Table of contents 目次

  1. About 99...99499...99 99...99499...99 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 99...99499...99 99...99499...99 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
  3. Factor table of 99...99499...99 99...99499...99 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 99...99499...99 99...99499...99 について

1.1. Classification 分類

Near-repdigit-palindrome of the form AA...AABAA...AA AA...AABAA...AA の形のニアレプディジット回文数 (Near-repdigit-palindrome)

1.2. Sequence 数列

9w49w = { 4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, … }

1.3. General term 一般項

102n+1-5×10n-1 (0≤n)

2. Prime numbers of the form 99...99499...99 99...99499...99 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 1029-5×1014-1 = (9)144(9)14<29> is prime. は素数です。
  2. 1045-5×1022-1 = (9)224(9)22<45> is prime. は素数です。
  3. 1073-5×1036-1 = (9)364(9)36<73> is prime. は素数です。
  4. 10209-5×10104-1 = (9)1044(9)104<209> is prime. は素数です。 (Patrick De Geest / September 23, 2002 2002 年 9 月 23 日)
  5. 102273-5×101136-1 = (9)11364(9)1136<2273> is prime. は素数です。 (Jeff Heleen / October 13, 2002 2002 年 10 月 13 日)
  6. 1035729-5×1017864-1 = (9)178644(9)17864<35729> is prime. は素数です。 (Daniel Heuer / OpenPFGW / June 13, 2001 2001 年 6 月 13 日)
  7. 1050897-5×1025448-1 = (9)254484(9)25448<50897> is prime. は素数です。 (Daniel Heuer / OpenPFGW / October 25, 2001 2001 年 10 月 25 日)

2.3. Range of search 捜索範囲

  1. n≤68000 / Completed 終了

3. Factor table of 99...99499...99 99...99499...99 の素因数分解表

3.1. Last updated 最終更新日

April 20, 2021 2021 年 4 月 20 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=107, 113, 114, 119, 120, 123, 126, 127, 133, 134, 135, 137, 139, 140, 142, 143, 144, 145, 147, 148, 149, 150 (22/150)

3.4. Factor table 素因数分解表

101-5×100-1 = 4 = 22
103-5×101-1 = 949 = 13 × 73
105-5×102-1 = 99499 = 29 × 47 × 73
107-5×103-1 = 9994999 = 7 × 307 × 4651
109-5×104-1 = 999949999 = 30109 × 33211
1011-5×105-1 = 99999499999<11> = 7 × 83 × 172116179
1013-5×106-1 = 9999994999999<13> = 48109 × 207861211
1015-5×107-1 = 999999949999999<15> = 13 × 7963 × 9660061921<10>
1017-5×108-1 = 99999999499999999<17> = 8956609 × 11164939711<11>
1019-5×109-1 = 9999999994999999999<19> = 7 × 732 × 1913 × 140133274241<12>
1021-5×1010-1 = 999999999949999999999<21> = 73 × 13698630136301369863<20>
1023-5×1011-1 = 99999999999499999999999<23> = 7 × 29 × 877321 × 561494410182773<15>
1025-5×1012-1 = 9999999999994999999999999<25> = 2341 × 22072039477<11> × 193533487207<12>
1027-5×1013-1 = 999999999999949999999999999<27> = 13 × 98459 × 781270142120812489697<21>
1029-5×1014-1 = 99999999999999499999999999999<29> = definitely prime number 素数
1031-5×1015-1 = 9999999999999994999999999999999<31> = 7 × 133187 × 393257 × 27274931056435128523<20>
1033-5×1016-1 = 999999999999999949999999999999999<33> = 269 × 3717472118959107620817843866171<31>
1035-5×1017-1 = 99999999999999999499999999999999999<35> = 7 × 73 × 1877 × 6156901 × 23079316361<11> × 733718917297<12>
1037-5×1018-1 = 9999999999999999994999999999999999999<37> = 73 × 97 × 1171 × 50377 × 219217 × 109204863203521929061<21>
1039-5×1019-1 = 999999999999999999949999999999999999999<39> = 13 × 13239539239733899<17> × 5810102264905028303377<22>
1041-5×1020-1 = 99999999999999999999499999999999999999999<41> = 47 × 163 × 419 × 3323 × 29996257033<11> × 312538200345577394579<21>
1043-5×1021-1 = 9999999999999999999994999999999999999999999<43> = 7 × 22997475217<11> × 62118620200334514461055724804921<32>
1045-5×1022-1 = 999999999999999999999949999999999999999999999<45> = definitely prime number 素数
1047-5×1023-1 = 99999999999999999999999499999999999999999999999<47> = 72 × 7459 × 40177 × 482281237441<12> × 14120349335323832944493077<26>
1049-5×1024-1 = 9999999999999999999999994999999999999999999999999<49> = 25801 × 976380407 × 2302520591101<13> × 172401437490400765009157<24>
1051-5×1025-1 = 999999999999999999999999949999999999999999999999999<51> = 13 × 67 × 73 × 1787 × 127235302477924244063<21> × 69171438235751571811213<23>
1053-5×1026-1 = 99999999999999999999999999499999999999999999999999999<53> = 73 × 852652992145636311554731<24> × 1606589112238349389966039573<28>
1055-5×1027-1 = 9999999999999999999999999994999999999999999999999999999<55> = 7 × 2131 × 1872582196826688353<19> × 357995543329132365872773576271699<33>
1057-5×1028-1 = 999999999999999999999999999949999999999999999999999999999<57> = 3404730839554091347889762281<28> × 293708973520787144658793555879<30>
1059-5×1029-1 = 99999999999999999999999999999499999999999999999999999999999<59> = 7 × 97 × 317 × 17211022013688365887<20> × 26993817253793992967719610044427939<35>
1061-5×1030-1 = 9999999999999999999999999999994999999999999999999999999999999<61> = 29 × 2017 × 306731299709<12> × 8999137581647<13> × 278587252596073<15> × 222318640049427617<18>
1063-5×1031-1 = 999999999999999999999999999999949999999999999999999999999999999<63> = 13 × 179 × 1239643 × 193525564942277550190007<24> × 1791301297217519873468303098237<31>
1065-5×1032-1 = 99999999999999999999999999999999499999999999999999999999999999999<65> = 28181 × 144307 × 287223900610919<15> × 4686750558921377<16> × 18266855200714892105010119<26>
1067-5×1033-1 = 9999999999999999999999999999999994999999999999999999999999999999999<67> = 7 × 73 × 178439 × 456203021 × 1325485186171<13> × 340948627029706849<18> × 531945743351557069609<21>
1069-5×1034-1 = 999999999999999999999999999999999949999999999999999999999999999999999<69> = 73 × 482513 × 1034027 × 113837077763<12> × 42783529213250537213<20> × 5637361650656357833904227<25>
1071-5×1035-1 = 99999999999999999999999999999999999499999999999999999999999999999999999<71> = 7 × 612 × 719 × 22713308591<11> × 8469160191241<13> × 27758286293920173239480832056163894738553<41>
1073-5×1036-1 = 9999999999999999999999999999999999994999999999999999999999999999999999999<73> = definitely prime number 素数
1075-5×1037-1 = 999999999999999999999999999999999999949999999999999999999999999999999999999<75> = 13 × 199 × 2953 × 3583 × 36533671226136873562261962807823744276645706145142000100465915323<65>
1077-5×1038-1 = 99999999999999999999999999999999999999499999999999999999999999999999999999999<77> = 2609 × 15149 × 11272583863<11> × 1087839905797<13> × 206325779304608070973258023209704093143478649449<48>
1079-5×1039-1 = 9999999999999999999999999999999999999994999999999999999999999999999999999999999<79> = 72 × 29 × 340094622883214671<18> × 89250497908187067885187373<26> × 231843812022208525224137871025993<33>
1081-5×1040-1 = 999999999999999999999999999999999999999949999999999999999999999999999999999999999<81> = 4229 × 52597673 × 10249000651663<14> × 81931002008498759<17> × 5353847507331679718627203983754502271491<40>
1083-5×1041-1 = 99999999999999999999999999999999999999999499999999999999999999999999999999999999999<83> = 7 × 73 × 266239 × 735033996682159443736267773296610348827358735672138497398960922130726252031<75>
1085-5×1042-1 = 9999999999999999999999999999999999999999994999999999999999999999999999999999999999999<85> = 73 × 389 × 1109 × 1291 × 48259 × 436132348572881<15> × 1543505227485072799<19> × 7571205374825151755066433676233596033<37>
1087-5×1043-1 = 999999999999999999999999999999999999999999949999999999999999999999999999999999999999999<87> = 13 × 84533810727393720761<20> × 14130473765000206235844997<26> × 64397569651470927192571654520543136580919<41>
1089-5×1044-1 = 99999999999999999999999999999999999999999999499999999999999999999999999999999999999999999<89> = 354037 × 282456353431985922375344949821628812807700888607687897027711792835212138844245093027<84>
1091-5×1045-1 = 9999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999<91> = 7 × 14436181031<11> × 32266288409<11> × 6727855881284073515673536775054251<34> × 455852088953288354385781243603265333<36>
1093-5×1046-1 = 999999999999999999999999999999999999999999999949999999999999999999999999999999999999999999999<93> = 83 × 11783 × 4575799569961<13> × 81972002618942963157750810637<29> × 2726047955744136809720687062402830504300514663<46>
1095-5×1047-1 = 99999999999999999999999999999999999999999999999499999999999999999999999999999999999999999999999<95> = 7 × 794119 × 13537233152295961<17> × 77743797612443513<17> × 17093095260501667738725757062563476151646267266405763071<56>
1097-5×1048-1 = 9999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999<97> = 47 × 611476932635213<15> × 347954184518253403593489235802593537531879891529468508597556002417980499277345909<81>
1099-5×1049-1 = 999999999999999999999999999999999999999999999999949999999999999999999999999999999999999999999999999<99> = 13 × 73 × 15889 × 66318886007185916574422622804504988871359333564163953284711420994211621310406806015467819059<92>
10101-5×1050-1 = (9)504(9)50<101> = 73 × 1369863013698630136986301369863013698630136986301363013698630136986301369863013698630136986301369863<100>
10103-5×1051-1 = (9)514(9)51<103> = 7 × 94677613487661089747353<23> × 71269943060057227761238102966919925787<38> × 211713350845509700316662285486233591892387<42> (Makoto Kamada / msieve 0.88)
10105-5×1052-1 = (9)524(9)52<105> = 17977 × 76296532761998391957077<23> × 67568759393935788396520294335743<32> × 10790263100751394184921067728683591121445228517<47> (Makoto Kamada / msieve 0.88 / 13 minutes)
10107-5×1053-1 = (9)534(9)53<107> = 7 × 191 × 3691 × 2196600844153716033361<22> × 69822974648095467867384822091<29> × 132121974192898635000693635977899135467129312194847<51>
10109-5×1054-1 = (9)544(9)54<109> = 61 × 2886557 × 123548692649705108867369047<27> × 459676045988134598841901403865169123469696182453617425910704733986220806321<75>
10111-5×1055-1 = (9)554(9)55<111> = 13 × 76923076923076923076923076923076923076923076923076923073076923076923076923076923076923076923076923076923076923<110>
10113-5×1056-1 = (9)564(9)56<113> = 58207 × 637053467 × 38613981283<11> × 192805168162571930340967679<27> × 362231027180937258755991397381297488820571071563655831949356303<63>
10115-5×1057-1 = (9)574(9)57<115> = 7 × 73 × 179 × 487 × 12269 × 561378329685167<15> × 2355987824090587<16> × 5198813831459935688390319272941<31> × 2661061978958705483136906369853516795231313<43> (Makoto Kamada / msieve 0.88 / 3.8 minutes)
10117-5×1058-1 = (9)584(9)58<117> = 29 × 67 × 73 × 1091 × 98407050041<11> × 2990795615219<13> × 21956678375774763943507732736494249805763129729735373021234563979202159132401812576769<86>
10119-5×1059-1 = (9)594(9)59<119> = 7 × 3869743 × 2433114977184083421515578291<28> × 31856661382193055759391714907693<32> × 47627407843568202553750431024175318259489165660722673<53> (Makoto Kamada / msieve 0.88 for P32 x P53 / May 14, 2005 2005 年 5 月 14 日)
10121-5×1060-1 = (9)604(9)60<121> = 165149106706211<15> × 27611806515679263468269678707072310135743844147387<50> × 2192951110112010923330726818171905685664179773222579832207<58> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 3.35 hours on Pentium 4 2.4BGHz / June 1, 2005 2005 年 6 月 1 日)
10123-5×1061-1 = (9)614(9)61<123> = 13 × 1501496951535744377<19> × 51230924474671306449496909813914846348057673568519980025511866368154068911967420164056013166681080066899<104>
10125-5×1062-1 = (9)624(9)62<125> = 1559 × 13063 × 13470606010794028627413277182587<32> × 364522066719977324206584098453136145655901219209892192548908624460176317930811233012781<87> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=4018826674 for P32 / May 7, 2005 2005 年 5 月 7 日)
10127-5×1063-1 = (9)634(9)63<127> = 7 × 70145326613<11> × 75696543614080484504716919314397<32> × 269046389681757996273662117203132637492382734106421397965951960948824725296394410537<84> (Makoto Kamada / GMP-ECM 6.0 B1=3000000, sigma=1156737498 for P32 / May 8, 2005 2005 年 5 月 8 日)
10129-5×1064-1 = (9)644(9)64<129> = 43499 × 2294077 × 4370312208203526199<19> × 2292980032032098110814478639056559014096341426507710343582937375201191240183016690243284145196522887<100>
10131-5×1065-1 = (9)654(9)65<131> = 72 × 73 × 1560457 × 68144661076921193<17> × 262904135862192854578920499183594181666955863150775846848994582475519423179025020205417250611670306282087<105>
10133-5×1066-1 = (9)664(9)66<133> = 47 × 73 × 829 × 6761 × 50506030969<11> × 131323299422472148930024532895341746762555988587153<51> × 78402297452355609333372855409892683866758653385085863058626413<62> (Kenichiro Yamaguchi / GGNFS-0.77.1 / 18.98 hours on Pentium 4 2.4BGHz / June 18, 2005 2005 年 6 月 18 日)
10135-5×1067-1 = (9)674(9)67<135> = 13 × 29 × 1373 × 8933 × 1266483249403<13> × 3436340835467<13> × 49692986175320536435189903896666450296818394840550345711371990802826675859541439517584333278186452143<101>
10137-5×1068-1 = (9)684(9)68<137> = 4111 × 480019613 × 2198963711051<13> × 21130146323149142509<20> × 1090618785308088765443858022747074445985851349080727378101608203604294493462187899806861402827<94>
10139-5×1069-1 = (9)694(9)69<139> = 7 × 991 × 15621479 × 25218953 × 151297957 × 14062828861246736581<20> × 157705627562565010111<21> × 1021498112798088086668342168804543<34> × 10675508950385419139525256445370382764881<41> (Makoto Kamada / msieve 0.88 / 4.1 minutes)
10141-5×1070-1 = (9)704(9)70<141> = 94199759 × 45991197802202921691212410956857205150918173681404816125050149<62> × 230821090102296748368286382776743795682256488181171518047153819469404989<72> (Kenichiro Yamaguchi / GGNFS-0.77.0 / 49.67 hours on Pentium M 1.3GHz / June 15, 2005 2005 年 6 月 15 日)
10143-5×1071-1 = (9)714(9)71<143> = 7 × 829 × 51157 × 4226983455085368113131838522651325280201438948126519944281685689<64> × 79691465468688137474165323187199380282822368311237342631970794505834321<71> (Sinkiti Sibata / GGNFS-0.77.1 / 29.81 hours / September 24, 2005 2005 年 9 月 24 日)
10145-5×1072-1 = (9)724(9)72<145> = 81839 × 98272507 × 152850960360368016481796770480122031721<39> × 8134661370956745828048953759976786314450618333909639195969999821733276700744096239942518707403<94> (Sinkiti Sibata / GGNFS-0.77.1 / 46.05 hours / September 26, 2005 2005 年 9 月 26 日)
10147-5×1073-1 = (9)734(9)73<147> = 13 × 73 × 430384049 × 3785599269557668325208323767<28> × 646759745389145739294384287863834036907191004239058094454150857219428878001033162701912468496120968325731397<108>
10149-5×1074-1 = (9)744(9)74<149> = 73 × 1697 × 4253 × 94379 × 140363 × 419683619 × 7607082794944975537132889579438640845935478194747<49> × 4487781874349498160146767447626885491119476257355891326606162986068662363<73> (Sinkiti Sibata / GGNFS-0.77.1 / 67.74 hours / September 23, 2005 2005 年 9 月 23 日)
10151-5×1075-1 = (9)754(9)75<151> = 7 × 293 × 9539 × 15683 × 54258411269768597<17> × 427783759648005329<18> × 3517062300547732144252876581838513053265293857<46> × 399237126270832542031473445700832275264923599868927241797897<60> (Sinkiti Sibata / GGNFS-0.77.1 gnfs / 20.20 hours for P46 x P60 / June 25, 2005 2005 年 6 月 25 日)
10153-5×1076-1 = (9)764(9)76<153> = 2509513 × 43274123425841071<17> × 2114801649031610767<19> × 455177219870851008756824233<27> × 9566038214914990066680193053262313222182794864151543092977389638342613775702680521583<85>
10155-5×1077-1 = (9)774(9)77<155> = 7 × 3917570149<10> × 10161271496069642718424131221<29> × 358869973718752654404185936846953904720909020370723694210934810077754221337388343365581003617143319381152823821544833<117>
10157-5×1078-1 = (9)784(9)78<157> = 577 × 45272775806455281933952896737651553289<38> × 382813340282486531088172386717216740018488071404816437186027921826199386850107261127083318834641847198914704002520583<117> (Dmitry Domanov / Msieve 1.40 snfs / February 17, 2011 2011 年 2 月 17 日)
10159-5×1079-1 = (9)794(9)79<159> = 13 × 106739 × 14857534192507<14> × 2626765611797539<16> × 18465686473466410276903870361130860351111919239263035492973634016647918547703273690372186370345904031992110078782530263873609<125>
10161-5×1080-1 = (9)804(9)80<161> = 5507 × 18158707100054476121300163428363900490285091701470855275104412565825313237697475848919556927546758670782640276012347920828037043762484111131287452333393862357<158>
10163-5×1081-1 = (9)814(9)81<163> = 72 × 73 × 188355214391551<15> × 306253497499490258753878198867053668223628508492981<51> × 48464345833391783803874543368704688565508708075967998790372018641705757550965295774547884244677<95> (Sinkiti Sibata / Msieve 1.40 snfs / February 18, 2011 2011 年 2 月 18 日)
10165-5×1082-1 = (9)824(9)82<165> = 73 × 139439 × 1536649 × 5223911989<10> × 12586886720134902370843<23> × 131870178594955257437306276375132759<36> × 7373224087748779991184849451692579658431266927960753896392681141130881987903865811281<85> (Serge Batalov / GMP-ECM B1=2000000, sigma=1618548819 for P36 / February 15, 2011 2011 年 2 月 15 日)
10167-5×1083-1 = (9)834(9)83<167> = 7 × 8387 × 45187201887649<14> × 79994803123771<14> × 419361270997727<15> × 1123646682049876267224067808715516901685331556014980066498941664374661398625599116450921616136180400540479765625876641767<121>
10169-5×1084-1 = (9)844(9)84<169> = 29761 × 221315041 × 1340854568113<13> × 482881178994827<15> × 61308578225621963<17> × 38247085842378671711280627923982417067076531853855227677547877017907923463596655581234322148169151140329088798023<113>
10171-5×1085-1 = (9)854(9)85<171> = 13 × 112792753 × 345898981 × 22693733390107561469<20> × 7333376610004568531641601546182858178629037453<46> × 11847213931064903401742037420878279213240420975977163751550089925407041500062342873486823<89> (Sinkiti Sibata / Msieve 1.40 snfs / March 26, 2011 2011 年 3 月 26 日)
10173-5×1086-1 = (9)864(9)86<173> = 29 × 3426990157189686264072919<25> × 1006211195218819846395016884505438000529647361201565035102047998157613731033138454191071989489613701830998373687090785837258865364106967307264367149<148>
10175-5×1087-1 = (9)874(9)87<175> = 7 × 83 × 3316661 × 10384673060492961190399<23> × 499723709759995935719473834221747603268575061459637088689952338007961368110716329404654817689229159505135018073433526380218286801264491313891961<144>
10177-5×1088-1 = (9)884(9)88<177> = 1163 × 384766987662664036207<21> × 403034470498744989017198420079296269<36> × 5544728558856772659526980526715672796850207579635661712405654249752344958027193172243823558744132193570192182360463231<118> (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=1781052737 for P36 / February 18, 2011 2011 年 2 月 18 日)
10179-5×1089-1 = (9)894(9)89<179> = 7 × 73 × 53490901 × 303344107606184779949<21> × 12060453078416415243784634714233261847936944163499856827829740860810986566311569303887820834036850935781694272698407688432560496931658736567724154641<149>
10181-5×1090-1 = (9)904(9)90<181> = 73 × 167 × 11963805217373749299775730148846456183048615858487<50> × 68563240441306585503263136530124473067201036470137625213694955036028108050672694117589868489745282026746147543725284489375452647<128> (Wataru Sakai / September 3, 2011 2011 年 9 月 3 日)
10183-5×1091-1 = (9)914(9)91<183> = 13 × 67 × 131 × 11722927 × 747608944576169504316528243887705921067560025681533426431887948559138443619773943382841747656152861067765131163777555020283272126040059174184657402654640948558768279255437<171>
10185-5×1092-1 = (9)924(9)92<185> = 32275567129940539182804845653243<32> × 20012109446617285105127291628477094096046291193932078833714854309577123<71> × 154822204985665031909000436865814751525686261870466742414287877768693212307219350991<84> (Serge Batalov / GMP-ECM B1=250000, sigma=1987391156 for P32 / February 15, 2011 2011 年 2 月 15 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / April 24, 2012 2012 年 4 月 24 日)
10187-5×1093-1 = (9)934(9)93<187> = 7 × 1335743 × 97940761 × 530493563 × 7610499301353317<16> × 14152836164578535507<20> × 191107983798405300648044494310785757785629406623881550438407629086671012558524938776606950585336496193894301164619526224793287747<129>
10189-5×1094-1 = (9)944(9)94<189> = 47 × 43889 × 10045223731<11> × 3635434492091<13> × 66541208066534827<17> × 199498593310129139880722472301622716472854674661337831882025584669699250035911867121366538563198232765171637876470678991161046024643457586192259<144>
10191-5×1095-1 = (9)954(9)95<191> = 7 × 29 × 61 × 6277 × 52548341 × 1080822079<10> × 57454748509727427689<20> × 394260123002375217390472588820111946738625080530724061030710288326998702482374519532184154698650634604438444490131223775099662827103330822097031759<147>
10193-5×1096-1 = (9)964(9)96<193> = 37781 × 9202900459854165792437473438032800675041<40> × 28760857251308155921664617810875141636448143576694878018374242003239234965652392139539396418032818368239058839943875649342576987294061287897458611619<149> (Kenji Ibusuki / GGNFS-0.77.1-VC8 with factLat.pl (decomposed + modified) snfs / June 6, 2011 2011 年 6 月 6 日)
10195-5×1097-1 = (9)974(9)97<195> = 13 × 73 × 1066797728669<13> × 3398870802405227<16> × 9379337015969833571<19> × 2174585851440765118157573<25> × 14248473845519143378014865227877462382725212659308379974323938198158264055404924645636376338550242609441325178778663603219<122>
10197-5×1098-1 = (9)984(9)98<197> = 73 × 6379 × 186889 × 1742101 × 9066139 × 35893747 × 5655829101810464981<19> × 358368656565360025075914398497787822793153711076386770629266029010893465939473984874972081097361362628952500065003732201503048978927155428585104501<147>
10199-5×1099-1 = (9)994(9)99<199> = 7 × 3838981 × 138432171678904373321<21> × 74238246170605100499591201206132768084130786653<47> × 897658871813847986886377309489334093774182248484604281189093<60> × 40337588788732092015071718788016948003539847063992270376502557533<65> (Jo Yeong Uk / GMP-ECM 6.3 B1=3000000, sigma=7149967077 for P47 / April 16, 2012 2012 年 4 月 16 日) (Warut Roonguthai / Msieve 1.49 gnfs for P60 x P65 / April 21, 2012 2012 年 4 月 21 日)
10201-5×10100-1 = (9)1004(9)100<201> = 9787583692868854482287<22> × 4627646415829728241626312770642549<34> × 1822549599672050204693450129963481617060000879066843822439954570694553173<73> × 12113927959404615197607882613267050756700962638584677351029921355268013401<74> (Serge Batalov / GMP-ECM B1=250000, sigma=3222244761 for P34 / February 15, 2011 2011 年 2 月 15 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / June 10, 2012 2012 年 6 月 10 日)
10203-5×10101-1 = (9)1014(9)101<203> = 7 × 163 × 28277 × 8158229 × 379913854987302171292091170363870713738773952362389712131824029610792118912369588763280633453307894690104456759114109665183495110691359435608856977442617350764384966737788294623550131520283<189>
10205-5×10102-1 = (9)1024(9)102<205> = 197933 × 50522146382866929718642166793814068396881773125249453097765405465485795698544456962709603754805919174644955616294402651402242172856471634340913339362309468355453613091298570728478828694558259613101403<200>
10207-5×10103-1 = (9)1034(9)103<207> = 13 × 131 × 77137 × 4571583589462441311423261827<28> × 4443830583614597428120705183589<31> × 6554279759009679447210495958919<31> × 5088026524064685939759188615682822547<37> × 11236320227712343170813854237842051239219707078308142717704805725442773771<74> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=80643606 for P31(6554...) / November 30, 2011 2011 年 11 月 30 日) (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=3318955788 for P31(4443...), Msieve 1.48 gnfs for P37 x P74 / December 5, 2011 2011 年 12 月 5 日)
10209-5×10104-1 = (9)1044(9)104<209> = definitely prime number 素数
10211-5×10105-1 = (9)1054(9)105<211> = 7 × 73 × 7027 × 16564991262373<14> × 168119440183378896965068175623961929908558795814962181269910059207996165845500960741995386380812329418717388112758079872424668423769939351864402937224259251996000175501873450850742547584134879<192>
10213-5×10106-1 = (9)1064(9)106<213> = 73 × 543480930571103590939787303966767118888178713958765882248124171704987<69> × 25205355637025630788265681766963199068004080360815711661966157137034812965665892883069147084562468273130384754879734406297881984637897103436549<143> (Youcef Lemsafer / GGNFS (SVN 440) win64, msieve 1.52 (SVN 959) win64 snfs / March 24, 2014 2014 年 3 月 24 日)
10215-5×10107-1 = (9)1074(9)107<215> = 72 × 227 × 1217 × 260510477 × 326883275911<12> × 313739024481320071<18> × [276503763546649555000915492104625520019474445031164661651292922607084765856608250134889239503733667640129364319612345471160971820740649143504498302101431392799851164976297<171>] Free to factor
10217-5×10108-1 = (9)1084(9)108<217> = 317 × 498493 × 1191941 × 14399747227363238161262581<26> × 3686990734970316267266601185103339642522764782751480665654297596660317603428676416993391236139086210060048572509783263118174076396598142202464835620098214858668051140655725683599<178>
10219-5×10109-1 = (9)1094(9)109<219> = 13 × 2273 × 1022927304639631<16> × 1160823655093759059463439352450276860121368009638921446866267666849936867<73> × 28500087359500733821327057688931720673026750436332387848188384572665700241491410170521078851394887518800097086984790345858534663<128> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P73 x P128 / September 9, 2018 2018 年 9 月 9 日)
10221-5×10110-1 = (9)1104(9)110<221> = 357817 × 75430222781<11> × 817951264453<12> × 462066252413030932780901126682137746898271901<45> × 2566965590769287973807648725702899914790850139920267361731<58> × 3818931897409448084749776093659034196601956874297921055160135332694963008762218609361797809<91> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3704279063 for P45 / December 19, 2011 2011 年 12 月 19 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P58 x P91 / August 31, 2017 2017 年 8 月 31 日)
10223-5×10111-1 = (9)1114(9)111<223> = 7 × 1481 × 82996399525212524473<20> × 3273888042983588774204908987549<31> × 190124909095631828790189368868963965826698183098436892900663806987509<69> × 18671740617988918433673861754029831811405756770111750479791860683565328173022394092112893754791766729<101> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2668758302 for P31 / December 1, 2011 2011 年 12 月 1 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P69 x P101 / September 15, 2019 2019 年 9 月 15 日)
10225-5×10112-1 = (9)1124(9)112<225> = 47 × 311 × 49613 × 248979577657<12> × 27330971655623321845381<23> × 36068168239288287767347<23> × 5618280004639074954800767089322574978693995654985355181860908594187428247427454809295074134965776189990006919773571793522685615543240833523838659065557564320181<160>
10227-5×10113-1 = (9)1134(9)113<227> = 7 × 73 × 6679 × 23599 × 1959319176653<13> × [633678346444505962477704707956362332115034626460882119999980858184076670370308283235708819456120586779257840399174628816852081260368723266056503158721830877339099878849123329145822758028732930448643899693<204>] Free to factor
10229-5×10114-1 = (9)1144(9)114<229> = 29 × 61 × 73 × 97 × [798321035064734655251846736092389374059627715758434122029277785304171091693637277568799506382137598773267964678125740193284699083663166321645620662272760911072704773137519020996561711134079694313295821292323688204862589391<222>] Free to factor
10231-5×10115-1 = (9)1154(9)115<231> = 13 × 803917760860919<15> × 7662764517802885758705239<25> × 12487041196664378440754563805816322444997978312393282857335345001834147513319763269476366077331026573713316577846365789243738394171773036685471219334156575729935843819381884833451976174593003<191>
10233-5×10116-1 = (9)1164(9)116<233> = 2601853 × 8008704089<10> × 1530055823483843<16> × 340355694449203541<18> × 8679068493733992028993<22> × 107558011802802556289783<24> × 721403395052706610131515270626453<33> × 13684238535017068762204594745181110647171352604736152454146148400869425183150149056304939965878537735299167<107> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=284002450 / December 1, 2011 2011 年 12 月 1 日)
10235-5×10117-1 = (9)1174(9)117<235> = 7 × 269 × 14737 × 360363334169496389717954789608894430155838042771596205244360394901997569637601694082448464169307919694184142997071939620690923899876507089013455282207554073148927967729895861122601696424810136271034452860890275454885735813819869<228>
10237-5×10118-1 = (9)1184(9)118<237> = 340531604455394509<18> × 386231622468588965771<21> × 141340362428255634092409831593<30> × 53793344464684711694947045851488822072849604422189427963516489300901205012293634322037416448101596793018822600276954511585201671697321648080496054717023194110120333445737<170> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2999262989 for P30 / December 4, 2011 2011 年 12 月 4 日)
10239-5×10119-1 = (9)1194(9)119<239> = 7 × 111356917170875718624168336585576613387<39> × [128287623693758025152832912337296027298175369590539017454373661220499465481141553514475589431580452729703391388225905931766998252406293669289920300639028312049431066446612735158259218419515660578578811<201>] (Wataru Sakai / GMP-ECM 6.3 B1=3000000, sigma=3327405000 for P39 / December 12, 2011 2011 年 12 月 12 日) Free to factor
10241-5×10120-1 = (9)1204(9)120<241> = 181 × 31326389 × 884186044251305848276972849<27> × [1994653359325654121672948287747608009545659738798523815002525964795088792529940030698542258070195464078323627914436847901329579678287094813124553901162078880965026895699899277708926210442618695569567905639<205>] Free to factor
10243-5×10121-1 = (9)1214(9)121<243> = 13 × 73 × 1069 × 2797 × 352422490543682553253803956644975345486437075605546147024346938948837338767596037772722888799740017364849940510572583615079049931146918463363777440634055256908018523271125067430184541628367842667542613236809643711022400739313028414507<234>
10245-5×10122-1 = (9)1224(9)122<245> = 73 × 22369 × 36625567109<11> × 263212434106076400754443306937<30> × 163222481788009753304251858616678363833<39> × 14330047390534455341614689556894667052960470533<47> × 2715890195685046445941646167332658163307170707411127857765335475908721729333659918091655671222089370774811117553071<115> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=36266829 for P30 / December 1, 2011 2011 年 12 月 1 日) (Serge Batalov / GMP-ECM B1=3000000, sigma=1138556035 for P39 / December 4, 2011 2011 年 12 月 4 日) (Wataru Sakai / GMP-ECM 6.3 B1=11000000, sigma=3561897294 for P47 / December 12, 2011 2011 年 12 月 12 日)
10247-5×10123-1 = (9)1234(9)123<247> = 72 × 29 × 26203 × 1329313 × [202035484417215585307330151603917619567030615878414836490113410556308230775257323875494551984403768362807369854404647804430521947746677028123442526290929183892925393332214651748069587056028955696685819522664015938159935644520921928321<234>] Free to factor
10249-5×10124-1 = (9)1244(9)124<249> = 67 × 268199 × 52525648820030508127<20> × 1144763204527681894789<22> × 27016802221019958728332211341929526202160898369<47> × 55742535758857773897075735642790240818401176555154951141597161<62> × 614554341456702783356536948306774987822484409636127080096389597392518465654483847272409339889<93> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3466375606 for P47 / December 19, 2011 2011 年 12 月 19 日) (Jason Parker-Burlingham / CADO-NFS-3.0.0-dev for P62 x P93 / April 20, 2021 2021 年 4 月 20 日)
10251-5×10125-1 = (9)1254(9)125<251> = 7 × 97 × 174419736017<12> × 7455099951890177<16> × 9544675843131794165022618471409<31> × 11866426318239577810180425027532350581741722589419898353146225103264604791804811573904038197622977543266794243520797271362024857764938020422154722310211168050226004513466164258233337838895401<191> (Serge Batalov / GMP-ECM B1=3000000, sigma=3486331634 for P31 / December 4, 2011 2011 年 12 月 4 日)
10253-5×10126-1 = (9)1264(9)126<253> = 205537 × [48653040571770532799447301459104686747398278655424570758549555554474376876182877048901171078686562516724482696546120649810009852240715783532891888078545468699066348151427723475578606284999781061317427032602402487143434028909636707746050589431586527<248>] Free to factor
10255-5×10127-1 = (9)1274(9)127<255> = 13 × 15679 × 70305632609345124151<20> × 1225242102683278938464497<25> × 8111230537121042023133801<25> × [7021655372446804983181338493785202324871759346669085992106879037390711097819114900912457473188156189735784262871357991144707881258966552799458092819985916913900382055865073614858971<181>] Free to factor
10257-5×10128-1 = (9)1284(9)128<257> = 83 × 47717 × 2109647986622447<16> × 171816970279810093184987179024821655801<39> × 69658276364907624189192917920856677179187159881623592822304945939401732802219085316461292864410533889090691052964394751209963478110310185882643846926109851492162883614208848107985592444955876448647<197> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2975399048 for P39 / December 20, 2011 2011 年 12 月 20 日)
10259-5×10129-1 = (9)1294(9)129<259> = 7 × 73 × 22291 × 34913579819<11> × 1747369528619321<16> × 35246759705184047<17> × 290280233607778049<18> × 51228873852546287153591<23> × 25754077693559419773913191481<29> × 305118707424443433113965269725917<33> × 3493848755359579215538978646574489287626062629853067620769085262631393146180922421619038130531627829205045981<109> (Warut Roonguthai / GMP-ECM 6.3 B1=1000000, sigma=2749048265 for P33 / December 4, 2011 2011 年 12 月 4 日)
10261-5×10130-1 = (9)1304(9)130<261> = 73 × 50129551 × 273264568776734133722103629027719338365934493668489044119644843844100319464234382170833753724684541831027710308064994697712306063469456765392007972106851431830495809022878145008446243012689535133281704164902052743574316676743948920864322397354609000713<252>
10263-5×10131-1 = (9)1314(9)131<263> = 7 × 439 × 11959 × 9904962203<10> × 1351888784680508161421046410243595859<37> × 203211736064201892105164404621333450028327749999138451932527637487835177586928824782206034111682820968977146127728757506259079976608507157515070699267646270769974345897646166657489763827993084604236291278765241<210> (Serge Batalov / GMP-ECM B1=6000000, sigma=1810957502 for P37 / December 11, 2011 2011 年 12 月 11 日)
10265-5×10132-1 = (9)1324(9)132<265> = 5616235134305678745660899278719002510083<40> × 1780552231318975083949307510644529380594980955128340668432098541313158580504224662174437828489671284476228876763563811423387669224839043145236832213728679312162105617995512683187059754487428657098809888413664711257802720903253<226> (Serge Batalov / GMP-ECM B1=11000000, sigma=1201685269 for P40 / December 5, 2011 2011 年 12 月 5 日)
10267-5×10133-1 = (9)1334(9)133<267> = 13 × 130785803 × 7527180343<10> × [78138257673580139319031313073456279363315825621999477402707347367948301733054778016512546175497395524387826188363512235657467738416799179373463167131082626634672748456142216052677961183224006900601010669147701907014642184010386050072773677743482487<248>] Free to factor
10269-5×10134-1 = (9)1344(9)134<269> = 4091 × 5323 × [4592128733165313465825125400703413095088796386068161058628947411079511652825148774638664906534337435956450639001601413053116739764937173020343635422082986838086546288910197386683827757884420987442686215297455368297219838014495789086833618405031540347384435980743<262>] Free to factor
10271-5×10135-1 = (9)1354(9)135<271> = 7 × 1783 × 1643852502677134847<19> × 2087232354721855190879<22> × [233516176663272730821457586485917862067003811937762661985080954817838109955257841588795943461973939311309156669235607712399242030554313226145002176381003228989115702046887040577074403432511437232660622564473874670707529783455583<228>] Free to factor
10273-5×10136-1 = (9)1364(9)136<273> = 199 × 33739 × 114269 × 7751782388461126693<19> × 168145294442047760066524960534530403113154024693203540849678869056987306414790861118963127762532468528387774187381864742909015993879813356490839278493995992483891980626780385781355572342867088490464019995180135644161568438842275748133364483627<243>
10275-5×10137-1 = (9)1374(9)137<275> = 7 × 73 × 193 × 46591 × 544121066551<12> × 155462224082098694051620606144568061839<39> × [257276039545626255375078726806881213870654648018005970948117924143709999902364872735226095669930002293170499478288750469203723129430928582989998628352202073091775322546821085431711620057663662468333496381517634399287<216>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=852055419 for P39 / December 18, 2011 2011 年 12 月 18 日) Free to factor
10277-5×10138-1 = (9)1384(9)138<277> = 73 × 11887 × 33679 × 2064077 × 7087667 × 1764163334119819<16> × 13257990340519329977047641202119026659688040535267303331540044172864726214664197844454234602923737558743219991242471493807122198610937908474113720208164556581113910719778262923043485319078389206315262502301282691739335593530107539021038611<239>
10279-5×10139-1 = (9)1394(9)139<279> = 13 × 2539 × 179813371702032654476659024831<30> × 13630346088404401801227555637371700433<38> × [12361326540940833213063227678635700053086110917075968699447833807705353590753902990214926611066469441191897441116444395277122726897913027664611193588643100407892484804147506606870599131787306537649622767440159<209>] (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3242843616 for P30 / December 2, 2011 2011 年 12 月 2 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=698156847 for P38 / December 12, 2011 2011 年 12 月 12 日) Free to factor
10281-5×10140-1 = (9)1404(9)140<281> = 47 × 2267 × 22433 × 52957 × 54413 × 859373 × 13440278071967<14> × [1257034685283032429378444318949173373436541389514371407701928863591113517667298889748771510882954572815863137527608164212248607945837579868274571833107684103340553527010353539350123581361907668815063959510911737863887160894579724078679174745337<244>] Free to factor
10283-5×10141-1 = (9)1414(9)141<283> = 7 × 223300691 × 903368061880755812827<21> × 6635200721161906278741334394290613<34> × 1067316185814560290900633545748834221174437737347196588519916483980125881557412433225403950134350216301917352293659425847032223444185004887209766195820727569839228768875287347263518043714084245563007935746714446482939077<220> (Serge Batalov / GMP-ECM B1=6000000, sigma=999014207 for P34 / December 11, 2011 2011 年 12 月 11 日)
10285-5×10142-1 = (9)1424(9)142<285> = 29 × 223 × 787 × 20477593 × [9594967316179506343695316308752401281439878316026886337569166060329883303573833018818404826753109487790492979651496930532519872872467612725529250877159278953749455474887096390041889236679584173751600710019601596871465541074176213700712998988786433301914816486976736405967<271>] Free to factor
10287-5×10143-1 = (9)1434(9)143<287> = 7 × 293 × 1429 × 17099 × [1995406573230352966713876410483239490290390934147627968075486483523225212481113886590999686353793698637143941219711768197330801851259463936489216969211404220415813025839875136582838747837685374176817109858841760127473017859349110845906097608025763696599606952224145098050147619<277>] Free to factor
10289-5×10144-1 = (9)1444(9)144<289> = 36359373608199621142417<23> × [275032240867451022944381080541332503190337643534183145391929455132046636576222408138779178535650807620509010079759273448285217376781806574449323798171064042626065326923288685020458962054556809266388154776200874556722593537863693534800251879822098523041490811540719247<267>] Free to factor
10291-5×10145-1 = (9)1454(9)145<291> = 13 × 73 × 7073148731016150918608979481<28> × [148977608112136120049561771613235867057102963221018497547016862169837496895219229126098368675145070944775282908915081878363462392162182562452442128753618754257946282537573418748917853160611587967583626747190832219986240997878153174014850410342281877837413361371<261>] Free to factor
10293-5×10146-1 = (9)1464(9)146<293> = 73 × 809 × 4858492338989264456942199873515203775999966112458946931501<58> × 348519510996327796252049933075911896911312131299814938942919846910434148014018584623746511781654108488584125644258364911748225315573504828542386271319621333089243376125050985635745337847565162184280262090305378839737924461515343307<231> (kh9 / GMP-ECM B1=110000000, sigma=2829420857 for P58 / December 11, 2012 2012 年 12 月 11 日)
10295-5×10147-1 = (9)1474(9)147<295> = 7 × 11617 × 249063351709<12> × 987989700150650117<18> × 4569838558017123384403<22> × [109356566887638339980607624699265267026519061693597031433481314472737142918020083983699767084964730151628487228385682907182972926017341406484846345268476850057488364044587568343621352518993519475089838012950589171601944864135946917178000419<240>] Free to factor
10297-5×10148-1 = (9)1484(9)148<297> = 191 × 23039 × 77899 × 644794778093<12> × 678492069769279<15> × [6668141970382211765427030058480590988911648800557362294402508334100826785229146046791305344073658362471013389802137829766928110217096884327009150608504194334882468154561276494333156333346035611933344819166808435758005222404202526482943586900076063882564449167<259>] Free to factor
10299-5×10149-1 = (9)1494(9)149<299> = 73 × 181 × 25253 × [63784378225916854655760083133854122023249483680288129140587230329591250779503305165835113023261596971557013010454905726979201015816740475280836541866366970577776100617162399247575491520871837743303493561798447463868348701457440321076170233537679494685919021066652775109455763052169091782001<290>] Free to factor
10301-5×10150-1 = (9)1504(9)150<301> = 193 × 977 × 18163448517793<14> × 7949874091726382530114753<25> × 45417409244607996230213972304678438124284876923<47> × [8086623294285424002309687982701832750562965122141889124968324699797819596742573000282126886359431100549215672379183021873737918879942209871663576144278098017140257137178477046852781243787214322580858309836104477<211>] (Dmitry Domanov / GMP-ECM B1=43000000, sigma=3380296037 for P47 / December 14, 2011 2011 年 12 月 14 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク