217470840571551206356271026255352522783960317 (pp65) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.67 hours. Scaled time: 29.93 units (timescale=2.564). Factorization parameters were as follows: name: 38881_134 n: 1104725491377763414833483395718902424741972769207169290516839727448955235136688880837880013087427391950464312400219 m: 500000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1270000 alim: 1270000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1270000/1270000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [635000, 1310001) Primes: RFBsize:97900, AFBsize:97920, largePrimes:4211322 encountered Relations: rels:5361963, finalFF:1360672 Max relations in full relation-set: 28 Initial matrix: 195886 x 1360672 with sparse part having weight 120458970. Pruned matrix : 121778 x 122821 with weight 12755672. Total sieving time: 11.47 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1270000,1270000,26,26,47,47,2.3,2.3,75000 total time: 11.67 hours. --------- CPU info (if available) ----------
(35·10129-71)/9 = 3(8)1281<130> = C130
C130 = P52 · P79
P52 = 3049419765225815668983930609536436633389526100014187<52>
P79 = 1275288149318107683447556329379955502544080854576860051786719622599998534897363<79>
Number: 38881_129 N=3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=3049419765225815668983930609536436633389526100014187 (pp52) r2=1275288149318107683447556329379955502544080854576860051786719622599998534897363 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.90 hours. Scaled time: 7.81 units (timescale=2.003). Factorization parameters were as follows: name: 38881_129 n: 3888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881 m: 50000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1050000 alim: 1050000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1050000/1050000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [525000, 875001) Primes: RFBsize:82134, AFBsize:82218, largePrimes:2996541 encountered Relations: rels:3114289, finalFF:403967 Max relations in full relation-set: 28 Initial matrix: 164418 x 403967 with sparse part having weight 31259082. Pruned matrix : 111762 x 112648 with weight 7375178. Total sieving time: 3.70 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1050000,1050000,26,26,47,47,2.3,2.3,50000 total time: 3.90 hours. --------- CPU info (if available) ----------
(35·10124-71)/9 = 3(8)1231<125> = 126337 · 401536283195568182048119<24> · C96
C96 = P40 · P57
P40 = 1569021033248296412077580593368762358459<40>
P57 = 488586445919016114840133096706351415288180507783714125653<57>
Fri Dec 05 16:43:00 2008 Msieve v. 1.39 Fri Dec 05 16:43:00 2008 random seeds: dc481b30 e523ea48 Fri Dec 05 16:43:00 2008 factoring 766602410206967560361540831523005387065159711107124604251139731533780707843870880275433353448727 (96 digits) Fri Dec 05 16:43:01 2008 searching for 15-digit factors Fri Dec 05 16:43:02 2008 commencing quadratic sieve (96-digit input) Fri Dec 05 16:43:02 2008 using multiplier of 7 Fri Dec 05 16:43:02 2008 using 32kb Intel Core sieve core Fri Dec 05 16:43:02 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 16:43:02 2008 processing polynomials in batches of 6 Fri Dec 05 16:43:02 2008 using a sieve bound of 2293831 (84706 primes) Fri Dec 05 16:43:02 2008 using large prime bound of 344074650 (28 bits) Fri Dec 05 16:43:02 2008 using double large prime bound of 2322601948775250 (43-52 bits) Fri Dec 05 16:43:02 2008 using trial factoring cutoff of 52 bits Fri Dec 05 16:43:02 2008 polynomial 'A' values have 12 factors Fri Dec 05 16:43:04 2008 restarting with 20411 full and 1277790 partial relations Fri Dec 05 16:43:04 2008 84995 relations (20411 full + 64584 combined from 1277790 partial), need 84802 Fri Dec 05 16:43:06 2008 begin with 1298201 relations Fri Dec 05 16:43:07 2008 reduce to 223514 relations in 11 passes Fri Dec 05 16:43:07 2008 attempting to read 223514 relations Fri Dec 05 16:43:11 2008 recovered 223514 relations Fri Dec 05 16:43:11 2008 recovered 209788 polynomials Fri Dec 05 16:43:11 2008 attempting to build 84995 cycles Fri Dec 05 16:43:11 2008 found 84995 cycles in 6 passes Fri Dec 05 16:43:11 2008 distribution of cycle lengths: Fri Dec 05 16:43:11 2008 length 1 : 20411 Fri Dec 05 16:43:11 2008 length 2 : 14457 Fri Dec 05 16:43:11 2008 length 3 : 14369 Fri Dec 05 16:43:11 2008 length 4 : 11606 Fri Dec 05 16:43:11 2008 length 5 : 8770 Fri Dec 05 16:43:11 2008 length 6 : 6098 Fri Dec 05 16:43:11 2008 length 7 : 3874 Fri Dec 05 16:43:11 2008 length 9+: 5410 Fri Dec 05 16:43:11 2008 largest cycle: 21 relations Fri Dec 05 16:43:12 2008 matrix is 84706 x 84995 (23.8 MB) with weight 5903429 (69.46/col) Fri Dec 05 16:43:12 2008 sparse part has weight 5903429 (69.46/col) Fri Dec 05 16:43:13 2008 filtering completed in 3 passes Fri Dec 05 16:43:13 2008 matrix is 80930 x 80994 (22.8 MB) with weight 5650897 (69.77/col) Fri Dec 05 16:43:13 2008 sparse part has weight 5650897 (69.77/col) Fri Dec 05 16:43:13 2008 saving the first 48 matrix rows for later Fri Dec 05 16:43:13 2008 matrix is 80882 x 80994 (16.9 MB) with weight 4765904 (58.84/col) Fri Dec 05 16:43:13 2008 sparse part has weight 3953034 (48.81/col) Fri Dec 05 16:43:13 2008 matrix includes 64 packed rows Fri Dec 05 16:43:13 2008 using block size 32397 for processor cache size 1024 kB Fri Dec 05 16:43:14 2008 commencing Lanczos iteration Fri Dec 05 16:43:14 2008 memory use: 14.8 MB Fri Dec 05 16:44:03 2008 lanczos halted after 1280 iterations (dim = 80882) Fri Dec 05 16:44:04 2008 recovered 18 nontrivial dependencies Fri Dec 05 16:44:04 2008 prp40 factor: 1569021033248296412077580593368762358459 Fri Dec 05 16:44:04 2008 prp57 factor: 488586445919016114840133096706351415288180507783714125653 Fri Dec 05 16:44:04 2008 elapsed time 00:01:04 注、画面表示ミスしたので再演算したため分解時間は関係ありません。
(35·10144-71)/9 = 3(8)1431<145> = 61 · 769207 · 7871627 · C131
C131 = P62 · P69
P62 = 28629087949393447456111133198620160036169315533071244148235903<62>
P69 = 367773516809964708948000502851903761346423796515465049591887880180663<69>
Number: 38881_144 N=10529020358210209126672419361319625913663990406421937265557556732693143120642454411467186326888174670644236643467251548108382943689 ( 131 digits) SNFS difficulty: 145 digits. Divisors found: r1=28629087949393447456111133198620160036169315533071244148235903 (pp62) r2=367773516809964708948000502851903761346423796515465049591887880180663 (pp69) Version: GGNFS-0.77.1-20060513-nocona Total time: 10.01 hours. Scaled time: 25.68 units (timescale=2.564). Factorization parameters were as follows: name: 38881_144 n: 10529020358210209126672419361319625913663990406421937265557556732693143120642454411467186326888174670644236643467251548108382943689 m: 50000000000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 1870000 alim: 1870000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.3 alambda: 2.3 Factor base limits: 1870000/1870000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved rational special-q in [935000, 1835001) Primes: RFBsize:139952, AFBsize:139833, largePrimes:3814117 encountered Relations: rels:3832358, finalFF:342129 Max relations in full relation-set: 28 Initial matrix: 279851 x 342129 with sparse part having weight 28183205. Pruned matrix : 255762 x 257225 with weight 17674466. Total sieving time: 9.48 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.39 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1870000,1870000,26,26,49,49,2.3,2.3,100000 total time: 10.01 hours. --------- CPU info (if available) ----------
By Erik Branger / GGNFS, Msieve
(32·10167+13)/9 = 3(5)1667<168> = 3 · 119293 · C162
C162 = P73 · P90
P73 = 4322911474401221003739959855382863867332867253351618140261790579201053693<73>
P90 = 229823752646895330304729197086763575243943550018744050858962781324833714898204771186252031<90>
Number: 35557_167 N=993507737407211810571605362582201122601649036561395207753334382725880969700808249591497560783269081325128201307021522792775087545107579812046964352631910661300483 ( 162 digits) SNFS difficulty: 168 digits. Divisors found: r1=4322911474401221003739959855382863867332867253351618140261790579201053693 r2=229823752646895330304729197086763575243943550018744050858962781324833714898204771186252031 Version: Total time: 84.94 hours. Scaled time: 66.94 units (timescale=0.788). Factorization parameters were as follows: n: 993507737407211810571605362582201122601649036561395207753334382725880969700808249591497560783269081325128201307021522792775087545107579812046964352631910661300483 m: 2000000000000000000000000000000000 deg: 5 c5: 100 c0: 13 skew: 0.66 type: snfs lss: 1 rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2250000, 4550001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 883748 x 883996 Total sieving time: 84.94 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,52,52,2.4,2.4,100000 total time: 84.94 hours. --------- CPU info (if available) ----------
(35·10178-71)/9 = 3(8)1771<179> = 59 · 30319 · 8784667 · 299262034171<12> · 16932239622943<14> · 2859919899229312168589<22> · 3539940740859270898078487443<28> · C92
C92 = P45 · P47
P45 = 852617991092640531706382587775687981367372409<45>
P47 = 56580002638170283553528616716073383101107780277<47>
Fri Dec 05 00:21:57 2008 Msieve v. 1.39 Fri Dec 05 00:21:57 2008 random seeds: 87820f18 cf45edda Fri Dec 05 00:21:57 2008 factoring 48241128185373048607658534762192941159740389848374666344381904643854197316091606546004177293 (92 digits) Fri Dec 05 00:21:58 2008 searching for 15-digit factors Fri Dec 05 00:21:59 2008 commencing quadratic sieve (92-digit input) Fri Dec 05 00:21:59 2008 using multiplier of 1 Fri Dec 05 00:21:59 2008 using 32kb Intel Core sieve core Fri Dec 05 00:21:59 2008 sieve interval: 36 blocks of size 32768 Fri Dec 05 00:21:59 2008 processing polynomials in batches of 6 Fri Dec 05 00:21:59 2008 using a sieve bound of 1818667 (68235 primes) Fri Dec 05 00:21:59 2008 using large prime bound of 198234703 (27 bits) Fri Dec 05 00:21:59 2008 using double large prime bound of 860841928930917 (42-50 bits) Fri Dec 05 00:21:59 2008 using trial factoring cutoff of 50 bits Fri Dec 05 00:21:59 2008 polynomial 'A' values have 12 factors Fri Dec 05 02:26:40 2008 68377 relations (17338 full + 51039 combined from 866466 partial), need 68331 Fri Dec 05 02:26:43 2008 begin with 883804 relations Fri Dec 05 02:26:43 2008 reduce to 173971 relations in 11 passes Fri Dec 05 02:26:43 2008 attempting to read 173971 relations Fri Dec 05 02:26:47 2008 recovered 173971 relations Fri Dec 05 02:26:47 2008 recovered 156247 polynomials Fri Dec 05 02:26:48 2008 attempting to build 68377 cycles Fri Dec 05 02:26:48 2008 found 68377 cycles in 5 passes Fri Dec 05 02:26:48 2008 distribution of cycle lengths: Fri Dec 05 02:26:48 2008 length 1 : 17338 Fri Dec 05 02:26:48 2008 length 2 : 12123 Fri Dec 05 02:26:48 2008 length 3 : 11729 Fri Dec 05 02:26:48 2008 length 4 : 9447 Fri Dec 05 02:26:48 2008 length 5 : 6839 Fri Dec 05 02:26:48 2008 length 6 : 4403 Fri Dec 05 02:26:48 2008 length 7 : 2764 Fri Dec 05 02:26:48 2008 length 9+: 3734 Fri Dec 05 02:26:48 2008 largest cycle: 21 relations Fri Dec 05 02:26:48 2008 matrix is 68235 x 68377 (17.0 MB) with weight 4182839 (61.17/col) Fri Dec 05 02:26:48 2008 sparse part has weight 4182839 (61.17/col) Fri Dec 05 02:26:49 2008 filtering completed in 3 passes Fri Dec 05 02:26:49 2008 matrix is 64604 x 64668 (16.2 MB) with weight 3981649 (61.57/col) Fri Dec 05 02:26:49 2008 sparse part has weight 3981649 (61.57/col) Fri Dec 05 02:26:49 2008 saving the first 48 matrix rows for later Fri Dec 05 02:26:49 2008 matrix is 64556 x 64668 (10.0 MB) with weight 3102626 (47.98/col) Fri Dec 05 02:26:49 2008 sparse part has weight 2234604 (34.56/col) Fri Dec 05 02:26:49 2008 matrix includes 64 packed rows Fri Dec 05 02:26:49 2008 using block size 25867 for processor cache size 2048 kB Fri Dec 05 02:26:49 2008 commencing Lanczos iteration Fri Dec 05 02:26:49 2008 memory use: 9.9 MB Fri Dec 05 02:27:11 2008 lanczos halted after 1022 iterations (dim = 64554) Fri Dec 05 02:27:12 2008 recovered 15 nontrivial dependencies Fri Dec 05 02:27:12 2008 prp45 factor: 852617991092640531706382587775687981367372409 Fri Dec 05 02:27:12 2008 prp47 factor: 56580002638170283553528616716073383101107780277 Fri Dec 05 02:27:12 2008 elapsed time 02:05:15
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.39
(35·10102-71)/9 = 3(8)1011<103> = 139 · 2053 · 3421577921<10> · C88
C88 = P36 · P53
P36 = 189655237882485713626855383164734829<36>
P53 = 21000542262980580332387674910609858745830341198993427<53>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3315921847 Step 1 took 9500ms Step 2 took 7561ms ********** Factor found in step 2: 189655237882485713626855383164734829 Found probable prime factor of 36 digits: 189655237882485713626855383164734829 Probable prime cofactor 21000542262980580332387674910609858745830341198993427 has 53 digits
(35·10139-71)/9 = 3(8)1381<140> = 17 · 813311 · 8018110624369<13> · 6511228337017966632813877<25> · C95
C95 = P35 · P61
P35 = 15649167451664818524155508294784231<35>
P61 = 3442657041560301536979260219834848760144132407114779732793621<61>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=344597253 Step 1 took 9148ms Step 2 took 7897ms ********** Factor found in step 2: 15649167451664818524155508294784231 Found probable prime factor of 35 digits: 15649167451664818524155508294784231 Probable prime cofactor 3442657041560301536979260219834848760144132407114779732793621 has 61 digits
(35·10120-71)/9 = 3(8)1191<121> = 59 · 83 · 1603184392344227670937<22> · C96
C96 = P31 · P66
P31 = 2715369083178513050346546575239<31>
P66 = 182424466924139797820704781550258524766594314753551564628143605311<66>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1516650998 Step 1 took 10824ms Step 2 took 9665ms ********** Factor found in step 2: 2715369083178513050346546575239 Found probable prime factor of 31 digits: 2715369083178513050346546575239 Probable prime cofactor 182424466924139797820704781550258524766594314753551564628143605311 has 66 digits
(35·10114-71)/9 = 3(8)1131<115> = 43284926261085623<17> · C98
C98 = P31 · P68
P31 = 2076816267013609977133570087451<31>
P68 = 43260424438253424573969100498590711648381570067561111971769414772597<68>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4182817904 Step 1 took 14192ms Step 2 took 10071ms ********** Factor found in step 2: 2076816267013609977133570087451 Found probable prime factor of 31 digits: 2076816267013609977133570087451 Probable prime cofactor 43260424438253424573969100498590711648381570067561111971769414772597 has 68 digits
(35·10142-71)/9 = 3(8)1411<143> = 163 · 150313247296939<15> · 490610474282534410031115979<27> · C100
C100 = P43 · P58
P43 = 1223607960764791633345625934073632017268917<43>
P58 = 2644000686310157989135261085141315838217069079769040285031<58>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3800258058 Step 1 took 14387ms Step 2 took 10768ms ********** Factor found in step 2: 1223607960764791633345625934073632017268917 Found probable prime factor of 43 digits: 1223607960764791633345625934073632017268917 Probable prime cofactor 2644000686310157989135261085141315838217069079769040285031 has 58 digits
(35·10189-71)/9 = 3(8)1881<190> = 131 · 260207 · 616657957 · 11531893397<11> · C164
C164 = P29 · P135
P29 = 17905448426118827495647659859<29>
P135 = 895994002891375498633567347569959074995539442743484179100848856679581645115282341184169133920282804468223980864525066718672772643026463<135>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=85049247 Step 1 took 20781ms ********** Factor found in step 1: 17905448426118827495647659859 Found probable prime factor of 29 digits: 17905448426118827495647659859 Probable prime cofactor has 135 digits
(35·10173-71)/9 = 3(8)1721<174> = 3 · 29030340373<11> · C163
C163 = P34 · C130
P34 = 1251570369921303065533447516226851<34>
C130 = [3567770246554798335164904445667700393306498994538845244740178159103393362348826080981445946352887328882491821739754257930971069349<130>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3008931572 Step 1 took 20686ms ********** Factor found in step 1: 1251570369921303065533447516226851 Found probable prime factor of 34 digits: 1251570369921303065533447516226851 Composite cofactor has 130 digits
(35·10167-71)/9 = 3(8)1661<168> = 34 · C166
C166 = P36 · C131
P36 = 146222004002926974466791407216706971<36>
C131 = [32834301693703234431710291345676026682577433328676387101190552058950862612556701138015292983135095332969771365288049814825795079731<131>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4195115374 Step 1 took 20989ms Step 2 took 13929ms ********** Factor found in step 2: 146222004002926974466791407216706971 Found probable prime factor of 36 digits: 146222004002926974466791407216706971 Composite cofactor has 131 digits
(35·10193-71)/9 = 3(8)1921<194> = 233 · 439 · 93332017 · 12287897372633<14> · C168
C168 = P34 · P36 · P99
P34 = 1336274913064414490088424457113547<34>
P36 = 305963866293796696968288607697488003<36>
P99 = 810832058305497998180067142835268854471352451027447649649815204031597101164875882584961155023721063<99>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1031670139 Step 1 took 21226ms Step 2 took 13893ms ********** Factor found in step 2: 1336274913064414490088424457113547 Found probable prime factor of 34 digits: 1336274913064414490088424457113547 Composite cofactor 248085311474107357104588422474489869701555555453866907191475948275891744402980997431744271055640501443588456969084801898897862860907189 has 135 digits Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4250334491 Step 1 took 12049ms Step 2 took 9732ms ********** Factor found in step 2: 305963866293796696968288607697488003 Found probable prime factor of 36 digits: 305963866293796696968288607697488003 Probable prime cofactor 810832058305497998180067142835268854471352451027447649649815204031597101164875882584961155023721063 has 99 digits
(35·10197-71)/9 = 3(8)1961<198> = 3 · 41113 · 75642877643<11> · C182
C182 = P27 · C155
P27 = 760313831104560253254183673<27>
C155 = [54823174425482750926246594909658135020132072477274295276824574265817217975244637290064755167295711456097792543538115601269727309476437989059777953016700161<155>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3978802356 Step 1 took 25553ms Step 2 took 15409ms ********** Factor found in step 2: 760313831104560253254183673 Found probable prime factor of 27 digits: 760313831104560253254183673 Composite cofactor has 155 digits
(35·10194-71)/9 = 3(8)1931<195> = 33 · 139 · 10499 · C187
C187 = P28 · C160
P28 = 2695648747855838052012777127<28>
C160 = [3661303521046606546298585518347392024070683888179286291517871209385493946781642011240660743528557012706441362886380290894705288545269001778754040289321222095749<160>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=316825665 Step 1 took 25690ms Step 2 took 15681ms ********** Factor found in step 2: 2695648747855838052012777127 Found probable prime factor of 28 digits: 2695648747855838052012777127 Composite cofactor has 160 digits
(35·10141-71)/9 = 3(8)1401<142> = 19 · C141
C141 = P55 · P87
P55 = 1319010200979302625048260303049985266255243144258099089<55>
P87 = 155175723751897765150475110029731564711269841858076385450258470490538595269383272804091<87>
SNFS difficulty: 142 digits. Divisors found: r1=1319010200979302625048260303049985266255243144258099089 (pp55) r2=155175723751897765150475110029731564711269841858076385450258470490538595269383272804091 (pp87) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.735). Factorization parameters were as follows: n: 204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099415204678362573099 m: 10000000000000000000000000000 deg: 5 c5: 350 c0: -71 skew: 0.73 type: snfs lss: 1 rlim: 1660000 alim: 1660000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1660000/1660000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [830000, 1930001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 268312 x 268560 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1660000,1660000,26,26,48,48,2.3,2.3,100000 total time: 6.00 hours.
(35·10119-71)/9 = 3(8)1181<120> = 3 · C120
C120 = P52 · P68
P52 = 9108048653773274900975019699685290610509871744551301<52>
P68 = 14232426127404004736307046465996489398097073385511086633106988894527<68>
SNFS difficulty: 120 digits. Divisors found: r1=9108048653773274900975019699685290610509871744551301 (pp52) r2=14232426127404004736307046465996489398097073385511086633106988894527 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.739). Factorization parameters were as follows: n: 129629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629629627 m: 500000000000000000000000 deg: 5 c5: 112 c0: -71 skew: 0.91 type: snfs lss: 1 rlim: 710000 alim: 710000 lpbr: 25 lpba: 25 mfbr: 46 mfba: 46 rlambda: 2.2 alambda: 2.2 Factor base limits: 710000/710000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved rational special-q in [355000, 555001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 73362 x 73605 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,710000,710000,25,25,46,46,2.2,2.2,50000 total time: 1.00 hours.
(35·10201-71)/9 = 3(8)2001<202> = 57690799 · 188013277 · C186
C186 = P31 · C156
P31 = 2417025011202852553830152157173<31>
C156 = [148336940573693026676931953360768681251898110248037176988146673580884095938488249642040714732420381075108148432925737985713043549619431873238226401551617439<156>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2143623369 Step 1 took 24053ms Step 2 took 14537ms ********** Factor found in step 2: 2417025011202852553830152157173 Found probable prime factor of 31 digits: 2417025011202852553830152157173 Composite cofactor has 156 digits
(11·10158+1)/3 = 3(6)1577<159> = 31 · 59 · 97 · 1237 · 2333 · C147
C147 = P68 · P80
P68 = 15611366323089686328149847587593711715540807434474824383064092790761<68>
P80 = 45873369125111275439706510098906208237069667903072673179163397331530328855542839<80>
SNFS difficulty: 160 digits. Divisors found: r1=15611366323089686328149847587593711715540807434474824383064092790761 (pp68) r2=45873369125111275439706510098906208237069667903072673179163397331530328855542839 (pp80) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.939). Factorization parameters were as follows: n: 716145969886424353063705045345701423108319336840934696165230955448572566883712214497732483274991819051353486705377955571485029773507164775098910479 m: 50000000000000000000000000000000 deg: 5 c5: 88 c0: 25 skew: 0.78 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1650000, 2850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 479736 x 479984 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,52,52,2.4,2.4,200000 total time: 21.00 hours.
(35·10152-71)/9 = 3(8)1511<153> = 3 · 593 · C150
C150 = P33 · P50 · P68
P33 = 196877064555228798257051976037937<33>
P50 = 36533076470534038295304648507983428931265801937723<50>
P68 = 30392625276083080315139642232573944572961068830522941570127555167489<68>
SNFS difficulty: 154 digits. Divisors found: r1=196877064555228798257051976037937 (pp33) r2=36533076470534038295304648507983428931265801937723 (pp50) r3=30392625276083080315139642232573944572961068830522941570127555167489 (pp68) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.737). Factorization parameters were as follows: n: 218599712697520454687402410842545749797014552495159577790269189931921803759915058397351820623321466491786896508650302916744737992630066829055024670539 m: 2000000000000000000000000000000 deg: 5 c5: 875 c0: -568 skew: 0.92 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1300000, 2400001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 547354 x 547602 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,52,52,2.4,2.4,100000 total time: 16.00 hours.
(35·10168-71)/9 = 3(8)1671<169> = 10873724311<11> · C159
C159 = P41 · C119
P41 = 14303299735272000932427365334907044020341<41>
C119 = [25004085622395400531356004667950957578919315561901397443642967755502862141549701795225649125923569649521872339576262331<119>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2451661041 Step 1 took 25935ms Step 2 took 16777ms ********** Factor found in step 2: 14303299735272000932427365334907044020341 Found probable prime factor of 41 digits: 14303299735272000932427365334907044020341 Composite cofactor has 119 digits
Factorizations of 388...881 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS
(14·10170-23)/9 = 1(5)1693<171> = 3 · 691 · 22263472690475736337<20> · 4140183215192466077295603949<28> · C120
C120 = P51 · P70
P51 = 630117766017269648087725009336287261566800724122723<51>
P70 = 1291968818028846496792599442959506376604417781810432273538694583529439<70>
Number: 15553_170 N=814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 ( 120 digits) Divisors found: r1=630117766017269648087725009336287261566800724122723 (pp51) r2=1291968818028846496792599442959506376604417781810432273538694583529439 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.54 hours. Scaled time: 103.89 units (timescale=2.386). Factorization parameters were as follows: name: 15553_170 n: 814092505380309124943551135799902484909003478048353721821331357008460909965452505234824673882421566041432715888319342397 skew: 28185.42 # norm 3.42e+15 c5: 95760 c4: 4567223691 c3: -133520678204283 c2: -3909924647066575861 c1: 67745503802752554587296 c0: -3003949084757309352275677 # alpha -3.63 Y1: 11054423741099 Y0: -96804924543965338047558 # Murphy_E 2.60e-10 # M 275705184235830591348662618029168213759719931670795570142473149118975745695546772170490093024576973858091779254759836679 type: gnfs rlim: 4800000 alim: 4800000 lpbr: 27 lpba: 27 mfbr: 53 mfba: 53 rlambda: 2.4 alambda: 2.4 qintsize: 100000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 53/53 Sieved algebraic special-q in [2400000, 4800001) Primes: RFBsize:335439, AFBsize:334032, largePrimes:10062010 encountered Relations: rels:10266008, finalFF:849385 Max relations in full relation-set: 28 Initial matrix: 669551 x 849385 with sparse part having weight 84446630. Pruned matrix : 532692 x 536103 with weight 58093567. Polynomial selection time: 2.60 hours. Total sieving time: 38.10 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.48 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4800000,4800000,27,27,53,53,2.4,2.4,100000 total time: 43.54 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Robert Backstrom / GGNFS, Msieve
(32·10164+13)/9 = 3(5)1637<165> = 3 · 7 · 43 · 1001485577<10> · 6949169419<10> · 603730695926738492922339797<27> · C116
C116 = P57 · P60
P57 = 135668168107915602062507621783920751448705463501108031083<57>
P60 = 690750012084541731056403382306042079849402924714875383489863<60>
Number: n N=93712788760030341200758687850157434280544815854859669843832571475209729383133361618332274540247415803878813219411629 ( 116 digits) Divisors found: Thu Dec 04 13:22:30 2008 prp57 factor: 135668168107915602062507621783920751448705463501108031083 Thu Dec 04 13:22:30 2008 prp60 factor: 690750012084541731056403382306042079849402924714875383489863 Thu Dec 04 13:22:30 2008 elapsed time 01:13:36 (Msieve 1.39) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.16 hours. Scaled time: 58.59 units (timescale=1.822). Factorization parameters were as follows: name: KA_3_5_163_7 n: 93712788760030341200758687850157434280544815854859669843832571475209729383133361618332274540247415803878813219411629 # Msieve 1.39 selections: skew: 102302.32 Y0: -24003768776778299772686 Y1: 2470048358657 c0: -166645603175821687540475229795 c1: 4424225278037915341357178 c2: 33473491889923939705 c3: -767528885982384 c4: -1482191564 c5: 11760 # Ggnfs selections: # skew: 46755.21 # norm 7.66e+15 # # c5: 57960 # c4: -4378786561 # c3: -355222018770405 # c2: 6585478902930367520 # c1: 226574327938287993311037 # c0: 1873860926445465809121007730 # # alpha -5.71 # Y1: 45119695357 # Y0: -17447536439140996067493 # Murphy_E 4.39e-10 # M 37118574491776789170758160355679680988337008512699570564323659979502457549970503778172089484588830310691125311224565 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1900001) Primes: RFBsize:348513, AFBsize:348931, largePrimes:10449792 encountered Relations: rels:9357171, finalFF:742303 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 31.83 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,28,28,56,56,2.4,2.4,60000 total time: 32.16 hours. --------- CPU info (if available) ----------
(11·10151-17)/3 = 3(6)1501<152> = 31 · 349 · 2861 · 8017 · 39843953 · 56011094759891<14> · C119
C119 = P45 · P75
P45 = 112799423974289196481994738738050346143074439<45>
P75 = 586963649074040777743311527397388588098323753426545891645978911779023424471<75>
Number: n N=66209161509398626028403506902594758492010827988105228259159168846744076206483165238543451191977366979540685390047196769 ( 119 digits) SNFS difficulty: 152 digits. Divisors found: Fri Dec 05 01:08:52 2008 prp45 factor: 112799423974289196481994738738050346143074439 Fri Dec 05 01:08:52 2008 prp75 factor: 586963649074040777743311527397388588098323753426545891645978911779023424471 Fri Dec 05 01:08:52 2008 elapsed time 00:49:53 (Msieve 1.39 - dependency 5) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.52 hours. Scaled time: 19.24 units (timescale=1.828). Factorization parameters were as follows: name: KA_3_6_150_1 n: 66209161509398626028403506902594758492010827988105228259159168846744076206483165238543451191977366979540685390047196769 type: snfs skew: 0.69 deg: 5 c5: 110 c0: -17 m: 1000000000000000000000000000000 rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 700001) Primes: RFBsize:176302, AFBsize:176664, largePrimes:10025374 encountered Relations: rels:8593859, finalFF:356069 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 10.34 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,56,56,2.5,2.5,100000 total time: 10.52 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.39
(34·10150+11)/9 = 3(7)1499<151> = 613 · C148
C148 = P46 · P103
P46 = 5474723484518379372701766368967546866644000693<46>
P103 = 1125676874566949097792931739812198215757230882784080543645476831099365405414404627756124731207967774331<103>
SNFS difficulty: 151 digits. Divisors found: r1=5474723484518379372701766368967546866644000693 (pp46) r2=1125676874566949097792931739812198215757230882784080543645476831099365405414404627756124731207967774331 (pp103) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.530). Factorization parameters were as follows: n: 6162769621170926228022475983324270436831611382998006162769621170926228022475983324270436831611382998006162769621170926228022475983324270436831611383 m: 1000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1150000, 1750001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 475351 x 475599 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,52,52,2.4,2.4,100000 total time: 9.00 hours.
By Sinkiti Sibata / GGNFS, Msieve
(34·10136+11)/9 = 3(7)1359<137> = 3 · 7 · 163 · 526424108506853<15> · 53655775625396912603<20> · C99
C99 = P33 · P67
P33 = 129875636537331934293962710004963<33>
P67 = 3008496924078089501053188927281925523873777858397632239079606003769<67>
Wed Dec 03 13:56:27 2008 Msieve v. 1.38 Wed Dec 03 13:56:27 2008 random seeds: 2557077c 08d5cfb5 Wed Dec 03 13:56:27 2008 factoring 390730453035247059146522489228493483467865317468685394145951389981862136141644394648757538586705547 (99 digits) Wed Dec 03 13:56:28 2008 searching for 15-digit factors Wed Dec 03 13:56:29 2008 commencing quadratic sieve (99-digit input) Wed Dec 03 13:56:30 2008 using multiplier of 3 Wed Dec 03 13:56:30 2008 using 32kb Intel Core sieve core Wed Dec 03 13:56:30 2008 sieve interval: 36 blocks of size 32768 Wed Dec 03 13:56:30 2008 processing polynomials in batches of 6 Wed Dec 03 13:56:30 2008 using a sieve bound of 2612039 (95294 primes) Wed Dec 03 13:56:30 2008 using large prime bound of 391805850 (28 bits) Wed Dec 03 13:56:30 2008 using double large prime bound of 2934456164566950 (43-52 bits) Wed Dec 03 13:56:30 2008 using trial factoring cutoff of 52 bits Wed Dec 03 13:56:30 2008 polynomial 'A' values have 13 factors Thu Dec 04 00:07:06 2008 95638 relations (22183 full + 73455 combined from 1444910 partial), need 95390 Thu Dec 04 00:07:08 2008 begin with 1467093 relations Thu Dec 04 00:07:10 2008 reduce to 254155 relations in 10 passes Thu Dec 04 00:07:10 2008 attempting to read 254155 relations Thu Dec 04 00:07:14 2008 recovered 254155 relations Thu Dec 04 00:07:14 2008 recovered 244846 polynomials Thu Dec 04 00:07:14 2008 attempting to build 95638 cycles Thu Dec 04 00:07:15 2008 found 95638 cycles in 6 passes Thu Dec 04 00:07:15 2008 distribution of cycle lengths: Thu Dec 04 00:07:15 2008 length 1 : 22183 Thu Dec 04 00:07:15 2008 length 2 : 16132 Thu Dec 04 00:07:15 2008 length 3 : 16184 Thu Dec 04 00:07:15 2008 length 4 : 13158 Thu Dec 04 00:07:15 2008 length 5 : 10093 Thu Dec 04 00:07:15 2008 length 6 : 6935 Thu Dec 04 00:07:15 2008 length 7 : 4505 Thu Dec 04 00:07:15 2008 length 9+: 6448 Thu Dec 04 00:07:15 2008 largest cycle: 20 relations Thu Dec 04 00:07:15 2008 matrix is 95294 x 95638 (25.8 MB) with weight 6383703 (66.75/col) Thu Dec 04 00:07:15 2008 sparse part has weight 6383703 (66.75/col) Thu Dec 04 00:07:16 2008 filtering completed in 3 passes Thu Dec 04 00:07:16 2008 matrix is 91652 x 91716 (24.8 MB) with weight 6140115 (66.95/col) Thu Dec 04 00:07:16 2008 sparse part has weight 6140115 (66.95/col) Thu Dec 04 00:07:17 2008 saving the first 48 matrix rows for later Thu Dec 04 00:07:17 2008 matrix is 91604 x 91716 (14.6 MB) with weight 4748001 (51.77/col) Thu Dec 04 00:07:17 2008 sparse part has weight 3267205 (35.62/col) Thu Dec 04 00:07:17 2008 matrix includes 64 packed rows Thu Dec 04 00:07:17 2008 using block size 36686 for processor cache size 1024 kB Thu Dec 04 00:07:18 2008 commencing Lanczos iteration Thu Dec 04 00:07:18 2008 memory use: 14.7 MB Thu Dec 04 00:08:20 2008 lanczos halted after 1450 iterations (dim = 91602) Thu Dec 04 00:08:21 2008 recovered 16 nontrivial dependencies Thu Dec 04 00:08:21 2008 prp33 factor: 129875636537331934293962710004963 Thu Dec 04 00:08:21 2008 prp67 factor: 3008496924078089501053188927281925523873777858397632239079606003769 Thu Dec 04 00:08:21 2008 elapsed time 10:11:54
(34·10152-61)/9 = 3(7)1511<153> = 72 · 1156845484056134377<19> · C133
C133 = P56 · P78
P56 = 18140064527049332303648755303293357509352299892563197159<56>
P78 = 367388996167468745630067954460328243858151569259818255011945437791324718164453<78>
Number: 37771_152 N=6664460097005762889501326931842972589120882959363472910276971278563908576252337593941653650382664001497951582800929546255771624389027 ( 133 digits) SNFS difficulty: 154 digits. Divisors found: r1=18140064527049332303648755303293357509352299892563197159 (pp56) r2=367388996167468745630067954460328243858151569259818255011945437791324718164453 (pp78) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 48.81 hours. Scaled time: 23.09 units (timescale=0.473). Factorization parameters were as follows: name: 37771_152 n: 6664460097005762889501326931842972589120882959363472910276971278563908576252337593941653650382664001497951582800929546255771624389027 m: 2000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 2600000 alim: 2600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 2600000/2600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1300000, 2500001) Primes: RFBsize:189880, AFBsize:190596, largePrimes:8108679 encountered Relations: rels:8328593, finalFF:587648 Max relations in full relation-set: 28 Initial matrix: 380543 x 587648 with sparse part having weight 67736918. Pruned matrix : 319755 x 321721 with weight 35454744. Total sieving time: 44.15 hours. Total relation processing time: 0.40 hours. Matrix solve time: 4.12 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2600000,2600000,27,27,50,50,2.4,2.4,100000 total time: 48.81 hours. --------- CPU info (if available) ----------
(34·10159+11)/9 = 3(7)1589<160> = 29 · 61 · 11092973448917077<17> · C141
C141 = P32 · P36 · P73
P32 = 56960796213499206995819411589421<32>
P36 = 653999055531658257880633332837128587<36>
P73 = 5167820598800979524424252379458124776983707013484074238580352480196575329<73>
Number: 37779_159 N=192513239084831126427408014469396118890961735454762306318816343869393433862102152227064049739804890063922442679003515268166854827647928928783 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: r1=56960796213499206995819411589421 (pp32) r2=653999055531658257880633332837128587 (pp36) r3=5167820598800979524424252379458124776983707013484074238580352480196575329 (pp73) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.26 hours. Scaled time: 116.53 units (timescale=2.575). Factorization parameters were as follows: name: 37779_159 n: 192513239084831126427408014469396118890961735454762306318816343869393433862102152227064049739804890063922442679003515268166854827647928928783 m: 100000000000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:243460, largePrimes:9425000 encountered Relations: rels:10213711, finalFF:981172 Max relations in full relation-set: 28 Initial matrix: 487064 x 981172 with sparse part having weight 116904325. Pruned matrix : 354614 x 357113 with weight 57238682. Total sieving time: 43.30 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.64 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.26 hours. --------- CPU info (if available) ----------
(11·10157+1)/3 = 3(6)1567<158> = 37 · 1955047 · 25264817 · C143
C143 = P64 · P79
P64 = 8094731531159257114384118790068783897387029934394005132192109889<64>
P79 = 2478528387941507389257903805559758966512411806020490482897963327234349291725481<79>
Number: 36667_157 N=20063021892743443326478130818979587624195871689987254647969629230342545976216225090108921757143590322301830787962129778289720168589102773381609 ( 143 digits) SNFS difficulty: 160 digits. Divisors found: r1=8094731531159257114384118790068783897387029934394005132192109889 (pp64) r2=2478528387941507389257903805559758966512411806020490482897963327234349291725481 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 51.97 hours. Scaled time: 103.16 units (timescale=1.985). Factorization parameters were as follows: name: 36667_157 n: 20063021892743443326478130818979587624195871689987254647969629230342545976216225090108921757143590322301830787962129778289720168589102773381609 m: 50000000000000000000000000000000 deg: 5 c5: 44 c0: 125 skew: 1.23 type: snfs lss: 1 rlim: 3300000 alim: 3300000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3300000/3300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1650000, 3150001) Primes: RFBsize:236900, AFBsize:236813, largePrimes:9295256 encountered Relations: rels:9908058, finalFF:836964 Max relations in full relation-set: 28 Initial matrix: 473780 x 836964 with sparse part having weight 98632399. Pruned matrix : 366694 x 369126 with weight 50531157. Total sieving time: 48.93 hours. Total relation processing time: 0.30 hours. Matrix solve time: 2.51 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3300000,3300000,27,27,51,51,2.4,2.4,100000 total time: 51.97 hours. --------- CPU info (if available) ----------
(34·10134+11)/9 = 3(7)1339<135> = 19 · 374047 · 2174281046333862930037878901<28> · C101
C101 = P30 · P71
P30 = 881826597797799257233689206803<30>
P71 = 27724119158394433966044807026838624228049298969437410695567232496220401<71>
Thu Dec 04 00:18:05 2008 Msieve v. 1.38 Thu Dec 04 00:18:05 2008 random seeds: c33abc40 4e1f0ddc Thu Dec 04 00:18:05 2008 factoring 24447865674387749360043877876481953138437871115753646983888106437925276699437543296241688205156588003 (101 digits) Thu Dec 04 00:18:06 2008 searching for 15-digit factors Thu Dec 04 00:18:07 2008 commencing quadratic sieve (101-digit input) Thu Dec 04 00:18:07 2008 using multiplier of 3 Thu Dec 04 00:18:07 2008 using 32kb Intel Core sieve core Thu Dec 04 00:18:07 2008 sieve interval: 36 blocks of size 32768 Thu Dec 04 00:18:07 2008 processing polynomials in batches of 6 Thu Dec 04 00:18:07 2008 using a sieve bound of 2899627 (105000 primes) Thu Dec 04 00:18:07 2008 using large prime bound of 434944050 (28 bits) Thu Dec 04 00:18:07 2008 using double large prime bound of 3541441458762600 (43-52 bits) Thu Dec 04 00:18:07 2008 using trial factoring cutoff of 52 bits Thu Dec 04 00:18:07 2008 polynomial 'A' values have 13 factors Thu Dec 04 15:35:22 2008 105169 relations (24457 full + 80712 combined from 1588835 partial), need 105096 Thu Dec 04 15:35:24 2008 begin with 1613292 relations Thu Dec 04 15:35:26 2008 reduce to 279532 relations in 11 passes Thu Dec 04 15:35:26 2008 attempting to read 279532 relations Thu Dec 04 15:35:31 2008 recovered 279532 relations Thu Dec 04 15:35:31 2008 recovered 271621 polynomials Thu Dec 04 15:35:31 2008 attempting to build 105169 cycles Thu Dec 04 15:35:32 2008 found 105169 cycles in 6 passes Thu Dec 04 15:35:32 2008 distribution of cycle lengths: Thu Dec 04 15:35:32 2008 length 1 : 24457 Thu Dec 04 15:35:32 2008 length 2 : 17837 Thu Dec 04 15:35:32 2008 length 3 : 17389 Thu Dec 04 15:35:32 2008 length 4 : 14579 Thu Dec 04 15:35:32 2008 length 5 : 11211 Thu Dec 04 15:35:32 2008 length 6 : 7688 Thu Dec 04 15:35:32 2008 length 7 : 4891 Thu Dec 04 15:35:32 2008 length 9+: 7117 Thu Dec 04 15:35:32 2008 largest cycle: 20 relations Thu Dec 04 15:35:32 2008 matrix is 105000 x 105169 (29.4 MB) with weight 7290438 (69.32/col) Thu Dec 04 15:35:32 2008 sparse part has weight 7290438 (69.32/col) Thu Dec 04 15:35:33 2008 filtering completed in 3 passes Thu Dec 04 15:35:33 2008 matrix is 101030 x 101094 (28.4 MB) with weight 7048029 (69.72/col) Thu Dec 04 15:35:33 2008 sparse part has weight 7048029 (69.72/col) Thu Dec 04 15:35:34 2008 saving the first 48 matrix rows for later Thu Dec 04 15:35:34 2008 matrix is 100982 x 101094 (17.7 MB) with weight 5595506 (55.35/col) Thu Dec 04 15:35:34 2008 sparse part has weight 4029442 (39.86/col) Thu Dec 04 15:35:34 2008 matrix includes 64 packed rows Thu Dec 04 15:35:34 2008 using block size 40437 for processor cache size 1024 kB Thu Dec 04 15:35:35 2008 commencing Lanczos iteration Thu Dec 04 15:35:35 2008 memory use: 17.1 MB Thu Dec 04 15:37:01 2008 lanczos halted after 1598 iterations (dim = 100980) Thu Dec 04 15:37:02 2008 recovered 16 nontrivial dependencies Thu Dec 04 15:37:03 2008 prp30 factor: 881826597797799257233689206803 Thu Dec 04 15:37:03 2008 prp71 factor: 27724119158394433966044807026838624228049298969437410695567232496220401 Thu Dec 04 15:37:03 2008 elapsed time 15:18:58
(34·10160+11)/9 = 3(7)1599<161> = 32 · 7 · 22543 · C155
C155 = P56 · P100
P56 = 15640944141321185099322247466507075594820802996029162961<56>
P100 = 1700674430149138207643706969225336809928813149676112024635548084053368737429115806131547880354595571<100>
Number: 37779_160 N=26600153764535908290806337502281549953406701251560705345324369707400655662495997263626535092917857708110410353530908322491814780625793652749544452807845731 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=15640944141321185099322247466507075594820802996029162961 (pp56) r2=1700674430149138207643706969225336809928813149676112024635548084053368737429115806131547880354595571 (pp100) Version: GGNFS-0.77.1-20060513-nocona Total time: 45.26 hours. Scaled time: 116.05 units (timescale=2.564). Factorization parameters were as follows: name: 37779_160 n: 26600153764535908290806337502281549953406701251560705345324369707400655662495997263626535092917857708110410353530908322491814780625793652749544452807845731 m: 100000000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3000001) Primes: RFBsize:243539, AFBsize:244010, largePrimes:9375477 encountered Relations: rels:10101428, finalFF:940436 Max relations in full relation-set: 28 Initial matrix: 487615 x 940436 with sparse part having weight 112572943. Pruned matrix : 359368 x 361870 with weight 55395426. Total sieving time: 43.31 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.63 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 45.26 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GGNFS, Msieve
10185+3 = 1(0)1843<186> = 23 · 503 · 1129 · C178
C178 = P47 · P132
P47 = 14664279305141722711057404987986284967512862293<47>
P132 = 522094974805393808120588312898179627396251001923170837778218768489811574700366797020490210824166469329055959469753995440922219261071<132>
Number: 10003_185 N=7656146534357225538056752104923507057167910241787998086882103994816482550378784021714056554882588782015038049899853775257340311349448654091548065938715150082292091024538638695803 ( 178 digits) SNFS difficulty: 185 digits. Divisors found: r1=14664279305141722711057404987986284967512862293 r2=522094974805393808120588312898179627396251001923170837778218768489811574700366797020490210824166469329055959469753995440922219261071 Version: Total time: 236.49 hours. Scaled time: 475.81 units (timescale=2.012). Factorization parameters were as follows: n: 7656146534357225538056752104923507057167910241787998086882103994816482550378784021714056554882588782015038049899853775257340311349448654091548065938715150082292091024538638695803 m: 10000000000000000000000000000000000000 deg: 5 c5: 1 c0: 3 skew: 1.25 type: snfs lss: 1 rlim: 8500000 alim: 8500000 lpbr: 28 lpba: 28 mfbr: 54 mfba: 54 rlambda: 2.5 alambda: 2.5 Factor base limits: 8500000/8500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 54/54 Sieved rational special-q in [4250000, 6450001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 1408605 x 1408853 Total sieving time: 236.49 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,8500000,8500000,28,28,54,54,2.5,2.5,100000 total time: 236.49 hours. --------- CPU info (if available) ----------
10174+3 = 1(0)1733<175> = 9701827 · 2365502310860023<16> · 27679823238177256411<20> · C133
C133 = P60 · P73
P60 = 291422925891151054317621660625168167319857245759119095307699<60>
P73 = 5401769776185501645973607904479822156071281325941785500003058562905410087<73>
Number: 10003_174 N=1574199553166367063490716266281627928450579326253662047596012772199672959419105319917606262631145066135089965093226907594743043359813 ( 133 digits) SNFS difficulty: 174 digits. Divisors found: r1=291422925891151054317621660625168167319857245759119095307699 (pp60) r2=5401769776185501645973607904479822156071281325941785500003058562905410087 (pp73) Version: GGNFS-0.77.1-20060722-nocona Total time: 123.13 hours. Scaled time: 229.88 units (timescale=1.867). Factorization parameters were as follows: n: 1574199553166367063490716266281627928450579326253662047596012772199672959419105319917606262631145066135089965093226907594743043359813 m: 50000000000000000000000000000000000 deg: 5 c5: 16 c0: 15 skew: 0.99 type: snfs lss: 1 rlim: 5700000 alim: 5700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 5700000/5700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2850000, 6150001) Primes: RFBsize:393606, AFBsize:392152, largePrimes:10860781 encountered Relations: rels:12760960, finalFF:1797557 Max relations in full relation-set: 32 Initial matrix: 785822 x 1797557 with sparse part having weight 242784055. Pruned matrix : 532971 x 536964 with weight 124499580. Total sieving time: 117.44 hours. Total relation processing time: 0.19 hours. Matrix solve time: 5.32 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5700000,5700000,27,27,52,52,2.4,2.4,100000 total time: 123.13 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve, GGNFS
(34·10117+11)/9 = 3(7)1169<118> = 358289 · 10166759834121798343<20> · C94
C94 = P43 · P51
P43 = 3169840304725009685413906056034592944278811<43>
P51 = 327177165093027581456207742002827740502041351113407<51>
Wed Dec 03 08:05:31 2008 Msieve v. 1.38 Wed Dec 03 08:05:31 2008 random seeds: f67d6428 21c1cf72 Wed Dec 03 08:05:31 2008 factoring 1037099364697547350622239844153508010917775411986117641986882008559440553594657077145488119077 (94 digits) Wed Dec 03 08:05:32 2008 searching for 15-digit factors Wed Dec 03 08:05:33 2008 commencing quadratic sieve (94-digit input) Wed Dec 03 08:05:33 2008 using multiplier of 13 Wed Dec 03 08:05:33 2008 using 32kb Intel Core sieve core Wed Dec 03 08:05:33 2008 sieve interval: 36 blocks of size 32768 Wed Dec 03 08:05:33 2008 processing polynomials in batches of 6 Wed Dec 03 08:05:33 2008 using a sieve bound of 1956883 (72881 primes) Wed Dec 03 08:05:33 2008 using large prime bound of 244610375 (27 bits) Wed Dec 03 08:05:33 2008 using double large prime bound of 1256766767596625 (42-51 bits) Wed Dec 03 08:05:33 2008 using trial factoring cutoff of 51 bits Wed Dec 03 08:05:33 2008 polynomial 'A' values have 12 factors Wed Dec 03 10:37:52 2008 73001 relations (18382 full + 54619 combined from 986077 partial), need 72977 Wed Dec 03 10:37:55 2008 begin with 1004459 relations Wed Dec 03 10:37:56 2008 reduce to 185777 relations in 10 passes Wed Dec 03 10:37:56 2008 attempting to read 185777 relations Wed Dec 03 10:37:59 2008 recovered 185777 relations Wed Dec 03 10:37:59 2008 recovered 167454 polynomials Wed Dec 03 10:37:59 2008 attempting to build 73001 cycles Wed Dec 03 10:37:59 2008 found 73001 cycles in 6 passes Wed Dec 03 10:37:59 2008 distribution of cycle lengths: Wed Dec 03 10:37:59 2008 length 1 : 18382 Wed Dec 03 10:37:59 2008 length 2 : 13268 Wed Dec 03 10:37:59 2008 length 3 : 12616 Wed Dec 03 10:37:59 2008 length 4 : 9675 Wed Dec 03 10:37:59 2008 length 5 : 7349 Wed Dec 03 10:37:59 2008 length 6 : 4767 Wed Dec 03 10:37:59 2008 length 7 : 3037 Wed Dec 03 10:37:59 2008 length 9+: 3907 Wed Dec 03 10:37:59 2008 largest cycle: 18 relations Wed Dec 03 10:38:00 2008 matrix is 72881 x 73001 (18.7 MB) with weight 4622762 (63.32/col) Wed Dec 03 10:38:00 2008 sparse part has weight 4622762 (63.32/col) Wed Dec 03 10:38:00 2008 filtering completed in 3 passes Wed Dec 03 10:38:00 2008 matrix is 69106 x 69170 (17.9 MB) with weight 4413229 (63.80/col) Wed Dec 03 10:38:00 2008 sparse part has weight 4413229 (63.80/col) Wed Dec 03 10:38:01 2008 saving the first 48 matrix rows for later Wed Dec 03 10:38:01 2008 matrix is 69058 x 69170 (11.1 MB) with weight 3457078 (49.98/col) Wed Dec 03 10:38:01 2008 sparse part has weight 2486624 (35.95/col) Wed Dec 03 10:38:01 2008 matrix includes 64 packed rows Wed Dec 03 10:38:01 2008 using block size 27668 for processor cache size 1024 kB Wed Dec 03 10:38:02 2008 commencing Lanczos iteration Wed Dec 03 10:38:02 2008 memory use: 10.8 MB Wed Dec 03 10:38:33 2008 lanczos halted after 1093 iterations (dim = 69054) Wed Dec 03 10:38:33 2008 recovered 15 nontrivial dependencies Wed Dec 03 10:38:34 2008 prp43 factor: 3169840304725009685413906056034592944278811 Wed Dec 03 10:38:34 2008 prp51 factor: 327177165093027581456207742002827740502041351113407 Wed Dec 03 10:38:34 2008 elapsed time 02:33:03
(34·10158-61)/9 = 3(7)1571<159> = 7 · 53 · 3733 · 51058354870221649438611241<26> · C127
C127 = P35 · P93
P35 = 15773686940889973900202381054990761<35>
P93 = 338691637215285484915002611423828098986479112377345144665570421220398830743417389565760881397<93>
Number: 37771_158 N=5342415854931393339113761235361305698914154448906483996879306276590440389544165947946307257339371354072751784092656669051773117 ( 127 digits) SNFS difficulty: 160 digits. Divisors found: r1=15773686940889973900202381054990761 (pp35) r2=338691637215285484915002611423828098986479112377345144665570421220398830743417389565760881397 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 60.61 hours. Scaled time: 155.40 units (timescale=2.564). Factorization parameters were as follows: name: 37771_158 n: 5342415854931393339113761235361305698914154448906483996879306276590440389544165947946307257339371354072751784092656669051773117 m: 50000000000000000000000000000000 deg: 5 c5: 272 c0: -1525 skew: 1.41 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 51 mfba: 51 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 51/51 Sieved rational special-q in [1700000, 3800001) Primes: RFBsize:243539, AFBsize:243735, largePrimes:9779798 encountered Relations: rels:10966987, finalFF:958393 Max relations in full relation-set: 28 Initial matrix: 487341 x 958393 with sparse part having weight 125995401. Pruned matrix : 367954 x 370454 with weight 71973244. Total sieving time: 58.31 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.94 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,51,51,2.4,2.4,100000 total time: 60.61 hours. --------- CPU info (if available) ----------
(34·10138+11)/9 = 3(7)1379<139> = 140076367 · C131
C131 = P42 · P89
P42 = 334616317985480536983994258642411534504181<42>
P89 = 80598029134143922014930835608991813141358557739630559737319918330172366613804758172608777<89>
Number: 37779_138 N=26969415745753727163539141315520967057760555553084681142378412611013660696795325779528375245324414915599415694281803994657983796637 ( 131 digits) SNFS difficulty: 140 digits. Divisors found: r1=334616317985480536983994258642411534504181 (pp42) r2=80598029134143922014930835608991813141358557739630559737319918330172366613804758172608777 (pp89) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.59 hours. Scaled time: 29.73 units (timescale=2.564). Factorization parameters were as follows: name: 37779_138 n: 26969415745753727163539141315520967057760555553084681142378412611013660696795325779528375245324414915599415694281803994657983796637 m: 5000000000000000000000000000 deg: 5 c5: 272 c0: 275 skew: 1.00 type: snfs lss: 1 rlim: 1560000 alim: 1560000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1560000/1560000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [780000, 1680001) Primes: RFBsize:118376, AFBsize:118390, largePrimes:4197288 encountered Relations: rels:4867657, finalFF:874717 Max relations in full relation-set: 28 Initial matrix: 236833 x 874717 with sparse part having weight 87846157. Pruned matrix : 157212 x 158460 with weight 21375811. Total sieving time: 11.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1560000,1560000,26,26,48,48,2.3,2.3,100000 total time: 11.59 hours. --------- CPU info (if available) ----------
(34·10132+11)/9 = 3(7)1319<133> = 10018907 · 2005869806923<13> · C114
C114 = P42 · P72
P42 = 704443609565155929330823351494758617941251<42>
P72 = 266849926365080321478332525760082425809629672857355064497940552907853289<72>
Number: 37779_132 N=187980725340813251363795528979449026243397065229977082464549401564536900145928473447874479402007304069611129124539 ( 114 digits) SNFS difficulty: 134 digits. Divisors found: r1=704443609565155929330823351494758617941251 (pp42) r2=266849926365080321478332525760082425809629672857355064497940552907853289 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.58 hours. Scaled time: 15.14 units (timescale=1.997). Factorization parameters were as follows: name: 37779_132 n: 187980725340813251363795528979449026243397065229977082464549401564536900145928473447874479402007304069611129124539 m: 200000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 1200000 alim: 1200000 lpbr: 26 lpba: 26 mfbr: 47 mfba: 47 rlambda: 2.3 alambda: 2.3 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved rational special-q in [600000, 1275001) Primes: RFBsize:92938, AFBsize:93250, largePrimes:3205408 encountered Relations: rels:3226583, finalFF:291905 Max relations in full relation-set: 28 Initial matrix: 186255 x 291905 with sparse part having weight 27574321. Pruned matrix : 161015 x 162010 with weight 12254657. Total sieving time: 7.17 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.24 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,26,26,47,47,2.3,2.3,75000 total time: 7.58 hours. --------- CPU info (if available) ----------
(34·10125+11)/9 = 3(7)1249<126> = 14872 · 255487 · 1876151531<10> · C105
C105 = P49 · P56
P49 = 5443398684485062745608459470540440836230952784999<49>
P56 = 65479839726556724918536912328130937246647388805273851297<56>
Number: 37779_125 N=356432873427831627112679318770660365172752354788089110074530458749791280922615989414199535547912738293703 ( 105 digits) SNFS difficulty: 126 digits. Divisors found: r1=5443398684485062745608459470540440836230952784999 (pp49) r2=65479839726556724918536912328130937246647388805273851297 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.85 hours. Scaled time: 5.70 units (timescale=2.003). Factorization parameters were as follows: name: 37779_125 n: 356432873427831627112679318770660365172752354788089110074530458749791280922615989414199535547912738293703 m: 10000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 900000 alim: 900000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [450000, 700001) Primes: RFBsize:71274, AFBsize:71741, largePrimes:2573592 encountered Relations: rels:2543913, finalFF:259396 Max relations in full relation-set: 28 Initial matrix: 143081 x 259396 with sparse part having weight 19576840. Pruned matrix : 111447 x 112226 with weight 6001097. Total sieving time: 2.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,900000,900000,26,26,46,46,2.3,2.3,50000 total time: 2.85 hours. --------- CPU info (if available) ----------
(34·10140+11)/9 = 3(7)1399<141> = 461 · 1667 · 33013 · C131
C131 = P43 · P88
P43 = 5286853178190512842446697555047849243640583<43>
P88 = 2816551137745142953027574742897451096765053262076789526378442459821368042472899695804823<88>
Number: 37779_140 N=14890692334124013938426445413695471439527746160882064829320446619056609555256489725739314484031578937209695694518373562136729931809 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=5286853178190512842446697555047849243640583 (pp43) r2=2816551137745142953027574742897451096765053262076789526378442459821368042472899695804823 (pp88) Version: GGNFS-0.77.1-20060513-nocona Total time: 11.70 hours. Scaled time: 30.12 units (timescale=2.575). Factorization parameters were as follows: name: 37779_140 n: 14890692334124013938426445413695471439527746160882064829320446619056609555256489725739314484031578937209695694518373562136729931809 m: 10000000000000000000000000000 deg: 5 c5: 34 c0: 11 skew: 0.80 type: snfs lss: 1 rlim: 1600000 alim: 1600000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 Factor base limits: 1600000/1600000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [800000, 1700001) Primes: RFBsize:121127, AFBsize:121741, largePrimes:4134768 encountered Relations: rels:4641289, finalFF:712757 Max relations in full relation-set: 28 Initial matrix: 242934 x 712757 with sparse part having weight 74251615. Pruned matrix : 167601 x 168879 with weight 21800021. Total sieving time: 11.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1600000,1600000,26,26,48,48,2.3,2.3,100000 total time: 11.70 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM, GGNFS
(34·10115+11)/9 = 3(7)1149<116> = 33 · 13 · 1648813801501245593<19> · C95
C95 = P35 · P61
P35 = 29415027840806636275258180245178147<35>
P61 = 2219158965639345523025597599430986517293980929370944685537799<61>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 65276622757457006081426432091868980663147198002143596564155708560164105572476967585475257278453 (95 digits) Using B1=1164000, B2=1426247560, polynomial Dickson(6), sigma=3694281782 Step 1 took 7140ms Step 2 took 4016ms ********** Factor found in step 2: 29415027840806636275258180245178147 Found probable prime factor of 35 digits: 29415027840806636275258180245178147 Probable prime cofactor 2219158965639345523025597599430986517293980929370944685537799 has 61 digits
(11·10164+1)/3 = 3(6)1637<165> = 53 · 85121 · C158
C158 = P43 · P116
P43 = 1266188042683552938501666231379202970184373<43>
P116 = 64189003840718731051789445749630286944004145691347328068960743453391971858994738506501705251623397446227743373324483<116>
Number: n N=81275349134886712138007907204830652096508713936557496878841876517770965918364527181764708012027865031790852814110937452781792903169509567549383456284464904159 ( 158 digits) SNFS difficulty: 166 digits. Divisors found: Wed Dec 03 09:12:58 2008 prp43 factor: 1266188042683552938501666231379202970184373 Wed Dec 03 09:12:58 2008 prp116 factor: 64189003840718731051789445749630286944004145691347328068960743453391971858994738506501705251623397446227743373324483 Wed Dec 03 09:12:58 2008 elapsed time 01:58:53 (Msiev 1.39) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.81 hours. Scaled time: 49.04 units (timescale=1.829). Factorization parameters were as follows: name: KA_3_6_163_7 n: 81275349134886712138007907204830652096508713936557496878841876517770965918364527181764708012027865031790852814110937452781792903169509567549383456284464904159 type: snfs skew: 0.98 deg: 5 c5: 11 c0: 10 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 56 mfba: 56 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 56/56 Sieved special-q in [100000, 1500001) Primes: RFBsize:348513, AFBsize:348432, largePrimes:14090709 encountered Relations: rels:12617715, finalFF:733115 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 26.54 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,56,56,2.5,2.5,100000 total time: 26.81 hours. --------- CPU info (if available) ----------
By Serge Batalov / GMP-ECM 6.2.1, Msieve-1.38, Msieve
(34·10135+11)/9 = 3(7)1349<136> = 83 · 1271659 · 38820576214206694652531103157<29> · C99
C99 = P31 · P69
P31 = 1841221420817442296175794794789<31>
P69 = 500748491627872924290376533581931521233778005915252163983598241292459<69>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=327529411 Step 1 took 12949ms Step 2 took 10136ms ********** Factor found in step 2: 1841221420817442296175794794789 Found probable prime factor of 31 digits: 1841221420817442296175794794789 Probable prime cofactor 500748491627872924290376533581931521233778005915252163983598241292459 has 69 digits
(34·10163+11)/9 = 3(7)1629<164> = 3 · 13 · 2995517639<10> · 1786997605439027<16> · 19883035843764619<17> · 2414031517419368222581<22> · C100
C100 = P30 · P70
P30 = 538538060804192975491860866957<30>
P70 = 7000578264100615505009002316587714144643825814097360015482214397616419<70>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=384210140 Step 1 took 12933ms Step 2 took 10623ms ********** Factor found in step 2: 538538060804192975491860866957 Found probable prime factor of 30 digits: 538538060804192975491860866957 Probable prime cofactor 7000578264100615505009002316587714144643825814097360015482214397616419 has 70 digits
(34·10148+11)/9 = 3(7)1479<149> = 3 · 7 · 126227 · 23834221709387491<17> · C126
C126 = P30 · P97
P30 = 136061100348900004453193777393<30>
P97 = 4394706727315139875544870349149726531886612053921328903129416402633146507216189846137880348388399<97>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=452164895 Step 1 took 12205ms Step 2 took 4977ms ********** Factor found in step 2: 136061100348900004453193777393 Found probable prime factor of 30 digits: 136061100348900004453193777393 Probable prime cofactor 4394706727315139875544870349149726531886612053921328903129416402633146507216189846137880348388399 has 97 digits
(34·10162-61)/9 = 3(7)1611<163> = 3 · 521 · 7163179 · C153
C153 = P48 · P50 · P55
P48 = 508482292810519141237018117535724632563288268983<48>
P50 = 69697565335453954183157841146626227272181807013267<50>
P55 = 9520903958691570180369995997915148223742970595209791943<55>
SNFS difficulty: 164 digits. Divisors found: r1=508482292810519141237018117535724632563288268983 (pp48) r2=69697565335453954183157841146626227272181807013267 (pp50) r3=9520903958691570180369995997915148223742970595209791943 (pp55) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.537). Factorization parameters were as follows: n: 337420625170770259299467660561244960872840414723192999695679851875816615851259950059949419759282795573495720737496191936943879016272865401591826039056723 m: 200000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 3800000 alim: 3800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3800000/3800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1900000, 4000001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 768687 x 768929 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3800000,3800000,27,27,52,52,2.4,2.4,100000 total time: 26.00 hours.
(34·10170+11)/9 = 3(7)1699<171> = 19 · 601 · 673 · 8663 · 70439611822049<14> · C146
C146 = P31 · P33 · P83
P31 = 5949365760417332575874777487329<31>
P33 = 338927312633634574452868348574459<33>
P83 = 39951286071499425676165028250701904891033092637792693030891274330699036140072514381<83>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1331521538 Step 1 took 15177ms Step 2 took 11309ms ********** Factor found in step 2: 338927312633634574452868348574459 Found probable prime factor of 33 digits: 338927312633634574452868348574459 Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1686472867 Step 1 took 14489ms Step 2 took 11065ms ********** Factor found in step 2: 5949365760417332575874777487329 Found probable prime factor of 31 digits: 5949365760417332575874777487329
(34·10162+11)/9 = 3(7)1619<163> = 47 · 459443 · C156
C156 = P35 · C121
P35 = 67124546794083294248340603185287579<35>
C121 = [2606306841918308784669025209898688038053573715705451307168694698444179234703434235423308619590868129220762915004730308381<121>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2188203815 Step 1 took 24769ms Step 2 took 16445ms ********** Factor found in step 2: 67124546794083294248340603185287579 Found probable prime factor of 35 digits: 67124546794083294248340603185287579 Composite cofactor has 121 digits
(34·10155+11)/9 = 3(7)1549<156> = 109 · 38431 · 26314325321<11> · C139
C139 = P31 · P109
P31 = 1367414235817844393835674902661<31>
P109 = 2506316354241965358478287885021487172210327240182297461454627912939386465253844371489098898542813986043072421<109>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=415686968 Step 1 took 6275ms Step 2 took 4400ms ********** Factor found in step 2: 1367414235817844393835674902661 Found probable prime factor of 31 digits: 1367414235817844393835674902661 Probable prime cofactor 2506316354241965358478287885021487172210327240182297461454627912939386465253844371489098898542813986043072421 has 109 digits
(34·10156+11)/9 = 3(7)1559<157> = 431 · C154
C154 = P32 · C123
P32 = 20428085369379755054381161567133<32>
C123 = [429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473<123>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2478402618 Step 1 took 6442ms Step 2 took 4452ms ********** Factor found in step 2: 20428085369379755054381161567133 Found probable prime factor of 32 digits: 20428085369379755054381161567133 Composite cofactor 429073283061331887029373538382779736581251147921326448030495788175194522967423873919288084893891002909527976603344608741473 has 123 digits
(34·10188+11)/9 = 3(7)1879<189> = 19 · 3167 · 54673 · 6828917458921<13> · C167
C167 = P30 · C138
P30 = 141522473677954575496709305193<30>
C138 = [118818636354373834678341129976690275885036383831189369268516472576592786183983394505260652754963952768044196554737946327636300583734935967<138>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=2017253979 Step 1 took 8272ms Step 2 took 192ms ********** Factor found in step 2: 141522473677954575496709305193 Found probable prime factor of 30 digits: 141522473677954575496709305193 Composite cofactor 118818636354373834678341129976690275885036383831189369268516472576592786183983394505260652754963952768044196554737946327636300583734935967 has 138 digits
(34·10119+11)/9 = 3(7)1189<120> = 127 · 3467 · 1614479767<10> · C105
C105 = P42 · P64
P42 = 134550578004032969503029919091315931135151<42>
P64 = 3949668719875040095385887177491447940304626316925380622724998143<64>
SNFS difficulty: 121 digits. Divisors found: r1=134550578004032969503029919091315931135151 (pp42) r2=3949668719875040095385887177491447940304626316925380622724998143 (pp64) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 531430209183635626101673509948954022583701742093667870559637533214565867046554682600715495943222357024593 m: 1000000000000000000000000 deg: 5 c5: 17 c0: 55 skew: 1.26 type: snfs lss: 1 rlim: 730000 alim: 730000 lpbr: 25 lpba: 25 mfbr: 48 mfba: 48 rlambda: 2.2 alambda: 2.2 Factor base limits: 730000/730000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 48/48 Sieved rational special-q in [365000, 615001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 77656 x 77874 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,730000,730000,25,25,48,48,2.2,2.2,50000 total time: 1.00 hours.
(34·10203+11)/9 = 3(7)2029<204> = 127 · 4157 · 1084987 · 1576097849<10> · 267522701219<12> · C172
C172 = P33 · C139
P33 = 241852534709016633483041799377417<33>
C139 = [6467458742747490908426758718543314878516214661999799045633580159444730768422463131124826108330789481076500407954611602955238945601019157889<139>]
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=1984248884 Step 1 took 8287ms Step 2 took 5223ms ********** Factor found in step 2: 241852534709016633483041799377417 Found probable prime factor of 33 digits: 241852534709016633483041799377417 Composite cofactor 6467458742747490908426758718543314878516214661999799045633580159444730768422463131124826108330789481076500407954611602955238945601019157889 has 139 digits
(34·10137+11)/9 = 3(7)1369<138> = 313 · C136
C136 = P68 · P68
P68 = 24601879358045760753375775352802939606580539840588556396176557740009<68>
P68 = 49059575445962897342059554987416196312658920843681835646967035583187<68>
# Yes, Virginia, there is a Santa Claus. A Nice split for me, too, finally :-) # SNFS difficulty: 139 digits. Divisors found: r1=24601879358045760753375775352802939606580539840588556396176557740009 (pp68) r2=49059575445962897342059554987416196312658920843681835646967035583187 (pp68) Version: Msieve-1.38 Total time: 5.50 hours. Scaled time: 0.00 units (timescale=2.952). Factorization parameters were as follows: n: 1206957756478523251686190983315583954561590344337948171813986510472133475328363507277245296414625488107916222932197373091941782037628683 m: 2000000000000000000000000000 deg: 5 c5: 425 c0: 44 skew: 0.64 type: snfs lss: 1 rlim: 1460000 alim: 1460000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1460000/1460000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [730000, 1630001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 240114 x 240356 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1460000,1460000,26,26,48,48,2.4,2.4,150000 total time: 5.50 hours.
(34·10173+11)/9 = 3(7)1729<174> = 1451 · 23175336529<11> · 6061403725747<13> · C148
C148 = P38 · P110
P38 = 33356516879350872097959604347349217261<38>
P110 = 55563428979535597429283367913886066893955421083855121284705414022229840742979307014569462000972114986360128703<110>
Using B1=1000000, B2=2139490090, polynomial Dickson(6), sigma=158554100 Step 1 took 6232ms Step 2 took 4523ms ********** Factor found in step 2: 33356516879350872097959604347349217261 Found probable prime factor of 38 digits: 33356516879350872097959604347349217261 Probable prime cofactor 55563428979535597429283367913886066893955421083855121284705414022229840742979307014569462000972114986360128703 has 110 digits
(34·10201+11)/9 = 3(7)2009<202> = 613 · 10463 · C195
C195 = P33 · C162
P33 = 947638487444381399137523776727917<33>
C162 = [621551354039585113776369048662467374494877397995276706501347037287825921109330099815375691340299939198266932712737822293439082110528073781426306264610059081985773<162>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3942574903 Step 1 took 35263ms Step 2 took 21016ms ********** Factor found in step 2: 947638487444381399137523776727917 Found probable prime factor of 33 digits: 947638487444381399137523776727917 Composite cofactor 621551354039585113776369048662467374494877397995276706501347037287825921109330099815375691340299939198266932712737822293439082110528073781426306264610059081985773 has 162 digits
(34·10141+11)/9 = 3(7)1409<142> = 829 · C139
C139 = P38 · P102
P38 = 39514398764869549287206850885745348933<38>
P102 = 115325806065567829009781861388333198225804023813540351062894513229056794230954742920893255484355270947<102>
SNFS difficulty: 143 digits. Divisors found: r1=39514398764869549287206850885745348933 (pp38) r2=115325806065567829009781861388333198225804023813540351062894513229056794230954742920893255484355270947 (pp102) Version: Msieve-1.39 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.951). Factorization parameters were as follows: n: 4557029888754858598043157753652325425546173435196354376088996113121565473797078139659563061251842916499128803109502747620962337488272349551 m: 20000000000000000000000000000 deg: 5 c5: 85 c0: 88 skew: 1 type: snfs lss: 1 rlim: 1720000 alim: 1720000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.4 alambda: 2.4 Factor base limits: 1720000/1720000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved rational special-q in [860000, 1860001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 322040 x 322288 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1720000,1720000,26,26,48,48,2.4,2.4,200000 total time: 6.00 hours.
(34·10198+11)/9 = 3(7)1979<199> = 110501 · 345944962629092687143<21> · C173
C173 = P36 · P138
P36 = 487431470528644422733146459735402767<36>
P138 = 202744752573318372422323054839304128700408443189463262974309331874473226300108176768945751786926898861429679103905594441113327049733804159<138>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4272672805 Step 1 took 27411ms Step 2 took 16584ms ********** Factor found in step 2: 487431470528644422733146459735402767 Found probable prime factor of 36 digits: 487431470528644422733146459735402767 Probable prime cofactor 202744752573318372422323054839304128700408443189463262974309331874473226300108176768945751786926898861429679103905594441113327049733804159 has 138 digits
By Erik Branger / Msieve
(34·10122+11)/9 = 3(7)1219<123> = 5351 · 89620398463348176243456330223<29> · C90
C90 = P42 · P49
P42 = 125930051109900781050517676232507094612633<42>
P49 = 6255545776522447969252532683162886614264007977331<49>
Tue Dec 02 17:23:35 2008 Msieve v. 1.38 Tue Dec 02 17:23:35 2008 random seeds: 8794fe44 d9316f60 Tue Dec 02 17:23:35 2008 factoring 787761199357795842149902004718574687702229628244577845033345679589374961514450685290222523 (90 digits) Tue Dec 02 17:23:37 2008 searching for 15-digit factors Tue Dec 02 17:23:38 2008 commencing quadratic sieve (90-digit input) Tue Dec 02 17:23:38 2008 using multiplier of 35 Tue Dec 02 17:23:38 2008 using 32kb Intel Core sieve core Tue Dec 02 17:23:38 2008 sieve interval: 36 blocks of size 32768 Tue Dec 02 17:23:38 2008 processing polynomials in batches of 6 Tue Dec 02 17:23:38 2008 using a sieve bound of 1613669 (61176 primes) Tue Dec 02 17:23:38 2008 using large prime bound of 135548196 (27 bits) Tue Dec 02 17:23:38 2008 using double large prime bound of 434278798718520 (42-49 bits) Tue Dec 02 17:23:38 2008 using trial factoring cutoff of 49 bits Tue Dec 02 17:23:38 2008 polynomial 'A' values have 12 factors Tue Dec 02 18:51:53 2008 61673 relations (16166 full + 45507 combined from 667782 partial), need 61272 Tue Dec 02 18:51:54 2008 begin with 683948 relations Tue Dec 02 18:51:54 2008 reduce to 151269 relations in 9 passes Tue Dec 02 18:51:54 2008 attempting to read 151269 relations Tue Dec 02 18:51:57 2008 recovered 151269 relations Tue Dec 02 18:51:57 2008 recovered 131708 polynomials Tue Dec 02 18:51:57 2008 attempting to build 61673 cycles Tue Dec 02 18:51:57 2008 found 61673 cycles in 6 passes Tue Dec 02 18:51:57 2008 distribution of cycle lengths: Tue Dec 02 18:51:57 2008 length 1 : 16166 Tue Dec 02 18:51:57 2008 length 2 : 11786 Tue Dec 02 18:51:57 2008 length 3 : 10982 Tue Dec 02 18:51:57 2008 length 4 : 8304 Tue Dec 02 18:51:57 2008 length 5 : 5824 Tue Dec 02 18:51:57 2008 length 6 : 3724 Tue Dec 02 18:51:57 2008 length 7 : 2254 Tue Dec 02 18:51:57 2008 length 9+: 2633 Tue Dec 02 18:51:57 2008 largest cycle: 20 relations Tue Dec 02 18:51:57 2008 matrix is 61176 x 61673 (15.1 MB) with weight 3720091 (60.32/col) Tue Dec 02 18:51:57 2008 sparse part has weight 3720091 (60.32/col) Tue Dec 02 18:51:57 2008 filtering completed in 3 passes Tue Dec 02 18:51:57 2008 matrix is 57401 x 57465 (14.1 MB) with weight 3463249 (60.27/col) Tue Dec 02 18:51:57 2008 sparse part has weight 3463249 (60.27/col) Tue Dec 02 18:51:58 2008 saving the first 48 matrix rows for later Tue Dec 02 18:51:58 2008 matrix is 57353 x 57465 (8.6 MB) with weight 2677561 (46.59/col) Tue Dec 02 18:51:58 2008 sparse part has weight 1902579 (33.11/col) Tue Dec 02 18:51:58 2008 matrix includes 64 packed rows Tue Dec 02 18:51:58 2008 using block size 22986 for processor cache size 2048 kB Tue Dec 02 18:51:58 2008 commencing Lanczos iteration Tue Dec 02 18:51:58 2008 memory use: 8.5 MB Tue Dec 02 18:52:16 2008 lanczos halted after 908 iterations (dim = 57350) Tue Dec 02 18:52:17 2008 recovered 17 nontrivial dependencies Tue Dec 02 18:52:17 2008 prp42 factor: 125930051109900781050517676232507094612633 Tue Dec 02 18:52:17 2008 prp49 factor: 6255545776522447969252532683162886614264007977331 Tue Dec 02 18:52:17 2008 elapsed time 01:28:42
(34·10133+11)/9 = 3(7)1329<134> = 32 · 13 · 43 · 3041 · 7157041348997849<16> · 3858971354503959667<19> · C92
C92 = P40 · P53
P40 = 1611364825756490385391657092199601092037<40>
P53 = 55483865437642055596519639266633036099126609006735619<53>
Tue Dec 02 18:59:21 2008 Msieve v. 1.38 Tue Dec 02 18:59:21 2008 random seeds: db3297c8 282ae7cc Tue Dec 02 18:59:21 2008 factoring 89404749163222650076866820667644652085586696566770446146303782255448909690029097440945165903 (92 digits) Tue Dec 02 18:59:22 2008 searching for 15-digit factors Tue Dec 02 18:59:24 2008 commencing quadratic sieve (92-digit input) Tue Dec 02 18:59:24 2008 using multiplier of 3 Tue Dec 02 18:59:24 2008 using 32kb Intel Core sieve core Tue Dec 02 18:59:24 2008 sieve interval: 36 blocks of size 32768 Tue Dec 02 18:59:24 2008 processing polynomials in batches of 6 Tue Dec 02 18:59:24 2008 using a sieve bound of 1853669 (69412 primes) Tue Dec 02 18:59:24 2008 using large prime bound of 209464597 (27 bits) Tue Dec 02 18:59:24 2008 using double large prime bound of 950602707335250 (42-50 bits) Tue Dec 02 18:59:24 2008 using trial factoring cutoff of 50 bits Tue Dec 02 18:59:24 2008 polynomial 'A' values have 12 factors Tue Dec 02 21:27:12 2008 69578 relations (17573 full + 52005 combined from 892740 partial), need 69508 Tue Dec 02 21:27:16 2008 begin with 910313 relations Tue Dec 02 21:27:16 2008 reduce to 176228 relations in 11 passes Tue Dec 02 21:27:16 2008 attempting to read 176228 relations Tue Dec 02 21:27:19 2008 recovered 176228 relations Tue Dec 02 21:27:19 2008 recovered 158671 polynomials Tue Dec 02 21:27:19 2008 attempting to build 69578 cycles Tue Dec 02 21:27:19 2008 found 69578 cycles in 5 passes Tue Dec 02 21:27:19 2008 distribution of cycle lengths: Tue Dec 02 21:27:19 2008 length 1 : 17573 Tue Dec 02 21:27:19 2008 length 2 : 12601 Tue Dec 02 21:27:19 2008 length 3 : 11959 Tue Dec 02 21:27:19 2008 length 4 : 9471 Tue Dec 02 21:27:19 2008 length 5 : 6955 Tue Dec 02 21:27:19 2008 length 6 : 4600 Tue Dec 02 21:27:19 2008 length 7 : 2814 Tue Dec 02 21:27:19 2008 length 9+: 3605 Tue Dec 02 21:27:19 2008 largest cycle: 18 relations Tue Dec 02 21:27:20 2008 matrix is 69412 x 69578 (17.6 MB) with weight 4325156 (62.16/col) Tue Dec 02 21:27:20 2008 sparse part has weight 4325156 (62.16/col) Tue Dec 02 21:27:20 2008 filtering completed in 3 passes Tue Dec 02 21:27:20 2008 matrix is 65648 x 65712 (16.7 MB) with weight 4116478 (62.64/col) Tue Dec 02 21:27:20 2008 sparse part has weight 4116478 (62.64/col) Tue Dec 02 21:27:20 2008 saving the first 48 matrix rows for later Tue Dec 02 21:27:21 2008 matrix is 65600 x 65712 (10.3 MB) with weight 3244072 (49.37/col) Tue Dec 02 21:27:21 2008 sparse part has weight 2314877 (35.23/col) Tue Dec 02 21:27:21 2008 matrix includes 64 packed rows Tue Dec 02 21:27:21 2008 using block size 26284 for processor cache size 2048 kB Tue Dec 02 21:27:21 2008 commencing Lanczos iteration Tue Dec 02 21:27:21 2008 memory use: 10.1 MB Tue Dec 02 21:27:47 2008 lanczos halted after 1039 iterations (dim = 65598) Tue Dec 02 21:27:47 2008 recovered 17 nontrivial dependencies Tue Dec 02 21:27:47 2008 prp40 factor: 1611364825756490385391657092199601092037 Tue Dec 02 21:27:47 2008 prp53 factor: 55483865437642055596519639266633036099126609006735619 Tue Dec 02 21:27:47 2008 elapsed time 02:28:26
Factorizations of 377...779 have been extended up to n=205. Unknown factors of the composite numbers that appeared newly are probably 30-digit or more.
By Jo Yeong Uk / GGNFS
7·10182-9 = 6(9)1811<183> = 47 · 2909 · 8412983 · 197529555280333365899<21> · 551024823684035448740408536106657207<36> · C115
C115 = P54 · P62
P54 = 120505114541548280042487841757872247892709036654778083<54>
P62 = 46397835349507535301741903585430930023363737967949935765765821<62>
Number: 69991_182 N=5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 ( 115 digits) Divisors found: r1=120505114541548280042487841757872247892709036654778083 (pp54) r2=46397835349507535301741903585430930023363737967949935765765821 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 22.15 hours. Scaled time: 52.61 units (timescale=2.375). Factorization parameters were as follows: name: 69991_182 n: 5591176463272303316615780966074659214096793163110886821777133410508295180383174336519509049157089247339837301301143 skew: 17333.97 # norm 9.01e+15 c5: 97740 c4: 18416313678 c3: -212611237858754 c2: 202852738603153717 c1: 15507418452815452722844 c0: 58012158724999932663752355 # alpha -6.24 Y1: 2422555194829 Y0: -8942969295094779062108 # Murphy_E 5.46e-10 # M 2950275471248039864803529724056229443825261945017915189784971355597025064217620201603167612787728815854960471712106 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved algebraic special-q in [1400000, 2660001) Primes: RFBsize:203362, AFBsize:203456, largePrimes:9573195 encountered Relations: rels:9505229, finalFF:506003 Max relations in full relation-set: 28 Initial matrix: 406897 x 506003 with sparse part having weight 54243052. Pruned matrix : 348124 x 350222 with weight 36935690. Polynomial selection time: 1.31 hours. Total sieving time: 19.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.76 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,52,52,2.6,2.6,70000 total time: 22.15 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Intel(R) Core(TM)2 Quad CPU Q6700 @ 2.66GHz stepping 0b Memory: 8047068k/8912896k available (2460k kernel code, 339224k reserved, 1251k data, 196k init) Calibrating delay using timer specific routine.. 5347.60 BogoMIPS (lpj=2673803) Calibrating delay using timer specific routine.. 5344.76 BogoMIPS (lpj=2672384) Calibrating delay using timer specific routine.. 5497.76 BogoMIPS (lpj=2748880) Calibrating delay using timer specific routine.. 5344.69 BogoMIPS (lpj=2672347)
By Sinkiti Sibata / GGNFS
(11·10147+1)/3 = 3(6)1467<148> = 19 · 83791 · 753120798308864203<18> · C124
C124 = P36 · P39 · P51
P36 = 153288443336301868304649866120256611<36>
P39 = 170668247510580321448805603064473607653<39>
P51 = 116894390737140603747245738094441350205229565084827<51>
Number: 36667_147 N=3058129095015556371371520145905654136299614131214743883131326477092954523068559314933344152325533809154730720048680367745941 ( 124 digits) SNFS difficulty: 150 digits. Divisors found: r1=153288443336301868304649866120256611 (pp36) r2=170668247510580321448805603064473607653 (pp39) r3=116894390737140603747245738094441350205229565084827 (pp51) Version: GGNFS-0.77.1-20060513-k8 Total time: 22.62 hours. Scaled time: 44.91 units (timescale=1.985). Factorization parameters were as follows: name: 36667_147 n: 3058129095015556371371520145905654136299614131214743883131326477092954523068559314933344152325533809154730720048680367745941 m: 500000000000000000000000000000 deg: 5 c5: 44 c0: 125 skew: 1.23 type: snfs lss: 1 rlim: 2200000 alim: 2200000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1100000, 1800001) Primes: RFBsize:162662, AFBsize:162521, largePrimes:7150630 encountered Relations: rels:7348652, finalFF:640645 Max relations in full relation-set: 28 Initial matrix: 325250 x 640645 with sparse part having weight 71451844. Pruned matrix : 244711 x 246401 with weight 28421597. Total sieving time: 21.33 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.97 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2200000,2200000,27,27,49,49,2.4,2.4,100000 total time: 22.62 hours. --------- CPU info (if available) ----------
(34·10156-61)/9 = 3(7)1551<157> = 32 · 43 · 6028933 · 1402421333<10> · C139
C139 = P46 · P93
P46 = 9966402979697060305647496423630143597597319309<46>
P93 = 115842529545143837157184112972896281967285587268931776950834834580235894383922902897517477333<93>
Number: 37771_156 N=1154533331634366282678567732766953021488942489574034118414499319512603715875752034778388732687905581793683555211026274464001824176970722897 ( 139 digits) SNFS difficulty: 157 digits. Divisors found: r1=9966402979697060305647496423630143597597319309 (pp46) r2=115842529545143837157184112972896281967285587268931776950834834580235894383922902897517477333 (pp93) Version: GGNFS-0.77.1-20060513-nocona Total time: 42.40 hours. Scaled time: 108.71 units (timescale=2.564). Factorization parameters were as follows: name: 37771_156 n: 1154533331634366282678567732766953021488942489574034118414499319512603715875752034778388732687905581793683555211026274464001824176970722897 m: 10000000000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216657, largePrimes:8653599 encountered Relations: rels:9425471, finalFF:991033 Max relations in full relation-set: 28 Initial matrix: 433540 x 991033 with sparse part having weight 122448345. Pruned matrix : 315934 x 318165 with weight 56320413. Total sieving time: 40.85 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.25 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,50,50,2.4,2.4,100000 total time: 42.40 hours. --------- CPU info (if available) ----------
(34·10157-61)/9 = 3(7)1561<158> = 108685226485233581851<21> · C138
C138 = P51 · P87
P51 = 525635717350307831412930905071935105423234178396363<51>
P87 = 661273356310180256351138419233820506936333700070566891354943514978567534279994118905267<87>
Number: 37771_157 N=347588895008747308866544061102726069403307881613424404847414945687730332029210319944189517278502930044633182335397963047561247567174343921 ( 138 digits) SNFS difficulty: 159 digits. Divisors found: r1=525635717350307831412930905071935105423234178396363 (pp51) r2=661273356310180256351138419233820506936333700070566891354943514978567534279994118905267 (pp87) Version: GGNFS-0.77.1-20060513-nocona Total time: 50.62 hours. Scaled time: 129.79 units (timescale=2.564). Factorization parameters were as follows: name:37771_157 n: 347588895008747308866544061102726069403307881613424404847414945687730332029210319944189517278502930044633182335397963047561247567174343921 m: 20000000000000000000000000000000 deg: 5 c5: 425 c0: -244 skew: 0.89 type: snfs lss: 1 rlim: 3100000 alim: 3100000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 Factor base limits: 3100000/3100000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1550000, 3250001) Primes: RFBsize:223492, AFBsize:224441, largePrimes:8630791 encountered Relations: rels:9318143, finalFF:799748 Max relations in full relation-set: 28 Initial matrix: 448000 x 799748 with sparse part having weight 101059944. Pruned matrix : 351450 x 353754 with weight 55059506. Total sieving time: 48.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.60 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3100000,3100000,27,27,50,50,2.4,2.4,100000 total time: 50.62 hours. --------- CPU info (if available) ----------
(34·10149-61)/9 = 3(7)1481<150> = 29 · 67 · C147
C147 = P39 · P108
P39 = 948232092733249950554056411032673040477<39>
P108 = 205044893122722355563983803137691979462044995543930554941591189105064744137537173790203999128478533860189361<108>
Number: 37771_149 N=194430148110024589695202150168696746154286041059072453822839823869159947389489334934522788357065248470292217075541831074512494996282953050837765197 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=948232092733249950554056411032673040477 (pp39) r2=205044893122722355563983803137691979462044995543930554941591189105064744137537173790203999128478533860189361 (pp108) Version: GGNFS-0.77.1-20060513-k8 Total time: 28.30 hours. Scaled time: 54.82 units (timescale=1.937). Factorization parameters were as follows: name: 37771_149 n: 194430148110024589695202150168696746154286041059072453822839823869159947389489334934522788357065248470292217075541831074512494996282953050837765197 m: 1000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 2300000 alim: 2300000 lpbr: 27 lpba: 27 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [1150000, 2050001) Primes: RFBsize:169511, AFBsize:170222, largePrimes:7316415 encountered Relations: rels:7619094, finalFF:707261 Max relations in full relation-set: 28 Initial matrix: 339798 x 707261 with sparse part having weight 82041141. Pruned matrix : 254976 x 256738 with weight 33834665. Total sieving time: 26.68 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.29 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2300000,2300000,27,27,49,49,2.4,2.4,100000 total time: 28.30 hours. --------- CPU info (if available) ----------
By Serge Batalov / Msieve-1.38, GMP-ECM 6.2.1
(11·10160+1)/3 = 3(6)1597<161> = 37 · 4999 · C156
C156 = P63 · P94
P63 = 107806408315392186042834496039127146847357843939914262271423059<63>
P94 = 1838831743539757907265990383385558921051444574734351440522190333306312386979892415634452042051<94>
SNFS difficulty: 161 digits. Divisors found: r1=107806408315392186042834496039127146847357843939914262271423059 (pp63) r2=1838831743539757907265990383385558921051444574734351440522190333306312386979892415634452042051 (pp94) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.950). Factorization parameters were as follows: n: 198237845767351668531904579114021002398677933784955189236045407279654129024002998797957789756149428083814961190436285455289256049408079814161030404279054009 m: 100000000000000000000000000000000 deg: 5 c5: 11 c0: 1 skew: 0.62 type: snfs lss: 1 rlim: 3400000 alim: 3400000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3400000/3400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1700000, 2600001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 589731 x 589973 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3400000,3400000,27,27,52,52,2.4,2.4,100000 total time: 14.00 hours.
(11·10161+1)/3 = 3(6)1607<162> = 7 · 3583 · C158
C158 = P55 · P104
P55 = 1396874562526488259237574101449859344602907037597516643<55>
P104 = 10465721494555841361661330014966716334135064147047311164221578603816109473930419270673010543406762793249<104>
SNFS difficulty: 163 digits. Divisors found: r1=1396874562526488259237574101449859344602907037597516643 (pp55) r2=10465721494555841361661330014966716334135064147047311164221578603816109473930419270673010543406762793249 (pp104) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 14619300134231755777946121233868931329160187658652632138537804181119838390282152492590672886514360139813670374652791621811995800273779620695612880932445543107 m: 200000000000000000000000000000000 deg: 5 c5: 55 c0: 16 skew: 0.78 type: snfs lss: 1 rlim: 3700000 alim: 3700000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3700000/3700000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1850000, 3150001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705916 x 706158 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3700000,3700000,27,27,52,52,2.4,2.4,100000 total time: 25.00 hours.
(34·10161-61)/9 = 3(7)1601<162> = 71 · C160
C160 = P61 · P100
P61 = 5248339198924568488090626332597551156263673436410591970891881<61>
P100 = 1013809048890795600319731355237825745864782625364859636226664234782284012321457252955340518891623221<100>
SNFS difficulty: 162 digits. Divisors found: r1=5248339198924568488090626332597551156263673436410591970891881 (pp61) r2=1013809048890795600319731355237825745864782625364859636226664234782284012321457252955340518891623221 (pp100) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.722). Factorization parameters were as follows: n: 5320813771517996870109546165884194053208137715179968701095461658841940532081377151799687010954616588419405320813771517996870109546165884194053208137715179968701 m: 100000000000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1800000, 3500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 705065 x 705307 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3600000,3600000,27,27,52,52,2.4,2.4,100000 total time: 24.00 hours.
(64·10247-1)/9 = 7(1)247<248> = 10477 · 16879 · C240
C240 = P38 · P202
P38 = 63209533607698633158751402340598745883<38>
P202 = 6361671236848233496152449269521854211349654871561806001705536258426388234147009847277835322217606481274315381488581580847083208285386176738103763445869615774430972147572743203317058290174392113785190999<202>
Using B1=43000000, B2=582162027730, polynomial Dickson(30), sigma=2337050584 Step 1 took 491939ms Step 2 took 244339ms ********** Factor found in step 2: 63209533607698633158751402340598745883 Found probable prime factor of 38 digits: 63209533607698633158751402340598745883 Probable prime cofactor has 202 digits
Msieve-1.39 has been released.
By Robert Backstrom / GMP-ECM
(34·10140-61)/9 = 3(7)1391<141> = 7 · 38729 · 1227075583<10> · 113910217004608229<18> · C109
C109 = P35 · P75
P35 = 19307640926740728658468249492603981<35>
P75 = 516343693603233874370126179965698886505664770083775458430131775655309376971<75>
GMP-ECM 6.2.1 [powered by GMP 4.2.1] [ECM] Input number is 9969378630878273330209454988851072949503239070360101125655163488996390662293101007126290937779576661544321551 (109 digits) Using B1=1040000, B2=1045563762, polynomial Dickson(6), sigma=3595781433 Step 1 took 8125ms Step 2 took 4390ms ********** Factor found in step 2: 19307640926740728658468249492603981 Found probable prime factor of 35 digits: 19307640926740728658468249492603981 Probable prime cofactor 516343693603233874370126179965698886505664770083775458430131775655309376971 has 75 digits
By Serge Batalov / GMP-ECM 6.2.1, pol51; Msieve-1.38 gnfs
(34·10147-61)/9 = 3(7)1461<148> = 35 · 136621 · C141
C141 = P36 · P105
P36 = 229396003666241020967296200838396591<36>
P105 = 496051567622998067919651156246881008431154204658997849229474790386382145887920573758035262566826859064227<105>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2648012166 Step 1 took 14589ms Step 2 took 10677ms ********** Factor found in step 2: 229396003666241020967296200838396591 Found probable prime factor of 36 digits: 229396003666241020967296200838396591 Probable prime cofactor 496051567622998067919651156246881008431154204658997849229474790386382145887920573758035262566826859064227 has 105 digits
(11·10142+1)/3 = 3(6)1417<143> = 37 · C141
C141 = P34 · P108
P34 = 2693334827130149692684600382468941<34>
P108 = 367941995554607460375664696351964697590458986146034785229665363826072986598682216567858356117973188884575051<108>
Using B1=1000000, B2=1045563762, polynomial Dickson(6), sigma=3012302675 Step 1 took 27684ms Step 2 took 12805ms ********** Factor found in step 2: 2693334827130149692684600382468941 Found probable prime factor of 34 digits: 2693334827130149692684600382468941 Probable prime cofactor 367941995554607460375664696351964697590458986146034785229665363826072986598682216567858356117973188884575051 has 108 digits
(11·10159+1)/3 = 3(6)1587<160> = 29 · C159
C159 = P34 · P125
P34 = 4579115157252350396251705660558469<34>
P125 = 27611618678981302453420401159665729376211279209581066750141573274195794009038548402268649023166636612159131984086746695721467<125>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2518271257 Step 1 took 20041ms Step 2 took 12929ms ********** Factor found in step 2: 4579115157252350396251705660558469 Found probable prime factor of 34 digits: 4579115157252350396251705660558469 Probable prime cofactor 27611618678981302453420401159665729376211279209581066750141573274195794009038548402268649023166636612159131984086746695721467 has 125 digits
(11·10174+1)/3 = 3(6)1737<175> = 25105507078193<14> · C162
C162 = P34 · P129
P34 = 1431643137143289612013395042921649<34>
P129 = 102015851080330394950115333716070269018964607525472741780280632981612360170145484208680248953025985904139335171265173737731269131<129>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1752658758 Step 1 took 19541ms Step 2 took 12577ms ********** Factor found in step 2: 1431643137143289612013395042921649 Found probable prime factor of 34 digits: 1431643137143289612013395042921649 Probable prime cofactor 102015851080330394950115333716070269018964607525472741780280632981612360170145484208680248953025985904139335171265173737731269131 has 129 digits
(34·10203-61)/9 = 3(7)2021<204> = 8831 · 72901 · 112501 · 10440322124787126683053<23> · C168
C168 = P33 · P136
P33 = 194878783642531137396506518706737<33>
P136 = 2563646825834120049987006706226367115513825431483244228135665471944472805150771543742942888716968688007800024055831525531246269818486481<136>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=802463135 Step 1 took 20061ms Step 2 took 12845ms ********** Factor found in step 2: 194878783642531137396506518706737 Found probable prime factor of 33 digits: 194878783642531137396506518706737 Probable prime cofactor 2563646825834120049987006706226367115513825431483244228135665471944472805150771543742942888716968688007800024055831525531246269818486481 has 136 digits
(34·10192-61)/9 = 3(7)1911<193> = 32 · 3533 · 797439971587867<15> · C174
C174 = P28 · C146
P28 = 5639483166306901179798816719<28>
C146 = [26418791978814970831542819583891294783385354615760421669709934150784142724787661482579399836080971964830225870407234821376836573766640098403040291<146>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4250593911 Step 1 took 25267ms ********** Factor found in step 1: 5639483166306901179798816719 Found probable prime factor of 28 digits: 5639483166306901179798816719 Composite cofactor
(11·10186+1)/3 = 3(6)1857<187> = 184793114142475822975073<24> · C164
C164 = P37 · C128
P37 = 1774927193533712492005677033453671123<37>
C128 = [11179055258894793670224353164464161111390294918481458753128549105128717218169765741212056666252299726580644182426721221367136873<128>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3358102994 Step 1 took 24726ms Step 2 took 16644ms ********** Factor found in step 2: 1774927193533712492005677033453671123 Found probable prime factor of 37 digits: 1774927193533712492005677033453671123 Composite cofactor 11179055258894793670224353164464161111390294918481458753128549105128717218169765741212056666252299726580644182426721221367136873 has 128 digits
(34·10198-61)/9 = 3(7)1971<199> = 3 · 43 · 2687 · 5968939 · C187
C187 = P32 · P155
P32 = 38105528752723700919153806322731<32>
P155 = 47917472025515084936253091068040645829165545942645244660993199310349576589419386240479483830592013034148549763083512771249504720351602315724197904591349053<155>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=4028002106 Step 1 took 22017ms Step 2 took 14649ms ********** Factor found in step 2: 38105528752723700919153806322731 Found probable prime factor of 32 digits: 38105528752723700919153806322731 Probable prime cofactor 47917472025515084936253091068040645829165545942645244660993199310349576589419386240479483830592013034148549763083512771249504720351602315724197904591349053 has 155 digits
(34·10204-61)/9 = 3(7)2031<205> = 3 · 456944495438603<15> · C190
C190 = P31 · C160
P31 = 1512768834429399909066535514857<31>
C160 = [1821709546286074516473557552513973715632831422256577038778502292556731957589880120180743562987930254113335165727299848149500511188794201681110980467838132947667<160>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=2899500130 Step 1 took 23289ms Step 2 took 14553ms ********** Factor found in step 2: 1512768834429399909066535514857 Found probable prime factor of 31 digits: 1512768834429399909066535514857 Composite cofactor 1821709546286074516473557552513973715632831422256577038778502292556731957589880120180743562987930254113335165727299848149500511188794201681110980467838132947667 has 160 digits
(11·10205+1)/3 = 3(6)2047<206> = 37 · 967 · 193189 · 175495747251253477<18> · C179
C179 = P34 · C145
P34 = 4216628214594391516805899817350621<34>
C145 = [7168510581489893362061172533665932426911604966642096584491850386790355732112303191835701796670060964330568232485809019473596273412036396814696021<145>]
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=3119795829 Step 1 took 28545ms Step 2 took 18593ms ********** Factor found in step 2: 4216628214594391516805899817350621 Found probable prime factor of 34 digits: 4216628214594391516805899817350621 Composite cofactor 7168510581489893362061172533665932426911604966642096584491850386790355732112303191835701796670060964330568232485809019473596273412036396814696021 has 145 digits
(34·10189-61)/9 = 3(7)1881<190> = 3 · 19 · 1951 · 9199 · 140177 · 43664787877<11> · 17268776936283601<17> · 124302643102278005093<21> · 3329405600056896389444381<25> · C104
C104 = P44 · P61
P44 = 69966787580143993614754142851314738917569579<44>
P61 = 1206576783959699309894410254281895913576361725987222092406549<61>
Number: 37771_189 N=84420301542441572248655580080885734293394610747358405506554776579780343085112125886659786128138262772871 ( 104 digits) Divisors found: r1=69966787580143993614754142851314738917569579 (pp44) r2=1206576783959699309894410254281895913576361725987222092406549 (pp61) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.730). Factorization parameters were as follows: name: 37771_189 n: 84420301542441572248655580080885734293394610747358405506554776579780343085112125886659786128138262772871 skew: 9787.26 # norm 1.05e+14 c5: 46080 c4: -602871736 c3: -7091880767194 c2: 80954041951701947 c1: 389451520411831702630 c0: -1537021221256345910714200 # alpha -5.48 Y1: 105296616953 Y0: -71217802010343892173 # Murphy_E 2.16e-09 # M 70169906179187845525575282802550724568150340856160222103856566810958666723249156632950463472826442865883 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1850001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 250586 x 250828 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 2.50 hours.
(11·10169+1)/3 = 3(6)1687<170> = 37 · C168
C168 = P41 · P128
P41 = 11030812224377842345662744222070095528811<41>
P128 = 89838442612677568783127992344632191440505401986005659153984016763066092470526608932676002858732238476800246754010447349587574381<128>
Using B1=3000000, B2=11414255590, polynomial Dickson(12), sigma=1370658292 Step 1 took 24924ms Step 2 took 16947ms ********** Factor found in step 2: 11030812224377842345662744222070095528811 Found probable prime factor of 41 digits: 11030812224377842345662744222070095528811 Probable prime cofactor 89838442612677568783127992344632191440505401986005659153984016763066092470526608932676002858732238476800246754010447349587574381 has 128 digits
(34·10154-61)/9 = 3(7)1531<155> = 6379 · C151
C151 = P60 · P92
P60 = 183454113598076963373718986643971415060501020624289499571323<60>
P92 = 32281696568612383429921930458932642651082130545296673862354073357067506441085413828479488563<92>
SNFS difficulty: 156 digits. Divisors found: r1=183454113598076963373718986643971415060501020624289499571323 (pp60) r2=32281696568612383429921930458932642651082130545296673862354073357067506441085413828479488563 (pp92) Version: Msieve-1.38 Total time: 0.00 hours. Scaled time: 0.00 units (timescale=2.316). Factorization parameters were as follows: n: 5922210029436867499259723746320391562592534531709951054675933183536256118165508352057967985229311455992754001846336068000905749769207991499886781278849 m: 10000000000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [1400000, 2500001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 558486 x 558728 Total sieving time: 0.00 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,27,27,52,52,2.4,2.4,100000 total time: 20.00 hours.
By Luigi Morelli / msieve 1.38
(34·10174-43)/9 = 3(7)1733<175> = 23279 · 344848243 · 80308935953<11> · 685748829763<12> · 41268157890120643<17> · C123
C123 = P53 · P70
P53 = 20911043547722046862836516832845716851816899295541089<53>
P70 = 9902032167234716303717452177033910330401475786201296097689113927382553<70>
Sat Nov 29 15:51:53 2008 Msieve v. 1.38 Sat Nov 29 15:51:53 2008 random seeds: be9f0478 86d8f760 Sat Nov 29 15:51:53 2008 factoring 207061825859989670459284623169677072047648707250318568804646243101328743888471612901950056737246672796156596706853633220217 (123 digits) Sat Nov 29 15:51:55 2008 searching for 15-digit factors Sat Nov 29 15:51:59 2008 commencing number field sieve (123-digit input) Sat Nov 29 15:51:59 2008 R0: -679056770268448866920 Sat Nov 29 15:51:59 2008 R1: 1 Sat Nov 29 15:51:59 2008 A0: -9197281393885594503 Sat Nov 29 15:51:59 2008 A1: 11143000227051575216 Sat Nov 29 15:51:59 2008 A2: -1674590562615344430 Sat Nov 29 15:51:59 2008 A3: -13223622027949449591 Sat Nov 29 15:51:59 2008 A4: 3275463102756217972 Sat Nov 29 15:51:59 2008 A5: 1434067592525568000 Sat Nov 29 15:51:59 2008 size score = 4.498991e-013, Murphy alpha = -3.957239, combined = 1.682613e-012 Sat Nov 29 15:52:00 2008 Sat Nov 29 15:52:00 2008 commencing relation filtering Sat Nov 29 15:52:00 2008 commencing duplicate removal, pass 1 Sat Nov 29 15:59:48 2008 found 712206 hash collisions in 11479955 relations Sat Nov 29 16:02:01 2008 added 60587 free relations Sat Nov 29 16:02:01 2008 commencing duplicate removal, pass 2 Sat Nov 29 16:03:20 2008 found 615164 duplicates and 10925378 unique relations Sat Nov 29 16:03:20 2008 memory use: 50.6 MB Sat Nov 29 16:03:21 2008 reading rational ideals above 5046272 Sat Nov 29 16:03:21 2008 reading algebraic ideals above 5046272 Sat Nov 29 16:03:21 2008 commencing singleton removal, pass 1 Sat Nov 29 16:10:45 2008 relations with 0 large ideals: 68092 Sat Nov 29 16:10:45 2008 relations with 1 large ideals: 567434 Sat Nov 29 16:10:45 2008 relations with 2 large ideals: 1842955 Sat Nov 29 16:10:45 2008 relations with 3 large ideals: 3416912 Sat Nov 29 16:10:45 2008 relations with 4 large ideals: 3551459 Sat Nov 29 16:10:45 2008 relations with 5 large ideals: 1415110 Sat Nov 29 16:10:45 2008 relations with 6 large ideals: 63414 Sat Nov 29 16:10:45 2008 relations with 7+ large ideals: 2 Sat Nov 29 16:10:45 2008 10925378 relations and about 10213646 large ideals Sat Nov 29 16:10:45 2008 commencing singleton removal, pass 2 Sat Nov 29 16:16:06 2008 found 3509153 singletons Sat Nov 29 16:16:06 2008 current dataset: 7416225 relations and about 6209799 large ideals Sat Nov 29 16:16:06 2008 commencing singleton removal, pass 3 Sat Nov 29 16:20:27 2008 found 810977 singletons Sat Nov 29 16:20:27 2008 current dataset: 6605248 relations and about 5363239 large ideals Sat Nov 29 16:20:27 2008 commencing singleton removal, pass 4 Sat Nov 29 16:24:50 2008 found 213706 singletons Sat Nov 29 16:24:51 2008 current dataset: 6391542 relations and about 5146716 large ideals Sat Nov 29 16:24:51 2008 commencing singleton removal, final pass Sat Nov 29 16:28:04 2008 memory use: 125.2 MB Sat Nov 29 16:28:05 2008 commencing in-memory singleton removal Sat Nov 29 16:28:06 2008 begin with 6391542 relations and 5450488 unique ideals Sat Nov 29 16:28:31 2008 reduce to 5793438 relations and 4842225 ideals in 13 passes Sat Nov 29 16:28:31 2008 max relations containing the same ideal: 35 Sat Nov 29 16:28:36 2008 reading rational ideals above 720000 Sat Nov 29 16:28:36 2008 reading algebraic ideals above 720000 Sat Nov 29 16:28:36 2008 commencing singleton removal, final pass Sat Nov 29 16:32:06 2008 keeping 5147907 ideals with weight <= 20, new excess is 399479 Sat Nov 29 16:32:22 2008 memory use: 178.3 MB Sat Nov 29 16:32:22 2008 commencing in-memory singleton removal Sat Nov 29 16:32:24 2008 begin with 5793911 relations and 5147907 unique ideals Sat Nov 29 16:32:37 2008 reduce to 5793049 relations and 5144932 ideals in 6 passes Sat Nov 29 16:32:37 2008 max relations containing the same ideal: 20 Sat Nov 29 16:32:48 2008 removing 653414 relations and 561053 ideals in 92361 cliques Sat Nov 29 16:32:49 2008 commencing in-memory singleton removal Sat Nov 29 16:32:51 2008 begin with 5139635 relations and 5144932 unique ideals Sat Nov 29 16:33:07 2008 reduce to 5086560 relations and 4529693 ideals in 8 passes Sat Nov 29 16:33:07 2008 max relations containing the same ideal: 20 Sat Nov 29 16:33:16 2008 removing 500648 relations and 408287 ideals in 92361 cliques Sat Nov 29 16:33:16 2008 commencing in-memory singleton removal Sat Nov 29 16:33:18 2008 begin with 4585912 relations and 4529693 unique ideals Sat Nov 29 16:33:34 2008 reduce to 4547587 relations and 4082371 ideals in 9 passes Sat Nov 29 16:33:34 2008 max relations containing the same ideal: 20 Sat Nov 29 16:33:43 2008 relations with 0 large ideals: 21617 Sat Nov 29 16:33:43 2008 relations with 1 large ideals: 179916 Sat Nov 29 16:33:44 2008 relations with 2 large ideals: 635257 Sat Nov 29 16:33:44 2008 relations with 3 large ideals: 1238278 Sat Nov 29 16:33:44 2008 relations with 4 large ideals: 1392824 Sat Nov 29 16:33:44 2008 relations with 5 large ideals: 824915 Sat Nov 29 16:33:44 2008 relations with 6 large ideals: 226256 Sat Nov 29 16:33:44 2008 relations with 7+ large ideals: 28524 Sat Nov 29 16:33:44 2008 commencing 2-way merge Sat Nov 29 16:33:56 2008 reduce to 2954553 relation sets and 2489337 unique ideals Sat Nov 29 16:33:56 2008 commencing full merge Sat Nov 29 16:35:53 2008 memory use: 189.8 MB Sat Nov 29 16:35:55 2008 found 1421189 cycles, need 1357537 Sat Nov 29 16:35:55 2008 weight of 1357537 cycles is about 95182674 (70.11/cycle) Sat Nov 29 16:35:55 2008 distribution of cycle lengths: Sat Nov 29 16:35:55 2008 1 relations: 127090 Sat Nov 29 16:35:55 2008 2 relations: 154422 Sat Nov 29 16:35:55 2008 3 relations: 165581 Sat Nov 29 16:35:56 2008 4 relations: 152485 Sat Nov 29 16:35:56 2008 5 relations: 139651 Sat Nov 29 16:35:56 2008 6 relations: 119549 Sat Nov 29 16:35:56 2008 7 relations: 103127 Sat Nov 29 16:35:56 2008 8 relations: 88323 Sat Nov 29 16:35:56 2008 9 relations: 74428 Sat Nov 29 16:35:56 2008 10+ relations: 232881 Sat Nov 29 16:35:56 2008 heaviest cycle: 17 relations Sat Nov 29 16:35:57 2008 commencing cycle optimization Sat Nov 29 16:36:07 2008 start with 7829053 relations Sat Nov 29 16:37:04 2008 pruned 207954 relations Sat Nov 29 16:37:04 2008 memory use: 204.9 MB Sat Nov 29 16:37:04 2008 distribution of cycle lengths: Sat Nov 29 16:37:04 2008 1 relations: 127090 Sat Nov 29 16:37:04 2008 2 relations: 158585 Sat Nov 29 16:37:04 2008 3 relations: 172435 Sat Nov 29 16:37:04 2008 4 relations: 156946 Sat Nov 29 16:37:04 2008 5 relations: 143689 Sat Nov 29 16:37:04 2008 6 relations: 121118 Sat Nov 29 16:37:04 2008 7 relations: 104106 Sat Nov 29 16:37:04 2008 8 relations: 88124 Sat Nov 29 16:37:05 2008 9 relations: 73703 Sat Nov 29 16:37:05 2008 10+ relations: 211741 Sat Nov 29 16:37:05 2008 heaviest cycle: 17 relations Sat Nov 29 16:37:17 2008 Sat Nov 29 16:37:17 2008 commencing linear algebra Sat Nov 29 16:37:21 2008 read 1357537 cycles Sat Nov 29 16:37:31 2008 cycles contain 4227276 unique relations Sat Nov 29 16:41:02 2008 read 4227276 relations Sat Nov 29 16:41:19 2008 using 32 quadratic characters above 134217650 Sat Nov 29 16:43:11 2008 building initial matrix Sat Nov 29 16:45:39 2008 memory use: 491.8 MB Sat Nov 29 16:45:52 2008 read 1357537 cycles Sat Nov 29 16:47:00 2008 matrix is 1357304 x 1357537 (389.6 MB) with weight 134250650 (98.89/col) Sat Nov 29 16:47:00 2008 sparse part has weight 91279211 (67.24/col) Sat Nov 29 16:48:02 2008 filtering completed in 3 passes Sat Nov 29 16:48:03 2008 matrix is 1350940 x 1351140 (388.9 MB) with weight 133898506 (99.10/col) Sat Nov 29 16:48:03 2008 sparse part has weight 91134928 (67.45/col) Sat Nov 29 16:48:56 2008 read 1351140 cycles Sat Nov 29 16:53:10 2008 matrix is 1350940 x 1351140 (388.9 MB) with weight 133898506 (99.10/col) Sat Nov 29 16:53:10 2008 sparse part has weight 91134928 (67.45/col) Sat Nov 29 16:53:11 2008 saving the first 48 matrix rows for later Sat Nov 29 16:53:12 2008 matrix is 1350892 x 1351140 (372.6 MB) with weight 103872555 (76.88/col) Sat Nov 29 16:53:12 2008 sparse part has weight 89563605 (66.29/col) Sat Nov 29 16:53:12 2008 matrix includes 64 packed rows Sat Nov 29 16:53:12 2008 using block size 21845 for processor cache size 512 kB Sat Nov 29 16:53:33 2008 commencing Lanczos iteration Sat Nov 29 16:53:33 2008 memory use: 369.3 MB Sun Nov 30 12:40:26 2008 lanczos halted after 21363 iterations (dim = 1350890) Sun Nov 30 12:40:49 2008 recovered 42 nontrivial dependencies Sun Nov 30 12:40:55 2008 Sun Nov 30 12:40:55 2008 commencing square root phase Sun Nov 30 12:40:55 2008 reading relations for dependency 1 Sun Nov 30 12:41:00 2008 read 675475 cycles Sun Nov 30 12:41:07 2008 cycles contain 2624155 unique relations Sun Nov 30 12:49:57 2008 read 2624155 relations Sun Nov 30 12:51:04 2008 multiplying 2111948 relations Sun Nov 30 14:03:49 2008 multiply complete, coefficients have about 174.29 million bits Sun Nov 30 14:04:20 2008 initial square root is modulo 1797947 Sun Nov 30 15:42:24 2008 prp53 factor: 20911043547722046862836516832845716851816899295541089 Sun Nov 30 15:42:24 2008 prp70 factor: 9902032167234716303717452177033910330401475786201296097689113927382553 Sun Nov 30 15:42:24 2008 elapsed time 23:50:31
By Erik Branger / GGNFS, Msieve
(34·10124-61)/9 = 3(7)1231<125> = 109 · 42875453 · C115
C115 = P48 · P68
P48 = 183902059423947183572586572945500757182382783851<48>
P68 = 43955638737725434720351420594271267744658778646152810611533781011273<68>
Number: 37771_124 N=8083532487162737666735497874469570726462998842225146757259227985958224006965198781856265773866351743424771753352323 ( 115 digits) SNFS difficulty: 126 digits. Divisors found: r1=183902059423947183572586572945500757182382783851 r2=43955638737725434720351420594271267744658778646152810611533781011273 Version: Total time: 3.40 hours. Scaled time: 2.68 units (timescale=0.789). Factorization parameters were as follows: n: 8083532487162737666735497874469570726462998842225146757259227985958224006965198781856265773866351743424771753352323 m: 10000000000000000000000000 deg: 5 c5: 17 c0: -305 skew: 1.78 type: snfs lss: 1 rlim: 890000 alim: 890000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 890000/890000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [445000, 795001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 123139 x 123376 Total sieving time: 3.40 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,890000,890000,26,26,46,46,2.3,2.3,50000 total time: 3.40 hours. --------- CPU info (if available) ----------
(34·10126-61)/9 = 3(7)1251<127> = 3 · 71 · 88852876601<11> · C114
C114 = P56 · P58
P56 = 34432799348899478768254695087862221172954561711851166729<56>
P58 = 5797129202738537298544666505195713087675830414976894319423<58>
Number: 37771_126 N=199611386637541661542495056276037532975243649578791299977706603174046948493474101255739752477445195161194956077367 ( 114 digits) SNFS difficulty: 127 digits. Divisors found: r1=34432799348899478768254695087862221172954561711851166729 r2=5797129202738537298544666505195713087675830414976894319423 Version: Total time: 3.47 hours. Scaled time: 2.72 units (timescale=0.783). Factorization parameters were as follows: n: 199611386637541661542495056276037532975243649578791299977706603174046948493474101255739752477445195161194956077367 m: 10000000000000000000000000 deg: 5 c5: 340 c0: -61 skew: 0.71 type: snfs lss: 1 rlim: 930000 alim: 930000 lpbr: 26 lpba: 26 mfbr: 46 mfba: 46 rlambda: 2.3 alambda: 2.3 Factor base limits: 930000/930000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 46/46 Sieved rational special-q in [465000, 815001) Primes: rational ideals reading, algebraic ideals reading, Relations: relations Max relations in full relation-set: Initial matrix: Pruned matrix : 135078 x 135315 Total sieving time: 3.47 hours. Total relation processing time: 0.00 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,930000,930000,26,26,46,46,2.3,2.3,50000 total time: 3.47 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM, Msieve
(5·10198-17)/3 = 1(6)1971<199> = C199
C199 = P90 · P110
P90 = 119210534379624869888380873328590164795408717116498507216021846495878475022485775217297333<90>
P110 = 13980867339787117486389823283545379889344751436236630206822306072817458470959671454043114394014893486370164017<110>
Number: 16661_198 N=1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 199 digits) SNFS difficulty: 200 digits. Divisors found: r1=119210534379624869888380873328590164795408717116498507216021846495878475022485775217297333 (pp90) r2=13980867339787117486389823283545379889344751436236630206822306072817458470959671454043114394014893486370164017 (pp110) Version: GGNFS-0.77.1-20050930-nocona Total time: 630.31 hours. Scaled time: 1499.51 units (timescale=2.379). Factorization parameters were as follows: n: 166666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666