Serge Batalov found a near-repdigit prime number. Serge Batalov さんがニアレプディジットの素数を見つけました。
rank 順位 | digits 桁数 | flabel | wlabel | expression 式 | name 名前 | date 日付 |
---|---|---|---|---|---|---|
46 | 217218 | - | 9v89w | 10217218-10108609-1 | Serge Batalov | December 25, 2015 2015 年 12 月 25 日 |
Factor table of 1711...11, 177...771, 177...773 and 177...779 were extended to n=300. New composite factors passed the level 35 of ECM 904 times. Most unknown factors are supposed to have 35 digits or more. 1711...11、177...771、177...773 および 177...779 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 904 回パスしました。ほとんどの未知の因数は 35 桁以上あると思われます。
Factor table of 1611...11, 166...661, 166...663 and 166...669 were extended to n=300. New composite factors passed the level 35 of ECM 904 times. Most unknown factors are supposed to have 35 digits or more. 1611...11、166...661、166...663 および 166...669 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 904 回パスしました。ほとんどの未知の因数は 35 桁以上あると思われます。
Factor table of 1411...11, 144...441, 144...447, 144...449, 1511...11, 155...551, 155...553, 155...557 and 155...559 were extended to n=300. New composite factors passed the level 30 of ECM 430 times. Most unknown factors are supposed to have 30 digits or more. 1411...11、144...441、144...447、144...449、1511...11、155...551、155...553、155...557 および 155...559 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 30 を 430 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Bob Price found 16 unprovable quasi-repdigit PRPs (except plateau-and-depression). Bob Price さんが 16 個の証明が困難なクワージレプディジットのおそらく素数 (プラトウアンドデプレッションを除く) を見つけました。
Factor table of 1211...11, 122...223, 122...227, 122...229, 1311...11, 133...331, 133...337 and 133...339 were extended to n=300. New composite factors passed the level 30 of ECM 430 times. Most unknown factors are supposed to have 30 digits or more. 1211...11、122...223、122...227、122...229、1311...11、133...331、133...337 および 133...339 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 30 を 430 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Predrag Kurtovic found 2 prime numbers of the form k×10n+1. Predrag Kurtovic さんが 2 個の k×10n+1 の形の素数を見つけました。
rank 順位 | digits 桁数 | flabel | wlabel | expression 式 | name 名前 | date 日付 |
---|---|---|---|---|---|---|
27 | 81360 | 31001 | 310w1 | 31×1081358+1 | Predrag Kurtovic | November 8, 2015 2015 年 11 月 8 日 |
29 | 79229 | 31001 | 310w1 | 31×1079227+1 | Predrag Kurtovic | November 8, 2015 2015 年 11 月 8 日 |
Factor table of 100...003, 100...007, 100...009, 1011...11, 11...1101, 11...1121, 11...1131, 11...1141, 11...1151, 11...1161, 11...1171, 11...1181 and 11...1191 were extended to n=300. New composite factors passed the level 30 of ECM 430 times. Most unknown factors are supposed to have 30 digits or more. 100...003、100...007、100...009、1011...11、11...1101、11...1121、11...1131、11...1141、11...1151、11...1161、11...1171、11...1181 および 11...1191 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 30 を 430 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Bob Price found the largest known unprovable near-repdigit-palindrome PRP and 16 unprovable quasi-repdigit PRPs (except plateau-and-depression). Bob Price さんが知られている最大の証明が困難なニアレプディジット回文数のおそらく素数と 16 個の証明が困難なクワージレプディジットのおそらく素数 (プラトウアンドデプレッションを除く) を見つけました。
rank 順位 | digits 桁数 | flabel | wlabel | expression 式 | name 名前 | date 日付 |
---|---|---|---|---|---|---|
1 | 120253 | 11511 | 1w51w | 10120253+36×1060126-19 | Bob Price | October 26, 2015 2015 年 10 月 26 日 |
Predrag Kurtovic found a near-repdigit prime. Predrag Kurtovic さんがニアレプディジットの素数を見つけました。
rank 順位 | digits 桁数 | flabel | wlabel | expression 式 | name 名前 | date 日付 |
---|---|---|---|---|---|---|
26 | 301356 | 97999 | 979w | 98×10301354-1 | Predrag Kurtovic | October 16, 2015 2015 年 10 月 16 日 |
Bob Price found 13 quasi-repdigit PRPs. Bob Price さんが 13 個のクワージレプディジットのおそらく素数を見つけました。
Factor table of 411...11, 433...33, 477...77, 511...11, 577...77, 611...11, 677...77, 733...33, 811...11, 877...77, 911...11 and 977...77 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 411...11、433...33、477...77、511...11、577...77、611...11、677...77、733...33、811...11、877...77、911...11 および 977...77 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Factor table of 177...77 and 377...77 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 311...11 および 377...77 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Bob Price found 13 quasi-repdigit PRPs. Bob Price さんが 13 個のクワージレプディジットのおそらく素数を見つけました。
Factor table of 177...77, 199...99, 211...11, 233...33, 277...77 and 299...99 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 177...77, 199...99, 211...11, 233...33, 277...77 および 299...99 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Bob Price found 15 quasi-repdigit PRPs. Bob Price さんが 15 個のクワージレプディジットのおそらく素数を見つけました。
Factor table of 66...661, 66...667, 77...773, 77...779, 88...881, 88...883, 88...887 and 99...997 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 66...661, 66...667, 77...773, 77...779, 88...881, 88...883, 88...887 および 99...997 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
List of prime factors that appear periodically was added to each factor table. It's the head part of data that is needed to calculate the difficulty of prime number search, percentage of terms that are not divisible by prime factors that appear periodically. 各素因数分解表に周期的に現れる素因数の一覧を追加しました。これは素数探索の難易度 (周期的に現れる素因数で割り切れない項の割合) を計算するためのデータの先頭部分です。
Factor table of 55...551, 55...553, 55...557 and 55...559 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 55...551, 55...553, 55...557 および 55...559 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Factor table of 44...441, 44...443, 44...447 and 44...449 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 44...441, 44...443, 44...447 および 44...449 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Bob Price found 10 quasi-repdigit PRPs. Bob Price さんが 10 個のクワージレプディジットのおそらく素数を見つけました。
rank 順位 | digits 桁数 | flabel | wlabel | expression 式 | name 名前 | date 日付 |
---|---|---|---|---|---|---|
6 | 191153 | 29993 | 29w3 | 3·10191152-7 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
10 | 184125 | 29993 | 29w3 | 3·10184124-7 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
24 | 110077 | 29993 | 29w3 | 3·10110076-7 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
41 | 92870 | 56663 | 56w3 | (17·1092869-11)/3 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
43 | 92514 | 56663 | 56w3 | (17·1092513-11)/3 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
103 | 66730 | 54449 | 54w9 | (49·1066729+41)/9 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
116 | 62329 | 56663 | 56w3 | (17·1062328-11)/3 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
123 | 60632 | 56663 | 56w3 | (17·1060631-11)/3 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
159 | 50999 | 54449 | 54w9 | (49·1050998+41)/9 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
164 | 50496 | 56663 | 56w3 | (17·1050495-11)/3 | Bob Price | August 10, 2015 2015 年 8 月 10 日 |
Factor table of 22...221, 22...223, 22...227, 22...229 and 33...337 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 22...221, 22...223, 22...227, 22...229 および 33...337 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Factor table of 11...113, 11...117 and 11...119 were extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 11...113, 11...117 および 11...119 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Factor table of 33...331 was extended to n=300. New composite factors passed the level 35 of ECM 118 times. Most unknown factors are supposed to have 30 digits or more. 33...331 の素因数分解表 を n=300 まで伸ばしました。新しい合成数の因数は ECM のレベル 35 を 118 回パスしました。ほとんどの未知の因数は 30 桁以上あると思われます。
Serge Batalov found 7 near-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
8 | 330906 | 11119 | 1w9 | (10330906+71)/9 | Serge Batalov | July 19, 2015 |
9 | 279978 | 33337 | 3w7 | (10279978+11)/3 | Serge Batalov | July 19, 2015 |
33 | 180689 | 11119 | 1w9 | (10180689+71)/9 | Serge Batalov | July 19, 2015 |
40 | 162138 | 33337 | 3w7 | (10162138+11)/3 | Serge Batalov | July 19, 2015 |
48 | 146063 | 11119 | 1w9 | (10146063+71)/9 | Serge Batalov | July 19, 2015 |
74 | 112067 | 11117 | 1w7 | (10112067+53)/9 | Serge Batalov | July 19, 2015 |
75 | 111902 | 11119 | 1w9 | (10111902+71)/9 | Serge Batalov | July 19, 2015 |
Bob Price found 11 quasi-repdigit PRPs.
4 | 194414 | 20003 | 20w3 | 2·10194413+3 | Bob Price | July 17, 2015 |
---|---|---|---|---|---|---|
7 | 185931 | 19997 | 19w7 | 2·10185930-3 | Bob Price | July 17, 2015 |
11 | 153747 | 19997 | 19w7 | 2·10153746-3 | Bob Price | July 17, 2015 |
12 | 144221 | 19997 | 19w7 | 2·10144220-3 | Bob Price | July 17, 2015 |
16 | 127180 | 49997 | 49w7 | 5·10127179-3 | Bob Price | July 17, 2015 |
17 | 122275 | 30007 | 30w7 | 3·10122274+7 | Bob Price | July 17, 2015 |
75 | 76439 | 54443 | 54w3 | (49·1076438-13)/9 | Bob Price | July 17, 2015 |
79 | 73702 | 43339 | 43w9 | (13·1073701+17)/3 | Bob Price | July 17, 2015 |
98 | 66486 | 54441 | 54w1 | (49·1066485-31)/9 | Bob Price | July 17, 2015 |
114 | 60745 | 43339 | 43w9 | (13·1060744+17)/3 | Bob Price | July 17, 2015 |
133 | 55368 | 43339 | 43w9 | (13·1055367+17)/3 | Bob Price | July 17, 2015 |
Bob Price found 6 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
49 | 85965 | 35559 | 35w9 | (32·1085964+31)/9 | Bob Price | June 20, 2015 |
57 | 82753 | 47771 | 47w1 | (43·1082752-61)/9 | Bob Price | June 20, 2015 |
90 | 66470 | 51113 | 51w3 | (46·1066469+17)/9 | Bob Price | June 20, 2015 |
103 | 61694 | 51113 | 51w3 | (46·1061693+17)/9 | Bob Price | June 20, 2015 |
121 | 55559 | 48887 | 48w7 | (44·1055558-17)/9 | Bob Price | June 20, 2015 |
122 | 55513 | 47771 | 47w1 | (43·1055512-61)/9 | Bob Price | June 20, 2015 |
Youcef Lemsafer successfully factored 271 digit composite number (10271+12·10135-1)/3 to two prime factors. It's the biggest SNFS factorization in our tables so far. Congratulations!
Bob Price found 5 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
4 | 193908 | 49991 | 49w1 | 5·10193907-9 | Bob Price | May 31, 2015 |
7 | 180993 | 49991 | 49w1 | 5·10180992-9 | Bob Price | May 31, 2015 |
45 | 87449 | 35551 | 35w1 | (32·1087448-41)/9 | Bob Price | May 31, 2015 |
50 | 84928 | 45559 | 45w9 | (41·1084927+31)/9 | Bob Price | May 31, 2015 |
68 | 74774 | 35551 | 35w1 | (32·1074773-41)/9 | Bob Price | May 31, 2015 |
Predrag Kurtovic found 1 prime number of the form k·10n+1.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
21 | 94965 | 96001 | 960w1 | 96·1094963+1 | Predrag Kurtovic | May 25, 2015 |
Predrag Kurtovic found 4 prime numbers of the form k·10n+1.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
103 | 42992 | 93001 | 930w1 | 93·1042990+1 | Predrag Kurtovic | May 24, 2015 |
104 | 42926 | 96001 | 960w1 | 96·1042924+1 | Predrag Kurtovic | May 24, 2015 |
115 | 36325 | 93001 | 930w1 | 93·1036323+1 | Predrag Kurtovic | May 24, 2015 |
119 | 32928 | 91001 | 910w1 | 91·1032926+1 | Predrag Kurtovic | May 24, 2015 |
Bob Price found 10 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
5 | 185356 | 40009 | 40w9 | 4·10185355+9 | Bob Price | May 24, 2015 |
6 | 178092 | 40009 | 40w9 | 4·10178091+9 | Bob Price | May 24, 2015 |
9 | 130481 | 40009 | 40w9 | 4·10130480+9 | Bob Price | May 24, 2015 |
15 | 108413 | 40009 | 40w9 | 4·10108412+9 | Bob Price | May 24, 2015 |
27 | 95589 | 43337 | 43w7 | (13·1095588+11)/3 | Bob Price | May 24, 2015 |
29 | 94287 | 40009 | 40w9 | 4·1094286+9 | Bob Price | May 24, 2015 |
42 | 87566 | 43337 | 43w7 | (13·1087565+11)/3 | Bob Price | May 24, 2015 |
50 | 82871 | 38881 | 38w1 | (35·1082870-71)/9 | Bob Price | May 24, 2015 |
129 | 50998 | 38881 | 38w1 | (35·1050997-71)/9 | Bob Price | May 24, 2015 |
132 | 50580 | 40009 | 40w9 | 4·1050579+9 | Bob Price | May 24, 2015 |
Predrag Kurtovic found the fourth largest known near-repdigit prime number. Congratulations!
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
4 | 544907 | 91999 | 919w | 92·10544905-1 | Predrag Kurtovic | May 15, 2015 |
Predrag Kurtovic found 9 primes of the form k·10n+1
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
21 | 94494 | 36001 | 360w1 | 36·1094492+1 | Predrag Kurtovic | May 11, 2015 |
22 | 94395 | 21001 | 210w1 | 21·1094393+1 | Predrag Kurtovic | May 11, 2015 |
25 | 84894 | 36001 | 360w1 | 36·1084892+1 | Predrag Kurtovic | May 11, 2015 |
26 | 80066 | - | 660w1 | 66·1080064+1 | Predrag Kurtovic | May 11, 2015 |
101 | 43885 | 36001 | 360w1 | 36·1043883+1 | Predrag Kurtovic | May 11, 2015 |
102 | 43577 | 54001 | 540w1 | 54·1043575+1 | Predrag Kurtovic | May 11, 2015 |
106 | 39686 | - | 660w1 | 66·1039684+1 | Predrag Kurtovic | May 11, 2015 |
109 | 38350 | 25001 | 250w1 | 25·1038348+1 | Predrag Kurtovic | May 11, 2015 |
119 | 30661 | 54001 | 540w1 | 54·1030659+1 | Predrag Kurtovic | May 11, 2015 |
Bob Price found 5 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
28 | 91145 | 42221 | 42w1 | (38·1091144-11)/9 | Bob Price | May 11, 2015 |
37 | 86231 | 41117 | 41w7 | (37·1086230+53)/9 | Bob Price | May 11, 2015 |
51 | 80151 | 42221 | 42w1 | (38·1080150-11)/9 | Bob Price | May 11, 2015 |
105 | 55360 | 41117 | 41w7 | (37·1055359+53)/9 | Bob Price | May 11, 2015 |
111 | 54052 | 45553 | 45w3 | (41·1054051-23)/9 | Bob Price | May 11, 2015 |
Predrag Kurtovic found 2 primes of the form k·10n+1
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
94 | 46794 | 27001 | 270w1 | 27·1046792+1 | Predrag Kurtovic | May 10, 2015 |
101 | 38802 | 45001 | 450w1 | 45·1038800+1 | Predrag Kurtovic | May 10, 2015 |
Predrag Kurtovic found a near-repdigit prime.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
21 | 303257 | 98999 | 989w | 99·10303255-1 | Predrag Kurtovic | April 30, 2015 |
Bob Price found 9 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | name | date |
---|---|---|---|---|---|---|
20 | 97243 | 34449 | 34w9 | (31·1097242+41)/9 | Bob Price | April 15, 2015 |
29 | 90670 | 35557 | 35w7 | (32·1090669+13)/9 | Bob Price | April 15, 2015 |
49 | 79446 | 32229 | 32w9 | (29·1079445+61)/9 | Bob Price | April 15, 2015 |
52 | 74875 | 24441 | 24w1 | (22·1074874-31)/9 | Bob Price | April 15, 2015 |
64 | 70195 | 32221 | 32w1 | (29·1070194-11)/9 | Bob Price | April 15, 2015 |
86 | 60347 | 15553 | 15w3 | (14·1060346-23)/9 | Bob Price | April 15, 2015 |
87 | 60291 | 41119 | 41w9 | (37·1060290+71)/9 | Bob Price | April 15, 2015 |
89 | 59559 | 24441 | 24w1 | (22·1059558-31)/9 | Bob Price | April 15, 2015 |
101 | 55363 | 32221 | 32w1 | (29·1055362-11)/9 | Bob Price | April 15, 2015 |
Bob Price found 1 quasi-repdigit PRP.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
80 | 60718 | 28881 | 28w1 | (26·1060717-71)/9 | March 30, 2015 | Bob Price |
Bob Price found 6 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
27 | 90793 | 24443 | 24w3 | (22·1090792-13)/9 | March 16, 2015 | Bob Price |
45 | 80596 | 24447 | 24w7 | (22·1080595+23)/9 | March 16, 2015 | Bob Price |
58 | 70795 | 21113 | 21w3 | (19·1070794+17)/9 | March 16, 2015 | Bob Price |
59 | 70210 | 25551 | 25w1 | (23·1070209-41)/9 | March 16, 2015 | Bob Price |
60 | 70052 | 24443 | 24w3 | (22·1070051-13)/9 | March 16, 2015 | Bob Price |
104 | 51422 | 27779 | 27w9 | (25·1051421+11)/9 | March 16, 2015 | Bob Price |
Maksym Voznyy confirmed the primality of 1 quasi-repdigit prime number by PRIMO.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
281 | 4000 | 63337 | 63w7 | (19·103999+11)/3 | March 11, 2015 | Maksym Voznyy |
Serge Batalov found the largest known unprovable plateau and depression PRP. It's also the second PRP of the form 711...117. Congratulations!
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
1 | 499211 | 71117 | 71w7 | (64·10499210+53)/9 | March 1, 2015 | Serge Batalov |
Bob Price found 2 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
82 | 57692 | 14447 | 14w7 | (13·1057691+23)/9 | February 27, 2015 | Bob Price |
84 | 57139 | 27771 | 27w1 | (25·1057138-61)/9 | February 27, 2015 | Bob Price |
Predrag Kurtovic found 1 near-repdigit prime.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
130 | 59117 | - | 9999999949w | 999999995·1059108-1 | February 23, 2015 | Predrag Kurtovic |
Predrag Kurtovic found 2 quasi-repdigit primes.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
17 | 94060 | 13999 | 139w | 14·1094058-1 | February 22, 2015 | Predrag Kurtovic |
27 | 53817 | 14999 | 149w | 15·1053815-1 | February 22, 2015 | Predrag Kurtovic |
matsui factored 236-digit composite number 42227_235: (38·10235+43)/9 into two 118-digit prime factors, 4286983116591264980875712486217211823366617761453939491924728075062493637784027410513398776939732030682170119483438351<118> and 9848935970570053274718099654574207796711550627865497835694330372954191204899741309332653778657579830178607826820649277<118>. It's both the largest big factor and the largest nice split in our tables so far. Congratulations!
Bob Price found 1 quasi-repdigit PRP.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
98 | 50796 | 17773 | 17w3 | (16·1050795-43)/9 | February 11, 2015 | Bob Price |
Bob Price found 2 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
25 | 91904 | 24449 | 24w9 | (22·1091903+41)/9 | February 6, 2015 | Bob Price |
44 | 80168 | 24449 | 24w9 | (22·1080167+41)/9 | February 6, 2015 | Bob Price |
Covering set of near-repdigit-related sequences is available. It's a by-product of finding sequences that have very low difficulties.
Serge Batalov found quasi-and-near-repdigit twin PRPs.
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
2 | p | 17135 | 9v49w7 | 1017135-5·101884-3 | February 2, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1017135-5·101884-1 |
Serge Batalov found 12 quasi-and-near-repdigit twin PRPs.
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
3 | p | 13726 | 9v49w7 | 1013726-5·1013419-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1013726-5·1013419-1 | ||||
4 | p | 13681 | 9v49w7 | 1013681-5·102824-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1013681-5·102824-1 | ||||
5 | p | 13069 | 9v49w7 | 1013069-5·1012385-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1013069-5·1012385-1 | ||||
6 | p | 11659 | 9v49w7 | 1011659-5·101092-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1011659-5·101092-1 | ||||
7 | p | 11504 | 9v49w7 | 1011504-5·1010085-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 1011504-5·1010085-1 | ||||
8 | p | 11225 | 9v19w7 | 1011225-8·109840-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 1011225-8·109840-1 | ||||
10 | p | 8239 | 9v19w7 | 108239-8·108026-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 108239-8·108026-1 | ||||
11 | p | 8020 | 9v19w7 | 108020-8·103878-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 108020-8·103878-1 | ||||
12 | p | 7510 | 9v49w7 | 107510-5·103785-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 107510-5·103785-1 | ||||
18 | p | 3419 | 9v49w7 | 103419-5·102966-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 103419-5·102966-1 | ||||
20 | p | 2208 | 9v19w7 | 102208-8·101833-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 102208-8·101833-1 | January 20, 2015 | Makoto Kamada | ||
21 | p | 2043 | 9v19w7 | 102043-8·101056-3 | February 1, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 102043-8·101056-1 | January 20, 2015 | Makoto Kamada |
Serge Batalov found 4 quasi-and-near-repdigit twin PRPs.
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
11 | p | 1705 | 9v19w7 | 101705-8·1015-3 | January 30, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 101705-8·1015-1 | January 20, 2015 | Makoto Kamada | ||
12 | p | 1589 | 9v49w7 | 101589-5·10886-3 | January 30, 2015 | Serge Batalov | |
p+2 | - | 9v49w | 101589-5·10886-1 | January 22, 2015 | Makoto Kamada | ||
13 | p | 1569 | 9v19w7 | 101569-8·10546-3 | January 30, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 101569-8·10546-1 | January 20, 2015 | Makoto Kamada | ||
14 | p | 1533 | 9v19w7 | 101533-8·101076-3 | January 30, 2015 | Serge Batalov | |
p+2 | - | 9v19w | 101533-8·101076-1 | January 20, 2015 | Makoto Kamada |
This page has been moved to http://stdkmd.com/nrr/.
Serge Batalov successfully certificated the primality of the largest known quasi-repdigit twin primes by PRIMO. Congratulations!
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
3 | p | 10014 | 7v97w | (7·1010014+18·103046-7)/9 | January 18, 2015, January 26, 2015 | Serge Batalov | |
p+2 | 10014 | 7v97w9 | (7·1010014+18·103046+11)/9 | January 18, 2015, January 27, 2015 |
Serge Batalov certificated the primality of half of the third largest known quasi-repdigit twin PRPs by PRIMO.
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
3 | p | 10014 | 7v97w | (7·1010014+18·103046-7)/9 | January 18, 2015, January 26, 2015 | Serge Batalov | |
p+2 | 10014 | 7v97w9 | (7·1010014+18·103046+11)/9 | January 18, 2015 |
NOTE: Proving another half ( (7·1010014+18·103046+11)/9 ) is in progress. Half of the second largest known quasi-repdigit twin PRPs ( 1014357-2·1013570-3 ) is not certificated and not planned at this time.
Serge Batalov found the largest known quasi-repdigit and near-repdigit twin PRPs. Congratulations!
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
1 | p | 31047 | 9v79w7 | 1031047-2·1026802-3 | January 23, 2015 | Serge Batalov | |
p+2 | - | 9v79w | 1031047-2·1026802-1 |
P.Kurtovic found a near-repdigit-related prime.
digits | flabel | wlabel | expression | when | who | |
---|---|---|---|---|---|---|
260 | 39502 | 12001 | 120w1 | 12·1039500+1 | January 23, 2015 | P.Kurtovic |
Bob Price found a quasi-repdigit prime.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
10 | 127241 | 90001 | 90w1 | 9·10127240+1 | January 22, 2015 | Bob Price |
Serge Batalov found the largest known quasi-repdigit and near-repdigit twin PRPs. Congratulations!
rank | p,p+2 | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|---|
1 | p | 14357 | 9v79w7 | 1014357-2·1013570-3 | January 21, 2015 | Serge Batalov | |
p+2 | - | 9v79w | 1014357-2·1013570-1 |
Serge Batalov successfully proved that (106655-6·104147-7)/3 and (106655-6·104147-1)/3 are the largest known quasi-repdigit and near-repdigit twin primes. Congratulations!
Serge Batalov found that (7·1010014+18·103046-7)/9 = 77...77(6967)977...77(3046)<10014> and (7·1010014+18·103046+11)/9 = 77...77(6967)977...77(3045)9<10014> are twin PRPs. They are the largest known near-repdigit and quasi-repdigit twin PRPs. Congratulations!
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
575 | 10014 | 7v97w | (7·1010014+18·103046-7)/9 | January 18, 2015 | Serge Batalov | |
782 | 3141 | 1v31w | (103141+18·102940-1)/9 | January 18, 2015 | Serge Batalov | |
1384 | 1716 | 1v31w | (101716+18·10656-1)/9 | January 18, 2015 | Serge Batalov | |
2764 | 761 | 3v13w | (10761-6·10268-1)/3 | January 18, 2015 | Serge Batalov |
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
1851 | 10014 | 7v97w9 | (7·1010014+18·103046+11)/9 | January 18, 2015 | Serge Batalov | |
2397 | 6655 | 3v13w1 | (106655-6·104147-7)/3 | January 18, 2015 | Serge Batalov | |
3108 | 3141 | 1v31w3 | (103141+18·102940+17)/9 | January 18, 2015 | Serge Batalov | |
3109 | 1716 | 1v31w3 | (101716+18·10656+17)/9 | January 18, 2015 | Serge Batalov |
digits | flabel | wlabel | expression | when | who | |
---|---|---|---|---|---|---|
377 | 6655 | 3v13w | (106655-6·104147-1)/3 | January 18, 2015 | Serge Batalov |
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
2672 | 761 | 3v13w1 | (10761-6·10268-7)/3 | January 18, 2015 | Serge Batalov | |
3420 | 457 | 3v13w1 | (10457-6·10156-7)/3 | January 18, 2015 | Serge Batalov | |
3495 | 431 | 3v13w1 | (10431-6·1095-7)/3 | January 18, 2015 | Serge Batalov | |
3594 | 405 | 1v31w3 | (10405+18·10345+17)/9 | January 18, 2015 | Serge Batalov | |
3765 | 363 | 1v31w3 | (10363+18·10359+17)/9 | January 18, 2015 | Serge Batalov | |
4721 | 193 | 3v13w1 | (10193-6·1056-7)/3 | January 18, 2015 | Serge Batalov | |
4764 | 189 | 1v31w3 | (10189+18·10167+17)/9 | January 18, 2015 | Serge Batalov | |
4858 | 179 | 3v13w1 | (10179-6·10108-7)/3 | January 18, 2015 | Serge Batalov | |
5390 | 127 | 3v13w1 | (10127-6·10102-7)/3 | January 18, 2015 | Serge Batalov |
Serge Batalov found that 104621-2·104208-3=99...99(412)799...99(4207)7<4621> and 104621-2·104208-1=99...99(412)799...99(4208)<4621> are twin primes. They are the largest known quasi-repdigit (and near-repdigit) twin primes. Congratulations!
digits | flabel | wlabel | expression | when | who | |
---|---|---|---|---|---|---|
423 | 4621 | 9v79w | 104621-2·104208-1 | January 17, 2015 | Serge Batalov | |
471 | 3709 | 9v79w | 103709-2·103266-1 | January 17, 2015 | Serge Batalov | |
490 | 3558 | 9v79w | 103558-2·102812-1 | January 17, 2015 | Serge Batalov |
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
262 | 4621 | 9v79w7 | 104621-2·104208-3 | January 17, 2015 | Serge Batalov | |
3946 | 321 | 9v79w7 | 10321-2·1022-3 | January 17, 2015 | Serge Batalov | |
5344 | 130 | 9v79w7 | 10130-2·1092-3 | January 17, 2015 | Serge Batalov |
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
3106 | 3709 | 9v79w7 | 103709-2·103266-3 | January 17, 2015 | Serge Batalov | |
3107 | 3558 | 9v79w7 | 103558-2·102812-3 | January 17, 2015 | Serge Batalov |
Bob Price found 2 quasi-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
35 | 83588 | 15557 | 15w7 | (14·1083587+13)/9 | January 17, 2015 | Bob Price |
53 | 70979 | 15557 | 15w7 | (14·1070978+13)/9 | January 17, 2015 | Bob Price |
Bob Price found 3 near-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
94 | 85864 | 11117 | 1w7 | (1085864+53)/9 | January 12, 2015 | Bob Price |
95 | 85712 | 11117 | 1w7 | (1085712+53)/9 | January 12, 2015 | Bob Price |
124 | 70000 | 87777 | 87w | (79·1069999-7)/9 | January 12, 2015 | Bob Price |
Serge Batalov found 5 near-repdigit PRPs.
rank | digits | flabel | wlabel | expression | when | who |
---|---|---|---|---|---|---|
217 | 37495 | 77727 | 7w27 | (7·1037495-457)/9 | January 9, 2015 | Serge Batalov |
236 | 33074 | 77797 | 7w97 | (7·1033074+173)/9 | January 9, 2015 | Serge Batalov |
238 | 32969 | 77747 | 7w47 | (7·1032969-277)/9 | January 9, 2015 | Serge Batalov |
245 | 30781 | 71777 | 717w | (646·1030779-7)/9 | January 9, 2015 | Serge Batalov |
246 | 30742 | 75777 | 757w | (682·1030740-7)/9 | January 9, 2015 | Serge Batalov |
Prime factorization tables of the following 16 near-repdigit sequences were added. All composite factors on the tables had passed the level 35 of ECM 118 times. Most unknown factors are supposed to be larger than 1030.