目次

  1. Abstract
  2. Proof

1. Abstract

(8·104417-71)/9 is definitely prime proved by Primality proving program based on Pocklington's theorem on January 16, 2004.

2. Proof

input

88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888881
2
3
5
7
11
13
17
37
47
73
97
101
137
139
193
277
353
449
641
769
829
1289
1409
1657
2393
2531
9901
19841
31051
69857
136897
153089
176641
206209
976193
1404289
1569889
4970209
5882353
6187457
19708609
25687873
32620993
99990001
1469409649
5200544353
11266057249
66554101249
18371524594609
75118313082913
143574021480139
203864078068831
549797184491917
834427406578561
2128553705161057
9999999900000001
107297848804097377
536430531035337769
1253224535459902849
757108543129939106221
11111111111111111111111
23839779350937685860961
30942987586585490641217
24649445347649059192745899
1595352086329224644348978893
4181003300071669867932658901
38115215074391056784287931569
220080633974998351355221429249
275568764703416069789958894913
374531874959836692094017219169
19108466176791400681292709171992566565029
53763491189967221358575546107279034709697
107896522139513920752730643638401909724513
120553054891405588545727822543281066162803459003848166118314367809
41784371500167158378186418717091934768077726285039694944003301299623485206849143\
75257
82951028565871011121512196630835144518774133555852877567503980614227065994320281\
8322753067885238020768017585089
10776547730206021548358735954380169948015708115427100064296791127608890484017725\
60028378495799359646781326368530020399986158679489264953
60540857450154303184251426233785900839891649570009594453019947075828557696548082\
92021644588851350106701791000405671017580904574344888167840655585532966614126382\
28437313050421607863292067456096593355205756948146818049307851471072877007436414\
317133005835598894375059991594580587646655948884994805993941317793
0

output

Primality proving program based on Pocklington's theorem
  powered by GMP 4.1.2
  version 0.2.1 by M.Kamada
n=888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
88888888888888888888888888888888888888888888888888888888888888888888888888888888\
8888888888888888881
f[0]=2
f[1]=3
f[2]=5
f[3]=7
f[4]=11
f[5]=13
f[6]=17
f[7]=37
f[8]=47
f[9]=73
f[10]=97
f[11]=101
f[12]=137
f[13]=139
f[14]=193
f[15]=277
f[16]=353
f[17]=449
f[18]=641
f[19]=769
f[20]=829
f[21]=1289
f[22]=1409
f[23]=1657
f[24]=2393
f[25]=2531
f[26]=9901
f[27]=19841
f[28]=31051
f[29]=69857
f[30]=136897
f[31]=153089
f[32]=176641
f[33]=206209
f[34]=976193
f[35]=1404289
f[36]=1569889
f[37]=4970209
f[38]=5882353
f[39]=6187457
f[40]=19708609
f[41]=25687873
f[42]=32620993
f[43]=99990001
f[44]=1469409649
f[45]=5200544353
f[46]=11266057249
f[47]=66554101249
f[48]=18371524594609
f[49]=75118313082913
f[50]=143574021480139
f[51]=203864078068831
f[52]=549797184491917
f[53]=834427406578561
f[54]=2128553705161057
f[55]=9999999900000001
f[56]=107297848804097377
f[57]=536430531035337769
f[58]=1253224535459902849
f[59]=757108543129939106221
f[60]=11111111111111111111111
f[61]=23839779350937685860961
f[62]=30942987586585490641217
f[63]=24649445347649059192745899
f[64]=1595352086329224644348978893
f[65]=4181003300071669867932658901
f[66]=38115215074391056784287931569
f[67]=220080633974998351355221429249
f[68]=275568764703416069789958894913
f[69]=374531874959836692094017219169
f[70]=19108466176791400681292709171992566565029
f[71]=53763491189967221358575546107279034709697
f[72]=107896522139513920752730643638401909724513
f[73]=120553054891405588545727822543281066162803459003848166118314367809
f[74]=41784371500167158378186418717091934768077726285039694944003301299623485206\
84914375257
f[75]=82951028565871011121512196630835144518774133555852877567503980614227065994\
3202818322753067885238020768017585089
f[76]=10776547730206021548358735954380169948015708115427100064296791127608890484\
01772560028378495799359646781326368530020399986158679489264953
f[77]=60540857450154303184251426233785900839891649570009594453019947075828557696\
54808292021644588851350106701791000405671017580904574344888167840655585532966614\
12638228437313050421607863292067456096593355205756948146818049307851471072877007\
436414317133005835598894375059991594580587646655948884994805993941317793
prime factor check
f[0] is a definitely prime factor of n-1
f[1] is a definitely prime factor of n-1
f[2] is a definitely prime factor of n-1
f[3] is a definitely prime factor of n-1
f[4] is a definitely prime factor of n-1
f[5] is a definitely prime factor of n-1
f[6] is a definitely prime factor of n-1
f[7] is a definitely prime factor of n-1
f[8] is a definitely prime factor of n-1
f[9] is a definitely prime factor of n-1
f[10] is a definitely prime factor of n-1
f[11] is a definitely prime factor of n-1
f[12] is a definitely prime factor of n-1
f[13] is a definitely prime factor of n-1
f[14] is a definitely prime factor of n-1
f[15] is a definitely prime factor of n-1
f[16] is a definitely prime factor of n-1
f[17] is a definitely prime factor of n-1
f[18] is a definitely prime factor of n-1
f[19] is a definitely prime factor of n-1
f[20] is a definitely prime factor of n-1
f[21] is a definitely prime factor of n-1
f[22] is a definitely prime factor of n-1
f[23] is a definitely prime factor of n-1
f[24] is a definitely prime factor of n-1
f[25] is a definitely prime factor of n-1
f[26] is a definitely prime factor of n-1
f[27] is a definitely prime factor of n-1
f[28] is a definitely prime factor of n-1
f[29] is a definitely prime factor of n-1
f[30] is a definitely prime factor of n-1
f[31] is a definitely prime factor of n-1
f[32] is a definitely prime factor of n-1
f[33] is a definitely prime factor of n-1
f[34] is a definitely prime factor of n-1
f[35] is a probably prime factor of n-1
f[36] is a probably prime factor of n-1
f[37] is a probably prime factor of n-1
f[38] is a probably prime factor of n-1
f[39] is a probably prime factor of n-1
f[40] is a probably prime factor of n-1
f[41] is a probably prime factor of n-1
f[42] is a probably prime factor of n-1
f[43] is a probably prime factor of n-1
f[44] is a probably prime factor of n-1
f[45] is a probably prime factor of n-1
f[46] is a probably prime factor of n-1
f[47] is a probably prime factor of n-1
f[48] is a probably prime factor of n-1
f[49] is a probably prime factor of n-1
f[50] is a probably prime factor of n-1
f[51] is a probably prime factor of n-1
f[52] is a probably prime factor of n-1
f[53] is a probably prime factor of n-1
f[54] is a probably prime factor of n-1
f[55] is a probably prime factor of n-1
f[56] is a probably prime factor of n-1
f[57] is a probably prime factor of n-1
f[58] is a probably prime factor of n-1
f[59] is a probably prime factor of n-1
f[60] is a probably prime factor of n-1
f[61] is a probably prime factor of n-1
f[62] is a probably prime factor of n-1
f[63] is a probably prime factor of n-1
f[64] is a probably prime factor of n-1
f[65] is a probably prime factor of n-1
f[66] is a probably prime factor of n-1
f[67] is a probably prime factor of n-1
f[68] is a probably prime factor of n-1
f[69] is a probably prime factor of n-1
f[70] is a probably prime factor of n-1
f[71] is a probably prime factor of n-1
f[72] is a probably prime factor of n-1
f[73] is a probably prime factor of n-1
f[74] is a probably prime factor of n-1
f[75] is a probably prime factor of n-1
f[76] is a probably prime factor of n-1
f[77] is a probably prime factor of n-1
F=f[0]^4*f[1]*f[2]*f[3]*f[4]*f[5]*f[6]*f[7]*f[8]*f[9]*f[10]*f[11]*f[12]*f[13]*f[\
14]*f[15]*f[16]*f[17]*f[18]*f[19]*f[20]*f[21]*f[22]*f[23]*f[24]*f[25]*f[26]*f[27\
]*f[28]*f[29]*f[30]*f[31]*f[32]*f[33]*f[34]*f[35]*f[36]*f[37]*f[38]*f[39]*f[40]*\
f[41]*f[42]*f[43]*f[44]*f[45]*f[46]*f[47]*f[48]*f[49]*f[50]*f[51]*f[52]*f[53]*f[\
54]*f[55]*f[56]*f[57]*f[58]*f[59]*f[60]*f[61]*f[62]*f[63]*f[64]*f[65]*f[66]*f[67\
]*f[68]*f[69]*f[70]*f[71]*f[72]*f[73]*f[74]*f[75]*f[76]*f[77]
n-1=F*R
F=555529112591486390273457304515672667416024177743152829532898996895813782413087\
19682486659183935550875390732548779986715384342024044968880407501540752834711954\
45815286279292525228594436294646154892660964530198097446006250461651742764010097\
49756438250878036109467053292148046120202310725517787219220456165831819138642146\
65315950862436013670157198300675075314651815721820162592910448216520085753653001\
56180601720729831956565305311993806433591665022608847703601675757866281073342774\
77601172138737469419770220871506417991569225712753856230630870207371277375162619\
35341228568536785190404144469415673867613196837907577649672407768979269444720772\
49804737787096123816578155158056155858822570828888386311819471841310072863596499\
90713323769823849442352875407518027639320936215099399925064248892351383713376766\
97708528842535794698418000748273111579127593411788667995128232464262169778625916\
51259138319547122085138038737414143807223037202051177400570213646856922066041620\
50149239026565691691022841578863055719961337451862054646435594114887944744621050\
08348475280245200135071580423065299650946836599159135201485094484650407375621845\
01465809130136651048606494593683471010136135467286023307500164405781896306499090\
88003855933238918906549452792919724689644579516024867509744095391281043603579645\
92953892915040473132543809812988147626252219725099279905346982875908901699425889\
76873972219458941686192887957054285008851150861051080784409583777828035484719482\
535659380307016675953342896842817168760880
R=160007615936150186351626687225816041155634538262432018023830099370942068263488\
00073222411879096738690868638643448969987423852389629642121726155976005581814043\
02740574757806739021030333353423269789992188731705729959752462957358106248671929\
98026763044445429765123532301511368858318793071020409378466248579886055240518433\
10448774644985683180859784423127862343949178392873473953273562295049818403867227\
06668470893471771998312901323831144498736516983184661147464243027555183990644138\
66816690503189060631299002913563827470299351330905515171702693857794183968188152\
85751857680394076189447843418261426509589439665161781439143248037125881420772862\
42125785352661172951941488562483772067309029037044756971496902354720370348040461\
09093590646853198783444996753881038057157194776804078191541541774651233460178866\
51286591607320255592999150554393876860970226471221672179783895176132376733095679\
66831804536802725072809131448280870821737339729385655633177060715613448766158320\
00616161373978937741840424819094963189321068918240329691703156286253992219894323\
21782423353820172031485953607025124269201254936573071864314701037488409934073772\
76642086143209465523525063111609319132400375600796662974354502668158975870070971\
04257328939911820321681672348762336369534008319436880003398409708756434961695377\
18819989853257018272555881892115956879200895677607642644879586434568458165758289\
89472504676249425453212249086260248953840776905343019898238719511144551920111408\
17393869796587803945854373397019255979912323485930418435302575036865472666695069\
62897921758113164814981160387546111612972145569745799985893948291224172381357066\
46721465276058653551554760627375179000106629215553587647748488562741135745308735\
97659995690614601751859771487342494190658393754219080581907288356924395738879003\
22210968942054582785648255237187586415043662708464574071864556824517108301450774\
42310800489806495383497662036850274887661674763507814333737804772883852085376369\
17225301882182980281579508030249513999872752363122524545934961541028230689274062\
21377058689926471827794480705435566397976734894438303666718888410778801225619922\
57381345686826502174266254808108759772883386339147874297444086606696946419456720\
72907456646593504436784078037040055501283616423371554706750823123745777706136490\
42918834251892264455313378226154368529405712610557653729307689292935727237183071\
18389489319398351973674333217801417695124079105862733281815334343149346428687900\
79182107864672117220623982120521405785748101145945839550232815238781293936528045\
69745187861976517046935698795366694573042306724200631024475302066409386003127187\
69389651431897311463260877693809242728602883385423657631764822643200692408465018\
63838049427941179604062242975297748463434560518439583363743201834896249802262166\
39495972902143914125755628799946183261921988361462759954791046317876232825645883\
51176146949656458337707733658626324469702357161437207563712886777248195494812195\
870949458678352901177974477139852311606499418231903554845601
F is not greater than R
main proof
2^(n-1)=1 (mod n)
gcd(2^((n-1)/f[0])-1,n)=n
3^(n-1)=1 (mod n)
gcd(3^((n-1)/f[0])-1,n)=n
5^(n-1)=1 (mod n)
gcd(5^((n-1)/f[0])-1,n)=n
7^(n-1)=1 (mod n)
gcd(7^((n-1)/f[0])-1,n)=n
11^(n-1)=1 (mod n)
gcd(11^((n-1)/f[0])-1,n)=n
13^(n-1)=1 (mod n)
gcd(13^((n-1)/f[0])-1,n)=n
17^(n-1)=1 (mod n)
gcd(17^((n-1)/f[0])-1,n)=n
19^(n-1)=1 (mod n)
gcd(19^((n-1)/f[0])-1,n)=n
23^(n-1)=1 (mod n)
gcd(23^((n-1)/f[0])-1,n)=1
gcd(2^((n-1)/f[1])-1,n)=1
gcd(2^((n-1)/f[2])-1,n)=1
gcd(2^((n-1)/f[3])-1,n)=1
gcd(2^((n-1)/f[4])-1,n)=1
gcd(2^((n-1)/f[5])-1,n)=1
gcd(2^((n-1)/f[6])-1,n)=1
gcd(2^((n-1)/f[7])-1,n)=1
gcd(2^((n-1)/f[8])-1,n)=1
gcd(2^((n-1)/f[9])-1,n)=1
gcd(2^((n-1)/f[10])-1,n)=1
gcd(2^((n-1)/f[11])-1,n)=1
gcd(2^((n-1)/f[12])-1,n)=1
gcd(2^((n-1)/f[13])-1,n)=1
gcd(2^((n-1)/f[14])-1,n)=1
gcd(2^((n-1)/f[15])-1,n)=1
gcd(2^((n-1)/f[16])-1,n)=1
gcd(2^((n-1)/f[17])-1,n)=1
gcd(2^((n-1)/f[18])-1,n)=1
gcd(2^((n-1)/f[19])-1,n)=1
gcd(2^((n-1)/f[20])-1,n)=1
gcd(2^((n-1)/f[21])-1,n)=1
gcd(2^((n-1)/f[22])-1,n)=1
gcd(2^((n-1)/f[23])-1,n)=1
gcd(2^((n-1)/f[24])-1,n)=1
gcd(2^((n-1)/f[25])-1,n)=1
gcd(2^((n-1)/f[26])-1,n)=1
gcd(2^((n-1)/f[27])-1,n)=1
gcd(2^((n-1)/f[28])-1,n)=1
gcd(2^((n-1)/f[29])-1,n)=1
gcd(2^((n-1)/f[30])-1,n)=1
gcd(2^((n-1)/f[31])-1,n)=1
gcd(2^((n-1)/f[32])-1,n)=1
gcd(2^((n-1)/f[33])-1,n)=1
gcd(2^((n-1)/f[34])-1,n)=1
gcd(2^((n-1)/f[35])-1,n)=1
gcd(2^((n-1)/f[36])-1,n)=1
gcd(2^((n-1)/f[37])-1,n)=1
gcd(2^((n-1)/f[38])-1,n)=1
gcd(2^((n-1)/f[39])-1,n)=1
gcd(2^((n-1)/f[40])-1,n)=1
gcd(2^((n-1)/f[41])-1,n)=1
gcd(2^((n-1)/f[42])-1,n)=1
gcd(2^((n-1)/f[43])-1,n)=1
gcd(2^((n-1)/f[44])-1,n)=1
gcd(2^((n-1)/f[45])-1,n)=1
gcd(2^((n-1)/f[46])-1,n)=1
gcd(2^((n-1)/f[47])-1,n)=1
gcd(2^((n-1)/f[48])-1,n)=1
gcd(2^((n-1)/f[49])-1,n)=1
gcd(2^((n-1)/f[50])-1,n)=1
gcd(2^((n-1)/f[51])-1,n)=1
gcd(2^((n-1)/f[52])-1,n)=1
gcd(2^((n-1)/f[53])-1,n)=1
gcd(2^((n-1)/f[54])-1,n)=1
gcd(2^((n-1)/f[55])-1,n)=1
gcd(2^((n-1)/f[56])-1,n)=1
gcd(2^((n-1)/f[57])-1,n)=1
gcd(2^((n-1)/f[58])-1,n)=1
gcd(2^((n-1)/f[59])-1,n)=1
gcd(2^((n-1)/f[60])-1,n)=1
gcd(2^((n-1)/f[61])-1,n)=1
gcd(2^((n-1)/f[62])-1,n)=1
gcd(2^((n-1)/f[63])-1,n)=1
gcd(2^((n-1)/f[64])-1,n)=1
gcd(2^((n-1)/f[65])-1,n)=1
gcd(2^((n-1)/f[66])-1,n)=1
gcd(2^((n-1)/f[67])-1,n)=1
gcd(2^((n-1)/f[68])-1,n)=1
gcd(2^((n-1)/f[69])-1,n)=1
gcd(2^((n-1)/f[70])-1,n)=1
gcd(2^((n-1)/f[71])-1,n)=1
gcd(2^((n-1)/f[72])-1,n)=1
gcd(2^((n-1)/f[73])-1,n)=1
gcd(2^((n-1)/f[74])-1,n)=1
gcd(2^((n-1)/f[75])-1,n)=1
gcd(2^((n-1)/f[76])-1,n)=1
gcd(2^((n-1)/f[77])-1,n)=1
R=2Fs+r, 1<=r<2F
s=144013709011334304803826637085022876204979883924960814688550071625812463816481\
86733282448423996945943268856363646153240732329419147014490681170715492978657110\
43049883712218300377467011089892079259494744951909730085973958473312118089916511\
42496815169681630670667694488937497231834713585449751964050089701775123822933310\
29050406832078883561407822100810616679930909977983455317603793964161237668718711\
99022430968429612949126392695510687551812708384836874045862009626729610933361968\
81435211984978334821135058951289460356457499277199570417653596288300504536790733\
30248694658533709460229989728230789742235481654996720392538097430655191665302048\
11693202720574091928075382404108033420124874373509919617903066703044231824283371\
24144519657140894702870604602981258234052650738681707532301136162376948368643622\
73408555412843913898364253716526737105251467979850322735201131874291408436362493\
94254925044727405382455869661880464732976649707499955124665084179949305592761399\
93604645502320078940720172714213172052496851214731389244242049136761411083602430\
64472462446909179800378449614606678592356794230947881815589949430944999316921736\
36541778091373785925382296555665550321306542103518207881976538089402067061777126\
43818590145647924595526116959560141341327430577255170503273210760864244662831527\
69404997873517570814365196192868917028959679046932917206844966278215738909017017\
03977193476347611384831859757875995220068717237374286769291894413624546902590676\
41290615173547140353
r=843244129676189461254435257797570473387490076022834221407386128856632884976743\
47294387471714985272136902438605036365781854379664263272005293794323553502674157\
70322256985553115518769873188177634138480710047232846180683149847640396469292988\
31502489025708101867699630022799631197994556752695370872217755783813019354421760\
89988729570936484845310680346231311975281337265597598768053734486291402105489390\
53448393975428033302168205805655759116963265586676032653145916721512264401820735\
94460962154089936189899352736180005329408988534712820547992521142259421095741303\
09365125522168925115171129373236897615004130788922400262394951338847057277077756\
63003984800873878005630714745915089602522375942509196179305011264542782937792912\
64740435552406597849884291689666201030123120897597497096279980370275258097647003\
50974487749579865258205903745026291026749425442519389819295818005577589391964937\
97926271065220461736977992719622550081563226628473945062216469468996359068618646\
96664327893667439793714954291760517013401824760123249070791899892509601110523797\
24832465975788570568752463394341551631954594224159147458421637178910059984080356\
67232167049567147136231508345009719902636306293595850990998776370290917564466907\
36560403670662215266977611666467397868309841213143165797856225222771076485021241\
48819418799943302723152858073595365651850913673775077849496683200337604054591214\
33973809653592582909118197665422042196823569875968144883314799491990774109756003\
833643527970501943407469602106846643264321
let D be discriminant of (mF+1)(2F^2+(r-m)F+1)>=N+1
D=F^2((F(2F+r))^2-4(N-F(2F+r)))=363756534117327480250379671760860774463379367240\
35561415099635771072882934629953530405148661745461631036280579172030498578726528\
28781662145841516035426553192187687929130624209598406996984121493178833891356847\
88691779041856669000824795108320129051182976859030171352126956287779409389402648\
62959718310530573364220538404547059120075729915369845598032928329617633084373485\
85250328561164445721168503547693220036472632542438790964798529468976954337014340\
03909106357358024106949171569741133238659800225196906871766989539081888657673088\
66069380023508813150008570978649319270852235165305822168008281697681326469919321\
39907079447238048409906768566744560356987842522372398870575216831014649271725087\
33626306422475651843085216212726193117008376323308320951141849597185433019582114\
39824978135278007809203431815606606374163951136656871839793508438819429898657608\
89622797998603407667748144131292536724144144705449957614663125966038926333083464\
51101405928338946561729290860853506205867869561395804280548103617251123653618883\
21473757283605004254354861960614861489761557358702352964921771731844772430216849\
42720220014124789299250933652990140035722646488373207876477324291365082813499736\
07382261230819476586061131180198830472456738982340529578740446782978633912260255\
76109204910408442103909587436292440619104792782960549898186676799825870044671417\
67327492929674320466350332277032157521027251087305171997981700389016568352089444\
65509934786645947486798942825952734290833438443095787863103181887087863317976433\
76969681068919639262422670295644902582248454756067777215316769312700812000085990\
07920974349664940577357449981884928341587812226530924700971893986480384809071702\
24270378802008490860923856082894754500143952658480942531833278096916330499161842\
68227346214994235825545240769582195035798262340365840394815619699222824419004062\
50873389387432867011263905545309377118188895616239523179837434239757256215338184\
46244010053787567449061576746814476386149445858484093879435013939882185186215730\
73394615814841005703441891619628538886338705042738007494075759632203094308905218\
34548876004761546688757921946177374869608339238100170992426946087820364241283920\
80138859707435716689253610922932232158126520689133412967552563512788663112897481\
79010987226734372033143206093469651049023821463887633339788282085084750098025027\
76401678347732304295769113003102609559044570972526327323378889403644719432698284\
38848999813658739163949863979437851491594869241616798449711830395283877778863260\
15111145864424639508456623961968498490498248616083046209107121068934815400632025\
98026105692786753940901266622441022458484761807699814037927511699494153306804931\
87251450655217859592514302817041878899662042029428669139528126521832961909369078\
06650820108974985170233302893652621096660485876147918768629510628387175037415387\
48673141382577074795245356951153531466287242671957197807105812406778571804676478\
84386214869824495250066731956194618837653828870764929452656213106568181714766127\
37204181859701441508693584690696025929672981243521985344402318551290020234330226\
45717942838454342053105364309319412304678000324536204423143850366886711905960891\
47562334360426197364308425574652616418760118444736699606804562144897308875653387\
87229984373371858141299641352417435478663075035215234783709664646898517788126928\
81347417777002161158418334313342069162555477604844583003915585770953741461341236\
72767096544092580191945474442149501805335294883746291616332692239529833076199056\
05704692210829697845138355927726537760507331971410483449184940494440241858014009\
44244190868236221791628150758939528835201999171214733997105522661548837010708290\
70998616022617069783791712400692650394356229502854239736172875226490677834902649\
92254907128952653853274213567475044172799227209049257210102002040214438595410572\
03891330327946537831684306035568207844524892125910972306529158124189030341941236\
22338674584745952018116235418453760588478069778117332647061721742076307094530189\
88649306958758357982587392398058681928900886973536131999420822735815087949293663\
42792905669000782439351430396282252295577723888055531088699455193729487580070110\
85199722027566811246210071413596815061533241574823635268928146805137759115932184\
38931181931261270187936046652436427446544642219368008268255509039382586653907731\
90460994716553702350206462150188921053088802129788156936943820362945854265428946\
21587241589840712196563373382248563394455159581072314972251686378669256469593647\
04208915670599075872667033254785934891331246495295046567820290329069784239646612\
30933337606624386525825233394332538242153257344344143368825265369238624479487061\
22655921968889141989995491640335709035529937722657930902281703929610913256100747\
20642217591875237008411866999904411253153259149766242222307389489640450868106691\
67116353228816023332807273830109025696715237651154570414273800418293929291995270\
56735636630412779433013416960152948480148473393313074977226519433668833901361446\
65857010343388099907082142282292663801015612207051041152074744192471336453253448\
74477659222444175379556720334727604931493119713320113524677464085656317547340187\
97445952611757943797528340844622434304607066210063848688333246674376991334828298\
30740758121227447094727719595064309024688664946016504497327921973043265015789979\
19207583147880442926482761664536291906305130807473715635474667682001584580649103\
85073160078291153836190914824476859625753769350309821880509588018551646941868039\
48660526427790053341069977894454401262741610729281563450209731529959573672237688\
15870063581509358565769169044952395131673432402799243844175952588289157098715337\
82485989193709090350348607310503187458433755499212313917789823337137736918057931\
20410121341331391928459928602419018059246109044336773512845736887474486737831553\
43955339507677437866281212165922672039215155167635279889974928242883775560540713\
35179971497753387567610985335403444504047780126163841681685016652237714159304558\
30208622598331397461230602433514872645130502837032602214127477805218680633793126\
63419707548940050990034096484800795519470863531852526352893090540516044628202856\
85876146308108502465166401557795497477995218823114582120877613697920890166339680\
29845408600367324945118176060666148585934890842124119288477954417694294531894440\
31076078322016794721197377708324415937482134867761223257522610226162539723650115\
78553372465825771490628454559860251257899512028485870332969160673094469341131806\
26317263174098083187030787605642103099232874810355329104664377131752361562580816\
19990580353020089582229064210518163073818863201451090397237991150454817897049250\
40330462171815432647643739886751073006109796327484861235410133047922228558368530\
85279932092710381898985215370398412498499272812290863610619733568061234252550673\
30931066453945491022440417901335488753911634130281256802290029775058470246469618\
40365925341670289183111035233151806241277780063913394593824908086691918401831692\
23005151544113725266385495904336068103613383008879357081172383108788206994617643\
68316303453376648713717487223073228035024390871013047578323864006583179713642411\
37098163410705485097069703624651798606389015062515984031475100061156139942713003\
51937326707782546570274364556683703713881689968523634277747777646203163746853096\
99436164971135640672454281484662538419691963547489418819010230735827553247711440\
99723429355067712547533699838184766837011202854768930400071282585286569980180668\
19744944157266982521454821920428412359947336693407276108065330423444879027737382\
02575724166768526991577178727932459005932556805869950468493748084617853123927054\
87950591994298919759919014744763719433432180795022179976084084188216404391147440\
22353087124413888690235079641229401250658107530778318839490913464790717542247271\
09913504721554025249233025927455693859117295246602796219660318781068711583105334\
51314530895881026529681959954820115776162917522732296587842838481387866769643380\
77963431353395899993698863187839748905967734321147571531370779343713739246446747\
35878153704218682152341132888240611936797969485971858745983075666746331699897016\
22188218908730628132896572553935786218205457902092239782874163781392073391366212\
42375695112834878399355097881065039307280522090081297915495180853478685108478152\
17057895779120049563338786228689154099649793789590753035359793225090934788178197\
68539257093575220615292307809195153088394912085731552526349143094217805217312789\
38923742318553767445665829469573810160905328369061812991236804886696929759105623\
69713411905715608369481225038946380936527754554003973139842407326923936501484930\
01139496099540122895803494978136534454416108411686103265452108766648813796042508\
91639470067965080102302734941509191098911480204485175905382047002466156375610152\
86575202806213506557737329402164242389050715617705783022867024163623381141617666\
83288518584434512366707096271933534388905332844433418441731516328523427646252152\
28358687237901936114071908209834489949462476727921374045021002705193921267308583\
65969096912219313366265789889544157375647837685702839640923728225013260094867374\
09203025554299603484682569702400
m=max(1,ceil((F^2(2F+r)-isqrt(D))/2F^2))=1
(mF+1)(2F^2+(r-m)F+1)=6031223210239590197904527870487664028534230474469038371372\
72568232721815056991981219012553821236693980336100745346301117845572750332765167\
31996021306252785677337686638591833860212501899638092871765009311277804946721111\
89380200215236510261420195555573768471906982673910554971547409364729049959313614\
12336765644717150727670414534549583883737545090085289436765800101511414296410680\
91006251231560215099463646413266903396497027349416363637340428040465193302984558\
08995805888131905384846194053002371019131168169855872520725067044127771338385843\
32274194322762549225805498351193715954020792557066804990441598787822246683393519\
67956254917874402393549536997766708440160702114619678130358330593263834969828926\
41409573506670477316291344564371267232816401480052553743760385389416092914541356\
03070608681518825875741859919498073677562447054889143415375332716073576290534663\
51873585945698101094467086866370501717161518900933433676692903100514058372239929\
85625392958863865291902766307502382549605458399280445983501433380627661872863646\
36434218805446347052940503328822357354629714899418292690318418587891468279221096\
14714478340878577968179267841976502897139178149216655380733053176632877914844498\
55305664270708140450368811130899549634822867598130468157741898726966477096813161\
79604423764455788532781837197071462563332649471691801254382982232331563133937465\
49428211195676408399906573302289853081171563762142894617481251718081271899717877\
53348134169906652496594106837852208263895102801123554375417746771736274114701642\
56368523973422568474563426593852488469297432989474697995555718296938574992330829\
32653105210716108637799749086528556741270120033804300936155401121574246138237600\
40846053021318812525447098053514599187399108326437907943982528661858548648661380\
04803382635507099215119714338327216521779095501866341653414001352084841864202578\
93484415951548586126430686017948864563915619226517797631958507921546156515830151\
09178925039124715206328264958162049168195930195323068816139774477535659347549578\
07986068140000418293355233607205132538974072922357582504132840591769858759730128\
60559435884652804139264222812174006241683101446750758655851476847801152748410845\
38158789646737315907535158198413794662507668526752292988728698689250378508390409\
63343261105210322385379131455084741536603805151380582050023776857398974366587794\
41790933050049628139511154333432405146839026635328206062365807388680281340525713\
41171727153251423457887780921077378011330591281267835578245641207599311423235764\
54160428732200022051276660961869083697572648940956106286497278135077017692434475\
88678039186789701306143431935218253547632502146655678645874422425913051437998024\
54219026265408662361753159134197377693033950461314387586201574533299779788574839\
79700530323905550232990043987235688131708547568868494865270697102762658114664298\
91502459783900368375383428375661800493983284170121372055140447814228822229712449\
74516852095582226703131117621214244075199850162712454930065474899907302741378384\
46262246981695669010471668472458541048087263052061449889796510209442427271669423\
48856440071639574106887563847694925806781542072573704779301026307280670422645633\
28937815783792401976434852380691972773916029782642242501768627252599551204773700\
68199087626560322990279557868807666829862226486424617520852595897902944492005452\
20109313296619179498603565412383513179685088055231068924734983845551510669390705\
72214037372592712685748054839072780948584040217623789223029102409348058693189682\
75701716959490400714696237402172133603072023923388766739305154752056633213503348\
25683717330843883871728971208794235265462130357926898097706419137960584726720674\
02237642375927269113316308044600298194809269956997374620112942112977975576162569\
95854853716997230212987903977664537869811822638234357616145106920516884982513690\
78154429528553255850158560526649098206899481321365223329218611162513478336542843\
33705747554149740634667497060666398350983308059217397555412416872963178509896782\
37284275250810941036402499049103733914483361306624502607589513072447013967387757\
93679253328445115310002258153260521397757774664111265394995615978581671718296994\
64995145293101218290679924030486298002309254443139749601809971855975392695904945\
07048846607401539275305812103022035591763011945684119765857869557193773368903542\
13416225825577248392614247454676220183397778057975372895170914675734251704076383\
79775941964636802880520028245083759331571217334697832902227878806648935778519489\
45256882164331059212316051792974421597048578300432222869663281
(mF+1)(2F^2+(r-m)F+1) is greater than n
s is not zero
r^2-8s=7110606622333542280461832002083689450193112487333569179616215886956002432\
78019383073461950343356062871270910042805055841357455097277461758659625209411484\
17065716083535904841559927041072210488481640921827048555828904666636419261912528\
62092751237460946773517068674428187091120575763511325078158248310841690222377581\
59469193193014063220421790362493057514256212675195028438839709500014779092074358\
92253008181430367269137397233098022536171489074697251150924530395920870528166504\
51256863021607565175442366146160757996190065411443138869124333587953411613940609\
64831362179753217345070336263071445021468073774552941229226230860367764653397029\
28341068727306947588569060051659235131377758945432674310193811095464014127192145\
83570167140749947638474756553129981861846977117616653792702134237550556818205533\
83273510174289036860955522873117317384032823874075096862720951145716488214936829\
03329159615696197630093909148975902652725150883309210061392733032155720032229414\
19613227605108604153654337174131750355193856465989680697272548015845079137804677\
79329866402141337419901846713002485955612142223620979563798810854000878635641541\
18173972313973011808829311093733350204440776431002031514455334309508279179163134\
13879119411951711673443068661752277259239529055380652824189843796611552818449374\
95417256227727018341344943748328465785929573461753737577569397385086425705818936\
09827465986621853187608396017138435285025004257092555763298758968850741987879778\
58705755212310120472221496203629054944234030013649365531037585683286351889328468\
98600265534139828052291417698100285258899794895071936585420870062876900774897969\
87231209069003485818311832347702004574826700550441451186536403743053860353945645\
77982018192683534226409488740539671304037589312945720764588925399901456055591069\
83116354942973352112777126589541466624706163047153031777520478686526755536736080\
42695930979063220202066109095980235608451010045497028929640108022894209481095857\
06557109477706554635401740809859399496639763702303136628252860845773590055503272\
86698786920467481151046124429933488454316858324600761899914819608645456906644374\
34088687619928417057801531026223340881255412568598499585742746273190013962858122\
54985802407137600815640888519650863492313917078317763140997324053843654861733933\
90869563545257010597104336322576086769346885555194771295497898679438934937440600\
42498913178485170577767512548944012936973917409659721879090070432646517330287826\
12499010524303527731058590978153436416409544695642794408127529505894245881438398\
89716391473706731074251617409736601749894073581043636605578427844349923418671228\
77182539057851989387874954328767669538539946093056414419026947909024581526570857\
73502419560424835024534422798057430245391942817582228966276446235442068861426056\
09769048474772769288569398065696687317303591796317924248361779539378362166410941\
79769084341602375071644790001813553877063470379394263276448063641800698091509982\
08442819954220726022504421784660527792488274578629264907105264738138701215073029\
4468217
r^2-8s=x^2+y, 0<=y<2x+1
x=843244129676189461254435257797570473387490076022834221407386128856632884976743\
47294387471714985272136902438605036365781854379664263272005293794323553502674157\
70322256985553115518769873188177634138480710047232846180683149847640396469292988\
31502489025708101867699630022799631197994556752695370872217755783813019354421760\
89988729570936484845310680346231311975281337265597598768053734486291402105489390\
53448393975428033302168205805655759116963265586676032653145916721512264401820735\
94460962154089936189899352736180005329408988534712820547992521142259421095741303\
09365125522168925115171129373236897615004130788922400262394951338847057277077756\
63003984800873878005630714745915089602522375942509196179305011264542782937792912\
64740435552406597849884291689666201030123120897597497096279980370275258097647003\
50974487749579865258205903745026291026749425442519389819295818005577589391964937\
97926271065220461736977992719622550081563226628473945062216469468996359068618646\
96664327893667439793714954291760517013401824760123249070791899892509601110523797\
24832465975788570568752463394341551631954594224159147458421637178910059984080356\
67232167049567147136231508345009719902636306293595850990998776370290917564466907\
36560403670662215266977611666467397868309841213143165797856225222771076485021241\
48819418799943302723152858073595365651850913673775077849496683200337604054591214\
33973809653592582909118197665422042196823569875968144883314799491990774109756003\
833643527970501943407469602106846643264320
y=168648825935237892250875530462793187933113709073600042451380827380612580130173\
61058304487843286522572441825125133353400695414424343562708799500278357168773672\
28615085673166793846870530646938549363665944648559377869795870389931926515451719\
74632711308196901041448526259346351709145257934979959174665004379675767890727228\
17280131713196713502579812036699696084371354827351454904276352424460041744672469\
80337965505184256910737719366653677454356723005919565675625038327631665930440478\
22815178593930520342229355730277202799096106902226460952769987628509708253514848\
33102718700397490697167805979074696826244007758606221589299611429237011717784148\
27821351718641453184741207492965371993150229157909510593187392262958675793989150\
28414462756626725303006926776360668934448394531151260918597271861995957082926816\
61105598534329023902659308064572230692238015948206555824890743483677129852574171\
50530259881776601447444058149920931823882048856121838575264655761822671817313756\
18659425984288745867543502486711917796365107338207512760394180230404741710965220\
08573399103869045294305334881872557592006888568862660957396938892243536166270824\
13850985849918894053355378326754634077653230674994716954174050750689902056262823\
35007365517595948836384016846081827739694326153271868348263938850108034883363986\
44077796846031357892409019214889191724705033519059586056537019865743766177541695\
27064536204807244445687321357606300630453927426412998897045354401019164879009657\
4151756156303481814273808879292304909405817
r^2-8s is not a square
n is definitely prime
692.875 sec.

ppsiqs input

1404289
1569889
4970209
5882353
6187457
19708609
25687873
32620993
99990001
1469409649
5200544353
11266057249
66554101249
18371524594609
75118313082913
143574021480139
203864078068831
549797184491917
834427406578561
2128553705161057
9999999900000001
107297848804097377
536430531035337769
1253224535459902849
757108543129939106221
11111111111111111111111
23839779350937685860961
30942987586585490641217
24649445347649059192745899
1595352086329224644348978893
4181003300071669867932658901
38115215074391056784287931569
220080633974998351355221429249
275568764703416069789958894913
374531874959836692094017219169
19108466176791400681292709171992566565029
53763491189967221358575546107279034709697
107896522139513920752730643638401909724513
120553054891405588545727822543281066162803459003848166118314367809
41784371500167158378186418717091934768077726285039694944003301299623485206849143\
75257
82951028565871011121512196630835144518774133555852877567503980614227065994320281\
8322753067885238020768017585089
10776547730206021548358735954380169948015708115427100064296791127608890484017725\
60028378495799359646781326368530020399986158679489264953
60540857450154303184251426233785900839891649570009594453019947075828557696548082\
92021644588851350106701791000405671017580904574344888167840655585532966614126382\
28437313050421607863292067456096593355205756948146818049307851471072877007436414\
317133005835598894375059991594580587646655948884994805993941317793
0

ppsiqs output

Input number ( input 0 to exit )

1404289 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

1569889 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

4970209 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

5882353 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

6187457 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

19708609 is probably prime 
t et 12 5040
Input number ( input 0 to exit )

25687873 is probably prime 
t et 12 65520
Input number ( input 0 to exit )

32620993 is probably prime 
t et 12 65520
Input number ( input 0 to exit )

99990001 is probably prime 
t et 12 65520
Input number ( input 0 to exit )

1469409649 is probably prime 
t et 12 65520
Input number ( input 0 to exit )

5200544353 is probably prime 
t et 60 327600
Input number ( input 0 to exit )

11266057249 is probably prime 
t et 60 327600
Input number ( input 0 to exit )

66554101249 is probably prime 
t et 60 327600
Input number ( input 0 to exit )

18371524594609 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

75118313082913 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

143574021480139 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
retry 61 
for P=3 Q=7 13 31 61 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

203864078068831 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

549797184491917 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

834427406578561 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

2128553705161057 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

9999999900000001 is probably prime 
t et 60 111711600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 
for P=3 Q=7 13 31 
for P=5 Q=11 31 
final test 
Input number ( input 0 to exit )

107297848804097377 is probably prime 
t et 60 6814407600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 
for P=3 Q=7 13 31 61 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

536430531035337769 is probably prime 
t et 60 6814407600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 
for P=3 Q=7 13 31 61 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

1253224535459902849 is probably prime 
t et 60 6814407600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 
for P=3 Q=7 13 31 61 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

757108543129939106221 is probably prime 
t et 180 388421233200
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 
for P=3 Q=7 13 31 61 19 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

11111111111111111111111 is probably prime 
t et 180 388421233200
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 
for P=3 Q=7 13 31 61 19 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

23839779350937685860961 is probably prime 
t et 180 388421233200
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 
for P=3 Q=7 13 31 61 19 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

30942987586585490641217 is probably prime 
t et 180 388421233200
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 
for P=3 Q=7 13 31 61 19 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

24649445347649059192745899 is probably prime 
t et 180 14371585628400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 
for P=3 Q=7 13 31 61 19 37 
for P=5 Q=11 31 61 
final test 
Input number ( input 0 to exit )

1595352086329224644348978893 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

4181003300071669867932658901 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

38115215074391056784287931569 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

220080633974998351355221429249 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

275568764703416069789958894913 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

374531874959836692094017219169 is probably prime 
t et 180 2601256998740400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 
for P=3 Q=7 13 31 61 19 37 181 
for P=5 Q=11 31 61 181 
final test 
Input number ( input 0 to exit )

19108466176791400681292709171992566565029 is probably prime 
t et 1260 1612152436282351563600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 
for P=3 Q=7 13 31 61 19 37 181 43 
for P=5 Q=11 31 61 181 71 
for P=7 Q=29 43 71 
final test 
Input number ( input 0 to exit )

53763491189967221358575546107279034709697 is probably prime 
t et 1260 1612152436282351563600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 
for P=3 Q=7 13 31 61 19 37 181 43 
for P=5 Q=11 31 61 181 71 
for P=7 Q=29 43 71 
final test 
Input number ( input 0 to exit )

107896522139513920752730643638401909724513 is probably prime 
t et 1260 1612152436282351563600
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 
for P=3 Q=7 13 31 61 19 37 181 43 
for P=5 Q=11 31 61 181 71 
for P=7 Q=29 43 71 
final test 
Input number ( input 0 to exit )

120553054891405588545727822543281066162803459003848166118314367809 is probably p\
rime 
t et 2520 941060592898327214975750763074400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 127 211 421 631 41 
for P=3 Q=7 13 31 61 19 37 181 43 127 211 421 631 
for P=5 Q=11 31 61 181 71 211 421 631 41 
for P=7 Q=29 43 71 127 211 421 631 
final test 
Input number ( input 0 to exit )

41784371500167158378186418717091934768077726285039694944003301299623485206849143\
75257 is probably prime 
t et 5040 186972172311057523116686181723948752936030400
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 127 211 421 631 41 73 281 2521 17\
 113 
for P=3 Q=7 13 31 61 19 37 181 43 127 211 421 631 73 2521 
for P=5 Q=11 31 61 181 71 211 421 631 41 281 2521 
for P=7 Q=29 43 71 127 211 421 631 281 2521 113 
final test 
Input number ( input 0 to exit )

82951028565871011121512196630835144518774133555852877567503980614227065994320281\
8322753067885238020768017585089 is probably prime 
t et 25200 1168378102584095572671947534158028685782695433121182856000
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 127 211 421 631 41 73 281 2521 17\
 113 241 337 1009 101 151 
for P=3 Q=7 13 31 61 19 37 181 43 127 211 421 631 73 2521 241 337 1009 151 
for P=5 Q=11 31 61 181 71 211 421 631 41 281 2521 241 101 151 
for P=7 Q=29 43 71 127 211 421 631 281 2521 113 337 1009 
final test 
Input number ( input 0 to exit )

10776547730206021548358735954380169948015708115427100064296791127608890484017725\
60028378495799359646781326368530020399986158679489264953 is probably prime 
t et 25200 207454561048856791275050095904987030401052160061082013736736636856000
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 127 211 421 631 41 73 281 2521 17\
 113 241 337 1009 101 151 401 601 701 1051 
for P=3 Q=7 13 31 61 19 37 181 43 127 211 421 631 73 2521 241 337 1009 151 601 1\
051 
for P=5 Q=11 31 61 181 71 211 421 631 41 281 2521 241 101 151 401 601 701 1051 
for P=7 Q=29 43 71 127 211 421 631 281 2521 113 337 1009 701 1051 
final test 
Input number ( input 0 to exit )

60540857450154303184251426233785900839891649570009594453019947075828557696548082\
92021644588851350106701791000405671017580904574344888167840655585532966614126382\
28437313050421607863292067456096593355205756948146818049307851471072877007436414\
317133005835598894375059991594580587646655948884994805993941317793 is probably p\
rime 
t et 1058400 8303211261569213624192214496508606810064538400837792276227356335260\
68601187648242841480880458339435691287354556678080121881146945460635693071833178\
288000
Jacobi Sum Test ( APR-CL )
for P=2 Q=3 5 7 13 11 31 61 19 37 181 29 43 71 127 211 421 631 41 73 281 2521 17\
 113 241 337 1009 101 151 401 601 701 1051 1201 1801 2801 4201 6301 12601 109 27\
1 379 433 541 757 2161 7561 15121 97 673 2017 3361 21601 30241 197 491 883 1471 \
2647 
for P=3 Q=7 13 31 61 19 37 181 43 127 211 421 631 73 2521 241 337 1009 151 601 1\
051 1201 1801 4201 6301 12601 109 271 379 433 541 757 2161 7561 15121 97 673 201\
7 3361 21601 30241 883 1471 2647 
for P=5 Q=11 31 61 181 71 211 421 631 41 281 2521 241 101 151 401 601 701 1051 1\
201 1801 2801 4201 6301 12601 271 541 2161 7561 15121 3361 21601 30241 491 1471 
for P=7 Q=29 43 71 127 211 421 631 281 2521 113 337 1009 701 1051 2801 4201 6301\
 12601 379 757 7561 15121 673 2017 3361 30241 197 491 883 1471 2647 
final test 
Input number ( input 0 to exit )

SIQS.LOG

 ========================= 
1404289 is prime 
 ========================= 
1569889 is prime 
 ========================= 
4970209 is prime 
 ========================= 
5882353 is prime 
 ========================= 
6187457 is prime 
 ========================= 
19708609 is prime 
 ========================= 
25687873 is prime 
 ========================= 
32620993 is prime 
 ========================= 
99990001 is prime 
 ========================= 
1469409649 is prime 
 ========================= 
5200544353 is prime 
 ========================= 
11266057249 is prime 
 ========================= 
66554101249 is prime 
 ========================= 
18371524594609 is prime 
 ========================= 
75118313082913 is prime 
 ========================= 
143574021480139 is prime 
 ========================= 
203864078068831 is prime 
 ========================= 
549797184491917 is prime 
 ========================= 
834427406578561 is prime 
 ========================= 
2128553705161057 is prime 
 ========================= 
9999999900000001 is prime 
 ========================= 
107297848804097377 is prime 
 ========================= 
536430531035337769 is prime 
 ========================= 
1253224535459902849 is prime 
 ========================= 
757108543129939106221 is prime 
 ========================= 
11111111111111111111111 is prime 
 ========================= 
23839779350937685860961 is prime 
 ========================= 
30942987586585490641217 is prime 
 ========================= 
24649445347649059192745899 is prime 
 ========================= 
1595352086329224644348978893 is prime 
 ========================= 
4181003300071669867932658901 is prime 
 ========================= 
38115215074391056784287931569 is prime 
 ========================= 
220080633974998351355221429249 is prime 
 ========================= 
275568764703416069789958894913 is prime 
 ========================= 
374531874959836692094017219169 is prime 
 ========================= 
19108466176791400681292709171992566565029 is prime 
 ========================= 
53763491189967221358575546107279034709697 is prime 
 ========================= 
107896522139513920752730643638401909724513 is prime 
 ========================= 
120553054891405588545727822543281066162803459003848166118314367809 is prime 
 ========================= 
41784371500167158378186418717091934768077726285039694944003301299623485206849143\
75257 is prime 
 ========================= 
82951028565871011121512196630835144518774133555852877567503980614227065994320281\
8322753067885238020768017585089 is prime 
 ========================= 
10776547730206021548358735954380169948015708115427100064296791127608890484017725\
60028378495799359646781326368530020399986158679489264953 is prime 
 ========================= 
60540857450154303184251426233785900839891649570009594453019947075828557696548082\
92021644588851350106701791000405671017580904574344888167840655585532966614126382\
28437313050421607863292067456096593355205756948146818049307851471072877007436414\
317133005835598894375059991594580587646655948884994805993941317793 is prime