Table of contents 目次

  1. About 11...1121 11...1121 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 11...1121 11...1121 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 11...1121 11...1121 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 11...1121 11...1121 について

1.1. Classification 分類

Near-repdigit of the form AA...AABA AA...AABA の形のニアレプディジット (Near-repdigit)

1.2. Sequence 数列

1w21 = { 21, 121, 1121, 11121, 111121, 1111121, 11111121, 111111121, 1111111121, 11111111121, … }

1.3. General term 一般項

10n+899 (2≤n)

2. Prime numbers of the form 11...1121 11...1121 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 106+899 = 111121 is prime. は素数です。
  2. 1010+899 = 1111111121<10> is prime. は素数です。
  3. 1034+899 = (1)3221<34> is prime. は素数です。
  4. 1036+899 = (1)3421<36> is prime. は素数です。
  5. 10370+899 = (1)36821<370> is prime. は素数です。 (discovered by:発見: Makoto Kamada / August 23, 2004 2004 年 8 月 23 日) (certified by:証明: Makoto Kamada / PFGW / June 4, 2005 2005 年 6 月 4 日)
  6. 108256+899 = (1)825421<8256> is PRP. はおそらく素数です。 (Ray Chandler / srsieve, PFGW / October 9, 2010 2010 年 10 月 9 日)
  7. 1013290+899 = (1)1328821<13290> is PRP. はおそらく素数です。 (Donovan Johnson / May 2004 2004 年 5 月)
  8. 1014724+899 = (1)1472221<14724> is PRP. はおそらく素数です。 (Donovan Johnson / May 2004 2004 年 5 月)
  9. 10427912+899 = (1)42791021<427912> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 26, 2014 2014 年 12 月 26 日)
  10. 10685224+899 = (1)68522221<685224> is PRP. はおそらく素数です。 (Serge Batalov / LLR / December 27, 2014 2014 年 12 月 27 日)

2.3. Range of search 捜索範囲

  1. n≤11000 / Completed 終了 / Ray Chandler / October 15, 2010 2010 年 10 月 15 日
  2. n≤20000 / Completed 終了 / Ray Chandler / December 12, 2010 2010 年 12 月 12 日
  3. n≤30000 / Completed 終了 / Ray Chandler / July 11, 2011 2011 年 7 月 11 日
  4. n≤221000 / Completed 終了 / Serge Batalov / December 25, 2014 2014 年 12 月 25 日
  5. n≤700000 / Completed 終了 / Serge Batalov / December 27, 2014 2014 年 12 月 27 日
  6. n≤1000000 / Completed 終了 / Serge Batalov / December 31, 2014 2014 年 12 月 31 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 102k+1+899 = 11×(101+899×11+10×102-19×11×k-1Σm=0102m)
  2. 103k+2+899 = 3×(102+899×3+102×103-19×3×k-1Σm=0103m)
  3. 106k+2+899 = 7×(102+899×7+102×106-19×7×k-1Σm=0106m)
  4. 1015k+12+899 = 31×(1012+899×31+1012×1015-19×31×k-1Σm=01015m)
  5. 1016k+12+899 = 17×(1012+899×17+1012×1016-19×17×k-1Σm=01016m)
  6. 1018k+4+899 = 19×(104+899×19+104×1018-19×19×k-1Σm=01018m)
  7. 1021k+19+899 = 43×(1019+899×43+1019×1021-19×43×k-1Σm=01021m)
  8. 1022k+20+899 = 23×(1020+899×23+1020×1022-19×23×k-1Σm=01022m)
  9. 1028k+25+899 = 29×(1025+899×29+1025×1028-19×29×k-1Σm=01028m)
  10. 1034k+26+899 = 103×(1026+899×103+1026×1034-19×103×k-1Σm=01034m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 8.36%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 8.36% です。

3. Factor table of 11...1121 11...1121 の素因数分解表

3.1. Last updated 最終更新日

November 19, 2024 2024 年 11 月 19 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=209, 211, 214, 223, 225, 228, 231, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 249, 251, 252, 255, 257, 258, 259, 261, 263, 268, 269, 270, 272, 273, 274, 276, 279, 281, 282, 283, 285, 286, 287, 288, 289, 291, 292, 293, 297, 299, 300 (52/300)

3.4. Factor table 素因数分解表

102+899 = 21 = 3 × 7
103+899 = 121 = 112
104+899 = 1121 = 19 × 59
105+899 = 11121 = 3 × 11 × 337
106+899 = 111121 = definitely prime number 素数
107+899 = 1111121 = 11 × 83 × 1217
108+899 = 11111121 = 33 × 7 × 58789
109+899 = 111111121 = 11 × 541 × 18671
1010+899 = 1111111121<10> = definitely prime number 素数
1011+899 = 11111111121<11> = 3 × 11 × 113 × 2979649
1012+899 = 111111111121<12> = 17 × 31 × 7481 × 28183
1013+899 = 1111111111121<13> = 11 × 101010101011<12>
1014+899 = 11111111111121<14> = 3 × 7 × 140773 × 3758537
1015+899 = 111111111111121<15> = 11 × 10101010101011<14>
1016+899 = 1111111111111121<16> = 173 × 536219 × 11977583
1017+899 = 11111111111111121<17> = 32 × 11 × 47 × 223 × 431 × 4079 × 6091
1018+899 = 111111111111111121<18> = 2347 × 47341760166643<14>
1019+899 = 1111111111111111121<19> = 11 × 43 × 49669 × 47294532133<11>
1020+899 = 11111111111111111121<20> = 3 × 7 × 23 × 127 × 269 × 3373 × 199635613
1021+899 = 111111111111111111121<21> = 11 × 56509 × 178750466315279<15>
1022+899 = 1111111111111111111121<22> = 19 × 1439 × 40639007757986581<17>
1023+899 = 11111111111111111111121<23> = 3 × 11 × 617 × 691 × 851359 × 927614669
1024+899 = 111111111111111111111121<24> = 149971 × 629137 × 970817 × 1213019
1025+899 = 1111111111111111111111121<25> = 113 × 29 × 1019 × 97259 × 290454061199<12>
1026+899 = 11111111111111111111111121<26> = 32 × 72 × 103 × 210319 × 1205537 × 964767409
1027+899 = 111111111111111111111111121<27> = 11 × 31 × 61 × 191 × 401 × 2473 × 4878361 × 5780927
1028+899 = 1111111111111111111111111121<28> = 17 × 3261721 × 20038340840367096553<20>
1029+899 = 11111111111111111111111111121<29> = 3 × 11 × 919 × 63977 × 5726696509188850399<19>
1030+899 = 111111111111111111111111111121<30> = 1597 × 2141 × 1299230293<10> × 25012077694661<14>
1031+899 = 1111111111111111111111111111121<31> = 11 × 101010101010101010101010101011<30>
1032+899 = 11111111111111111111111111111121<32> = 3 × 7 × 1237 × 4526174633<10> × 94501170969258481<17>
1033+899 = 111111111111111111111111111111121<33> = 11 × 7573 × 1333818843392328140776576007<28>
1034+899 = 1111111111111111111111111111111121<34> = definitely prime number 素数
1035+899 = 11111111111111111111111111111111121<35> = 33 × 11 × 161233 × 91315160591<11> × 2540997391468631<16>
1036+899 = 111111111111111111111111111111111121<36> = definitely prime number 素数
1037+899 = 1111111111111111111111111111111111121<37> = 11 × 101010101010101010101010101010101011<36>
1038+899 = 11111111111111111111111111111111111121<38> = 3 × 7 × 739 × 11653376980844483<17> × 61438692048303173<17>
1039+899 = 111111111111111111111111111111111111121<39> = 11 × 10101010101010101010101010101010101011<38>
1040+899 = 1111111111111111111111111111111111111121<40> = 19 × 43 × 1505311 × 480420877 × 1880560575013152563579<22>
1041+899 = 11111111111111111111111111111111111111121<41> = 3 × 11 × 1291 × 42073 × 244593607 × 25343624569669962235837<23>
1042+899 = 111111111111111111111111111111111111111121<42> = 23 × 31 × 257 × 1590368677<10> × 381273853537338936711802453<27>
1043+899 = 1111111111111111111111111111111111111111121<43> = 11 × 2339 × 2879 × 3823 × 65677 × 59741388731780270414392261<26>
1044+899 = 11111111111111111111111111111111111111111121<44> = 32 × 7 × 172 × 206625733 × 28611542607743<14> × 103227026492661437<18>
1045+899 = 111111111111111111111111111111111111111111121<45> = 11 × 10101010101010101010101010101010101010101011<44>
1046+899 = 1111111111111111111111111111111111111111111121<46> = 25741 × 43165032870172530636382079604953619172181<41>
1047+899 = 11111111111111111111111111111111111111111111121<47> = 3 × 112 × 30609121518212427303336394245485154576063667<44>
1048+899 = 111111111111111111111111111111111111111111111121<48> = 83 × 527563 × 52124351 × 48681551212605335997498172999999<32>
1049+899 = 1111111111111111111111111111111111111111111111121<49> = 11 × 38447 × 2663793487<10> × 986283562051580730336438066801299<33>
1050+899 = 11111111111111111111111111111111111111111111111121<50> = 3 × 7 × 3361823 × 161965073449<12> × 971721874851709144813680348763<30>
1051+899 = 111111111111111111111111111111111111111111111111121<51> = 11 × 181277 × 562291 × 99097105117124334603790173508149953173<38>
1052+899 = (1)5021<52> = 26449 × 324437 × 159965054099<12> × 809455055480991690631705988783<30>
1053+899 = (1)5121<53> = 32 × 11 × 29 × 23789 × 14901251297<11> × 483925846445747<15> × 22560387485732484001<20>
1054+899 = (1)5221<54> = 929 × 756635901397<12> × 158071957847070524057082877561219259117<39>
1055+899 = (1)5321<55> = 11 × 157 × 87913552251558893<17> × 7318285100274458314966651392532811<34>
1056+899 = (1)5421<56> = 3 × 7 × 427997 × 1236224854614703141678798050221214402271746131633<49>
1057+899 = (1)5521<57> = 11 × 31 × 3053742977<10> × 106701525953752482848061567887586447336925453<45>
1058+899 = (1)5621<58> = 19 × 233 × 2819157656652979<16> × 89028407471388670761604343278548618337<38>
1059+899 = (1)5721<59> = 3 × 11 × 173 × 1093 × 30773 × 89618448377<11> × 645669138092975236285486080388909973<36>
1060+899 = (1)5821<60> = 17 × 103 × 3067 × 8798093 × 3151573254930012917<19> × 746176579973797697747369573<27>
1061+899 = (1)5921<61> = 11 × 43 × 232357522823<12> × 381728631833<12> × 48451426823629<14> × 546610922204794814707<21>
1062+899 = (1)6021<62> = 35 × 7 × 59 × 127 × 373 × 2337160902467824769723735573696734503275335045552789<52>
1063+899 = (1)6121<63> = 11 × 47 × 24118061141531693360023<23> × 8910961261394370465139863755757247531<37>
1064+899 = (1)6221<64> = 23 × 151 × 386503585243<12> × 827749982840601449922444559330116822750879947539<48>
1065+899 = (1)6321<65> = 3 × 11 × 277 × 1051 × 590202995290847<15> × 1959564921015614462804029573109852628667273<43>
1066+899 = (1)6421<66> = 97 × 4999 × 6199 × 23531 × 1212257903<10> × 84694894131966269989<20> × 15299891316423510672409<23>
1067+899 = (1)6521<67> = 11 × 29050993 × 115608189353<12> × 30075664000838275197606505134302672959557349259<47>
1068+899 = (1)6621<68> = 3 × 72 × 30184197091<11> × 2504151084212258770876938835869828847762478174900738873<55>
1069+899 = (1)6721<69> = 112 × 21407 × 12751253 × 3364057794991725932016657174069532426214471164491405931<55>
1070+899 = (1)6821<70> = 1283 × 5393177 × 2617876477<10> × 61339044944049950968158700107214150970612945746703<50>
1071+899 = (1)6921<71> = 32 × 11 × 263 × 586675183 × 54752277161<11> × 314460716193259<15> × 42247425082174600612152135960449<32>
1072+899 = (1)7021<72> = 31 × 547 × 730663 × 13224467233<11> × 22398163883<11> × 11763672788516733611<20> × 2573699368247713065739<22>
1073+899 = (1)7121<73> = 11 × 163 × 11933903 × 12146755889<11> × 276361999729<12> × 15468780156912707326255273239705543380479<41>
1074+899 = (1)7221<74> = 3 × 7 × 41341 × 5012348354971<13> × 2553383053385328272496021777359064608998439062959393091<55>
1075+899 = (1)7321<75> = 11 × 1693 × 64621 × 19145858004397<14> × 4822356790686099705909909810391537186090866375018071<52>
1076+899 = (1)7421<76> = 17 × 19 × 589639 × 12727601 × 491221651 × 933135505998726990077197414972424457175576084468943<51>
1077+899 = (1)7521<77> = 3 × 11 × 18379 × 1824424397<10> × 190253120111<12> × 384436097786407<15> × 137290299865372274215656720560131687<36>
1078+899 = (1)7621<78> = 409 × 1459 × 239779 × 451033198251174043<18> × 1721706966595364935023703539627829324462690099603<49>
1079+899 = (1)7721<79> = 11 × 16993237 × 31893731631111670062984293401<29> × 186373154239645393613854654479695621124703<42>
1080+899 = (1)7821<80> = 32 × 7 × 135274583 × 934962469849282853863063<24> × 1394461598704357711758356891041229263244143423<46>
1081+899 = (1)7921<81> = 11 × 29 × 421 × 1020653335690999<16> × 3201088962744467<16> × 253226241150244631652033496337220504393683063<45>
1082+899 = (1)8021<82> = 43 × 37573033 × 57293377 × 110915716115797<15> × 239205731135928928627<21> × 452421975238085265570592856693<30>
1083+899 = (1)8121<83> = 3 × 11 × 2767 × 1443293 × 8720729 × 9667787488040503524303315374688090625684196352615439435072559363<64>
1084+899 = (1)8221<84> = 601 × 197545888643<12> × 74113171781899<14> × 12627565302740215479668166611506258321941515435545414553<56>
1085+899 = (1)8321<85> = 11 × 149 × 21067 × 29021 × 4358090924274023<16> × 818051948863072854037<21> × 311018554142433213550129988731742627<36>
1086+899 = (1)8421<86> = 3 × 7 × 23 × 2963 × 64250177309<11> × 126010825643<12> × 4995250198120655403135699139<28> × 191972612435353414306062666893<30> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3866258049 for P30 / November 26, 2014 2014 年 11 月 26 日)
1087+899 = (1)8521<87> = 11 × 31 × 61 × 2212297 × 458698883 × 5263833741264277456658585656543449356727779515521817159958691597571<67>
1088+899 = (1)8621<88> = 1671983 × 638800051 × 3769230351907<13> × 13380319669855807029160187977<29> × 20627259017281757835586613389183<32> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3194659876 for P32 / November 26, 2014 2014 年 11 月 26 日)
1089+899 = (1)8721<89> = 33 × 11 × 83 × 2377 × 1322261391878375083674285226423<31> × 143409013980118340477129806980740892851772351673501<51> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P31 x P51 / November 30, 2014 2014 年 11 月 30 日)
1090+899 = (1)8821<90> = 6217441 × 207604508163671<15> × 86081343738931591722968624312978943926031728432200781365702893125111<68>
1091+899 = (1)8921<91> = 112 × 4451 × 18983888657<11> × 352175035438895980778169381307199057<36> × 308582136048927248765798581029679464499<39> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P36 x P39 / November 30, 2014 2014 年 11 月 30 日)
1092+899 = (1)9021<92> = 3 × 7 × 17 × 90610524619269473500578940652969<32> × 343487256762956900655818477129455392861500898145952029237<57> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P57 / November 30, 2014 2014 年 11 月 30 日)
1093+899 = (1)9121<93> = 11 × 619797165751<12> × 6004730261476527941359<22> × 456998376401617176625337<24> × 5938914310280496847443575733448867<34>
1094+899 = (1)9221<94> = 19 × 103 × 109 × 379 × 1949 × 2671364344078049<16> × 2639708634053631644463806040574697965763908153584314558973618534623<67>
1095+899 = (1)9321<95> = 3 × 11 × 52627631822509714516812090886803037<35> × 6397786201664585625485639397764647973041536734020270572901<58> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P35 x P58 / November 30, 2014 2014 年 11 月 30 日)
1096+899 = (1)9421<96> = 6714597994189631080039753327<28> × 16547693727496317194622349107625116129768643781403733521234029349823<68>
1097+899 = (1)9521<97> = 11 × 493733 × 874087 × 234055035354682391880352707425614790377917654095685835886779820005378206461257175441<84>
1098+899 = (1)9621<98> = 32 × 7 × 1447 × 13553 × 1202717059324569398131<22> × 893035649057362710824681<24> × 8372992550203763058645369837683462486122267<43>
1099+899 = (1)9721<99> = 11 × 809 × 1999 × 2246778627383117<16> × 10005173932269983548925420002493<32> × 277855221664277567797514887329575791240414141<45> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P45 / November 30, 2014 2014 年 11 月 30 日)
10100+899 = (1)9821<100> = 40156756629793913114491477<26> × 27669343950122034545145382035648988670327629874835674818966323290643352973<74>
10101+899 = (1)9921<101> = 3 × 11 × 3733 × 2032642166800973346013<22> × 3881587491930849858916751131835827<34> × 11431816649181003196465012753336118058539<41> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=697544996 for P34 x P41 / November 26, 2014 2014 年 11 月 26 日)
10102+899 = (1)10021<102> = 31 × 173 × 5843 × 9133 × 388240063767828888122285347866645143504238496588410377011170750437409410043277824979332493<90>
10103+899 = (1)10121<103> = 11 × 43 × 77227070153535372054239<23> × 3063153661868958577038541<25> × 9930200271674313848037577748780324150375071777137923<52>
10104+899 = (1)10221<104> = 3 × 7 × 127 × 18857293913<11> × 41282195818027036355005692363739<32> × 5351706839098768731916067411266564974944739810373260649009<58> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P32 x P58 / November 30, 2014 2014 年 11 月 30 日)
10105+899 = (1)10321<105> = 11 × 179 × 1301893 × 809716109585568541<18> × 53530796167025248859111238507837620360561393385926653488333067207179239115793<77>
10106+899 = (1)10421<106> = 827 × 1343544269783689372564826011017063012226252855031573290339916700255273411258900980787316942093241972323<103>
10107+899 = (1)10521<107> = 32 × 11 × 167 × 1667 × 6263188301<10> × 191435595185581<15> × 4536249795952649626154213<25> × 74123360684262774923500127937040686332105488714987<50>
10108+899 = (1)10621<108> = 17 × 23 × 28699507 × 327415159663<12> × 5210255164991<13> × 5804282209311349161990337274649784214626221081345237852020223211839280301<73>
10109+899 = (1)10721<109> = 11 × 29 × 47 × 599 × 235273 × 16963481 × 166666121 × 53372511723569<14> × 43464021815471607784340131<26> × 80178916145697574533715988324549383248949<41>
10110+899 = (1)10821<110> = 3 × 72 × 1039 × 13202173793<11> × 814341057529<12> × 60112864857670900149223492091926516236913<41> × 112565525994672081689593020573158692649117<42> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P41 x P42 / November 30, 2014 2014 年 11 月 30 日)
10111+899 = (1)10921<111> = 11 × 617 × 523433 × 106071152611<12> × 1401006482413<13> × 210465593863131138580152019811209631936517952323345606684359073436551348181157<78>
10112+899 = (1)11021<112> = 19 × 4861 × 58941755681<11> × 110625435388823<15> × 1845016301381074468251596585506902052368880898250288215895333850556710293149368913<82>
10113+899 = (1)11121<113> = 3 × 112 × 439 × 18541 × 1736237 × 151450347054947<15> × 180154196645771<15> × 93121660115843217527<20> × 852469438879448114101125146979350213615718142091<48>
10114+899 = (1)11221<114> = 1201 × 8462606639<10> × 15867453970289292154181<23> × 27318138327812307708744847933<29> × 25220400672792759859722102536481362589493826176543<50>
10115+899 = (1)11321<115> = 11 × 181 × 2484274209615908069371340374055261<34> × 224639797913323014184691970973857227766601204869528311688270891512225711925971<78> (KTakahashi / Msieve 1.51 snfs for P34 x P78 / December 6, 2014 2014 年 12 月 6 日)
10116+899 = (1)11421<116> = 33 × 7 × 1070291 × 2922391 × 1204457188091<13> × 177508414546187<15> × 24156608257043242157<20> × 117433177342384514231<21> × 30989774087585706395148323465261371<35>
10117+899 = (1)11521<117> = 11 × 31 × 131 × 1870163621<10> × 26824117087447730659707584693747<32> × 49582312139801662326543524673040526475632529067115115053607843502386673<71> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1175166151 for P32 x P71 / November 26, 2014 2014 年 11 月 26 日)
10118+899 = (1)11621<118> = 279481 × 11855525711713<14> × 919600332056060467609483<24> × 364657597111679581617361294972034228882478229762440952787458494003675005579<75>
10119+899 = (1)11721<119> = 3 × 11 × 17477507 × 141318179421379<15> × 45466197548998470198230233349419<32> × 2998315966753779167284754979079605957690639988483075037593888891<64> (KTakahashi / Msieve 1.51 snfs for P32 x P64 / December 6, 2014 2014 年 12 月 6 日)
10120+899 = (1)11821<120> = 59 × 182549 × 2679363912677<13> × 140759792461217797841<21> × 27353676041319320422855215502765881121092113644642199994602903040186927276504283<80>
10121+899 = (1)11921<121> = 11 × 726181 × 37740329251253865871<20> × 728337578013388217398706291343165195287<39> × 5060361249221002932906330163353911871056066494035747503<55> (Makoto Kamada / Msieve v. 1.53 (SVN 975M) for P39 x P55 / November 30, 2014 2014 年 11 月 30 日)
10122+899 = (1)12021<122> = 3 × 7 × 191 × 237556523193974460872691308156529859516481589443<48> × 11661055655208080579083498020805854935533634697639310083159047662239377<71> (Dmitry Domanov / Msieve 1.50 snfs for P48 x P71 / December 6, 2014 2014 年 12 月 6 日)
10123+899 = (1)12121<123> = 11 × 113 × 1345129 × 72784400133100154820005585628870881<35> × 913028047712843188880664473749008318386895323372974930024501109917958229977003<78> (Dmitry Domanov / Msieve 1.50 snfs for P35 x P78 / December 6, 2014 2014 年 12 月 6 日)
10124+899 = (1)12221<124> = 17 × 43 × 469547137754734081127679173<27> × 3237135780159389031142354802501697127734318337601567150983940994515260279337132295619819137767<94>
10125+899 = (1)12321<125> = 32 × 11 × 11867 × 88397 × 6097262323<10> × 54710424297130482780331<23> × 320729468329404579745010814121761128519456242351405581929471626547378718435063317<81>
10126+899 = (1)12421<126> = 4549 × 123838123 × 197236457130302748940574805441260075409407518613631028096508694360503766489248279185527530967572583166843078808023<114>
10127+899 = (1)12521<127> = 11 × 1327 × 5669 × 8389 × 10667 × 150049632488628944350477353075324172472428450818786724738248467616505290521437272576561801205351750869601007119<111>
10128+899 = (1)12621<128> = 3 × 7 × 103 × 563 × 132656441 × 195533278346083<15> × 351757651376829754506360182391532622000919796039351533035109210920846148628703220156520815133711003<99>
10129+899 = (1)12721<129> = 11 × 778317171062737171<18> × 748083312850102337492847337330168280707<39> × 17348352033725349645434376116363629482705074927495724022939195115307563<71> (Dmitry Domanov / Msieve 1.50 snfs for P39 x P71 / December 8, 2014 2014 年 12 月 8 日)
10130+899 = (1)12821<130> = 19 × 23 × 83 × 146247116526757658319567462753917<33> × 30541956037724609094268229601259790998280741<44> × 6858257726315967459110908364637681581823231402383<49> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1460753737 for P33 / December 6, 2014 2014 年 12 月 6 日) (KTakahashi / Msieve 1.51 for P44 x P49 / December 7, 2014 2014 年 12 月 7 日)
10131+899 = (1)12921<131> = 3 × 11 × 1322851 × 40942201092263928954662181032327770303236661822794922462909<59> × 6216721809605128296963365261491103999233285107078224349164474743<64> (Dmitry Domanov / Msieve 1.50 snfs for P59 x P64 / December 8, 2014 2014 年 12 月 8 日)
10132+899 = (1)13021<132> = 31 × 538259 × 446684247102971<15> × 309289110764214148237760854931<30> × 48199133390907540101991941581734688677925535692352328382900905592956876557503349<80> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=26605078 for P30 x P80 / November 26, 2014 2014 年 11 月 26 日)
10133+899 = (1)13121<133> = 11 × 157 × 389 × 1951 × 204897319516088654299057823<27> × 8576390951966062748565722010759005401<37> × 482411259097282414373322282832194903220009887153969748148059<60> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2630908207 for P37 x P60 / December 6, 2014 2014 年 12 月 6 日)
10134+899 = (1)13221<134> = 32 × 7 × 277 × 56429654121646339<17> × 11283134982194850028996686084041660607680102892616173111653714123951017494332383121567678609255798165700901227089<113>
10135+899 = (1)13321<135> = 112 × 47036107 × 2648700964218298147193069942602931<34> × 7370684486559511920348236316379756447286048012676717892197900993600116240288223423428598953<91> (Dmitry Domanov / Msieve 1.50 snfs for P34 x P91 / December 8, 2014 2014 年 12 月 8 日)
10136+899 = (1)13421<136> = 7750247118331<13> × 143364604269597359062928706121971904507308435312680570325862716876178263794181137463343159764618040302985670523599277853091<123>
10137+899 = (1)13521<137> = 3 × 11 × 29 × 247178117509976517604513812649563125771116751<45> × 46971619312029235970767447408431505996973869154591226449445856465378766317862220074717003<89> (Dmitry Domanov / Msieve 1.50 snfs for P45 x P89 / December 8, 2014 2014 年 12 月 8 日)
10138+899 = (1)13621<138> = 761 × 881 × 3221 × 4073 × 43319 × 40943663 × 7122405142602195775203184872884755083448766770907798687456644065452216314512628302699226729023382542112172101381<112>
10139+899 = (1)13721<139> = 11 × 151 × 649198386295366880567903641359331494827973920227<48> × 1030410858088162943594126125472297642315204128233522463619848200620842413521500921992343<88> (Dmitry Domanov / Msieve 1.50 snfs for P48 x P88 / December 12, 2014 2014 年 12 月 12 日)
10140+899 = (1)13821<140> = 3 × 7 × 17 × 103409 × 300975355484776385107622632175336371637410402383072300868737974849457920962107934114580481121566122132121336878233109247248988186317<132>
10141+899 = (1)13921<141> = 11 × 433 × 19309411187750606920431228178101438181<38> × 1208113891919958209889238758042580470535955000684917922623318233206428230008511605184288032574212807<100> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=689360695 for P38 x P100 / December 6, 2014 2014 年 12 月 6 日)
10142+899 = (1)14021<142> = 27793 × 7445161 × 5369674612218720541299120254551846801393351698748450231051024575788814503080045934003227724168825486471498651419980663978415913177<130>
10143+899 = (1)14121<143> = 34 × 11 × 2672599328030777679812120600954887<34> × 4666012862444902206344462729229225536363567412582134525790015092950256745224785859821062525478804092715013<106> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=2913318433 for P34 x P106 / December 6, 2014 2014 年 12 月 6 日)
10144+899 = (1)14221<144> = 359 × 3159438666228809813<19> × 12993184445125966353566232497262630460198393937727085436711<59> × 7539412574241687244662806070436598280796290908841968244295039133<64> (Cyp / yafu v1.34.3 for P59 x P64 / December 14, 2014 2014 年 12 月 14 日)
10145+899 = (1)14321<145> = 11 × 43 × 173 × 88667 × 5504148659<10> × 92457448224656923123303607<26> × 763002763110294217535863799505262398731<39> × 394393785754135926901990586162946583003506969900726133690049<60> (KTakahashi / Msieve 1.51 gnfs for P39 x P60 / December 6, 2014 2014 年 12 月 6 日)
10146+899 = (1)14421<146> = 3 × 7 × 127 × 1987 × 331921 × 4535227 × 1565268891619133867461548858317<31> × 1990930836958505119868319516655962942509<40> × 446948743390712810884716106162261357405082365356106996699<57> (KTakahashi / GMP-ECM 6.4.4 B1=1000000, sigma=1400819758 for P31, Msieve 1.51 gnfs for P40 x P57 / December 6, 2014 2014 年 12 月 6 日)
10147+899 = (1)14521<147> = 11 × 31 × 61 × 9283 × 1843479611<10> × 6555933807767<13> × 47611517899732811230046460438967568101182393380907236811650694821469975569552624366235326312462733118436905053708551<116>
10148+899 = (1)14621<148> = 19 × 503 × 248804782760463646439881934271281958097078600947923<51> × 467279985800288270357977970675188237897398224699831261186859945440048034957829801605611610911<93> (Dmitry Domanov / Msieve 1.50 snfs for P51 x P93 / December 14, 2014 2014 年 12 月 14 日)
10149+899 = (1)14721<149> = 3 × 11 × 29347 × 146545103 × 30299262629<11> × 4245035655683987<16> × 101123575886674849597<21> × 14950005211208102033507<23> × 402625580169915948849386111457990367681548620771600823368389399021<66>
10150+899 = (1)14821<150> = 3952218377<10> × 426398290581668580385153475673859<33> × 65932736673764953426226180217720508586760398948963667315105692118104386787994851017014984438213939860476547<107> (Serge Batalov / GMP-ECM B1=3000000, sigma=1153307977 for P33 x P107 / December 11, 2014 2014 年 12 月 11 日)
10151+899 = (1)14921<151> = 11 × 3701 × 6084427516118169797<19> × 643322453377439740079868767400301821615258691<45> × 6972640740016255674968800615390420974514334076940025652205974200466299645497185193<82> (Cyp / yafu v1.34.3 for P45 x P82 / December 19, 2014 2014 年 12 月 19 日)
10152+899 = (1)15021<152> = 32 × 72 × 23 × 46051 × 32727474672864041041<20> × 79809370138055796808228121602534770471646965089<47> × 9107215661896583240539723360426202024508812960517551078324574096029571166453<76> (Dmitry Domanov / Msieve 1.50 snfs for P47 x P76 / December 19, 2014 2014 年 12 月 19 日)
10153+899 = (1)15121<153> = 11 × 5339975201877277100738804884889042723984938525018952321167<58> × 1891583709500949410425036067546688638745431340648964138841070349971285377202559165697149257533<94> (Serge Batalov / Msieve 1.51 snfs for P58 x P94 / December 9, 2014 2014 年 12 月 9 日)
10154+899 = (1)15221<154> = 163 × 419 × 178336859 × 2279403947<10> × 2352182898153418696799448566027<31> × 17014624379800890703317456157143513039528307243460272419333126652729903791788284935726608798991435683<101> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=4192273170 for P31 x P101 / November 26, 2014 2014 年 11 月 26 日)
10155+899 = (1)15321<155> = 3 × 11 × 47 × 1493 × 15530595121895512381<20> × 308956820504134094991584395207672956819991717396441032528546495247089285750196752458475620026043202991368799486326426418472088287<129>
10156+899 = (1)15421<156> = 17 × 6983 × 684109 × 251097581266187<15> × 4504023274069821478078306720040189033406671830890649<52> × 1209756788574252942887734506923308854895960782759309518977860775379152449096833<79> (Cyp / yafu v1.34.3 for P52 x P79 / December 18, 2014 2014 年 12 月 18 日)
10157+899 = (1)15521<157> = 112 × 2383 × 1489720864253973130148577416211293<34> × 2586682813775033740099368754671507536071687699826380691525486850186805225249297886556306432145938937606863975369381379<118> (Serge Batalov / GMP-ECM B1=3000000, sigma=1847784143 for P34 x P118 / December 11, 2014 2014 年 12 月 11 日)
10158+899 = (1)15621<158> = 3 × 7 × 43560589438298987269<20> × 2294787091386889302912308996150305697893299180334417077799693<61> × 5293001899386038999290150473775918499747616669518963604964085329061458599053<76> (Cyp / yafu v1.34.3 for P61 x P76 / December 17, 2014 2014 年 12 月 17 日)
10159+899 = (1)15721<159> = 11 × 418066928029724197863359794671077<33> × 24161227362839683667458959033655950659734541886840843434189294648382573846544556307764273032944390102310914890227627393781143<125> (Serge Batalov / GMP-ECM B1=3000000, sigma=3473475398 for P33 x P125 / December 8, 2014 2014 年 12 月 8 日)
10160+899 = (1)15821<160> = 507036567746187542160648729747573735524974451321799953<54> × 2191382598004866809482485731143672972656373993550352099137056498602568791868927609394469581894796436414657<106> (Serge Batalov / Msieve 1.51 snfs for P54 x P106 / December 9, 2014 2014 年 12 月 9 日)
10161+899 = (1)15921<161> = 32 × 11 × 221813525963<12> × 7077420257394526886699862503819680007120138928995743723023561459031374737<73> × 71492302734501683208167210263998261933781412684453825797834508325358550209<74> (Cyp / yafu v1.34.3 for P73 x P74 / December 16, 2014 2014 年 12 月 16 日)
10162+899 = (1)16021<162> = 31 × 97 × 103 × 2946924977844607<16> × 1847432721526064641426435250289837949897<40> × 65894493847204024329407413119514366333267280546275647392960939605788315629501580534436314562250216719<101> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P40 x P101 / January 3, 2015 2015 年 1 月 3 日)
10163+899 = (1)16121<163> = 11 × 547 × 593 × 1597 × 194992483009848624193525575775347684465247995124372388192844004276033604248185074213292668675882120102522142335675810848965535413293607845476988057829653<153>
10164+899 = (1)16221<164> = 3 × 7 × 9463 × 13314773 × 1099775265233<13> × 595413391410589<15> × 6412878963093193010141368006606102869725930423981583880940836618903179138324750454644176925156629013769675723930431524402827<124>
10165+899 = (1)16321<165> = 11 × 29 × 1457197601107412583514044091141<31> × 19219961135878697885427553439064242535825735835150531<53> × 12436433579453562488478768713590475091473127548781220435552134325488680011266529<80> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1330358245 for P31 / November 26, 2014 2014 年 11 月 26 日) (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P53 x P80 / January 7, 2015 2015 年 1 月 7 日)
10166+899 = (1)16421<166> = 19 × 43 × 162359 × 82152072752569<14> × 101962515379802999290851975926447256147487849979395139588632363647385162506866611518153057911768626647585148626673467353365546923000253862316703<144>
10167+899 = (1)16521<167> = 3 × 11 × 59887 × 205663 × 1822386337670531828046343<25> × 15000798429085673628241068585781450763211852019529744794874360183577889446362103540400922797545641727321455178451105208919017491639<131>
10168+899 = (1)16621<168> = 13049 × 131310067914428040700859<24> × 178523619388660563657934436941514119<36> × 363234047729249530871209594976807887639708993256958608976876703514683116846567725399019717782900298709549<105> (Serge Batalov / GMP-ECM B1=3000000, sigma=1158463843 for P36 x P105 / December 17, 2014 2014 年 12 月 17 日)
10169+899 = (1)16721<169> = 11 × 75617 × 27337465715448467<17> × 2387109815575329803741<22> × 178496335245462923721233<24> × 604003998749929018799448856477<30> × 189865297605703296133334918883006512625772138275275673729272311421465929<72> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1088410853 for P30 x P72 / November 26, 2014 2014 年 11 月 26 日)
10170+899 = (1)16821<170> = 33 × 7 × 2777445007<10> × 6006958935223296693109181915607469<34> × 2461956012521471705078882374257495241534109039424859767325549<61> × 1431249228052747436470139456413891366816930888995990086213019667<64> (Serge Batalov / GMP-ECM B1=3000000, sigma=1784802931 for P34 / December 11, 2014 2014 年 12 月 11 日) (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P61 x P64 / April 9, 2015 2015 年 4 月 9 日)
10171+899 = (1)16921<171> = 11 × 83 × 12140861 × 21601740356290134141847578407<29> × 464032591394507338364404005522709637480195301924094604846301054991003873527400551727063791719993920596853060021725669206357163412771<132>
10172+899 = (1)17021<172> = 17 × 1741 × 40801 × 34188589 × 124746754177523706301896936024194303<36> × 20640938525289351614189443926938069902743413<44> × 10451993199148775712996928394414115361139488491547927675903170728929146882283<77> (Serge Batalov / GMP-ECM B1=3000000, sigma=3096814170 for P36 / December 11, 2014 2014 年 12 月 11 日) (Cyp / yafu v1.34.3 for P44 x P77 / December 13, 2014 2014 年 12 月 13 日)
10173+899 = (1)17121<173> = 3 × 11 × 140452843 × 171250187947779248467<21> × 120072911009134695809982832504201001<36> × 17321916450790820346303567327049095679<38> × 6730401616597586126987048421046264999216464576893844699174560475029863<70> (Serge Batalov / GMP-ECM B1=3000000, sigma=3546495694 for P36 / December 11, 2014 2014 年 12 月 11 日) (Cyp / yafu v1.34.3 for P38 x P70 / December 11, 2014 2014 年 12 月 11 日)
10174+899 = (1)17221<174> = 23 × 132833 × 16820917281833001639894617<26> × 26482079338107948371933073270613334045411<41> × 81643556683879362211430051652138464827665173349199850245021390304379100754583721347034980462731409637<101> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:4278826587 for P41 x P101 / March 6, 2015 2015 年 3 月 6 日)
10175+899 = (1)17321<175> = 11 × 5189 × 8608498248193973<16> × 172252451963138231<18> × 1034469230222654121675816475112029492005493868141107647551<58> × 12690266697544847364368885932331304409493235600967097968534601577587062577713123<80> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P58 x P80 / August 16, 2015 2015 年 8 月 16 日)
10176+899 = (1)17421<176> = 3 × 7 × 1553 × 411449 × 219550511 × 28123725803<11> × 72945851339183<14> × 1891854807205664484876454717523406740669<40> × 472032583857901648584882051037864630986157319<45> × 2058652495410110206407372265012376488665023909677<49> (Jo Yeong Uk / GMP-ECM v6.4.4 B1=11000000, sigma=1038039703 for P40, Msieve v1.39 for P45 x P49 / May 29, 2015 2015 年 5 月 29 日)
10177+899 = (1)17521<177> = 11 × 31 × 193 × 157901 × 3559001110612137755799512826783199352559580463<46> × 3004227371062935970965197667234101475034361954686403140570442461976984845654968268022860577374818387933145082342327428559<121> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P46 x P121 / October 17, 2015 2015 年 10 月 17 日)
10178+899 = (1)17621<178> = 59 × 314989 × 955957412576363<15> × 62541968448896025317624853483491619194863341794599459038417009541088139618415978191364291703430216577034408741559977915698604265083571726624548581270100717<155>
10179+899 = (1)17721<179> = 32 × 112 × 156971 × 3181745153<10> × 7447319449<10> × 16736050525545294107545990109116240348001<41> × 163904860771928433366197721083940917878680873541023155900001397573820711767508737869998249121528241369654916747<111> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=1417510222 for P41 x P111 / May 2, 2015 2015 年 5 月 2 日)
10180+899 = (1)17821<180> = 336743333 × 1626389393<10> × 332725534101326348053343862082552771<36> × 289481280247761294572842666593472684762603231282699<51> × 2106334473169202249788701035845833949495905802539933562523281717658557031821<76> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=2682295084 for P36 / May 10, 2015 2015 年 5 月 10 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P76 / May 24, 2015 2015 年 5 月 24 日)
10181+899 = (1)17921<181> = 11 × 1134770472611317<16> × 82015439749007861551681<23> × 233463653722479165987081546629893<33> × 19530883398902102995548739334922519154434998233<47> × 238023586983628789061002598290676774407676770705832867413751347<63> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1147185745 for P33 / November 26, 2014 2014 年 11 月 26 日) (Ignacio Santos / GMP-ECM 7.0 B1=43000000, sigma=1:2202575875 for P47 x P63 / December 8, 2014 2014 年 12 月 8 日)
10182+899 = (1)18021<182> = 3 × 7 × 133519455899634228889319338401540474783611<42> × 3962722327884939724925062852731018725669295831804154991861456063006997737737530612197367469098529024812378754223486149883971092786131765591<139> (Robert Backstrom / GGNFS-0.77.1-20060513-nocona, Msieve 1.44 snfs for P42 x P139 / December 26, 2014 2014 年 12 月 26 日)
10183+899 = (1)18121<183> = 11 × 16678733 × 664045601 × 3037758746235461<16> × 422731422569212038211017340471584031<36> × 710208775000683762714572302749196289477020487268179163574114819835012728654727565690178302897511215073466269979437<114> (KTakahashi / GMP-ECM 6.4.4 B1=11000000, sigma=1959991925 for P36 x P114 / May 21, 2015 2015 年 5 月 21 日)
10184+899 = (1)18221<184> = 19 × 31891 × 960089152709<12> × 15503497999151<14> × 123195399875744534930819599047577999577182336716333523387104504237928568568893938543115359644649755399928577522315212286659725903516671746477774490041211<153>
10185+899 = (1)18321<185> = 3 × 11 × 2207 × 39681761753<11> × 1305127894073<13> × 6996466878709717<16> × 421035211650911526459865031586069014561532857780437143543569165828892350275078165827934505945773101764196664636371650696251228893777017569667<141>
10186+899 = (1)18421<186> = 973823 × 5806905757<10> × 713651954350935517<18> × 27532536635262693688018243768399218785522815511536066302340228290425955274587677167011624212306167024321424056602803672104188157601766444675863663547383<152>
10187+899 = (1)18521<187> = 11 × 43 × 321091 × 41396350837043267972042408777508930628774442735703473<53> × 176728323714332945455749117240825263427079664743672902555661965017682636639194610488749138234478831635761516368636661059779139<126> (LegionMammal978 / Msieve 1.53 snfs for P53 x P126 / February 17, 2017 2017 年 2 月 17 日)
10188+899 = (1)18621<188> = 32 × 7 × 17 × 127 × 173 × 1429 × 6644873 × 237996910601<12> × 12801673360474732096409<23> × 3477870440744927566733426610967<31> × 4692970466116012777316307718522199807024185176683301417052372777323026627710182488425561687325050993600831<106> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=152081056 for P31 x P106 / November 26, 2014 2014 年 11 月 26 日)
10189+899 = (1)18721<189> = 11 × 1033 × 27987529 × 114493823 × 3987085161217034024777834444334583987<37> × 462089201780190748710594757751701227323065088331037<51> × 1656290605279183249118877320970990839209367303401890467883621542056509681438605179<82> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1188644891 for P37 / November 18, 2015 2015 年 11 月 18 日) (Erik Branger / GGNFS, Msieve gnfs for P51 x P82 / November 22, 2015 2015 年 11 月 22 日)
10190+899 = (1)18821<190> = 683 × 30697 × 586759204697873888485909646877967611997<39> × 90319378694274719339010948051685010023531816737023029892430131025551547922512832558797925749316240320739623971384498790438047529658669025273143<143> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=4071394576 for P39 x P143 / June 15, 2015 2015 年 6 月 15 日)
10191+899 = (1)18921<191> = 3 × 11 × 487 × 1613 × 4955594701<10> × 86493693343876384601513187887874344513552483340049289193857644970545081646306406847667835095760566862008811819813973754481029654862011876368368933043475663369000037354834127<173>
10192+899 = (1)19021<192> = 31 × 491 × 1570633 × 11282221 × 11671476163<11> × 2301980424766196625509<22> × 15332662296022092204552844028715383235603143262385608715291150768123182214534980782773688641443588183278421795357750257735992544001064697373271<143>
10193+899 = (1)19121<193> = 11 × 29 × 54342453953<11> × 79501357636576809989341536005274108715297768067<47> × 806218976732694686870661747978938419703238790873944856669559855736987396121398655602857488027434318481123322516214683676705088747109<132> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=4084324523 for P47 x P132 / September 29, 2018 2018 年 9 月 29 日)
10194+899 = (1)19221<194> = 3 × 73 × 2819 × 4919 × 285007 × 15344225749<11> × 12938234417991024085721<23> × 13762416459378927275344781948053393977889920628813317537149397761046431858970518588375561867907439376348971135374441364195449773899907804496079603<146>
10195+899 = (1)19321<195> = 11 × 452853697 × 4935011581<10> × 47214814643<11> × 2853601902514153477<19> × 57878559719724802609240438731361<32> × 579601260572660578712721379273490121569183419092570241962119209893685935935857694182096719430052715826144035351313<114> (Serge Batalov / GMP-ECM B1=3000000, sigma=2371660806 for P32 x P114 / December 11, 2014 2014 年 12 月 11 日)
10196+899 = (1)19421<196> = 23 × 103 × 820241 × 5722561394017424145773833<25> × 10983077223000053981162470689091284175084038053570539298832358647014666491<74> × 9097801525135573688453944801824209636434068363089483036082098915169698836717882713515483<88> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P74 x P88 / February 14, 2019 2019 年 2 月 14 日)
10197+899 = (1)19521<197> = 33 × 11 × 20749 × 1095071 × 131542315553238370840376737079075234247833984302308968281278566716894727<72> × 12516880616435893364107858359932360461752942770249861029490338411963610816874245626878723843309628871966364937621<113> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P72 x P113 / March 13, 2019 2019 年 3 月 13 日)
10198+899 = (1)19621<198> = 193081140878796551<18> × 5498288626594842755068640259852599756041789<43> × 2855336057440906017855244177752313051797944936945027341<55> × 36654970190472430123691297140973938580614371863308799028599822906394837571584074879<83> (Jo Yeong Uk / GMP-ECM 6.4.4 B1=11000000, sigma=210325999 for P43 / November 28, 2018 2018 年 11 月 28 日) (Eric Jeancolas / cado-nfs-2.3.0 for P55 x P83 / February 24, 2019 2019 年 2 月 24 日)
10199+899 = (1)19721<199> = 11 × 617 × 787 × 829 × 5527 × 8017 × 6552824228645463023<19> × 6201153913019648118130882443046283<34> × 139363165026585539102970945092466249748685573520877749145546203791550787445980727558672369143856078136306352565370283921009261391<129> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=579539431 for P34 x P129 / November 26, 2014 2014 年 11 月 26 日)
10200+899 = (1)19821<200> = 3 × 7 × 177211 × 9192100536684210869788901<25> × 45597367780324401200085438960540146885725758418869111727846857420061152937706694961<83> × 7123492659859634118550648089803019569917195587194975228245371719917050231480348742331<85> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs for P83 x P85 / September 3, 2019 2019 年 9 月 3 日)
10201+899 = (1)19921<201> = 112 × 47 × 180385529809<12> × 7751504932628771543010951028010830696991939422335440304950099240647502166673318529969<85> × 13972899592147829176419558975015555306058102283924191104781515635380223129394409214151863445289239223<101> (Bob Backstrom / Msieve 1.54 snfs for P85 x P101 / April 10, 2021 2021 年 4 月 10 日)
10202+899 = (1)20021<202> = 19 × 109 × 188333 × 225067 × 756527 × 16730723148118115473178255580086151933023367740787592741809063027752454539153723593795166449588514740948677859732664698866825884396304473931143585473544076669020254678949836725231383<182>
10203+899 = (1)20121<203> = 3 × 11 × 277 × 1430617 × 849650662077028546274734462921948885346632574470895594762805837563920346051039104435729202227857857014092748880568295810426487985825067087288578760932277714990051001170830312031762137449666293<192>
10204+899 = (1)20221<204> = 17 × 6815501471<10> × 243247257889763<15> × 1247609748982903120186790131501633025630200101319<49> × 3159977864297523427473466843796471139759963854869082157153804903893582539708616018076609464461317246447388417663006823375579660099<130> (Bob Backstrom / GMP-ECM 7.0.4 B1=44790000, sigma=1:94165985 for P49 x P130 / July 11, 2021 2021 年 7 月 11 日)
10205+899 = (1)20321<205> = 11 × 549169 × 3336017 × 1225120529700477426926684065537537<34> × 290011537018234934924270587377708869<36> × 907803298374783605891227186101525289058684070721<48> × 170940388877834048764289047931931368353300173724855292679411871783575677239<75> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=2056384790 for P34 / November 26, 2014 2014 年 11 月 26 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=71630586 for P36 / November 18, 2015 2015 年 11 月 18 日) (Serge Batalov / Msieve 1.53 gnfs for P48 x P75 / November 22, 2015 2015 年 11 月 22 日)
10206+899 = (1)20421<206> = 32 × 7 × 1629431 × 88653129767<11> × 11489926238263449421<20> × 27789977986770271271<20> × 54373388606795690701749714268151112143594510313054676816297702517<65> × 70322621373033586703810780743319421888601962740854678540495142986291103834172378793<83> (Thomas Kozlowski / cado-nfs for P65 x P83 / August 2, 2024 2024 年 8 月 2 日)
10207+899 = (1)20521<207> = 11 × 312 × 61 × 309853 × 1764901560987929443<19> × 333769196156042082218463021747157295754620962275095312259542291149791131105207314180601<87> × 944037263596847099314036396288516889878678037991552897810522059000590646570081431387692529<90> (ebina / Msieve 1.53 snfs for P87 x P90 / June 2, 2023 2023 年 6 月 2 日)
10208+899 = (1)20621<208> = 43 × 839 × 1448693608907<13> × 1375269298189769023293780763<28> × 897005259009019459496337158802095852407378814946512934342869025452534685962923<78> × 17233273991286234729423164698575372844798619319055863571406727617063160978020179439111<86> (Bob Backstrom / YAFU, GMP-ECM B1=2000, sigma=3433490832 for P78 x P86 / November 14, 2024 2024 年 11 月 14 日)
10209+899 = (1)20721<209> = 3 × 11 × 229 × 10159 × 2503927 × 366905483396743<15> × [157536518133093666736476714099642224293516340771308500422184575790379349047557582690097937419373610607575274973956980718389423224357010566187148755719336267799349537506884999468147<180>] Free to factor
10210+899 = (1)20821<210> = 1481 × 44027 × 1704053942454640252460499250009222765950050126706379337065862415915013158798266601567034713860536029968705918414331183630091686128198128606937963948601963728247340321552899995380820978188206667655324683<202>
10211+899 = (1)20921<211> = 11 × 157 × 146383 × 17766254829251<14> × 21791317848581458762951559849993<32> × [11352594536842845251514592318545362858363707828286052521606283023959385448808869694886143145604149790963855919102884879947097874242876129649388147712303716467<158>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3125929740 for P32 / November 26, 2014 2014 年 11 月 26 日) Free to factor
10212+899 = (1)21021<212> = 3 × 7 × 832 × 1824422703569<13> × 42097523011178882156303475929958644528908063804873560291360430090711041250612652697003155378502177219295026904243356103217325953554318617568037086337607091782051558878967114991878869523627799861<194>
10213+899 = (1)21121<213> = 11 × 1753 × 2939 × 3947 × 496725181172501144991877929139299230504829633625660259397373935471385588160636518538895898489789319051700713161497531350439564412306266052680039095133550996632865157457629413558268172784251404262603539<201>
10214+899 = (1)21221<214> = 151 × 6709 × 16399753189942898311<20> × [66878332978376129536135178473836914740754746982339994552051601414940193072875029848129860846533656195253734893420111368328484837105556113886287336617092053139402347403418877799399434246029<188>] Free to factor
10215+899 = (1)21321<215> = 32 × 11 × 540246094643<12> × 403682650108343<15> × 177134436985140758758556200039<30> × 2905277189685224952969585689952295088061215541626842004823846024797028651069043550036897271292355952351051502536923713578710296035255276394744705215752223289<157> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1411185203 for P30 x P157 / November 26, 2014 2014 年 11 月 26 日)
10216+899 = (1)21421<216> = 4210501504144823<16> × 26389044393342026587941135383231942923800772840445353225561819849411831886869631523532402107171549425183201599138486925931538158889333093639545989933210374697211789671014165274974766201506964369798327<200>
10217+899 = (1)21521<217> = 11 × 191 × 1452462825831729347<19> × 23642973775958589726740762343391491073<38> × 4373072761529608371379469758845144841269126239<46> × 252988168439956157526446421834506182249332189497387173<54> × 13919941092299097478005555510455973129706272354142058377853<59> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=3375552099 for P38 / May 22, 2015 2015 年 5 月 22 日) (Bob Backstrom / GMP-ECM 7.0.4 B1=50690000, sigma=1:2318476848, Msieve 1.54 gnfs for P46 x P54 x P59 / September 20, 2022 2022 年 9 月 20 日)
10218+899 = (1)21621<218> = 3 × 7 × 23 × 1259 × 3301 × 454889 × 694662297167897<15> × 30145778030393891<17> × 21478386853802743405320679<26> × 27054018638857636661485426743100699601784095504943308308932269328756620932339250136917819077443459642420741116212814881598274329168920749371605289<146>
10219+899 = (1)21721<219> = 11 × 259823 × 52358771 × 9181416859<10> × 852512600423186602454053328962894039<36> × 688638790147037432493259230327920742361228409574199274479676539465313<69> × 137751321394225627822104531494500216289466223869320602914626158290388077087738163221916459<90> (Cyp / GMP-ECM 6.4.4 B1=11000000, sigma=249816248 for P36 / January 30, 2015 2015 年 1 月 30 日) (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P69 x P90 / October 22, 2019 2019 年 10 月 22 日)
10220+899 = (1)21821<220> = 17 × 19 × 7507 × 74923 × 22716845209699<14> × 26289328383250873<17> × 102147083502950697709<21> × 927740137719744529896194387<27> × 74282465889138735512513933069<29> × 1454813270372410712978237753975186437104099983395822247522255341677784562361586590383764740247707974083<103>
10221+899 = (1)21921<221> = 3 × 11 × 29 × 421 × 151681 × 1233065887<10> × 1784100575116477<16> × 82646916967871305693315239959883766550254745322745454154597410552837089194677016643510691804281327138650039952399566567222999447385236060811765459169844864734314148205761423684033305547<185>
10222+899 = (1)22021<222> = 31 × 89381 × 1769124443<10> × 7689160106123<13> × 2947903756381093646186381381639297489979734368966333864218323827626817108403089751128708728744452408341984878680643488657389771559861627626051318450698332725338761116637983027091419580173392299<193>
10223+899 = (1)22121<223> = 112 × 645739 × 7910482458817057341555670122908704827197<40> × [1797678943899526830767597904530242769680560341351709020794996520711612897119524036218314624153120071566116435117889243659454272328358442561752853724563397669919741222690342247<175>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3:1257528662 for P40 / August 26, 2018 2018 年 8 月 26 日) Free to factor
10224+899 = (1)22221<224> = 34 × 7 × 48817 × 2285066053115868713411450624611<31> × 175672825465918572931156548995539072344742709784742339558504398051025065660775389140761442433200331082378939936129621084069072647939485890092328047818050971858444750828843374006464738349<186> (Serge Batalov / GMP-ECM B1=3000000, sigma=1624296624 for P31 x P186 / December 11, 2014 2014 年 12 月 11 日)
10225+899 = (1)22321<225> = 11 × 12726236559064183<17> × 544771545568874455113920936396629734644297<42> × [1456969291130273048952311131741109805082847328744965601444367727994164130837620069390576144720561187492030897272280271606045370188815591488247392224029347991340965661<166>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3:1942528148 for P42 / August 27, 2018 2018 年 8 月 27 日) Free to factor
10226+899 = (1)22421<226> = 187073 × 1226125676323<13> × 5502858971187049<16> × 13015137675897827<17> × 2002781175126687635687873<25> × 169290724852481270393328197896831<33> × 199483775023925915631179436789719126253663681027106436612126875181084188857703524296767037059151776946398403016613840351<120> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3116274723 for P33 x P120 / November 26, 2014 2014 年 11 月 26 日)
10227+899 = (1)22521<227> = 3 × 11 × 401 × 26263 × 3200317979<10> × 39477664435487858996449699<26> × 253052284208990269985595149862863335576187798483865705215039440187046191344968194386469008619725722267809265614388805752083790345986644015213980618155628132824154458019899552545070519<183>
10228+899 = (1)22621<228> = 20341 × 7680289 × 9021923 × 611069423 × 273084942949067<15> × 11431915211958548726168693<26> × [41323891211641592196627730312442687028459396668272240014685623569163201606190240978721512146428742061002789228907431401310222034225347253270836319134854165042071<161>] Free to factor
10229+899 = (1)22721<229> = 11 × 43 × 719 × 15836173 × 6791604241<10> × 13504200206666453818943<23> × 26242644061998742864134009184197746892146707219<47> × 145839782021954890406284994854782003347405508078183505138481321606549<69> × 587749660048540150456034960988843337209671556995405662241218940913107<69> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=1845417956 for P47 / August 26, 2018 2018 年 8 月 26 日) (Kenji Ibusuki / Msieve + GGNFS-0.77.1-VC8 snfs for P69(1458...) x P69(5877...) / September 20, 2018 2018 年 9 月 20 日)
10230+899 = (1)22821<230> = 3 × 7 × 103 × 127 × 1873 × 110574661567727978655751907<27> × 195300724320309052659484685267939542948335077738146483593215813291294705945963395537634464467123194199375043315378330492913155194283684776142615051149588142537796780291208068164370382702656547511<195>
10231+899 = (1)22921<231> = 11 × 173 × 2063 × 174835064432975383180154262165245453<36> × [161879157849035013770519321390061476608487688830696196563521416156974940483115395792559933283280245826262182981878062817041554561698501781441737977049976489303967944119316672132234462947413<189>] (Cyp / GMP-ECM 6.4.4 B1=3000000, sigma=4048255840 for P36 / December 7, 2014 2014 年 12 月 7 日) Free to factor
10232+899 = (1)23021<232> = 431 × 1901 × 5003 × 73750158653<11> × [3675400260152435247013522988393599774917710489142509490125258951161048439001347020216859319000007766913463202568649860088010853107908416996702840221426188082080154606038614505563697376672347499006295000246658949<211>] Free to factor
10233+899 = (1)23121<233> = 32 × 11 × 149 × 3143051 × 5846461 × 22590294901<11> × [1814552934890306348270024816108312272870064249808237395668338149300775906910144645204619752523427624035069105868272343493214121175953462705222528418004242252619999101799478283019470180836799713563404274861<205>] Free to factor
10234+899 = (1)23221<234> = 1091 × 14837377 × 1870785641<10> × 2510644570829130469<19> × [1461390722342753198190527835900279404316012892812082256242618698521711391970508364409933949983445498235631651334834178491408398166635184506390805105273811483582280611689159757878006328902159896807<196>] Free to factor
10235+899 = (1)23321<235> = 11 × 113 × 163 × 11801 × 354553 × 989029 × [1325225416647660597916406580676869852650981395076724029553360648931132155966646867672388827888926166015347442569130849198294888748151773813324116974798920724661219296730494547651238396418902462325003480687655666237<214>] Free to factor
10236+899 = (1)23421<236> = 3 × 72 × 17 × 59 × 647 × 1701313 × 34697730499089416696508478253<29> × [1973102523876049555358283409372537805967621964496385869153106398019374025542778518540815706476978245489845744687573825477001041974689941751199260695054801012865793513614478735660506139993207507<193>] Free to factor
10237+899 = (1)23521<237> = 11 × 31 × 3919454977<10> × 514091568366796751<18> × [161710027315794123790168051822371905256165104147557268155708483351904087038135160955423611956946578614531652574902640783161202538114690082983695890099025180882973167118411810066129202804775335051459601567203<207>] Free to factor
10238+899 = (1)23621<238> = 19 × 1237 × 4706083 × 28730161 × 150809522851602895011896894771405789<36> × 173341126306455911384298606819260657309<39> × 13375381184136394503237015772788218304410588588106946685013364956118116046771474983208043119734659354605911355517843876082195749740277939255120189<146> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=2958640057 for P36 / November 18, 2015 2015 年 11 月 18 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3494537738 for P39 x P146 / August 7, 2018 2018 年 8 月 7 日)
10239+899 = (1)23721<239> = 3 × 11 × 223 × 1801 × 2912359 × 5416492982489<13> × 379283822017646671314244606467787553<36> × [140119172179922982579255796794707090447014878758035568746881041559250428544486932444382615468389814495576625692731225832525585475288833581273683888404378131190406401813669844473<177>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1955055948 for P36 / November 27, 2014 2014 年 11 月 27 日) Free to factor
10240+899 = (1)23821<240> = 23 × 1459 × 71760770371<11> × [46141028441512471253151536952521071659987032314274536935594595634801958051325084294791063818735911015444749875583710574460366837634959054544338237676240957121737532756634849538951047728197051538936625749728372269621664992943<224>] Submitted
10241+899 = (1)23921<241> = 11 × 649381 × 3230723 × 1774810517928851809249<22> × 182205982020548699336787138221<30> × [148884977378769718849920821022584150020596794190634667860871366825447053510574014641355384162546548892484043005599697681925094209603114105751055815895849751026105835046760230993<177>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3173033607 for P30 / November 27, 2014 2014 年 11 月 27 日) Free to factor
10242+899 = (1)24021<242> = 32 × 7 × 2137 × 57177580732426560205487153393047<32> × [1443399807929064635510422641328189981393609236033104644532311240176652897645474807065724560244575091430056454777644253927216856648628237840747857569831287245063891928582019313836547036104173379831862615953<205>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3012381957 for P32 / November 27, 2014 2014 年 11 月 27 日) Free to factor
10243+899 = (1)24121<243> = 11 × 571871 × 126501472849<12> × [139627560296068182400494813257383349945255278096481439698515588877744516380469345196620239103958593029667106443268265527605068893091861297965698478147504904168060727016886318781523396700227318461035239265122873665239130677309<225>] Free to factor
10244+899 = (1)24221<244> = 2086187 × 1229537327<10> × 105164449967<12> × 846140914413168518821<21> × [4868003566368301467871233972346158758060778192196373317719606013482719987854506351328402775503795745599037127128534554307139203809539412303397969982619514562114417732559695092715630056015012421847<196>] Free to factor
10245+899 = (1)24321<245> = 3 × 112 × 313 × 98221 × 103918466357<12> × [9580969283416524611665815839814620243972547119969991547688061494151292162562219461653980803861053469292327169969001888701462826919075490535214845928131655493193277107340651366049030967237018354264885390254776217217687353947<223>] Free to factor
10246+899 = (1)24421<246> = 411707 × 629807 × [428510784205687325938522252934773544476573718924156506963372118956041611156071919312382732582645393895426403160257673812991094491753535815497388017063301951856009858781680541635796832742889543532264008411616805018101845231956758594829<234>] Free to factor
10247+899 = (1)24521<247> = 11 × 47 × 131 × 64921 × 18682322361871060219359193673<29> × 13526317879975131604902227495604430978044142244836289724327705643307456251589704931679670220480721203631153470482832932831788448104962688680893883563243919662240978997021760369585858492446348335959383433056831<209>
10248+899 = (1)24621<248> = 3 × 7 × 373 × 120737 × 11748677522362691560687577154894358500512758518121958356899697172655694314263076299435611072601237184923068900031567274912608346337888676618365399073499220094413009348028301439567959283412860184351255243139739566188910443047917448049914201<239>
10249+899 = (1)24721<249> = 11 × 29 × 494273257650658825571<21> × [704692571865697568940402137693237988617069512574913545257457543201261061880658153412712191372104558845611478411291442819990394187684201264288786233235450487562404913280336725249519790642655076903671289247863110211264249076229<225>] Free to factor
10250+899 = (1)24821<250> = 43 × 12845158651290582489079777<26> × 2011636756160856261447217974961766922244191534143253154608842999302952521749343078102219806066931852981769659879606521795613428444806509602770560818122120483774297110743057650598913207193890063939863351590802272231407830611<223>
10251+899 = (1)24921<251> = 33 × 11 × 27350921627683<14> × 150872641132600583653<21> × [9066059878782645815535606579246390604873618649971221087979469232709977513679704646233726939890429977832337590534511327292221773097836026429504247554309731096048286284114172005493796984378002541046642050388675006407<214>] Free to factor
10252+899 = (1)25021<252> = 17 × 31 × [210837022981235504954670040059034366434745941387307611216529622601728863588446131140628294328484081804764916719375922411975542905334176681425258275353152013493569470799072317098882563778199451823740248787687117857895846510647269660552393000210837023<249>] Free to factor
10253+899 = (1)25121<253> = 11 × 83 × 691 × 1223220362327<13> × 61622801239841<14> × 60868468199453763715662056382209158547<38> × 383857609734637556315983177778911731316915423711511939622198397108604319524465138951655024307573591990299675268910037000776116695145671718483475040269884943301902318789641324953436303<183> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=4192748816 for P38 x P183 / November 18, 2015 2015 年 11 月 18 日)
10254+899 = (1)25221<254> = 3 × 7 × 547 × 457091 × 47694468351830519<17> × 44369055841354604440746319341522077628260325473399460666278872628128259776526982576811738746118063306848153425004549770916710584546168996509609151268577594689374720947607051925129969310685759500443512919056408261912493917189027<227>
10255+899 = (1)25321<255> = 11 × 1163 × 2167537 × 364259057 × 11275445379713114036606344122116489<35> × [975606098842967242194320105700602422710045550838520045331091404198121039377417837301175860208414086330670548996601820351848137910534702865802989910807826561498474639555237943805181073625445714631870897<201>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1267065146 for P35 / November 16, 2015 2015 年 11 月 16 日) Free to factor
10256+899 = (1)25421<256> = 19 × 7678039522661<13> × 379384897902796967555555033<27> × 115219577945166844292367932245063<33> × 174239745158009127544528520072644848404318966536045891385038029340638483714649761794191536482831412940176875339652317568245816164617233143036656782389275274018107593493685512303391361<183> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1591721254 for P33 x P183 / November 16, 2015 2015 年 11 月 16 日)
10257+899 = (1)25521<257> = 3 × 11 × 23771569 × [14163992990969031128601580177578379464001738240346554337103299184851311259122203364041166165207704072892146931348971399419899474733886379158931425043939535515585880624890039876488604378631326368768520777923270455420941575221084495377664667415798273<248>] Free to factor
10258+899 = (1)25621<258> = 97 × 129629 × [8836567220911184926491734270603276067164167168517410560265136604448485229903222711087630584691705910524437274807264085945442486110926647770374590125770596158212267723209059121468310165665576384493248981936881337017156822655671750228913482999509473317<250>] Free to factor
10259+899 = (1)25721<259> = 11 × 9973 × 27179 × 411598769663899035655171197573675287<36> × [905381142793262887336663007583876171676883554028909254721894804776394235226903435559139897526749887387960802375162559593411678582444326894229059199762692200308629155420965545962892376013029101445363682633112883859<213>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=606921574 for P36 / November 16, 2015 2015 年 11 月 16 日) Free to factor
10260+899 = (1)25821<260> = 32 × 7 × 134951 × 6008281 × 24652707502367055468065485949<29> × 250032422523257710700972231773<30> × 3095629489189637911452355815550853176771<40> × 509331924040003115028608479602202936643882129008097404294704593<63> × 22381014752348669226822303896534509933895156040007526692191484669278161900035621178147<86> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=1412012894 for P30 / October 22, 2015 2015 年 10 月 22 日) (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3317962962 for P40 / November 18, 2015 2015 年 11 月 18 日) (Eric Jeancolas / cado-nfs-3.0.0 for P63 x P86 / January 5, 2022 2022 年 1 月 5 日)
10261+899 = (1)25921<261> = 11 × 971 × 102465851815709633650295212369<30> × [101523462404851745049524243424060765551401101504875050268186539847007141750159309802379339247435118990917506840900256549496411707342836594897403790110967504832713462181772027171288236901977166300434131240808314337608072312295689<228>] (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=3740353446 for P30 / October 22, 2015 2015 年 10 月 22 日) Free to factor
10262+899 = (1)26021<262> = 233 × 3919 × 29596292933284916516534169485849<32> × 787338342965052120651846204119976675933754707669512650259420510229815419375629461914100152073136360121392600163010622750763192240370466681311591773428115821011082699796827036923868786929825071895392267730206002341070421073<222> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1681181098 for P32 x P222 / November 18, 2015 2015 年 11 月 18 日)
10263+899 = (1)26121<263> = 3 × 11 × 823 × 939823 × 1872259 × 217740038774495093241247<24> × 103622573921742462228260895597527378621<39> × [10304787674150383754616725262389534551902932764842433430213278121883979484848995594136025314840321423461712097965565560020214254887224904405655675697235082210187118621225750591941704241<185>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2738256003 for P39 / November 17, 2015 2015 年 11 月 17 日) Free to factor
10264+899 = (1)26221<264> = 103 × 441107 × 1943489 × 423209245826593955767<21> × 3536388480249431198007118970795717989<37> × 840773693636837996294934230250086974338744427035585673862803528397318568786722427528836988754961940829639250740785744088882344705959246387773246811635794354728723731105638079638797351967593743<192> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1419449234 for P37 x P192 / August 3, 2018 2018 年 8 月 3 日)
10265+899 = (1)26321<265> = 11 × 2687 × 7369 × 25446011390254783178909<23> × 129129386600024873066449<24> × 1552543499546836702409708000262910083675774093892842320653299773807131823782417883041879191014942525938894124035014291347806029024312908256272035302671780562517226318690545197929292057602419689910034642985692857<211>
10266+899 = (1)26421<266> = 3 × 7 × 79248473 × 34315177724710682496124453<26> × 4472893423104729212934310483824587149<37> × 43498320643246890023061086314431348595738837436920602789129480155723091511918917060507553812015326538485980030207584233935266106226813873200840592563624537905138429810234429890155267780296042421<194> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2801058267 for P37 x P194 / November 16, 2015 2015 年 11 月 16 日)
10267+899 = (1)26521<267> = 113 × 31 × 61 × 13706574386813385195737<23> × 5981846615296322579642573<25> × 538423127141923269633261594858251098406899816911186293569912605013853342702662704927845130639719596588333555123904743201011709159056422859674596756063686667718847898609424564917170909790703461389839123400986128901<213>
10268+899 = (1)26621<268> = 17 × 16433 × 458807 × 2578267 × 42019498834750928653<20> × [80017120792727316634478077683329069201514155909591988657032174014647369701838105862118476041471418712993543442389361470382853896254938196970862902874448384005361542947529229500253793844796459043780583770579021804783111994427551273<230>] Free to factor
10269+899 = (1)26721<269> = 32 × 11 × 367 × 2587003978694465448426533<25> × [118211338559116962443943879275714841735880242037577080689784019150442893097127178471802380812048876568062702415138932510646198489507686604458060462109522567154035304690672067953491457003765541979259968340300302143547082592976706759090425489<240>] Free to factor
10270+899 = (1)26821<270> = 4787 × 504457 × 2528551609<10> × 212770530667<12> × 796828701688087<15> × [107330126778220937976819857896703582107909158348975354831669858046857746052710423581702528597862106863746122052764785640424854999616577514351586631295201201685122264959982184920798655352310419795176982396607533783420177978279<225>] Free to factor
10271+899 = (1)26921<271> = 11 × 43 × 1365461 × 48711389057<11> × 18189428175341<14> × 10899530648525669<17> × 454234418485807878961083397788213121<36> × 392174772570519380207429453783463936827764878208547394250274265597057330129158587353981500321237850990263922479819326627124357022167704885443019499800276898556360784506601563953077567189<186> (Makoto Kamada / GMP-ECM 6.4.4 B1=25e4, sigma=2649609104 for P36 x P186 / October 22, 2015 2015 年 10 月 22 日)
10272+899 = (1)27021<272> = 3 × 7 × 127 × 277 × 63122029 × 19029100330076201352566963<26> × [12521475251235966776880705236387965380683359143687384295669926262012431889429125951910198027334203312244209422629388502103693558282217066409373065962569251255506193912543540698336148263428556225169491340076045440287002099189306657297<233>] Free to factor
10273+899 = (1)27121<273> = 11 × 167 × [60485090425210185689227605395270065928748563479102401258089880844371862335934192221617371317970120365329946168269521562934736587431198209641323413778503598862880300006048509042521018568922760539527006592874856347910240125808988084437186233593419222161737131797012036533<269>] Free to factor
10274+899 = (1)27221<274> = 192 × 173 × 2309 × 3359 × 35362937746018172783<20> × 22327467760312963969597<23> × 32967157267274500527353818230515123969<38> × [88125367574832538264189810089194948774132588306014918257382301119792108568441595646738995531424798315267503597439093906797547970577808573829745777029392518991803328648316306389540813<182>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=3245941332 for P38 / August 13, 2018 2018 年 8 月 13 日) Free to factor
10275+899 = (1)27321<275> = 3 × 11 × 298467188984714466554710172151285522119<39> × 1128098327476727383427467365232751168336323410348418453877233713487812758824042811678170926615958124273316651312643800783985500313215025319292444649270354814468401716902814334658768855376453838756757538861661466555851552930996424276423<235> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=726068195 for P39 x P235 / November 19, 2015 2015 年 11 月 19 日)
10276+899 = (1)27421<276> = [111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111121<276>] Free to factor
10277+899 = (1)27521<277> = 11 × 29 × 55933452943<11> × 5522192683422707983091573<25> × 11276741388855759233885809502365963990102431761538174992780658747218059847367801976648612542237928107178715650450465213537992987955209861015735632962732964580150732112428686887104137008675454945557948671794104626811025377125045841089462781<239>
10278+899 = (1)27621<278> = 33 × 72 × 571 × 12934237 × 1137157771312645179359939462227914150657728463392378471962418947153664623712253855368734587876566656595553598735002148402441631844817309041766026209487776333714346972130265078000770006610330266063665248141529148811782991098469653197595304077337815987068071823821501<265>
10279+899 = (1)27721<279> = 11 × 58966230643<11> × [171301607561873420563200338208365763626432011834813204105402700176629314720109471743058877586614436989053192414366788898870688326643190636039126651438487149935713588817637881892056725424325526021583826355045941784076572876523811179656551088494866641445635078935140577<267>] Free to factor
10280+899 = (1)27821<280> = 1279 × 595754817989309706982381<24> × 44250566838956391890227450099484732377927879<44> × 32953423866471330946726297958106499330055310324083742267565448490662746092556328372740022792032663315191084966221338060921729724271685294111304767434802484130862571607854530135384122574034692025421432270214301<209> (Dmitry Domanov / GMP-ECM B1=43000000, sigma=2256158742 for P44 x P209 / September 11, 2018 2018 年 9 月 11 日)
10281+899 = (1)27921<281> = 3 × 11 × 19923436921<11> × [16899711532473734898357416627993082415857959023491552345738989312622960387503130474580465600817625953038582179708668182970713677132450449879721349142636548232365110851966980277654491975206966869122567524921504999639330888131592982631269008866640431425809250832355439097<269>] Free to factor
10282+899 = (1)28021<282> = 31 × 409 × 43289648242844713495949<23> × [202436319049516127123475854427102866123569183966588734439106294564289684180023245718740840974933598554985799224907753659473403216152848732990324648384220601076968748062363655452890859681598642275132485064362547349881527782966815829343972394799225492061251<255>] Free to factor
10283+899 = (1)28121<283> = 11 × 179 × 122232791 × 185585494315080253<18> × [24875969639499407530688654660128043855084386344938972094023548559728963289576418674568125107674612217033573270056329298830273285152105720882399110782498747229080223296421240951935417635145467376707595955672492766802779415186936056173180294273593808684883<254>] Free to factor
10284+899 = (1)28221<284> = 3 × 7 × 17 × 23 × 739 × 373946413 × 21091838899<11> × 70617822007458726215771<23> × 638958690471170821150939705341101<33> × 923405597190554619217023240534991<33> × 5572031717265982557402901259689595429513146995260674925695035329218097640932149520435707057071582145377624068056556259648843414967354965304201442992495949522359096939007<169> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3769494785 for P33(6389...), B1=3000000, sigma=2499115407 for P33(9234...) x P169 / November 17, 2015 2015 年 11 月 17 日)
10285+899 = (1)28321<285> = 11 × 430268448506082129689253461<27> × 5842590198367949957685821791783<31> × 20029536435393470716139645108663161867<38> × [200608338516465102774104533782593461486109113007230124974185903520684519894483226725790862702254392031948566581791619109430417913760023919849527938929904553707953356797308016883208148836291<189>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3137034887 for P31 / November 16, 2015 2015 年 11 月 16 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2069914409 for P38 / November 17, 2015 2015 年 11 月 17 日) Free to factor
10286+899 = (1)28421<286> = 2297 × 251359 × [1924429720563372944137767420396951360235297035218357295524915520676898786747458683315149887633308766044276324108694741153066871648299055929028765431915089306547216836652727408307545296716307637292924441336998495180825870119202431102352792823541850984095058497724456248711605127<277>] Free to factor
10287+899 = (1)28521<287> = 32 × 11 × 617 × 176503 × 7316946331<10> × [140849455024455804863822591155870226572563332502456964159161843667695353680584470599869805534597027952712525086235368183605330499744001333120914270454114893882288578240911492040978054909482329453725016381622244610365181497634567396732733608718363028178018344041262159<267>] Free to factor
10288+899 = (1)28621<288> = 269 × 32003 × 1770772170437<13> × 221332083729661<15> × 469995084061831769403144607<27> × [70067100007395025188991027482840076526052633697795842702982258036486628259263630259585101062561028319452069512934616864365963792465112953758882975563420625767548014707702836304482406241489274718169978592621483003099886239552297<227>] Free to factor
10289+899 = (1)28721<289> = 112 × 151 × 157 × 161900790757<12> × [2392470274799580530008980409064161390484279156007531724258826703512971859456530333029873338690291214071778062358759916683081209000434836094707060493275933951996850926430984270665393833653519050335851908282719615654173221220724769075813895042892482531044667388116136692799<271>] Free to factor
10290+899 = (1)28821<290> = 3 × 7 × 233 × 3931 × 4783 × 657513207199<12> × 183685286238644386202641482211718467121987898238229843499354298005960283559144444771750358548364885435089091472249514379266528380982166669657659463011367608904330793989983233855687275563350570526523745986214869985495207250690107289604896109960774896660009494522964111<267>
10291+899 = (1)28921<291> = 11 × 1543639 × 15858659 × [412622211234786846162414439495786388860371879574310653674579376336402532534733864333025032006901536990235994671507904003937600347003470375022572042002676114163322600586496213914637683976104247870028937838517790709447607007393089569155056379922643596835987862281084418833389911<276>] Free to factor
10292+899 = (1)29021<292> = 19 × 43 × 2492069 × 619264217007259<15> × 3090453805620101697297803<25> × 38413501807823709063497987748604387<35> × [7423235340811128713530608393785835344945480132301077063937043799155386144016678314481541946175317921849918847762251642018312087713294007922753412213861403563941584996497546681584761270683848873391580680642423<208>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1203309197 for P35 / November 17, 2015 2015 年 11 月 17 日) Free to factor
10293+899 = (1)29121<293> = 3 × 11 × 47 × 24827820836502838334993859199<29> × [288540705938172345849177619808299943963106087995922409830474586651386155626015003562327737204147249898304211784339322014028956240878780268566280029865574674858901087667939736667481713844664641223879600550429706585109573034916849539871317047170614766830062405729<261>] Free to factor
10294+899 = (1)29221<294> = 59 × 83 × 821 × 883781 × 862003442766311835081293<24> × 3683731290890565649009341499<28> × 182819243135689666610711501631101<33> × 53866743184326550665527790507902228974455210477525837121056010849238223497054089950208906476683859613349499597484281891505707864815400882156964126930696053721044422284160403611971219683627484830499<197> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3715105323 for P33 x P197 / November 16, 2015 2015 年 11 月 16 日)
10295+899 = (1)29321<295> = 11 × 181 × 39679 × 4995541 × 6052831 × 15901288988341<14> × 820838364939779<15> × 468059536855217929<18> × 76136579265474089389509997688366290837887388868211022157528608849695231543251948768200600293973561208145960506880692537507449832090679062526002238411906417938610932490222702431633294879591223981500954665087390223226642942117389<227>
10296+899 = (1)29421<296> = 32 × 7 × 1597 × 19183 × 15501077 × 371392923611128927190794341353087826248824857090148610206143500748153900178786984547760220536672484363960104387151830246476091314104392933112814893976726600843229271893639062942603925582141488614108221997871047803841123885590346196776586331615224752409158549609526277864526283521<279>
10297+899 = (1)29521<297> = 11 × 31 × 240982993 × 117287877277<12> × [11528255449443311309291149336087069507104776627442802060957365879185394060092010369186315614569520254684615980798698359507348298711040285590216653207747008862476235521436699917903341959342224509370794267794118852094197080861813921540582768705715456728375226201317538630084321<275>] Free to factor
10298+899 = (1)29621<298> = 103 × 257 × 31504531067<11> × 6487689285503<13> × 26113829487623671<17> × 11025760175024552577649<23> × 713255246660735075098855541950011386009523792758327364528976886285223261248046327777153551545468516628767174753057135528846412416417556787635049292311908785847098868064114775762110475372605783084931964932677029721404838628269694669<231>
10299+899 = (1)29721<299> = 3 × 11 × [336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700336700337<297>] Free to factor
10300+899 = (1)29821<300> = 17 × 116502604639<12> × 5913800995957523<16> × 16809706722757922743626257917135621381<38> × [564346832365194680549219761778679911933219544090500098467751368680666751021454712351687866705355617639997183635669411592861381133201219526405229880254507296591976026515856495675238449845664591293706227336810091485961257904322477812609<234>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3600411141 for P38 / October 28, 2015 2015 年 10 月 28 日) Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク