Table of contents 目次

  1. About 988...883 988...883 について
    1. Classification 分類
    2. Sequence 数列
    3. General term 一般項
  2. Prime numbers of the form 988...883 988...883 の形の素数
    1. Last updated 最終更新日
    2. Known (probable) prime numbers 既知の (おそらく) 素数
    3. Range of search 捜索範囲
    4. Prime factors that appear periodically 周期的に現れる素因数
    5. Difficulty of search 捜索難易度
  3. Factor table of 988...883 988...883 の素因数分解表
    1. Last updated 最終更新日
    2. Range of factorization 分解範囲
    3. Terms that have not been factored yet まだ分解されていない項
    4. Factor table 素因数分解表
  4. Related links 関連リンク

1. About 988...883 988...883 について

1.1. Classification 分類

Quasi-repdigit of the form ABB...BBC ABB...BBC の形のクワージレプディジット (Quasi-repdigit)

1.2. Sequence 数列

98w3 = { 93, 983, 9883, 98883, 988883, 9888883, 98888883, 988888883, 9888888883, 98888888883, … }

1.3. General term 一般項

89×10n-539 (1≤n)

2. Prime numbers of the form 988...883 988...883 の形の素数

2.1. Last updated 最終更新日

December 11, 2018 2018 年 12 月 11 日

2.2. Known (probable) prime numbers 既知の (おそらく) 素数

  1. 89×102-539 = 983 is prime. は素数です。 (Makoto Kamada / December 7, 2004 2004 年 12 月 7 日)
  2. 89×103-539 = 9883 is prime. は素数です。 (Makoto Kamada / December 7, 2004 2004 年 12 月 7 日)
  3. 89×1032-539 = 9(8)313<33> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 7, 2004 2004 年 12 月 7 日)
  4. 89×1042-539 = 9(8)413<43> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 7, 2004 2004 年 12 月 7 日)
  5. 89×1075-539 = 9(8)743<76> is prime. は素数です。 (Makoto Kamada / PPSIQS / December 7, 2004 2004 年 12 月 7 日)
  6. 89×10368-539 = 9(8)3673<369> is prime. は素数です。 (discovered by:発見: Makoto Kamada / December 7, 2004 2004 年 12 月 7 日) (certified by:証明: Makoto Kamada / PPSIQS / January 8, 2005 2005 年 1 月 8 日)
  7. 89×101392-539 = 9(8)13913<1393> is prime. は素数です。 (discovered by:発見: Makoto Kamada / PFGW / December 17, 2004 2004 年 12 月 17 日) (certified by:証明: Tyler Cadigan / PRIMO 2.2.0 beta 6 / September 7, 2006 2006 年 9 月 7 日) [certificate証明]
  8. 89×1016350-539 = 9(8)163493<16351> is PRP. はおそらく素数です。 (Serge Batalov / srsieve and PFGW / August 17, 2010 2010 年 8 月 17 日)
  9. 89×1049101-539 = 9(8)491003<49102> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  10. 89×1049689-539 = 9(8)496883<49690> is PRP. はおそらく素数です。 (Erik Branger / srsieve and PFGW / May 1, 2013 2013 年 5 月 1 日)
  11. 89×1091839-539 = 9(8)918383<91840> is PRP. はおそらく素数です。 (Bob Price / srsieve and LLR / November 15, 2015 2015 年 11 月 15 日)

2.3. Range of search 捜索範囲

  1. n≤30000 / Completed 終了
  2. n≤50000 / Completed 終了 / Erik Branger / May 1, 2013 2013 年 5 月 1 日
  3. n≤100000 / Completed 終了 / Bob Price / November 15, 2015 2015 年 11 月 15 日

2.4. Prime factors that appear periodically 周期的に現れる素因数

Cofactors are written verbosely to clarify that they are integers. 補因子はそれらが整数であることを明確にするために冗長に書かれています。

  1. 89×103k+1-539 = 3×(89×101-539×3+89×10×103-19×3×k-1Σm=0103m)
  2. 89×106k+5-539 = 7×(89×105-539×7+89×105×106-19×7×k-1Σm=0106m)
  3. 89×1015k+1-539 = 31×(89×101-539×31+89×10×1015-19×31×k-1Σm=01015m)
  4. 89×1016k+6-539 = 17×(89×106-539×17+89×106×1016-19×17×k-1Σm=01016m)
  5. 89×1018k+12-539 = 19×(89×1012-539×19+89×1012×1018-19×19×k-1Σm=01018m)
  6. 89×1022k+12-539 = 23×(89×1012-539×23+89×1012×1022-19×23×k-1Σm=01022m)
  7. 89×1028k+21-539 = 29×(89×1021-539×29+89×1021×1028-19×29×k-1Σm=01028m)
  8. 89×1041k+20-539 = 83×(89×1020-539×83+89×1020×1041-19×83×k-1Σm=01041m)
  9. 89×1046k+8-539 = 47×(89×108-539×47+89×108×1046-19×47×k-1Σm=01046m)
  10. 89×1046k+39-539 = 139×(89×1039-539×139+89×1039×1046-19×139×k-1Σm=01046m)

Read more続きを読むHide more続きを隠す

2.5. Difficulty of search 捜索難易度

The difficulty of search, percentage of terms that are not divisible by prime factors that appear periodically, is 15.69%. 捜索難易度 (周期的に現れる素因数で割り切れない項の割合) は 15.69% です。

3. Factor table of 988...883 988...883 の素因数分解表

3.1. Last updated 最終更新日

December 6, 2024 2024 年 12 月 6 日

3.2. Range of factorization 分解範囲

3.3. Terms that have not been factored yet まだ分解されていない項

n=209, 210, 212, 213, 217, 225, 229, 234, 235, 236, 237, 238, 241, 242, 244, 245, 246, 247, 252, 255, 257, 258, 260, 262, 263, 265, 269, 270, 271, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 286, 288, 289, 290, 293, 294, 295, 296, 297, 298, 299, 300 (51/300)

3.4. Factor table 素因数分解表

89×101-539 = 93 = 3 × 31
89×102-539 = 983 = definitely prime number 素数
89×103-539 = 9883 = definitely prime number 素数
89×104-539 = 98883 = 32 × 10987
89×105-539 = 988883 = 7 × 141269
89×106-539 = 9888883 = 17 × 581699
89×107-539 = 98888883 = 3 × 167 × 197383
89×108-539 = 988888883 = 47 × 151 × 139339
89×109-539 = 9888888883<10> = 113 × 2441 × 35851
89×1010-539 = 98888888883<11> = 3 × 32962962961<11>
89×1011-539 = 988888888883<12> = 7 × 27479 × 5141011
89×1012-539 = 9888888888883<13> = 19 × 23 × 1277 × 2143 × 8269
89×1013-539 = 98888888888883<14> = 33 × 1019 × 1319 × 2724989
89×1014-539 = 988888888888883<15> = 397 × 829 × 3004709291<10>
89×1015-539 = 9888888888888883<16> = 14143 × 699207303181<12>
89×1016-539 = 98888888888888883<17> = 3 × 31 × 467 × 563 × 4044261911<10>
89×1017-539 = 988888888888888883<18> = 7 × 141269841269841269<18>
89×1018-539 = 9888888888888888883<19> = 4864147 × 2033016043489<13>
89×1019-539 = 98888888888888888883<20> = 3 × 32962962962962962961<20>
89×1020-539 = 988888888888888888883<21> = 83 × 11914323962516733601<20>
89×1021-539 = 9888888888888888888883<22> = 29 × 340996168582375478927<21>
89×1022-539 = 98888888888888888888883<23> = 32 × 17 × 199 × 809629 × 4011593641441<13>
89×1023-539 = 988888888888888888888883<24> = 7 × 149 × 523 × 569 × 3186025397836763<16>
89×1024-539 = 9888888888888888888888883<25> = 716959 × 14687287 × 939099469051<12>
89×1025-539 = 98888888888888888888888883<26> = 3 × 32962962962962962962962961<26>
89×1026-539 = 988888888888888888888888883<27> = 131 × 357107 × 21138678727076174699<20>
89×1027-539 = 9888888888888888888888888883<28> = 307 × 4931 × 6532420291811288213099<22>
89×1028-539 = 98888888888888888888888888883<29> = 3 × 32962962962962962962962962961<29>
89×1029-539 = 988888888888888888888888888883<30> = 7 × 11941 × 48121 × 245852209127357610329<21>
89×1030-539 = 9888888888888888888888888888883<31> = 19 × 635287 × 819264106234363274426311<24>
89×1031-539 = 98888888888888888888888888888883<32> = 32 × 31 × 354440461967343687773795300677<30>
89×1032-539 = 988888888888888888888888888888883<33> = definitely prime number 素数
89×1033-539 = 9888888888888888888888888888888883<34> = 1459 × 3041 × 7079210008649<13> × 314840786813593<15>
89×1034-539 = 98888888888888888888888888888888883<35> = 3 × 23 × 9293 × 154220628724579805103247245299<30>
89×1035-539 = 988888888888888888888888888888888883<36> = 7 × 12753053 × 6865494527<10> × 1613479557556816199<19>
89×1036-539 = 9888888888888888888888888888888888883<37> = 929 × 2729 × 13921 × 280193343790992211130779003<27>
89×1037-539 = 98888888888888888888888888888888888883<38> = 3 × 17921 × 19564468823<11> × 42970333261<11> × 2187898746547<13>
89×1038-539 = 988888888888888888888888888888888888883<39> = 17 × 269 × 216245110187817382219306557815195471<36>
89×1039-539 = 9888888888888888888888888888888888888883<40> = 107 × 139 × 2027 × 288403 × 733009457 × 783915127 × 1979323469<10>
89×1040-539 = 98888888888888888888888888888888888888883<41> = 33 × 3359 × 1090369586284375738909164862656311831<37>
89×1041-539 = 988888888888888888888888888888888888888883<42> = 72 × 2503 × 72821031039943<14> × 110721954617496041087123<24>
89×1042-539 = 9888888888888888888888888888888888888888883<43> = definitely prime number 素数
89×1043-539 = 98888888888888888888888888888888888888888883<44> = 3 × 14957 × 1389991267942171<16> × 1585512523884672146743663<25>
89×1044-539 = 988888888888888888888888888888888888888888883<45> = 1039 × 19259 × 49419485133477781490902464154923000583<38>
89×1045-539 = 9888888888888888888888888888888888888888888883<46> = 13582607 × 117686977652731561<18> × 6186370873801367983829<22>
89×1046-539 = 98888888888888888888888888888888888888888888883<47> = 3 × 31 × 363573919 × 1115680567<10> × 175676616653<12> × 14921689537377299<17>
89×1047-539 = 988888888888888888888888888888888888888888888883<48> = 7 × 493853 × 344005819 × 2074878607<10> × 400768223117883764784181<24>
89×1048-539 = 9888888888888888888888888888888888888888888888883<49> = 19 × 22811 × 20925761 × 1090355982923519834584275420804010867<37>
89×1049-539 = 98888888888888888888888888888888888888888888888883<50> = 32 × 29 × 378884631758194976585781183482332907620263942103<48>
89×1050-539 = 988888888888888888888888888888888888888888888888883<51> = 1153 × 857665992097908836850727570588802158620025055411<48>
89×1051-539 = 9(8)503<52> = 1009 × 759791947727<12> × 12899166375099095935574718380685422381<38>
89×1052-539 = 9(8)513<53> = 3 × 55351 × 18793174844203<14> × 31688422271610429736885917783131237<35>
89×1053-539 = 9(8)523<54> = 7 × 59 × 49477073 × 3583954471<10> × 268124632649617<15> × 50360988698015081081<20>
89×1054-539 = 9(8)533<55> = 17 × 47 × 61 × 46008189791568104915021<23> × 4409971032448651919313160757<28>
89×1055-539 = 9(8)543<56> = 3 × 1423 × 155861 × 823969 × 19675133 × 9167593217769925317732412472508031<34>
89×1056-539 = 9(8)553<57> = 23 × 6829 × 13611613 × 82648322311<11> × 497984732143<12> × 11238358596379771016101<23>
89×1057-539 = 9(8)563<58> = 109 × 54419 × 1667133745092890163478198451817184211479174905163973<52>
89×1058-539 = 9(8)573<59> = 32 × 719 × 15281855801095485842820103367159463589690757052834011573<56>
89×1059-539 = 9(8)583<60> = 7 × 191 × 171659 × 8456671631869<13> × 509506869992389892755778937748192548629<39>
89×1060-539 = 9(8)593<61> = 823 × 87689697914347<14> × 1435868927561888761<19> × 95429860863798082268209063<26>
89×1061-539 = 9(8)603<62> = 3 × 31 × 83 × 639378590071453<15> × 20099034452337719<17> × 996903617740360140492650351<27>
89×1062-539 = 9(8)613<63> = 4133 × 5903 × 83063 × 487979633113513950818911851254299829180743411819759<51>
89×1063-539 = 9(8)623<64> = 311 × 836726062961<12> × 693468981375227<15> × 54799522123015017042855391205494799<35>
89×1064-539 = 9(8)633<65> = 3 × 3407 × 14033 × 57859499 × 178222601 × 66859963839969466090041081903286851954469<41>
89×1065-539 = 9(8)643<66> = 7 × 212377445659806551<18> × 107919454463472009612929<24> × 6163697591024095811147411<25>
89×1066-539 = 9(8)653<67> = 19 × 2293957 × 8876274456157<13> × 2547464240934497693<19> × 10033900837797637611630108101<29>
89×1067-539 = 9(8)663<68> = 34 × 31153 × 39188857577432008763156943404728826975777807455631718439770931<62>
89×1068-539 = 9(8)673<69> = 193723 × 3930355727<10> × 6146212227305239<16> × 211313332906119898673540260182813559057<39>
89×1069-539 = 9(8)683<70> = 661013822471617<15> × 10774578363303568622377<23> × 1388470547890854670517849622336187<34>
89×1070-539 = 9(8)693<71> = 3 × 17 × 6101 × 1654963 × 2780223426593<13> × 3077626697685763795843<22> × 22443592162487524798759909<26>
89×1071-539 = 9(8)703<72> = 7 × 8971 × 5548381516123<13> × 111503627147388481075219<24> × 25453838795496089228327967421247<32>
89×1072-539 = 9(8)713<73> = 499 × 4777975457<10> × 200913394693721207<18> × 330485615852279183333<21> × 62465696019329138695451<23>
89×1073-539 = 9(8)723<74> = 3 × 22669 × 2752105696820529809<19> × 3763117398865567019855489<25> × 140404492279720416933164869<27>
89×1074-539 = 9(8)733<75> = 4793 × 11182851391<11> × 12363519527799995545938839<26> × 1492263084221348467488984270094388819<37>
89×1075-539 = 9(8)743<76> = definitely prime number 素数
89×1076-539 = 9(8)753<77> = 32 × 31 × 512741 × 67504755133997<14> × 29576141074171759<17> × 2162915091816339611<19> × 160077355682928828049<21>
89×1077-539 = 9(8)763<78> = 7 × 29 × 3052297 × 324306413 × 4921178667520913018774065745023564573383054909000306462850901<61>
89×1078-539 = 9(8)773<79> = 23 × 2155465937166071723<19> × 199470417698430853325349900419688695856801475148969114034127<60>
89×1079-539 = 9(8)783<80> = 3 × 977 × 557143402733<12> × 60557046632752917253518514219435371527228494395883398105400490021<65>
89×1080-539 = 9(8)793<81> = 864051389 × 19910993129<11> × 1271053778818424582011<22> × 45222136433360272648662894414117672349013<41>
89×1081-539 = 9(8)803<82> = 3643 × 22899523 × 192833194570426296283<21> × 614723893488671267836044357162967144114069542144409<51>
89×1082-539 = 9(8)813<83> = 3 × 32962962962962962962962962962962962962962962962962962962962962962962962962962962961<83>
89×1083-539 = 9(8)823<84> = 72 × 151 × 1447 × 3299 × 8627862549629<13> × 12031930826212490870231<23> × 269702566389834474674885768034696266611<39>
89×1084-539 = 9(8)833<85> = 19 × 331 × 487 × 827 × 617094001 × 85046093459<11> × 74391914893966694644043863917869462772298992284356595317<56>
89×1085-539 = 9(8)843<86> = 32 × 139 × 3329 × 182681 × 129981939247623180852613653749109538681494472267136732874246098594049528217<75>
89×1086-539 = 9(8)853<87> = 172 × 3421760861207227989234909650134563629373317954632833525567089580930411380238369857747<85>
89×1087-539 = 9(8)863<88> = 11338755509671273<17> × 80186688083722447<17> × 54615688798783175611<20> × 199141793726284208943757446301471663<36>
89×1088-539 = 9(8)873<89> = 3 × 2239051025426909<16> × 10357809363756554655839725228501<32> × 1421328086760662019981612783841118246714929<43> (Makoto Kamada / msieve 0.83 / 8.2 minutes)
89×1089-539 = 9(8)883<90> = 7 × 2411 × 2703443946943178431<19> × 21673790814799834736679232705652583797693721651286973741604797887009<68>
89×1090-539 = 9(8)893<91> = 346857761 × 25138784121890565013841<23> × 1134101206210223191225275835753974295513581117532593881478883<61>
89×1091-539 = 9(8)903<92> = 3 × 31 × 145551387263<12> × 7305470637532930453285376063211334542358713808910523498883342026243054276969137<79>
89×1092-539 = 9(8)913<93> = 97 × 107 × 227 × 409 × 956006174555116169<18> × 1073450747590866901695567106495753827797330558510001242909386955731<67>
89×1093-539 = 9(8)923<94> = 3677 × 2689390505544979300758468558305381802798174840600731272474541443809869156619224609434019279<91>
89×1094-539 = 9(8)933<95> = 33 × 1803421003<10> × 2030890975671540466691506516552725010228362138574852104937224932790259905271761312443<85>
89×1095-539 = 9(8)943<96> = 7 × 179 × 2297 × 36587 × 12890939 × 316638595195371797514615232297893667<36> × 2300701243578046381863477177422820162555773<43> (Makoto Kamada / GGNFS-0.71.4 / 0.46 hours)
89×1096-539 = 9(8)953<97> = 181 × 107171 × 509790383988952693451431488247850965748335424132625599935214234167767971415583475228331533<90>
89×1097-539 = 9(8)963<98> = 3 × 233 × 472097277757986731<18> × 1391652815776934267<19> × 215331676965666954711206807063791606865360222443258682377921<60>
89×1098-539 = 9(8)973<99> = 347 × 133665968850589185451999<24> × 21320489514226137379753190745165393076803488259511749344105229767338757911<74>
89×1099-539 = 9(8)983<100> = 16091 × 614560244166856558876942942569690441171393256409725243234658435702497600452979236149952699576713<96>
89×10100-539 = 9(8)993<101> = 3 × 23 × 47 × 86183 × 88411 × 191563 × 395152271 × 21267866027<11> × 2485836783999475484739042658415094766827727969055908317482345147<64>
89×10101-539 = 9(8)1003<102> = 7 × 56734188775349200737584651617174592230645867<44> × 2490030162046178820542680545917793722048530733187963400607<58> (Erik Branger / GGNFS, Msieve snfs / October 21, 2010 2010 年 10 月 21 日)
89×10102-539 = 9(8)1013<103> = 17 × 19 × 83 × 7499 × 7074931 × 3401618207863<13> × 10612185643734959<17> × 192597619101999885868940594658869273749955330017485165242419<60>
89×10103-539 = 9(8)1023<104> = 32 × 13757 × 14857054994491<14> × 182874818875961477<18> × 853668612751729603077619039<27> × 344354130562654997520295028736793943603567<42>
89×10104-539 = 9(8)1033<105> = 52859 × 37491007483<11> × 21717851006558602684738777075001704435878773<44> × 22976538109472835933457009302970177885650128543<47> (Erik Branger / GGNFS, Msieve snfs / October 21, 2010 2010 年 10 月 21 日)
89×10105-539 = 9(8)1043<106> = 29 × 677974916117509123<18> × 502962809502044704381071415945255498169702724358419234205622704495440992266924226665349<87>
89×10106-539 = 9(8)1053<107> = 3 × 31 × 5164532081131018279<19> × 41631658238190164367707080500466282123<38> × 4945496051201391256026816955848503307773514971243<49> (Makoto Kamada / Msieve 1.48 for P38 x P49 / October 21, 2010 2010 年 10 月 21 日)
89×10107-539 = 9(8)1063<108> = 7 × 31193 × 56299 × 1202471 × 117019013 × 6439503966377<13> × 6702239770969<13> × 13246105616186646954590756259162595161960386526543049996733<59>
89×10108-539 = 9(8)1073<109> = 253310429685943961825226379<27> × 11077525200404201035484104068007677349<38> × 3524128039488572701268282058198112072567295173<46> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=4057309660 for P38 / October 19, 2010 2010 年 10 月 19 日)
89×10109-539 = 9(8)1083<110> = 3 × 263 × 587 × 56549461 × 624984421 × 365281043335855332386088503057805001<36> × 16538937138256628882057617941837924498024409401260101<53> (Makoto Kamada / Msieve 1.48 for P36 x P53 / October 21, 2010 2010 年 10 月 21 日)
89×10110-539 = 9(8)1093<111> = 382693 × 4552673 × 35530816609<11> × 35028246810229263523819<23> × 456044193798037478918222463072721965972625659362022610509077339557<66>
89×10111-539 = 9(8)1103<112> = 59 × 3593 × 5923 × 144030083 × 54681865805999327841609267633649235730141943074975911988857644374561319760586706313385979324601<95>
89×10112-539 = 9(8)1113<113> = 32 × 500923 × 3181999 × 6640841 × 71241728911<11> × 394894442441765097414105857<27> × 36897370885251760113238912473982384410471524039456078233<56>
89×10113-539 = 9(8)1123<114> = 7 × 397 × 7307 × 48698977540890629992243675544495744166257827806620431200773917584925558715572018436426086658998821140020411<107>
89×10114-539 = 9(8)1133<115> = 61 × 811 × 62367091 × 7225160284057<13> × 7664326311901663<16> × 869518783743981444627587752248508903<36> × 66564224910834491844404603729144308111<38> (Makoto Kamada / Msieve 1.48 for P36 x P38 / October 21, 2010 2010 年 10 月 21 日)
89×10115-539 = 9(8)1143<116> = 3 × 3673 × 7505833 × 982704600925913<15> × 1216699773908988388336743280587236258248206868287484513313396220579045907243749050766770233<91>
89×10116-539 = 9(8)1153<117> = 4157 × 4760023 × 22943797 × 43763355733<11> × 49771704512208138262831659817876602236741529787179166044665500197691427782993367607791953<89>
89×10117-539 = 9(8)1163<118> = 2039 × 355937 × 3967321 × 5677129 × 148741445863981<15> × 2075976552857717860769932087<28> × 1959190151819065670445324007328693141733645264551312047<55>
89×10118-539 = 9(8)1173<119> = 3 × 17 × 67789 × 4235663 × 6752999140815516493849267099967699720838699141051319963030786638957603182242264403996090823875180491320619<106>
89×10119-539 = 9(8)1183<120> = 7 × 11369 × 4047041 × 7756669 × 395835123159948492086423650982903919230701570761516062974679921596247912875635686460481333655961531569<102>
89×10120-539 = 9(8)1193<121> = 19 × 4572 × 1915551511<10> × 8986605319<10> × 252337611965940370703<21> × 573706808460840328804610099429498116341695898976177013855403911455615138559<75>
89×10121-539 = 9(8)1203<122> = 33 × 31 × 1132 × 199 × 4363 × 377110595213724473<18> × 96977520296958014727677525392523429497<38> × 291398326552268129412831510680131662773607802824954563<54> (Erik Branger / GGNFS, Msieve snfs / October 21, 2010 2010 年 10 月 21 日)
89×10122-539 = 9(8)1213<123> = 23 × 9277209397<10> × 9002936730454973368369<22> × 232145058611882571475374930371<30> × 2217474631458954829559060270580977693586893384740979954306507<61> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=696233735 for P30 / October 19, 2010 2010 年 10 月 19 日)
89×10123-539 = 9(8)1223<124> = 181523 × 2511307 × 21692820845381549822886052507284832137056861319565691396319843684355570282711401777992866343377830337846121235203<113>
89×10124-539 = 9(8)1233<125> = 3 × 919 × 4711937 × 345061565840818390553229507604709<33> × 22060465240175084153141627976190348625144012447960388266955417159924899649342378443<83> (Serge Batalov / GMP-ECM B1=1500000, sigma=2025456811 for P33 / October 21, 2010 2010 年 10 月 21 日)
89×10125-539 = 9(8)1243<126> = 72 × 19391 × 1145381 × 908659635447681100755319777978903833716214899294889072281348990025033191432863939260075509147709235272146082746777<114>
89×10126-539 = 9(8)1253<127> = 105929 × 5329507661<10> × 105216307567082933539<21> × 359506228407797817607623240997277<33> × 463080035947872881733837756082844743359349641803544380489969<60> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10127-539 = 9(8)1263<128> = 3 × 72557647 × 1136991078165946566584693933<28> × 80382825347493509050606156782606372581<38> × 4970759237646068529939288283917498128569733815589236831<55> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10128-539 = 9(8)1273<129> = 116341 × 248357 × 24707175218458961009263154295030445202344695820693640323<56> × 1385208680482019813152225847069130611436776157463759623596624233<64> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10129-539 = 9(8)1283<130> = 5128626015695993<16> × 3899338077455211701<19> × 4405636143815651667321616197347<31> × 241771361766025952562075123425561<33> × 464239502751120149467324937212093<33> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=885869026 for P33(4642...) / October 19, 2010 2010 年 10 月 19 日) (Makoto Kamada / Msieve 1.48 for P31 x P33(2417...) / October 21, 2010 2010 年 10 月 21 日)
89×10130-539 = 9(8)1293<131> = 32 × 11677 × 45589 × 24695071 × 2965443453992527<16> × 22478983455757949442037<23> × 313091140755622843080823<24> × 40046657048806862013146999691649888631953441419937337<53>
89×10131-539 = 9(8)1303<132> = 7 × 139 × 1263961 × 1102379459<10> × 4622593831515378856721<22> × 157791692820043880621887847687785618203594472047916349563168899912157380442209423615532495949<93>
89×10132-539 = 9(8)1313<133> = 12511 × 497977 × 34242583 × 46353194704194434357795726527639538707021861205130101002749103618863355114916606568972009385193956619700690735384883<116>
89×10133-539 = 9(8)1323<134> = 3 × 29 × 4058471 × 226523279 × 1931591820505835370095691420094321107466958848788519947579<58> × 640084926931431410665855042631208248786633085613969189174919<60> (Sinkiti Sibata / Msieve 1.42 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10134-539 = 9(8)1333<135> = 17 × 1768967 × 957078840053535023624314941826674395551607623<45> × 34358257484914471959887783372322735358447282581425384286097201725387158956933119539<83> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10135-539 = 9(8)1343<136> = 29856406841845247<17> × 31911655993799168195536918890176723527467218411556668229961<59> × 10379121967590598411874465110266450306100038297320254862427749<62> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10136-539 = 9(8)1353<137> = 3 × 31 × 1530945103<10> × 461430453866893760728096720668781574395913565853<48> × 1505215482061836407498758360447738010475770420215688491997316716107908045510709<79> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10137-539 = 9(8)1363<138> = 7 × 32678641024535418373725984971<29> × 4323002329373935686599952161927203904195646329094406608931453723151400176843780380525708527969296950958709439<109> (Serge Batalov / GMP-ECM B1=1500000, sigma=4241087594 for P29 / October 21, 2010 2010 年 10 月 21 日)
89×10138-539 = 9(8)1373<139> = 19 × 3989816385836174709984541447<28> × 6118084081241818524719641095101077282907833<43> × 21321882484916937138835539465528309869581133240910349703668769425807<68> (Sinkiti Sibata / Msieve 1.40 snfs / October 21, 2010 2010 年 10 月 21 日)
89×10139-539 = 9(8)1383<140> = 32 × 1543 × 14537 × 50061072161<11> × 606435251882797<15> × 564684075799589484411301<24> × 1064329905953270173425195649<28> × 26847130868527603175084177437850061255742046987972897029<56>
89×10140-539 = 9(8)1393<141> = 34879955483<11> × 172769730475444019<18> × 164098238618181782043882693244050218735695736272148813383525984513872962655773102906177874184859383346056380501779<114>
89×10141-539 = 9(8)1403<142> = 8305031782603<13> × 20366246611929149<17> × 2204035343377801883479062683550717807151<40> × 26526298086770776501899898917962617942364426396960572806717799633539808739<74> (Sinkiti Sibata / Msieve 1.42 snfs / October 22, 2010 2010 年 10 月 22 日)
89×10142-539 = 9(8)1413<143> = 3 × 3261481 × 10106746892887912872392315933455679479035126362214884269742170186784152034907749872822488606544990745910512114883687184736922570747143081<137>
89×10143-539 = 9(8)1423<144> = 7 × 83 × 28403 × 17278357 × 7265999371<10> × 890352743821322799021591450406777516988918664007<48> × 536101781790067571443275877615207855727707914124712850424301389612251389<72> (Sinkiti Sibata / Msieve 1.40 snfs / October 22, 2010 2010 年 10 月 22 日)
89×10144-539 = 9(8)1433<145> = 23 × 6353 × 156554209556730049717<21> × 432290862799286599855142706964037842651366689550638459768695622096894764629178288324300193285249582383259958546407726721<120>
89×10145-539 = 9(8)1443<146> = 3 × 107 × 308065074420214607130494980962270681896850121149186569747317410868812737971616476289373485635167878158532364139840775354794046382831429560401523<144>
89×10146-539 = 9(8)1453<147> = 47 × 99707 × 38397794996223049637<20> × 5862459632937442105869562318117859<34> × 937427822382959318115314636890077457196903159872570566233304178688796712854681116156969<87> (Ignacio Santos / GMP-ECM 6.3 B1=1000000, sigma=1578939800 for P34 / October 21, 2010 2010 年 10 月 21 日)
89×10147-539 = 9(8)1463<148> = 8221 × 623086657 × 41644917893<11> × 46356686699844113856829739870330039554294346083074297586497441545697409038666890807533140395328689242463487876947018858438723<125>
89×10148-539 = 9(8)1473<149> = 35 × 1264873 × 4327613390484793857957531324995519<34> × 5021198167712409491660669984423237<34> × 14806025185682282311858276470855274921481864975375925255344553785475243899<74> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=414736378 for P34(5021...) / October 19, 2010 2010 年 10 月 19 日) (Ignacio Santos / GMP-ECM 6.3 B1=11000000, sigma=2150337929 for P34(4327...) / October 21, 2010 2010 年 10 月 21 日)
89×10149-539 = 9(8)1483<150> = 7 × 257 × 4177 × 2284058471<10> × 971097098248015889<18> × 3017387714356119874579<22> × 29589096613835312336223953193830081106973<41> × 664536991651466201392000843597834407864286062663536677<54> (Erik Branger / GGNFS, Msieve gnfs for P41 x P54 / October 21, 2010 2010 年 10 月 21 日)
89×10150-539 = 9(8)1493<151> = 17 × 359 × 379 × 8650559 × 2794583767757567<16> × 7805871239271523820249<22> × 88625434077902063970409034681<29> × 255637083492416205967829247407945318471413768754107569674088838938921487<72> (Serge Batalov / GMP-ECM B1=1500000, sigma=2425572181 for P29 / October 21, 2010 2010 年 10 月 21 日)
89×10151-539 = 9(8)1503<152> = 3 × 31 × 81708804012343977091094231428707132390282968695847680360010013625889329<71> × 13013547300746099937616329227372287483051586726014780617417691643363648666595839<80> (Erik Branger / GGNFS, Msieve snfs / October 21, 2010 2010 年 10 月 21 日)
89×10152-539 = 9(8)1513<153> = 1091 × 47418924457<11> × 51256662608884906902531631<26> × 2713572502714577423128810986617895519679<40> × 137429286693425607454941229856200472057859070183961277621308588567015495641<75> (Sinkiti Sibata / Msieve 1.42 snfs / October 22, 2010 2010 年 10 月 22 日)
89×10153-539 = 9(8)1523<154> = 240738073 × 41077378271150691186636228033979855313076668553747578136047009435391172583195383843123513283621277839541769900637565080488489616218241012874140971<146>
89×10154-539 = 9(8)1533<155> = 3 × 191 × 7583 × 428303612714245246471993<24> × 344968297691234914374570412628071820236487771<45> × 154035526019775269364832410659126004928760126517517363429961524824747582018001979<81> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10155-539 = 9(8)1543<156> = 7 × 141269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269<156>
89×10156-539 = 9(8)1553<157> = 19 × 1312 × 5749 × 31907 × 98561 × 674526708813823799<18> × 133831179706144303220104028618656076947<39> × 18582813389969330196252817782358465767616654632232597601548465876350811128158723723<83> (Sinkiti Sibata / Msieve 1.40 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10157-539 = 9(8)1563<158> = 32 × 1117 × 3681304627021204044345907<25> × 2672083700978535917528089384148819218154966850220606006682880604017510302640831312189528945062561244860304478184473959219801765773<130>
89×10158-539 = 9(8)1573<159> = 151 × 337 × 739 × 923761151 × 28466660160641086212436214299998899535967250579350653829768556441085371182377503162732038113259552432565940766557835564611775506375162858937081<143>
89×10159-539 = 9(8)1583<160> = 48704897 × 2134986522048395731276632879513667529<37> × 4228424997465865684889067154036531628952306047<46> × 22490602952805306233478281391266368231923037139103359238004378113198053<71> (Serge Batalov / GMP-ECM B1=1500000, sigma=396336001 for P37 / October 21, 2010 2010 年 10 月 21 日) (Dmitry Domanov / Msieve 1.40 gnfs for P46 x P71 / October 24, 2010 2010 年 10 月 24 日)
89×10160-539 = 9(8)1593<161> = 3 × 14130163718179<14> × 2332808283074232267030034095119787830043351868641470115659712967825350878338791598404629275141745694719811914043961300855827344357296983749145177659<148>
89×10161-539 = 9(8)1603<162> = 7 × 29 × 610730213027801<15> × 16592130322907497<17> × 45172483225443019<17> × 10642065768472963026427120536205816257732727606170802783221154141733636805784988052736691733048767938733378687627<113>
89×10162-539 = 9(8)1613<163> = 324893 × 1111988508443<13> × 109314777427390231<18> × 7009536848837429177<19> × 68426221826106880363687877<26> × 522054789809509249423043735033727121168272623621831944859125332417820023201058433383<84>
89×10163-539 = 9(8)1623<164> = 3 × 647 × 4493 × 397917333548831<15> × 528924235547586118379863<24> × 16801252079567290803582049526305108960607<41> × 3206694379629022482247329272335414766662218699360637211384931890800484601258421<79> (Sinkiti Sibata / Msieve 1.40 snfs / October 26, 2010 2010 年 10 月 26 日)
89×10164-539 = 9(8)1633<165> = 948787654681<12> × 3957562302318334603895727642518415491<37> × 263360544558042395238113416470910292288012355671202602991665941303584449378565058091332586233316668915595916316546873<117> (Sinkiti Sibata / Msieve 1.40 snfs / October 29, 2010 2010 年 10 月 29 日)
89×10165-539 = 9(8)1643<166> = 109 × 7516687 × 323633362859<12> × 69740622296246267837<20> × 45346769348794841541017<23> × 11792586668992212463638563966320417196703984208093886191797099280434186731333987445954219354681072148391<104>
89×10166-539 = 9(8)1653<167> = 32 × 17 × 23 × 31 × 3881 × 110007563 × 1471917059699<13> × 24920097849083110487003926331672798394666754056637720952047331<62> × 57885163969045346285885883563109373460996400926904160258298660237073274099321<77> (K, Maemondo / GGNFS-0.77.1-20060513-nocona snfs / November 24, 2010 2010 年 11 月 24 日)
89×10167-539 = 9(8)1663<168> = 72 × 34481411442645242213996180569<29> × 585283636931754119452343771435004355946848482215282713969858354521312417170704474752867691078701837993611458297562748442743077633500030043<138>
89×10168-539 = 9(8)1673<169> = 152311 × 64925638259146672852839840122439540735001995186748750181463511426547582833077643038840851211592655086559006827405038959030463255371502313614176841389583739118572453<164>
89×10169-539 = 9(8)1683<170> = 3 × 59 × 3666233 × 21634087933615036133<20> × 7043938865062096292766942360540472515785162525518779678361862566565304831522633858422724805583149345471187407579956100832891704282400001982111<142>
89×10170-539 = 9(8)1693<171> = 19120129328867024610359<23> × 5945898045759223034712526779469968996980516540551812828208710701<64> × 8698396766674442217728332620816207442172674418751343248424336631597682707330772272537<85> (Sinkiti Sibata / Msieve 1.40 snfs / April 6, 2011 2011 年 4 月 6 日)
89×10171-539 = 9(8)1703<172> = 1492 × 19708522969386422663475298331<29> × 55355164532329858664360766645710452081<38> × 408284353134823837060825983959716988006729514475102947354402793681468721434120323353188889413114872353<102> (Serge Batalov / GMP-ECM B1=1500000, sigma=895147291 for P29 / October 21, 2010 2010 年 10 月 21 日) (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=4267813832 for P38 / December 2, 2010 2010 年 12 月 2 日)
89×10172-539 = 9(8)1713<173> = 3 × 2186543 × 2626283378167<13> × 4635109348686653041<19> × 6603855302989947108778302753230402616071<40> × 187529286777602432934047598668975179841782551331469550093862195151765246250293052732786180780271<96> (Ignacio Santos / GMP-ECM 6.3 B1=3000000, sigma=2254562883 for P40 / October 22, 2010 2010 年 10 月 22 日)
89×10173-539 = 9(8)1723<174> = 7 × 167 × 3313 × 3011797 × 44003690885685564661907<23> × 1659693325789688214782651135946457<34> × 1160830742376796506583385248908176729973758773393870928751360073020513219756915329003643341013014442578213<106> (Serge Batalov / GMP-ECM B1=1500000, sigma=864967475 for P34 / October 21, 2010 2010 年 10 月 21 日)
89×10174-539 = 9(8)1733<175> = 19 × 61 × 7193 × 28351 × 43237 × 967676214371104470315552987033089642788258343088052978334481986333882460526734345492523762508786000142880904067087834540276230805236127661382953950067665630407<159>
89×10175-539 = 9(8)1743<176> = 33 × 36653 × 156467 × 638633138817667685104948198435569258450041590526901589015617181578410406363398454480539305660894332658186041273633228811800958289190247199055194230311434865330089279<165>
89×10176-539 = 9(8)1753<177> = 223 × 1471 × 3271 × 324517 × 213817042211<12> × 325462876826806763557260614716586938970749019914312401090560676669619733<72> × 40810149746356633152094283614413135250163711229905977598978347547614022500280111<80> (Jo Yeong Uk / GGNFS/Msieve v1.39 snfs / May 1, 2013 2013 年 5 月 1 日)
89×10177-539 = 9(8)1763<178> = 139 × 853 × 12715802237<11> × 16136895413<11> × 133842487147<12> × 15303186663395258825575600650145708141<38> × 198446773673369654456120035186955288287627422364960999954619301139069097693523728034567214307390394757627<105> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=3391708956 for P38 / October 20, 2010 2010 年 10 月 20 日)
89×10178-539 = 9(8)1773<179> = 3 × 1619 × 36671 × 79153 × 3467839687397<13> × 3801238757307597449528613736942953173<37> × 7885263498582204730955750987163948168543101<43> × 67482146605707368491380962949615653920783586615763548604989055391934789473<74> (Wataru Sakai / GMP-ECM 6.4.2 B1=3000000, sigma=2441693776 for P43, B1=3000000, sigma=1116131975 for P37 / April 11, 2012 2012 年 4 月 11 日)
89×10179-539 = 9(8)1783<180> = 7 × 21191 × 5648105189<10> × 1055799044946838169671395419<28> × 11756048507674126757727631469404122254360149373597901029<56> × 95093886008867115662756371418453153664086477333202641290779818583933364323995183681<83> (Dmitry Domanov / Msieve 1.50 snfs / January 6, 2014 2014 年 1 月 6 日)
89×10180-539 = 9(8)1793<181> = 307 × 1013569 × 2471814687272389<16> × 4136300633835100229522572496925193<34> × 1589973202057373446823847262325062669<37> × 1954960527117248950549122400097108234955980595276972456220418229970641145312410393968377<88> (Serge Batalov / GMP-ECM B1=1500000, sigma=2189377750 for P34 / October 21, 2010 2010 年 10 月 21 日) (Erik Branger / GGNFS, Msieve gnfs for P37 x P88 / October 27, 2010 2010 年 10 月 27 日)
89×10181-539 = 9(8)1803<182> = 3 × 31 × 2909 × 365528149158484380653621829505350058915744940207398207597810609598276349959114239046374022366215670643530788353862462025116301610829161589316392541090087081947714689262056165659<177>
89×10182-539 = 9(8)1813<183> = 17 × 1801 × 2351 × 2897707 × 29970840413617<14> × 2090092395637839960336427<25> × 75685617331999991520515359423056493791009772331924774480245457164438766066997279498372099164646687105250508385726907201056542485373<131>
89×10183-539 = 9(8)1823<184> = 6733 × 1206529 × 32247941534912105159<20> × 1985500446405662853610114553073314493641741282601727577187417757<64> × 19012058016120765083839046212100071927937013050594815162596915724811470573175734594292923613<92> (Dmitry Domanov / Msieve 1.50 snfs / January 21, 2014 2014 年 1 月 21 日)
89×10184-539 = 9(8)1833<185> = 32 × 83 × 3951188041<10> × 14633715408684963316321495229964287<35> × 2289520792314459033789211139348214299881225826909439083281937048598335534917173081006579182678209648173456204874583570506405436601046422767<139> (matsui / Msieve 1.48 snfs / March 26, 2011 2011 年 3 月 26 日)
89×10185-539 = 9(8)1843<186> = 7 × 509 × 1871 × 9221 × 613458157042658379321481<24> × 5937541747620688103167194771751<31> × 4416601783967175979891774298879070641837598056349604827266304028647728893300591224084861222299314681346770542058681712821<121> (Serge Batalov / GMP-ECM B1=1500000, sigma=3920135492 for P31 / October 21, 2010 2010 年 10 月 21 日)
89×10186-539 = 9(8)1853<187> = 12304799629<11> × 129434073539<12> × 2770829698714371313424445239488748098164792672271<49> × 2240858830663230604805844814559706547738968522616243160742498653847707811551246047608052617699942512024918991868014683<118> (LegionMammal978 / Msieve 1.53 snfs for P49 x P118 / July 13, 2017 2017 年 7 月 13 日)
89×10187-539 = 9(8)1863<188> = 3 × 1446701 × 144381838399<12> × 837605824567187794338292863575566032834333228178063345725649<60> × 188406206293052055782946777846207577706131858176365301286120873954593031636010025550141688095387819122881358811<111> (Dylan Delgado / msieve v1.53, ggnfs, factmsieve.py v0.76 snfs for P60 x P111 / January 29, 2019 2019 年 1 月 29 日)
89×10188-539 = 9(8)1873<189> = 23 × 97 × 100857540077639<15> × 2043653439972143254516487<25> × 1288258550750502928898876985209479<34> × 85581704065670308615941471581166096545593648379<47> × 19505107191589811603746287590190899377752633074391189750150475311161<68> (Serge Batalov / GMP-ECM B1=2000000, sigma=3327557317 for P34 / November 9, 2010 2010 年 11 月 9 日) (Erik Branger / GGNFS, Msieve gnfs for P47 x P68 / November 11, 2010 2010 年 11 月 11 日)
89×10189-539 = 9(8)1883<190> = 29 × 577 × 19681 × 6778092905103110907506959871561<31> × 4430155879005914325570880425563801384086685961815967683413901526236265599012106186428229409029136470023641050485203967096840996038226471453298876397111<151> (Wataru Sakai / GMP-ECM 6.2.3 B1=3000000, sigma=1663970239 for P31 / October 22, 2010 2010 年 10 月 22 日)
89×10190-539 = 9(8)1893<191> = 3 × 193 × 68653758000377040757880747749280863497732064019790223767574326423104007255209196738288695747<92> × 2487737877528938078518057476700030881506904633281615099114052022320983575106134291550889787590491<97> (Ignacio Santos / GGNFS, Msieve snfs / October 27, 2010 2010 年 10 月 27 日)
89×10191-539 = 9(8)1903<192> = 7 × 701 × 8387 × 24028396856598643652073770385735765211201603403582997367073565428910218167827126192315712745656036398604332437125427159762955923272641949583558319447552274594057041486466176909082655987<185>
89×10192-539 = 9(8)1913<193> = 19 × 47 × 15307 × 723445727455120576902610036928327800965026203082319369278230146765434728820311436232498191649860981774865819310130445474549874303743435776581068486908140007297372667028763446163473421933<186>
89×10193-539 = 9(8)1923<194> = 32 × 13237408589<11> × 66915531701<11> × 3676847676837907223<19> × 5502718995301647377915345028601119600610900240216797921986594092643<67> × 613086998911298443873970037708732531554071916821064369280620569830610791690963157462447<87> (Eric Jeancolas / cado-nfs-3.0.0 for P67 x P87 / July 4, 2021 2021 年 7 月 4 日)
89×10194-539 = 9(8)1933<195> = 331 × 16057 × 18899 × 509554501 × 3130470654209836876784232433<28> × 56467372544864242124323111957704645641699<41> × 109299559499948222939372601959563843919450130620915830386012106686797005494438062366502063466130667761876453<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3383953709 for P41 / December 23, 2013 2013 年 12 月 23 日)
89×10195-539 = 9(8)1943<196> = 593 × 1459 × 2777 × 4327 × 3057509428956607123<19> × 1513155655206623149750544611252954624026500421476531160508398155033731<70> × 205600102426373617241365717522702750668417557131597567790205578128940238900186304942062769797367<96> (Eric Jeancolas / cado-nfs-3.0.0 for P70 x P96 / June 29, 2021 2021 年 6 月 29 日)
89×10196-539 = 9(8)1953<197> = 3 × 31 × 2741 × 9221227 × 557281921101959<15> × 75490420696334367023367048459952706393413807675398492301013997855843722171763966323336086677825665025071650113257922311269163324909426517958256703040306901976276452721887<170>
89×10197-539 = 9(8)1963<198> = 7 × 2525295019589<13> × 200667485068185442561<21> × 65463930137774902917492376965212613368966228621<47> × 4258515698069912848163770905752503115098575327435520469179405063865276244047884427990806194455237560806646883489575541<118> (Bob Backstrom / GMP-ECM 7.0.4 B1=35490000, sigma=1:3776264676 for P47 x P118 / April 3, 2021 2021 年 4 月 3 日)
89×10198-539 = 9(8)1973<199> = 17 × 107 × 491 × 607 × 49641751524598638210522099996106209942514737525440845899923836808092638212247824272553228625163<95> × 367449379643088602031414759366158916270668687424759419701901199471170122791419588114378214062447<96> (Robert Backstrom / Msieve 1.44 snfs / October 23, 2010 2010 年 10 月 23 日)
89×10199-539 = 9(8)1983<200> = 3 × 3181043 × 1083735131<10> × 129269085419<12> × 41747573018798304920982687053<29> × 43942227616233766615087092742649<32> × 40320468736891168874582381760999389108543435511680403757313839603618684804252129874217624110073208787720826271319<113> (Makoto Kamada / GMP-ECM 6.3 B1=1e6, sigma=2487212059 for P32 / October 21, 2010 2010 年 10 月 21 日) (Serge Batalov / GMP-ECM B1=1500000, sigma=1402557621 for P29 / October 21, 2010 2010 年 10 月 21 日)
89×10200-539 = 9(8)1993<201> = 27739 × 357606523 × 84340387863161<14> × 1181995085106885866402320116189694325984589090145866691477134886877465637680923877513011641271240293079215575714407178851264860822680316317100609793978552173492115885817257699<175>
89×10201-539 = 9(8)2003<202> = 1021 × 1699 × 26203 × 78963733 × 26194692706673<14> × 56318938708609<14> × 3550469269818303901031538089<28> × 1187278506332984504159924012735557<34> × 41915636939444508009891801586560687152059<41> × 10569817383658795566299846813919642661696795432697487277<56> (Ignacio Santos / GMP-ECM 7.0 B1=3000000, sigma=1:1500802378 for P34 / December 3, 2013 2013 年 12 月 3 日) (Dmitry Domanov / Msieve 1.50 gnfs for P41 x P56 / December 4, 2013 2013 年 12 月 4 日)
89×10202-539 = 9(8)2013<203> = 33 × 97373 × 16833900719<11> × 1500761156574830323668652124201121668953875011<46> × 1488842784183721871648802783654994994258007987304154169553462413377365883376073139028393846953999919895152405113542693002091998338663968908497<142> (Bob Backstrom / GMP-ECM 7.0.4 B1=37100000, sigma=1:646270094 for P46 x P142 / May 24, 2021 2021 年 5 月 24 日)
89×10203-539 = 9(8)2023<204> = 7 × 379100498017<12> × 9533537366377273698319451830206312919134391697371048225459183848029<67> × 39087782147367950078741012128679098389727189293796398113545174822647008041535145106846670683123864743872694038216397522427033<125> (Bob Backstrom / Msieve 1.54 snfs for P67 x P125 / May 16, 2021 2021 年 5 月 16 日)
89×10204-539 = 9(8)2033<205> = 133975909 × 73810948271967976637418365184511559379596289127539256993500890439107891321632226349655809305902069967585656678686082950098803874425579668124430407028541891728376994172055879754388446723573929167287<197>
89×10205-539 = 9(8)2043<206> = 3 × 227 × 229 × 4621 × 9945883 × 1260872691251515629085870849998441418237623099554301049<55> × 10942444430366471031109271488490623725756576663407307507932796192227718474292254255033806773770302653315274519688425641997067599690942281<137> (Bob Backstrom / Msieve 1.54 snfs for P55 x P137 / July 19, 2021 2021 年 7 月 19 日)
89×10206-539 = 9(8)2053<207> = 14949417347699<14> × 226267252612546449772736020914313<33> × 355310343748784088997773012482087<33> × 822798850759023061621834837960219732415705196622459750751756403843690698268075986205175999915198882230630755710784829023428221407<129> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1479820991 for P33 / December 19, 2013 2013 年 12 月 19 日) (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1770507562 for P33 / December 23, 2013 2013 年 12 月 23 日)
89×10207-539 = 9(8)2063<208> = 2416464793<10> × 33246436393993<14> × 446469166808289245773<21> × 166689427433517325407678013572146227304648403087849087999729198635601502152573727<81> × 1653950079857989786007263893224495457949941810932899455073689888605587656773568192577<85> (Bob Backstrom / YAFU, GMP-ECM B1=150 for P81 x P85 / October 27, 2024 2024 年 10 月 27 日)
89×10208-539 = 9(8)2073<209> = 3 × 2234789 × 1625043576941044757437<22> × 44322166715670165058580080752830687387476965328637375648061034921<65> × 204787631447672243589754057815253398935308635436858222906419542837285009578696950774451991464717823861203537328005337<117> (Bob Backstrom / YAFU, GMP-ECM B1=50000, sigma=2553123134 for P65 x P117 / December 2, 2024 2024 年 12 月 2 日)
89×10209-539 = 9(8)2083<210> = 72 × 821 × 17891 × 35899 × 50915269201<11> × 9362864591940422819088096813709<31> × [80285017503562362883262082941467903088976479226544501137017032243471953898645778002711271401036201982942547751176900622238002792941553545600064091031612467<155>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2967176065 for P31 / December 19, 2013 2013 年 12 月 19 日) Free to factor
89×10210-539 = 9(8)2093<211> = 192 × 23 × 1162611338214503<16> × 17982180626130369349292148844523239446249089<44> × [56968600353305977583230645480361911750203251499194668228065948203796029137566960739817116449855077679234522377808363259458149127463171764946494258683<149>] (Dmitry Domanov / GMP-ECM B1=11000000, sigma=1111871103 for P44 / January 21, 2014 2014 年 1 月 21 日) Free to factor
89×10211-539 = 9(8)2103<212> = 32 × 31 × 122276593 × 244901047 × 1623469462300174813<19> × 145520079178507948471<21> × 34436241959330561154310423<26> × 1454877829289002133673702697090119498591334586392368425582179261294513175228048698104962139827653377329539307861448584510691542303<130>
89×10212-539 = 9(8)2113<213> = 397 × 4871 × 5527 × 997547 × 5776580879<10> × [16056288798901989186072097090311304081211411236997500232890702780432771444186284225074632649428903356000911007429015795323922212242800212852280181811918991330614248490019216798416885907859<188>] Free to factor
89×10213-539 = 9(8)2123<214> = 1423 × 90239 × 2871971 × 720642855962990609957193640933<30> × [37209016179417079141178510927347716437620116850633447168017796460712528128426203478404726196543438604927511023508218923082013161410738910597779307806281923185756045398573<170>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1326966211 for P30 / November 19, 2013 2013 年 11 月 19 日) Free to factor
89×10214-539 = 9(8)2133<215> = 3 × 17 × 2339 × 41533731954497084933<20> × 941117527038824698500786599<27> × 21208125362944926414496854088692733841262949932557181812717898247892294893254496708765328255482269667763411820038597117380500009752195013162772947531816123902319641<164>
89×10215-539 = 9(8)2143<216> = 7 × 26043811 × 132973258292660952071627<24> × 40792527183828080539211859955491006819579438870123089794673252077050843856549198659314127311249695887932168006120939661446217192453788695099456907029946988904684433661659841025010849077<185>
89×10216-539 = 9(8)2153<217> = 787 × 6470251421<10> × 440412324398252338254461<24> × 4408620153773372750635558356983809744567<40> × 517500535984229733506439116335216131507553387<45> × 1932763247840483476962110998421732593368247640607675476136085760635065390993725273975965052087341<97> (Dmitry Domanov / GMP-ECM B1=11000000, sigma=479784464 for P40 / January 14, 2014 2014 年 1 月 14 日) (Serge Batalov / GMP-ECM B1=11000000, sigma=960790627 for P45 / May 24, 2014 2014 年 5 月 24 日)
89×10217-539 = 9(8)2163<218> = 3 × 29 × 6737 × 59901823604908937851<20> × 1131940888959654324233<22> × [2488272301283198279952720478743450083427038728975107266410253449939461992230028050176313958904981836652037382825678502342071052024578213062370062715209986594157039203824279<172>] Free to factor
89×10218-539 = 9(8)2173<219> = 311 × 2054403174883<13> × 246157277827499869<18> × 1832105186244750008561<22> × 1852485988895033634449<22> × 6771225877139237863891<22> × 273600012358660004873899445835333928155930392634984502478667088475435190441038844915821245146756994451792284857503844882961<123>
89×10219-539 = 9(8)2183<220> = 2797 × 42520783 × 19518194629342411039<20> × 20346684790929546710036126413340668402272919013839811381033<59> × 209372903717788869121410138792014377931972404084204718421110661774068951710891097492691504431283093775400861756952050738335287015959<132> (Erik Branger / GGNFS, NFS_factory, Msieve snfs for P59 x P132 / July 2, 2020 2020 年 7 月 2 日)
89×10220-539 = 9(8)2193<221> = 32 × 199 × 90589550321<11> × 289892977318344618855936633859699131653<39> × 2102500524604659251836973545856911657429370868733786738397643474436986363574123999866171174650223271133710911858414518664073794818669229735777723463788195714748351107001<169> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2717530077 for P39 / December 23, 2013 2013 年 12 月 23 日)
89×10221-539 = 9(8)2203<222> = 7 × 1973 × 10477 × 168143 × 501837720587285330030193726298837247426195688914688496348941055255637723<72> × 80992225808357021050741961096530734360186995440209813288332383078116799826944066097486119128534524260755013258252124810907614367092158801<137> (Bob Backstrom / Msieve 1.54 snfs for P72 x P137 / March 22, 2020 2020 年 3 月 22 日)
89×10222-539 = 9(8)2213<223> = 1500235054343889751<19> × 6591559676102674956675355319089794551867986077470931146390839943150933995012397598547674141209162325598699960666411033941623260032858502625269897608226382299023672012163789086826799668022890612263759552133<205>
89×10223-539 = 9(8)2223<224> = 3 × 139 × 4057 × 10357 × 876340447 × 9687751849<10> × 26771001270289<14> × 413977493356655110027<21> × 59983976154296659361938798818556523208675611526345323719034535717835017394184115614760218722867029365563786002185822924349090481435775627604968014783606983240539<161>
89×10224-539 = 9(8)2233<225> = 642385229 × 904242123779<12> × 6119825482411<13> × 687391477957582709841504556531<30> × 139377666465491014023934978091831<33> × 253068316551170657881642545284247848213956581673<48> × 11473424706396800896000481655568165648563847062812343760611145136651642149186359211<83> (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=1965599235 for P33, B1=1e6, sigma=817246513 for P30 / November 19, 2013 2013 年 11 月 19 日) (anonymous / yafu 1.34.3 / December 25, 2013 2013 年 12 月 25 日)
89×10225-539 = 9(8)2243<226> = 83 × 97301 × 2681207 × 6218760811<10> × [73437503300913646436981691397337303284920197499291064611634267868152477824433537538463097199982693613920145160699951364019323945795681570982103245552492649251560273404501322899835713530119170270607591713<203>] Free to factor
89×10226-539 = 9(8)2253<227> = 3 × 31 × 2749 × 165826751 × 1222241143611347974186530503<28> × 1908439153549374764967367134483760097632719341346535897344923438529749282339427507500737203870386643996081054975063748896492216862617466400033033755819193973041509048056386604521962034323<187>
89×10227-539 = 9(8)2263<228> = 7 × 59 × 4099 × 1867211 × 3551699 × 9932581 × 284172350201787894911147848580698229<36> × 31206570415677747364309442334965475432201837547883932865618304044090177547914945910462424631990063760458972983077113729952265494349085506206147699863854804087530679469<167> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2325832876 for P36 / December 19, 2013 2013 年 12 月 19 日)
89×10228-539 = 9(8)2273<229> = 19 × 66047 × 4168000523<10> × 153150660643901<15> × 1369527290104949<16> × 8169873176708927<16> × 1937275959345415589<19> × 719697820521414913790560337307829211366587<42> × 791346122807274432239600488362466964954390916407299814353912422887273862608221127491292641167782820386015173<108> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=4065179560 for P42 / December 23, 2013 2013 年 12 月 23 日)
89×10229-539 = 9(8)2283<230> = 34 × 11341217 × 44617186924999054019<20> × [2412685050299149147546506193911472862852213809313243531635542728644045235025165880754079477482788300741762012979362520388835276520145524765121734942514577855330810494525034288203575070425523399705103841<202>] Free to factor
89×10230-539 = 9(8)2293<231> = 17 × 911 × 6099571701895736873312259489404409478768182119294673509176543901312291832565043<79> × 10468413237395342846525633459858936623277507870798626765486963505399326914686842249912782195354369240407367386507200340023292632784431081423811905663<149> (Bob Backstrom / Msieve 1.54 snfs for P79 x P149 / December 14, 2018 2018 年 12 月 14 日)
89×10231-539 = 9(8)2303<232> = 131620463395982922779071123036879471286875895955571394068667<60> × 75131849818352024821699877028649881673581770978234825997297983540642594064816970021518920069755142350604683681436587218688143277052833066405939897024730969129226566182972649<173> (Alfred Reich / Msieve 1.53 for P60 x P173 / April 11, 2018 2018 年 4 月 11 日)
89×10232-539 = 9(8)2313<233> = 3 × 23 × 1433172302737520128824476650563607085346215780998389694041867954911433172302737520128824476650563607085346215780998389694041867954911433172302737520128824476650563607085346215780998389694041867954911433172302737520128824476650563607<232>
89×10233-539 = 9(8)2323<234> = 7 × 113 × 151 × 35707211 × 226849258821736449837947951<27> × 1022117377263861745652575268445644182637515368042989508394799814417809251198087081380022847232011224013851928524143870906017385713820925167434548032245408009752246821284525050331241744488791625383<196>
89×10234-539 = 9(8)2333<235> = 61 × 677 × 396866505443<12> × [603371158001635140230462320503747927605278498769842779195224566764062461742300238015154092189254401442699092658492119628347049298597921398359430971627680577163668710852767945186599543551828285893600914954599935586346273<219>] Free to factor
89×10235-539 = 9(8)2343<236> = 3 × 883 × 118043986493452068792054797<27> × [316243546080583291590634002105217625052612767352308549277970898664266212217973820540973592911113009342725583324861931227537731303548722337609788084439239151371708851259449235200851949411007808690496579194711<207>] (Serge Batalov / GMP-ECM B1=11000000, sigma=1708097006 for P27 / December 4, 2013 2013 年 12 月 4 日) Free to factor
89×10236-539 = 9(8)2353<237> = 68999124856464363511<20> × [14331904802358406237690093555756892403264702996453605680251781308282592521995951890877015849510329750838073796670676511749492636683068102936260406391802738335973084413402434963329355168674896349230256051678280217074853<218>] Free to factor
89×10237-539 = 9(8)2363<238> = 2663 × 2731 × 55311180183216449<17> × 392861300319044773545063007452584057<36> × [62575230160679164524075934028273597623124589040086293257183065622307827987167832016664331766750793862543860655384216530152065611979440462422383856700027758435193577865874242270327<179>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=1460566102 for P36 / December 23, 2013 2013 年 12 月 23 日) Free to factor
89×10238-539 = 9(8)2373<239> = 32 × 47 × 8311 × 4723052342713469649311527023929<31> × [5955676351216734104037317839368571849404853631517061747909209077528545403243107780143488746242262330690047716906465995284872099728829023114642850074661550708901911619244747950728562987451416723557985259<202>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2328822515 for P31 / December 19, 2013 2013 年 12 月 19 日) Free to factor
89×10239-539 = 9(8)2383<240> = 7 × 119432851883<12> × 10113990777119<14> × 116950774211923855161828221280380991515796569506974334861888375474738653060804482918102123013278297148995072101433020454639358965945501372615554342334946441934434050604964178743743724581423487072072181116614187074497<216>
89×10240-539 = 9(8)2393<241> = 90757131397825398475954176851390696483175983913457862591834119183396077587843857947350262982541074206482797<107> × 108959910219527203740070709273871462592086786629847384904937116124597115194603894013825062053383025160434832147333134862551309875153439<135> (Bob Backstrom / Msieve 1.54 snfs for P107 x P135 / March 13, 2019 2019 年 3 月 13 日)
89×10241-539 = 9(8)2403<242> = 3 × 31 × 2359847726938330910271188027239<31> × [450588982400820167710709310437860822431811094893712714305782427169257310590695391029988051889021535536690010476600433213063937387994842660266452620380763537743739003430807802547612751543140665229061689153923929<210>] (Makoto Kamada / GMP-ECM 6.4.4 B1=1e6, sigma=3990333347 for P31 / November 19, 2013 2013 年 11 月 19 日) Free to factor
89×10242-539 = 9(8)2413<243> = 1920407 × 14600832583<11> × 11572295386562951916011<23> × [3047593825394066356571875294297423477655045422005028593657248399406230756504797330206983723150728034416693239528428713190245546270128452202337889361114543737776824639358430995633966825393272752268901374713<205>] Free to factor
89×10243-539 = 9(8)2423<244> = 1155577 × 8557533499618708998958000106344180343576316324129754130524308539274223084129304138875115106036974506146184017931205699740379817951455323954084313627641333194489756103564616541250724866355845511713099939587659575163653212974028462741027979<238>
89×10244-539 = 9(8)2433<245> = 3 × 313 × 131479 × 445319290235681<15> × [1798680409236893320997518695351085752896832503848760537057720558493841250880284141123895208015010383025741029444641192165072931157195863507115211076046149087516761431665460084785993114094055833642298931882088319039027176303<223>] Free to factor
89×10245-539 = 9(8)2443<246> = 7 × 29 × 157739 × 780061 × [39589845838060199036567624762059235857193541260228894451946483039316256637129739898270128200251666367704106826675310562127835755209859757815915246815126840302315523691708385079074129479301190251624732416989251561383845844359479965159<233>] Free to factor
89×10246-539 = 9(8)2453<247> = 17 × 19 × 30763 × 2312861 × 75987769085957<14> × 2575602873392733049021362778657237<34> × [2198589558758448454109969036430138363952650732230399327702798092871992004128346628290514016120930344214375776909522423613070853620129053547805557873499639170431891684898177645874223059383<187>] (Dmitry Domanov / GMP-ECM B1=3000000, sigma=3673934163 for P34 / December 19, 2013 2013 年 12 月 19 日) Free to factor
89×10247-539 = 9(8)2463<248> = 32 × [10987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987<248>] Free to factor
89×10248-539 = 9(8)2473<249> = 1487 × 1102313 × 830338784783<12> × 95765802651689<14> × 115957785231491789<18> × 4244432186755265933<19> × 286970474579582116677141219694737929<36> × 53716671632958734907247158213715280475976390857385006635104606940601974254510218105695432282376957887531744250923662956703722727098989747657043<143> (Dmitry Domanov / GMP-ECM B1=3000000, sigma=2537103509 for P36 / December 19, 2013 2013 年 12 月 19 日)
89×10249-539 = 9(8)2483<250> = 191 × 467 × 30610794632460434168089931<26> × 3621784833026272489821926043312389889345555201868207271497613049738616774929027753380590486715603424308816460563494878180077384527487108195490747717294427920405782258681823636007099264429461304707644015601774565996489469<220>
89×10250-539 = 9(8)2493<251> = 3 × 64783 × 1066288187<10> × 5517702052789<13> × 9375578485270487317951<22> × 1799306286316641242334829<25> × 5126596921630529796455025614640302127042650353938189046373950152287340108421841825581153324548158128874837452513788975290721719753888588801377681302421694215945975784784259309411<178>
89×10251-539 = 9(8)2503<252> = 73 × 107 × 4337 × 55229 × 6604331 × 5463451446781637602665133057875362174717<40> × 3117576206822722335587812058036686394663564422100082678469495749698291795070239230977936587934153310406610366034352659980818300722662078986488582115287546310008434483235437243124213436826617173<193> (Dmitry Domanov / GMP-ECM 7.0.5 B1=3000000 for P40 x P193 / September 5, 2023 2023 年 9 月 5 日)
89×10252-539 = 9(8)2513<253> = 3911 × 31723 × 23469233 × 76257497 × 1165936469<10> × [38196986432349269584671170415005713897278181107929533379230212781264474367579947866600522515849339672463556587121462073724385492755170964072556328137539698548270993211103298259132766681467229899282394213646079167739863819<221>] Free to factor
89×10253-539 = 9(8)2523<254> = 3 × 460951 × 54528898799<11> × 196109911183279<15> × 177320705186146898556876797011456735584154027<45> × 37712538014180605190649053479719259946530270942218854090255550384106063511770464428861723768106046431159397444318924398689749480473783912934428718094758628303903134383818617141733<179> (Dmitry Domanov / GMP-ECM 7.0.5 B1=3000000 for P45 x P179 / September 5, 2023 2023 年 9 月 5 日)
89×10254-539 = 9(8)2533<255> = 23 × 4817 × 6102615917509849263233<22> × 515476123211274019652560386775807021774439<42> × 2837386014622003370742226681303745102836959649969361550389608810227812840577771816741370991883298472494460519473426410321467983091991701691109640730259268114834498727621645934450976045699<187> (Jason Parker-Burlingham / GMP-ECM for P42 x P187 / January 2, 2021 2021 年 1 月 2 日)
89×10255-539 = 9(8)2543<256> = 10111 × 4792938817<10> × 8710385018196709<16> × [23426863628432843014038236183790239801826261546912300393850542864504286186510141099729129894029782786531757667847071932659361754604833397190810479967391369047028348023312362638624797819807445014164035431563816163764840056206601<227>] Free to factor
89×10256-539 = 9(8)2553<257> = 33 × 31 × 173656243240237<15> × 36173475829217450160455641750627<32> × 18807947181677245648835028105259705199213456901933610777496137887398371081672703413400122036244032730179658509097444602934662729388585226710537615710258919212110453654247738643640125263106763462650943198489041<209> (Jason Parker-Burlingham / GMP-ECM for P32 x P209 / January 2, 2021 2021 年 1 月 2 日)
89×10257-539 = 9(8)2563<258> = 7 × 9949 × 58787 × 3282290585857<13> × 2593651022739810774833<22> × [28372666947499132169019990317339239272561621643193574964108114498128740555287803142963609699591064329435084466874648710366418610854639702537991738970325315228558998342538912646955351129146853908216148299750349129123<215>] Free to factor
89×10258-539 = 9(8)2573<259> = 5715814312957213947888110306991814037394132039103<49> × [1730092747497361313833449124910108659216908561761623101267086338319013968965104897286518089418171614147932392333550657125250859904907160209832371896996375344902865491042009150960373861841479549950234984153861261<211>] (Dmitry Domanov / for P49 / December 6, 2021 2021 年 12 月 6 日) Free to factor
89×10259-539 = 9(8)2583<260> = 3 × 24744862482983<14> × 289133879586947<15> × 538665716096561<15> × 2408246472994235327611<22> × 313078275155037101162356220718352027567<39> × 11344073025648284672645660643990128509955392400939961835570959832021609807494749332616108170186440779355365962706007783750714427260415654523285878920404356873<158> (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:174655275 for P39 x P158 / February 16, 2022 2022 年 2 月 16 日)
89×10260-539 = 9(8)2593<261> = 1187 × 1439 × 850502657 × 2538895428678820297564237429<28> × [268111533070325128004662267939835995899171323401502524771946684756356700314094515143892215832204921299676173595825023428858034110243952632567784708378462522566452908259365339944389006381026043127735245763686004368699027<219>] Free to factor
89×10261-539 = 9(8)2603<262> = 20789 × 15190204945439<14> × 189064685777963<15> × 779712433387534103<18> × 9024651524432559833<19> × 4661875052707110256699<22> × 5049104010670248290864438285516011581314739936467024143827192560990562403406694193942322793331264516043109783992404243130306100101871820662962481975156393659274413994429071<172>
89×10262-539 = 9(8)2613<263> = 3 × 17 × 307805383904195066609<21> × 505160667009878131711517743842714746491<39> × [12470147233525530871607900743919914726857284381228440457119572603009606132835885330600341067318118538223275375784120992120539824297346021877843886015277524343918150405429558407183266233815198818937383907<203>] (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:706638712 for P39 / March 31, 2021 2021 年 3 月 31 日) Free to factor
89×10263-539 = 9(8)2623<264> = 7 × 743 × 3571 × 8447 × 4177215702751086998591<22> × [1508972750235717288426352358414564573001626210384204429873536704565430546069470609353999909997385884100319769885734165389291087737523983987542548578396205455602391242981595274629376126891374976880818729067862343047461622589688912049<232>] Free to factor
89×10264-539 = 9(8)2633<265> = 19 × 367 × 461 × 1456187 × 2509127 × 983733811 × 1888187150880551464499<22> × 29152125397109111934189818249301601953071<41> × 15548706059535619528697764820465218263345588235660820671311992579121595264727882666529909060882759499067771909179252107354287087487836643722481927273039789887091256348532478881<176> (Dmitry Domanov / GMP-ECM 7.0.5 B1=3000000 for P41 x P176 / September 5, 2023 2023 年 9 月 5 日)
89×10265-539 = 9(8)2643<266> = 32 × 795601 × 314897351949243456323467<24> × [43857175517673935076285577223608508545126380009664114189884594595022343244949184512354845238706906561529861495126661519966376482515851782344956398434422042849904563843001341860596164769066576708515869296153186635868128231782501361196961<236>] Free to factor
89×10266-539 = 9(8)2653<267> = 83 × 10181 × 874426001 × 1338307477618537081631245517431064775394164027417624751649721796878703070524018921657266911981406889703081201768396638664579998388592381643888640116147019706632834705415108435492628205028487651095354351950229375047012209339476784947685296573708743129821<253>
89×10267-539 = 9(8)2663<268> = 557 × 12421 × 12156359 × 16687277 × 53030826465361<14> × 28144634878231841<17> × 135844482180314276687<21> × 16604497240304688816999251<26> × 2092931433579896634137575292922118929103952263184528941659525472685212313724142674256193756303762758088887652875436814801460722845599033210581684731585833436571394882850029<172>
89×10268-539 = 9(8)2673<269> = 3 × 37539121 × 44852372562795039781589546890024963<35> × 19577476999275973147741554545121893974458498219903824705302811571535924897550222758743030397389636194161649560460207874816991471181715257978232757110505525281419508764494552190193524743215150972196677150953445865722601483116107<227> (Eric Jeancolas / GMP-ECM 7.0.4 B1=1000000, sigma=1:2877959050 for P35 x P227 / April 1, 2021 2021 年 4 月 1 日)
89×10269-539 = 9(8)2683<270> = 7 × 139 × 265274671 × 28570465633<11> × 491228022280028604601<21> × [272984771535203306220817332113852644079719816862714182923845009101105977886875302548720138566263935795844006962504224193900031615348993451375947258868168015446887497320755716250593276855187462469130725989935510880669807954939097<228>] Free to factor
89×10270-539 = 9(8)2693<271> = 44383 × 1075537 × 522435546489222731<18> × [396527004188260068760706884196964185783327334104262414334879182626152068327396649486121784268554613122322578175480927824220544763610601558161356111002927970739070443565281087549381835256017665727311884577665911761052030429508224326695660147383<243>] Free to factor
89×10271-539 = 9(8)2703<272> = 3 × 31 × 347 × 260863 × 17745041 × 5608017791064500337915998197<28> × [118041902240201823493915182488669970835548050285855246266401095851567755961635832206623612126211998396935688293511815961078691148384165294471421832588300887292301926666224401680221830560509056381575277856101746376177642283778823<228>] Free to factor
89×10272-539 = 9(8)2713<273> = 457 × 12161 × 809623027 × 12605495369<11> × 48938251249<11> × 9500240554564690218627082463<28> × 37500425138927371615425390647432534387328368493625036435873479151578104941093186219286818123244318186863889038743860746217684994778334852281777004166550139960379454268465002118633128571150125597516251418422559<209>
89×10273-539 = 9(8)2723<274> = 29 × 109 × 179 × 41221 × 33874693152789842323<20> × 12516303257651968520308984153494393746526655283165911123867716677467433998939375744763709892577096699258968653144478191846421994888896748377010125451580492937578092151524180385269555005013027425558289676927086703558251307788731417322724227236279<245>
89×10274-539 = 9(8)2733<275> = 32 × [10987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987<275>] Free to factor
89×10275-539 = 9(8)2743<276> = 7 × [141269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269841269<276>] Free to factor
89×10276-539 = 9(8)2753<277> = 23 × 181 × 450797 × 272819831 × 324637185811<12> × 228498981514645411600087<24> × 29758440913425336832535597449<29> × 8881890963456556507417619395777453<34> × [985112859838328257954475948182027508121191787257294080521979191616541201984324532594331245226707506616651554552284210817065176508787326211726356608640017402176747<162>] (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:3251411334 for P34 / February 21, 2022 2022 年 2 月 21 日) Free to factor
89×10277-539 = 9(8)2763<278> = 3 × 1493759 × 76984445639<11> × 428389551167087<15> × 23110254279430027<17> × [28953370467854367354652324625329424905217120754138383189932381922338987984995997878010308181509750886258107742391409141798415618140122841098018677142382853505529738053557629640463767271857518446230896241259959683944671624351909189<230>] Free to factor
89×10278-539 = 9(8)2773<279> = 17 × 419 × 2269 × 376583 × 557212444926142543<18> × 89362767923813016467857141248469<32> × [3262961326509415549994716046345235258355224971075410725493181741200464821919778453416407698926301579963725908336531132399717291580422959155048175816357698495685340066593515198949852885032294685388308849281156540346969<217>] (Jason Parker-Burlingham / GMP-ECM for P32 / January 2, 2021 2021 年 1 月 2 日) Free to factor
89×10279-539 = 9(8)2783<280> = 953 × 16453 × 525198550960279216220759314750619<33> × 1200842305606629213697137733555582085778128156802340086640003840003541023431338336314679030971021406500760594881514088777887688478877989686958439530090848031238677162741542617583615617019399517693824143866921108026443242944206615197350177373<241> (Jason Parker-Burlingham / GMP-ECM for P33 x P241 / January 2, 2021 2021 年 1 月 2 日)
89×10280-539 = 9(8)2793<281> = 3 × 10753 × 12957568529083<14> × 483661548122639<15> × [489138131986064731319304567446676915634439036076822392947483840733618511228232128271117636583183335506626220191142145220459878640695964032925948234767954033735076528457112443421785302896731762124519707807740052540260074070884831132826902569360909101<249>] Free to factor
89×10281-539 = 9(8)2803<282> = 7 × 3430523564693<13> × 477916602927913541279<21> × 52395597106475482385140096642933<32> × [1644531278438172038630073947345583494844744191070522462223982628402823914306436035047881076652253662206488604719006321051204937401970548904031417457052650847177910114683921490345563132268114936923903247383045985610019<217>] (Jason Parker-Burlingham / GMP-ECM for P32 / January 2, 2021 2021 年 1 月 2 日) Free to factor
89×10282-539 = 9(8)2813<283> = 19 × 19654347812981059<17> × 2081199341472800241585758293<28> × [12723939023180714118064295722196014258584747576195475276015659142406487587285929141404804658941359364538709470263125560518037519119634016226409000642753732023274242078564406338997845804465191585804791526697449044912973267722325476645865311<239>] Free to factor
89×10283-539 = 9(8)2823<284> = 33 × 3919 × 22530805665819562315660583<26> × [41479331442942568796592914199263952223034089174202281736315398645029381064478459619320121120765670039983185618843605187813929555051574219295547215971214717226866697917847726409874217393725463696593413991697304620480464386858819306976803983230349037872577<254>] Free to factor
89×10284-539 = 9(8)2833<285> = 47 × 97 × 523 × 971 × 16987 × 105341 × 50087315989<11> × [4765572738598823791815927018955627700907994167949065690982349703246887078848334358805597099072430518993315885533446788565789061376734626296397306499736515011596686194807732724129652565867096213212270866270719087948760642201613693053764630817249538281535903<256>] Free to factor
89×10285-539 = 9(8)2843<286> = 59 × 20113 × 1109979174124834931432381<25> × 2635416106603638118703844849630653<34> × 822780283990688928904727380318441981<36> × 7204345215856298378802184255933679969025373<43> × 2498055076765670535932216341000682376664460172282485440721533058432251<70> × 192386327732719441942399889290796335187538093000091212366319063631988103211<75> (Jason Parker-Burlingham / GMP-ECM for P34 / January 2, 2021 2021 年 1 月 2 日) (Marlon Trifunovic / GMP-ECM 7.0.5-dev B1=3000000, sigma=1:1417681257 for P36 / April 15, 2022 2022 年 4 月 15 日) (Ignacio Santos / GMP-ECM B1=11000000, sigma=1:3014953202 for P43 / April 23, 2022 2022 年 4 月 23 日) (ebina / Msieve 1.53 gnfs for P70 x P75 / May 3, 2022 2022 年 5 月 3 日)
89×10286-539 = 9(8)2853<287> = 3 × 312 × 131 × 7963 × 9317899043<10> × 34325798933<11> × [102805461863853075491952028743021547934562234789370444755551384284423321136518422001809763040540566846246458063643867189323689848931582869571754316861322163424003271790992333260376321946633603834902252289897520358152838280123521496145060148600068198550301343<258>] Free to factor
89×10287-539 = 9(8)2863<288> = 7 × 19793 × 7137363778600579489782743458285316518025051344911901674393464420241563676111243433023860447697157645119045614170153148579865095805074585451486376055668229669139081557613361786554329372497411703191524340415362493875099341678435297391494026668078100402659590251163029417968032629781733<283>
89×10288-539 = 9(8)2873<289> = 13997 × 42943 × 436419523 × 808560289 × 910286329 × 295691908760548936740344689<27> × [173215245720380780915318539077768589909340736197282823937686247225631320350218356687010240031964301341991785755538311972893769080059091131241218036255009691048721255634247024582710442621804063079933549354226807841961610346429939<228>] Free to factor
89×10289-539 = 9(8)2883<290> = 3 × 901183 × 9749023 × 271091071 × 6568814292292039<16> × 4580892236116957302277889<25> × [459938626836791169991393881630776199517604949375912260368571519607774720734368577320245479109056336489745990462938003684976488776274623860325441922735526917693444421289945347524793798077237682686815779500260005583217669782862969<228>] Free to factor
89×10290-539 = 9(8)2893<291> = 829 × 8761 × 38874697 × 80355921379<11> × 16622717042599<14> × 158599131977817137507<21> × [16532996195249149364042019228695270464801110658886765734294333987992906205876257856511556873996528735738079524061999755948788968120084358231888029777291972587810980693362330389109958398369004006170963812279767704554692318639931421873<233>] Free to factor
89×10291-539 = 9(8)2903<292> = 2087 × 37922656935253<14> × 2154941736504101<16> × 107959170245564560361812393<27> × 537070403617080553199527998918134231646163065265827469206958065558839215760553561947986040825043614102393451497616243881881882503269478162649023905527357460333679318044062414998935492265864375094740263610596635898317830267356830051621<234>
89×10292-539 = 9(8)2913<293> = 32 × 10987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987654320987<293>
89×10293-539 = 9(8)2923<294> = 72 × 8003869 × [2521456297659495673570402393960814805248201861050686323278151769383411766078734480426926203551768727096523476713393079376295029339111609109495667323423589085322715110294806350015934994685360825250706721066332684877951637600716600599567913786289210189112313233249531146746320343703594943<286>] Free to factor
89×10294-539 = 9(8)2933<295> = 17 × 61 × 39904819 × [238970006582465911940887632661681343443619996383197703657765600739530031279862721825526255877248926201671838603374896443344810254628108484288735999487930043469785050902199089253354355836708527293530821881901136609440842229481441660854952556219740148654780536397648105626112030373937861<285>] Free to factor
89×10295-539 = 9(8)2943<296> = 3 × 726343654488125279<18> × 10999963473780821819182441941551<32> × [4125654473148307467386916433607722126484531477260965869860466162356090170352491876304108469380509954405329851561380131150527918807015746276728447106392461641897609860949009266310334291994800557283068641586755212764639742071245286909631260741704609<247>] (Jason Parker-Burlingham / GMP-ECM for P32 / January 2, 2021 2021 年 1 月 2 日) Free to factor
89×10296-539 = 9(8)2953<297> = 409 × 40583 × [59577193510265682620120357578566771270160930651457265182031119470929351938099322719100701944518597968164665579188757170408104378011321715151356562989832054100536567601106831795100402398422508376168498708878540798960823798087187848892663806974766307286994312714249043232110141924054032819389<290>] Free to factor
89×10297-539 = 9(8)2963<298> = 563 × 209404289 × 8668436640344212027690003<25> × 634670242514661863542693379<27> × [15246305379890351475562535039817928749565798711747091457828089664536983379561383256551390376006213529218400555612965040125375287366820951257419080748453229508576711247195786141299747721145151067831981508096283616098326044641854137484937<236>] Free to factor
89×10298-539 = 9(8)2973<299> = 3 × 23 × 28201 × 8609459539<10> × 390721396489<12> × [15107437772027207600650916004458301368035975179487817468962816429891168632792820258985213426468954185068449851237855309531588537040069839235702795898544534282140629692857813328612109665017670937931332477632231565639585327544996400635489957191227457064454195770021920395517<272>] Free to factor
89×10299-539 = 9(8)2983<300> = 7 × 1439661911789<13> × 1781954716117837<16> × 1409193413496059157354622699<28> × [39077041332928981725832918458985988116583111890995697089954066306984476270360588039474063457534619304161614446124715801154876018186177773629053257738442979601636449218972265808686866494353043647861359245141574827710482383309763833275622308617767<245>] Free to factor
89×10300-539 = 9(8)2993<301> = 19 × 3315721 × 722491770441853<15> × 88643436904924160792947<23> × [2450961139471623957320898849132849762858175065272298393911756460794345145890656187152555392061439781278932903360069273536687099696770310086153427822396856318871203160839408206732616649600784938206542531806256855170105301434646128925636728545468081269812287<256>] Free to factor
plain text versionプレーンテキスト版

4. Related links 関連リンク