Table of contents 目次

  1. About 188...881 188...881 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 188...881 188...881 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 188...881 188...881 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 188...881 188...881 について

1.1. Classification 分類

Plateau-and-depression of the form ABB...BBA ABB...BBA の形のプラトウアンドデプレッション (Plateau-and-depression)

1.2. Sequence 数列

18w1 = { 11, 181, 1881, 18881, 188881, 1888881, 18888881, 188888881, 1888888881, 18888888881, … }

1.3. General term 一般項

17×10n-719 (1≤n)

2. Prime numbers of the form 188...881 188...881 の形の素数

2.1. Last updated 最終更新日

January 18, 2024 2024 年 1 月 18 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 17×101-719 = 11 is prime. は素数です。
  2. 17×102-719 = 181 is prime. は素数です。
  3. 17×108-719 = 188888881 is prime. は素数です。
  4. 17×1014-719 = 1(8)131<15> is prime. は素数です。
  5. 17×1040-719 = 1(8)391<41> is prime. は素数です。
  6. 17×1092-719 = 1(8)911<93> is prime. は素数です。
  7. 17×10128-719 = 1(8)1271<129> is prime. は素数です。 (Jean Claude Rosa / October 14, 2002 2002 年 10 月 14 日)
  8. 17×10884-719 = 1(8)8831<885> is prime. は素数です。 (Patrick De Geest / November 23, 2002 2002 年 11 月 23 日)
  9. 17×109424-719 = 1(8)94231<9425> is PRP. はおそらく素数です。 (Patrick De Geest / December 11, 2002 2002 年 12 月 11 日)
  10. 17×1014768-719 = 1(8)147671<14769> is PRP. はおそらく素数です。 (Patrick De Geest / February 6, 2003 2003 年 2 月 6 日)
  11. 17×1019258-719 = 1(8)192571<19259> is PRP. はおそらく素数です。 (Patrick De Geest / February 7, 2003 2003 年 2 月 7 日)
  12. 17×1031234-719 = 1(8)312331<31235> is PRP. はおそらく素数です。 (Patrick De Geest / November 17, 2004 2004 年 11 月 17 日)

2.3. Range of search 捜索範囲

  1. n≤63200 / Completed 終了
  2. n≤84795 / Completed 終了 / Ray Chandler / January 3, 2011 2011 年 1 月 3 日
  3. n≤100000 / Completed 終了 / Ray Chandler / March 28, 2011 2011 年 3 月 28 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 17×102k+1-719 = 11×(17×101-719×11+17×10×102-19×11×k-1Σm=0102m)
  2. 17×103k-719 = 3×(17×100-719×3+17×103-19×3×k-1Σm=0103m)
  3. 17×106k+5-719 = 7×(17×105-719×7+17×105×106-19×7×k-1Σm=0106m)
  4. 17×107k+4-719 = 239×(17×104-719×239+17×104×107-19×239×k-1Σm=0107m)
  5. 17×1013k+4-719 = 79×(17×104-719×79+17×104×1013-19×79×k-1Σm=01013m)
  6. 17×1018k+3-719 = 19×(17×103-719×19+17×103×1018-19×19×k-1Σm=01018m)
  7. 17×1022k+13-719 = 23×(17×1013-719×23+17×1013×1022-19×23×k-1Σm=01022m)
  8. 17×1028k+23-719 = 29×(17×1023-719×29+17×1023×1028-19×29×k-1Σm=01028m)
  9. 17×1030k+16-719 = 241×(17×1016-719×241+17×1016×1030-19×241×k-1Σm=01030m)
  10. 17×1033k+25-719 = 67×(17×1025-719×67+17×1025×1033-19×67×k-1Σm=01033m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 9.77%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 9.77% です。

3. Factor table of 188...881 188...881 の素因数分解表

3.1. Last updated 最終更新日

June 17, 2024 2024 年 6 月 17 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=208, 213, 216, 223, 227, 228, 229, 231, 232, 235, 237, 238, 241, 242, 243, 245, 246, 249, 250, 254, 255, 257, 259, 260, 261, 262, 263, 264, 265, 266, 267, 269, 270, 271, 272, 273, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 287, 290, 292, 295, 296, 298, 299 (53/300)

3.4. Factor table 素因数分解表

17×101-719 = 11 = definitely prime number 素数
17×102-719 = 181 = definitely prime number 素数
17×103-719 = 1881 = 32 × 11 × 19
17×104-719 = 18881 = 79 × 239
17×105-719 = 188881 = 7 × 112 × 223
17×106-719 = 1888881 = 3 × 97 × 6491
17×107-719 = 18888881 = 11 × 199 × 8629
17×108-719 = 188888881 = definitely prime number 素数
17×109-719 = 1888888881<10> = 3 × 11 × 103 × 263 × 2113
17×1010-719 = 18888888881<11> = 59 × 6397 × 50047
17×1011-719 = 188888888881<12> = 7 × 11 × 239 × 10264027
17×1012-719 = 1888888888881<13> = 32 × 61 × 919 × 3743851
17×1013-719 = 18888888888881<14> = 11 × 232 × 3246071299<10>
17×1014-719 = 188888888888881<15> = definitely prime number 素数
17×1015-719 = 1888888888888881<16> = 3 × 11 × 389 × 28729 × 5121797
17×1016-719 = 18888888888888881<17> = 89 × 167 × 241 × 5273305007<10>
17×1017-719 = 188888888888888881<18> = 7 × 11 × 79 × 31051929786107<14>
17×1018-719 = 1888888888888888881<19> = 3 × 239 × 797 × 13883 × 238092443
17×1019-719 = 18888888888888888881<20> = 11 × 7877 × 217998186768023<15>
17×1020-719 = 188888888888888888881<21> = 47 × 967 × 6131 × 677876789299<12>
17×1021-719 = 1888888888888888888881<22> = 34 × 11 × 19 × 109 × 179 × 5718677137399<13>
17×1022-719 = 18888888888888888888881<23> = 23957 × 48812419 × 16152645007<11>
17×1023-719 = 188888888888888888888881<24> = 7 × 11 × 29 × 431 × 1931 × 101638476105637<15>
17×1024-719 = 1888888888888888888888881<25> = 3 × 10949 × 32779 × 408979 × 4289572303<10>
17×1025-719 = 18888888888888888888888881<26> = 11 × 67 × 239 × 38144237 × 2811331708891<13>
17×1026-719 = 188888888888888888888888881<27> = 1753 × 107751790581225835076377<24>
17×1027-719 = 1888888888888888888888888881<28> = 3 × 112 × 8731 × 89909 × 6628765129609253<16>
17×1028-719 = 18888888888888888888888888881<29> = 1580003 × 86826007 × 137688817917661<15>
17×1029-719 = 188888888888888888888888888881<30> = 72 × 11 × 350443207586064728921871779<27>
17×1030-719 = 1888888888888888888888888888881<31> = 32 × 79 × 653 × 9257 × 992183 × 442957015740397<15>
17×1031-719 = 18888888888888888888888888888881<32> = 11 × 1717171717171717171717171717171<31>
17×1032-719 = 188888888888888888888888888888881<33> = 239 × 383 × 1571 × 24986681 × 52568426737716163<17>
17×1033-719 = 1888888888888888888888888888888881<34> = 3 × 11 × 1451 × 209359 × 3310049 × 56924470754356477<17>
17×1034-719 = 18888888888888888888888888888888881<35> = 28370856415469<14> × 665784938328116936149<21>
17×1035-719 = 188888888888888888888888888888888881<36> = 7 × 11 × 23 × 117911 × 3022285249147<13> × 299294045541983<15>
17×1036-719 = 1888888888888888888888888888888888881<37> = 3 × 12023189147<11> × 52367938483836748512031841<26>
17×1037-719 = 18888888888888888888888888888888888881<38> = 11 × 1717171717171717171717171717171717171<37>
17×1038-719 = 188888888888888888888888888888888888881<39> = 6907 × 182211095453<12> × 150086675143470696345311<24>
17×1039-719 = 1888888888888888888888888888888888888881<40> = 32 × 11 × 192 × 239 × 401 × 27449309 × 20090480589071973407329<23>
17×1040-719 = 18888888888888888888888888888888888888881<41> = definitely prime number 素数
17×1041-719 = 188888888888888888888888888888888888888881<42> = 7 × 11 × 107 × 1489 × 1959863 × 19186337 × 409467492473122783081<21>
17×1042-719 = 1888888888888888888888888888888888888888881<43> = 3 × 197 × 3196089490505734160556495581876292536191<40>
17×1043-719 = 18888888888888888888888888888888888888888881<44> = 11 × 79 × 103 × 2562947 × 105179593 × 782849537754558858023873<24>
17×1044-719 = 188888888888888888888888888888888888888888881<45> = 311 × 811 × 326980807 × 2290355554282167473242533056723<31>
17×1045-719 = 1888888888888888888888888888888888888888888881<46> = 3 × 11 × 293 × 7376596529<10> × 10337937279001<14> × 2561739288001928981<19>
17×1046-719 = 18888888888888888888888888888888888888888888881<47> = 157 × 239 × 241 × 2088775746050183427070831012181285535067<40>
17×1047-719 = 188888888888888888888888888888888888888888888881<48> = 7 × 11 × 6734567290657<13> × 12802482819814033<17> × 28451933724388613<17>
17×1048-719 = 1888888888888888888888888888888888888888888888881<49> = 33 × 19703639 × 3550554683661506100639185536740642057877<40>
17×1049-719 = 18888888888888888888888888888888888888888888888881<50> = 112 × 209495323835723<15> × 745155151364119382672517552130507<33>
17×1050-719 = 188888888888888888888888888888888888888888888888881<51> = 6947 × 27189994082177758584840778593477600243110535323<47>
17×1051-719 = 1(8)501<52> = 3 × 11 × 29 × 10567 × 1239817 × 179047326390370939<18> × 841428735461919110273<21>
17×1052-719 = 1(8)511<53> = 52657108995160635725737<23> × 358714886733049489982275843913<30>
17×1053-719 = 1(8)521<54> = 7 × 11 × 239 × 381541 × 12618111798673<14> × 2131975458604058640306062117839<31>
17×1054-719 = 1(8)531<55> = 3 × 629629629629629629629629629629629629629629629629629627<54>
17×1055-719 = 1(8)541<56> = 11 × 4231 × 381495152801941<15> × 1166143838888311<16> × 912282943333117087591<21>
17×1056-719 = 1(8)551<57> = 79 × 2463143 × 970710427096696821848895100247929549889060845673<48>
17×1057-719 = 1(8)561<58> = 32 × 11 × 19 × 23 × 104779 × 3852562157<10> × 4843382415992795663<19> × 22331459921635688783<20>
17×1058-719 = 1(8)571<59> = 67 × 446611116729395609<18> × 631251001596440215600785974289058437427<39>
17×1059-719 = 1(8)581<60> = 7 × 11 × 487 × 5037171361606679881833885940662121360273310991996823619<55>
17×1060-719 = 1(8)591<61> = 3 × 89 × 2392 × 409 × 64318546933<11> × 9753460538375387671<19> × 482704208297108938009<21>
17×1061-719 = 1(8)601<62> = 11 × 6688827684823<13> × 256722373199715195200685051990876399130852604677<48>
17×1062-719 = 1(8)611<63> = 3079 × 178915287580335331<18> × 342885620172554195722037654678652028227469<42>
17×1063-719 = 1(8)621<64> = 3 × 11 × 35267 × 1623020309044070634225736729493782829762640917544935465371<58>
17×1064-719 = 1(8)631<65> = 140201407 × 4593200637101<13> × 29331793815126741731404846567310347513271083<44>
17×1065-719 = 1(8)641<66> = 7 × 11 × 16553 × 959283049 × 256192330711<12> × 603012169303797733554761010516541380259<39>
17×1066-719 = 1(8)651<67> = 32 × 47 × 4465458366167586025742054110848437089571841344890990281061203047<64>
17×1067-719 = 1(8)661<68> = 11 × 239 × 326537641 × 312988598281<12> × 70299794865772373053149768569716094821180109<44>
17×1068-719 = 1(8)671<69> = 59 × 467 × 284899 × 79117774231<11> × 60185689910237<14> × 5053348972187484752859506038525409<34>
17×1069-719 = 1(8)681<70> = 3 × 11 × 79 × 443 × 215939 × 7574091871782751047243398673548117223302388349404307315279<58>
17×1070-719 = 1(8)691<71> = 193 × 373 × 35232123524841037<17> × 42406056814925311657199<23> × 175619833189200991448843983<27>
17×1071-719 = 1(8)701<72> = 72 × 112 × 307 × 25853511867993404537465621489<29> × 4013904554831371746399288197956754243<37>
17×1072-719 = 1(8)711<73> = 3 × 61 × 32084573 × 321705924122571576141996489965028215891481364840186094802913859<63>
17×1073-719 = 1(8)721<74> = 11 × 108263 × 198451632994609<15> × 584962214355021815018747<24> × 136631607764747420606121714079<30>
17×1074-719 = 1(8)731<75> = 239 × 643859 × 877411 × 47826768814129<14> × 29251195780200157933250725714392253986034495399<47>
17×1075-719 = 1(8)741<76> = 33 × 11 × 19 × 190649 × 1755746575557048119850605015237647895703962057061453248297821278283<67>
17×1076-719 = 1(8)751<77> = 241 × 70079 × 1018773449<10> × 1116271861<10> × 960779423587<12> × 2933971571216443<16> × 348878561773058977113371<24>
17×1077-719 = 1(8)761<78> = 7 × 11 × 103 × 659 × 6481 × 2050278913<10> × 2719806961148323575300375584631228275320999288401625682113<58>
17×1078-719 = 1(8)771<79> = 3 × 1579 × 7997391489135579374411<22> × 5078838261811808321213861<25> × 9817259894587692528820949303<28>
17×1079-719 = 1(8)781<80> = 11 × 23 × 29 × 1631191 × 67272106682883287<17> × 18885050517981853969<20> × 1242309759930179768535456793031081<34>
17×1080-719 = 1(8)791<81> = 3079291 × 61341681864068348489600004965067896762238089511153343054907408519977127491<74>
17×1081-719 = 1(8)801<82> = 3 × 11 × 239 × 2039 × 117456578393004280663544270078771977930848572581639697565340006359375522617<75>
17×1082-719 = 1(8)811<83> = 79 × 1259 × 37225487566032100763<20> × 5101679783792512769619239885915930821497956370819403461767<58>
17×1083-719 = 1(8)821<84> = 7 × 11 × 55973189 × 30358053289<11> × 23247420261203213<17> × 62099335081558587957575541875543079233547511661<47>
17×1084-719 = 1(8)831<85> = 32 × 547 × 2447 × 52709 × 160627 × 87875719 × 323282069828413<15> × 651911695243987757648321742713193682350463481<45>
17×1085-719 = 1(8)841<86> = 11 × 70843 × 3280073779<10> × 78906896351<11> × 2159759745722360623883603<25> × 43362345583700807183954849567056831<35>
17×1086-719 = 1(8)851<87> = 131 × 1441899915182357930449533502968617472434266327396098388464800678541136556403731976251<85>
17×1087-719 = 1(8)861<88> = 3 × 11 × 7588153 × 14677199 × 513940935187705741602900223968931014463311281590293870536658213658852631<72>
17×1088-719 = 1(8)871<89> = 113 × 239 × 503 × 6397 × 1090627 × 54151492719691744809590187599<29> × 3680434168454545250911612478137703085783281<43>
17×1089-719 = 1(8)881<90> = 7 × 11 × 14503 × 96416077623960350809468901<26> × 192756898316720414913257803<27> × 9101195654201274673407573433717<31>
17×1090-719 = 1(8)891<91> = 3 × 601 × 6236328911<10> × 167982724831<12> × 4394610220348796354216727855593<31> × 227560400733838638744592635900411979<36>
17×1091-719 = 1(8)901<92> = 11 × 67 × 8411089 × 18287779957<11> × 166619454446000694804403747938504700914579535464438378148129172108140381<72>
17×1092-719 = 1(8)911<93> = definitely prime number 素数
17×1093-719 = 1(8)921<94> = 32 × 112 × 19 × 1424260421<10> × 93860045797775479503341<23> × 682896306280167643586881670886485347375105605212310710731<57>
17×1094-719 = 1(8)931<95> = 107 × 577 × 1171 × 261270229060727640262111765099695240419181894029683411747675583664359255564949449797249<87>
17×1095-719 = 1(8)941<96> = 7 × 11 × 79 × 239 × 2677 × 56758794613<11> × 103612687177<12> × 183618907246590547<18> × 166167417533172935483<21> × 270478627178163755208107669<27>
17×1096-719 = 1(8)951<97> = 3 × 53045076649<11> × 11869709111665490236242219095103746046236194394788678734512080460235166991503721328323<86>
17×1097-719 = 1(8)961<98> = 11 × 530609 × 510490817 × 28289480188430758529<20> × 11314722030808935675157005420101<32> × 19805340985617305898506513640583<32>
17×1098-719 = 1(8)971<99> = 764884946931609335775374748079702913<36> × 246950720688948285326310608424969642485784772960376141477634737<63> (Tetsuya Kobayashi / for P36 x P63 / February 8, 2003 2003 年 2 月 8 日)
17×1099-719 = 1(8)981<100> = 3 × 11 × 35866578936059<14> × 119133543521072149<18> × 13395793929410528473729054874162800071645980496230030359564196664727<68>
17×10100-719 = 1(8)991<101> = 15913 × 106759 × 21027169 × 528772726672050661269718126528705683712768191838455904589027780525492905983587340047<84>
17×10101-719 = 1(8)1001<102> = 7 × 11 × 23 × 6178048808629<13> × 287791385635040309712002957059639<33> × 59987218576316961135741490031965338744767996088112081<53>
17×10102-719 = 1(8)1011<103> = 35 × 97 × 239 × 16453 × 235919 × 15022963531<11> × 5749987145046285828584511401950543984596503912255284231741358255172342455597<76>
17×10103-719 = 1(8)1021<104> = 11 × 6286084853<10> × 868654401317<12> × 7547531012280893196241364156200907<34> × 41665975777470043773497217988856950794247907153<47>
17×10104-719 = 1(8)1031<105> = 89 × 419 × 213101032292487490878741437207<30> × 23769323904858224288383307246128122775298055079687572355950142840029413<71>
17×10105-719 = 1(8)1041<106> = 3 × 11 × 433 × 5443169539811459612838978354881523108810750679469<49> × 24285816772232515489964499794143298601337172152436741<53> (Robert Backstrom / NFSX v1.8 for P49 x P53 / June 12, 2003 2003 年 6 月 12 日)
17×10106-719 = 1(8)1051<107> = 199 × 241 × 30489917 × 23739150881<11> × 544145284638461410797782357577203327953965439571075491476899962872063108378733276067<84>
17×10107-719 = 1(8)1061<108> = 7 × 11 × 29 × 55827754503337<14> × 47120427440882683451<20> × 32155725114861186177058161035668846931690663857761674246398589459506211<71>
17×10108-719 = 1(8)1071<109> = 3 × 79 × 107857 × 73894094141015081693333241356919684869855178572663503190949107090064004065114067422562390641902391109<101>
17×10109-719 = 1(8)1081<110> = 11 × 239 × 1201 × 98717 × 49205871119090431128433<23> × 56671588553726484035956794175747<32> × 21731943060466480280043446832842553355871467<44>
17×10110-719 = 1(8)1091<111> = 269 × 5639 × 4946161049<10> × 9731061523059542862591971<25> × 2587161655889504271266070630430967261240695854605158498178811975461929<70>
17×10111-719 = 1(8)1101<112> = 32 × 11 × 19 × 103 × 2880928711<10> × 4514261189<10> × 100593623090350447<18> × 7452307151944127440396883934404874958391408730943775623362323269120859<70>
17×10112-719 = 1(8)1111<113> = 47 × 49201 × 8106674375521100603448409<25> × 31242436987239875790746177393544341<35> × 32251282749618412569517260607535802629513638667<47>
17×10113-719 = 1(8)1121<114> = 72 × 11 × 512261627 × 684109816381121846009113188981137869796560714166488964953701132628033086374743219445462080663688019577<102>
17×10114-719 = 1(8)1131<115> = 3 × 66071 × 12726023 × 2168777179<10> × 115971471683<12> × 1683282784292843173407059<25> × 1768717156772709603461803884296732304355301113174900920713<58>
17×10115-719 = 1(8)1141<116> = 112 × 2578972552856369<16> × 6837490548514237<16> × 24117989973237857<17> × 367059502990856748843509924103121966610904314285688924121993888541<66>
17×10116-719 = 1(8)1151<117> = 239 × 22817 × 253669477 × 5570535081079<13> × 24512343927648986851073027728944222175521122960683358766447593634741738199976133773557189<89>
17×10117-719 = 1(8)1161<118> = 3 × 11 × 947 × 142837 × 499052388795199<15> × 7531620134671411542583951832947<31> × 112581550707055107135809616134596011054855155038741464149359771<63> (Tetsuya Kobayashi / GMP-ECM 5.0.1 B1=250000 for P31 x P63 / May 22, 2003 2003 年 5 月 22 日)
17×10118-719 = 1(8)1171<119> = 536588029 × 1449451547<10> × 709679588901901<15> × 34221529465674733978742834494253493587106899738699529480590114760082784543508065287387<86>
17×10119-719 = 1(8)1181<120> = 7 × 11 × 4931 × 4423007560637<13> × 35636286791653<14> × 4349622285745817<16> × 16804998475251389003<20> × 43179790865443819868791463837018668985526647939456333<53>
17×10120-719 = 1(8)1191<121> = 32 × 4111 × 4139 × 7608751 × 3045466273<10> × 346576549228291553443838601198303485450873107<45> × 1535870716176023873501840994409496072624128907388761<52> (Robert Backstrom / PPSIQS Ver 1.1 for P45 x P52 / June 26, 2003 2003 年 6 月 26 日)
17×10121-719 = 1(8)1201<122> = 11 × 79 × 1531 × 78613763539<11> × 180597966818519979372438086770806823611307973549347267411826570820190038122146321150765866916213258248061<105>
17×10122-719 = 1(8)1211<123> = 597239 × 46573161305851<14> × 6790824928220033638323972832029363594168719286247192927578035568094999673612350335749929699698893153429<103>
17×10123-719 = 1(8)1221<124> = 3 × 11 × 23 × 239 × 16499513 × 127681816274300662863520578302977291507570195263441871<54> × 4942726243918761184015176596966979037574298010298028549647<58> (Robert Backstrom / NFSX v1.8 for P54 x P58 / July 6, 2003 2003 年 7 月 6 日)
17×10124-719 = 1(8)1231<125> = 67 × 157 × 6271 × 43948321 × 292599473802341438408619263<27> × 22267903332763205922331347379681684859539373092253570190739274811974589016154698903<83>
17×10125-719 = 1(8)1241<126> = 7 × 11 × 263119 × 316571 × 19255379149<11> × 1529467574718566843554119565725293935277898216166826648203831157243874118262789763578204870936731497253<103>
17×10126-719 = 1(8)1251<127> = 3 × 59 × 16681433 × 91974867159757573<17> × 498655794308712510868883323350225242849604727<45> × 13948572079388102538907460825554348887852216766084441171<56> (Robert Backstrom / NFSX v1.8 for P45 x P56 / July 22, 2003 2003 年 7 月 22 日)
17×10127-719 = 1(8)1261<128> = 11 × 231019 × 89525363 × 6825988027<10> × 59989272692491<14> × 202759316130890096888003221543894955345188348597348630848216170978417148123824376732528299<90>
17×10128-719 = 1(8)1271<129> = definitely prime number 素数
17×10129-719 = 1(8)1281<130> = 33 × 11 × 19 × 109 × 563 × 9855840629<10> × 803527130407998133<18> × 1230440712050620577055436916049377<34> × 559766055828770620048527567158628327740943590649443001755309<60> (Robert Backstrom / GMP-ECM 5.0c for P34 x P60 / June 16, 2003 2003 年 6 月 16 日)
17×10130-719 = 1(8)1291<131> = 239 × 1463762719957688093<19> × 3760328906562522655655042225989569822978634397<46> × 14358596644915486520622618516979532504500144385595692027475664999<65> (Robert Backstrom / NFSX v1.8 for P46 x P65 / August 18, 2003 2003 年 8 月 18 日)
17×10131-719 = 1(8)1301<132> = 7 × 11 × 241079 × 2980690351<10> × 97279044194087111051212948383640921693631963327572061261<56> × 35092971921053161259223857755594735956148743024878870591537<59> (Robert Backstrom / NFSX v1.8 for P56 x P59 / August 15, 2003 2003 年 8 月 15 日)
17×10132-719 = 1(8)1311<133> = 3 × 61 × 5557 × 231692053253758958587<21> × 8016850542073207580500060920439015174745069583791830236595957029068014337993761774435880130051724328291873<106>
17×10133-719 = 1(8)1321<134> = 11 × 15767 × 98449611513388502197<20> × 20583474364104523906967<23> × 53744245406036814209796463922552726237923044992033285069108755691910450075604610108887<86>
17×10134-719 = 1(8)1331<135> = 79 × 25763 × 45853 × 161263 × 727877 × 3361415595048403<16> × 1291260365158731363233472475833767806979645325899<49> × 3972705478723421636295965310428600164712389919483<49> (Robert Backstrom / PPSIQS Ver 1.1 for P49(1291...) x P49(3972...) / June 29, 2003 2003 年 6 月 29 日)
17×10135-719 = 1(8)1341<136> = 3 × 11 × 29 × 89308649144457329924402611214457777901130437488163<50> × 22100441708144961675043265232663104252035613404854169547373213858780993492845684791<83> (Robert Backstrom / NFSX v1.8 for P50 x P83 / September 6, 2003 2003 年 9 月 6 日)
17×10136-719 = 1(8)1351<137> = 241 × 1163 × 1258151 × 2909741971<10> × 686379678947195688761<21> × 122584892289542775690610757<27> × 218786762561744087918791290449719825268313931948215334953312964581971<69>
17×10137-719 = 1(8)1361<138> = 7 × 112 × 239 × 1160363 × 1314143 × 10185093131<11> × 257539770359<12> × 702803750281<12> × 116807003928419996915533<24> × 55853562865091898579135897461<29> × 50877464190057760272555425199734329<35>
17×10138-719 = 1(8)1371<139> = 32 × 8306041 × 2255064591324424321539649<25> × 11204973820429572218028099248761045016447799590150362652798675946315959317372819874449602384505936463220401<107>
17×10139-719 = 1(8)1381<140> = 11 × 149 × 99577 × 450255083 × 257045376203115332020119884017201764138175116214072412055451479525969436176655952447433541448240509850278055209080077354269<123>
17×10140-719 = 1(8)1391<141> = 197 × 47255407 × 103652035862097857<18> × 4666166461726179380801129928968110270436020676303<49> × 41951801327579378159478866821820484800548073276834673164905690109<65> (Greg Childers / GGNFS for P49 x P65 / October 1, 2004 2004 年 10 月 1 日)
17×10141-719 = 1(8)1401<142> = 3 × 11 × 438377 × 473927 × 275507394920736299241146420665578799928676930438670973257916775952979139683096823686522659496258598679062609682379153945005624783<129>
17×10142-719 = 1(8)1411<143> = 122149 × 76873807 × 2011583696166635802062190589930509750927409305210901864016763928510292246763612666696359595601174856512384887206641086750936749267<130>
17×10143-719 = 1(8)1421<144> = 7 × 11 × 599 × 93201247 × 149293787 × 2862998398373089<16> × 102802648065583481127340056219679392675378566269412775795110886283303089819223521948426904202222739291480407<108>
17×10144-719 = 1(8)1431<145> = 3 × 239 × 1427 × 130321412035043<15> × 3893131414213838113<19> × 3638718363173898426592891379649937482668390835328596749845707916569847841028202263383803128920547330814301<106>
17×10145-719 = 1(8)1441<146> = 11 × 23 × 103 × 724850872592535741543761805475608768137261172297052415245745764952181161552204186226980655009359103913768329133462100958935066153301695724659<141>
17×10146-719 = 1(8)1451<147> = 18503 × 22755527 × 61720979 × 78077273741385256946431921<26> × 9951822350224026205765507779125775380181373<43> × 9354429447762306957615379784621617996950988628283293890343<58> (Robert Backstrom / PPSIQS Ver 1.1 for P43 x P58 / September 4, 2003 2003 年 9 月 4 日)
17×10147-719 = 1(8)1461<148> = 32 × 11 × 19 × 79 × 107 × 2781801353422423656539918239<28> × 25676953116135086178490153800162757142685512269<47> × 1663171924588523777382227652703467418748719317652827597186987650887<67> (Greg Childers / GGNFS for P47 x P67 / October 6, 2004 2004 年 10 月 6 日)
17×10148-719 = 1(8)1471<149> = 89 × 5023 × 15919 × 2375458619<10> × 5125268134967<13> × 3973937856119887283396521<25> × 54859559072621213566636568938781967339320138069461900161759552032184628619307830638274939749<92>
17×10149-719 = 1(8)1481<150> = 7 × 11 × 7691 × 13217 × 965712449323032769284271<24> × 26065201846446608037286834417034455349431<41> × 958718400813354762041944453379027677170164927082107964146975031174556394999<75> (Robert Backstrom / GMP-ECM 5.0c for P41 x P75 / August 13, 2003 2003 年 8 月 13 日)
17×10150-719 = 1(8)1491<151> = 3 × 105402820794387104653536298689177070169650261803766637528304966641861624359<75> × 5973555782324552106124283562382297323088488515591965666516908145969488005453<76> (Greg Childers / GGNFS for P75 x P76 / October 6, 2004 2004 年 10 月 6 日)
17×10151-719 = 1(8)1501<152> = 11 × 239 × 14488426559<11> × 495900563877101393960208222546885733917603052593759591287572346316298204350920783102489329386695624817032211109730792810103514787386437571<138>
17×10152-719 = 1(8)1511<153> = 169022969 × 1788032748531423785318259953<28> × 625007482986166255657032845722275457980936538354720291897060772159527714074714556065604804588909744502123848038423433<117>
17×10153-719 = 1(8)1521<154> = 3 × 11 × 458033732131576820267<21> × 2487441325075200197121778501595359<34> × 935061187428302940375031505062267678199121469<45> × 53728180464604315513396648915975156149011893915038001<53> (Shusuke Kubota / GMP-ECM 6.0.1 B1=1000000, sigma=983314477 for P34, GGNFS-0.77.0 gnfs for P45 x P53 / 16.77 hours on CeleronM 1.50GHz, Windows XP and Cygwin / February 9, 2007 2007 年 2 月 9 日)
17×10154-719 = 1(8)1531<155> = 40841052095273448958367<23> × 462497607672425937288372751676279501473077433609858179697178527667606127887860507458592864717926915483106954680874512068481282807343<132>
17×10155-719 = 1(8)1541<156> = 72 × 11 × 2273 × 77509 × 477951899 × 856409645357881<15> × 27828450109337756621<20> × 463334366860167086975713144840516592702801361011<48> × 376891898680072906895465671777956457460775907782569723<54> (Anton Korobeynikov / GGNFS-0.71.4 for P48 x P54 / 21.42 hours / December 7, 2004 2004 年 12 月 7 日)
17×10156-719 = 1(8)1551<157> = 33 × 1189627 × 681041615787775181267827<24> × 1913432864166287746218289<25> × 45127882469640380887931120849637659599335576773455186266757048819578565853765997928957319944570474963<101>
17×10157-719 = 1(8)1561<158> = 11 × 67 × 233 × 257 × 100133357531<12> × 1974898746446825564654925588408067<34> × 26084785568241325536093167306732883156016781297647<50> × 82973420930499973861919069602007448123945832667668347767<56> (Robert Backstrom / GMP-ECM 5.0 B1=379000, sigma=1964807638 for P34, GGNFS-0.77.1-20051202-athlon for P50 x P56 / 31.74 hours on Cygwin on AMD 64 3400+ / April 19, 2007 2007 年 4 月 19 日)
17×10158-719 = 1(8)1571<159> = 47 × 239 × 557 × 3046148953<10> × 31515879309500237<17> × 160815156612194113<18> × 19929262765951023340195939<26> × 4471053250096044906331280357<28> × 21945568692107157846002081502727353184117153310937384959<56>
17×10159-719 = 1(8)1581<160> = 3 × 112 × 6673 × 779791796507734548414084672820691784494353871627280071076646148509696321093675425242254935864188891994295043216749414043802556533643818904639307075174819<153>
17×10160-719 = 1(8)1591<161> = 79 × 39327877 × 593412173 × 8360104991228521<16> × 7182577469468151941<19> × 170620148744718303190616192434604539299117644415508666383824938061110234231482221167015937391848367766805819<108>
17×10161-719 = 1(8)1601<162> = 7 × 11 × 523 × 12553 × 892039002817<12> × 5517382888130356012700422947230695246102802588279510829603153154612691<70> × 75918829205014441614543498027493064480460216213141344861042989326442621<71> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp snfs, Msieve 1.26 for P70 x P71 / October 4, 2007 2007 年 10 月 4 日)
17×10162-719 = 1(8)1611<163> = 3 × 1439 × 2583124372509618337040968830299059261714173907429069612978604367206603<70> × 169386598202867977225527166176651263517709056741805060006511940185061380465616968087449231<90> (Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp for P70 x P90 / 57.94 hours on Cygwin on AMD 64 3200+ / June 18, 2007 2007 年 6 月 18 日)
17×10163-719 = 1(8)1621<164> = 11 × 29 × 20809 × 6713383 × 423860644533428678185423762972910548738022061887392213143290476740206182520758542132046356021950283362433890191604215440315854075642875273311800803217<150>
17×10164-719 = 1(8)1631<165> = 216583463554531<15> × 5393696868579157005523711065632147602089029<43> × 38447484784957009504048982784105217220178467777<47> × 4205587262171089272039659014159109528298565349557528731191647<61> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs for P43 x P47 x P61 / 96.76 hours on Cygwin on AMD 64 3400+ / August 20, 2007 2007 年 8 月 20 日)
17×10165-719 = 1(8)1641<166> = 32 × 11 × 19 × 239 × 2301857 × 1104452615085621808528281839929327507501092871162291<52> × 1652700990864867075451213479344319367803780935121458431710865579015107058129083254411956069524400585357<103> (Robert Backstrom / GGNFS-0.77.1-20051202-athlon snfs, Msieve 1.29 for P52 x P103 / November 11, 2007 2007 年 11 月 11 日)
17×10166-719 = 1(8)1651<167> = 241 × 829 × 6397 × 185917516258239178921<21> × 11287051438658699299143517231<29> × 7042999782550107442473856793722001489061020464152685802074161410436300456375341994080194974923341609998499007<109>
17×10167-719 = 1(8)1661<168> = 7 × 11 × 23 × 16349 × 41403331 × 157565587942701080838044280391574214060140496890867424306293836369609303127965083749300421643544255005352648839081261503458445447597864847177428327034469<153>
17×10168-719 = 1(8)1671<169> = 3 × 95819 × 442919 × 14835739958942219013826039138983626641422882690635159900706748265582337866426051990790522390159351342365093361125543261563764084094178719687745360274154840007<158>
17×10169-719 = 1(8)1681<170> = 11 × 2026004689<10> × 114398123377<12> × 821922604697056855387<21> × 9014122499808079013411523752456316387245234049535405539572801862046229777840089113033020166588911099591521891066430917579817161<127>
17×10170-719 = 1(8)1691<171> = 4723 × 5701 × 30399926369<11> × 50415897960301<14> × 4577173625655968000858436950766681011898189414935236734216303697763494405542082038965167583246935592601373065469286873476688415226089965963<139>
17×10171-719 = 1(8)1701<172> = 3 × 11 × 57239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057<170>
17×10172-719 = 1(8)1711<173> = 239 × 2711 × 223645141 × 5353902724127<13> × 5960520962198910431<19> × 4084743878746873512012309475725452357520173308874935090736005276030918871078062473219620219159781449366873406001435159149984917<127>
17×10173-719 = 1(8)1721<174> = 7 × 11 × 79 × 14089307 × 92644999522068731671<20> × 23789043460881588933813283702355184092776186256647691816254590662130228703195636276301682721415780538542230095369032193755448555289435228338631<143>
17×10174-719 = 1(8)1731<175> = 32 × 143743 × 4272954837788307543647<22> × 606358801893927140926280871016094140919046475645181465209783418848013921<72> × 563532813232647866949989040863322605004839884920003591743383299672734470249<75> (Warut Roonguthai / Msieve 1.48 snfs for P72 x P75 / April 7, 2012 2012 年 4 月 7 日)
17×10175-719 = 1(8)1741<176> = 11 × 547 × 2803 × 1507907 × 9033746039<10> × 82216856547846888742451644242111841995659234461494780014685407193926168077625876708747876270521063723128706209957939035385612806291498096798221748614447<152>
17×10176-719 = 1(8)1751<177> = 593 × 6047 × 38839 × 1519230508857603539<19> × 892729810659861345015328826964290526887614197186543067094441700155766671446239156365738437002211385271927183132531221983624657821093593685653708291<147>
17×10177-719 = 1(8)1761<178> = 3 × 11 × 4189099 × 256993313 × 438232439897078623<18> × 6021286181012160102180359029<28> × 20149126950720399739532151302428650906960988498103629868525713311624893048125358720378765004850597892459620751730233<116>
17×10178-719 = 1(8)1771<179> = 8745622094101<13> × 125828027888131<15> × 1494291538223492506633<22> × 11486903633362365596486072578669449912157401891058003827036565112959199874555966816435826760398283348457368356250563038837264997847<131>
17×10179-719 = 1(8)1781<180> = 7 × 11 × 103 × 239 × 9930637 × 14023579 × 1231364489<10> × 684907717263391040869653253<27> × 1187282062146192125179089986736275870419<40> × 375284494633543979200133045260994522261009<42> × 1904194805934835770754653293450160027271669<43> (Robert Backstrom / GMP-ECM 6.0 B1=4070000, sigma=3789333963 for P40, Msieve v. 1.34 for P42 x P43 / May 1, 2008 2008 年 5 月 1 日)
17×10180-719 = 1(8)1791<181> = 3 × 1373 × 22608072733<11> × 37762571569959013<17> × 4072666344303852025471241318149779975065134083676411388437471632933646633<73> × 131889640723811333992627107001829612286109248667313492608268685498373498309007<78> (Dmitry Domanov / Msieve 1.50 snfs for P73 x P78 / May 14, 2013 2013 年 5 月 14 日)
17×10181-719 = 1(8)1801<182> = 112 × 71707 × 380621 × 49904965969<11> × 457947426902889196247998897290515604682571899877367538690627683796115338147561<78> × 250269171209701042357906327079691988307666887757034326903766992258490370888661407<81> (Dmitry Domanov / Msieve 1.50 snfs for P78 x P81 / May 14, 2013 2013 年 5 月 14 日)
17×10182-719 = 1(8)1811<183> = 167 × 181 × 1521991 × 1814069 × 2873947 × 37981754841645418806837625935995850288171500913526177399<56> × 20734410796757813335549719177468539766338681739212980547693795020685441981600993131646711408120162475469<104> (Dmitry Domanov / Msieve 1.50 snfs for P56 x P104 / May 15, 2013 2013 年 5 月 15 日)
17×10183-719 = 1(8)1821<184> = 34 × 11 × 19 × 404051 × 1262581 × 8226908102544685947546600578514601<34> × 18543293116350605064910686457836670494730135279143185880000381167<65> × 1433692990819480300852154956144879134223232858811117631855459105042057<70> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=4112143251 for P34 / December 24, 2004 2004 年 12 月 24 日) (Robert Backstrom / Msieve 1.44 gnfs for P65 x P70 / April 27, 2012 2012 年 4 月 27 日)
17×10184-719 = 1(8)1831<185> = 59 × 40849101809<11> × 6793711049859145744961547412712008524607370816718948030796142881202663128578289<79> × 1153625419945891235501238486978997234347838778909413972893536908821068079354856173932475167459<94> (matsui / Msieve 1.47 snfs for P79 x P94 / October 3, 2010 2010 年 10 月 3 日)
17×10185-719 = 1(8)1841<186> = 7 × 11 × 2069 × 19338599789<11> × 165320642059357<15> × 5171719245506771332163<22> × 16239490182899034514045301342480097361650555061381<50> × 4415661317231933125338223400328456535346023653571411424407492129074153770578040445223<85> (Warut Roonguthai / Msieve 1.49 snfs for P50 x P85 / February 9, 2013 2013 年 2 月 9 日)
17×10186-719 = 1(8)1851<187> = 3 × 79 × 239 × 631 × 2297 × 23581 × 290701 × 6263484916213832789846385879533844146258239331<46> × 2540098180161678556463426132207000926251890655329<49> × 210957284903813352616514417790254467181462713479241661811938225232925199<72> (Dmitry Domanov / Msieve 1.50 snfs for P46 x P49 x P72 / August 19, 2013 2013 年 8 月 19 日)
17×10187-719 = 1(8)1861<188> = 11 × 38049998170671837090688817<26> × 500583471801384822334086674083<30> × 90153497646641310326944319538203642791563401319391629531885316013320146569086840682444563959288491745885439016303429741998231221761<131> (Makoto Kamada / GMP-ECM 5.0.3 B1=400000, sigma=4182934503 for P30 x P131 / November 28, 2004 2004 年 11 月 28 日)
17×10188-719 = 1(8)1871<189> = 46281797 × 6703837968824142319548566209<28> × 18284711636540291744488699704039629<35> × 6046424374440345331609702538553541573262983367<46> × 5506630666650624530936151410813003802749830770712958032362796387418558279<73> (Robert Backstrom / GMP-ECM 6.0 B1=1746000, sigma=4178575634 for P35, GGNFS-0.77.1-20051202-athlon gnfs for P46 x P73 / 25.37 hours on Cygwin on AMD 64 X2 6000+ / March 7, 2008 2008 年 3 月 7 日)
17×10189-719 = 1(8)1881<190> = 3 × 11 × 23 × 619 × 739 × 5279210203<10> × 13409604493<11> × 107675266350465140830705193009<30> × 1912676372795150025632328978462702508991135669<46> × 373153206012129821315686320158548131720389552387155666539865982574221376301248180391861<87> (Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=1448624200 for P30 / February 17, 2005 2005 年 2 月 17 日) (Wataru Sakai / GMP-ECM 6.2.1 B1=11000000, sigma=2333727894 for P46 x P87 / June 10, 2010 2010 年 6 月 10 日)
17×10190-719 = 1(8)1891<191> = 67 × 6724305468719<13> × 21867222353024700925161620939<29> × 1917302127035441296944030238126731388340273255071672437872280220046632296607528307177379041324564506892369362356352287227657496387632276376340741823<148>
17×10191-719 = 1(8)1901<192> = 7 × 11 × 29 × 293 × 9305736371453772117405773<25> × 393500811024611853476836425098662716573266041306417<51> × 78841284586961539532203066788069131549957240102867354664422585887973746095417209306966517892597653418947146089<110> (Edwin Hall / CADO-NFS for P51 x P110 / December 19, 2020 2020 年 12 月 19 日)
17×10192-719 = 1(8)1911<193> = 32 × 61 × 89 × 1982348670399276182174543<25> × 8800750775437159575287156031788253529341934276447<49> × 2215870085091451783697819408148921047898524918901704488845204272947796799576797579668185371069198543475235721094101<115> (Eric Jeancolas / cado-nfs-3.0.0 for P49 x P115 / December 8, 2020 2020 年 12 月 8 日)
17×10193-719 = 1(8)1921<194> = 11 × 239 × 42509 × 2743602737<10> × 92013106361783<14> × 1226618192728483238346292651289<31> × 161717005463763229314052167087808349602007946617538073<54> × 3375195431845403879468502838102273698770496303316006714757004825720917522417783<79> (Makoto Kamada / GMP-ECM 5.0.3 B1=78210, sigma=3973126487 for P31) (Warut Roonguthai / Msieve 1.47 gnfs for P54 x P79 / September 7, 2011 2011 年 9 月 7 日)
17×10194-719 = 1(8)1931<195> = 5147 × 84407 × 43056693181<11> × 10097947456759266519242429494090117469855110081391142582356140635217076000846114105782915248785485578633417207782518472602915807982994626878969766005546264800906719495453420569<176>
17×10195-719 = 1(8)1941<196> = 3 × 11 × 62119 × 1006151 × 1170203 × 4425015506302491253122739041986890347972616157<46> × 176859685762697158332597652717921471946422930526878457220518651279984687929070253933094417935097288434148162623084752379563475304943<132> (Edwin Hall / CADO-NFS/Msieve for P46 x P132 / December 28, 2020 2020 年 12 月 28 日)
17×10196-719 = 1(8)1951<197> = 241 × 379 × 1153177537<10> × 59363240112353899<17> × 352750393775327194963<21> × 8563846629578051416229887633288589681072331503227699696198502366277127707165251920622473140487036993246808280929534389132757172303828349433101091<145>
17×10197-719 = 1(8)1961<198> = 72 × 11 × 154740857 × 6484318817072200664220252344377<31> × 266008689169421711041548379520301884259782751537055261<54> × 1312962934844870694659028851685005898108436996610836859156494519998488036527464003357136841727237835951<103> (Serge Batalov / GMP-ECM 6.2.1 B1=3000000, sigma=1746000186 for P31 / November 5, 2008 2008 年 11 月 5 日) (Eric Jeancolas / cado-nfs-3.0.0 for P54 x P103 / September 6, 2021 2021 年 9 月 6 日)
17×10198-719 = 1(8)1971<199> = 3 × 97 × 46477 × 13463511037<11> × 568085805573973789163262484271915200672351<42> × 494688803071797093880512893541330246493612081923667353989233<60> × 36912289756815203595589584098230814197762349183760991867160072165212610668722973<80> (Eric Jeancolas / cado-nfs-3.0.0 for P42 x P60 x P80 / December 3, 2020 2020 年 12 月 3 日)
17×10199-719 = 1(8)1981<200> = 11 × 79 × 179 × 311 × 1301 × 61294016280989<14> × 22030879712705358600917128333830295651756256154670274552234135459967847121<74> × 222252165045012305617229581459737734267357026958229050496637965540874424009389793207630944877273594009<102> (Eric Jeancolas / cado-nfs-3.0.0 for P74 x P102 / June 21, 2021 2021 年 6 月 21 日)
17×10200-719 = 1(8)1991<201> = 107 × 113 × 239 × 2626049 × 98761234267<11> × 451615796298192738353020451324043674099<39> × 7469627141567855558655557330898028744381914198723203307326651<61> × 74711749749106013081640785966299343039057369289286993982687469888295108554007<77> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P39 x P61 x P77 / October 1, 2012 2012 年 10 月 1 日)
17×10201-719 = 1(8)2001<202> = 32 × 11 × 19 × 31796547805938039585419897133828643824175198297400217410326127120499602656036681<80> × 31581855765568131622365268544816053167111216708269624694240156229897664987109651071437679829309807053542389173817280721<119> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P80 x P119 / January 5, 2014 2014 年 1 月 5 日)
17×10202-719 = 1(8)2011<203> = 157 × 736409 × 3053924963<10> × 6347012881309<13> × 4158984183722487084191942146869861139<37> × 2026621573857831338045512775981552862573222463093375564411127698517558702806243735924066323235163425400384396934366608093345795476179449<136> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=122793728 for P37 x P136 / March 23, 2013 2013 年 3 月 23 日)
17×10203-719 = 1(8)2021<204> = 7 × 113 × 802733 × 16492626798226929912239441471<29> × 1531332034395862167673761726490504056143532329963291042538834183981128829082401710917936567917441190440854558916272229649920788511392243086135663354200793430787014351<166>
17×10204-719 = 1(8)2031<205> = 3 × 47 × 2377 × 4211005333321117<16> × 38222374759992067458616963<26> × 699082250437446175915990944242889873428768430339440540698868060844133<69> × 50087157321039621943157226174456870434512516169837760285825329279987885079087452897923231<89> (ebina / Msieve 1.54 snfs for P69 x P89 / August 9, 2023 2023 年 8 月 9 日)
17×10205-719 = 1(8)2041<206> = 11 × 199 × 6397229 × 176633663488590332465773191963214649493197918934681566782286802357951015526301047<81> × 7636516183934186698669888029579156734981310137958184932745902308648794159814985799189916051275716634034754814745183<115> (Bob Backstrom / Msieve 1.44 snfs for P81 x P115 / January 11, 2024 2024 年 1 月 11 日)
17×10206-719 = 1(8)2051<207> = 170207422379<12> × 5423138653461761<16> × 1198148322537851144198630823770008802780461770579320855756994163<64> × 170791646326473657815423934250228253162578837517806507346520361035669348391316793398615800381465945537742128904568673<117> (Bob Backstrom / Msieve 1.44 snfs for P64 x P117 / June 11, 2024 2024 年 6 月 11 日)
17×10207-719 = 1(8)2061<208> = 3 × 11 × 239 × 71261 × 45325289252137<14> × 20028666961275949481<20> × 3702116056591659716835837711486115924583206086275004714527935798583225341390045500467294520349001481701081386192792302961535030836213123359373791134412111623578472539<166>
17×10208-719 = 1(8)2071<209> = 36243124228749527250619005135239913770824247<44> × [521171650922561756098294752246291746566735923235146544019288271817859876005399925740743765495324487213662036917517975952682665041523090432428038935856033066014289623<165>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4268315234 for P44 / April 2, 2013 2013 年 4 月 2 日) Free to factor
17×10209-719 = 1(8)2081<210> = 7 × 11 × 313 × 7837388029081319816144097294257038665984352885311351765025886431637230359275087709592501924770295377324131317741541383713907675569017422052565822533873652084514704323011032276207995057835313426367739466781<205>
17×10210-719 = 1(8)2091<211> = 33 × 2477 × 4643 × 17241599 × 26325991 × 109529545688803<15> × 166189130953927<15> × 3310849644218890223<19> × 222373139325080306526182544559185427365699538766179708740810925146389668942373780875537880142154096676263174368108897241063551425882763552119<141>
17×10211-719 = 1(8)2101<212> = 11 × 23 × 2857 × 26132180565989212943299778076299511066901610341825830861152192436147938270870504438704587842479519672074952012861951837161467208186935477647839352881126708948534822437213208925707594119275572913472199740861<206>
17×10212-719 = 1(8)2111<213> = 79 × 1660423 × 3389453 × 4094529096223919<16> × 2759655091876646524073173872216391<34> × 37598645188035320504240783314020069148997867005889530116033867425202182437565096417682158045129188654774473311723694037726303977097629374490574256389<149> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=162219322 for P34 x P149 / April 2, 2013 2013 年 4 月 2 日)
17×10213-719 = 1(8)2121<214> = 3 × 11 × 103 × 79903 × 9577537 × 1480052969<10> × 2006241088300481<16> × [244555787163120193569872304682984330655985280373427541322552111834371359377925760902031756715538281779354537802890667398535392229167546092393840168039402136835879478529778161<174>] Free to factor
17×10214-719 = 1(8)2131<215> = 229 × 239 × 2137 × 647033 × 954209 × 650804003 × 264625643572599619<18> × 47338978823271008202631401698167<32> × 91428095645728819504244809288662307<35> × 350927873615399411027463051075430196767244845425762905917529044681037194687199089150276124492002378223<102> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1876526037 for P32, B1=1000000, sigma=161915024 for P35 x P102 / March 23, 2013 2013 年 3 月 23 日)
17×10215-719 = 1(8)2141<216> = 7 × 11 × 2344261 × 13457446839301929682314502429<29> × 77758352661414323553909514946579010420183443406134096276652645054651126740930213876088694083608816734527995466707607304060989252982791017949996285272318392482032909687742709134437<179>
17×10216-719 = 1(8)2151<217> = 3 × 131 × 1583 × 2975007176521<13> × 1815105262271494447<19> × [562267670687016743247586881868910816309911496944479128953804743852433155796409587808322616921238024437832602424003881329227177379857876727347238684871648730474126382436105255138177<180>] Free to factor
17×10217-719 = 1(8)2161<218> = 11 × 797 × 15316517 × 1350187697<10> × 3134093439016005418466917978320307<34> × 33242165051480886625044022989113942475498150712988573130612474310295132491378198144947839156444869951021496083217643288268240247836248344073227984977816141346711201<164> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1834958045 for P34 x P164 / March 23, 2013 2013 年 3 月 23 日)
17×10218-719 = 1(8)2171<219> = 337 × 94298236251341<14> × 3682205753073199993<19> × 1614228047801133252569863290612250998422450631859757711466210476110844562472518808189825549976607126418919231941438372051293480825493815575708818991436425711994489318204554304282388301<184>
17×10219-719 = 1(8)2181<220> = 32 × 11 × 19 × 29 × 1010291 × 5959319 × 88790828999177108569820533691295270077299357703<47> × 64775144405116838336803865444753762183627680119474913998258457609742022736971314104044329210964484451434070143896344667671095752510130589621206477608533887<155> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P47 x P155 / April 25, 2020 2020 年 4 月 25 日)
17×10220-719 = 1(8)2191<221> = 287887 × 639739 × 63765103 × 51347339567<11> × 7964950264314773414690732321379079879<37> × 3932760056642724545528067652031720034504153892940596151365400796802592067886028181921371935903357933922944257728785673125296066988303188152638937304684523<154> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2724805033 for P37 x P154 / March 28, 2013 2013 年 3 月 28 日)
17×10221-719 = 1(8)2201<222> = 7 × 11 × 239 × 70571597 × 194553939869<12> × 701644237342818842927<21> × 21330419946676300861067043728682467532881<41> × 49949534121049670723530605316018480364979129341357073757197607997810111296640245439507564251889552539104499207637240709778274744083860397<137> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2111504372 for P41 x P137 / April 2, 2013 2013 年 4 月 2 日)
17×10222-719 = 1(8)2211<223> = 3 × 6353 × 169541269 × 4299030613<10> × 362163074067396439<18> × 376031275837852111<18> × 527924159355001363<18> × 4537723248942207149387<22> × 2228806389479807923418089393<28> × 187003748602623133948925681342558183161788094439430349251620188836303286316066263774433942546932571<99>
17×10223-719 = 1(8)2221<224> = 11 × 67 × 35996509 × 798973595807<12> × 42362254179806507<17> × 16620506390788830212579887<26> × [1265676741193091800087718673983775293674404367328705055724731664354449528371517236994917510110477775313958272148765578894523468590502991791997060092037445208639<160>] Free to factor
17×10224-719 = 1(8)2231<225> = 307 × 44087525567<11> × 9317887589620535427053<22> × 22357532258543923816191311173343141<35> × 66990154443361335195898766523438621059975030230124261803609376860681949274586340742809195567174775964540347199400882202433016062137205918257831844513709813<155> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=228710800 for P35 x P155 / March 28, 2013 2013 年 3 月 28 日)
17×10225-719 = 1(8)2241<226> = 3 × 112 × 79 × 2279603459606522848283500643<28> × 8542011419250989494378859253575308217<37> × 3382620219637752427732468974683757026765081491469275381985479492090311245079689140391453734944736413149788604819011085170620546512046218307032261577310936663<157> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2673055462 for P37 x P157 / March 28, 2013 2013 年 3 月 28 日)
17×10226-719 = 1(8)2251<227> = 241 × 106739 × 413537 × 1980221 × 3021674055084383123<19> × 296749905498951166406087327415239017170916821808197807097652367193382660390166980572764015022976368565565825655161671813278736352171857114542740104122986906660928545397733982513544711758989<189>
17×10227-719 = 1(8)2261<228> = 7 × 11 × 223 × 971 × 1193 × 41390448007<11> × [229430432042296823512378557855919154216605667631420717794113410271484164703749345926877141757401888059533325032315011417579484853040914435695653471541019216128224949087597384372054211849860673229753358707391<207>] Free to factor
17×10228-719 = 1(8)2271<229> = 32 × 239 × [878144532258897670334211477865592231003667544811198925564337000878144532258897670334211477865592231003667544811198925564337000878144532258897670334211477865592231003667544811198925564337000878144532258897670334211477865592231<225>] Free to factor
17×10229-719 = 1(8)2281<230> = 11 × 17159 × 190634958918982849<18> × 1082862735368677181<19> × [484781232853912346647604354586332838922756378203572880473099666519468384026748429163643435189595067707523270534353838687047062570051559142453270792787848440471912219623549161723829151299801<189>] Free to factor
17×10230-719 = 1(8)2291<231> = 3301 × 20786023 × 63502206529<11> × 2803746557232016143680076683839<31> × 15461866339660204215727524766188659754209191971525992851983546524916849644380414647506365295946967664702133276254249537400865441568207120508846320964012717683657252190294186196837<179> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3863073023 for P31 x P179 / March 23, 2013 2013 年 3 月 23 日)
17×10231-719 = 1(8)2301<232> = 3 × 11 × 1247635680727<13> × 2383210409426490564563<22> × [19250512603975251409604893631315920393781948436474384336554440190283247927516103925787667746074735666712486733454229378141070909036330707147839368602771685716920104984235233707308258512665303262957<197>] Free to factor
17×10232-719 = 1(8)2311<233> = 1180773864709403803<19> × 6947816715640581699352582878758563267<37> × [2302455932652529191815664686067312598431426468552114525643413600563275940751190475322709815671247278716417624842032417554368759139325891025463768962059751120253504736898112072481<178>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=474854685 for P37 / April 2, 2013 2013 年 4 月 2 日) Free to factor
17×10233-719 = 1(8)2321<234> = 7 × 11 × 23 × 99025304933<11> × 20291336131684284219745548883<29> × 1184262967785438089217516836563<31> × 11339206634015745022485543398703275823182047<44> × 3952757748680311882526019552503773499992541250463830525869945210225276474218409431528832833903542610620227321173112609<118> (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=2905224798 for P31 / March 17, 2013 2013 年 3 月 17 日) (Erik Branger / GMP-ECM B1=43000000, sigma=1:4230563931 for P44 x P118 / February 3, 2014 2014 年 2 月 3 日)
17×10234-719 = 1(8)2331<235> = 3 × 9173 × 127622686385581071928063<24> × 537831062910689727650774748594329798907512355898875705270907512721518365817474536832579416874335046718557228528857624306624416616962619431034213624985797044475247797907006592095631539673009515514982668369073<207>
17×10235-719 = 1(8)2341<236> = 11 × 239 × 7607 × 47035886031793<14> × 7459309841499709<16> × [2691996141829574308749577560626260912741693752595039355458497836877859977410984489874359810391418490558503087563522024985024123004302566081018140953692464571248593230101238832716309900873254118378871<199>] Free to factor
17×10236-719 = 1(8)2351<237> = 89 × 25795811347<11> × 33879602160509441188276173517<29> × 2428448575089234835924313336786466469676373394855698300890071291001553333686968986929653450852690607187310474402681661578288424894606404909973573421881582313709663992230945137138284243944347338671<196>
17×10237-719 = 1(8)2361<238> = 33 × 11 × 19 × 109 × 1101697636000952863<19> × [2787452312170166933026163129094515634793004879921530948343970805438279740157436803530416677810489641437454683328121987003467542805840750805472548421476741744069372504053318830855950873787301040359765421772473580801<214>] Free to factor
17×10238-719 = 1(8)2371<239> = 79 × 197 × 431 × 39712367 × 411100211089<12> × 20685760404528181<17> × [8338556218056017712879389039506347044325693294878086924596007127605436193537256489871205700812282298781761527382911522309427105997828975307439306654141233739943848520001216653390760017162512864759<196>] Free to factor
17×10239-719 = 1(8)2381<240> = 72 × 11 × 401 × 873923210937817279106912167118793410207731547239919167243713022124137193606377788778928786053830585358907410920236000392751372444995530139812291575740097293357001230175437514233381707553421126630959192412701497133274831885448201800179<234>
17×10240-719 = 1(8)2391<241> = 3 × 23971 × 26266306354746553319829361713304811214785767370140153920555238814802454200059639966193718644596789021301974453699454742381612349490201895191257337183664829570298678804790356248368012583105820767995896275901281950257796071487615436553737<236>
17×10241-719 = 1(8)2401<242> = 11 × 81629 × 3832121 × 22678632209<11> × 2236186815087671<16> × [108244315055338368649630663778580037705886959272092222179995823892395795262900191911823726662105917105163020071923649143568767930739825647651484593832355225273511874306096669862497305105186457651913265121<204>] Free to factor
17×10242-719 = 1(8)2411<243> = 59 × 239 × 25281541 × [529850022526556674596715210878013831369184815098607516299566120828544349797031690474498551239844475758561264816055582258648845939649546795123657378369144319084330800142654580607178438000761772601423972954909229107305883856303349641<231>] Free to factor
17×10243-719 = 1(8)2421<244> = 3 × 11 × 5351 × 145899594149721147434800187164781<33> × 153880928156889637474610157932840303893<39> × [476451435876995559421578228474356964345592152848814106135784165435953128569582200057212916718550842038739406634129864435809550382298123371296468164230955389775161021879<168>] (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=1347009383 for P33, B1=1000000, sigma=1432403743 for P39 / March 23, 2013 2013 年 3 月 23 日) Free to factor
17×10244-719 = 1(8)2431<245> = 863 × 6397 × 7019 × 423769 × 1150309852374560169863218691145028738763624484341472541273165539248500310122013498378931734610410248564608469149023312771238911597922446253138349390201655010508435679594856988376478874297424815808374173694253609011774423373266361<229>
17×10245-719 = 1(8)2441<246> = 7 × 11 × 42461 × [57773073010585080484517615060937168282732447495406445972848083019769979568382809003613977590096852478802974552014847815700362743531769225935637466218469963082666504630188952272746813619614542814655859567660985432587608702160879452982794873<239>] Free to factor
17×10246-719 = 1(8)2451<247> = 32 × 417577 × 11652345736727<14> × 318616447360150733<18> × 604649047505963754361064924141<30> × [223893974887781812262782290717388449875468484113299583821134051335126398820184134497060114895131255919559321506674366253045491547854907258877322280175513731521317228796803266965807<180>] (Makoto Kamada / GMP-ECM 6.4.3 B1=1e6, sigma=3346926797 for P30 / March 17, 2013 2013 年 3 月 17 日) Free to factor
17×10247-719 = 1(8)2461<248> = 112 × 29 × 103 × 1217 × 3083 × 13929057014998275884256875888605707927331454536062053014908766132703984881975377338248420195965530397974167239304584557843585238038428595508698697738720615780266306988982212518729378239093644589649486259340379003448697973890887149343073<236>
17×10248-719 = 1(8)2471<249> = 949888253 × 113967256812773933391198410335595531<36> × 1744832733334478277364908377630630093973811608032564909365694466565388834894824392336558137049889433445318802792293856298309367822329888570566986669373878848786654267467771544410830204629644411214544048367<205> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1278066702 for P36 x P205 / March 28, 2013 2013 年 3 月 28 日)
17×10249-719 = 1(8)2481<250> = 3 × 11 × 239 × 61856106246710739966405954591476994739<38> × [3871791774091358332369710980152705550633505298710777312405929788165977571165400416225947173156670035291371915099574927550208595579959361013898384309194339176825099731174555023353588220540369390321495585424517<208>] (Lionel Debroux / GMP-ECM for P38 / March 25, 2013 2013 年 3 月 25 日) Free to factor
17×10250-719 = 1(8)2491<251> = 47 × 569 × 21863 × 6150983459<10> × 1822038218947<13> × [2882600723030232624831158476467355619263195116558740840728154880975146457120982090842532643495669685420775088329141395427527986112849861282240722899660260542711251560032644361890455773544626575985022803486179869951158633<220>] Free to factor
17×10251-719 = 1(8)2501<252> = 7 × 11 × 79 × 383144639 × 158707208746577929<18> × 31035746772532604471<20> × 44925094921476032677024623500341141<35> × 77910067110295081633279469901630753029<38> × 4700936741440820598486069991015480075906073068764023868649869007710962449937769590898941661872116368134638048812650784793632730963<130> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1902520640 for P35 / January 1, 2016 2016 年 1 月 1 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=695244921 for P38 x P130 / January 2, 2016 2016 年 1 月 2 日)
17×10252-719 = 1(8)2511<253> = 3 × 61 × 9929 × 1039560600971206433926170283817777745979453512776169210624333802175164371347435034036131335151096770066867595385647324907878114332464811026533683628565486477976633490618852260276866786362897274963106300024649816367734900795037602435702718200253983<247>
17×10253-719 = 1(8)2521<254> = 11 × 107 × 50024738529128261<17> × 1883363962548204557514555890359<31> × 29020354940779567634661175092997704119394527<44> × 5869595130622922389322181777551927857430291109613261509939820072942936858921513282146578633855129009508307826782250762583629527204249231800505208743402908793661<160> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3113364098 for P31 / December 21, 2015 2015 年 12 月 21 日) (Dmitry Domanov / factordb.com for P44 x P160 / August 8, 2021 2021 年 8 月 8 日)
17×10254-719 = 1(8)2531<255> = 571 × 700391 × 2990670291360599<16> × [157928754508011968550623003424203342851778718096269878734483265866420351838894662747460645109922421494049094516056825781043400581825840655859862191365876401170965636471982288298306347248507248826802051182373871757875482347580190979<231>] Free to factor
17×10255-719 = 1(8)2541<256> = 32 × 11 × 19 × 23 × 76091 × 513135827 × [1118212005379907558531944596195938911429924588266128694538664802996487813277714646611593218137769706594165065872744096203596930268493724687492706185584549678965941644260910529806316768167787367597320620431104226717687703164914560353262191<238>] Free to factor
17×10256-719 = 1(8)2551<257> = 67 × 239 × 241 × 373 × 3631 × 455251441291<12> × 41236934277888652222425268896961<32> × 192505829304734370550132728842100156183284560152864010756554000437321528055824817026101052399543347622393770145457969361215815036411253894556791139725784546972131158033350347948553397413154764490908189<201> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2761385572 for P32 x P201 / December 22, 2015 2015 年 12 月 22 日)
17×10257-719 = 1(8)2561<258> = 7 × 11 × 11981 × 2252161909366648777<19> × 11247753197725009895859121000373<32> × [8082714359716812669599376312796239684842660943259231906427576949199300226248867964828298140271632494077098595612658818147743987276743938322362803203320129101652876561711618101135048827188764218488244253<202>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4202075629 for P32 / December 22, 2015 2015 年 12 月 22 日) Free to factor
17×10258-719 = 1(8)2571<259> = 3 × 77201 × 232109 × 46190812919<11> × 919623649801508081654741286163<30> × 180508086554691135690380373736325639<36> × 4582556743603172417296428250987849609482469378851501458318716460339272882731344420304363352774228275102323715028223815115492910721886864155191446815244625999966680373658541<172> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2415691317 for P30 / December 22, 2015 2015 年 12 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=935579903 for P36 x P172 / January 9, 2016 2016 年 1 月 9 日)
17×10259-719 = 1(8)2581<260> = 11 × 3005927056530857<16> × [571261938456186800047930291844937251457789154905756832946702869726632956060228670437986955733523719882271810640912821468783543911358869448748504946494427535215604845705133714376028940124487697032627711172265892418713490670944672517717289927803<243>] Free to factor
17×10260-719 = 1(8)2591<261> = 2861 × 11257 × 6958774553111806654984575265386828429370164959<46> × [842816678697103970643605114721590060830757944842749736586990897604977711365030521946295995452934051499598661333525317684699584415645784769430107693242438179229106045124053866935864019802456852725026541477667<207>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4146348532 for P46 / January 17, 2016 2016 年 1 月 17 日) Free to factor
17×10261-719 = 1(8)2601<262> = 3 × 11 × 274811 × 46928955576608150166449<23> × [4438308342578325280774753099077788914830975607874158868286239411326341703722920677835088579485503693143179614778890814288241153293751931965274512558907281272264875660572854207387470563197261684463919377369313112136842922628271575763<232>] Free to factor
17×10262-719 = 1(8)2611<263> = 193 × 6284750380726652873<19> × 35676550639907145992209<23> × [436493933025071821482046675334461617876791078505352650574556972549291929928344266269092230773033431490404674592671632025149876111580672197088253821475114257947182960278941936876149763697389082652654176464741447950846681<219>] Free to factor
17×10263-719 = 1(8)2621<264> = 7 × 11 × 239 × [10264027000428674068841432858169259842900010264027000428674068841432858169259842900010264027000428674068841432858169259842900010264027000428674068841432858169259842900010264027000428674068841432858169259842900010264027000428674068841432858169259842900010264027<260>] Free to factor
17×10264-719 = 1(8)2631<265> = 34 × 79 × 409 × 60090400718137177<17> × [12010632912882437038766646393990499903987535977393634178226868150312236052669403060990132155122242266038391571604722816832433400922268675812475237230163182647506047221157834044118967178080317827617431475405245554403209250779381104091429430783<242>] Free to factor
17×10265-719 = 1(8)2641<266> = 11 × 68716937 × 12401070591588184843<20> × 8303174933628018157436442019<28> × [242687029716619063174482701539927657453554716707687571888260072242904125230310744601404022253081614926443117197289539541088865802931858403297714542890779022791360064456982564016849516958818091215083566991015899<210>] Free to factor
17×10266-719 = 1(8)2651<267> = 547 × 3166145011<10> × 365836429641019742047<21> × [298127016420341260522612227514816375727809478903734147496001885872433217971928755563506891171630536044751075957015983128371992771979879859614921782592319865132277215947421289151941723487183036508599058673973661478516735911349548985319<234>] Free to factor
17×10267-719 = 1(8)2661<268> = 3 × 11 × [57239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057239057<266>] Free to factor
17×10268-719 = 1(8)2671<269> = 2542295345783834161168128529121519<34> × 7429856220369672969996971130312089368876902250726632970970318221711341678333828040341314108802288894568777102355447651265579266382484723858887448320333894401395759197143494931998636408564409970126498129380569910147540239504603062821599<235> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3618822459 for P34 x P235 / January 2, 2016 2016 年 1 月 2 日)
17×10269-719 = 1(8)2681<270> = 7 × 112 × 24631 × 13710259 × 98368134521<11> × 765222653593<12> × [8773099289581948053283387979554883969215913865923952824262139414182946362069782931738178765834103829451510435969761740393013135306945593887089304870498719392866205183181574757383562928251274742538390561492758566060635498041833715379<232>] Free to factor
17×10270-719 = 1(8)2691<271> = 3 × 239 × 953 × 1471 × 1221438587<10> × 2650676223961<13> × 945900193211720814395459750699023<33> × 1370799819499964415242915101875729066049867<43> × [447645282164946466093466859972179856958067296805667890482820410049406854258673724884861188626843519248712622030992139609211247234673944171697456017965199859498439053<165>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=4006865963 for P33 / December 23, 2015 2015 年 12 月 23 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3591935215 for P43 / January 9, 2016 2016 年 1 月 9 日) Free to factor
17×10271-719 = 1(8)2701<272> = 11 × 263 × 7331 × 178358953 × 26540754341<11> × 2647583751064829003538057157373<31> × [71061909830697952583795925883614916162955325114341545351718664888404214861157315589656495232908441943669219747455515269867390803884255539763926518494762394844917530131165356585607030340164525781181043168492190603583<215>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3700186644 for P31 / December 23, 2015 2015 年 12 月 23 日) Free to factor
17×10272-719 = 1(8)2711<273> = 6143 × 108557 × 624807405433<12> × 337855879148255899<18> × 1333849959925144762254309909077<31> × [1005966305970035332946117348156931745970274770141949921366839411874097863297040952459338047775779688063320004045825189131903157682359139267105261390713616515547659121316314799853113606459297869594006168309<205>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3335280903 for P31 / December 23, 2015 2015 年 12 月 23 日) Free to factor
17×10273-719 = 1(8)2721<274> = 32 × 11 × 19 × 11633 × 260161801 × 1505931222949807<16> × 1157761854776581820164631<25> × [190308411210856591399926928115673675836575775955901489641183340694704594009074944322020039952662927232802224715242524303801252976726149540457899537126473328262610657524792167364848333929482986162670276625964293533094441<219>] Free to factor
17×10274-719 = 1(8)2731<275> = 509 × 1015669889748562381<19> × 36537266416948845383859862720548352798215859299685792166158190766704044013966737542742379209735765916400366593662755761865352304207643029591882701455866093534624855238247339662834372261515154820031153737164516302025484459196612768266769270734196178156889<254>
17×10275-719 = 1(8)2741<276> = 7 × 11 × 29 × 23012385541<11> × 303723208357136613047881679<27> × 12102582967806516831093030604772595817719191978582694523989102363318809628848414060524712421254877930411179841272160151436120587947569788425684386718049013173772489679998638397898271127135388314086498028769200823011772906970705261849163<236>
17×10276-719 = 1(8)2751<277> = 3 × 7520221 × 2019510633348193892475511<25> × 670127059611980910681971519658676272607<39> × [61865888484326361965971958478944699531387145495070526286447398304169185178590982358671309100621447996511305885098262369945255882720471063383469613372199929006438218285125843311471583158419395992801440800031<206>] (Serge Batalov / GMP-ECM B1=3000000, sigma=1387361510 for P39 / January 1, 2016 2016 年 1 月 1 日) Free to factor
17×10277-719 = 1(8)2761<278> = 11 × 23 × 79 × 239 × 1377979773326576977729<22> × [2869578142670587977562702342012544471355148355487952319771052783406086548147412763993864854161097909378606930797441513884858850807860166988616661028070213099673533606352705584902365158204779412070704852504048088001203263375345090450825116320477826373<250>] Free to factor
17×10278-719 = 1(8)2771<279> = 784222689035335061235319<24> × 7949300786557598692755187<25> × 3884288916358506770045245099<28> × [7800573855121155000660196126082459994313553958824507240492869061126997583621008412145800757593844340866525423373495046137875978394938654736258298642513058666503964552974087058898278054735921966460242023<202>] Free to factor
17×10279-719 = 1(8)2781<280> = 3 × 11 × 2731 × 3201349 × [6546930790797690436280968078911036411649259472365796211605839452743779304486862688000959315613120187926082136516426729852810377531558500925069742107496557001688318641554356744555984574071333297199230239397988188894930180997545834821908067778341676684306655975848129303<268>] Free to factor
17×10280-719 = 1(8)2791<281> = 89 × 157 × 499 × 2712182525443<13> × 218467533837162058568779413468031<33> × [4572043855989189278944088012478316156146033025849051044864683095615103432788320105773345831249072728221291094874451135515714839542276223901654375162753931674965077753210130213191615797722198270672563133253287345529641749182420491<229>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2325337072 for P33 / December 23, 2015 2015 年 12 月 23 日) Free to factor
17×10281-719 = 1(8)2801<282> = 73 × 11 × 103 × 2656811497<10> × 241322361201481503194257<24> × [758095771247827560630246302062481430609991106624082712241120236957299547646418282630347394406117744557013945702267641123069715305110819864358044762645601141171427658607761270164675595157866389239375051420858920985149176082944600094590116405131<243>] Free to factor
17×10282-719 = 1(8)2811<283> = 32 × [209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209876543209<282>] Free to factor
17×10283-719 = 1(8)2821<284> = 11 × 461 × 2339 × 11933 × 12611 × 4134719 × 7978056329197<13> × 73961339447353<14> × 926414082407350331<18> × [4681989111503701097480736333879166501298321854776093510594787500549248277559114846276914446039899746889939334294404171173404275996234808796774515485226712497525680336411327472751031201054887614539894430638381008703627<217>] Free to factor
17×10284-719 = 1(8)2831<285> = 239 × 1303 × 3733 × 4027 × 2398027 × 1208047723<10> × 75814983432533623477<20> × 11991038222888309483476684315901<32> × [15320554506413577158113918917311834763570493231622497518429625217976922195007305727197596346114558543530628490846975435288735860049313331560027091974089441207887266904565011607667894993856579294536203966119<206>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1229084546 for P32 / December 23, 2015 2015 年 12 月 23 日) Free to factor
17×10285-719 = 1(8)2841<286> = 3 × 11 × 2309 × 1070621 × 91043923 × 109774897 × 19120167465406451757799526078491<32> × [121167762596164008763176699764425778299652960715189249401720509893736679004317887773760792513578903388365560221353545826539922626601302770401187724867868781579634649230849466141223608796021793716494724929199897319102426244523153<228>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=526162225 for P32 / December 24, 2015 2015 年 12 月 24 日) Free to factor
17×10286-719 = 1(8)2851<287> = 241 × 62964687719<11> × 309113215777<12> × 18038789912419090835566531<26> × 214217420448745852700195649979<30> × 1042107583793663416674438816312682275538338853712836586202773983775575988190504612021021534927697489912838038282107931863484516163916338784119021509001903994860204984723652403166146698207419582789127750536743<208> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3112335571 for P30 x P208 / December 24, 2015 2015 年 12 月 24 日)
17×10287-719 = 1(8)2861<288> = 7 × 11 × 149 × 363683 × 6376873 × 970345628515807<15> × 122339436227827446021290650909<30> × 577799405173855773845447002343<30> × [103497207194044207126363151391104068263640971308561559473991946477875755378970309650430733249988173133228352245788628979787426066862930201333821529049244150974332117811338961036231192670532435998087<198>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1734812395 for P30(1223...), B1=25e4, sigma=3357713200 for P30(5777...) / December 24, 2015 2015 年 12 月 24 日) Free to factor
17×10288-719 = 1(8)2871<289> = 3 × 29347 × 1843067 × 2843666641<10> × 8002891373500007<16> × 511510692571538598820930084394148330544849592050806755314701520773383219628780839661968396639768413416290010600637457763188218857775354081317921378183091122748127572206309104612930123142298905543437214078846126320086592802430966417280553506064120002029<252>
17×10289-719 = 1(8)2881<290> = 11 × 67 × 1489 × 33093966193<11> × 520110243721919050874864114232607233956591750625582815096463810893431205491448741201656371974101243007191610180759515017088214350538658658164945104217908422602681938682259443394560778195916717769958094594335700088437082467935579248099141084418376309354715020155313492010769<273>
17×10290-719 = 1(8)2891<291> = 79 × 443 × 24019 × 7737613388853545177<19> × [29041139030158048498631436945798646406052553068437149562945637780158246561520204673355229675092317088965198961168401244228733216874221452626359827211301599814933430437436608563960990999584085632309626571569228341053979874003295932616844519822282198645039052137271<263>] Free to factor
17×10291-719 = 1(8)2901<292> = 33 × 112 × 19 × 239 × 97849 × 685235767 × 1898931769411567495511780899608304047664236202336079368560958847928003472081991157006191742221460984206268650563696426627603450705740025755695970321344610645662672695292606493375012553142404733041719487802477608950638982537245337163690729916853971999443121079237327703081<271>
17×10292-719 = 1(8)2911<293> = [18888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888881<293>] Free to factor
17×10293-719 = 1(8)2921<294> = 7 × 11 × 12116387 × 485723879 × 2074641979<10> × 69891918983<11> × 71926417806599<14> × 234744462307231<15> × 4329129347329716237883507322656722289<37> × 39327706517476702660616372111763987953392316916887154056757041429189417424328873451793738718606933984860685898037045024842734303746766779225217301898436076365555683638711464169390167988547053<191> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2258811240 for P37 x P191 / January 9, 2016 2016 年 1 月 9 日)
17×10294-719 = 1(8)2931<295> = 3 × 97 × 611279689 × 27350620617272815266403<23> × 388245357959834440861722164871071908041509716596609582878115174949668464330671766407674285125839008612852116746769957178295433951973887433580088561584694112883244420879900520496655371200931998543288909704241169531462920978982191639535420139996633292388039101473<261>
17×10295-719 = 1(8)2941<296> = 11 × 127037 × 187675363 × 258813981889<12> × 1026995263497560553659<22> × 1047696092803159687430453<25> × [258633474116936203344567136055910731707735533658837563451842546247165762230132025795969337812633869139847389933094195402591381753226704525024127037557082701138896995723879175627135077377996018325572069594584645879818069245347<225>] Free to factor
17×10296-719 = 1(8)2951<297> = 47 × 491 × 7537 × 15923 × [68203027232126938243172612670493439177804916043943800241848666207078841484479475965845162807233238148961143296129188309940484853376348750423064215564386234846112566183415976199272855158460364954080982069474507285497744754878028357793047720930091055577939826143431174845333905604545503<284>] Free to factor
17×10297-719 = 1(8)2961<298> = 3 × 11 × 5227 × 40724479 × 1527995951<10> × 486627151117<12> × 15080927383883701651973<23> × 601636981952320910435662800825139<33> × 150940231398268899154018285391723332176061<42> × 9557884797397452875805444795885026209338547<43> × 27627177581007759221872371522139289537722186067622452766623247572961506924239678623135727428364535495503020692499122253698663<125> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=832268291 for P33 / December 24, 2015 2015 年 12 月 24 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=192481949 for P43 / January 9, 2016 2016 年 1 月 9 日) (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2940437811 for P42 x P125 / February 27, 2016 2016 年 2 月 27 日)
17×10298-719 = 1(8)2971<299> = 239 × 130527717206638789<18> × 510639617180982759130538327641<30> × [1185744891930149617519650352147841569630887375566866791749307014792880475961206295796310992653962247191197637608071732763002911028721243598933875916509239108353405427960725730109330261344096183443875350337116989748823741420908881306493399222337484171<250>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3079297537 for P30 / December 24, 2015 2015 年 12 月 24 日) Free to factor
17×10299-719 = 1(8)2981<300> = 7 × 11 × 23 × 48039247 × 97289582523649218979<20> × [22820508615032271536900003596525133523298489512438118864300322553931365380355223415373931610148371387926490032477286218491228127300324637883417696938108799942094748646608904627145536096719427721595091482551365505733382798959898848295399783483892241872691765369022364447<269>] Free to factor
17×10300-719 = 1(8)2991<301> = 32 × 59 × 212903 × 12127514553580813<17> × 1377711568962990843660079931997947132312684278173904956489916812945702370965837348176015850063527745429110582261539244767406393651970065570021744134005150944155816741249142257961621623881214287417851765105175670336152064629820065162226825504845122968114889431009679346245659409<277>
plain text versionプレーンテキスト版

4. Related links 関連リンク