By Makoto Kamada / GMP-ECM 5.0.3
(35·10192-53)/9 = 3(8)1913<193> = 1637 · 3959391502285618111<19> · C171
C171 = P31 · P141
P31 = 1902831840384627321743557842401<31>
P141 = 315317445054668231466894928407418052176979857291002402769887593292955927140627717865032030003548506786533662654988210078682631168818914249769<141>
By Wataru Sakai / GMP-ECM
(2·10185-11)/9 = (2)1841<185> = 32 · 359 · 421 · 1087 · C176
C176 = P27 · C149
P27 = 993965187607299234770545369<27>
C149 = [15120554373554536809234562282082433804237632080329979107830133430786296738906060498222935854150096195649500877326258778496443087888428857652973202257<149>]
By Makoto Kamada / PPSIQS, PFGW
(101314+17)/9 = 11...113<1314> is prime.
By Makoto Kamada / GMP-ECM 5.0.3
(23·10188+1)/3 = 7(6)1877<189> = 13 · 41 · 929 · 1163 · 2371 · 357136939157939605250647<24> · C154
C154 = P28 · C126
P28 = 5115162052884287672659773391<28>
C126 = [307367694999875553737492429759713462809392993487376399203199693098476266926067270006622194260810515476294038695403330251569111<126>]
(71·10162-17)/9 = 7(8)1617<163> = 3 · 243502289 · 116444549857<12> · C143
C143 = P30 · C114
P30 = 128270027616314750452923569549<30>
C114 = [723014790938678651721147391990553557307168178882364588086043927423948319684735855253124973472587538762189468083777<114>]
By Shusuke Kubota / GGNFS-0.72.6
(8·10126-53)/9 = (8)1253<126> = 181650851122063<15> · C112
C112 = P41 · P72
P41 = 47779997009825364594464778334350093705527<41>
P72 = 102415083220217550609994342087264735608014189248540563036727476735646283<72>
By Makoto Kamada / GMP-ECM 5.0.3
(35·10196-53)/9 = 3(8)1953<197> = 33 · 13 · 84349 · 461651807 · 446380663993523863<18> · 18926803629417875634761866211<29> · C135
C135 = P24 · P111
P24 = 908799301214037157739831<24>
P111 = 370572601126933505818972951766246195700206529887515200446193569195537707291856741066535946708729578200520407957<111>
(4·10198-7)/3 = 1(3)1971<199> = C199
C199 = P26 · C173
P26 = 35433614694519093943915021<26>
C173 = [37629052097232818667461377267500258556528765122464137560967604709699561844372971913230440011564750950923381136673132384892693048327207884015141809874584076051079951831846111<173>]
(13·10155-31)/9 = 1(4)1541<156> = 3 · 11 · 3467296306805827<16> · C139
C139 = P26 · P113
P26 = 53176083389660692023025181<26>
P113 = 23739939025715336414882807123530767717941537308874831499933776828542756367871245825790200233389506764457581381871<113>
By Makoto Kamada / GMP-ECM 5.0.3
10191-3 = (9)1907<191> = 113 · 2454455881<10> · C180
C180 = P26 · C155
P26 = 13778267355178489115141197<26>
C155 = [26168071567655827784668613095752679469186561174274715129360764348641252465542696852075271284487059377732452739736751363821922726151257160699482936406081017<155>]
msieve 0.88 was released.
Quadratic Sieve Source Code (jasonp)
By Makoto Kamada / GMP-ECM 5.0.3
(89·10187+1)/9 = 9(8)1869<188> = 3 · 11 · 2113 · C184
C184 = P26 · P158
P26 = 53436670079527513453372141<26>
P158 = 26539618343392390368380352055345120368680743940244939749660016224269777920657790101145291847422912050143063087742829198697524309000191824413799439858404431901<158>
(17·10183-71)/9 = 1(8)1821<184>= 34 · 11 · 19 · 404051 · 1262581 · C168
C168 = P34 · C134
P34 = 8226908102544685947546600578514601<34>
C134 = [26585389367622980285597634026808282856915211378205220420001757511984116964702632958717990400249729741198964996462743818335851565740519<134>]
By Makoto Kamada / GMP-ECM 5.0.3
(65·10186+43)/9 = 7(2)1857<187> = 3 · 89 · 4679 · 597347347464359<15> · 1063097615099489<16> · 48686557186389825347<20> · C132
C132 = P29 · C104
P29 = 14690759029212971209960298983<29>
C104 = [12727794571503673891861633135672096636151861671189328309590168102650816980079545459487050908766251834789<104>]
By Wataru Sakai / GMP-ECM
(10169+53)/9 = (1)1687<169> = 7 · 423599701769<12> · 1052364121297714227371<22> · C135
C135 = P35 · C101
P35 = 18307918306050479551975785178628311<35>
C101 = [19449068501458045327500024953679334708298737317275986294768751101310893283329289738705475713907062479<101>]
(10195+71)/9 = (1)1949<195> = 7 · 17 · 23 · 2389 · 12658232542072891<17> · C172
C172 = P32 · C140
P32 = 54775119319789267517672726665291<32>
C140 = [24508128083609856106882937213433754990235080308233947248497274818116540519436837105107908460599060015366174127469342984467972328959407611243<140>]
By Makoto Kamada / GMP-ECM 5.0.3
(7·10135+11)/9 = (7)1349<135> = 311557 · 638558070133433464879<21> · C109
C109 = P26 · P83
P26 = 57239702533873135368356933<26>
P83 = 68299928839346941052777163320649254834472709556110044073808899477677543549258602821<83>
By Makoto Kamada / GMP-ECM 5.0.3
(34·10192-43)/9 = 3(7)1913<193> = 31 · 383 · 2817168331182533<16> · C174
C174 = P30 · C144
P30 = 303858227491837508671753047587<30>
C144 = [371699641301045371715009397719700819194689634622987190169463978076986750813314250294469112308304309717672733098887774670224422497803703559243331<144>]
By Shusuke Kubota / GGNFS-0.72.6 / 9.27 hours on Celeron 2.5GHz
(7·10129+11)/9 = (7)1289<129> = 19 · 292 · 2511503 · 108933706067<12> · C108
C108 = P43 · P65
P43 = 2283988048706725299301369546639948434838543<43>
P65 = 77896173863502176571577678368953373896208627033496246039633699907<65>
711...117, 311...113, 199...991 and 177...771 (n≤150) were completed.
By Greg Childers / GGNFS
(64·10149+53)/9 = 7(1)1487<150> = 34 · 11 · 239 · 3140489951628443<16> · 92248545285620965837<20> · C110
C110 = P45 · P65
P45 = 227609230400940542986888598100153182950382309<45>
P65 = 50642490439835718189428667246630220888405040722636658823591995707<65>
(28·10142+17)/9 = 3(1)1413<143> = 3 · 61 · 397 · 929 · 445940406966740321<18> · C118
C118 = P42 · P76
P42 = 106540935181710634812146198229680364269369<42>
P76 = 9702080662448933987065740048827096886400601223981574208001722106465596982803<76>
(28·10144+17)/9 = 3(1)1433<145> = 31 · 43 · 283 · 511487 · 38231297339<11> · 14125658889973<14> · C110
C110 = P46 · P64
P46 = 5863383766003845426545406587677594940597698973<46>
P64 = 5091998492558949370668423992575290217029909268874571443087414611<64>
(28·10146+17)/9 = 3(1)1453<147> = C147
C147 = P45 · P103
P45 = 215042343423248601224429232591047426278759019<45>
P103 = 1446743493204865942525593959923268509919858672928989291036331355757624848206979381830636837666024790427<103>
(28·10147+17)/9 = 3(1)1463<148> = 11 · 29 · 379 · 362767017637<12> · 4490115412771<13> · C119
C119 = P55 · P64
P55 = 3379960048529008835409795832584003030196599486272692489<55>
P64 = 4674000593576153338391447008543295421946203065781538473141212771<64>
2·10138-9 = 1(9)1371<139> = 7 · 1361 · C135
C135 = P65 · P70
P65 = 28067396514726202523860938206489746457258001501485978553895083833<65>
P70 = 7479485083314129370275849920397548796557371512278764262868303993853001<70>
2·10140-9 = 1(9)1391<141> = 17 · 59113 · C135
C135 = P47 · P89
P47 = 11920269538992421121435956097648950019099811559<47>
P89 = 16695983163826097420159437859577435460952586279369215627290094387500562238589852030582969<89>
2·10144-9 = 1(9)1431<145> = 7 · 47 · 1697 · 4751 · 15421121 · 324513125593<12> · C117
C117 = P57 · P60
P57 = 573979583578236121980436103332418434430645159014685375809<57>
P60 = 262495926279377751706900324634363777228196866952780943282841<60>
2·10146-9 = 1(9)1451<147> = 1471 · 958054117111388133836953<24> · C120
C120 = P48 · P72
P48 = 248481397786006983813082785705803914377145937759<48>
P72 = 571127931149896369612391508288727305834841885540092677990337631749027823<72>
2·10148-9 = 1(9)1471<149> = 57431787553239244660626976882036073<35> · C114
C114 = P45 · P70
P45 = 252248599228180796094726301293542573587723903<45>
P70 = 1380539695291779642420640847677458347322068680428219755758017617145889<70>
2·10150-9 = 1(9)1491<151> = 72 · 313 · 5857 · 19249 · 48073 · C134
C134 = P58 · P77
P58 = 2145366910370960233318195778943906318667242154816224697409<58>
P77 = 11215105892080335130809942373623305706116017816514634296425819268673685145143<77>
(16·10142-61)/9 = 1(7)1411<143> = 13 · 14011 · 168481 · C132
C132 = P49 · P84
P49 = 3563479047113386761119623011481295788624826790313<49>
P84 = 162569790755232174632253038467971580277889280486954183359029125576276166458052487149<84>
(16·10143-61)/9 = 1(7)1421<144> = 3 · 11 · 541 · 3777559 · 41314201 · 585278303828958603403<21> · C105
C105 = P46 · P59
P46 = 6781373468336971839816239803424973990462518899<46>
P59 = 16075909995899462039765753864202879468478273494535100080009<59>
GGNFS-0.72.6 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
(10179+71)/9 = (1)1789<179> = 17 · 43 · C176
C176 = P28 · C148
P28 = 9049402502510222344057348417<28>
C148 = [1679655468607621721991622154551885402806533022303409245104185450719565742097648958717415511161217486545435460473818370679440714209715530546103064797<148>]
(10193+71)/9 = (1)1929<193> = 3 · 83 · 1431244686853<13> · 4508363445277<13> · C165
C165 = P31 · C135
P31 = 1413521664942116360011121415991<31>
C135 = [489241024496907354315699990163522497568807868639472158427158410636880445374402685926600142762794996201973895068523081010022271307068961<135>]
GGNFS-0.72.5 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(65·10169+43)/9 = 7(2)1687<170> = 7 · 11 · 23 · 68659 · 4321029614939<13> · C150
C150 = P27 · P123
P27 = 530897822686884962677615417<27>
P123 = 258914650400347979772352997931146995187006701423208429518294066462041557386591671044316656361151981352276780780439601952161<123>
By Sinkiti Sibata / GGNFS-0.70.1 / 56.62 hours
(16·10141-7)/9 = 1(7)141<142> = 2700157891<10> · 723675947437300258661473<24> · C108
C108 = P40 · P69
P40 = 2059716706349518931454333178468365050321<40>
P69 = 441709442271126037425440816784629391989083973497442626102237114143659<69>
GGNFS-0.72.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
344...443 and 322...223 (n≤150) were completed.
By Greg Childers / GGNFS
(31·10149-13)/9 = 3(4)1483<150> = 11 · 109 · C147
C147 = P57 · P90
P57 = 460950251520524706530553225277879860588205486095525504899<57>
P90 = 623226548022901662551202045361712347011223958350429685982315610317292019855843356086236743<90>
(29·10140+7)/9 = 3(2)1393<141> = 778202447329343<15> · 255634545372895486257701<24> · C103
C103 = P47 · P57
P47 = 14599358663108219697910971266419485362482734451<47>
P57 = 110945470430273774745793119192113514201471215817716782511<57>
(29·10142+7)/9 = 3(2)1413<143> = 32 · C142
C142 = P47 · P95
P47 = 72676809139323704052905476303361918607632886971<47>
P95 = 49262577099619249943533650691225341348077300300841245943490622038640278667808424840167507319957<95>
(29·10146+7)/9 = 3(2)1453<147> = 17 · 19 · 31 · 251 · 1546424377213905874648018232119<31> · C110
C110 = P40 · P71
P40 = 4848526173866663057910655329664036964087<40>
P71 = 17099331001716948283396379468311539628698618084906876523024979878696657<71>
(29·10149+7)/9 = 3(2)1483<150> = 11 · 281 · 293 · 1732331 · C138
C138 = P62 · P76
P62 = 42837029641825804525955562286559217176950686548923355753737357<62>
P76 = 4794448269214011981143749845644741116116001253418507462237430283225763744863<76>
(29·10150+7)/9 = 3(2)1493<151> = 97 · 605486638403<12> · C137
C137 = P43 · P95
P43 = 4679166340772318350732117004005241862927997<43>
P95 = 11724942082485353843533433020987100707385825600287806825634979780638923301536053795840228051849<95>
(64·10148+53)/9 = 7(1)1477<149> = 19 · 29 · 739 · 1396523 · 1479913 · 51349048391867140770561613<26> · C106
C106 = P43 · P63
P43 = 9967543258841904417522097714798246109082401<43>
P63 = 165096026422179072094658317382771330545919884412110764726758719<63>
By Makoto Kamada / GMP-ECM 5.0.3
(65·10154+43)/9 = 7(2)1537<155> = 2903 · C152
C152 = P29 · P123
P29 = 39403853043503858648144059421<29>
P123 = 631371713196639185248714562919354903977906977865731980463798981070349227815458512741230212303393723150149371924035521455529<123>
By Makoto Kamada / PFGW v1.2 RC1d
(13·103883+23)/9 = 144...447<3884> and (13·103883+41)/9 = 144...449<3884> are quasi-repdigit twin PRPs. These twin PRPs are the new record of the largest known quasi-repdigit twin PRPs in our tables.
355...553 (n≤150) was completed.
By Greg Childers / GGNFS
(32·10144-23)/9 = 3(5)1433<145> = 383 · 1867 · 32069 · 491186890889<12> · 601542130669492044017<21> · C102
C102 = P49 · P54
P49 = 2823771980123860179925775653461357305045257981711<49>
P54 = 185838853516964345350674982007227448082307037218837519<54>
By Makoto Kamada / GMP-ECM 5.0.3
(67·10199+23)/9 = 7(4)1987<200> = 7 · 11 · 107 · 127 · 28019 · 31477349 · C182
C182 = P30 · P153
P30 = 392167369159626686630550297457<30>
P153 = 205698836039776681355251012909841390282900437647629545411809050461810170629288834346279937426562252492963093662881506361037147935518256982678931785012097<153>
(14·10178-41)/9 = 1(5)1771<179> = 18077 · 970583 · 1735406205257<13> · 1745824177303<13> · C144
C144 = P27 · C117
P27 = 390328319148709270682251559<27>
C117 = [749712543163762808092051180657424884788820203073702176064721437535025801283241160904783569650296980815170595794069349<117>]
GGNFS-0.72.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Greg Childers / GGNFS
(31·10138-13)/9 = 3(4)1373<139> = 401 · 12893 · 12796260241<11> · 32929379212201443533<20> · C103
C103 = P48 · P55
P48 = 554633079933542031591579522742284342348517448827<48>
P55 = 2850679897768946559674743117034328399343889356271523721<55>
(31·10139-13)/9 = 3(4)1383<140> = 32 · 11 · 6701 · 21661 · 544650650153<12> · C118
C118 = P52 · P67
P52 = 2811507313834452114978909949105462027192928332606231<52>
P67 = 1565339792198947156697525257721137106919198765964637815049851256959<67>
(31·10145-13)/9 = 3(4)1443<146> = 3 · 11 · 487 · C142
C142 = P46 · P96
P46 = 6393603290665443480881234946610729026930442627<46>
P96 = 335220521651667107218263786787058988531447285220162861949338018864065764032755852659552020024879<96>
(31·10147-13)/9 = 3(4)1463<148> = 11 · 71 · 479 · 158838667231<12> · C131
C131 = P55 · P77
P55 = 3725073438097583761450446773397119494749844316356871593<55>
P77 = 15561145506225560175962989989424633757984940983855470418315679653575452991279<77>
(32·10150-23)/9 = 3(5)1493<151> = 2503 · 870363835261<12> · C136
C136 = P45 · P91
P45 = 194933845780761498493769886876022080930190049<45>
P91 = 8372565063096327905371943814043884867748842695140487878773556389068879437910468067490768259<91>
(64·10138+53)/9 = 7(1)1377<139> = 13 · 23 · 419 · 97673 · C129
C129 = P61 · P69
P61 = 1052353020314591008868541069764109032283018939271285517954081<61>
P69 = 552225267501012347389213738145076502574147575051856567905610514951589<69>
(64·10144+53)/9 = 7(1)1437<145> = 132 · C143
C143 = P64 · P80
P64 = 3246208754910879163055187223222904457641401288132318036614219281<64>
P80 = 12962068590155777291886746877946054984585085319160237158221903879170639247980853<80>
(64·10150+53)/9 = 7(1)1497<151> = 13 · 172 · 1637 · 2909 · 146161 · 1680823 · C130
C130 = P59 · P71
P59 = 51282266809016720519204373549550234146821081068719639373219<59>
P71 = 31548823397773504003120507136102584888224633364181214122391057893172301<71>
By Wataru Sakai / GMP-ECM
(10160+53)/9 = (1)1597<160> = 19 · 197753 · C153
C153 = P29 · P124
P29 = 32153282272391582463785808433<29>
P124 = 9197197143541566352036992011167749604031684102841422515193498657056297262146411381413519532306022893669673640065317970473607<124>
By Makoto Kamada / GMP-ECM 5.0.3
(83·10195+61)/9 = 9(2)1949<196> = 11 · 307 · 311 · C190
C190 = P31 · C160
P31 = 4833547434892721567340970805149<31>
C160 = [1816678800589205850678424867940972226068049860751790110242961033905951362648474454003602444521902168474105268092631266292494058628857653685711600584129938854943<160>]
By Greg Childers / GGNFS-0.70.0, GGNFS-0.71.7 / 303 hours (12 days and 15 hours)
(16·10175-1)/3 = 5(3)175<176> = C176
C176 = P43 · P134
P43 = 3809865316728652188521021727126618149052923<43>
P134 = 13998745073520892175014741138026536702111802636628910125487741607654260812520248593507784157795562918507819534511398477530470887314671<134>
By Makoto Kamada / GMP-ECM 5.0.3
(34·10196-43)/9 = 3(7)1953<197> = 3 · 3049 · 220117579995449<15> · 6082933562488974875094137<25> · C154
C154 = P24 · C130
P24 = 637323208774495304079671<24>
C130 = [4839830943105633696299301741374201570992839784033415334780269648603480365146737448838678293254973474826576076504959048705689662033<130>]
GGNFS-0.72.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.87
(10154+71)/9 = (1)1539<154> = 35 · 854869 · 2970437718965177<16> · 50125992759858511<17> · C113
C113 = P26 · P42 · P46
P26 = 10284751290915106911292019<26>
P42 = 428115055933763296537972075861137296953451<42>
P46 = 8158567576053432819049447894238169488585549399<46>
By Sinkiti Sibata / GGNFS-0.70.1 / 34.26 hours
(16·10140-7)/9 = 1(7)140<141> = 32 · 4283 · C136
C136 = P46 · P91
P46 = 1255732917140267214235755887825512553979909037<46>
P91 = 3672735143054920858870024280177506909993855314539893398136327244475556479693338563201319543<91>
11...117, 11...119, 755...557, 755...557, 788...887, 799...997, (n≤200) is available. These composite numbers passed GMP-ECM B1=74700...95290+alpha, over 100 times.
755...557 (n≤150) was completed.
By Greg Childers / GGNFS
(68·10144+13)/9 = 7(5)1437<145> = 35 · 23 · 13945404136120024546427<23> · C119
C119 = P44 · P76
P44 = 23211451151738845633925222558021475575706593<44>
P76 = 4176369314833240238377846678742353391606662434841524592045050920015716823683<76>
(68·10145+13)/9 = 7(5)1447<146> = 7 · 11 · C144
C144 = P64 · P81
P64 = 3924112290854612071698252065274700350541910266881493019700289331<64>
P81 = 250054256481860730548134214414765998644899272453962050170910893493868726358200611<81>
(68·10148+13)/9 = 7(5)1477<149> = 22469 · 34809824759<11> · C134
C132 = P58 · P77
P58 = 3471085524687375963317592208635711331114334690023841311771<58>
P77 = 27830147468737212631279231922913712354156722622633589702232018214118020162277<77>
(32·10142-23)/9 = 3(5)1413<143> = 32 · 7 · 163 · C139
C139 = P62 · P77
P62 = 37052386610194089858497157707817016361529223865041303681128493<62>
P77 = 93446519026618071246939147177137029587740773266947403638405006224304646112009<77>
(32·10146-23)/9 = 3(5)1453<147> = 199 · 1004013187382899<16> · C130
C130 = P57 · P73
P57 = 620232911534784175359515185436256508463118883004253873169<57>
P73 = 2869195676553103553611261011625813130057391138589500599594406300755325437<73>
(32·10147-23)/9 = 3(5)1463<148> = 11 · 17 · 19 · 269 · C142
C142 = P32 · P45 · P66
P32 = 19807720402464734386066888634009<32>
P45 = 307825839486242903383200941887027385926143823<45>
P66 = 610127235327811591990564716338073902112550108597058390517294034147<66>
(32·10148-23)/9 = 3(5)1473<149> = 3 · 74 · C145
C145 = P64 · P82
P64 = 2336600842212296595339738075465078869491766404430005313162342671<64>
P82 = 2112562299719826137213358170247400044085579867209545258021531756610672011142726181<82>
By Anton Korobeynikov / GGNFS-0.71.9
(68·10143+13)/9 = 7(5)1427<144> = 11 · 167 · 1733 · C138
C138 = P48 · P90
P48 = 696668753191122752626885118291333116963574293177<48>
P90 = 340668793268167583982152596103912829483677946852078596397114775594959634036933728303335021<90>
(68·10146+13)/9 = 7(5)1457<147> = 883316111 · C138
C138 = P50 · P89
P50 = 60219299227531140351493841994138016855672231869409<50>
P89 = 14204127246749615447126583868720585230285770174675273371735992145641241202515285142665643<89>
By Makoto Kamada / msieve 0.87 / 5.9 hours
(8·10170-17)/9 = (8)1697<170> = 33 · 29 · 12289 · 20047 · 839916478644411211<18> · 31528405303865506514741<23> · 20073120811434752849076139<26> · C93
C93 = P44 · P50
P44 = 26154423033817308400292740294424628345830003<44>
P50 = 33145275390848276684510115292036240442121498596449<50>
By Makoto Kamada / msieve 0.87 / 4.9 hours
(34·10165-43)/9 = 3(7)1643<166> = 7 · 11 · 151 · 521 · 197551 · 974989 · 2923190689<10> · 395209137409964686843<21> · 5921549992603136653212469<25> · C93
C93 = P40 · P54
P40 = 2483082289701751110405794664423845525849<40>
P54 = 190608132858769839835092587114608953328792302604968283<54>
By Makoto Kamada / GMP-ECM 5.0.3
(83·10178+61)/9 = 9(2)1779<179> = 3 · 53 · 580639028849827970531<21> · C156
C156 = P27 · P130
P27 = 451940302079296897849001351<27>
P130 = 2210299689009418095104358190470413704614975776514014390656867590105814388845964997621074189972097637164793795116092662237699844351<130>
11...117 (n≤150) was completed.
By Greg Childers / GGNFS
(10149+53)/9 = (1)1487<149> = 1013 · 5227 · C142
C142 = P65 · P77
P65 = 23430958549178212402707250428155549302593049861696641748046787997<65>
P77 = 89558227449013240886491994775259054330327008822547351840698641976896740449511<77>
(10150+53)/9 = (1)1497<150> = 3 · 67 · 83 · 14503 · 2161417 · 69806218615185630871<20> · C115
C115 = P40 · P76
P40 = 1550861962896362912059273139971142622091<40>
P76 = 1962545224781331986129612684018787936117517536125682255077567793742609038509<76>
By Makoto Kamada / GGNFS-0.72.0 / 1.66 hours
(8·10168+1)/9 = (8)1679<168> = 1753 · 34897 · 83516827 · 80165767057<11> · 4834032192520903818107<22> · 94198351040254255401851<23> · C97
C97 = P35 · P63
P35 = 30169491546237451126417322718589489<35>
P63 = 157976940889535480798393803341491245339384466696501354253146107<63>
By Makoto Kamada / msieve 0.87
(8·10174+1)/9 = (8)1739<174> = 19 · 97 · 16124164670147<14> · 221098473172853592548251<24> · 4262454753021520624390749153398250693570713<43> · C92
C92 = P25 · P68
P25 = 2366083081249221177484393<25>
P68 = 13414342849447855126321989865167738040587090052732205552308327988851<68>
This factoring took over 3 hours. It may be faster to use GGNFS for SNFS of 4·10116-2·1058+1.
By Sinkiti Sibata / GGNFS-0.70.1
(16·10138-7)/9 = 1(7)138<139> = 5323 · C135
C135 = P57 · P78
P57 = 649934656190487760276914498985166053925743092100945933373<57>
P78 = 513867689954309299765783673109096251362712759990535028034435498581446456796463<78>
By Makoto Kamada / msieve 0.87
(8·10158-17)/9 = (8)1577<158> = 3 · 1220340659<10> · 32286752089<11> · 72827732377<11> · 8301373285666551053<19> · 139473270822343305961<21> · C88
C88 = P31 · P58
P31 = 1169902647640413773391556110703<31>
P58 = 7623130284963374144087381380873323320095760613859702563373<58>
By Makoto Kamada / msieve 0.87
(89·10153+1)/9 = 9(8)1529<154> = 11 · 31 · 61 · 563 · 617 · 1117 · 2633 · 30170927 · 13269024345448025737931<23> · 95346673734407302484957<23> · C86
C86 = P27 · P59
P27 = 199359831203703219591466201<27>
P59 = 61149772131444053967584347436622464995185610376773276810391<59>
msieve 0.87 was released.
Quadratic Sieve Source Code (jasonp)
By Makoto Kamada / GMP-ECM 5.0.3
(14·10156-41)/9 = 1(5)1551<157> = 3 · 19 · 1093 · 56633 · C147
C147 = P31 · P117
P31 = 1919321978500255112680979149073<31>
P117 = 229706404554227575881050953912992750721970586230677319515972406160550922439917765063028600524700241223343578439937939<117>
GGNFS-0.72.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Anton Korobeynikov / GGNFS-0.71.4 / 58.05 hours
(86·10152+31)/9 = 9(5)1519<153> = 7 · 834108229 · C144
C144 = P46 · P49 · P49
P46 = 5916645523928895560960823067319451365163322579<46>
P49 = 2783345759919546350694624569529505710407778741641<49>
P49 = 9937857967881569744716675196424141346528220723527<49>
By Greg Childers / GGNFS
(10140+53)/9 = (1)1397<140> = 15859 · C135
C135 = P63 · P73
P63 = 161691650409957190061302716209501924724287055024494821243134517<63>
P73 = 4333053960970062840083114465588607914859544329042298986285990197655880739<73>
(10147+53)/9 = (1)1467<147> = 32 · 13 · 151 · C142
C142 = P44 · P99
P44 = 10392908444136833280614366847742405653164693<44>
P99 = 605142395504852185677280557529678463437111016154847913971417589537210607510736253010560300340667507<99>
(10148+53)/9 = (1)1477<148> = 31 · 1007701577<10> · 77394931309<11> · C126
C126 = P53 · P74
P53 = 26898408626574685411475228622320332544226431162701931<53>
P74 = 17085384328576636444339757093579807788530852090805211367408163306648009429<74>
GGNFS-0.71.9 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS-0.71.8 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(82·10152+71)/9 = 9(1)1519<153> = 29 · 18500819251420504507<20> · C133
C133 = P29 · P104
P29 = 20320825861690147373696604259<29>
P104 = 83568196683319286258285200016862573476781318049153265408827931610734633480187591296569782940670468893547<104>
By Shusuke Kubota / GGNFS-0.71.5
(10139+53)/9 = (1)1387<139> = 7 · 89603 · 494555401 · C124
C124 = P36 · P89
P36 = 176827799542399848274317146465458063<36>
P89 = 20256826497809082138672188977645433308832908147433208461196189192626007022311405140270879<89>
GGNFS-0.71.7 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
10190-3 = (9)1897<190> = 13 · 83 · 4643 · 60176382186443<14> · 24247727135706472746493<23> · C148
C148 = P26 · C122
P26 = 15856958895942670619463887<26>
C122 = [86270608381892148012698739631845419861639079433916728783296259834586875917761568164414847996201372303949473085717528423177<122>]
(13·10179-31)/9 = 1(4)1781<180> = 3 · 11 · C178
C178 = P29 · P149
P29 = 47555107054099220811823592857<29>
P149 = 92042782537003529143002241535802764554347167753625910240795469084669493153549273134827856152661551725168206897218757398977607257927676929695429419361<149>
By Sinkiti Sibata / GGNFS-0.70.1
(16·10136-7)/9 = 1(7)136<137> = 6673 · 18341 · 3019273298751951641903953<25> · C104
C104 = P42 · P62
P42 = 487032858873040250970401605234600730199253<42>
P62 = 98780824831805079961323248153464809705702148164960536849302921<62>
By Makoto Kamada / GMP-ECM 5.0.3
(7·10141-43)/9 = (7)1403<141> = 17 · 53 · 282601199 · C130
C130 = P31 · P100
P31 = 1574316101332138785462689892739<31>
P100 = 1940281765520387244103496867893092651817906432972400795380473345512195790910670994377350923737040493<100>
By Sinkiti Sibata / GGNFS-0.70.1
(16·10132-7)/9 = 1(7)132<133> = 4091 · C129
C129 = P56 · P74
P56 = 39734988745756660736484277534239281808586565334587909561<56>
P74 = 10936412922253554084536350258014871846461387346020142817387129265559878427<74>
By Anton Korobeynikov / GGNFS-0.71.4 / 21.42 hours
(17·10155-71)/9 = 1(8)1541<156> = 72 · 11 · 2273 · 77509 · 477951899 · 856409645357881<15> · 27828450109337756621<20> · C102
C102 = P48 · P54
P48 = 463334366860167086975713144840516592702801361011<48>
P54 = 376891898680072906895465671777956457460775907782569723<54>
By Wataru Sakai / GMP-ECM
(5·10152-23)/9 = (5)1513<152> = 62809181451689<14> · C138
C138 = P32 · P107
P32 = 12548544045884127597307664939741<32>
P107 = 70487323789881755639863584147362798330937168877631959339433595235900542310291872512913681437975703092766797<107>
(5·10176-23)/9 = (5)1753<176> = 19 · 911 · C172
C172 = P34 · C138
P34 = 9838025667759598362012006539421529<34>
C138 = [326247780390063490080526567389407287772607756850489421386244699258972286197300264888556697435749420641611080508391884903615843955966802973<138>]
(5·10185-23)/9 = (5)1843<185> = 79 · 76231583 · 1164328700579194207<19> · C157
C157 = P32 · C126
P32 = 44029950759275554233180522078377<32>
C126 = [179945778510708836080589448871146949371246104317066383335530794551793683889740159757425063640639714889836321930337300962902711<126>]
(5·10199-23)/9 = (5)1983<199> = 3 · 31277 · 34583 · 36830777 · 6174445327<10> · 6305736184704221383<19> · C154
C154 = P36 · C118
P36 = 724344547984221899382886622270430893<36>
C118 = [1648271169388862731941891235732784535672931381905839004531566345519986740360582709947982611814951380175473284494571461<118>]
(5·10163+13)/9 = (5)1627<163> = 7 · 491 · 1046680382986660661<19> · C142
C142 = P26 · C116
P26 = 26988494111082482595723749<26>
C116 = [57220971289632372895013854360486568742682462018091052842231747397803851776811199836976065406658831179664130202209649<116>]
(5·10186+13)/9 = (5)1857<186> = 607 · 6829 · 182167813054452217<18> · 10476133674495648057887<23> · C140
C140 = P27 · C114
P27 = 190677856249892933027003657<27>
C114 = [368305966614359849878248308076574802324713112212101126609697090992222639256078430962020706404288947139555620813273<114>]
By Makoto Kamada / GMP-ECM 5.0.3
(35·10196-53)/9 = 3(8)1953<197> = 33 · 13 · 84349 · 461651807 · 446380663993523863<18> · C163
C163 = P29 · C135
P29 = 18926803629417875634761866211<29>
C135 = [336776120953225288643226992880947527845758942085320941973414384306598461989585511719956906492874857738494126576871114666265672188235267<135>]
(85·10161+41)/9 = 9(4)1609<162> = 11 · 83 · 209449 · 1091088610187<13> · C142
C142 = P26 · P117
P26 = 33021332476616799373620007<26>
P117 = 137079569356035158482487428813303734714433035006722204903992526651466396669052463171631042443137570267364740891961453<117>
(4·10155-1)/3 = 1(3)155<156> = 151 · 641 · 7424986690579144283<19> · C132
C132 = P29 · P103
P29 = 32537224823637510391509266027<29>
P103 = 5702004715141250324592893927739745126640887028125912343545134331965464704909840526351019937949019814043<103>
Julien Peter Benney found that (4·10412+11)/3 = 133...337<413> and (4·10412+17)/3 = 133...339<413> were both known quasi-repdigit PRP. Since he certified them, they are largest known quasi-repdigit twin primes in our tables.
GGNFS-0.71.5 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GGNFS-0.70.1
(16·10131-7)/9 = 1(7)131<132> = 33 · 139721 · 1392379 · 64448238772141583<17> · C102
C102 = P48 · P55
P48 = 126773620565632621474342903723317695123985413047<48>
P55 = 4142424598295145863695670107132026586654598300541319289<55>
By Anton Korobeynikov / GGNFS 0.70.5 / 37.46 hours
(82·10137-1)/9 = 9(1)137<138> = 44349101 · 528962167 · 1588131761408045295839<22> · C101
C101 = P42 · P59
P42 = 281370009777220690515530704122601367281633<42>
P59 = 86915568294721639240260955391551243599117252530367574753259<59>
By Sinkiti Sibata / GGNFS-0.70.1
(16·10130-7)/9 = 1(7)130<131> = 12497 · 33461 · C122
C122 = P49 · P74
P49 = 2112089921820679781744198782415549997699574508339<49>
P74 = 20128915799688648372177091556396761859688862753096460181357741600342796879<74>
By Makoto Kamada / GMP-ECM 5.0.3
(5·10197-17)/3 = 1(6)1961<198> = 11 · 1571 · 1858081 · 1178143418903287<16> · C172
C172 = P31 · C142
P31 = 3522029825882670138039041087429<31>
C142 = [1250904186313340025450120284311952830351894795982674479551805374307412050854432355660691881603971802205820203665609456742869350344170229044487<142>]
(89·10180+1)/9 = 9(8)1799<181> = 17 · 711962455993260516463<21> · 37287164971883204362343<23> · 178087690675076789660107777<27> · C111
C111 = P28 · P83
P28 = 1836752405977035142322213813<28>
P83 = 66988090653869154796356914160027099834175680263483228734044444225891821948368819613<83>
By Sinkiti Sibata / GGNFS-0.70.1
(16·10127-7)/9 = 1(7)127<128> = 114693613537<12> · C117
C117 = P52 · P66
P52 = 1432526224890454290005732653421985323921177043437903<52>
P66 = 108202091642690612080696186218659713612499366409534224544829733407<66>
GGNFS-0.71.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS-0.71.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GGNFS-0.70.1
(16·10124-7)/9 = 1(7)124<125> = 19 · 201650400703<12> · C112
C112 = P49 · P63
P49 = 8061265009413844533245712365503543115208628772099<49>
P63 = 575601059094305216400883552872914415011012773679268369924032839<63>
By Makoto Kamada / GMP-ECM 5.0.3
(67·10192+23)/9 = 7(4)1917<193> = 588388657 · 473571759119<12> · C173
C173 = P27 · C147
P27 = 247113343178195423532631009<27>
C147 = [108115014113743706097313938559946532660489082228120055398223454136003589755006326987813757811102399272584414115207438615275324259808578167084402401<147>]
(19·10157-1)/9 = 2(1)157<158> = 3 · 7 · 4129 · 4139 · C149
C149 = P27 · C123
P27 = 136082245808735331544874467<27>
C123 = [432264947155761060829306720543648014786687216349608237446155217915853935721724780996199161863813705702775908099453240301483<123>]
GGNFS-0.71.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GGNFS-0.70.1
(16·10123-7)/9 = 1(7)123<124> = 199 · 5600480939<10> · C112
C112 = P55 · P57
P55 = 3711635947520139376607971042276914863160805160094937273<55>
P57 = 429767629665384154819713549254016469779176647072708834109<57>
By Makoto Kamada / GMP-ECM 5.0.3
(67·10173+23)/9 = 7(4)1727<174> = 33 · 11 · 31 · C170
C170 = P31 · P140
P31 = 1766929502237122321235840283331<31>
P140 = 45760939050151198083124362442251491469266489532022812113975671545539418763484593578723515297321205480338552739180121531079776092367024738291<140>
(82·10165+71)/9 = 9(1)1649<166> = 11 · 29201 · 302966291 · 364565927850011<15> · 745566723451344502621<21> · C117
C117 = P25 · P93
P25 = 1727465953459239178198193<25>
P93 = 199395123722108219762101258306495643568878017823261529174109326165560747503185844363920385393<93>
(89·10175+1)/9 = 9(8)1749<176> = 3 · 11 · 2377 · 83045563 · 21545311091948629<17> · 127739194355601203<18> · C130
C130 = P27 · C104
P27 = 141537670211263258844233207<27>
C104 = [38970767349783144219279011210910131816536940309633342017981904856586050373395627747411366558141016535387<104>]
10197-3 = (9)1967<197> = 310081 · 7705783 · C185
C185 = P26 · P160
P26 = 19800200290640756281384783<26>
P160 = 2113676338782529383631911341697070869314713846244158628386025817812523873083823305465977453836754943580723873981756958063209332596570098946045694781651672856933<160>
By Shusuke Kubota / GGNFS-0.70.5
(7·10124+11)/9 = (7)1239<124> = 3 · 172 · 258238199 · C113
C113 = P50 · P64
P50 = 19868732321027394216451642651070948350251914069663<50>
P64 = 1748420098107193426676503120668847937109279362577915086064334601<64>
By Shusuke Kubota / GGNFS-0.70.8
(7·10126+11)/9 = (7)1259<126> = 22271 · 80747 · 901095332672663<15> · C102
C102 = P37 · P66
P37 = 1537394659614008849872667637402373837<37>
P66 = 312200294478902060785162453270293641028258099510397454756653037557<66>
By Makoto Kamada / GMP-ECM 5.0.3
(89·10197+1)/9 = 9(8)1969<198> = 11 · 1097 · 34754543550863119<17> · 647278217121651105541<21> · 19529714814982986435712937<26> · C132
C132 = P26 · P106
P26 = 99429846509411749958422469<26>
P106 = 1876000427359727953324536228737013368523167019576875931142646854395957088873360379620808498186817858813341<106>
(13·10159-31)/9 = 1(4)1581<160> = 11 · 523 · 104233 · C151
C151 = P26 · C125
P26 = 42526728145464632871517871<26>
C125 = [56642088762451993788216439528213975846550803193188960613596424777252377675643954980444537446717541555381340504538287254009879<125>]
(13·10185-31)/9 = 1(4)1841<186> = 32 · 11 · 432 · 145650497 · C172
C172 = P24 · C148
P24 = 616424391175458370238527<24>
C148 = [8788949140262138501748897593892201010008266230539906431857259336313619515107342349987432858956812504209471310423515168067698813237717931981034195989<148>]
GGNFS-0.70.8 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS-0.70.7 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sander Hoogendoorn / GMP-ECM
(10167-7)/3 = (3)1661<167> = 31 · 14423429872606091<17> · C149
C149 = P28 · P122
P28 = 5664959712306389776211251367<28>
P122 = 13159872405639673476085451592514711254830025807888333907677621446969621966794316849249920344102308883420682926710686585633<122>
(10168-7)/3 = (3)1671<168> = 131 · C166
C166 = P35 · C131
P35 = 49129598861427367631541486362214571<35>
C131 = [51792184773653319969285271375059174848183340563143297361801486678007691346322178986782793210838274087534397894208901070916797560531<131>]
(10172-7)/3 = (3)1711<172> = 19609 · 3691043 · 157129729 · 39201016808809<14> · 4609274485532784321203087<25> · C115
C115 = P30 · P35 · P52
P30 = 570122674955008147531767848417<30>
P35 = 11333195299738113424648260115996519<35>
P52 = 251052899844665539831518869295788289023081792664233<51>
(2·10163+43)/9 = (2)1627<163> = 7 · 665141705436521827<18> · C144
C144 = P26 · C119
P26 = 16929455156593115948878553<26>
C119 = [28192415356793158638192183338666628496972623324831542589743436403638771282467070408328673563565546545108383620701535231<119>]
322...221, 322...227, 322...229, 344...447, 344...449, 355...557, 355...559, 366...661, 366...667, 377...771, 377...779, 388...881, 388...887, 388...889, 399...997, 400...007, 400...009, 411...113, 411...117, 411...119 and 933...337 (n≤100) are available.
By Makoto Kamada / GMP-ECM 5.0.3
10192-3 = (9)1917<192> = 3373 · 1103279 · C183
C183 = P26 · C157
P26 = 30864312787215673925304239<26>
C157 = [8706461730553172977813938282972806864367872281670324568896027694773613506445164070346157989738792353402973884613674914181525210628797616969415943359190918769<157>]
GGNFS-0.70.5 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
msieve 0.86 was released.
Quadratic Sieve Source Code (jasonp)
44...441 (n≤150) was completed.
By Greg Childers / GGNFS
(4·10130-31)/9 = (4)1291<130> = 75527 · 220937753 · 576740377 · C108
C108 = P50 · P58
P50 = 82316388271718992535493854854902462632193974477977<50>
P58 = 5610203963132911588641032634751981165774474014979257829159<58>
(4·10131-31)/9 = (4)1301<131> = 19 · 59 · 29663681603<11> · C118
C118 = P32 · P86
P32 = 19898201668653412909642060123783<32>
P86 = 67169635286000088005844876733316178067015095264586514159340939544920440830653975497429<86>
(4·10132-31)/9 = (4)1311<132> = 3 · 41 · 60631 · 5836027724826491<16> · C110
C110 = P45 · P65
P45 = 265065681903452574231618672879301887100401451<45>
P65 = 38525367449329849902508906228617759067605667618693350206245274677<65>
(4·10133-31)/9 = (4)1321<133> = 5721928315993231<16> · C117
C117 = P58 · P60
P58 = 1735452327903854190023457957435424681329865983947155036639<58>
P60 = 447571455406096696043129588706088166397164260457243328029449<60>
(4·10136-31)/9 = (4)1351<136> = 83 · C134
C134 = P56 · P78
P56 = 79451228100693916255143231337984876222044824965114646033<56>
P78 = 673967221238885072947092435754689304476836110066757345212331509269592690413619<78>
(4·10137-31)/9 = (4)1361<137> = 41 · C136
C136 = P46 · P90
P46 = 6869123999252418154919315865684516827094541121<46>
P90 = 157809182106244750209852121177286389343708081076801048075413388076705668185445417312005681<90>
(4·10140-31)/9 = (4)1391<140> = 23 · C139
C139 = P65 · P74
P65 = 24518156032205797056772046449083639191754617378818170209503581971<65>
P74 = 78813722664143068054142655919643641120799630958057702523852687920859278677<74>
(4·10142-31)/9 = (4)1411<142> = 41 · 97 · 170353 · 823811777 · 43558364561<11> · 2022943313791<13> · C101
C101 = P39 · P63
P39 = 236820510953045757591589885882927684211<39>
P63 = 381601010506268970060209410967573719387449808922893251533526613<63>
By Shusuke Kubota / GGNFS-0.70.3
(5·10130+31)/9 = (5)1299<130> = 3 · 23 · 51427 · 26450620557023929943<20> · C104
C104 = P52 · P53
P52 = 4635144405734630957124292278499961746134157093520999<52>
P53 = 12769917141727375254462396830140380254077895120501449<53>
By Wataru Sakai / GMP-ECM
(5·10156+13)/9 = (5)1557<156> = 61 · 35883949 · C147
C147 = P42 · C106
P42 = 141949580829913622469021786349231378104071<42>
C106 = [1787982709613837304766056524502437988069122805088687283861386909168481258575131304571383347300968369897803<106>]
522...227 and 522...229 (n≤100) are available.
By Makoto Kamada / GMP-ECM 5.0.3
(65·10178+43)/9 = 7(2)1777<179> = 47 · 113 · 526853 · 117345719 · 331998677 · 125870285644374589<18> · C136
C136 = P32 · C105
P32 = 34925085627768598997827271895379<32>
C105 = [150709555076264278185583346205721159950525735347533468788839353587238178965623321225618403977229020577573<105>]
(82·10168+71)/9 = 9(1)1679<169> = 47 · 20771 · 2738014493<10> · 8340066325362023339<19> · C135
C135 = P28 · P107
P28 = 7262015406780976497651635071<28>
P107 = 56279945247362475178321704744702295910960579330789100156703457165720974711163852864758122202783987702363211<107>
(89·10180+1)/9 = 9(8)1799<181> = 17 · 711962455993260516463<21> · 37287164971883204362343<23> · C137
C137 = P27 · C111
P27 = 178087690675076789660107777<27>
C111 = [123040536680301911313422257942859732764642569947211890294501585759146536824001134870642602879460846543813914369<111>]
By Makoto Kamada
Quasi-repdigit
(47·1074+43)/9 = 522222222222222222222222222222222222222222222222222222222222222222222222227<75>
and
(47·1074+61)/9 = 522222222222222222222222222222222222222222222222222222222222222222222222229<75>
are twin primes.
By Sander Hoogendoorn / msieve
(7·10143-43)/9 = (7)1423<143> = 59 · 35869 · 191783 · 3444401 · 44469666660757781600487511<26> · C100
C100 = P47 · P53
P47 = 24948940438712878811224813097421187454482816577<47>
P53 = 50146942064568647740731181087923885752797750645042963<53>
311...117, 311...119, 622...227, 755...559, 799...991, 877...773, 899...993 and 955...553 (n≤100) are available.
By Shusuke Kubota / GGNFS-0.70.1
(5·10126+31)/9 = (5)1259<126> = 521 · 792151 · 156296359 · C109
C109 = P52 · P58
P52 = 4788555075836757340511905624313572115822592076397359<52>
P58 = 1798574571163878516629102891778727258723642619099647230209<58>
By Makoto Kamada / GMP-ECM 5.0.3
10168-3 = (9)1677<168> = 757 · 24733 · 13293083 · 869228495029187<15> · C139
C139 = P28 · C112
P28 = 3574884941983036986718429117<28>
C112 = [1293021014233451367860042934501894795317867498820089424677269278083402029329064783389164520002782265317692374641<112>]
(17·10187-71)/9 = 1(8)1861<188> = 11 · 38049998170671837090688817<26> · C161
C161 = P30 · P131
P30 = 500583471801384822334086674083<30>
P131 = 90153497646641310326944319538203642791563401319391629531885316013320146569086840682444563959288491745885439016303429741998231221761<131>
(34·10185-43)/9 = 3(7)1843<186> = 11 · 61 · 83 · 1316321 · 623003279 · 18576467372337956163671<23> · C144
C144 = P27 · P117
P27 = 943456638254876301560541259<27>
P117 = 471952813067679536412424737894219140870046369285479378119371881739921957018989451689975654750562766644831308181474011<117>
GGNFS-0.70.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS-0.70.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Chris Monico / GGNFS
(8·10123-71)/9 = (8)1221<123> = 59 · 2371 · 39675256449581<14> · C105
C105 = P41 · P65
P41 = 13743112145606138592276235346147400975883<41>
P65 = 11653572407563622678749471750669621137543866870846033463628735823<65>
msieve 0.85 was released.
Quadratic Sieve Source Code (jasonp)
By Makoto Kamada / GMP-ECM
(85·10164+41)/9 = 9(4)1639<165> = 13 · C164
C164 = P25 · C139
P25 = 9275757052376397976700267<25>
C139 = [7832198734760978711300895023427036398367349101003456204899634720632547083923743972218242866754462014563820003748123331699889049038309233519<139>]
By Chris Monico / GGNFS
(79·10124-7)/9 = 8(7)124<125> = 3 · 17 · 558451843 · 2197459741159<13> · C103
C103 = P45 · P58
P45 = 978064542225600247365749793689829702362300081<45>
P58 = 1433970560180904882402161060064805652850063739099545014191<58>
By Tyler Cadigan / msieve
(61·10129-7)/9 = 6(7)129<130> = 32 · 159503 · 1686796403<10> · 1845746771074187<16> · C100
C100 = P38 · P63
P38 = 15011723137161761012900283660230077453<38>
P63 = 101020759799138908138104413379091516200230288773064326782116947<63>
msieve 0.84 was released.
Quadratic Sieve Source Code (jasonp)
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.83
(4·10180-7)/3 = 1(3)1791<181> = 439 · 523 · 468246781 · 7005540497<10> · C157
C157 = P26 · P131
P26 = 49126811938877552796360949<26>
P131 = 36036076265445438586478714042933026041107308690559018523356664426584143141830063618501543233862519218295082853384877539172172913311<131>
(17·10158-71)/9 = 1(8)1571<159> = 47 · 239 · 557 · 3046148953<10> · 31515879309500237<17> · 160815156612194113<18> · C109
C109 = P26 · P28 · P56
P26 = 19929262765951023340195939<26>
P28 = 4471053250096044906331280357<28>
P56 = 21945568692107157846002081502727353184117153310937384959<56>
By Wataru Sakai / GMP-ECM
(5·10190-23)/9 = (5)1893<190> = 3 · 17 · 30130033 · 779004426475729<15> · 46962959609138895677063<23> · C143
C143 = P38 · C106
P38 = 61642877659009561805910411419732303873<38>
C106 = [1603169430525280273237360004572538062979242075276083440879876329917685791614748633736351381778420177694221<106>]
(5·10167+13)/9 = (5)1667<167> = 32 · 4027 · 10463 · 12941 · 44897457148379489<17> · C138
C138 = P28 · C111
P28 = 1519650041086432620438421693<28>
C111 = [165925816166136783147225072078845728669837032683683114399003933918276111210507446722985872485375711425173815489<111>]
(5·10194+13)/9 = (5)1937<194> = 32 · 29 · C192
C192 = P32 · C160
P32 = 72183554542030111065458816494591<32>
C160 = [2948823122470032866495397931641631076837872862146515937374630399399691716360185120348712377301754173916545728370837830033590887336640616636222383068117446587807<160>]
By Makoto Kamada / GMP-ECM 5.0.3
(13·10176-31)/9 = 1(4)1751<177> = 33 · 13789411323683<14> · 20108993600248507<17> · C146
C146 = P27 · P119
P27 = 919274982543929146287864137<27>
P119 = 20987251902277439315835412886692413430000160319885037281360957482093961933965137116493522296638638966863414764101433939<119>
By Tyler Cadigan / msieve
(67·10156+23)/9 = 7(4)1557<157> = 374537 · 4814221 · 227689867 · 338290097399<12> · 413613060941<12> · 72510490965281<14> · C100
C100 = P38 · P63
P38 = 14917762329505675779775661725272770447<38>
P63 = 119806334369687274043260690713148583532971512794600312831270741<63>
msieve 0.83 was released.
Quadratic Sieve Source Code (jasonp)
266...663, 266...669, 277...771, 277...773, 277...779, 288...881, 288...883, 288...887, 288...889, 299...993, 300...007, 355...551, 399...991, 400...003 and 799...993 (n≤100) are available. Informations of prime numbers of these sequences will be added later.
By Chris Monico / GGNFS using GNFS
(8·10148-53)/9 = (8)1473<148> = 32 · 7 · 431 · 248738599 · 134896475509<12> · 81297467634174116800523<23> · C102
C102 = P41 · P61
P41 = 33362022211327796044904182030601554515509<41>
P61 = 3597132922037104807822989294234113281590924432430024026595303<61>
By Makoto Kamada / GMP-ECM 5.0.3
(89·10198+1)/9 = 9(8)1979<199> = 31 · 83 · 431 · 12487 · 83813 · 1079213 · C178
C178 = P28 · C151
P28 = 2166408303061502899372383833<28>
C151 = [3644294481802054702074482416107025751122026723203262487883027906121152932420037231524191511230107502368223926430246726131550570211348197102339570924797<151>]
799...997, 788...887 and 11...119 (n≤150) were completed.
By Greg Childers / GGNFS
8·10139-3 = 7(9)1387<140> = 7 · 112 · 43 · 75504318159299399<17> · C119
C119 = P56 · P63
P56 = 53181657984068063389700004228999618220712448404117930933<56>
P63 = 547021578430613077164648426239735659338966913240144796636418371<63>
8·10141-3 = 7(9)1407<142> = 11 · 17 · 61 · 6959 · 302847772207<12> · C123
C123 = P58 · P66
P58 = 1185232496324771611590117896185458422554822208631466121153<58>
P66 = 280765521984314571728757275616961371379255644747798552859870702739<66>
8·10145-3 = 7(9)1447<146> = 7 · 11 · 526853 · 17889769 · 4083062647<10> · C122
C122 = P49 · P73
P49 = 5432017963480199442613897882981427399940756907141<49>
P73 = 4970016502471565136207973969627421842489501711999009641490689905361979799<73>
8·10146-3 = 7(9)1457<147> = 1754323 · C141
C141 = P41 · P101
P41 = 18351387702450182134423448389687445402087<41>
P101 = 24849148948365694342391056763061445659228526938352956792115566893567105171128030431206393684524186297<101>
8·10149-3 = 7(9)1487<150> = 11 · C149
C149 = P49 · P101
P49 = 1608596188928145380118735290506229512519831269403<49>
P101 = 45211640576951157081593994501104368226546751365593910539229359833369471085265494438783448596836822709<101>
(71·10147-17)/9 = 7(8)1467<148> = 3 · 11 · 7866941 · C140
C140 = P49 · P92
P49 = 2411716854538498351434879565592026270255766655401<49>
P92 = 12599975127327249106637760921991198006549550241223232357269921755064764788764675455843046379<92>
(10133+71)/9 = (1)1329<133> = 3 · 221133233 · 402697969 · C115
C115 = P57 · P58
P57 = 611251062157160116053505645645324711651025064485264201597<57>
P58 = 6804295316508357009360057256130556002704534027000187849417<58>
(10134+71)/9 = (1)1339<134> = 66930601 · 2577926833<10> · C116
C116 = P54 · P63
P54 = 152520855991614307365754769680642555850200904536277789<54>
P63 = 422214306274309203634349912768473401465731860766384413693202387<63>
(10140+71)/9 = (1)1399<140> = 3019 · 88311091476456073451058821<26> · C110
C110 = P50 · P60
P50 = 52078789742353988905206507892145138499461319382907<50>
P60 = 800236289305257565863023061393908386883691754499093142776683<60>
(10146+71)/9 = (1)1459<146> = 19 · C144
C144 = P66 · P79
P66 = 184646504480794719922073218304967625981702798346467821334085569801<66>
P79 = 3167107459097619074471329268330657548194777692213070386010929467909308160277101<79>
(10148+71)/9 = (1)1479<148> = 3 · 8597 · 3852160831<10> · 9995876197<10> · C124
C124 = P32 · P92
P32 = 12476283869625123042297542871211<32>
P92 = 89676527294667108544580024600501584617379940687367211028857390036651681323077608208888583017<92>
(4·10129-31)/9 = (4)1281<129> = 33 · 72 · 29 · 47 · 69491 · 2910329 · C112
C112 = P40 · P72
P40 = 6644217187391228553272246466613438348297<40>
P72 = 183420263630950549926230025403996103660765791705539480901333728354630323<72>
By Sander Hoogendoorn / msieve
(5·10153-41)/9 = (5)1521<153> = 77487647 · 2204792656187868734453<22> · 774566864323827238548139<24> · C100
C100 = P34 · P66
P34 = 4868018463265120432019152903104101<34>
P66 = 862414673433490031047050515436939614937611480649348290013333269899<66>
By Makoto Kamada / GMP-ECM 5.0.3
(10166-7)/3 = (3)1651<166> = 73417 · 183263 · 290970679 · 49453772833844866271629206734839<32> · C116
C116 = P28 · P89
P28 = 1113136581588381763569732661<28>
P89 = 15467146780696512880245699179255829824832237755447208093092936733693117638812275194175521<89>
(65·10190+43)/9 = 7(2)1897<191> = 97 · 151 · 153349398479784413<18> · C170
C170 = P27 · C144
P27 = 183068228936534766174026813<27>
C144 = [175641488448662568292346598460069514633018298245744830567434504238051771414505754718431128038197886273870786613292219718333171634534692608363389<144>]
The condition of 744...447 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=92980+alpha) 100 times.
(67·10153+23)/9, (67·10154+23)/9, (67·10155+23)/9, (67·10156+23)/9, (67·10157+23)/9, (67·10158+23)/9, (67·10160+23)/9, (67·10161+23)/9, (67·10163+23)/9, (67·10165+23)/9, (67·10166+23)/9, (67·10167+23)/9, (67·10169+23)/9, (67·10170+23)/9, (67·10172+23)/9, (67·10173+23)/9, (67·10175+23)/9, (67·10177+23)/9, (67·10178+23)/9, (67·10179+23)/9, (67·10180+23)/9, (67·10182+23)/9, (67·10185+23)/9, (67·10186+23)/9, (67·10187+23)/9, (67·10189+23)/9, (67·10191+23)/9, (67·10192+23)/9, (67·10193+23)/9, (67·10194+23)/9, (67·10195+23)/9, (67·10196+23)/9, (67·10198+23)/9, (67·10199+23)/9, (67·10200+23)/9, (35/200)
The condition of 88...887 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=97260+alpha) 100 times.
(8·10153-17)/9, (8·10156-17)/9, (8·10157-17)/9, (8·10158-17)/9, (8·10159-17)/9, (8·10160-17)/9, (8·10164-17)/9, (8·10166-17)/9, (8·10168-17)/9, (8·10169-17)/9, (8·10170-17)/9, (8·10173-17)/9, (8·10176-17)/9, (8·10179-17)/9, (8·10180-17)/9, (8·10181-17)/9, (8·10182-17)/9, (8·10183-17)/9, (8·10184-17)/9, (8·10186-17)/9, (8·10187-17)/9, (8·10188-17)/9, (8·10189-17)/9, (8·10194-17)/9, (8·10196-17)/9, (8·10198-17)/9, (8·10199-17)/9, (8·10200-17)/9, (28/200)
The condition of 88...889 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=97540+alpha) 100 times.
(8·10152+1)/9, (8·10154+1)/9, (8·10157+1)/9, (8·10158+1)/9, (8·10160+1)/9, (8·10161+1)/9, (8·10163+1)/9, (8·10164+1)/9, (8·10166+1)/9, (8·10168+1)/9, (8·10169+1)/9, (8·10170+1)/9, (8·10172+1)/9, (8·10174+1)/9, (8·10175+1)/9, (8·10177+1)/9, (8·10181+1)/9, (8·10182+1)/9, (8·10183+1)/9, (8·10184+1)/9, (8·10185+1)/9, (8·10187+1)/9, (8·10188+1)/9, (8·10191+1)/9, (8·10193+1)/9, (8·10194+1)/9, (8·10196+1)/9, (8·10197+1)/9, (8·10199+1)/9, (29/200)
The condition of 944...449 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=99040+alpha) 100 times.
(85·10151+41)/9, (85·10152+41)/9, (85·10153+41)/9, (85·10155+41)/9, (85·10156+41)/9, (85·10157+41)/9, (85·10160+41)/9, (85·10161+41)/9, (85·10163+41)/9, (85·10164+41)/9, (85·10167+41)/9, (85·10168+41)/9, (85·10169+41)/9, (85·10171+41)/9, (85·10172+41)/9, (85·10173+41)/9, (85·10174+41)/9, (85·10175+41)/9, (85·10176+41)/9, (85·10178+41)/9, (85·10180+41)/9, (85·10181+41)/9, (85·10182+41)/9, (85·10183+41)/9, (85·10184+41)/9, (85·10185+41)/9, (85·10186+41)/9, (85·10187+41)/9, (85·10188+41)/9, (85·10190+41)/9, (85·10191+41)/9, (85·10193+41)/9, (85·10194+41)/9, (85·10195+41)/9, (85·10196+41)/9, (85·10197+41)/9, (85·10198+41)/9, (85·10199+41)/9, (38/200)
The condition of 988...889 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=100190+alpha) 100 times.
(89·10151+1)/9, (89·10152+1)/9, (89·10153+1)/9, (89·10156+1)/9, (89·10157+1)/9, (89·10158+1)/9, (89·10159+1)/9, (89·10161+1)/9, (89·10163+1)/9, (89·10164+1)/9, (89·10166+1)/9, (89·10167+1)/9, (89·10168+1)/9, (89·10169+1)/9, (89·10171+1)/9, (89·10173+1)/9, (89·10175+1)/9, (89·10176+1)/9, (89·10180+1)/9, (89·10181+1)/9, (89·10182+1)/9, (89·10183+1)/9, (89·10184+1)/9, (89·10185+1)/9, (89·10187+1)/9, (89·10188+1)/9, (89·10192+1)/9, (89·10194+1)/9, (89·10195+1)/9, (89·10196+1)/9, (89·10197+1)/9, (89·10198+1)/9, (89·10199+1)/9, (89·10200+1)/9, (34/200)
The condition of 99...997 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=100710+alpha) 100 times.
10153-3, 10154-3, 10156-3, 10160-3, 10161-3, 10163-3, 10164-3, 10165-3, 10167-3, 10168-3, 10170-3, 10173-3, 10175-3, 10176-3, 10178-3, 10179-3, 10181-3, 10182-3, 10183-3, 10184-3, 10185-3, 10186-3, 10188-3, 10189-3, 10190-3, 10191-3, 10192-3, 10193-3, 10194-3, 10195-3, 10196-3, 10197-3, 10198-3, 10199-3, (34/200)
By Shusuke Kubota / GGNFS-0.61.4
(10134+53)/9 = (1)1337<134> = 857 · C131
C131 = P36 · P95
P36 = 383340872454506628075311185389987877<36>
P95 = 33821396956493599820008975386545402390305808392843410894208806796427045074415792788778035519153<95>
GGNFS-0.70.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GGNFS-0.70.0
(52·10122-7)/9 = 5(7)122<123> = 727 · 411119 · C115
C115 = P53 · P62
P53 = 34326541091370501393491790752141817728023093828339547<53>
P62 = 56315614972351838954498824575900740272205844808950807812632507<62>
By Makoto Kamada / GMP-ECM 5.0.3
10159-9 = (9)1581<159> = 557 · 787 · 66522203560881529<17> · 463502940459739711<18> · C119
C119 = P31 · P89
P31 = 5179103681557614987753607571009<31>
P89 = 14285529639955355530391178145824057096420000669920946451104886135613114248058746965615319<89>
744...447 (n≤150) was completed.
By Greg Childers / GGNFS
(67·10148+23)/9 = 7(4)1477<149> = 6661 · 141269 · 600751 · 36847794477555463628357<23> · C112
C112 = P53 · P59
P53 = 77114685180950478136168944173445251467824251338942361<53>
P59 = 46345001232140831568843313936274842864739135107245044052829<59>
(71·10138-17)/9 = 7(8)1377<139> = 3 · C139
C139 = P57 · P82
P57 = 497589033115324640626102330769306515629359267339105914379<57>
P82 = 5284741934857251295549603541307186208907336416374025172372021148916822046895889751<82>
(71·10139-17)/9 = 7(8)1387<140> = 72 · 11 · 79 · 255160033657<12> · C124
C124 = P38 · P86
P38 = 74683163719405354510140581375543030633<38>
P86 = 97222016550347459714234634927812482067585583291822069595377195849699467194412554310267<86>
(71·10140-17)/9 = 7(8)1397<141> = 67 · 11329115051407<14> · C127
C127 = P39 · P88
P39 = 438645112216249819274995785373443797591<39>
P88 = 2369363833052043505260160173273515243743938145451689220954572120377577758305105168418053<88>
By Tyler Cadigan / PPSIQS
(5·10172+13)/9 = (5)1717<172> = 101461595881<12> · 1613209310291<13> · 12790834324951<14> · 651617447839102781<18> · 25668188216953676600419<23> · C96
C96 = P46 · P50
P46 = 2256579594291633882026679617922701519986197101<46>
P50 = 70306849294485634326719382660244586464933649247803<50>
By Michael Peterson / GGNFS-0.61.5
(4·10127-13)/9 = (4)1263<127> = 3 · 47 · 53323 · C120
C120 = P46 · P75
P46 = 2846737118714661285060545448478612165177077451<46>
P75 = 207652148919543248026448953901026153521235458496800922573702157980311356351<75>
By Makoto Kamada / GGNFS-0.70.0
(7·10122+11)/9 = (7)1219<122> = 124247 · C117
C117 = P49 · P69
P49 = 3465222210340721307172630045672830146253255208019<49>
P69 = 180650234614923349183890268209847021508615869190124760161480053008903<69>
By Makoto Kamada / GGNFS-0.70.0
The first try of version 0.70.0 on Pentium 4, Windows XP and Cygwin completed all right.
3·10122-1 = 2(9)122<123> = 13 · C122
C122 = P52 · P71
P52 = 2294796717664213509541276266917758467689777187014509<52>
P71 = 10056194912293669804719011098323636255061719884507348567986171070655047<71>
The condition of 377...773 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=84110+alpha) 100 times.
(34·10153-43)/9, (34·10155-43)/9, (34·10157-43)/9, (34·10161-43)/9, (34·10163-43)/9, (34·10165-43)/9, (34·10166-43)/9, (34·10167-43)/9, (34·10170-43)/9, (34·10173-43)/9, (34·10174-43)/9, (34·10175-43)/9, (34·10177-43)/9, (34·10178-43)/9, (34·10181-43)/9, (34·10183-43)/9, (34·10185-43)/9, (34·10186-43)/9, (34·10187-43)/9, (34·10188-43)/9, (34·10189-43)/9, (34·10190-43)/9, (34·10192-43)/9, (34·10193-43)/9, (34·10194-43)/9, (34·10195-43)/9, (34·10196-43)/9, (34·10197-43)/9, (34·10198-43)/9, (34·10199-43)/9, (34·10200-43)/9, (31/200)
The condition of 911...119 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=98340+alpha) 100 times.
(82·10151+71)/9, (82·10152+71)/9, (82·10153+71)/9, (82·10154+71)/9, (82·10161+71)/9, (82·10163+71)/9, (82·10164+71)/9, (82·10165+71)/9, (82·10166+71)/9, (82·10167+71)/9, (82·10168+71)/9, (82·10172+71)/9, (82·10173+71)/9, (82·10174+71)/9, (82·10175+71)/9, (82·10177+71)/9, (82·10179+71)/9, (82·10180+71)/9, (82·10181+71)/9, (82·10183+71)/9, (82·10187+71)/9, (82·10188+71)/9, (82·10189+71)/9, (82·10190+71)/9, (82·10192+71)/9, (82·10194+71)/9, (82·10195+71)/9, (82·10196+71)/9, (82·10197+71)/9, (82·10198+71)/9, (82·10200+71)/9, (31/200)
The condition of 922...229 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=98660+alpha) 100 times.
(83·10151+61)/9, (83·10152+61)/9, (83·10153+61)/9, (83·10154+61)/9, (83·10155+61)/9, (83·10156+61)/9, (83·10158+61)/9, (83·10159+61)/9, (83·10160+61)/9, (83·10161+61)/9, (83·10162+61)/9, (83·10163+61)/9, (83·10165+61)/9, (83·10166+61)/9, (83·10167+61)/9, (83·10168+61)/9, (83·10169+61)/9, (83·10170+61)/9, (83·10171+61)/9, (83·10173+61)/9, (83·10175+61)/9, (83·10176+61)/9, (83·10177+61)/9, (83·10178+61)/9, (83·10179+61)/9, (83·10181+61)/9, (83·10182+61)/9, (83·10184+61)/9, (83·10187+61)/9, (83·10188+61)/9, (83·10191+61)/9, (83·10192+61)/9, (83·10193+61)/9, (83·10195+61)/9, (83·10196+61)/9, (83·10197+61)/9, (83·10199+61)/9, (83·10200+61)/9, (38/200)
The condition of 955...559 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=99430+alpha) 100 times.
(86·10151+31)/9, (86·10152+31)/9, (86·10153+31)/9, (86·10155+31)/9, (86·10156+31)/9, (86·10158+31)/9, (86·10159+31)/9, (86·10160+31)/9, (86·10161+31)/9, (86·10162+31)/9, (86·10165+31)/9, (86·10166+31)/9, (86·10170+31)/9, (86·10171+31)/9, (86·10172+31)/9, (86·10175+31)/9, (86·10179+31)/9, (86·10180+31)/9, (86·10181+31)/9, (86·10182+31)/9, (86·10183+31)/9, (86·10184+31)/9, (86·10185+31)/9, (86·10186+31)/9, (86·10187+31)/9, (86·10188+31)/9, (86·10190+31)/9, (86·10191+31)/9, (86·10192+31)/9, (86·10193+31)/9, (86·10196+31)/9, (86·10197+31)/9, (86·10198+31)/9, (86·10199+31)/9, (86·10200+31)/9, (35/200)
GGNFS-0.70.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
377...773 and 944...449 (n≤150) were completed.
By Greg Childers / GGNFS
(34·10143-43)/9 = 3(7)1423<144> = 11 · C143
C143 = P40 · P103
P40 = 5303478323193975489275062193344653297859<40>
P103 = 6475643389214664909180905822993338651255997991637410391579885045738572199800323634627385095230925268877<103>
(34·10148-43)/9 = 3(7)1473<149> = 32 · 59 · 12421837 · 26327682121623217<17> · C123
C123 = P51 · P72
P51 = 339435016372168216277854822656985814339270594209291<51>
P72 = 640894865533744949021678034578262702800166230434500370652136337415752097<72>
(34·10150-43)/9 = 3(7)1493<151> = C151
C151 = P73 · P79
P73 = 2980537215871294317759980094532234409121960036227028511662295660263806351<73>
P79 = 1267482169879038992405294059376824542448418727805469492688123456470418239686723<79>
(67·10137+23)/9 = 7(4)1367<138> = 32 · 11 · 1571 · 50551 · 18269750344649<14> · C115
C115 = P47 · P69
P47 = 10156287015730778196999211751735183709270977147<47>
P69 = 510297668541113733518710301264640286143970176338167928025785941705931<69>
(67·10139+23)/9 = 7(4)1387<140> = 7 · 11 · 85911567017072873<17> · C122
C122 = P48 · P74
P48 = 920695274837121657898248118589298971174940825079<48>
P74 = 12222893092295961385055314244926886249835620193256574809182425146437055733<74>
(67·10143+23)/9 = 7(4)1427<144> = 3 · 11 · 31 · 13159 · 19841047 · 692381464768111<15> · C115
C115 = P58(1222...) · P58(3291...)
P58(1222...) = 1222987365207941762906051930348745347286644687421923020447<58>
P58(3291...) = 3291560054791071269844285142364452516591255150663218276529<58>
(85·10140+41)/9 = 9(4)1399<141> = 13 · 4643 · 4721 · 1445976434080537<16> · C118
C118 = P58 · P60
P58 = 7185202977372406738124895286507377353093766528786744142337<58>
P60 = 319006934401805449392521138728439368368844964268262905327839<60>
(85·10141+41)/9 = 9(4)1409<142> = 11 · 96749 · 179260417013026587193<21> · C116
C116 = P56 · P60
P56 = 78170189665155358092653238692237726604017262558070041689<56>
P60 = 633303193781516226270814722927272081726934528151469064377983<60>
(85·10143+41)/9 = 9(4)1429<144> = 11 · 227 · 1717310435311<13> · 7404568870433460660757<22> · C107
C107 = P53 · P54
P53 = 44729239939864587872517849482291434765564572455327231<53>
P54 = 664994065478731545703654437614496956118976190588081741<54>
(85·10146+41)/9 = 9(4)1459<147> = 13 · 73 · 131 · 78707 · 259788940891979<15> · C123
C123 = P61 · P63
P61 = 3612692399145289099027331849131992047083677728881360569817507<61>
P63 = 102842802859636437430118761940559312808050476371919719919781701<63>
By Makoto Kamada / GGNFS-0.61.4
(61·10121-7)/9 = 6(7)121<122> = 223 · 315354798404287<15> · C105
C105 = P50 · P56
P50 = 18423527972719656968229812631186321366924817348451<50>
P56 = 52313071622735468570280541636546647612790890086478437627<56>
By Shusuke Kubota / GGNFS-0.54.3
(10123+53)/9 = (1)1227<123> = 3 · 13 · 16067 · 959380519 · C108
C108 = P39 · P69
P39 = 368917856829460329650573295334531396279<39>
P69 = 500999759426416448871186438136088238949059695719088812453886753474009<69>
GGNFS-0.61.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
(5·10175-41)/9 = (5)1741<175> = 489133 · 1403517697<10> · 2435964161<10> · C151
C151 = P35 · C116
P35 = 64249247182044594022865768916254657<35>
C116 = [51706328378056163380057929616176601960754010322432217032605771561958673172388892161904595921026362579749982059360763<116>]
(5·10174+13)/9 = (5)1737<174> = 31 · 739 · 11221210807<11> · C160
C160 = P30 · C130
P30 = 221346161669387451500036308199<30>
C130 = [9763592520336947007359034884938306233546605251950183851573132162119148768617416230383434152961326133795560572245272063951466393961<130>]
Factor Table Search was a little updated.
By Makoto Kamada / GGNFS-0.61.3
(43·10121-7)/9 = 4(7)121<122> = 61961 · 335824030006567<15> · C103
C103 = P45 · P58
P45 = 498556064068364905575377137019233347351998029<45>
P58 = 4605552695693333047245432826706557295713424427607537947499<58>
By Makoto Kamada / GGNFS-0.61.3
(22·10118-1)/3 = 7(3)118<119> = 13 · 683 · 46122677 · C108
C108 = P46 · P63
P46 = 1645278806247524322110275736013255813925797763<46>
P63 = 108838703703268525047206477794831273530117068085894281825039077<63>
By Makoto Kamada / GGNFS-0.61.3
(43·10118-7)/9 = 4(7)118<119> = 19 · 73 · 98807 · 29833059967<11> · C101
C101 = P49 · P52
P49 = 4147371827027709956210621807528024586954927823123<49>
P52 = 2817675640632456793753470954967503987056023729336633<52>
By Makoto Kamada / GGNFS-0.61.3
(8·10117-53)/9 = (8)1163<117> = 89 · 69447271 · C108
C108 = P32 · P76
P32 = 35555281959278360488127292667277<32>
P76 = 4044810312396143794463348184833709654782980882148838408537911465131339725841<76>
By Tyler Cadigan / PPSIQS
(5·10173-23)/9 = (5)1723<173> = 73 · 577 · 751 · 209427319 · 8783707168871028931<19> · 3704223193820463194057<22> · 33330086533252283656753<23> · C94
C94 = P41 · P54
P41 = 13288553992830918869852640666681150366227<41>
P54 = 581924161406619836031991292764923727221002266889607761<54>
By Makoto Kamada / GGNFS-0.61.3
8·10177-1 = 7(9)177<178> = 31 · 136541 · 3253850111311<13> · 8440450795922006821<19> · 53333947698860662675169<23> · C118
C118 = P34 · P38 · P46
P34 = 9968872192820575739845949794271179<34>
P38 = 32415706285123016616200393430316452541<38>
P46 = 3992976744065553378877586365261068883948677889<46>
By Makoto Kamada / GMP-ECM 5.0.3
(25·10189-1)/3 = 8(3)189<190> = 13 · 69481 · 14970782913227<14> · C171
C171 = P26 · C145
P26 = 86676545786512496411372249<26>
C145 = [7109895749786147500037053236349479036870422351297426331907172161150490762823519055732095429805711272517938685442758987053038644233257005201690907<145>]
By Makoto Kamada / GGNFS-0.61.3
8·10174-1 = 7(9)174<175> = 7 · 23 · 727 · 991 · 350002054657009<15> · 3160024442975017<16> · 39310962534049663193199913018639770440327<41> · C97
C97 = P41 · P57
P41 = 13703043947707774181309400489721470123919<41>
P57 = 115761536241975308742677535865950439003423498765891054183<57>
By Makoto Kamada / GGNFS-0.61.3
8·10162-1 = 7(9)162<163> = 72 · 17 · 31 · 6271 · 37951 · 795079 · 62702211983<11> · 9651608955277596810279846533429791009<37> · C97
C97 = P29 · P68
P29 = 78743575385006325299358447097<29>
P68 = 34357003118610299424339551498938680210668232190655460506174192679073<68>
By Makoto Kamada / GGNFS-0.61.3
8·10153-1 = 7(9)153<154> = 109 · 5431 · 242491 · 1442849 · 1708950029029<13> · 5716279930669628639686312159912662372461<40> · C85
C85 = P39 · P46
P39 = 545504243838876787482318238398405996241<39>
P46 = 7248133656376375468073798954069159761372067671<46>
The condition of 133...331 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=75660+alpha) 100 times.
(4·10151-7)/3, (4·10152-7)/3, (4·10153-7)/3, (4·10156-7)/3, (4·10157-7)/3, (4·10158-7)/3, (4·10159-7)/3, (4·10161-7)/3, (4·10164-7)/3, (4·10165-7)/3, (4·10166-7)/3, (4·10167-7)/3, (4·10168-7)/3, (4·10169-7)/3, (4·10170-7)/3, (4·10171-7)/3, (4·10172-7)/3, (4·10173-7)/3, (4·10174-7)/3, (4·10175-7)/3, (4·10176-7)/3, (4·10180-7)/3, (4·10181-7)/3, (4·10182-7)/3, (4·10184-7)/3, (4·10186-7)/3, (4·10188-7)/3, (4·10189-7)/3, (4·10191-7)/3, (4·10192-7)/3, (4·10194-7)/3, (4·10195-7)/3, (4·10198-7)/3, (4·10199-7)/3, (4·10200-7)/3, (35/200)
The condition of 155...551 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=76480+alpha) 100 times.
(14·10152-41)/9, (14·10153-41)/9, (14·10154-41)/9, (14·10156-41)/9, (14·10157-41)/9, (14·10158-41)/9, (14·10159-41)/9, (14·10161-41)/9, (14·10162-41)/9, (14·10163-41)/9, (14·10164-41)/9, (14·10165-41)/9, (14·10166-41)/9, (14·10167-41)/9, (14·10168-41)/9, (14·10170-41)/9, (14·10171-41)/9, (14·10173-41)/9, (14·10174-41)/9, (14·10175-41)/9, (14·10176-41)/9, (14·10177-41)/9, (14·10178-41)/9, (14·10179-41)/9, (14·10180-41)/9, (14·10181-41)/9, (14·10182-41)/9, (14·10186-41)/9, (14·10187-41)/9, (14·10188-41)/9, (14·10189-41)/9, (14·10190-41)/9, (14·10191-41)/9, (14·10192-41)/9, (14·10193-41)/9, (14·10194-41)/9, (14·10195-41)/9, (14·10196-41)/9, (14·10197-41)/9, (14·10198-41)/9, (14·10199-41)/9, (14·10200-41)/9, (42/200)
The condition of 722...227 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=92290+alpha) 100 times.
(65·10152+43)/9, (65·10154+43)/9, (65·10155+43)/9, (65·10158+43)/9, (65·10159+43)/9, (65·10160+43)/9, (65·10161+43)/9, (65·10162+43)/9, (65·10164+43)/9, (65·10165+43)/9, (65·10166+43)/9, (65·10167+43)/9, (65·10169+43)/9, (65·10172+43)/9, (65·10176+43)/9, (65·10177+43)/9, (65·10178+43)/9, (65·10179+43)/9, (65·10182+43)/9, (65·10183+43)/9, (65·10184+43)/9, (65·10185+43)/9, (65·10186+43)/9, (65·10187+43)/9, (65·10189+43)/9, (65·10190+43)/9, (65·10191+43)/9, (65·10192+43)/9, (65·10194+43)/9, (65·10196+43)/9, (65·10197+43)/9, (65·10199+43)/9, (65·10200+43)/9, (33/200)
The condition of 766...667 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=93690+alpha) 100 times.
(23·10153+1)/3, (23·10157+1)/3, (23·10158+1)/3, (23·10160+1)/3, (23·10164+1)/3, (23·10169+1)/3, (23·10170+1)/3, (23·10172+1)/3, (23·10173+1)/3, (23·10174+1)/3, (23·10176+1)/3, (23·10177+1)/3, (23·10178+1)/3, (23·10180+1)/3, (23·10181+1)/3, (23·10184+1)/3, (23·10185+1)/3, (23·10186+1)/3, (23·10188+1)/3, (23·10189+1)/3, (23·10190+1)/3, (23·10191+1)/3, (23·10192+1)/3, (23·10193+1)/3, (23·10194+1)/3, (23·10197+1)/3, (23·10198+1)/3, (23·10199+1)/3, (28/200)
The condition of 799...99 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=95600+alpha) 100 times.
8·10152-1, 8·10153-1, 8·10155-1, 8·10158-1, 8·10160-1, 8·10161-1, 8·10162-1, 8·10164-1, 8·10166-1, 8·10167-1, 8·10169-1, 8·10170-1, 8·10173-1, 8·10174-1, 8·10177-1, 8·10178-1, 8·10181-1, 8·10182-1, 8·10184-1, 8·10185-1, 8·10186-1, 8·10187-1, 8·10190-1, 8·10194-1, (24/200)
By Wataru Sakai / GMP-ECM
(10181+17)/9 = (1)1803<181> = 3 · 157 · 1217 · 158606909 · 387812569 · C158
C158 = P34 · C125
P34 = 1081691731937760857100887471929643<34>
C125 = [29133892481734837183602135697334988973490703807163310757974571749978078052900604926957726939876253751243046373693076558774153<125>]
(5·10188-41)/9 = (5)1871<188> = 32 · 67 · 157 · 1793435534795269<16> · C168
C168 = P36 · P133
P36 = 267134885878370005277119281985794223<36>
P133 = 1224881717314040900003966370392762445148337572297326038461150343979893110447980944688343141490583702371013296142048512794374120985363<133>
(5·10164-41)/9 = (5)1631<164> = 3 · 117526809611<12> · C153
C153 = P38 · C115
P38 = 54250638606310858569979433501919015383<38>
C115 = [2904453570756846986973383368766510254862338723725138737049038603407688954012735912987940359365696468744723414038809<115>]
By Shusuke Kubota / GMP-ECM 5.0.3
5·10166-1 = 4(9)166<167> = 612 · 7951 · 18959 · 41274509 · C148
C148 = P31 · C118
P31 = 1036244557985917323855656628571<31>
C118 = [2084150015239379466226403787131225346381006673209676738496589056569037295167669261491044464939395894913070594199352569<118>]
By Wataru Sakai / GMP-ECM
(5·10176-41)/9 = (5)1751<176> = 3 · 631 · 6034033529<10> · 10013849773<11> · 98325221251437639817<20> · C133
C133 = P28 · P105
P28 = 8172399203041353880379167139<28>
P105 = 604440540003181334214627528981518639548131252892792355509643671843685185995458137125142862269356354234517<105>
155...551 (n≤150) was completed.
By Greg Childers / GGNFS
(14·10140-41)/9 = 1(5)1391<141> = 262957 · 185149963951<12> · 293696979540157<15> · C110
C110 = P45 · P65
P45 = 611167735359721131651023938164092454793426939<45>
P65 = 17799887559676111000753968199524325003033331268272810906175016891<65>
(14·10146-41)/9 = 1(5)1451<147> = 462781533101<12> · C135
C135 = P42 · P93
P42 = 493231383009790687144135213331307371354879<42>
P93 = 681488927382207827202832096409483809732888791409873843538464019986605749494194438375808835269<93>
(34·10141-43)/9 = 3(7)1403<142> = 7 · 11 · 79 · 30323 · 1070654677<10> · C125
C125 = P55 · P71
P55 = 1150467406789084646317263815788298645922128786669413151<55>
P71 = 16627336548404451230259421219086560971123953205611549150942066216686911<71>
From Tetsuya Kobayashi
The script files which had been used in the factoring of 10165-9 on Nov 5, 2004 (2nd) are here. A rough explanation of the mechanism is as follows. NFS (Network File System) is used for sharing a disk and ssh (Secure SHell) is used for distributing sieve. A control machine assigns sections of sieve and instructs remote machines to do it. Then, control machine gathers up the output of remote machines and run getdeps. Subsequent processes are usual. ``This method will be unfit for larger networks and makes waste results toward the end of sieving. I want to improve those points.'', Tetsuya said. Even though his work is based on an old version of GGNFS, I think that it is very informative as an example of ``distributed GGNFS''.
Factor tables of 255...551, 255...557 and 255...559 (n≤100) are available. All numbers in these tables were already factored.
From Tetsuya Kobayashi
The polynomial file, ggnfs.log and summary.txt in the factoring 10165-9 on Nov 5, 2004 (2nd) are as follows. Four computers were used to do it.
By Tyler Cadigan / PPSIQS
(5·10196+13)/9 = (5)1957<196> = 432 · 1303 · 95311 · 16645471 · 305975203 · 17456327041<11> · 467993930323<12> · 348239323090133<15> · 10869928941544246112083<23> · 15920968338005800540769<23> · C88
C88 = P43 · P46
P43 = 1314729888815890011093442548195842498866843<43>
P46 = 7338667339699725942422357211608308067654167063<46>
133...331 (n≤150) was completed.
By Greg Childers / GGNFS
(4·10146-7)/3 = 1(3)1451<147> = 1281109731533<13> · 2234563696977490535633<22> · C113
C113 = P56 · P57
P56 = 98439010663907932205417984632078554317280747667922950079<56>
P57 = 473143008752484838804350645547273469784832370360525259601<57>
(4·10150-7)/3 = 1(3)1491<151> = 103 · 433943 · C143
C143 = P56 · P88
P56 = 12058263342574662438959655691436592978350691488471507041<56>
P88 = 2473910936766159973199719902466729409132239356434370646909254385804633819505535105310579<88>
(14·10137-41)/9 = 1(5)1361<138> = 11 · 163 · C134
C134 = P53 · P81
P53 = 88920796317638411687463231951204881856777214882567741<53>
P81 = 975667622925422126960632146695785317083089191200444881132941766852849468937342027<81>
(14·10139-41)/9 = 1(5)1381<140> = 11 · 2099 · C135
C135 = P40 · P96
P40 = 2741898126287923955302448597913250770643<40>
P96 = 245713539354369828297831585227405025854316047634215987451649126813861768951334373772077456329813<96>
By Tyler Cadigan / PPSIQS
(4·10175-1)/3 = 1(3)175<176> = 13 · 10235547982337443<17> · 132373637436174277711<21> · 1446827710291087147427<22> · 2909691937810300783183627<25> · C93
C93 = P32 · P61
P32 = 45300429502669183472430760826609<32>
P61 = 3969324772814128024854248303482597305276455455985027092405597<61>
By Wataru Sakai / GMP-ECM
(5·10192-17)/3 = 1(6)1911<193> = 2267 · 2940263 · C183
C183 = P27 · P157
P27 = 243116320964027224524719021<27>
P157 = 1028482569210646198463262943523919512285451094438068047692482435826458280758245850867391209810067116107639173738835019545155224537244343341801897782308906221<157>
The condition of 533...33 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=88310+alpha) 100 times.
(16·10151-1)/3, (16·10155-1)/3, (16·10157-1)/3, (16·10161-1)/3, (16·10163-1)/3, (16·10165-1)/3, (16·10167-1)/3, (16·10169-1)/3, (16·10173-1)/3, (16·10175-1)/3, (16·10179-1)/3, (16·10181-1)/3, (16·10183-1)/3, (16·10185-1)/3, (16·10187-1)/3, (16·10189-1)/3, (16·10191-1)/3, (16·10193-1)/3, (16·10195-1)/3, (16·10197-1)/3, (16·10199-1)/3, (21/200)
The condition of 55...551 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=88530+alpha) 100 times.
(5·10151-41)/9, (5·10153-41)/9, (5·10155-41)/9, (5·10156-41)/9, (5·10157-41)/9, (5·10158-41)/9, (5·10159-41)/9, (5·10160-41)/9, (5·10161-41)/9, (5·10162-41)/9, (5·10163-41)/9, (5·10164-41)/9, (5·10165-41)/9, (5·10169-41)/9, (5·10170-41)/9, (5·10171-41)/9, (5·10172-41)/9, (5·10173-41)/9, (5·10175-41)/9, (5·10176-41)/9, (5·10177-41)/9, (5·10180-41)/9, (5·10181-41)/9, (5·10183-41)/9, (5·10184-41)/9, (5·10187-41)/9, (5·10188-41)/9, (5·10189-41)/9, (5·10190-41)/9, (5·10192-41)/9, (5·10196-41)/9, (5·10197-41)/9, (5·10198-41)/9, (5·10199-41)/9, (5·10200-41)/9, (35/200)
The condition of 55...553 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=88880+alpha) 100 times.
(5·10152-23)/9, (5·10155-23)/9, (5·10156-23)/9, (5·10159-23)/9, (5·10160-23)/9, (5·10161-23)/9, (5·10162-23)/9, (5·10163-23)/9, (5·10166-23)/9, (5·10168-23)/9, (5·10169-23)/9, (5·10170-23)/9, (5·10171-23)/9, (5·10173-23)/9, (5·10174-23)/9, (5·10176-23)/9, (5·10178-23)/9, (5·10179-23)/9, (5·10180-23)/9, (5·10182-23)/9, (5·10185-23)/9, (5·10187-23)/9, (5·10188-23)/9, (5·10190-23)/9, (5·10192-23)/9, (5·10193-23)/9, (5·10195-23)/9, (5·10196-23)/9, (5·10198-23)/9, (5·10199-23)/9, (5·10200-23)/9, (31/200)
The condition of 55...557 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=89190+alpha) 100 times.
(5·10151+13)/9, (5·10153+13)/9, (5·10155+13)/9, (5·10156+13)/9, (5·10157+13)/9, (5·10158+13)/9, (5·10159+13)/9, (5·10160+13)/9, (5·10163+13)/9, (5·10165+13)/9, (5·10167+13)/9, (5·10168+13)/9, (5·10169+13)/9, (5·10170+13)/9, (5·10172+13)/9, (5·10174+13)/9, (5·10175+13)/9, (5·10176+13)/9, (5·10178+13)/9, (5·10179+13)/9, (5·10180+13)/9, (5·10181+13)/9, (5·10182+13)/9, (5·10183+13)/9, (5·10185+13)/9, (5·10186+13)/9, (5·10187+13)/9, (5·10188+13)/9, (5·10190+13)/9, (5·10191+13)/9, (5·10192+13)/9, (5·10193+13)/9, (5·10194+13)/9, (5·10195+13)/9, (5·10196+13)/9, (5·10197+13)/9, (5·10198+13)/9, (5·10200+13)/9, (38/200)
The condition of 599...99 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=90170+alpha) 100 times.
6·10151-1, 6·10152-1, 6·10153-1, 6·10154-1, 6·10155-1, 6·10160-1, 6·10161-1, 6·10162-1, 6·10164-1, 6·10166-1, 6·10167-1, 6·10168-1, 6·10172-1, 6·10173-1, 6·10174-1, 6·10175-1, 6·10176-1, 6·10177-1, 6·10179-1, 6·10180-1, 6·10181-1, 6·10183-1, 6·10184-1, 6·10188-1, 6·10190-1, 6·10191-1, 6·10192-1, 6·10193-1, 6·10194-1, 6·10195-1, 6·10196-1, 6·10197-1, 6·10199-1, (33/200)
The condition of 66...667 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=91190+alpha) 100 times.
(2·10153+1)/3, (2·10155+1)/3, (2·10157+1)/3, (2·10158+1)/3, (2·10160+1)/3, (2·10162+1)/3, (2·10163+1)/3, (2·10164+1)/3, (2·10165+1)/3, (2·10166+1)/3, (2·10167+1)/3, (2·10169+1)/3, (2·10172+1)/3, (2·10173+1)/3, (2·10175+1)/3, (2·10176+1)/3, (2·10178+1)/3, (2·10180+1)/3, (2·10181+1)/3, (2·10182+1)/3, (2·10183+1)/3, (2·10185+1)/3, (2·10186+1)/3, (2·10187+1)/3, (2·10189+1)/3, (2·10191+1)/3, (2·10192+1)/3, (2·10195+1)/3, (2·10197+1)/3, (2·10198+1)/3, (2·10200+1)/3, (31/200)
By Tyler Cadigan / PPSIQS
(4·10153-1)/3 = 1(3)153<154> = 31 · 222741917 · 335176930366717<15> · 1763475447409625933<19> · 18447244184490294562889<23> · C89
C89 = P42 · P48
P49 = 124585402003739430907913473646625029133311<42>
P48 = 142145429023645149221440361683207313284739049241<48>
GGNFS 0.61.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Tyler Cadigan / PPSIQS
(7·10138-61)/9 = (7)1371<138> = 3 · 43 · 89 · 15307 · 33744218117<11> · 51318452866693933259<20> · C100
C100 = P49 · P51
P49 = 3234184052598571652156704509502554289915810649389<49>
P51 = 790220106174916455599425329679987605916895550080539<51>
The condition of 133...33 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=76010+alpha) 100 times.
(4·10151-1)/3, (4·10153-1)/3, (4·10155-1)/3, (4·10157-1)/3, (4·10159-1)/3, (4·10163-1)/3, (4·10165-1)/3, (4·10167-1)/3, (4·10171-1)/3, (4·10175-1)/3, (4·10177-1)/3, (4·10179-1)/3, (4·10181-1)/3, (4·10183-1)/3, (4·10187-1)/3, (4·10189-1)/3, (4·10191-1)/3, (4·10195-1)/3, (4·10199-1)/3, (19/200)
The condition of 144...441 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=76200+alpha) 100 times.
(13·10152-31)/9, (13·10154-31)/9, (13·10155-31)/9, (13·10156-31)/9, (13·10158-31)/9, (13·10159-31)/9, (13·10162-31)/9, (13·10164-31)/9, (13·10165-31)/9, (13·10167-31)/9, (13·10169-31)/9, (13·10170-31)/9, (13·10171-31)/9, (13·10172-31)/9, (13·10173-31)/9, (13·10176-31)/9, (13·10177-31)/9, (13·10179-31)/9, (13·10180-31)/9, (13·10184-31)/9, (13·10185-31)/9, (13·10188-31)/9, (13·10190-31)/9, (13·10195-31)/9, (13·10197-31)/9, (13·10199-31)/9, (13·10200-31)/9, (27/200)
The condition of 22...223 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=79560+alpha) 100 times.
(2·10154+7)/9, (2·10155+7)/9, (2·10156+7)/9, (2·10157+7)/9, (2·10158+7)/9, (2·10159+7)/9, (2·10160+7)/9, (2·10161+7)/9, (2·10164+7)/9, (2·10165+7)/9, (2·10166+7)/9, (2·10167+7)/9, (2·10170+7)/9, (2·10171+7)/9, (2·10173+7)/9, (2·10174+7)/9, (2·10175+7)/9, (2·10176+7)/9, (2·10179+7)/9, (2·10180+7)/9, (2·10182+7)/9, (2·10183+7)/9, (2·10184+7)/9, (2·10186+7)/9, (2·10187+7)/9, (2·10188+7)/9, (2·10189+7)/9, (2·10193+7)/9, (2·10195+7)/9, (2·10196+7)/9, (2·10197+7)/9, (2·10198+7)/9, (2·10199+7)/9, (2·10200+7)/9, (34/200)
The condition of 499...99 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=87590+alpha) 100 times.
5·10152-1, 5·10156-1, 5·10157-1, 5·10158-1, 5·10160-1, 5·10161-1, 5·10162-1, 5·10163-1, 5·10164-1, 5·10165-1, 5·10166-1, 5·10168-1, 5·10169-1, 5·10170-1, 5·10172-1, 5·10173-1, 5·10174-1, 5·10175-1, 5·10176-1, 5·10177-1, 5·10179-1, 5·10180-1, 5·10181-1, 5·10182-1, 5·10183-1, 5·10184-1, 5·10185-1, 5·10186-1, 5·10187-1, 5·10189-1, 5·10190-1, 5·10191-1, 5·10193-1, 5·10194-1, 5·10196-1, 5·10197-1, 5·10198-1, 5·10199-1, 5·10200-1, (39/200)
By Wataru Sakai / GMP-ECM
(5·10162-17)/3 = 1(6)1611<163> = 164076642253592773<18> · C146
C146 = P28 · C118
P28 = 3467585771022759954025112257<28>
C118 = [2929373696380120915420844504125371244948839260830283456490946306945700548601185908936173210016579452797771199580868001<118>]
(10184+17)/9 = (1)1833<184> = 3 · 7 · 64542410159<11> · 433652311171<12> · C160
C160 = P28 · C133
P28 = 1688331714766061786380254203<28>
C133 = [1119679103226195952706671836219380541737724281816806432671745918941447425776987886165832562887561828879602297806261423269671804791259<133>]
144...441 (n≤150) was completed.
By Greg Childers / GGNFS
(13·10150-31)/9 = 1(4)1491<151> = 169751 · 6201733453<10> · C106
277424951607330545854241920211<30> · C106
C106 = P52 · P54
P52 = 7643203904427353004994376929256076336477323488058431<52>
P54 = 647074730566969724397780835465271843040203812266897367<54>
(4·10138-7)/3 = 1(3)1371<139> = 29 · 2857 · 21787 · C129
C129 = P42 · P88
P42 = 382932842861808317695433494904109585660143<42>
P88 = 1928903268506673934070107918549410566795740917933291209938848739593287198825685159518747<88>
(4·10142-7)/3 = 1(3)1411<143> = 2269 · 2801 · C136
C136 = P38 · P98
P38 = 89155954196849014324852853285161365719<38>
P98 = 23531021436195067102073279326523153267327728233174127236609298724412750456986803395729059934212921<98>
GGNFS 0.61.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Tetsuya Kobayashi / GGNFS 0.54.4
10165-9 = (9)1641<165> = C165
C165 = P56 · P110
P56 = 56290473873165148381086844809790940629420103915155210253<56>
P110 = 17764995232643102887053101422297754638281216307353274409711866004077365678936425580088372114246263483737897747<110>
GGNFS 0.61.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
(5·10185-17)/3 = 1(6)1841<186> = 11 · 29 · 593 · 1033 · 1499 · 2882608259<10> · 3543071821004207029<19> · C146
C146 = P28 · C119
P28 = 1137427574791532814978635687<28>
C119 = [48979244692501259904533934318356529766121780019559339790576785973107299044147705538529594775240417601599059313944047857<119>]
(10170+17)/9 = (1)1693<170> = 13 · 46908733 · 49085863 · 317108850568469<15> · C139
C139 = P32 · P107
P32 = 23853351811645992189197990153699<32>
P107 = 49073408899896705750094374454189075664684293081586466829640514872636418882737156159115520956026323753326649<107>
By Tyler Cadigan / PPSIQS
(10183+11)/3 = (3)1827<183> = 13859 · 141311 · 237857296739<12> · 492901867654387891957<21> · 9197990985038655821103413<25> · 23642196101363874691629911<26> · C91
C91 = P36 · P56
P36 = 111682434878115772842130175404571063<36>
P56 = 59776195362090066441427036679528098290966897427726454359<56>
133...33 (n≤150), 22...223 (n≤150) and 499...99 (n≤150) were completed.
By Greg Childers / GGNFS
(4·10139-1)/3 = 1(3)139<140> = 13 · 198347009088738161<18> · 7103905809983654359<19> · C139
C139 = P44 · P58
P44 = 93056477699817010118546054131289978954079037<44>
P58 = 7822146107956844303170723452387164481976821239051337106907<58>
(4·10143-1)/3 = 1(3)143<144> = 2243 · 881588849 · 9137732886173<13> · C118
C118 = P43 · P76
P43 = 1294098057730306146836411472921332043694387<43>
P76 = 5702138093159461528300041737131394665384546532724411445645938980376291125969<76>
(4·10145-1)/3 = 1(3)145<146> = 13 · 6067 · 869625401 · C132
C132 = P56 · P77
P56 = 18118019927333320870772343694119034872525813783531501521<56>
P77 = 10729474198605473759007978378665736227686878303045291450893504798797794382363<77>
(4·10147-1)/3 = 1(3)147<148> = C148
C148 = P66 · P82
P66 = 274164219895048137833082808225798287222829493125852842203567981453<66>
P82 = 4863265286198695370722014341939420965729914743888572766841772667924482793599369961<82>
(2·10143+7)/9 = (2)1423<143> = 149 · 1051 · 307423981 · 312160750988286806021859139<27> · C103
C103 = P42 · P61
P42 = 167309047980263602956732412676837060292367<42>
P61 = 8838183917468631024530100824665388670542398785290684942817409<61>
5·10145-1 = 4(9)145<146> = 7 · 191 · 200407 · 30320577358085873<17> · 3742689245540972587559<22> · C100
C100 = P32 · P69
P32 = 10770666850886758816127596408319<32>
P69 = 152672874066731926396057308274042971603911517666371368472643836198617<69>
By Tyler Cadigan / PPSIQS
(10144+71)/9 = (1)1439<144> = 1511 · 290183 · 11149616353<11> · 3676356032446416657105451<25> · C100
C100 = P44 · P57
P44 = 30544160959549048329568294296428368601133191<44>
P57 = 202402267134456416354294445204134193826917234103168515931<57>
The condition of 388...883 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=84770+alpha) 100 times.
(35·10153-53)/9, (35·10154-53)/9, (35·10158-53)/9, (35·10166-53)/9, (35·10167-53)/9, (35·10168-53)/9, (35·10169-53)/9, (35·10171-53)/9, (35·10172-53)/9, (35·10173-53)/9, (35·10176-53)/9, (35·10179-53)/9, (35·10181-53)/9, (35·10183-53)/9, (35·10184-53)/9, (35·10185-53)/9, (35·10187-53)/9, (35·10188-53)/9, (35·10189-53)/9, (35·10190-53)/9, (35·10191-53)/9, (35·10192-53)/9, (35·10194-53)/9, (35·10195-53)/9, (35·10196-53)/9, (35·10197-53)/9, (35·10200-53)/9, (27/200)
The condition of 433...33 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=85520+alpha) 100 times.
(13·10151-1)/3, (13·10153-1)/3, (13·10155-1)/3, (13·10156-1)/3, (13·10160-1)/3, (13·10161-1)/3, (13·10162-1)/3, (13·10163-1)/3, (13·10164-1)/3, (13·10165-1)/3, (13·10168-1)/3, (13·10171-1)/3, (13·10173-1)/3, (13·10175-1)/3, (13·10176-1)/3, (13·10177-1)/3, (13·10179-1)/3, (13·10180-1)/3, (13·10181-1)/3, (13·10182-1)/3, (13·10184-1)/3, (13·10187-1)/3, (13·10188-1)/3, (13·10189-1)/3, (13·10190-1)/3, (13·10192-1)/3, (13·10193-1)/3, (13·10194-1)/3, (13·10195-1)/3, (13·10196-1)/3, (13·10198-1)/3, (13·10199-1)/3, (13·10200-1)/3, (33/200)
The condition of 44...447 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=86620+alpha) 100 times.
(4·10151+23)/9, (4·10152+23)/9, (4·10153+23)/9, (4·10155+23)/9, (4·10156+23)/9, (4·10161+23)/9, (4·10162+23)/9, (4·10163+23)/9, (4·10164+23)/9, (4·10166+23)/9, (4·10168+23)/9, (4·10169+23)/9, (4·10170+23)/9, (4·10173+23)/9, (4·10174+23)/9, (4·10175+23)/9, (4·10177+23)/9, (4·10178+23)/9, (4·10179+23)/9, (4·10180+23)/9, (4·10181+23)/9, (4·10183+23)/9, (4·10184+23)/9, (4·10185+23)/9, (4·10186+23)/9, (4·10188+23)/9, (4·10190+23)/9, (4·10192+23)/9, (4·10193+23)/9, (4·10195+23)/9, (4·10196+23)/9, (4·10197+23)/9, (4·10199+23)/9, (4·10200+23)/9, (34/200)
GGNFS 0.60.10-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
The condition of 33...337 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=100000) 100 times.
(10151+11)/3, (10152+11)/3, (10153+11)/3, (10154+11)/3, (10155+11)/3, (10157+11)/3, (10160+11)/3, (10162+11)/3, (10164+11)/3, (10165+11)/3, (10166+11)/3, (10167+11)/3, (10170+11)/3, (10171+11)/3, (10172+11)/3, (10173+11)/3, (10174+11)/3, (10175+11)/3, (10176+11)/3, (10177+11)/3, (10178+11)/3, (10179+11)/3, (10180+11)/3, (10181+11)/3, (10183+11)/3, (10184+11)/3, (10185+11)/3, (10186+11)/3, (10187+11)/3, (10191+11)/3, (10192+11)/3, (10193+11)/3, (10194+11)/3, (10196+11)/3, (10197+11)/3, (10198+11)/3, (10199+11)/3, (10200+11)/3, (38/200)
By Wataru Sakai / GMP-ECM
(5·10158-17)/3 = 1(6)1571<159> = 72 · 227 · 587117 · 28302487 · C141
C141 = P25 · C117
P25 = 4405758911640887447737379<25>
C117 = [204671243833471872423458363170935132549848443077825215001952886645519860774092659259664652641538107318116138813539527<117>]
(5·10165-17)/3 = 1(6)1641<166> = 11 · 147978871 · 6277820213076323022317<22> · C135
C135 = P31 · P104
P31 = 3475850552474898581672415558079<31>
P104 = 46923066431055131596850377334570935587835316961883534280229387652167397777381279528524667787672360491667<104>
(5·10178-17)/3 = 1(6)1771<179> = 23 · 281 · 607 · 69197 · 568081406548091538959<21> · C147
C147 = P26 · P121
P26 = 94260089305481863747511783<26>
P121 = 1146569050266090042828199836790859300199833117737340928358634815662751628743134117313969594764698562259165009594440249169<121>
(10199+17)/9 = (1)1983<199> = 3 · 53 · 61 · 5261569 · 14429307007535652733<20> · C169
C169 = P29 · C140
P29 = 28953978442052238625370216321<29>
C140 = [52114855818627273784665905718435775931825142980549134209824658135179401498225871520825691993065270825222298463381748305188842776996682367711<140>]
99...997 (n≤150) was completed.
By Greg Childers / GGNFS
10148-3 = (9)1477<148> = 13 · 59 · 8902981 · 2092098327453367265488153<25> · C114
C114 = P49 · P66
P49 = 1313437274082906131865018524905745892254428247173<49>
P66 = 532939316067522452437009431855311310168767228534802154162283932019<66>
By Tyler Cadigan / PPSIQS
(43·10128-7)/9 = 4(7)128<129> = 32 · 154937 · 738616566413580841092563<24> · C99
C99 = P40 · P60
P40 = 1954973229374376044259837704014211718857<40>
P60 = 237283989262243286151858068264136304653121566371862021029459<60>
By Sander Hoogendoorn / GGNFS
(2·10130+61)/9 = (2)1299<130> = 3 · 1013 · 1297927 · 4119130853<10> · 82383989539<11> · C100
C100 = P44 · P57
P44 = 12893334001210030724132713775348201750269021<44>
P57 = 128763531207327046074262161561454733351447087377845111599<57>
By Shusuke Kubota / GMP-ECM 5.0c
(10177+17)/9 = (1)1763<177> = 79 · 199 · 337 · C170
C170 = P31 · C140
P31 = 1892299672990464278460298053559<31>
C140 = [11083004451549544720109865787472537752249266606417007670255378526710604506596194032710063538973026910205000830114341184301551035751303036791<140>]
By Makoto Kamada / GMP-ECM 5.0.3
(10180-7)/3 = (3)1791<180> = C180
C180 = P32 · P148
P32 = 49177191501454157350182747447299<32>
P148 = 6778210043236746233828300268523246840277702850524567595358247821792960480246500354171003532043608637885168961086829129013098596280247355631530720369<148>
GGNFS 0.60.9-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sander Hoogendoorn / GMP-ECM
(10154+17)/9 = (1)1533<154> = 3 · 7 · 4175881 · 117171638757881<15> · 4829596115648201347913864129<28> · C104
C104 = P30 · P74
P30 = 788762691872479934761930966381<30>
P74 = 28386405587527475548491315882496594361400361139034948208375826137519369177<74>
The condition of 188...881 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=77970+alpha) 100 times.
(17·10152-71)/9, (17·10153-71)/9, (17·10155-71)/9, (17·10157-71)/9, (17·10158-71)/9, (17·10161-71)/9, (17·10162-71)/9, (17·10164-71)/9, (17·10165-71)/9, (17·10166-71)/9, (17·10174-71)/9, (17·10179-71)/9, (17·10180-71)/9, (17·10181-71)/9, (17·10182-71)/9, (17·10183-71)/9, (17·10184-71)/9, (17·10185-71)/9, (17·10186-71)/9, (17·10187-71)/9, (17·10188-71)/9, (17·10189-71)/9, (17·10191-71)/9, (17·10192-71)/9, (17·10193-71)/9, (17·10195-71)/9, (17·10197-71)/9, (17·10198-71)/9, (17·10199-71)/9, (17·10200-71)/9, (30/200)
The condition of 211...11 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=78950+alpha) 100 times.
(19·10152-1)/9, (19·10155-1)/9, (19·10156-1)/9, (19·10157-1)/9, (19·10158-1)/9, (19·10160-1)/9, (19·10161-1)/9, (19·10164-1)/9, (19·10165-1)/9, (19·10166-1)/9, (19·10167-1)/9, (19·10169-1)/9, (19·10170-1)/9, (19·10176-1)/9, (19·10178-1)/9, (19·10179-1)/9, (19·10183-1)/9, (19·10184-1)/9, (19·10185-1)/9, (19·10187-1)/9, (19·10188-1)/9, (19·10189-1)/9, (19·10192-1)/9, (19·10193-1)/9, (19·10194-1)/9, (19·10195-1)/9, (19·10196-1)/9, (19·10197-1)/9, (19·10199-1)/9, (19·10200-1)/9, (30/200)
By Philippe Strohl / newpgen, pfgw, primo 2.2.0 beta 5
(28·10554-1)/9 = 3(1)554<555>, (28·10580-1)/9 = 3(1)580<581> and (28·101310-1)/9 = 3(1)1310<1311> are definitely prime.
(28·108537-1)/9 = 3(1)8537<8538> is a strong-tested near-repdigit prp for bases 2, 3, 5, 7, 11, 13, 101.
By Tyler Cadigan / PPSIQS
(73·10134-1)/9 = 8(1)134<135> = 13881683 · 269001190545339915526867145161<30> · C99
C99 = P47 · P53
P47 = 18432819128434097282510480246554333039481218741<47>
P53 = 11783987259061293732004233277125153540987549016928417<53>
By Makoto Kamada / GMP-ECM 5.0.3
(2·10187-11)/9 = (2)1861<187> = 19 · 4649532960488279<16> · C170
C170 = P26 · C144
P26 = 66702983608994124414569333<26>
C144 = [377119764747833718003946378619475660102486646646917939582436513454949109037981126041578149847338179007647070268403253033533084661810688970509237<144>]
(2·10198-11)/9 = (2)1971<198> = C198
C198 = P28 · P171
P28 = 1544037026288694228448962803<28>
P171 = 143922858350336298007015876592048703111776471944979409246319942874278590726370537456210410833733045044256670966248552842007007774259251774964473490039868315319739946574207<171>
(2·10199-11)/9 = (2)1981<199> = C199
C199 = P22 · C177
P22 = 6963796279053002235013<22>
C177 = [319110745514861526794711378703572343995428106001193557079701797757226211580497488909530035973009966646124859139500542679842644131385590979909709371867619340587830262001201479017<177>]
(2·10200-11)/9 = (2)1991<200> = 3 · 7 · C199
C199 = P26 · C173
P26 = 14001880603763633983098127<26>
C173 = [75575637883715360494127604153948330408332570614645220164868186345149960834182522442943792947391780510225177833932663779244341727897146410091059638069084001256139164641000663<173>]
(2·10187+43)/9 = (2)1867<187> = 7 · 239 · 2089 · 2719 · 3599899 · C170
C170 = P31 · C140
P31 = 1454013060523477510672955511551<31>
C140 = [44677130729451804862805296406299145317435763417023166693374258901454414212791155339352971120916809652830021667465704793500230882435827163161<140>]
(2·10200+43)/9 = (2)1997<200> = 32 · 31 · 359 · 17737 · C191
C191 = P26 · C165
P26 = 38777212649318798402557141<26>
C165 = [322576020641972706302877554164604660713708913064209859124760804918641746437488561431324513986094863871011370553215853295417573007065639808150520269489150069649253071<165>]
By Greg Childers / GGNFS
10147-3 = (9)1467<147> = 87257 · 2581475893243546379399562049<28> · C115
C115 = P34 · P35 · P47
P34 = 2978486598601309977385667600190257<34>
P35 = 76939696440259536071166115723477303<35>
P47 = 19372493773537840831076728862163526175658084499<47>
By Shusuke Kubota / GMP-ECM 5.0c
(10155+17)/9 = (1)1543<155> = 166099 · C149
C149 = P27 · P123
P27 = 273317524842305270518823897<27>
P123 = 244750165230574200547682049835258201594816962750328193064042361804148517538105347084808386128960345614953858844611763145771<123>
(10160+17)/9 = (1)1593<160> = 33 · 7 · 232 · 53 · 107881 · C148
C148 = P27 · C121
P27 = 301787558315959860024628403<27>
C121 = [6440474276189063029469896370990258701549175964742824120735650981327705765751244667703443710331099759156990377210821915787<121>]
By Greg Childers / GGNFS
(2·10148+7)/9 = (2)1473<148> = 34 · 13 · 19 · 101567257305949471<18> · C127
C127 = P48 · P79
P48 = 141303761410777573245254533260661267574419385131<48>
P79 = 7739235575743774151398238877945382293130861185697207152777976673706588113101589<79>
(2·10149+7)/9 = (2)1483<149> = 8821 · C145
C145 = P43 · P103
P43 = 1840443781568006396865580669535155839494213<43>
P103 = 1368822414508331612887738891689191177896334116203834760359254573437015084565780181118874791758026980951<103>
10146-3 = (9)1457<146> = 786435493 · 33687902299127<14> · 739507611188227323791<21> · C103
C103 = P51 · P53
P51 = 147774458556369431910404840981974982225732968722011<51>
P53 = 34539886053501171347512504592110662553160109081260627<53>
By Sander Hoogendoorn / GGNFS-0.60.6-unstable
(8·10122-53)/9 = (8)1213<122> = 4657 · 15971 · 9148829 · 297320813 · C99
C99 = P34 · P65
P34 = 4827809083534124843321592349710763<34>
P65 = 91005621608334442248646511271192948866304220688718076292235913339<65>
(10126+53)/9 = (1)1257<126> = 3 · 4969 · 17471 · C117
C117 = P30 · P88
P30 = 425870593031226135936543563393<30>
P88 = 1001778768087818674719079587739198460979731073535208269904425228780987895998402881908777<88>
10141-3 = (9)1407<141> = 757 · 21395260840097<14> · 1998567824579494876129<22> · C104
C104 = P47 · P58
P47 = 12839483153589083628646788780690801027737944337<47>
P58 = 2406135617024184285708011017528134490384412631178837377241<58>
By Tyler Cadigan / PPSIQS
(52·10134-7)/9 = 5(7)134<135> = 113 · 21401 · 97117666918073<14> · 2950265320624201<16> · C99
C99 = P34 · P65
P34 = 9827130435253045429747763011768723<34>
P65 = 84852040039259635923938051822061659838632591751201421054543493651<65>
By Wataru Sakai / GMP-ECM
(10180+17)/9 = (1)1793<180> = 6949 · 135862068644287<15> · 21633659135200744087543<23> · C139
C139 = P23 · C116
P23 = 57990409560719099220689<23>
C116 = [93810358881996442890482228144067883749540447348259571159075789651402467670223973413339539712829879169409153603718813<116>]
By Sander Hoogendoorn / GGNFS-0.60.6-unstable
(8·10118-53)/9 = (8)1173<118> = 3 · 7 · 19 · 228233 · 241565141 · C102
C102 = P45 · P57
P45 = 578704942589176822629197761530448010148528217<45>
P57 = 698239940722979733212883687994620092969422992590640558217<57>
By Shusuke Kubota / GMP-ECM 5.0c
(10156+17)/9 = (1)1553<156> = 17477 · 2390473 · 37402307 · 1264206703<10> · 47444143291487343389<20> · 48680022488359635652849<23> · C86
C86 = P28 · P58
P28 = 3167489193406668807814739101<28>
P58 = 7688502524564656969822416010021474832000147918615571810313<58>
The condition of 166...661 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=76900+alpha) 100 times.
(5·10155-17)/3, (5·10156-17)/3, (5·10157-17)/3, (5·10158-17)/3, (5·10159-17)/3, (5·10160-17)/3, (5·10162-17)/3, (5·10163-17)/3, (5·10164-17)/3, (5·10165-17)/3, (5·10166-17)/3, (5·10167-17)/3, (5·10171-17)/3, (5·10172-17)/3, (5·10174-17)/3, (5·10175-17)/3, (5·10176-17)/3, (5·10177-17)/3, (5·10178-17)/3, (5·10179-17)/3, (5·10180-17)/3, (5·10181-17)/3, (5·10183-17)/3, (5·10184-17)/3, (5·10185-17)/3, (5·10186-17)/3, (5·10187-17)/3, (5·10189-17)/3, (5·10190-17)/3, (5·10192-17)/3, (5·10194-17)/3, (5·10195-17)/3, (5·10196-17)/3, (5·10197-17)/3, (5·10198-17)/3, (5·10199-17)/3, (5·10200-17)/3, (37/200)
By Sander Hoogendoorn / GGNFS-0.60.6-unstable
(22·10125-1)/3 = 7(3)125<126> = 1303 · C123
C123 = P62 · P62
P62 = 13076611503468354728659845656356098066371387730347509283020637<62>
P62 = 43038962041908707110557819970297770102457906275634967258060303<62>
By Wataru Sakai / GMP-ECM
2·10159-1 = 1(9)159<160> = 31 · 269 · 1069 · 624521 · 972779112004724071<18> · C129
C129 = P30 · P100
P30 = 198218330943890143039085853511<30>
P100 = 1863087356568022561958848459430622336906208220440978054782168211919375375101660488520582074357218689<100>
By Tyler Cadigan / PPSIQS
(88·10130-7)/9 = 9(7)130<131> = 2267 · 287735621603<12> · 1724181776773381577<19> · C98
C98 = P39 · P60
P39 = 480171920602619344674066954688017245953<39>
P60 = 181056950467383564559423822136384214704873049423423083461817<60>
GGNFS 0.60.6-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
The condition of 11...113 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=74360+alpha) 100 times.
(10151+17)/9, (10152+17)/9, (10153+17)/9, (10154+17)/9, (10155+17)/9, (10156+17)/9, (10157+17)/9, (10159+17)/9, (10160+17)/9, (10162+17)/9, (10165+17)/9, (10169+17)/9, (10170+17)/9, (10172+17)/9, (10173+17)/9, (10174+17)/9, (10176+17)/9, (10177+17)/9, (10178+17)/9, (10179+17)/9, (10180+17)/9, (10181+17)/9, (10183+17)/9, (10184+17)/9, (10185+17)/9, (10187+17)/9, (10188+17)/9, (10189+17)/9, (10192+17)/9, (10193+17)/9, (10195+17)/9, (10198+17)/9, (10199+17)/9, (33/200)
The condition of 33...331 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=54860+alpha) 100 times.
(10152-7)/3, (10154-7)/3, (10159-7)/3, (10161-7)/3, (10163-7)/3, (10166-7)/3, (10167-7)/3, (10168-7)/3, (10169-7)/3, (10170-7)/3, (10172-7)/3, (10174-7)/3, (10175-7)/3, (10180-7)/3, (10182-7)/3, (10183-7)/3, (10185-7)/3, (10187-7)/3, (10189-7)/3, (10190-7)/3, (10191-7)/3, (10193-7)/3, (10195-7)/3, (10196-7)/3, (10198-7)/3, (10199-7)/3, (10200-7)/3, (27/200)
The condition of 833...33 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=68230+alpha) 100 times.
(25·10151-1)/3, (25·10153-1)/3, (25·10155-1)/3, (25·10159-1)/3, (25·10161-1)/3, (25·10163-1)/3, (25·10165-1)/3, (25·10169-1)/3, (25·10171-1)/3, (25·10179-1)/3, (25·10181-1)/3, (25·10183-1)/3, (25·10185-1)/3, (25·10189-1)/3, (25·10193-1)/3, (25·10195-1)/3, (25·10197-1)/3, (17/200)
By Tyler Cadigan / PPSIQS
(73·10142-1)/9 = 8(1)142<143> = 3 · 89 · 110879 · 316896856426336397<18> · 128431369081220952707<21> · C98
C98 = P47 · P52
P47 = 29112024575477100392322967162534860141551931511<47>
P52 = 2312375378201714336124580223199023275409487476004683<52>
By Sander Hoogendoorn / GGNFS-0.60.3-unstable, GGNFS-0.54.5b
(7·10119+11)/9 = (7)1189<119> = 13 · 79 · C116
C116 = P47 · P70
P47 = 21200188520689563589776797426334823576191297367<47>
P70 = 3572278947023668975795230555579869684684367732959994202489268058449431<70>
211...11 (n≤150) was completed.
By Greg Childers / GGNFS
(7·10117+11)/9 = (7)1169<117> = 65843 · C113
C113 = P32 · P81
P32 = 17618579928725054681087090473267<32>
P81 = 670463313689757794025465783085063598471823980469840546178141528091016173914592059<81>
(19·10141-1)/9 = 2(1)141<142> = 808001147 · 14451177179<11> · C123
C123 = P61 · P62
P61 = 1967526606641874254902868696224753606009599388741835659032403<61>
P62 = 91891485965508071388404658746315616009850224878544027799539749<62>
(19·10146-1)/9 = 2(1)146<147> = 192366985120423<15> · C133
C133 = P38 · P45 · P51
P38 = 29365301023666568488392630000453630649<38>
P45 = 355187872431500922702175275160737857693544593<45>
P51 = 105217497198344900059826621607642715596457417792601<51>
(2·10144+7)/9 = (2)1433<144> = 53611 · 117563 · 60387159023969<14> · C120
C120 = P38 · P82
P38 = 88692373338546605226340701414858466691<38>
P82 = 6583124119103824473232830829207215208475424966357525746284822636946549026969966109<82>
By Wataru Sakai / GMP-ECM, PPSIQS
2·10178-1 = 1(9)178<179> = 7 · 19697 · 49871 · 2168131776887<13> · 21546540858697<14> · 34452787495073<14> · 702699414074538345359<21> · C109
C109 = P26 · P41 · P43
P26 = 11232286032052640081577527<26>
P41 = 67824241037706050027234164121994583646719<41>
P43 = 3375775122619098833564433321864778716021439<43>
GGNFS 0.60.3-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / PFGW
(1053718-7)/3 is near-repdigit PRP! (53718 digits)
PFGW Version 20031222.Win_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] ...snip... Primality testing (10^53718-7)/3 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 191 Calling Brillhart-Lehmer-Selfridge with factored part 0.00% (10^53718-7)/3 is PRP! (369.0068s+0.0255s)
Note:
N = (1053718-7)/3 = 33...331<53718> = PRP53718
N-1 = 2·3·5·(1053717-1)/9 = 2·3·5·11...11<53717> = 2·3·5·C53717
N+1 = 22·(52·1053716-1)/3 = 22·833...33<53717> = 22·(5·1026858+1)/3·(5·1026858-1) = 22·166...667<26859>·499...99<26859> = 22·23·307·C26855·C26859
By Tyler Cadigan / PPSIQS
(55·10134-1)/9 = 6(1)134<135> = 13 · 36767 · 660263837 · 61946758732347766777697<23> · C98
C98 = P46 · P52
P46 = 8755150783849633265491267457055286984814318113<46>
P52 = 3570416687946609499815611721841848091904442919247713<52>
By Wataru Sakai / GMP-ECM
2·10181-1 = 1(9)181<182> = 19 · 71 · 7349 · 808897818779368181<18> · C157
C157 = P27 · C130
P27 = 797129087967153857493783971<27>
C130 = [3128725609853561538026773920634567520995491992088880828324972714133336327873248318256123375586149260625874239143237635528827613049<130>]
2·10193-1 = 1(9)193<194> = 61 · 3011 · 3019 · 2630399 · 1921011481<10> · C169
C169 = P28 · C142
P28 = 5467489597378404813936108409<28>
C142 = [1305529637784949287620571177887970771289520181235731640907698902880282231900498703097479220981210951629363692688397047212888405051383997623781<142>]
GGNFS 0.60.2-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS 0.60.1-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Tyler Cadigan / PPSIQS
(43·10142-7)/9 = 4(7)142<143> = 73 · 5029713022533431<16> · 7982206761553087772094608069<28> · C98
C98 = P47 · P52
P47 = 13161811572942026780272299603740292163817712761<47>
P52 = 1238571941870914213650789099380420961210434567724331<52>
GGNFS 0.60-unstable was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Greg Childers / GGNFS
(19·10137-1)/9 = 2(1)137<138> = 433 · 1153 · 11393 · 368897952710839480161169<24> · C105
C105 = P49 · P56
P49 = 6537808630984692512469327874650028071620851099861<49>
P56 = 15389245976913122179432504758319730080753497050831216747<56>
(19·10138-1)/9 = 2(1)138<139> = 232782754247700067<18> · C121
C121 = P35 · P36 · P51
P35 = 83845459775834452015372760685094399<35>
P36 = 519453467494562654362155883937185937<36>
P51 = 208225584050293597284203129689776748924665335039491<51>
(19·10140-1)/9 = 2(1)140<141> = 222326827 · C132
C132 = P45 · P88
P45 = 394108304678831242112558499262511688888855913<45>
P88 = 2409370758501444138484329720023565745017813043666268787378494727668172943572169242450061<88>
By Wataru Sakai / GMP-ECM
(88·10137-7)/9 = 9(7)137<138> = 61 · 151381 · 57788731821397588871<20> · C112
C112 = P33 · P79
P33 = 423159888810652517177897177983787<33>
P79 = 4330033931355453127427368400603870758421240640236447768211277207463100054506261<79>
By Tyler Cadigan / PPSIQS
(2·10152+43)/9 = (2)1517<152> = 3 · 239 · 5009 · 449657941 · 2049787717937<13> · 197698919201521<15> · 3382715237604481<16> · C95
C95 = P36 · P59
P36 = 123507170992907914494904032797740999<36>
P59 = 81276358251977578443368209020381440283647979206625391847573<59>
33...337 (n≤150) was completed.
By Greg Childers / GGNFS
(10147+11)/3 = (3)1467<147> = 1162937 · C141
C141 = P57 · P85
P57 = 122298277433855682221983303461516529262928308651913502673<57>
P85 = 2343701062831766762630355127557560272330817932239700191200456367244305886653028541137<85>
(10149+11)/3 = (3)1487<149> = 17 · 292 · 37 · 378223 · 5825627 · 32925367 · 756636899 · C115
C115 = P48 · P67
P48 = 195198074094872806630540943368285016578324654027<48>
P67 = 5880954575013582298632130756027502940541749324006917590815713873903<67>
(10150+11)/3 = (3)1497<150> = 2130699499<10> · 8218293359<10> · 740149080574399<15> · C116
C116 = P41 · P76
P41 = 15627473558923467190534668668177581868687<41>
P76 = 1645761600727067557000325053584468951705606827951606549532721342029062419189<76>
5·10141-1 = 4(9)141<142> = 863 · 864112969 · C130
C130 = P35 · P96
P35 = 33102413419941380298625729200482713<35>
P96 = 202548498000084611654776402535431487378132205253772216085513563043908316903499360835198098115009<96>
5·10142-1 = 4(9)142<143> = 19 · 33738391 · 69976289 · 727879169 · C118
C118 = P44 · P75
P44 = 14451133963291796815528100748696733275771551<44>
P75 = 105969262443706424717542949006868182672629853917824633425083022550272421341<75>
5·10149-1 = 4(9)149<150> = 439 · 6361 · 9892593989592316723951<22> · C122
C122 = P47 · P76
P47 = 12991330986777786451229660905897078106018495159<47>
P76 = 1393208949869384358841491740657456164913361005125028453793652095448657424009<76>
By Tyler Cadigan / PPSIQS
(2·10158+43)/9 = (2)1577<158> = 3 · 3911 · 12757 · 682183455257780153<18> · 18569608690644895717<20> · 500852893304150454113762519<27> · C87
C87 = P39 · P48
P39 = 171656453521669967343858143055323881547<39>
P48 = 136318752457961309113115770941045842568542636819<48>
By Tyler Cadigan / PPSIQS
(37·10139-1)/9 = 4(1)139<140> = 17170064291<11> · 53006618019086698414143574579147<32> · C98
C98 = P41 · P58
P41 = 18911677647762284989893684069553245761137<41>
P58 = 2388510423164987611147342476383446855248011165523062280439<58>
Factor tables of 244...441, 244...443, 244...447 and 244...449 are available.
The condition of 22...227 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=51570+alpha) 100 times.
(2·10151+43)/9, (2·10152+43)/9, (2·10153+43)/9, (2·10155+43)/9, (2·10157+43)/9, (2·10158+43)/9, (2·10159+43)/9, (2·10162+43)/9, (2·10163+43)/9, (2·10164+43)/9, (2·10166+43)/9, (2·10167+43)/9, (2·10168+43)/9, (2·10170+43)/9, (2·10171+43)/9, (2·10172+43)/9, (2·10174+43)/9, (2·10176+43)/9, (2·10177+43)/9, (2·10179+43)/9, (2·10180+43)/9, (2·10183+43)/9, (2·10184+43)/9, (2·10185+43)/9, (2·10186+43)/9, (2·10187+43)/9, (2·10189+43)/9, (2·10190+43)/9, (2·10192+43)/9, (2·10194+43)/9, (2·10196+43)/9, (2·10197+43)/9, (2·10199+43)/9, (2·10200+43)/9, (34/200)
By Wataru Sakai / GMP-ECM
2·10151-1 = 1(9)151<152> = 401 · 15791 · 320609 · C139
C139 = P29 · P111
P29 = 13051070336175283765241555981<29>
P111 = 754838685673403250817815467686560425964416958861401194449084381071630229722100857179323372193549672196641809541<111>
2·10162-1 = 1(9)162<163> = 127 · 5273 · 450446783 · 424040923727<12> · 6946941874684115687<19> · C118
C118 = P29 · P89
P29 = 44150768863179970138761108743<29>
P89 = 50978294951850258538993701135036765568108019089176244471733547982180755616368273282307049<89>
By Tyler Cadigan / PPSIQS
(34·10133-7)/9 = 3(7)133<134> = 372 · 60343 · 1557629594509<13> · 8382888599399617<16> · C98
C98 = P37 · P62
P37 = 1868838626555299774986718212188695121<37>
P62 = 18740292929201735880696313935601292593395711295563291441836987<62>
By Wataru Sakai / GMP-ECM
2·10171-1 = 1(9)171<172> = 6569 · 568471 · 1534359796328829895031<22> · C141
C141 = P25 · C116
P25 = 5602144536868763044479389<25>
C116 = [62307582226426941282730497418239251189478704230641873240737131725763565707384336402366220505143817417223703576438339<116>]
722...227 (n≤150) and 33...331 (n≤150) were completed.
By Greg Childers / GGNFS
(65·10148+43)/9 = 7(2)1477<149> = 30319 · 1303787 · C139
C139 = P40 · P49 · P50
P40 = 6924695532357538392015942113619235446521<40>
P49 = 7709243533890924197434092113655130735615595589973<49>
P50 = 34224481685633447311809947418522210620362025399123<50>
(10139+11)/3 = (3)1387<139> = 7 · 165449 · 1932922237<10> · C124
C124 = P46 · P79
P46 = 1447597086558252872609466688690209993094429259<46>
P79 = 1028618843428473398923491637224670996938221974613555125780688474782548389050873<79>
(10149-7)/3 = (3)1481<149> = 97 · 1658927 · 11332213 · 35664040793<11> · C123
C123 = P43 · P80
P43 = 5617135602839255500916665079545771553298613<43>
P80 = 91247200780038965312128628153119391614786243061577711245686454708892750851633197<80>
(10150-7)/3 = (3)1491<150> = 2696167 · 156780139 · 84715134434546281<17> · C118
C118 = P46 · P73
P46 = 6604930489864216126722326114502720837851717003<46>
P73 = 1409326621098177761765122201344192612588820084693889200289238400674958709<73>
By Tyler Cadigan / PPSIQS
(79·10118-7)/9 = 8(7)118<119> = 3 · 47 · 4024277 · 34089915659071<14> · C97
C97 = P45 · P52
P45 = 883144159821027373966672839952504573443041011<45>
P52 = 5138307307076065050635534448422224366101312899311781<52>
188...881 (n≤150) was completed.
By Greg Childers / GGNFS
(17·10147-71)/9 = 1(8)1461<148> = 32 · 11 · 19 · 79 · 107 · 2781801353422423656539918239<28> · C113
C113 = P47 · P67
P47 = 25676953116135086178490153800162757142685512269<47>
P67 = 1663171924588523777382227652703467418748719317652827597186987650887<67>
(17·10150-71)/9 = 1(8)1491<151> = 3 · C150
C150 = P75 · P76
P75 = 105402820794387104653536298689177070169650261803766637528304966641861624359<75>
P76 = 5973555782324552106124283562382297323088488515591965666516908145969488005453<76>
(65·10142+43)/9 = 7(2)1417<143> = 89 · 193 · 198638087 · 2247087431<10> · C121
C121 = P43 · P78
P43 = 9742597873074661129511930834554049809707829<43>
P78 = 966865935733139211288991786743936943283865345411378831384056867611197604830127<78>
(65·10144+43)/9 = 7(2)1437<145> = 3 · 251 · 7331 · C139
C139 = P65 · P74
P65 = 48022449417411814334223229597104761154016667704312594421848222541<65>
P74 = 27243841422266516181382717463539825882527519190626776820706713205388886629<74>
(10144-7)/3 = (3)1431<144> = 479 · 3257 · 127403 · 1672219 · 6038359 · C120
C120 = P58 · P62
P58 = 1902529719932711787220600137563189019784143649015519831397<58>
P62 = 87297596280136341089385935585276804436752469640445637040911007<62>
(10145-7)/3 = (3)1441<145> = 1303 · 2091183973<10> · C133
C133 = P39 · P94
P39 = 378880904950944761348832993283679200643<39>
P94 = 3228786805238941383170279259073448703600543986249677725106177919641344030607291283713411374443<94>
By Tyler Cadigan / PPSIQS
(2·10154-11)/9 = (2)1531<154> = 4679929 · 62151671 · 474111779 · 10123931833<11> · 21340649531177<14> · 124377581827049<15> · C93
C93 = P29 · P31 · P35
P29 = 11155972892775276123423372961<29>
P31 = 2679162778111367510973787621601<31>
P35 = 20063613869583775177852334220694889<35>
Factor Table Search is available.
Examples:
Search prime numbers.
Search composite numbers which consist of 100 digits or less.
Search factors which was discovered by GGNFS.
Search factors which was found by Makoto Kamada.
By Wataru Sakai / GMP-ECM
10161-9 = (9)1601<161> = 37871278906453241<17> · C145
C145 = P29 · P117
P29 = 21025652136804630508221938561<29>
P117 = 125585804992968912808788945390634517801861766554822671111449018351172498773938268560062296220409535778931448185975791<117>
10195-9 = (9)1941<195> = 1289 · 283435121 · 190918276279<12> · 1608873192799<13> · 387312818354664563<18> · 1079504646683992390751<22> · C122
C122 = P27 · P95
P27 = 296827436308088224012637591<27>
P95 = 71801525491886233491994351008708055401003967702537009426787904436648333892829264331597536123173<95>
By Tyler Cadigan / PPSIQS
(34·10137-7)/9 = 3(7)137<138> = 50406390252637<14> · 34685456789003348824526610617033<32> · C93
C93 = P46 · P48
P46 = 1547872150201415036131766313731406384544218071<46>
P48 = 139594499354033237182438517098215139294193516747<48>
The condition of 199...99 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=50250+alpha) 100 times.
2·10151-1, 2·10153-1, 2·10154-1, 2·10155-1, 2·10156-1, 2·10157-1, 2·10158-1, 2·10159-1, 2·10160-1, 2·10162-1, 2·10165-1, 2·10167-1, 2·10168-1, 2·10169-1, 2·10170-1, 2·10171-1, 2·10174-1, 2·10175-1, 2·10176-1, 2·10178-1, 2·10179-1, 2·10180-1, 2·10181-1, 2·10183-1, 2·10186-1, 2·10189-1, 2·10190-1, 2·10191-1, 2·10192-1, 2·10193-1, 2·10195-1, 2·10196-1, 2·10197-1, 2·10199-1, 2·10200-1, (35/200)
The condition of 22...221 was extended to n≤200.
We have not factored following numbers yet. These numbers passed GMP-ECM (B1=50910+alpha) 100 times.
(2·10154-11)/9, (2·10157-11)/9, (2·10158-11)/9, (2·10162-11)/9, (2·10163-11)/9, (2·10164-11)/9, (2·10165-11)/9, (2·10167-11)/9, (2·10168-11)/9, (2·10170-11)/9, (2·10171-11)/9, (2·10173-11)/9, (2·10174-11)/9, (2·10175-11)/9, (2·10176-11)/9, (2·10179-11)/9, (2·10180-11)/9, (2·10182-11)/9, (2·10183-11)/9, (2·10184-11)/9, (2·10185-11)/9, (2·10186-11)/9, (2·10187-11)/9, (2·10188-11)/9, (2·10189-11)/9, (2·10191-11)/9, (2·10192-11)/9, (2·10193-11)/9, (2·10196-11)/9, (2·10198-11)/9, (2·10199-11)/9, (2·10200-11)/9, (32/200)
By Patrick De Geest
(4·1042262-7)/3 = 133...331<42263> is PRP. This is the largest known PRP in Plateau and Depression numbers.
See also Plateau and Depression Primes (Patrick De Geest).
By Tyler Cadigan / PPSIQS
(22·10137-1)/3 = 7(3)137<138> = 17 · 73 · 173 · 6671719 · 10568333 · 60742673 · 202488391993093<15> · C97
C97 = P33 · P64
P33 = 512311765871649016717149445233953<33>
P64 = 7687956991006814118171485855493171149932213428300967303883804759<64>
By Tyler Cadigan / PPSIQS
(4·10133-13)/9 = (4)1323<133> = 32 · 881 · 88443650427428754868785226431323<32> · C97
C97 = P47 · P50
P47 = 68594005391360380024254797250897286959710951501<47>
P50 = 92394525921162910215679849872435259743072248714029<50>
88...887 (n≤150) was completed.
By Greg Childers / GGNFS
(13·10141-31)/9 = 1(4)1401<142> = 11 · 619 · 898348572287549<15> · C123
C123 = P58 · P65
P58 = 3435189413553562745845330774313551979056266719647909175383<58>
P65 = 68741964319513004279674267230306341436095887451228338365581020147<65>
(13·10145-31)/9 = 1(4)1441<146> = 112 · C144
C144 = P40 · P48 · P56
P40 = 3215091692475905492834991049431234800323<40>
P48 = 869531799058872659572202283364390718753855862811<48>
P56 = 42700861821644302938568173372339627573281339908570890257<56>
(17·10140-71)/9 = 1(8)1391<141> = 197 · 47255407 · 103652035862097857<18> · C114
C114 = P49 · P65
P49 = 4666166461726179380801129928968110270436020676303<49>
P65 = 41951801327579378159478866821820484800548073276834673164905690109<65>
(8·10144-17)/9 = (8)1437<144> = 599 · 241135754907107<15> · C127
C127 = P41 · P86
P41 = 75874025239004842373359386572738631090619<41>
P86 = 81108415893382466766494696285229496838195542104199630796025605211394157625582860602961<86>
(8·10148-17)/9 = (8)1477<148> = 61 · 2963 · 4327 · 2220971 · 49257293 · 252105043583<12> · C114
C114 = P42 · P73
P42 = 107068210544832033178144510647295264556809<42>
P73 = 3848961691473928008685333750034076914162492347136794688130393671496560287<73>
Factor table of 233...339 is available.
Factor tables of 211...113, 211...117 and 211...119 are available.
388...883 (n≤150) was completed.
By Greg Childers / GGNFS
(35·10143-53)/9 = 3(8)1423<144> = 11 · 3400813033692143362347940975577<31> · C113
C113 = P47 · P66
P47 = 39822446802521162148555054998307315520708034161<47>
P66 = 261049071330740757048830626374673546304849204595034145153972051249<66>
(35·10146-53)/9 = 3(8)1453<147> = 71 · 5981 · 113359 · C136
C136 = P61 · P76
P61 = 1480268819384325264781085684978331400775146249333139098019773<61>
P76 = 5457538228209977795726029602237625811827880296502011865351753095329546180419<76>
By Wataru Sakai / GMP-ECM
9·10159-1 = 8(9)159<160> = 151 · 2081 · 37756997 · C147
C147 = P37 · P111
P37 = 2749349496945658330354039617246556963<37>
P111 = 275909138843910536233458866490589939907450080666251250831272212920006003585355634397268342209549828865520254039<111>
By Tyler Cadigan / PPSIQS
(37·10125-1)/9 = 4(1)125<126> = 3 · 23 · 71 · 307 · 150587 · 149254163 · 27005742979<11> · C96
C96 = P41 · P55
P41 = 67420974835632498533086420758075874107517<41>
P55 = 6679566951980833263633468017337747460136592113701042969<55>
By Julien Peter Benney
(7·107784+11)/9 is PRP.
22...221 (n≤150) was completed.
By Greg Childers / GGNFS
(2·10146-11)/9 = (2)1451<146> = 3 · 7 · C145
C145 = P61 · P84
P61 = 1629005499570503911522997110980887938657079503413966178632607<61>
P84 = 649599438725074052277587080056907926964379332648616521940920933450301174280530982343<84>
(2·10150-11)/9 = (2)1491<150> = 279912173263<12> · 458976686907073<15> · C124
C124 = P58 · P66
P58 = 2834188426788549952231733673773047461459519075813368357123<58>
P66 = 610304192083969965409076522824019775128554583673057741177067810273<66>
(35·10140-53)/9 = 3(8)1393<141> = 359 · 577 · 170623768786145750823691763<27> · C110
C110 = P38 · P72
P38 = 24728406160615287305877860914676618707<38>
P72 = 444958612515831389347540610612885488167438846639007749453827719018700141<72>
(8·10139-17)/9 = (8)1387<139> = 7 · 1170563 · 9195458197<10> · 11506362253<11> · C113
C113 = P42 · P71
P42 = 541853661698287032693368052012284236209641<42>
P71 = 18921746304900975852505751265110395654913726325261378404329220798970547<71>
By Tyler Cadigan / PPSIQS
(8·10125-53)/9 = (8)1243<125> = 83 · 383 · 619 · 40140051714723693674509<23> · C96
C96 = P34 · P62
P34 = 1617387764872172982324268516123627<34>
P62 = 69580553803633007114920480486810142828978681396742673009816691<62>
By Wataru Sakai / GMP-ECM
9·10163-1 = 8(9)163<164> = 9311 · 9923 · 1563631 · 2134098490901084289819240413<28> · C123
C123 = P35 · P88
P35 = 60061438682395359593398744400877001<35>
P88 = 4860251353176521897528790975585779837716210646651067100277891814302127723420307300678561<88>
(88·10122-7)/9 = 9(7)122<123> = 157 · 1409 · 438427477 · 94161267251<11> · C99
C99 = P32 · P67
P32 = 45940653614093461774921904253449<32>
P67 = 2330570733202423767193315194625818946554610929797213770469865501523<67>
Factor tables of 200...003 and 200...009 are available.
922...229 (n≤150) was completed.
By Greg Childers / GGNFS
(83·10141+61)/9 = 9(2)1409<142> = 11 · 4337 · 1872939015628631473<19> · C120
C120 = P53 · P67
P53 = 54272364006449135417917424191715164257876553537322123<53>
P67 = 1901739818949460046819138208375310564699275416725059067732453145693<67>
(83·10146+61)/9 = 9(2)1459<147> = 157 · 48216364239555767<17> · C129
C129 = P37 · P92
P37 = 6737715143530254530717600356878452627<37>
P92 = 18081265583937853293018450560900085680497487595808160549311853998971936416529132034859354933<92>
(2·10143-11)/9 = (2)1421<143> = 3 · C142
C142 = P37 · P106
P37 = 1639704346744230467897817374963936809<37>
P106 = 4517526237041105422717248364841109362832890589334397951090334806082732090436300786518717858790161469411223<106>
The condition of 99...991 was extended to n≤200.
We have not factored following numbers yet. Run GMP-ECM (B1≥50000) first.
10^153-9, 10^159-9, 10^161-9, 10^163-9, 10^165-9, 10^169-9, 10^171-9, 10^173-9, 10^175-9, 10^177-9, 10^179-9, 10^181-9, 10^183-9, 10^185-9, 10^187-9, 10^189-9, 10^191-9, 10^193-9, 10^195-9, (19/200)
By Makoto Kamada / GGNFS-0.54.4-k1
10157-9 = (9)1561<157> = C157
C157 = P76 · P82
P76 = 1182138400863175552253848266595264231758705488091359346888751281045582124679<76>
P82 = 8459246390015065347380115262012913546306699962332583936149204215042988678809171729<82>
By Tyler Cadigan / PPSIQS
(7·10123+11)/9 = (7)1229<123> = 41 · 1429 · 29023 · 60942313 · 104687100851<12> · C95
C95 = P30 · P66
P30 = 383568871677228514534281646481<30>
P66 = 186913935623500644552720987765239281460148290673971815841649202819<66>
Factor tables of 188...883, 188...889, 199...993 and 199...997 are available.
Factor tables of 166...663, 166...669, 177...773 and 177...779 are available.
10149-3 = (9)1487<149> = 19 · 71 · 83 · 37573 · 721606590563161<15> · 1609561207914191556407872402061<31> · C95
C95 = P30 · P65
P30 = 420200185405225537573496373857<30>
P65 = 48704586230979775559414535682143440300694313427376479940972273211<65>
GGNFS 0.54.5b was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
Factor tables of 155...553, 155...557 and 155...559 are available.
By Greg Childers / GGNFS
(4·10119+41)/9 = (4)1189<119> = 3767 · C116
C116 = P37 · P79
P37 = 5468351428162845370288634843373069443<37>
P79 = 2157572731254216322797535461742378405090055809165408722439987179245836849818829<79>
(4·10122+41)/9 = (4)1219<122> = 7 · 1190509 · 43648126993<11> · C105
C105 = P43 · P62
P43 = 1355682374562492274028257535179450122541253<43>
P62 = 90128718688220038570007654000671430737058414743221536299348487<62>
(4·10123+41)/9 = (4)1229<123> = 18341 · 2910007 · 6126089 · 51192157 · C98
C98 = P45 · P53
P45 = 788001598394943477222987830954477571791295403<45>
P53 = 33696640755473013504475945049652716797179319979435933<53>
(4·10125+41)/9 = (4)1249<125> = 17 · 29 · 9844186708663<13> · C109
C109 = P52 · P58
P52 = 1533404138434748955067339228171983791194792755281563<52>
P58 = 5972196511516268410199167419596854493297224535950345471897<58>
(4·10126+41)/9 = (4)1259<126> = 47 · 199 · C122
C122 = P28 · P95
P28 = 2893252527708410532977738743<28>
P95 = 16424048027032334977250468790379564247730051161966791325488984093154339188794529669214911213231<95>
(4·10129+41)/9 = (4)1289<129> = 67 · 109 · 313 · 133967 · 4693228361977<13> · C105
C105 = P51 · P55
P51 = 232902447970350783340422379838762899844194911860293<51>
P55 = 1327786570528305761356677665494842809303205078766279093<55>
(4·10130+41)/9 = (4)1299<130> = 3 · 55691 · 85285559 · C117
C117 = P57 · P61
P57 = 107253181340326856748878384566645427907354430330055026519<57>
P61 = 2908208419864634963145751009015726613842860127576032867907153<61>
Factor tables of 144...447 and 144...449 are available.
By Tyler Cadigan / PPSIQS
(64·10195-1)/9 = 7(1)195<196> = 13 · 439 · 645877 · 741787444609<12> · 20194065442294414119935380483<29> · 179746009860835570206934469326647488405593736221729237<54> · C93
C93 = P34 · P60
P34 = 2453911908929535375171255435229813<34>
P60 = 291983498833927501377447781952357414915912130035189285430307<60>
By Tyler Cadigan / PPSIQS
(5·10147+31)/9 = (5)1469<147> = 13 · 29 · 129119 · 8232703 · 4452154780181895301<19> · 1479486472724455175482176443<28> · C87
C87 = P33 · P54
P33 = 595505161404659395002894544770481<33>
P54 = 353416449589679235783582856189198275165958030520153657<54>
By Wataru Sakai / GMP-ECM
9·10185-1 = 8(9)185<186> = 51506797 · C179
C179 = P37 · C142
P37 = 6651080365041166203291134547420211961<37>
C142 = [2627155446018583376056001129947388070101320462055070329967261485572839484407296033679509907414358095104997570766676583504598716504545452477747<142>]
Sequence (5·10n+13)/9 = { 7, 57, 557, 5557, 55557, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(5·10141+13)/9 = (5)1407<141> = 17 · 4936099597171592587<19> · C121
C121 = P53 · P69
P53 = 33701761657256276577940756283838594522347463549612481<53>
P69 = 196445487242682624913904252831967998446323930075923773236971184506143<69>
(5·10142+13)/9 = (5)1417<142> = C142
C142 = P54 · P89
P54 = 120665111524603501081477618600243932272409645287711429<54>
P89 = 46041109027797012227496452577514434934470047064643607309722643103546554142308843339849633<89>
(83·10139+61)/9 = 9(2)1389<140> = 3 · 11 · 19 · 53 · 563 · 1312667 · C127
C127 = P49 · P79
P49 = 3662336709704897069095805506501482949465860726713<49>
P79 = 1025347177134503905396383859019448574941117439030030908633069003023552449572883<79>
Factor tables of 133...337 and 133...339 are available.
Factor tables of 122...227 and 122...229 are available.
Sequence (86·10n+31)/9 = { 99, 959, 9559, 95559, 955559, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(86·10140+31)/9 = 9(5)1399<141> = 7 · 331883 · 1041670471<10> · C126
C126 = P46 · P80
P46 = 4516102175060756280599235604030246161696107219<46>
P80 = 87433684958660932996293941748919220401982452540216084709225342140147098500015111<80>
(86·10145+31)/9 = 9(5)1449<146> = 32 · 11 · 47 · 263 · 157489 · C135
C135 = P66 · P69
P66 = 748644374794864688961065096979617418385841681617804563480087292231<66>
P69 = 662279557109722383625027011785700167308449647917293861449905366672259<69>
(5·10139+13)/9 = (5)1387<139> = 7 · 3863 · C135
C135 = P51 · P85
P51 = 119593518641097451644193896912291636728002588053467<51>
P85 = 1717896927710932976108335587671600737580141438304167747953842334628585908745228760031<85>
By Wataru Sakai / GMP-ECM
(34·10124-7)/9 = 3(7)124<125> = 37 · 71 · 9507133 · 37002749319959491<17> · C98
C98 = P35 · P63
P35 = 54160504315818838339683617139143941<35>
P63 = 754762079112596521424663770266038984483850910872151629562729337<63>
Yahoo! Group for GGNFS users was created.
GGNFS 0.54.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS 0.54.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
Sequence (89·10n+1)/9 = { 99, 989, 9889, 98889, 988889, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(89·10138+1)/9 = 9(8)1379<139> = 31 · 7739203631<10> · C128
C128 = P45P45 = 123848493724489026440104908771242383090771607<45>
P84 = 332811864832857994803825785286396971936555207279064853034369400273436459201384992607<84>
(89·10147+1)/9 = 9(8)1469<148> = 11 · 2423 · 14741 · C140
C140 = P39 · P49 · P53
P39 = 160222624630254869280396258996178652003<39>
P49 = 4972139990969861070890682623316998893525772950021<49>
P53 = 31594192671194606533148648647345097435701380247405111<53>
Sequence (82·10n+71)/9 = { 99, 919, 9119, 91119, 911119, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(82·10146+71)/9 = 9(1)1459<147> = 61 · 569 · 11093 · 16706953 · C132
C132 = P62 · P70
P62 = 15053743424163591157391476013331832737622728051781855562824069<62>
P70 = 9408891664939924579917892583360464032946180141104136360744149482265091<70>
By Wataru Sakai / GMP-ECM, ppmpqs
(5·10139+31)/9 = (5)1389<139> = 3 · 13381169 · 488233961499763027<18> · C114
C114 = P36 · P37 · P41
P36 = 767937389205546486990497899383321239<36>
P37 = 5067987060927461212198258191296636443<37>
P41 = 72832109410715101979304172083529747274603<41>
Sequence (25·10n-1)/3 = { 83, 833, 8333, 83333, 833333, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(82·10145+71)/9 = 9(1)1449<146> = 34 · 11 · 4409 · 30570937 · C132
C132 = P53 · P80
P53 = 55623864836423887831193780354836900950336852724991831<53>
P80 = 13639034531999080193140484277331303730420699844795939558191731427804915955621883<80>
(25·10143-1)/3 = 8(3)143<144> = 1512 · 643 · 29129 · 15000224477369<14> · C120
C120 = P48 · P72
P48 = 850059927425215940194387730228305887793457647027<48>
P72 = 153031561240574261950447694587661791245925129000655462949369722678775053<72>
GGNFS 0.54.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GGNFS-0.53.3-k2, GGNFS-0.54.1-k1
(4·10150+41)/9 = (4)1499<150> = C150
C150 = P38 · P113
P38 = 24478169540608218973559824375006284619<38>
P113 = 18156767960411845144545021647808332832799204299279924680716228196015707338698208678714543612583310171092766533571<113>
GGNFS 0.54.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
Sequence (13·10n-1)/3 = { 43, 433, 4333, 43333, 433333, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(13·10143-1)/3 = 4(3)143<144> = 821 · 7993 · 224134284877<12> · C126
C126 = P48 · P78
P48 = 496669957831811171429452328504036234709614664907<48>
P78 = 593188799492163143544655710343277873676156368756362875007640032998963193696199<78>
(25·10141-1)/3 = 8(3)141<142> = 13 · 43766441 · C134
C134 = P57 · P77
P57 = 173646134673467043474614594249996799616095097962318053773<57>
P77 = 84346885144182371325885485048193091944351393978571177194778531824663780319237<77>
By Wataru Sakai / GMP-ECM
(88·10128-7)/9 = 9(7)128<129> = 4159 · 5657 · 2186341 · C116
C116 = P33 · P83
P33 = 501252067274896148186736882778243<33>
P83 = 37921978507996725275019959958606512270468583114190168121096926524710791167838513033<83>
GGNFS 0.54.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sander Hoogendoorn / GMP-ECM
9·10165-1 = 8(9)165<166> = 1139239 · C160
C160 = P22 · C139
P22 = 3500008777892854273507<22>
C139 = [2257140180752772341749697563476673520949004624616088331617541248692208685477716800333936267810500726303368685688650280142696027086834845763<139>]
9·10181-1 = 8(9)181<182> = 2347 · 18121 · 14881545317<11> · C165
C165 = P23 · C142
P23 = 18520231788365026399039<23>
C142 = [7678083141389664656001425818220694158822776458038611028631283111975249628251012772571482748321660481753969878560664066088398797796345069148879<142>]
9·10189-1 = 8(9)189<190> = 67 · 133187 · 2078087862871<13> · 234621664993637<15> · C157
C157 = P28 · C129
P28 = 5363095884001110231789672199<28>
C129 = [385707683405733164444530365933755816046832242345670430607839333744882290009141947111896835408591178894659692587255754972460523547<129>]
9·10199-1 = 8(9)199<200> = 311 · 18816601 · 7199849885356048147<19> · 6189868364159015753089<22> · C150
C150 = P19 · C131
P19 = 8780607192536057363<19>
C131 = [39301718485862350257708325333181729090996815780048171845715841482163767806759091111427975609647926520399156269244884232809787052921<131>]
GGNFS 0.53.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
9·10197-1 = 8(9)197<198> = 31 · 277 · C195
C195 = P23 · C172
P23 = 27450632285963828291729<23>
C172 = [3818112268196165689479781790439330543302891662224712896124961773277885163454921823655935042268853704582463791302464990137598241649983644542032759069272259846593508442000013<172>]
Sequence (4·10n+23)/9 = { 7, 47, 447, 4447, 44447, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(4·10150+23)/9 = (4)1497<150> = 32 · 14797 · 158129 · C140
C140 = P52 · P88
P52 = 2334639100316582423542633998614479963495682843452583<52>
P88 = 9040033073803432887815150453074684725159462725714073113819607020985016556962672188533077<88>
(13·10137-1)/3 = 4(3)137<138> = 393253967 · 1142265150635677<16> · C114
C114 = P49 · P66
P49 = 5827423332237870322314881927068091355028309484501<49>
P66 = 165540967720274491075300161169534948362158630988747150913146422587<66>
By Wataru Sakai / GMP-ECM
(5·10132+31)/9 = (5)1319<132> = 17 · 15009607 · C124
C124 = P35 · P90
P35 = 16735349127842839384417436402568419<35>
P90 = 130099154892445905531232574715219228257936537877690891576918266610176625381368629581225019<90>
By Sander Hoogendoorn
9·10163-1 = 8(9)163<164> = 9311 · 9923 · 1563631 · C150
C150 = P28 · C123
P28 = 2134098490901084289819240413<28>
C123 = [291913688629840742869263333478236850875137905645395736028272329354747978590525243351837422492661183198777698321810798675561<123>]
9·10169-1 = 8(9)169<170> = 90911 · 303273671083<12> · C154
C154 = P21 · P153
P21 = 561921476752175312039<21>
P153 = 5809192057492029790189790649473348809407304780607105559887659626527691939992391503927629486440677147928852285888430859909715432233957<133>
9·10183-1 = 8(9)183<184> = 9587 · 44803933 · 328987231 · C164
C164 = P25 · P140
P25 = 2440572839378229347582719<25>
P140 = 26095932910686069765618451295488481733475751249529060617603572778843532932969652780988006968716186630596900105613502368966849560241018262121<140>
9·10187-1 = 8(9)187<188> = 107 · 3091427 · C180
C180 = P21 · C160
P21 = 119847129180121192841<21>
C160 = [2270241721559984930272736143311910112693495887639753969987718778079115797333387754225729923122144151094026523595963349024633942322055857934743702122096103206951<160>]
By Sander Hoogendoorn
(64·10167-1)/9 = 7(1)167<168> = 3 · 17430641850992347<17> · 1507214810701852948504954498877<31> · C121
C121 = P31 · P91
P31 = 2593393711071875340499604499083<31>
P91 = 3479038412691528923419866920945000559517759572016377269174396284827135012176337635978462281<91>
(64·10177-1)/9 = 7(1)177<178> = 13 · 43 · 67 · 641 · 304879 · 1430811465791<13> · 145377867948394877437832769951054564028056043<45> · C109
C109 = P28 · P30 · P52
P28 = 2486758115223396550967154991<28>
P30 = 257817544682932484846649464881<30>
P52 = 7285151607634411586597669155389338444323201940852071<52>
(64·10189-1)/9 = 7(1)189<190> = 13 · 31 · 1307 · 9643 · 16111 · 168927683 · 5434428449<10> · 710050492681<12> · 9557531723783932333<19> · 35846499715122706776413163888590388065147<41> · C87
C87 = P39 · P49
P39 = 182561575784510959989401173628946017923<39>
P49 = 2131455913202100114324989458676266259381078561077<49>
By Sander Hoogendoorn
(64·10167-1)/9 = 7(1)167<168> = 3 · 17430641850992347<17> · C152
C152 = P31 · C121
P31 = 1507214810701852948504954498877<31>
C121 = [9022516340051690763495090685189602263225102783722102169688190088102308544830931331235226799541233270412550586475614588323<121>]
(64·10195-1)/9 = 7(1)195<196> = 13 · 439 · 645877 · 741787444609<12> · 179746009860835570206934469326647488405593736221729237<54> · C122
C122 = P29 · C93
P29 = 20194065442294414119935380483<29>
C93 = [716501784999487801171216138669504140498635676344979947291466821869221874333608342721140142591<93>]
By Makoto Kamada
R49081+6, R86453+6, R86453+2 and R86453+8 are composite.
As "Factorizations of 11...117" says:
(106k+1+53)/9 is divisible by 7.
(1034k+25+53)/9 is divisible by 4013.
R49081+6 = (1049081-1)/9+6 = (1049081+53)/9 = (106·8180+1+53)/9 is divisible by 7.
R86453+6 = (1086453-1)/9+6 = (1086453+53)/9 = (1034·2542+25+53)/9 is divisible by 4013.
As "Factorizations of 11...113" says:
(1018k+17+17)/9 is divisible by 19.
R86453+2 = (1086453-1)/9+2 = (1086453+17)/9 = (1018·4802+17+17)/9 is divisible by 19.
R86453+8 little confuses us. In the same way,
(1052364k+34089+71)/9 is divisible by 104729.
R86453+8 = (1086453-1)/9+8 = (1086453+71)/9 = (1052364·1+34089+71)/9 is divisible by 104729.
Sequence (10n+17)/9 = { 3, 13, 113, 1113, 11113, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(10146+17)/9 = (1)1453<146> = 13 · 1231 · C141
C141 = P36 · P52 · P54
P36 = 438093756688394904258681753902386243<36>
P52 = 5023228213095364349383280538083151469018517484491963<52>
P54 = 315504902521584066530740748554192812824625874515224819<54>
(10148+17)/9 = (1)1473<148> = 3 · 7 · 1051 · C143
C143 = P40 · P104
P40 = 1027191010958335312343169808383374823067<40>
P104 = 49009951146811381275847466159640285794901276734209720419172068637840787902160249833635533661924144332909<104>
Conditions of the sequence (64·10n-1)/9 = { 71, 711, 7111, 71111, 711111, ... } and 9·10n-1 = { 89, 899, 8999, 89999, 899999, ... } were extended to n≤200.
We have not factorized following numbers yet. Run GMP-ECM (B1≥250000) first.
(64·10151-1)/9, (64·10157-1)/9, (64·10161-1)/9, (64·10163-1)/9, (64·10167-1)/9, (64·10169-1)/9, (64·10173-1)/9, (64·10177-1)/9, (64·10181-1)/9, (64·10185-1)/9, (64·10187-1)/9, (64·10189-1)/9, (64·10191-1)/9, (64·10193-1)/9, (64·10195-1)/9, (64·10197-1)/9, (64·10199-1)/9, (17/200)
9·10155-1, 9·10159-1, 9·10163-1, 9·10165-1, 9·10169-1, 9·10171-1, 9·10173-1, 9·10177-1, 9·10181-1, 9·10183-1, 9·10185-1, 9·10187-1, 9·10189-1, 9·10191-1, 9·10193-1, 9·10197-1, 9·10199-1, (17/200)
Sequence (5·10n-41)/9 = { 1, 51, 551, 5551, 55551, ... } (n≤150) was completed.
By Greg Childers / GGNFS 0.53.3
(4·10143+23)/9 = (4)1427<143> = 13 · C142
C142 = P51 · P92
P51 = 180844134716075035203997990871394431806442451443269<51>
P92 = 18904696158218976770356643450736744237863202773063745264948680236412794860271753591597064351<92>
(5·10143-41)/9 = (5)1421<143> = 33 · 23 · 29 · 216916329106936233353<21> · C119
C119 = P47 · P72
P47 = 90598328670329288633752170604448516198086340879<47>
P72 = 156973182953920998467116851061533821887338330176601859281927461141694097<72>
(5·10146-41)/9 = (5)1451<146> = 3 · 17 · 47 · C143
C143 = P56 · P88
P56 = 13516118890631063865273661782358529123478184587876781679<56>
P88 = 1714776241251344387094512862437122338817972507003457126221272519176089410866002866913477<88>
By Wataru Sakai / GMP-ECM
(34·10136-7)/9 = 3(7)136<137> = 37 · 7561 · 17627 · 33034501 · 537464580563<12> · 106397931249683<15> · C94
C94 = P34 · P60
P34 = 5266615485269965446457200154214233<34>
P60 = 770006950366641907581458326988091801669850181785441305478499<60>
(5·10134+31)/9 = (5)1339<134> = 293957 · 44997707753<11> · 83394628547<11> · C107
C107 = P30 · P78
P30 = 138866219249377123128336908279<30>
P78 = 362675824798389919823466254642372711644808581986822726155119511526421051854983<78>
By Greg Childers / GGNFS 0.53.3
(7·10132-61)/9 = (7)1311<132> = 35 · 78681091949<11> · C119
C119 = P57 · P62
P57 = 997159532317710164827409930329006977759922101974333857913<57>
P62 = 40795685327010248173017671377143396808763033998584125184263381<62>
(7·10133-61)/9 = (7)1321<133> = 56883344330411<14> · 1157987595398831<16> · C105
C105 = P39 · P66
P39 = 605590275489498678158994613991181901667<39>
P66 = 194978896828514501026116372320202578329571184138844238719786421093<66>
(7·10134-61)/9 = (7)1331<134> = 599 · 51599 · C127
C127 = P50 · P77
P50 = 33590633004144418105975015304787218817644473943831<50>
P77 = 74915077847348830254424937905257609877425606983958772187549932272034696889941<77>
By Greg Childers / GGNFS 0.53.3
(7·10128-61)/9 = 77...771<128> = 83 · 5017511 · C120
C120 = P50 · P70
P50 = 41898366721982735345452155476439819713064825086237<50>
P70 = 4457506767999863893087424223511112803488068968019975028810921032313691<70>
(7·10129-61)/9 = 77...771<129> = 3 · C129
C129 = P40 · P90
P40 = 2004019751938548505602825576080732027539<40>
P90 = 129369612753801448206766034833512222723128676656403384621304657427751534950891311922173763<90>
By Wataru Sakai / GMP-ECM
(88·10121-7)/9 = 977...77<122> = 193 · 18216906809<11> · C110
C110 = P30 · C80
P30 = 543098398934116820600769928163<30>
C80 = [51207042619214580326770717794607953096741049490737309279078438743985183013967667<80>]
(88·10132-7)/9 = 977...77<133> = 3 · 29 · 1429 · 330749 · 10113404043467<14> · C110
C110 = P31 · C79
P31 = 5555454819131271767810517200293<31>
C79 = [4232268025350110505638603754126975557672854401820692974551059282484805493945121<79>]
By Makoto Kamada / PPSIQS 1.1
(88·10132-7)/9 = 977...77<133> = 3 · 29 · 1429 · 330749 · 10113404043467<14> · 5555454819131271767810517200293<31> · C79
C79 = P36 · P43
P36 = 560996190255377500506099490941179599<36>
P43 = 7544201010390981992746447100393963449963279<43>
(88·10121-7)/9 = 977...77<122> = 193 · 18216906809<11> · 543098398934116820600769928163<30> · C80
C80 = P33 · P47
P33 = 849372735117096335241019546017641<33>
P47 = 60288069656668539414818301579223067728720316987<47>
Sequence (5·10n-23)/9 = { 3, 53, 553, 5553, 55553, ... } (n≤150) was completed.
By Greg Childers / GGNFS
(5·10144-23)/9 = 55...553<144> = 3155473 · C138
C138 = P61 · P77
P61 = 3457898337391254117443536803587089986426888551811788124829981<61>
P77 = 50915592927019281212453401230452149699776576675503934503083410807471594464581<77>
(5·10150-23)/9 = 55...553<150> = 3124063013<10> · C141
C141 = P34 · P108
P34 = 1261351634852468232589667781970541<34>
P108 = 140984554188332077855633489967688233437420652572411041963485055154719514641574805797228505081879605516177441<108>
By Wataru Sakai / GMP-ECM
(5·10136+31)/9 = 55...559<136> = 32 · 19 · 14621 · 18405487608033979<17> · C114
C114 = P29 · P85
P29 = 22941531353226945978587822711<29>
P85 = 5262408723788222083958932368465628124821942929809754825892965345331732331829246044221<85>
(88·10125-7)/9 = 977...77<126> = 103 · 1104638413<10> · 783570542195239159<18> · C98
C98 = P33 · P65
P33 = 583194596093677893676999249215487<33>
P65 = 18805773661709255464759023344806978999117917846849495140292588971<65>
(88·10134-7)/9 = 977...77<135> = 109 · 2269471297<10> · 279911946799<12> · 856899311599<12> · C101
C101 = P26 · P75
P26 = 49976932281996619715258291<26>
P75 = 329737352937526175571243655849882152236634405766781729375262653015197094839<75>
By Greg Childers / GGNFS
(5·10143-23)/9 = 55...553<143> = 587 · 5969437 · 363320389 · C125
C125 = P41 · P84
P41 = 96315368735175588476997855956059367718617<41>
P84 = 453075583452401617266699849132802617393128642784210542825421600112582684159010445899<84>
By Makoto Kamada / PFGW
1026718-108906-1 is near-repdigit prime. (26718 digits)
1030504-1010168-1 is near-repdigit prime. (30504 digits)
By Naoki Yamamoto / GMP-ECM, PPSIQS 1.1
(4·10139-13)/9 = 44...443<139> = 3 · 347 · 9066214008695924081<19> · C117
C117 = P35 · P39 · P43
P35 = 62758738670313835736654307681801469<35>
P39 = 860577449091221010153116454199427374951<39>
P43 = 8719199566569262614948284612004217364358257<43>
By Greg Childers / GGNFS
(5·10142-23)/9 = 55...553<142> = 3 · 17 · C141
C141 = P50 · P91
P50 = 67446337988576193814235887298581645667909842134703<50>
P91 = 1615098241391384562749769450064252517974558843846458794999503329618544609394159962629906901<91>
By Sander Hoogendoorn / GGNFS
(34·10121-7)/9 = 377...77<122> = 37 · 59 · C119
C119 = P43 · P76
P43 = 2885175855914863701516781901606315598600683<43>
P76 = 5998054156309717055110960940861832877646996441285735446346101979722675862293<76>
Factor table of 122...223 is available.
By Greg Childers / GGNFS
(5·10133-23)/9 = 55...553<133> = 3 · 73 · 79 · 199 · 1505173 · C121
C121 = P44 · P77
P44 = 46723373906581656680817154017202356736601543<44>
P77 = 22944711285892422900279830474026033242608228109256425452324948591607523522873<77>
(5·10141-23)/9 = 55...553<141> = 7 · 73 · 747982158741485693<18> · C121
C121 = P55 · P66
P55 = 2337328675718309158903020591142384471616803828915676963<55>
P66 = 621864218337745482757167500083886259558150403580690738504658519097<66>
Sequence 2·10n-1 = { 19, 199, 1999, 19999, 199999, ... } (n≤150) was completed.
By Chris Monico / GGNFS
2·10132-1 = 199...99<133> = 383 · 6784703 · 40846423 · 295764098205281929<18> · C98
C98 = P36 · P63
P36 = 157992194582767457565322208346460391<36>
P63 = 403241538412822815665069568615264515364295352454530261564930183<63>
By Wataru Sakai / GMP-ECM
(34·10137-7)/9 = 377...77<138> = 50406390252637<14> · C124
C124 = P32 · C93
P32 = 34685456789003348824526610617033<32>
C93 = [216074437871417469140229483512985570728754485831228584104580782638769496740849010032758535037<93>]
By Greg Childers / GGNFS
(7·10118-61)/9 = 77...771<118> = 3217 · 25297654516081<14> · C101
C101 = P38 · P64
P38 = 15532685161648299645436808908256508059<38>
P64 = 6152869061347022773120137671779564447700348458674270239224253297<64>
(7·10124-61)/9 = 77...771<124> = 23 · 148573 · C118
C118 = P37 · P82
P37 = 1729703780752569274687317509531141257<37>
P82 = 1315879336314025102410131461657237752084658495968833748838537800733316050062033257<82>
(5·10127-23)/9 = 55...553<127> = 3 · 177544559 · C119
C119 = P53 · P66
P53 = 57735393220072586184214785431113466220986058930404477<53>
P66 = 180657811404142454615368294277776931300547360361648960048421496457<66>
(5·10130-23)/9 = 55...553<130> = 33 · 4049 · 57753354473<11> · C114
C114 = P38 · P77
P38 = 19960569960792207752495397053020759637<38>
P77 = 44082457912202275382610636840555331907749721721065039824037003201618677031711<77>
By Sander Hoogendoorn / GGNFS
3·10130-1 = 299...99<131> = C131
C131 = P42 · P90
P42 = 176410843726584853883407743387462128062837<42>
P90 = 170057573368314684049302929168844425493413216950195208787238174395441995530703625941928227<90>
By Wataru Sakai / GMP-ECM
(5·10147+31)/9 = 55...559<147> = 13 · 29 · 129119 · 8232703 · 4452154780181895301<19> · C114
C114 = P28 · C87
P28 = 1479486472724455175482176443<28>
C87 = [210461319855963603918690047463997122821686720568503127833902340218293951960145917799017<87>]
Sequence (2·10n+43)/9 = { 7, 27, 227, 2227, 22227, ... } (n≤150) was completed.
By Naoki Yamamoto / GMP-ECM
(4·10133-13)/9 = 44...443<133> = 32 · 881 · C129
C129 = P32 · C97
P32 = 88443650427428754868785226431323<32>
C97 = [6337710609168435045816071777774001848170814820004013594434185050821845551425814831622495237307529<97>]
By Greg Childers / GGNFS
(2·10150+43)/9 = 22...227<150> = 3671 · C146
C146 = P42 · P105
P42 = 157565285946882496580150516924132711926663<42>
P105 = 384186906691672283239484922312826833955667843655411472913536560158364186826432903253690140355517421267699<105>
(5·10126-23)/9 = 55...553<126> = 17 · 2423 · C122
C122 = P60 · P62
P60 = 699371641821031509426181243514691610033944032212980992934229<60>
P62 = 19284888882897143716756472125298651081954215492789755961542427<62>
By Sander Hoogendoorn / GGNFS
3·10125-1 = 299...99<126> = 7 · 3599650081<10> · 31612646761<11> · C105
C105 = P46 · P59
P46 = 3876544332029444008036492867365402990466431683<46>
P59 = 97153246083586305759374376504412500632762391535023918322219<59>
By Sander Hoogendoorn
(55·102779-1)/9 is prime.
GGNFS 0.53.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sander Hoogendoorn / GGNFS 0.53.0 with getdeps 0.50.2-k1
5·10133-1 = 499...99<134> = 7 · 71 · 219487417057<12> · 2348810983951<13> · C108
C108 = P38 · P71
P38 = 15643468407459141953163921151000061497<38>
P71 = 12474492012328826373816556204599871102049686859053368900342040470592073<71>
Condition of the sequence 10n-3 = { 7, 97, 997, 9997, 99997, ... } was extended to n≤150.
Following numbers were not factorized. These numbers might have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 141, 146, 147, 148, 149, (5/150)
By Greg Childers / GGNFS 0.53.2
(2·10146+43)/9 = 22...227<146> = 32 · 29 · C143
C143 = P43 · P101
P43 = 3364565907180457097034187412279371804597387<43>
P101 = 25305675747513146684875882899371352586297206368096475611848955976490346440281246471121840525358003461<101>
By Naoki Yamamoto / GGNFS 0.50.2
(4·10128-13)/9 = 44...443<128> = 23 · 43 · 512412863 · C116
C116 = P51 · P66
P51 = 333206455823654062100588260759434130906808772074837<51>
P66 = 263201136283162454275794566273264043568002234611743477143224398277<66>
GGNFS 0.53.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Naoki Yamamoto / GGNFS 0.50.2, PPSIQS 1.1
(4·10129-13)/9 = 44...443<129> = 229 · C127
C127 = P32 · P41 · P55
P32 = 20990037785105128323588237213979<32>
P41 = 54502554364749898092285546838629172994617<41>
P55 = 1696492415514857958127622430338131526395673614569962069<55>
By Naoki Yamamoto / GGNFS 0.50.2
(4·10124-13)/9 = 44...443<124> = 32 · 26459 · 1045621041241625955707<22> · C98
C98 = P35 · P63
P35 = 30367480109022487445766221681028821<35>
P63 = 587784969575581161395939998890201991302322526714771636885549999<63>
By Makoto Kamada
I clearly should have tried GMP-ECM more.
Factorizer: GGNFS 0.53.0 by Chris Monico Execution environment: Pentium 4 (3.06GHz), Windows XP, Cygwin | |||||||||||
name | parameters | results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
target poly | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | siever | QSTEP | q-loops | factors | total actual | |
99997_149 | C125=(10149-3)/19/71/83/37573/P15 (1030)5-30<150> | 3 | 1600000 1600000 | 25 25 | 42 42 | 1.88 1.88 | 12 | 800000 | 6 | P31·C95 | 36.29 36.80 |
By Greg Childers / GMP-ECM
(34·10131-7)/9 = 377...77<132> = 19 · 67601 · C126
C126 = P28 · P98
P28 = 6288769795552204180769775851<28>
P98 = 46769635893058267878190776473401799344503349258949702146522667174623480094831320247302033067906033<98>
By Chris Monico / GGNFS
2·10137-1 = 199...99<138> = 107933154040501<15> · C124
C124 = P59 · P66
P59 = 11254877967108971721971687364747575335643268954022536802019<59>
P66 = 164639613139898133672159836253458304835231081639583063417570849921<66>
By Naoki Yamamoto / GGNFS 0.50.2
(4·10125-13)/9 = 44...443<125> = 7 · 93377 · 240860290487<12> · C108
C108 = P31 · P78
P31 = 1061760791562605750846153441939<31>
P78 = 265881203190276539563970491198910438199516859054681554008060898087257465997209<78>
By Greg Childers / GMP-ECM
(34·10132-7)/9 = 377...77<133> = 32 · 1867 · 1748743559555400006807950141<28> · C102
C102 = P28 · P74
P28 = 7254004109979341312421744721<28>
P74 = 17723343506004936697214614039918927960791058454059566778726810617202213319<74>
(34·10139-7)/9 = 377...77<140> = 37 · 1586537 · 2330145454548179<16> · C117
C117 = P31 · P87
P31 = 1619770177395862286483247847039<31>
P87 = 170509290882093697207008859530456309564425733897850238400787099667581196837729899566793<87>
By Wataru Sakai / GMP-ECM
(34·10129-7)/9 = 377...77<130> = 3 · 277 · 15811637 · 19183430041663<14> · C107
C107 = P32 · P75
P32 = 30113967432941796834668647331809<32>
P75 = 497696182350347055977921428273088348975758183194450101962994877260301281773<75>
By Chris Monico / GGNFS
2·10140-1 = 199..99<141> = 89 · 68567 · 411986842103<12> · 78243273145651897<17> · C106
C106 = P41 · P65
P41 = 45790969898680950598430026489151331148057<41>
P65 = 22203152531205841279242744607049040699497136455068620741800643479<65>
By Naoki Yamamoto / GGNFS 0.50.2
(4·10120-13)/9 = 44...443<120> = 17 · 29 · 1951 · C114
C114 = P48 · P67
P48 = 126278279929905556957812282763062906900442138493<48>
P67 = 3659187263304819072653186507809952999110494563658336236607612963757<67>
(4·10118-13)/9 = 44...443<118> = 3 · 269389 · 4143961337<10> · C103
C103 = P39 · P64
P39 = 775433748534841428512105225274185871533<39>
P64 = 1711417528326269878672672868878672958755897011537865961679653449<64>
By Makoto Kamada
Factorizer: GGNFS 0.53.0 by Chris Monico Execution environment: Pentium 4 (3.06GHz), Windows XP, Cygwin | |||||||||||
name | parameters | results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
target poly | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | siever | QSTEP | q-loops | factors | total actual | |
99997_145 | C131=(10145-3)/7/107/P12 (1029)5-3<145> | 2 | 1000000 1000000 | 25 25 | 42 42 | 1.89 1.89 | 12 | 500000 | 8 | P55·P76 | 25.75 26.03 |
By Greg Childers / GGNFS-0.52.1
(2·10145+43)/9 = 22...227<145> = 7 · 239 · 197558191 · 30733767413<11> · 1064894417201<13> · C111
C111 = P40 · P71
P40 = 7548491687442602199312838584500034844247<40>
P71 = 27215353068933707944920442554488103229476570627617679875175622257104599<71>
By Greg Childers / GMP-ECM, PPSIQS
(4·10126-13)/9 = 44...443<126> = 181 · 1783981 · 2187208687<10> · C108
C108 = P33 · P33 · P44
P33 = 145119096374045890132496165483233<33>
P33 = 379384042130033365903045831353401<33>
P44 = 11430226472250843355124233756188951341826253<44>
By Chris Monico / GMP-ECM
2·10142-1 = 199...99<143> = 7 · 9554829631<10> · 4356731702671<13> · 3357467657868616871<19> · C101
C101 = P34 · P67
P34 = 2187736421927986737235449390719177<34>
P67 = 9344183469892461100358281997257285354029613953632153751125132345671<67>
By Naoki Yamamoto / PPSIQS 1.1
(7·10137+11)/9 = 77...779<137> = 13 · 1039 · 408241 · 26181751369<11> · 3425292729398808720905941333<28> · C90
C90 = P32 · P58
P32 = 22056639529761150661156954369573<32>
P58 = 7130898895763021156191882973421912329046913869904778581777<58>
By Chris Monico / GGNFS
2·10143-1 = 199...99<144> = 644351574301<12> · C132
C132 = P39 · P94
P39 = 107281422616573668503595416894220191851<39>
P94 = 2893227456310286462832991811810130099788185702416662782780831395802057171334344263213571023649<94>
By Makoto Kamada
Results of GGNFS 0.53.0.
name | version | target poly factor | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | QSTEP | siever | shortcut getdeps | total actual |
---|---|---|---|---|---|---|---|---|---|---|---|
99997_139 | GGNFS 0.53.0 | 99...997<139> (1028)5-30<140> C112=P41·P71 | 3 | 800000 800000 | 25 25 | 42 42 | 1.80 1.80 | 400000 | 12 | 5 6 | 14.72 14.80 |
By Greg Childers
(2·10142+43)/9 = 22...227<142> = C142
C142 = P44 · P98
P44 = 85575960030413375991725497538275202907116371<44>
P98 = 25967832805293130914623433239564146332704548526760355957782902914023432604012069669809063815161537<98>
By Naoki Yamamoto / PPSIQS 1.1
(4·10135-13)/9 = 44...443<135> = 487 · 84319 · 124557435973<12> · 2797096370368950528020003<25> · C92
C92 = P43 · P49
P43 = 3501974296552962694014683900191202199676961<43>
P49 = 8871009204635018234101741616969553488078528522909<49>
By Naoki Yamamoto / GMP-ECM
(7·10137+11)/9 = 77...779<137> = 13 · 1039 · 408241 · 26181751369<11> · C117
C117 = P28 · C90
P28 = 3425292729398808720905941333<28>
C90 = [157283666467016791459278588493585530666059307917051439689052861990003340364439962061071221<90>]
GGNFS-0.53.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
Factor tables of the near-repdigit palindrome sequence 77...77477...77, 77...77577...77, 77...77677...77, 99...99299...99, 99...99899...99 are available. Near-repdigit Palindrome forms (R)wD(R)w are completely factored up to 101 digits.
By Greg Childers / GMP-ECM
(8·10124-53)/9 = 88...883<124> = 3 · 73 · 17 · 1003295831<10> · C111
C111 = P33 · P78
P33 = 533252834868991076123023980274187<33>
P78 = 949775583879503059080554641404277630343016126240250646001790651451482941038323<78>
By Greg Childers / GMP-ECM, PPSIQS
(8·10150-53)/9 = 88...883<150> = 61 · 173 · 5911811 · 3977381638220226078712047067<28> · C112
C112 = P31 · P36 · P47
P31 = 1262586736045044638972457650263<31>
P36 = 180055297964424173888575711364616079<36>
P47 = 15757474264116676493899622251753222363620467539<47>
By Greg Childers / GGNFS-0.52.1
(2·10139+43)/9 = 22...227<139> = 72 · 163 · 1237 · 333292525991<12> · C120
C120 = P45 · P76
P45 = 250032617848968707843053187291507341768566071<45>
P76 = 2699055776113772740729745272715963145141623773257945023853997234998414725053<76>
(2·10140+43)/9 = 22...227<140> = 3 · 31 · 1069 · 8964601 · 30421352050471<14> · 285569714646679<15> · C100
C100 = P37 · P64
P37 = 1537826626889528440102962149670111199<37>
P64 = 1866370374076115987720915143645308809137896395487265990911695741<64>
By Chris Monico / GGNFS-0.52.2
2·10144-1 = 199...99<145> = 31 · 9804138075439<13> · C130
C130 = P35 · P96
P35 = 13854961586932530041353553255527433<35>
P96 = 474956195168874037512374864466717106402173543729681853735275008639338252700754042774999705598967<96>
By Sander Hoogendoorn / ggnfs-0.50.2-k1
(8·10116-53)/9 = 88...883<116> = 367 · 9043 · 95090691059444371<17> · C93
C93 = P32 · P61
P32 = 70432600953289405607699156781551<32>
P61 = 3999052930997618606487937766796750548209350357198059429827483<61>
By Naoki Yamamoto / GGNFS 0.50.2
(16·10117-7)/9 = 177...77<118> = 197 · 1210163 · 2294141 · C103
C103 = P34 · P69
P34 = 3366193491864394615092466070341489<34>
P69 = 965624317230638336861113164255644815470547736072360700302995506212843<69>
By Naoki Yamamoto / GGNFS 0.50.2, PPSIQS 1.1
(13·10134-1)/3 = 433...33<135> = 199 · 7177 · C129
C129 = P39 · P43 · P48
P39 = 310443695806204825883048853941991091621<39>
P43 = 5785687201900892982007414968214381142462459<43>
P48 = 168922803190060510326666688051641536230900596989<48>
By Naoki Yamamoto / PPSIQS 1.1
(46·10148-1)/9 = 511...11<149> = 32 · 193 · 359 · 40430864797<11> · 22431655423337<14> · 1251360360918225535713445002829<31> · C89
C89 = P38 · P52
P38 = 42057935411015848231340866859995766233<38>
P52 = 1717182112351141063777768046172842443193154091976929<52>
By Chris Monico / GGNFS
2·10148-1 = 199...99<149> = 7 · C148
C148 = P54 · P95
P54 = 117070574659995165200777586374365068986623688168229103<54>
P95 = 24405303086969361747536590638875719351910103103955718453805022842339158858638099335114643253319<95>
By Greg Childers / GGNFS-0.52.1
(2·10128+43)/9 = 22...227<128> = 32 · 331 · 12541 · C120
C120 = P58 · P63
P58 = 1000344265034890698594181838433694614479773335378392497189<58>
P63 = 594614271324990197436080568035620507861369527178899595166636737<63>
(2·10129+43)/9 = 22...227<129> = 139 · 6133 · 71363 · 39741047095727<14> · C104
C104 = P47 · P58
P47 = 20258864215419377654796177065819979543859152227<47>
P58 = 4537035977305463554114827190992685878369459699025736038723<58>
(2·10132+43)/9 = 22...227<132> = 17 · 25163 · C126
C126 = P60 · P67
P60 = 196959804603855884145383854955199894753944509737958282726147<60>
P67 = 2637536889245416809305135888586468429618408002108774236518191211971<67>
(2·10133+43)/9 = 22...227<133> = 7 · 59 · 113 · C128
C128 = P36 · P38 · P56
P36 = 266826656904029035443015530298752551<36>
P38 = 15777624776497722546638020690112501273<38>
P56 = 11310665340782789985942630553853205383547938874605745521<56>
(2·10135+43)/9 = 22...227<135> = 109 · 24889 · 18963649 · 6013186489<10> · 310929595079563<15> · C97
C97 = P35 · P62
P35 = 49324426672587319939477856618057831<35>
P62 = 46838486383247495945892705345162490638183050272054527763817419<62>
By Tetsuya Kobayashi / GMP-ECM 5.0.3
(82·10139-1)/9 = 911...11<140> = 72 · 13 · 22745010213596190913<20> · 39018381622916411765473<23> · C96
C96 = P27 · P69
P27 = 672037649153157760391664637<27>
P69 = 239818630401442350150517403201814834134176811816856060030914476606831<69>
(46·10135-1)/9 = 511...11<136> = 479 · C134
C134 = P29 · C105
P29 = 46154078138132146557551248199<29>
C105 = [231190363516601815875245621524025323063245909981915517274853408346607442950108028978835915150679748856991<105>]
(52·10133-7)/9 = 577...77<134> = 32 · 53 · C132
C132 = P27 · P105
P27 = 507161535575400433388365477<27>
P105 = 238833997115881069691548632721734130353784577435020569573433120826879103881898021999882972026521882938113<105>
5·10146-1 = 499...99<147> = 1324743175841<13> · 41231655271646690609789<23> · C112
C112 = P33 · P80
P33 = 491797844488087910675065491701111<33>
P80 = 18613194785067937897308160940271109215879924182776436506899598937897470234894541<80>
(8·10150-71)/9 = 88...881<150> = 7 · 39119 · 74975514714601<14> · 3953010438312526830606053<25> · C107
C107 = P30 · P32 · P46
P30 = 278093556698362052053293534853<30>
P32 = 20097196725658504721430579226829<32>
P46 = 1959692207996245702222602127514306060796873037<46>
(37·10148-1)/9 = 411...11<149> = 7 · 351343 · 15715685701<11> · C133
C133 = P35 · P98
P35 = 21065758028443297907249484416012389<35>
P98 = 50491636065502153240509298781996095334209499692636542105438958927122662225516148030340946437926599<98>
3·10144-1 = 299...99<145> = 114960971 · 2213287753<10> · C128
C128 = P30 · P99
P30 = 108090137887270909297090797793<30>
P99 = 109080439628348269202774046214310086366771298172396864071466868126105645656536199141927505676107861<99>
(28·10140-1)/9 = 311...11<141> = C141
C141 = P32 · P110
P32 = 28061244394528078097445236936881<32>
P110 = 11086860822600495496089798493845024271017940020968874041788390705256335001099077800139750826481064002684323831<110>
(46·10129-1)/9 = 511...11<130> = 17 · 19 · 82240334137855241<17> · C111
C111 = P34 · P34 · P44
P34 = 2674032226448216912556195682541261<34>
P34 = 4058621363993797320237221962751579<34>
P44 = 17728939570931867503068789999212267866115483<44>
(46·10148-1)/9 = 511...11<149> = 32 · 193 · 359 · 40430864797<11> · 22431655423337<14> · C119
C119 = P31 · C89
P31 = 1251360360918225535713445002829<31>
C89 = [72221134370216050511886139455047439541624002248961467278999502369658735430252413113238457<89>]
(73·10123-1)/9 = 811...11<124> = 29 · 2927 · 144100861 · C111
C111 = P32 · C80
P32 = 63833739956555856215699127353593<32>
C80 = [10388258895723777777326223736958021452464103794984537490479460124159085376982729<80>]
(73·10129-1)/9 = 811...11<130> = 809 · 9723253213<10> · C118
C118 = P27 · P91
P27 = 848035601727306124412985569<27>
P91 = 1215923209499907110359099149008584747886873725147568593926890646948761420775922583207060507<91>
(73·10134-1)/9 = 811...11<135> = 13881683 · C128
C128 = P30 · C99
P30 = 269001190545339915526867145161<30>
C99 = [217212105758048703274010767129432057546261389285898400665761853003366980068691694075671343515862997<99>]
(73·10143-1)/9 = 811...11<144> = 7 · 582319 · 223470319 · C129
C129 = P29 · P101
P29 = 56223336320445107851116811063<29>
P101 = 15837436546409483213789519639504868703318612432957682219628275351899328538773456582356006613264313511<101>
(73·10147-1)/9 = 811...11<148> = 4159 · 17747 · 1166927 · C134
C134 = P31 · P104
P31 = 5211981027531516487669631329999<31>
P104 = 18068411228607373367533120273425957835243258126098442269324290869126076885106512239894555942041618508259<104>
(43·10124-7)/9 = 477...77<125> = 4219 · 1850749 · C115
C115 = P31 · P85
P31 = 1829658182397745082611987252939<31>
P85 = 3344251535561118609019392015412413893530067677471043320719122483668509889510526481053<85>
By Makoto Kamada / PPSIQS 1.1
(73·10123-1)/9 = 811...11<124> = 29 · 2927 · 144100861 · 63833739956555856215699127353593<32> · C80
C80 = P38 · P42
P38 = 16851944024522236784620221321632467021<38>
P42 = 616442760586388278887103869502804909104749<42>
By Naoki Yamamoto / GMP-ECM
(88·10145-7)/9 = 977...77<146> = 197 · 16937 · 2652168012682425937332375349<28> · C113
C113 = P29 · P85
P29 = 10494560093981267791683167017<29>
P85 = 1052863760281934042939222037220079887789397898463048988151570459130673394086322002521<85>
By Naoki Yamamoto / GGNFS 0.50.2
(2·10129-17)/3 = 66...661<129> = 56149 · 269195509511<12> · C113
C113 = P46 · P67
P46 = 5850093849009154750695732932179251467340256621<46>
P67 = 7539387594423886122474188626010642810713734707297642446847656344419<67>
By Wataru Sakai / GMP-ECM
(88·10145-7)/9 = 977...77<146> = 197 · 16937 · C140
C140 = P28 · C113
P28 = 2652168012682425937332375349<28>
C113 = [11049342003053844732883196766217892563493538977511315244647157237917799253367565480991912205020696144074738049857<113>]
By Naoki Yamamoto / GGNFS 0.50.2
(88·10116-7)/9 = 977...77<117> = 624278792959867<15> · C103
C103 = P33 · P70
P33 = 740524292869073229988058449820401<33>
P70 = 2115057948046324213103243818118224005976352820802067289787971722593331<70>
By Chris Monico / GGNFS
2·10149-1 = 199...99<150> = 59 · 8885059 · C141
C141 = P31 · P111
P31 = 1493309014925537823429198505631<31>
P111 = 255486514302691494846148453167109949281503703507120073976338942411963652635881540252707023179121976597815727409<111>
By Greg Childers / GGNFS
(2·10117+43)/9 = 22...227<117> = 239 · 1327 · 3119 · C108 = P46 · P63
P46 = 1602380498589551460844803694041803071803326713<46>
P63 = 140196650172888378636539392161737752562515331031081392670520997<63>
By Naoki Yamamoto / GGNFS-0.50.2
(5·10117+31)/9 = 55...559<117> = 13 · 519917644084338582319771<24> · C92
C92 = P45 · P48
P45 = 346062737628772422538383221785890093185552101<45>
P48 = 237517026412700840486947528737713794462517971333<48>
(5·10146+31)/9 = 55...559<146> = 3243941 · 1398873744713<13> · 695031043209532567098808030379149<33> · C95
C95 = P35 · P60
P35 = 39503056720157868435026638079206339<35>
P60 = 445903749438031877158379025823963572610293551734734557460293<60>
GGNFS-0.52.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
(88·10119-7)/9 = 977...77<120> = 315303250430129350630357<24> · C97
C97 = P33 · P65
P33 = 152458436617826712499433931140047<33>
P65 = 20340435765872929924195496749772356003903484474400699753398423363<65>
By Naoki Yamamoto / GGNFS 0.50.2
(16·10154-61)/9 = 177...771<155> = 132 · 127 · C150
C150 = P40 · P111
P40 = 3733121936303998720580918507923629269009<40>
P111 = 221878321587930532169969709902563560847331538413982435341417449466367100689787271320174821863118816102475066813<111>
(5·10113+31)/9 = 55...559<113> = 72 · C112
C112 = P41 · P71
P41 = 43720746141733364946107849658114339806371<41>
P71 = 25932467950045189401837833609812116498751235726707090602373851852516221<71>
By Naoki Yamamoto / GMP-ECM
(5·10129+31)/9 = 55...559<129> = 13 · 43 · 1272231689<10> · 11160255697127399<17> · C101
C101 = P35 · P67
P35 = 17321531270228804971420531802867243<35>
P67 = 4041001865615899813621236180480845269006050736592447296930252650437<67>
GGNFS-0.52.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sander Hoogendoorn / ggnfs-0.50.2-k1
(5·10116+31)/9 = 55...559<116> = 172 · 3679800784648829<16> · C98
C98 = P32 · P67
P32 = 44334860269035801667552039407673<32>
P67 = 1178311185643301456111174295447537534022224985031162773715621064043<67>
GGNFS-0.52.0 was released. This version includes ggnfs-0.50.2-k1.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Wataru Sakai / GMP-ECM
(5·10123+31)/9 = 55...559<123> = 13 · 229 · 6661 · 10949 · 3361177 · 2619474031<10> · C96
C96 = P32 · P65
P32 = 18272483111100886415621718646609<32>
P65 = 15904928508226266154222347295244079475097632916793327874442395241<65>
(Aug 11, 2004) ggnfs-0.50.2-k1 is included to GGNFS-0.52.0.
ggnfs-0.50.2-k1 was released. This patch accelerates getdeps of GGNFS 0.50.2. In getdeps.c, makeMasterIndex() calls fread() and fwrite() over and over, so this routine takes long wasting time especially on Cygwin. The same is looked about addNewRelations3(). ggnfs-0.50.2-k1 changes the function to take not wasting time but large memory. Changes will be included in GGNFS in the future.
target<digits> factor | poly | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | QSTEP | total time actual time |
---|---|---|---|---|---|---|---|---|
(34·10115-7)/9 = 377...777<116> C105 = P37 · P68 | 34·(1023)5-7 | 1 | 400000 400000 | 25 25 | 38 38 | 1.71 1.71 | 50000 | 2.0 hours 2.1 hours |
(34·10116-7)/9 = 377...777<117> C107 = P46 · P60 | 340·(1023)5-7 | 1 | 400000 400000 | 25 25 | 38 38 | 1.71 1.71 | 50000 | 2.90 hours 3.07 hours |
(34·10118-7)/9 = 377...777<119> C96 = P41 · P56 | 17·(1024)5-350 | 3 | 450000 450000 | 25 25 | 38 38 | 1.83 1.83 | 50000 | 3.55 hours 3.78 hours |
(4·10115-13)/9 = 44...443<115> C111 = P33 · P79 | (2·1023)5-104 | 3 | 400000 400000 | 25 25 | 38 38 | 1.85 1.85 | 50000 | 2.01 hours 2.13 hours |
(4·10116-13)/9 = 44...443<116> C109 = P46 · P63 | 5·(2·1023)5-52 | 2 | 400000 400000 | 25 25 | 38 38 | 1.75 1.75 | 50000 | 2.01 hours 2.17 hours |
(8·10115-53)/9 = 88...883<115> C111 = P41 · P71 | (2·1023)5-212 | 4 | 400000 400000 | 25 25 | 38 38 | 1.75 1.75 | 50000 | 1.69 hours 1.88 hours |
Condition of the sequence (8·10n-53)/9 = { 3, 83, 883, 8883, 88883, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 116, 117, 118, 122, 124, 125, 126, 129, 130, 132, 135, 136, 139, 142, 143, 144, 146, 148, 149, 150, (20/150)
Condition of the sequence (4·10n-13)/9 = { 3, 43, 443, 4443, 44443, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 118, 120, 124, 125, 126, 127, 128, 129, 133, 135, 136, 137, 139, 141, 143, 144, 146, 147, 149, 150, (20/150)
By Naoki Yamamoto / PPSIQS 1.1
(88·10142-7)/9 = 977...77<143> = 17 · 21491 · 12889824783089<14> · 299476320250181152930460992793<30> · C95
C95 = P47 · P49
P47 = 13245760762206208300793072742910185771632215651<47>
P49 = 5234174633003279598976699261396818482965422304033<49>
By Naoki Yamamoto / GGNFS-0.50.2
(5·10128+31)/9 = 55...559<128> = C128
C128 = P32 · P97
P32 = 38269214212140348621764618632681<32>
P97 = 1451703587316704504219071457325686645925023851742369363924810363182131249318712352433397460201039<97>
Condition of the sequence (34·10n-7)/9 = { 37, 377, 3777, 37777, 377777, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 121, 123, 124, 127, 128, 129, 130, 131, 132, 133, 136, 137, 138, 139, 140, 142, 143, 147, 149, 150, (20/150)
By Naoki Yamamoto / GGNFS-0.50.2
(5·10148+31)/9 = 55...559<148> = 3 · 17 · C147
C147 = P44 · P103
P44 = 48927720345537554079204669065308406118675509<44>
P103 = 2226395611819538088138623926667538986963803982837221614882581319995207895365189900082209127633525519401<103>
By Wataru Sakai / GMP-ECM
(5·10146+31)/9 = 55...559<146> = 3243941 · 1398873744713<13> · C128
C128 = P33 · P95
P33 = 695031043209532567098808030379149<33>
C95 = [17614561105781635495651811321705417120485475600235294076950813661998769837908505718148946397327<95>]
Factor table of the near-repdigit palindrome sequence 33...33733...33 is available.
By Sander Hoogendoorn
5·10135-1 = 499...99<136> = C136
C136 = P60 · P77
P60 = 269003202410838504214036520941412612134351136344950318928159<60>
P77 = 18587139317262429780586757996354609670472835010983311369908899791500395369761<77>
Factor table of the near-repdigit palindrome sequence 77...77377...77 is available.
Factor tables of the near-repdigit palindrome sequence 11...11711...11, 11...11811...11, 33...33833...33, 77...77177...77, 99...99199...99, 99...99799...99 are available.
By Sander Hoogendoorn / GGNFS-0.42.0
5·10130-1 = 499...99<131> = 739 · 1129 · 1779149 · 37524595431275311<17> · C102
C102 = P40 · P63
P40 = 7628309663740789043344274685157484199841<40>
P63 = 117672497216416907975811138393270288338026728779873725975710671<63>
By Wataru Sakai / GMP-ECM
(79·10126-7)/9 = 877...77<127> = 337 · 4721 · 73637 · 119869 · 7474153 · 1022663261<10> · C95
C95 = P32 · P64
P32 = 20934653464832126854449165578597<32>
P64 = 3906225375647472141875367898907852805403416735828228781396251017<64>
Factor tables of the near-repdigit palindrome sequence 77...77977...77, 99...99599...99 are available.
Factor tables of the near-repdigit palindrome sequence 77...77877...77, 99...99499...99 are available.
Condition of the sequence (88·10n-7)/9 = { 97, 977, 9777, 97777, 977777, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 116, 119, 121, 122, 125, 127, 128, 130, 132, 134, 137, 138, 141, 142, 143, 144, 145, 146, 149, 150, (20/150)
Condition of the sequence (5·10n+31)/9 = { 9, 59, 559, 5559, 55559, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 113, 116, 117, 123, 126, 128, 129, 130, 132, 134, 135, 136, 137, 139, 140, 142, 146, 147, 148, 150, (20/150)
By Naoki Yamamoto / GGNFS-0.50.2
(4·10116+41)/9 = 44...449<116> = 7 · 337 · 2039 · 26753002217<11> · C99
C99 = P38 · P61
P38 = 44794759861299396985200448488293440259<38>
P61 = 7710323090519545020480623649489753373694054004099076008805283<61>
By Naoki Yamamoto / PPSIQS 1.1
(37·10147-1)/9 = 411...11<148> = 23 · 61 · 257 · 14065141 · 2002045231<10> · 16106441408411<14> · 3574843806050081<16> · C97
C97 = P34 · P63
P34 = 8382239055754299828581187813116803<34>
P63 = 838945471965205785933350926848623267517006821503864790379243727<63>
Factor tables of the near-repdigit palindrome sequence 11...11411...11, 11...11511...11 and 11...11611...11 are available.
By Naoki Yamamoto / GGNFS-0.50.2
(7·10129-1)/3 = 233...33<130> = 460973 · 2805891978037<13> · 5542822167307<13> · C99
C99 = P45 · P54
P45 = 496581743478488996713861801354111444216964147<45>
P54 = 655403347174745853386934264992436518045116721863278677<54>
(7·10113+11)/9 = 77...779<113> = 13 · 41 · 317 · 4049231 · 659079229 · C93
C93 = P33 · P60
P33 = 507527545879734298342291428748409<33>
P60 = 339859381634013658446000254171861064394439537000913446780329<60>
(7·10115+11)/9 = 77...779<115> = 3 · 43 · 23561 · 2182451195879<13> · C97
C97 = P48 · P49
P48 = 204630175486239665441834420067922388530171436419<48>
P49 = 5730043032793768756673983042924268914827505976591<49>
By Chris Monico / GGNFS
2·10150-1 = 199...99<151> = 17 · 336263 · 6516017 · 11385821807<11> · C127
C127 = P38 · P89
P38 = 55120529024967151191001971500609072753<38>
P89 = 85554335523575100570067317351631393271852473171138400561538366131132422284355387689070967<89>
By Wataru Sakai / GMP-ECM
(79·10135-7)/9 = 877...77<136> = 67 · C135
C135 = P32 · P104
P32 = 11929546337170934826957294007451<32>
P104 = 10982111550657510700513355288216179071140051766262673835508750420486872948294203183491129951906834483681<104>
(7·10131-61)/9 = 77...771<131> = 67 · 617 · 1823 · 310621183 · 48346728036539<14> · C101
C101 = P37 · P65
P37 = 6853714382111772333567001250060157467<37>
P65 = 10027316802528728876840365539723496805982556831028807023311815417<65>
By Naoki Yamamoto / GGNFS-0.50.2
(7·10144-1)/3 = 233...33<145> = C145
C145 = P47 · P98
P47 = 37466137662297732968966339042619987350087992783<47>
P98 = 62278459401524391449909039884972845130019000157718994827933933144917142216395425263726960259325851<98>
By Sander Hoogendoorn / NFSX 1.8
(79·10119-7)/9 = 877...77<120> = 173 · 223 · 3221 · 91757 · 1074533 · C101
C101 = P33 · P69
P33 = 156477338651555641824995709430741<33>
P69 = 457859759985964363716052010340892271341496432063774626160703756819043<69>
By Sander Hoogendoorn / GGNFS-0.42.0
5·10125-1 = 499...99<126> = 31 · 992445257 · C116
C116 = P35 · C81
P35 = 36167938192618912257635160348826241<35>
C81 = [449343018205749408245949108992786992858072894255838328977051237721820163447966617<81>]
By Makoto Kamada / PPSIQS 1.1
5·10125-1 = 499...99<126> = 31 · 992445257 · 36167938192618912257635160348826241<35> · C81
C81 = P36 · P45
P36 = 541041326367575421678108269681570849<36>
P45 = 830515149780762684023194221858216749394061433<45>
Condition of the sequence (7·10n+11)/9 = { 9, 79, 779, 7779, 77779, ... } was extended to n≤150.
Following numbers were not factorized. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 113, 115, 117, 119, 122, 123, 124, 126, 129, 133, 134, 135, 137, 139, 141, 142, 143, 145, 147, 148, (20/150)
Condition of the sequence (4·10n+41)/9 = { 9, 49, 449, 4449, 44449, ... } was extended to n≤150.
Following numbers were not factorized yet. These numbers may have small factors. You should run GMP-ECM (B1≥1000000) first.
n= 116, 119, 122, 123, 125, 126, 129, 130, 131, 132, 133, 135, 140, 142, 143, 145, 147, 148, 149, 150, (20/150)
By Sander Hoogendoorn
(79·10120-7)/9 = 877...77<121> = 1973 · 17589721 · C111
C111 = P52 · P59
P52 = 3647603796195563296887624217864148310447270429610909<52>
P59 = 69341125512577351283194098596051851745852661752751688209241<59>
By Naoki Yamamoto / GGNFS-0.42.0
(5·10125-23)/9 = 55...553<125>= 73 · 547 · 3391 · 1635497 · 8511649 · C104
C104 = P50 · P54
P50 = 57825114673387146834563010233705010037136332567081<50>
P54 = 509694043275954779862018223457964767725872259446162301<54>
GGNFS-0.50.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Naoki Yamamoto / GGNFS-0.42.0
(2·10130+7)/9 = 22...223<130> = 32 · 13 · 19 · 1423 · 1551317117327979089261<22> · C102
C102 = P48 · P55
P48 = 444393718392193325525367381067708903784680905533<48>
P55 = 1019001040424840666261118066908241563639658856415896199<55>
(79·10115-7)/9 = 877...77<116> = 3 · 19 · 127 · C113
C113 = P44 · P69
P44 = 42034016908010046021378526723248273108709559<44>
P69 = 288472959872801474661886852720633634410793341412133936141410803462577<69>
Factor table of the sequence 7·10n+1 = { 71, 701, 7001, 70001, 700001, ... } (n≤100) is available.
By Tetsuya Kobayashi / GGNFS 0.41.1 with gnfs-lasieve4e
(25·10137-1)/3 = 833...33<138> = C138
C138 = P49 · P90
P49 = 1638545571355283827888850394797548229861836865827<49>
P90 = 508581114801745534164695080669826850365678387521375675524443722168064117995925288317879079<90>
By Tetsuya Kobayashi / GMP-ECM 5.0.3 (B1=1000000)
(82·10134-1)/9 = 911...11<135> = 6960383 · 69163136827<11> · 163163049593<12> · C107
C107 = P28 · C79
P28 = 4001114788721318238000734929<28>
C79 = [2899083327033291743797371234836308744527855240678176062632160165611049600111043<79>]
5·10123-1 = 499...99<124> = 89 · 2111 · C119
C119 = P31 · P88
P31 = 8215978320845452759352519383001<31>
P88 = 3239160589249899026971792199328906772388800723424699494389476245714793002129219351491281<88>
5·10136-1 = 499...99<137> = 49739 · 37933257899<11> · C122
C122 = P39 · C84
P39 = 247427558723526151962343402114292522351<39>
C84 = [107103765782521606380635529965406725526768538275161946579155860869152331675644483609<84>]
(46·10133-1)/9 = 511...11<134> = 3 · 29 · 919 · 32059 · 45289 · 1831064236756717727<19> · C102
C102 = P24 · C78
P24 = 901419944778877323261361<24>
C78 = [266751648491328423758308659758450582355989730986836507230434702559126958408771<78>]
(55·10140-1)/9 = 611...11<141> = 13 · 17 · 47 · 367 · 8907795174011<13> · C122
C122 = P30 · P92
P30 = 286967102471285815138735294727<30>
P92 = 62713588098969121341231164916244678281825463895878747428903824319231137581779849372395294447<92>
(73·10139-1)/9 = 811...11<140> = 3 · 783566963 · C131
C131 = P25 · C106
P25 = 4777344126483896523285239<25>
C106 = [7222648056323288116333995397594572469155800784650472685188934228183853141171710545082417781751284704098841<106>]
(22·10127-1)/3 = 733...33<128> = 47 · 457 · 60133 · 530397844244647<15> · C105
C105 = P25 · P80
P25 = 5106554452273521819702917<25>
P80 = 20962582244356588993925045053439691694812836183923171778828616196732382735765581<80>
By Makoto Kamada / PPSIQS 1.1
(82·10134-1)/9 = 911...11<135> = 6960383 · 69163136827<11> · 163163049593<12> · 4001114788721318238000734929<28> · C79
C79 = P32 · P47
P32 = 32265017822641920375578480451101<32>
P47 = 89852215268229761835890756896531657804867643743<47>
(46·10133-1)/9 = 511...11<134> = 3 · 29 · 919 · 32059 · 45289 · 1831064236756717727<19> · 901419944778877323261361<24> · C78
C78 = P39 · P40
P39 = 171058051535971858079912374255284920921<39>
P40 = 1559421764109321246261486637921914105851<40>
5·10136-1 = 499...99<137> = 49739 · 37933257899<11> · 247427558723526151962343402114292522351<39> · C84
C84 = P39 · P45
P39 = 192354257809333079137411266279438005089<39>
P45 = 556804757026412458852371557261880118927562681<45>
GGNFS-0.50.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Naoki Yamamoto / GGNFS-0.42.0
(2·10136+7)/9 = 22...223<136> = 3 · 13 · C134
C134 = P40 · P95
P40 = 1208403718344969580010976922953219153737<40>
P95 = 47153162568960726558585743667934255258026493976547097688772198069171183804381407635463744713361<95>
GGNFS-0.50.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Naoki Yamamoto / GGNFS-0.42.0
(8·10130-71)/9 = 88...881<130> = 31 · 362791645874116663<18> · C111
C111 = P30 · P82
P30 = 351127620084747953086032902879<30>
P82 = 2250937896568268128530971256845564419903608981264290387459314036523226283091874263<82>
Condition of sequence (79·10n-7)/9 = { 87, 877, 8777, 87777, 877777, ... } was extended to n≤150.
Following numbers have not factorized yet. These numbers may have small factors. You should run GMP-ECM (B1≥1000000?) first.
n=
115,
118,
119,
120,
124,
126,
130,
131,
132,
133,
135,
136,
137,
140,
141,
142,
145,
146,
148,
149,
(20/150)
By Naoki Yamamoto / GGNFS-0.42.0
(8·10125-71)/9 = 88...881<125> = 3 · 13 · 17 · 89 · 173 · C118
C118 = P48 · P70
P48 = 922504058548251284436573284168962093370710273699<48>
P70 = 9439077542687304031267742292486251570088463036922530791706458855090329<70>
By Wataru Sakai / GMP-ECM
(37·10127-1)/9 = 411...11<128> = 635821 · C122
C122 = P33 · P90
P33 = 469488855864230005483461314336129<33>
P90 = 137720648445416062792457424757472821995659748083558641360826441310501439598398121157011779<90>
By Naoki Yamamoto / GGNFS-0.42.0
(8·10120-71)/9 = 88...881<120> = 7 · 41109083 · C112
C112 = P28 · P84
P28 = 7250708775037199879025189199<28>
P84 = 426021175353918824704540396267389351147465945869342287540201528994822049771054339499<84>
By Naoki Yamamoto / GGNFS-0.41.4
(7·10130-43)/9 = 77...773<130> = 3 · 73 · C128
C128 = P44 · P85
P44 = 11513012705773495975285166902174933952342767<44>
P85 = 3084767465253160394715823429783026037611212382543171576253540671002826546426303736601<85>
By Makoto Kamada / GGNFS-0.42.0
2·10123-1 = 199...99<124> = 109 · 217114861 · 2825376469<10> · C104
C104 = P31 · P73
P31 = 7802871694458922680414327278941<31>
P73 = 3833391338808287460914354109964295906385875484435011906494407451701606919<73>
By Chris Monico / GGNFS
2·10130-1 = 199...99<131> = 7 · 311043047257<12> · C118
C118 = P42 · C77
P42 = 316679239119493368730697918313185363275679<42>
C77 = [29006268639903695165654583513611219242606418776618136746986456859685764635119<77>]
By Makoto Kamada / PPSIQS 1.1
C77 = P37 · P40
P37 = 5855691034209378660658810843429609687<37>
P40 = 4953517607135850515490609742784611284137<40>
By Chris Monico / GGNFS
2·10125-1 = 199...99<126> = C126
C126 = P55 · P71
P55 = 5593144113982773671594705011644916102525868355090939299<55>
P71 = 35758063072253600104111297707041995548298752568202917692898922932429301<71>
Sequence 6·10n-1 = { 59, 599, 5999, 59999, 599999, ... } (n≤150) was completed.
By Chris Monico / GGNFS
6·10149-1 = 599...99<150> = 1217 · 2089 · 58543 · 2467331209438569905957<22> · C118
C118 = P47 · P72
P47 = 10987226447999824436534198115279323138230080781<47>
P72 = 148707109019575208847647232019368309061651691482221984454276421168203433<72>
By Naoki Yamamoto / GGNFS-0.41.4
(7·10124-1)/3 = 233...33<125>= 2063983 · C119
C119 = P51 · P68
P51 = 216429803459198692982079852449385736358543491058747<51>
P68 = 52234038440848787045388167594052526859221296895405324688852732106433<68>
By Naoki Yamamoto / GGNFS-0.41.4
(73·10119-1)/9 = 811...11<120> = 7 · C120
C120 = P47 · P73
P47 = 35843307395754477763182390342136107571429116643<47>
P73 = 3232765732069151961623791427793961705222005358158797460862734751550729611<73>
By Wataru Sakai / GMP-ECM
(37·10139-1)/9 = 411...11<140> = 17170064291<11> · C130
C130 = P32 · C98
P32 = 53006618019086698414143574579147<32>
C98 = [45170739181216532842550406375567476783907764256353010839594573481785115842469425710359529501499143<98>]
(37·10140-1)/9 = 411...11<141> = 32 · 23478857 · 187440991 · C125
C125 = P38 · P87
P38 = 13747752321728679995707324065371137717<38>
P87 = 754993970727815294680343917937805369161805137527893698330319252874619963080619076996101<87>
By Naoki Yamamoto / GGNFS-0.41.4
(52·10120-7)/9 = 577...77<121> = 53 · 71 · 419 · 19739490466243<14> · C102
C102 = P40 · P63
P40 = 1227279797212489371909157653353692586057<40>
P63 = 151263125442334610939196931165683423322159672814236639084655291<63>
By Naoki Yamamoto
2·10119-1 = 199...99<120> = 117839 · C115
C115 = P43 · P72
P43 = 2883845398187423145137576280203368673508491<43>
P72 = 588530497766278656698413595437639465348609061819280096585286457602098451<72>
By Makoto Kamada
version | target<digits> factor | poly | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | QSTEP | total time actual time | |
---|---|---|---|---|---|---|---|---|---|---|
7 | 0.41.4 | 10125-3 = 99...997<125> 224027 · P47 · P74 | (1025)5-3 | 2 | 500000 500000 | 25 25 | 38 38 | 1.7 1.7 | 50000 | 3.8 hours 7.4 hours |
8 | 0.42.0 | 10116-3 = 99...997<116> 563 · 1321 · 8774317 · P46 · P59 | 10·(1023)5-3 | 1 | 600000 600000 | 25 25 | 40 40 | 1.5 1.5 | 200000 | 3.2 hours 4.5 hours |
9 | 0.42.0 | 10118-3 = 99...997<118> 13 · 8461 · 89293 · P50 · P60 | 1000·(1023)5-3 | 1 | 700000 700000 | 25 25 | 40 40 | 1.5 1.5 | 300000 | 2.9 hours 3.5 hours |
10 | 0.42.0 | 10135-3 = 99...997<135> P52 · P84 | (1027)5-3 | 2 | 800000 800000 | 25 25 | 42 42 | 1.8 1.8 | 200000 | 10.1 hours 13.5 hours |
By Wataru Sakai
(2·10147+43)/9 = 22...227<147> = C147
C147 = P29 · P36 · P83
P29 = 37552884739371336887267500859<29>
P36 = 110000162020693591815991881775726199<36>
P83 = 53796108039117408201713122464668477028900137584676342534723577710785928545348290047<83>
By Chris Monico
6·10148-1 = 599...99<149> = 23 · 143623072438553111<18> · 70116191139095712136541<23> · C108
C108 = P41 · P68
P41 = 15621998636651197677331299592611109051271<41>
P68 = 16582281729960152020747008046431377081820647054098938825685245773453<68>
GGNFS-0.42.0 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Naoki Yamamoto
(4·10125-31)/9 = 44...441<125> = C125
C125 = P60 · P66
P60 = 248045852618693759570106685428526539565533569384576825285099<60>
P66 = 179178341323715918528397067044394058335935028042832254100223016459<66>
(5·10124-23)/9 = 55...553<124> = 3 · C124
C124 = P51 · P73
P51 = 893705583790618947435784683592956843318755685731321<51>
P73 = 2072105048283676593750713609645700636020171033758333979718460244891352931<73>
By Naoki Yamamoto
(5·10119-23)/9 = 55...553<119> = 53 · 90563537 · 2224349341<10> · C100
C100 = P36 · P65
P36 = 187609016630476561110373570775917331<36>
P65 = 27735854278888576215443083404195516851216822681668421792490681163<65>
By Tetsuya Kobayashi
(10143+17)/9 = 11...113<143> = 19 · 31 · 11491 · 22751 · C131
C131 = P61 · P70
P61 = 7908246882089534594555942744181688982089557175312923025313951<61>
P70 = 9124386260745537835102797877137484716469225695387556753991581197371887<70>
By Makoto Kamada
version | target<digits> factor | poly | skew | RLIM ALIM | LPBR LPBA | MFBR MFBA | RLAMBDA ALAMBDA | QSTEP | total time actual time | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.41.2 | (8·10114-53)/9 = 88...883<114> P34 · C81 | (2·1023)5-2120 | 5 | 2000000 2000000 | 26 26 | 42 42 | 1.3 1.3 | 20000 | 7.1 hours 13.3 hours |
2 | 0.41.3 | (5·10120+31)/9 = 55...559<120> P49 · P72 | 5·(1024)5+31 | 3 | 500000 500000 | 24 24 | 38 38 | 1.6 1.6 | 50000 | 3.2 hours 5.3 hours |
3 | 0.41.3 | (7·10120+11)/9 = 77...779<120> P32 · P88 | 7·(1024)5+11 | 2 | 500000 500000 | 25 25 | 38 38 | 1.7 1.7 | 50000 | 2.5 hours 4.4 hours |
4 | 0.41.3 | 10117-3 = 99...997<117> P55 · P63 | 100·(1023)5-3 | 1 | 400000 400000 | 25 25 | 38 38 | 1.5 1.5 | 50000 | 2.7 hours 6.0 hours |
5 | 0.41.4 | 10109-3 = 99...997<109> 7 · P38 · P71 | (1022)5-30 | 3 | 500000 500000 | 25 25 | 38 38 | 1.5 1.5 | 50000 | 1.1 hours 1.9 hours |
6 | 0.41.4 | 10115-3 = 99...997<115> 7 · 149 · 16427 · P40 · P69 | (1023)5-3 | 2 | 500000 500000 | 25 25 | 38 38 | 1.4 1.4 | 50000 | 1.7 hours 3.3 hours |
I have selected skews and RLAMBDA/ALAMBDAs by 10th total yield. Other parameters were fudged. There must be more suitable parameters.
By Sander Hoogendoorn
(7·10126-1)/3 = 233...33<127> = 36599 · C122
C122 = P60 · P63
P60 = 291965541022167296632730595847741169431527057154038568667521<60>
P63 = 218361449631728650471984224440960698283205756071761554163079827<63>
(7·10127-1)/3 = 233...33<128>= 60959186188089983484687287<26> · C102
C102 = P39 · P64
P39 = 144850314733653665213197978942886043511<39>
P64 = 2642519383355819879708918820190613987026818882460409722093336069<64>
(7·10128-1)/3 = 233...33<129>= 109 · 8742499 · C120
C120 = P41 · P79
P41 = 77877997769970034113523979977916297438059<41>
P79 = 3144125831637334009151211168060361696898829767955771631140002228700313194095657<79>
GGNFS v.0.41.4 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS v.0.41.3 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Chris Monico
6·10139-1 = 599...99<140> = 17 · 2357 · 6709 · 496808164133221337<18> · C114
C114 = P43 · P72
P43 = 4275770358901813485322672221773875286668931<43>
P72 = 105070756286372434011307124537088529236674420342309905106523868789281077<72>
By Makoto Kamada
Elements of near-repdigit number sequence:
(1016-2)·10n-1 = {
9999999999999997,
99999999999999979,
999999999999999799,
9999999999999997999,
99999999999999979999,
999999999999999799999,
9999999999999997999999,
99999999999999979999999, ... }
are almost but not always composite.
The smallest prime in these was not found to n=110000.
Note:
Room for prime numbers: 1.31576% (388800/29549520)
GGNFS v.0.41.2 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS v.0.41.1 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Chris Monico
6·10141-1 = 599...99<142> = 7 · 479 · C139
C139 = P65 · P74
P65 = 35327731857341516423182890620321111244744477883437596583879711889<65>
P74 = 50652623205819106586824840511922265124168640897434731460921381256530991847<74>
By Sander Hoogendoorn
(7·10150-1)/3 = 233...33<151> = 19 · 335884748059317734050810927349<30> · C120
C120 = P40 · P81
P40 = 1656407169596851767131315698363624983493<40>
P81 = 220732254445715797928245090773037861558474026138077170374261766409837462325690751<81>
By Wataru Sakai
(7·10149-61)/9 = 77...771<149> = C149
C149 = P39 · C111
P39 = 555630322675904218078384300423796723653<39>
C111 = [139981161221010397731653123017062767499842036659860080769697961983570117014800778312472409366714045213400567407<111>]
By Sander Hoogendoorn
(61·10120-7)/9 = 677...77<121> = 32 · 17 · 313 · 1502987851<10> · C107
C107 = P48 · P60
P48 = 769095172291155299809287732928578049718910690979<48>
P60 = 122437936566411560805221573149092548059705384693679579533217<60>
(2·10120+61)/9 = 22...229<120> = 72 · 1063 · 44089 · C110
C110 = P47 · P64
P47 = 11200236287247211181934403375766314826763384907<47>
P64 = 8639740696019352260317859873267702861881740151079805356221852129<64>
(7·10120-43)/9 = 77...773<120> = 23 · C119
C119 = P36 · P84
P36 = 102165204408322819933727342963099351<36>
P84 = 330997479196724579176111165293540401558561359962238965514361224529925201626434999901<84>
(7·10122-43)/9 = 77...773<122> = 73 · 1039 · C118
C118 = P52 · P66
P52 = 1963666150444404452829528614185472574739439242044157<52>
P66 = 522215152466060223488145283129274835706883419009259617206112044487<66>
(7·10143-1)/3 = 233...33<144> = 1146846869760203<16> · C129
C129 = P35 · P36 · P58
P35 = 51763936059520850997759562751711951<35>
P36 = 777522035561894672181953942573574943<36>
P58 = 5055118650917024060336128295945772426930885972968542774127<58>
(2·10121+61)/9 = 22...229<121> = 3 · 157 · 29873 · C114
C114 = P55 · P59
P55 = 5087693224796052814910739831858442806993418962113835491<55>
P59 = 31043224357292935627500849820033660133689097108260130795393<59>
(82·10135-1)/9 = 911...11<136> = 32 · C136
C136 = P39 · P45 · P52
P39 = 607316047369248293566354411238647737151<39>
P45 = 213033528841359464186747362757178511330756709<45>
P52 = 7824671526942467199291684638157740801870532676801181<52>
611...11<1358> = (55·101357-1)/9 is definitely prime.
By Chris Monico
6·10137-1 = 599...99<138> = 71 · C136
C136 = P58 · P79
P58 = 2601072877662976526413355286135870141909302028099951147977<58>
P79 = 3248930200273718904077988718142805395852874875460986707043132492411918302127297<79>By Wataru Sakai
(2·10143+43)/9 = 22...227<143> = 3 · 1291 · 450569675766019819<18> · C122
C122 = P28 · P94
P28 = 9686081683177098475223715931<28>
P94 = 1314709807173945124386524551786317959588529415262456959495075086473055274219732117053667996891<94>
GGNFS v.0.41.0 released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada
What is the smallest prime number in near-repdigit number sequence {
9999999999999997,
99999999999999979,
999999999999999799,
9999999999999997999,
99999999999999979999,
999999999999999799999,
9999999999999997999999,
99999999999999979999999, ... } ?
By Chris Monico
6·10134-1 = 599...99<135>= 79801 · C130
C130 = P36 · P95
P36 = 240458481986789454962421757018820831<36>
P95 = 31268195286873997919154627378571722629648454815768807050327560441530709249665151616666073434729<95>
By Naoki Yamamoto
(2·10119+43)/9 = 22...227<119> = 32 · 157 · 2022900106936136601473<22> · C94
C94 = P29 · P66
P29 = 26550670740348141947894497129<29>
P66 = 292816395343023768827154264637322763527201607748172416530321363487<66>
(2·10149+43)/9 = 22...227<149> = 3 · 79 · 743 · 1416118947268564408923749<25> · 4105354947813472293827850631<28> · C92
C92 = P32 · P60
P32 = 95634550674317561833810565581261<32>
P60 = 226978676377348478562826106912938216911856503846449947239983<60>
By Chris Monico
6·10132-1 = 599..99<133> = 379 · 26813 · C126
C126 = P38 · P89
P38 = 30156062637902914306358977610009037869<38>
P89 = 19579067133088202404308295814147018632082970323640711916809910912410948535945312249307573<89>
Sequence 9·10n-1 = { 89, 899, 8999, 89999, 899999, ... } (n≤150) was completed.
Sequence 10n-9 = { 1, 91, 991, 9991, 99991, ... } (n≤150) was completed.
Sequence 8·10n-1 = { 79, 799, 7999, 79999, 799999, ... } (n≤150) was completed.
By Tetsuya Kobayashi
9·10147-1 = 899...99<148> = 245811829401098369<18> · C131
C131 = P44 · P87
P44 = 44854455549564788096962189425408270743305049<44>
P87 = 816270574399695328594421683160134958538390249344775592075492092574375764259533960310679<87>
10143-9 = 99...991<143> = 43 · 4987 · C138
C138 = P37 · P101
P37 = 8103911869384742969083926875701596043<37>
P101 = 57543658086818917236653328425662353297036755376057033707756606095232065216600744427923471045358733757<101>
8·10139-1 = 799...99<140> = 6091 · 140549 · C131
C131 = P39 · P93
P39 = 315629643981739741939850476307408788621<39>
P93 = 296070980580545525000553977228269871399892395614879440949871202002667026497102834455766946141<93>
8·10143-1 = 799...99<144> = 421 · 21130570079<11> · C131
C131 = P59 · P73
P59 = 18272127674428823726544022791611007628769109020464392876611<59>
P73 = 4921614077405375881718089592543043830624657814006183510609464661039312751<73>
By Sander Hoogendoorn
(46·10125-1)/9 = 511...11<126> = 409813 · 1838759047<10> · 98062989493633<14> · C97
C97 = P39 · P58
P39 = 899943089887960510690718870944943284081<39>
P58 = 7685720617133864808422488886600325578420341161519163866637<58>
(2·10121+7)/9 = 22...223<121> = 33 · 45597521 · C112
C112 = P53 · P60
P53 = 13331026330569732653390091113196743038813193671667807<53>
P60 = 135400074662843530365122095572985252948229939391443206328467<60>
Definitely prime numbers
777377...77<1338> = (69964·101334-7)/9. This is the smallest prime number in { 7773, 77737, 777377, 7773777, 77737777, 777377777, ... }.
977...77<471> = (88·10470-7)/9.
977...77<764> = (88·10763-7)/9.
911...11<402> = (82·10401-1)/9.
911...11<456> = (82·10455-1)/9.
877...77<321> = (79·10320-7)/9.
877...77<327> = (79·10326-7)/9.
877...77<640> = (79·10639-7)/9.
877...77<720> = (79·10719-7)/9.
877...77<775> = (79·10774-7)/9.
877...77<903> = (79·10902-7)/9.
Probably prime numbers
977...77<7008> = (88·107007-7)/9.
977...77<7307> = (88·107306-7)/9.
977...77<9756> = (88·109755-7)/9.
By Chris Monico
6·10123-1 = 599...99<124> = 7 · 17 · 12377044669733<14> · C109
C109 = P54 · P56
P54 = 211603440423510579728862990143594923009829638741241111<54>
P56 = 19251501438454645628266285085602708447115558638247654467<56>
By Wataru Sakai
(2·10140+7)/9 = 22...223<140> = 5957256493<10> · C130
C130 = P40 · P90
P40 = 5777027076711499587422658237034853150629<40>
P90 = 645708916957404373686773843048147366831642929387462446972666663787531227763529926414396559<90>
Factor tables 100...007, 100...009 and 400...001 are available.
By Sander Hoogendoorn
(2·10109+43)/9 = 22...227<109> = 7 · 4793 · C104
C104 = P29 · P37 · P38
P29 = 95461175163577098073008468173<29>
P37 = 9801214825949041244854273342081274021<37>
P38 = 70790557494804005235983009008396525469<38>
(2·10111+43)/9 = 22...227<111> = 1747 · 12197 · 11370335081341<14> · C90
C90 = P38 · P53
P38 = 23933167943194394982716044480682387363<38>
P53 = 38323759459901128287487494073761024992779761689416091<53>
(2·10114+43)/9 = 22...227<114> = 222659 · 5729367461<10> · C99
C99 = P40 · P60
P40 = 1216300455323894766302412873853041903787<40>
P60 = 143218686190909825776424673236694309615952451079218209133079<60>
(82·10131-1)/9 = 911...11<132> = 97 · 24776867 · 627766960201<12> · C111
C11 = P35 · P77
P35 = 28478200367184199496414172084739201<35>
P77 = 21205192680942403119614384595818926952802356192763448040951662355401430005189<77>
(46·10120-1)/9 = 511...11<121> = 157 · 1423 · 421409 · C120
C120 = P28 · P38 · P45
P28 = 2093628483910668289303364351<28>
P38 = 35014638654705434124874572432541786721<38>
P45 = 740555643790530730635260129126097699385298659<45>
Generalized quasi-repdigit D(R)wE started. Factor tables 100...003, 166...667 and 300...001 are available.
By Makoto Kamada
777377...77<1338> = (69964·101334-7)/9 is smallest PRP in { 7773, 77737, 777377, 7773777, 77737777, 777377777, ... }.
By Sander Hoogendoorn
(82·10125-1)/9 = 911...11<126> = 17 · 1399 · 2823113 · 5541038707<10> · 626888245812011<15> · C91
C91 = P39 · P52
P39 = 986685793349459082532438396040963585551<39>
P52 = 3959280393312056085661664117687896858427492615264167<52>
(55·10121-1)/9 = 611...11<122> = 61 · 89 · 15661 · C114
C114 = P38 · P77
P38 = 53344673524943647082187149467449801557<38>
P77 = 13473790405074270168089556946887741540044377669236061865129217421055690110267<77>
By Kenichiro Yamaguchi
(46·10119-1)/9 = 511...11<120> = 158749 · 11837197134956259019<20> · C96
C96 = P33 · P63
P33 = 359603486688632859309734419042003<33>
P63 = 756365218688046022247041424371729854664983854348160527375669827<63>
(2·10136+43)/9 = 22...227<136> = 79 · 288527 · 215447101 · 608443487 · 6299750923<10> · 53306863079<11> · C91
C91 = P37 · P54
P37 = 2764727566478052553723862798027363423<37>
P54 = 801039966988081525396280603210257154637589683527439307<54>
By Makoto Kamada
9999999799...99<19560> = 99999998·1019552-1 is prime.
The clauses of room for prime numbers were added. These informations show the maximum of the rate of the elements which is not divisible by small factors appearing periodically.
By Sander Hoogendoorn
(55·10106-1)/9 = 611...11<107> = 139 · 135696168123071<15> · C91
C91 = P36 · P55
P36 = 358429678586941908462329716952042503<36>
P55 = 9039279870672013375894830071967000488456328170142634973<55>
(55·10109-1)/9 = 611...11<110> = 852199 · C104
C104 = P43 · P61
P43 = 8225457442764843630927283457066986366463077<43>
P61 = 8718044873213628288885827703404609285279312719351484145970957<61>
(55·10113-1)/9 = 611...11<114> = 50703535951<11> · C104
C104 = P51 · P53
P51 = 582913994751618149452545303863432797312131797036431<51>
P53 = 20676520238336954157045104298999086966049129032729831<53>
(55·10115-1)/9 = 611...11<116> = 67 · 202591481 · C106
C106 = P32 · P75
P32 = 29263904532934703282389971089821<32>
P75 = 153848025465289770904658675376941745436626486193414230190801447835216795033<75>
(82·10108-1)/9 = 911...11<109> = 32 · 29 · 67 · 409 · C103
C103 = P36 · P67
P36 = 158675253508605407665225234734076823<36>
P67 = 8028298730113089256895440958395265979745780916450826598482481233079<67>
(82·10130-1)/9 = 911...11<131> = 25343 · 618437 · C121
C121 = P45 · P76
P45 = 634733522564762890244412679651218802698376273<45>
P76 = 9158543637307165316585354839174692830641907461273119797171181879769082529877<76>
By Wataru Sakai
(55·10111-1)/9 = 611...11<112> = 32 · 73 · 1574773 · C103
C103 = P27 · P76
P27 = 129523101504856161079684963<27>
P76 = 9705509861708257273773510972451806910093279864654142901189711709595743392247<76>
Condition of sequence (2·10n+43)/9 = { 7, 27, 227, 2227, 22227, ... } was extended to n≤150.
Following numbers have not factorized yet. These numbers may have small factors. You should run ECM [B1≥1000000?] first.
n=
109,
111,
114,
117,
119,
128,
129,
132,
133,
135,
136,
139,
140,
142,
143,
145,
146,
147,
149,
150,
(20/150)
By Sander Hoogendoorn
(37·10118-1)/9 = 411...11<119> = 7 · 2113 · 11437 · 99426499 · C103
C103 = P30 · P74
P30 = 242545362933982125628559922991<30>
P74 = 10077537735966263582017919371566619305164464911649088384505894437689028537<74>
(37·10119-1)/9 = 411...11<120> = 3 · 48341581 · C112
C112 = P47 · P66
P47 = 19612536679885364752045727762937528250045901491<47>
P66 = 144538432745915509561388922808736083086432263760564636960999504347<66>
(82·10119-1)/9 = 911...11<120> = 131 · 3259 · 18401 · 9619321997<10> · C101
C101 = P44 · P57
P44 = 31759965772503331184048671331803914822312757<44>
P57 = 379620601726565857081910303667116317038444850845058241671<57>
(82·10120-1)/9 = 911...11<121> = 3 · 23 · 335953 · C114
C114 = P52 · P62
P52 = 6092406052096057239922497361126599915259580078653033<52>
P62 = 64514136344856250069170421567897533255504136995215173249839731<62>
(82·10121-1)/9 = 911...11<122> = 7 · 13 · 263 · 12422398896722178812177<23> · C96
C96 = P37 · P59
P37 = 6875495046758823526175889150014173981<37>
P59 = 44572270530863074149631458695942281814874814716737127300991<59>
(73·10120-1)/9 = 811...11<121> = 293 · 887459 · C113
C113 = P39 · P74
P39 = 928762845661299740974009878361850251169<39>
P74 = 33586101702047225049369792987120908245818021888514043400038915625571527337<74>
By Kenichiro Yamaguchi
(2·10129+7)/9 = 22...223<129> = 34421 · 3519559 · 83659943 · 2696856358639<13> · C97
C97 = P38 · P60
P38 = 43467205463406142590599443250751622211<38>
P60 = 187041791368819057526369442463859368268039784258931849438031<60>
By Sander Hoogendoorn
(37·10104-1)/9 = 411...11<105> = 33 · 983 · 4799 · 6151 · C93
C93 = P45 · P49
P45 = 129025506159454833829469553664991608321902523<45>
P49 = 4066959843038454882743884002829481627969782379873<49>
(37·10105-1)/9 = 411...11<106> = 1996543 · 38290201 · C92
C92 = P37 · P55
P37 = 7867668762422834794584037715526664519<37>
P55 = 6835130850094977398746593548880827324601693761754935383<55>
(37·10111-1)/9 = 411...11<112> = 41 · C111
C111 = P32 · P79
P32 = 32900192953430841459559463081993<32>
P79 = 3047732967765795782286608540265904792223900425610536924962333181968890243736247<79>
(37·10116-1)/9 = 411...11<117> = 3 · 41 · 667393201327<12> · C103
C103 = P38 · P66
P38 = 12869116594580787491702279084538958819<38>
P66 = 389155873266856680764011951615896691671223998982635489326733532889<66>
(82·10112-1)/9 = 911...11<113> = 1016371 · C107
C107 = P33 · P74
P33 = 961710560945923780278466564888081<33>
P74 = 93212615197155374454712621114762464563887615799914869556688254085005194061<74>
(82·10114-1)/9 = 911...11<115> = 3 · 1087 · 183992288657<12> · C101
C101 = P33 · P68
P33 = 350222702847654619939973026326353<33>
P68 = 43358737406012044916467091699940873261879252754302702512159419585331<68>
By Wataru Sakai
(7·10137-1)/3 = 233...33<138> = 5897 · 28567199 · 2013451476373<13> · 3381296717702867<16> · C99
C99 = P30 · P69
P30 = 806083271688154958515880951639<30>
P69 = 252390868613930971196418746042261077838969195392269931528262392170539<69>
(55·10117-1)/9 = 611..11<118> = 3 · 7 · 125791 · 132888271 · 446560644667<12> · C92
C92 = P28 · P65
P28 = 2001700036961160150104009419<28>
P65 = 19475347766081839597610171633433912439406404786126941166738797347<65>
Condition of sequence (55·10n-1)/9 = { 61, 611, 6111, 61111, 611111, ... } was extended to n≤150.
Following numbers have not factorized yet. These numbers may have small factors. You should run ECM [B1≥1000000?] first.
n=
106,
109,
111,
113,
115,
117,
121,
128,
133,
134,
136,
137,
139,
140,
141,
145,
146,
147,
148,
149,
(20/150)
By Sander Hoogendoorn
(82·10105-1)/9 = 911...11<106> = 3 · 16493 · C102
C102 = P30 · P72
P30 = 202903131587738734658796583871<30>
P72 = 907531439759426124864348535370178399993450926608763721721428412026636479<72>
Condition of sequence (82·10n-1)/9 = { 91, 911, 9111, 91111, 911111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
108,
112,
114,
119,
120,
121,
125,
130,
131,
134,
135,
137,
139,
144,
145,
146,
147,
148,
150,
(20/150)
Condition of sequence (37·10n-1)/9 = { 41, 411, 4111, 41111, 411111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
104,
105,
111,
116,
118,
119,
124,
125,
127,
128,
132,
136,
137,
139,
140,
141,
143,
147,
148,
(19/150)
By Wataru Sakai
(7·10113-61)/9 = 77...771<113> = 164071 · C108
C108 = P32 · P77
P32 = 15657240180871560861397889472511<32>
P77 = 30276696807247563131834157051474945924672208419575110084039590168346878944291<77>
(7·10139-1)/3 = 233...33<140> = 97 · 43349612217589489459<20> · C118
C118 = P29 · P89
P29 = 92191282147576282327046626507<29>
P89 = 60190781096843889180574332791736121345192818031460980236899860552367407255842519233590853<89>
(7·10127-1)/3 = 233...33<128> = C128
C128 = P26 · C102
P26 = 60959186188089983484687287<26>
C102 = [382769764368870914299196165382289700653587785053094460543806339515936501231866338145853172758279698259<102>]
By Sander Hoogendoorn
(73·10112-1)/9 = 811...11<113> = 3 · 19 · 9344879 · C105
C105 = P38 · P68
P38 = 10706904706214958746506351356519255053<38>
P68 = 14222235813687816531103133484794874356750365603892533502465656170229<68>
(73·10113-1)/9 = 811...11<114> = 7 · 67 · 617 · 2053 · 4630723 · C99
C99 = P35 · P65
P35 = 12732080914894100599126485912790289<35>
P65 = 23157154936770838301766203436448068386765572609185635015995020877<65>
(73·10116-1)/9 = 811...11<117> = 23 · 1531 · 328103 · 9869857 · C100
C100 = P42 · P59
P42 = 165220423474037603303412870061037663554883<42>
P59 = 43051920657988170527500532097758031147884924296223330528279<59>
By Tetsuya Kobayashi
(5·10146-17)/3 = 166...661<147> = 7 · C146
C146 = P37 · P110
P37 = 1138365013140279936801790284665785169<37>
P110 = 20915544253985060148440675632045178089382928893179578794652787706339837025997038021812310920825581421031172867<110>
(23·10141+1)/3 = 766...667<142> = 11 · 443 · 236128169443<12> · 1106751044417<13> · C115
C115 = P44 · P72
P44 = 22338360360468005265599576333311848544273079<44>
P72 = 269501468800486634890594296286411801336875692534051146326470739210361271<72>
Sequence (5·10n-17)/3 = { 11, 161, 1661, 16661, 166661, ... } (n≤150) was completed.
Sequence (23·10n+1)/3 = { 77, 767, 7667, 76667, 766667, ... } (n≤150) was completed.
By Wataru Sakai
(7·10115-61)/9 = 77...771<115> = 5927 · C112
C112 = P29 · P83
P29 = 17478280431202086397405680487<29>
P83 = 75079591361986744553105725858443190109552529947254157878222972999835280327819906779<83>
(7·10132-1)/3 = 233..33<133> = 19 · 106695110789<12> · 727295133833231<15> · C106
C106 = P27 · P79
P27 = 495180738797335607630501803<27>
P79 = 3195981379584448522341974688808361163303854932209686092870505614398770919051791<79>
By Naoki Yamamoto
(7·10122-61)/9 = 77...771<122> = 47 · 7674820192951<13> · 18541290860036677<17> · C92
C92 = P27 · P65
P27 = 750443539998324866431514753<27>
P65 = 5496423364276826364201302573184309145049941443740046685989420103<65>
(7·10123-61)/9 = 77...771<123> = 32 · 116981 · 49680053 · 1089530803397127317<19> · C92
C92 = P39 · P53
P39 = 334956706308041778525531292210912060459<39>
P53 = 40746231703905456589278753224006001491134686622036861<53>
Condition of sequence (7·10n-61)/9 = { 1, 71, 771, 7771, 77771, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
113,
115,
118,
122,
123,
124,
128,
129,
131,
132,
133,
134,
138,
139,
140,
145,
146,
147,
149,
150,
(20/150)
By Wataru Sakai
(2·10119+7)/9 = 22...223<119> = 17 · 2071644451<10> · C108
C108 = P35 · P73
P35 = 93908811329570508550272588323170553<35>
P73 = 6719191214356169351611915828935976306063961795617665117693268061849946173<73>
By Sander Hoogendoorn
6·10119-1 = 599...99<120> = 43 · 1549 · C115
C115 = P38 · P78
P38 = 10018997581702311832247721815336646001<38>
P78 = 899098152507238243502902200991643338169558507864629178588274218406618965304257<78>
Sequence (64·10n-1)/9 = { 71, 711, 7111, 71111, 711111, ... } (n≤150) was completed.
By Tetsuya Kobayashi
(64·10149-1)/9 = 711...11<150> = 3 · C150
C150 = P61 · P90
P61 = 2313004823989771488921428886787243292858867172342094729868707<61>
P90 = 102480130857731949196682162076687359640400142791389525543172263004914310328958751232102191<90>
By Naoki Yamamoto
(73·10149-1)/9 = 811...11<150> = 72 · 283 · 446889809957966316653<21> · 4235873951025100034297<22> · C104
C104 = P25 · P80
P25 = 1266921784142905536406633<25>
P80 = 24389592902799800640423679178798171060946841191471464117352565965397179486057961<80>
Condition of sequence (73·10n-1)/9 = { 81, 811, 8111, 81111, 811111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
112,
113,
116,
119,
120,
122,
123,
128,
129,
130,
134,
137,
138,
139,
142,
143,
146,
147,
148,
149,
(20/150)
By Sander Hoogendoorn
(13·10132-1)/3 = 433...33<133> = 17 · 389 · 11717 · C125
C125 = P47 · P79
P47 = 28514995206212330195559267632791773570653814169<47>
P79 = 1961253998675146347514532723267858352133555433237340979969288177198899206218517<79>
By Sander Hoogendoorn
(13·10135-1)/3 = 433...33<136> = 7 · 47 · 889454451327364627153<21> · C113
C113 = P43 · P70
P43 = 2072851865878764442016913029223865256071751<43>
P70 = 7143881136179272380186490187484607138063294385467881744127201565057659<70>
By Sander Hoogendoorn
(13·10141-1)/3 = 433...33<142> = 7 · 509 · 563 · 1821731 · 1761953129<10> · 1971658275584819462821<22> · C99
C99 = P44 · P56
P44 = 24176656192237126563151438146240479808680549<44>
P56 = 14118592382778721496079692509934891357041052987563510967<56>
By Sander Hoogendoorn
(13·10119-1)/3 = 433...33<120> = 370477 · C115
C115 = P53 · P62
P53 = 20583986961396757045936638086864949707818196023695803<53>
P62 = 56823940674990535907861824938400228680138095452420210022548043<62>
(13·10133-1)/3 = 433...33<134> = 146136971 · C126
C126 = P38 · P89
P38 = 23885692510526031230715257315951940737<38>
P89 = 12414354963245512471165731620961586411756703956512081998059151915173929602262141857480479<89>
(13·10146-1)/3 = 433...33<147> = 1429 · 407573 · 39315282870462988035173123<26> · C113
C113 = P33 · P80
P33 = 771971383563553871458372402076087<33>
P80 = 24514433198804248184950030620853493824559802681503737392436532011492112163142649<80>
By Sander Hoogendoorn
(13·10125-1)/3 = 433...33<126> = 63949 · 1629888441991<13> · C109
C109 = P46 · P63
P46 = 6147685935880900080547602428175394492188862351<46>
P63 = 676267921210283033805356583941013848314894195261480962356924737<63>
(13·10131-1)/3 = 433...33<132> = 19 · 283 · 6609982271<10> · C119
C119 = P35 · P36 · P49
P35 = 25166687321793668188103345284761413<35>
P36 = 424330292358680550726872064997610147<36>
P49 = 1141699146940993353185219525240900785117346743109<49>
By Sander Hoogendoorn
(46·10116-1)/9 = 511...11<117> = 7 · 31129657873<11> · C106
C106 = P39 · P67
P39 = 935526674796497625630799421573865249311<39>
P67 = 2507187185904102684878717389941789367778557924538338747679387631791<67>
6·10120-1 = 599...99<121> = 431 · 3931 · 29179 · C111
C111 = P41 · P70
P41 = 22147367289078430552209050468690669789449<41>
P70 = 5479973071803456301883906240611609272432415855628157465355568241290929<70>
2·10118-1 = 199...99<119> = 7 · 17 · 228023 · C111
C111 = P36 · P75
P36 = 935187333561872655816153034416501361<36>
P75 = 788144343693189519772431006559145070846257778116348967005552162769367495807<75>
By Sander Hoogendoorn
2·10117-1 = 199...99<118> = 1047589 · C112
C112 = P35 · P77
P35 = 85168019463062283512091014704502999<35>
P77 = 22416227110785555037014333292452400377314259442753749222567258532701137582309<77>
3·10117-1 = 299...99<118> = 17 · 103 · 7717 · 1343893 · C105
C105 = P33 · P72
P33 = 698810987349616407838127758561787<33>
P72 = 236408012483724037920438356017353423704940485863994051049626928720839267<72>
(13·10116-1)/3 = 433...33<117> = 17 · 210011 · 83332661747<11> · C100
C100 = P39 · P61
P39 = 146516877180274527149583736508724650731<39>
P61 = 9940957697340997015417443393844668494547618833464313339447087<61>
By Sander Hoogendoorn
3·10113-1 = 299...99<114> = 72 · 29 · 8139497 · C104
C104 = P48 · P57
P48 = 183196997235114666313664862887412748867877758421<48>
P57 = 141583048280838478129901762617470802340141205501351431287<57>
3·10116-1 = 299...99<117> = 13 · 191 · 419 · 342803 · C105
C105 = P40 · P66
P40 = 3080389672652381470662675187786673261869<40>
P66 = 273073929335371915922432805053316071687914686044309883829457031841<66>
By Naoki Yamamoto
(7·10123-1)/3 = 233...33<124> = 491 · C121
C121 = P33 · P89
P33 = 170220884055907671842649150123463<33>
P89 = 27917880980887515812619355132923513202464203505243949190368499491175998427036902452861001<89>
By Naoki Yamamoto
(7·10133-1)/3 = 233...33<134> = 23 · 31 · 353 · 3607 · 4787 · 699792361 · 3904341908732501<16> · C97
C97 = P34 · P63
P34 = 5131056462682647143380688455985791<34>
P63 = 382982691330251443221587418660893430247790138019406239558489683<63>
(7·10150-1)/3 = 233...33<151> = 19 · C150
C150 = P30 · C120
P30 = 335884748059317734050810927349<30>
C120 = [365622488825160205153705205662720222924619474120643276309059711659952336337582975112200217104591970410701506722197773243<120>]
By Naoki Yamamoto
(13·10113-1)/3 = 433...33<114> = 19 · C113
C113 = P35 · P78
P35 = 45800041278938118549130221851788633<35>
P78 = 497969366554868606359758411939328925750050853699722017337131646875937090377679<78>
By Naoki Yamamoto
(7·10149-1)/3 = 233...33<150> = 30853 · 8296247 · 2353232767<10> · 264235581411709<15> · 1801403161765577<16> · C99
C99 = P30 · P70
P30 = 405830732573010613747654621973<30>
P70 = 2005329185009279663384512089127045616452253726372350154563592642457601<70>
By Sander / SNFS
(46·10115-1)/9 = 511...11<116> = 3 · 47 · 658579 · C108
C108 = P42 · P67
P42 = 228877708591289820908254845608651729149231<42>
P67 = 2404832510246669269292539473464359171618519632785613828793162210079<67>
By Naoki Yamamoto / http://www.alpertron.com.ar/ECM.HTM
(7·10122-1)/3 = 233...33<123> = 29504712739<11> · 2651207986088639<16> · C97
C97 = P36 · P62
P36 = 229929370163667522285804530758088773<36>
P62 = 12973200964484509642990877747286384010229308118942573774674501<62>
By Makoto Kamada
9998·104604-1 = 999799...99<4608> is near-repdigit prime.
9998·1017780-1 = 999799...99<17784> is near-repdigit prime.
>pfgw -n -tp -u0 -q"9998*10^4604-1" PFGW Version 20031222.Win_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] Primality testing 9998*10^4604-1 [N+1, Brillhart-Lehmer-Selfridge] Running N+1 test using discriminant 3, base 1+sqrt(3) Calling Brillhart-Lehmer-Selfridge with factored part 69.84% 9998*10^4604-1 is prime! (8.0681s+0.0139s) >pfgw -n -tp -u0 -q"9998*10^17780-1" PFGW Version 20031222.Win_Dev (Beta 'caveat utilitor') [FFT v22.13 w/P4] Primality testing 9998*10^17780-1 [N+1, Brillhart-Lehmer-Selfridge] Running N+1 test using discriminant 3, base 1+sqrt(3) Calling Brillhart-Lehmer-Selfridge with factored part 69.88% 9998*10^17780-1 is prime! (184.8771s+0.0040s)
By Naoki Yamamoto
(22·10115-1)/3 = 733...33<116> = 449 · C114
C114 = P46 · P69
P46 = 1589392966057039972616161059201697498443801767<46>
P69 = 102759929681542263366018057338071988806791801495521421516353967127651<69>
(13·10112-1)/3 = 433...33<113> = 191 · 3965393 · C104
C104 = P36 · P68
P36 = 604749871346171042794960325061155857<36>
P68 = 94607749140050184748195011728693905595812738965120476399230275205963<68>
By Naoki Yamamoto
(10116+53)/9 = 11...117<116> = 631 · C113
C113 = P53 · P61
P53 = 11526725738214368469633700629285252401031855384929683<53>
P61 = 1527644044973876197755769498429806850347483992872651422450329<61>
By Naoki Yamamoto
6·10116-1 = 599...99<117> = C117
C117 = P46 · P72
P46 = 2342090630142461438660076396094112368358070139<46>
P72 = 256181375852011342805382689051963508114368392834344932319990234698993741<72>
(7·10119-43)/9 = 77...773<119> = 288394514528185645818913<24> · C96
C96 = P42 · P55
P42 = 198847031436135376990837974634976619276829<42>
P55 = 1356280204877732565773995903830143965508261852891150449<55>
By Naoki Yamamoto
(61·10105-7)/9 = 677...77<106> = 3 · 29 · C104
C104 = P41 · P64
P41 = 32148274203793268831534339250005187593153<41>
P64 = 2423318004715875237085797454768846554550215342970015001720151607<64>
(8·10110-71)/9 = 88...881<110> = 33 · 43 · 47 · 107 · 1657 · C100
C100 = P32 · P69
P32 = 17482455018321939827204777920237<32>
P69 = 525543530548990224655205437930526769887413862536485408822128741629361<69>
By Naoki Yamamoto
(7·10106-43)/9 = 77...773<106> = 32 · 73 · C104
C104 = P42 · P62
P42 = 135454626977966912830050699632472790843057<42>
P62 = 87396957968302333604157198148392451856826312567917001744792877<62>
By Naoki Yamamoto
(2·10114+7)/9 = 22...223<114> = 227744423 · C105
C105 = P38 · P68
P38 = 46388076775344031604169485115695530757<38>
P68 = 21034556913321933041770219922820321305866591917084027325536346282693<68>
(4·10110-31)/9 = 44...441<110> = 173 · 997 · C105
C105 = P53 · P53
P53 = 15109195222042198220948269885597385829718858350367013<53>
P53 = 17054338855627479213934023025101143375324490926767397<53>
By Naoki Yamamoto
6·10112-1 = 599...99<113> = 7873 · C109
C109 = P39 · P71
P39 = 627064686431686180556447069365942930637<39>
P71 = 12153424154991108248207141560671491643347371910061844293900500637895099<71>
By Makoto Kamada
(34·1018155-7)/9 = 377...77<18156> is PRP.
By Naoki Yamamoto
(8·10112-71)/9 = 88...881<112> = C112
C112 = P33 · P80
P33 = 485067313962472488439347747143603<33>
P80 = 18325062590336859694276228865377928058153164816809446347805530847002505332697227<80>
By Phil Carmody
2·10401-1 = 199...99<402> is prime.
2·10785-1 = 199...99<786> is prime.
2·101325-1 = 199...99<1326> is prime.
2·102906-1 = 199...99<2907> is prime.
2·105407-1 = 199...99<5408> is prime.
2·105697-1 = 199...99<5698> is prime.
2·105969-1 = 199...99<5970> is prime.
2·107517-1 = 199...99<7518> is prime.
3·101311-1 = 299...99<1312> is prime.
5·10390-1 = 499...99<391> is prime.
5·10594-1 = 499...99<595> is prime.
6·10490-1 = 599...99<491> is prime.
6·10613-1 = 599...99<614> is prime.
6·101624-1 = 599...99<1625> is prime.
6·102000-1 = 599...99<2001> is prime.
6·102994-1 = 599...99<2995> is prime.
8·10550-1 = 799...99<551> is prime.
8·10796-1 = 799...99<797> is prime.
8·101219-1 = 799...99<1220> is prime.
8·102012-1 = 799...99<2013> is prime.
8·102846-1 = 799...99<2847> is prime.
9·10935-1 = 899...99<936> is prime.
By Phil Carmody
(2·101494-11)/9 = 22...221<1494> is prime.
(4·10492-13)/9 = 44...443<492> is prime.
By Naoki Yamamoto
2·10113-1 = 199...99<114> = 4650259 · C107
C107 = P35 · P72
P35 = 89387497645595816161332104338818611<35>
P72 = 481145107556798585845390975569987436831798400147931324271186928514607751<72>
(2·10112+7)/9 = 22...223<112> = 32 · 132 · 19 · 23 · 173 · 1013 · C101
C101 = P45 · P57
P45 = 103924798360847252900346836263614426182389237<45>
P57 = 183570164108890724311962475702790923594683411145278898823<57>
By Naoki Yamamoto
2·10109-1 = 199...99<110> = 19 · C109
C109 = P53 · P56
P53 = 21114980841716492601531213816684580682795131715128639<53>
P56 = 49852357756711903215458867437681135752537509295755288539<56>
By Makoto Kamada
(7·106459-1)/3 = 233...33<6460> is PRP.
(7·1010582-1)/3 = 233...33<10583> is PRP.
By Naoki Yamamoto
5·10114-1 = 499...99<115> = 126583211 · C107
C107 = P31 · P35 · P42
P31 = 1447145884664060547607987361879<31>
P35 = 58295675470326978906201157594508111<35>
P42 = 468214914404256693353199842140909817566661<42>
Condition of sequence (7·10n-1)/3 = { 23, 233, 2333, 23333, 233333, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
124,
126,
127,
128,
129,
132,
134,
137,
139,
140,
141,
143,
144,
146,
147,
148,
150,
(17/150)
By Naoki Yamamoto
2·10120-1 = 199...99<121> = 127 · 6520884276873089204884529<25> · C94
C94 = P42 · P53
P42 = 232643528042555620464254561737409431506439<42>
P53 = 10380751776128730049253466514320685686318545305162727<53>
By Naoki Yamamoto
2·10129-1 = 199...99<130> = 29 · 31 · 484733313451<12> · 41463885135837930748140461<26> · C90
C90 = P41 · P49
P41 = 50291757440027988007781239460876655467039<41>
P49 = 2200901625430665915052040182443813421490599481669<49>
(22·10103-1)/3 = 733...33<104> = 19 · 1397625682847<13> · C91
C91 = P45 · P47
P45 = 109883611684940338056961947669759168699899399<45>
P47 = 25131825002810270252734351319028774815434515919<47>
(22·10121-1)/3 = 733...33<122> = 17 · 19 · 23 · 73 · 43577 · 2659535643452017029431<22> · C91
C91 = P41 · P50
P41 = 35256478889201173322466131920101577265537<41>
P50 = 33093761094034578075875176578877782742336554802871<50>
By Naoki Yamamoto
(43·10145-7)/9 = 477...77<146> = 53 · 995479159 · 1031732937611898444256444168590625309<37> · C99
C99 = P35 · P65
P35 = 41524900155093747577542885295980451<35>
P65 = 21136935007095307846080272590651188357697506848553079390837868989<65>
Condition of sequence (22·10n-1)/3 = { 73, 733, 7333, 73333, 733333, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
103,
115,
118,
121,
125,
127,
129,
135,
136,
137,
139,
140,
141,
142,
143,
144,
145,
146,
147,
149,
(20/150)
By Naoki Yamamoto
2·10116-1 = 199...99<117> = 1414973875906225217477423519<28> · C90
C90 = P34 · P56
P34 = 2166851807361589573177075751475697<34>
P56 = 65230748710190317012308794178134036269360841135247689393<56>
Condition of sequence 2·10n-1 = { 19, 199, 1999, 19999, 199999, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
109,
113,
116,
117,
118,
119,
120,
123,
125,
129,
130,
132,
137,
140,
142,
143,
144,
148,
149,
150,
(20/150)
By Makoto Kamada
5·10106-1 = 499...99<107> = 19 · 61 · C104
C104 = P48 · P56
P48 = 448580653183815696347596509441422230841080789699<48>
P56 = 96171420178862927652971517159689674091160642927176945539<56>
By Naoki Yamamoto
(25·10144-7)/9 = 277...77<145> = 47103151453<11> · 31839879341764061<17> · 14383880316104586858828304961<29> · C90
C90 = P40 · P50
P40 = 5232093742073114093725709327773272546161<40>
P50 = 24610732722036069413879504444522722139488936085689<50>
(61·10144-7)/9 = 677...77<145> = 3 · 26701 · 209581 · 18248307261571<14> · 10974689155546186175618317723<29> · C94
C94 = P42 · P52
P42 = 469186194512159628589287694073018761362341<42>
P52 = 4296616559387993849962861028224532418481985117419063<52>
(28·10127-1)/9 = 311...11<128> = 281 · 307 · 238599056062709776815461419063<30> · C94
C94 = P39 · P56
P39 = 107554330787428224166772754609776501813<39>
P56 = 14053166861603880222824059670432645508929757889981227607<56>
By Naoki Yamamoto
(28·10139-1)/9 = 311...11<140> = 23 · 401 · 6869442431<10> · 8201790277<10> · 151723915832626286918993436841007<33> · C84
C84 = P34 · P51
P34 = 1046070491078451817587498267478589<34>
P51 = 377223005511673979186119699372574922813654796022657<51>
(13·10122-1)/3 = 433...33<123> = 3858529 · 28224583 · 81709702023292518690005684521<29> · C80
C80 = P37 · P44
P37 = 2507902984127301658576638719322271127<37>
P44 = 19417281900219598336760656571835498686930957<44>
(13·10123-1)/3 = 433...33<124> = 7 · 53 · 167 · 881 · 2239 · 17789 · 2381744689844379917707219967<28> · C81
C81 = P40 · P42
P40 = 1075763853860339303442821734177317890269<40>
P42 = 777925533527685318766194885772532655994553<42>
By Tetsuya Kobayashi
6·10109-1 = 599...99<110> = 1097 · 177127 · C102
C102 = P32 · P70
P32 = 40526865419503344030560725081973<32>
P70 = 7619331015587068965128617236216530435918061305625862481832120448431677<70>
6·10122-1 = 599...99<123> = 19 · 653 · C119
C119 = P31 · P89
P31 = 2200147865988584750385205954057<31>
P89 = 21980248526216090623720530301482643199731747929704216226269719100413363351565439099025201<89>
6·10145-1 = 599...99<146> = 195053 · 141166257655213649896544716751749<33> · C109
C109 = P31 · P33 · P46
P31 = 4434268676207479109989143296941<31>
P33 = 166472072107891429498688521947067<33>
P46 = 2951918244671889720741543537462059850380439361<46>
(43·10132-7)/9 = 477...77<133> = 53 · 359 · 66042962426411671<17> · C112
C112 = P29 · P83
P29 = 39497365451597721319005420529<29>
P83 = 96263346154501070386456640323908028424093263790447228189038637435728194844219252189<83>
(43·10145-7)/9 = 477...77<146> = 53 · 995479159 · C135
C135 = P37 · C99
P37 = 1031732937611898444256444168590625309<37>
C99 = [877709115754338411331068021578059389846137164391353412463769213512709616627986341698090996243134039<99>]
(43·10148-7)/9 = 477...77<149> = 1303 · 3307 · 1675755311<10> · 278534297117<12> · 9992176821755603<16> · C106
C106 = P33 · P37 · P37
P33 = 729009003254478020627785253793391<33>
P37 = 1250502752200851532078754712130856591<37>
P37 = 2607836726119230613173722809451411357<37>
(2·10115+7)/9 = 22...223<115> = 3 · 2111 · 419059 · C105
C105 = P33 · P73
P33 = 269030601130809864498212068276549<33>
P73 = 3112441116444247743889279179616437584284824828415555461928913078952182341<73>
(2·10132+7)/9 = 22...223<132> = 461 · 1961595343<10> · C120
C120 = P33 · P88
P33 = 149304530301433541614272950389291<33>
P88 = 1645902684055324617855608273026808923606630267577606872525954887431643942752028685234511<88>
(2·10133+7)/9 = 22...223<133> = 3 · 4092233 · 1307931910231<13> · C114
C114 = P33 · P81
P33 = 424814383108965677778685648075483<33>
P81 = 325777833102930425413619004632980511551365206440383694360863857960806620637699249<81>
(2·10141+7)/9 = 22...223<141> = 1171 · 4133 · 574931249 · C125
C125 = P34 · P92
P34 = 6593494772741607446454582942280577<34>
P92 = 12112494848047720158381219135095901764288321518461483499555531920883196702345694182587469057<92>
(61·10119-7)/9 = 677...77<120> = 1117 · 2963 · C114
C114 = P37 · P77
P37 = 2482867040228760874738763473913341739<37>
P77 = 82480073191204085479276961599941715332454202055744480615029787929386302794933<77>
(61·10133-7)/9 = 677...77<134> = 29 · 67 · 617 · 21061 · 6183340553224673677<19> · C105
C105 = P33 · P73
P33 = 169996189666691841085123740618869<33>
P73 = 2553806684404383920744365758186857811999030277231264378877580416414570819<73>
(61·10144-7)/9 = 677...77<145> = 3 · 26701 · 209581 · 18248307261571<14> · C122
C122 = P29 · C94
P29 = 10974689155546186175618317723<29>
C94 = [2015913172777181345006219909644560227234582809640183805456132031404556222050282467471683706483<94>]
(28·10127-1)/9 = 311...11<128> = 281 · 307 · C123
C123 = P30 · C94
P30 = 238599056062709776815461419063<30>
C94 = [1511478957243868288518174989600984458708944569116374772543833320455471124010008768435801151491<94>]
(28·10135-1)/9 = 311...11<136> = 3 · 10300469367242916451<20> · C117
C117 = P28 · P89
P28 = 7683930573457486564648081513<28>
P89 = 13102489491397317646769416780137888945330964323802773376155529927060182429351919042059799<89>
(28·10139-1)/9 = 311...11<140> = 23 · 401 · 6869442431<10> · 8201790277<10> · C116
C116 = P33 · C84
P33 = 151723915832626286918993436841007<33>
C84 = [394601854621686336057357714877387805062905168503946221557031031151782715409106390973<84>]
(28·10142-1)/9 = 311...11<143> = 7301597 · 11562898307297<14> · 4916511500456033<16> · C107
C107 = P30 · P32 · P47
P30 = 193191252769849956505439432831<30>
P32 = 33595572112247073555344073339779<32>
P47 = 11547936770994507682778259324179946656817378287<47>
(28·10144-1)/9 = 311...11<145> = 3 · C145
C145 = P29 · P33 · P84
P29 = 68259441937979744951640698797<29>
P33 = 130522260397986637978317952371613<33>
P84 = 116398383092931351479137105146603590908252840941503083126928866253479361451337974517<84>
(4·10124-31)/9 = 44...441<124> = 43 · 24919 · C118
C118 = P38 · P81
P38 = 11578161099816162269427205005018334709<38>
P81 = 358243919751125298475790293910368747977594305052401111960967180951511906668436697<81>
(4·10143-31)/9 = 44...441<143> = 17 · 3301 · 61751 · 96447577123495031663959<23> · C111
C111 = P35 · P38 · P39
P35 = 35523077573886332368246595773591211<35>
P38 = 28329591767966294953591274834762673511<38>
P39 = 132140765536130978616755260743630500857<39>
(5·10146-23)/9 = 55...553<146> = 29 · 79 · C143
C143 = P32 · P34 · P78
P32 = 56376969024279576866496705219899<32>
P34 = 2934101843429802800504208201178283<34>
P78 = 146597140168419262238347549195494033972176933900417591587574178676482142753699<78>
(25·10122-7)/9 = 277...77<123> = 149 · 432203005921<12> · C109
C109 = P27 · P83
P27 = 305822511104657599256520391<27>
P83 = 14104379922638793303803028982808294618660795959132972234966360826100464667756354443<83>
(25·10126-7)/9 = 277...77<127> = 14281313 · C120
C120 = P26 · P94
P26 = 24367111951648478835570347<26>
P94 = 7982249586308571558279035113372584668517567603848805949951631134738108329429098002611305363507<94>
(25·10134-7)/9 = 277...77<135> = 19 · 1151 · 13696372960641691<17> · C114
C114 = P30 · P85
P30 = 816084122061997150910869368403<30>
P85 = 1136391751813014522129772402920004468881575512526399152097026061387364335612111816021<85>
(25·10138-7)/9 = 277...77<139> = 250436567 · 21233880635302301<17> · C114
C114 = P36 · P78
P36 = 575137150380187795406853839548278763<36>
P78 = 908236527602227094029906541512299873104933122247776475697571611771394236381737<78>
(25·10144-7)/9 = 277...77<145> = 47103151453<11> · 31839879341764061<17> · C118
C118 = P29 · C90
P29 = 14383880316104586858828304961<29>
C90 = [128765660662798935697533889774445840220504110516570378538403638764989713531572725903989929<90>]
(16·10145-7)/9 = 177...77<146> = 17 · 1423 · 442319 · 185314267 · 3272527157663<13> · C115
C115 = P31 · P85
P31 = 1117393136413365693223828137437<31>
P85 = 2451827669519946121034508853611143468541152052644330468964158838483579870841589792369<85>
(13·10117-1)/3 = 433...33<118> = 72 · C116
C116 = P29 · P30 · P59
P29 = 15393506714064146394203206757<29>
P30 = 368352803395909168644736753739<30>
P59 = 15596403866485701426897856305491954242481123335810296359779<59>
(13·10122-1)/3 = 433...33<123> = 3858529 · 28224583 · C109
C109 = P29 · C80
P29 = 81709702023292518690005684521<29>
C80 = [48696659221201773114991589510331275769710151067036157521850137706368342683578539<80>]
(13·10123-1)/3 = 433...33<124> = 7 · 53 · 167 · 881 · 2239 · 17789 · C109
C109 = P28 · C81
P28 = 2381744689844379917707219967<28>
C81 = [836864169964103352333049268635740403822633789822072771337775388804763273915704757<81>]
(13·10146-1)/3 = 433...33<147> = 1429 · 407573 · C138
C138 = P26 · C113
P26 = 39315282870462988035173123<26>
C113 = [18924440913757233153404901191015610413215014628255280580970177797506582244240073347954639836575791228929932734463<113>]
By Naoki Yamamoto
(43·10107-7)/9 = 477...77<108> = 3 · 1543 · 37501333 · C97
C97 = P36 · P62
P36 = 268237075051339506511523295724451491<36>
P62 = 10260611767132578820218414037016160633739304885020214885313971<62>
By Naoki Yamamoto
(46·10105-1)/9 = 511...11<106> = 29 · 1753 · 4944154679<10> · C92
C92 = P34 · P58
P34 = 9425358802508525102649479397759493<34>
P58 = 2157473485612788066221168950504556742280177187881084840649<58>
(46·10109-1)/9 = 511...11<110> = 3 · 2968934383064059373<19> · C91
C91 = P29 · P63
P29 = 41047289944857646903093226857<29>
P63 = 139800581916770400551778625120537112131203048684938651744217817<63>
(46·10130-1)/9 = 511...11<131> = 32 · 73 · 6621430727<10> · 6728565940753<13> · 22844764349203<14> · C92
C92 = P39 · P53
P39 = 921568000268286504364247144025983172323<39>
P53 = 82939522578366486889482278740816972256715449218931657<53>
(46·10146-1)/9 = 511...11<147> = 7 · 73 · 114614918434137035789291171<27> · 1252099921574660469069126749<28> · C91
C91 = P40 · P52
P40 = 5378554907418632396008777863809729095171<40>
P52 = 1295831931739910232332987466902941518921393335926789<52>
6·10108-1 = 599...99<109> = 983 · 1319 · 2879 · C100
C100 = P31 · P32 · P38
P31 = 1377936220991900892143876049623<31>
P32 = 15727768119140553102115299513499<32>
P38 = 74167742155184056600770204460124004389<38>
6·10115-1 = 599...99<116> = 353 · 29753 · 98809 · 279777283 · C96
C96 = P38 · P58
P38 = 89915295521439214464304782013102496477<38>
P58 = 2298281675665954480084479869603733788667763610645868165769<58>
6·10150-1 = 599...99<151> = 93931177 · 651403633 · 136869075743<12> · 403194830459926779059034451<27> · C97
C97 = P31 · P66
P31 = 4233495431238640401985025576851<31>
P66 = 419731849111705803960797413538714348813708997815204603705035287073<66>
Condition of sequence (46·10n-1)/9 = { 51, 511, 5111, 51111, 511111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
109,
115,
116,
119,
120,
125,
126,
127,
129,
130,
133,
135,
137,
141,
143,
145,
146,
148,
149,
(20/150)
By Naoki Yamamoto
(61·10137-7)/9 = 677...77<138> = 389 · 631 · 480167 · 83278259 · 318706812443<12> · 782549473481<12> · C96
C96 = P28 · P29 · P40
P28 = 5186584541590777505486161061<28>
P29 = 25192563188309963512192683149<29>
P40 = 2118982890903677493346019815216660853173<40>
(2·10139+7)/9 = 22...223<139> = 32 · 8486210581<10> · 6156313139653<13> · 4880507932475165839<19> · C96
C96 = P36 · P61
P36 = 817109772026772175728461872273899083<36>
P61 = 1185127410836767685755312331250837119392662598402888284264467<61>
(2·10147+7)/9 = 22...223<147> = 7151 · 22643 · 1430921 · 2348581 · 2454003667<10> · 323605016573996672507<21> · C96
C96 = P29 · P67
P29 = 75546046947925085369108394647<29>
P67 = 6807119018864928857272004130073752530647097895912993722383741851377<67>
By Naoki Yamamoto
6·10121-1 = 599...99<122> = 1783 · 432163 · 58395497057<11> · 529061209631<12> · C91
C91 = P29 · P62
P29 = 31111982718582936591461576351<29>
P62 = 81010135135456790395247016252114523867836377342910257137933843<62>
Condition of sequence 6·10n-1 = { 59, 599, 5999, 59999, 599999, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
108,
109,
112,
115,
116,
119,
120,
121,
122,
123,
132,
134,
137,
139,
141,
145,
148,
149,
150,
(19/150)
By Naoki Yamamoto
5·10117-1 = 499...99<118> = 23 · 2067841977583213889<19> · C99
C99 = P39 · P60
P39 = 773956372891384392141906610342793159273<39>
P60 = 135833953232315983621727763569180848191814905661946744078129<60>
(4·10122-31)/9 = 44...441<122> = 41 · 367 · 1483 · 1613 · 8188101117457<13> · C99
C99 = P47 · P52
P47 = 37199331872889137534783406270984191699091449263<47>
P52 = 4053906291837251048685279637731757885571591397276527<52>
By Naoki Yamamoto
(2·10106+7)/9 = 22...223<106> = 3 · 13 · 59 · 3323 · 13399 · C95
C95 = P42 · P53
P42 = 743983320722512131033234267009237809440019<42>
P53 = 29154455843845849700306419720970556041402986749161821<53>
(43·10104-7)/9 = 477...77<105> = 3 · 67 · C103
C103 = P39 · P65
P39 = 185392847431402052360655003647272670633<39>
P65 = 12821443235131860552080923191399927987512992318570776432045323969<65>
Condition of sequence (43·10n-7)/9 = { 47, 477, 4777, 47777, 477777, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
104,
107,
118,
121,
124,
127,
128,
129,
132,
133,
135,
136,
138,
139,
142,
143,
145,
147,
148,
149,
150,
(21/150)
By Naoki Yamamoto
(2·10111+7)/9 = 22...223<111> = 97 · 5771081621262690683<19> · C90
C90 = P29 · P61
P29 = 56958187395497515079848690649<29>
P61 = 6969512080474052578876774896363036007547149622542570862159077<61>
By Naoki Yamamoto
(61·10107-7)/9 = 677...77<108> = 157 · 179 · 19853308877069<14> · C91
C91 = P38 · P53
P38 = 58276019278733258760353591653516862947<38>
P53 = 20845478301475772097318861831763485519735834582896513<53>
(61·10111-7)/9 = 677...77<112> = 35 · 9871 · 344664799369433<15> · C91
C91 = P28 · P64
P28 = 1560773166512050647257440877<28>
P64 = 5252707034262033971211409319604914039023885965235006929108814049<64>
(61·10113-7)/9 = 677...77<114> = 164443 · 62717503 · 84243242477<11> · C90
C90 = P45 · P46
P45 = 389496820482749004699211424659822744179148351<45>
P46 = 2002830442986946774664791687039738311228128719<46>
(61·10124-7)/9 = 677...77<125> = 15227 · 111781 · 101151313 · 124673551624588433<18> · C91
C91 = P32 · P59
P32 = 95487705047218658287728754303319<32>
P59 = 33068285276795186583709312118814124498598177207244524529521<59>
Condition of sequence (2·10n+7)/9 = { 3, 23, 223, 2223, 22223, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
106,
111,
112,
114,
115,
119,
121,
129,
130,
132,
133,
136,
139,
140,
141,
143,
144,
147,
148,
149,
(20/150)
Condition of sequence (61·10n-7)/9 = { 67, 677, 6777, 67777, 677777, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
107,
111,
113,
119,
120,
121,
124,
128,
129,
133,
135,
137,
141,
143,
144,
146,
147,
148,
150,
(20/150)
By Naoki Yamamoto
(25·10133-7)/9 = 277..77<134> = 3 · 349 · 414811151 · 13315982839<11> · 706391092489601<15> · C97
C97 = P45 · P53
P45 = 302947587969126582778790931963186733044997309<45>
P53 = 22444733591272588919605986012055058713103159535424091<53>
By Philippe Strohl
(4·10120-31)/9 = 44...441<120> = 32 · 257257194539<12> · C108
C108 = P30 · P78
P30 = 355328659305971856691980097253<30>
P78 = 540228144372240173282537397853857906091969158159388948832466469088719724315447<78>
(4·10135-31)/9 = 44...441<135> = 3 · 7 · 14246417 · 195698445084810190688521<24> · C103
C103 = P28 · P32 · P44
P28 = 7337407243068639315729822341<28>
P32 = 22762654378748961590139932992219<32>
P44 = 45450601132254346298608031096189988017756507<44>
(4·10138-31)/9 = 44...441<138> = 32 · 16463169519086683<17> · C121
C121 = P26 · P96
P26 = 15052243376800449743967619<26>
P96 = 199278428923120369994002434664701408471507014586007875901129416373348579379533218434803280967937<96>
By Naoki Yamamoto
(4·10123-31)/9 = 44...441<123> = 3 · 7 · 3739 · 26953911540871967117322709<26> · C93
C93 = P27 · P67
P27 = 134916690983200652266546217<27>
P67 = 1556521924266909590456518618516071755525262680248884281305260520763<67>
By Tetsuya Kobayashi
(16·10206-61)/9 = 177...771<207> = 3 · 15725091139<11> · 475800748495892867<18> · 4901783965719986289006496835311<31> · 490788208443118459113864108769759<33> · C115
C115 = P52 · P64
P52 = 1517999133476517856754106431080765696307429236392467<52>
P64 = 2168793065506607897851349768372855861079489954737258129969373083<64>
By Naoki Yamamoto
(28·10108-1)/9 = 311...11<109> = 3 · 53 · 83 · 225767 · C100
C100 = P31 · P69
P31 = 9723127465647490740903656178329<31>
P69 = 107392478101279201565968868184871485812597446568363928944263227421741<69>
(28·10125-1)/9 = 311...11<126> = 257 · 2087 · 116349679 · 4256013934461701<16> · C97
C97 = P30 · P67
P30 = 225063260416102750225001751763<30>
P67 = 5204597068991878300139972119622046965779245555044591966878220075377<67>
By Naoki Yamamoto
(28·10150-1)/9 = 311...11<151> = 32 · 6971 · 125197 · 846913 · 93685696889<11> · 1199903662141<13> · 1403106237540005447447<22> · C91
C91 = P36 · P55
P36 = 567366079746132403265113884152652067<36>
P55 = 5226026584128553669613574839501952755233031877382069609<55>
By Makoto Kamada
(1030178-7)/3 = 33...331<30178> is PRP.
By Naoki Yamamoto
(5·10103-23)/9 = 55...553<103> = 33 · 479 · 14831 · C95
C95 = P39 · P57
P39 = 135492852316761805702885567232415592399<39>
P57 = 213767361597141467189483702362146780084852487507513012589<57>
(5·10121-23)/9 = 55...553<121> = 32 · 2549 · 51683 · 104277280195479733<18> · C95
C95 = P34 · P62
P34 = 1424466634007269855706995652120057<34>
P62 = 31544631539776040528239100066406254298955790866023655121437571<62>
(4·10127-31)/9 = 44...441<127> = 172 · 41 · 46026849228433<14> · 71949037960901166647<20> · C90
C90 = P40 · P50
P40 = 7103789343326574329334834944201001693067<40>
P50 = 15944447340647925549501009560670874103179901018677<50>
Condition of sequence (28·10n-1)/9 = { 31, 311, 3111, 31111, 311111, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
108,
125,
126,
127,
128,
133,
134,
135,
136,
139,
140,
142,
143,
144,
146,
147,
148,
149,
150,
(19/150)
Condition of sequence (4·10n-31)/9 = { 1, 41, 441, 4441, 44441, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
110,
120,
122,
123,
124,
125,
127,
129,
130,
131,
132,
133,
135,
136,
137,
138,
140,
142,
143,
(19/150)
By Naoki Yamamoto
(5·10112-23)/9 = 55...553<112> = 32 · 50507113595606501<17> · C95
C95 = P40 · P55
P45 = 6403080060763641922588220745106558311083<40>
P55 = 1908725622469250623474020224210228992726832956376396399<55>
(5·10131-23)/9 = 55...553<131> = 149 · 367 · 727 · 105397 · 108439 · 8714427881165179517<19> · C95
C95 = P33 · P63
P33 = 123816942265945344177124035462931<33>
P63 = 113320385502626783963811188944973780359904217272923500376785713<63>
(5·10135-23)/9 = 55...553<135> = 7 · 18930581 · 192654767 · 3798930791<10> · 5744276036646289<16> · C93
C93 = P35 · P59
P35 = 17205102554785565619396753533899799<35>
P59 = 57960457317470169762501929894091291134940494145014709498277<59>
(5·10137-23)/9 = 55...553<137> = 179 · 1400884856787571<16> · 2039014704489051619502147<25> · C96
C96 = P29 · P67
P29 = 39860085076042197788610136133<29>
P67 = 2725922122249473047406282462854993248837935158566993847665936202167<67>
(25·10108-7)/9 = 277...77<109> = 13516870503719267<17> · C93
C93 = P37 · P57
P37 = 1398028735162292033424875903054858003<37>
P57 = 146995908966490923010585407878846761495962086618539625177<57>
(25·10112-7)/9 = 277...77<113> = 3 · 83392503673496501773<20> · C93
C93 = P41 · P52
P41 = 44887847001983328764241524432269784017861<41>
P52 = 2473548648872387047850109357122859674933202190382203<52>
(25·10127-7)/9 = 277...77<128> = 32 · 97 · 24623 · 49232582858554851192302312789<29> · C92
C92 = P38 · P54
P38 = 67928417335307810404567461242282386211<38>
P54 = 386400939653868595312031689210522278469949288917423897<54>
By Tetsuya Kobayashi
8·10149-1 = 799...99<150> : C120 = 1022989353719819366635703816501<31> · P90
Condition of sequence (5·10n-23)/9 = { 3, 53, 553, 5553, 55553, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
103,
112,
119,
121,
124,
125,
126,
127,
130,
131,
133,
135,
137,
141,
142,
143,
144,
146,
150,
(19/150)
By Naoki Yamamoto
(25·10105-7)/9 = 277...77<106> : C90 = 21913684872530270860228322669774586383<38> · P53
(25·10115-7)/9 = 277...77<116> : C91 = 81185786637570081125592174938383<32> · P59
(25·10130-7)/9 = 277...77<131> : C91 = 2045078183167382392105719896839879<34> · P57
Condition of sequence (25·10n-7)/9 = { 27, 277, 2777, 27777, 277777, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
108,
112,
115,
122,
126,
127,
130,
131,
133,
134,
138,
141,
142,
143,
144,
146,
147,
148,
(19/150)
By Naoki Yamamoto
(16·10118-7)/9 = 177...77<119> : C95 = 219954452699454468814477311194986381961<39> · P56
(2·10132-17)/3 = 66...661<132> : C95 = 11021645949130450389404474025015609077<38> · P58
By Tetsuya Kobayashi
(10120+53)/9 = 11...117<120> : C100 = 919980363085976017239419811733<30> · 27719630905018574740352261857832569<35> · P35
(10124+53)/9 = 11...117<124> : C100 = 33280695318549701225253203674337<32> · P68
(10133+53)/9 = 11...117<133> : C111 = 122130921961536849873054098272931<33> · P79
(2·10118+61)/9 = 22...229<118> : C110 = 1466493749868054488829513061006883<34> · P77
(2·10123+61)/9 = 22...229<123> : C95 = 570047520183618351939679<24> · P71
(2·10125+61)/9 = 22...229<125> : C106 = 8700713369875389808104767058107<31> · P75
(2·10127+61)/9 = 22...229<127> : C115 = 15120691899455652359581447979<29> · P87
(2·10147+61)/9 = 22...229<147> : C127 = 967640298481865238655151873<27> · P100
(2·10127-17)/3 = 66...661<127> : C111 = 9052240448936995716833229863460401<34> · P77
(2·10138-17)/3 = 66...661<138> : C111 = 67878751009298290080057376805921<32> · 1324835335577104982446717974844763215073<40> · P40
(2·10150-17)/3 = 66...661<150> : C144 = 140172354350442194189481612214919<33> · P112
(7·10117-43)/9 = 77...773<117> : C112 = 219963366682115621854587583<27> · P86
(7·10131-43)/9 = 77...773<131> : C128 = 241132400974799183305217<24> · P105
(7·10139-43)/9 = 77...773<139> : C124 = 2388244380500145705197283737<28> · 23440121176680920265969089669<29> · P68
(7·10143-43)/9 = 77...773<143> : C125 = 44469666660757781600487511<26> · C100
(7·10146-43)/9 = 77...773<146> : C103 = 951389881668436174463816735729<30> · P73
(8·10126-71)/9 = 88...881<126> : C114 = 26794209605759549323741377211159<32> · P82
(8·10127-71)/9 = 88...881<127> : C96 = 110200847210304023324324034241<30> · P67
3·10142-1 = 299...99<143> : C138 = 93717112244395171896790558091<29> · P109
3·10149-1 = 299...99<150> : C127 = 25970585924786847027298660631<29> · P99
5·10112-1 = 499...99<113> : C100 = 17580027457273324381682122351<29> · P72
5·10129-1 = 499...99<130> : C117 = 46464233742069111351508303<26> · P91
(52·10144-7)/9 = 577...77<145> : C117 = 3924307085206602653466442605817<31> · P86
(52·10149-7)/9 = 577...77<150> : C122 = 1405742527016958541959699689<28> · 67226748758879644967302995709<29> · 343156546515091237037855140567<30> · P36
By Naoki Yamamoto
(16·10150-7)/9 = 177...77<151> : C151 = 9227879618237474333996784667<28> · P123
(2·10106+61)/9 = 22...229<106> : C103 = 16041019969006016083801394482607<32> · P71
Condition of sequence (16·10n-7)/9 = { 17, 177, 1777, 17777, 177777, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
117,
118,
123,
124,
127,
130,
131,
132,
136,
138,
140,
141,
143,
144,
145,
146,
147,
149,
150,
(19/150)
By Naoki Yamamoto
(10115+53)/9 = 11...117<115> : C94 = 26999081551714895266052372627562119942067647<44> · P51
By Naoki Yamamoto
(13·10107-1)/3 = 433...33<108> : C100 = 631136411876732358037838277857<30> · 22377643566681524178136692009181<32> · P39
By Naoki Yamamoto
(13·10148-1)/3 = 433...33<149> : C89 = 1017608343849102724174892897711<31> · P59
5·10108-1 = 499...99<109> : C95 = 226966348667797098201473126585921<33> · P63
Condition of sequence (13·10n-1)/3 = { 43, 433, 4333, 43333, 433333, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
107,
112,
113,
116,
117,
119,
122,
123,
125,
131,
132,
133,
134,
135,
137,
141,
143,
146,
148,
(19/150)
By Naoki Yamamoto
(10117+53)/9 = 11...117<117> : C93 = 720450202679701035782572256039634111006859<42> · P51
(2·10109+61)/9 = 22...229<109> : C96 = 23234645008056921138012548362183981801418532833<47> · P49
By Naoki Yamamoto
(2·10124+61)/9 = 22...229<124> : C93 = 11889450439077229255747506989<29> · P65
(8·10107-71)/9 = 88...881<107> : C105 = 4683428044274788695884568685501718594255477<43> · P62
By Naoki Yamamoto
(7·10114-43)/9 = 77...773<114> : C92 = 392683364208062786439084499110609141179745943<45> · P48
(7·10133-43)/9 = 77...773<133> : C92 = 43362385535072735982061300160921<32> · P61
(10119+53)/9 = 11...117<119> : C93 = 993486692546458312155371304998269<33> · P60
5·10128-1 = 499...99<129> : C91 = 42588483156191111202485499558026020951227589<44> · P48
By Naoki Yamamoto + Tetsuya Kobayashi
(10144+53)/9 = 11...117<144> : C89 = 12180168124480952482664005335936943<35> · P55
(10146+53)/9 = 11...117<146> : C91 = 2790575263389602709091749210076625621<37> · P54
By Naoki Yamamoto
(8·10111-71)/9 = 88...881<111> : C91 = 251387268111793279704641072230347489632606863<45> · P46
By Naoki Yamamoto
(7·10105-43)/9 = 77...773<105> : C92 = 76391818726719666769128900558673<32> · P60
(8·10105-71)/9 = 88...881<105> : C100 = 349476778536336206471041424143<30> · 9731811870711670722256054349377<31> · P40
By Makoto Kamada
(1023365-7)/3 = 33...331<23365> is probably prime.
(1024253-7)/3 = 33...331<24253> is probably prime.
(1024549-7)/3 = 33...331<24549> is probably prime.
(1025324-7)/3 = 33...331<25324> is probably prime.
By Makoto Kamada
(1018533-7)/3 = 33...331<18533> is probably prime.
(1022718-7)/3 = 33...331<22718> is probably prime.
By Makoto Kamada
(108855-7)/3 = 33...331<8855> is probably prime.
(1011245-7)/3 = 33...331<11245> is probably prime.
(1011960-7)/3 = 33...331<11960> is probably prime.
(1012130-7)/3 = 33...331<12130> is probably prime.
By Makoto Kamada
No PRP was found in sequence (64·10n+53)/9 (20001≤n≤50139).
See also Factorizations of 711...117.
By Makoto Kamada
(4·106923-1)/3 = 133...33<6924> is probably prime.
By Makoto Kamada
(4·105845-31)/9 = 44...441<5845> is probably prime.
By Makoto Kamada
(13·104318-1)/3 = 433...33<4319> is probably prime.
(13·104328-1)/3 = 433...33<4329> is probably prime.
(55·103889-1)/9 = 611...11<3890> is probably prime.
(55·104192-1)/9 = 611...11<4193> is probably prime.
(73·103627-1)/9 = 811...11<3628> is probably prime.
(73·103788-1)/9 = 811...11<3789> is probably prime.
(88·103307-7)/9 = 977...77<3308> is probably prime.
(13·104930-1)/3 = 433...33<4931> is probably prime.
By Makoto Kamada
(8·103395-53)/9 = 88...883<3395> is probably prime.
(8·103882-53)/9 = 88...883<3882> is probably prime.
By Makoto Kamada
(8·1014602-71)/9 = 88...881<14602> is probably prime.
By Makoto Kamada
(8·1011091-71)/9 = 88...881<11091> is probably prime.
(4·10551-1)/3 = 133...33<552> is definitely prime.
(4·10989-1)/3 = 133...33<990> is definitely prime.
Condition of sequence (8·10n-71)/9 = { 1, 81, 881, 8881, 88881, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
105,
107,
110,
111,
112,
120,
123,
125,
126,
127,
130,
131,
133,
138,
143,
146,
147,
150,
(18/150)
By Makoto Kamada
(8·109507-71)/9 = 88...881<9507> is probably prime.
By Makoto Kamada
(8·103247-71)/9 = 88...881<3247> is probably prime.
(8·103877-71)/9 = 88...881<3877> is probably prime.
(8·104417-71)/9 = 88...881<4417> is definitely prime.
(8·104417-71)/9 is prime (4417 digits)
Added related link:
WIFC (World Integer Factorization Center) (Hisanori Mishima)
Condition of sequence (10n+53)/9 = { 7, 17, 117, 1117, 11117, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
115,
116,
117,
119,
120,
123,
124,
126,
133,
134,
139,
140,
144,
146,
147,
148,
149,
150,
(18/150)
Condition of sequence 5·10n-1 = { 49, 499, 4999, 49999, 499999, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
106,
108,
112,
114,
117,
123,
125,
128,
129,
130,
133,
135,
136,
141,
142,
145,
146,
149,
(18/150)
Condition of sequence 3·10n-1 = { 29, 299, 2999, 29999, 299999, ... } was extended to n≤150.
Following numbers have not factorized yet. Probably these numbers still have small factors.
n=
113,
116,
117,
122,
125,
128,
130,
135,
136,
139,
140,
141,
142,
143,
144,
145,
148,
149,
(18/150)