Table of contents 目次

  1. About 100...009 100...009 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
    4. Related sequences 関連する数列
  2. Prime numbers of the form 100...009 100...009 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 100...009 100...009 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 100...009 100...009 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

10w9 = { 19, 109, 1009, 10009, 100009, 1000009, 10000009, 100000009, 1000000009, 10000000009, … }

1.3. General term 一般項

10n+9 (1≤n)

1.4. Related sequences 関連する数列

2. Prime numbers of the form 100...009 100...009 の形の素数

2.1. Last updated 最終更新日

October 21, 2023 2023 年 10 月 21 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 101+9 = 19 is prime. は素数です。
  2. 102+9 = 109 is prime. は素数です。
  3. 103+9 = 1009 is prime. は素数です。
  4. 104+9 = 10009 is prime. は素数です。
  5. 109+9 = 1000000009<10> is prime. は素数です。
  6. 1018+9 = 1(0)179<19> is prime. は素数です。
  7. 1022+9 = 1(0)219<23> is prime. は素数です。
  8. 1045+9 = 1(0)449<46> is prime. は素数です。
  9. 1049+9 = 1(0)489<50> is prime. は素数です。
  10. 1056+9 = 1(0)559<57> is prime. は素数です。
  11. 1069+9 = 1(0)689<70> is prime. は素数です。
  12. 10146+9 = 1(0)1459<147> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 18, 2004 2004 年 5 月 18 日)
  13. 10202+9 = 1(0)2019<203> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 18, 2004 2004 年 5 月 18 日)
  14. 10272+9 = 1(0)2719<273> is prime. は素数です。 (Makoto Kamada / PPSIQS / May 18, 2004 2004 年 5 月 18 日)
  15. 102730+9 = 1(0)27299<2731> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by:証明: Sinkiti Sibata / PRIMO 3.0.4 / January 30, 2008 2008 年 1 月 30 日) [certificate証明]
  16. 102841+9 = 1(0)28409<2842> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日) (certified by:証明: Markus Tervooren / Primo 4.0.0 (alpha 7 - transitional) LG32 / August 18, 2011 2011 年 8 月 18 日) [certificate証明]
  17. 104562+9 = 1(0)45619<4563> is PRP. はおそらく素数です。 (Makoto Kamada / PFGW / July 8, 2004 2004 年 7 月 8 日)
  18. 1031810+9 = 1(0)318099<31811> is PRP. はおそらく素数です。 (Dirk Augustin / October 14, 2006 2006 年 10 月 14 日)
  19. 1043186+9 = 1(0)431859<43187> is PRP. はおそらく素数です。 (Jason Earls / December 2007 2007 年 12 月)
  20. 1048109+9 = 1(0)481089<48110> is PRP. はおそらく素数です。 (Jason Earls / December 2007 2007 年 12 月)
  21. 1092691+9 = 1(0)926909<92692> is PRP. はおそらく素数です。 (Bob Price / PFGW / March 4, 2011 2011 年 3 月 4 日)
  22. 10237670+9 = 1(0)2376699<237671> is PRP. はおそらく素数です。 (Bob Price / October 19, 2023 2023 年 10 月 19 日)

2.3. Range of search 捜索範囲

  1. n≤100000 / Completed 終了 / Bob Price / March 4, 2011 2011 年 3 月 4 日
  2. n≤200000 / Completed 終了 / Bob Price / October 26, 2015 2015 年 10 月 26 日
  3. n≤300000 / Completed 終了 / Bob Price / October 19, 2023 2023 年 10 月 19 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 106k+5+9 = 7×(105+97+9×105×106-19×7×k-1Σm=0106m)
  2. 106k+5+9 = 13×(105+913+9×105×106-19×13×k-1Σm=0106m)
  3. 1013k+11+9 = 53×(1011+953+9×1011×1013-19×53×k-1Σm=01013m)
  4. 1016k+14+9 = 17×(1014+917+9×1014×1016-19×17×k-1Σm=01016m)
  5. 1018k+1+9 = 19×(101+919+9×10×1018-19×19×k-1Σm=01018m)
  6. 1022k+7+9 = 23×(107+923+9×107×1022-19×23×k-1Σm=01022m)
  7. 1028k+12+9 = 29×(1012+929+9×1012×1028-19×29×k-1Σm=01028m)
  8. 1034k+21+9 = 103×(1021+9103+9×1021×1034-19×103×k-1Σm=01034m)
  9. 1043k+25+9 = 173×(1025+9173+9×1025×1043-19×173×k-1Σm=01043m)
  10. 1044k+21+9 = 89×(1021+989+9×1021×1044-19×89×k-1Σm=01044m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 29.15%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 29.15% です。

3. Factor table of 100...009 100...009 の素因数分解表

3.1. Last updated 最終更新日

November 10, 2024 2024 年 11 月 10 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=227, 228, 232, 236, 239, 242, 244, 246, 250, 251, 252, 253, 258, 259, 261, 263, 265, 266, 267, 268, 269, 273, 275, 276, 277, 278, 280, 281, 285, 286, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298 (40/300)

3.4. Factor table 素因数分解表

101+9 = 19 = definitely prime number 素数
102+9 = 109 = definitely prime number 素数
103+9 = 1009 = definitely prime number 素数
104+9 = 10009 = definitely prime number 素数
105+9 = 100009 = 72 × 13 × 157
106+9 = 1000009 = 293 × 3413
107+9 = 10000009 = 23 × 434783
108+9 = 100000009 = 149 × 671141
109+9 = 1000000009<10> = definitely prime number 素数
1010+9 = 10000000009<11> = 33889 × 295081
1011+9 = 100000000009<12> = 7 × 13 × 53 × 1979 × 10477
1012+9 = 1000000000009<13> = 29 × 66413 × 519217
1013+9 = 10000000000009<14> = 47 × 69761 × 3049927
1014+9 = 100000000000009<15> = 17 × 541 × 1249 × 8705453
1015+9 = 1000000000000009<16> = 179 × 367 × 47207 × 322459
1016+9 = 10000000000000009<17> = 197 × 11717 × 4332288241<10>
1017+9 = 100000000000000009<18> = 7 × 132 × 84530853761623<14>
1018+9 = 1000000000000000009<19> = definitely prime number 素数
1019+9 = 10000000000000000009<20> = 19 × 318007 × 1655044667173<13>
1020+9 = 100000000000000000009<21> = 557 × 72937 × 2461483384901<13>
1021+9 = 1000000000000000000009<22> = 89 × 103 × 727 × 11971 × 12343 × 1015517
1022+9 = 10000000000000000000009<23> = definitely prime number 素数
1023+9 = 100000000000000000000009<24> = 7 × 13 × 197419 × 5566339100598721<16>
1024+9 = 1000000000000000000000009<25> = 53 × 193 × 5189 × 82633 × 189169 × 1205257
1025+9 = 10000000000000000000000009<26> = 173 × 3739 × 336958757 × 45879817771<11>
1026+9 = 100000000000000000000000009<27> = 317 × 315457413249211356466877<24>
1027+9 = 1000000000000000000000000009<28> = 115901179 × 8628039927014029771<19>
1028+9 = 10000000000000000000000000009<29> = 461 × 7873 × 339341 × 11725297 × 692466289
1029+9 = 100000000000000000000000000009<30> = 7 × 13 × 23 × 6526241 × 12047047 × 607696954219<12>
1030+9 = 1000000000000000000000000000009<31> = 17 × 1021 × 57613642910641239845595437<26>
1031+9 = 10000000000000000000000000000009<32> = 18821053 × 531319900113984058171453<24>
1032+9 = 100000000000000000000000000000009<33> = 343997 × 290700209594851117887655997<27>
1033+9 = 1000000000000000000000000000000009<34> = 5059 × 197667523225933979047242538051<30>
1034+9 = 10000000000000000000000000000000009<35> = 2532184185301<13> × 3949159803638574142309<22>
1035+9 = 100000000000000000000000000000000009<36> = 7 × 13 × 59 × 60440407 × 95320451 × 3232906373039773<16>
1036+9 = 1000000000000000000000000000000000009<37> = 26113 × 20499713702449<14> × 1868079847957684057<19>
1037+9 = 10000000000000000000000000000000000009<38> = 19 × 53 × 569 × 1049 × 20939 × 794560256286499428881893<24>
1038+9 = 100000000000000000000000000000000000009<39> = 6361 × 3685603013<10> × 4265461733431061133622013<25>
1039+9 = 1000000000000000000000000000000000000009<40> = 167 × 3916011157<10> × 1529113098003313064420243411<28>
1040+9 = 10000000000000000000000000000000000000009<41> = 29 × 773 × 13441 × 33188752396862657943073901823097<32>
1041+9 = 100000000000000000000000000000000000000009<42> = 7 × 13 × 1613 × 681277804650402294543646062554928023<36>
1042+9 = 1000000000000000000000000000000000000000009<43> = 3593 × 278318953520734762037294739771778458113<39>
1043+9 = 10000000000000000000000000000000000000000009<44> = 473411 × 735173 × 28732413402023228574786262684903<32>
1044+9 = 100000000000000000000000000000000000000000009<45> = 269 × 371747211895910780669144981412639405204461<42>
1045+9 = 1000000000000000000000000000000000000000000009<46> = definitely prime number 素数
1046+9 = 10000000000000000000000000000000000000000000009<47> = 17 × 181 × 257 × 709 × 2633 × 2338619856704273<16> × 2896560828828149401<19>
1047+9 = 100000000000000000000000000000000000000000000009<48> = 72 × 13 × 1103 × 142326265885390351133130565846535280546419<42>
1048+9 = 1000000000000000000000000000000000000000000000009<49> = 10612446529<11> × 94228978894485791948153711163918930121<38>
1049+9 = 10000000000000000000000000000000000000000000000009<50> = definitely prime number 素数
1050+9 = 100000000000000000000000000000000000000000000000009<51> = 53 × 33929941 × 55608480216048376837592585818758851608433<41>
1051+9 = 1(0)509<52> = 23 × 619693 × 230943114146407583<18> × 303801949081035085406416357<27>
1052+9 = 1(0)519<53> = 97 × 60961 × 20631405476568442002077<23> × 81968571913187607828701<23>
1053+9 = 1(0)529<54> = 7 × 13 × 47807 × 2285813 × 3442651 × 2921012527832482457719550700906739<34>
1054+9 = 1(0)539<55> = 61 × 6653 × 12246653 × 13434257 × 14976887817099219115020717738287813<35>
1055+9 = 1(0)549<56> = 19 × 103 × 2287 × 57378619 × 21152204856641<14> × 1840929997355121048523759169<28>
1056+9 = 1(0)559<57> = definitely prime number 素数
1057+9 = 1(0)569<58> = 131 × 1289 × 5922100687555889825238808710225691257202754961239851<52>
1058+9 = 1(0)579<59> = 25097 × 8372477381430169647293<22> × 47590931612383967990516956743829<32>
1059+9 = 1(0)589<60> = 7 × 13 × 47 × 1643821345757<13> × 14223488766011279006967726932458258348679881<44>
1060+9 = 1(0)599<61> = 11069 × 4001286937<10> × 22578335198067455967303388696235369076794326853<47>
1061+9 = 1(0)609<62> = 955957 × 10479967 × 210618853 × 1855321962677<13> × 2554378194844101943086789731<28>
1062+9 = 1(0)619<63> = 172 × 307114501 × 1098306748096133<16> × 1025836582202891580862702687580283857<37>
1063+9 = 1(0)629<64> = 53 × 10565641 × 65820173 × 10120628473822529606729<23> × 2680783726879615088507849<25>
1064+9 = 1(0)639<65> = 4176299879322594389<19> × 2394464068423655294429688325345192385123940581<46>
1065+9 = 1(0)649<66> = 7 × 13 × 89 × 2213 × 201005975457887<15> × 27757363889344740398229258493813991073178361<44>
1066+9 = 1(0)659<67> = 17419233660846923581253<23> × 57407806765213342611682109701646617646731253<44>
1067+9 = 1(0)669<68> = 5011 × 463649614213<12> × 4304133115991266629019326086727836260747880412467863<52>
1068+9 = 1(0)679<69> = 29 × 173 × 389 × 661541 × 2279972641<10> × 11099726593<11> × 3060607338067788197518753559037036121<37>
1069+9 = 1(0)689<70> = definitely prime number 素数
1070+9 = 1(0)699<71> = 233 × 176144029 × 243655462971284241469045332244275022188090622768643397118037<60>
1071+9 = 1(0)709<72> = 7 × 13 × 461441 × 27719514687381131<17> × 85912588722435682498206622800410226588499783969<47>
1072+9 = 1(0)719<73> = 701 × 6101 × 3800787890757331900322802049<28> × 61518724620516367649694130673826375241<38>
1073+9 = 1(0)729<74> = 19 × 23 × 401 × 2437 × 2837 × 158925967 × 23972181841<11> × 2166491050879227877624043335402337641228499<43>
1074+9 = 1(0)739<75> = 2273 × 640009 × 472663577 × 145432793359920088930815323300385163632551746780688951881<57>
1075+9 = 1(0)749<76> = 1609 × 2556688350289903<16> × 243089479289013139347321759970782706988667219525834194767<57>
1076+9 = 1(0)759<77> = 53 × 1153 × 1777 × 12723121 × 4220758303106880341<19> × 1714838614622699894508818821677867646452433<43>
1077+9 = 1(0)769<78> = 7 × 13 × 423649 × 5066409637<10> × 412633029993841<15> × 1240760993901508574765288918144554098878748703<46>
1078+9 = 1(0)779<79> = 17 × 58823529411764705882352941176470588235294117647058823529411764705882352941177<77>
1079+9 = 1(0)789<80> = 1270102423<10> × 131718413419<12> × 59774336563903912554239754249518683175186086279598174510557<59>
1080+9 = 1(0)799<81> = 1973 × 2281 × 22220182903213549512011453171075632391960471183422499223960112105266783293<74>
1081+9 = 1(0)809<82> = 214783 × 360592747443720357197<21> × 12911690531799134903783969795640220563008987528582098259<56>
1082+9 = 1(0)819<83> = 30737537 × 325335110617353628561715924083312205529024658026438487898363489566519269257<75>
1083+9 = 1(0)829<84> = 7 × 13 × 157 × 46401991739<11> × 150842017645808483066517564593203383570668339882644301389279451476613<69>
1084+9 = 1(0)839<85> = 2333 × 7349 × 2961821 × 25134430501753<14> × 783482240132149073340529248667794897329260655693803146629<57>
1085+9 = 1(0)849<86> = 35190735374357<14> × 1764003334671730447<19> × 9446525378537874397788757<25> × 17052975191451395662532260703<29>
1086+9 = 1(0)859<87> = 991009 × 100907257149026900865683359081501782526697537560203792296538174728988334112001001<81>
1087+9 = 1(0)869<88> = 885023 × 4038451 × 10562992324013728075633921<26> × 26487664123300753522810233575025275124639262605773<50>
1088+9 = 1(0)879<89> = 1129 × 32959467383168682673<20> × 268736015137218369400770545632781711948956989707295382666045979377<66>
1089+9 = 1(0)889<90> = 73 × 13 × 53 × 103 × 263 × 997 × 9302577834136361<16> × 1684206015194423425017762911431830297136994720047296251534459<61>
1090+9 = 1(0)899<91> = 28511929 × 3533942033<10> × 131316266047656409<18> × 75578009974633661101991422665652594983985823897845085993<56>
1091+9 = 1(0)909<92> = 19 × 3539 × 126019 × 1578617878327594094681<22> × 286995826295291604199606277<27> × 2604816950997502703664642212970983<34>
1092+9 = 1(0)919<93> = 109394957929<12> × 914118912728157387324004224216661794590048541504933403300454410653297779559311521<81>
1093+9 = 1(0)929<94> = 59 × 5521 × 329489 × 9317283733226224339052814158486698205002315167466865180122549843667010154539908779<82>
1094+9 = 1(0)939<95> = 17 × 1356023985893<13> × 433794166059878998771586968545898337809602947994030358346094104711401173265001989<81>
1095+9 = 1(0)949<96> = 7 × 132 × 23 × 4289 × 36011 × 585841 × 11818511152796883077<20> × 3436795252114506974429240541679575708013597573799487748567<58>
1096+9 = 1(0)959<97> = 292 × 8377 × 4078835209<10> × 1375068724044461<16> × 25307830965290039841835261517000007368472719662087010716146035813<65>
1097+9 = 1(0)969<98> = 1008247 × 6704472149415743<16> × 1144625208537401088326808948019<31> × 1292424446445023967463835886447912618628376891<46>
1098+9 = 1(0)979<99> = 1433 × 65440321 × 28710112637<11> × 273010845316449497<18> × 136048448238289667796249806445965191989522715425077037642317<60>
1099+9 = 1(0)989<100> = 3079409181853103653<19> × 324737617167922950518581770926420981805685233555106229023735803175419695095128853<81>
10100+9 = 1(0)999<101> = 3221 × 426362206609<12> × 7281662972128939980921782529252917011318952210150992083439865279439412269153282637781<85>
10101+9 = 1(0)1009<102> = 7 × 13 × 4651 × 2369110015252405174258766031965694277022136731<46> × 99730280258329946244957337290482695756141223546579<50> (Wojciech Florek / for P46 x P50)
10102+9 = 1(0)1019<103> = 53 × 113 × 142234096201<12> × 1173929373448825372053109507634560461714729315944523897958333679714463355066388600071981<88>
10103+9 = 1(0)1029<104> = 395931004471007<15> × 1084490224535443860837384853<28> × 23289214807042219660899366652880673931430372051611148027248379<62>
10104+9 = 1(0)1039<105> = 769 × 2693 × 3533 × 3473329 × 782505629 × 17381690350253<14> × 847748804469289<15> × 341272333298071576646991206196689463200857535084377<51>
10105+9 = 1(0)1049<106> = 47 × 317 × 1484291 × 53820072226771<14> × 14314154597874823<17> × 2175803186381250730103<22> × 26977036380565385233633726364562477032859499<44>
10106+9 = 1(0)1059<107> = 229 × 786889 × 119609573 × 95701127575969<14> × 4848060698157545016557762733026929622144233454538464713827613188744908012297<76>
10107+9 = 1(0)1069<108> = 7 × 13 × 1481 × 1757531 × 1315494311266343450405031173<28> × 320930934554516045148676843062086862374601767370958463915917542494933<69>
10108+9 = 1(0)1079<109> = 5813 × 473632417 × 363210385210754708143883698788471967635107866684987507523944994177809133815098254798028415811429<96>
10109+9 = 1(0)1089<110> = 19 × 89 × 1523663 × 589265760122561<15> × 6586523781517025977400293539309298026448578443563700028683918638545609500581035917093<85>
10110+9 = 1(0)1099<111> = 17 × 109 × 44089 × 5670503581<10> × 13488742821137<14> × 9613952403636504463017634694296069<34> × 1664559259593636793505165643217513194064534789<46>
10111+9 = 1(0)1109<112> = 173 × 4462037 × 38226387006909591241<20> × 33888900393573103930397638483653215190238515266039747290863637891203673734449613649<83>
10112+9 = 1(0)1119<113> = 32219532001<11> × 1139229725453<13> × 228854361512434873<18> × 1075471128086998993574358643275591889<37> × 1106907969555485219843290667817742949<37>
10113+9 = 1(0)1129<114> = 7 × 13 × 1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<112>
10114+9 = 1(0)1139<115> = 61 × 197 × 28209372385446691031827707934227981145697<41> × 2949921878782510902524946201902765360019176183479097760119909220054841<70> (Makoto Kamada / GGNFS-0.77.1-20060513-pentium4 for P41 x P70 / 1.29 hours on Pentium 4 3.06GHz, Windows XP and Cygwin / May 30, 2006 2006 年 5 月 30 日)
10115+9 = 1(0)1149<116> = 53 × 2531569 × 741113423 × 842273219 × 119397900490818404863328023694551220621888101765806521812408872380622288314586324401197001<90>
10116+9 = 1(0)1159<117> = 111256744554457<15> × 3052729705599278798406752741<28> × 5505231043723870085469276793<28> × 53482259761111102005149456829292624252000374149<47>
10117+9 = 1(0)1169<118> = 23 × 57809 × 9198193355801721503411<22> × 494483303290457172737055375568117<33> × 165356983312481002872361920331837449844696393099339472801<57> (Wojciech Florek / for P33 x P57)
10118+9 = 1(0)1179<119> = 13613 × 2705903560429<13> × 13994715351677<14> × 35994723084565686186464288069459521<35> × 538928232274477427007248578813995399876225557874160501<54>
10119+9 = 1(0)1189<120> = 7 × 13 × 503 × 360695662058303207<18> × 4022106436142165590420571<25> × 1505900038181441673963278369716853216472129994695384730367869753036875089<73>
10120+9 = 1(0)1199<121> = 31277 × 373661 × 704461265062729<15> × 32827259471903793769<20> × 1322176402351055978857018640198513093<37> × 2798439937391696695902730606971085494029<40>
10121+9 = 1(0)1209<122> = 21139 × 30638009 × 13493637383<11> × 170133200063<12> × 8429987329171575021990753529169<31> × 797829322982018291444895450021441183168002510154518627059<57>
10122+9 = 1(0)1219<123> = 797 × 87324709 × 46442319103878729137347867918441<32> × 30937885895272059997914839937905492541094892096918455339201066688438011910438513<80> (Bryan Koen / GMP-ECM 6.1 B1=1000000, sigma=565526603 for P32 x P80 / June 6, 2006 2006 年 6 月 6 日)
10123+9 = 1(0)1229<124> = 103 × 238499 × 32305164513126162557<20> × 18773503764276161506962976069278462929<38> × 67121077829842783447774062931577985069295176234415358393849<59> (Wojciech Florek / for P38 x P59)
10124+9 = 1(0)1239<125> = 29 × 337 × 353329 × 95845607426281<14> × 9936258287780031431627041<25> × 14236162480631298667002505725457<32> × 213601744153746404917029620697315612347120741<45>
10125+9 = 1(0)1249<126> = 7 × 13 × 384889 × 723939179 × 104798542417408554023904481<27> × 37632735246204919539474660114544096567452721600807355325578711593030532758062764009<83>
10126+9 = 1(0)1259<127> = 17 × 274318956475637<15> × 1041738337626943403078209<25> × 205843241090004976202781507846830858649928215253448786732414569009636172845333027462069<87>
10127+9 = 1(0)1269<128> = 19 × 157049 × 26941855579000825211582653<26> × 46825902162825801996202790933<29> × 788525560402102989926629782677081<33> × 3368850904025704946611996323422531<34> (Wojciech Florek / for P33 x P34)
10128+9 = 1(0)1279<129> = 53 × 251473 × 52465574683181377<17> × 30448999857783325849<20> × 176679059989406596033211063383513<33> × 26582769234351461987985964936532401906354740627950789<53>
10129+9 = 1(0)1289<130> = 383 × 470957 × 925380361 × 26662284559638260051010569411<29> × 224699616945787993015228728987794854226294266940075097993481422453900414417478640009<84>
10130+9 = 1(0)1299<131> = 391921 × 12330994920017597897<20> × 2069204177803567577907417154420606895585365075724921282300325848726005432568119081215474973287296503640657<106>
10131+9 = 1(0)1309<132> = 72 × 13 × 971 × 4463 × 6944437 × 5216478341712318021401820029807155162148740303729380072288796317219491578991924766875417962724145152028386642326357<115>
10132+9 = 1(0)1319<133> = 17401 × 411766421379824555923211974201163701971862160573257<51> × 139564468173065601765541228336856563574840263361218702800225268893329303849737<78> (Wataru Sakai / GGNFS-0.77.1-20060513-pentium4 for P51 x P78 / 6.31 hours on Pentium4 3GHz, Windows XP and Cygwin / July 11, 2006 2006 年 7 月 11 日)
10133+9 = 1(0)1329<134> = 373 × 7489 × 22769 × 69859570042728569<17> × 31449626171692289773<20> × 475904606640947180633457682277<30> × 150370303360255248663292274668817700638037174782813455037<57>
10134+9 = 1(0)1339<135> = 94790054759960000260474141<26> × 124029498984456688541037285293<30> × 3633991497322587335797417968701785073<37> × 2340606084366516516916610437282530921315841<43> (Robert Backstrom / GMP-ECM 6.0.1 for P30, Msieve for P37 x P43 / May 11, 2006 2006 年 5 月 11 日)
10135+9 = 1(0)1349<136> = 27943 × 36794447 × 136572881 × 7121643311933731693386154579991132604328531190212221549430720647234285860030084489756207348096503973066987792233009<115>
10136+9 = 1(0)1359<137> = 442609 × 10180423203721<14> × 225983225938973429<18> × 9820593238739285126212935816522097245783545460322511782029978026933587243550143648271537763136578989<100>
10137+9 = 1(0)1369<138> = 7 × 13 × 10531 × 1221487166840921371<19> × 9983134448060752249<19> × 326738071243955341618797967920171623<36> × 26189874979894738661440013519378461192459826883417820697237<59> (Wojciech Florek / for P36 x P59)
10138+9 = 1(0)1379<139> = 876233 × 3884165579644422661<19> × 78273652233899717283899884219650481533344701<44> × 3753764830682790162556690001403905303929149813189408310793058874824593<70> (Bryan Koen / GGNFS-0.77.1-20060513-pentium3 for P44 x P70 / 17.78 hours on 1 Ghz Pentium3 running Linux / June 7, 2006 2006 年 6 月 7 日)
10139+9 = 1(0)1389<140> = 23 × 881 × 2143 × 24164159986601181377625015589587447765463<41> × 2160786218367515171952203262064220489890903<43> × 4410527972854632022342616725553254342960601726209<49> (Wataru Sakai / GGNFS-0.77.1-20060513-pentium4 for P41 x P43 x P49 / July 14, 2006 2006 年 7 月 14 日)
10140+9 = 1(0)1399<141> = 47017 × 74498093 × 6280399637<10> × 378185559992276358710822426933737<33> × 275290255655372346657479721190470389<36> × 43663331382360791758121439349427121020054742354629<50> (Bryan Koen / GMP-ECM 6.1 B1=3000000, sigma=1210606465 for P33 / June 8, 2006 2006 年 6 月 8 日) (Wojciech Florek / Msieve v. 1.03 for P36 x P50 / June 8, 2006 2006 年 6 月 8 日)
10141+9 = 1(0)1409<142> = 53 × 2186592059<10> × 7069690841263<13> × 15971964630412281802561<23> × 346394798642851383471127<24> × 1510567897781111983608234937484797<34> × 146044763078434801517283972847472280451<39> (Wojciech Florek / for P34 x P39)
10142+9 = 1(0)1419<143> = 17 × 50051153 × 4790572981<10> × 2453293631039763795856331635177375270646389769964906510694598276795589414658150779070654285259816952581974008595965866804389<124>
10143+9 = 1(0)1429<144> = 7 × 13 × 14123789326633390707175391575607972980529708650840213007567<59> × 77804976659407440945486259813469379792634366567097067716248415916074333006508991397<83> (Sinkiti Sibata / GGNFS-0.77.1 for P59 x P83 / 14.91 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / October 31, 2006 2006 年 10 月 31 日)
10144+9 = 1(0)1439<145> = 3510171520019041<16> × 343319428714803493135074217320184461540413041<45> × 829799713580309012101243243527869721960794456291028171104017893615600289042582210489<84> (Sinkiti Sibata / GGNFS-0.77.1 for P45 x P84 / 20.78 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 1, 2006 2006 年 11 月 1 日)
10145+9 = 1(0)1449<146> = 19 × 526315789473684210526315789473684210526315789473684210526315789473684210526315789473684210526315789473684210526315789473684210526315789473684211<144>
10146+9 = 1(0)1459<147> = definitely prime number 素数
10147+9 = 1(0)1469<148> = 27779 × 245032700571811<15> × 146912701797297399830761754584282406674589913336512391937595520176729042253804024894602816388232245145531476336735589639695916961<129>
10148+9 = 1(0)1479<149> = 97 × 79683889 × 5378292548611692817<19> × 5889397962778065293<19> × 40845331058284286133236063737166059684022724675825024806164036693497789661427093887393473292713171533<101>
10149+9 = 1(0)1489<150> = 7 × 13 × 1289 × 14111809 × 2038469620239917<16> × 80577406982383442189446811<26> × 367794702512173851463405661443194990091070675569301662648266498490154427340333411671971726316077<96>
10150+9 = 1(0)1499<151> = 322132274449397<15> × 6485315883937021911089291466838963163589677<43> × 478668255410426241114341996907533012450905011400520344471359974267559844215862172691771363961<93> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P43 x P93 / 30.86 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 2, 2006 2006 年 11 月 2 日)
10151+9 = 1(0)1509<152> = 47 × 59 × 1259 × 7127 × 2966921 × 11067807493<11> × 72688089600520497603686170777972481<35> × 304041896967341114744845407635505771861889<42> × 553800538862497459614953502422358377149435369453<48> (Bryan Koen / GMP-ECM 6.1 B1=3000000, sigma=4234194925 for P35 / June 8, 2006 2006 年 6 月 8 日) (Bryan Koen / GGNFS-0.77.1-20060513-pentium3 gnfs for P42 x P48 / 7.78 hours on Pentium 3 running Linux / June 9, 2006 2006 年 6 月 9 日)
10152+9 = 1(0)1519<153> = 29 × 293 × 1640081714429881<16> × 269884379947565697172496988236741<33> × 26588335208574136942682656526949478340363566869268859697120096025992721634714319195150472641068851757<101> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3696522381 for P33 x P101 / June 24, 2006 2006 年 6 月 24 日)
10153+9 = 1(0)1529<154> = 89 × 952968475741213558173290137369408967511606469763002925432064241<63> × 11790479267890275373671218734902940171749839873008160665577378805343748249303568644645441<89> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P63 x P89 / 37.55 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 4, 2006 2006 年 11 月 4 日)
10154+9 = 1(0)1539<155> = 532 × 173 × 61663679403222757509249170662209857982446222255631728629<56> × 333712690670157588584103442128065072187953963434123029832366265075137324719065556444993079553<93> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P56 x P93 / 46.83 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 6, 2006 2006 年 11 月 6 日)
10155+9 = 1(0)1549<156> = 7 × 13 × 36819899903<11> × 79017600284684020776597601<26> × 377704507649203485094138150729343418582135548032657891156331722185962796664870047824029441603130922378771354117137333<117>
10156+9 = 1(0)1559<157> = 149 × 12577 × 17257 × 383981700070505184610830877165967851949977<42> × 1245447807805174631186627010827838254868677573<46> × 64659942178328230286420137484904735606524156752097366805889<59> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P42 x P46 x P59 / 51.11 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 8, 2006 2006 年 11 月 8 日)
10157+9 = 1(0)1569<158> = 103 × 379 × 11025855177473150881<20> × 489153471136315018633879719917<30> × 47496995862766072526492146025536044546152041717277054294283602053960385357153879208150508927116593915441<104> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3999730586 for P30 x P104 / June 24, 2006 2006 年 6 月 24 日)
10158+9 = 1(0)1579<159> = 17 × 677 × 50753 × 71389 × 521177 × 24647897264581<14> × 186682787155692504928781410668475602043700869695767217073470287368923727475048973729735740970716086319376195593343319544491069<126>
10159+9 = 1(0)1589<160> = 499 × 25186187487813621841913773118823816536903<41> × 79567739936888292295596294112639084452134355303693380058498429690502044773614914416009946349393011410085895946365397<116> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P41 x P116 / 76.30 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 11, 2006 2006 年 11 月 11 日)
10160+9 = 1(0)1599<161> = 14215681 × 3834622668996503113<19> × 49511107570580443175710053727301<32> × 1308389305580216069241507311202182597<37> × 2831848842389382643911352301752663424041355458316158491328312822249<67> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3832079020 for P32, GGNFS-0.77.1-20060513-pentium4 gnfs for P37 x P67 / July 9, 2006 2006 年 7 月 9 日)
10161+9 = 1(0)1609<162> = 7 × 13 × 23 × 157 × 8059 × 13415957160051517<17> × 33227221889480924019367<23> × 37811313891994346064305264570354822948081755411<47> × 2240332608851730481538608681856319442213805555106852747449191086419<67> (Alfred Reich / Msieve v. 1.06 for P47 x P67 / June 16, 2006 2006 年 6 月 16 日)
10162+9 = 1(0)1619<163> = 5573 × 735595652772776933<18> × 44574910306875039119713293503029<32> × 15796214831501458885442791692067196909108663273<47> × 346440210180306140299079585071546545979928246632083029744358053<63> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=158662752 for P32, GGNFS-0.77.1-20060513-pentium4 gnfs for P47 x P63 / 23.20 hours / August 9, 2006 2006 年 8 月 9 日)
10163+9 = 1(0)1629<164> = 19 × 223 × 5851 × 88411 × 2701583 × 341165536047659<15> × 21282218145805492933175466817926209552898014184560253546079961<62> × 232597357666536071396985516556630866129009673684071188821993975702361<69> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P62 x P69 / 108.09 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 16, 2006 2006 年 11 月 16 日)
10164+9 = 1(0)1639<165> = 1013 × 1949 × 2017 × 129581 × 23395249 × 137393343394969<15> × 60289006379892200444878264096729303781736604160626979695462471724212704844881035246257197297501276500371864047683465141189787461<128>
10165+9 = 1(0)1649<166> = 1117 × 29009 × 658851377041905167825719734691<30> × 405476469408529846096552458965513686928349281<45> × 115521003954448422975067155610313660368992451637991336302242072977588854951379884143<84> (Makoto Kamada / GMP-ECM 5.0.3 B1=74100, sigma=2328338186 for P30) (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P45 x P84 / 109.42 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / November 21, 2006 2006 年 11 月 21 日)
10166+9 = 1(0)1659<167> = 6841 × 3298055297<10> × 96175707342105206747325741564689382490429756801<47> × 4608473425480966721109597553701118029210118730372926247354918207318621993190226935764939329385047887076817<106> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.28 for P47 x P106 / October 25, 2007 2007 年 10 月 25 日)
10167+9 = 1(0)1669<168> = 7 × 13 × 53 × 877 × 107171 × 578285490464535003292508528455551062720454372885574351763458327<63> × 381472790189423991118742839850166453080558585132743676617075753578582424625410729307533832287<93> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P63 x P93 / 178.55 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / December 3, 2006 2006 年 12 月 3 日)
10168+9 = 1(0)1679<169> = 577 × 679297 × 119489942477777886036889<24> × 21351733400501370493535249767829835435889362797847645727601344986463459458555956334633511177844419097662288523342059042998305955283776049<137>
10169+9 = 1(0)1689<170> = 7602021143<10> × 1315439645837880564284560554003710431406254772106728932837433967131496045616825509531472241000053740576659167021209112151505101384851541710583216671803460676063<160>
10170+9 = 1(0)1699<171> = 28327877 × 3530091577282688709782240299899635966366275877292181126033553449840240410532705998405740041867592124888144635759326404869662488297305159860726590983150625795219317<163>
10171+9 = 1(0)1709<172> = 114870713498291<15> × 152103797335211<15> × 1077903296318851813591058561693<31> × 119386461467535400538961423925754434819<39> × 444749782753570053864318452769186104647351235367140088183461389738755377327<75> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=4016778470 for P31 / July 23, 2006 2006 年 7 月 23 日) (JMB / GMP-ECM 6.0.1 B1=11000000, sigma=367799390 for P39 x P75 / August 11, 2006 2006 年 8 月 11 日)
10172+9 = 1(0)1719<173> = 906364483684678849<18> × 11033088983525270521710566428695308735374238449019543977953683177002635072428331846541186804558553722102172757409800772232489813867240552316692554946112841<155>
10173+9 = 1(0)1729<174> = 72 × 132 × 2515573 × 501355609 × 980959509182183<15> × 43621013613880185555572860857609538355052262229723114093<56> × 223762640416341510155833285985486831687028975194572884766702131594185801601877826383<84> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P56 x P84 / 366.05 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / December 26, 2006 2006 年 12 月 26 日)
10174+9 = 1(0)1739<175> = 17 × 61 × 1549 × 2389 × 100193 × 322986173 × 6165013601203081<16> × 208421712381864306682687832510484289595729702062678553885057<60> × 6266937537962105847323092604694692272408337913842644374735743827566692617849<76> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 for P60 x P76 / 377.97 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / January 12, 2007 2007 年 1 月 12 日)
10175+9 = 1(0)1749<176> = 3851 × 219533 × 85277080211<11> × 16208367959129657766791547475962271323480435637<47> × 8557660626492680468621533137816698825726336699568343271840514655920348964720598883835279448245250317366446089<109> (Serge Batalov / Msieve-1.38 snfs for P47 x P109 / 50.00 hours on Opteron-2.6GHz; Linux x86_64 / October 9, 2008 2008 年 10 月 9 日)
10176+9 = 1(0)1759<177> = 1709 × 1384881404233<13> × 1321311125723987051763742006304823182400502525384134776663162593<64> × 31977187370757456727437751490164761296614012702121326304051984548270604874581130666994267181764229<98> (Ignacio Santos / GGNFS, Msieve snfs for P64 x P98 / June 23, 2010 2010 年 6 月 23 日)
10177+9 = 1(0)1769<178> = 33223 × 58440312251<11> × 744650270536087<15> × 1299108566054859101828202487<28> × 47281281988259427195595389853<29> × 6045096991231523085796053943692409216016933<43> × 1862766037506329182860674793008889448818081551293<49> (Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs for P43 x P49 / 103.73 hours on Pentium 4 2.4GHz, Windows XP and Cygwin / August 11, 2007 2007 年 8 月 11 日)
10178+9 = 1(0)1779<179> = 653 × 16981 × 901827671012904883423893365010330886885288331892062410442875845474714420485989520942828364247835591043877252957160570326641080613203135871250752913376836898964548522973113<171>
10179+9 = 1(0)1789<180> = 7 × 13 × 1153681 × 3770059 × 139443098990281<15> × 1442442226672451541642074574429111173328536880788047019059<58> × 1256114610038350326200782498923339690129173388326551582976691681542976645138719491787537013139<94> (Justin Card / Cado-nfs for sieving, msieve fro post processing for P58 x P94 / August 8, 2010 2010 年 8 月 8 日)
10180+9 = 1(0)1799<181> = 29 × 53 × 67033 × 2271206017<10> × 5186257364017<13> × 23670431279329<14> × 280771938914481207966046774999018277<36> × 1153178324949098471581835646098710369<37> × 107515366282598987181603343567825994793954957702377171456669085293<66> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3589888326 for P37 / October 7, 2006 2006 年 10 月 7 日) (JMB / GGNFS-0.77.1-20060513-pentium4 gnfs for P36 x P66 / 4.5 hours A mix of 4 systems (XP and 2K) with an experimental network version of GGNFS / October 8, 2006 2006 年 10 月 8 日)
10181+9 = 1(0)1809<182> = 192 × 663883229598790612639169<24> × 1972852879967879178904902617372213<34> × 21149806574944880773112316633222849030124545193584976920415264370446417132428148912879467226040854694780865097353747249277<122> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=812881750 for P34 x P122 / November 25, 2006 2006 年 11 月 25 日)
10182+9 = 1(0)1819<183> = 141601 × 352487833913<12> × 16024668192521395637<20> × 185481973381830555554866977763949825676137<42> × 674060369471443876063227959624443640761799502887562909668420396008356207299135243621775970766013275880197<105> (Justin Card / GMP-ECM 6.2 B1=3000000, sigma=3432644851 for P42 x P105 / June 12, 2010 2010 年 6 月 12 日)
10183+9 = 1(0)1829<184> = 23 × 30293 × 585317 × 445646699 × 15228218271150892025898604003628121651907419808655989322365652066863210692657023<80> × 361325784358961828483852604877211051668800204941633004602069598969657510790143133259<84> (Dmitry Domanov / Msieve 1.47 snfs for P80 x P84 / December 13, 2010 2010 年 12 月 13 日)
10184+9 = 1(0)1839<185> = 317 × 4513 × 111913 × 71967629 × 867875985666781552001925649692082129844786316737150184918054299151080859230073660385190894976747040710334464056009222475245950758332087470806638056127370801945235177<165>
10185+9 = 1(0)1849<186> = 7 × 13 × 229846571 × 1275374768743384691<19> × 2601396325020582930122538337721<31> × 4277579851308146456603644470753277<34> × 336882235159639253303716540858681759020527027546821580356810549616254660757873213006852842127<93> (Wojciech Florek / GMP-ECM 6.0.1 B1=50000, sigma=339602912 for P31 / June 15, 2006 2006 年 6 月 15 日) (JMB / GMP-ECM 6.1.1 B1=11000000, sigma=1659787053 for P34 x P93 / November 10, 2006 2006 年 11 月 10 日)
10186+9 = 1(0)1859<187> = 422581 × 442631644818533<15> × 259107190136001847900040211752558490529<39> × 151609825118022433677314030338314528599890370070416555010601<60> × 136094558973633953111667600364970446237713429448191321463269057021977<69> (Justin Card / gmp-ecm 6.2 B1=3000000, sigma=595714175 for P39 / August 10, 2010 2010 年 8 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P60 x P69 / September 9, 2010 2010 年 9 月 9 日)
10187+9 = 1(0)1869<188> = 131 × 889796277314453<15> × 257182844103564007<18> × 534221796617984999646462038876207<33> × 46380071957938637799624457780838279939<38> × 13463038988859045230601743027672415432613633469191464238601408561268969782958135733<83> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=2828955740 for P33 / July 9, 2006 2006 年 7 月 9 日) (Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4 gnfs for P38 x P83 / 108.78 hours on Pentium 4 3.20 GHz, Windows XP and Cygwin / October 7, 2006 2006 年 10 月 7 日)
10188+9 = 1(0)1879<189> = 3088873 × 4586597 × 536764961803983929829937<24> × 13149983443320029279146019365333698266513182621537885490483881821379171578373321152990156125289363282066271080707782634960502256929743255246781843466397<152>
10189+9 = 1(0)1889<190> = 14929 × 269221423 × 12192227834085072186320734367252819<35> × 20406879351220085024953499773532182396131297871099978867280706469418636599119483854979393271010719938699602587208502179786539720548754102460333<143> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3681348193 for P35 x P143 / June 29, 2006 2006 年 6 月 29 日)
10190+9 = 1(0)1899<191> = 17 × 661 × 3617 × 9255737 × 58578835214747005278058475891560020601<38> × 2120843155344649214416019395212483965513842002004835993<55> × 213964055431521514547237047021892220323835693944249800433946627902989130072386767181<84> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=1137733758 for P38 / July 23, 2006 2006 年 7 月 23 日) (Dmitry Domanov / Msieve 1.47 snfs for P55 x P84 / December 10, 2010 2010 年 12 月 10 日)
10191+9 = 1(0)1909<192> = 7 × 13 × 103 × 558512525126795884293354955450279221529<39> × 19102423361688353491586596941283273631279087307124210159959098992316128275614458548628339728160988510023049614103059197070847250912364210612167195877<149> (matsui / GGNFS-0.77.1-20060513-pentium-m snfs for P39 x P149 / 477.36 hours / August 20, 2008 2008 年 8 月 20 日)
10192+9 = 1(0)1919<193> = 325208379747671632800443572929049811907718391209<48> × 3074951515012920315894112276452006313835272802228418099697777887803931547784516799444634005241238767287033369894773351997005678938044816110863201<145> (Jo Yeong Uk / GMP-ECM 6.1.3 B1=11000000, sigma=413694509 for P48 x P145 / October 7, 2007 2007 年 10 月 7 日)
10193+9 = 1(0)1929<194> = 53 × 179 × 1914139 × 3073453 × 4655656651<10> × 35142302784317<14> × 1095115411632734803680711681413131457970150670302358203457188658161934027657265851572229890893692104924052882648906266243122485538680093864674195033816263<154>
10194+9 = 1(0)1939<195> = 601 × 1669 × 4157 × 102873857153<12> × 779377879409212880284613409841<30> × 299113536682015207303470362477684416309447351856104432130038973632908830947016400385722023444292682919977688505297634840607839940972350056603601<144> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=129085359 for P30 x P144 / June 24, 2006 2006 年 6 月 24 日)
10195+9 = 1(0)1949<196> = 7943860933<10> × 215491619629333658761950722732048846480483023<45> × 2126529177081324186424571143772441853051119903<46> × 274705045491364586582557853243988977346480595087235609855663840837954828213753527555089529799717<96> (matsui / Msieve 1.46 snfs for P45 x P46 x P96 / June 23, 2010 2010 年 6 月 23 日)
10196+9 = 1(0)1959<197> = 409 × 24509 × 24568382659368173<17> × 44401499461295046411183451748843306897700065477<47> × 158743489944996736735601792658521560454875110932593<51> × 5760775776716179038342754458994841833456388196312921021251053632564837692213<76> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=2570867251 for P47 / November 11, 2006 2006 年 11 月 11 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P51 x P76 / April 8, 2010 2010 年 4 月 8 日)
10197+9 = 1(0)1969<198> = 7 × 13 × 47 × 892 × 173 × 280013 × 60933544084599386950268295266110729612717679192078991977134720129336314863042511425347353862183117087145661232335901493071323952225293774677805405563599566010548745485216827812104173<182>
10198+9 = 1(0)1979<199> = 225961 × 124678768297051697<18> × 9690036302476528221435163969533038158217<40> × 18550644105745856479822800394948930855980530190637776372586613<62> × 197464764254559829552451264146893583025407969235741009012620224923523145637<75> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=250750163 for P40 / November 15, 2006 2006 年 11 月 15 日) (Sinkiti Sibata / Msieve 1.40 gnfs for P62 x P75 / March 15, 2010 2010 年 3 月 15 日)
10199+9 = 1(0)1989<200> = 19 × 21379 × 185261891465766799561<21> × 548503959095269885262173<24> × 242266380745618460967346802852732470143183242896288649777171496780836916166404615542444259751863644712735139297727280020748576164909062216302439797853<150>
10200+9 = 1(0)1999<201> = 27793 × 1619861 × 67747437129266000269703021<26> × 400259908045666561971192213216134042261<39> × 81912816932939583803515921686223425749837243002793830987141671128762200181930502382006509105387526239568992549021452850921893<125> (Wataru Sakai / GMP-ECM 6.1 B1=11000000, sigma=3844765623 for P39 x P125 / July 11, 2006 2006 年 7 月 11 日)
10201+9 = 1(0)2009<202> = 16091 × 1481107807167727769<19> × 7036027911136239731<19> × 1707595486106514540765569469743527186553249<43> × 3492349843078654203848524527378819096234988686118034594868130852092184424651636857946004146781842824411943283885946609<118> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=3000000, sigma=3502034985 for P43 x P118 / June 30, 2013 2013 年 6 月 30 日)
10202+9 = 1(0)2019<203> = definitely prime number 素数
10203+9 = 1(0)2029<204> = 7 × 13 × 380988960547879856006854914515508284000685877<45> × 2884338426291480937996959321914619536463978092706078367429439809703411158222602829216494419660899809726505898883138039863155785884465302311754439811360627487<157> (Serge Batalov / GMP-ECM B1=43000000, sigma=4190270458 for P45 x P157 / January 27, 2011 2011 年 1 月 27 日)
10204+9 = 1(0)2039<205> = 337201 × 623689133 × 616396109089<12> × 19756866239412207021162350809<29> × 390449634705709120786268723530156581502687794207711832293470984531197475621556980360600157572948541834509165632689800475508598081111379704060799725573<150>
10205+9 = 1(0)2049<206> = 23 × 167 × 12953336402051<14> × 143262333924800969<18> × 74221731483529107173<20> × 18902138662180109159070896118158076458476284043879918762619963223628461687976330640450712281820639537643169944385921104446080110248538548713737055338127<152>
10206+9 = 1(0)2059<207> = 17 × 53 × 1373 × 3677 × 1114849 × 714902433921788662965698501260406986772877197213<48> × 27583426691716434582993900973456902116802885348789173518170013697359653364175169546230341816661166914390438515216318755450399783879088778980817<143> (Youcef Lemsafer / GMP-ECM 6.4.4 B1=110000000, sigma=3698384810 for P48 x P143 / July 3, 2013 2013 年 7 月 3 日)
10207+9 = 1(0)2069<208> = 1531 × 2010760617786081515608129876188742564646473899189327829219785708917783<70> × 324836212905465174072156088045744081837498528308465033293962958024183080138267367289944498294218160333309919145441411032868948745031533<135> (matsui / Msieve 1.50 snfs for P70 x P135 / January 19, 2012 2012 年 1 月 19 日)
10208+9 = 1(0)2079<209> = 29 × 70806169964068039306357852129<29> × 5104128819310876577243434222735265389826552303712050324739983923444990547796449394734281<88> × 954133780803385474157199405959594893408359086107052743217147707204568479082496022683684629<90> (Bob Backstrom / YAFU, GMP-ECM B1=1000000, sigma=2224830845 for P88 x P90 / August 24, 2024 2024 年 8 月 24 日)
10209+9 = 1(0)2089<210> = 7 × 13 × 59 × 1327 × 2126461443119569<16> × 6600520141636495773195156275437434929180072825103946384926988780947838157587038479731429804985686189591876838505260645028835321163692104607847115227267694241292369294851081865354208607247<187>
10210+9 = 1(0)2099<211> = 8705057 × 74964396019034449<17> × 1532404203230494468790524917917913117315287870553478179570479927288479367850465391621028402678017839758095062417161270054271484464028537318139173732110942712996304227556054883288921753113<187>
10211+9 = 1(0)2109<212> = 81043499 × 531393867616687<15> × 69479751745619746382608992142877<32> × 1433516348206441210442559652778533031044036455474184367<55> × 2331333318299609840094778295070948661820263401004329246471822748129283921853461845678412197453744550327<103> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3499259311 for P32 / December 25, 2010 2010 年 12 月 25 日) (anonymous / factordb, July 27, 2020 2020 年 7 月 27 日, http://factordb.com/index.php?id=1000000000022550235 for P55 x P103 / April 3, 2021 2021 年 4 月 3 日)
10212+9 = 1(0)2119<213> = 197 × 2549 × 12893 × 925997 × 871476673 × 887375521 × 10625652780341<14> × 33268385225861<14> × 502493264612630231717534386314245998296012877434589426688309<60> × 121428205908242571190329679186102603233559923384220595322622113438228834874905656706181299869<93> (anonymous / factordb, http://factordb.com/index.php?id=1000000000022550236, July 19, 2020 2020 年 7 月 19 日 for P60 x P93 / April 3, 2021 2021 年 4 月 3 日)
10213+9 = 1(0)2129<214> = 6797237 × 147118601278725458594425941011031394079682671061785840334830167022276845724225887665826570413831384722939629734846673729340318720680182256408008136247125118632762106132241674080218182770440401004113877447557<207>
10214+9 = 1(0)2139<215> = 113 × 1801 × 6568729 × 401703661 × 1157499959153<13> × 1226879111565909521820601<25> × 13112875935174122185472127607487669587432018234272471179984985454314889265878330487100976929522214680749519489858785849080019065000425078253283282412626282549<158>
10215+9 = 1(0)2149<216> = 72 × 13 × 16303899739<11> × 1055033002769<13> × 703309690989455121491394778262873470897375013339186700904426021343632545727<75> × 12976465753381671609548043093962657805439610290914603340238278732264354502635752245203803758352890322741136805717801<116> (anonymous / Msieve 1.53 snfs for P75 x P116 / January 16, 2019 2019 年 1 月 16 日)
10216+9 = 1(0)2159<217> = 193 × 54577 × 511220380609<12> × 1110218043478646663159290229<28> × 255566166293918185408456213486672772576997911957<48> × 654505397719107331636532361549712023144827269419697859349912624104162811577132701952504530533335876565195972486034628380097<123> (Thomas Kozlowski / GMP-ECM 7.0.6 B1=43000000 for P48 x P123 / October 5, 2024 2024 年 10 月 5 日)
10217+9 = 1(0)2169<218> = 19 × 20004452411<11> × 3738231996907036219<19> × 99392829692462887897537886520494087887<38> × 4237675047808325679254621470828525303518108659<46> × 16709781636161675914215104372013427188263282735032910160954369236227436269674572162372673476241841645063<104> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=882749456 for P38 / December 26, 2010 2010 年 12 月 26 日) (Wataru Sakai / GMP-ECM 6.3 B1=43000000, sigma=3613375423 for P46 x P104 / January 7, 2011 2011 年 1 月 7 日)
10218+9 = 1(0)2179<219> = 109 × 1553753 × 3687823953609488973677<22> × 67282334765291981200989865960596841680528955909826510791293855200224210425987721<80> × 2379689462365191705082954540151164738711973862633374532496655461230136345569649209594029042092592914200672001<109> (Thomas Kozlowski / cado-nfs for P80 x P109 / October 19, 2024 2024 年 10 月 19 日)
10219+9 = 1(0)2189<220> = 53 × 1218571 × 15483648083125141491511639607933592119801692248156489762838975185023014042910112638430200867973054054979306646264586157776546896571383031807609231369567536909107409029348217537142136312680381596984392312412080943<212>
10220+9 = 1(0)2199<221> = 1905092909518166219981<22> × 556621318612219976191697813<27> × 384640372913916003244242494305452142034092792067905979187909800097649<69> × 24517102148194918867964935357866104059208295166265218747180108986422640596925521205948654184609054881097<104> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P69 x P104 / November 13, 2018 2018 年 11 月 13 日)
10221+9 = 1(0)2209<222> = 7 × 13 × 993703 × 357476570362607<15> × 1438233150755287453246649809211<31> × 5800286590968351406642067537711373841<37> × 370830696382080803667417483021908498873428907027637518643412556911170063479736062704624994789414266831727920001923951735972710865369<132> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1251734849 for P31 / December 21, 2010 2010 年 12 月 21 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2610169057 for P37 x P132 / December 26, 2010 2010 年 12 月 26 日)
10222+9 = 1(0)2219<223> = 17 × 1249 × 194813 × 22352900673197<14> × 414301215940978621<18> × 38098430801308011389634550669<29> × 4474162869148080664676307748172983048422139274333<49> × 153144615620298359218414781577193814075248215718294525246275718380301954827168379519528440047000908097629<105> (Markus Tervooren / gnfs-lasieve4I15e, 64bit binary, Msieve 1.48 for P49 x P105 / February 6, 2011 2011 年 2 月 6 日)
10223+9 = 1(0)2229<224> = 426599455932706145117142072767<30> × 1803846320013293513896997686392671754195779<43> × 20152029601456141106264122452491785948394584210171303<53> × 644853966588472196439382650517393318626911310405273640670616470404109230133517262839119903140310971<99> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=198566059 for P30 / December 25, 2010 2010 年 12 月 25 日) (Youcef Lemsafer / GMP-ECM 6.4.4 B1=43000000, sigma=3966417650 for P43 / October 30, 2013 2013 年 10 月 30 日) (Youcef Lemsafer / msieve 1.51 (SVN 845) for polynomial selection, GGNFS (SVN 430), msieve 1.50 (SVN 708) gnfs for P53 x P99 / November 10, 2013 2013 年 11 月 10 日)
10224+9 = 1(0)2239<225> = 95506040354362086140990382790857769<35> × 1047054192896739220916714122150331634327095276616020593593176792806243864878461773711102281287988204178354902319833710378824582744542580646206572202700372406417096551740423300702433874036961<190> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3934960915 for P35 x P190 / December 25, 2010 2010 年 12 月 25 日)
10225+9 = 1(0)2249<226> = 103 × 42907257624468103<17> × 226272626161528626334577120412849585781235765097333513190476533653683302352498785784853948070893488929351559133701054756035595301711952885617878474510604032065983211975876012651110869036811742501142084780601<207>
10226+9 = 1(0)2259<227> = 181 × 6317 × 20393 × 9332781413<10> × 156111514801666508629<21> × 974038449491102832901217<24> × 302208932160946301659156108570295239096800158083201973287670527465083243584864725397158227192194807987455611240325602430371920548816229713248792053559561004472041<162>
10227+9 = 1(0)2269<228> = 7 × 13 × 23 × 22740637 × 73214889661132409568619<23> × [28696486977544796269337216780914010903135094898108095334114281250359610122826390446050164739014762308403033476204126279686876913794731368961821313038671285415911395124408463777295456548279722771<194>] Free to factor
10228+9 = 1(0)2279<229> = 15078797 × 10166906807329<14> × [6522956206336315548104826326014667605614679361604966968612364823833155364871879993571757752584976893324600079831980734102593913424806335570186287171153824516042566935327562767502408197023515481438122473132493<208>] Free to factor
10229+9 = 1(0)2289<230> = 3943 × 47547971410259809269255451<26> × 3940050552458780333891803512613<31> × 4526295699828359293411363612007<31> × 2990862952912610791256589747157489631052927813970305745718186823464799978775369775932215743161243954022594883181649403770851062633709714943<139> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=1551117465 for P31(3940...) / December 22, 2010 2010 年 12 月 22 日) (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3099713581 for P31(4526...) x P139 / December 22, 2010 2010 年 12 月 22 日)
10230+9 = 1(0)2299<231> = 875117 × 114270434696160627664643699071095636354910257714111370251063572070934515041988671229104222635373327223674091578611774197050222998753309557464887552178737243134346607367929088339044950560896428706104440891903596890472931048077<225>
10231+9 = 1(0)2309<232> = 272369 × 426997 × 1154675132213<13> × 7446594191452299819733868967867158093074151940265959344711963603362626582309218490738237211641666557348326138130105733184844684785093507653193638391105937901589796398061918357925011663431723378333486857823201<208>
10232+9 = 1(0)2319<233> = 53 × 27793109 × [6788705980429136874342784101152283928731711131895428426806246408125366343608057259058181760769114550239841350330861876182302788904216074730189482824409922264856344257240845848678832651891965480730805583689216592066923074417<223>] Free to factor
10233+9 = 1(0)2329<234> = 7 × 13 × 773 × 13604771310653<14> × 1188451573801769<16> × 43227696770387483161<20> × 2033968774756860268298838788076181471877914103271711421369988217979598363583284781372132351546956455778193307004003331302168618254084206867080070926809017681817312429787533180169819<181>
10234+9 = 1(0)2339<235> = 61 × 24113 × 97613 × 4779353 × 375676596301<12> × 764943657409<12> × 17256649533863999004404607247934925077<38> × 293861088173750201283588403174470334996356756465823763184176910834089957097840913259243736863253256028840292802009274694003586149628081385930423243142586969<156> (Serge Batalov / GMP-ECM B1=3000000, sigma=93551033 for P38 x P156 / January 9, 2014 2014 年 1 月 9 日)
10235+9 = 1(0)2349<236> = 19 × 491 × 1051 × 2279229232663749104126105527410652006065103579437179<52> × 2281086689966629846123229114067871515487451399403154596655936462991553634996226569409<85> × 196169910560546710401607398001285209269643331316476127325944826462894611048903535105375038561<93> (ebina / Msieve 1.53 snfs for P52 x P85 x P93 / May 24, 2022 2022 年 5 月 24 日)
10236+9 = 1(0)2359<237> = 29 × 1181 × 58481718838784595391569193223769802548046421<44> × [49926598202163129132808207831668573285357845747530134200993524677777884350571412823998833593691227211382972973134610834894273368509954819461018797177406306518361781831243203525267062991421<188>] (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=3176846419 for P44 / May 17, 2011 2011 年 5 月 17 日) Free to factor
10237+9 = 1(0)2369<238> = 2682527 × 16523072047165595261642773691596936447<38> × 22561350968588670306828456331752498809520734670508670001053165704305612320536211623747877155590248407161680416719886192100467898646885071495422769572641351198848929591614779498393811645879534761<194> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3969866649 for P38 x P194 / December 26, 2010 2010 年 12 月 26 日)
10238+9 = 1(0)2379<239> = 17 × 7517161 × 1150773049<10> × 351203526875717<15> × 377482105446469<15> × 512923157702075969758399076502295030262246744725082587696489563438178184943617636905704838534864315098621577792107681861118011765675443248749281801377561233159203898833577781478108452346691841<192>
10239+9 = 1(0)2389<240> = 7 × 13 × 157 × 23987726771<11> × 441530214656397674893<21> × 264572974072991255430211<24> × [2497836193097889334014264488129945941863986172647519815192827192746589627804881007507070606811257513030334591757267806066999682591555180124464776862017079509908723701841411161803579<181>] Free to factor
10240+9 = 1(0)2399<241> = 173 × 13781 × 11419850090933<14> × 4568191807009013<16> × 1067100998824624044618817<25> × 5387758520170312618547141170422172841166502547128112676577768669130941201<73> × 1398475240887443904667894466429670632130059815140468424696302450641734648118225730157859909739983408897149201<109> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P73 x P109 / November 9, 2024 2024 年 11 月 9 日)
10241+9 = 1(0)2409<242> = 89 × 1289 × 434834077 × 11606909927331877<17> × 42889399639967215891<20> × 402686363736558204099577288648687024583194132396480465435051673849426460396349283658784677032119654594586598842181017803352361966025573328808575280021203951867329998049689884841255183235124611<192>
10242+9 = 1(0)2419<243> = 32341 × 1108512700684649280871502416400546777<37> × [2789368436346983647932894801979093101859097867999660417447540170060977216840570978302924819095690546176607907993375747990676768593114671766771149545583157084991301266613396240865018959199619287677433837<202>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3402460584 for P37 / December 26, 2010 2010 年 12 月 26 日) Free to factor
10243+9 = 1(0)2429<244> = 47 × 214604025047<12> × 6016294839453760093<19> × 49403373495286302519554559851037430051<38> × 333563530433798103362723352339645963230328836163085078670047427654675661107191114232510532422012468679266175855991370740665878450033397349361570852197244512632706767994182007<174> (Serge Batalov / GMP-ECM B1=2000000, sigma=2154317645 for P38 x P174 / December 26, 2010 2010 年 12 月 26 日)
10244+9 = 1(0)2439<245> = 97 × 3561432134624197142293653032441273417928677<43> × [28947002107070335986937572595595491162868090265411721723415044877193771146316201020976456305637886559462539259692011569695632818008591478789308353333997782885026233202240367431308390154927892691007861<200>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1494080447 for P43 / December 27, 2010 2010 年 12 月 27 日) Free to factor
10245+9 = 1(0)2449<246> = 7 × 13 × 53 × 863 × 599966561 × 40044686369190408412861520310928583041678234322422936540942473757129331792752803298603588962169732021015166206153215133956706417507831840675853918953760828969386989233771553204366521365650912176766854100468286491595990397221542881<230>
10246+9 = 1(0)2459<247> = 4337 × 409365950033<12> × [563246966593273513729722464637506585345814660176193204408164558645337196684824171163739429913420371172343395274733371423101830297822589118883590921829684084155777591835157504764505695262366886879239219928900220512719961684049859529<231>] Free to factor
10247+9 = 1(0)2469<248> = 1619 × 129007761373<12> × 5956390575853<13> × 54446880476903801<17> × 37765379296971133447<20> × 57505123923704156524034473205766533412309931<44> × 6639241905730002148516281386617561744154232541013<49> × 10239111089974054080127996434337718314682420859326890458593135660613274098889035257168479859<92> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3179959723 for P44 / December 26, 2010 2010 年 12 月 26 日) (Sinkiti Sibata / Msieve 1.42 gnfs for P49 x P92 / May 21, 2011 2011 年 5 月 21 日)
10248+9 = 1(0)2479<249> = 433 × 543245348857<12> × 2397385091863386141287110856933<31> × 177328396364777902746335993369716374664839364521783903409392377074859804241007079938389477260518564669871823459109788906738363091583074707161888215519500310675965192444099471681064742368405560222111814733<204> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2127902085 for P31 x P204 / December 23, 2010 2010 年 12 月 23 日)
10249+9 = 1(0)2489<250> = 23 × 11677 × 374424899434805636369<21> × 287988017390985032740006777101887<33> × 34530410710548491049445566809774225969910811606174778111424887033500819284044886554408222353700198282309342588482309568263330041523171112286919829287232396982234604815399914898244044882842693<191> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3339507168 for P33 x P191 / December 26, 2010 2010 年 12 月 26 日)
10250+9 = 1(0)2499<251> = 10037 × 18135077 × 33602461 × 104997317 × 675367773229<12> × 261341691364013435796891917<27> × [88222295497941471953003790136166453010130489490395797700226088135015022414549786853205174121738189462902211726861434688184800950017295797106406027979740245077365027332692361000423169801<185>] Free to factor
10251+9 = 1(0)2509<252> = 7 × 132 × 743 × 669144967806911819<18> × [170022432512522049660598207804730079306254787965463413019256412068380540328977609211235428820622560580404574509076980210103903997514487157283163084443776641652258877286622821085538234737458161503753757967975195960155380804118419<228>] Free to factor
10252+9 = 1(0)2519<253> = 941 × 11232313824946554381139116795299717<35> × [94610894306594684237527677821884744985995545622728188078274856252606320560043094976520039903072921061503599961547688204129241177002267865043552909976526970450266496362596162777498603018963542267178183537686260736297<215>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3853903575 for P35 / October 29, 2015 2015 年 10 月 29 日) Free to factor
10253+9 = 1(0)2529<254> = 19 × 120383 × 182099 × 431528346007399466251830077<27> × [55637082395033255789416271119643855208498481334645173383672573566988568205855968010820032290902273010132048901318311278542344628287488298480622860933934693783486196167760274629979236018626456327234463328595261851979<215>] Free to factor
10254+9 = 1(0)2539<255> = 17 × 547384009 × 6992415573449810089<19> × 3273999616552645849934205529<28> × 469410842777922777245262203837205198934766431936501178812615551889065260645897779589460789141823761647107743796636508331592980221183884441119159451762053006028968062206630300317582531377289669523313<198>
10255+9 = 1(0)2549<256> = 967 × 997 × 1009 × 1607 × 18334321 × 3334544237985299<16> × 10463332115649177170923584807509615633500142035953376926257142122620034692321861146340733510669306138186764253472837510320998688378954377191498622387281680248328297762218355449042065762144088228831917672625252034014661383<221>
10256+9 = 1(0)2559<257> = 17573 × 1901416339697918078041<22> × 17370045089701791693698656425539266122547417<44> × 17229628899456469680724609779587673374442404692745367154148621955938425389115752135691975918633786602933208141945227488662804799751586244198753145620166808529557044652898114039318431788389<188> (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P44 x P188 / September 29, 2024 2024 年 9 月 29 日)
10257+9 = 1(0)2569<258> = 72 × 13 × 983 × 2459 × 128821577503<12> × 504150158457167129968895991485135997756610389677787203052556171944289920492757722415910436444966250186971343877145038574668349407587822442441481062032155988626562107730449271946963319743097221297904444408657639977572065305752409733531727<237>
10258+9 = 1(0)2579<259> = 53 × 42087169 × 872190341427559621937098566113547400157<39> × [514000029045138005744914660572194147034054106685609971736497868345970839546910829304628872544850978833790225779010672906443279202163597970228428818858424446584894925280580739946957187762554722570795719505863241<210>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1761657942 for P39 / September 27, 2016 2016 年 9 月 27 日) Free to factor
10259+9 = 1(0)2589<260> = 103 × 180717487 × [537232894571938680339917595203351902014539766578703603335416894233931943032089682427856532014170395862670928899319946270773044855322899713123710402622353324958648629411834234247549091732280956641102044154128191139802517832870961810088876510930775969<249>] Free to factor
10260+9 = 1(0)2599<261> = 183900138856670339209<21> × 3654358523667436086581<22> × 1259598719466871808552162241871969687153<40> × 118133910218528383724915913017296532172584722058583961940736281536214949610393608231843124855635675833463922858080575249086522889137551143386326044714400880818492091958122493650157<180> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3066206910 for P40 x P180 / September 27, 2016 2016 年 9 月 27 日)
10261+9 = 1(0)2609<262> = 26407 × 122503 × 125665242334576969090029657400723232677<39> × [2459908975559027718182172119021833750819097621025236772450401403114655371853454907863689025848449821315831074718927777582770842108261370452839923222515659908457989062091939606946155282618237560549772015927834331077<214>] (Thomas Kozlowski / GMP-ECM 7.0.6 B1=11000000 for P39 / September 29, 2024 2024 年 9 月 29 日) Free to factor
10262+9 = 1(0)2619<263> = 28185317 × 3357225769<10> × 180055565350697<15> × 12671541772180070192353553<26> × 46319143400948598406306088773237747313103237396767658216420965729699262424452377015542048775603877188026795195861893538180997839570391752164584092253930528112051046373916470426880982821699319646829809237813<206>
10263+9 = 1(0)2629<264> = 7 × 13 × 317 × 82601 × 70411729 × 748282494904914150344547263129023<33> × [796532399984449282571054981159864687826502843047567592557217186143898457891372256572303617472855028450151842374364763096986844211575720194049226343033304399880353528916377272643968327704265775704957848362119575041<213>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2933961561 for P33 / September 27, 2016 2016 年 9 月 27 日) Free to factor
10264+9 = 1(0)2639<265> = 29 × 16349 × 70201 × 24958301 × 200387713 × 729977590493<12> × 5968596901609<13> × 183810438768022982957<21> × 25697196965205596848300526847756440401<38> × 291906456288921843390725331386984309732753644680394472347649554516088049018257912585230606472428576813082549304508484674702828583221979031462634288945834637<156> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3094815671 for P38 x P156 / September 27, 2016 2016 年 9 月 27 日)
10265+9 = 1(0)2649<266> = 1211084837924044251969419407<28> × 2501972243274957325990220833481<31> × [3300220408245454912802632798789223988450582485880878568416970702564797670573762384642280042939993043880276149316064437244515643550716005102429016548308822069249621989904662467216036745578012779155250659802927<208>] (Wojciech Florek / for P31) Free to factor
10266+9 = 1(0)2659<267> = 53705556195266437097199581161<29> × 55335204220852499854201848620754451681<38> × [33649550272659098107906995420168392828868770707702493416178818331610092797926437391906593210106701822208047208422186165399647681146908008019931314061949830491031426026645911435335994361482092851715649<200>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2460249250 for P38 / September 27, 2016 2016 年 9 月 27 日) Free to factor
10267+9 = 1(0)2669<268> = 59 × 718116505853<12> × 1714573205117<13> × 4407192333533779957<19> × [3123453486756578436177541401303376521631545426035857639543232474675973902413853253384487080925006851984640090361866415750836931563779926023408712375794574121447797844072622139735001075887683996657010306978285919727225894343<223>] Free to factor
10268+9 = 1(0)2679<269> = 313 × 1301 × 4189609 × 66899141 × [87616183299223472636256547096583667958579520741990857874560831940705255057842129682487492680851224226970456335640573915231262687010606714543271956020725839947882248096233453495371366215098868356760539839025235133571230191823131433096388435129336897<248>] Free to factor
10269+9 = 1(0)2689<270> = 7 × 13 × 3623337493891<13> × 9236605095761<13> × 80286595730557<14> × 11365067417034754758329<23> × 102674494103724387616441<24> × [350477233443027267567069266506818833404724550773860831372734002812637709484903700554079016527996894642294358446785802048913714597977350998657192849054899334521030407322956568150618413<183>] Free to factor
10270+9 = 1(0)2699<271> = 17 × 15773 × 3295136825048340709<19> × 1131783407423594358074635923273834915155749510067039132568343305671044423053107761751098935658045835576804946913450469483477935727459229894773993386889313349737524035498277150996974919418416882979996352375145047934164357508460878697950804498657161<247>
10271+9 = 1(0)2709<272> = 19 × 23 × 53 × 117144269257958291<18> × 8359410144052104973958909307921824806534973<43> × 2122654555412579024752451557026047219008942049<46> × 207714440384304372907544357413715537345031679318507034536649731281644772300544926099291722340181835056383141557418404803511851729223324754430523728545864270050567<162> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4061673962 for P46, B1=11000000, sigma=1546027844 for P43 x P162 / September 29, 2016 2016 年 9 月 29 日)
10272+9 = 1(0)2719<273> = definitely prime number 素数
10273+9 = 1(0)2729<274> = 401 × 116587441 × [21389658822985168001109903236102959347849208559269250562907603251568416342165113415334148672291041191569025358370364507610653553966535003634938621047099958976535918183811155306504263552213523911241777962496456718259449420841887940130947971726052362749668132539849<263>] Free to factor
10274+9 = 1(0)2739<275> = 510547555877<12> × 304947426535610592361<21> × 18499664212667621070049<23> × 3471962136023214377132425585687630413834292446819168825850156060655382282882476896543400342597362014003123882801674465222429296570558533946873448426837967692649697072206428919550801455424256537056803100969465610478598253<220>
10275+9 = 1(0)2749<276> = 7 × 13 × [1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<274>] Free to factor
10276+9 = 1(0)2759<277> = 1609 × 331897 × 21380141 × 1643501654993336320048554750409<31> × [53291742195221618305724450436741763355516836353128715589686756922583358142398535905428832895647233538170718698880095667508858976643537501841382771900006184052065276724274575208441350014207789974760017766480028457915046157906669157<230>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1700500183 for P31 / October 18, 2015 2015 年 10 月 18 日) Free to factor
10277+9 = 1(0)2769<278> = 15131 × 1693301896877<13> × [390299481060058509717793705711151206315708741295127531991423341874252931085195759818246134111352142401306978558606845555533361796149619969431771589147342376850192173605254764042745757324583598800637525879131631444546920125977314907188757341459153256420312052407<261>] Free to factor
10278+9 = 1(0)2779<279> = 8237 × 20693 × 27228629884997<14> × 6426719190586995077<19> × [3352682004377406155624896231500962355108948265382291641218152084918294151053030593465571249310111534885410217168274254723324694439753421115118684664793125894034213109469794668332721887952118028758927274962021294743458290330044422682009921<238>] Free to factor
10279+9 = 1(0)2789<280> = 4958959009790435009658733<25> × 201655226031452894686368347211342581924385457425938930688439300015450495946445925074683108788990065973341347657740549186956317129161580371480948534126154495755521699510295269350423135851903052258942458354860681260393057988820863172488135170773426867762573<255>
10280+9 = 1(0)2799<281> = 1109560097689083097<19> × 13785460884129929069<20> × [653774353002822134738096154014819447453509526972020586131385322800575920399996531745058080801273515750150546513409149559063693670619264160994103339491043124165058050438373925685116246814641514001690840093471845623578961138410739735389765101013<243>] Free to factor
10281+9 = 1(0)2809<282> = 7 × 13 × 11527 × 51392993980580426527<20> × [1854976429562497481097378013171598128328151989991962000460464871335176927070103569715707594714643781050123511175431938257986127974239920430182157818166688235514068710628734757024761615402410352264342124151379830138119334248914867906619090773504917600802531<256>] Free to factor
10282+9 = 1(0)2819<283> = 835217 × 111429041269853<15> × 57850936485487921<17> × 11521768135620475100314650100303552045457<41> × 48272822879416595787677705799168273892373<41> × 333941243321341471216475165418536847345056680415838976140996345493996648483709303480420319290775637617118612022231262003750555590628058361425509785093227888350958489<165> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1332171300 for P41(4827...), B1=11000000, sigma=469069900 for P41(1152...) x P165 / September 29, 2016 2016 年 9 月 29 日)
10283+9 = 1(0)2829<284> = 173 × 3011 × 2960623 × 4979355571<10> × 1302227590975143676013172457125975515555555678637967847565590892701039835634310928404985727543038708158178438056221067672834175636725832668181844138940907878631617134940128235746269910398246921123833189815325250063632105621867759665271200736988075037664405752891<262>
10284+9 = 1(0)2839<285> = 53 × 31153 × 60565353347356231478357879461622461024680987142581137889745619459405769092167749070473239501450237385902444962749279423708549829235986237129105346769958857955471140911956751492481719862225934205434044633031495800701225661055690448056427528406664853743756469136804414487474782101<278>
10285+9 = 1(0)2849<286> = 89 × 129855856606835699<18> × [86526363537062887498559993030636732765369780240100815910218067914020462503514211643222039556282472402593873841248850601440268966533440054491870412321710215346324180997238279758833140213197144433505490864691387125518673378348609927265100444908940060877274329897203019<266>] Free to factor
10286+9 = 1(0)2859<287> = 17 × 1789 × 1105841412787755233<19> × 92460745999579889341<20> × 4955523911372281758001<22> × [648934582786008989017499538790718033865960912575226475914748743199570272319437014190313607631855086452054189450955673024913804866409255679684272086821197776548443602859868408367660031344833428228898824676728759461522677281<222>] Free to factor
10287+9 = 1(0)2869<288> = 7 × 13 × 1098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901098901099<286>
10288+9 = 1(0)2879<289> = 8837 × 110257993 × 2469075172609<13> × [415671979490276030255491712613464441495119370154129398166703635001828889769483777014117090943647423196045937136647342708611903445006434647703787411622206086350028319601115574187425649273085162321163374814981912071393885018773059624142461610962093479653812797346061<264>] Free to factor
10289+9 = 1(0)2889<290> = 19 × 47 × 44797 × 181884094811<12> × 1374373862502755304252133663996205379930693905126223488875241976599952612914807863339141894884431611786469047878437254670988404692526148400034329829080302831328169514838982210320495376072264475604579468269872171168304651432947239976448131888109384693016497329319120947539<271>
10290+9 = 1(0)2899<291> = 107387551673<12> × 82406189187769<14> × 121184124308880636148682953415117<33> × [93248208981224984681854421422049371076133202225051492182818016520684447351806908222940839924250693615296686201519055452119673703130495947898757998986708731590438025614527964937332801963231632342208777923357990868551165234533807215421<233>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2479669090 for P33 / April 10, 2016 2016 年 4 月 10 日) Free to factor
10291+9 = 1(0)2909<292> = 333623 × 428161 × 5817733 × 16798868873287<14> × [71631341510880493904388046571343188689572422128048118401695451203232104646095957159993042058579572495178685663638711972981396542267116734043519718687508650451522480003494843290652574056576899412798493077404069474994560374030847447183003994302208657197897250293<260>] Free to factor
10292+9 = 1(0)2919<293> = 29 × 77549 × 218137 × 19523009689<11> × 1122096122322820658408405377<28> × [930506974617974987844821091110353086898424930504124153018963147486382467785049055517334555292774737620171736387997157551047947194915658703246133409458516015781697408659602449842486803160946435285589964217198762753666217298469435070895027777089<243>] Free to factor
10293+9 = 1(0)2929<294> = 7 × 13 × 23 × 103 × 81247855033153247<17> × 412554138426099889<18> × 5580603820970601167<19> × [2479816255666438340734921871307903201533460281457823882687798336572455944028829957120895598182667748111839403435243220184992323031425838786764428827105970480696021484128782137452135443048245905729086144182841056497728193293189109335211<235>] Free to factor
10294+9 = 1(0)2939<295> = 61 × 155569 × 3663001 × [28768026340022047938656259682954260251686769510934920663015886671381614321328240302885800433400361680899639746286787264855656528213891597833820010525412502878115392042966837719013497765018173560396807041453660728803264449789003825152578264010490986530826346881190473137648791183701<281>] Free to factor
10295+9 = 1(0)2949<296> = [10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009<296>] Free to factor
10296+9 = 1(0)2959<297> = 769 × 297317 × [437374962425663696714263894898481619140067201700751785890540013876070582924121309217393476770248152513944027717711008806094372229440099734087831969181965317538837026885434566555923180388834476770716143723739487873195271173635747561919971639907636380084843132386232550614244367418534200533<288>] Free to factor
10297+9 = 1(0)2969<298> = 53 × 43573 × 30488440452236151529849<23> × 656081329346784612334681<24> × [21647800630630642781858001741148571540840479274950652348525454178302643787923753829998802737035988898028336120616174193243551435172146111502049994760605973899265967446400654092229598102563878210142850888692086591389914400459247013801193616599169<245>] Free to factor
10298+9 = 1(0)2979<299> = 293 × 557 × 79133 × 97729 × 803517149093<12> × 61101774210317<14> × 372299665912156021212293<24> × [433465444262722158971328673762440667921815264932705711079165766569109364868588432868994716459232043737765094888976106452551741824489522773706355846769006981338608245387786959069847784975011553680972021950807559709725564473421367100889<234>] Free to factor
10299+9 = 1(0)2989<300> = 72 × 13 × 626485947774897000293269331<27> × 12818352393362164989187827771299<32> × 19548661512418357993996852542780699125333487439763235640014283148014234641924862463967385954005675899275398385512835062513421904237206632688943704688765140556596843438259337096957020775412823660748154834129520391468362433277990297490685253<239> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2202581759 for P32 x P239 / October 18, 2015 2015 年 10 月 18 日)
10300+9 = 1(0)2999<301> = 3049 × 395621 × 314141575836165677358249770562769<33> × 2638990466423691071684819163106157065178274440022000578797688964282858432434505644545282003356632332488357727369097574522290237306881438814672559156207044645664311610602969085236222298418873677512595749246358401964948736380471075549462707836466443560687830909<259> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3919808161 for P33 x P259 / October 28, 2015 2015 年 10 月 28 日)
plain text versionプレーンテキスト版

4. Related links 関連リンク