By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(2·10166+7)/9 = (2)1653<166> = 32 · 13 · 19 · 2203 · 92591638837<11> · C148
C148 = P62 · P87
P62 = 10579117484643669985321526488483937482639067300717328050482541<62>
P87 = 463246679702034732206614919683068341832261226156838899536755186335885948793861377955651<87>
Number: n N=4900741048938921529386312376049753422014062526470395527666102273448608728036064841441443726000645540939103525055300397035584580148478781490647789191 ( 148 digits) SNFS difficulty: 166 digits. Divisors found: Mon Dec 31 10:05:46 2007 prp62 factor: 10579117484643669985321526488483937482639067300717328050482541 Mon Dec 31 10:05:46 2007 prp87 factor: 463246679702034732206614919683068341832261226156838899536755186335885948793861377955651 Mon Dec 31 10:05:46 2007 elapsed time 01:19:50 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 48.46 hours. Scaled time: 63.48 units (timescale=1.310). Factorization parameters were as follows: name: KA_2_165_3 n: 4900741048938921529386312376049753422014062526470395527666102273448608728036064841441443726000645540939103525055300397035584580148478781490647789191 skew: 0.81 deg: 5 c5: 20 c0: 7 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2200000) Primes: RFBsize:230209, AFBsize:229397, largePrimes:7279611 encountered Relations: rels:6773272, finalFF:518245 Max relations in full relation-set: 28 Initial matrix: 459672 x 518245 with sparse part having weight 38557490. Pruned matrix : 415223 x 417585 with weight 27293794. Total sieving time: 45.28 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 48.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10154-9 = 6(9)1531<155> = 24187568437147<14> · 357505542381274647193<21> · C121
C121 = P35 · P86
P35 = 87307807817705591131142443529365687<35>
P86 = 92719261960991305708767306625668063796197431975684064005420378748486361040936361668683<86>
7·10165-9 = 6(9)1641<166> = 449 · 96293 · 193732283 · C150
C150 = P60 · P91
P60 = 119720935477183205712026361015748167111027951799849560997421<60>
P91 = 6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341<91>
Number: n N=835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561 ( 150 digits) SNFS difficulty: 165 digits. Divisors found: Mon Dec 31 23:17:09 2007 prp60 factor: 119720935477183205712026361015748167111027951799849560997421 Mon Dec 31 23:17:09 2007 prp91 factor: 6980473515066820668028752248342210383473908035017528053560574089914810233581451339796380341 Mon Dec 31 23:17:09 2007 elapsed time 02:16:22 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.35 hours. Scaled time: 102.75 units (timescale=1.761). Factorization parameters were as follows: name: KA_6_9_164_1 n: 835708819297501087161209256684919312616575197394475766671782482860339428847159691345411763978143923133144396640238950619922829764501373132545436100561 type: snfs skew: 1.05 deg: 5 c5: 7 c0: -9 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800001) Primes: RFBsize:230209, AFBsize:230717, largePrimes:7456900 encountered Relations: rels:6921697, finalFF:489538 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 58.10 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 58.35 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(7·10164-61)/9 = (7)1631<164> = 67 · 16943 · 608743 · 4855817 · 723493411 · 103466618887166809<18> · C120
C120 = P39 · P40 · P43
P39 = 200987859740178940829671987628842189511<39>
P40 = 1524315768672965057529391990531835488823<40>
P43 = 1010681974438265260089808346426272470700763<43>
Tue Jan 01 00:33:37 2008 Tue Jan 01 00:33:37 2008 Tue Jan 01 00:33:37 2008 Msieve v. 1.32 Tue Jan 01 00:33:37 2008 random seeds: 670f8060 b722816b Tue Jan 01 00:33:37 2008 factoring 203134806920325175654885525513483664774580080235041609363980893235812401418296893 (81 digits) Tue Jan 01 00:33:37 2008 searching for 15-digit factors Tue Jan 01 00:33:38 2008 commencing quadratic sieve (80-digit input) Tue Jan 01 00:33:38 2008 using multiplier of 5 Tue Jan 01 00:33:38 2008 using 64kb Opteron sieve core Tue Jan 01 00:33:38 2008 sieve interval: 6 blocks of size 65536 Tue Jan 01 00:33:38 2008 processing polynomials in batches of 17 Tue Jan 01 00:33:38 2008 using a sieve bound of 1305691 (50294 primes) Tue Jan 01 00:33:38 2008 using large prime bound of 129263409 (26 bits) Tue Jan 01 00:33:38 2008 using trial factoring cutoff of 27 bits Tue Jan 01 00:33:38 2008 polynomial 'A' values have 10 factors Tue Jan 01 00:51:33 2008 50454 relations (25765 full + 24689 combined from 273397 partial), need 50390 Tue Jan 01 00:51:34 2008 begin with 299162 relations Tue Jan 01 00:51:34 2008 reduce to 72049 relations in 2 passes Tue Jan 01 00:51:34 2008 attempting to read 72049 relations Tue Jan 01 00:51:35 2008 recovered 72049 relations Tue Jan 01 00:51:35 2008 recovered 62785 polynomials Tue Jan 01 00:51:35 2008 attempting to build 50454 cycles Tue Jan 01 00:51:35 2008 found 50454 cycles in 1 passes Tue Jan 01 00:51:35 2008 distribution of cycle lengths: Tue Jan 01 00:51:35 2008 length 1 : 25765 Tue Jan 01 00:51:35 2008 length 2 : 24689 Tue Jan 01 00:51:35 2008 largest cycle: 2 relations Tue Jan 01 00:51:35 2008 matrix is 50294 x 50454 with weight 1538986 (avg 30.50/col) Tue Jan 01 00:51:35 2008 filtering completed in 4 passes Tue Jan 01 00:51:35 2008 matrix is 42992 x 43056 with weight 1286275 (avg 29.87/col) Tue Jan 01 00:51:35 2008 saving the first 48 matrix rows for later Tue Jan 01 00:51:35 2008 matrix is 42944 x 43056 with weight 1002106 (avg 23.27/col) Tue Jan 01 00:51:35 2008 matrix includes 64 packed rows Tue Jan 01 00:51:35 2008 commencing Lanczos iteration Tue Jan 01 00:52:18 2008 lanczos halted after 680 iterations (dim = 42920) Tue Jan 01 00:52:18 2008 recovered 6 nontrivial dependencies Tue Jan 01 00:52:18 2008 prp39 factor: 200987859740178940829671987628842189511 Tue Jan 01 00:52:18 2008 prp43 factor: 1010681974438265260089808346426272470700763 Tue Jan 01 00:52:18 2008 elapsed time 00:18:41
By Sinkiti Sibata / PFGW
(2·102442+7)/9 is prime.
By Robert Backstrom / GGNFS, Msieve
(28·10163+17)/9 = 3(1)1623<164> = 3 · 11 · 113 · 5227723 · 5474506657<10> · C144
C144 = P54 · P90
P54 = 568254104215421080733918790780653788490645701320935561<54>
P90 = 513006657969163357232705769402175646798527021065255936378677850134407454699737691808031507<90>
Number: n N=291518138880813831877316139677912045506082513260025572748734915030214053671271873482644565087545343430540161717571420952814494855357103004720427 ( 144 digits) SNFS difficulty: 164 digits. Divisors found: Sun Dec 30 22:22:57 2007 prp54 factor: 568254104215421080733918790780653788490645701320935561 Sun Dec 30 22:22:57 2007 prp90 factor: 513006657969163357232705769402175646798527021065255936378677850134407454699737691808031507 Sun Dec 30 22:22:57 2007 elapsed time 00:55:31 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.78 hours. Scaled time: 54.81 units (timescale=1.532). Factorization parameters were as follows: name: KA_3_1_162_3 n: 291518138880813831877316139677912045506082513260025572748734915030214053671271873482644565087545343430540161717571420952814494855357103004720427 skew: 0.45 deg: 5 c5: 875 c0: 17 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600000) Primes: RFBsize:216816, AFBsize:216531, largePrimes:7351213 encountered Relations: rels:6806772, finalFF:496921 Max relations in full relation-set: 28 Initial matrix: 433413 x 496921 with sparse part having weight 48938966. Pruned matrix : Total sieving time: 35.60 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 35.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
(89·10161+1)/9 = 9(8)1609<162> = 11 · 151 · 54497 · 4734857424467<13> · 29333719355391524558753<23> · C119
C119 = P50 · P70
P50 = 24068764486818214538179925119843116225195355366201<50>
P70 = 3267965275130364758731306727795381662655553549388276194815369559709367<70>
Number: n N=78655886558212839023556857120942142003924560409165078599494695301264178096244478079634342453626033940099746525414904767 ( 119 digits) SNFS difficulty: 162 digits. Divisors found: Sun Dec 30 22:54:11 2007 prp50 factor: 24068764486818214538179925119843116225195355366201 Sun Dec 30 22:54:11 2007 prp70 factor: 3267965275130364758731306727795381662655553549388276194815369559709367 Sun Dec 30 22:54:11 2007 elapsed time 01:13:42 (Msieve 1.32) Version: GGNFS-0.77.1-20050930-k8 Total time: 37.56 hours. Scaled time: 31.47 units (timescale=0.838). Factorization parameters were as follows: name: KA_9_8_160_9 n: 78655886558212839023556857120942142003924560409165078599494695301264178096244478079634342453626033940099746525414904767 type: snfs deg: 5 c5: 890 c0: 1 skew: 0.22 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lbpr: 28 lbpa: 28 mbpr: 48 mbpa: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600001) Primes: RFBsize:216816, AFBsize:217061, largePrimes:5646354 encountered Relations: rels:5529662, finalFF:441875 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.45 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.5,2.5,100000 total time: 37.56 hours. --------- CPU info (if available) ---------- CPU0: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 CPU1: AMD Athlon(tm) 64 X2 Dual Core Processor 6000+ stepping 03 Memory: 2074672k/2097088k available (2382k kernel code, 21604k reserved, 681k data, 296k init, 1179584k highmem, 0k BadRAM) Calibrating delay loop... 5963.77 BogoMIPS (lpj=2981888) Calibrating delay loop... 6045.69 BogoMIPS (lpj=3022848) Total of 2 processors activated (12009.47 BogoMIPS).
By Robert Backstrom / GMP-ECM
2·10163+3 = 2(0)1623<164> = 166140237444137244767<21> · C144
C144 = P39 · P105
P39 = 190635692847477990579123632346869310511<39>
P105 = 631467424737264651495425260061946168071504561817690296672097889180937084893277408137330615731353547645619<105>
7·10153-9 = 6(9)1521<154> = 137945979054044323691<21> · C134
C134 = P33 · P101
P33 = 772167558584103691869638283989203<33>
P101 = 65716956589780721844302884925214520835046088468765165698360498247128407329527151604691722545317100967<101>
By Jo Yeong Uk / GGNFS
7·10148-9 = 6(9)1471<149> = 7354479179<10> · 18371504286793171<17> · C123
C123 = P55 · P69
P55 = 2814258676699625279171724231993155814622006129842908123<55>
P69 = 184093046599172102452699913165893938014185229449403497478166109476613<69>
Number: 69991_148 N=518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399 ( 123 digits) SNFS difficulty: 150 digits. Divisors found: r1=2814258676699625279171724231993155814622006129842908123 (pp55) r2=184093046599172102452699913165893938014185229449403497478166109476613 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.54 hours. Scaled time: 33.21 units (timescale=2.137). Factorization parameters were as follows: n: 518085453711788532865190630641573477595982123762441212022596337954685562506751479459950679549038087281476496982221376227399 m: 1000000000000000000000000000000 c5: 7 c0: -900 skew: 2.64 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175703, largePrimes:5573819 encountered Relations: rels:5511681, finalFF:495649 Max relations in full relation-set: 28 Initial matrix: 352073 x 495649 with sparse part having weight 44562981. Pruned matrix : 293821 x 295645 with weight 24414844. Total sieving time: 15.02 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.40 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 15.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
By Sinkiti Sibata / GGNFS
3·10171+1 = 3(0)1701<172> = 59 · 2421821 · 1600388452377973<16> · 19226964394318121967711782431<29> · C120
C120 = P42 · P79
P42 = 454231567465961238949597490091615349190531<42>
P79 = 1502151578223577638654775137097332901436078950967469661170957656557872845681903<79>
Number: 30001_171 N=682324665947963157631469728271325158696221411931460030747532541936673539403173263878033566456941819939868757489765660493 ( 120 digits) Divisors found: r1=454231567465961238949597490091615349190531 (pp42) r2=1502151578223577638654775137097332901436078950967469661170957656557872845681903 (pp79) Version: GGNFS-0.77.1-20060722-nocona Total time: 72.45 hours. Scaled time: 143.38 units (timescale=1.979). Factorization parameters were as follows: name: 30001_171 n: 682324665947963157631469728271325158696221411931460030747532541936673539403173263878033566456941819939868757489765660493 skew: 44071.04 # norm 1.16e+16 c5: 49080 c4: -8193826874 c3: -490521821772937 c2: 13679562189223828075 c1: 268407340291989159886011 c0: -3575626527912292763955712170 # alpha -5.23 Y1: 1376995663549 Y0: -106811371197497656583221 # Murphy_E 2.89e-10 # M 516601066594921290271387127147345628955044795772215321251305996854853784465683210678704718808492261730386730080006420124 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316211, largePrimes:7704182 encountered Relations: rels:7780725, finalFF:757685 Max relations in full relation-set: 32 Initial matrix: 632244 x 757685 with sparse part having weight 71595438. Pruned matrix : 531677 x 534902 with weight 46827802. Total sieving time: 67.50 hours. Total relation processing time: 0.43 hours. Matrix solve time: 4.05 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 72.45 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
7·10140-9 = 6(9)1391<141> = 26003 · 49967046113187701<17> · C120
C120 = P49 · P72
P49 = 3072384756632832193294930209979933326902287322161<49>
P72 = 175353850256855514724412620180648233024414774451978568104314670271200777<72>
Number: 70009_140 N=538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097 ( 120 digits) SNFS difficulty: 140 digits. Divisors found: r1=3072384756632832193294930209979933326902287322161 (pp49) r2=175353850256855514724412620180648233024414774451978568104314670271200777 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.12 hours. Scaled time: 13.11 units (timescale=2.144). Factorization parameters were as follows: n: 538754496546039129594575511841279608916142932610183608764794445522735349555460282454684421134028742368503726717312519097 m: 10000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:113992, largePrimes:3368951 encountered Relations: rels:3483950, finalFF:405792 Max relations in full relation-set: 28 Initial matrix: 228213 x 405792 with sparse part having weight 35387880. Pruned matrix : 168806 x 170011 with weight 13391873. Total sieving time: 5.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
7·10144-9 = 6(9)1431<145> = 1487 · 3084617 · 6753139867<10> · C126
C126 = P55 · P72
P55 = 2066420873807475272508154570496764559275489805725499291<55>
P72 = 109360704402145490620976185805347880615820804660378980898198273592328057<72>
Number: 69991_144 N=225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587 ( 126 digits) SNFS difficulty: 145 digits. Divisors found: r1=2066420873807475272508154570496764559275489805725499291 (pp55) r2=109360704402145490620976185805347880615820804660378980898198273592328057 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.14 hours. Scaled time: 21.75 units (timescale=2.144). Factorization parameters were as follows: n: 225985242350882492390817091181539241057870132922821577330562232474083020570409647436082746217322496695164359587616913392907587 m: 100000000000000000000000000000 c5: 7 c0: -90 skew: 1.67 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1450001) Primes: RFBsize:114155, AFBsize:114352, largePrimes:3482197 encountered Relations: rels:3539168, finalFF:329576 Max relations in full relation-set: 28 Initial matrix: 228573 x 329576 with sparse part having weight 32251907. Pruned matrix : 200812 x 202018 with weight 16980012. Total sieving time: 9.89 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 10.14 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
7·10186-9 = 6(9)1851<187> = 1882873212211<13> · 5833979226117373<16> · 47533639674475314086029<23> · 22494947546032604356359491<26> · C111
C111 = P43 · P69
P43 = 2515472027805282686708792675704535850836383<43>
P69 = 236922626264959098658721156310440198919184175106191358028227502394681<69>
Number: n N=595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823 ( 111 digits) Divisors found: r1=2515472027805282686708792675704535850836383 (pp43) r2=236922626264959098658721156310440198919184175106191358028227502394681 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.07 hours. Scaled time: 33.44 units (timescale=1.753). Factorization parameters were as follows: name: KA_6_9_185_1 n: 595972239123669791995895721145326920898097780541200339694452957278131466762170631342974085756411616949220478823 skew: 7691.60 # norm 7.39e+14 c5: 65280 c4: -3707517143 c3: -59981266406565 c2: 195444948138712791 c1: 464656384627185252258 c0: -666305598531814435117600 # alpha -4.72 Y1: 299854219969 Y0: -1556288568485250579843 # Murphy_E 8.93e-10 # M 261347015577692975215738963466108609772390237867217698520093975466862424241959027489401092781747038850578899133 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 100000) Primes: RFBsize:230209, AFBsize:229965, largePrimes:7449706 encountered Relations: rels:7280948, finalFF:562779 Max relations in full relation-set: 28 Initial matrix: 460254 x 562779 with sparse part having weight 47426767. Pruned matrix : 375082 x 377447 with weight 27995113. Total sieving time: 16.82 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.45 hours. Total square root time: 0.65 hours, sqrts: 4. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 19.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10158-9 = 6(9)1571<159> = 665507 · 4787893769<10> · C144
C144 = P34 · P110
P34 = 4551229532797823713440523924237357<34>
P110 = 48269429654485286004700435874371392955763120608188765913835335149678303496468383067863156974558912669025897961<110>
5·10167+3 = 5(0)1663<168> = 7 · 773 · 8329 · C161
C161 = P68 · P93
P68 = 66986389608208370945649030468786635518218514529828739674619854324867<68>
P93 = 165620097981775245286549676152338224696848100622028775546996783901831190108848495803829997811<93>
Number: n N=11094292410356841480689529799258319926065860290596351278048063092974674681508936485819419666883219858321891974475405828661656232743521548965580379379979492866137 ( 161 digits) SNFS difficulty: 167 digits. Divisors found: Fri Dec 28 08:58:01 2007 prp68 factor: 66986389608208370945649030468786635518218514529828739674619854324867 Fri Dec 28 08:58:01 2007 prp93 factor: 165620097981775245286549676152338224696848100622028775546996783901831190108848495803829997811 Fri Dec 28 08:58:01 2007 elapsed time 01:10:29 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 46.34 hours. Scaled time: 84.62 units (timescale=1.826). Factorization parameters were as follows: name: KA_5_0_166_3 n: 11094292410356841480689529799258319926065860290596351278048063092974674681508936485819419666883219858321891974475405828661656232743521548965580379379979492866137 skew: 0.36 deg: 5 c5: 500 c0: 3 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200000) Primes: RFBsize:250150, AFBsize:249916, largePrimes:7647488 encountered Relations: rels:7156043, finalFF:585019 Max relations in full relation-set: 28 Initial matrix: 500132 x 585019 with sparse part having weight 52070590. Pruned matrix : 452893 x 455457 with weight 34748113. Total sieving time: 46.16 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 46.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Sinkiti Sibata / PFGW
7·1012755-9 and 7·1015142-9 are PRPs.
By Yousuke Koide
(101809-1)/9 is divisible by 23016857713231589991096649713043507<35>
(101863-1)/9 is divisible by 7506789884668978259450285467<28>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS, GMP-ECM
7·10137-9 = 6(9)1361<138> = 9041 · 162129560783<12> · C123
C123 = P50 · P73
P50 = 63195768153342995547599618615921084920365446753767<50>
P73 = 7556685842419476053247753995520570438772601000514461987314342496480958991<73>
Number: 69991_137 N=477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097 ( 123 digits) SNFS difficulty: 137 digits. Divisors found: r1=63195768153342995547599618615921084920365446753767 (pp50) r2=7556685842419476053247753995520570438772601000514461987314342496480958991 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.07 hours. Scaled time: 8.67 units (timescale=2.130). Factorization parameters were as follows: n: 477550566505190610831339497667016508356659514844638240871039919937869611141038512390547786684479527858687496804388001769097 m: 1000000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1450001) Primes: RFBsize:107126, AFBsize:107093, largePrimes:2316731 encountered Relations: rels:2429777, finalFF:264060 Max relations in full relation-set: 28 Initial matrix: 214287 x 264060 with sparse part having weight 22014166. Pruned matrix : 198204 x 199339 with weight 13643617. Total sieving time: 3.87 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.07 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
7·10162-9 = 6(9)1611<163> = 859 · 118247 · 2662639391<10> · 68628329971<11> · C135
C135 = P30 · P105
P30 = 436977788659416077831566216483<30>
P105 = 863057237779628902143622988929371538585971609219344275040457451654589439284920068001169478963439353329509<105>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
5·10171-9 = 4(9)1701<172> = 7 · 41 · C170
C170 = P43 · P128
P43 = 1363684689367687199660001585916252959225073<43>
P128 = 12775389298778802140820274185385735600606854567622114532762344954306460995067145385939039085787137146377153359945100703455866041<128>
7·10143-9 = 6(9)1421<144> = 97 · 317 · 571 · C137
C137 = P68 · P70
P68 = 11669963674208858774803484401760836297661604636382205067928038771673<68>
P70 = 3416342715437805134104596866257027736379971208960481691857755728114273<70>
Number: n N=39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729 ( 137 digits) SNFS difficulty: 143 digits. Divisors found: Thu Dec 27 16:03:21 2007 prp68 factor: 11669963674208858774803484401760836297661604636382205067928038771673 Thu Dec 27 16:03:21 2007 prp70 factor: 3416342715437805134104596866257027736379971208960481691857755728114273 Thu Dec 27 16:03:21 2007 elapsed time 00:58:19 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 10.12 hours. Scaled time: 13.24 units (timescale=1.309). Factorization parameters were as follows: name: KA_6_9_142_1 n: 39868595387807238075146492882117277574103046308113959709594872989761346018457223189921629162943461946194596677613254006978940667499388729 skew: 0.26 deg: 5 c5: 7000 c0: -9 m: 10000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1100001) Primes: RFBsize:203362, AFBsize:202857, largePrimes:6879960 encountered Relations: rels:6390626, finalFF:531267 Max relations in full relation-set: 28 Initial matrix: 406287 x 531267 with sparse part having weight 31643740. Pruned matrix : Total sieving time: 9.91 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 10.12 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10194-9 = 6(9)1931<195> = 59 · 503 · 19009 · 4546319117<10> · 3201890183553739545421<22> · 3663534177803835316717<22> · 5453825411908180414535101<25> · C109
C109 = P47 · P62
P47 = 52063286361231377503035962252713421659616793211<47>
P62 = 81944416344344076297954674797070896167668217005498046483209993<62>
Number: n N=4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523 ( 109 digits) Divisors found: Thu Dec 27 21:14:40 2007 prp47 factor: 52063286361231377503035962252713421659616793211 Thu Dec 27 21:14:40 2007 prp62 factor: 81944416344344076297954674797070896167668217005498046483209993 Thu Dec 27 21:14:40 2007 elapsed time 01:21:04 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.97 hours. Scaled time: 28.00 units (timescale=1.753). Factorization parameters were as follows: name: KA_6_9_193_1 n: 4266295613839554521455940618914223009809176846224270626203668901679911671717662492929960969596044736169757523 skew: 20303.21 # norm 3.02e+15 c5: 64260 c4: -5524240892 c3: 33370301956429 c2: 2960552805759545129 c1: 13268125763144698600299 c0: -427943730192357035630844 # alpha -6.40 Y1: 410046852743 Y0: -581336125346552761433 # Murphy_E 1.18e-09 # M 835049287715849898352208609708011149328452835128639575533350171456753898162996679714302558410477726301170271 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1700000) Primes: RFBsize:230209, AFBsize:229921, largePrimes:6992043 encountered Relations: rels:6742934, finalFF:579789 Max relations in full relation-set: 28 Initial matrix: 460216 x 579789 with sparse part having weight 39572835. Pruned matrix : 350884 x 353249 with weight 18553288. Total sieving time: 15.64 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 15.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10108-9 = 6(9)1071<109> = 404321 · 378807857 · C95
C95 = P46 · P50
P46 = 2663967441313171836581746263544242756268412123<46>
P50 = 17156308633252668896929507566790813539577265672261<50>
Number: n N=45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103 ( 95 digits) Divisors found: r1=2663967441313171836581746263544242756268412123 (pp46) r2=17156308633252668896929507566790813539577265672261 (pp50) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.81 hours. Scaled time: 8.43 units (timescale=1.754). Factorization parameters were as follows: name: KA_6_9_107_1 n: 45703847612105192551412600444051943138121632548159102877835632289400552214113597792942597220103 m: 5492465041505502450157 deg: 4 c4: 50220792 c3: 473490998762 c2: -150320131923816106 c1: -1840155014132418213 c0: 240325391527681110358680 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.908 # E(F1,F2) = 4.085225e-05 # GGNFS version 0.77.1-20050930-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198729570. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved special-q in [100000, 100000) Primes: RFBsize:92938, AFBsize:92993, largePrimes:1857627 encountered Relations: rels:1908164, finalFF:212612 Max relations in full relation-set: 28 Initial matrix: 186005 x 212612 with sparse part having weight 16282353. Pruned matrix : 174218 x 175212 with weight 11293718. Total sieving time: 4.41 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.30 hours. Total square root time: 0.04 hours, sqrts: 14. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 4.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10145-9 = 6(9)1441<146> = 94261 · C141
C141 = P34 · P108
P34 = 1021695068102849396044532089064863<34>
P108 = 726849841772289840962937682508573633040889067399121266108989206433699098743911136797514039693842951036128037<108>
By Sinkiti Sibata / GGNFS
7·10113-9 = 6(9)1121<114> = 491 · 2423 · 4003873 · C102
C102 = P48 · P54
P48 = 184432465107840005841929350652158018855881137453<48>
P54 = 796792925041443202307060294296189274485989498333919823<54>
Number: 69991_113 N=146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819 ( 102 digits) SNFS difficulty: 113 digits. Divisors found: r1=184432465107840005841929350652158018855881137453 (pp48) r2=796792925041443202307060294296189274485989498333919823 (pp54) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.40 hours. Scaled time: 1.62 units (timescale=0.675). Factorization parameters were as follows: name: 69991_113 n: 146954483345879750650262027109056915485927149646071893433452883477538598863216027684838960521344430819 m: 10000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2223893 encountered Relations: rels:2457553, finalFF:359535 Max relations in full relation-set: 28 Initial matrix: 112989 x 359535 with sparse part having weight 31384555. Pruned matrix : 71414 x 72042 with weight 5203701. Total sieving time: 2.19 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.40 hours. --------- CPU info (if available) ----------
7·10135-9 = 6(9)1341<136> = 3673 · 255019 · 84498497 · 15088353311<11> · C109
C109 = P37 · P73
P37 = 2619090469168430611738435623980583053<37>
P73 = 2238016293251830424874207565385593578321653128229251831899397482529153343<73>
Number: 69991_135 N=5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179 ( 109 digits) SNFS difficulty: 135 digits. Divisors found: r1=2619090469168430611738435623980583053 (pp37) r2=2238016293251830424874207565385593578321653128229251831899397482529153343 (pp73) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.83 hours. Scaled time: 13.67 units (timescale=2.003). Factorization parameters were as follows: name: 69991_135 n: 5861567143499528535945249491745181774451528037501922335500468042836092047603598088439983509779689035584096179 m: 1000000000000000000000000000 c5: 7 c0: -9 skew: 1.05 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63908, largePrimes:1579365 encountered Relations: rels:1604122, finalFF:195607 Max relations in full relation-set: 28 Initial matrix: 142472 x 195607 with sparse part having weight 16386599. Pruned matrix : 126424 x 127200 with weight 8919279. Total sieving time: 6.60 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.83 hours. --------- CPU info (if available) ----------
7·10147-9 = 6(9)1461<148> = 44253346650419<14> · 640263926981563<15> · 2384930862846177191492797<25> · C96
C96 = P36 · P60
P36 = 345533806013666402094028972113839143<36>
P60 = 299796493353162488095487968396822078060268288441471385866693<60>
Number: 69991_147 N=103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099 ( 96 digits) Divisors found: r1=345533806013666402094028972113839143 (pp36) r2=299796493353162488095487968396822078060268288441471385866693 (pp60) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 11.00 hours. Scaled time: 7.42 units (timescale=0.675). Factorization parameters were as follows: name: 69991_147 n: 103589823377869076072607851794326081481578050618794143412322232850520425835300380055682643364099 m: 7455843658268344282957 deg: 4 c4: 33522000 c3: 140814788 c2: 77276617925738599 c1: 69424401729227304416 c0: 2357246899800669557952 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.016 # E(F1,F2) = 2.812171e-05 # GGNFS version 0.77.1-20060513-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1198709841. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1500001) Primes: RFBsize:92938, AFBsize:92936, largePrimes:1911524 encountered Relations: rels:2002935, finalFF:233843 Max relations in full relation-set: 28 Initial matrix: 185950 x 233843 with sparse part having weight 21496159. Pruned matrix : 166071 x 167064 with weight 13108251. Polynomial selection time: 0.17 hours. Total sieving time: 9.92 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.72 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 11.00 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
7·10133-9 = 6(9)1321<134> = 449 · 1493 · 90917 · 94389114492319<14> · C110
C110 = P44 · P66
P44 = 85173022756831337810382828011673697322037311<44>
P66 = 142864005459473961587757841830261127716190760624346731496837517471<66>
Number: 69991_133 N=12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481 ( 110 digits) SNFS difficulty: 133 digits. Divisors found: r1=85173022756831337810382828011673697322037311 (pp44) r2=142864005459473961587757841830261127716190760624346731496837517471 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.35 hours. Scaled time: 16.72 units (timescale=2.003). Factorization parameters were as follows: name: 69991_133 n: 12168159188131852215584768023354461103145336764833774484034596076561291835579447472592128168069219417276360481 m: 100000000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63823, largePrimes:1568311 encountered Relations: rels:1565951, finalFF:168189 Max relations in full relation-set: 28 Initial matrix: 142389 x 168189 with sparse part having weight 15197800. Pruned matrix : 134600 x 135375 with weight 10638770. Total sieving time: 8.08 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.35 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(2·102978-17)/3 is prime.
By Sinkiti Sibata / GGNFS
7·10118-9 = 6(9)1171<119> = 29 · 281 · 479 · 564899 · C107
C107 = P34 · P74
P34 = 1984136958064167375045366373528421<34>
P74 = 15999844291278446970836451631567805232288393575182670206207520554418064299<74>
Number: 69991_118 N=31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879 ( 107 digits) SNFS difficulty: 118 digits. Divisors found: r1=1984136958064167375045366373528421 (pp34) r2=15999844291278446970836451631567805232288393575182670206207520554418064299 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.24 hours. Scaled time: 4.45 units (timescale=1.991). Factorization parameters were as follows: name: 69991_118 n: 31745882381597551712985680104483070892222684616727431250512197757342182638804213346559326046812565481941879 m: 100000000000000000000000 c5: 7000 c0: -9 skew: 0.26 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2167506 encountered Relations: rels:2281489, finalFF:242097 Max relations in full relation-set: 28 Initial matrix: 112989 x 242097 with sparse part having weight 22238741. Pruned matrix : 87145 x 87773 with weight 5534433. Total sieving time: 2.10 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.24 hours. --------- CPU info (if available) ----------
7·10122-9 = 6(9)1211<123> = 83 · 13523 · 244861 · 1071691642724939<16> · C97
C97 = P44 · P53
P44 = 82895830946665960950649287503567133316049651<44>
P53 = 28669805558837951631417683899953649248910278323675131<53>
Number: 69991_122 N=2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281 ( 97 digits) SNFS difficulty: 122 digits. Divisors found: r1=82895830946665960950649287503567133316049651 (pp44) r2=28669805558837951631417683899953649248910278323675131 (pp53) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.38 hours. Scaled time: 6.77 units (timescale=2.003). Factorization parameters were as follows: name: 69991_122 n: 2376607354879214865611819176528989671083739593311572594941837848584100495761234335579813189929281 m: 1000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63803, largePrimes:2446192 encountered Relations: rels:2891407, finalFF:532620 Max relations in full relation-set: 28 Initial matrix: 112969 x 532620 with sparse part having weight 52760048. Pruned matrix : 76482 x 77110 with weight 9438717. Total sieving time: 3.23 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.38 hours. --------- CPU info (if available) ----------
7·10132-9 = 6(9)1311<133> = 1292567 · 190646486287<12> · C116
C116 = P41 · P76
P41 = 10653299394346279999189253853948866948741<41>
P76 = 2666441366915221621544897168193843156735547511317187784920639757035112567619<76>
Number: 69991_132 N=28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679 ( 116 digits) SNFS difficulty: 132 digits. Divisors found: r1=10653299394346279999189253853948866948741 (pp41) r2=2666441366915221621544897168193843156735547511317187784920639757035112567619 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.77 hours. Scaled time: 11.49 units (timescale=1.991). Factorization parameters were as follows: name: 69991_132 n: 28406398199217797464553546226922521246087029329926717717175210835294924586217098258316437679183181636843102569417679 m: 100000000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:63951, AFBsize:63803, largePrimes:1538473 encountered Relations: rels:1545151, finalFF:170046 Max relations in full relation-set: 28 Initial matrix: 127822 x 170046 with sparse part having weight 14925657. Pruned matrix : 117194 x 117897 with weight 8533990. Total sieving time: 5.57 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.77 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
7·10117-9 = 6(9)1161<118> = C118
C118 = P48 · P70
P48 = 965127703405741647531200158987421082342396773977<48>
P70 = 7252926193392239386243000349720048960099140101219877063658000208088783<70>
Number: 69991_117 N=6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 118 digits) SNFS difficulty: 117 digits. Divisors found: r1=965127703405741647531200158987421082342396773977 (pp48) r2=7252926193392239386243000349720048960099140101219877063658000208088783 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.05 hours. Scaled time: 2.25 units (timescale=2.145). Factorization parameters were as follows: n: 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 100000000000000000000000 c5: 700 c0: -9 skew: 0.42 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49186, largePrimes:1878131 encountered Relations: rels:1929377, finalFF:194599 Max relations in full relation-set: 28 Initial matrix: 98352 x 194599 with sparse part having weight 16935639. Pruned matrix : 78199 x 78754 with weight 4525630. Total sieving time: 1.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 1.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
7·10152-9 = 6(9)1511<153> = 642738965504016239<18> · C136
C136 = P32 · P104
P32 = 12499425996572633795685838286539<32>
P104 = 87131128901653143200613872829832683606052695848751370614553206443217691319643034696885938619060585421771<104>
By matsui / GGNFS
2·10167+9 = 2(0)1669<168> = 47 · 184481867 · 10008810089<11> · 118729587401<12> · 10440234088181<14> · C124
C124 = P61 · P63
P61 = 6290280740566369228935563961231140837620944228695383054749943<61>
P63 = 295567569227359507343672924451640185453395509237894904088703543<63>
N=1859202988246876566381452884068131590659953240147645274080909534187043414526270082207047941221587915349634178688954923148049 ( 124 digits) SNFS difficulty: 167 digits. Divisors found: r1=6290280740566369228935563961231140837620944228695383054749943 (pp61) r2=295567569227359507343672924451640185453395509237894904088703543 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 127.80 hours. Scaled time: 166.65 units (timescale=1.304). Factorization parameters were as follows: n: 1859202988246876566381452884068131590659953240147645274080909534187043414526270082207047941221587915349634178688954923148049 m: 1000000000000000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 5450001) Primes: RFBsize:380800, AFBsize:380082, largePrimes:5892464 encountered Relations: rels:6135246, finalFF:894339 Max relations in full relation-set: 28 Initial matrix: 760947 x 894339 with sparse part having weight 44957251. Pruned matrix : 648054 x 651922 with weight 30819584. Total sieving time: 114.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 13.26 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 127.80 hours.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(22·10166-1)/3 = 7(3)166<167> = 13 · 2501184977<10> · C157
C157 = P47 · P111
P47 = 20970006021949093438264942952242363969867903567<47>
P111 = 107550815343039437975417504676624224363468612606306698519306645404641567204160857189344675377069667152654245399<111>
Number: n N=2255341245409071967907084403148340605774006950236708152769712418205381307006397248573287358922524681798311083347365571924927256446185523776892981730485438233 ( 157 digits) SNFS difficulty: 167 digits. Divisors found: Wed Dec 26 05:26:18 2007 prp47 factor: 20970006021949093438264942952242363969867903567 Wed Dec 26 05:26:18 2007 prp111 factor: 107550815343039437975417504676624224363468612606306698519306645404641567204160857189344675377069667152654245399 Wed Dec 26 05:26:18 2007 elapsed time 02:18:47 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 78.83 hours. Scaled time: 138.12 units (timescale=1.752). Factorization parameters were as follows: name: KA_7_3_166 n: 2255341245409071967907084403148340605774006950236708152769712418205381307006397248573287358922524681798311083347365571924927256446185523776892981730485438233 type: snfs skew: 0.34 deg: 5 c5: 220 c0: -1 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500001) Primes: RFBsize:230209, AFBsize:230048, largePrimes:7684784 encountered Relations: rels:7152361, finalFF:475660 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 78.54 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.6,2.6,100000 total time: 78.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10120-9 = 6(9)1191<121> = 197 · 419 · C116
C116 = P52 · P65
P52 = 1323129079639263647678527821934298050401138159281717<52>
P65 = 64093734415499366088944419295581630353010019359658087508532919861<65>
Number: n N=84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337 ( 116 digits) SNFS difficulty: 120 digits. Divisors found: r1=1323129079639263647678527821934298050401138159281717 (pp52) r2=64093734415499366088944419295581630353010019359658087508532919861 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.47 hours. Scaled time: 2.59 units (timescale=1.755). Factorization parameters were as follows: name: KA_6_9_119_1 n: 84804283827823074034139781689543631804029414971590564917679270198563173134002883345650145984517160752577444483481337 type: snfs skew: 1.05 deg: 5 c5: 7 c0: -9 m: 1000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 220001) Primes: RFBsize:78498, AFBsize:78361, largePrimes:4117883 encountered Relations: rels:3508482, finalFF:209284 Max relations in full relation-set: 28 Initial matrix: 156925 x 209284 with sparse part having weight 9419779. Pruned matrix : 113353 x 114201 with weight 3874739. Total sieving time: 1.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.10 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.4,2.4,50000 total time: 1.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(8·10166-17)/9 = (8)1657<166> = 4083907 · 43094378617<11> · C149
C149 = P41 · P51 · P58
P41 = 38584081030692973979026508694832853174717<41>
P51 = 418114217260780904751406897239535819468897448269121<51>
P58 = 3130746579328069205359019081831876161205414051790095798089<58>
Number: n N=1309009655457622967425044640452475241525607022021852781211536044491653424923374629964185236322257748149509769 ( 109 digits) Divisors found: Thu Dec 27 01:08:55 2007 prp51 factor: 418114217260780904751406897239535819468897448269121 Thu Dec 27 01:08:55 2007 prp58 factor: 3130746579328069205359019081831876161205414051790095798089 Thu Dec 27 01:08:55 2007 elapsed time 00:56:09 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 14.81 hours. Scaled time: 19.34 units (timescale=1.306). Factorization parameters were as follows: name: KA_8_165_7 n: 1309009655457622967425044640452475241525607022021852781211536044491653424923374629964185236322257748149509769 skew: 17293.45 # norm 1.67e+15 c5: 69840 c4: 7463998242 c3: -78994172254267 c2: -2236017190191479429 c1: 14571241816633004474387 c0: 2943605098409076728592987 # alpha -6.80 Y1: 379170613327 Y0: -451398307899860421580 # Murphy_E 1.27e-09 # M 913262407536112418797141648337235351640361187128809490900940893449426725706506274192425043867981484896313502 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1500000) Primes: RFBsize:230209, AFBsize:230668, largePrimes:6776674 encountered Relations: rels:6460557, finalFF:550004 Max relations in full relation-set: 28 Initial matrix: 460957 x 550004 with sparse part having weight 33437232. Pruned matrix : 373838 x 376206 with weight 17048281. Total sieving time: 13.36 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 14.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
(101791-1)/9 is divisible by 430713366297695220680641963<27>
(101827-1)/9 is divisible by 223755556979749662730993077361<30>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Bruce Dodson
(10301-1)/9 is divisible by 1141240390081433457327371568501745249133720840602413587<55>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Yousuke Koide
(101707-1)/9 is divisible by 75920820144562528214807220511<29>
(101713-1)/9 is divisible by 21378384423167366346901350575839<32>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
(4·10167-13)/9 = (4)1663<167> = 7 · 199 · 178417 · C159
C159 = P73 · P87
P73 = 1485476151933583531111398308948380526129750464603540854114915552692816459<73>
P87 = 120382802341518563935422558643399557108880046309548748111160170924304751890414156384017<87>
Number: n N=178825781981260185544919324400362315519182373617989035689700410480589420542722308843419223897366923093762619358223783664573201072908733661591929401830902135803 ( 159 digits) SNFS difficulty: 167 digits. Divisors found: prp73 factor: 1485476151933583531111398308948380526129750464603540854114915552692816459 prp87 factor: 120382802341518563935422558643399557108880046309548748111160170924304751890414156384017 elapsed time 02:46:27 (Msieve 1.32) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 82.93 hours. Scaled time: 108.55 units (timescale=1.309). Factorization parameters were as follows: name: KA_4_166_3 n: 178825781981260185544919324400362315519182373617989035689700410480589420542722308843419223897366923093762619358223783664573201072908733661591929401830902135803 skew: 1.01 deg: 5 c5: 25 c0: -26 m: 2000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3900397) Primes: RFBsize:230209, AFBsize:230867, largePrimes:7730813 encountered Relations: rels:7172093, finalFF:452321 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 82.63 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 82.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(4·10161+41)/9 = (4)1609<161> = 18094688609<11> · 26999490049546734407<20> · C131
C131 = P57 · P75
P57 = 661800895912546464100385070921509481515371228023099756833<57>
P75 = 137462252416217059157918563636603097318468429817984026396850545706670319831<75>
Number: 44449_161 N=90972641803209054654671943300688174982440708379689549892031878497530778160414254242799972773189906368931128996322659002194437655223 ( 131 digits) SNFS difficulty: 161 digits. Divisors found: r1=661800895912546464100385070921509481515371228023099756833 (pp57) r2=137462252416217059157918563636603097318468429817984026396850545706670319831 (pp75) Version: GGNFS-0.77.1-20060722-nocona Total time: 83.42 hours. Scaled time: 166.08 units (timescale=1.991). Factorization parameters were as follows: name: 44449_161 n: 90972641803209054654671943300688174982440708379689549892031878497530778160414254242799972773189906368931128996322659002194437655223 m: 100000000000000000000000000000000 c5: 40 c0: 41 skew: 1 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4950001) Primes: RFBsize:315948, AFBsize:314247, largePrimes:6029218 encountered Relations: rels:6254224, finalFF:838574 Max relations in full relation-set: 32 Initial matrix: 630261 x 838574 with sparse part having weight 63869247. Pruned matrix : 474489 x 477704 with weight 46325545. Total sieving time: 79.60 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.37 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 83.42 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
9·10181-7 = 8(9)1803<182> = 3613 · 3761 · 17011 · 2340581 · 730684027 · 15300750882422633<17> · 979400478501517858241<21> · C119
C119 = P53 · P66
P53 = 16940272774462961564775996098870506033529998386074873<53>
P66 = 896797988999442350354441292775914106811664777578919757946243069497<66>
Number: 89993_181 N=15192002557240387749167059448579590970166470920242453316132075745911229316132758666921505340614262736034804889184448881 ( 119 digits) Divisors found: r1=16940272774462961564775996098870506033529998386074873 (pp53) r2=896797988999442350354441292775914106811664777578919757946243069497 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.34 hours. Scaled time: 82.16 units (timescale=2.143). Factorization parameters were as follows: name: 89993_181 n: 15192002557240387749167059448579590970166470920242453316132075745911229316132758666921505340614262736034804889184448881 skew: 98114.36 # norm 2.21e+16 c5: 31560 c4: -1924665624 c3: -412313060325580 c2: 47672706443648087839 c1: 1442560992222373548243522 c0: -146358796049818815151457984880 # alpha -6.24 Y1: 3744248581117 Y0: -54512483709568246234133 # Murphy_E 3.34e-10 # M 5312090155304946753032180946674168126337529924282533139667763695347823533748345268463219266442595271493810276031748175 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4125001) Primes: RFBsize:315948, AFBsize:316143, largePrimes:7687286 encountered Relations: rels:7809081, finalFF:793940 Max relations in full relation-set: 28 Initial matrix: 632175 x 793940 with sparse part having weight 66592823. Pruned matrix : 496253 x 499477 with weight 40203065. Polynomial selection time: 2.37 hours. Total sieving time: 34.05 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.57 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 38.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
The factor table of 699...991 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS, Msieve
(64·10169-1)/9 = 7(1)169<170> = 191 · 227 · 23599 · C161
C161 = P68 · P94
P68 = 11931889546918933708321958997600760626322617766055953766899623909449<68>
P94 = 5824724856908681664958265245672136436260835730449256750908837269949436735995268697884565220373<94>
Number: n N=69499973633827580647471586447132751857395021337483909114981344631924934491933816608111087357431841283281168537224630080843910275596154330028617514385574482004477 ( 161 digits) SNFS difficulty: 171 digits. Divisors found: Mon Dec 24 19:01:19 2007 prp68 factor: 11931889546918933708321958997600760626322617766055953766899623909449 Mon Dec 24 19:01:19 2007 prp94 factor: 5824724856908681664958265245672136436260835730449256750908837269949436735995268697884565220373 Mon Dec 24 19:01:19 2007 elapsed time 01:27:33 (Msieve 1.32) Version: GGNFS-0.77.1-20051202-athlon Total time: 72.40 hours. Scaled time: 131.56 units (timescale=1.817). Factorization parameters were as follows: name: KA_7_1_169 n: 69499973633827580647471586447132751857395021337483909114981344631924934491933816608111087357431841283281168537224630080843910275596154330028617514385574482004477 skew: 0.35 deg: 5 c5: 1 c0: -5 m: 20000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4900001) Primes: RFBsize:250150, AFBsize:249616, largePrimes:7898818 encountered Relations: rels:7354029, finalFF:555685 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 72.21 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 72.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By matsui / GGNFS
3·10166+1 = 3(0)1651<167> = 192 · 31 · 373 · 193939 · 23755628747941<14> · 447212374355192497<18> · C124
C124 = P45 · P79
P45 = 625649191871122082626948379908529671729699051<45>
P79 = 5575285937796913330137969587393113913079322142661733106598322245299860531890319<79>
N=3488173141433069844672322710287029279310821431486754226005972594141095952219346638593373912893212468814594969707770010387269 ( 124 digits) SNFS difficulty: 166 digits. Divisors found: r1=625649191871122082626948379908529671729699051 (pp45) r2=5575285937796913330137969587393113913079322142661733106598322245299860531890319 (pp79) Version: GGNFS-0.77.1-20060513-prescott Total time: 108.27 hours. Scaled time: 184.28 units (timescale=1.702). Factorization parameters were as follows: n: 3488173141433069844672322710287029279310821431486754226005972594141095952219346638593373912893212468814594969707770010387269 m: 1000000000000000000000000000000000 c5: 30 c0: 1 skew: 0.51 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5200001) Primes: RFBsize:348513, AFBsize:347321, largePrimes:5907563 encountered Relations: rels:6145608, finalFF:870306 Max relations in full relation-set: 28 Initial matrix: 695901 x 870306 with sparse part having weight 52151957. Pruned matrix : 553239 x 556782 with weight 35119544. Total sieving time: 103.81 hours. Total relation processing time: 0.19 hours. Matrix solve time: 4.08 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 108.27 hours.
By Sinkiti Sibata / GGNFS
(22·10161-1)/3 = 7(3)161<162> = 73 · 34653533 · 22935196665910109914667553700279<32> · C122
C122 = P53 · P69
P53 = 15456307151502000419816734779747252856782558221670037<53>
P69 = 817754305715924564199835791161046377202886980231427415903294669859419<69>
Number: 73333_161 N=12639461723608598020994817140915197006312553495483248231488432539680347420405192366902367090348663282604229103442194528503 ( 122 digits) SNFS difficulty: 162 digits. Divisors found: r1=15456307151502000419816734779747252856782558221670037 (pp53) r2=817754305715924564199835791161046377202886980231427415903294669859419 (pp69) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 94.57 hours. Scaled time: 64.40 units (timescale=0.681). Factorization parameters were as follows: name: 73333_161 n: 12639461723608598020994817140915197006312553495483248231488432539680347420405192366902367090348663282604229103442194528503 m: 100000000000000000000000000000000 c5: 220 c0: -1 skew: 0.34 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:315952, largePrimes:5839234 encountered Relations: rels:5995706, finalFF:784221 Max relations in full relation-set: 32 Initial matrix: 631967 x 784221 with sparse part having weight 49430510. Pruned matrix : 512955 x 516178 with weight 33232195. Total sieving time: 82.14 hours. Total relation processing time: 0.43 hours. Matrix solve time: 11.76 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 94.57 hours. --------- CPU info (if available) ----------
5·10167+9 = 5(0)1669<168> = 17 · 1989241 · 4503242489106295715733929<25> · 13375753468061863141381463203<29> · C108
C108 = P33 · P75
P33 = 247594231851496673861477854899257<33>
P75 = 991401494836260862208699840210242066186026283682422229091025681417922365483<75>
Number: 50009_167 N=245465291570409554408333235492955931297544893177855395881640586610749416809020286506572455808735126099146131 ( 108 digits) SNFS difficulty: 167 digits. Divisors found: r1=247594231851496673861477854899257 (pp33) r2=991401494836260862208699840210242066186026283682422229091025681417922365483 (pp75) Version: GGNFS-0.77.1-20060722-nocona Total time: 148.51 hours. Scaled time: 295.68 units (timescale=1.991). Factorization parameters were as follows: name: 50009_167 n: 245465291570409554408333235492955931297544893177855395881640586610749416809020286506572455808735126099146131 m: 1000000000000000000000000000000000 c5: 500 c0: 9 skew: 0.45 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7250001) Primes: RFBsize:380800, AFBsize:380707, largePrimes:6144009 encountered Relations: rels:6397329, finalFF:900175 Max relations in full relation-set: 32 Initial matrix: 761574 x 900175 with sparse part having weight 67509735. Pruned matrix : 652300 x 656171 with weight 49587514. Total sieving time: 142.12 hours. Total relation processing time: 0.32 hours. Matrix solve time: 5.80 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 148.51 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
2·10187+9 = 2(0)1869<188> = 61 · 149 · 283 · 70663 · 2939271579080203<16> · 4012670006992512529<19> · 5937247290902120471857247<25> · C118
C118 = P48 · P70
P48 = 875378053458562890900671686629987206094799966703<48>
P70 = 1795070177818256857278501924746661172178297270528928854534971402770967<70>
Number: 20009_187 N=1571365038080062045688276537552192603928436205005459284020038961717757775228192637376787221670115377779946873535111801 ( 118 digits) Divisors found: r1=875378053458562890900671686629987206094799966703 (pp48) r2=1795070177818256857278501924746661172178297270528928854534971402770967 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 33.41 hours. Scaled time: 71.01 units (timescale=2.125). Factorization parameters were as follows: name: 20009_187 n: 1571365038080062045688276537552192603928436205005459284020038961717757775228192637376787221670115377779946873535111801 skew: 86841.90 # norm 2.08e+16 c5: 18720 c4: 8005758744 c3: -417143604761414 c2: -54242084718394161427 c1: 1422581424753045528714126 c0: 43918391624543280113635161840 # alpha -6.35 Y1: 1252807503029 Y0: -38440854919115622102169 # Murphy_E 3.88e-10 # M 1529114244625491084620152441929551187310300433953474676067635486861415835076684651925957412555777624572292435341208442 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 100 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3975001) Primes: RFBsize:315948, AFBsize:316044, largePrimes:7583161 encountered Relations: rels:7616240, finalFF:734012 Max relations in full relation-set: 28 Initial matrix: 632072 x 734011 with sparse part having weight 59496583. Pruned matrix : 544994 x 548218 with weight 38635632. Total sieving time: 31.36 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.72 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,75000 total time: 33.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407681) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Total of 4 processors activated (19246.11 BogoMIPS).
By Robert Backstrom / GMP-ECM
(13·10165-31)/9 = 1(4)1641<166> = 11 · 499 · 1319876500333999<16> · C147
C147 = P40 · P107
P40 = 1994429019434361543756357833325269071763<40>
P107 = 99966786327320553004552683264048083299808115979086757765172472797852861187379110833799751735350193567159837<107>
By Yousuke Koide
(101465-1)/9 is divisible by 750351062900043426795315702791<30>
(101547-1)/9 is divisible by 223088287829064817231566124802627<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
5·10153+9 = 5(0)1529<154> = 113 · 283 · C150
C150 = P64 · P86
P64 = 9652395741655011049538026702985684108326820233080272800634433481<64>
P86 = 16198321181881033533347435589236482009169983223746311965676775774243157661743075509891<86>
Number: n N=156352606397948653804058913662090747052753369398667875793489477469589418055598986835110541292723349698239469651959098158166296632164858188185997060571 ( 150 digits) SNFS difficulty: 154 digits. Divisors found: Sat Dec 22 17:46:28 2007 prp64 factor: 9652395741655011049538026702985684108326820233080272800634433481 Sat Dec 22 17:46:28 2007 prp86 factor: 16198321181881033533347435589236482009169983223746311965676775774243157661743075509891 Sat Dec 22 17:46:28 2007 elapsed time 00:41:58 (Msieve 1.31) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.36 hours. Scaled time: 35.68 units (timescale=1.752). Factorization parameters were as follows: name: KA_5_0_152_9 n: 156352606397948653804058913662090747052753369398667875793489477469589418055598986835110541292723349698239469651959098158166296632164858188185997060571 type: snfs skew: 1.41 deg: 5 c5: 8 c0: 45 m: 5000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000) Primes: RFBsize:216816, AFBsize:215956, largePrimes:6188331 encountered Relations: rels:5704176, finalFF:531554 Max relations in full relation-set: 28 Initial matrix: 432837 x 531554 with sparse part having weight 24767036. Pruned matrix : Total sieving time: 20.20 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 20.36 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
(101339-1)/9 is divisible by 5775107139441156343356533814929<31>
(101351-1)/9 is divisible by 1782854636817021657923017573<28>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By NFSNet
(10239-1)/9 = (1)239<239> = 479 · 142847911 · C228
C228 = P54 · P81 · P94
P54 = 383155477843726029783939406113226468701730728790004161<54>
P81 = 128780300340244872385688233345188210841783983757299260103530718169486826135819357<81>
P94 = 3290967632861131703281828943635774383301940171982919699073443165222894023742681701403432993547<94>
Reference: NFSNet current status
By Robert Backstrom / GGNFS, Msieve
5·10163+9 = 5(0)1629<164> = 470209 · 29802628633<11> · C148
C148 = P39 · P44 · P66
P39 = 994274499440732115855225384785607465089<39>
P44 = 20388243227799757288129029804812187656347787<44>
P66 = 176010423833552850724204320884474640196768850687932515195507552179<66>
Number: n N=3567997124893726715042848190931992165491965877318560254922568110615225565901811932175902351214161088571608357164392386147216979036661072219279275697 ( 148 digits) SNFS difficulty: 164 digits. Divisors found: Fri Dec 21 19:06:29 2007 prp39 factor: 994274499440732115855225384785607465089 Fri Dec 21 19:06:29 2007 prp44 factor: 20388243227799757288129029804812187656347787 Fri Dec 21 19:06:29 2007 prp66 factor: 176010423833552850724204320884474640196768850687932515195507552179 Fri Dec 21 19:06:29 2007 elapsed time 01:29:29 (Msieve 1.31) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 46.82 hours. Scaled time: 61.47 units (timescale=1.313). Factorization parameters were as follows: name: KA_5_0_162_9 n: 3567997124893726715042848190931992165491965877318560254922568110615225565901811932175902351214161088571608357164392386147216979036661072219279275697 skew: 1.41 deg: 5 c5: 8 c0: 45 m: 500000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2200000) Primes: RFBsize:230209, AFBsize:229217, largePrimes:7357077 encountered Relations: rels:6869781, finalFF:531314 Max relations in full relation-set: 28 Initial matrix: 459491 x 531314 with sparse part having weight 41024110. Pruned matrix : 405664 x 408025 with weight 28167530. Total sieving time: 46.52 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 46.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
5·10157+9 = 5(0)1569<158> = 1097 · 14897 · 26348627 · 158905115827<12> · 230706227803<12> · C121
C121 = P59 · P63
P59 = 25360542995799645970199393340105446955335067305527210019419<59>
P63 = 124896659843040259553684977555818906011332891068066978344194417<63>
Number: 50009_157 N=3167447111981185564662038922263931214905167097009116697762326586042626329656257920880146946528001824003871576052481383723 ( 121 digits) SNFS difficulty: 157 digits. Divisors found: r1=25360542995799645970199393340105446955335067305527210019419 (pp59) r2=124896659843040259553684977555818906011332891068066978344194417 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 49.75 hours. Scaled time: 99.65 units (timescale=2.003). Factorization parameters were as follows: name: 50009_157 n: 3167447111981185564662038922263931214905167097009116697762326586042626329656257920880146946528001824003871576052481383723 m: 10000000000000000000000000000000 c5: 500 c0: 9 skew: 0.45 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3200001) Primes: RFBsize:216816, AFBsize:216721, largePrimes:5704293 encountered Relations: rels:5645688, finalFF:500017 Max relations in full relation-set: 28 Initial matrix: 433604 x 500017 with sparse part having weight 46100082. Pruned matrix : 406183 x 408415 with weight 34369135. Total sieving time: 46.98 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.40 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 49.75 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
5·10159+9 = 5(0)1589<160> = 158855819 · C152
C152 = P51 · P101
P51 = 595062504831659452988979151082530531460782679178587<51>
P101 = 52893741733194472069753410091559437984333289639309186156142766882448531546650531764689412803138414753<101>
Number: n N=31475082445673582785154379519455941365295532548291479331959504738066913368782543622150851143828731889261167071254720609258890289690930364974543362494011 ( 152 digits) SNFS difficulty: 160 digits. Divisors found: r1=595062504831659452988979151082530531460782679178587 (pp51) r2=52893741733194472069753410091559437984333289639309186156142766882448531546650531764689412803138414753 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.39 hours. Scaled time: 37.07 units (timescale=1.818). Factorization parameters were as follows: name: KA_5_0_158_9 n: 31475082445673582785154379519455941365295532548291479331959504738066913368782543622150851143828731889261167071254720609258890289690930364974543362494011 skew: 1.78 deg: 5 c5: 1 c0: 18 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:6939749 encountered Relations: rels:6405566, finalFF:494197 Max relations in full relation-set: 48 Initial matrix: 433819 x 494197 with sparse part having weight 37620448. Pruned matrix : 385615 x 387848 with weight 23915069. Total sieving time: 19.02 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.08 hours. Total square root time: 0.14 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 20.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
8·10163-7 = 7(9)1623<164> = 1511 · 9661 · 321227 · 564463 · C146
C146 = P42 · P104
P42 = 725182024346650930487852356735252779350207<42>
P104 = 41678193707764674563769995598226622228791564423366352341260784993112394124120101447997247395973034963569<104>
Number: n N=30224276884108635845705620161872665740218373338594605309453520593775179206533817870115077142218894679107820860767648488655970203393799663737608783 ( 146 digits) SNFS difficulty: 165 digits. Divisors found: Thu Dec 20 18:40:55 2007 prp42 factor: 725182024346650930487852356735252779350207 Thu Dec 20 18:40:55 2007 prp104 factor: 41678193707764674563769995598226622228791564423366352341260784993112394124120101447997247395973034963569 Thu Dec 20 18:40:55 2007 elapsed time 02:14:03 (Msieve 1.31) Version: GGNFS-0.77.1-20051202-athlon Total time: 113.19 hours. Scaled time: 198.19 units (timescale=1.751). Factorization parameters were as follows: name: KA_7_9_162_3 n: 30224276884108635845705620161872665740218373338594605309453520593775179206533817870115077142218894679107820860767648488655970203393799663737608783 type: snfs skew: 0.49 deg: 5 c5: 2 c0: -175 m: 1000000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4400001) Primes: RFBsize:230209, AFBsize:231247, largePrimes:7814161 encountered Relations: rels:7249012, finalFF:516556 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 112.81 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 113.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
(101249-1)/9 is divisible by 3859327619352771895471324837<28>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GMP-ECM
5·10162+9 = 5(0)1619<163> = 7 · 292 · 271229879065601402201623<24> · C136
C136 = P35 · P101
P35 = 64374435181365818315554180691915647<35>
P101 = 48643521375868913517679138570941692047144478517809618044912143356711058007954967110653981808106775647<101>
By matsui / GGNFS
(7·10166+11)/9 = (7)1659<166> = 3 · 40361 · 205111360920457<15> · 12389475956090072848518619<26> · C122
C122 = P47 · P75
P47 = 55943227542338151602426973986475076889992624589<47>
P75 = 451837410354294038053223198387566184140151017305302109616973764868158183999<75>
N=25277243059591087751933230830792917038072519013701850924280163483893165455099071542202433152586138066004172655689993751411 ( 122 digits) SNFS difficulty: 166 digits. Divisors found: r1=55943227542338151602426973986475076889992624589 (pp47) r2=451837410354294038053223198387566184140151017305302109616973764868158183999 (pp75) Version: GGNFS-0.77.1-20060513-prescott Total time: 10.74 hours. Scaled time: 18.27 units (timescale=1.701). Factorization parameters were as follows: n: 25277243059591087751933230830792917038072519013701850924280163483893165455099071542202433152586138066004172655689993751411 m: 1000000000000000000000000000000000 c5: 70 c0: 11 skew: 0.69 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6000001) Primes: , , largePrimes:5871705 encountered Relations: rels:5969485, finalFF:743203 Max relations in full relation-set: 28 Initial matrix: 696897 x 743203 with sparse part having weight 52810271. Pruned matrix : 665688 x 669236 with weight 44065470. Total sieving time: 2.91 hours. Total relation processing time: 0.01 hours. Matrix solve time: 7.59 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 10.74 hours.
By Sinkiti Sibata / GGNFS
5·10156+9 = 5(0)1559<157> = 7 · 37447 · 28194483512088014904108943<26> · C126
C126 = P62 · P64
P62 = 74881270812473695723895111402915691073452855235176557355117707<62>
P64 = 9034780048660293802053456177468412100175147936351538480358818021<64>
Number: 50009_156 N=676535811554865734658433221423933641105523804759318323019495315982034160190227630983735165481246914074639192835621689847797847 ( 126 digits) SNFS difficulty: 156 digits. Divisors found: r1=74881270812473695723895111402915691073452855235176557355117707 (pp62) r2=9034780048660293802053456177468412100175147936351538480358818021 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.37 hours. Scaled time: 64.84 units (timescale=2.003). Factorization parameters were as follows: name: 50009_156 n: 676535811554865734658433221423933641105523804759318323019495315982034160190227630983735165481246914074639192835621689847797847 m: 10000000000000000000000000000000 c5: 50 c0: 9 skew: 0.71 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:215821, largePrimes:5559380 encountered Relations: rels:5479029, finalFF:518470 Max relations in full relation-set: 28 Initial matrix: 432702 x 518470 with sparse part having weight 40228570. Pruned matrix : 380168 x 382395 with weight 26863487. Total sieving time: 30.33 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.72 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.37 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
5·10147+9 = 5(0)1469<148> = C148
C148 = P40 · P108
P40 = 5849697884884838262743075248501338289883<40>
P108 = 854744996817632047461743936663945403195159505305631899758967978986218123868623742456524092166116733189586923<108>
Number: n N=5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 148 digits) SNFS difficulty: 149 digits. Divisors found: Wed Dec 19 02:59:00 2007 prp40 factor: 5849697884884838262743075248501338289883 Wed Dec 19 02:59:00 2007 prp108 factor: 854744996817632047461743936663945403195159505305631899758967978986218123868623742456524092166116733189586923 Wed Dec 19 02:59:00 2007 elapsed time 00:54:34 (Msieve 1.31) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 12.29 hours. Scaled time: 16.07 units (timescale=1.308). Factorization parameters were as follows: name: KA_5_0_146_9 n: 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 skew: 2.24 deg: 5 c5: 4 c0: 225 m: 500000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1500001) Primes: RFBsize:203362, AFBsize:203297, largePrimes:6971350 encountered Relations: rels:6423924, finalFF:479679 Max relations in full relation-set: 28 Initial matrix: 406723 x 479679 with sparse part having weight 30923173. Pruned matrix : Total sieving time: 12.09 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 12.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS, GMP-ECM
5·10164+9 = 5(0)1639<165> = C165
C165 = P79 · P86
P79 = 6673964901781837641922867159706054031558290898862034367879686441388466755506249<79>
P86 = 74917984640061309718805919117074967560324362619058281263115508699855177428830489506241<86>
Number: 50009_164 N=500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 165 digits) SNFS difficulty: 165 digits. Divisors found: r1=6673964901781837641922867159706054031558290898862034367879686441388466755506249 (pp79) r2=74917984640061309718805919117074967560324362619058281263115508699855177428830489506241 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 39.42 hours. Scaled time: 84.59 units (timescale=2.146). Factorization parameters were as follows: n: 500000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [2500000, 4600001) Primes: RFBsize:348513, AFBsize:348406, largePrimes:6566352 encountered Relations: rels:6735729, finalFF:809660 Max relations in full relation-set: 28 Initial matrix: 696986 x 809660 with sparse part having weight 54958042. Pruned matrix : 606950 x 610498 with weight 38013089. Total sieving time: 37.13 hours. Total relation processing time: 0.10 hours. Matrix solve time: 2.13 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,49,49,2.5,2.5,100000 total time: 39.42 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
5·10185+9 = 5(0)1849<186> = C186
C186 = P42 · C144
P42 = 862676558302067280404855791214660371447819<42>
C144 = [579591499488646557153454224836516440632324855138225561082733176963781513205559091433257936622764264592554118739834167338788722441133338317646011<144>]
By Sinkiti Sibata / GGNFS
5·10154+9 = 5(0)1539<155>= 829 · 15683 · 56596823 · 44630287349<11> · C130
C130 = P58 · P72
P58 = 6547416756766895807011708792092633881889587619560266369321<58>
P72 = 232538362293215384924110022839616818354212477256510811617282792627275661<72>
Number: 50009_154 N=1522525569869729691381144278511493679974899677541911790344380065429203883992934588841549407329972980911637269126252640383900396181 ( 130 digits) SNFS difficulty: 155 digits. Divisors found: r1=6547416756766895807011708792092633881889587619560266369321 (pp58) r2=232538362293215384924110022839616818354212477256510811617282792627275661 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.09 hours. Scaled time: 64.08 units (timescale=1.997). Factorization parameters were as follows: name: 50009_154 n: 1522525569869729691381144278511493679974899677541911790344380065429203883992934588841549407329972980911637269126252640383900396181 m: 10000000000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:5911757 encountered Relations: rels:6144438, finalFF:787955 Max relations in full relation-set: 28 Initial matrix: 433819 x 787955 with sparse part having weight 63391684. Pruned matrix : 273376 x 275609 with weight 35731953. Total sieving time: 30.69 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.09 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.09 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
5·10163+3 = 5(0)1623<164> = 29 · 227 · 1372379 · 3452401427<10> · C145
C145 = P58 · P87
P58 = 1652368488234263596749387089016071429414818510198454291329<58>
P87 = 970161182233720701578804573039325030395254397715312007695070136323727969873955547645013<87>
Number: n N=1603063766031098986258777513442487052832641665579047108880335847996162488378285630331639750683924926169543565709805927302627011252569149775992277 ( 145 digits) SNFS difficulty: 164 digits. Divisors found: Tue Dec 18 13:14:30 2007 prp58 factor: 1652368488234263596749387089016071429414818510198454291329 Tue Dec 18 13:14:30 2007 prp87 factor: 970161182233720701578804573039325030395254397715312007695070136323727969873955547645013 Tue Dec 18 13:14:30 2007 elapsed time 01:41:34 (Msieve 1.31) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 65.55 hours. Scaled time: 85.80 units (timescale=1.309). Factorization parameters were as follows: name: KA_5_0_162_3 n: 1603063766031098986258777513442487052832641665579047108880335847996162488378285630331639750683924926169543565709805927302627011252569149775992277 skew: 1.13 deg: 5 c5: 8 c0: 15 m: 500000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100001) Primes: RFBsize:230209, AFBsize:229672, largePrimes:7196433 encountered Relations: rels:6672971, finalFF:503221 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 65.18 hours. Total relation processing time: 0.37 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 65.55 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10145+9 = 5(0)1449<146> = 480587 · 664114531 · 173304257326374916002763<24> · C108
C108 = P40 · P69
P40 = 8011859098238196250376857716817447795633<40>
P69 = 112826851275727796887800559483225541997057785219800577879840211604843<69>
Number: n N=903952834919007588982726744512079025688319216306952508354097362135326614270017939800842749245239175617050619 ( 108 digits) SNFS difficulty: 145 digits. Divisors found: Tue Dec 18 15:02:49 2007 prp40 factor: 8011859098238196250376857716817447795633 Tue Dec 18 15:02:49 2007 prp69 factor: 112826851275727796887800559483225541997057785219800577879840211604843 Tue Dec 18 15:02:49 2007 elapsed time 00:24:54 (Msieve 1.31) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.79 hours. Scaled time: 8.75 units (timescale=1.829). Factorization parameters were as follows: name: KA_5_0_144_9 n: 903952834919007588982726744512079025688319216306952508354097362135326614270017939800842749245239175617050619 skew: 1.12 deg: 5 c5: 5 c0: 9 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 900000) Primes: RFBsize:183072, AFBsize:182621, largePrimes:6411156 encountered Relations: rels:5849768, finalFF:448390 Max relations in full relation-set: 28 Initial matrix: 365759 x 448390 with sparse part having weight 26854576. Pruned matrix : 294774 x 296666 with weight 13333677. Total sieving time: 4.67 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 4.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 X2 6000+
By Yousuke Koide
(101171-1)/9 is divisible by 822720687271610738727673132529<30>, cofactor is prime
(101193-1)/9 is divisible by 14202873041760299228830573<26>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Yousuke Koide
(101509-1)/9 is divisible by 276617318087890951973712854116609<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
5·10116+9 = 5(0)1159<117> = 5647 · 14738747 · C106
C106 = P37 · P70
P37 = 1770527491110016131038045568525078001<37>
P70 = 3393039989462346591698405537211579666741526697212892785900831616289301<70>
Number: 50009_116 N=6007470579778724082070197662126840225249465868554753560298389981872307218603794018676645158186753206767301 ( 106 digits) SNFS difficulty: 116 digits. Divisors found: r1=1770527491110016131038045568525078001 (pp37) r2=3393039989462346591698405537211579666741526697212892785900831616289301 (pp70) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.65 hours. Scaled time: 1.11 units (timescale=0.674). Factorization parameters were as follows: name: 50009_116 n: 6007470579778724082070197662126840225249465868554753560298389981872307218603794018676645158186753206767301 m: 100000000000000000000000 c5: 50 c0: 9 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64058, largePrimes:1928320 encountered Relations: rels:1872426, finalFF:132412 Max relations in full relation-set: 28 Initial matrix: 113221 x 132412 with sparse part having weight 9758667. Pruned matrix : 104806 x 105436 with weight 6199905. Total sieving time: 1.39 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.65 hours. --------- CPU info (if available) ----------
5·10137+9 = 5(0)1369<138> = 97 · 1506773568889<13> · 226074463554510734010057673<27> · C98
C98 = P38 · P60
P38 = 54141127725421474038977984368371957931<38>
P60 = 279493344149482372551112704180571406141518303948937390507771<60>
Number: 50009_137 N=15132084844002305813551973140721593577879529754928485014234706791511561393412085501945537540581801 ( 98 digits) SNFS difficulty: 137 digits. Divisors found: r1=54141127725421474038977984368371957931 (pp38) r2=279493344149482372551112704180571406141518303948937390507771 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 12.19 hours. Scaled time: 24.20 units (timescale=1.985). Factorization parameters were as follows: name: 50009_137 n: 15132084844002305813551973140721593577879529754928485014234706791511561393412085501945537540581801 m: 1000000000000000000000000000 c5: 500 c0: 9 skew: 0.45 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1975001) Primes: RFBsize:78498, AFBsize:64083, largePrimes:1684652 encountered Relations: rels:1727895, finalFF:191071 Max relations in full relation-set: 28 Initial matrix: 142648 x 191071 with sparse part having weight 20882416. Pruned matrix : 131206 x 131983 with weight 12913225. Total sieving time: 11.87 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.16 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.19 hours. --------- CPU info (if available) ----------
5·10151+9 = 5(0)1509<152> = 17 · 43 · 107 · C147
C147 = P48 · P100
P48 = 334673882571236023305008947620488003064113918729<48>
P100 = 1910060078664050756982889449663405594416053618701081486519366050468241477476722382784210606901891513<100>
Number: 50009_151 N=639247222470818364294207141669969443982765894882186736898628175460577623790224631473976245573212984389582827262615543935461600419346177940856846977 ( 147 digits) SNFS difficulty: 151 digits. Divisors found: r1=334673882571236023305008947620488003064113918729 (pp48) r2=1910060078664050756982889449663405594416053618701081486519366050468241477476722382784210606901891513 (pp100) Version: GGNFS-0.77.1-20060513-k8 Total time: 20.92 hours. Scaled time: 41.16 units (timescale=1.967). Factorization parameters were as follows: name 50009_151 n: 639247222470818364294207141669969443982765894882186736898628175460577623790224631473976245573212984389582827262615543935461600419346177940856846977 m: 1000000000000000000000000000000 c5: 50 c0: 9 skew: 0.71 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175768, largePrimes:5442675 encountered Relations: rels:5368300, finalFF:498395 Max relations in full relation-set: 28 Initial matrix: 352135 x 498395 with sparse part having weight 42380181. Pruned matrix : 282161 x 283985 with weight 22301234. Total sieving time: 19.66 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.00 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 20.92 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
5·10138+9 = 5(0)1379<139> = 7 · 67 · 24062444319260058179401<23> · C114
C114 = P45 · P69
P45 = 946212734975879332729540202137182929419049849<45>
P69 = 468240129107916666081642626977725725851067323112806555638980157404389<69>
Number: 50009_138 N=443054773188660674408303607729086637392367280159933140054775228028741936788471173247150308418917853949686442387261 ( 114 digits) SNFS difficulty: 140 digits. Divisors found: r1=946212734975879332729540202137182929419049849 (pp45) r2=468240129107916666081642626977725725851067323112806555638980157404389 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.63 hours. Scaled time: 9.87 units (timescale=2.129). Factorization parameters were as follows: n: 443054773188660674408303607729086637392367280159933140054775228028741936788471173247150308418917853949686442387261 m: 10000000000000000000000000000 c5: 1 c0: 180 skew: 2.83 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1000001) Primes: RFBsize:107126, AFBsize:107118, largePrimes:2193538 encountered Relations: rels:2294860, finalFF:267501 Max relations in full relation-set: 28 Initial matrix: 214308 x 267501 with sparse part having weight 20336589. Pruned matrix : 188484 x 189619 with weight 11495582. Total sieving time: 4.48 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.63 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
5·10149+9 = 5(0)1489<150> = 614655261608425773017<21> · C129
C129 = P43 · P87
P43 = 1292831320258423031896200514838978324604313<43>
P87 = 629211332393361618328576188689966621539549657057208953485058442782747222654866355168729<87>
Number: 50009_149 N=813464117579671160481609861465604632683977337341874220218641873074098242561055665721518223145604420413125413994385245321276128177 ( 129 digits) SNFS difficulty: 150 digits. Divisors found: r1=1292831320258423031896200514838978324604313 (pp43) r2=629211332393361618328576188689966621539549657057208953485058442782747222654866355168729 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.28 hours. Scaled time: 24.19 units (timescale=2.145). Factorization parameters were as follows: n: 813464117579671160481609861465604632683977337341874220218641873074098242561055665721518223145604420413125413994385245321276128177 m: 1000000000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1650001) Primes: RFBsize:135072, AFBsize:134903, largePrimes:3896038 encountered Relations: rels:4055635, finalFF:434303 Max relations in full relation-set: 28 Initial matrix: 270042 x 434303 with sparse part having weight 42347910. Pruned matrix : 218215 x 219629 with weight 20005906. Total sieving time: 10.98 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.22 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 11.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
5·10121+9 = 5(0)1209<122> = 401 · C120
C120 = P39 · P81
P39 = 234394740470022334833839226247804877881<39>
P81 = 531958520279564508033197824266783726238632647326464705045488524626649705389905089<81>
Number: 50009_121 N=124688279301745635910224438902743142144638403990024937655860349127182044887780548628428927680798004987531172069825436409 ( 120 digits) SNFS difficulty: 121 digits. Divisors found: r1=234394740470022334833839226247804877881 (pp39) r2=531958520279564508033197824266783726238632647326464705045488524626649705389905089 (pp81) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.07 hours. Scaled time: 4.13 units (timescale=1.992). Factorization parameters were as follows: name: 50009_121 n: 124688279301745635910224438902743142144638403990024937655860349127182044887780548628428927680798004987531172069825436409 m: 1000000000000000000000000 c5: 50 c0: 9 skew: 0.71 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64058, largePrimes:2256398 encountered Relations: rels:2489942, finalFF:350248 Max relations in full relation-set: 28 Initial matrix: 113221 x 350248 with sparse part having weight 32201932. Pruned matrix : 75006 x 75636 with weight 5986172. Total sieving time: 1.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.03 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.07 hours. --------- CPU info (if available) ----------
5·10107+9 = 5(0)1069<108> = 19 · C107
C107 = P35 · P73
P35 = 22161612064368328651072431710802457<35>
P73 = 1187449243189082427047892522175799526276103441537325771419337450292326123<73>
Number: 50009_107 N=26315789473684210526315789473684210526315789473684210526315789473684210526315789473684210526315789473684211 ( 107 digits) SNFS difficulty: 107 digits. Divisors found: r1=22161612064368328651072431710802457 (pp35) r2=1187449243189082427047892522175799526276103441537325771419337450292326123 (pp73) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.95 hours. Scaled time: 1.31 units (timescale=0.674). Factorization parameters were as follows: name: 50009_107 n: 26315789473684210526315789473684210526315789473684210526315789473684210526315789473684210526315789473684211 m: 1000000000000000000000 c5: 500 c0: 9 skew: 0.45 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64083, largePrimes:2414537 encountered Relations: rels:2970085, finalFF:672208 Max relations in full relation-set: 28 Initial matrix: 113248 x 672208 with sparse part having weight 51031416. Pruned matrix : 58155 x 58785 with weight 4968824. Total sieving time: 1.78 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.95 hours. --------- CPU info (if available) ----------
5·10114+9 = 5(0)1139<115> = 7 · 83 · 463 · 48623 · C105
C105 = P38 · P67
P38 = 70541614319082877066125526339209355501<38>
P67 = 5419082164403195929289385747756719945734828037540124137574223619561<67>
Number: 50009_114 N=382270804004751115685801549224284849574629336415081490606549481511433152190319400016180865627738226555061 ( 105 digits) SNFS difficulty: 115 digits. Divisors found: r1=70541614319082877066125526339209355501 (pp38) r2=5419082164403195929289385747756719945734828037540124137574223619561 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.67 hours. Scaled time: 1.13 units (timescale=0.674). Factorization parameters were as follows: name: 50009_114 n: 382270804004751115685801549224284849574629336415081490606549481511433152190319400016180865627738226555061 m: 100000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63888, largePrimes:2196933 encountered Relations: rels:2439165, finalFF:379789 Max relations in full relation-set: 28 Initial matrix: 113053 x 379789 with sparse part having weight 30408564. Pruned matrix : 65611 x 66240 with weight 4277422. Total sieving time: 1.50 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.67 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM
5·10102+9 = 5(0)1019<103> = 7 · 23 · 7001 · C97
C97 = P41 · P57
P41 = 31854706908327006451053849450780933259103<41>
P57 = 139254884403520782870512217316445103008038584589836414223<57>
By Jo Yeong Uk / GGNFS
5·10133+9 = 5(0)1329<134> = C134
C134 = P55 · P80
P55 = 1808856091842673778141469519200801928271629226769243833<55>
P80 = 27641778815618891492508230793764960546620767858028425576294203682615206075499473<80>
Number: 50009_133 N=50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 134 digits) SNFS difficulty: 135 digits. Divisors found: r1=1808856091842673778141469519200801928271629226769243833 (pp55) r2=27641778815618891492508230793764960546620767858028425576294203682615206075499473 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.70 hours. Scaled time: 5.79 units (timescale=2.145). Factorization parameters were as follows: n: 50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000000 c5: 1 c0: 180 skew: 2.83 type: snfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1150001) Primes: RFBsize:92938, AFBsize:92784, largePrimes:1635992 encountered Relations: rels:1676140, finalFF:218361 Max relations in full relation-set: 28 Initial matrix: 185786 x 218361 with sparse part having weight 11337457. Pruned matrix : 170705 x 171697 with weight 7105532. Total sieving time: 2.59 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,25,25,46,46,2.2,2.2,50000 total time: 2.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
5·10126+9 = 5(0)1259<127> = 7 · 541 · C124
C124 = P62 · P62
P62 = 18583998288422002372740046473239078846323774567438627504014367<62>
P62 = 71045331073170059497410700220270620432737612295639886159776421<62>
Number: 50009_126 N=1320306311064166886717718510694481119619751782413519936625297068919989437549511486664906258251914444151043041985740691840507 ( 124 digits) SNFS difficulty: 126 digits. Divisors found: r1=18583998288422002372740046473239078846323774567438627504014367 (pp62) r2=71045331073170059497410700220270620432737612295639886159776421 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.52 hours. Scaled time: 3.25 units (timescale=2.136). Factorization parameters were as follows: n: 1320306311064166886717718510694481119619751782413519936625297068919989437549511486664906258251914444151043041985740691840507 m: 10000000000000000000000000 c5: 50 c0: 9 skew: 0.71 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 720001) Primes: RFBsize:63951, AFBsize:64058, largePrimes:1387334 encountered Relations: rels:1376239, finalFF:164736 Max relations in full relation-set: 28 Initial matrix: 128074 x 164736 with sparse part having weight 7959278. Pruned matrix : 112535 x 113239 with weight 4175510. Total sieving time: 1.46 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 1.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
5·10129+9 = 5(0)1289<130> = 1283 · 6673 · 421483 · C118
C118 = P35 · P36 · P48
P35 = 55851141761388119444538473036013289<35>
P36 = 188165401070611685235607528162110379<36>
P48 = 131847024827184141097638546699400890537611235187<48>
Number: 50009_129 N=1385613673935590348953591613436489741829549505362287644707221680889335587698736375275354448321494087870618987366346297 ( 118 digits) SNFS difficulty: 130 digits. Divisors found: r1=55851141761388119444538473036013289 (pp35) r2=188165401070611685235607528162110379 (pp36) r3=131847024827184141097638546699400890537611235187 (pp48) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.96 hours. Scaled time: 4.16 units (timescale=2.127). Factorization parameters were as follows: n: 1385613673935590348953591613436489741829549505362287644707221680889335587698736375275354448321494087870618987366346297 m: 100000000000000000000000000 c5: 1 c0: 18 skew: 1.78 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78486, largePrimes:1556493 encountered Relations: rels:1609896, finalFF:225323 Max relations in full relation-set: 28 Initial matrix: 157051 x 225323 with sparse part having weight 11609462. Pruned matrix : 126069 x 126918 with weight 5246803. Total sieving time: 1.89 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / PRIMO
(2·102403+1)/3 is prime.
By matsui / GGNFS
(5·10166+7)/3 = 1(6)1659<167> = 38609 · 75787 · 156630091583671031730558418871436461<36> · C122
C122 = P52 · P71
P52 = 2264388869748319451290164995673979200391552839732379<52>
P71 = 16059767993409165566619664888931389674520944070045699328877175122292297<71>
N=36365559895016016644306948036519971789440001831406469011965021801985852343260659678682774063764231328439857717070493184563 ( 122 digits) SNFS difficulty: 166 digits. Divisors found: r1=2264388869748319451290164995673979200391552839732379 (pp52) r2=16059767993409165566619664888931389674520944070045699328877175122292297 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 125.39 hours. Scaled time: 238.73 units (timescale=1.904). Factorization parameters were as follows: n: 36365559895016016644306948036519971789440001831406469011965021801985852343260659678682774063764231328439857717070493184563 m: 1000000000000000000000000000000000 c5: 50 c0: 7 skew: 0.67 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6400001) Primes: RFBsize:348513, AFBsize:349596, largePrimes:6068375 encountered Relations: rels:6296703, finalFF:852370 Max relations in full relation-set: 28 Initial matrix: 698174 x 852370 with sparse part having weight 63956552. Pruned matrix : 581570 x 585124 with weight 46821531. Total sieving time: 110.75 hours. Total relation processing time: 0.15 hours. Matrix solve time: 14.13 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 125.39 hours.
By Yousuke Koide
(101375-1)/9 is divisible by 584213416911071661540509773751<30>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
The factor table of 500...009 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Alfred Reich
101813+1 is divisible by 1341949101412826358472947603971939<34>
101966+1 is divisible by 4955902500081447124888466401899581<34>
Reference: Factorizations of numbers of the form 10n+1 (Alfred Reich)
By Yousuke Koide
(101315-1)/9 is divisible by 155872807295141767753013971998423271<36>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / PRIMO
(2·102362+43)/9 is prime.
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(5·10163+31)/9 = (5)1629<163> = 32 · 11503 · 2014594707737<13> · C146
C146 = P35 · P44 · P68
P35 = 30188843843595259209660847329747917<35>
P44 = 35971250079769021640351453407071430175983319<44>
P68 = 24529244107054551003240215672832228187869914838761899129142536396667<68>
Number: n N=882347574042559821772402450073629885235585583487871518473855136881851884014580940306573631458996102973759197773 ( 111 digits) Divisors found: Fri Dec 14 06:00:23 2007 prp44 factor: 35971250079769021640351453407071430175983319 Fri Dec 14 06:00:23 2007 prp68 factor: 24529244107054551003240215672832228187869914838761899129142536396667 Fri Dec 14 06:00:23 2007 elapsed time 01:21:20 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.38 hours. Scaled time: 40.42 units (timescale=1.729). Factorization parameters were as follows: name: KA_5_162_9 n: 882347574042559821772402450073629885235585583487871518473855136881851884014580940306573631458996102973759197773 skew: 19044.42 # norm 6.38e+15 c5: 111600 c4: 14885090508 c3: 145705138135436 c2: -5337155657782209549 c1: 9745908703860354342290 c0: 107907444208141710319877800 # alpha -6.45 Y1: 212966576537 Y0: -1512145107533754160601 # Murphy_E 8.60e-10 # M 496213671955529285371696094504443999209726698467323627075527118570036745236814734332119703037015817317104508841 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved special-q in [100000, 1200001) Primes: RFBsize:230209, AFBsize:230305, largePrimes:6818981 encountered Relations: rels:6507373, finalFF:543771 Max relations in full relation-set: 28 Initial matrix: 460599 x 543771 with sparse part having weight 35789432. Pruned matrix : Total sieving time: 23.12 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 23.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10161+23)/9 = (4)1607<161> = 133 · 132253376785665958621<21> · C138
C138 = P39 · P99
P39 = 208122669820059734018270507907490349851<39>
P99 = 734955876882058340201805409936009321630527412736093444708338848258488834565508219522142315629339181<99>
5·10152-9 = 4(9)1511<153> = 19 · 199 · 1451 · 94201 · C141
C141 = P52 · P90
P52 = 2456042554669170698593684758425118153245909492210089<52>
P90 = 393916809814646016551948100067256455621282070935459752206741992118247884075792950119651649<90>
Number: n N=967476447904293055909635216958020112332090895404733428215992995669631565708561959491679428666082918940760232731437093604988438320239803286761 ( 141 digits) SNFS difficulty: 152 digits. Divisors found: Fri Dec 14 22:19:20 2007 prp52 factor: 2456042554669170698593684758425118153245909492210089 Fri Dec 14 22:19:20 2007 prp90 factor: 393916809814646016551948100067256455621282070935459752206741992118247884075792950119651649 Fri Dec 14 22:19:20 2007 elapsed time 01:04:26 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 22.64 hours. Scaled time: 29.75 units (timescale=1.314). Factorization parameters were as follows: name: KA_4_9_151_1 n: 967476447904293055909635216958020112332090895404733428215992995669631565708561959491679428666082918940760232731437093604988438320239803286761 skew: 0.45 deg: 5 c5: 500 c0: -9 m: 1000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1100000) Primes: RFBsize:203362, AFBsize:203297, largePrimes:6755039 encountered Relations: rels:6230916, finalFF:474146 Max relations in full relation-set: 28 Initial matrix: 406726 x 474146 with sparse part having weight 31631044. Pruned matrix : 349533 x 351630 with weight 19468857. Total sieving time: 22.45 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 22.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
5·10158-9 = 4(9)1571<159> = 192370543578919<15> · 255761895497279<15> · 6553146809446631<16> · C115
C115 = P36 · P79
P36 = 916954738515527411860196269384889891<36>
P79 = 1691210995646724198680462578472437912581425581533448011756847939729769453981971<79>
Number: 49991_158 N=1550763936287826755654564895336804649264066034246143513988755304298815619485742512321951624878705182064449334155161 ( 115 digits) SNFS difficulty: 160 digits. Divisors found: r1=916954738515527411860196269384889891 (pp36) r2=1691210995646724198680462578472437912581425581533448011756847939729769453981971 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.62 hours. Scaled time: 54.41 units (timescale=2.124). Factorization parameters were as follows: n: 1550763936287826755654564895336804649264066034246143513988755304298815619485742512321951624878705182064449334155161 m: 100000000000000000000000000000000 c5: 1 c0: -180 skew: 2.83 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282037, largePrimes:5639108 encountered Relations: rels:5690607, finalFF:673567 Max relations in full relation-set: 28 Initial matrix: 565247 x 673567 with sparse part having weight 41646735. Pruned matrix : 476541 x 479431 with weight 26834784. Total sieving time: 24.40 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 25.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407682) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.22 BogoMIPS (lpj=2405112) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405126) Total of 4 processors activated (19246.09 BogoMIPS).
(67·10161+23)/9 = 7(4)1607<162> = 3 · 11 · 1399 · 1523 · 87433 · 21320365267<11> · 40377356857463<14> · C126
C126 = P37 · P89
P37 = 6578288242353527353007952811929293213<37>
P89 = 21383556043195314533903891888116589234987504067784812619439791414098469151797015018035563<89>
By Sinkiti Sibata / PRIMO
(2·102175-17)/3 is prime.
By Sinkiti Sibata / PFGW
2·1012984-7 and 2·1013614-7 are PRP.
By Yousuke Koide
101121+1 is divisible by 69849282640264627005884025897913761023<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
5·10155-9 = 4(9)1541<156> = 52249831 · C148
C148 = P68 · P81
P68 = 12577330540482969770037590027834896246509937898150565038352486568081<68>
P81 = 760845786107138460535930299805308106874138122028043088814610693093595148504742881<81>
Number: n N=9569408942203085786057374998973680890948719049445346531360072724445749881946986584511632200303193325161185688811127446517482515876462834875006581361 ( 148 digits) SNFS difficulty: 155 digits. Divisors found: Tue Dec 11 14:10:53 2007 prp68 factor: 12577330540482969770037590027834896246509937898150565038352486568081 Tue Dec 11 14:10:53 2007 prp81 factor: 760845786107138460535930299805308106874138122028043088814610693093595148504742881 Tue Dec 11 14:10:53 2007 elapsed time 01:06:58 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.92 hours. Scaled time: 44.94 units (timescale=1.734). Factorization parameters were as follows: name: KA_4_9_154_1 n: 9569408942203085786057374998973680890948719049445346531360072724445749881946986584511632200303193325161185688811127446517482515876462834875006581361 type: snfs skew: 1.12 deg: 5 c5: 5 c0: -9 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000) Primes: RFBsize:216816, AFBsize:216491, largePrimes:6390484 encountered Relations: rels:5934433, finalFF:556300 Max relations in full relation-set: 28 Initial matrix: 433373 x 556300 with sparse part having weight 28717637. Pruned matrix : 323054 x 325284 with weight 14040928. Total sieving time: 25.73 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 25.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / PFGW
(8·1010717-11)/3, (8·1014673-11)/3, (8·1016754-11)/3 and (8·1017606-11)/3 are PRP.
By suberi / GMP-ECM
(16·10176-61)/9 = 1(7)1751<177> = 3 · 5261 · C173
C173 = P36 · C137
P36 = 817155339792930387676948727914630841<36>
C137 = [13784254841763201401763506838527012403768451779816402753683122065119425484587917320413953839479488490114718629521019279324075409499402757<137>]
By Jo Yeong Uk / GGNFS
5·10166-9 = 4(9)1651<167> = 41 · 89 · 809 · 16811 · 1289694079831<13> · 47803986587156910009154269051461<32> · C113
C113 = P48 · P65
P48 = 423642819486377500810088159556192139680472557229<48>
P65 = 38574774798609590656685912133706632252046886635615382500322326219<65>
Number: 49991_166 N=16341926356735026827094185515432260422814688809284832362536839593066759444529868046049647268284701680004884687151 ( 113 digits) Divisors found: r1=423642819486377500810088159556192139680472557229 (pp48) r2=38574774798609590656685912133706632252046886635615382500322326219 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.00 hours. Scaled time: 42.48 units (timescale=2.124). Factorization parameters were as follows: name: 49991_166 n: 16341926356735026827094185515432260422814688809284832362536839593066759444529868046049647268284701680004884687151 skew: 27295.93 # norm 2.18e+15 c5: 33120 c4: 4441313622 c3: -62567391423243 c2: -2850563779112809232 c1: 20403393653491258023492 c0: 412100355487556686774922021 # alpha -5.81 Y1: 642727557923 Y0: -3456530699039931079782 # Murphy_E 7.71e-10 # M 1551685654449727006542580819033466558148370987093910726938703232431161248973769563550852895364742766086059152787 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2380001) Primes: RFBsize:203362, AFBsize:203153, largePrimes:7633589 encountered Relations: rels:7513780, finalFF:534371 Max relations in full relation-set: 28 Initial matrix: 406594 x 534371 with sparse part having weight 51341064. Pruned matrix : 315342 x 317438 with weight 31467716. Polynomial selection time: 1.06 hours. Total sieving time: 18.10 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.58 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 20.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Sinkiti Sibata / GGNFS
4·10179+9 = 4(0)1789<180> = C180
C180 = P45 · P135
P45 = 921163045658547580756150590548571589420901651<45>
P135 = 434233659160780244149695889605425366477201748488030257510308420904369547799589597822903126508104998452818212276951470860768875906012659<135>
Number: 40009_179 N=400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 180 digits) SNFS difficulty: 180 digits. Divisors found: r1=921163045658547580756150590548571589420901651 (pp45) r2=434233659160780244149695889605425366477201748488030257510308420904369547799589597822903126508104998452818212276951470860768875906012659 (pp135) Version: GGNFS-0.77.1-20060513-k8 Total time: 514.08 hours. Scaled time: 1025.58 units (timescale=1.995). Factorization parameters were as follows: name: 40009_179 n: 400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000000000000000 c5: 2 c0: 45 skew: 1.86 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 9400001) Primes: RFBsize:501962, AFBsize:502481, largePrimes:6588779 encountered Relations: rels:7085432, finalFF:1174582 Max relations in full relation-set: 28 Initial matrix: 1004508 x 1174582 with sparse part having weight 72170055. Pruned matrix : 861753 x 866839 with weight 54190298. Total sieving time: 503.52 hours. Total relation processing time: 0.48 hours. Matrix solve time: 9.74 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 514.08 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
5·10146-9 = 4(9)1451<147> = 41 · 59 · 5970268730389741<16> · C128
C128 = P59 · P69
P59 = 89514634314987140562070529941642327551603414368208045052321<59>
P69 = 386764152467374483050690533716910166621405836972248541038074724385249<69>
Number: n N=34621051674262958248832730437816687088862152041094871343262841750725698980225021240368058000790564138392180385545468782765612929 ( 128 digits) SNFS difficulty: 146 digits. Divisors found: r1=89514634314987140562070529941642327551603414368208045052321 (pp59) r2=386764152467374483050690533716910166621405836972248541038074724385249 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.86 hours. Scaled time: 12.82 units (timescale=1.447). Factorization parameters were as follows: name: KA_4_9_145_1 n: 34621051674262958248832730437816687088862152041094871343262841750725698980225021240368058000790564138392180385545468782765612929 skew: 0.71 deg: 5 c5: 50 c0: -9 m: 100000000000000000000000000000 type: snfs rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:135072, AFBsize:134503, largePrimes:6508918 encountered Relations: rels:5845525, finalFF:310973 Max relations in full relation-set: 28 Initial matrix: 269640 x 310973 with sparse part having weight 24290713. Pruned matrix : 244308 x 245720 with weight 16377793. Total sieving time: 7.07 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.51 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.5,2.5,100000 total time: 8.86 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
4·10154+9 = 4(0)1539<155> = 17 · 13913 · 1396989572897<13> · 61059519554988608394921409<26> · C112
C112 = P56 · P56
P56 = 42618868918024524866536599051397923694814520254443166653<56>
P56 = 46520226216352324323002797548303105981922548494168073941<56>
Number: n N=1982639423151567720765887757879743509716301779332394742489381947815103365988434494345777849480504756361889489473 ( 112 digits) SNFS difficulty: 155 digits. Divisors found: Mon Dec 10 21:43:43 2007 prp56 factor: 42618868918024524866536599051397923694814520254443166653 Mon Dec 10 21:43:43 2007 prp56 factor: 46520226216352324323002797548303105981922548494168073941 Mon Dec 10 21:43:43 2007 elapsed time 01:00:47 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.01 hours. Scaled time: 31.77 units (timescale=1.323). Factorization parameters were as follows: name: KA_4_0_153_9 n: 1982639423151567720765887757879743509716301779332394742489381947815103365988434494345777849480504756361889489473 skew: 1.86 deg: 5 c5: 2 c0: 45 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000) Primes: RFBsize:203362, AFBsize:203302, largePrimes:6863368 encountered Relations: rels:6330906, finalFF:483438 Max relations in full relation-set: 28 Initial matrix: 406729 x 483438 with sparse part having weight 36996653. Pruned matrix : 344289 x 346386 with weight 21435247. Total sieving time: 23.83 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 24.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
(101177-1)/9 is divisible by 15112598396753272691345143612337643317<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS
5·10154-9 = 4(9)1531<155> = 20431 · 52699109 · 32997845429069<14> · 307535008641326161<18> · C112
C112 = P35 · P78
P35 = 29858758013316752254424575775237339<35>
P78 = 153258730444147188544171970047926818140030968120876657797177159787574781970379<78>
Number: 49991_154 N=4576115345759931963273148602487874485867641118618536902522504884305530749801301398793635737836618902146792781481 ( 112 digits) SNFS difficulty: 155 digits. Divisors found: r1=29858758013316752254424575775237339 (pp35) r2=153258730444147188544171970047926818140030968120876657797177159787574781970379 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.32 hours. Scaled time: 34.73 units (timescale=2.128). Factorization parameters were as follows: n: 4576115345759931963273148602487874485867641118618536902522504884305530749801301398793635737836618902146792781481 m: 10000000000000000000000000000000 c5: 1 c0: -18 skew: 1.78 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:5614449 encountered Relations: rels:5616644, finalFF:590726 Max relations in full relation-set: 28 Initial matrix: 433819 x 590726 with sparse part having weight 45178149. Pruned matrix : 324617 x 326850 with weight 28243374. Total sieving time: 15.65 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.55 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 16.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
4·10166+9 = 4(0)1659<167> = 95273 · 8165188054910845523309<22> · 14974400622659504557368769453<29> · C112
C112 = P50 · P63
P50 = 16787178947577077116058498947766265186683375867777<50>
P63 = 204548731765952768246248790510940164302339098214505480636361977<63>
Number: 40009_166 N=3433796163654992834720717303856461988726115533311254786924829579654454831482818646616432841788029058212662315129 ( 112 digits) Divisors found: r1=16787178947577077116058498947766265186683375867777 (pp50) r2=204548731765952768246248790510940164302339098214505480636361977 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.28 hours. Scaled time: 37.04 units (timescale=2.144). Factorization parameters were as follows: name: 40009_166 n: 3433796163654992834720717303856461988726115533311254786924829579654454831482818646616432841788029058212662315129 skew: 32399.49 # norm 4.04e+15 c5: 43260 c4: -2582623147 c3: -129295358935911 c2: -427069562025293841 c1: 24893025188825634820574 c0: -213047928497871312783824304 # alpha -6.19 Y1: 8847912799 Y0: -2398488377529493938175 # Murphy_E 7.74e-10 # M 1450873548697470902964069406047257719289617562836590192062108198415984904995949699924035264821588859357326623899 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2240001) Primes: RFBsize:203362, AFBsize:203291, largePrimes:7436972 encountered Relations: rels:7186524, finalFF:474824 Max relations in full relation-set: 28 Initial matrix: 406739 x 474824 with sparse part having weight 42851975. Pruned matrix : 354327 x 356424 with weight 28562696. Polynomial selection time: 0.94 hours. Total sieving time: 15.41 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.68 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 17.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By matsui / GMP-ECM
(37·10178-1)/9 = 4(1)178<179> = 7 · 137 · C176
C176 = P33 · C144
P33 = 256606801414902925624321820940911<33>
C144 = [167059987357085613333034797110824057589025658340318711449285988164500386196628719375549643795216399404461119111310119558935462349796606422281239<144>]
By Jo Yeong Uk / GGNFS
5·10162-9 = 4(9)1611<163> = C163
C163 = P44 · P56 · P64
P44 = 68385977371361886229008858431010504877885471<44>
P56 = 10358845079111018892823016494495871163939965326959587059<56>
P64 = 7058161771042422170571387133040680162138563583374078964992316019<64>
Number: 49991_162 N=4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 163 digits) SNFS difficulty: 164 digits. Divisors found: r1=68385977371361886229008858431010504877885471 (pp44) r2=10358845079111018892823016494495871163939965326959587059 (pp56) r3=7058161771042422170571387133040680162138563583374078964992316019 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 48.82 hours. Scaled time: 104.66 units (timescale=2.144). Factorization parameters were as follows: n: 4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 500000000000000000000000000000000 c5: 4 c0: -225 skew: 2.24 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [2500000, 5100001) Primes: RFBsize:348513, AFBsize:348286, largePrimes:6727746 encountered Relations: rels:6971731, finalFF:855302 Max relations in full relation-set: 28 Initial matrix: 696863 x 855302 with sparse part having weight 63866792. Pruned matrix : 578415 x 581963 with weight 45564381. Total sieving time: 46.21 hours. Total relation processing time: 0.12 hours. Matrix solve time: 2.42 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,49,49,2.5,2.5,100000 total time: 48.82 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
5·10151-9 = 4(9)1501<152> = 41 · 71 · 5849 · 301673 · 2377056670405894456247259031<28> · C112
C112 = P34 · P78
P34 = 7216593624182899656979319751461431<34>
P78 = 567463522224990994815587976391783657930851218965846028456860191438113244343673<78>
Number: 49991_151 N=4095153636445241190206816689343683703674815019630873708328681246983802788485970229898316586832416033236168376063 ( 112 digits) SNFS difficulty: 151 digits. Divisors found: r1=7216593624182899656979319751461431 (pp34) r2=567463522224990994815587976391783657930851218965846028456860191438113244343673 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.78 hours. Scaled time: 27.42 units (timescale=2.146). Factorization parameters were as follows: n: 4095153636445241190206816689343683703674815019630873708328681246983802788485970229898316586832416033236168376063 m: 1000000000000000000000000000000 c5: 50 c0: -9 skew: 0.71 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:175768, largePrimes:5401564 encountered Relations: rels:5292212, finalFF:469027 Max relations in full relation-set: 28 Initial matrix: 352135 x 469027 with sparse part having weight 39728717. Pruned matrix : 293297 x 295121 with weight 22323023. Total sieving time: 12.29 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.38 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 12.78 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Robert Backstrom / GMP-ECM
5·10157-9 = 4(9)1561<158> = 23 · 47 · 32993 · C151
C151 = P41 · P110
P41 = 64414577002263313514982818321328963237311<41>
P110 = 21763981302826500962913776820417810329105314486317929333032864905086682541577240814547337472885523445053489457<110>
By Jo Yeong Uk / GGNFS
5·10148-9 = 4(9)1471<149> = 29 · 792 · 109 · 752100379 · C133
C133 = P34 · P99
P34 = 3528305141284807144178302848697901<34>
P99 = 955101178320483387652564653901091192062550077009781733001890240341202021273986351553940732976675729<99>
Number: 49991_148 N=3369888397915338921258428641420141674023216060199260547003287810058336759881465047437666734012844616469309629039403567538331159944829 ( 133 digits) SNFS difficulty: 150 digits. Divisors found: r1=3528305141284807144178302848697901 (pp34) r2=955101178320483387652564653901091192062550077009781733001890240341202021273986351553940732976675729 (pp99) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.19 hours. Scaled time: 21.63 units (timescale=2.123). Factorization parameters were as follows: n: 3369888397915338921258428641420141674023216060199260547003287810058336759881465047437666734012844616469309629039403567538331159944829 m: 1000000000000000000000000000000 c5: 1 c0: -180 skew: 2.83 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134763, largePrimes:3725528 encountered Relations: rels:3800513, finalFF:378509 Max relations in full relation-set: 28 Initial matrix: 269899 x 378509 with sparse part having weight 33652982. Pruned matrix : 230441 x 231854 with weight 17271651. Total sieving time: 9.90 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.21 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Jo Yeong Uk / GGNFS
8·10186-7 = 7(9)1853<187> = C187
C187 = P59 · P129
P59 = 23673718891878340687652156651068165346397873316066209701723<59>
P129 = 337927472930521778199552160468265760927553690616358987625083967033589270515553679435711873302636879244937694756967161283401298491<129>
Number: 79993_186 N=7999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 187 digits) SNFS difficulty: 187 digits. Divisors found: r1=23673718891878340687652156651068165346397873316066209701723 (pp59) r2=337927472930521778199552160468265760927553690616358987625083967033589270515553679435711873302636879244937694756967161283401298491 (pp129) Version: GGNFS-0.77.1-20050930-nocona Total time: 403.36 hours. Scaled time: 859.97 units (timescale=2.132). Factorization parameters were as follows: n: 7999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 20000000000000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [6000000, 12600001) Primes: RFBsize:788060, AFBsize:788254, largePrimes:11493077 encountered Relations: rels:12030057, finalFF:1799960 Max relations in full relation-set: 28 Initial matrix: 1576379 x 1799960 with sparse part having weight 101413617. Pruned matrix : 1375471 x 1383416 with weight 74538419. Total sieving time: 389.01 hours. Total relation processing time: 0.27 hours. Matrix solve time: 13.95 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,50,50,2.6,2.6,100000 total time: 403.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Sinkiti Sibata / PFGW
5·1010820-9 and 5·1014592-9 are PRP.
By Yousuke Koide
(101093-1)/9 is divisible by 199506195135220536755902065305293<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GMP-ECM
5·10199-9 = 4(9)1981<200> = C200
C200 = P34 · P167
P34 = 1224112416041742410052808832168959<34>
P167 = 40845921783620723265274965609618243098936302659169196754666765677273901878095642440080026040452661066087357309697423682859960350348666458327845592281510888305426519049<167>
By Robert Backstrom / GGNFS, Msieve
(16·10162-7)/9 = 1(7)162<163>= 149 · 12918999672424547147<20> · C141
C141 = P53 · P89
P53 = 42410911175907381021122531054551380413053150932223867<53>
P89 = 21776331263493214068135261250146977053996751440377507135716102961789622007528024777905477<89>
Number: n N=923554050953145651757115932207095054219542878393925009149107585156454700784480736260600830105563687523730018039673296026246046433409929419559 ( 141 digits) SNFS difficulty: 163 digits. Divisors found: Thu Dec 06 08:21:53 2007 prp53 factor: 42410911175907381021122531054551380413053150932223867 Thu Dec 06 08:21:53 2007 prp89 factor: 21776331263493214068135261250146977053996751440377507135716102961789622007528024777905477 Thu Dec 06 08:21:53 2007 elapsed time 02:06:15 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 67.27 hours. Scaled time: 88.59 units (timescale=1.317). Factorization parameters were as follows: name: KA_1_7_162 n: 923554050953145651757115932207095054219542878393925009149107585156454700784480736260600830105563687523730018039673296026246046433409929419559 skew: 0.67 deg: 5 c5: 50 c0: -7 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600000) Primes: RFBsize:216816, AFBsize:217591, largePrimes:7393862 encountered Relations: rels:6850636, finalFF:494540 Max relations in full relation-set: 28 Initial matrix: 434472 x 494540 with sparse part having weight 50632783. Pruned matrix : Total sieving time: 67.01 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 67.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10152+9 = 4(0)1519<153> = 26713 · 1234873 · 1996467668952176494127953<25> · C118
C118 = P41 · P78
P41 = 35974049014171230767387935670841612478177<41>
P78 = 168835367899724431687288680957130059518243845115630566914418157002167566445961<78>
Number: n N=6073691800150318752219511984753628781476739145121835518994745689916081064629478208333175321810209710086068549562293097 ( 118 digits) SNFS difficulty: 152 digits. Divisors found: Thu Dec 06 16:08:51 2007 prp41 factor: 35974049014171230767387935670841612478177 Thu Dec 06 16:08:51 2007 prp78 factor: 168835367899724431687288680957130059518243845115630566914418157002167566445961 Thu Dec 06 16:08:51 2007 elapsed time 00:47:53 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.03 hours. Scaled time: 31.99 units (timescale=1.452). Factorization parameters were as follows: name: KA_4_0_151_9 n: 6073691800150318752219511984753628781476739145121835518994745689916081064629478208333175321810209710086068549562293097 skew: 0.94 deg: 5 c5: 25 c0: 18 m: 2000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000) Primes: RFBsize:148933, AFBsize:148625, largePrimes:7017509 encountered Relations: rels:6462685, finalFF:361511 Max relations in full relation-set: 28 Initial matrix: 297622 x 361511 with sparse part having weight 34777349. Pruned matrix : 266133 x 267685 with weight 22914288. Total sieving time: 21.83 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 22.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(34·10161-7)/9 = 3(7)161<162> = 197 · 9371 · 110183 · 694182710171<12> · C139
C139 = P58 · P82
P58 = 2616862112205494779410765284481436663033222318232195981387<58>
P82 = 1022386293766035950048848925429858897403553614981437089485799152210536157188516281<82>
Number: n N=2675443956194536316022798734239381743434700299393259205203764910786567960718170468410719273526054038360896452757923210295394590633222461747 ( 139 digits) SNFS difficulty: 162 digits. Divisors found: Thu Dec 06 23:56:31 2007 prp58 factor: 2616862112205494779410765284481436663033222318232195981387 Thu Dec 06 23:56:31 2007 prp82 factor: 1022386293766035950048848925429858897403553614981437089485799152210536157188516281 Thu Dec 06 23:56:31 2007 elapsed time 02:44:21 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.26 hours. Scaled time: 83.04 units (timescale=1.199). Factorization parameters were as follows: name: KA_3_7_161 n: 2675443956194536316022798734239381743434700299393259205203764910786567960718170468410719273526054038360896452757923210295394590633222461747 type: snfs skew: 0.46 deg: 5 c5: 340 c0: -7 m: 100000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3000001) Primes: RFBsize:230209, AFBsize:229397, largePrimes:7454855 encountered Relations: rels:6893700, finalFF:514080 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.95 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 69.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS
5·10143-9 = 4(9)1421<144> = 17 · C143
C143 = P60 · P84
P60 = 285720265191441664337755675562698371459936363289423581013937<60>
P84 = 102939022145228428989427304065983196665834399279521532082685405829806319911074359479<84>
Number: 49991_143 N=29411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823 ( 143 digits) SNFS difficulty: 144 digits. Divisors found: r1=285720265191441664337755675562698371459936363289423581013937 (pp60) r2=102939022145228428989427304065983196665834399279521532082685405829806319911074359479 (pp84) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.80 hours. Scaled time: 23.49 units (timescale=1.991). Factorization parameters were as follows: name: 49991_143 n: 29411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823 m: 50000000000000000000000000000 c5: 8 c0: -45 skew: 1.41 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:99898, largePrimes:2740628 encountered Relations: rels:2726242, finalFF:266126 Max relations in full relation-set: 28 Initial matrix: 199984 x 266126 with sparse part having weight 25911863. Pruned matrix : 180593 x 181656 with weight 15619042. Total sieving time: 11.27 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.36 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.80 hours. --------- CPU info (if available) ----------
5·10135-9 = 4(9)1341<136> = 7 · 23 · 79 · 17536644897128650802233<23> · C110
C110 = P46 · P65
P46 = 1719936531432379284578110469620659745107108719<46>
P65 = 13033411521941582112132234407177385128654436282436915981843640207<65>
Number: 49991_135 N=22416640605779012272061571478739422204655514974373750892597086537285582773909365228492465712874266775868664833 ( 110 digits) SNFS difficulty: 135 digits. Divisors found: r1=1719936531432379284578110469620659745107108719 (pp46) r2=13033411521941582112132234407177385128654436282436915981843640207 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.81 hours. Scaled time: 11.61 units (timescale=2.000). Factorization parameters were as follows: name: 49991_135 n: 22416640605779012272061571478739422204655514974373750892597086537285582773909365228492465712874266775868664833 m: 1000000000000000000000000000 c5: 5 c0: -9 skew: 1.12 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63763, largePrimes:1597471 encountered Relations: rels:1658522, finalFF:230632 Max relations in full relation-set: 28 Initial matrix: 142327 x 230632 with sparse part having weight 17325623. Pruned matrix : 115642 x 116417 with weight 7445126. Total sieving time: 5.63 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.81 hours. --------- CPU info (if available) ----------
5·10142-9 = 4(9)1411<143> = 2339 · 7678802901535212851801<22> · C118
C118 = P30 · P44 · P46
P30 = 117630389300918643864328074179<30>
P44 = 13290764272933581140590846123083681578082559<44>
P46 = 1780642654590329845797643787582718386220435529<46>
Number: 49991_142 N=2783852765203771242392062028278372201075337622567765162596504687226524568762724852814366472811671739409898543364743269 ( 118 digits) SNFS difficulty: 142 digits. Divisors found: r1=117630389300918643864328074179 (pp30) r2=13290764272933581140590846123083681578082559 (pp44) r3=1780642654590329845797643787582718386220435529 (pp46) Version: GGNFS-0.77.1-20060513-k8 Total time: 15.52 hours. Scaled time: 30.95 units (timescale=1.994). Factorization parameters were as follows: name: 49991_142 n: 2783852765203771242392062028278372201075337622567765162596504687226524568762724852814366472811671739409898543364743269 m: 10000000000000000000000000000 c5: 500 c0: -9 skew: 0.45 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2350001) Primes: RFBsize:100021, AFBsize:99988, largePrimes:2795102 encountered Relations: rels:2767439, finalFF:225205 Max relations in full relation-set: 28 Initial matrix: 200076 x 225205 with sparse part having weight 24651803. Pruned matrix : 193526 x 194590 with weight 19788059. Total sieving time: 14.86 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.47 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 15.52 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PFGW
(22·1011431-7)/3 and (22·1012927-7)/3 are PRP.
By Robert Backstrom / GGNFS, Msieve 1.30
9·10161+7 = 9(0)1607<162> = 32742491009<11> · 15305913553837<14> · C139
C139 = P61 · P78
P61 = 2871374186022696036738055549847702632759229312163023359543043<61>
P78 = 625434371370412843235342091358846490870084281799111208724718685614180061274753<78>
Number: n N=1795856109004335763698691572087419453798364220434114608269312678179761222742470512062548832927933855893213113194030583971753238970152693379 ( 139 digits) SNFS difficulty: 161 digits. Divisors found: Thu Dec 06 02:15:29 2007 prp61 factor: 2871374186022696036738055549847702632759229312163023359543043 Thu Dec 06 02:15:29 2007 prp78 factor: 625434371370412843235342091358846490870084281799111208724718685614180061274753 Thu Dec 06 02:15:29 2007 elapsed time 01:54:10 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 65.06 hours. Scaled time: 84.97 units (timescale=1.306). Factorization parameters were as follows: name: KA_9_0_160_7 n: 1795856109004335763698691572087419453798364220434114608269312678179761222742470512062548832927933855893213113194030583971753238970152693379 skew: 0.60 deg: 5 c5: 90 c0: 7 m: 100000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:230209, AFBsize:230767, largePrimes:7363359 encountered Relations: rels:6836918, finalFF:495414 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 64.81 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 65.06 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM
5·10153-9 = 4(9)1521<154> = 72 · 31 · 233 · 367 · 190668767 · 15049933389679<14> · C125
C125 = P36 · P89
P36 = 394436722224962502210435443374249441<36>
P89 = 34009384186180731129927406696605787600972387399376193654041569409619395347174902797719823<89>
By Robert Backstrom / GMP-ECM, GGNFS
5·10123-9 = 4(9)1221<124> = 7 · 31 · 103668634195146479<18> · C105
C105 = P33 · P72
P33 = 529652772019323584350569475910017<33>
P72 = 419634942345057429532843777824194673588852290057980851002408093562224161<72>
5·10124-9 = 4(9)1231<125> = 112834510063289823811<21> · C105
C105 = P45 · P60
P45 = 449489779543195000651111258759942012797389869<45>
P60 = 985844086264210902762592892891295128151928079697441377159249<60>
Number: n N=443126840998862673372330594167340785125969505774279345379238258715809495060385177703056868837181152248381 ( 105 digits) SNFS difficulty: 125 digits. Divisors found: r1=449489779543195000651111258759942012797389869 (pp45) r2=985844086264210902762592892891295128151928079697441377159249 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.96 hours. Scaled time: 2.60 units (timescale=1.323). Factorization parameters were as follows: name: KA_4_9_123_1 n: 443126840998862673372330594167340785125969505774279345379238258715809495060385177703056868837181152248381 skew: 1.78 deg: 5 c5: 1 c0: -18 m: 10000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 250001) Primes: RFBsize:63951, AFBsize:63888, largePrimes:4613515 encountered Relations: rels:4003172, finalFF:210650 Max relations in full relation-set: 48 Initial matrix: 127906 x 210650 with sparse part having weight 17161578. Pruned matrix : 98518 x 99221 with weight 4907911. Total sieving time: 1.71 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.10 hours. Total square root time: 0.06 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
5·10128-9 = 4(9)1271<129> = 17981 · 3843931457165509<16> · C109
C109 = P45 · P64
P45 = 942477006562110761447064968719904363145782491<45>
P64 = 7675554588296651640866311850875593032012524032228064348193639269<64>
Number: 49991_128 N=7234033712081902712464612958999569631054058842077060936513763588440193920136568538523951971389190729990239079 ( 109 digits) SNFS difficulty: 129 digits. Divisors found: r1=942477006562110761447064968719904363145782491 (pp45) r2=7675554588296651640866311850875593032012524032228064348193639269 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.04 hours. Scaled time: 6.11 units (timescale=2.010). Factorization parameters were as follows: name: 49991_128 n: 7234033712081902712464612958999569631054058842077060936513763588440193920136568538523951971389190729990239079 m: 50000000000000000000000000 c5: 8 c0: -45 skew: 1.41 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:63951, AFBsize:63928, largePrimes:1408145 encountered Relations: rels:1391646, finalFF:160862 Max relations in full relation-set: 28 Initial matrix: 127944 x 160862 with sparse part having weight 8338899. Pruned matrix : 116420 x 117123 with weight 4694100. Total sieving time: 2.90 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.04 hours. --------- CPU info (if available) ----------
5·10129-9 = 4(9)1281<130> = 7 · 399271 · C124
C124 = P37 · P88
P37 = 1719378230348833617587044366277777273<37>
P88 = 1040477691594168476615746126692780490295108691699389255395317590980581957687501917021311<88>
Number: 49991_129 N=1788974692090620870822788818335702532150558678906592979991749248720078056543765297969835739921721623372882793176278052464903 ( 124 digits) SNFS difficulty: 130 digits. Divisors found: r1=1719378230348833617587044366277777273 (pp37) r2=1040477691594168476615746126692780490295108691699389255395317590980581957687501917021311 (pp88) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.02 hours. Scaled time: 6.07 units (timescale=2.010). Factorization parameters were as follows: name: 49991_129 n: 1788974692090620870822788818335702532150558678906592979991749248720078056543765297969835739921721623372882793176278052464903 m: 100000000000000000000000000 c5: 1 c0: -18 skew: 1.78 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:63951, AFBsize:63888, largePrimes:1400726 encountered Relations: rels:1379152, finalFF:155356 Max relations in full relation-set: 28 Initial matrix: 127906 x 155356 with sparse part having weight 8163928. Pruned matrix : 118614 x 119317 with weight 4886712. Total sieving time: 2.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.02 hours. --------- CPU info (if available) ----------
5·10131-9 = 4(9)1301<132> = 41 · 5547391 · C124
C124 = P60 · P64
P60 = 331708005539959846200945699830264904120183676134446346135329<60>
P64 = 6627373043733457754101972925473022695394088807721914419175039809<64>
Number: 49991_131 N=2198352694306118352775557233934329691552518925057765344324838864814459845991060504289533496412119129734953277157126876312161 ( 124 digits) SNFS difficulty: 131 digits. Divisors found: r1=331708005539959846200945699830264904120183676134446346135329 (pp60) r2=6627373043733457754101972925473022695394088807721914419175039809 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.40 hours. Scaled time: 8.73 units (timescale=1.985). Factorization parameters were as follows: name: 49991_131 n: 2198352694306118352775557233934329691552518925057765344324838864814459845991060504289533496412119129734953277157126876312161 m: 100000000000000000000000000 c5: 50 c0: -9 skew: 0.71 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64058, largePrimes:1540929 encountered Relations: rels:1578173, finalFF:205413 Max relations in full relation-set: 28 Initial matrix: 128074 x 205413 with sparse part having weight 14981903. Pruned matrix : 107027 x 107731 with weight 6295031. Total sieving time: 4.24 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.40 hours. --------- CPU info (if available) ----------
5·10133-9 = 4(9)1321<134> = 1388981393<10> · C125
C125 = P46 · P79
P46 = 4580943858133272901234098370518760018593679951<46>
P79 = 7858119105566310646465581070947787541968136461241464994014105774627915529998537<79>
Number: 49991_133 N=35997602453123718699088433361036392227609920185590275938275294088118860783040021616761859674530571627319128529175336476231687 ( 125 digits) SNFS difficulty: 134 digits. Divisors found: r1=4580943858133272901234098370518760018593679951 (pp46) r2=7858119105566310646465581070947787541968136461241464994014105774627915529998537 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.68 hours. Scaled time: 9.29 units (timescale=1.985). Factorization parameters were as follows: name: 49991_133 n: 35997602453123718699088433361036392227609920185590275938275294088118860783040021616761859674530571627319128529175336476231687 m: 500000000000000000000000000 c5: 8 c0: -45 skew: 1.41 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 925001) Primes: RFBsize:78498, AFBsize:63928, largePrimes:1457680 encountered Relations: rels:1439431, finalFF:160358 Max relations in full relation-set: 28 Initial matrix: 142491 x 160358 with sparse part having weight 10506246. Pruned matrix : 136383 x 137159 with weight 7567068. Total sieving time: 4.48 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 4.68 hours. --------- CPU info (if available) ----------
5·10134-9 = 4(9)1331<135> = 19 · 4294946301634720547509<22> · C112
C112 = P40 · P72
P40 = 7661951585715267309757814664269644345249<40>
P72 = 799685573994862057768981025766325851378881906722550433228529476184746329<72>
Number: 49991_134 N=6127152151743557074542844552870042019610302481794247517939862406771161342106351861871786326029301318444361340921 ( 112 digits) SNFS difficulty: 135 digits. Divisors found: r1=7661951585715267309757814664269644345249 (pp40) r2=799685573994862057768981025766325851378881906722550433228529476184746329 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.82 hours. Scaled time: 11.55 units (timescale=1.986). Factorization parameters were as follows: name: 49991_134 n: 6127152151743557074542844552870042019610302481794247517939862406771161342106351861871786326029301318444361340921 m: 1000000000000000000000000000 c5: 1 c0: -18 skew: 1.78 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63888, largePrimes:1619441 encountered Relations: rels:1697010, finalFF:245323 Max relations in full relation-set: 28 Initial matrix: 142453 x 245323 with sparse part having weight 18456007. Pruned matrix : 112751 x 113527 with weight 7450413. Total sieving time: 5.64 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.82 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
5·10118-9 = 4(9)1171<119> = C119
C119 = P60 · P60
P60 = 113451761893099661361741916560523265424931846016438394824059<60>
P60 = 440715940992725025596348804318707127294139212236448645152949<60>
Number: 49991_118 N=49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 119 digits) SNFS difficulty: 120 digits. Divisors found: r1=113451761893099661361741916560523265424931846016438394824059 (pp60) r2=440715940992725025596348804318707127294139212236448645152949 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.74 hours. Scaled time: 1.58 units (timescale=2.145). Factorization parameters were as follows: n: 49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 1000000000000000000000000 c5: 1 c0: -180 skew: 2.83 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49121, largePrimes:1721640 encountered Relations: rels:1663175, finalFF:113797 Max relations in full relation-set: 28 Initial matrix: 98283 x 113797 with sparse part having weight 8423002. Pruned matrix : 92995 x 93550 with weight 5618322. Total sieving time: 0.68 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Robert Backstrom / GMP-ECM
5·10113-9 = 4(9)1121<114> = 23 · 263 · 200041 · 2035289 · C99
C99 = P30 · P69
P30 = 443952373522730358003023095039<30>
P69 = 457303931730390724716183370178707280616570660476664818059347925723369<69>
By matsui / GMP-ECM
(4·10185-13)/9 = (4)1843<185> = 7 · 1451 · C181
C181 = P33 · C149
P33 = 164277524510786827843488693745099<33>
C149 = [26636298892028694012587941153238062628591187075841112023861911522751253412947765247273184353075516238787560153594780836262462832930974948643067577301<149>]
By Robert Backstrom / GGNFS, Msieve
4·10161+9 = 4(0)1609<162> = 4051 · 127235411 · 1969369859<10> · C141
C141 = P40 · P102
P40 = 3315928709727846416041854024938819789689<40>
P102 = 118838532278963278232537809676524506390734233220677222531873601915306217550488799630909789562805027619<102>
Number: n N=394060101005733730854944506185225543063987154654543968918320787847903391279563079348777846305919632986249125213107544098370152142181416420491 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: Tue Dec 04 13:47:12 2007 prp40 factor: 3315928709727846416041854024938819789689 Tue Dec 04 13:47:12 2007 prp102 factor: 118838532278963278232537809676524506390734233220677222531873601915306217550488799630909789562805027619 Tue Dec 04 13:47:12 2007 elapsed time 01:05:12 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.49 hours. Scaled time: 45.35 units (timescale=1.440). Factorization parameters were as follows: name: KA_4_0_160_9 n: 394060101005733730854944506185225543063987154654543968918320787847903391279563079348777846305919632986249125213107544098370152142181416420491 skew: 0.74 deg: 5 c5: 40 c0: 9 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:203362, AFBsize:203082, largePrimes:7092138 encountered Relations: rels:6575017, finalFF:473191 Max relations in full relation-set: 28 Initial matrix: 406511 x 473191 with sparse part having weight 37652625. Pruned matrix : 356677 x 358773 with weight 25275013. Total sieving time: 31.28 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 31.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
The factor table of 499...991 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Yousuke Koide
(101019-1)/9 is divisible by 1164875952920329463736875905335015089<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GMP-ECM
(64·10234+53)/9 = 7(1)2337<235> = 13 · 1181 · 7451 · 1471598307214747<16> · 3052073285905649<16> · 172548225862787861<18> · 2699321912890730492306803<25> · C155
C155 = P47 · P109
P47 = 26652891282185821045577962549160542412294508503<47>
P109 = 1114899980065870331232905973592925067977812491581216317251152807767466063464285258166500582274270472922906037<109>
By Jo Yeong Uk / GGNFS
(4·10187-1)/3 = 1(3)187<188> = 132 · 71 · 641 · 4354373 · C174
C174 = P52 · P122
P52 = 5361712371792973170896785910460906141853462256912209<52>
P122 = 74251719049861199442807051707488431927072858194646024738993713156188070400742301801156540569317981596338173399436320309791<122>
Number: 13333_187 N=398116360656536779984902594959659524762886894764740907788961498125477543559005946143561502786041981375439529374284451922273986560056748206834695296451854204990252061970138319 ( 174 digits) SNFS difficulty: 187 digits. Divisors found: r1=5361712371792973170896785910460906141853462256912209 (pp52) r2=74251719049861199442807051707488431927072858194646024738993713156188070400742301801156540569317981596338173399436320309791 (pp122) Version: GGNFS-0.77.1-20050930-nocona Total time: 361.56 hours. Scaled time: 773.01 units (timescale=2.138). Factorization parameters were as follows: n: 398116360656536779984902594959659524762886894764740907788961498125477543559005946143561502786041981375439529374284451922273986560056748206834695296451854204990252061970138319 m: 20000000000000000000000000000000000000 c5: 25 c0: -2 skew: 0.6 type: snfs Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [6000000, 11900001) Primes: RFBsize:788060, AFBsize:788149, largePrimes:11393019 encountered Relations: rels:11956011, finalFF:1824015 Max relations in full relation-set: 28 Initial matrix: 1576273 x 1824015 with sparse part having weight 91057329. Pruned matrix : 1349070 x 1357015 with weight 64635248. Total sieving time: 348.71 hours. Total relation processing time: 0.26 hours. Matrix solve time: 12.46 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,12000000,12000000,28,28,50,50,2.6,2.6,100000 total time: 361.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
Jo Yeong Uk completed factorizations up to n=200 of 133...33. Congratulations!
By Sinkiti Sibata / PFGW
2·1013561+9, 2·1015955+9, (23·1013092-11)/3, (17·1011046+7)/3, (17·1015448+7)/3, (17·1016628+7)/3, (17·1016918+7)/3 and (17·1018734+7)/3 are PRP.
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
4·10160+9 = 4(0)1599<161> = 277 · 138637 · 247609 · 15173733529<11> · C138
C138 = P62 · P76
P62 = 60797126856307127135595444344471160234256633836042739865882569<62>
P76 = 4559940072470123498850798447077277366305328269178339465898539108054593612449<76>
Number: n N=277231255043124412962563195334423003572989349824918726484343257938458321577544020345163333731927265082665578558503965730046567209330501481 ( 138 digits) SNFS difficulty: 160 digits. Divisors found: Sat Dec 01 14:19:53 2007 prp62 factor: 60797126856307127135595444344471160234256633836042739865882569 Sat Dec 01 14:19:53 2007 prp76 factor: 4559940072470123498850798447077277366305328269178339465898539108054593612449 Sat Dec 01 14:19:53 2007 elapsed time 01:19:11 Version: GGNFS-0.77.1-20051202-athlon Total time: 27.74 hours. Scaled time: 40.22 units (timescale=1.450). Factorization parameters were as follows: name: KA_4_0_159_9 n: 277231255043124412962563195334423003572989349824918726484343257938458321577544020345163333731927265082665578558503965730046567209330501481 skew: 1.18 deg: 5 c5: 4 c0: 9 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1500000) Primes: RFBsize:203362, AFBsize:203477, largePrimes:7032527 encountered Relations: rels:6512477, finalFF:474011 Max relations in full relation-set: 28 Initial matrix: 406903 x 474011 with sparse part having weight 35734018. Pruned matrix : 354822 x 356920 with weight 23455777. Total sieving time: 27.55 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 27.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 3400+
4·10151+9 = 4(0)1509<152> = 7 · 131 · 197 · 1531 · 47933 · 2296496011<10> · 1404598779340570579<19> · C111
C111 = P31 · P81
P31 = 6104431168415592413869608635611<31>
P81 = 153232696611883288817148088275635599149717352290249536018399392505789557880036813<81>
4·10157+9 = 4(0)1569<158> = 7 · 87972114341735599736283329579<29> · C128
C128 = P53 · P76
P53 = 22156740177008454467142813185853133375535106690625343<53>
P76 = 2931642819433829612544003364072511581602586787125479620745479951967818422771<76>
Number: n N=64955648241987874447117430039138259202002854155007541960018688539768478636343303641089348405672723770075499054458421913940885453 ( 128 digits) SNFS difficulty: 157 digits. Divisors found: Sat Dec 01 21:40:37 2007 prp53 factor: 22156740177008454467142813185853133375535106690625343 Sat Dec 01 21:40:37 2007 prp76 factor: 2931642819433829612544003364072511581602586787125479620745479951967818422771 Sat Dec 01 21:40:37 2007 elapsed time 01:33:31 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 37.39 hours. Scaled time: 48.71 units (timescale=1.303). Factorization parameters were as follows: name: KA_4_0_156_9 n: 64955648241987874447117430039138259202002854155007541960018688539768478636343303641089348405672723770075499054458421913940885453 skew: 0.94 deg: 5 c5: 25 c0: 18 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1600001) Primes: RFBsize:216816, AFBsize:216551, largePrimes:7116928 encountered Relations: rels:6581195, finalFF:473861 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 37.16 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 37.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10162+9 = 4(0)1619<163> = 13 · C162
C162 = P77 · P86
P77 = 14484959608208348655122569360348676482871487639034491862149522347733039174529<77>
P86 = 21242193006733989503775579532646316990712184952355071124010335682117913659526189758317<86>
Number: n N=307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307693 ( 162 digits) SNFS difficulty: 162 digits. Divisors found: Sun Dec 02 00:56:26 2007 prp77 factor: 14484959608208348655122569360348676482871487639034491862149522347733039174529 Sun Dec 02 00:56:26 2007 prp86 factor: 21242193006733989503775579532646316990712184952355071124010335682117913659526189758317 Sun Dec 02 00:56:26 2007 elapsed time 01:38:38 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 57.08 hours. Scaled time: 75.52 units (timescale=1.323). Factorization parameters were as follows: name: KA_4_0_161_9 n: 307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307692307693 skew: 0.94 deg: 5 c5: 25 c0: 18 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800000) Primes: RFBsize:216816, AFBsize:216551, largePrimes:7515407 encountered Relations: rels:6986522, finalFF:507662 Max relations in full relation-set: 28 Initial matrix: 433431 x 507662 with sparse part having weight 54891344. Pruned matrix : 403528 x 405759 with weight 36508693. Total sieving time: 56.79 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 57.08 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
101497+1 is divisible by 7016092401376747085885131800303253<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
4·10155+9 = 4(0)1549<156> = 1975423 · 3095912878954409<16> · C134
C134 = P65 · P70
P65 = 34448312105302906122201979845692525321041884536529688865372252369<65>
P70 = 1898642540091341888277141518857734481586769553402869501770427156234223<70>
Number: n N=65405030797471631024897797203292080268700559470205742591870217011703486438834669678697175888566047633668436172058302458077017630624287 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=34448312105302906122201979845692525321041884536529688865372252369 (pp65) r2=1898642540091341888277141518857734481586769553402869501770427156234223 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.75 hours. Scaled time: 32.02 units (timescale=1.197). Factorization parameters were as follows: name: KA_4_0_154_9 n: 65405030797471631024897797203292080268700559470205742591870217011703486438834669678697175888566047633668436172058302458077017630624287 type: snfs skew: 1.17 deg: 5 c5: 4 c0: 9 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:6166954 encountered Relations: rels:5660881, finalFF:507771 Max relations in full relation-set: 28 Initial matrix: 433816 x 507771 with sparse part having weight 24265495. Pruned matrix : 362409 x 364642 with weight 13836447. Total sieving time: 24.20 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.29 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 26.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / Msieve
4·10172+9 = 4(0)1719<173> = 379417 · 2183353693<10> · 369214042069<12> · 10392906827609765461<20> · 1432364659536702101368956541<28> · C100
C100 = P45 · P56
P45 = 521485688834094616003641826229481656646415453<45>
P56 = 16846429736694498814138730507079319979241737624177166277<56>
Thu Nov 29 14:35:06 2007 Msieve v. 1.30 Thu Nov 29 14:35:06 2007 random seeds: 5e6160f2 130a07ab Thu Nov 29 14:35:06 2007 factoring 8785172015635305902166850873310561627369223602890592020277003775916249170381081979472941403203278481 (100 digits) Thu Nov 29 14:35:06 2007 commencing quadratic sieve (100-digit input) Thu Nov 29 14:35:07 2007 using multiplier of 1 Thu Nov 29 14:35:07 2007 using 64kb Pentium 4 sieve core Thu Nov 29 14:35:07 2007 sieve interval: 18 blocks of size 65536 Thu Nov 29 14:35:07 2007 processing polynomials in batches of 6 Thu Nov 29 14:35:07 2007 using a sieve bound of 2825051 (102331 primes) Thu Nov 29 14:35:07 2007 using large prime bound of 423757650 (28 bits) Thu Nov 29 14:35:07 2007 using double large prime bound of 3379182069851550 (43-52 bits) Thu Nov 29 14:35:07 2007 using trial factoring cutoff of 52 bits Thu Nov 29 14:35:07 2007 polynomial 'A' values have 13 factors Sat Dec 1 08:30:49 2007 102586 relations (23428 full + 79158 combined from 1560356 partial), need 102427 Sat Dec 1 08:30:56 2007 begin with 1583784 relations Sat Dec 1 08:30:59 2007 reduce to 275743 relations in 14 passes Sat Dec 1 08:30:59 2007 attempting to read 275743 relations Sat Dec 1 08:31:11 2007 recovered 275743 relations Sat Dec 1 08:31:11 2007 recovered 267629 polynomials Sat Dec 1 08:31:11 2007 attempting to build 102586 cycles Sat Dec 1 08:31:11 2007 found 102586 cycles in 5 passes Sat Dec 1 08:31:11 2007 distribution of cycle lengths: Sat Dec 1 08:31:11 2007 length 1 : 23428 Sat Dec 1 08:31:11 2007 length 2 : 17036 Sat Dec 1 08:31:11 2007 length 3 : 16856 Sat Dec 1 08:31:11 2007 length 4 : 14145 Sat Dec 1 08:31:11 2007 length 5 : 11048 Sat Dec 1 08:31:11 2007 length 6 : 7584 Sat Dec 1 08:31:11 2007 length 7 : 5024 Sat Dec 1 08:31:11 2007 length 9+: 7465 Sat Dec 1 08:31:11 2007 largest cycle: 20 relations Sat Dec 1 08:31:12 2007 matrix is 102331 x 102586 with weight 6915312 (avg 67.41/col) Sat Dec 1 08:31:15 2007 filtering completed in 3 passes Sat Dec 1 08:31:15 2007 matrix is 98799 x 98863 with weight 6691681 (avg 67.69/col) Sat Dec 1 08:31:16 2007 saving the first 48 matrix rows for later Sat Dec 1 08:31:16 2007 matrix is 98751 x 98863 with weight 5212412 (avg 52.72/col) Sat Dec 1 08:31:16 2007 matrix includes 64 packed rows Sat Dec 1 08:31:16 2007 using block size 21845 for processor cache size 512 kB Sat Dec 1 08:31:17 2007 commencing Lanczos iteration Sat Dec 1 08:32:59 2007 lanczos halted after 1563 iterations (dim = 98750) Sat Dec 1 08:32:59 2007 recovered 16 nontrivial dependencies Sat Dec 1 08:33:01 2007 prp45 factor: 521485688834094616003641826229481656646415453 Sat Dec 1 08:33:01 2007 prp56 factor: 16846429736694498814138730507079319979241737624177166277 Sat Dec 1 08:33:01 2007 elapsed time 41:57:55
By Sinitiki Sibata / PFGW
4·1019679-9 is PRP.
By Alfred Reich
101655+1 is divisible by 18802215938788787651629737655497612041<38>
101813+1 is divisible by 1341949101412826358472947603971939<34>
Reference: Factorizations of numbers of the form 10n+1 (Alfred Reich)
By Jo Yeong Uk / GMP-ECM
(19·10161-1)/9 = 2(1)161<162> = 727717 · 384816673 · 674074250329<12> · C136
C136 = P35 · P101
P35 = 14467529402478870760723338650411987<35>
P101 = 77302329134119121600032539311233102902267933504106572342606708487422816772928441334860645111491619777<101>
By Bruce Dodson
10242+1 is divisible by 209363088773816814667969748813613304559806235889961<51> and cofactor is prime.
Reference: Factoring and Prime Identification (Torbjörn Granlund)
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
4·10158+9 = 4(0)1579<159> = 29 · 617 · C155
C155 = P59 · P97
P59 = 16694516335098246170350962150521377733606416852014894432101<59>
P97 = 1339069098410419305684551449267723355927167683871174848884295909043052511734794797656249685854513<97>
Number: n N=22355110937238026043704241882300340915441792879897166489688705080198960487341418431788967752752473034147431956631084781758229475213770748337338624042921813 ( 155 digits) SNFS difficulty: 160 digits. Divisors found: Thu Nov 29 08:24:10 2007 prp59 factor: 16694516335098246170350962150521377733606416852014894432101 Thu Nov 29 08:24:10 2007 prp97 factor: 1339069098410419305684551449267723355927167683871174848884295909043052511734794797656249685854513 Thu Nov 29 08:24:10 2007 elapsed time 01:05:46 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 33.00 hours. Scaled time: 43.14 units (timescale=1.307). Factorization parameters were as follows: name: KA_4_0_157_9 n: 22355110937238026043704241882300340915441792879897166489688705080198960487341418431788967752752473034147431956631084781758229475213770748337338624042921813 skew: 2.95 deg: 5 c5: 1 c0: 225 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1450000) Primes: RFBsize:216816, AFBsize:216371, largePrimes:7014483 encountered Relations: rels:6490308, finalFF:490288 Max relations in full relation-set: 28 Initial matrix: 433251 x 490288 with sparse part having weight 34015211. Pruned matrix : 387237 x 389467 with weight 22902473. Total sieving time: 31.53 hours. Total relation processing time: 0.25 hours. Matrix solve time: 1.22 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10153+9 = 4(0)1529<154> = 211 · 499 · 823 · 7213 · 5983931 · 20484293 · C128
C128 = P34 · P95
P34 = 1674567153955540249123309372823653<34>
P95 = 31178204285060110569074580607563260199102302136786304734413870091585370032227633400052324234081<95>
By Robert Backstrom / GGNFS, Msieve
4·10171+9 = 4(0)1709<172> = 4727579 · 42758299609<11> · 70786206663533<14> · 52842317195285609<17> · 1749706642519018677552131<25> · C100
C100 = P44 · P57
P44 = 13309174465738976322573197980572388901369971<44>
P57 = 227171538029579664285228640378502521594404174584065064527<57>
Number: n N=30234656332859324703546336715738054258309704996708157961949684440936332 94526234496732144750815118717 ( 100 digits) Divisors found: Wed Nov 28 06:36:31 2007 recovered 43 nontrivial dependencies ... Wed Nov 28 07:11:14 2007 reading relations for dependency 7 ... Wed Nov 28 07:16:43 2007 prp44 factor: 13309174465738976322573197980572388901369971 Wed Nov 28 07:16:43 2007 prp57 factor: 227171538029579664285228640378502521594404174584065064527 Wed Nov 28 07:16:43 2007 elapsed time 00:53:58 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.30 hours. Scaled time: 7.53 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_0_170_9 n: 3023465633285932470354633671573805425830970499670815796194968444093633294 526234496732144750815118717 skew: 13066.21 # norm 1.20e+14 c5: 13380 c4: -91502224 c3: -7858450792205 c2: -14686422473786386 c1: -36147477295763868464 c0: 769155274794014273908275 # alpha -6.05 Y1: 15220904303 Y0: -11770923922825153852 # Murphy_E 3.35e-09 # M 9956905416872819849530372527310632673808913467304665376913463743595106352 33511921121477064551418045 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved special-q in [100000, 800000) Primes: RFBsize:135072, AFBsize:134812, largePrimes:3453555 encountered Relations: rels:3414232, finalFF:377182 Max relations in full relation-set: 28 Initial matrix: 269962 x 377182 with sparse part having weight 19839270. Pruned matrix : 171344 x 172757 with weight 6919700. Total sieving time: 6.15 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26, 26,48,48,2.5,2.5,100000 total time: 6.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(2·10167+7)/9 = (2)1663<167> = 17 · 22549 · 56437 · 85331 · C152
C152 = P58 · P94
P58 = 2871978723164024191549374139558544135462013900057318167591<58>
P94 = 4191401889447764303388864665063780609861896939555630361153238115797687072530286019054001194603<94>
Number: n N=12037617046723468605626924896371158078923549938485194482958855970507181664139302569091093571951782614912001181491026391397577812391492441451368958711373 ( 152 digits) SNFS difficulty: 167 digits. Divisors found: Wed Nov 28 16:26:47 2007 prp58 factor: 2871978723164024191549374139558544135462013900057318167591 Wed Nov 28 16:26:47 2007 prp94 factor: 4191401889447764303388864665063780609861896939555630361153238115797687072530286019054001194603 Wed Nov 28 16:26:47 2007 elapsed time 01:44:43 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 74.04 hours. Scaled time: 106.55 units (timescale=1.439). Factorization parameters were as follows: name: KA_2_166_3 n: 12037617046723468605626924896371158078923549938485194482958855970507181664139302569091093571951782614912001181491026391397577812391492441451368958711373 skew: 0.51 deg: 5 c5: 200 c0: 7 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3700001) Primes: RFBsize:216816, AFBsize:216921, largePrimes:7734112 encountered Relations: rels:7208772, finalFF:447988 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 73.76 hours. Total relation processing time: 0.28 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 74.04 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By JMB / GMP-ECM
4·10165+9 = 4(0)1649<166> = 19 · 1877 · 8893 · 11427643437022285783<20> · 128867463506675408316022657357<30> · C109
C109 = P39 · P71
P39 = 467807742471873906594101709631462254293<39>
P71 = 18307391061578173853638901084078048550027933080852242492899530687116597<71>
By Robert Backstrom / GGNFS, Msieve
(5·10162-23)/9 = (5)1613<162> = 916781 · 51222224362217<14> · C143
C143 = P53 · P90
P53 = 88251067479212923009474772487688631800999197025093157<53>
P90 = 134055145824349829678858500491427751894659830463832718793400933405117679808822762144065977<90>
Number: n N=11830509720080425325375598472836094119415647645200888882018736825250641 682747740385363305803723965653576539279961713632444852447675173179219389 ( 143 digits) SNFS difficulty: 162 digits. Divisors found: Wed Nov 28 01:46:13 2007 prp53 factor: 88251067479212923009474772487688631800999197025093157 Wed Nov 28 01:46:13 2007 prp90 factor: 1340551458243498296788585004914277518946598304638327187934009334051176798 08822762144065977 Wed Nov 28 01:46:13 2007 elapsed time 01:49:31 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 57.66 hours. Scaled time: 76.39 units (timescale=1.325). Factorization parameters were as follows: name: KA_5_161_3 n: 1183050972008042532537559847283609411941564764520088888201873682525064168 2747740385363305803723965653576539279961713632444852447675173179219389 skew: 0.54 deg: 5 c5: 500 c0: -23 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700000) Primes: RFBsize:216816, AFBsize:216551, largePrimes:7434136 encountered Relations: rels:6877587, finalFF:488281 Max relations in full relation-set: 28 Initial matrix: 433433 x 488281 with sparse part having weight 51570740. Pruned matrix : 409705 x 411936 with weight 36845788. Total sieving time: 57.40 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 57.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
4·10141+9 = 4(0)1409<142> = 3264208176022063<16> · 1989887208412614157281179<25> · C102
C102 = P38 · P65
P38 = 12560245906602427344287633654384461339<38>
P65 = 49029282824428429410597115467691293631272803877265436025347251103<65>
Number: 40009_141 N=615819848899179877938710121407036005167041262827473023425282772740726134822493088078335262461028606917 ( 102 digits) SNFS difficulty: 141 digits. Divisors found: r1=12560245906602427344287633654384461339 (pp38) r2=49029282824428429410597115467691293631272803877265436025347251103 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 8.54 hours. Scaled time: 17.10 units (timescale=2.003). Factorization parameters were as follows: name: 40009_141 n: 615819848899179877938710121407036005167041262827473023425282772740726134822493088078335262461028606917 m: 10000000000000000000000000000 c5: 40 c0: 9 skew: 0.74 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:99568, largePrimes:2682501 encountered Relations: rels:2667799, finalFF:280425 Max relations in full relation-set: 28 Initial matrix: 199656 x 280425 with sparse part having weight 23554506. Pruned matrix : 173823 x 174885 with weight 12458201. Total sieving time: 8.15 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.25 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 8.54 hours. --------- CPU info (if available) ----------
4·10135+9 = 4(0)1349<136> = 4432543729<10> · 350104414826237<15> · C112
C112 = P32 · P34 · P47
P32 = 50076108520827966913691944342129<32>
P34 = 4390119913201648970056724078503841<34>
P47 = 11724718391352138352586053521568560187634367997<47>
Number: 40009_135 N=25775635121078719114580793852241494535899517591251721059647750320822687095 16545156309460784839303831716228099533 ( 112 digits) SNFS difficulty: 135 digits. Divisors found: r1=50076108520827966913691944342129 (pp32) r2=4390119913201648970056724078503841 (pp34) r3=11724718391352138352586053521568560187634367997 (pp47) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.32 hours. Scaled time: 12.66 units (timescale=2.003). Factorization parameters were as follows: name: 40009_135 n: 2577563512107871911458079385224149453589951759125172105964775032082268709516 545156309460784839303831716228099533 m: 1000000000000000000000000000 c5: 4 c0: 9 skew: 1.18 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64053, largePrimes:1576550 encountered Relations: rels:1619234, finalFF:212791 Max relations in full relation-set: 28 Initial matrix: 142615 x 212791 with sparse part having weight 15765979. Pruned matrix : 120857 x 121634 with weight 7446674. Total sieving time: 6.12 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.32 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
4·10145+9 = 4(0)1449<146> = 7 · 23 · 16196138573250129419<20> · 270390616492056889150461299<27> · C98
C98 = P40 · P59
P40 = 1605173021880918410125104138533069730893<40>
P59 = 35343468163557001022907513872788192718182385124531802470493<59>
Number: 40009_145 N=56732381595848825220588411669623668386053143977130622031227669941751645504214351435599936083040249 ( 98 digits) SNFS difficulty: 145 digits. Divisors found: r1=1605173021880918410125104138533069730893 (pp40) r2=35343468163557001022907513872788192718182385124531802470493 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 11.67 hours. Scaled time: 23.46 units (timescale=2.010). Factorization parameters were as follows: name: 40009_145 n: 56732381595848825220588411669623668386053143977130622031227669941751645504214351435599936083040249 m: 100000000000000000000000000000 c5: 4 c0: 9 skew: 1.18 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1950001) Primes: RFBsize:100021, AFBsize:100078, largePrimes:2670477 encountered Relations: rels:2616911, finalFF:229148 Max relations in full relation-set: 28 Initial matrix: 200163 x 229148 with sparse part having weight 21999475. Pruned matrix : 191898 x 192962 with weight 16653697. Total sieving time: 11.09 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.42 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.67 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
4·10137+9 = 4(0)1369<138> = 47 · 210996161 · 27663076039007<14> · C115
C115 = P48 · P68
P48 = 144128879329630272184991648078450696106391196441<48>
P68 = 10116635425360137333667412655105196323996222926944429943963917753921<68>
Number: n N=1458099326443594054045323972411079454526604785894103274387642346249087765340142012336087436548886974989376608995161 ( 115 digits) SNFS difficulty: 137 digits. Divisors found: Tue Nov 27 03:12:55 2007 prp48 factor: 144128879329630272184991648078450696106391196441 Tue Nov 27 03:12:55 2007 prp68 factor: 10116635425360137333667412655105196323996222926944429943963917753921 Tue Nov 27 03:12:55 2007 elapsed time 00:26:19 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 6.20 hours. Scaled time: 8.01 units (timescale=1.293). Factorization parameters were as follows: name: KA_4_0_136_9 n: 1458099326443594054045323972411079454526604785894103274387642346249087765340142012336087436548886974989376608995161 skew: 0.94 deg: 5 c5: 25 c0: 18 m: 2000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 800000) Primes: RFBsize:114155, AFBsize:113992, largePrimes:6288087 encountered Relations: rels:5665178, finalFF:314490 Max relations in full relation-set: 28 Initial matrix: 228211 x 314490 with sparse part having weight 25079773. Pruned matrix : 185311 x 186516 with weight 11952601. Total sieving time: 6.00 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 6.20 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10146+9 = 4(0)1459<147> = 220681 · 486209806553<12> · C130
C130 = P39 · P91
P39 = 764412203911204700836054966106935734613<39>
P91 = 4876898556751362048961362794806390789746536739262210158192817562689449702712780913893826501<91>
Number: n N=3727960774017682077509562283847137837199147716353152979632032702775892834651891935886292568866270350371012428874815801170002379113 ( 130 digits) SNFS difficulty: 146 digits. Divisors found: r1=764412203911204700836054966106935734613 (pp39) r2=4876898556751362048961362794806390789746536739262210158192817562689449702712780913893826501 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.26 hours. Scaled time: 12.27 units (timescale=1.196). Factorization parameters were as follows: name: KA_4_0_145_9 n: 3727960774017682077509562283847137837199147716353152979632032702775892834651891935886292568866270350371012428874815801170002379113 type: snfs skew: 0.74 deg: 5 c5: 40 c0: 9 m: 100000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:148933, AFBsize:148405, largePrimes:5927738 encountered Relations: rels:5289921, finalFF:359602 Max relations in full relation-set: 28 Initial matrix: 297405 x 359602 with sparse part having weight 20581544. Pruned matrix : 247886 x 249437 with weight 11630633. Total sieving time: 8.79 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.21 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 10.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / PRIMO
(102153+53)/9 is prime.
By Sinkiti Sibata / GGNFS, Msieve
4·10126+9 = 4(0)1259<127> = 132 · 1093 · 157478185310284045321<21> · C102
C102 = P32 · P70
P32 = 51219530045909995936125110786993<32>
P70 = 2684708475243401264102954877320619544959453611256556529626076156285909<70>
Number: 40009_126 N=137509506412238603536864415063538192494400116628332569921903945385237808208535294351993306538906381637 ( 102 digits) SNFS difficulty: 126 digits. Divisors found: r1=51219530045909995936125110786993 (pp32) r2=2684708475243401264102954877320619544959453611256556529626076156285909 (pp70) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.80 hours. Scaled time: 5.61 units (timescale=2.003). Factorization parameters were as follows: name: 40009_126 n: 137509506412238603536864415063538192494400116628332569921903945385237808208535294351993306538906381637 m: 10000000000000000000000000 c5: 40 c0: 9 skew: 0.74 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63733, largePrimes:2383131 encountered Relations: rels:2755788, finalFF:468753 Max relations in full relation-set: 28 Initial matrix: 112898 x 468753 with sparse part having weight 45593086. Pruned matrix : 76412 x 77040 with weight 8664530. Total sieving time: 2.66 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.80 hours. --------- CPU info (if available) ----------
4·10128+9 = 4(0)1279<129> = 1993 · 51913 · 1430797079340329352472921<25> · C97
C97 = P48 · P50
P48 = 181803558476376236283955641729897094029004670893<48>
P50 = 14862646249026576411818998493115073085499220973317<50>
Number: 40009_128 N=2702081976448597109558698566520468643612755318410534419392185730772033180107476795736942719562081 ( 97 digits) SNFS difficulty: 128 digits. Divisors found: r1=181803558476376236283955641729897094029004670893 (pp48) r2=14862646249026576411818998493115073085499220973317 (pp50) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.78 hours. Scaled time: 7.55 units (timescale=1.997). Factorization parameters were as follows: name: 40009_128 n: 2702081976448597109558698566520468643612755318410534419392185730772033180107476795736942719562081 m: 20000000000000000000000000 c5: 125 c0: 9 skew: 0.59 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:64093, largePrimes:1557590 encountered Relations: rels:1625431, finalFF:234022 Max relations in full relation-set: 28 Initial matrix: 128110 x 234022 with sparse part having weight 14826718. Pruned matrix : 98552 x 99256 with weight 5347992. Total sieving time: 3.66 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.78 hours. --------- CPU info (if available) ----------
4·10129+9 = 4(0)1289<130> = 19 · 13921 · 42456366769<11> · 1961107985919825167<19> · C96
C96 = P32 · P64
P32 = 90496029963707513725625363116699<32>
P64 = 2007068038467510110982557191892561779029831762757164209225700983<64>
Number: 40009_129 N=181631689348355459790962688701929834427428033812142412776081374439007954060590809771261908015117 ( 96 digits) SNFS difficulty: 130 digits. Divisors found: r1=90496029963707513725625363116699 (pp32) r2=2007068038467510110982557191892561779029831762757164209225700983 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.35 hours. Scaled time: 8.78 units (timescale=2.016). Factorization parameters were as follows: name: 40009_129 n: 181631689348355459790962688701929834427428033812142412776081374439007954060590809771261908015117 m: 100000000000000000000000000 c5: 2 c0: 45 skew: 1.86 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64093, largePrimes:1536620 encountered Relations: rels:1564442, finalFF:196332 Max relations in full relation-set: 28 Initial matrix: 128109 x 196332 with sparse part having weight 14524685. Pruned matrix : 109268 x 109972 with weight 6465733. Total sieving time: 4.20 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.35 hours. --------- CPU info (if available) ----------
4·10133+9 = 4(0)1329<134> = 7 · 14039910954930703<17> · C117
C117 = P54 · P64
P54 = 212045331507039776360742002829387808898620546351104409<54>
P64 = 1919414992157459171757261776221197366678153779688615271444343881<64>
Number: 40009_133 N=407002988311610582561227888701054777787770001367652789611232968795378225157190752222575768698744823864819960731271329 ( 117 digits) SNFS difficulty: 133 digits. Divisors found: r1=212045331507039776360742002829387808898620546351104409 (pp54) r2=1919414992157459171757261776221197366678153779688615271444343881 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.87 hours. Scaled time: 11.73 units (timescale=1.997). Factorization parameters were as follows: name: 40009_133 n: 407002988311610582561227888701054777787770001367652789611232968795378225157190752222575768698744823864819960731271329 m: 200000000000000000000000000 c5: 125 c0: 9 skew: 0.59 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64093, largePrimes:1612445 encountered Relations: rels:1679680, finalFF:236889 Max relations in full relation-set: 28 Initial matrix: 142657 x 236889 with sparse part having weight 18018688. Pruned matrix : 114736 x 115513 with weight 7558893. Total sieving time: 5.69 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.87 hours. --------- CPU info (if available) ----------
4·10147+9 = 4(0)1469<148> = 19 · 4057594903<10> · 44338326960703<14> · 256008644002393841860575255628769<33> · C91
C91 = P39 · P53
P39 = 404664799012214157417672549706061106703<39>
P53 = 11295575051062064761509401409725052595688718501423797<53>
Mon Nov 26 07:03:06 2007 Msieve v. 1.28 Mon Nov 26 07:03:06 2007 random seeds: 806018b8 fde7d0ee Mon Nov 26 07:03:06 2007 factoring 4570921607765411105037991565791212407235592613498883380616910429784125813855670791040411291 (91 digits) Mon Nov 26 07:03:07 2007 commencing quadratic sieve (91-digit input) Mon Nov 26 07:03:07 2007 using multiplier of 3 Mon Nov 26 07:03:07 2007 using 64kb Pentium 2 sieve core Mon Nov 26 07:03:07 2007 sieve interval: 18 blocks of size 65536 Mon Nov 26 07:03:07 2007 processing polynomials in batches of 6 Mon Nov 26 07:03:07 2007 using a sieve bound of 1719869 (64508 primes) Mon Nov 26 07:03:07 2007 using large prime bound of 165107424 (27 bits) Mon Nov 26 07:03:07 2007 using double large prime bound of 619412223763104 (42-50 bits) Mon Nov 26 07:03:07 2007 using trial factoring cutoff of 50 bits Mon Nov 26 07:03:07 2007 polynomial 'A' values have 12 factors Mon Nov 26 18:54:49 2007 64777 relations (16555 full + 48222 combined from 769817 partial), need 64604 Mon Nov 26 18:54:55 2007 begin with 786372 relations Mon Nov 26 18:55:11 2007 reduce to 163091 relations in 10 passes Mon Nov 26 18:55:11 2007 attempting to read 163091 relations Mon Nov 26 18:55:23 2007 recovered 163091 relations Mon Nov 26 18:55:23 2007 recovered 145695 polynomials Mon Nov 26 18:55:45 2007 attempting to build 64777 cycles Mon Nov 26 18:55:45 2007 found 64777 cycles in 6 passes Mon Nov 26 18:55:48 2007 distribution of cycle lengths: Mon Nov 26 18:55:48 2007 length 1 : 16555 Mon Nov 26 18:55:48 2007 length 2 : 11833 Mon Nov 26 18:55:48 2007 length 3 : 11147 Mon Nov 26 18:55:48 2007 length 4 : 8679 Mon Nov 26 18:55:48 2007 length 5 : 6323 Mon Nov 26 18:55:48 2007 length 6 : 4272 Mon Nov 26 18:55:48 2007 length 7 : 2648 Mon Nov 26 18:55:48 2007 length 9+: 3320 Mon Nov 26 18:55:48 2007 largest cycle: 18 relations Mon Nov 26 18:55:49 2007 matrix is 64508 x 64777 with weight 4021806 (avg 62.09/col) Mon Nov 26 18:55:53 2007 filtering completed in 3 passes Mon Nov 26 18:55:53 2007 matrix is 61073 x 61137 with weight 3812110 (avg 62.35/col) Mon Nov 26 18:55:56 2007 saving the first 48 matrix rows for later Mon Nov 26 18:55:56 2007 matrix is 61025 x 61137 with weight 3042466 (avg 49.76/col) Mon Nov 26 18:55:56 2007 matrix includes 64 packed rows Mon Nov 26 18:55:56 2007 using block size 10922 for processor cache size 256 kB Mon Nov 26 18:55:58 2007 commencing Lanczos iteration Mon Nov 26 18:59:10 2007 lanczos halted after 966 iterations Mon Nov 26 18:59:11 2007 recovered 16 nontrivial dependencies Mon Nov 26 18:59:37 2007 prp39 factor: 404664799012214157417672549706061106703 Mon Nov 26 18:59:37 2007 prp53 factor: 11295575051062064761509401409725052595688718501423797 Mon Nov 26 18:59:37 2007 elapsed time 11:56:31
By Robert Backstrom / GGNFS, Msieve
4·10110+9 = 4(0)1099<111> = 113 · 2393 · 251419167001<12> · C94
C94 = P36 · P59
P36 = 165181848872234857617062189249532241<36>
P59 = 35618706443028798016568330143685321380313564206887456692761<59>
Number: n N=5883563784696880916434650652243177524072887965464968204171469084560963632896817817164100807401 ( 94 digits) SNFS difficulty: 110 digits. Divisors found: r1=165181848872234857617062189249532241 (pp36) r2=35618706443028798016568330143685321380313564206887456692761 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.95 hours. Scaled time: 1.13 units (timescale=1.193). Factorization parameters were as follows: name: KA_4_0_109_9 n: 5883563784696880916434650652243177524072887965464968204171469084560963632896817817164100807401 type: snfs skew: 1.18 deg: 5 c5: 4 c0: 9 m: 10000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:63951, AFBsize:64053, largePrimes:3675896 encountered Relations: rels:3189891, finalFF:232392 Max relations in full relation-set: 28 Initial matrix: 128068 x 232392 with sparse part having weight 9272010. Pruned matrix : 64275 x 64979 with weight 2367167. Total sieving time: 0.80 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.04 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.4,2.4,50000 total time: 0.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
4·10119+9 = 4(0)1189<120> = 59011 · C115
C115 = P44 · P72
P44 = 10299709529696676595537272509874674618354731<44>
P72 = 658115379703367141596436109463234164314654145602057711013672694021719049<72>
Number: n N=6778397247970717323888766501160800528714985341715951263323787090542441239768856653844198539255393062310416701970819 ( 115 digits) SNFS difficulty: 120 digits. Divisors found: r1=10299709529696676595537272509874674618354731 (pp44) r2=658115379703367141596436109463234164314654145602057711013672694021719049 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.09 hours. Scaled time: 2.49 units (timescale=1.194). Factorization parameters were as follows: name: KA_4_0_118_9 n: 6778397247970717323888766501160800528714985341715951263323787090542441239768856653844198539255393062310416701970819 type: snfs skew: 1.86 deg: 5 c5: 2 c0: 45 m: 1000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 240001) Primes: RFBsize:78498, AFBsize:78531, largePrimes:4067301 encountered Relations: rels:3437845, finalFF:191917 Max relations in full relation-set: 28 Initial matrix: 157094 x 191917 with sparse part having weight 8634183. Pruned matrix : 126308 x 127157 with weight 4290229. Total sieving time: 1.70 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Total square root time: 0.12 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.4,2.4,50000 total time: 2.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(52·10164-7)/9 = 5(7)164<165> = 29 · 7019 · 6320886474787<13> · C147
C147 = P52 · P96
P52 = 1253831070899856312688601931720582966577047750139261<52>
P96 = 358154634908081150423440098044503617839531497495445248785010282856127665013429077944232929344361<96>
Number: n N=449065409434546449622971187681183740755523201415900451788832840460807324862141335905611317885561982939064087542226259352648468932390312211175057221 ( 147 digits) SNFS difficulty: 166 digits. Divisors found: Mon Nov 26 16:37:58 2007 prp52 factor: 1253831070899856312688601931720582966577047750139261 Mon Nov 26 16:37:58 2007 prp96 factor: 358154634908081150423440098044503617839531497495445248785010282856127665013429077944232929344361 Mon Nov 26 16:37:58 2007 elapsed time 02:02:22 (Msieve 1.30) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 108.78 hours. Scaled time: 140.77 units (timescale=1.294). Factorization parameters were as follows: name: KA_5_7_164 n: 449065409434546449622971187681183740755523201415900451788832840460807324862141335905611317885561982939064087542226259352648468932390312211175057221 skew: 1.06 deg: 5 c5: 26 c0: -35 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3600001) Primes: RFBsize:230209, AFBsize:230477, largePrimes:7720364 encountered Relations: rels:7181991, finalFF:477241 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 108.43 hours. Total relation processing time: 0.36 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 108.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10131+9 = 4(0)1309<132> = 619 · 194167 · 14543527 · C117
C117 = P44 · P73
P44 = 80094272947449979071432758202536808045156517<44>
P73 = 2857082077051308573674020837361541499660528541802562865615658481450429087<73>
Number: n N=228835911712614820963407007506081825552432657431830205371716856226255647416792245683256227303671261195144781724409979 ( 117 digits) SNFS difficulty: 131 digits. Divisors found: r1=80094272947449979071432758202536808045156517 (pp44) r2=2857082077051308573674020837361541499660528541802562865615658481450429087 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.68 hours. Scaled time: 4.40 units (timescale=1.197). Factorization parameters were as follows: name: KA_4_0_130_9 n: 228835911712614820963407007506081825552432657431830205371716856226255647416792245683256227303671261195144781724409979 type: snfs skew: 0.74 deg: 5 c5: 40 c0: 9 m: 100000000000000000000000000 rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 460001) Primes: RFBsize:114155, AFBsize:113572, largePrimes:4179030 encountered Relations: rels:3531412, finalFF:259869 Max relations in full relation-set: 28 Initial matrix: 227794 x 259869 with sparse part having weight 7780095. Pruned matrix : 168810 x 170012 with weight 4136104. Total sieving time: 3.28 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.26 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.2,2.2,50000 total time: 3.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
4·10117+9 = 4(0)1169<118> = 163890451 · 119008224119929<15> · C96
C96 = P34 · P63
P34 = 1049848161996414833607686052033851<34>
P63 = 195345258444219449654150537877637812726731604913236518703820721<63>
Number: n N=205082860532378423488589379837991228596967004928112301824211634341274075328421533654926527226571 ( 96 digits) SNFS difficulty: 117 digits. Divisors found: r1=1049848161996414833607686052033851 (pp34) r2=195345258444219449654150537877637812726731604913236518703820721 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.75 hours. Scaled time: 2.09 units (timescale=1.197). Factorization parameters were as follows: name: KA_4_0_116_9 n: 205082860532378423488589379837991228596967004928112301824211634341274075328421533654926527226571 type: snfs skew: 0.94 deg: 5 c5: 25 c0: 18 m: 200000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 220001) Primes: RFBsize:78498, AFBsize:78241, largePrimes:3946046 encountered Relations: rels:3317892, finalFF:182434 Max relations in full relation-set: 28 Initial matrix: 156803 x 182434 with sparse part having weight 7590913. Pruned matrix : 131548 x 132396 with weight 4205854. Total sieving time: 1.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.18 hours. Total square root time: 0.11 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.4,2.4,50000 total time: 1.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS
4·10118+9 = 4(0)1179<119> = C119
C119 = P52 · P68
P52 = 3728574790867178284745181738866780429302431068160529<52>
P68 = 10727959674558907354142285722781332734722136495462711094331511744121<68>
Number: 40009_118 N=40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 119 digits) SNFS difficulty: 120 digits. Divisors found: r1=3728574790867178284745181738866780429302431068160529 (pp52) r2=10727959674558907354142285722781332734722136495462711094331511744121 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.90 hours. Scaled time: 1.93 units (timescale=2.144). Factorization parameters were as follows: n: 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000 c5: 1 c0: 225 skew: 2.95 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49111, largePrimes:1886445 encountered Relations: rels:1942478, finalFF:199895 Max relations in full relation-set: 28 Initial matrix: 98273 x 199895 with sparse part having weight 17093793. Pruned matrix : 77103 x 77658 with weight 4340439. Total sieving time: 0.85 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407675) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405123) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.08 BogoMIPS).
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(4·10164-7)/3 = 1(3)1631<165> = 983 · 6424123 · 8002014907<10> · C145
C145 = P41 · P44 · P61
P41 = 38845079894049413226636666173926767146741<41>
P44 = 37241278615967782300259863150917251444291063<44>
P61 = 1823943632731313508599180109626448102079347834135801509470639<61>
Number: n N=67925993006367260173084306432034998810393910129667030593595794518859702769290352728359242093103768599257 ( 104 digits) Divisors found: Mon Nov 26 00:08:03 2007 prp44 factor: 37241278615967782300259863150917251444291063 Mon Nov 26 00:08:03 2007 prp61 factor: 1823943632731313508599180109626448102079347834135801509470639 Mon Nov 26 00:08:03 2007 elapsed time 01:07:26 (Msieve 1.30) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.97 hours. Scaled time: 22.69 units (timescale=1.196). Factorization parameters were as follows: name: KA_1_3_163_1 n: 67925993006367260173084306432034998810393910129667030593595794518859702769290352728359242093103768599257 skew: 14548.83 # norm 4.31e+14 c5: 15540 c4: 662881441 c3: -30284510564936 c2: -70420841882984262 c1: 1380105811745476751310 c0: 213375504826872901606500 # alpha -5.63 Y1: 56183257309 Y0: -84745088989414396159 # Murphy_E 1.94e-09 # M 35605800172212779601640616997983630603863264454095218451097658761114576612953147801228187028086397273557 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1200000) Primes: RFBsize:169511, AFBsize:169993, largePrimes:4092500 encountered Relations: rels:4001895, finalFF:381407 Max relations in full relation-set: 28 Initial matrix: 339591 x 381407 with sparse part having weight 23210863. Pruned matrix : 297455 x 299216 with weight 14265146. Total sieving time: 18.76 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 18.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / PRIMO
(22·102159-31)/9 is prime.
By matsui / GMP-ECM
(5·10187-23)/9 = (5)1863<187> = 3 · C187
C187 = P34 · C154
P34 = 1249569676018218532056891295863517<34>
C154 = [1481991670726852801036337564124989580909663768841067210637083024250974479404992726846367777814579781927851301822010278319654383652691909116064846052888903<154>]
The factor table of 400...009 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By matsui / GMP-ECM
(2·10189+61)/9 = (2)1889<189> = 31 · 107 · C185
C185 = P36 · C149
P36 = 927349548463379812942637190276565777<36>
C149 = [72243462018069324109887983093635000589160560432323063168326829250562665832911989665414796383191130798805708121654081515508917870686847094978760612881<149>]
By Sinkiti Sibata / GGNFS
4·10159-9 = 3(9)1581<160> = 13 · 199 · 2130173 · 64929089 · 24131072597<11> · 952589489681209<15> · C117
C117 = P44 · P73
P44 = 74079493501806378527450601403663790436099271<44>
P73 = 6564912794659200412500871081575072082513907943647734630671406825808638043<73>
Number: 39991_159 N=486325414711881789179913696860213450928824568538724820830782157801328627106326427776063177946853247455134006055166653 ( 117 digits) SNFS difficulty: 160 digits. Divisors found: r1=74079493501806378527450601403663790436099271 (pp44) r2=6564912794659200412500871081575072082513907943647734630671406825808638043 (pp73) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 77.01 hours. Scaled time: 51.98 units (timescale=0.675). Factorization parameters were as follows: name: 39991_159 n: 486325414711881789179913696860213450928824568538724820830782157801328627106326427776063177946853247455134006055166653 m: 100000000000000000000000000000000 c5: 2 c0: -45 skew: 1.86 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:283407, largePrimes:5742291 encountered Relations: rels:5806571, finalFF:681486 Max relations in full relation-set: 28 Initial matrix: 566618 x 681486 with sparse part having weight 45436461. Pruned matrix : 483086 x 485983 with weight 31035378. Total sieving time: 66.61 hours. Total relation processing time: 0.31 hours. Matrix solve time: 9.87 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 77.01 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(32·10162-23)/9 = 3(5)1613<163> = 79 · 353 · 10831 · 2304545063<10> · C145
C145 = P59 · P87
P59 = 11418294572176870102030727526262175468766886077048774464453<59>
P87 = 447353324129822631187220179321823753744991839539223628912706731724334093004388243879691<87>
Number: n N=5108012032756833801090420940354909442473568947558897114792618109230650012286452899825548147198860702329357055515312908368542021336328083488124023 ( 145 digits) SNFS difficulty: 163 digits. Divisors found: Sat Nov 24 02:02:22 2007 prp59 factor: 11418294572176870102030727526262175468766886077048774464453 Sat Nov 24 02:02:22 2007 prp87 factor: 447353324129822631187220179321823753744991839539223628912706731724334093004388243879691 Sat Nov 24 02:02:22 2007 elapsed time 01:45:11 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.69 hours. Scaled time: 59.13 units (timescale=1.323). Factorization parameters were as follows: name: KA_3_5_161_3 n: 5108012032756833801090420940354909442473568947558897114792618109230650012286452899825548147198860702329357055515312908368542021336328083488124023 skew: 0.75 deg: 5 c5: 100 c0: -23 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100000) Primes: RFBsize:216816, AFBsize:217116, largePrimes:7231197 encountered Relations: rels:6696431, finalFF:498681 Max relations in full relation-set: 28 Initial matrix: 433996 x 498681 with sparse part having weight 44598884. Pruned matrix : 388932 x 391165 with weight 29632951. Total sieving time: 44.45 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 44.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
101749+1 is divisible by 1107787169378395599401257233239538397<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
(5·10161-41)/9 = (5)1601<161> = 32 · 68196269 · 15233617008611<14> · C139
C139 = P50 · P90
P50 = 16440538531421432078827696011643851667074412930711<50>
P90 = 361414271751827151353177663968973256352972286750998069364546030733668065300904591141591911<90>
Number: n N=5941845260541530719336256541742219880917628765154081949520232045063493647492461579811333302877434609513809414777144042637306700263481078721 ( 139 digits) SNFS difficulty: 161 digits. Divisors found: Thu Nov 22 18:28:14 2007 prp50 factor: 16440538531421432078827696011643851667074412930711 Thu Nov 22 18:28:14 2007 prp90 factor: 361414271751827151353177663968973256352972286750998069364546030733668065300904591141591911 Thu Nov 22 18:28:14 2007 elapsed time 02:27:05 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.96 hours. Scaled time: 58.56 units (timescale=1.196). Factorization parameters were as follows: name: KA_5_160_1 n: 5941845260541530719336256541742219880917628765154081949520232045063493647492461579811333302877434609513809414777144042637306700263481078721 type: snfs skew: 0.96 deg: 5 c5: 50 c0: -41 m: 100000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100000) Primes: RFBsize:250150, AFBsize:250567, largePrimes:7178290 encountered Relations: rels:6709445, finalFF:607497 Max relations in full relation-set: 28 Initial matrix: 500782 x 607497 with sparse part having weight 34954359. Pruned matrix : 408203 x 410770 with weight 20239156. Total sieving time: 48.70 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 48.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS
8·10181-7 = 7(9)1803<182> = C182
C182 = P48 · P135
P48 = 216148982655435929699114314027715477553384103519<48>
P135 = 370115089218478356758654535607364677329573694364240237802979699121028544430300307143621280593966654455367748978194923424449434078433447<135>
Number: 79993_181 N=79999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 182 digits) SNFS difficulty: 182 digits. Divisors found: r1=216148982655435929699114314027715477553384103519 (pp48) r2=370115089218478356758654535607364677329573694364240237802979699121028544430300307143621280593966654455367748978194923424449434078433447 (pp135) Version: GGNFS-0.77.1-20050930-nocona Total time: 248.23 hours. Scaled time: 529.98 units (timescale=2.135). Factorization parameters were as follows: n: 79999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 2000000000000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 9100001) Primes: RFBsize:664579, AFBsize:665480, largePrimes:11067378 encountered Relations: rels:11387297, finalFF:1536217 Max relations in full relation-set: 28 Initial matrix: 1330124 x 1536217 with sparse part having weight 93212688. Pruned matrix : 1143509 x 1150223 with weight 64319333. Total sieving time: 238.30 hours. Total relation processing time: 0.22 hours. Matrix solve time: 9.59 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 248.23 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Yousuke Koide
101079+1 is divisible by 12872791513686398145408033283561<32>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
2·10162+9 = 2(0)1619<163> = 11 · 113 · 2081 · 2657 · C153
C153 = P47 · P107
P47 = 27122851242050836906551105038309233622985323233<47>
P107 = 10729015936115722072912979992395528159519097329221924474233456905349010539193520511048503243582233656097483<107>
Number: n N=291001503208859535061564265651302436861094295924708253361979542649323701281159624158760359646784825637743314939558512723565886104522114020560808112722539 ( 153 digits) SNFS difficulty: 162 digits. Divisors found: r1=27122851242050836906551105038309233622985323233 (pp47) r2=10729015936115722072912979992395528159519097329221924474233456905349010539193520511048503243582233656097483 (pp107) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 36.87 hours. Scaled time: 48.12 units (timescale=1.305). Factorization parameters were as follows: name: KA_2_0_161_9 n: 291001503208859535061564265651302436861094295924708253361979542649323701281159624158760359646784825637743314939558512723565886104522114020560808112722539 skew: 1.08 deg: 5 c5: 25 c0: 36 m: 200000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1550001) Primes: RFBsize:230209, AFBsize:230472, largePrimes:7089581 encountered Relations: rels:6599696, finalFF:530658 Max relations in full relation-set: 28 Initial matrix: 460745 x 530658 with sparse part having weight 35163360. Pruned matrix : 401897 x 404264 with weight 22662170. Total sieving time: 33.35 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.15 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 36.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
4·10151-9 = 3(9)1501<152> = 31 · 5519 · 371213 · 1158569 · 54827975693<11> · 85431185431<11> · C114
C114 = P48 · P66
P48 = 683451293547552766493247508223331705485919834283<48>
P66 = 169811308556460662649467994337463527761352643619555931552038754243<66>
Number: 39991_151 N=116057758491915655173344214309582763419377248961382375191490426117901521122776418083702863212981536767552323112769 ( 114 digits) SNFS difficulty: 151 digits. Divisors found: r1=683451293547552766493247508223331705485919834283 (pp48) r2=169811308556460662649467994337463527761352643619555931552038754243 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 27.46 hours. Scaled time: 18.54 units (timescale=0.675). Factorization parameters were as follows: name: 39991_151 n: 116057758491915655173344214309582763419377248961382375191490426117901521122776418083702863212981536767552323112769 m: 1000000000000000000000000000000 c5: 40 c0: -9 skew: 0.74 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175758, largePrimes:5240539 encountered Relations: rels:5083135, finalFF:433587 Max relations in full relation-set: 28 Initial matrix: 352127 x 433587 with sparse part having weight 34832429. Pruned matrix : 302527 x 304351 with weight 21729699. Total sieving time: 23.97 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.16 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 27.46 hours. --------- CPU info (if available) ----------
4·10185+3 = 4(0)1843<186> = 59 · C184
C184 = P68 · P117
P68 = 11020580464970018963281153740355391062570795450373519356122648057289<68>
P117 = 615181844413636911986288389296689173200938369983514842349545281535581167010170014581500501046126500380108078763742353<117>
Number: 40003_185 N=6779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661017 ( 184 digits) SNFS difficulty: 185 digits. Divisors found: r1=11020580464970018963281153740355391062570795450373519356122648057289 (pp68) r2=615181844413636911986288389296689173200938369983514842349545281535581167010170014581500501046126500380108078763742353 (pp117) Version: GGNFS-0.77.1-20060513-k8 Total time: 676.35 hours. Scaled time: 1350.68 units (timescale=1.997). Factorization parameters were as follows: name: 40003_185 n: 6779661016949152542372881355932203389830508474576271186440677966101694915254237288135593220338983050847457627118644067796610169491525423728813559322033898305084745762711864406779661017 m: 10000000000000000000000000000000000000 c5: 4 c0: 3 skew: 0.94 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11400001) Primes: RFBsize:501962, AFBsize:502056, largePrimes:6651477 encountered Relations: rels:7134496, finalFF:1151991 Max relations in full relation-set: 28 Initial matrix: 1004085 x 1151991 with sparse part having weight 85952580. Pruned matrix : 882609 x 887693 with weight 67545486. Total sieving time: 663.68 hours. Total relation processing time: 0.62 hours. Matrix solve time: 11.72 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 676.35 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
4·10161-9 = 3(9)1601<162> = 53 · C160
C160 = P41 · P120
P41 = 21806825430466113390135407080568754712841<41>
P120 = 346092091000860392504443010316442896408178789678554842890548184933093473061870388053493738110298874615414662714544919267<120>
Number: n N=7547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: Tue Nov 20 21:05:11 2007 prp41 factor: 21806825430466113390135407080568754712841 Tue Nov 20 21:05:11 2007 prp120 factor: 346092091000860392504443010316442896408178789678554842890548184933093473061870388053493738110298874615414662714544919267 Tue Nov 20 21:05:11 2007 elapsed time 01:33:02 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.27 hours. Scaled time: 42.73 units (timescale=1.324). Factorization parameters were as follows: name: KA_3_9_160_1 n: 7547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547 skew: 0.74 deg: 5 c5: 40 c0: -9 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1600000) Primes: RFBsize:216816, AFBsize:216336, largePrimes:7059026 encountered Relations: rels:6542964, finalFF:512046 Max relations in full relation-set: 28 Initial matrix: 433219 x 512046 with sparse part having weight 41365043. Pruned matrix : 370773 x 373003 with weight 24932021. Total sieving time: 32.05 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 32.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By matsui / GMP-ECM
(2·10186-17)/3 = (6)1851<186> = 577 · C184
C184 = P35 · C149
P35 = 56045655546039900196398563598407527<35>
C149 = [20615362435591879186624607699826768353984778680961983009624827499187120028491903918962048793936194257434728540858949740169821440639266289814167775059<149>]
By JMB / GMP-ECM
9·10200+7 = 9(0)1997<201> = 16363 · 1185871 · 11041256557141927631<20> · C172
C172 = P40 · P133
P40 = 1129520353150946514870638937980393951891<40>
P133 = 3719029026601584878459985815308542356310526920113885973087730339593263375620616238307141131837874615521876099561714963205165591240279<133>
By Robert Backstrom / GGNFS, GMP-ECM, Msieve
4·10147-9 = 3(9)1461<148> = 13 · 89 · 6167403400563579766175239<25> · C120
C120 = P43 · P77
P43 = 9859117276170965916528849893551257536137453<43>
P77 = 56857301497661450675385390309929156870609092238968154609890852061865551467889<77>
Number: n N=560562803472055342614818809179881640621418269258805647401713026165934061851143305328751575837660941339806278907419746717 ( 120 digits) SNFS difficulty: 147 digits. Divisors found: r1=9859117276170965916528849893551257536137453 (pp43) r2=56857301497661450675385390309929156870609092238968154609890852061865551467889 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.03 hours. Scaled time: 19.11 units (timescale=1.192). Factorization parameters were as follows: name: KA_3_9_146_1 n: 560562803472055342614818809179881640621418269258805647401713026165934061851143305328751575837660941339806278907419746717 type: snfs skew: 0.94 deg: 5 c5: 25 c0: -18 m: 200000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:148933, AFBsize:148625, largePrimes:6504113 encountered Relations: rels:5821520, finalFF:335213 Max relations in full relation-set: 28 Initial matrix: 297622 x 335213 with sparse part having weight 24954157. Pruned matrix : 280576 x 282128 with weight 18024050. Total sieving time: 13.38 hours. Total relation processing time: 0.26 hours. Matrix solve time: 2.30 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 16.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10158+9 = 2(0)1579<159> = 11 · 41 · 97 · 4773739 · 7061641 · C141
C141 = P34 · P107
P34 = 3675342336556885802003207981173427<34>
P107 = 36899426515186775228625677333483856599631170454625200580800988523050776047130897857948345990003506238466139<107>
(14·10166-41)/9 = 1(5)1651<167> = 17 · 2011 · C162
C162 = P32 · P40 · P45 · P47
P32 = 35081134283933574559653611257097<32>
P40 = 2728630078335383137189177941861782066861<40>
P45 = 126411714129835466690844912764467931579339687<45>
P47 = 37602690897693034145575177417896418231525935887<47>
Number: n N=12970326457624057370940093292765884024967210652070161540053382611780691229396033766335056809054710948583510049684525069811157738709 ( 131 digits) SNFS difficulty: 167 digits. Divisors found: Mon Nov 19 08:29:02 2007 prp40 factor: 2728630078335383137189177941861782066861 Mon Nov 19 08:29:02 2007 prp45 factor: 126411714129835466690844912764467931579339687 Mon Nov 19 08:29:02 2007 prp47 factor: 37602690897693034145575177417896418231525935887 Mon Nov 19 08:29:02 2007 elapsed time 03:38:46 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 212.15 hours. Scaled time: 254.37 units (timescale=1.199). Factorization parameters were as follows: name: KA_1_5_165_1 n: 12970326457624057370940093292765884024967210652070161540053382611780691229396033766335056809054710948583510049684525069811157738709 # n: 455013764166366032572485317680859846010341812839838405111754630577574971642892197488974041464754308817841739712626306945785109999577487218988374398325549347867773 type: snfs skew: 0.78 deg: 5 c5: 140 c0: -41 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3400001) Primes: RFBsize:250150, AFBsize:250097, largePrimes:7703762 encountered Relations: rels:7182168, finalFF:528137 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 211.32 hours. Total relation processing time: 0.83 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.6,2.6,100000 total time: 212.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS
2·10153+9 = 2(0)1529<154> = 7 · 23 · 41 · 83 · 3482753797249<13> · 36236576853259787647<20> · C116
C116 = P52 · P64
P52 = 2959271181514799226974060568985564239580538542286449<52>
P64 = 9774340558371489481440431760860958181256487808303078991400909109<64>
Number: 20009_153 N=28924924332700020078102154409371603648546043054508471127824139389385626667861861974281623089899076036621178091363941 ( 116 digits) SNFS difficulty: 155 digits. Divisors found: r1=2959271181514799226974060568985564239580538542286449 (pp52) r2=9774340558371489481440431760860958181256487808303078991400909109 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 13.75 hours. Scaled time: 29.35 units (timescale=2.134). Factorization parameters were as follows: n: 28924924332700020078102154409371603648546043054508471127824139389385626667861861974281623089899076036621178091363941 m: 10000000000000000000000000000000 c5: 1 c0: 450 skew: 3.39 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2300001) Primes: RFBsize:216816, AFBsize:216826, largePrimes:5458908 encountered Relations: rels:5374729, finalFF:530472 Max relations in full relation-set: 28 Initial matrix: 433706 x 530472 with sparse part having weight 36351069. Pruned matrix : 358650 x 360882 with weight 22220315. Total sieving time: 13.03 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.61 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 13.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
2·10161+9 = 2(0)1609<162> = 89 · C160
C160 = P74 · P86
P74 = 34658477847360659014058595102069167012530568460007500101714626375633760287<74>
P86 = 64838133432541527475079803698431770081537553848180889286332859833318730119895305215663<86>
Number: n N=2247191011235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=34658477847360659014058595102069167012530568460007500101714626375633760287 (pp74) r2=64838133432541527475079803698431770081537553848180889286332859833318730119895305215663 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.07 hours. Scaled time: 58.35 units (timescale=1.324). Factorization parameters were as follows: name: KA_2_0_160_9 n: 2247191011235955056179775280898876404494382022471910112359550561797752808988764044943820224719101123595505617977528089887640449438202247191011235955056179775281 skew: 0.85 deg: 5 c5: 20 c0: 9 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216651, largePrimes:7001649 encountered Relations: rels:6463003, finalFF:491333 Max relations in full relation-set: 48 Initial matrix: 433534 x 491333 with sparse part having weight 39251584. Pruned matrix : 388274 x 390505 with weight 25421104. Total sieving time: 39.34 hours. Total relation processing time: 0.29 hours. Matrix solve time: 4.37 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 44.07 hours. --------- CPU info (if available) ----------
2·10154+9 = 2(0)1539<155> = 11 · 139 · 123307 · C147
C147 = P57 · P90
P57 = 830079215274331883817516423026643554541585944243418276953<57>
P90 = 127795405115706014236248092068937621366157768320616692605819506501989361071666161673603051<90>
Number: n N=106080309594110586696617947039119018304385493129409072262824490186120714311071268289763648455730854269029413911116146625540532880538725457703783603 ( 147 digits) SNFS difficulty: 155 digits. Divisors found: Sun Nov 18 21:03:15 2007 prp57 factor: 830079215274331883817516423026643554541585944243418276953 Sun Nov 18 21:03:15 2007 prp90 factor: 127795405115706014236248092068937621366157768320616692605819506501989361071666161673603051 Sun Nov 18 21:03:15 2007 elapsed time 00:52:25 (Msieve 1.29) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 17.88 hours. Scaled time: 23.42 units (timescale=1.310). Factorization parameters were as follows: name: KA_2_0_153_9 n: 106080309594110586696617947039119018304385493129409072262824490186120714311071268289763648455730854269029413911116146625540532880538725457703783603 skew: 2.14 deg: 5 c5: 1 c0: 45 m: 10000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 750000) Primes: RFBsize:203362, AFBsize:203572, largePrimes:6377392 encountered Relations: rels:5863802, finalFF:471912 Max relations in full relation-set: 28 Initial matrix: 406998 x 471912 with sparse part having weight 26578410. Pruned matrix : 347290 x 349388 with weight 15627841. Total sieving time: 17.71 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 17.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
4·10141-9 = 3(9)1401<142> = 13 · 191 · 20359 · 195319 · 12420177806754397<17> · C113
C113 = P36 · P78
P36 = 163736308730108767707475962968700893<36>
P78 = 199209262950089812594969876563503547961581096151892699792833892052250192212997<78>
Number: 39991_141 N=32617789380293323671116887710598264533701832802595148777896193264079821368295646222589206276954325334265840106321 ( 113 digits) SNFS difficulty: 142 digits. Divisors found: r1=163736308730108767707475962968700893 (pp36) r2=199209262950089812594969876563503547961581096151892699792833892052250192212997 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.44 hours. Scaled time: 11.55 units (timescale=2.123). Factorization parameters were as follows: n: 32617789380293323671116887710598264533701832802595148777896193264079821368295646222589206276954325334265840106321 m: 20000000000000000000000000000 c5: 5 c0: -36 skew: 1.48 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1100001) Primes: RFBsize:114155, AFBsize:113572, largePrimes:3187730 encountered Relations: rels:3200509, finalFF:325241 Max relations in full relation-set: 28 Initial matrix: 227794 x 325241 with sparse part having weight 26244758. Pruned matrix : 187279 x 188481 with weight 12048136. Total sieving time: 5.27 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS, Msieve
2·10148+9 = 2(0)1479<149> = 11 · 17 · 41 · 89819 · C140
C140 = P33 · P45 · P63
P33 = 609146353706828448793174289718131<33>
P45 = 150327116082360350342458857196514705709372161<45>
P63 = 317159220689745360562169219217954642762236170568071499368229363<63>
Number: 20009_148 N=29042655068025427477641936744710994528214215510409132260749261322213369262621494629040875043696308199191832070407911191359581261140499285033 ( 140 digits) SNFS difficulty: 148 digits. Divisors found: r1=609146353706828448793174289718131 (pp33) r2=150327116082360350342458857196514705709372161 (pp45) r3=317159220689745360562169219217954642762236170568071499368229363 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 20.82 hours. Scaled time: 14.06 units (timescale=0.675). Factorization parameters were as follows: name: 20009_148 n: 29042655068025427477641936744710994528214215510409132260749261322213369262621494629040875043696308199191832070407911191359581261140499285033 m: 200000000000000000000000000000 c5: 125 c0: 18 skew: 0.68 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2650001) Primes: RFBsize:114155, AFBsize:113727, largePrimes:2759008 encountered Relations: rels:2717014, finalFF:256815 Max relations in full relation-set: 28 Initial matrix: 227948 x 256815 with sparse part having weight 24576686. Pruned matrix : 218819 x 220022 with weight 19196213. Total sieving time: 19.03 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.53 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 20.82 hours. --------- CPU info (if available) ----------
4·10117-9 = 3(9)1161<118> = 13 · 9973 · 214363 · 581922332049027043<18> · C90
C90 = P42 · P48
P42 = 531991308851942132115845825480210110671439<42>
P48 = 464912723832181683082293085018597257414298049209<48>
Sat Nov 17 15:56:48 2007 Msieve v. 1.28 Sat Nov 17 15:56:48 2007 random seeds: 515dd9e0 50f90094 Sat Nov 17 15:56:48 2007 factoring 247329528453403843265964841503467900787215031507298040842564825634927508129438170852841751 (90 digits) Sat Nov 17 15:56:49 2007 commencing quadratic sieve (89-digit input) Sat Nov 17 15:56:49 2007 using multiplier of 1 Sat Nov 17 15:56:49 2007 using 64kb Pentium 2 sieve core Sat Nov 17 15:56:49 2007 sieve interval: 18 blocks of size 65536 Sat Nov 17 15:56:49 2007 processing polynomials in batches of 6 Sat Nov 17 15:56:49 2007 using a sieve bound of 1575281 (59464 primes) Sat Nov 17 15:56:49 2007 using large prime bound of 126022480 (26 bits) Sat Nov 17 15:56:49 2007 using double large prime bound of 380896014563600 (42-49 bits) Sat Nov 17 15:56:49 2007 using trial factoring cutoff of 49 bits Sat Nov 17 15:56:49 2007 polynomial 'A' values have 11 factors Sat Nov 17 23:25:48 2007 59782 relations (15877 full + 43905 combined from 635165 partial), need 59560 Sat Nov 17 23:25:52 2007 begin with 651042 relations Sat Nov 17 23:25:54 2007 reduce to 146575 relations in 9 passes Sat Nov 17 23:25:54 2007 attempting to read 146575 relations Sat Nov 17 23:26:02 2007 recovered 146575 relations Sat Nov 17 23:26:02 2007 recovered 123038 polynomials Sat Nov 17 23:26:14 2007 attempting to build 59782 cycles Sat Nov 17 23:26:14 2007 found 59782 cycles in 5 passes Sat Nov 17 23:26:16 2007 distribution of cycle lengths: Sat Nov 17 23:26:16 2007 length 1 : 15877 Sat Nov 17 23:26:16 2007 length 2 : 11295 Sat Nov 17 23:26:17 2007 length 3 : 10499 Sat Nov 17 23:26:17 2007 length 4 : 7977 Sat Nov 17 23:26:17 2007 length 5 : 5541 Sat Nov 17 23:26:17 2007 length 6 : 3771 Sat Nov 17 23:26:17 2007 length 7 : 2219 Sat Nov 17 23:26:17 2007 length 9+: 2603 Sat Nov 17 23:26:17 2007 largest cycle: 19 relations Sat Nov 17 23:26:18 2007 matrix is 59464 x 59782 with weight 3654625 (avg 61.13/col) Sat Nov 17 23:26:21 2007 filtering completed in 3 passes Sat Nov 17 23:26:21 2007 matrix is 55555 x 55619 with weight 3417406 (avg 61.44/col) Sat Nov 17 23:26:23 2007 saving the first 48 matrix rows for later Sat Nov 17 23:26:23 2007 matrix is 55507 x 55619 with weight 2798607 (avg 50.32/col) Sat Nov 17 23:26:23 2007 matrix includes 64 packed rows Sat Nov 17 23:26:23 2007 using block size 10922 for processor cache size 256 kB Sat Nov 17 23:26:26 2007 commencing Lanczos iteration Sat Nov 17 23:29:02 2007 lanczos halted after 879 iterations Sat Nov 17 23:29:03 2007 recovered 17 nontrivial dependencies Sat Nov 17 23:29:33 2007 prp42 factor: 531991308851942132115845825480210110671439 Sat Nov 17 23:29:33 2007 prp48 factor: 464912723832181683082293085018597257414298049209 Sat Nov 17 23:29:33 2007 elapsed time 07:32:45
4·10105-9 = 3(9)1041<106> = 13 · 4049 · 230177683 · C93
C93 = P34 · P59
P34 = 5089468623085822110371775885182959<34>
P59 = 64868403116863325702101470038639463824085108816719708634719<59>
Number: 39991_105 N=330145702292958441592211172106378607837842790909434221456259170903001863735703019123414553521 ( 93 digits) SNFS difficulty: 105 digits. Divisors found: r1=5089468623085822110371775885182959 (pp34) r2=64868403116863325702101470038639463824085108816719708634719 (pp59) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.24 hours. Scaled time: 0.84 units (timescale=0.675). Factorization parameters were as follows: name: 39991_105 n: 330145702292958441592211172106378607837842790909434221456259170903001863735703019123414553521 m: 1000000000000000000000 c5: 4 c0: -9 skew: 1.18 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:64053, largePrimes:2165320 encountered Relations: rels:2447143, finalFF:427386 Max relations in full relation-set: 28 Initial matrix: 113215 x 427386 with sparse part having weight 29087007. Pruned matrix : 55181 x 55811 with weight 3194505. Total sieving time: 1.11 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.24 hours. --------- CPU info (if available) ----------
4·10123-9 = 3(9)1221<124> = 13 · 15601 · 14877774143167099699747<23> · C97
C97 = P48 · P49
P48 = 470762130228440485791543763322013994572073144603<48>
P49 = 2815948587112211304623095233966680241651606098227<49>
Number: 39991_123 N=1325641955482711805978372001349693249395454462809784497501309555808926827572054827616211192918881 ( 97 digits) SNFS difficulty: 123 digits. Divisors found: r1=470762130228440485791543763322013994572073144603 (pp48) r2=2815948587112211304623095233966680241651606098227 (pp49) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.60 hours. Scaled time: 1.75 units (timescale=0.675). Factorization parameters were as follows: name: 39991_123 n: 1325641955482711805978372001349693249395454462809784497501309555808926827572054827616211192918881 m: 2000000000000000000000000 c5: 125 c0: -9 skew: 0.59 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:64093, largePrimes:2072753 encountered Relations: rels:2079058, finalFF:159271 Max relations in full relation-set: 28 Initial matrix: 113257 x 159271 with sparse part having weight 13679756. Pruned matrix : 100109 x 100739 with weight 6360731. Total sieving time: 2.31 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.60 hours. --------- CPU info (if available) ----------
By Yousuke Koide
(101683-1)/9 is divisible by 2597072697640403933361917807092159369<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
4·10109-9 = 3(9)1081<110> = 53 · C108
C108 = P49 · P59
P49 = 7969641884935205730310904257533114365615152149547<49>
P59 = 94698982969196667127271104615127284069462500623071914214001<59>
Number: n N=754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547 ( 108 digits) SNFS difficulty: 110 digits. Divisors found: r1=7969641884935205730310904257533114365615152149547 (pp49) r2=94698982969196667127271104615127284069462500623071914214001 (pp59) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.96 hours. Scaled time: 1.15 units (timescale=1.192). Factorization parameters were as follows: name: KA_3_9_108_1 n: 754716981132075471698113207547169811320754716981132075471698113207547169811320754716981132075471698113207547 type: snfs skew: 1.86 deg: 5 c5: 2 c0: -45 m: 10000000000000000000000 rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 160001) Primes: RFBsize:63951, AFBsize:64093, largePrimes:3342545 encountered Relations: rels:2790483, finalFF:160806 Max relations in full relation-set: 28 Initial matrix: 128109 x 160806 with sparse part having weight 5905277. Pruned matrix : 96382 x 97086 with weight 2618908. Total sieving time: 0.81 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.4,2.4,50000 total time: 0.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
4·10121-9 = 3(9)1201<122> = 31 · C121
C121 = P48 · P73
P48 = 207550763771542349075740138245104441965655783933<48>
P73 = 6216901143594248208194826668257714111385850652570251799400319368993225117<73>
Number: n N=1290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161 ( 121 digits) SNFS difficulty: 121 digits. Divisors found: r1=207550763771542349075740138245104441965655783933 (pp48) r2=6216901143594248208194826668257714111385850652570251799400319368993225117 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.55 hours. Scaled time: 2.05 units (timescale=1.318). Factorization parameters were as follows: name: KA_3_9_120_1 n: 1290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161290322580645161 skew: 0.74 deg: 5 c5: 40 c0: -9 m: 1000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:63951, AFBsize:63733, largePrimes:4298910 encountered Relations: rels:3675690, finalFF:181805 Max relations in full relation-set: 48 Initial matrix: 127751 x 181805 with sparse part having weight 12806423. Pruned matrix : 102487 x 103189 with weight 4549576. Total sieving time: 1.36 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.10 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.55 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
(4·10195-1)/3 = 1(3)195<196> = 919 · 2815092622300365139319<22> · 1616772208578912506305058572743036521<37> · C135
C135 = P49 · P86
P49 = 9750955237361634372618257316599424244951087381213<49>
P86 = 32691476708214933835165765723715218661077209696240370449876399876944717064876363130561<86>
Number: 13333_195 N=318773126025054291670957797550571273589430793561728712537650216394184484148701462662385921621852455278537160766090492754352887897550493 ( 135 digits) Divisors found: r1=9750955237361634372618257316599424244951087381213 (pp49) r2=32691476708214933835165765723715218661077209696240370449876399876944717064876363130561 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 386.78 hours. Scaled time: 823.45 units (timescale=2.129). Factorization parameters were as follows: name: 13333_195 n: 318773126025054291670957797550571273589430793561728712537650216394184484148701462662385921621852455278537160766090492754352887897550493 skew: 131671.97 # norm 3.05e+18 c5: 197280 c4: -307423178886 c3: -58612697870847169 c2: 3978958100881520574793 c1: 213561147801238145597164433 c0: -11098269473779960898804283038595 # alpha -5.90 Y1: 773059969233563 Y0: -69451436841457195078837658 # Murphy_E 4.23e-11 # M 56576599863178588454020620146065243601482425869774777937223046811868572601341632692068072510368265616104157355536434726657596047407882 type: gnfs rlim: 12000000 alim: 12000000 lpbr: 28 lpba: 28 mfbr: 51 mfba: 51 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 12000000/12000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved algebraic special-q in [6000000, 11600001) Primes: RFBsize:788060, AFBsize:788407, largePrimes:12637468 encountered Relations: rels:13248927, finalFF:1826316 Max relations in full relation-set: 28 Initial matrix: 1576544 x 1826316 with sparse part having weight 125344949. Pruned matrix : 1341143 x 1349089 with weight 79768099. Polynomial selection time: 23.32 hours. Total sieving time: 349.55 hours. Total relation processing time: 0.39 hours. Matrix solve time: 13.52 hours. Time per square root: 0.67 hours. Prototype def-par.txt line would be: gnfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,12000000,12000000,28,28,51,51,2.6,2.6,100000 total time: 386.78 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
4·10131-9 = 3(9)1301<132> = 83 · 157 · 43427 · 89517934664444970329<20> · C103
C103 = P37 · P67
P37 = 2706709430006427754108248781033420387<37>
P67 = 2917230383237813120633073932480522042054906957099018520221291471441<67>
Number: 39991_131 N=7896094987811053945775833802148765097844972873029553301959921686999250192636341021809147450036357667667 ( 103 digits) SNFS difficulty: 132 digits. Divisors found: r1=2706709430006427754108248781033420387 (pp37) r2=2917230383237813120633073932480522042054906957099018520221291471441 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.06 hours. Scaled time: 4.43 units (timescale=2.145). Factorization parameters were as follows: n: 7896094987811053945775833802148765097844972873029553301959921686999250192636341021809147450036357667667 m: 200000000000000000000000000 c5: 5 c0: -36 skew: 1.48 type: snfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1000001) Primes: RFBsize:92938, AFBsize:92554, largePrimes:1605182 encountered Relations: rels:1657757, finalFF:229082 Max relations in full relation-set: 28 Initial matrix: 185559 x 229082 with sparse part having weight 10774169. Pruned matrix : 157627 x 158618 with weight 5983307. Total sieving time: 1.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1200000,1200000,25,25,46,46,2.2,2.2,50000 total time: 2.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS
2·10152+9 = 2(0)1519<153> = 11 · 5689 · C148
C148 = P69 · P80
P69 = 246315360411796404596074328483957549191621049813614560388841748191993<69>
P80 = 12975075126577197804004996961447593348172069718738575880540661517804485822477547<80>
Number: n N=3195960306172997331373144345547228303424471468064366640566324166253855127119321178030968855366816344141005768708352642260183128525543712747087681171 ( 148 digits) SNFS difficulty: 152 digits. Divisors found: r1=246315360411796404596074328483957549191621049813614560388841748191993 (pp69) r2=12975075126577197804004996961447593348172069718738575880540661517804485822477547 (pp80) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.67 hours. Scaled time: 14.62 units (timescale=0.877). Factorization parameters were as follows: name: KA_2_0_151_9 n: 3195960306172997331373144345547228303424471468064366640566324166253855127119321178030968855366816344141005768708352642260183128525543712747087681171 skew: 0.54 deg: 5 c5: 200 c0: 9 m: 1000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 650001) Primes: RFBsize:203362, AFBsize:203482, largePrimes:6183842 encountered Relations: rels:5700058, finalFF:479667 Max relations in full relation-set: 28 Initial matrix: 406909 x 479667 with sparse part having weight 26262880. Pruned matrix : 339138 x 341236 with weight 14609906. Total sieving time: 14.71 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.47 hours. Total square root time: 0.32 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 16.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
2·10147+9 = 2(0)1469<148> = 7 · 188393823755666606087<21> · C127
C127 = P35 · P92
P35 = 48974472633629490212445941599538267<35>
P92 = 30966742771240142891864085906864765198542074244953818306582481386219016872212029624089901403<92>
Number: 20009_147 N=1516579896402744219014433937457116142826101612462661029810181639049330302450011786700883958686428599152590539537076162355488601 ( 127 digits) SNFS difficulty: 147 digits. Divisors found: r1=48974472633629490212445941599538267 (pp35) r2=30966742771240142891864085906864765198542074244953818306582481386219016872212029624089901403 (pp92) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 17.87 hours. Scaled time: 12.06 units (timescale=0.675). Factorization parameters were as follows: name: 20009_147 n: 1516579896402744219014433937457116142826101612462661029810181639049330302450011786700883958686428599152590539537076162355488601 m: 100000000000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2350001) Primes: RFBsize:114155, AFBsize:114287, largePrimes:2723540 encountered Relations: rels:2681399, finalFF:265609 Max relations in full relation-set: 28 Initial matrix: 228507 x 265609 with sparse part having weight 23794062. Pruned matrix : 215996 x 217202 with weight 17271817. Total sieving time: 16.25 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.37 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 17.87 hours. --------- CPU info (if available) ----------
The factor table of 399...991 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Jo Yeong Uk / GGNFS, GMP-ECM
2·10149+9 = 2(0)1489<150> = 467 · 1867 · 4621 · 108421 · C135
C135 = P40 · P96
P40 = 1863452397272640607861076350654167212689<40>
P96 = 245697714723845525541313190866322224591579633478192557941408979790414184607140661966923663278569<96>
Number: 20009_149 N=457845995506559311920071361063861840226353200596349254744820183599147637255647440000439776818147406947190006280979032862128666078562041 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=1863452397272640607861076350654167212689 (pp40) r2=245697714723845525541313190866322224591579633478192557941408979790414184607140661966923663278569 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.32 hours. Scaled time: 19.79 units (timescale=2.123). Factorization parameters were as follows: n: 457845995506559311920071361063861840226353200596349254744820183599147637255647440000439776818147406947190006280979032862128666078562041 m: 1000000000000000000000000000000 c5: 1 c0: 45 skew: 2.14 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135163, largePrimes:3697267 encountered Relations: rels:3741082, finalFF:354567 Max relations in full relation-set: 28 Initial matrix: 270299 x 354567 with sparse part having weight 30900567. Pruned matrix : 237134 x 238549 with weight 17237573. Total sieving time: 9.00 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.25 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10191+9 = 2(0)1909<192> = C192
C192 = P45 · C148
P45 = 139787422364207720750158040677389843257571643<45>
C148 = [1430743886806296706788516093667434949145159858014350886258366962866810355411884866166709798529837275207436439253831768696683312353651987615427655563<148>]
By Sinkiti Sibata / GGNFS
2·10137+9 = 2(0)1369<138> = 1747 · 187546628295101<15> · 17157672728274349<17> · 1099656391248576163177704783751416330647<40> · 32352842794331493715586477085068987078828228518142150588757859949<65>
C104 = P40 · P65
P40 = 1099656391248576163177704783751416330647<40>
P65 = 32352842794331493715586477085068987078828228518142150588757859949<65>
Number: 20009_137 N=35577010353847071166627381630160508224933719406788362654288006111043429068247910493731177879457902557003 ( 104 digits) SNFS difficulty: 137 digits. Divisors found: r1=1099656391248576163177704783751416330647 (pp40) r2=32352842794331493715586477085068987078828228518142150588757859949 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.22 hours. Scaled time: 5.55 units (timescale=0.675). Factorization parameters were as follows: name: 20009_137 n: 35577010353847071166627381630160508224933719406788362654288006111043429068247910493731177879457902557003 m: 1000000000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63988, largePrimes:1552634 encountered Relations: rels:1574611, finalFF:193594 Max relations in full relation-set: 28 Initial matrix: 142551 x 193594 with sparse part having weight 15125767. Pruned matrix : 126553 x 127329 with weight 8216971. Total sieving time: 7.78 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.30 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.22 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
2·10146+9 = 2(0)1459<147> = 11 · 19 · 443 · C142
C142 = P43 · P99
P43 = 5697591929599718777554446090898432894508443<43>
P99 = 379130428884937776481991873307188799908650024737963391395977785501700705423478684413792248504210049<99>
Number: n N=2160130471880501582295570652467409031505502932377115577780897966237160724507760268720230701934396837568989166945683519284564787713177875943707 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=5697591929599718777554446090898432894508443 (pp43) r2=379130428884937776481991873307188799908650024737963391395977785501700705423478684413792248504210049 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.11 hours. Scaled time: 10.69 units (timescale=1.318). Factorization parameters were as follows: name: KA_2_0_145_9 n: 2160130471880501582295570652467409031505502932377115577780897966237160724507760268720230701934396837568989166945683519284564787713177875943707 skew: 0.85 deg: 5 c5: 20 c0: 9 m: 100000000000000000000000000000 type: snfs rlim: 2200000 alim: 2200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2200000/2200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:162662, AFBsize:162600, largePrimes:6215071 encountered Relations: rels:5583240, finalFF:372600 Max relations in full relation-set: 48 Initial matrix: 325329 x 372600 with sparse part having weight 24152920. Pruned matrix : 286219 x 287909 with weight 14211438. Total sieving time: 6.19 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.66 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2200000,2200000,28,28,48,48,2.5,2.5,100000 total time: 8.11 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10167-9 = 1(9)1661<168> = 11 · 25693999 · C159
C159 = P51 · P54 · P56
P51 = 213778048882883699682952867750597400299228114685941<51>
P54 = 253294029617274149322595661355934135791715095080163601<54>
P56 = 13068253350533572176578369071664035808002504957074122959<56>
Number: n N=707628975225622987615972826254806883824577800513582250010277426328933141866387485335318251478947211830209140203586766770644842719181945240138828454917359567819 ( 159 digits) SNFS difficulty: 167 digits. Divisors found: Fri Nov 16 05:59:23 2007 prp51 factor: 213778048882883699682952867750597400299228114685941 Fri Nov 16 05:59:23 2007 prp54 factor: 253294029617274149322595661355934135791715095080163601 Fri Nov 16 05:59:23 2007 prp56 factor: 13068253350533572176578369071664035808002504957074122959 Fri Nov 16 05:59:23 2007 elapsed time 01:49:33 (Msieve 1.29) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 62.94 hours. Scaled time: 82.45 units (timescale=1.310). Factorization parameters were as follows: name: KA_1_9_166_1 n: 707628975225622987615972826254806883824577800513582250010277426328933141866387485335318251478947211830209140203586766770644842719181945240138828454917359567819 skew: 0.54 deg: 5 c5: 200 c0: -9 m: 1000000000000000000000000000000000 type: snfs rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600001) Primes: RFBsize:230209, AFBsize:230472, largePrimes:7397646 encountered Relations: rels:6871280, finalFF:499906 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 62.61 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.5,2.5,100000 total time: 62.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
2·10133+9 = 2(0)1329<134> = 41 · 106261 · 138657907177600053240515967083<30> · C98
C98 = P30 · P68
P30 = 337482959187671618348715804443<30>
P68 = 98101523251692854700293015379351134705420468393200528633582388590261<68>
Number: 20009_133 N=33107592367799477994531315875696566699102396778630104307460969147141634839210559134468289330329623 ( 98 digits) SNFS difficulty: 133 digits. Divisors found: r1=337482959187671618348715804443 (pp30) r2=98101523251692854700293015379351134705420468393200528633582388590261 (pp68) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 5.55 hours. Scaled time: 3.75 units (timescale=0.676). Factorization parameters were as follows: name: 20009_133 n: 33107592367799477994531315875696566699102396778630104307460969147141634839210559134468289330329623 m: 200000000000000000000000000 c5: 125 c0: 18 skew: 0.68 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 925001) Primes: RFBsize:78498, AFBsize:63828, largePrimes:1467588 encountered Relations: rels:1461357, finalFF:170545 Max relations in full relation-set: 28 Initial matrix: 142392 x 170545 with sparse part having weight 10197756. Pruned matrix : 131765 x 132540 with weight 6330275. Total sieving time: 5.15 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.55 hours. --------- CPU info (if available) ----------
2·10136+9 = 2(0)1359<137> = 11 · 626113 · 1638117457<10> · 14068805453502347862038393<26> · C96
C96 = P37 · P59
P37 = 7479989621822215707304648726870274177<37>
P59 = 16845400134770192015265810071674311005731257071385123440419<59>
Number: 20009_136 N=126003418183523590081005231307316729274954208236469757844274078817776161403684503808348053760163 ( 96 digits) SNFS difficulty: 136 digits. Divisors found: r1=7479989621822215707304648726870274177 (pp37) r2=16845400134770192015265810071674311005731257071385123440419 (pp59) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.86 hours. Scaled time: 5.31 units (timescale=0.675). Factorization parameters were as follows: name: 20009_136 n: 126003418183523590081005231307316729274954208236469757844274078817776161403684503808348053760163 m: 1000000000000000000000000000 c5: 20 c0: 9 skew: 0.85 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:78498, AFBsize:63843, largePrimes:1536871 encountered Relations: rels:1552675, finalFF:189444 Max relations in full relation-set: 28 Initial matrix: 142408 x 189444 with sparse part having weight 14166681. Pruned matrix : 126873 x 127649 with weight 7809355. Total sieving time: 7.43 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.86 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(2·10167+1)/3 = (6)1667<167> = 67 · 163 · 154247 · 105057409 · C150
C150 = P44 · P45 · P62
P44 = 35110383512037779258731687752743501077616849<44>
P45 = 144490044053633250534088853071686157579676183<45>
P62 = 74255636529996781604025069037975869335914287473493040697234147<62>
Number: n N=376706333569452881833796963898895894903820904576725150866190626909505248384898760572288876235614404361232252029198354520001692450611622477750149560949 ( 150 digits) SNFS difficulty: 167 digits. Divisors found: Thu Nov 15 11:40:38 2007 prp44 factor: 35110383512037779258731687752743501077616849 Thu Nov 15 11:40:38 2007 prp45 factor: 144490044053633250534088853071686157579676183 Thu Nov 15 11:40:38 2007 prp62 factor: 74255636529996781604025069037975869335914287473493040697234147 Thu Nov 15 11:40:38 2007 elapsed time 03:04:59 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.61 hours. Scaled time: 81.70 units (timescale=1.326). Factorization parameters were as follows: name: KA_6_166_7 n: 376706333569452881833796963898895894903820904576725150866190626909505248384898760572288876235614404361232252029198354520001692450611622477750149560949 skew: 0.35 deg: 5 c5: 200 c0: 1 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2850000) Primes: RFBsize:250150, AFBsize:249566, largePrimes:7551318 encountered Relations: rels:7059925, finalFF:577979 Max relations in full relation-set: 28 Initial matrix: 499781 x 577979 with sparse part having weight 49191823. Pruned matrix : 444384 x 446946 with weight 33215771. Total sieving time: 61.30 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 61.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
2·10138+9 = 2(0)1379<139> = 112 · 41 · 9034909729<10> · C125
C125 = P30 · P38 · P58
P30 = 799755820751262322119275375033<30>
P38 = 20766309102022228980253099855875658537<38>
P58 = 2686706507069958673687375702336773298121688744721734859241<58>
Number: 20009_138 N=44620758746381241841688897721867317475788276748995108314229042673027347676487429597124584059980824714622578162566104956058761 ( 125 digits) SNFS difficulty: 140 digits. Divisors found: r1=799755820751262322119275375033 (pp30) r2=20766309102022228980253099855875658537 (pp38) r3=2686706507069958673687375702336773298121688744721734859241 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.74 hours. Scaled time: 10.09 units (timescale=2.126). Factorization parameters were as follows: n: 44620758746381241841688897721867317475788276748995108314229042673027347676487429597124584059980824714622578162566104956058761 m: 10000000000000000000000000000 c5: 1 c0: 450 skew: 3.39 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1000001) Primes: RFBsize:107126, AFBsize:106598, largePrimes:2324281 encountered Relations: rels:2569529, finalFF:387303 Max relations in full relation-set: 28 Initial matrix: 213788 x 387303 with sparse part having weight 31262275. Pruned matrix : 152381 x 153513 with weight 10650969. Total sieving time: 4.62 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10141+9 = 2(0)1409<142> = 7 · 29 · 84089 · 1843241 · C128
C128 = P39 · P45 · P45
P39 = 193589288637298059074525377001965216949<39>
P45 = 468214580957084640590379178323139739604088747<45>
P45 = 701271823576894703710295051061370970173632749<45>
Number: 20009_141 N=63564209137520160828475746211489351888520291688068698024161891639200326972468705608592258442484833328985146148995415235418800347 ( 128 digits) SNFS difficulty: 141 digits. Divisors found: r1=193589288637298059074525377001965216949 (pp39) r2=468214580957084640590379178323139739604088747 (pp45) r3=701271823576894703710295051061370970173632749 (pp45) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.50 hours. Scaled time: 11.67 units (timescale=2.123). Factorization parameters were as follows: n: 63564209137520160828475746211489351888520291688068698024161891639200326972468705608592258442484833328985146148995415235418800347 m: 10000000000000000000000000000 c5: 20 c0: 9 skew: 0.85 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1100001) Primes: RFBsize:114155, AFBsize:113962, largePrimes:3318316 encountered Relations: rels:3434745, finalFF:413798 Max relations in full relation-set: 28 Initial matrix: 228184 x 413798 with sparse part having weight 34667463. Pruned matrix : 162968 x 164172 with weight 12380892. Total sieving time: 5.34 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By JMB / GMP-ECM
9·10178+7 = 9(0)1777<179> = 149 · C177
C177 = P35 · C143
P35 = 34477381911603229695013790339605181<35>
C143 = [17519510245477803843772234672206519263441432562534062592219996721821259842723144120268391140425192935308257597913633559158414046764815248848903<143>]
By Jo Yeong Uk / GGNFS, Msieve
2·10151+9 = 2(0)1509<152> = C152
C152 = P64 · P88
P64 = 5361545627942898041009151470006806437953024698709373565545033283<64>
P88 = 3730267610848168946728870898319835513379653329283710892077298113553792162530729021571523<88>
Number: 20009_151 N=20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 ( 152 digits) SNFS difficulty: 151 digits. Divisors found: r1=5361545627942898041009151470006806437953024698709373565545033283 (pp64) r2=3730267610848168946728870898319835513379653329283710892077298113553792162530729021571523 (pp88) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.44 hours. Scaled time: 24.53 units (timescale=2.145). Factorization parameters were as follows: n: 20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009 m: 1000000000000000000000000000000 c5: 20 c0: 9 skew: 0.85 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176393, largePrimes:5255231 encountered Relations: rels:5101022, finalFF:437517 Max relations in full relation-set: 28 Initial matrix: 352762 x 437517 with sparse part having weight 35441926. Pruned matrix : 301643 x 303470 with weight 21914347. Total sieving time: 10.89 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.44 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 11.44 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10115+9 = 2(0)1149<116> = 2549 · C112
C112 = P34 · P36 · P43
P34 = 3610985855871191931623417922834769<34>
P36 = 347349964829672312277520077897474727<36>
P43 = 6255573247015228068683536228478645049008707<43>
Number: 20009_115 N=7846214201647704982346018046292663789721459395841506473126716359356610435464888191447626520204001569242840329541 ( 112 digits) SNFS difficulty: 115 digits. Divisors found: r1=3610985855871191931623417922834769 (pp34) r2=347349964829672312277520077897474727 (pp36) r3=6255573247015228068683536228478645049008707 (pp43) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.64 hours. Scaled time: 1.37 units (timescale=2.143). Factorization parameters were as follows: n: 7846214201647704982346018046292663789721459395841506473126716359356610435464888191447626520204001569242840329541 m: 100000000000000000000000 c5: 2 c0: 9 skew: 1.35 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 390001) Primes: RFBsize:49098, AFBsize:48886, largePrimes:1863902 encountered Relations: rels:1959876, finalFF:245084 Max relations in full relation-set: 28 Initial matrix: 98049 x 245084 with sparse part having weight 19250215. Pruned matrix : 66805 x 67359 with weight 3521221. Total sieving time: 0.60 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.64 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10128+9 = 2(0)1279<129> = 11 · 19 · 41 · 3628268961937<13> · C112
C112 = P30 · P82
P30 = 838738174203331430476288994347<30>
P82 = 7669622162401410990558076424963758890890607406854931844023679051213111668308932099<82>
Number: 20009_128 N=6432804889321966154737940019106072881085761416381139523418545975573334342986996964229572138342044269550217844353 ( 112 digits) SNFS difficulty: 130 digits. Divisors found: r1=838738174203331430476288994347 (pp30) r2=7669622162401410990558076424963758890890607406854931844023679051213111668308932099 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.75 hours. Scaled time: 3.75 units (timescale=2.146). Factorization parameters were as follows: n: 6432804889321966154737940019106072881085761416381139523418545975573334342986996964229572138342044269550217844353 m: 100000000000000000000000000 c5: 1 c0: 450 skew: 3.39 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78411, largePrimes:1572335 encountered Relations: rels:1653001, finalFF:250088 Max relations in full relation-set: 28 Initial matrix: 156973 x 250088 with sparse part having weight 11746162. Pruned matrix : 112238 x 113086 with weight 4590998. Total sieving time: 1.69 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10129+9 = 2(0)1289<130> = 73 · 163 · 4507 · C121
C121 = P41 · P80
P41 = 82003635083982433094568610504258544735069<41>
P80 = 96789357905979190059916421135822880484975096215801511141201084498141280349953947<80>
Number: 20009_129 N=7937079185734887593874167046697325195980474197859232432137387602376763124415823530918175646633742048331470586833465867343 ( 121 digits) SNFS difficulty: 130 digits. Divisors found: r1=82003635083982433094568610504258544735069 (pp41) r2=96789357905979190059916421135822880484975096215801511141201084498141280349953947 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.72 hours. Scaled time: 3.68 units (timescale=2.139). Factorization parameters were as follows: n: 7937079185734887593874167046697325195980474197859232432137387602376763124415823530918175646633742048331470586833465867343 m: 100000000000000000000000000 c5: 1 c0: 45 skew: 2.14 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78411, largePrimes:1567044 encountered Relations: rels:1646980, finalFF:248901 Max relations in full relation-set: 28 Initial matrix: 156973 x 248901 with sparse part having weight 11659733. Pruned matrix : 112684 x 113532 with weight 4605631. Total sieving time: 1.66 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.72 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
2·10143+9 = 2(0)1429<144> = 41 · 67 · 3331649 · 14935649 · 82226933119967<14> · 1277854822563168097967<22> · C92
C92 = P39 · P53
P39 = 378442673724566134246810453283328526129<39>
P53 = 36795294718689337041099821264332695452995703051552587<53>
Wed Nov 14 21:20:40 2007 Wed Nov 14 21:20:40 2007 Wed Nov 14 21:20:40 2007 Msieve v. 1.28 Wed Nov 14 21:20:40 2007 random seeds: 3b93c2a8 eb1b55fc Wed Nov 14 21:20:40 2007 factoring 13924909713824200219224541074202380892627126993472216666474137256898926894158453179847045723 (92 digits) Wed Nov 14 21:20:41 2007 commencing quadratic sieve (91-digit input) Wed Nov 14 21:20:41 2007 using multiplier of 3 Wed Nov 14 21:20:41 2007 using 32kb Intel Core sieve core Wed Nov 14 21:20:41 2007 sieve interval: 36 blocks of size 32768 Wed Nov 14 21:20:41 2007 processing polynomials in batches of 6 Wed Nov 14 21:20:41 2007 using a sieve bound of 1753547 (65732 primes) Wed Nov 14 21:20:41 2007 using large prime bound of 177108247 (27 bits) Wed Nov 14 21:20:41 2007 using double large prime bound of 702796695147472 (42-50 bits) Wed Nov 14 21:20:41 2007 using trial factoring cutoff of 50 bits Wed Nov 14 21:20:41 2007 polynomial 'A' values have 12 factors Wed Nov 14 22:27:23 2007 66322 relations (17638 full + 48684 combined from 795835 partial), need 65828 Wed Nov 14 22:27:23 2007 begin with 813473 relations Wed Nov 14 22:27:24 2007 reduce to 163711 relations in 11 passes Wed Nov 14 22:27:24 2007 attempting to read 163711 relations Wed Nov 14 22:27:25 2007 recovered 163711 relations Wed Nov 14 22:27:25 2007 recovered 140908 polynomials Wed Nov 14 22:27:25 2007 attempting to build 66322 cycles Wed Nov 14 22:27:25 2007 found 66322 cycles in 5 passes Wed Nov 14 22:27:25 2007 distribution of cycle lengths: Wed Nov 14 22:27:25 2007 length 1 : 17638 Wed Nov 14 22:27:25 2007 length 2 : 12531 Wed Nov 14 22:27:25 2007 length 3 : 11404 Wed Nov 14 22:27:25 2007 length 4 : 8950 Wed Nov 14 22:27:25 2007 length 5 : 6342 Wed Nov 14 22:27:25 2007 length 6 : 4034 Wed Nov 14 22:27:25 2007 length 7 : 2526 Wed Nov 14 22:27:25 2007 length 9+: 2897 Wed Nov 14 22:27:25 2007 largest cycle: 17 relations Wed Nov 14 22:27:25 2007 matrix is 65732 x 66322 with weight 3973198 (avg 59.91/col) Wed Nov 14 22:27:26 2007 filtering completed in 3 passes Wed Nov 14 22:27:26 2007 matrix is 61414 x 61478 with weight 3685100 (avg 59.94/col) Wed Nov 14 22:27:27 2007 saving the first 48 matrix rows for later Wed Nov 14 22:27:27 2007 matrix is 61366 x 61478 with weight 2818330 (avg 45.84/col) Wed Nov 14 22:27:27 2007 matrix includes 64 packed rows Wed Nov 14 22:27:27 2007 using block size 24591 for processor cache size 4096 kB Wed Nov 14 22:27:28 2007 commencing Lanczos iteration Wed Nov 14 22:27:44 2007 lanczos halted after 972 iterations Wed Nov 14 22:27:44 2007 recovered 16 nontrivial dependencies Wed Nov 14 22:27:45 2007 prp39 factor: 378442673724566134246810453283328526129 Wed Nov 14 22:27:45 2007 prp53 factor: 36795294718689337041099821264332695452995703051552587 Wed Nov 14 22:27:45 2007 elapsed time 01:07:05
By matsuix / GMP-ECM
(79·10188-7)/9 = 8(7)188<189> = 17 · 293 · C186
C186 = P32 · C154
P32 = 21765125120660595551469602307679<32>
C154 = [8096678074753473185944039706917079992623437626274897607442886516416138091715794569583278042469134900566577085836441842147205791368296429713363394770501523<154>]
By Sinkiti Sibata / Msieve, GGNFS
2·10113+9 = 2(0)1129<114> = 29 · 41 · 43 · 66063586712481298029647<23> · C86
C86 = P30 · P57
P30 = 126503094686428494316629112361<30>
P57 = 468076014118751200598434885891146498395685059990909881001<57>
Tue Nov 13 19:16:24 2007 Tue Nov 13 19:16:24 2007 Msieve v. 1.28 Tue Nov 13 19:16:24 2007 random seeds: 79b93950 914c419f Tue Nov 13 19:16:24 2007 factoring 59213064334510423889180281278137633024927225091119261905297311496666472844090768153361 (86 digits) Tue Nov 13 19:16:25 2007 commencing quadratic sieve (86-digit input) Tue Nov 13 19:16:25 2007 using multiplier of 1 Tue Nov 13 19:16:25 2007 using 64kb Pentium 2 sieve core Tue Nov 13 19:16:25 2007 sieve interval: 8 blocks of size 65536 Tue Nov 13 19:16:25 2007 processing polynomials in batches of 13 Tue Nov 13 19:16:25 2007 using a sieve bound of 1450331 (55667 primes) Tue Nov 13 19:16:25 2007 using large prime bound of 116026480 (26 bits) Tue Nov 13 19:16:25 2007 using double large prime bound of 328248542117840 (41-49 bits) Tue Nov 13 19:16:25 2007 using trial factoring cutoff of 49 bits Tue Nov 13 19:16:25 2007 polynomial 'A' values have 11 factors Wed Nov 14 00:52:54 2007 55802 relations (15557 full + 40245 combined from 585823 partial), need 55763 Wed Nov 14 00:52:57 2007 begin with 601380 relations Wed Nov 14 00:52:59 2007 reduce to 134103 relations in 9 passes Wed Nov 14 00:52:59 2007 attempting to read 134103 relations Wed Nov 14 00:53:05 2007 recovered 134103 relations Wed Nov 14 00:53:05 2007 recovered 113504 polynomials Wed Nov 14 00:53:06 2007 attempting to build 55802 cycles Wed Nov 14 00:53:06 2007 found 55802 cycles in 5 passes Wed Nov 14 00:53:09 2007 distribution of cycle lengths: Wed Nov 14 00:53:09 2007 length 1 : 15557 Wed Nov 14 00:53:09 2007 length 2 : 10981 Wed Nov 14 00:53:09 2007 length 3 : 9922 Wed Nov 14 00:53:09 2007 length 4 : 7142 Wed Nov 14 00:53:09 2007 length 5 : 4933 Wed Nov 14 00:53:09 2007 length 6 : 3153 Wed Nov 14 00:53:09 2007 length 7 : 1922 Wed Nov 14 00:53:09 2007 length 9+: 2192 Wed Nov 14 00:53:09 2007 largest cycle: 17 relations Wed Nov 14 00:53:10 2007 matrix is 55667 x 55802 with weight 2940878 (avg 52.70/col) Wed Nov 14 00:53:15 2007 filtering completed in 3 passes Wed Nov 14 00:53:15 2007 matrix is 51377 x 51441 with weight 2736176 (avg 53.19/col) Wed Nov 14 00:53:17 2007 saving the first 48 matrix rows for later Wed Nov 14 00:53:17 2007 matrix is 51329 x 51441 with weight 2040428 (avg 39.67/col) Wed Nov 14 00:53:17 2007 matrix includes 64 packed rows Wed Nov 14 00:53:17 2007 using block size 5461 for processor cache size 128 kB Wed Nov 14 00:53:18 2007 commencing Lanczos iteration Wed Nov 14 00:55:31 2007 lanczos halted after 813 iterations Wed Nov 14 00:55:32 2007 recovered 17 nontrivial dependencies Wed Nov 14 00:55:33 2007 prp30 factor: 126503094686428494316629112361 Wed Nov 14 00:55:33 2007 prp57 factor: 468076014118751200598434885891146498395685059990909881001 Wed Nov 14 00:55:33 2007 elapsed time 05:39:09
2·10124+9 = 2(0)1239<125> = 11 · 7699 · 530843 · C114
C114 = P50 · P65
P50 = 12933342699273453806862343859989698555609089656801<50>
P65 = 34397439116451164611055979433447141435329163111083759614363162267<65>
Number: 20009_124 N=444873868070456791285157294883334653826114223009391544914693262254988985036803067248867103876557666800384103127867 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=12933342699273453806862343859989698555609089656801 (pp50) r2=34397439116451164611055979433447141435329163111083759614363162267 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.57 hours. Scaled time: 1.74 units (timescale=0.675). Factorization parameters were as follows: name: 20009_124 n: 444873868070456791285157294883334653826114223009391544914693262254988985036803067248867103876557666800384103127867 m: 10000000000000000000000000 c5: 1 c0: 45 skew: 2.14 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63918, largePrimes:2172125 encountered Relations: rels:2319136, finalFF:277481 Max relations in full relation-set: 28 Initial matrix: 113080 x 277481 with sparse part having weight 24656124. Pruned matrix : 81390 x 82019 with weight 5386144. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.57 hours. --------- CPU info (if available) ----------
2·10131+9 = 2(0)1309<132> = 23 · 5816239007<10> · 74887441003<11> · C110
C110 = P50 · P60
P50 = 57062021722090451670266439953685372616833385097687<50>
P60 = 349867635331476129784259517594411816903548623239985088658229<60>
Number: 20009_131 N=19964154607141111700061809502715420631256369551377576495671386457041725733903887371073728671212925530921416323 ( 110 digits) SNFS difficulty: 131 digits. Divisors found: r1=57062021722090451670266439953685372616833385097687 (pp50) r2=349867635331476129784259517594411816903548623239985088658229 (pp60) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 4.46 hours. Scaled time: 3.01 units (timescale=0.675). Factorization parameters were as follows: name: 20009_131 n: 19964154607141111700061809502715420631256369551377576495671386457041725733903887371073728671212925530921416323 m: 100000000000000000000000000 c5: 20 c0: 9 skew: 0.85 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:63843, largePrimes:1417127 encountered Relations: rels:1397458, finalFF:156815 Max relations in full relation-set: 28 Initial matrix: 127861 x 156815 with sparse part having weight 9252290. Pruned matrix : 118504 x 119207 with weight 5490939. Total sieving time: 4.16 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.46 hours. --------- CPU info (if available) ----------
2·10132+9 = 2(0)1319<133> = 11 · 17 · 338993 · 2059033 · 22755127841<11> · 113606374765035095179<21> · C88
C88 = P41 · P47
P41 = 64553585691076468757776709697760029089923<41>
P47 = 91818881868322405255423164024086685058772234099<47>
Number: 20009_132 N=5927238058745577841908105029284969199323891268952962791663876711778527940853004477884377 ( 88 digits) SNFS difficulty: 132 digits. Divisors found: r1=64553585691076468757776709697760029089923 (pp41) r2=91818881868322405255423164024086685058772234099 (pp47) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 4.49 hours. Scaled time: 3.03 units (timescale=0.675). Factorization parameters were as follows: name: 20009_132 n: 5927238058745577841908105029284969199323891268952962791663876711778527940853004477884377 m: 100000000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:63988, largePrimes:1398569 encountered Relations: rels:1367313, finalFF:147644 Max relations in full relation-set: 28 Initial matrix: 128004 x 147644 with sparse part having weight 8145619. Pruned matrix : 122053 x 122757 with weight 5454428. Total sieving time: 4.18 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.49 hours. --------- CPU info (if available) ----------
2·10121+9 = 2(0)1209<122> = 47 · 25022303 · 6042247621<10> · C103
C103 = P50 · P54
P50 = 23276367811865773221842316006407580116078609884723<50>
P54 = 120918048180665503779004167358585435298916357823336103<54>
Number: 20009_121 N=2814532964546077252871970629316708556510168734465584891122419326288554907143692044303039418256114054469 ( 103 digits) SNFS difficulty: 121 digits. Divisors found: r1=23276367811865773221842316006407580116078609884723 (pp50) r2=120918048180665503779004167358585435298916357823336103 (pp54) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.13 hours. Scaled time: 1.44 units (timescale=0.675). Factorization parameters were as follows: name: 20009_121 n: 2814532964546077252871970629316708556510168734465584891122419326288554907143692044303039418256114054469 m: 1000000000000000000000000 c5: 20 c0: 9 skew: 0.85 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63843, largePrimes:2088965 encountered Relations: rels:2160713, finalFF:219066 Max relations in full relation-set: 28 Initial matrix: 113008 x 219066 with sparse part having weight 18684530. Pruned matrix : 87485 x 88114 with weight 4996495. Total sieving time: 1.91 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.13 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
2·10144+9 = 2(0)1439<145> = 11 · 42923 · C139
C139 = P33 · P107
P33 = 128461577505546794238270375795409<33>
P107 = 32974179012994192473352789524852599153449785137428491442089586166492685253837254412846376457647278813227617<107>
By Sinkiti Sibata / GGNFS
2·10109+9 = 2(0)1089<110> = 23 · 95905845140127483764287<23> · C85
C85 = P42 · P44
P42 = 748402279230484392743519946043122325419467<42>
P44 = 12114959912210466897728207722918366529921027<44>
Number: 20009_109 N=9066863611084262532391767761617834512428564112384343014130227238186317203834158432609 ( 85 digits) SNFS difficulty: 110 digits. Divisors found: r1=748402279230484392743519946043122325419467 (pp42) r2=12114959912210466897728207722918366529921027 (pp44) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.20 hours. Scaled time: 0.81 units (timescale=0.675). Factorization parameters were as follows: name: 20009_109 n: 9066863611084262532391767761617834512428564112384343014130227238186317203834158432609 m: 10000000000000000000000 c5: 1 c0: 45 skew: 2.14 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:63918, largePrimes:1920083 encountered Relations: rels:1935524, finalFF:195943 Max relations in full relation-set: 28 Initial matrix: 113080 x 195943 with sparse part having weight 13085661. Pruned matrix : 82364 x 82993 with weight 3462543. Total sieving time: 1.04 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.20 hours. --------- CPU info (if available) ----------
2·10112+9 = 2(0)1119<113> = 11 · 83 · 10859 · 4136577279787441<16> · C90
C90 = P31 · P59
P31 = 9206018018107001474355735891329<31>
P59 = 52973226058227628382351941365777895979723862883622018652443<59>
Number: 20009_112 N=487672473569298877322950209283462946924937198672763413701237098246837153702239074068366747 ( 90 digits) SNFS difficulty: 112 digits. Divisors found: r1=9206018018107001474355735891329 (pp31) r2=52973226058227628382351941365777895979723862883622018652443 (pp59) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.05 hours. Scaled time: 1.38 units (timescale=0.675). Factorization parameters were as follows: name: 20009_112 n: 487672473569298877322950209283462946924937198672763413701237098246837153702239074068366747 m: 10000000000000000000000 c5: 200 c0: 9 skew: 0.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63988, largePrimes:2409465 encountered Relations: rels:3030076, finalFF:735233 Max relations in full relation-set: 28 Initial matrix: 113151 x 735233 with sparse part having weight 52489673. Pruned matrix : 56354 x 56983 with weight 4802576. Total sieving time: 1.89 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.04 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.05 hours. --------- CPU info (if available) ----------
2·10142+9 = 2(0)1419<143> = 11 · 449 · 183695312580749129<18> · 470754046684836857<18> · 237679956825681386323<21> · C84
C84 = P35 · P49
P35 = 36136781193374500273671200283243499<35>
P49 = 5452012051103151492998305179171168472959562758251<49>
Tue Nov 13 17:25:38 2007 Msieve v. 1.28 Tue Nov 13 17:25:38 2007 random seeds: 101e150d 418d085c Tue Nov 13 17:25:38 2007 factoring 197018166554355499780407837997782804306340474278893940041682769225414512357104360249 (84 digits) Tue Nov 13 17:25:39 2007 commencing quadratic sieve (83-digit input) Tue Nov 13 17:25:40 2007 using multiplier of 29 Tue Nov 13 17:25:40 2007 using 64kb Pentium 2 sieve core Tue Nov 13 17:25:40 2007 sieve interval: 6 blocks of size 65536 Tue Nov 13 17:25:40 2007 processing polynomials in batches of 17 Tue Nov 13 17:25:40 2007 using a sieve bound of 1392707 (53151 primes) Tue Nov 13 17:25:40 2007 using large prime bound of 121165509 (26 bits) Tue Nov 13 17:25:40 2007 using double large prime bound of 354880447655010 (41-49 bits) Tue Nov 13 17:25:40 2007 using trial factoring cutoff of 49 bits Tue Nov 13 17:25:40 2007 polynomial 'A' values have 11 factors Tue Nov 13 21:04:22 2007 53343 relations (15805 full + 37538 combined from 575786 partial), need 53247 Tue Nov 13 21:04:28 2007 begin with 591591 relations Tue Nov 13 21:04:31 2007 reduce to 124728 relations in 11 passes Tue Nov 13 21:04:31 2007 attempting to read 124728 relations Tue Nov 13 21:04:40 2007 recovered 124728 relations Tue Nov 13 21:04:40 2007 recovered 100888 polynomials Tue Nov 13 21:04:54 2007 attempting to build 53343 cycles Tue Nov 13 21:04:55 2007 found 53343 cycles in 5 passes Tue Nov 13 21:04:57 2007 distribution of cycle lengths: Tue Nov 13 21:04:57 2007 length 1 : 15805 Tue Nov 13 21:04:57 2007 length 2 : 10899 Tue Nov 13 21:04:57 2007 length 3 : 9489 Tue Nov 13 21:04:57 2007 length 4 : 6716 Tue Nov 13 21:04:57 2007 length 5 : 4439 Tue Nov 13 21:04:57 2007 length 6 : 2729 Tue Nov 13 21:04:57 2007 length 7 : 1532 Tue Nov 13 21:04:57 2007 length 9+: 1734 Tue Nov 13 21:04:57 2007 largest cycle: 17 relations Tue Nov 13 21:04:57 2007 matrix is 53151 x 53343 with weight 2794558 (avg 52.39/col) Tue Nov 13 21:04:59 2007 filtering completed in 3 passes Tue Nov 13 21:04:59 2007 matrix is 48275 x 48339 with weight 2547868 (avg 52.71/col) Tue Nov 13 21:05:01 2007 saving the first 48 matrix rows for later Tue Nov 13 21:05:01 2007 matrix is 48227 x 48339 with weight 1924721 (avg 39.82/col) Tue Nov 13 21:05:01 2007 matrix includes 64 packed rows Tue Nov 13 21:05:02 2007 commencing Lanczos iteration Tue Nov 13 21:09:26 2007 lanczos halted after 764 iterations Tue Nov 13 21:09:27 2007 recovered 17 nontrivial dependencies Tue Nov 13 21:09:49 2007 prp35 factor: 36136781193374500273671200283243499 Tue Nov 13 21:09:49 2007 prp49 factor: 5452012051103151492998305179171168472959562758251 Tue Nov 13 21:09:49 2007 elapsed time 03:44:11
By matsuix / GMP-ECM
2·10177+3 = 2(0)1763<178> = 19 · 23 · 107 · C173
C173 = P30 · C144
P30 = 221303620588838744540899263379<30>
C144 = [193275258075082552732257542798544930147975742565477273667881259410088142299640908729176984976444019569373369657540183408799360677960504958362823<144>]
By JMB / GMP-ECM
9·10179+7 = 9(0)1787<180> = 367699 · 313009111137872717<18> · C157
C157 = P34 · P124
P34 = 1707358559977705545311234918697001<34>
P124 = 4580030236511827524816894288626065240922568714998170751384355667293248449614016116415020750898340461128531874477462326513929<124>
The factor table of 200...009 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Yousuke Koide
(101309-1)/9 is divisible by 1163807225003295831984120638730881<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By matsuix / GMP-ECM
6·10194-1 = 5(9)194<195> = 19 · C194
C194 = P30 · P164
P30 = 552558220648518327302187386107<30>
P164 = 57150443497805430547760194830899991379283534240795388543593799035627131426642721828037543684764910233345763252213386580962086660768427630404724977220097501462854303<164>
By Jo Yeong Uk / GGNFS
(8·10178+7)/3 = 2(6)1779<179> = C179
C179 = P78 · P101
P78 = 767662720421063505818715038954728721321787934050897941208611795952414246856909<78>
P101 = 34737477745486953572334913721147854658092970596516908814796404141305652988617311793270855849086732641<101>
Number: 26669_178 N=26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 179 digits) SNFS difficulty: 180 digits. Divisors found: r1=767662720421063505818715038954728721321787934050897941208611795952414246856909 (pp78) r2=34737477745486953572334913721147854658092970596516908814796404141305652988617311793270855849086732641 (pp101) Version: GGNFS-0.77.1-20050930-nocona Total time: 229.96 hours. Scaled time: 491.89 units (timescale=2.139). Factorization parameters were as follows: n: 26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 1000000000000000000000000000000000000 c5: 2 c0: 175 skew: 2.45 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 8800001) Primes: RFBsize:664579, AFBsize:665250, largePrimes:11139695 encountered Relations: rels:11517589, finalFF:1584544 Max relations in full relation-set: 28 Initial matrix: 1329894 x 1584544 with sparse part having weight 95324120. Pruned matrix : 1095649 x 1102362 with weight 62665643. Total sieving time: 220.70 hours. Total relation processing time: 0.24 hours. Matrix solve time: 8.91 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 229.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GMP-ECM
2·10165+3 = 2(0)1643<166> = 94136405394950299<17> · C149
C149 = P36 · P113
P36 = 838305023383274289860418539450587157<36>
P113 = 25343717347214324824522098723663613215893017202640604427624247481323908812513490062007103784101162836271292998421<113>
By JMB / GMP-ECM, Msieve
9·10177+7 = 9(0)1767<178> = 153438528657199<15> · 32667044190772508911<20> · C145
C145 = P33 · P112
P33 = 231363885166211856645528826109773<33>
P112 = 7760731807961019750154843183467424612751080704744319434512584619725381829268383039969389480897051376995338032131<112>
9·10182+7 = 9(0)1817<183> = 681997 · 5371290194501118001753<22> · 15159963126712966411921<23> · C134
C134 = P37 · P41 · P57
P37 = 6744944339966240521048365048076011509<37>
P41 = 19234654468418325743668292529120757280653<41>
P57 = 124916706233941797813783021695951936693773474351449547931<57>
9·10191+7 = 9(0)1907<192> = 192 · 71 · 223 · 5348430907<10> · 7081217033400011183081<22> · 4467601201156530952852184773<28> · C126
C126 = P32 · P38 · P58
P32 = 16211565179348756515840607697259<32>
P38 = 21676057655573837315308075461982724731<38>
P58 = 2648244977702149059480307274983753320329588866774945947601<58>
By Robert Backstrom / GGNFS, Msieve
(17·10165-71)/9 = 1(8)1641<166> = 32 · 11 · 19 · 239 · 2301857 · C154
C154 = P52 · P103
P52 = 1104452615085621808528281839929327507501092871162291<52>
P103 = 1652700990864867075451213479344319367803780935121458431710865579015107058129083254411956069524400585357<103>
Number: n N=1825329931315300800903828355172001996656416128933119005508117804769257585582659512383777143680106332212925711617403703267839837227789771348804185345172887 ( 154 digits) SNFS difficulty: 166 digits. Divisors found: Mon Nov 12 01:18:09 2007 prp52 factor: 1104452615085621808528281839929327507501092871162291 Mon Nov 12 01:18:09 2007 prp103 factor: 1652700990864867075451213479344319367803780935121458431710865579015107058129083254411956069524400585357 Mon Nov 12 01:18:09 2007 elapsed time 01:38:44 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.96 hours. Scaled time: 60.94 units (timescale=1.326). Factorization parameters were as follows: name: KA_1_8_164_1 n: 1825329931315300800903828355172001996656416128933119005508117804769257585582659512383777143680106332212925711617403703267839837227789771348804185345172887 skew: 1.33 deg: 5 c5: 17 c0: -71 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100000) Primes: RFBsize:250150, AFBsize:249087, largePrimes:7336079 encountered Relations: rels:6862148, finalFF:583606 Max relations in full relation-set: 28 Initial matrix: 499302 x 583606 with sparse part having weight 42516043. Pruned matrix : 429944 x 432504 with weight 26149440. Total sieving time: 45.69 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 45.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By matsuix / GMP-ECM
4·10176+7 = 4(0)1757<177> = 11 · 37 · C174
C174 = P37 · C138
P37 = 7135210354090040619550238567081980993<37>
C138 = [137739594774192223139709541988016487305378968971069153072936288397790444184230544651923302551708474913403317389091953092751175896905333457<138>]
(14·10196-41)/9 = 1(5)1951<197> = 43 · C195
C195 = P29 · C167
P29 = 12991941439670998826484083573<29>
C167 = [27844730337109139843652566781414443973010019917901912124608905800374293093913322511112990355973246182909621326436655829024147474787381586660026718061075677175452115209<167>]
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
9·10163+7 = 9(0)1627<164> = 47 · 349 · 859 · 58211 · C153
C153 = P33 · P42 · P78
P33 = 818470811192938112676337938572201<33>
P42 = 873583190755642325776044428797599382814221<42>
P78 = 153466481365034760327052932409167822889494591377902353931701362171082781011161<78>
Number: n N=134065738464908389294733191862713080806437886653151154389264336165712868499470848705785633116618319074552541740190520581 ( 120 digits) SNFS difficulty: 163 digits. Divisors found: Sun Nov 11 08:08:38 2007 prp42 factor: 873583190755642325776044428797599382814221 Sun Nov 11 08:08:38 2007 prp78 factor: 153466481365034760327052932409167822889494591377902353931701362171082781011161 Sun Nov 11 08:08:38 2007 elapsed time 01:40:59 (Msieve 1.29) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 63.94 hours. Scaled time: 83.51 units (timescale=1.306). Factorization parameters were as follows: name: KA_9_0_162_7 n: 134065738464908389294733191862713080806437886653151154389264336165712868499470848705785633116618319074552541740190520581 # n: 109728893714553854980742941642496184479539542626049635609986238428007354105418652745423356276793313693697545479480233833467867898192710425178858044968781 skew: 0.16 deg: 5 c5: 9000 c0: 7 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2950001) Primes: RFBsize:216816, AFBsize:217011, largePrimes:7516572 encountered Relations: rels:6969287, finalFF:457940 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 63.56 hours. Total relation processing time: 0.38 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By JMB / GMP-ECM
9·10183+7 = 9(0)1827<184> = 59 · 5879009045374855927<19> · C164
C164 = P35 · P129
P35 = 81464545498575947436007410472506863<35>
P129 = 318506082558980426195556346049653444619519149682263511747011957601975589600934055977483795167502851069663481908650764978825371373<129>
9·10164+7 = 9(0)1637<165> = 883 · 24573393591862132649<20> · C143
C143 = P34 · P110
P34 = 2564993881968404917452325855647781<34>
P110 = 16170756423913671663934778083625100661998605305949217253030068605305369307115708420697061171260255444165225841<110>
9·10173+7 = 9(0)1727<174> = 19 · 647 · 224401 · C165
C165 = P31 · P134
P31 = 4204449134966651726234511502249<31>
P134 = 77598037366254001837116882823105292830227805356149887771917581121716866409828186604482406682111147355193961123945624774784312354859251<134>
9·10169+7 = 9(0)1687<170> = 2111 · 1429958609<10> · C158
C158 = P32 · P126
P32 = 56769904881370799699375018291651<32>
P126 = 525185398197314224568248713026766256427182001005757531713576174925963787257959304880282840700874560113146274753741218461103843<126>
By Sinkiti Sibata / PFGW
(23·1010598+7)/3, (23·1012465+7)/3, (23·1015875+7)/3 and (23·1018895+7)/3 are PRPs. There is no other PRP of the form (23·10n+7)/3 (10001≤n≤20000).
By matsuix / GMP-ECM
6·10166-1 = 5(9)166<167> = 1415744095201<13> · C155
C155 = P26 · C130
P26 = 12712979409464320156621733<26>
C130 = [3333643448967159954626524687734330724615407100378702091659234658746271899362005594705868470962976554854259399799326518042378430003<130>]
By matsuix / GMP-ECM
(55·10180-1)/9 = 6(1)180<181> = 3 · 23 · C179
C179 = P30 · P150
P30 = 101498619902504222710961733499<30>
P150 = 872591447867335155263871338215982008049920291961559255672354899684344056901549523294371067281499223907198249217989811855244487724718971598186664829281<150>
By matsuix / GMP-ECM
(8·10174-53)/9 = (8)1733<174> = 2309 · C171
C171 = P29 · C143
P29 = 28200513448768426338019164149<29>
C143 = [13651064825355236966422593727849148145450828300351719858603135500864608496173059635187685618753649483887590160393912399962653031892990513454363<143>]
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
9·10153+7 = 9(0)1527<154> = 907 · 1567 · 51635332541907318461<20> · C129
C129 = P61 · P68
P61 = 4772486568530653705948719675085861919871051034726502704647793<61>
P68 = 25696533054533355691086868666739471157508323084478430890473067987511<68>
Number: n N=122636358860564412039100336767082272939485086621808173675665794174642554988798630986018211854909258720752103550308799860577713223 ( 129 digits) SNFS difficulty: 153 digits. Divisors found: r1=4772486568530653705948719675085861919871051034726502704647793 (pp61) r2=25696533054533355691086868666739471157508323084478430890473067987511 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.78 hours. Scaled time: 35.54 units (timescale=1.327). Factorization parameters were as follows: name: KA_9_0_152_7 n: 122636358860564412039100336767082272939485086621808173675665794174642554988798630986018211854909258720752103550308799860577713223 skew: 0.24 deg: 5 c5: 9000 c0: 7 m: 1000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:183072, AFBsize:183101, largePrimes:6782121 encountered Relations: rels:6200134, finalFF:427533 Max relations in full relation-set: 48 Initial matrix: 366240 x 427533 with sparse part having weight 38208097. Pruned matrix : 321175 x 323070 with weight 23509586. Total sieving time: 23.39 hours. Total relation processing time: 0.24 hours. Matrix solve time: 3.08 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 26.78 hours. --------- CPU info (if available) ---------- Cywin on AMD 64 3200+
(67·10165+23)/9 = 7(4)1647<166> = 11 · 17 · 113417 · C159
C159 = P76 · P84
P76 = 3436383816970356938534318813689175226044935882855602276600499748816862981373<76>
P84 = 102143530795393078870771512077719961217354103402463760765008945031833455587257908841<84>
Number: n N=351004376233502067423634322257777917760418568213229144337614952819956323425302295053639519584815678512598105002812461856105588319194641309439952033732715018693 ( 159 digits) SNFS difficulty: 166 digits. Divisors found: Thu Nov 08 15:26:03 2007 prp76 factor: 3436383816970356938534318813689175226044935882855602276600499748816862981373 Thu Nov 08 15:26:03 2007 prp84 factor: 102143530795393078870771512077719961217354103402463760765008945031833455587257908841 Thu Nov 08 15:26:03 2007 elapsed time 02:17:33 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 81.97 hours. Scaled time: 98.04 units (timescale=1.196). Factorization parameters were as follows: name: KA_7_4_164_7 n: 351004376233502067423634322257777917760418568213229144337614952819956323425302295053639519584815678512598105002812461856105588319194641309439952033732715018693 type: snfs skew: 0.81 deg: 5 c5: 67 c0: 23 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600000) Primes: RFBsize:250150, AFBsize:249876, largePrimes:7471694 encountered Relations: rels:6998321, finalFF:574667 Max relations in full relation-set: 28 Initial matrix: 500091 x 574667 with sparse part having weight 41672522. Pruned matrix : 442380 x 444944 with weight 28636697. Total sieving time: 81.66 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 81.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(71·10165-17)/9 = 7(8)1647<166> = 3 · 11 · 79 · 467 · 1619 · 377387 · C152
C152 = P31 · P41 · P81
P31 = 1719997418393992940622623083871<31>
P41 = 38022766744779558259291504973562443163143<41>
P81 = 162163322041498669991056527746571842965333158652283809975565132898038976089503147<81>
By Jo Yeong Uk / GGNFS
9·10160+7 = 9(0)1597<161> = 193 · 233 · 43499 · 1514405906081012721338467999<28> · C125
C125 = P58 · P67
P58 = 9539345889759064940903674568760087065552798466254478738629<58>
P67 = 3184850972645850020285709503660847208668237617514389096861847478007<67>
Number: 90007_160 N=30381395035404349559261482175363386501616068379879041925147514635035093035613293267212425275525857274850151785739806178832403 ( 125 digits) SNFS difficulty: 160 digits. Divisors found: r1=9539345889759064940903674568760087065552798466254478738629 (pp58) r2=3184850972645850020285709503660847208668237617514389096861847478007 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 30.91 hours. Scaled time: 66.06 units (timescale=2.137). Factorization parameters were as follows: n: 30381395035404349559261482175363386501616068379879041925147514635035093035613293267212425275525857274850151785739806178832403 m: 100000000000000000000000000000000 c5: 9 c0: 7 skew: 0.95 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3800001) Primes: RFBsize:283146, AFBsize:283337, largePrimes:5671469 encountered Relations: rels:5709779, finalFF:661423 Max relations in full relation-set: 28 Initial matrix: 566547 x 661423 with sparse part having weight 42662144. Pruned matrix : 495804 x 498700 with weight 29440637. Total sieving time: 29.54 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.24 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 30.91 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / PFGW
9·1015710+7, 9·1016453+7, 9·1017488+7 and 9·1018109+7 are PRPs. There is no other PRP of the form 9·10n+7 (10001≤n≤20000).
By Sinkiti Sibata / Msieve, GGNFS
9·10121+7 = 9(0)1207<122> = 71 · 10733 · 14298301 · 13437563210843<14> · C96
C96 = P47 · P50
P47 = 46754707307478264058557236237372093839004268587<47>
P50 = 13147183761460396406902731745730328931732164333889<50>
Mon Nov 05 07:44:28 2007 Mon Nov 05 07:44:28 2007 Msieve v. 1.28 Mon Nov 05 07:44:28 2007 random seeds: cd76d0a4 bee9a5b5 Mon Nov 05 07:44:28 2007 factoring 614692728684711966341285537593488278848176917343378079725035602868779219670052351614028502244843 (96 digits) Mon Nov 05 07:44:29 2007 commencing quadratic sieve (96-digit input) Mon Nov 05 07:44:30 2007 using multiplier of 11 Mon Nov 05 07:44:30 2007 using 64kb Pentium 2 sieve core Mon Nov 05 07:44:30 2007 sieve interval: 18 blocks of size 65536 Mon Nov 05 07:44:30 2007 processing polynomials in batches of 6 Mon Nov 05 07:44:30 2007 using a sieve bound of 2297747 (84706 primes) Mon Nov 05 07:44:30 2007 using large prime bound of 344662050 (28 bits) Mon Nov 05 07:44:30 2007 using double large prime bound of 2329744160961150 (43-52 bits) Mon Nov 05 07:44:30 2007 using trial factoring cutoff of 52 bits Mon Nov 05 07:44:30 2007 polynomial 'A' values have 13 factors Tue Nov 06 21:50:05 2007 85254 relations (21080 full + 64174 combined from 1274004 partial), need 84802 Tue Nov 06 21:50:26 2007 begin with 1295084 relations Tue Nov 06 21:53:11 2007 reduce to 222278 relations in 12 passes Tue Nov 06 21:53:12 2007 attempting to read 222278 relations Tue Nov 06 21:53:48 2007 recovered 222278 relations Tue Nov 06 21:53:48 2007 recovered 207893 polynomials Tue Nov 06 21:56:08 2007 attempting to build 85254 cycles Tue Nov 06 21:56:15 2007 found 85254 cycles in 6 passes Tue Nov 06 21:56:21 2007 distribution of cycle lengths: Tue Nov 06 21:56:21 2007 length 1 : 21080 Tue Nov 06 21:56:21 2007 length 2 : 14945 Tue Nov 06 21:56:21 2007 length 3 : 14297 Tue Nov 06 21:56:21 2007 length 4 : 11531 Tue Nov 06 21:56:21 2007 length 5 : 8635 Tue Nov 06 21:56:21 2007 length 6 : 5795 Tue Nov 06 21:56:21 2007 length 7 : 3728 Tue Nov 06 21:56:21 2007 length 9+: 5243 Tue Nov 06 21:56:21 2007 largest cycle: 20 relations Tue Nov 06 21:56:42 2007 matrix is 84706 x 85254 with weight 5719147 (avg 67.08/col) Tue Nov 06 21:57:55 2007 filtering completed in 3 passes Tue Nov 06 21:57:55 2007 matrix is 80583 x 80647 with weight 5410769 (avg 67.09/col) Tue Nov 06 21:57:59 2007 saving the first 48 matrix rows for later Tue Nov 06 21:58:00 2007 matrix is 80535 x 80647 with weight 4352733 (avg 53.97/col) Tue Nov 06 21:58:00 2007 matrix includes 64 packed rows Tue Nov 06 21:58:00 2007 using block size 10922 for processor cache size 256 kB Tue Nov 06 21:58:03 2007 commencing Lanczos iteration Tue Nov 06 22:04:03 2007 lanczos halted after 1275 iterations Tue Nov 06 22:04:05 2007 recovered 15 nontrivial dependencies Tue Nov 06 23:20:29 2007 prp47 factor: 46754707307478264058557236237372093839004268587 Tue Nov 06 23:20:29 2007 prp50 factor: 13147183761460396406902731745730328931732164333889 Tue Nov 06 23:20:29 2007 elapsed time 39:36:01
9·10166-7 = 8(9)1653<167> = 42709 · 1578482099<10> · C154
C154 = P39 · P115
P39 = 326236852168633890020751838911718198217<39>
P115 = 4092139473970466337231565660348581447470351547418909019180227591362356350317132972423887166170348215102482040007519<115>
Number: 89993_166 N=1335006700623134276833509278792951544459029456753960978279183880064673180289547757171082237750647795330058324252033450827327369675772426590179731812393623 ( 154 digits) SNFS difficulty: 166 digits. Divisors found: r1=326236852168633890020751838911718198217 (pp39) r2=4092139473970466337231565660348581447470351547418909019180227591362356350317132972423887166170348215102482040007519 (pp115) Version: GGNFS-0.77.1-20060513-k8 Total time: 124.14 hours. Scaled time: 248.65 units (timescale=2.003). Factorization parameters were as follows: name: 89993_166 n: 1335006700623134276833509278792951544459029456753960978279183880064673180289547757171082237750647795330058324252033450827327369675772426590179731812393623 m: 1000000000000000000000000000000000 c5: 90 c0: -7 skew: 0.6 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6400001) Primes: RFBsize:348513, AFBsize:349111, largePrimes:5986344 encountered Relations: rels:6137431, finalFF:783376 Max relations in full relation-set: 28 Initial matrix: 697691 x 783376 with sparse part having weight 60293050. Pruned matrix : 635609 x 639161 with weight 46938360. Total sieving time: 117.98 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.62 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 124.14 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
9·10154+7 = 9(0)1537<155> = C155
C155 = P75 · P81
P75 = 342774283579171568600971909894532466448184589420657720323497289127488139607<75>
P81 = 262563454469922156375323276959104849917481523961677799993943153957816466910677201<81>
Number: n N=90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 155 digits) SNFS difficulty: 155 digits. Divisors found: Wed Nov 07 02:43:42 2007 prp75 factor: 342774283579171568600971909894532466448184589420657720323497289127488139607 Wed Nov 07 02:43:42 2007 prp81 factor: 262563454469922156375323276959104849917481523961677799993943153957816466910677201 Wed Nov 07 02:43:42 2007 elapsed time 01:08:12 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.83 hours. Scaled time: 38.16 units (timescale=1.199). Factorization parameters were as follows: name: KA_9_0_153_7 n: 90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 type: snfs skew: 1.51 deg: 5 c5: 9 c0: 70 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1350000) Primes: RFBsize:216816, AFBsize:217291, largePrimes:6508656 encountered Relations: rels:6015638, finalFF:533595 Max relations in full relation-set: 28 Initial matrix: 434171 x 533595 with sparse part having weight 29453920. Pruned matrix : 345128 x 347362 with weight 15856430. Total sieving time: 31.59 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 31.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By JMB / GGNFS
9·10152+7 = 9(0)1517<153> = 4761397 · 170458908643<12> · 49688519499466733076979<23> · C113
C113 = P39 · P74
P39 = 703840987201156095759020645169329337871<39>
P74 = 31707193373284828223436939712373236806907701314756561688871528206762760813<74>
By Jo Yeong Uk / GGNFS, GMP-ECM
9·10150+7 = 9(0)1497<151> = 19732343 · 326052556279<12> · C133
C133 = P39 · P94
P39 = 589499724724831441087810448027951375963<39>
P94 = 2372972128635709558872684003447910854760650370032899324921933688620430554494554451055042317237<94>
Number: 90007_150 N=1398866416610448089159839440560263500294515545943113810621260052431416451996375989188510257329362504846021037950153661991966102374231 ( 133 digits) SNFS difficulty: 150 digits. Divisors found: r1=589499724724831441087810448027951375963 (pp39) r2=2372972128635709558872684003447910854760650370032899324921933688620430554494554451055042317237 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.90 hours. Scaled time: 27.68 units (timescale=2.146). Factorization parameters were as follows: n: 1398866416610448089159839440560263500294515545943113810621260052431416451996375989188510257329362504846021037950153661991966102374231 m: 1000000000000000000000000000000 c5: 9 c0: 7 skew: 0.95 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:176458, largePrimes:5458981 encountered Relations: rels:5399088, finalFF:508783 Max relations in full relation-set: 28 Initial matrix: 352824 x 508783 with sparse part having weight 43914106. Pruned matrix : 281114 x 282942 with weight 22700108. Total sieving time: 12.40 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.39 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 12.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10162+7 = 9(0)1617<163> = 5675476123<10> · 19653188594940718862107501<26> · C128
C128 = P36 · P93
P36 = 688903506523745903246622831283151599<36>
P93 = 117124780898551182812517761055884645674869174813318998257172923202640159324081908982573296791<93>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
9·10164-7 = 8(9)1633<165> = 19 · 1847353 · C158
C158 = P40 · P56 · P63
P40 = 5195304037384876588643582502770703788863<40>
P56 = 44521045988937219971985542168110282187182538753337627749<56>
P63 = 110856890051938744122912238100452821884732080214861054731598977<63>
Number: n N=4935464700192921827044022834990668957767855479530538704420183216532608252538248713711246307900524500214451242775212773 ( 118 digits) SNFS difficulty: 165 digits. Divisors found: Tue Nov 06 10:24:21 2007 prp56 factor: 44521045988937219971985542168110282187182538753337627749 Tue Nov 06 10:24:21 2007 prp63 factor: 110856890051938744122912238100452821884732080214861054731598977 Tue Nov 06 10:24:21 2007 elapsed time 01:29:30 (Msieve 1.29) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 64.39 hours. Scaled time: 84.09 units (timescale=1.306). Factorization parameters were as follows: name: KA_8_9_163_3 n: 4935464700192921827044022834990668957767855479530538704420183216532608252538248713711246307900524500214451242775212773 # n: 25641239683282826264048301029977258784524896461386415561816513169184004869328396388038224934470250706081392645243448898305618334648776412862933585172092747099 skew: 1.51 deg: 5 c5: 9 c0: -70 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3200000) Primes: RFBsize:216816, AFBsize:217291, largePrimes:7651039 encountered Relations: rels:7167373, finalFF:504847 Max relations in full relation-set: 28 Initial matrix: 434171 x 504847 with sparse part having weight 46676546. Pruned matrix : 406046 x 408280 with weight 34115092. Total sieving time: 64.06 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 64.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10166+1)/3 = (6)1657<166> = 132420593 · C158
C158 = P36 · P123
P36 = 472608263478122255214913213813840403<36>
P123 = 106525087996081326022960925559747436760122308821013875848798824526842994763515192581889447596719018370039169071680038462873<123>
By matsuix / GMP-ECM
(19·10165-1)/9 = 2(1)165<166> = 97 · 28030207 · 678175727 · 28933389748066579<17> · C131
C131 = P40 · P92
P40 = 1004850910964957079601987123021515538751<40>
P92 = 39379469642482560582795123873781476067047647244625665707647850841194751914774629866823998323<92>
By Sinkiti Sibata / GGNFS
9·10133+7 = 9(0)1327<134> = 5881 · 26930082287<11> · 176964956297383872307<21> · C100
C100 = P44 · P57
P44 = 25264976655443100325796147326226279933324489<44>
P57 = 127100563245798676374051740186784449244832505678728530547<57>
Number: 90007_133 N=3211192763298772886403404485557143401237610375947392799399813124253179761582114633674548555499665483 ( 100 digits) SNFS difficulty: 133 digits. Divisors found: r1=25264976655443100325796147326226279933324489 (pp44) r2=127100563245798676374051740186784449244832505678728530547 (pp57) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.81 hours. Scaled time: 5.96 units (timescale=0.676). Factorization parameters were as follows: name: 90007_133 n: 3211192763298772886403404485557143401237610375947392799399813124253179761582114633674548555499665483 m: 100000000000000000000000000 c5: 9000 c0: 7 skew: 0.24 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1300001) Primes: RFBsize:78498, AFBsize:63803, largePrimes:1571280 encountered Relations: rels:1590409, finalFF:190659 Max relations in full relation-set: 28 Initial matrix: 142368 x 190659 with sparse part having weight 15771459. Pruned matrix : 127262 x 128037 with weight 8863354. Total sieving time: 8.34 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.32 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.81 hours. --------- CPU info (if available) ----------
9·10117+7 = 9(0)1167<118> = 47 · 443867 · C111
C111 = P41 · P71
P41 = 17471857037357853190634584935442902072067<41>
P71 = 24691798610564857752888526692177153472802870226100236461016311059115929<71>
Number: 90007_117 N=431411575319020471390006657639299562083696817558297724701797533850110074663442648073275160198696667283265655243 ( 111 digits) SNFS difficulty: 117 digits. Divisors found: r1=17471857037357853190634584935442902072067 (pp41) r2=24691798610564857752888526692177153472802870226100236461016311059115929 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.78 hours. Scaled time: 1.88 units (timescale=0.676). Factorization parameters were as follows: name: 90007_117 n: 431411575319020471390006657639299562083696817558297724701797533850110074663442648073275160198696667283265655243 m: 100000000000000000000000 c5: 900 c0: 7 skew: 0.38 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2291621 encountered Relations: rels:2546258, finalFF:364912 Max relations in full relation-set: 28 Initial matrix: 112985 x 364912 with sparse part having weight 33871287. Pruned matrix : 74587 x 75215 with weight 6217223. Total sieving time: 2.55 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.78 hours. --------- CPU info (if available) ----------
By JMB / GGNFS
9·10184+7 = 9(0)1837<185> = 617 · 3725507 · 159746791 · 1198459567<10> · 80746431532206891622049<23> · 666062407088402900138543<24> · C112
C112 = P53 · P60
P53 = 11636058351571852705216457129789359016330456971195199<53>
P60 = 326792650541123463809952364790176505238645003791330917413293<60>
By Torbjörn Granlund
(10843-1)/9 is divisible by 769166959867961874063651865987632601<36>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By JMB / GMP-ECM, Msieve
9·10147+7 = 9(0)1467<148> = 25951 · 1738969 · 197021917 · 92978880982634662097<20> · C110
C110 = P30 · P40 · P41
P30 = 102931531869565976194616134711<30>
P40 = 2005256885602141410291462050850625780121<40>
P41 = 52744753108364828721861464937342277420987<41>
9·10151+7 = 9(0)1507<152> = 269 · 21613 · 67791928153<11> · 44970969250703<14> · 383031576676808952277813<24> · C98
C98 = P40 · P58
P40 = 6810025963958582438251862479127272552967<40>
P58 = 1946621858651143417424307752923064400610721325684111628979<58>
By Sinkiti Sibata / GGNFS
9·10120+7 = 9(0)1197<121> = 29 · 281 · 386471 · 142583653 · C104
C104 = P33 · P71
P33 = 266099299493114096677875328801409<33>
P71 = 75319566589929176165358361692126958829966221213822132241587381268023129<71>
Number: 90007_120 N=20042483907705114278411372506196732936640720090441885904393246630974136265348532459246920117086459788761 ( 104 digits) SNFS difficulty: 120 digits. Divisors found: r1=266099299493114096677875328801409 (pp33) r2=75319566589929176165358361692126958829966221213822132241587381268023129 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.09 hours. Scaled time: 1.41 units (timescale=0.676). Factorization parameters were as follows: name: 90007_120 n: 20042483907705114278411372506196732936640720090441885904393246630974136265348532459246920117086459788761 m: 1000000000000000000000000 c5: 9 c0: 7 skew: 0.95 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63908, largePrimes:2006815 encountered Relations: rels:1988282, finalFF:148363 Max relations in full relation-set: 28 Initial matrix: 113070 x 148363 with sparse part having weight 12012483. Pruned matrix : 101019 x 101648 with weight 6176663. Total sieving time: 1.81 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.09 hours. --------- CPU info (if available) ----------
9·10126+7 = 9(0)1257<127> = 18386461 · 1742218293047<13> · C108
C108 = P32 · P77
P32 = 13822662893206118250744627949841<32>
P77 = 20325913755563927082639117313372686004914219990075373791674260136282142256981<77>
Number: 90007_126 N=280958253839541308962636479299682207592405666050712699120756569825329538777009922534463258852005274600090021 ( 108 digits) SNFS difficulty: 126 digits. Divisors found: r1=13822662893206118250744627949841 (pp32) r2=20325913755563927082639117313372686004914219990075373791674260136282142256981 (pp77) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.97 hours. Scaled time: 2.69 units (timescale=0.676). Factorization parameters were as follows: name: 90007_126 n: 280958253839541308962636479299682207592405666050712699120756569825329538777009922534463258852005274600090021 m: 10000000000000000000000000 c5: 90 c0: 7 skew: 0.6 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 750001) Primes: RFBsize:49098, AFBsize:64083, largePrimes:2196928 encountered Relations: rels:2262442, finalFF:171270 Max relations in full relation-set: 28 Initial matrix: 113248 x 171270 with sparse part having weight 16894508. Pruned matrix : 103160 x 103790 with weight 7851326. Total sieving time: 3.61 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.22 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.97 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
4·10161-3 = 3(9)1607<162> = 13 · 71 · 738953 · 17948851 · 743599950371757358081470341<27> · C119
C119 = P43 · P77
P43 = 2846805213519635781879812334100609838888539<43>
P77 = 15435038486874269067278126927452408807037060575563649377214970000125309743587<77>
Number: n N=43940548035309899548763925751595996999472868799993550808813202591598052489814547810338118021293899624001452203163049393 ( 119 digits) SNFS difficulty: 161 digits. Divisors found: Mon Nov 05 02:38:02 2007 prp43 factor: 2846805213519635781879812334100609838888539 Mon Nov 05 02:38:02 2007 prp77 factor: 15435038486874269067278126927452408807037060575563649377214970000125309743587 Mon Nov 05 02:38:02 2007 elapsed time 01:17:03 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.21 hours. Scaled time: 43.87 units (timescale=1.321). Factorization parameters were as follows: name: KA_3_9_160_7 n: 43940548035309899548763925751595996999472868799993550808813202591598052489814547810338118021293899624001452203163049393 skew: 0.60 deg: 5 c5: 40 c0: -3 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:216816, AFBsize:215821, largePrimes:7042289 encountered Relations: rels:6514886, finalFF:501112 Max relations in full relation-set: 28 Initial matrix: 432703 x 501112 with sparse part having weight 40819259. Pruned matrix : 378693 x 380920 with weight 25477509. Total sieving time: 33.00 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.21 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10111+7 = 9(0)1107<112> = 131 · 859 · C107
C107 = P33 · P35 · P40
P33 = 682916690512923260407060455419117<33>
P35 = 51118310350528656363520883890560151<35>
P40 = 2291046123805509364111583138403788910949<40>
9·10127+7 = 9(0)1267<128> = 344206321 · C120
C120 = P35 · P85
P35 = 33157853781215682395478284485540807<35>
P85 = 7885645618034098004254139912968642957732499669205257892740457352566043261860258601681<85>
9·10135+7 = 9(0)1347<136> = 1002121 · 14760091 · C123
C123 = P54 · P70
P54 = 588447254183867044277609191468715934421424931568990421<54>
P70 = 1034012456449314522976535796820781617144073180839915839118262268905897<70>
Number: n N=608461790789514535341427955241331643019831322889419400572308896788480722510373845551247628493647294880837405891288543412637 ( 123 digits) SNFS difficulty: 135 digits. Divisors found: r1=588447254183867044277609191468715934421424931568990421 (pp54) r2=1034012456449314522976535796820781617144073180839915839118262268905897 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.84 hours. Scaled time: 6.28 units (timescale=1.297). Factorization parameters were as follows: name: KA_9_0_134_7 n: 608461790789514535341427955241331643019831322889419400572308896788480722510373845551247628493647294880837405891288543412637 skew: 0.95 deg: 5 c5: 9 c0: 7 m: 1000000000000000000000000000 type: snfs rlim: 2400000 alim: 2400000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 20000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 440001) Primes: RFBsize:176302, AFBsize:176458, largePrimes:5339208 encountered Relations: rels:4827042, finalFF:398527 Max relations in full relation-set: 48 Initial matrix: 352824 x 398527 with sparse part having weight 16282983. Pruned matrix : 297861 x 299689 with weight 9125460. Total sieving time: 3.68 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.99 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,2400000,2400000,28,28,48,48,2.5,2.5,75000 total time: 4.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10143+7 = 9(0)1427<144> = 67 · 14449 · C138
C138 = P32 · P107
P32 = 16764671435106466291549252481783<32>
P107 = 55454254267525152340965490394347806129765919513362592966669387843539324159605808600050322487693263291392363<107>
By Jo Yeong Uk / Msieve, GGNFS, GMP-ECM
9·10108+7 = 9(0)1077<109> = 37871 · 3406331833<10> · 88079868587<11> · C84
C84 = P33 · P52
P33 = 144064331776620889004606685503461<33>
P52 = 5498138252554114429604456503865744400402842973430807<52>
Mon Nov 5 01:24:55 2007 Mon Nov 5 01:24:55 2007 Mon Nov 5 01:24:55 2007 Msieve v. 1.28 Mon Nov 5 01:24:55 2007 random seeds: 152d9442 e6816ec9 Mon Nov 5 01:24:55 2007 factoring 792085613369686554167223683559223742655367466905587896034275024581697823391242523027 (84 digits) Mon Nov 5 01:24:55 2007 commencing quadratic sieve (84-digit input) Mon Nov 5 01:24:55 2007 using multiplier of 43 Mon Nov 5 01:24:55 2007 using 32kb Intel Core sieve core Mon Nov 5 01:24:55 2007 sieve interval: 12 blocks of size 32768 Mon Nov 5 01:24:55 2007 processing polynomials in batches of 17 Mon Nov 5 01:24:55 2007 using a sieve bound of 1401067 (53824 primes) Mon Nov 5 01:24:55 2007 using large prime bound of 119090695 (26 bits) Mon Nov 5 01:24:55 2007 using double large prime bound of 344017052465110 (41-49 bits) Mon Nov 5 01:24:55 2007 using trial factoring cutoff of 49 bits Mon Nov 5 01:24:55 2007 polynomial 'A' values have 11 factors Mon Nov 5 01:43:23 2007 54205 relations (16445 full + 37760 combined from 563337 partial), need 53920 Mon Nov 5 01:43:23 2007 begin with 579782 relations Mon Nov 5 01:43:24 2007 reduce to 124756 relations in 9 passes Mon Nov 5 01:43:24 2007 attempting to read 124756 relations Mon Nov 5 01:43:25 2007 recovered 124756 relations Mon Nov 5 01:43:25 2007 recovered 99117 polynomials Mon Nov 5 01:43:25 2007 attempting to build 54205 cycles Mon Nov 5 01:43:25 2007 found 54205 cycles in 5 passes Mon Nov 5 01:43:25 2007 distribution of cycle lengths: Mon Nov 5 01:43:25 2007 length 1 : 16445 Mon Nov 5 01:43:25 2007 length 2 : 11224 Mon Nov 5 01:43:25 2007 length 3 : 9837 Mon Nov 5 01:43:25 2007 length 4 : 6662 Mon Nov 5 01:43:25 2007 length 5 : 4386 Mon Nov 5 01:43:25 2007 length 6 : 2611 Mon Nov 5 01:43:25 2007 length 7 : 1468 Mon Nov 5 01:43:25 2007 length 9+: 1572 Mon Nov 5 01:43:25 2007 largest cycle: 15 relations Mon Nov 5 01:43:25 2007 matrix is 53824 x 54205 with weight 2718225 (avg 50.15/col) Mon Nov 5 01:43:25 2007 filtering completed in 3 passes Mon Nov 5 01:43:25 2007 matrix is 48768 x 48832 with weight 2453195 (avg 50.24/col) Mon Nov 5 01:43:26 2007 saving the first 48 matrix rows for later Mon Nov 5 01:43:26 2007 matrix is 48720 x 48832 with weight 1746320 (avg 35.76/col) Mon Nov 5 01:43:26 2007 matrix includes 64 packed rows Mon Nov 5 01:43:26 2007 commencing Lanczos iteration Mon Nov 5 01:44:06 2007 lanczos halted after 771 iterations Mon Nov 5 01:44:07 2007 recovered 17 nontrivial dependencies Mon Nov 5 01:44:07 2007 prp33 factor: 144064331776620889004606685503461 Mon Nov 5 01:44:07 2007 prp52 factor: 5498138252554114429604456503865744400402842973430807 Mon Nov 5 01:44:07 2007 elapsed time 00:19:12
9·10131+7 = 9(0)1307<132> = 38921 · 632971 · 968437 · 83275116371<11> · 274255609394142444443<21> C85
C85 = P40 · P45
P40 = 2288057282169860293574275141471863042313<40>
P45 = 721881101657780564083407600404226856588479089<45>
Mon Nov 5 01:45:50 2007 Mon Nov 5 01:45:50 2007 Mon Nov 5 01:45:50 2007 Msieve v. 1.28 Mon Nov 5 01:45:50 2007 random seeds: 72177c0e 693b4483 Mon Nov 5 01:45:50 2007 factoring 1651705311508886027462420179604336574242886949428131140156014177945487040201122692857 (85 digits) Mon Nov 5 01:45:50 2007 commencing quadratic sieve (84-digit input) Mon Nov 5 01:45:50 2007 using multiplier of 5 Mon Nov 5 01:45:50 2007 using 32kb Intel Core sieve core Mon Nov 5 01:45:50 2007 sieve interval: 12 blocks of size 32768 Mon Nov 5 01:45:50 2007 processing polynomials in batches of 17 Mon Nov 5 01:45:50 2007 using a sieve bound of 1413031 (54118 primes) Mon Nov 5 01:45:50 2007 using large prime bound of 118694604 (26 bits) Mon Nov 5 01:45:50 2007 using double large prime bound of 341960341070040 (41-49 bits) Mon Nov 5 01:45:50 2007 using trial factoring cutoff of 49 bits Mon Nov 5 01:45:50 2007 polynomial 'A' values have 11 factors Mon Nov 5 02:05:58 2007 54588 relations (16316 full + 38272 combined from 571175 partial), need 54214 Mon Nov 5 02:05:58 2007 begin with 587491 relations Mon Nov 5 02:05:58 2007 reduce to 126754 relations in 10 passes Mon Nov 5 02:05:58 2007 attempting to read 126754 relations Mon Nov 5 02:05:59 2007 recovered 126754 relations Mon Nov 5 02:05:59 2007 recovered 102596 polynomials Mon Nov 5 02:05:59 2007 attempting to build 54588 cycles Mon Nov 5 02:05:59 2007 found 54588 cycles in 5 passes Mon Nov 5 02:05:59 2007 distribution of cycle lengths: Mon Nov 5 02:05:59 2007 length 1 : 16316 Mon Nov 5 02:05:59 2007 length 2 : 11199 Mon Nov 5 02:05:59 2007 length 3 : 9830 Mon Nov 5 02:05:59 2007 length 4 : 6838 Mon Nov 5 02:05:59 2007 length 5 : 4545 Mon Nov 5 02:05:59 2007 length 6 : 2670 Mon Nov 5 02:05:59 2007 length 7 : 1519 Mon Nov 5 02:05:59 2007 length 9+: 1671 Mon Nov 5 02:05:59 2007 largest cycle: 18 relations Mon Nov 5 02:05:59 2007 matrix is 54118 x 54588 with weight 2840617 (avg 52.04/col) Mon Nov 5 02:06:00 2007 filtering completed in 3 passes Mon Nov 5 02:06:00 2007 matrix is 49044 x 49108 with weight 2553112 (avg 51.99/col) Mon Nov 5 02:06:00 2007 saving the first 48 matrix rows for later Mon Nov 5 02:06:00 2007 matrix is 48996 x 49108 with weight 1908309 (avg 38.86/col) Mon Nov 5 02:06:00 2007 matrix includes 64 packed rows Mon Nov 5 02:06:00 2007 commencing Lanczos iteration Mon Nov 5 02:06:41 2007 lanczos halted after 776 iterations Mon Nov 5 02:06:42 2007 recovered 16 nontrivial dependencies Mon Nov 5 02:06:42 2007 prp40 factor: 2288057282169860293574275141471863042313 Mon Nov 5 02:06:42 2007 prp45 factor: 721881101657780564083407600404226856588479089 Mon Nov 5 02:06:42 2007 elapsed time 00:20:52
9·10112+7 = 9(0)1117<113> = 1706363 · 6132851 · 14021233 · C93
C93 = P45 · P49
P45 = 366287276724937330096345104351579811913585089<45>
P49 = 1674559682769946750885495255184227109771029382647<49>
Number: 90007_112 N=613369905915178755561126474140880398319161319784569225022227103519115609390857587884174550583 ( 93 digits) SNFS difficulty: 112 digits. Divisors found: r1=366287276724937330096345104351579811913585089 (pp45) r2=1674559682769946750885495255184227109771029382647 (pp49) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.89 hours. Scaled time: 1.90 units (timescale=2.119). Factorization parameters were as follows: n: 613369905915178755561126474140880398319161319784569225022227103519115609390857587884174550583 m: 10000000000000000000000 c5: 900 c0: 7 skew: 0.38 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 360001) Primes: RFBsize:30757, AFBsize:30859, largePrimes:1047627 encountered Relations: rels:958703, finalFF:81871 Max relations in full relation-set: 28 Initial matrix: 61680 x 81871 with sparse part having weight 4265106. Pruned matrix : 57019 x 57391 with weight 2165245. Total sieving time: 0.86 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10114+7 = 9(0)1137<115> = 653 · 4287299 · 249763385813<12> · C95
C95 = P42 · P54
P42 = 115630510169949718409527011290812428381853<42>
P54 = 111312603505914666012718121697883345483669372301240129<54>
Number: 90007_114 N=12871133131734246468791789551870388883140990287398533490691419410177257253759609146868658979037 ( 95 digits) SNFS difficulty: 115 digits. Divisors found: r1=115630510169949718409527011290812428381853 (pp42) r2=111312603505914666012718121697883345483669372301240129 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.90 hours. Scaled time: 1.93 units (timescale=2.145). Factorization parameters were as follows: n: 12871133131734246468791789551870388883140990287398533490691419410177257253759609146868658979037 m: 100000000000000000000000 c5: 9 c0: 70 skew: 1.51 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49341, largePrimes:1898932 encountered Relations: rels:2001615, finalFF:245554 Max relations in full relation-set: 28 Initial matrix: 98503 x 245554 with sparse part having weight 19808415. Pruned matrix : 69060 x 69616 with weight 3831506. Total sieving time: 0.85 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10146+7 = 9(0)1457<147> = 23 · 4271 · 437543 · 5421833 · 8849681 · C123
C123 = P35 · P89
P35 = 23988971368700909013664451648647553<35>
P89 = 18191938657561789126660465345836496511300044062263632583171015546703249344891910371448337<89>
9·10132+7 = 9(0)1317<133> = 491 · 85117573 · C123
C123 = P51 · P73
P51 = 139221663158686554389864242499707408798312738177711<51>
P73 = 1546802865177850881667388439251649501422697254868710734255734319160698559<73>
Number: 90007_132 N=215348467468682007507192912246188645535589219763134333352082775267400780424803384796810560313123800212289002220311443618449 ( 123 digits) SNFS difficulty: 132 digits. Divisors found: r1=139221663158686554389864242499707408798312738177711 (pp51) r2=1546802865177850881667388439251649501422697254868710734255734319160698559 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.77 hours. Scaled time: 8.02 units (timescale=2.125). Factorization parameters were as follows: n: 215348467468682007507192912246188645535589219763134333352082775267400780424803384796810560313123800212289002220311443618449 m: 100000000000000000000000000 c5: 900 c0: 7 skew: 0.38 type: snfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [600000, 1350001) Primes: RFBsize:92938, AFBsize:92634, largePrimes:1721351 encountered Relations: rels:1789708, finalFF:239139 Max relations in full relation-set: 28 Initial matrix: 185636 x 239139 with sparse part having weight 15179814. Pruned matrix : 164618 x 165610 with weight 8472390. Total sieving time: 3.64 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1200000,1200000,25,25,46,46,2.2,2.2,50000 total time: 3.77 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10140+7 = 9(0)1397<141> = 151 · 160910339138441<15> · C125
C125 = P33 · P46 · P48
P33 = 119266962910373522768317901849023<33>
P46 = 1073502048919627741496999269090973341811523617<46>
P48 = 289306754986378993892936910082750693641415226647<48>
Number: 90007_140 N=37040906958342008436196962352631290237631464821269784853671653578621103961679404648708146669704204687383872089120977255061577 ( 125 digits) SNFS difficulty: 140 digits. Divisors found: r1=119266962910373522768317901849023 (pp33) r2=1073502048919627741496999269090973341811523617 (pp46) r3=289306754986378993892936910082750693641415226647 (pp48) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.15 hours. Scaled time: 13.17 units (timescale=2.142). Factorization parameters were as follows: n: 37040906958342008436196962352631290237631464821269784853671653578621103961679404648708146669704204687383872089120977255061577 m: 10000000000000000000000000000 c5: 9 c0: 7 skew: 0.95 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:113992, largePrimes:3368728 encountered Relations: rels:3487641, finalFF:407793 Max relations in full relation-set: 28 Initial matrix: 228211 x 407793 with sparse part having weight 35263251. Pruned matrix : 168183 x 169388 with weight 13199446. Total sieving time: 5.98 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.15 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
The factor table of 900...007 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / PFGW
9·1010855-7 is PRP. It is the only PRP of the form 9·10n-7 (10001≤n≤20000).
By Jo Yeong Uk / GGNFS
9·10160+1 = 9(0)1591<161> = 196668336511615844317373683402996797341833<42> · C120
C120 = P52 · P69
P52 = 1739150909232723432175836807853304310816643860207313<52>
P69 = 263130261241924464291801141224892605010946153371020043305094966475369<69>
Number: 90001_160 N=457623233085536978487969224809644797039838287759370817200669676684400841774026444495529209155367065867115087869248173497 ( 120 digits) SNFS difficulty: 160 digits. Divisors found: r1=1739150909232723432175836807853304310816643860207313 (pp52) r2=263130261241924464291801141224892605010946153371020043305094966475369 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 27.70 hours. Scaled time: 59.42 units (timescale=2.145). Factorization parameters were as follows: n: 457623233085536978487969224809644797039838287759370817200669676684400841774026444495529209155367065867115087869248173497 m: 100000000000000000000000000000000 c5: 9 c0: 1 skew: 0.64 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:282992, largePrimes:5669639 encountered Relations: rels:5735722, finalFF:684749 Max relations in full relation-set: 28 Initial matrix: 566202 x 684749 with sparse part having weight 43062449. Pruned matrix : 470596 x 473491 with weight 28108258. Total sieving time: 26.39 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 27.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
9·10161-7 = 8(9)1603<162> = 53 · 710382599 · 3193863019<10> · 14169121763<11> · C132
C132 = P39 · P93
P39 = 637003641965194182950788890954509239897<39>
P93 = 829226536019218470577471928756725407087718463007725782007729866451066972588969963334914455291<93>
Number: 89993_161 N=528220323458424440646483477713402912362372432295144177626701835540702260229176792484870656015751898878654984062057672951330199945027 ( 132 digits) SNFS difficulty: 161 digits. Divisors found: r1=637003641965194182950788890954509239897 (pp39) r2=829226536019218470577471928756725407087718463007725782007729866451066972588969963334914455291 (pp93) Version: GGNFS-0.77.1-20060513-k8 Total time: 72.73 hours. Scaled time: 146.18 units (timescale=2.010). Factorization parameters were as follows: name: 89993_161 n: 528220323458424440646483477713402912362372432295144177626701835540702260229176792484870656015751898878654984062057672951330199945027 m: 100000000000000000000000000000000 c5: 90 c0: -7 skew: 0.6 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:316641, largePrimes:5828768 encountered Relations: rels:5947621, finalFF:747210 Max relations in full relation-set: 28 Initial matrix: 632656 x 747210 with sparse part having weight 48277826. Pruned matrix : 546815 x 550042 with weight 33888020. Total sieving time: 68.82 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.49 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 72.73 hours. --------- CPU info (if available) ----------
By suberi / GGNFS
3·10158-7 = 2(9)1573<159> = 17 · 41 · 47 · 3041 · 841123744137979613<18> · C133
C133 = P51 · P83
P51 = 263885431718243596975433066048441779693678318105769<51>
P83 = 13567470651611743221749122292261888185172901056388384006891037144978168857382893251<83>
Number: 29993_158 N=3580257850225164627404836853606844290357386870515998826943797062408011849614535981097388373034324355416498626742076743203763054265019 ( 133 digits) SNFS difficulty: 158 digits. Divisors found: r1=263885431718243596975433066048441779693678318105769 (pp51) r2=13567470651611743221749122292261888185172901056388384006891037144978168857382893251 (pp83) Version: GGNFS-0.77.1-20060722-k8 Total time: 49.54 hours. Scaled time: 72.72 units (timescale=1.468). Factorization parameters were as follows: n: 3580257850225164627404836853606844290357386870515998826943797062408011849614535981097388373034324355416498626742076743203763054265019 m: 10000000000000000000000000000000 c5: 3000 c0: -7 skew: 0.3 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3300001) Primes: RFBsize:283146, AFBsize:283037, largePrimes:5584207 encountered Relations: rels:5598336, finalFF:647691 Max relations in full relation-set: 32 Initial matrix: 566250 x 647691 with sparse part having weight 39597994. Pruned matrix : 499206 x 502101 with weight 26364073. Total sieving time: 45.55 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.63 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 49.54 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(8·10160+1)/9 = (8)1599<160> = 3 · 825027643337<12> · 4496569364490716593<19> · C129
C129 = P45 · P85
P45 = 584055110117804933562252574038305701305028939<45>
P85 = 1367485081849265048121060885327005302341443223828135540212293179914394095612984131937<85>
Number: 88889_160 N=798686650063927990314125701018237249713184766388387794727385204591609598499027731309396698824991490472673979526416377225579124843 ( 129 digits) SNFS difficulty: 161 digits. Divisors found: r1=584055110117804933562252574038305701305028939 (pp45) r2=1367485081849265048121060885327005302341443223828135540212293179914394095612984131937 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 27.65 hours. Scaled time: 59.31 units (timescale=2.145). Factorization parameters were as follows: n: 798686650063927990314125701018237249713184766388387794727385204591609598499027731309396698824991490472673979526416377225579124843 m: 200000000000000000000000000000000 c5: 1 c0: 4 skew: 1.32 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:282707, largePrimes:5654427 encountered Relations: rels:5714441, finalFF:680834 Max relations in full relation-set: 28 Initial matrix: 565917 x 680834 with sparse part having weight 42328056. Pruned matrix : 473624 x 476517 with weight 27571459. Total sieving time: 26.35 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 27.65 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
9·10159-7 = 8(9)1583<160> = 18104666690449826252281753693<29> · C132
C132 = P56 · P77
P56 = 22392329597836817510288640646341074175512979619336814351<56>
P77 = 22199985850784836127380389132731731977501124190563051137404670084573603137251<77>
Number: 89993_159 N=497109400238087848582031566032851660055020853947195342757531373490526734611539481118145584113295135923191327086633995939773759489101 ( 132 digits) SNFS difficulty: 160 digits. Divisors found: r1=22392329597836817510288640646341074175512979619336814351 (pp56) r2=22199985850784836127380389132731731977501124190563051137404670084573603137251 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 59.23 hours. Scaled time: 118.63 units (timescale=2.003). Factorization parameters were as follows: name: 89993_159 n: 497109400238087848582031566032851660055020853947195342757531373490526734611539481118145584113295135923191327086633995939773759489101 m: 100000000000000000000000000000000 c5: 9 c0: -70 skew: 1.51 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:284062, largePrimes:5877832 encountered Relations: rels:6049555, finalFF:771663 Max relations in full relation-set: 28 Initial matrix: 567272 x 771663 with sparse part having weight 50943228. Pruned matrix : 418651 x 421551 with weight 36252838. Total sieving time: 56.43 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.38 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 59.23 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
6·10167+7 = 6(0)1667<168> = 157 · C166
C166 = P47 · P120
P47 = 30141491732912660764138607233343720887304110987<47>
P120 = 126790541251891655395868197515952259522258968043055404184000880238481113593670765322134091338218303304135490412872342073<120>
Number: n N=3821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955414012738853503184713375796178343949044585987261146496815286624203821656051 ( 166 digits) SNFS difficulty: 168 digits. Divisors found: Fri Nov 02 11:53:15 2007 prp47 factor: 30141491732912660764138607233343720887304110987 Fri Nov 02 11:53:15 2007 prp120 factor: 126790541251891655395868197515952259522258968043055404184000880238481113593670765322134091338218303304135490412872342073 Fri Nov 02 11:53:15 2007 elapsed time 05:00:20 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 142.75 hours. Scaled time: 170.45 units (timescale=1.194). Factorization parameters were as follows: name: KA_6_0_166_7 n: 3821656050955414012738853503184713375796178343949044585987261146496815286624203821656050955414012738853503184713375796178343949044585987261146496815286624203821656051 type: snfs skew: 0.82 deg: 5 c5: 75 c0: 28 m: 2000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 5000213) Primes: RFBsize:250150, AFBsize:250046, largePrimes:8066210 encountered Relations: rels:7523828, finalFF:472612 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 142.32 hours. Total relation processing time: 0.43 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.6,2.6,100000 total time: 142.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
3·10160-1 = 2(9)160<161> = 3119 · 62171 · 716003 · 80479894854409<14> · C133
C133 = P59 · P75
P59 = 22773127470380768369771978355584433053642892841637684786821<59>
P75 = 117894381311324651726376382743763178993218466198694259251340381195966953253<75>
Number: n N=2684823773644472499695314004905933113030245860446596390581560505765323424678107700978354714731235290256104741769394425383100177478713 ( 133 digits) SNFS difficulty: 160 digits. Divisors found: Fri Nov 02 21:39:00 2007 prp59 factor: 22773127470380768369771978355584433053642892841637684786821 Fri Nov 02 21:39:00 2007 prp75 factor: 117894381311324651726376382743763178993218466198694259251340381195966953253 Fri Nov 02 21:39:00 2007 elapsed time 01:07:33 (Msieve 1.29) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.18 hours. Scaled time: 37.37 units (timescale=1.326). Factorization parameters were as follows: name: KA_2_9_160 n: 2684823773644472499695314004905933113030245860446596390581560505765323424678107700978354714731235290256104741769394425383100177478713 skew: 0.95 deg: 5 c5: 3 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1400000) Primes: RFBsize:216816, AFBsize:216846, largePrimes:7002342 encountered Relations: rels:6502743, finalFF:523807 Max relations in full relation-set: 28 Initial matrix: 433727 x 523807 with sparse part having weight 39790411. Pruned matrix : 360363 x 362595 with weight 22732739. Total sieving time: 27.98 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By matsui / GMP-ECM
(5·10166+7)/3 = 1(6)1659<167> = 38609 · 75787 · C157
C157 = P36 · C122
P36 = 156630091583671031730558418871436461<36>
C122 = [36365559895016016644306948036519971789440001831406469011965021801985852343260659678682774063764231328439857717070493184563<122>]
By Jo Yeong Uk / GGNFS, GMP-ECM
2·10160-3 = 1(9)1597<161> = 15073 · 1023361 · 2269267633<10> · 51894756337<11> · C131
C131 = P49 · P82
P49 = 1244702530203678363132386159041482385491409469399<49>
P82 = 8845587159376599603050287573778844195307606321990000300773593282138846596884883531<82>
Number: 19997_160 N=11010124718413221462280367876462346322453582439931705506709272261862462870251427913507922600641649990825847478334158897252623567869 ( 131 digits) SNFS difficulty: 160 digits. Divisors found: r1=1244702530203678363132386159041482385491409469399 (pp49) r2=8845587159376599603050287573778844195307606321990000300773593282138846596884883531 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.76 hours. Scaled time: 54.81 units (timescale=2.128). Factorization parameters were as follows: n: 11010124718413221462280367876462346322453582439931705506709272261862462870251427913507922600641649990825847478334158897252623567869 m: 100000000000000000000000000000000 c5: 2 c0: -3 skew: 1.08 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:283187, largePrimes:5679964 encountered Relations: rels:5762216, finalFF:699117 Max relations in full relation-set: 28 Initial matrix: 566398 x 699117 with sparse part having weight 43937665. Pruned matrix : 457329 x 460224 with weight 27759676. Total sieving time: 24.56 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 25.76 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
(7·10161+11)/9 = (7)1609<161> = 13 · 1181 · 188695951 · 13069034534977941833<20> · C130
C130 = P34 · P96
P34 = 6012553105775282745767182262190667<34>
P96 = 341662463922226905047290637587563518265187529653427259070665961826179127070588201628147242777463<96>
By Robert Backstrom / GGNFS, Msieve
9·10160-7 = 8(9)1593<161> = 619 · 31247 · 201823 · C149
C149 = P44 · P44 · P61
P44 = 44832592826645189491277561661890927333335849<44>
P44 = 58928729369518409469720209631759471783420671<44>
P61 = 8726738097012509717654043907256703264726239277870739541104253<61>
Number: n N=23055411367586615082003261341128857444920360386517972549304906315835176876756217183769848071125522085298104115328957218756792728520856138498005089787 ( 149 digits) SNFS difficulty: 160 digits. Divisors found: Fri Nov 02 05:43:45 2007 prp44 factor: 44832592826645189491277561661890927333335849 Fri Nov 02 05:43:45 2007 prp44 factor: 58928729369518409469720209631759471783420671 Fri Nov 02 05:43:45 2007 prp61 factor: 8726738097012509717654043907256703264726239277870739541104253 Fri Nov 02 05:43:45 2007 elapsed time 01:21:01 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.14 hours. Scaled time: 50.08 units (timescale=1.425). Factorization parameters were as follows: name: KA_8_9_159_3 n: 23055411367586615082003261341128857444920360386517972549304906315835176876756217183769848071125522085298104115328957218756792728520856138498005089787 skew: 0.95 deg: 5 c5: 9 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1800179) Primes: RFBsize:203362, AFBsize:203517, largePrimes:7126574 encountered Relations: rels:6588475, finalFF:452122 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 34.95 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 35.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS, GMP-ECM
(4·10190-31)/9 = (4)1891<190> = C190
C190 = P89 · P101
P89 = 56633002372177889917787382603024134082794402810604184699423290284260806567232850743196879<89>
P101 = 78477994425170505252478126430623716163551522942533133685072386085630247384183834818134344179505629079<101>
Number: 44441_190 N=4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 ( 190 digits) SNFS difficulty: 190 digits. Divisors found: r1=56633002372177889917787382603024134082794402810604184699423290284260806567232850743196879 (pp89) r2=78477994425170505252478126430623716163551522942533133685072386085630247384183834818134344179505629079 (pp101) Version: GGNFS-0.77.1-20050930-nocona Total time: 506.30 hours. Scaled time: 1086.00 units (timescale=2.145). Factorization parameters were as follows: n: 4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 m: 100000000000000000000000000000000000000 c5: 4 c0: -31 skew: 1.51 type: snfs Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved algebraic special-q in [6500000, 14600001) Primes: RFBsize:849252, AFBsize:849764, largePrimes:12825340 encountered Relations: rels:13582667, finalFF:1936815 Max relations in full relation-set: 28 Initial matrix: 1699080 x 1936815 with sparse part having weight 144996551. Pruned matrix : 1492822 x 1501381 with weight 111522440. Total sieving time: 485.19 hours. Total relation processing time: 0.40 hours. Matrix solve time: 20.54 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,51,51,2.6,2.6,100000 total time: 506.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific ro2utine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
P89 is the biggest factor which was found in our tables so far. Congratulations!
I was surprized that two P89s had been found continuously from the same near-repdigit sequence.
(5·10160-23)/9 = (5)1593<160> = 3 · 47 · 36583 · 391183217 · 13416202562095777<17> · C129
C129 = P36 · P93
P36 = 557467334877805199211719058269920279<36>
P93 = 368128820889923730632432710032916764064373628070399222255862045362828218454119475627959989141<93>
By matsui / Msieve
(5·10173+7)/3 = 1(6)1729<174> = 79 · 141073 · 154543 · 165887 · 63473899 · 133660440077<12> · 1862230537518772176753410725489813<34> · C104
C104 = P43 · P61
P43 = 5917523119420196943705339866721088586618339<43>
P61 = 6239425363430810864236794554166498878991514867897846161057107<61>
By Robert Backstrom / GMP-ECM, GGNFS
9·10154-7 = 8(9)1533<155> = 31 · 59 · 3116155837<10> · C143
C143 = P34 · P47 · P63
P34 = 3792154237087773328323098510929643<34>
P47 = 13515254733080096925398066307959108515533417271<47>
P63 = 308105468835983009135964692963347948427570307230290780677274397<63>
prp34 factors: 3792154237087773328323098510929643 prp47 factor: 13515254733080096925398066307959108515533417271 (pp47) prp63 factor: 308105468835983009135964692963347948427570307230290780677274397 (pp63) GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 15791000075873905536643005674835499743042023035608132996665252198463383016350684288596800392658129485982981128379660782197197761083905185830441 (143 digits) Using B1=1030000, B2=875663603, polynomial Dickson(3), sigma=1277051764 Step 1 took 15188ms Step 2 took 8703ms ********** Factor found in step 2: 3792154237087773328323098510929643 Found probable prime factor of 34 digits: 3792154237087773328323098510929643 Composite cofactor 4164123895973381665684521031919367758331000757893159498628020621881612855280700051156426496919521695565910587 has 109 digits Number: n N=4164123895973381665684521031919367758331000757893159498628020621881612855280700051156426496919521695565910587 ( 109 digits) Divisors found: r1=13515254733080096925398066307959108515533417271 (pp47) r2=308105468835983009135964692963347948427570307230290780677274397 (pp63) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 15.47 hours. Scaled time: 20.19 units (timescale=1.305). Factorization parameters were as follows: name: KA_8_9_153_3 n: 4164123895973381665684521031919367758331000757893159498628020621881612855280700051156426496919521695565910587 skew: 13433.88 # norm 5.58e+14 c5: 62340 c4: -1730045296 c3: -31252455735533 c2: 59780409705258362 c1: 594864083607926757768 c0: 4226538018654160771217904 # alpha -5.88 Y1: 54837503413 Y0: -582038343536829418255 # Murphy_E 1.28e-09 # M 775188593700025757374907442535572328332511394125380113220895912641476417303724565829169862375221504000062036 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:230209, AFBsize:230238, largePrimes:6848426 encountered Relations: rels:6590432, finalFF:586768 Max relations in full relation-set: 28 Initial matrix: 460530 x 586768 with sparse part having weight 36842357. Pruned matrix : 341921 x 344287 with weight 16084571. Total sieving time: 13.36 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.49 hours. Total square root time: 0.31 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 15.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / PRIMO
(85·102960-31)/9 is prime.
By Sinkiti Sibata / GGNFS
9·10152-7 = 8(9)1513<153> = 27487 · 2387449 · 5618769997<10> · C133
C133 = P44 · P89
P44 = 75820868126956676281536230696860571433120407<44>
P89 = 32192229601894986931087007258474395061004652068487123300133829248970334366365297350334109<89>
Number: 89993_152 N=2440842795357990826312342895539487490184328387705207959270387795925092533977126288036775251949678234292518146093908937568969876062363 ( 133 digits) SNFS difficulty: 152 digits. Divisors found: r1=75820868126956676281536230696860571433120407 (pp44) r2=32192229601894986931087007258474395061004652068487123300133829248970334366365297350334109 (pp89) Version: GGNFS-0.77.1-20060513-k8 Total time: 37.53 hours. Scaled time: 72.25 units (timescale=1.925). Factorization parameters were as follows: name: 89993_152 n: 2440842795357990826312342895539487490184328387705207959270387795925092533977126288036775251949678234292518146093908937568969876062363 m: 1000000000000000000000000000000 c5: 900 c0: -7 skew: 0.38 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:175703, largePrimes:5892665 encountered Relations: rels:5985872, finalFF:583936 Max relations in full relation-set: 28 Initial matrix: 352069 x 583936 with sparse part having weight 61282735. Pruned matrix : 277434 x 279258 with weight 33988858. Total sieving time: 35.96 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.27 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 37.53 hours. --------- CPU info (if available) ----------
By Yousuke Koide
(101265-1)/9 is divisible by 7973059286225484515918622191263721<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS, Msieve
9·10157-7 = 8(9)1563<158> = 23 · 64057787 · C149
C149 = P73 · P76
P73 = 8547312778918799179387612593474476828728823510172134540253167241939987973<73>
P76 = 7146824962215572093535969278319248184705372720242480746696150650147917691641<76>
Number: n N=61086148328241023456170774434462215920080438294417426293679106525704877121001087183439811795314562241854476205041713894715231040563014033617462633693 ( 149 digits) SNFS difficulty: 157 digits. Divisors found: Thu Nov 01 00:37:53 2007 prp73 factor: 8547312778918799179387612593474476828728823510172134540253167241939987973 Thu Nov 01 00:37:53 2007 prp76 factor: 7146824962215572093535969278319248184705372720242480746696150650147917691641 Thu Nov 01 00:37:53 2007 elapsed time 01:22:09 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.30 hours. Scaled time: 49.46 units (timescale=1.326). Factorization parameters were as follows: name: KA_8_9_156_3 n: 61086148328241023456170774434462215920080438294417426293679106525704877121001087183439811795314562241854476205041713894715231040563014033617462633693 skew: 0.38 deg: 5 c5: 900 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:216816, AFBsize:216321, largePrimes:7229719 encountered Relations: rels:6721021, finalFF:520151 Max relations in full relation-set: 28 Initial matrix: 433201 x 520151 with sparse part having weight 46044664. Pruned matrix : 368182 x 370412 with weight 28093041. Total sieving time: 37.05 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 37.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS, Msieve
9·10150-7 = 8(9)1493<151> = 859 · 352963277 · 18139634852382632412042997<26> · C115
C115 = P41 · P74
P41 = 55504280314514112186236174411054189440309<41>
P74 = 29482533885016913889484106257918099812603456906714576053691076225565509087<74>
Number: 89993_150 N=1636406825136139563104533988910623283706494518193323744963557735997068458160508983884811204786788623931439183587883 ( 115 digits) SNFS difficulty: 150 digits. Divisors found: r1=55504280314514112186236174411054189440309 (pp41) r2=29482533885016913889484106257918099812603456906714576053691076225565509087 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.99 hours. Scaled time: 27.87 units (timescale=2.146). Factorization parameters were as follows: n: 1636406825136139563104533988910623283706494518193323744963557735997068458160508983884811204786788623931439183587883 m: 1000000000000000000000000000000 c5: 9 c0: -7 skew: 0.95 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:176458, largePrimes:5472027 encountered Relations: rels:5419693, finalFF:513988 Max relations in full relation-set: 28 Initial matrix: 352824 x 513988 with sparse part having weight 44556647. Pruned matrix : 279117 x 280945 with weight 22936374. Total sieving time: 12.50 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.38 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 12.99 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10153-7 = 8(9)1523<154> = 235483 · 15771126802857831503737789<26> · 2469438507084583723424410362013<31> · C93
C93 = P35 · P59
P35 = 29916323560200857306637278521712341<35>
P59 = 32803016936544339453376593485631195739277624165372655627383<59>
Wed Oct 31 08:32:17 2007 Wed Oct 31 08:32:17 2007 Wed Oct 31 08:32:17 2007 Msieve v. 1.28 Wed Oct 31 08:32:17 2007 random seeds: 78b84c31 5c438943 Wed Oct 31 08:32:17 2007 factoring 981345668424409173005139032359911659122268552148212314853518231679477196677844688222808633603 (93 digits) Wed Oct 31 08:32:17 2007 commencing quadratic sieve (93-digit input) Wed Oct 31 08:32:18 2007 using multiplier of 3 Wed Oct 31 08:32:18 2007 using 32kb Intel Core sieve core Wed Oct 31 08:32:18 2007 sieve interval: 36 blocks of size 32768 Wed Oct 31 08:32:18 2007 processing polynomials in batches of 6 Wed Oct 31 08:32:18 2007 using a sieve bound of 1953863 (72941 primes) Wed Oct 31 08:32:18 2007 using large prime bound of 244232875 (27 bits) Wed Oct 31 08:32:18 2007 using double large prime bound of 1253277823035125 (42-51 bits) Wed Oct 31 08:32:18 2007 using trial factoring cutoff of 51 bits Wed Oct 31 08:32:18 2007 polynomial 'A' values have 12 factors Wed Oct 31 09:57:24 2007 73505 relations (19333 full + 54172 combined from 979953 partial), need 73037 Wed Oct 31 09:57:24 2007 begin with 999286 relations Wed Oct 31 09:57:24 2007 reduce to 184209 relations in 11 passes Wed Oct 31 09:57:24 2007 attempting to read 184209 relations Wed Oct 31 09:57:26 2007 recovered 184209 relations Wed Oct 31 09:57:26 2007 recovered 160186 polynomials Wed Oct 31 09:57:26 2007 attempting to build 73505 cycles Wed Oct 31 09:57:26 2007 found 73505 cycles in 6 passes Wed Oct 31 09:57:26 2007 distribution of cycle lengths: Wed Oct 31 09:57:26 2007 length 1 : 19333 Wed Oct 31 09:57:26 2007 length 2 : 13661 Wed Oct 31 09:57:26 2007 length 3 : 12554 Wed Oct 31 09:57:26 2007 length 4 : 9800 Wed Oct 31 09:57:26 2007 length 5 : 7114 Wed Oct 31 09:57:26 2007 length 6 : 4591 Wed Oct 31 09:57:26 2007 length 7 : 2825 Wed Oct 31 09:57:26 2007 length 9+: 3627 Wed Oct 31 09:57:26 2007 largest cycle: 18 relations Wed Oct 31 09:57:26 2007 matrix is 72941 x 73505 with weight 4546757 (avg 61.86/col) Wed Oct 31 09:57:27 2007 filtering completed in 3 passes Wed Oct 31 09:57:27 2007 matrix is 68316 x 68380 with weight 4231949 (avg 61.89/col) Wed Oct 31 09:57:28 2007 saving the first 48 matrix rows for later Wed Oct 31 09:57:28 2007 matrix is 68268 x 68380 with weight 3299116 (avg 48.25/col) Wed Oct 31 09:57:28 2007 matrix includes 64 packed rows Wed Oct 31 09:57:28 2007 using block size 27352 for processor cache size 4096 kB Wed Oct 31 09:57:29 2007 commencing Lanczos iteration Wed Oct 31 09:57:50 2007 lanczos halted after 1081 iterations Wed Oct 31 09:57:50 2007 recovered 15 nontrivial dependencies Wed Oct 31 09:57:50 2007 prp35 factor: 29916323560200857306637278521712341 Wed Oct 31 09:57:50 2007 prp59 factor: 32803016936544339453376593485631195739277624165372655627383 Wed Oct 31 09:57:50 2007 elapsed time 01:25:33
By Sinkiti Sibata / GGNFS
9·10148-7 = 8(9)1473<149> = 53 · 839 · 3833 · 5333122741489<13> · 380397540317863012963011373<27> · C102
C102 = P48 · P55
P48 = 185048077381378285528736195447051909587258335893<48>
P55 = 1406572115111896750750738223467919885903244947129739803<55>
Number: 89993_148 N=260283465599715195282875769247700889484368036515112348257395053869878284353005891464605690479865649079 ( 102 digits) SNFS difficulty: 148 digits. Divisors found: r1=185048077381378285528736195447051909587258335893 (pp48) r2=1406572115111896750750738223467919885903244947129739803 (pp55) Version: GGNFS-0.77.1-20060513-k8 Total time: 30.10 hours. Scaled time: 59.93 units (timescale=1.991). Factorization parameters were as follows: name: 89993_148 n: 260283465599715195282875769247700889484368036515112348257395053869878284353005891464605690479865649079 m: 100000000000000000000000000000 c5: 9000 c0: -7 skew: 0.24 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4250001) Primes: RFBsize:114155, AFBsize:114082, largePrimes:3049998 encountered Relations: rels:3108836, finalFF:263510 Max relations in full relation-set: 28 Initial matrix: 228304 x 263510 with sparse part having weight 32994625. Pruned matrix : 218898 x 220103 with weight 26198623. Total sieving time: 29.21 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.62 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 30.10 hours. --------- CPU info (if available) ----------
By matsui / GMP-ECM, Msieve
(5·10198+7)/3 = 1(6)1979<199> = 2671 · 2222089 · 43446912661062564370891697<26> · 151432609261393100562428907767<30> · C134
C134 = P38 · P43 · P53
P38 = 78356711420850326025452572618724188949<38>
P43 = 5527668366912659164266442169275274462403349<43>
P53 = 98540986433720343595658132228977073747961703420580549<53>
(5·10173+7)/3 = 1(6)1729<174> = 79 · 141073 · 154543 · 165887 · 63473899 · 133660440077<12> · C137
C137 = P34 · C104
P34 = 1862230537518772176753410725489813<34>
C104 = [36921943839998587914228808236155511843378747795412617433005313650028624835179704262350945849262592485273<104>]
By Womack
(10309-1)/9 is divisible by 5294796903161592416528456780680376286484870226446771978908657527791<67> and the cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Tyler Cadigan / Msieve, GGNFS
(64·10163-1)/9 = 7(1)163<164> = 637330387763<12> · 10957735036324101653<20> · C134
C134 = P61 · P73
P61 = 5153208161696653721426359516088698419315495201808470280932923<61>
P73 = 1975942751788253995617036939102852461531533982770011785041254696010379563<73>
Mon Oct 29 19:58:09 2007 Mon Oct 29 19:58:09 2007 Mon Oct 29 19:58:09 2007 Msieve v. 1.29 Mon Oct 29 19:58:09 2007 random seeds: 79db1e80 385338a0 Mon Oct 29 19:58:09 2007 factoring 10182444315560575705513301530834416904561566048028307675788338594283441380448622210798637965512347107701350195485846065970978973052649 (134 digits) Mon Oct 29 19:58:10 2007 commencing number field sieve (133-digit input) Mon Oct 29 19:58:10 2007 R0: -400000000000000000000000000000000 Mon Oct 29 19:58:10 2007 R1: 1 Mon Oct 29 19:58:10 2007 A0: -2 Mon Oct 29 19:58:10 2007 A1: 0 Mon Oct 29 19:58:10 2007 A2: 0 Mon Oct 29 19:58:10 2007 A3: 0 Mon Oct 29 19:58:10 2007 A4: 0 Mon Oct 29 19:58:10 2007 A5: 125 Mon Oct 29 19:58:10 2007 size score = 2.442337e-011, Murphy alpha = 0.284179, combined = 2.221603e-011 Mon Oct 29 20:01:42 2007 restarting with 5837456 relations Mon Oct 29 20:01:48 2007 factor base loaded: Mon Oct 29 20:01:48 2007 348513 rational ideals (max prime = 4999999) Mon Oct 29 20:01:48 2007 316326 algebraic ideals (max prime = 4499969) Mon Oct 29 20:01:48 2007 added 15854 free relations Mon Oct 29 20:01:48 2007 Mon Oct 29 20:01:48 2007 commencing relation filtering Mon Oct 29 20:01:48 2007 commencing duplicate removal, pass 1 Mon Oct 29 20:01:52 2007 error -14 reading relation 62058 Mon Oct 29 20:06:03 2007 found 79763 hash collisions in 5853309 relations Mon Oct 29 20:06:03 2007 commencing duplicate removal, pass 2 Mon Oct 29 20:09:59 2007 found 17169 duplicates and 5836140 unique relations Mon Oct 29 20:09:59 2007 memory use: 37.8 MB Mon Oct 29 20:10:05 2007 ignoring smallest 282973 rational and 283029 algebraic ideals Mon Oct 29 20:10:05 2007 filtering ideals above 3997355 Mon Oct 29 20:10:05 2007 need 962203 more relations than ideals Mon Oct 29 20:10:05 2007 commencing singleton removal, pass 1 Mon Oct 29 20:14:14 2007 relations with 0 large ideals: 103993 Mon Oct 29 20:14:14 2007 relations with 1 large ideals: 760328 Mon Oct 29 20:14:14 2007 relations with 2 large ideals: 2000058 Mon Oct 29 20:14:14 2007 relations with 3 large ideals: 1934872 Mon Oct 29 20:14:14 2007 relations with 4 large ideals: 844689 Mon Oct 29 20:14:14 2007 relations with 5 large ideals: 173568 Mon Oct 29 20:14:14 2007 relations with 6 large ideals: 17913 Mon Oct 29 20:14:14 2007 relations with 7+ large ideals: 719 Mon Oct 29 20:14:14 2007 5836140 relations and about 5716455 large ideals Mon Oct 29 20:14:14 2007 commencing singleton removal, pass 2 Mon Oct 29 20:18:32 2007 found 3032525 singletons Mon Oct 29 20:18:32 2007 current dataset: 2803615 relations and about 2113481 large ideals Mon Oct 29 20:18:32 2007 commencing singleton removal, pass 3 Mon Oct 29 20:22:13 2007 found 448303 singletons Mon Oct 29 20:22:13 2007 current dataset: 2355312 relations and about 1639581 large ideals Mon Oct 29 20:22:13 2007 commencing singleton removal, final pass Mon Oct 29 20:26:10 2007 memory use: 77.5 MB Mon Oct 29 20:26:10 2007 commencing in-memory singleton removal Mon Oct 29 20:26:11 2007 begin with 2355312 relations and 1708927 unique ideals Mon Oct 29 20:26:17 2007 reduce to 2069330 relations and 1416639 ideals in 11 passes Mon Oct 29 20:26:17 2007 max relations containing the same ideal: 35 Mon Oct 29 20:26:18 2007 dataset has 15.3% excess relations Mon Oct 29 20:26:22 2007 ignoring smallest 256574 rational and 256498 algebraic ideals Mon Oct 29 20:26:22 2007 filtering ideals above 3597619 Mon Oct 29 20:26:22 2007 need 611282 more relations than ideals Mon Oct 29 20:26:22 2007 commencing singleton removal, final pass Mon Oct 29 20:29:45 2007 memory use: 93.6 MB Mon Oct 29 20:29:45 2007 commencing in-memory singleton removal Mon Oct 29 20:29:46 2007 begin with 2355312 relations and 1761848 unique ideals Mon Oct 29 20:29:53 2007 reduce to 2068928 relations and 1469137 ideals in 11 passes Mon Oct 29 20:29:53 2007 max relations containing the same ideal: 35 Mon Oct 29 20:29:54 2007 dataset has 6.0% excess relations Mon Oct 29 20:29:54 2007 relations with 0 large ideals: 68851 Mon Oct 29 20:29:54 2007 relations with 1 large ideals: 298085 Mon Oct 29 20:29:54 2007 relations with 2 large ideals: 616837 Mon Oct 29 20:29:54 2007 relations with 3 large ideals: 631687 Mon Oct 29 20:29:54 2007 relations with 4 large ideals: 341963 Mon Oct 29 20:29:54 2007 relations with 5 large ideals: 94801 Mon Oct 29 20:29:54 2007 relations with 6 large ideals: 15793 Mon Oct 29 20:29:54 2007 relations with 7+ large ideals: 911 Mon Oct 29 20:29:54 2007 commencing 2-way merge Mon Oct 29 20:30:00 2007 reduce to 1298002 relation sets and 698213 unique ideals Mon Oct 29 20:30:00 2007 ignored 2 oversize relation sets Mon Oct 29 20:30:00 2007 commencing full merge Mon Oct 29 20:30:59 2007 found 664054 cycles, need 590413 Mon Oct 29 20:31:00 2007 weight of 590413 cycles is about 38798316 (65.71/cycle) Mon Oct 29 20:31:00 2007 distribution of cycle lengths: Mon Oct 29 20:31:00 2007 1 relations: 100601 Mon Oct 29 20:31:00 2007 2 relations: 68982 Mon Oct 29 20:31:00 2007 3 relations: 62992 Mon Oct 29 20:31:00 2007 4 relations: 55520 Mon Oct 29 20:31:00 2007 5 relations: 50346 Mon Oct 29 20:31:00 2007 6 relations: 44152 Mon Oct 29 20:31:00 2007 7 relations: 39232 Mon Oct 29 20:31:00 2007 8 relations: 34235 Mon Oct 29 20:31:00 2007 9 relations: 30168 Mon Oct 29 20:31:00 2007 10+ relations: 104185 Mon Oct 29 20:31:00 2007 heaviest cycle: 17 relations Mon Oct 29 20:31:00 2007 commencing cycle optimization Mon Oct 29 20:31:02 2007 start with 3228434 relations Mon Oct 29 20:31:22 2007 pruned 92753 relations Mon Oct 29 20:31:22 2007 distribution of cycle lengths: Mon Oct 29 20:31:22 2007 1 relations: 100601 Mon Oct 29 20:31:22 2007 2 relations: 70333 Mon Oct 29 20:31:22 2007 3 relations: 65309 Mon Oct 29 20:31:22 2007 4 relations: 56690 Mon Oct 29 20:31:22 2007 5 relations: 52216 Mon Oct 29 20:31:22 2007 6 relations: 45474 Mon Oct 29 20:31:22 2007 7 relations: 40433 Mon Oct 29 20:31:22 2007 8 relations: 35072 Mon Oct 29 20:31:22 2007 9 relations: 30464 Mon Oct 29 20:31:22 2007 10+ relations: 93821 Mon Oct 29 20:31:22 2007 heaviest cycle: 17 relations Mon Oct 29 20:31:25 2007 Mon Oct 29 20:31:25 2007 commencing linear algebra Mon Oct 29 20:31:27 2007 read 590413 cycles Mon Oct 29 20:31:31 2007 cycles contain 1626805 unique relations Mon Oct 29 20:35:42 2007 read 1626805 relations Mon Oct 29 20:35:52 2007 using 32 quadratic characters above 134216228 Mon Oct 29 20:38:40 2007 read 590413 cycles Mon Oct 29 20:40:52 2007 filtering completed in 3 passes Mon Oct 29 20:40:53 2007 matrix is 585116 x 585316 with weight 52706044 (avg 90.05/col) Mon Oct 29 20:42:11 2007 read 585316 cycles Mon Oct 29 20:44:43 2007 matrix is 585116 x 585316 with weight 52706044 (avg 90.05/col) Mon Oct 29 20:44:43 2007 saving the first 48 matrix rows for later Mon Oct 29 20:44:44 2007 matrix is 585068 x 585316 with weight 39821171 (avg 68.03/col) Mon Oct 29 20:44:44 2007 matrix includes 64 packed rows Mon Oct 29 20:44:44 2007 using block size 21845 for processor cache size 512 kB Mon Oct 29 20:44:55 2007 commencing Lanczos iteration Mon Oct 29 23:39:22 2007 lanczos halted after 9254 iterations (dim = 585068) Mon Oct 29 23:39:40 2007 recovered 51 nontrivial dependencies Mon Oct 29 23:39:49 2007 Mon Oct 29 23:39:49 2007 commencing square root phase Mon Oct 29 23:39:49 2007 reading relations for dependency 1 Mon Oct 29 23:40:38 2007 read 292046 cycles Mon Oct 29 23:40:40 2007 cycles contain 983974 unique relations Mon Oct 29 23:45:16 2007 read 983974 relations Mon Oct 29 23:45:37 2007 multiplying 1554024 relations Mon Oct 29 23:58:13 2007 multiply complete, coefficients have about 43.64 million bits Mon Oct 29 23:58:15 2007 initial square root is modulo 1843111 Tue Oct 30 00:16:39 2007 prp61 factor: 5153208161696653721426359516088698419315495201808470280932923 Tue Oct 30 00:16:39 2007 prp73 factor: 1975942751788253995617036939102852461531533982770011785041254696010379563 Tue Oct 30 00:16:39 2007 elapsed time 04:18:30
By Sinkiti Sibata / GGNFS
(8·10169+7)/3 = 2(6)1689<170> = 29 · 2731 · 3853 · 6101 · C158
C158 = P39 · P119
P39 = 662045957785193703483721009542997210001<39>
P119 = 21635197395131458368660666363246008064391683714979718942359200843611409545192525720721351020928312546549349492289471827<119>
Number: 26669_169 N=14323494981331534264770233164626933360731902226623376107836718853298476108817106742366885509525113696497209270753439876022351249265426627408162506926892141827 ( 158 digits) SNFS difficulty: 170 digits. Divisors found: r1=662045957785193703483721009542997210001 (pp39) r2=21635197395131458368660666363246008064391683714979718942359200843611409545192525720721351020928312546549349492289471827 (pp119) Version: GGNFS-0.77.1-20060513-k8 Total time: 139.76 hours. Scaled time: 279.94 units (timescale=2.003). Factorization parameters were as follows: name: 26669_169 n: 14323494981331534264770233164626933360731902226623376107836718853298476108817106742366885509525113696497209270753439876022351249265426627408162506926892141827 m: 10000000000000000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7100001) Primes: RFBsize:412849, AFBsize:412831, largePrimes:6055936 encountered Relations: rels:6345700, finalFF:951274 Max relations in full relation-set: 28 Initial matrix: 825744 x 951274 with sparse part having weight 56560583. Pruned matrix : 721298 x 725490 with weight 40805496. Total sieving time: 133.63 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.58 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 139.76 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
9·10143-7 = 8(9)1423<144> = 1777 · 1725179 · 133421887 · C127
C127 = P39 · P89
P39 = 156872632499525723095280260098133461577<39>
P89 = 14026414070177028542787457357907396822775755157120560213926799915579235133672913797156429<89>
Number: 89993_143 N=2200360499717057804285186354000826515700652096122032856111785933419856092599249419038475136935920236563158160790423597130028533 ( 127 digits) SNFS difficulty: 145 digits. Divisors found: r1=156872632499525723095280260098133461577 (pp39) r2=14026414070177028542787457357907396822775755157120560213926799915579235133672913797156429 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.59 hours. Scaled time: 20.58 units (timescale=2.146). Factorization parameters were as follows: n: 2200360499717057804285186354000826515700652096122032856111785933419856092599249419038475136935920236563158160790423597130028533 m: 100000000000000000000000000000 c5: 9 c0: -700 skew: 2.39 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1400001) Primes: RFBsize:114155, AFBsize:114082, largePrimes:3411338 encountered Relations: rels:3448077, finalFF:323928 Max relations in full relation-set: 28 Initial matrix: 228301 x 323928 with sparse part having weight 30228512. Pruned matrix : 199683 x 200888 with weight 15655341. Total sieving time: 9.35 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 9.59 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10144-7 = 8(9)1433<145> = 30380069764762946805547503800941<32> · C114
C114 = P40 · P74
P40 = 5793759319832245415885975057146558926953<40>
P74 = 51132060310818176689028811056072205332653270314035794978186101297841513141<74>
Number: 89993_144 N=296246850968027270505132871619611111688006744457888000889843536883278888233053939988057668145613936858002808589373 ( 114 digits) SNFS difficulty: 145 digits. Divisors found: r1=5793759319832245415885975057146558926953 (pp40) r2=51132060310818176689028811056072205332653270314035794978186101297841513141 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.87 hours. Scaled time: 19.03 units (timescale=2.146). Factorization parameters were as follows: n: 296246850968027270505132871619611111688006744457888000889843536883278888233053939988057668145613936858002808589373 m: 100000000000000000000000000000 c5: 9 c0: -70 skew: 1.51 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1350001) Primes: RFBsize:114155, AFBsize:114417, largePrimes:3343512 encountered Relations: rels:3328593, finalFF:281277 Max relations in full relation-set: 28 Initial matrix: 228636 x 281277 with sparse part having weight 25879845. Pruned matrix : 211599 x 212806 with weight 16431801. Total sieving time: 8.61 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.19 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 8.87 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10153-7 = 8(9)1523<154> = 235483 · 15771126802857831503737789<26> · C124
C124 = P31 · C93
P31 = 2469438507084583723424410362013<31>
C93 = [981345668424409173005139032359911659122268552148212314853518231679477196677844688222808633603<93>]
9·10146-7 = 8(9)1453<147> = 19 · 307 · 2243 · 17371526793899<14> · 28598478520519<14> · C114
C114 = P44 · P70
P44 = 64299853807288749095977974116352073454267827<44>
P70 = 2153427995281495420234041605616327252058426335937525315582533212837981<70>
Number: 89993_146 N=138465105281123041720280097879537854129018147941456341438827168511391802940627666355587781402709904235851131937287 ( 114 digits) SNFS difficulty: 146 digits. Divisors found: r1=64299853807288749095977974116352073454267827 (pp44) r2=2153427995281495420234041605616327252058426335937525315582533212837981 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.37 hours. Scaled time: 22.21 units (timescale=2.143). Factorization parameters were as follows: n: 138465105281123041720280097879537854129018147941456341438827168511391802940627666355587781402709904235851131937287 m: 100000000000000000000000000000 c5: 90 c0: -7 skew: 0.6 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:135493, largePrimes:3715295 encountered Relations: rels:3729829, finalFF:320257 Max relations in full relation-set: 28 Initial matrix: 270632 x 320257 with sparse part having weight 29075311. Pruned matrix : 251639 x 253056 with weight 19777051. Total sieving time: 10.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.28 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
8·10167-7 = 7(9)1663<168> = 15137 · C164
C164 = P41 · P123
P41 = 70835644003123593484318087394932806885707<41>
P123 = 746102215179633311919695276118227149695996068322953673178010306203699906940184998267472539948678240767141330911324215957227<123>
Number: n N=52850630904406421351654885380194226068573693598467331703772213780802008323974367444011362885644447380590605800356741758604743344123670476316311025962872431789654489 ( 164 digits) SNFS difficulty: 167 digits. Divisors found: Tue Oct 30 07:24:05 2007 prp41 factor: 70835644003123593484318087394932806885707 Tue Oct 30 07:24:05 2007 prp123 factor: 746102215179633311919695276118227149695996068322953673178010306203699906940184998267472539948678240767141330911324215957227 Tue Oct 30 07:24:05 2007 elapsed time 02:09:23 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 78.72 hours. Scaled time: 102.80 units (timescale=1.306). Factorization parameters were as follows: name: KA_7_9_166_3 n: 52850630904406421351654885380194226068573693598467331703772213780802008323974367444011362885644447380590605800356741758604743344123670476316311025962872431789654489 skew: 0.78 deg: 5 c5: 25 c0: -7 m: 2000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3100001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:7450046 encountered Relations: rels:6889776, finalFF:446877 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 78.46 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 78.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10141-7 = 8(9)1403<142> = 2467639565737<13> · C130
C130 = P62 · P68
P62 = 53727058137272382231521263461791395461691665958866250660772681<62>
P68 = 67884046657300958448660911774042029705347021611364740350454114167369<68>
Number: n N=3647210121350119518190235337345061800537587608749415529958760713265023919457085448117350162821494933357724078360429982102496846289 ( 130 digits) SNFS difficulty: 141 digits. Divisors found: Tue Oct 30 09:24:32 2007 prp62 factor: 53727058137272382231521263461791395461691665958866250660772681 Tue Oct 30 09:24:32 2007 prp68 factor: 67884046657300958448660911774042029705347021611364740350454114167369 Tue Oct 30 09:24:32 2007 elapsed time 00:50:42 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.66 hours. Scaled time: 9.64 units (timescale=1.447). Factorization parameters were as follows: name: KA_8_9_140_3 n: 3647210121350119518190235337345061800537587608749415529958760713265023919457085448117350162821494933357724078360429982102496846289 skew: 0.60 deg: 5 c5: 90 c0: -7 m: 10000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 9500000) Primes: RFBsize:148933, AFBsize:149225, largePrimes:6523890 encountered Relations: rels:5928439, finalFF:382643 Max relations in full relation-set: 28 Initial matrix: 298225 x 382643 with sparse part having weight 26922338. Pruned matrix : 236427 x 237982 with weight 14528939. Total sieving time: 6.49 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 6.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By matsui / GMP-ECM
(5·10181+7)/3 = 1(6)1809<182> = 19 · 167393 · C175
C175 = P38 · P138
P38 = 15723245803923831841763637804116393807<38>
P138 = 333284910953414496865344254925662573105861000375900329621890909608385992777196180707248922993978075855583628204941899412869920935091825201<138>
By Robert Backstrom / GGNFS, Msieve 1.28, GMP-ECM
9·10184-7 = 8(9)1833<185> = 31 · 311 · 22091 · 37100458201<11> · 1275537910469<13> · 282209150413571<15> · 480434327015263<15> · 14873984820428774119490711269<29> · C97
C97 = P39 · P58
P39 = 593474640229445793717454630072648349617<39>
P58 = 7461012807353624814862644671648910980191120545663272451503<58>
Number: n N=4427921891591479845215021556692579780756319432292202349671112615670635805041615039103114621124351 ( 97 digits) Divisors found: r1=593474640229445793717454630072648349617 (pp39) r2=7461012807353624814862644671648910980191120545663272451503 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.00 hours. Scaled time: 11.63 units (timescale=1.453). Factorization parameters were as follows: name: n n: 4427921891591479845215021556692579780756319432292202349671112615670635805041615039103114621124351 m: 13069795307958322129988 deg: 4 c4: 151748640 c3: 1255715867918 c2: -263120823138764827 c1: -4731771597968022768 c0: 240860015889048958069487 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.565 # E(F1,F2) = 2.428134e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1193586766. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 1180001) Primes: RFBsize:92938, AFBsize:92740, largePrimes:1863035 encountered Relations: rels:1930390, finalFF:234741 Max relations in full relation-set: 28 Initial matrix: 185753 x 234741 with sparse part having weight 16859853. Pruned matrix : 163671 x 164663 with weight 9437558. Polynomial selection time: 0.17 hours. Total sieving time: 7.24 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.44 hours. Total square root time: 0.06 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 8.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
9·10140-7 = 8(9)1393<141> = 47 · 109 · 167 · 617 · C133
C133 = P33 · P101
P33 = 153337616869490449763658859895879<33>
P101 = 11119053224090329768606633153477332542273472771580149117582678104067239138069306589653736225297573611<101>
(89·10164+1)/9 = 9(8)1639<165> = 17 · 19597 · 7888299157<10> · C150
C150 = P42 · P109
P42 = 270666531521708051044165587427652002648199<42>
P109 = 1390244075564748945696789150673380726874059327867465501106095914306348058416858266414264460951086291348664927<109>
Number: n N=376292541901713990156240140280107136920403712406844501532612508891705603189038511185276004611331447762586551055990351376936771061312168024647111016473 ( 150 digits) SNFS difficulty: 166 digits. Divisors found: Mon Oct 29 21:17:16 2007 prp42 factor: 270666531521708051044165587427652002648199 Mon Oct 29 21:17:16 2007 prp109 factor: 1390244075564748945696789150673380726874059327867465501106095914306348058416858266414264460951086291348664927 Mon Oct 29 21:17:16 2007 elapsed time 02:10:55 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 74.57 hours. Scaled time: 98.88 units (timescale=1.326). Factorization parameters were as follows: name: KA_9_8_163_9 n: 376292541901713990156240140280107136920403712406844501532612508891705603189038511185276004611331447762586551055990351376936771061312168024647111016473 skew: 0.65 deg: 5 c5: 89 c0: 10 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3500000) Primes: RFBsize:250150, AFBsize:249266, largePrimes:7709961 encountered Relations: rels:7186570, finalFF:561747 Max relations in full relation-set: 28 Initial matrix: 499481 x 561747 with sparse part having weight 51822639. Pruned matrix : 473183 x 475744 with weight 37331802. Total sieving time: 74.27 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 74.57 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10145-7 = 8(9)1443<146> = 97 · 3307 · 3767 · C137
C137 = P29 · P108
P29 = 88689612345000909646591931059<29>
P108 = 839785174596700619416492075514766572936766799231731694119293012984478206119418982501449042954689673043155839<108>
By Jo Yeong Uk / GGNFS, GMP-ECM
9·10138-7 = 8(9)1373<139> = 113 · 1039 · 21012038995387387919<20> · C115
C115 = P55 · P60
P55 = 8324111480329451493669984302302012442668075809611357389<55>
P60 = 438270694932342412379485394874876095508458992349269934992589<60>
Number: 89993_138 N=3648214123178278233256210719479595987622179900672256982789110923572726048983147685427800495148109948692769945390121 ( 115 digits) SNFS difficulty: 140 digits. Divisors found: r1=8324111480329451493669984302302012442668075809611357389 (pp55) r2=438270694932342412379485394874876095508458992349269934992589 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.25 hours. Scaled time: 13.42 units (timescale=2.146). Factorization parameters were as follows: n: 3648214123178278233256210719479595987622179900672256982789110923572726048983147685427800495148109948692769945390121 m: 10000000000000000000000000000 c5: 9 c0: -700 skew: 2.39 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114082, largePrimes:3249074 encountered Relations: rels:3266483, finalFF:322988 Max relations in full relation-set: 28 Initial matrix: 228301 x 322988 with sparse part having weight 26878127. Pruned matrix : 191188 x 192393 with weight 12738220. Total sieving time: 6.06 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.25 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10149-7 = 8(9)1483<150> = C150
C150 = P38 · P42 · P72
P38 = 35794409962129142828512220689799871821<38>
P42 = 123028439265110134626156384131454479013793<42>
P72 = 204372184460583650412981392697490828081020379007054396748321776875537981<72>
Number: 89993_149 N=899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 150 digits) SNFS difficulty: 150 digits. Divisors found: r1=35794409962129142828512220689799871821 (pp38) r2=123028439265110134626156384131454479013793 (pp42) r3=204372184460583650412981392697490828081020379007054396748321776875537981 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.84 hours. Scaled time: 27.54 units (timescale=2.146). Factorization parameters were as follows: n: 899999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 1000000000000000000000000000000 c5: 9 c0: -70 skew: 1.51 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:176833, largePrimes:5402800 encountered Relations: rels:5281314, finalFF:455491 Max relations in full relation-set: 28 Initial matrix: 353199 x 455491 with sparse part having weight 38566153. Pruned matrix : 301756 x 303585 with weight 22658433. Total sieving time: 12.29 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.44 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 12.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10139-7 = 8(9)1383<140> = 31 · 34319 · C134
C134 = P41 · P93
P41 = 95880034599375142177521603584056943225357<41>
P93 = 882303513756038409718500891576339947944242061119473046440639355414422699311396515924957852941<93>
Number: 89993_139 N=84595291426079224430368205705670422384290090413567580828451088412418964760421434942931076456284443207891048784224670054864746228224937 ( 134 digits) SNFS difficulty: 140 digits. Divisors found: r1=95880034599375142177521603584056943225357 (pp41) r2=882303513756038409718500891576339947944242061119473046440639355414422699311396515924957852941 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.16 hours. Scaled time: 13.12 units (timescale=2.129). Factorization parameters were as follows: n: 84595291426079224430368205705670422384290090413567580828451088412418964760421434942931076456284443207891048784224670054864746228224937 m: 10000000000000000000000000000 c5: 9 c0: -70 skew: 1.51 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114417, largePrimes:3350084 encountered Relations: rels:3437732, finalFF:383556 Max relations in full relation-set: 28 Initial matrix: 228636 x 383556 with sparse part having weight 32672853. Pruned matrix : 174534 x 175741 with weight 12890921. Total sieving time: 5.98 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.16 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Total of 4 processors activated (19246.09 BogoMIPS).
9·10197-7 = 8(9)1963<198> = C198
C198 = P33 · C166
P33 = 104572749495411191273052631155941<33>
C166 = [8606448662225270711938618675616267002791985751466136050473524371365139986511632740091624538638242280156899111248894398265050813422371895877062117828590480106511274373<166>]
By Sinkiti Sibata / GGNFS
9·10137-7 = 8(9)1363<138> = 227 · 2521 · C133
C133 = P39 · P94
P39 = 221091843902924979644001926922716807503<39>
P94 = 7113299338479217992920918313593338363891253403625902931023690166695268837106428754985186805093<94>
Number: 89993_137 N=1572692466977826783651687062158048603186973912526844986693274293293165602769336690740510985256881840120083807034129173969493261012779 ( 133 digits) SNFS difficulty: 137 digits. Divisors found: r1=221091843902924979644001926922716807503 (pp39) r2=7113299338479217992920918313593338363891253403625902931023690166695268837106428754985186805093 (pp94) Version: GGNFS-0.77.1-20060513-k8 Total time: 13.09 hours. Scaled time: 26.31 units (timescale=2.010). Factorization parameters were as follows: name: 89993_137 n: 1572692466977826783651687062158048603186973912526844986693274293293165602769336690740510985256881840120083807034129173969493261012779 m: 1000000000000000000000000000 c5: 900 c0: -7 skew: 0.38 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 2125001) Primes: RFBsize:78498, AFBsize:63823, largePrimes:1683910 encountered Relations: rels:1718050, finalFF:173211 Max relations in full relation-set: 28 Initial matrix: 142385 x 173211 with sparse part having weight 19269917. Pruned matrix : 135154 x 135929 with weight 13734266. Total sieving time: 12.78 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 13.09 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM
(2·10164+43)/9 = (2)1637<164> = 33 · 172 · 2309 · 631311078642593<15> · C142
C142 = P36 · P106
P36 = 212146409889374522698249183584805409<36>
P106 = 9209220022038251514752208083059669039690403032046144718649809261395595313649005423325208968370329688568373<106>
By Robert Backstrom / GGNFS, GMP-ECM
9·10120-7 = 8(9)1193<121> = C121
C121 = P56 · P66
P56 = 20354029401725849662526304753223971301497103511422609997<56>
P66 = 442172889817918611600780346173978409068598975005735222119428696669<66>
Number: n N=8999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 121 digits) SNFS difficulty: 120 digits. Divisors found: r1=20354029401725849662526304753223971301497103511422609997 (pp56) r2=442172889817918611600780346173978409068598975005735222119428696669 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.55 hours. Scaled time: 2.24 units (timescale=1.442). Factorization parameters were as follows: name: KA_8_9_119_3 n: 8999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 skew: 0.95 deg: 5 c5: 9 c0: -7 m: 1000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 250001) Primes: RFBsize:78498, AFBsize:78361, largePrimes:4232731 encountered Relations: rels:3638568, finalFF:200786 Max relations in full relation-set: 28 Initial matrix: 156923 x 200786 with sparse part having weight 10194178. Pruned matrix : 122805 x 123653 with weight 4620848. Total sieving time: 1.31 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Total square root time: 0.05 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 1.55 hours. --------- CPU info (if available) ----------
9·10124-7 = 8(9)1233<125> = 31 · 83 · 859 · C119
C119 = P39 · P80
P39 = 514997239710717504843060243797163586321<39>
P80 = 79068710858248681348102914984733040362741538735234491408794076224567905858038519<80>
Number: n N=40720167839482908161995686376886870777262039256956475117488995374641379744069220665756646323172444933890807512599498599 ( 119 digits) SNFS difficulty: 125 digits. Divisors found: r1=514997239710717504843060243797163586321 (pp39) r2=79068710858248681348102914984733040362741538735234491408794076224567905858038519 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.17 hours. Scaled time: 3.15 units (timescale=1.454). Factorization parameters were as follows: name: KA_8_9_123_3 n: 40720167839482908161995686376886870777262039256956475117488995374641379744069220665756646323172444933890807512599498599 skew: 1.51 deg: 5 c5: 9 c0: -70 m: 10000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 350001) Primes: RFBsize:78498, AFBsize:78806, largePrimes:4616754 encountered Relations: rels:3996538, finalFF:211076 Max relations in full relation-set: 28 Initial matrix: 157368 x 211076 with sparse part having weight 12304449. Pruned matrix : 125655 x 126505 with weight 5315318. Total sieving time: 1.90 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.17 hours. --------- CPU info (if available) ----------
9·10123-7 = 8(9)1223<124> = 283 · 449 · 18553 · C115
C115 = P33 · P83
P33 = 335087805245091568482853093222231<33>
P83 = 11392970303565490307790042441076114728020253883982388272289002974166360045042039653<83>
By Sinkiti Sibata / GGNFS
9·10103-7 = 8(9)1023<104> = 8969263 · 22129553 · C90
C90 = P34 · P57
P34 = 3138341068996635669510657500009591<34>
P57 = 144481741911394492878214372456463812416287949515103488657<57>
Number: 89993_103 N=453432984360701811730662361842066998814076709622439235119159164702296684015661335059709287 ( 90 digits) SNFS difficulty: 103 digits. Divisors found: r1=3138341068996635669510657500009591 (pp34) r2=144481741911394492878214372456463812416287949515103488657 (pp57) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.16 hours. Scaled time: 2.33 units (timescale=2.010). Factorization parameters were as follows: name: 89993_103 n: 453432984360701811730662361842066998814076709622439235119159164702296684015661335059709287 m: 100000000000000000000 c5: 9000 c0: -7 skew: 0.24 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 350001) Primes: RFBsize:37706, AFBsize:41552, largePrimes:1383872 encountered Relations: rels:1489916, finalFF:267931 Max relations in full relation-set: 28 Initial matrix: 79325 x 267931 with sparse part having weight 10896930. Pruned matrix : 39729 x 40189 with weight 1773397. Total sieving time: 1.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.00 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.16 hours. --------- CPU info (if available) ----------
9·10110-7 = 8(9)1093<111> = 19 · 41551595117<11> · C100
C100 = P29 · P71
P29 = 41281949109330068117018801413<29>
P71 = 27614743514922133541815936402538216668321370424896711617313719193012707<71>
Number: 89993_110 N=1139990436450218045364874916232246048513796723724260459114263780638570351214091539941676577618554991 ( 100 digits) SNFS difficulty: 110 digits. Divisors found: r1=41281949109330068117018801413 (pp29) r2=27614743514922133541815936402538216668321370424896711617313719193012707 (pp71) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.60 hours. Scaled time: 3.20 units (timescale=2.003). Factorization parameters were as follows: name: 89993_110 n: 1139990436450218045364874916232246048513796723724260459114263780638570351214091539941676577618554991 m: 10000000000000000000000 c5: 9 c0: -7 skew: 0.95 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:63908, largePrimes:2384591 encountered Relations: rels:2925739, finalFF:659504 Max relations in full relation-set: 28 Initial matrix: 113070 x 659504 with sparse part having weight 48577546. Pruned matrix : 58429 x 59058 with weight 4920438. Total sieving time: 1.50 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
9·10133-7 = 8(9)1323<134> = 264101 · 534617 · C123
C123 = P39 · P85
P39 = 182955127132944612210518087078849494903<39>
P85 = 3484055901363921062151806188107621607898929991774539197434850631713521731052250641243<85>
Number: 89993_133 N=637425890372322111870552134461924960577827615567570996460983077035726280509113823885139408501711796643783835904368410084429 ( 123 digits) SNFS difficulty: 133 digits. Divisors found: r1=182955127132944612210518087078849494903 (pp39) r2=3484055901363921062151806188107621607898929991774539197434850631713521731052250641243 (pp85) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.85 hours. Scaled time: 13.77 units (timescale=2.010). Factorization parameters were as follows: name: 89993_133 n: 637425890372322111870552134461924960577827615567570996460983077035726280509113823885139408501711796643783835904368410084429 m: 100000000000000000000000000 c5: 9000 c0: -7 skew: 0.24 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63803, largePrimes:1569153 encountered Relations: rels:1588445, finalFF:190481 Max relations in full relation-set: 28 Initial matrix: 142368 x 190481 with sparse part having weight 15782385. Pruned matrix : 127348 x 128123 with weight 8890552. Total sieving time: 6.62 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.85 hours. --------- CPU info (if available) ----------
9·10122-7 = 8(9)1213<123> = 53 · 4483 · 916879 · 2468335253078521<16> · C97
C97 = P38 · P59
P38 = 21496643135387952418448986201888231937<38>
P59 = 77859405334185056592558073314508609031087592802266287870129<59>
Number: 89993_122 N=1673715851202497322218396988251980025978426972094963254178577242866898726074527843954613286109873 ( 97 digits) SNFS difficulty: 122 digits. Divisors found: r1=21496643135387952418448986201888231937 (pp38) r2=77859405334185056592558073314508609031087592802266287870129 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.78 hours. Scaled time: 5.54 units (timescale=1.991). Factorization parameters were as follows: name: 89993_122 n: 1673715851202497322218396988251980025978426972094963254178577242866898726074527843954613286109873 m: 1000000000000000000000000 c5: 900 c0: -7 skew: 0.38 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2113012 encountered Relations: rels:2116801, finalFF:142981 Max relations in full relation-set: 28 Initial matrix: 112985 x 142981 with sparse part having weight 12791337. Pruned matrix : 105117 x 105745 with weight 7557577. Total sieving time: 2.61 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.78 hours. --------- CPU info (if available) ----------
9·10127-7 = 8(9)1263<128> = 16927 · 2815289 · 34549727 · C110
C110 = P53 · P58
P53 = 18928495665651195086151678397725759673977330546366127<53>
P58 = 2887877797068484257309586094965034801453924030197429437839<58>
Number: 89993_127 N=54663182364741125803462775792405445851485144937413141458737770402786616920134187641356901510330757177881679553 ( 110 digits) SNFS difficulty: 127 digits. Divisors found: r1=18928495665651195086151678397725759673977330546366127 (pp53) r2=2887877797068484257309586094965034801453924030197429437839 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.41 hours. Scaled time: 8.86 units (timescale=2.010). Factorization parameters were as follows: name: 89993_127 n: 54663182364741125803462775792405445851485144937413141458737770402786616920134187641356901510330757177881679553 m: 10000000000000000000000000 c5: 900 c0: -7 skew: 0.38 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63823, largePrimes:1546280 encountered Relations: rels:1577253, finalFF:198015 Max relations in full relation-set: 28 Initial matrix: 127838 x 198015 with sparse part having weight 14562521. Pruned matrix : 108690 x 109393 with weight 6383787. Total sieving time: 4.25 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.41 hours. --------- CPU info (if available) ----------
9·10119-7 = 8(9)1183<120> = 61 · 823 · 1004981 · 1446682233738538319<19> · C92
C92 = P41 · P51
P41 = 45567990874948473844291875103339917072403<41>
P51 = 270596365668481699029128282701225154281973286874043<51>
Number: 89993_119 N=12330532721575594545992327055219422353381614259277089538199489555365772207883504963972335329 ( 92 digits) SNFS difficulty: 120 digits. Divisors found: r1=45567990874948473844291875103339917072403 (pp41) r2=270596365668481699029128282701225154281973286874043 (pp51) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.11 hours. Scaled time: 4.20 units (timescale=1.991). Factorization parameters were as follows: name: 89993_119 n: 12330532721575594545992327055219422353381614259277089538199489555365772207883504963972335329 m: 1000000000000000000000000 c5: 9 c0: -70 skew: 1.51 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64228, largePrimes:1981105 encountered Relations: rels:1934715, finalFF:128846 Max relations in full relation-set: 28 Initial matrix: 113390 x 128846 with sparse part having weight 9933260. Pruned matrix : 107064 x 107694 with weight 6957791. Total sieving time: 1.96 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.11 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(5·102847+1)/3 is prime.
The factor table of 899...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Yousuke Koide
101121+1 is divisible by 162578197086018239450239785966343<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
(8·10163+7)/3 = 2(6)1629<164> = 17 · 9672675193889<13> · 2132690377238720580097964644733<31> · C119
C119 = P32 · P88
P32 = 16241366780245493793149978382913<32>
P88 = 4681907431777497416749516436722604837221873429043948077027598629819267084782903500320897<88>
Number: 26669_163 N=76040575830655542110535543314902372731075646666123180911982484874925096768258162409352851616275001258339376508641632961 ( 119 digits) SNFS difficulty: 163 digits. Divisors found: r1=16241366780245493793149978382913 (pp32) r2=4681907431777497416749516436722604837221873429043948077027598629819267084782903500320897 (pp88) Version: GGNFS-0.77.1-20060513-k8 Total time: 89.67 hours. Scaled time: 179.08 units (timescale=1.997). Factorization parameters were as follows: name: 26669_163 n: 76040575830655542110535543314902372731075646666123180911982484874925096768258162409352851616275001258339376508641632961 m: 200000000000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5150001) Primes: RFBsize:315948, AFBsize:316791, largePrimes:5926048 encountered Relations: rels:6075527, finalFF:765961 Max relations in full relation-set: 28 Initial matrix: 632805 x 765961 with sparse part having weight 56904865. Pruned matrix : 534793 x 538021 with weight 40888773. Total sieving time: 85.28 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.92 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 89.67 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve, GGNFS
(82·10161+71)/9 = 9(1)1609<162> = 11 · 23 · 3748991 · 2671832954149<13> · 5966029856099<13> · 302592140766530934908888222616061079<36> · C93
C93 = P40 · P53
P40 = 3850694069121437110112555389391787483611<40>
P53 = 51718395086698620503380784735167544390948057134540087<53>
Fri Oct 26 00:04:24 2007 Fri Oct 26 00:04:24 2007 Fri Oct 26 00:04:24 2007 Msieve v. 1.28 Fri Oct 26 00:04:24 2007 random seeds: bb05f469 520cf979 Fri Oct 26 00:04:24 2007 factoring 199151717224829651201838246240894378459227321597236742980797132267408631739729758957535014157 (93 digits) Fri Oct 26 00:04:24 2007 commencing quadratic sieve (92-digit input) Fri Oct 26 00:04:24 2007 using multiplier of 53 Fri Oct 26 00:04:24 2007 using 32kb Intel Core sieve core Fri Oct 26 00:04:24 2007 sieve interval: 36 blocks of size 32768 Fri Oct 26 00:04:24 2007 processing polynomials in batches of 6 Fri Oct 26 00:04:24 2007 using a sieve bound of 1879931 (70588 primes) Fri Oct 26 00:04:24 2007 using large prime bound of 219951927 (27 bits) Fri Oct 26 00:04:24 2007 using double large prime bound of 1037982177167364 (42-50 bits) Fri Oct 26 00:04:24 2007 using trial factoring cutoff of 50 bits Fri Oct 26 00:04:24 2007 polynomial 'A' values have 12 factors Fri Oct 26 01:38:35 2007 70852 relations (18438 full + 52414 combined from 913373 partial), need 70684 Fri Oct 26 01:38:35 2007 begin with 931811 relations Fri Oct 26 01:38:36 2007 reduce to 176982 relations in 10 passes Fri Oct 26 01:38:36 2007 attempting to read 176982 relations Fri Oct 26 01:38:37 2007 recovered 176982 relations Fri Oct 26 01:38:37 2007 recovered 157867 polynomials Fri Oct 26 01:38:38 2007 attempting to build 70852 cycles Fri Oct 26 01:38:38 2007 found 70852 cycles in 5 passes Fri Oct 26 01:38:38 2007 distribution of cycle lengths: Fri Oct 26 01:38:38 2007 length 1 : 18438 Fri Oct 26 01:38:38 2007 length 2 : 13138 Fri Oct 26 01:38:38 2007 length 3 : 12424 Fri Oct 26 01:38:38 2007 length 4 : 9444 Fri Oct 26 01:38:38 2007 length 5 : 6893 Fri Oct 26 01:38:38 2007 length 6 : 4449 Fri Oct 26 01:38:38 2007 length 7 : 2721 Fri Oct 26 01:38:38 2007 length 9+: 3345 Fri Oct 26 01:38:38 2007 largest cycle: 17 relations Fri Oct 26 01:38:38 2007 matrix is 70588 x 70852 with weight 4361172 (avg 61.55/col) Fri Oct 26 01:38:38 2007 filtering completed in 3 passes Fri Oct 26 01:38:38 2007 matrix is 66408 x 66472 with weight 4123761 (avg 62.04/col) Fri Oct 26 01:38:39 2007 saving the first 48 matrix rows for later Fri Oct 26 01:38:39 2007 matrix is 66360 x 66472 with weight 3167656 (avg 47.65/col) Fri Oct 26 01:38:39 2007 matrix includes 64 packed rows Fri Oct 26 01:38:39 2007 using block size 26588 for processor cache size 4096 kB Fri Oct 26 01:38:41 2007 commencing Lanczos iteration Fri Oct 26 01:39:01 2007 lanczos halted after 1051 iterations Fri Oct 26 01:39:01 2007 recovered 17 nontrivial dependencies Fri Oct 26 01:39:01 2007 prp40 factor: 3850694069121437110112555389391787483611 Fri Oct 26 01:39:01 2007 prp53 factor: 51718395086698620503380784735167544390948057134540087 Fri Oct 26 01:39:01 2007 elapsed time 01:34:37
10160-3 = (9)1597<160> = 13 · 383 · 52771123082243438120761219452533939<35> · C122
C122 = P55 · P68
P55 = 3104829324566476660204837376960208819056316254480075411<55>
P68 = 12258118210972106300910696745912453876036288591144435630300652094167<68>
Number: 99997_160 N=38059364885428552053660274073288904257094149099533297652419641952424130876827819709343439432012909374053370298093233227637 ( 122 digits) SNFS difficulty: 160 digits. Divisors found: r1=3104829324566476660204837376960208819056316254480075411 (pp55) r2=12258118210972106300910696745912453876036288591144435630300652094167 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.28 hours. Scaled time: 51.72 units (timescale=2.130). Factorization parameters were as follows: n: 38059364885428552053660274073288904257094149099533297652419641952424130876827819709343439432012909374053370298093233227637 m: 100000000000000000000000000000000 c5: 1 c0: -3 skew: 1.25 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:282992, largePrimes:5668831 encountered Relations: rels:5757196, finalFF:705905 Max relations in full relation-set: 28 Initial matrix: 566202 x 705905 with sparse part having weight 43019303. Pruned matrix : 449468 x 452363 with weight 26383924. Total sieving time: 23.17 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.99 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.28 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(68·10159+13)/9 = 7(5)1587<160> = 3 · 11 · 4815673 · 4744027650700422249483517<25> · C128
C128 = P43 · P85
P43 = 1817556499049832315979311388016701905830557<43>
P85 = 5513918500405508167982559945335390530223566166104141567423964571081382710408776663717<85>
Number: n N=10021858405643136835110663638106493348996711376408485617314301858636084358685512690994172006148128480343234388008600600371800369 ( 128 digits) SNFS difficulty: 161 digits. Divisors found: Fri Oct 26 04:07:36 2007 prp43 factor: 1817556499049832315979311388016701905830557 Fri Oct 26 04:07:36 2007 prp85 factor: 5513918500405508167982559945335390530223566166104141567423964571081382710408776663717 Fri Oct 26 04:07:36 2007 elapsed time 01:12:41 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 35.05 hours. Scaled time: 45.84 units (timescale=1.308). Factorization parameters were as follows: name: KA_7_5_158_7 n: 10021858405643136835110663638106493348996711376408485617314301858636084358685512690994172006148128480343234388008600600371800369 skew: 1.14 deg: 5 c5: 34 c0: 65 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700001) Primes: RFBsize:216816, AFBsize:216756, largePrimes:7052915 encountered Relations: rels:6510490, finalFF:471406 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 34.83 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 35.05 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS, Msieve
(8·10167+7)/3 = 2(6)1669<168> = 13 · C167
C167 = P41 · P127
P41 = 13118854935330807737302880871625861715191<41>
P127 = 1563613639600265717122264555652120246875230542463041437585843162802180545583168901897596747095254252168082117302855188658610343<127>
Number: n N=20512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820513 ( 167 digits) SNFS difficulty: 167 digits. Divisors found: Fri Oct 26 00:52:24 2007 prp41 factor: 13118854935330807737302880871625861715191 Fri Oct 26 00:52:24 2007 prp127 factor: 1563613639600265717122264555652120246875230542463041437585843162802180545583168901897596747095254252168082117302855188658610343 Fri Oct 26 00:52:24 2007 elapsed time 02:20:14 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 68.58 hours. Scaled time: 82.23 units (timescale=1.199). Factorization parameters were as follows: name: KA_2_6_166_9 n: 20512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820513 type: snfs skew: 0.78 deg: 5 c5: 25 c0: 7 m: 2000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2800001) Primes: RFBsize:250150, AFBsize:250196, largePrimes:7501352 encountered Relations: rels:7006091, finalFF:549114 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.27 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.6,2.6,100000 total time: 68.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / PRIMO
(26·102688-11)/3 is prime.
By Jo Yeong Uk / GMP-ECM
(46·10161-1)/9 = 5(1)161<162> = 17 · 29 · 47 · 724447 · 855857254801063<15> · 3172216729960337<16> · C122
C122 = P31 · P91
P31 = 8979918563026048055214325630447<31>
P91 = 1248899066404055568679090185969582597135314562972683825422549780576518206214842043840714379<91>
(82·10161+71)/9 = 9(1)1609<162> = 11 · 23 · 3748991 · 2671832954149<13> · 5966029856099<13> · C128
C128 = P36 · C93
P36 = 302592140766530934908888222616061079<36>
C93 = [199151717224829651201838246240894378459227321597236742980797132267408631739729758957535014157<93>]
By Robert Backstrom / GGNFS, Msieve
10166+9 = 1(0)1659<167> = 6841 · 3298055297<10> · C153
C153 = P47 · P106
P47 = 96175707342105206747325741564689382490429756801<47>
P106 = 4608473425480966721109597553701118029210118730372926247354918207318621993190226935764939329385047887076817<106>
Number: n N=443223191462926543459909958595746661943719852080722467101166627816472353539797980148447621698392127726651524401212365554604364053039646401916272115182417 ( 153 digits) SNFS difficulty: 166 digits. Divisors found: Thu Oct 25 15:40:05 2007 prp47 factor: 96175707342105206747325741564689382490429756801 Thu Oct 25 15:40:05 2007 prp106 factor: 4608473425480966721109597553701118029210118730372926247354918207318621993190226935764939329385047887076817 Thu Oct 25 15:40:05 2007 elapsed time 01:54:23 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 62.44 hours. Scaled time: 82.79 units (timescale=1.326). Factorization parameters were as follows: name: KA_1_0_165_9 n: 443223191462926543459909958595746661943719852080722467101166627816472353539797980148447621698392127726651524401212365554604364053039646401916272115182417 skew: 0.98 deg: 5 c5: 10 c0: 9 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900000) Primes: RFBsize:250150, AFBsize:250021, largePrimes:7553576 encountered Relations: rels:7043754, finalFF:563405 Max relations in full relation-set: 28 Initial matrix: 500238 x 563405 with sparse part having weight 49550458. Pruned matrix : 457419 x 459984 with weight 35024031. Total sieving time: 62.12 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 62.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS, GMP-ECM
(10160+11)/3 = (3)1597<160> = 2357 · 3547 · 6483784428566166293003<22> · C131
C131 = P65 · P66
P65 = 98546042989459507145454598033560826513496496641717463749658701161<65>
P66 = 624008085251487858816186117499534910163524917199921025095545919941<66>
Number: 33337_160 N=61493527594963435585105940425622344176908261835783977623937353322902951931684135308791965353024017933025951725442269952202949751501 ( 131 digits) SNFS difficulty: 160 digits. Divisors found: r1=98546042989459507145454598033560826513496496641717463749658701161 (pp65) r2=624008085251487858816186117499534910163524917199921025095545919941 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.41 hours. Scaled time: 51.96 units (timescale=2.129). Factorization parameters were as follows: n: 61493527594963435585105940425622344176908261835783977623937353322902951931684135308791965353024017933025951725442269952202949751501 m: 100000000000000000000000000000000 c5: 1 c0: 11 skew: 1.62 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:283048, largePrimes:5715875 encountered Relations: rels:5844133, finalFF:739067 Max relations in full relation-set: 28 Initial matrix: 566258 x 739067 with sparse part having weight 45560931. Pruned matrix : 423383 x 426278 with weight 27548907. Total sieving time: 23.43 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.85 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(28·10159-1)/9 = 3(1)159<160> = 33 · 97 · 717667 · 31119047 · 4319493713<10> · C134
C134 = P51 · P83
P51 = 691407189640250229701631872793975317289967702892453<51>
P83 = 17810004148297787657731990085303963501623195591076357396769870762158063825273702029<83>
Number: 31111_159 N=12313964915655771746286044453350809950290851202515862861599384612499767983759056219534341024515693473314812267723013626438858554887137 ( 134 digits) SNFS difficulty: 161 digits. Divisors found: r1=691407189640250229701631872793975317289967702892453 (pp51) r2=17810004148297787657731990085303963501623195591076357396769870762158063825273702029 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.18 hours. Scaled time: 66.89 units (timescale=2.145). Factorization parameters were as follows: n: 12313964915655771746286044453350809950290851202515862861599384612499767983759056219534341024515693473314812267723013626438858554887137 m: 100000000000000000000000000000000 c5: 14 c0: -5 skew: 0.81 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3800001) Primes: RFBsize:283146, AFBsize:284317, largePrimes:5680047 encountered Relations: rels:5727480, finalFF:670051 Max relations in full relation-set: 28 Initial matrix: 567529 x 670051 with sparse part having weight 43786702. Pruned matrix : 489700 x 492601 with weight 29899843. Total sieving time: 29.75 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 31.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(2·10162+43)/9 = (2)1617<162> = 79 · 3074539183721<13> · 92026938157876922867<20> · C127
C127 = P31 · P97
P31 = 7374950638373593966200740279443<31>
P97 = 1348050841856743517595672702299157137569123136816328878609841055467622001119053294651183847225613<97>
(4·10162-13)/9 = (4)1613<162> = 4795407827859115566133901<25> · C137
C137 = P30 · P108
P30 = 732132950352080637131122456739<30>
P108 = 126590752328295613964062194725925454032813432338962666501971716450553063422318328708874925852644810865626637<108>
(5·10162-41)/9 = (5)1611<162> = 17 · 7802477 · 1221834755184846949<19> · C136
C136 = P29 · P107
P29 = 74150969555284684198040824859<29>
P107 = 46229241501927787031803827366761897615314009076339630433468603502437500587889723061122144734719131912055229<107>
3·10163-7 = 2(9)1623<164> = 41 · 43 · 73 · 433163734125755498123<21> · C138
C138 = P33 · P105
P33 = 984803325251956195887249668731139<33>
P105 = 546442521935781460110773913223987286991730594097092602213887622250012599971203648826978554376441175284731<105>
By Sinkiti Sibata / GGNFS
(8·10158+7)/3 = 2(6)1579<159> = 453968096244493<15> · C144
C144 = P56 · P88
P56 = 77025991204399032295102167879033530984020107406191788251<56>
P88 = 7626163354920877208117873161490105884353828530163763489424107667430447229492870343004083<88>
Number: 26669_158 N=587412791499445703414789501643028537938176365461039166386707531445737063824203352653873977007985725071863227998012464875392047576593221164428833 ( 144 digits) SNFS difficulty: 158 digits. Divisors found: r1=77025991204399032295102167879033530984020107406191788251 (pp56) r2=7626163354920877208117873161490105884353828530163763489424107667430447229492870343004083 (pp88) Version: GGNFS-0.77.1-20060513-k8 Total time: 59.71 hours. Scaled time: 118.95 units (timescale=1.992). Factorization parameters were as follows: name: 26669_158 n: 587412791499445703414789501643028537938176365461039166386707531445737063824203352653873977007985725071863227998012464875392047576593221164428833 m: 20000000000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:284107, largePrimes:5971981 encountered Relations: rels:6202849, finalFF:822675 Max relations in full relation-set: 28 Initial matrix: 567319 x 822675 with sparse part having weight 58139262. Pruned matrix : 388038 x 390938 with weight 44121525. Total sieving time: 56.94 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.38 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 59.71 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(8·10152+7)/3 = 2(6)1519<153> = 61 · C151
C151 = P39 · P113
P39 = 421869844046731851658147807645650077819<39>
P113 = 10362401487434351205807812414291785916154078462280535061673815273435490140412383670255796593884378838685001402691<113>
Number: n N=4371584699453551912568306010928961748633879781420765027322404371584699453551912568306010928961748633879781420765027322404371584699453551912568306010929 ( 151 digits) SNFS difficulty: 152 digits. Divisors found: r1=421869844046731851658147807645650077819 (pp39) r2=10362401487434351205807812414291785916154078462280535061673815273435490140412383670255796593884378838685001402691 (pp113) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.95 hours. Scaled time: 22.10 units (timescale=1.304). Factorization parameters were as follows: name: KA_2_6_151_9 n: 4371584699453551912568306010928961748633879781420765027322404371584699453551912568306010928961748633879781420765027322404371584699453551912568306010929 skew: 0.78 deg: 5 c5: 25 c0: 7 m: 2000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:203362, AFBsize:203182, largePrimes:6399966 encountered Relations: rels:5939023, finalFF:511751 Max relations in full relation-set: 28 Initial matrix: 406608 x 511751 with sparse part having weight 27504928. Pruned matrix : 311614 x 313711 with weight 13508229. Total sieving time: 15.13 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.56 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 16.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Kurt Beschorner
10753+1 is divisible by 1756473376297178637489284481878718601<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Yousuke Koide
101371+1 is divisible by 127539278618607069275328998039143<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
(8·10146+7)/3 = 2(6)1459<147> = 2167165829<10> · C138
C138 = P64 · P74
P64 = 4143397241869544226241437570296544113990642586158773224155313511<64>
P74 = 29697508503653602939343659106341885529158177653874575739404674525553127951<74>
Number: 26669_146 N=123048574824435673891693992129047484472249246906461197560099895182809596923866349254192982509723148032649543343582622844440699543102045961 ( 138 digits) SNFS difficulty: 147 digits. Divisors found: r1=4143397241869544226241437570296544113990642586158773224155313511 (pp64) r2=29697508503653602939343659106341885529158177653874575739404674525553127951 (pp74) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.70 hours. Scaled time: 39.37 units (timescale=1.998). Factorization parameters were as follows: name: 26669_146 n: 123048574824435673891693992129047484472249246906461197560099895182809596923866349254192982509723148032649543343582622844440699543102045961 m: 200000000000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114392, largePrimes:2877121 encountered Relations: rels:2886374, finalFF:288594 Max relations in full relation-set: 28 Initial matrix: 228612 x 288594 with sparse part having weight 30123579. Pruned matrix : 210472 x 211679 with weight 20270448. Total sieving time: 18.98 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.51 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 19.70 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(8·10165+7)/3 = 2(6)1649<166> = 73 · 9803 · 19961 · 3844331 · 12325751 · 106692540971<12> · 5524900734469672569379<22> · C109
C109 = P33 · P36 · P42
P33 = 161800001655869356136898432615667<33>
P36 = 226209579099872731684276944664364189<36>
P42 = 182609076402191723318653867302508477992533<42>
Number: 26669_165 N=6683621898604490720408773048442746311375034340493821379268599844292684440397247763706382879797337575415946579 ( 109 digits) Divisors found: r1=161800001655869356136898432615667 (pp33) r2=226209579099872731684276944664364189 (pp36) r3=182609076402191723318653867302508477992533 (pp42) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.55 hours. Scaled time: 30.77 units (timescale=2.114). Factorization parameters were as follows: name: 26669_165 n: 6683621898604490720408773048442746311375034340493821379268599844292684440397247763706382879797337575415946579 skew: 30844.34 # norm 3.88e+15 c5: 32640 c4: -6377134016 c3: 10966983900756 c2: 6023277967525827220 c1: 20338186144994372135593 c0: -322736910701913843682752030 # alpha -6.58 Y1: 391238345143 Y0: -728218088733067565453 # Murphy_E 1.05e-09 # M 2458195276530130644457672644483945265068481024582090432931298737948038172243268879673145326804447368387365992 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 1920001) Primes: RFBsize:176302, AFBsize:175803, largePrimes:7512919 encountered Relations: rels:7327983, finalFF:490794 Max relations in full relation-set: 28 Initial matrix: 352190 x 490794 with sparse part having weight 47989971. Pruned matrix : 258659 x 260483 with weight 27043110. Polynomial selection time: 0.68 hours. Total sieving time: 13.24 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.38 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 14.55 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(64·10160+53)/9 = 7(1)1597<161> = 23 · 191 · 114769 · 748180586440778137<18> · C135
C135 = P43 · P92
P43 = 2272678914182122391159400004256881975433059<43>
P92 = 82948234356112188698160244749473598135682577177508948629769483777144299322248884566566919647<92>
Number: n N=188514703189773269056083345014625106760612761414432617373683190484568696824418797686302626998621689259459609264199987578100566480410173 ( 135 digits) SNFS difficulty: 161 digits. Divisors found: Tue Oct 23 03:14:29 2007 prp43 factor: 2272678914182122391159400004256881975433059 Tue Oct 23 03:14:29 2007 prp92 factor: 82948234356112188698160244749473598135682577177508948629769483777144299322248884566566919647 Tue Oct 23 03:14:29 2007 elapsed time 01:10:32 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 38.03 hours. Scaled time: 49.78 units (timescale=1.309). Factorization parameters were as follows: name: KA_7_1_159_7 n: 188514703189773269056083345014625106760612761414432617373683190484568696824418797686302626998621689259459609264199987578100566480410173 skew: 1.93 deg: 5 c5: 2 c0: 53 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:216816, AFBsize:216946, largePrimes:7083358 encountered Relations: rels:6573818, finalFF:499435 Max relations in full relation-set: 28 Initial matrix: 433827 x 499435 with sparse part having weight 36087703. Pruned matrix : 381360 x 383593 with weight 23854377. Total sieving time: 37.83 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 38.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(8·10160+7)/3 = 2(6)1599<161> = 49843 · C156
C156 = P70 · P86
P70 = 8206529381083043352109674031409945933677801693490815409442456291123149<70>
P86 = 65193609889480326298653585942015762338033823753726962763716880835878142163048859303067<86>
Number: n N=535013275016886356492720475626801490011970922028502832226524620642149683339017849380387750871068488386868099164710524379886175925740157427656173718810397983 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: Tue Oct 23 23:09:38 2007 prp70 factor: 8206529381083043352109674031409945933677801693490815409442456291123149 Tue Oct 23 23:09:38 2007 prp86 factor: 65193609889480326298653585942015762338033823753726962763716880835878142163048859303067 Tue Oct 23 23:09:38 2007 elapsed time 01:04:53 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.34 hours. Scaled time: 52.83 units (timescale=1.454). Factorization parameters were as follows: name: KA_2_6_159_9 n: 535013275016886356492720475626801490011970922028502832226524620642149683339017849380387750871068488386868099164710524379886175925740157427656173718810397983 skew: 1.95 deg: 5 c5: 1 c0: 28 m: 200000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1800000) Primes: RFBsize:203362, AFBsize:203227, largePrimes:7259162 encountered Relations: rels:6779635, finalFF:504684 Max relations in full relation-set: 28 Initial matrix: 406653 x 504684 with sparse part having weight 41751576. Pruned matrix : 337714 x 339811 with weight 26445618. Total sieving time: 36.12 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 36.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / PRIMO
(85·102580-13)/9 is prime.
By Jo Yeong Uk / GGNFS
(8·10154+7)/3 = 2(6)1539<155> = 17224619 · 55682718131<11> · 46415095754141034190321569677<29> · C108
C108 = P35 · P73
P35 = 63976167233321490585818587278762619<35>
P73 = 9363133420441845598841194850047950471022696892436041111098985547200676067<73>
Number: 26669_154 N=599017389534088974031064754543587991849505713299448734373260781981910865693172098475924868395465908007539473 ( 108 digits) Divisors found: r1=63976167233321490585818587278762619 (pp35) r2=9363133420441845598841194850047950471022696892436041111098985547200676067 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.65 hours. Scaled time: 22.83 units (timescale=2.144). Factorization parameters were as follows: name: 26669_154 n: 599017389534088974031064754543587991849505713299448734373260781981910865693172098475924868395465908007539473 skew: 21354.62 # norm 6.78e+14 c5: 32400 c4: 104238510 c3: -63159803819065 c2: 42231149150739894 c1: 10386860579266260178521 c0: 1573011234854712440644311 # alpha -5.93 Y1: 268163654693 Y0: -450172247251438281950 # Murphy_E 1.31e-09 # M 353372238522770296188352642033280019967747150736232710020604793608863613888916745569090484185353683588909139 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135004, largePrimes:4543413 encountered Relations: rels:4565506, finalFF:355041 Max relations in full relation-set: 28 Initial matrix: 270157 x 355041 with sparse part having weight 33355043. Pruned matrix : 221309 x 222723 with weight 18208925. Polynomial selection time: 0.60 hours. Total sieving time: 9.69 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.65 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10157+7)/3 = 2(6)1569<158>= 71 · 73 · 4423 · 17761 · 463849 · 131698991 · C133
C133 = P48 · P85
P48 = 272730925941823417805548362043843409679870198107<48>
P85 = 3931060343889521523931450002903303012283257053146040409429479768292617881055891882137<85>
Number: 26669_157 N=1072121727522171991711117449162947893294510889614725272405934873471024006838246193709580176818241416588454805181432061281055284514659 ( 133 digits) SNFS difficulty: 157 digits. Divisors found: r1=272730925941823417805548362043843409679870198107 (pp48) r2=3931060343889521523931450002903303012283257053146040409429479768292617881055891882137 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.84 hours. Scaled time: 42.45 units (timescale=2.140). Factorization parameters were as follows: n: 1072121727522171991711117449162947893294510889614725272405934873471024006838246193709580176818241416588454805181432061281055284514659 m: 20000000000000000000000000000000 c5: 25 c0: 7 skew: 0.78 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:5656803 encountered Relations: rels:5671985, finalFF:600758 Max relations in full relation-set: 28 Initial matrix: 433786 x 600758 with sparse part having weight 46380712. Pruned matrix : 331528 x 333760 with weight 28777533. Total sieving time: 19.11 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.61 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 19.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
(8·10150+7)/3 = 2(6)1499<151> = 19 · 19173023 · 221211127 · C134
C134 = P52 · P83
P52 = 3153611510488812690844381411841100171038865591531757<52>
P83 = 10493234479791580568317662070396265616908097303633122206670593944661297064473922083<83>
Number: 26669_150 N=33091585037728817063066885723269305783539863851825906597312108108442540229578000079303679297783978010391230631520577621957205438089831 ( 134 digits) SNFS difficulty: 150 digits. Divisors found: r1=3153611510488812690844381411841100171038865591531757 (pp52) r2=10493234479791580568317662070396265616908097303633122206670593944661297064473922083 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.11 hours. Scaled time: 42.22 units (timescale=2.000). Factorization parameters were as follows: name: 26669_150 n: 33091585037728817063066885723269305783539863851825906597312108108442540229578000079303679297783978010391230631520577621957205438089831 m: 1000000000000000000000000000000 c5: 8 c0: 7 skew: 0.97 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:176343, largePrimes:5664697 encountered Relations: rels:5756890, finalFF:642726 Max relations in full relation-set: 28 Initial matrix: 352710 x 642726 with sparse part having weight 56826393. Pruned matrix : 241016 x 242843 with weight 25378288. Total sieving time: 20.10 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.75 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.11 hours. --------- CPU info (if available) ----------
(8·10143+7)/3 = 2(6)1429<144> = 132 · 3517 · 62776679931694823<17> · C121
C121 = P47 · P75
P47 = 20021116406067209554446200468334668005750140859<47>
P75 = 356962853960238997946851914156890231498548267914175830313090442617598040829<75>
Number: 26669_143 N=7146794851779914387843228963979571845388741890295760803609820465560862056129003230767892770563281325758005179009183132111 ( 121 digits) SNFS difficulty: 143 digits. Divisors found: r1=20021116406067209554446200468334668005750140859 (pp47) r2=356962853960238997946851914156890231498548267914175830313090442617598040829 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.14 hours. Scaled time: 34.23 units (timescale=1.997). Factorization parameters were as follows: nama: 26669_143 n: 7146794851779914387843228963979571845388741890295760803609820465560862056129003230767892770563281325758005179009183132111 m: 20000000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2550001) Primes: RFBsize:100021, AFBsize:100373, largePrimes:2900939 encountered Relations: rels:2943333, finalFF:278741 Max relations in full relation-set: 28 Initial matrix: 200460 x 278741 with sparse part having weight 32014645. Pruned matrix : 180795 x 181861 with weight 19476116. Total sieving time: 16.50 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.43 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.14 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(13·10165-1)/3 = 4(3)165<166> = 7 · 801331 · C159
C159 = P77 · P83
P77 = 20581230672475861430727158263255086663302501457153191742856250309416063163917<77>
P83 = 37535376232092446430954426168419670162044288493908322073297750728833564783295676597<83>
Number: n N=772524236610862487060961848534025324889524577294050832451318642418200528394692853574389419127735753449721834821125875633937845433469588781189106148455031750449 ( 159 digits) SNFS difficulty: 166 digits. Divisors found: Mon Oct 22 02:26:02 2007 prp77 factor: 20581230672475861430727158263255086663302501457153191742856250309416063163917 Mon Oct 22 02:26:02 2007 prp83 factor: 37535376232092446430954426168419670162044288493908322073297750728833564783295676597 Mon Oct 22 02:26:02 2007 elapsed time 02:07:00 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 54.52 hours. Scaled time: 65.37 units (timescale=1.199). Factorization parameters were as follows: name: KA_4_3_165 n: 772524236610862487060961848534025324889524577294050832451318642418200528394692853574389419127735753449721834821125875633937845433469588781189106148455031750449 type: snfs skew: 0.60 deg: 5 c5: 13 c0: -1 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:250150, AFBsize:249271, largePrimes:7324010 encountered Relations: rels:6828395, finalFF:550183 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 54.23 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 54.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(8·10162+7)/3 = 2(6)1619<163> = 23 · 2417 · C158
C158 = P38 · P121
P38 = 13758431094795674099921153836784941879<38>
P121 = 3486545464024582803252161746345501308393073883180459970373351716778246003294776444321266822336985947908508412928696412621<121>
By Robert Backstrom / GMP-ECM, GGNFS, Msieve
(2·10165+1)/3 = (6)1647<165> = 1907 · 25763 · 1950089 · C151
C151 = P38 · P54 · P61
P38 = 11159480313913593484408359509139419441<38>
P54 = 145144015245287700460200196670856548838130894793891909<54>
P61 = 4295998076553065365533511361350566844970496455322403010819807<61>
prp38 factor: 11159480313913593484408359509139419441 prp54 factor: 145144015245287700460200196670856548838130894793891909 prp61 factor: 4295998076553065365533511361350566844970496455322403010819807 GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 6958364614900921735999678821358908199403904875839651413675026093315854699909592774863910249349186886963352504343210374853320078119407677971416772426283 (151 digits) Using B1=1361500, B2=1303162716, polynomial Dickson(6), sigma=52991453 Step 1 took 19547ms Step 2 took 9719ms ********** Factor found in step 2: 11159480313913593484408359509139419441 Found probable prime factor of 38 digits: 11159480313913593484408359509139419441 Composite cofactor 623538410316944757090120947223253498225421302104017860093686064012093871425660741494485547326568250544542234241563 has 114 digits Number: n N=623538410316944757090120947223253498225421302104017860093686064012093871425660741494485547326568250544542234241563 ( 114 digits) SNFS difficulty: 165 digits. Divisors found: Sun Oct 21 14:25:53 2007 prp54 factor: 145144015245287700460200196670856548838130894793891909 Sun Oct 21 14:25:53 2007 prp61 factor: 4295998076553065365533511361350566844970496455322403010819807 Sun Oct 21 14:25:53 2007 elapsed time 01:41:00 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.08 hours. Scaled time: 62.64 units (timescale=1.454). Factorization parameters were as follows: name: KA_6_164_7 n: 623538410316944757090120947223253498225421302104017860093686064012093871425660741494485547326568250544542234241563 # n: 6958364614900921735999678821358908199403904875839651413675026093315854699909592774863910249349186886963352504343210374853320078119407677971416772426283 skew: 0.87 deg: 5 c5: 2 c0: 1 m: 1000000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300001) Primes: RFBsize:203362, AFBsize:203032, largePrimes:7214058 encountered Relations: rels:6650540, finalFF:426929 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 42.87 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 43.08 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(8·10165-53)/9 = (8)1643<165> = 6403993 · C159
C159 = P45 · P114
P45 = 350982021485651168585060151283338980210340619<45>
P114 = 395468373808917744465660761189260784883193175621159446317143996419722368165129799067011823208112320581081097991649<114>
Number: n N=138802289273097095654053477086700264801802389366897947716196580616013928948530844566645979920479127458273125671575357575951268043061397613783914018783107490731 ( 159 digits) SNFS difficulty: 165 digits. Divisors found: Sun Oct 21 20:17:38 2007 prp45 factor: 350982021485651168585060151283338980210340619 Sun Oct 21 20:17:38 2007 prp114 factor: 395468373808917744465660761189260784883193175621159446317143996419722368165129799067011823208112320581081097991649 Sun Oct 21 20:17:38 2007 elapsed time 01:35:15 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.74 hours. Scaled time: 63.31 units (timescale=1.326). Factorization parameters were as follows: name: KA_8_164_3 n: 138802289273097095654053477086700264801802389366897947716196580616013928948530844566645979920479127458273125671575357575951268043061397613783914018783107490731 skew: 1.46 deg: 5 c5: 8 c0: -53 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2200000) Primes: RFBsize:250150, AFBsize:250051, largePrimes:7311231 encountered Relations: rels:6818524, finalFF:565781 Max relations in full relation-set: 28 Initial matrix: 500266 x 565781 with sparse part having weight 42203089. Pruned matrix : 447352 x 449917 with weight 27775961. Total sieving time: 47.50 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 47.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By anonymous / GMP-ECM
(5·10190+7)/3 = 1(6)1899<191> = 983 · 3110537 · 4168826771<10> · 54213944958939972267302651<26> · C146
C146 = P29 · P117
P29 = 95241712200343898401070633893<29>
P117 = 253225715089880357003437152506851618536597279889801230013665252373632182359449182088181293413579341092522759275175463<117>
By Sinkiti Sibata / GGNFS
(8·10130+7)/3 = 2(6)1299<131> = 359 · C128
C128 = P33 · P96
P33 = 682633639211723545834566164085833<33>
P96 = 108814456650602300245382079887888010720933070751698732192617045113744525935607329203942293274227<96>
Number: 26669_130 N=74280408542246982358402971216341689879294336118848653667595171773444753946146703806870937790157845868152274837511606313834726091 ( 128 digits) SNFS difficulty: 130 digits. Divisors found: r1=682633639211723545834566164085833 (pp33) r2=108814456650602300245382079887888010720933070751698732192617045113744525935607329203942293274227 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.74 hours. Scaled time: 7.43 units (timescale=1.987). Factorization parameters were as follows: name: 26669_130 n: 74280408542246982358402971216341689879294336118848653667595171773444753946146703806870937790157845868152274837511606313834726091 m: 100000000000000000000000000 c5: 8 c0: 7 skew: 0.97 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:64073, largePrimes:1455357 encountered Relations: rels:1452260, finalFF:170662 Max relations in full relation-set: 28 Initial matrix: 128089 x 170662 with sparse part having weight 10762332. Pruned matrix : 114592 x 115296 with weight 5636879. Total sieving time: 3.59 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.74 hours. --------- CPU info (if available) ----------
(8·10133+7)/3 = 2(6)1329<134> = 73 · 523 · 30253 · 694831 · 1145213 · C113
C113 = P42 · P72
P42 = 133271547249140168413145147446888048704353<42>
P72 = 217707224173432323868406589757746873580273750494054826756936569259268393<72>
Number: 26669_133 N=29014178612908736597074844178599916279879417120217498603765526981626610191279580281530698625258572423340334414729 ( 113 digits) SNFS difficulty: 133 digits. Divisors found: r1=133271547249140168413145147446888048704353 (pp42) r2=217707224173432323868406589757746873580273750494054826756936569259268393 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.92 hours. Scaled time: 13.77 units (timescale=1.988). Factorization parameters were as follows: name: 26669_133 n: 29014178612908736597074844178599916279879417120217498603765526981626610191279580281530698625258572423340334414729 m: 200000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:64168, largePrimes:1593511 encountered Relations: rels:1626248, finalFF:203055 Max relations in full relation-set: 28 Initial matrix: 142732 x 203055 with sparse part having weight 17060245. Pruned matrix : 124557 x 125334 with weight 8832672. Total sieving time: 6.72 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.92 hours. --------- CPU info (if available) ----------
(8·10103+7)/3 = 2(6)1029<104> = 6641346161<10> · C94
C94 = P44 · P50
P44 = 50628118279694776375171982905395943152916717<44>
P50 = 79308699618830633011348707020263138933756280563537<50>
Number: 26669_103 N=4015250224910941314607779057861800657715583674522859533065478269484027075195044432297987948029 ( 94 digits) SNFS difficulty: 103 digits. Divisors found: r1=50628118279694776375171982905395943152916717 (pp44) r2=79308699618830633011348707020263138933756280563537 (pp50) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.18 hours. Scaled time: 2.36 units (timescale=1.995). Factorization parameters were as follows: name: 26669_103 n: 4015250224910941314607779057861800657715583674522859533065478269484027075195044432297987948029 m: 200000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 350001) Primes: RFBsize:37706, AFBsize:41542, largePrimes:1391765 encountered Relations: rels:1503988, finalFF:273193 Max relations in full relation-set: 28 Initial matrix: 79314 x 273193 with sparse part having weight 11183859. Pruned matrix : 40266 x 40726 with weight 1829275. Total sieving time: 1.13 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,103,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.18 hours. --------- CPU info (if available) ----------
(8·10104+7)/3 = 2(6)1039<105> = 76561 · C100
C100 = P33 · P67
P33 = 733945223005884153559250475665329<33>
P67 = 4745669469153279016048570235521763800475125498182552663288629329901<67>
Number: 26669_104 N=3483061436849919236512933042497703356365077084503424284775103076849396777297405554612226416408702429 ( 100 digits) SNFS difficulty: 105 digits. Divisors found: r1=733945223005884153559250475665329 (pp33) r2=4745669469153279016048570235521763800475125498182552663288629329901 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.96 hours. Scaled time: 3.87 units (timescale=1.977). Factorization parameters were as follows: name: 26669_104 n: 3483061436849919236512933042497703356365077084503424284775103076849396777297405554612226416408702429 m: 1000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:64193, largePrimes:2081424 encountered Relations: rels:2253638, finalFF:328853 Max relations in full relation-set: 28 Initial matrix: 113355 x 328853 with sparse part having weight 22829670. Pruned matrix : 62492 x 63122 with weight 3004338. Total sieving time: 1.88 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.96 hours. --------- CPU info (if available) ----------
(8·10134+7)/3 = 2(6)1339<135> = 148654243 · 1262823917<10> · C118
C118 = P41 · P77
P41 = 37620956682884538589371868827603031738343<41>
P77 = 37758852612331776616795032844299692308607656131997210191374930427924942519293<77>
Number: 26669_134 N=1420524158523955469338558698249232537056327868898328355704847871904688048016727899141317771917491175737048611605351499 ( 118 digits) SNFS difficulty: 135 digits. Divisors found: r1=37620956682884538589371868827603031738343 (pp41) r2=37758852612331776616795032844299692308607656131997210191374930427924942519293 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.82 hours. Scaled time: 11.68 units (timescale=2.007). Factorization parameters were as follows: name: 26669_134 n: 1420524158523955469338558698249232537056327868898328355704847871904688048016727899141317771917491175737048611605351499 m: 1000000000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64193, largePrimes:1541556 encountered Relations: rels:1560889, finalFF:192289 Max relations in full relation-set: 28 Initial matrix: 142755 x 192289 with sparse part having weight 14621950. Pruned matrix : 126409 x 127186 with weight 7901050. Total sieving time: 5.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.82 hours. --------- CPU info (if available) ----------
(8·10142+7)/3 = 2(6)1419<143> = 3064708476607<13> · 4187678852923<13> · C118
C118 = P40 · P78
P40 = 9788973638568650061780766529522450169529<40>
P78 = 212260427653808834797575069001986356489959724932965465429439372027648665816401<78>
Number: 26669_142 N=2077811730814442779423909735030670832942412279493881032584070517296902178699768133028182972994685705973158369638645129 ( 118 digits) SNFS difficulty: 142 digits. Divisors found: r1=9788973638568650061780766529522450169529 (pp40) r2=212260427653808834797575069001986356489959724932965465429439372027648665816401 (pp78) Version: GGNFS-0.77.1-20060513-k8 Total time: 10.11 hours. Scaled time: 20.14 units (timescale=1.992). Factorization parameters were as follows: name: 26669_142 n: 2077811730814442779423909735030670832942412279493881032584070517296902178699768133028182972994685705973158369638645129 m: 20000000000000000000000000000 c5: 25 c0: 7 skew: 0.78 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1750001) Primes: RFBsize:100021, AFBsize:99418, largePrimes:2798512 encountered Relations: rels:2847765, finalFF:330698 Max relations in full relation-set: 28 Initial matrix: 199503 x 330698 with sparse part having weight 30315932. Pruned matrix : 162985 x 164046 with weight 13847017. Total sieving time: 9.75 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.21 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.11 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(8·10139+7)/3 = 2(6)1389<140> = 1768103158425827<16> · 27452760668249467<17> · C108
C108 = P40 · P69
P40 = 1241873230306512944129120625376444423573<40>
P69 = 442382402449578672496474001239726150208458221956431612701743308645417<69>
Number: 26669_139 N=549382863160814110758042194456932311882676877376245309068323886591250711707365842143014691420858830013214941 ( 108 digits) SNFS difficulty: 140 digits. Divisors found: r1=1241873230306512944129120625376444423573 (pp40) r2=442382402449578672496474001239726150208458221956431612701743308645417 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.56 hours. Scaled time: 11.90 units (timescale=2.140). Factorization parameters were as follows: n: 549382863160814110758042194456932311882676877376245309068323886591250711707365842143014691420858830013214941 m: 10000000000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1100001) Primes: RFBsize:114155, AFBsize:114442, largePrimes:3315311 encountered Relations: rels:3411950, finalFF:393858 Max relations in full relation-set: 28 Initial matrix: 228661 x 393858 with sparse part having weight 33230335. Pruned matrix : 169036 x 170243 with weight 12385404. Total sieving time: 5.40 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 5.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10141+7)/3 = 2(6)1409<142> = 29 · 73 · 1339806917806153<16> · 92415619460291259403<20> · C104
C104 = P39 · P65
P39 = 502212812269744236328154953897511547463<39>
P65 = 20256877015611825323436706422598519488570631957881652952297498821<65>
Number: 26669_141 N=10173263173812758517105524274113209930018018460702750505221307224574470950799246504255661100980128041123 ( 104 digits) SNFS difficulty: 142 digits. Divisors found: r1=502212812269744236328154953897511547463 (pp39) r2=20256877015611825323436706422598519488570631957881652952297498821 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.21 hours. Scaled time: 13.22 units (timescale=2.127). Factorization parameters were as follows: n: 10173263173812758517105524274113209930018018460702750505221307224574470950799246504255661100980128041123 m: 20000000000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114392, largePrimes:3261056 encountered Relations: rels:3266559, finalFF:311634 Max relations in full relation-set: 28 Initial matrix: 228612 x 311634 with sparse part having weight 26294993. Pruned matrix : 196110 x 197317 with weight 13252279. Total sieving time: 6.01 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.21 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10151+7)/3 = 2(6)1509<152> = 83 · 191 · 222531925376261959597<21> · 87151965549522581150273<23> · C104
C104 = P37 · P68
P37 = 2151824979439633304570135127360335431<37>
P68 = 40307031630293129082698941368209006104445744505208908458146567077043<68>
Number: 26669_151 N=86733677509128161765261668212148242470942103656896529718188268435982587405152137619461718298337699610533 ( 104 digits) Divisors found: r1=2151824979439633304570135127360335431 (pp37) r2=40307031630293129082698941368209006104445744505208908458146567077043 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.74 hours. Scaled time: 12.28 units (timescale=2.138). Factorization parameters were as follows: name: 26669_151 n: 86733677509128161765261668212148242470942103656896529718188268435982587405152137619461718298337699610533 skew: 11778.21 # norm 6.95e+14 c5: 62160 c4: 1496130332 c3: -45556222412128 c2: -74626143902162469 c1: 113505084408824096690 c0: -1919290235623806504596725 # alpha -6.68 Y1: 4648483103 Y0: -67442740130436131592 # Murphy_E 2.11e-09 # M 56184838726415761082613399246235419642783909465629485767916514734753284656665661743230574578593360749961 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1620001) Primes: RFBsize:135072, AFBsize:135343, largePrimes:4346551 encountered Relations: rels:4257071, finalFF:317428 Max relations in full relation-set: 28 Initial matrix: 270499 x 317428 with sparse part having weight 25317400. Pruned matrix : 238627 x 240043 with weight 16192467. Polynomial selection time: 0.39 hours. Total sieving time: 5.00 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Yousuke Koide
101073+1 is divisible by 588831771788611721102815421599303<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS
(8·10137+7)/3 = 2(6)1369<138> = 13 · 773 · 56401 · 23192382931<11> · 887752643993<12> · C107
C107 = P36 · P72
P36 = 225827415705440762247969188163076931<36>
P72 = 101191741405873712462631199841067741763362688081142783407044807587961997<72>
Number: 26669_137 N=22851869452421705492448224919086710644084493570019228618031253647076457659430866698743479971878791015391207 ( 107 digits) SNFS difficulty: 137 digits. Divisors found: r1=225827415705440762247969188163076931 (pp36) r2=101191741405873712462631199841067741763362688081142783407044807587961997 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.05 hours. Scaled time: 6.48 units (timescale=2.122). Factorization parameters were as follows: n: 22851869452421705492448224919086710644084493570019228618031253647076457659430866698743479971878791015391207 m: 2000000000000000000000000000 c5: 25 c0: 7 skew: 0.78 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:106423, largePrimes:2289110 encountered Relations: rels:2432530, finalFF:305349 Max relations in full relation-set: 28 Initial matrix: 213613 x 305349 with sparse part having weight 22381011. Pruned matrix : 177541 x 178673 with weight 10158100. Total sieving time: 2.91 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
8·10162-7 = 7(9)1613<163> = 494213 · 388509891553534266757079<24> · C134
C134 = P59 · P76
P59 = 16147676136454049333700128338546853224145331776821755134693<59>
P76 = 2580261432154997404112328929704725753375527855692727120431726388111826233063<76>
Number: 79993_162 N=41665225953822000619568717595040558356062958012654461159308411510245494930736049031230987938063485411773501288539791869984896374954659 ( 134 digits) SNFS difficulty: 162 digits. Divisors found: r1=16147676136454049333700128338546853224145331776821755134693 (pp59) r2=2580261432154997404112328929704725753375527855692727120431726388111826233063 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 61.95 hours. Scaled time: 124.03 units (timescale=2.002). Factorization parameters were as follows: name: 79993_162 n: 41665225953822000619568717595040558356062958012654461159308411510245494930736049031230987938063485411773501288539791869984896374954659 m: 200000000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4150001) Primes: RFBsize:315948, AFBsize:315706, largePrimes:5839925 encountered Relations: rels:6045274, finalFF:823077 Max relations in full relation-set: 28 Initial matrix: 631718 x 823077 with sparse part having weight 47717456. Pruned matrix : 473657 x 476879 with weight 31143738. Total sieving time: 59.04 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.51 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 61.95 hours. --------- CPU info (if available) ----------
(8·10111+7)/3 = 2(6)1109<112> = 2145389 · 1377179399<10> · C96
C96 = P35 · P62
P35 = 18106717789925267749261242702101927<35>
P62 = 49846243240205443718855673321344571054539531011124970246880177<62>
Number: 26669_111 N=902551859238370029090835659332155419008692464984287175991403902356426578709847092352072009801079 ( 96 digits) SNFS difficulty: 112 digits. Divisors found: r1=18106717789925267749261242702101927 (pp35) r2=49846243240205443718855673321344571054539531011124970246880177 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 1.44 hours. Scaled time: 2.88 units (timescale=2.004). Factorization parameters were as follows: name: 26669_111 n: 902551859238370029090835659332155419008692464984287175991403902356426578709847092352072009801079 m: 20000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:63943, largePrimes:2241963 encountered Relations: rels:2551561, finalFF:441249 Max relations in full relation-set: 28 Initial matrix: 113106 x 441249 with sparse part having weight 35014615. Pruned matrix : 62074 x 62703 with weight 4765126. Total sieving time: 1.35 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.44 hours. --------- CPU info (if available) ----------
(8·10123+7)/3 = 2(6)1229<124> = 1229019557<10> · 379092951201193<15> · C100
C100 = P49 · P52
P49 = 2898545393005568842248882069535618909163031509171<49>
P52 = 1974622690311058776335153117537051940589078496100539<52>
Number: 26669_123 N=5723533501925381515361880891681341029181435487375163222371432533464834744116374151471404911716543169 ( 100 digits) SNFS difficulty: 123 digits. Divisors found: r1=2898545393005568842248882069535618909163031509171 (pp49) r2=1974622690311058776335153117537051940589078496100539 (pp52) Version: GGNFS-0.77.1-20060513-k8 Total time: 2.84 hours. Scaled time: 5.61 units (timescale=1.980). Factorization parameters were as follows: name: 26669_123 n: 5723533501925381515361880891681341029181435487375163222371432533464834744116374151471404911716543169 m: 2000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64168, largePrimes:2114570 encountered Relations: rels:2123330, finalFF:147078 Max relations in full relation-set: 28 Initial matrix: 113332 x 147078 with sparse part having weight 13374411. Pruned matrix : 104524 x 105154 with weight 7551198. Total sieving time: 2.67 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.84 hours. --------- CPU info (if available) ----------
(8·10128+7)/3 = 2(6)1279<129> = 419 · 16311689 · 7428034067<10> · C109
C109 = P45 · P65
P45 = 351941064731415296526137239470932854807364819<45>
P65 = 14924917745215309816252937894497602188907340265178654448165423583<65>
Number: 26669_128 N=5252691442279870184066566890500076729558621086294228055364583650241045931829029287346821680267717975147126477 ( 109 digits) SNFS difficulty: 128 digits. Divisors found: r1=351941064731415296526137239470932854807364819 (pp45) r2=14924917745215309816252937894497602188907340265178654448165423583 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.50 hours. Scaled time: 8.89 units (timescale=1.977). Factorization parameters were as follows: name: 26669_128 n: 5252691442279870184066566890500076729558621086294228055364583650241045931829029287346821680267717975147126477 m: 20000000000000000000000000 c5: 250 c0: 7 skew: 0.49 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64168, largePrimes:1486278 encountered Relations: rels:1489312, finalFF:175012 Max relations in full relation-set: 28 Initial matrix: 128185 x 175012 with sparse part having weight 12253287. Pruned matrix : 114089 x 114793 with weight 6318497. Total sieving time: 4.34 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.50 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
6·10157+7 = 6(0)1567<158> = 29575545858739133328361799<26> · C133
C133 = P54 · P79
P54 = 909973554507637615273149646490856241896005712528152743<54>
P79 = 2229408796486527839879415799102804165173602971152320543487096830961582839982551<79>
Number: 60007_157 N=2028703046989440216492418523064717588124374356914471327996618052411940079032641598918868315472019544767523143015305980889826382787393 ( 133 digits) SNFS difficulty: 158 digits. Divisors found: r1=909973554507637615273149646490856241896005712528152743 (pp54) r2=2229408796486527839879415799102804165173602971152320543487096830961582839982551 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.18 hours. Scaled time: 66.81 units (timescale=2.143). Factorization parameters were as follows: n: 2028703046989440216492418523064717588124374356914471327996618052411940079032641598918868315472019544767523143015305980889826382787393 m: 20000000000000000000000000000000 c5: 75 c0: 28 skew: 0.82 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3800001) Primes: RFBsize:283146, AFBsize:283092, largePrimes:5685473 encountered Relations: rels:5694522, finalFF:634310 Max relations in full relation-set: 28 Initial matrix: 566304 x 634310 with sparse part having weight 42093593. Pruned matrix : 518113 x 521008 with weight 30976126. Total sieving time: 29.55 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.48 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 31.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10120+7)/3 = 2(6)1199<121> = C121
C121 = P61 · P61
P61 = 1060471105842071452080239329331029536565351505210275149416401<61>
P61 = 2514605680415204721631917533968366670395835407292136222935069<61>
Number: 26669_120 N=2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 121 digits) SNFS difficulty: 121 digits. Divisors found: r1=1060471105842071452080239329331029536565351505210275149416401 (pp61) r2=2514605680415204721631917533968366670395835407292136222935069 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.89 hours. Scaled time: 1.88 units (timescale=2.115). Factorization parameters were as follows: n: 2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 2000000000000000000000000 c5: 1 c0: 28 skew: 1.95 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49156, largePrimes:1800198 encountered Relations: rels:1786914, finalFF:141902 Max relations in full relation-set: 28 Initial matrix: 98318 x 141902 with sparse part having weight 11624596. Pruned matrix : 86828 x 87383 with weight 5098835. Total sieving time: 0.84 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10129+7)/3 = 2(6)1289<130> = C130
C130 = P34 · P97
P34 = 1638212584355948805449002823879881<34>
P97 = 1627790368681026216200316702373859265165289584295147399375933455475170245176591783551889658852549<97>
Number: 26669_129 N=2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=1638212584355948805449002823879881 (pp34) r2=1627790368681026216200316702373859265165289584295147399375933455475170245176591783551889658852549 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.97 hours. Scaled time: 4.23 units (timescale=2.142). Factorization parameters were as follows: n: 2666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 100000000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78746, largePrimes:1495528 encountered Relations: rels:1503818, finalFF:187166 Max relations in full relation-set: 28 Initial matrix: 157308 x 187166 with sparse part having weight 9227172. Pruned matrix : 142970 x 143820 with weight 5564851. Total sieving time: 1.90 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(16·10159-61)/9 = 1(7)1581<160> = 7 · 11 · 139 · 283 · 1123 · 5563 · 11321 · 1123247 · 11160628967<11> · C126
C126 = P48 · P79
P48 = 188771796820566483431209728112718047569192774367<48>
P79 = 3506798873133264834251861643109592173565728384191166286258478470759285819773297<79>
Number: 17771_159 N=661984724369704169532858342692717943247722809774460911744787521251800997758672407790754400607584194600473401375243866412677999 ( 126 digits) SNFS difficulty: 161 digits. Divisors found: r1=188771796820566483431209728112718047569192774367 (pp48) r2=3506798873133264834251861643109592173565728384191166286258478470759285819773297 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.47 hours. Scaled time: 63.21 units (timescale=2.145). Factorization parameters were as follows: n: 661984724369704169532858342692717943247722809774460911744787521251800997758672407790754400607584194600473401375243866412677999 m: 200000000000000000000000000000000 c5: 1 c0: -1220 skew: 4.14 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3700001) Primes: RFBsize:283146, AFBsize:282548, largePrimes:5712059 encountered Relations: rels:5803604, finalFF:708737 Max relations in full relation-set: 28 Initial matrix: 565758 x 708737 with sparse part having weight 44615649. Pruned matrix : 451837 x 454729 with weight 28540403. Total sieving time: 28.30 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.04 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 29.47 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10106+7)/3 = 2(6)1059<107> = 38933 · C102
C102 = P31 · P72
P31 = 4246217137079532440315775172579<31>
P72 = 161305309862279566253022081601447659781689908478972816016415808296252467<72>
Number: 26669_106 N=684937371039135609037748610861394361253092920316098596734561083570920983912533497718302382725879502393 ( 102 digits) SNFS difficulty: 107 digits. Divisors found: r1=4246217137079532440315775172579 (pp31) r2=161305309862279566253022081601447659781689908478972816016415808296252467 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.46 hours. Scaled time: 0.97 units (timescale=2.131). Factorization parameters were as follows: n: 684937371039135609037748610861394361253092920316098596734561083570920983912533497718302382725879502393 m: 2000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 260001) Primes: RFBsize:30757, AFBsize:30719, largePrimes:1032267 encountered Relations: rels:965725, finalFF:100183 Max relations in full relation-set: 28 Initial matrix: 61541 x 100183 with sparse part having weight 4259001. Pruned matrix : 47943 x 48314 with weight 1440203. Total sieving time: 0.43 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.46 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10114+7)/3 = 2(6)1139<115> = 19 · 59 · 131 · 1613 · 172841183 · C98
C98 = P38 · P61
P38 = 15049466556427553742046054404910545751<38>
P61 = 4328018617649452918247261765466850080785970021940189130656211<61>
Number: 26669_114 N=65134371441911253580479783239297921264158773495625664468264260314515100006542227915558640767809461 ( 98 digits) SNFS difficulty: 115 digits. Divisors found: r1=15049466556427553742046054404910545751 (pp38) r2=4328018617649452918247261765466850080785970021940189130656211 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.67 hours. Scaled time: 1.44 units (timescale=2.143). Factorization parameters were as follows: n: 65134371441911253580479783239297921264158773495625664468264260314515100006542227915558640767809461 m: 100000000000000000000000 c5: 4 c0: 35 skew: 1.54 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 390001) Primes: RFBsize:49098, AFBsize:49236, largePrimes:1810475 encountered Relations: rels:1862920, finalFF:208249 Max relations in full relation-set: 28 Initial matrix: 98398 x 208249 with sparse part having weight 15809065. Pruned matrix : 71479 x 72034 with weight 3436955. Total sieving time: 0.63 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10121+7)/3 = 2(6)1209<122> = 1201 · 130987 · 356098343 · C105
C105 = P34 · P72
P34 = 2613842632420286549810407132723579<34>
P72 = 182116015280402325835265886158642537928794970041065896876634298939239171<72>
Number: 26669_121 N=476022604786419945107592660920030371584869577656015528481440710159671902378490644477488507224323312113009 ( 105 digits) SNFS difficulty: 122 digits. Divisors found: r1=2613842632420286549810407132723579 (pp34) r2=182116015280402325835265886158642537928794970041065896876634298939239171 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.03 hours. Scaled time: 2.21 units (timescale=2.145). Factorization parameters were as follows: n: 476022604786419945107592660920030371584869577656015528481440710159671902378490644477488507224323312113009 m: 2000000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:49101, largePrimes:1853503 encountered Relations: rels:1867932, finalFF:158603 Max relations in full relation-set: 28 Initial matrix: 98264 x 158603 with sparse part having weight 13988463. Pruned matrix : 85087 x 85642 with weight 5253077. Total sieving time: 0.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,45,45,2.4,2.4,30000 total time: 1.03 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10122+7)/3 = 2(6)1219<123> = 71 · C121
C121 = P32 · P89
P32 = 41145387625225226433684691675373<32>
P89 = 91282857238129608087362318513711416984201527885327331838828175050639169331657601989276343<89>
Number: 26669_122 N=3755868544600938967136150234741784037558685446009389671361502347417840375586854460093896713615023474178403755868544600939 ( 121 digits) SNFS difficulty: 122 digits. Divisors found: r1=41145387625225226433684691675373 (pp32) r2=91282857238129608087362318513711416984201527885327331838828175050639169331657601989276343 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.01 hours. Scaled time: 2.16 units (timescale=2.140). Factorization parameters were as follows: n: 3755868544600938967136150234741784037558685446009389671361502347417840375586854460093896713615023474178403755868544600939 m: 2000000000000000000000000 c5: 25 c0: 7 skew: 0.78 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:63951, AFBsize:63568, largePrimes:1347942 encountered Relations: rels:1344158, finalFF:170026 Max relations in full relation-set: 28 Initial matrix: 127582 x 170026 with sparse part having weight 7333871. Pruned matrix : 103697 x 104398 with weight 3449577. Total sieving time: 0.96 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 1.01 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
(8·10136+7)/3 = 2(6)1359<137> = C137
C137 = P58 · P79
P58 = 5964796989232317289442216128587619639536748687234582636411<58>
P79 = 4470674645726497105263584854203238916337233478995531171674915681021609495628279<79>
Number: 26669_136 N=26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 137 digits) SNFS difficulty: 137 digits. Divisors found: r1=5964796989232317289442216128587619639536748687234582636411 (pp58) r2=4470674645726497105263584854203238916337233478995531171674915681021609495628279 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.34 hours. Scaled time: 7.05 units (timescale=2.115). Factorization parameters were as follows: n: 26666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 m: 2000000000000000000000000000 c5: 5 c0: 14 skew: 1.23 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1300001) Primes: RFBsize:107126, AFBsize:107483, largePrimes:2282771 encountered Relations: rels:2388130, finalFF:269548 Max relations in full relation-set: 28 Initial matrix: 214674 x 269548 with sparse part having weight 20402502. Pruned matrix : 193656 x 194793 with weight 11687881. Total sieving time: 3.16 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / PRIMO
(19·102450-1)/9 is prime.
The factor table of 266...669 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By anonymous / GMP-ECM
(5·10197+7)/3 = 1(6)1969<198> = 83 · C196
C196 = P32 · P165
P32 = 15064399083367851403807447165139<32>
P165 = 133296530276542123994572514856391958946944378887295148756651456417065116602615650106241786028692598529148978098311741021285646641176103363192439421156437978817430437<165>
By Robert Backstrom / GGNFS, Msieve
(7·10165-61)/9 = (7)1641<165> = 3 · 24320321 · C158
C158 = P43 · P56 · P60
P43 = 2761925283898534955675154755036172189749839<43>
P56 = 31324884696363766525451707222706492435165921240617655521<56>
P60 = 123214995686345230412614529840111656059539641564894743216343<60>
Number: n N=10660190680018543310314829284500778557127566665722021483978737750182625437355833389668633866274185248593522234318340586839263316436459011345255650994872117817 ( 158 digits) SNFS difficulty: 165 digits. Divisors found: Fri Oct 19 11:07:36 2007 prp43 factor: 2761925283898534955675154755036172189749839 Fri Oct 19 11:07:36 2007 prp56 factor: 31324884696363766525451707222706492435165921240617655521 Fri Oct 19 11:07:36 2007 prp60 factor: 123214995686345230412614529840111656059539641564894743216343 Fri Oct 19 11:07:36 2007 elapsed time 01:47:49 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 68.73 hours. Scaled time: 89.90 units (timescale=1.308). Factorization parameters were as follows: name: KA_7_164_1 n: 10660190680018543310314829284500778557127566665722021483978737750182625437355833389668633866274185248593522234318340586839263316436459011345255650994872117817 skew: 1.54 deg: 5 c5: 7 c0: -61 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700000) Primes: RFBsize:216816, AFBsize:217077, largePrimes:7393191 encountered Relations: rels:6842637, finalFF:458263 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 68.48 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 68.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
8·10157-7 = 7(9)1563<158> = 857 · 3270705001345087307<19> · C137
C137 = P45 · P92
P45 = 578713235026034382304696193140789480917763057<45>
P92 = 49317877250812105191907662188584024853530218296906864974832385857053714133780682125502798451<92>
Number: 79993_157 N=28540908288434340243572900615340141426849017077515115869543700976161255377143717419668797504442722574263007547983496570507801448444624707 ( 137 digits) SNFS difficulty: 157 digits. Divisors found: r1=578713235026034382304696193140789480917763057 (pp45) r2=49317877250812105191907662188584024853530218296906864974832385857053714133780682125502798451 (pp92) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.59 hours. Scaled time: 64.80 units (timescale=1.988). Factorization parameters were as follows: name: 79993_157 n: 28540908288434340243572900615340141426849017077515115869543700976161255377143717419668797504442722574263007547983496570507801448444624707 m: 20000000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:5533011 encountered Relations: rels:5442369, finalFF:511459 Max relations in full relation-set: 28 Initial matrix: 433786 x 511459 with sparse part having weight 38990519. Pruned matrix : 385864 x 388096 with weight 26569740. Total sieving time: 30.52 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.78 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.59 hours. --------- CPU info (if available) ----------
By Yousuke Koide
101240+1 is divisible by 15595203791066837732161767737921<32>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / PRIMO
(49·102340+23)/9 is prime.
(49·102454+23)/9 is prime.
By Jo Yeong Uk / GGNFS
6·10147+7 = 6(0)1467<148> = 31 · 74460874157397706814885857<26> · C121
C121 = P34 · P87
P34 = 3757810852757300286714196049398151<34>
P87 = 691713910870677076891814665811219671401933953308716939722566516154829814248796350852671<87>
Number: 60007_147 N=2599330041273026231158261182959552205625966726296449796273234752243784692588394514029060595219631994321473925185220811321 ( 121 digits) SNFS difficulty: 148 digits. Divisors found: r1=3757810852757300286714196049398151 (pp34) r2=691713910870677076891814665811219671401933953308716939722566516154829814248796350852671 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 13.31 hours. Scaled time: 28.42 units (timescale=2.135). Factorization parameters were as follows: n: 2599330041273026231158261182959552205625966726296449796273234752243784692588394514029060595219631994321473925185220811321 m: 200000000000000000000000000000 c5: 75 c0: 28 skew: 0.82 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:134748, largePrimes:3940451 encountered Relations: rels:4092560, finalFF:408421 Max relations in full relation-set: 28 Initial matrix: 269886 x 408421 with sparse part having weight 41102101. Pruned matrix : 230332 x 231745 with weight 21474737. Total sieving time: 12.95 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.27 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 13.31 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
6·10149+7 = 6(0)1487<150> = 25747 · 436150417 · 2488433141<10> · 314768938357<12> · C116
C116 = P45 · P72
P45 = 288204824127944521231161772400113432086544229<45>
P72 = 236684181525452140035337569045008331845614114346156387833169766487401841<72>
Number: 60007_149 N=68213522910409429827571176132944362685370905642562309751882399036574081305064117581575728647981845432390542542525589 ( 116 digits) SNFS difficulty: 150 digits. Divisors found: r1=288204824127944521231161772400113432086544229 (pp45) r2=236684181525452140035337569045008331845614114346156387833169766487401841 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.33 hours. Scaled time: 24.17 units (timescale=2.133). Factorization parameters were as follows: n: 68213522910409429827571176132944362685370905642562309751882399036574081305064117581575728647981845432390542542525589 m: 1000000000000000000000000000000 c5: 3 c0: 35 skew: 1.63 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1650001) Primes: RFBsize:135072, AFBsize:135283, largePrimes:3745970 encountered Relations: rels:3742941, finalFF:304925 Max relations in full relation-set: 28 Initial matrix: 270420 x 304925 with sparse part having weight 27971216. Pruned matrix : 258210 x 259626 with weight 21031729. Total sieving time: 10.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.30 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 11.33 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
8·10160-7 = 7(9)1593<161> = 179 · 2341 · C156
C156 = P74 · P83
P74 = 16454596943744503209146711864636020997566170732129357607128813577870908913<74>
P83 = 11602412280012005744956049762841701654854199246869403531853864740606458920710587799<83>
Number: n N=190913017642749242910564410472533582793009719859010736470829684110548182866033949107362321884120571116292278284360166953433928584212925288576958230618152487 ( 156 digits) SNFS difficulty: 160 digits. Divisors found: Thu Oct 18 14:19:06 2007 prp74 factor: 16454596943744503209146711864636020997566170732129357607128813577870908913 Thu Oct 18 14:19:06 2007 prp83 factor: 11602412280012005744956049762841701654854199246869403531853864740606458920710587799 Thu Oct 18 14:19:06 2007 elapsed time 01:30:26 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.43 hours. Scaled time: 53.27 units (timescale=1.199). Factorization parameters were as follows: name: KA_7_9_159_3 n: 190913017642749242910564410472533582793009719859010736470829684110548182866033949107362321884120571116292278284360166953433928584212925288576958230618152487 type: snfs skew: 0.97 deg: 5 c5: 8 c0: -7 m: 100000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:230209, AFBsize:229842, largePrimes:6910058 encountered Relations: rels:6394628, finalFF:542880 Max relations in full relation-set: 28 Initial matrix: 460116 x 542880 with sparse part having weight 33147572. Pruned matrix : 389747 x 392111 with weight 20148312. Total sieving time: 44.19 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 44.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS
8·10156-7 = 7(9)1553<157> = 181 · 909281 · C149
C149 = P41 · P49 · P61
P41 = 10904285406759073728471842840772332558593<41>
P49 = 1088070887339914750056094304772577853777226365141<49>
P61 = 4096933317053668078876000501612735226248308616390449901334401<61>
Number: 79993_156 N=48608620467846913541870107667669010851819834748797120444766932935980545031569810354864742533717415158103700184799645686904547817062501954598199593813 ( 149 digits) SNFS difficulty: 157 digits. Divisors found: r1=10904285406759073728471842840772332558593 (pp41) r2=1088070887339914750056094304772577853777226365141 (pp49) r3=4096933317053668078876000501612735226248308616390449901334401 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 40.39 hours. Scaled time: 80.67 units (timescale=1.997). Factorization parameters were as follows: name: 79993_156 n: 48608620467846913541870107667669010851819834748797120444766932935980545031569810354864742533717415158103700184799645686904547817062501954598199593813 m: 20000000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:217381, largePrimes:5747043 encountered Relations: rels:5780210, finalFF:606107 Max relations in full relation-set: 28 Initial matrix: 434262 x 606107 with sparse part having weight 50764657. Pruned matrix : 345539 x 347774 with weight 31579083. Total sieving time: 38.37 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.68 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 40.39 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(8·102308+7)/3 is prime.
By Jo Yeong Uk / GGNFS
(4·10188-31)/9 = (4)1871<188> = C188
C188 = P89 · P100
P89 = 13495944323227175196168775505661471275310792953928331944840120875227820565323694150016861<89>
P100 = 3293170405864330551260159426012918407131606691963604942513292260623991525800017750997167920521516781<100>
Number: 44441_188 N=44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 ( 188 digits) SNFS difficulty: 190 digits. Divisors found: r1=13495944323227175196168775505661471275310792953928331944840120875227820565323694150016861 (pp89) r2=3293170405864330551260159426012918407131606691963604942513292260623991525800017750997167920521516781 (pp100) Version: GGNFS-0.77.1-20050930-nocona Total time: 506.97 hours. Scaled time: 1079.34 units (timescale=2.129). Factorization parameters were as follows: n: 44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444441 m: 100000000000000000000000000000000000000 c5: 1 c0: -775 skew: 3.78 type: snfs Factor base limits: 13000000/13000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 51/51 Sieved algebraic special-q in [6500000, 14600001) Primes: RFBsize:849252, AFBsize:849399, largePrimes:12866508 encountered Relations: rels:13641443, finalFF:1950967 Max relations in full relation-set: 28 Initial matrix: 1698715 x 1950967 with sparse part having weight 145829012. Pruned matrix : 1480381 x 1488938 with weight 111459556. Total sieving time: 484.73 hours. Total relation processing time: 0.40 hours. Matrix solve time: 21.67 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,190,5,0,0,0,0,0,0,0,0,13000000,13000000,28,28,51,51,2.6,2.6,100000 total time: 506.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
P89 is the largest factor found by GGNFS in our tables so far. Congratulations!
By Robert Backstrom / GGNFS
8·10158-7 = 7(9)1573<159> = 13 · 67 · C156
C156 = P75 · P82
P75 = 346176468096559273822741304052813207109273708583996031665987163333529663757<75>
P82 = 2653226273941471985206044635089360508906271929143252016829426314360757542050928219<82>
Number: n N=918484500574052812858783008036739380022962112514351320321469575200918484500574052812858783008036739380022962112514351320321469575200918484500574052812858783 ( 156 digits) SNFS difficulty: 158 digits. Divisors found: r1=346176468096559273822741304052813207109273708583996031665987163333529663757 (pp75) r2=2653226273941471985206044635089360508906271929143252016829426314360757542050928219 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.09 hours. Scaled time: 53.30 units (timescale=1.297). Factorization parameters were as follows: name: KA_7_9_157_3 n: 918484500574052812858783008036739380022962112514351320321469575200918484500574052812858783008036739380022962112514351320321469575200918484500574052812858783 skew: 0.49 deg: 5 c5: 250 c0: -7 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:216816, AFBsize:217701, largePrimes:7120715 encountered Relations: rels:6580353, finalFF:493138 Max relations in full relation-set: 48 Initial matrix: 434583 x 493138 with sparse part having weight 42370582. Pruned matrix : 389862 x 392098 with weight 27989624. Total sieving time: 36.05 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.66 hours. Total square root time: 0.16 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 41.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
8·10155-7 = 7(9)1543<156> = 17 · 29 · 43 · 671189 · 25898947 · C139
C139 = P33 · P107
P33 = 152487428057225842444645257923753<33>
P107 = 14236841024808958548325101138045141061138828604047990755202358992513725161786539507007143495539941593140193<107>
Number: 79993_155 N=2170939271532717501787887771947025467482753556964582820892856569651806507508303518706699363818037448964912725918478477349824220002633704329 ( 139 digits) SNFS difficulty: 155 digits. Divisors found: r1=152487428057225842444645257923753 (pp33) r2=14236841024808958548325101138045141061138828604047990755202358992513725161786539507007143495539941593140193 (pp107) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.46 hours. Scaled time: 64.57 units (timescale=1.989). Factorization parameters were as follows: name: 79993_155 n: 2170939271532717501787887771947025467482753556964582820892856569651806507508303518706699363818037448964912725918478477349824220002633704329 m: 10000000000000000000000000000000 c5: 8 c0: -7 skew: 0.97 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216531, largePrimes:5864311 encountered Relations: rels:6046107, finalFF:741412 Max relations in full relation-set: 28 Initial matrix: 433412 x 741412 with sparse part having weight 59974965. Pruned matrix : 286069 x 288300 with weight 35055031. Total sieving time: 30.74 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.41 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.46 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(13·102215+23)/9 is prime.
By suberi / PRIMO
(32·102488-41)/9 is prime.
6·102749+7 is prime.
(55·102684+17)/9 is prime.
By Sinkiti Sibata / GGNFS, Msieve
8·10154-7 = 7(9)1533<155> = 2356867 · 603555989507<12> · C137
C137 = P33 · P105
P33 = 113351694760778508277044308809837<33>
P105 = 496145811653311910056803679142753059087314051602854121158090203147254006251607995277425635648201231426581<105>
Number: 79993_154 N=56238968599364916192824354906296195040092106248699331349662875284930630365782995510575903116148472404164256027791590822905326605756077297 ( 137 digits) SNFS difficulty: 155 digits. Divisors found: r1=113351694760778508277044308809837 (pp33) r2=496145811653311910056803679142753059087314051602854121158090203147254006251607995277425635648201231426581 (pp105) Version: GGNFS-0.77.1-20060513-k8 Total time: 32.35 hours. Scaled time: 64.79 units (timescale=2.003). Factorization parameters were as follows: name: 79993_154 n: 56238968599364916192824354906296195040092106248699331349662875284930630365782995510575903116148472404164256027791590822905326605756077297 m: 10000000000000000000000000000000 c5: 4 c0: -35 skew: 1.54 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:5878753 encountered Relations: rels:6079432, finalFF:757874 Max relations in full relation-set: 28 Initial matrix: 433786 x 757874 with sparse part having weight 61304584. Pruned matrix : 284596 x 286828 with weight 35456047. Total sieving time: 30.84 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.20 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.35 hours. --------- CPU info (if available) ----------
8·10151-7 = 7(9)1503<152> = 23 · 107 · 5569 · 6029 · 5676941659286357<16> · 21788576409750498214905595223<29> · C97
C97 = P31 · P67
P31 = 5423671886025109442120246388749<31>
P67 = 1443175595670302296287530288340641513337370692964945259930652789367<67>
Sun Oct 14 13:22:15 2007 Msieve v. 1.28 Sun Oct 14 13:22:15 2007 random seeds: bb320d00 c465a215 Sun Oct 14 13:22:15 2007 factoring 7827310904834559223584755757587750335344461821449169367211160089090463613553875031305565495631883 (97 digits) Sun Oct 14 13:22:16 2007 commencing quadratic sieve (97-digit input) Sun Oct 14 13:22:17 2007 using multiplier of 2 Sun Oct 14 13:22:17 2007 using 64kb Pentium 2 sieve core Sun Oct 14 13:22:17 2007 sieve interval: 18 blocks of size 65536 Sun Oct 14 13:22:17 2007 processing polynomials in batches of 6 Sun Oct 14 13:22:17 2007 using a sieve bound of 2395621 (88235 primes) Sun Oct 14 13:22:17 2007 using large prime bound of 359343150 (28 bits) Sun Oct 14 13:22:17 2007 using double large prime bound of 2511405435485700 (43-52 bits) Sun Oct 14 13:22:17 2007 using trial factoring cutoff of 52 bits Sun Oct 14 13:22:17 2007 polynomial 'A' values have 13 factors Tue Oct 16 05:45:50 2007 88486 relations (21837 full + 66649 combined from 1318373 partial), need 88331 Tue Oct 16 05:46:24 2007 begin with 1340210 relations Tue Oct 16 05:49:03 2007 reduce to 229420 relations in 11 passes Tue Oct 16 05:49:04 2007 attempting to read 229420 relations Tue Oct 16 05:49:50 2007 recovered 229420 relations Tue Oct 16 05:49:51 2007 recovered 215053 polynomials Tue Oct 16 05:51:40 2007 attempting to build 88486 cycles Tue Oct 16 05:51:49 2007 found 88486 cycles in 6 passes Tue Oct 16 05:51:55 2007 distribution of cycle lengths: Tue Oct 16 05:51:55 2007 length 1 : 21837 Tue Oct 16 05:51:55 2007 length 2 : 15474 Tue Oct 16 05:51:55 2007 length 3 : 15081 Tue Oct 16 05:51:55 2007 length 4 : 12029 Tue Oct 16 05:51:55 2007 length 5 : 8894 Tue Oct 16 05:51:55 2007 length 6 : 6072 Tue Oct 16 05:51:55 2007 length 7 : 3868 Tue Oct 16 05:51:55 2007 length 9+: 5231 Tue Oct 16 05:51:55 2007 largest cycle: 19 relations Tue Oct 16 05:52:26 2007 matrix is 88235 x 88486 with weight 5849695 (avg 66.11/col) Tue Oct 16 05:53:30 2007 filtering completed in 3 passes Tue Oct 16 05:53:30 2007 matrix is 83979 x 84043 with weight 5585692 (avg 66.46/col) Tue Oct 16 05:53:34 2007 saving the first 48 matrix rows for later Tue Oct 16 05:53:35 2007 matrix is 83931 x 84043 with weight 4343397 (avg 51.68/col) Tue Oct 16 05:53:35 2007 matrix includes 64 packed rows Tue Oct 16 05:53:35 2007 using block size 10922 for processor cache size 256 kB Tue Oct 16 05:53:38 2007 commencing Lanczos iteration Tue Oct 16 05:59:52 2007 lanczos halted after 1329 iterations Tue Oct 16 05:59:53 2007 recovered 18 nontrivial dependencies Tue Oct 16 06:24:18 2007 prp31 factor: 5423671886025109442120246388749 Tue Oct 16 06:24:18 2007 prp67 factor: 1443175595670302296287530288340641513337370692964945259930652789367 Tue Oct 16 06:24:18 2007 elapsed time 41:02:03
8·10152-7 = 7(9)1513<153> = 13 · 18307 · 4639298979169<13> · 238372349228810543<18> · C118
C118 = P33 · P86
P33 = 132196018950577432404812799228403<33>
P86 = 22993381145741293920904930229003616713749210764279783545611429634014833752788402278923<86>
Number: 79993_152 N=3039633449680265926335230629866243286215279582467641725078699207006615408808046094193646027979410320642927781189849969 ( 118 digits) SNFS difficulty: 152 digits. Divisors found: r1=132196018950577432404812799228403 (pp33) r2=22993381145741293920904930229003616713749210764279783545611429634014833752788402278923 (pp86) Version: GGNFS-0.77.1-20060513-k8 Total time: 21.25 hours. Scaled time: 42.02 units (timescale=1.978). Factorization parameters were as follows: name: 79993_152 n: 3039633449680265926335230629866243286215279582467641725078699207006615408808046094193646027979410320642927781189849969 m: 2000000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175903, largePrimes:5420804 encountered Relations: rels:5333741, finalFF:489141 Max relations in full relation-set: 28 Initial matrix: 352269 x 489141 with sparse part having weight 41279494. Pruned matrix : 285474 x 287299 with weight 22202017. Total sieving time: 20.13 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.86 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.25 hours. --------- CPU info (if available) ----------
By Bryan Koen / GGNFS
(23·10170+1)/3 = 7(6)1697<171> = 13 · 461 · 1289 · 10909069 · 3428780111<10> · 5783988689<10> · 1475103520971674381<19> · C120
C120 = P50 · P71
P50 = 28622256358095202962667644344453285032065134088263<50>
P71 = 10864963237661550249466184242559236733294008124794269198135353057048507<71>
Number: 76667_170 N=310979763109628948369420398838169134459778745943966806045542931361213579741500676681882065931657868642085688329210373341 ( 120 digits) SNFS difficulty: 171 digits. Divisors found: r1=28622256358095202962667644344453285032065134088263 (pp50) r2=10864963237661550249466184242559236733294008124794269198135353057048507 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 96.07 hours. Scaled time: 214.23 units (timescale=2.230). Factorization parameters were as follows: n: 310979763109628948369420398838169134459778745943966806045542931361213579741500676681882065931657868642085688329210373341 m: 10000000000000000000000000000000000 c5: 23 c0: 1 skew: 0.53 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 6700001) Primes: RFBsize:412849, AFBsize:412891, largePrimes:5994447 encountered Relations: rels:6291016, finalFF:958381 Max relations in full relation-set: 28 Initial matrix: 825805 x 958381 with sparse part having weight 51452736. Pruned matrix : 711926 x 716119 with weight 36381718. Total sieving time: 83.92 hours. Total relation processing time: 0.15 hours. Matrix solve time: 11.78 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 96.07 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
6·10164+7 = 6(0)1637<165> = 29 · 127031 · C159
C159 = P61 · P98
P61 = 1770843922137685855971883220866292296403759900031873711559753<61>
P98 = 91973613665363851062774584215016713526677170996970636469854370682108828520625054063548519257625981<98>
Number: n N=162870914756349183297370530516716120610255601470072876590807728442066408443879704628167058868877784108630556918091402614458213973835873350490879364499406742693 ( 159 digits) SNFS difficulty: 165 digits. Divisors found: Tue Oct 16 01:56:00 2007 prp61 factor: 1770843922137685855971883220866292296403759900031873711559753 Tue Oct 16 01:56:00 2007 prp98 factor: 91973613665363851062774584215016713526677170996970636469854370682108828520625054063548519257625981 Tue Oct 16 01:56:00 2007 elapsed time 01:28:26 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 53.90 hours. Scaled time: 70.50 units (timescale=1.308). Factorization parameters were as follows: name: KA_6_0_163_7 n: 162870914756349183297370530516716120610255601470072876590807728442066408443879704628167058868877784108630556918091402614458213973835873350490879364499406742693 skew: 1.63 deg: 5 c5: 3 c0: 35 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700001) Primes: RFBsize:216816, AFBsize:216606, largePrimes:7411428 encountered Relations: rels:6890615, finalFF:484135 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 53.63 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 53.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10185+7 = 6(0)1847<186> = 9109 · 486119 · 10533650783<11> · 7198232528923<13> · 6020878659975871147<19> · 57715737637649789572192595701<29> · C106
C106 = P44 · P63
P44 = 15856940822896359383771402356889784989979289<44>
P63 = 324309472250677628769264887001027044666888119049640084725461111<63>
Number: n N=5142556109783744147491364117529179269926062940937525300905943350583234457373321719669183987601774864930079 ( 106 digits) Divisors found: Wed Oct 17 00:32:49 2007 prp44 factor: 15856940822896359383771402356889784989979289 Wed Oct 17 00:32:49 2007 prp63 factor: 324309472250677628769264887001027044666888119049640084725461111 Wed Oct 17 00:32:49 2007 elapsed time 00:52:18 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.70 hours. Scaled time: 12.65 units (timescale=1.454). Factorization parameters were as follows: name: n n: 5142556109783744147491364117529179269926062940937525300905943350583234457373321719669183987601774864930079 skew: 21313.42 # norm 5.43e+14 c5: 9000 c4: -76048988 c3: 12119061025586 c2: -340898511045832731 c1: -5046737451005388060230 c0: -9154601256957836199856000 # alpha -6.42 Y1: 5525266307 Y0: -224588401435796917287 # Murphy_E 1.76e-09 # M 241119437529606858479298978826451053129591147004948447723988093141534466268833497155997142159084665980338 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved special-q in [100000, 1300000) Primes: RFBsize:183072, AFBsize:182920, largePrimes:4087871 encountered Relations: rels:4028528, finalFF:410738 Max relations in full relation-set: 28 Initial matrix: 366075 x 410738 with sparse part having weight 23343007. Pruned matrix : 317878 x 319772 with weight 13914370. Total sieving time: 8.54 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 8.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / PRIMO
(86·102107+13)/9 is prime.
By Sinkiti Sibata / GGNFS
8·10146-7 = 7(9)1453<147> = 13 · 1046365087<10> · 19154907071<11> · C127
C127 = P52 · P76
P52 = 1580183000642280038370796123881094831961607470495009<52>
P76 = 1943014132025684712297993803987711508705879519397502794606730636362479155677<76>
Number: 79993_146 N=3070317901434701737005636645958802200607040503016177760156771811800164613700248026172643912484812419742745714980450551562516093 ( 127 digits) SNFS difficulty: 147 digits. Divisors found: r1=1580183000642280038370796123881094831961607470495009 (pp52) r2=1943014132025684712297993803987711508705879519397502794606730636362479155677 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 19.55 hours. Scaled time: 39.02 units (timescale=1.996). Factorization parameters were as follows: name: 79993_146 n: 3070317901434701737005636645958802200607040503016177760156771811800164613700248026172643912484812419742745714980450551562516093 m: 200000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114392, largePrimes:2881812 encountered Relations: rels:2895290, finalFF:293370 Max relations in full relation-set: 28 Initial matrix: 228612 x 293370 with sparse part having weight 30568649. Pruned matrix : 209081 x 210288 with weight 20114196. Total sieving time: 18.83 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.52 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 19.55 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
6·10188+7 = 6(0)1877<189> = 17 · 199 · 257 · 3463 · 16649 · 96059 · 61883693 · 90624285000529213<17> · 454041790607190733<18> · 517371257791985827755390629<27> · C101
C101 = P49 · P53
P49 = 3525119596170058088736272803183372325772469391249<49>
P53 = 26831479803562967544394299568098567920660248574603957<53>
Number: n N=94584175249780957684016168054931694295712083157601963382080588311931355733585636495867363625056572293 ( 101 digits) Divisors found: r1=3525119596170058088736272803183372325772469391249 (pp49) r2=26831479803562967544394299568098567920660248574603957 (pp53) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.98 hours. Scaled time: 9.14 units (timescale=1.309). Factorization parameters were as follows: name: n n: 94584175249780957684016168054931694295712083157601963382080588311931355733585636495867363625056572293 skew: 7737.01 # norm 9.79e+13 c5: 78000 c4: -297470066 c3: -15863340244548 c2: 7080761517578508 c1: 414301049080350364575 c0: -367453236957540790697550 # alpha -5.80 Y1: 14831016739 Y0: -16471952224750940243 # Murphy_E 2.86e-09 # M 1155531281704554954285740779202815785221773336456573589977276941683087980735395064780088119878136440 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:135072, AFBsize:135064, largePrimes:3586849 encountered Relations: rels:3583146, finalFF:407778 Max relations in full relation-set: 48 Initial matrix: 270216 x 407778 with sparse part having weight 25913894. Pruned matrix : 153604 x 155019 with weight 8586650. Total sieving time: 6.41 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.35 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 6.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10142-7 = 7(9)1413<143> = 2857 · C140
C140 = P66 · P75
P66 = 170295424162300840230361627660073534692518109605861209895558110069<66>
P75 = 164428376204146486985826323441216525770957734599964780155385367813374589421<75>
Number: n N=28001400070003500175008750437521876093804690234511725586279313965698284914245712285614280714035701785089254462723136156807840392019600980049 ( 140 digits) SNFS difficulty: 142 digits. Divisors found: r1=170295424162300840230361627660073534692518109605861209895558110069 (pp66) r2=164428376204146486985826323441216525770957734599964780155385367813374589421 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.72 hours. Scaled time: 9.22 units (timescale=1.194). Factorization parameters were as follows: name: KA_7_9_141_3 n: 28001400070003500175008750437521876093804690234511725586279313965698284914245712285614280714035701785089254462723136156807840392019600980049 type: snfs skew: 0.65 deg: 5 c5: 25 c0: -7 m: 20000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:148933, AFBsize:148500, largePrimes:5611558 encountered Relations: rels:4989427, finalFF:361392 Max relations in full relation-set: 28 Initial matrix: 297497 x 361392 with sparse part having weight 17904087. Pruned matrix : 240103 x 241654 with weight 9277622. Total sieving time: 6.20 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.13 hours. Total square root time: 0.19 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 7.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
5·10165-1 = 4(9)165<166> = 428440364567<12> · C155
C155 = P67 · P88
P67 = 4418255297469253568147847349351285035723609901981851222353873612047<67>
P88 = 2641367423527036890767831864312306241956122491114136519637229891724953923688971860336151<88>
Number: n N=11670235611561044253628931909394969161619544523964876135974702959832102611543850287772225137109509941642444928668610984199652981246175861323416965983211097 ( 155 digits) SNFS difficulty: 165 digits. Divisors found: Mon Oct 15 22:21:57 2007 prp67 factor: 4418255297469253568147847349351285035723609901981851222353873612047 Mon Oct 15 22:21:57 2007 prp88 factor: 2641367423527036890767831864312306241956122491114136519637229891724953923688971860336151 Mon Oct 15 22:21:57 2007 elapsed time 01:18:34 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.16 hours. Scaled time: 64.21 units (timescale=1.454). Factorization parameters were as follows: name: KA_4_9_165 n: 11670235611561044253628931909394969161619544523964876135974702959832102611543850287772225137109509941642444928668610984199652981246175861323416965983211097 skew: 0.72 deg: 5 c5: 5 c0: -1 m: 1000000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2400000) Primes: RFBsize:203362, AFBsize:203387, largePrimes:7325021 encountered Relations: rels:6796373, finalFF:457305 Max relations in full relation-set: 28 Initial matrix: 406814 x 457305 with sparse part having weight 40727776. Pruned matrix : 379736 x 381834 with weight 30695175. Total sieving time: 43.93 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 44.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10168-7 = 7(9)1673<169> = 889051 · 3504811485997<13> · 212811322817407<15> · 15345355832599422733596083704019<32> · C105
C105 = P33 · P73
P33 = 350969010395558715534644431751677<33>
P73 = 2240052427411472440287076912394101922396296096003376631991190413937458559<73>
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
6·10146+7 = 6(0)1457<147> = 4357 · C144
C144 = P62 · P83
P62 = 11418173072097254220419104341228272288444055633023768296587371<62>
P83 = 12060548760877474653322042621937488929340653264886088872424357570501388208759630481<83>
Number: n N=137709433096167087445490016066100527886160201973835207711728253385356896947440899701629561624971310534771631856782189579986229056690383291255451 ( 144 digits) SNFS difficulty: 146 digits. Divisors found: r1=11418173072097254220419104341228272288444055633023768296587371 (pp62) r2=12060548760877474653322042621937488929340653264886088872424357570501388208759630481 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 14.29 hours. Scaled time: 17.06 units (timescale=1.194). Factorization parameters were as follows: name: KA_6_0_145_7 n: 137709433096167087445490016066100527886160201973835207711728253385356896947440899701629561624971310534771631856782189579986229056690383291255451 type: snfs skew: 0.65 deg: 5 c5: 60 c0: 7 m: 100000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:148933, AFBsize:148615, largePrimes:6235655 encountered Relations: rels:5562121, finalFF:337505 Max relations in full relation-set: 28 Initial matrix: 297615 x 337505 with sparse part having weight 22977078. Pruned matrix : 271076 x 272628 with weight 15819578. Total sieving time: 11.99 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.85 hours. Total square root time: 0.22 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 14.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
6·10148+7 = 6(0)1477<149> = 4549 · 787609 · 12956873023<11> · C130
C130 = P40 · P90
P40 = 9540749344069170990484839035782631826167<40>
P90 = 135469633078895411887709169907086398273346654936908113597527218378494142638547322866052347<90>
Number: n N=1292481812938762669912955974480348284084579994249280402316109378518340638209958112361129835839479159506743055281672649662826363949 ( 130 digits) SNFS difficulty: 149 digits. Divisors found: Sun Oct 14 07:28:32 2007 prp40 factor: 9540749344069170990484839035782631826167 Sun Oct 14 07:28:32 2007 prp90 factor: 135469633078895411887709169907086398273346654936908113597527218378494142638547322866052347 Sun Oct 14 07:28:32 2007 elapsed time 00:56:42 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.17 hours. Scaled time: 17.95 units (timescale=1.183). Factorization parameters were as follows: name: KA_6_0_147_7 n: 1292481812938762669912955974480348284084579994249280402316109378518340638209958112361129835839479159506743055281672649662826363949 skew: 0.52 deg: 5 c5: 375 c0: 14 m: 200000000000000000000000000000 type: snfs rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1850000) Primes: RFBsize:135072, AFBsize:135288, largePrimes:6951878 encountered Relations: rels:6272499, finalFF:315014 Max relations in full relation-set: 28 Initial matrix: 270426 x 315014 with sparse part having weight 39437700. Pruned matrix : 259998 x 261414 with weight 27086460. Total sieving time: 14.94 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.5,2.5,100000 total time: 15.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10153-7 = 7(9)1523<154> = 73 · 246833 · 540901 · C141
C141 = P38 · P104
P38 = 45503821118476645834178831665898714663<38>
P104 = 18038409980107755666629933064361219737535695629711907649346771548449394176944215804284623352754129419979<104>
By Sinkiti Sibata / GGNFS, Msieve
8·10137-7 = 7(9)1363<138> = 73 · 9964781 · C130
C130 = P48 · P82
P48 = 141316153943199860951746141560760739245162925887<48>
P82 = 7782292667443130880016248231198064453618474981570509859512503079754219269452839403<82>
Number: 79993_137 N=1099763668623428964057555400254567520253691063597981621885075953108843075523576896430442484976881173696051081207012566599402325461 ( 130 digits) SNFS difficulty: 137 digits. Divisors found: r1=141316153943199860951746141560760739245162925887 (pp48) r2=7782292667443130880016248231198064453618474981570509859512503079754219269452839403 (pp82) Version: GGNFS-0.77.1-20060513-k8 Total time: 6.78 hours. Scaled time: 13.49 units (timescale=1.990). Factorization parameters were as follows: name: 79993_137 n: 1099763668623428964057555400254567520253691063597981621885075953108843075523576896430442484976881173696051081207012566599402325461 m: 2000000000000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1225001) Primes: RFBsize:78498, AFBsize:63568, largePrimes:1548308 encountered Relations: rels:1559004, finalFF:182026 Max relations in full relation-set: 28 Initial matrix: 142130 x 182026 with sparse part having weight 14809823. Pruned matrix : 129678 x 130452 with weight 8882231. Total sieving time: 6.56 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.78 hours. --------- CPU info (if available) ----------
8·10165-7 = 7(9)1643<166> = 2381 · 5443 · 9170957 · 1193913161057723<16> · 18720100338778545677<20> · 221092714624829016465471979<27> · C92
C92 = P38 · P54
P38 = 14107017695779960660551276385083916411<38>
P54 = 965577295039246891714130651139286441420217189730013597<54>
Sat Oct 13 14:10:21 2007 Msieve v. 1.28 Sat Oct 13 14:10:21 2007 random seeds: d891a068 1d65775f Sat Oct 13 14:10:21 2007 factoring 13621415987762003925737115669456429853506846533116955465249119119459261411157655645041440367 (92 digits) Sat Oct 13 14:10:22 2007 commencing quadratic sieve (91-digit input) Sat Oct 13 14:10:22 2007 using multiplier of 7 Sat Oct 13 14:10:22 2007 using 64kb Pentium 2 sieve core Sat Oct 13 14:10:22 2007 sieve interval: 18 blocks of size 65536 Sat Oct 13 14:10:22 2007 processing polynomials in batches of 6 Sat Oct 13 14:10:22 2007 using a sieve bound of 1753547 (65651 primes) Sat Oct 13 14:10:22 2007 using large prime bound of 177108247 (27 bits) Sat Oct 13 14:10:22 2007 using double large prime bound of 702796695147472 (42-50 bits) Sat Oct 13 14:10:22 2007 using trial factoring cutoff of 50 bits Sat Oct 13 14:10:22 2007 polynomial 'A' values have 12 factors Sun Oct 14 04:42:53 2007 66323 relations (17390 full + 48933 combined from 797713 partial), need 65747 Sun Oct 14 04:43:12 2007 begin with 815103 relations Sun Oct 14 04:43:18 2007 reduce to 165651 relations in 10 passes Sun Oct 14 04:43:18 2007 attempting to read 165651 relations Sun Oct 14 04:43:40 2007 recovered 165651 relations Sun Oct 14 04:43:40 2007 recovered 143802 polynomials Sun Oct 14 04:44:26 2007 attempting to build 66323 cycles Sun Oct 14 04:44:27 2007 found 66323 cycles in 5 passes Sun Oct 14 04:44:31 2007 distribution of cycle lengths: Sun Oct 14 04:44:31 2007 length 1 : 17390 Sun Oct 14 04:44:31 2007 length 2 : 12238 Sun Oct 14 04:44:31 2007 length 3 : 11622 Sun Oct 14 04:44:31 2007 length 4 : 8894 Sun Oct 14 04:44:31 2007 length 5 : 6300 Sun Oct 14 04:44:31 2007 length 6 : 4157 Sun Oct 14 04:44:31 2007 length 7 : 2532 Sun Oct 14 04:44:31 2007 length 9+: 3190 Sun Oct 14 04:44:32 2007 largest cycle: 19 relations Sun Oct 14 04:44:33 2007 matrix is 65651 x 66323 with weight 3988888 (avg 60.14/col) Sun Oct 14 04:44:40 2007 filtering completed in 4 passes Sun Oct 14 04:44:40 2007 matrix is 61409 x 61473 with weight 3690038 (avg 60.03/col) Sun Oct 14 04:44:44 2007 saving the first 48 matrix rows for later Sun Oct 14 04:44:44 2007 matrix is 61361 x 61473 with weight 2824181 (avg 45.94/col) Sun Oct 14 04:44:44 2007 matrix includes 64 packed rows Sun Oct 14 04:44:44 2007 using block size 10922 for processor cache size 256 kB Sun Oct 14 04:44:47 2007 commencing Lanczos iteration Sun Oct 14 04:49:15 2007 lanczos halted after 972 iterations Sun Oct 14 04:49:16 2007 recovered 17 nontrivial dependencies Sun Oct 14 04:50:10 2007 prp38 factor: 14107017695779960660551276385083916411 Sun Oct 14 04:50:10 2007 prp54 factor: 965577295039246891714130651139286441420217189730013597 Sun Oct 14 04:50:10 2007 elapsed time 14:39:49
8·10131-7 = 7(9)1303<132> = 149 · 281 · 376313501619021334931<21> · C107
C107 = P44 · P64
P44 = 37274544353516647698335148848851846484864657<44>
P64 = 1362182369130717145175925548652388406862572932354777517395196191<64>
Number: 79993_131 N=50774727135741302668281681978154025666220800077589563173122909846534600529922377074914069545651920596921487 ( 107 digits) SNFS difficulty: 132 digits. Divisors found: r1=37274544353516647698335148848851846484864657 (pp44) r2=1362182369130717145175925548652388406862572932354777517395196191 (pp64) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.40 hours. Scaled time: 8.79 units (timescale=1.999). Factorization parameters were as follows: name: 79993_131 n: 50774727135741302668281681978154025666220800077589563173122909846534600529922377074914069545651920596921487 m: 200000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63943, largePrimes:1469981 encountered Relations: rels:1455868, finalFF:158326 Max relations in full relation-set: 28 Initial matrix: 127959 x 158326 with sparse part having weight 11756685. Pruned matrix : 119410 x 120113 with weight 7188237. Total sieving time: 4.24 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.40 hours. --------- CPU info (if available) ----------
6·10150+7 = 6(0)1497<151> = 13 · 1021 · 51377866217<11> · 38690659722181<14> · 13553397374370467<17> · C107
C107 = P44 · P63
P44 = 75896163172818350563639937211446513525782697<44>
P63 = 221071096062905112755419151133504653865878416206951105384644033<63>
Number: 60007_150 N=16778447979584046870105927524867093522623211025234406911205125926978020882062201070003687860376291055697001 ( 107 digits) Divisors found: r1=75896163172818350563639937211446513525782697 (pp44) r2=221071096062905112755419151133504653865878416206951105384644033 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 19.13 hours. Scaled time: 12.93 units (timescale=0.676). Factorization parameters were as follows: name: 60007_150 n: 16778447979584046870105927524867093522623211025234406911205125926978020882062201070003687860376291055697001 skew: 36403.92 # norm 2.09e+14 c5: 2100 c4: -112214840 c3: -13116197646990 c2: 123037965666033289 c1: 5760329507112287712094 c0: 1238462310613528311780792 # alpha -5.17 Y1: 120696764773 Y0: -380634342801918434537 # Murphy_E 1.56e-09 # M 13741135059811030920870521422422840200370178162132655706061264578222105542413703524686047496399343377873432 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183420, largePrimes:4395571 encountered Relations: rels:4422833, finalFF:421465 Max relations in full relation-set: 28 Initial matrix: 366571 x 421465 with sparse part having weight 30675596. Pruned matrix : 323362 x 325258 with weight 19810409. Total sieving time: 15.47 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.20 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 19.13 hours. --------- CPU info (if available) ----------
8·10134-7 = 7(9)1333<135> = 13 · 31 · 43 · 379 · 398471 · 16515812627621261<17> · C107
C107 = P41 · P66
P41 = 48003731369287073342189922196135629754309<41>
P66 = 385572109653783210030204978859579938448033879962204411809558451037<66>
Number: 79993_134 N=18508899975309508283025996892062552559124843281306774880121900716696676128531676413045071788063922916268433 ( 107 digits) SNFS difficulty: 135 digits. Divisors found: r1=48003731369287073342189922196135629754309 (pp41) r2=385572109653783210030204978859579938448033879962204411809558451037 (pp66) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.87 hours. Scaled time: 11.71 units (timescale=1.996). Factorization parameters were as follows: name: 79993_134 n: 18508899975309508283025996892062552559124843281306774880121900716696676128531676413045071788063922916268433 m: 1000000000000000000000000000 c5: 4 c0: -35 skew: 1.54 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:64193, largePrimes:1523402 encountered Relations: rels:1537466, finalFF:188576 Max relations in full relation-set: 28 Initial matrix: 142755 x 188576 with sparse part having weight 13498820. Pruned matrix : 126954 x 127731 with weight 7386006. Total sieving time: 5.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.87 hours. --------- CPU info (if available) ----------
8·10136-7 = 7(9)1353<137> = 163 · 269 · 22407799279<11> · 81876428270723<14> · C108
C108 = P42 · P67
P42 = 110918576820312746668279691257635716599183<42>
P67 = 8965772596523034939022478706473281787255547555025279231551238868629<67>
Number: 79993_136 N=994470736500895131291624755886395172525421692165650373010779297212968520824895570611922816043828312385730107 ( 108 digits) SNFS difficulty: 137 digits. Divisors found: r1=110918576820312746668279691257635716599183 (pp42) r2=8965772596523034939022478706473281787255547555025279231551238868629 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.91 hours. Scaled time: 15.72 units (timescale=1.988). Factorization parameters were as follows: name: 79993_136 n: 994470736500895131291624755886395172525421692165650373010779297212968520824895570611922816043828312385730107 m: 2000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63943, largePrimes:1589559 encountered Relations: rels:1610836, finalFF:189841 Max relations in full relation-set: 28 Initial matrix: 142506 x 189841 with sparse part having weight 16890095. Pruned matrix : 128981 x 129757 with weight 9843551. Total sieving time: 7.67 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.91 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GGNFS
8·10110-7 = 7(9)1093<111> = 13 · 30197 · 69511273067394199277<20> · C86
C86 = P43 · P43
P43 = 3412752588243064179197971634430268240789861<43>
P43 = 8590585972779452282610598329176427275489929<43>
Sat Oct 13 14:21:54 2007 Msieve v. 1.28 Sat Oct 13 14:21:54 2007 random seeds: 71c0a470 a1018f8f Sat Oct 13 14:21:54 2007 factoring 29317544513127637059005073107012633156477405810349541305000972214868654912800710809869 (86 digits) Sat Oct 13 14:21:54 2007 commencing quadratic sieve (85-digit input) Sat Oct 13 14:21:54 2007 using multiplier of 1 Sat Oct 13 14:21:54 2007 using 64kb Opteron sieve core Sat Oct 13 14:21:54 2007 sieve interval: 7 blocks of size 65536 Sat Oct 13 14:21:54 2007 processing polynomials in batches of 15 Sat Oct 13 14:21:54 2007 using a sieve bound of 1442579 (55333 primes) Sat Oct 13 14:21:54 2007 using large prime bound of 115406320 (26 bits) Sat Oct 13 14:21:54 2007 using double large prime bound of 325097179907280 (41-49 bits) Sat Oct 13 14:21:54 2007 using trial factoring cutoff of 49 bits Sat Oct 13 14:21:54 2007 polynomial 'A' values have 11 factors Sat Oct 13 14:54:41 2007 55598 relations (16566 full + 39032 combined from 566706 partial), need 55429 Sat Oct 13 14:54:42 2007 begin with 583272 relations Sat Oct 13 14:54:43 2007 reduce to 129047 relations in 9 passes Sat Oct 13 14:54:43 2007 attempting to read 129047 relations Sat Oct 13 14:54:44 2007 recovered 129047 relations Sat Oct 13 14:54:44 2007 recovered 103401 polynomials Sat Oct 13 14:54:45 2007 attempting to build 55598 cycles Sat Oct 13 14:54:45 2007 found 55598 cycles in 5 passes Sat Oct 13 14:54:45 2007 distribution of cycle lengths: Sat Oct 13 14:54:45 2007 length 1 : 16566 Sat Oct 13 14:54:46 2007 length 2 : 11426 Sat Oct 13 14:54:46 2007 length 3 : 9845 Sat Oct 13 14:54:46 2007 length 4 : 7055 Sat Oct 13 14:54:46 2007 length 5 : 4727 Sat Oct 13 14:54:46 2007 length 6 : 2766 Sat Oct 13 14:54:46 2007 length 7 : 1568 Sat Oct 13 14:54:46 2007 length 9+: 1645 Sat Oct 13 14:54:46 2007 largest cycle: 19 relations Sat Oct 13 14:54:46 2007 matrix is 55333 x 55598 with weight 2843187 (avg 51.14/col) Sat Oct 13 14:54:47 2007 filtering completed in 3 passes Sat Oct 13 14:54:47 2007 matrix is 49684 x 49748 with weight 2566866 (avg 51.60/col) Sat Oct 13 14:54:48 2007 saving the first 48 matrix rows for later Sat Oct 13 14:54:48 2007 matrix is 49636 x 49748 with weight 1895227 (avg 38.10/col) Sat Oct 13 14:54:48 2007 matrix includes 64 packed rows Sat Oct 13 14:54:48 2007 commencing Lanczos iteration Sat Oct 13 14:56:13 2007 lanczos halted after 786 iterations Sat Oct 13 14:56:13 2007 recovered 16 nontrivial dependencies Sat Oct 13 14:56:14 2007 prp43 factor: 3412752588243064179197971634430268240789861 Sat Oct 13 14:56:14 2007 prp43 factor: 8590585972779452282610598329176427275489929 Sat Oct 13 14:56:14 2007 elapsed time 00:34:20
8·10103-7 = 7(9)1023<104> = 281 · 9903493 · 76751663 · C87
C87 = P35 · P53
P35 = 11645958539351398837968999925860551<35>
P53 = 32161199219947116795810535309580815458905862060506117<53>
Sat Oct 13 14:18:15 2007 Msieve v. 1.28 Sat Oct 13 14:18:15 2007 random seeds: fd6310c0 0e9f8101 Sat Oct 13 14:18:15 2007 factoring 374547992691324672010178946818039861713393421705423703090741037387853600337071824490467 (87 digits) Sat Oct 13 14:18:15 2007 commencing quadratic sieve (87-digit input) Sat Oct 13 14:18:15 2007 using multiplier of 7 Sat Oct 13 14:18:15 2007 using 64kb Athlon XP sieve core Sat Oct 13 14:18:15 2007 sieve interval: 10 blocks of size 65536 Sat Oct 13 14:18:15 2007 processing polynomials in batches of 11 Sat Oct 13 14:18:15 2007 using a sieve bound of 1483429 (56667 primes) Sat Oct 13 14:18:15 2007 using large prime bound of 118674320 (26 bits) Sat Oct 13 14:18:15 2007 using double large prime bound of 341855144981120 (42-49 bits) Sat Oct 13 14:18:15 2007 using trial factoring cutoff of 49 bits Sat Oct 13 14:18:15 2007 polynomial 'A' values have 11 factors Sat Oct 13 15:27:24 2007 56771 relations (15604 full + 41167 combined from 595942 partial), need 56763 Sat Oct 13 15:27:25 2007 begin with 611546 relations Sat Oct 13 15:27:25 2007 reduce to 136916 relations in 9 passes Sat Oct 13 15:27:25 2007 attempting to read 136916 relations Sat Oct 13 15:27:27 2007 recovered 136916 relations Sat Oct 13 15:27:27 2007 recovered 116979 polynomials Sat Oct 13 15:27:28 2007 attempting to build 56771 cycles Sat Oct 13 15:27:28 2007 found 56771 cycles in 6 passes Sat Oct 13 15:27:28 2007 distribution of cycle lengths: Sat Oct 13 15:27:28 2007 length 1 : 15604 Sat Oct 13 15:27:28 2007 length 2 : 10981 Sat Oct 13 15:27:28 2007 length 3 : 9938 Sat Oct 13 15:27:28 2007 length 4 : 7431 Sat Oct 13 15:27:28 2007 length 5 : 5307 Sat Oct 13 15:27:28 2007 length 6 : 3290 Sat Oct 13 15:27:28 2007 length 7 : 1927 Sat Oct 13 15:27:28 2007 length 9+: 2293 Sat Oct 13 15:27:28 2007 largest cycle: 20 relations Sat Oct 13 15:27:29 2007 matrix is 56667 x 56771 with weight 3278330 (avg 57.75/col) Sat Oct 13 15:27:30 2007 filtering completed in 4 passes Sat Oct 13 15:27:30 2007 matrix is 52445 x 52509 with weight 3068265 (avg 58.43/col) Sat Oct 13 15:27:31 2007 saving the first 48 matrix rows for later Sat Oct 13 15:27:31 2007 matrix is 52397 x 52509 with weight 2467820 (avg 47.00/col) Sat Oct 13 15:27:31 2007 matrix includes 64 packed rows Sat Oct 13 15:27:31 2007 using block size 10922 for processor cache size 256 kB Sat Oct 13 15:27:32 2007 commencing Lanczos iteration Sat Oct 13 15:28:04 2007 lanczos halted after 830 iterations Sat Oct 13 15:28:04 2007 recovered 18 nontrivial dependencies Sat Oct 13 15:28:05 2007 prp35 factor: 11645958539351398837968999925860551 Sat Oct 13 15:28:05 2007 prp53 factor: 32161199219947116795810535309580815458905862060506117 Sat Oct 13 15:28:05 2007 elapsed time 01:09:50
8·10119-7 = 7(9)1183<120> = 31 · C119
C119 = P41 · P78
P41 = 65850038351296212647890397578950381287521<41>
P78 = 391897290556327270259798161999635360467060860906617319029511693859070848809543<78>
Number: n N=25806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903 ( 119 digits) SNFS difficulty: 120 digits. Divisors found: r1=65850038351296212647890397578950381287521 (pp41) r2=391897290556327270259798161999635360467060860906617319029511693859070848809543 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.48 hours. Scaled time: 1.94 units (timescale=1.313). Factorization parameters were as follows: name: KA_7_9_118_3 n: 25806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903 skew: 1.54 deg: 5 c5: 4 c0: -35 m: 1000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:63951, AFBsize:64193, largePrimes:4027991 encountered Relations: rels:3391987, finalFF:155362 Max relations in full relation-set: 48 Initial matrix: 128208 x 155362 with sparse part having weight 9403022. Pruned matrix : 112183 x 112888 with weight 4664374. Total sieving time: 1.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
6·10134+7 = 6(0)1337<135> = 193 · 863 · 23603 · 100586824269101<15> · C112
C112 = P35 · P77
P35 = 16080745011300179212403283434151191<35>
P77 = 94355816472667095064977591820097467102390568492729306979142286831385089101801<77>
Number: 60007_134 N=1517311825029996661504435096321997519435645891033130360977335775340869413282472959239396871158506225871024394991 ( 112 digits) SNFS difficulty: 135 digits. Divisors found: r1=16080745011300179212403283434151191 (pp35) r2=94355816472667095064977591820097467102390568492729306979142286831385089101801 (pp77) Version: GGNFS-0.77.1-20060513-k8 Total time: 5.83 hours. Scaled time: 11.61 units (timescale=1.992). Factorization parameters were as follows: name: 60007_134 n: 1517311825029996661504435096321997519435645891033130360977335775340869413282472959239396871158506225871024394991 m: 1000000000000000000000000000 c5: 3 c0: 35 skew: 1.63 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63993, largePrimes:1532434 encountered Relations: rels:1543630, finalFF:184907 Max relations in full relation-set: 28 Initial matrix: 142556 x 184907 with sparse part having weight 13770867. Pruned matrix : 128299 x 129075 with weight 7860258. Total sieving time: 5.62 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.11 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.83 hours. --------- CPU info (if available) ----------
8·10102-7 = 7(9)1013<103> = 2599231 · C97
C97 = P36 · P62
P36 = 123290814675728514277867589716453613<36>
P62 = 24964012229434350382875423100742889170251821341837628816240131<62>
Number: 79993_102 N=3077833405341810712476113127305730040923642415776050685760519168938813056630980470762313930543303 ( 97 digits) SNFS difficulty: 102 digits. Divisors found: r1=123290814675728514277867589716453613 (pp36) r2=24964012229434350382875423100742889170251821341837628816240131 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 0.89 hours. Scaled time: 1.79 units (timescale=1.999). Factorization parameters were as follows: name: 79993_102 n: 3077833405341810712476113127305730040923642415776050685760519168938813056630980470762313930543303 m: 200000000000000000000 c5: 25 c0: -7 skew: 0.78 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 310001) Primes: RFBsize:37706, AFBsize:41317, largePrimes:1576393 encountered Relations: rels:1849951, finalFF:427438 Max relations in full relation-set: 28 Initial matrix: 79087 x 427438 with sparse part having weight 15779526. Pruned matrix : 37970 x 38429 with weight 2534723. Total sieving time: 0.84 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.89 hours. --------- CPU info (if available) ----------
8·10113-7 = 7(9)1123<114> = 43 · 73 · 947 · 138185209 · C100
C100 = P34 · P67
P34 = 1766907794190056087078782907983423<34>
P67 = 1102232585621228023273179280338960623464028098584925315433259382103<67>
Number: 79993_113 N=1947543346544406138446494012197593494161099060936009527105845848444968706122941158047420354746878569 ( 100 digits) SNFS difficulty: 113 digits. Divisors found: r1=1766907794190056087078782907983423 (pp34) r2=1102232585621228023273179280338960623464028098584925315433259382103 (pp67) Version: GGNFS-0.77.1-20060513-k8 Total time: 4.01 hours. Scaled time: 7.94 units (timescale=1.983). Factorization parameters were as follows: name: 79993_113 n: 1947543346544406138446494012197593494161099060936009527105845848444968706122941158047420354746878569 m: 20000000000000000000000 c5: 250 c0: -7 skew: 0.49 type: snfs n: 1947543346544406138446494012197593494161099060936009527105845848444968706122941158047420354746878569 m: 20000000000000000000000 c5: 250 c0: -7 skew: 0.49 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64168, largePrimes:2727503 encountered Relations: rels:3846323, finalFF:1205129 Max relations in full relation-set: 28 Initial matrix: 113332 x 1205129 with sparse part having weight 90876931. Pruned matrix : 49293 x 49923 with weight 10051860. Total sieving time: 3.88 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.01 hours. --------- CPU info (if available) ----------
8·10128-7 = 7(9)1273<129> = 13 · 4458931 · 28353751 · 344697087446640263047<21> · C94
C94 = P39 · P55
P39 = 212705206095827642161365792695450030873<39>
P55 = 6638800655743115255251905310435410068403132728886029351<55>
Number: 79993_128 N=1412107461708955027069290923954737312907713787250726572515699054670309444073066843051334153423 ( 94 digits) SNFS difficulty: 128 digits. Divisors found: r1=212705206095827642161365792695450030873 (pp39) r2=6638800655743115255251905310435410068403132728886029351 (pp55) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 5.28 hours. Scaled time: 3.57 units (timescale=0.676). Factorization parameters were as follows: name: 79993_128 n: 1412107461708955027069290923954737312907713787250726572515699054670309444073066843051334153423 m: 20000000000000000000000000 c5: 250 c0: -7 skew: 0.49 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64168, largePrimes:1487851 encountered Relations: rels:1489577, finalFF:174328 Max relations in full relation-set: 28 Initial matrix: 128185 x 174328 with sparse part having weight 12264098. Pruned matrix : 114449 x 115153 with weight 6368258. Total sieving time: 4.96 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,128,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.28 hours. --------- CPU info (if available) ----------
8·10114-7 = 7(9)1133<115> = 230904677 · C107
C107 = P48 · P59
P48 = 587132704218609332602624273840988912804671457773<48>
P59 = 59009370997911180303851532975515874983963222792974758349433<59>
Number: 79993_114 N=34646331568242768854785908039446078435215064959468101202644760634276801591160494336803753871126655437992709 ( 107 digits) SNFS difficulty: 115 digits. Divisors found: r1=587132704218609332602624273840988912804671457773 (pp48) r2=59009370997911180303851532975515874983963222792974758349433 (pp59) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.32 hours. Scaled time: 6.61 units (timescale=1.994). Factorization parameters were as follows: name: 79993_114 n: 34646331568242768854785908039446078435215064959468101202644760634276801591160494336803753871126655437992709 m: 100000000000000000000000 c5: 4 c0: -35 skew: 1.54 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64193, largePrimes:2486912 encountered Relations: rels:3148089, finalFF:767372 Max relations in full relation-set: 28 Initial matrix: 113355 x 767372 with sparse part having weight 60310023. Pruned matrix : 62081 x 62711 with weight 6647029. Total sieving time: 3.20 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.32 hours. --------- CPU info (if available) ----------
The factor table of 799...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS
6·10144+7 = 6(0)1437<145> = 13 · 61 · 6217 · C139
C139 = P47 · P92
P47 = 17996214744046724344420417956846958165765495333<47>
P92 = 67626362611447967176376164281940047499923797596474846813424537050089499416597128887441863259<92>
Number: n N=1217018543914390047546886146495361840910930266662961521321860634744135035509558565062115612299270539368420113178667855558559788368588670247 ( 139 digits) SNFS difficulty: 145 digits. Divisors found: r1=17996214744046724344420417956846958165765495333 (pp47) r2=67626362611447967176376164281940047499923797596474846813424537050089499416597128887441863259 (pp92) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.95 hours. Scaled time: 11.51 units (timescale=1.449). Factorization parameters were as follows: name: KA_6_0_143_7 n: 1217018543914390047546886146495361840910930266662961521321860634744135035509558565062115612299270539368420113178667855558559788368588670247 skew: 1.63 deg: 5 c5: 3 c0: 35 m: 100000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:148933, AFBsize:148840, largePrimes:6333809 encountered Relations: rels:5693227, finalFF:347656 Max relations in full relation-set: 28 Initial matrix: 297838 x 347656 with sparse part having weight 22955213. Pruned matrix : 259683 x 261236 with weight 14197561. Total sieving time: 6.15 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.51 hours. Total square root time: 0.13 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 7.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
6·10132+7 = 6(0)1317<133> = 13 · 31 · 59 · 2090009 · 148913261947<12> · C111
C111 = P55 · P57
P55 = 1983329501828473727548585254782922572449329984672734213<55>
P57 = 408806495210391060163003461145989705978462625906890077609<57>
Number: 60007_132 N=810797982489869232300976179328579352721883380713949594003733868807533449400899968769781243999195835893799536717 ( 111 digits) SNFS difficulty: 132 digits. Divisors found: r1=1983329501828473727548585254782922572449329984672734213 (pp55) r2=408806495210391060163003461145989705978462625906890077609 (pp57) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 7.78 hours. Scaled time: 5.26 units (timescale=0.676). Factorization parameters were as follows: name: 60007_132 n: 810797982489869232300976179328579352721883380713949594003733868807533449400899968769781243999195835893799536717 m: 100000000000000000000000000 c5: 600 c0: 7 skew: 0.41 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1250001) Primes: RFBsize:63951, AFBsize:63523, largePrimes:1533110 encountered Relations: rels:1528629, finalFF:158241 Max relations in full relation-set: 28 Initial matrix: 127540 x 158241 with sparse part having weight 14199593. Pruned matrix : 119830 x 120531 with weight 9182188. Total sieving time: 7.35 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 7.78 hours. --------- CPU info (if available) ----------
6·10167-7 = 5(9)1663<168> = 86004929922823687<17> · 117124643630091042473553137641<30> · C122
C122 = P55 · P68
P55 = 1422924018199617086667469983408773956446337923324187259<55>
P68 = 41859873490837916408900575837828799444368507615420908476733092182981<68>
Number: 59993_167 N=59563419388910720197810859969956349938363680093704772757910598946408447555545711050233081537114891883517241917857936839079 ( 122 digits) SNFS difficulty: 167 digits. Divisors found: r1=1422924018199617086667469983408773956446337923324187259 (pp55) r2=41859873490837916408900575837828799444368507615420908476733092182981 (pp68) Version: GGNFS-0.77.1-20060513-k8 Total time: 154.80 hours. Scaled time: 308.82 units (timescale=1.995). Factorization parameters were as follows: name: 59993_167 n: 59563419388910720197810859969956349938363680093704772757910598946408447555545711050233081537114891883517241917857936839079 m: 1000000000000000000000000000000000 c5: 600 c0: -7 skew: 0.41 type: snfs Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2750000, 7450001) Primes: RFBsize:380800, AFBsize:380567, largePrimes:6136257 encountered Relations: rels:6361592, finalFF:867619 Max relations in full relation-set: 28 Initial matrix: 761433 x 867619 with sparse part having weight 66909828. Pruned matrix : 680057 x 683928 with weight 51296332. Total sieving time: 147.94 hours. Total relation processing time: 0.30 hours. Matrix solve time: 6.30 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,48,48,2.6,2.6,100000 total time: 154.80 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
6·10193+7 = 6(0)1927<194> = C194
C194 = P37 · C157
P37 = 9431867921209970677263227064224760463<37>
C157 = [6361412235753920282712594389572541485300199982510262458997768914548898435588007324833733189857362507423842664895526461468007039663923961796686299905053607689<157>]
6·10140+7 = 6(0)1397<141> = 17 · 25765322537<11> · 29151135776457323<17> · C113
C113 = P52 · P61
P52 = 6123908191785128062611453979386707666992816396823857<52>
P61 = 7673307351852464227438937019759901799643665911557369118867853<61>
Number: 60007_140 N=46990629750094353640929945031801720386834025557110371526615491443551271997160943220584424618795094865880900769021 ( 113 digits) SNFS difficulty: 140 digits. Divisors found: r1=6123908191785128062611453979386707666992816396823857 (pp52) r2=7673307351852464227438937019759901799643665911557369118867853 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.19 hours. Scaled time: 13.10 units (timescale=2.117). Factorization parameters were as follows: n: 46990629750094353640929945031801720386834025557110371526615491443551271997160943220584424618795094865880900769021 m: 10000000000000000000000000000 c5: 6 c0: 7 skew: 1.03 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114412, largePrimes:3206977 encountered Relations: rels:3155190, finalFF:262058 Max relations in full relation-set: 28 Initial matrix: 228633 x 262058 with sparse part having weight 22384343. Pruned matrix : 214081 x 215288 with weight 15710541. Total sieving time: 5.95 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
6·10183+7 = 6(0)1827<184> = C184
C184 = P37 · P148
P37 = 4646109535270935651861373920553944113<37>
P148 = 1291403044730436574664225203953221354301912479271324672689780038042977651172600578097674193944368819808698887156719580132180993397271065994090189239<148>
6·10160+7 = 6(0)1597<161> = 4229 · 482513 · 19099104039013<14> · C139
C139 = P34 · P105
P34 = 2891475901086594031773677024975431<34>
P105 = 532441594081401683367165802963920698884830621397625778059323292338660459693626121501287829706854904467897<105>
By Jo Yeong Uk / GGNFS
6·10152+7 = 6(0)1517<153> = C153
C153 = P43 · P111
P43 = 1840685266806508095129806305318544351784701<43>
P111 = 325965557947322722135583311765356705447166321685192963549916970963466614546316438202055770474848508291355137107<111>
Number: 60007_152 N=600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 153 digits) SNFS difficulty: 153 digits. Divisors found: r1=1840685266806508095129806305318544351784701 (pp43) r2=325965557947322722135583311765356705447166321685192963549916970963466614546316438202055770474848508291355137107 (pp111) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.05 hours. Scaled time: 42.60 units (timescale=2.125). Factorization parameters were as follows: n: 600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 m: 2000000000000000000000000000000 c5: 75 c0: 28 skew: 0.82 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:175743, largePrimes:5716294 encountered Relations: rels:5680786, finalFF:487419 Max relations in full relation-set: 28 Initial matrix: 352111 x 487419 with sparse part having weight 48790712. Pruned matrix : 305178 x 307002 with weight 29072127. Total sieving time: 19.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.56 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 20.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(89·10163+1)/9 = 9(8)1629<164> = 32 · 11 · 191 · 44453 · 169823791 · C147
C147 = P71 · P77
P71 = 53555495404586983124284868689499027110767249977749056417262621184569457<71>
P77 = 12935263718227109600388586097547759844207588321745878007455274683392359947511<77>
Number: n N=692754456618632700742588855519739501284878125239435320459568642724351039203120317771928341708484604722354579869380134021593082789437079791653771527 ( 147 digits) SNFS difficulty: 164 digits. Divisors found: Fri Oct 12 07:40:24 2007 prp71 factor: 53555495404586983124284868689499027110767249977749056417262621184569457 Fri Oct 12 07:40:24 2007 prp77 factor: 12935263718227109600388586097547759844207588321745878007455274683392359947511 Fri Oct 12 07:40:24 2007 elapsed time 01:36:36 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.85 hours. Scaled time: 58.50 units (timescale=1.432). Factorization parameters were as follows: name: KA_9_8_162_9 n: 692754456618632700742588855519739501284878125239435320459568642724351039203120317771928341708484604722354579869380134021593082789437079791653771527 skew: 0.10 deg: 5 c5: 89000 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100001) Primes: RFBsize:203362, AFBsize:202807, largePrimes:7209972 encountered Relations: rels:6664266, finalFF:448066 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 40.59 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 40.85 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
6·10145+7 = 6(0)1447<146> = 163 · C144
C144 = P64 · P80
P64 = 3919572055477532086753025839329335485817252963822084748594102007<64>
P80 = 93912844131744392068992466757974562467028071947951869170587151041083038337579227<80>
Number: n N=368098159509202453987730061349693251533742331288343558282208588957055214723926380368098159509202453987730061349693251533742331288343558282208589 ( 144 digits) SNFS difficulty: 145 digits. Divisors found: r1=3919572055477532086753025839329335485817252963822084748594102007 (pp64) r2=93912844131744392068992466757974562467028071947951869170587151041083038337579227 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.95 hours. Scaled time: 14.29 units (timescale=1.196). Factorization parameters were as follows: name: KA_6_0_144_7 n: 368098159509202453987730061349693251533742331288343558282208588957055214723926380368098159509202453987730061349693251533742331288343558282208589 type: snfs skew: 1.03 deg: 5 c5: 6 c0: 7 m: 100000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:148933, AFBsize:149160, largePrimes:6126432 encountered Relations: rels:5452417, finalFF:336584 Max relations in full relation-set: 28 Initial matrix: 298159 x 336584 with sparse part having weight 21730162. Pruned matrix : 270315 x 271869 with weight 14890622. Total sieving time: 9.92 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.75 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 11.95 hours. --------- CPU info (if available) ----------
6·10138+7 = 6(0)1377<139> = 13 · C138
C138 = P52 · P86
P52 = 8786475728072227386487041599685529123701731718444931<52>
P86 = 52528280487235138475680678891847720293425922478509734700005290994634833797311729822369<86>
Number: n N=461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461539 ( 138 digits) SNFS difficulty: 138 digits. Divisors found: r1=8786475728072227386487041599685529123701731718444931 (pp52) r2=52528280487235138475680678891847720293425922478509734700005290994634833797311729822369 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.79 hours. Scaled time: 8.84 units (timescale=1.302). Factorization parameters were as follows: name: KA_6_0_137_3 n: 461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461539 skew: 0.26 deg: 5 c5: 6000 c0: 7 m: 1000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:114155, AFBsize:114432, largePrimes:6211466 encountered Relations: rels:5545647, finalFF:312486 Max relations in full relation-set: 48 Initial matrix: 228654 x 312486 with sparse part having weight 29654727. Pruned matrix : 190499 x 191706 with weight 12900013. Total sieving time: 5.71 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.83 hours. Total square root time: 0.08 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 6.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(25·10164-7)/9 = 2(7)164<165> = 109 · 233 · 98429 · 3605093 · C149
C149 = P69 · P81
P69 = 202665523211650989063300380086943340369476928178393708116016987186139<69>
P81 = 152088249235178053009249905689353519859990659090201830262384603581442406000454727<81>
Number: n N=30823044605591338486772528468080215864221880056493623390494021588481356096730350429012600680064293390882554678466909555819589219907302066966191429053 ( 149 digits) SNFS difficulty: 165 digits. Divisors found: r1=202665523211650989063300380086943340369476928178393708116016987186139 (pp69) r2=152088249235178053009249905689353519859990659090201830262384603581442406000454727 (pp81) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 63.84 hours. Scaled time: 83.38 units (timescale=1.306). Factorization parameters were as follows: name: KA_2_7_164 n: 30823044605591338486772528468080215864221880056493623390494021588481356096730350429012600680064293390882554678466909555819589219907302066966191429053 skew: 1.23 deg: 5 c5: 5 c0: -14 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:216816, AFBsize:217381, largePrimes:7523615 encountered Relations: rels:7019729, finalFF:495769 Max relations in full relation-set: 28 Initial matrix: 434262 x 495769 with sparse part having weight 44468095. Pruned matrix : 406710 x 408945 with weight 32940913. Total sieving time: 58.95 hours. Total relation processing time: 0.28 hours. Matrix solve time: 4.48 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
6·10114+7 = 6(0)1137<115> = 13 · 23 · 294199 · 314707 · 2354837 · C95
C95 = P32 · P64
P32 = 13963735493801662655038504422019<32>
P64 = 6591283660858015718799436869882276779748116589270476529805242367<64>
Number: 60007_114 N=92038941604838034885826953995277077283508823907453477048445035739217774475488560068977546478973 ( 95 digits) SNFS difficulty: 115 digits. Divisors found: r1=13963735493801662655038504422019 (pp32) r2=6591283660858015718799436869882276779748116589270476529805242367 (pp64) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.60 hours. Scaled time: 1.08 units (timescale=0.676). Factorization parameters were as follows: name: 60007_114 n: 92038941604838034885826953995277077283508823907453477048445035739217774475488560068977546478973 m: 100000000000000000000000 c5: 3 c0: 35 skew: 1.63 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63993, largePrimes:2069865 encountered Relations: rels:2160911, finalFF:246690 Max relations in full relation-set: 28 Initial matrix: 113156 x 246690 with sparse part having weight 18938825. Pruned matrix : 79136 x 79765 with weight 3921681. Total sieving time: 1.41 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.60 hours. --------- CPU info (if available) ----------
6·10116+7 = 6(0)1157<117> = 1433 · C114
C114 = P46 · P68
P46 = 4260569836341526184189932091009434032922764443<46>
P68 = 98273714505283129560284285927238795172266087521311216860992588389453<68>
Number: 60007_116 N=418702023726448011165387299371946964410327983251919050942079553384508025122121423586880669923237962316817864619679 ( 114 digits) SNFS difficulty: 116 digits. Divisors found: r1=4260569836341526184189932091009434032922764443 (pp46) r2=98273714505283129560284285927238795172266087521311216860992588389453 (pp68) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.17 hours. Scaled time: 1.47 units (timescale=0.676). Factorization parameters were as follows: name: 60007_116 n: 418702023726448011165387299371946964410327983251919050942079553384508025122121423586880669923237962316817864619679 m: 100000000000000000000000 c5: 60 c0: 7 skew: 0.65 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63883, largePrimes:2216313 encountered Relations: rels:2423409, finalFF:333688 Max relations in full relation-set: 28 Initial matrix: 113048 x 333688 with sparse part having weight 30159400. Pruned matrix : 73820 x 74449 with weight 5302920. Total sieving time: 1.96 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.17 hours. --------- CPU info (if available) ----------
6·10117+7 = 6(0)1167<118> = 31 · 2602909783189<13> · C104
C104 = P39 · P65
P39 = 761007481197519851161967935908199514911<39>
P65 = 97710562768479463816800500502385687103003804418987111582005841643<65>
Number: 60007_117 N=74358469258832718774436183724553279940996020408249446899718017650687200724318637458592452381540883238773 ( 104 digits) SNFS difficulty: 117 digits. Divisors found: r1=761007481197519851161967935908199514911 (pp39) r2=97710562768479463816800500502385687103003804418987111582005841643 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.20 hours. Scaled time: 1.49 units (timescale=0.676). Factorization parameters were as follows: name: 60007_117 n: 74358469258832718774436183724553279940996020408249446899718017650687200724318637458592452381540883238773 m: 100000000000000000000000 c5: 600 c0: 7 skew: 0.41 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63523, largePrimes:1980594 encountered Relations: rels:1938172, finalFF:128803 Max relations in full relation-set: 28 Initial matrix: 112687 x 128803 with sparse part having weight 10218920. Pruned matrix : 106545 x 107172 with weight 7132342. Total sieving time: 1.89 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.20 hours. --------- CPU info (if available) ----------
6·10127+7 = 6(0)1267<128> = 197 · 9720031 · 266168660299<12> · C108
C108 = P43 · P65
P43 = 3583617409332378966987419272264607655669797<43>
P65 = 32850260496263134596383389203484134247046587543608521946389524867<65>
Number: 60007_127 N=117722765415512284233525269842016058687696108332067481812522215595485313176760239621795561889746921472341999 ( 108 digits) SNFS difficulty: 127 digits. Divisors found: r1=3583617409332378966987419272264607655669797 (pp43) r2=32850260496263134596383389203484134247046587543608521946389524867 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 5.28 hours. Scaled time: 3.57 units (timescale=0.676). Factorization parameters were as follows: name: 60007_127 n: 117722765415512284233525269842016058687696108332067481812522215595485313176760239621795561889746921472341999 m: 10000000000000000000000000 c5: 600 c0: 7 skew: 0.41 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:63523, largePrimes:1506649 encountered Relations: rels:1516333, finalFF:181202 Max relations in full relation-set: 28 Initial matrix: 127540 x 181202 with sparse part having weight 12751877. Pruned matrix : 111515 x 112216 with weight 6223089. Total sieving time: 4.97 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.28 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve
6·10155+7 = 6(0)1547<156> = 30253 · 8290186057<10> · 93174093649657<14> · 47369174977499761<17> · 7846580404504329797862521<25> · C86
C86 = P41 · P46
P41 = 11519704348754539604022205034624081555611<41>
P46 = 5996609457515185443760101854342559834794121041<46>
Thu Oct 11 07:46:13 2007 Msieve v. 1.28 Thu Oct 11 07:46:13 2007 random seeds: a4efa528 11c3b45d Thu Oct 11 07:46:13 2007 factoring 69079168045520282358058872569745380341436008514853935086936756082097682617184706711051 (86 digits) Thu Oct 11 07:46:14 2007 commencing quadratic sieve (86-digit input) Thu Oct 11 07:46:14 2007 using multiplier of 11 Thu Oct 11 07:46:14 2007 using 64kb Pentium 2 sieve core Thu Oct 11 07:46:14 2007 sieve interval: 9 blocks of size 65536 Thu Oct 11 07:46:14 2007 processing polynomials in batches of 12 Thu Oct 11 07:46:14 2007 using a sieve bound of 1470947 (55891 primes) Thu Oct 11 07:46:14 2007 using large prime bound of 117675760 (26 bits) Thu Oct 11 07:46:14 2007 using double large prime bound of 336694943593840 (41-49 bits) Thu Oct 11 07:46:14 2007 using trial factoring cutoff of 49 bits Thu Oct 11 07:46:14 2007 polynomial 'A' values have 11 factors Thu Oct 11 13:23:21 2007 56030 relations (15871 full + 40159 combined from 586780 partial), need 55987 Thu Oct 11 13:23:28 2007 begin with 602651 relations Thu Oct 11 13:23:29 2007 reduce to 133601 relations in 10 passes Thu Oct 11 13:23:29 2007 attempting to read 133601 relations Thu Oct 11 13:23:38 2007 recovered 133601 relations Thu Oct 11 13:23:38 2007 recovered 112180 polynomials Thu Oct 11 13:23:39 2007 attempting to build 56030 cycles Thu Oct 11 13:23:39 2007 found 56030 cycles in 6 passes Thu Oct 11 13:23:42 2007 distribution of cycle lengths: Thu Oct 11 13:23:42 2007 length 1 : 15871 Thu Oct 11 13:23:42 2007 length 2 : 11072 Thu Oct 11 13:23:42 2007 length 3 : 9884 Thu Oct 11 13:23:42 2007 length 4 : 7361 Thu Oct 11 13:23:42 2007 length 5 : 4850 Thu Oct 11 13:23:42 2007 length 6 : 3171 Thu Oct 11 13:23:42 2007 length 7 : 1783 Thu Oct 11 13:23:42 2007 length 9+: 2038 Thu Oct 11 13:23:42 2007 largest cycle: 20 relations Thu Oct 11 13:23:42 2007 matrix is 55891 x 56030 with weight 3116041 (avg 55.61/col) Thu Oct 11 13:23:47 2007 filtering completed in 3 passes Thu Oct 11 13:23:47 2007 matrix is 51400 x 51464 with weight 2897239 (avg 56.30/col) Thu Oct 11 13:23:49 2007 saving the first 48 matrix rows for later Thu Oct 11 13:23:49 2007 matrix is 51352 x 51464 with weight 2270531 (avg 44.12/col) Thu Oct 11 13:23:49 2007 matrix includes 64 packed rows Thu Oct 11 13:23:49 2007 using block size 5461 for processor cache size 128 kB Thu Oct 11 13:23:51 2007 commencing Lanczos iteration Thu Oct 11 13:26:11 2007 lanczos halted after 814 iterations Thu Oct 11 13:26:12 2007 recovered 16 nontrivial dependencies Thu Oct 11 13:26:13 2007 prp41 factor: 11519704348754539604022205034624081555611 Thu Oct 11 13:26:13 2007 prp46 factor: 5996609457515185443760101854342559834794121041 Thu Oct 11 13:26:13 2007 elapsed time 05:40:00
6·10104+7 = 6(0)1037<105> = 8629566092175419113<19> · C86
C86 = P39 · P48
P39 = 312703414298744945585964596618843105759<39>
P48 = 222346177668355476515021026054869613681073668721<48>
Thu Oct 11 08:00:35 2007 Msieve v. 1.26 Thu Oct 11 08:00:35 2007 random seeds: 35251e1c b1bd4346 Thu Oct 11 08:00:35 2007 factoring 69528408913170114020623970508248965547977728760224458789292141359530747384979933264239 (86 digits) Thu Oct 11 08:00:36 2007 commencing quadratic sieve (86-digit input) Thu Oct 11 08:00:36 2007 using multiplier of 31 Thu Oct 11 08:00:36 2007 using 64kb Pentium 2 sieve core Thu Oct 11 08:00:36 2007 sieve interval: 9 blocks of size 65536 Thu Oct 11 08:00:36 2007 processing polynomials in batches of 12 Thu Oct 11 08:00:36 2007 using a sieve bound of 1470947 (55662 primes) Thu Oct 11 08:00:36 2007 using large prime bound of 117675760 (26 bits) Thu Oct 11 08:00:36 2007 using double large prime bound of 336694943593840 (41-49 bits) Thu Oct 11 08:00:36 2007 using trial factoring cutoff of 49 bits Thu Oct 11 08:00:36 2007 polynomial 'A' values have 11 factors Thu Oct 11 13:29:42 2007 55839 relations (15809 full + 40030 combined from 583377 partial), need 55758 Thu Oct 11 13:29:51 2007 begin with 599186 relations Thu Oct 11 13:29:54 2007 reduce to 132538 relations in 10 passes Thu Oct 11 13:29:54 2007 attempting to read 132538 relations Thu Oct 11 13:30:03 2007 recovered 132538 relations Thu Oct 11 13:30:03 2007 recovered 110467 polynomials Thu Oct 11 13:30:16 2007 attempting to build 55839 cycles Thu Oct 11 13:30:16 2007 found 55838 cycles in 5 passes Thu Oct 11 13:30:18 2007 distribution of cycle lengths: Thu Oct 11 13:30:18 2007 length 1 : 15809 Thu Oct 11 13:30:18 2007 length 2 : 11217 Thu Oct 11 13:30:18 2007 length 3 : 9985 Thu Oct 11 13:30:18 2007 length 4 : 7192 Thu Oct 11 13:30:18 2007 length 5 : 4922 Thu Oct 11 13:30:18 2007 length 6 : 3106 Thu Oct 11 13:30:18 2007 length 7 : 1762 Thu Oct 11 13:30:18 2007 length 9+: 1845 Thu Oct 11 13:30:18 2007 largest cycle: 18 relations Thu Oct 11 13:30:19 2007 matrix is 55662 x 55838 with weight 3139688 (avg 56.23/col) Thu Oct 11 13:30:22 2007 filtering completed in 3 passes Thu Oct 11 13:30:22 2007 matrix is 50880 x 50944 with weight 2899893 (avg 56.92/col) Thu Oct 11 13:30:24 2007 saving the first 48 matrix rows for later Thu Oct 11 13:30:24 2007 matrix is 50832 x 50944 with weight 2295297 (avg 45.06/col) Thu Oct 11 13:30:24 2007 matrix includes 64 packed rows Thu Oct 11 13:30:24 2007 using block size 10922 for processor cache size 256 kB Thu Oct 11 13:30:25 2007 commencing Lanczos iteration Thu Oct 11 13:33:05 2007 lanczos halted after 805 iterations Thu Oct 11 13:33:06 2007 recovered 17 nontrivial dependencies Thu Oct 11 13:33:21 2007 prp39 factor: 312703414298744945585964596618843105759 Thu Oct 11 13:33:21 2007 prp48 factor: 222346177668355476515021026054869613681073668721 Thu Oct 11 13:33:21 2007 elapsed time 05:32:46
By Robert Backstrom / GGNFS, Msieve, GMP-ECM
(4·10162+23)/9 = (4)1617<162> = 3 · 191537 · 36201871247<11> · C146
C146 = P68 · P79
P68 = 14267717847005813507700165288034158445726684150241889062913896709923<68>
P79 = 1497469599792136047698907928447361359099204601762726546842329109356470216353817<79>
Number: n N=21365473734302912529054906948237323508436428295729914712019667578602171034133803699777503768069330971332086852316622127836560860767947345582826091 ( 146 digits) SNFS difficulty: 162 digits. Divisors found: Thu Oct 11 07:49:06 2007 prp68 factor: 14267717847005813507700165288034158445726684150241889062913896709923 Thu Oct 11 07:49:06 2007 prp79 factor: 1497469599792136047698907928447361359099204601762726546842329109356470216353817 Thu Oct 11 07:49:06 2007 elapsed time 02:07:31 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 67.17 hours. Scaled time: 80.33 units (timescale=1.196). Factorization parameters were as follows: name: KA_4_161_7 n: 21365473734302912529054906948237323508436428295729914712019667578602171034133803699777503768069330971332086852316622127836560860767947345582826091 type: snfs skew: 1.13 deg: 5 c5: 25 c0: 46 m: 200000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2900000) Primes: RFBsize:230209, AFBsize:229862, largePrimes:7394863 encountered Relations: rels:6833492, finalFF:510861 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 66.85 hours. Total relation processing time: 0.31 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 67.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
6·10106+7 = 6(0)1057<107> = C107
C107 = P33 · P74
P33 = 660354883413107731466749453206421<33>
P74 = 90860235166103760559298389079671871752970399872818769276787670766575373867<74>
Number: n N=60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 107 digits) SNFS difficulty: 106 digits. Divisors found: r1=660354883413107731466749453206421 (pp33) r2=90860235166103760559298389079671871752970399872818769276787670766575373867 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.81 hours. Scaled time: 0.97 units (timescale=1.196). Factorization parameters were as follows: name: KA_6_0_105_7 n: 60000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 type: snfs skew: 0.65 deg: 5 c5: 60 c0: 7 m: 1000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:41538, AFBsize:41547, largePrimes:2680462 encountered Relations: rels:2220524, finalFF:111084 Max relations in full relation-set: 28 Initial matrix: 83152 x 111084 with sparse part having weight 5499964. Pruned matrix : 67479 x 67958 with weight 2313666. Total sieving time: 0.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.04 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.4,2.4,50000 total time: 0.81 hours. --------- CPU info (if available) ----------
6·10112+7 = 6(0)1117<113> = 43 · C112
C112 = P29 · P32 · P52
P29 = 42037675529382231904791550999<29>
P32 = 14936485810428385363892834492251<32>
P52 = 2222264100043128899370105966054617650050692155163401<52>
N = 6*10^112+7 : c112 prp29 factor: 42037675529382231904791550999 prp32 factor: 14936485810428385363892834492251 prp52 factor: 2222264100043128899370105966054617650050692155163401 GMP-ECM 6.0.1 [powered by GMP 4.1.4] [ECM] Input number is 1395348837209302325581395348837209302325581395348837209302325581395348837209302325581395348837209302325581395349 (112 digits) Using B1=87500, B2=26096911, polynomial x^2, sigma=730686625 Step 1 took 1203ms Step 2 took 953ms ********** Factor found in step 2: 42037675529382231904791550999 Found probable prime factor of 29 digits: 42037675529382231904791550999 Composite cofactor 33192816197318600608605463828793223988644935250050070386447688396465987039773305651 has 83 digits Thu Oct 11 14:51:32 2007 Thu Oct 11 14:51:32 2007 Thu Oct 11 14:51:32 2007 Msieve v. 1.28 Thu Oct 11 14:51:32 2007 random seeds: 409cfc00 e37a735e Thu Oct 11 14:51:32 2007 factoring 33192816197318600608605463828793223988644935250050070386447688396465987039773305651 (83 digits) Thu Oct 11 14:51:32 2007 commencing quadratic sieve (83-digit input) Thu Oct 11 14:51:33 2007 using multiplier of 1 Thu Oct 11 14:51:33 2007 using 64kb Athlon XP sieve core Thu Oct 11 14:51:33 2007 sieve interval: 6 blocks of size 65536 Thu Oct 11 14:51:33 2007 processing polynomials in batches of 17 Thu Oct 11 14:51:33 2007 using a sieve bound of 1369321 (52647 primes) Thu Oct 11 14:51:33 2007 using large prime bound of 121869569 (26 bits) Thu Oct 11 14:51:33 2007 using trial factoring cutoff of 27 bits Thu Oct 11 14:51:33 2007 polynomial 'A' values have 10 factors Thu Oct 11 15:25:57 2007 52751 relations (26020 full + 26731 combined from 283185 partial), need 52743 Thu Oct 11 15:25:58 2007 begin with 309205 relations Thu Oct 11 15:25:58 2007 reduce to 76065 relations in 2 passes Thu Oct 11 15:25:58 2007 attempting to read 76065 relations Thu Oct 11 15:25:59 2007 recovered 76065 relations Thu Oct 11 15:25:59 2007 recovered 69714 polynomials Thu Oct 11 15:25:59 2007 attempting to build 52751 cycles Thu Oct 11 15:25:59 2007 found 52751 cycles in 1 passes Thu Oct 11 15:25:59 2007 distribution of cycle lengths: Thu Oct 11 15:25:59 2007 length 1 : 26020 Thu Oct 11 15:25:59 2007 length 2 : 26731 Thu Oct 11 15:25:59 2007 largest cycle: 2 relations Thu Oct 11 15:25:59 2007 matrix is 52647 x 52751 with weight 1646722 (avg 31.22/col) Thu Oct 11 15:26:00 2007 filtering completed in 4 passes Thu Oct 11 15:26:00 2007 matrix is 46089 x 46153 with weight 1415834 (avg 30.68/col) Thu Oct 11 15:26:00 2007 saving the first 48 matrix rows for later Thu Oct 11 15:26:01 2007 matrix is 46041 x 46153 with weight 1132687 (avg 24.54/col) Thu Oct 11 15:26:01 2007 matrix includes 64 packed rows Thu Oct 11 15:26:01 2007 commencing Lanczos iteration Thu Oct 11 15:27:17 2007 lanczos halted after 730 iterations Thu Oct 11 15:27:18 2007 recovered 10 nontrivial dependencies Thu Oct 11 15:27:18 2007 prp32 factor: 14936485810428385363892834492251 Thu Oct 11 15:27:18 2007 prp52 factor: 2222264100043128899370105966054617650050692155163401 Thu Oct 11 15:27:18 2007 elapsed time 00:35:46
(55·10164-1)/9 = 6(1)164<165> = 13 · 863 · 19751 · C157
C157 = P46 · P112
P46 = 2039347963490980778560349082035680167389362879<46>
P112 = 1352339114250697693044223701395926133298449563024538791688249501380572686573552852589778414243811182815085121861<112>
Number: n N=2757890018596357122830957296003083613878567247312881325398578877625921784561272606907739980779742968471198081644196023138538802706004178942492698464864797819 ( 157 digits) SNFS difficulty: 166 digits. Divisors found: Thu Oct 11 23:37:55 2007 prp46 factor: 2039347963490980778560349082035680167389362879 Thu Oct 11 23:37:55 2007 prp112 factor: 1352339114250697693044223701395926133298449563024538791688249501380572686573552852589778414243811182815085121861 Thu Oct 11 23:37:55 2007 elapsed time 01:27:35 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 46.45 hours. Scaled time: 61.40 units (timescale=1.322). Factorization parameters were as follows: name: KA_6_1_164 n: 2757890018596357122830957296003083613878567247312881325398578877625921784561272606907739980779742968471198081644196023138538802706004178942492698464864797819 skew: 0.71 deg: 5 c5: 11 c0: -2 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2200000) Primes: RFBsize:250150, AFBsize:250187, largePrimes:7389826 encountered Relations: rels:6945502, finalFF:606876 Max relations in full relation-set: 28 Initial matrix: 500404 x 606876 with sparse part having weight 45655180. Pruned matrix : 414282 x 416848 with weight 26923583. Total sieving time: 46.18 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 46.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
101009+1 is divisible by 873234964696345278371172272680705837<36>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
The factor table of 600...007 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / PRIMO
(28·102207+53)/9 is prime.
By Jo Yeong Uk / GGNFS
(8·10159-53)/9 = (8)1583<159> = 480451 · 4208429 · 104033087 · 13728238483<11> · C129
C129 = P42 · P87
P42 = 316712295015730221860570435349138324870013<42>
P87 = 971912454296354051931961805793739631984439234627451326067513307017004518364331228609949<87>
Number: 88883_159 N=307816623954569300455053980011477723245374843831649497265306543156045707790951139583730144537538886277612234831260348782103559337 ( 129 digits) SNFS difficulty: 160 digits. Divisors found: r1=316712295015730221860570435349138324870013 (pp42) r2=971912454296354051931961805793739631984439234627451326067513307017004518364331228609949 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 36.09 hours. Scaled time: 76.93 units (timescale=2.132). Factorization parameters were as follows: n: 307816623954569300455053980011477723245374843831649497265306543156045707790951139583730144537538886277612234831260348782103559337 m: 100000000000000000000000000000000 c5: 4 c0: -265 skew: 2.31 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:282842, largePrimes:5712676 encountered Relations: rels:5728756, finalFF:637907 Max relations in full relation-set: 28 Initial matrix: 566052 x 637907 with sparse part having weight 44270840. Pruned matrix : 519131 x 522025 with weight 33004800. Total sieving time: 34.34 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.60 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 36.09 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS
6·10163-7 = 5(9)1623<164> = 30339296027748931253<20> · C145
C145 = P50 · P96
P50 = 15909833358959093262353180001154624082529476187767<50>
P96 = 124302573471643865966793637908816400185876720580733444177989495780776161055978026073936417281843<96>
Number: 59993_163 N=1977633230023623206564389103658481345270454210925237336059189627833971133619728015943405220774679827442341511985530665001766489444666368027814581 ( 145 digits) SNFS difficulty: 164 digits. Divisors found: r1=15909833358959093262353180001154624082529476187767 (pp50) r2=124302573471643865966793637908816400185876720580733444177989495780776161055978026073936417281843 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 95.21 hours. Scaled time: 190.23 units (timescale=1.998). Factorization parameters were as follows: name: 59993_163 n: 1977633230023623206564389103658481345270454210925237336059189627833971133619728015943405220774679827442341511985530665001766489444666368027814581 m: 200000000000000000000000000000000 c5: 375 c0: -14 skew: 0.52 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 5350001) Primes: RFBsize:315948, AFBsize:315866, largePrimes:5944123 encountered Relations: rels:6092944, finalFF:763528 Max relations in full relation-set: 28 Initial matrix: 631880 x 763528 with sparse part having weight 59643557. Pruned matrix : 535995 x 539218 with weight 43398744. Total sieving time: 90.70 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.03 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 95.21 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(8·102073-11)/3 is prime.
By suberi / PRIMO
5·102733+9 is prime.
By Jo Yeong Uk / GGNFS
(8·10159-17)/9 = (8)1587<159> = 229 · 800509 · 4884721 · 262148354051<12> · C133
C133 = P41 · P93
P41 = 31689588497279916590736503849012575753313<41>
P93 = 119492948637304780639682337876688171145045603197808488844094715899024113564434226339292816029<93>
Number: 88887_159 N=3786682370642793460441992233699759761247607307411975413165317553691947475895090384189590618511490509963186182014264349114253796254077 ( 133 digits) SNFS difficulty: 160 digits. Divisors found: r1=31689588497279916590736503849012575753313 (pp41) r2=119492948637304780639682337876688171145045603197808488844094715899024113564434226339292816029 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 31.11 hours. Scaled time: 66.71 units (timescale=2.144). Factorization parameters were as follows: n: 3786682370642793460441992233699759761247607307411975413165317553691947475895090384189590618511490509963186182014264349114253796254077 m: 100000000000000000000000000000000 c5: 4 c0: -85 skew: 1.84 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3800001) Primes: RFBsize:283146, AFBsize:283447, largePrimes:5649191 encountered Relations: rels:5661375, finalFF:639116 Max relations in full relation-set: 28 Initial matrix: 566657 x 639116 with sparse part having weight 40954229. Pruned matrix : 512428 x 515325 with weight 29660434. Total sieving time: 29.57 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.40 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 31.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2114k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405127) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405115) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Total of 4 processors activated (19246.09 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
4·10162+3 = 4(0)1613<163> = 7 · 16111 · 898857769272037<15> · C143
C143 = P47 · P96
P47 = 52633384675921297349532423419308829377260438229<47>
P96 = 749699425654555588156813979006319175064153379838686656191939648186729452596767342041598941114643<96>
Number: n N=39459218261793484031429986564259843918054327571537121376310544925094790528770124732699157255927616425625128819829539343779063155819583908887247 ( 143 digits) SNFS difficulty: 162 digits. Divisors found: Tue Oct 09 03:46:58 2007 prp47 factor: 52633384675921297349532423419308829377260438229 Tue Oct 09 03:46:58 2007 prp96 factor: 749699425654555588156813979006319175064153379838686656191939648186729452596767342041598941114643 Tue Oct 09 03:46:58 2007 elapsed time 01:16:25 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.15 hours. Scaled time: 52.53 units (timescale=1.453). Factorization parameters were as follows: name: KA_4_0_161_3 n: 39459218261793484031429986564259843918054327571537121376310544925094790528770124732699157255927616425625128819829539343779063155819583908887247 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 200000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:203362, AFBsize:202562, largePrimes:7139160 encountered Relations: rels:6577562, finalFF:434257 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 35.92 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 36.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Bryan Koen / GMP-ECM
(23·10173+1)/3 = 7(6)1727<174> = 11 · 19 · 41 · C170
C170 = P30 · P141
P30 = 357911945978650040346202809163<30>
P141 = 249977110919930838083661846538618118461822803550100409862996457896163981755684629971850878837293997356705743192000800069352481784564014480361<141>
By Sinkiti Sibata / PRIMO
(31·102177+23)/9 is prime.
By Robert Backstrom / GGNFS, Msieve
(73·10159-1)/9 = 8(1)159<160> = 2657 · 105091757 · 340002075499<12> · C137
C137 = P68 · P69
P68 = 85748085121300963152030695599342054561573492952495448497507158243159<68>
P69 = 996355092269813964638397829269428609707014906515819237429532829639679<69>
Number: n N=85435541262993683107759178811222508432637694938946198668249661730703724787996850375797180518678700584591827296195920977054636644636705961 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: Mon Oct 08 11:11:00 2007 prp68 factor: 85748085121300963152030695599342054561573492952495448497507158243159 Mon Oct 08 11:11:00 2007 prp69 factor: 996355092269813964638397829269428609707014906515819237429532829639679 Mon Oct 08 11:11:01 2007 elapsed time 01:25:31 (Msieve 1.28) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.89 hours. Scaled time: 60.85 units (timescale=1.326). Factorization parameters were as follows: name: KA_8_1_159 n: 85435541262993683107759178811222508432637694938946198668249661730703724787996850375797180518678700584591827296195920977054636644636705961 skew: 0.67 deg: 5 c5: 73 c0: -10 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100000) Primes: RFBsize:250150, AFBsize:250101, largePrimes:7499050 encountered Relations: rels:7084336, finalFF:634136 Max relations in full relation-set: 28 Initial matrix: 500316 x 634136 with sparse part having weight 48027068. Pruned matrix : 392586 x 395151 with weight 27479275. Total sieving time: 45.64 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 45.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10164-7 = 5(9)1633<165> = 17 · 302404974167609<15> · C150
C150 = P51 · P99
P51 = 604857162810389628774661784293336029351376392407791<51>
P99 = 192957014318376632131120220747611805227589329088927241976832631934622388748514730334494973730320991<99>
Number: n N=116711432224977017360883726082633787948846053120532190717761735193932640441906310777526105200497999505680676600497638929152987804613749651905799240881 ( 150 digits) SNFS difficulty: 165 digits. Divisors found: Mon Oct 08 17:31:28 2007 prp51 factor: 604857162810389628774661784293336029351376392407791 Mon Oct 08 17:31:28 2007 prp99 factor: 192957014318376632131120220747611805227589329088927241976832631934622388748514730334494973730320991 Mon Oct 08 17:31:28 2007 elapsed time 01:42:50 (Msieve 1.28) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 53.19 hours. Scaled time: 63.34 units (timescale=1.191). Factorization parameters were as follows: name: KA_5_9_163_3 n: 116711432224977017360883726082633787948846053120532190717761735193932640441906310777526105200497999505680676600497638929152987804613749651905799240881 skew: 1.63 deg: 5 c5: 3 c0: -35 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2600000) Primes: RFBsize:216816, AFBsize:216606, largePrimes:7376363 encountered Relations: rels:6846162, finalFF:475104 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 52.94 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 53.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
(5·10159-41)/9 = (5)1581<159> = 203232471011<12> · 30634761442301959<17> · C131
C131 = P66 · P66
P66 = 140302918730839359783997803266247889954113331203299846460516096197<66>
P66 = 635994249340914371879827621457572197377938193794948288296614712167<66>
Number: 55551_159 N=89231849478559493177495087019280828859221907790013794337807829144866668300309536154113542379040143520122806007729736339743638328899 ( 131 digits) SNFS difficulty: 160 digits. Divisors found: r1=140302918730839359783997803266247889954113331203299846460516096197 (pp66) r2=635994249340914371879827621457572197377938193794948288296614712167 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 27.76 hours. Scaled time: 59.39 units (timescale=2.139). Factorization parameters were as follows: n: 89231849478559493177495087019280828859221907790013794337807829144866668300309536154113542379040143520122806007729736339743638328899 m: 100000000000000000000000000000000 c5: 1 c0: -82 skew: 2.41 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:282833, largePrimes:5618340 encountered Relations: rels:5637592, finalFF:646613 Max relations in full relation-set: 28 Initial matrix: 566045 x 646613 with sparse part having weight 40570327. Pruned matrix : 501999 x 504893 with weight 27943297. Total sieving time: 26.39 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 27.76 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / PRIMO
(17·102068-53)/9 is prime.
By Yousuke Koide
101007+1 is divisible by 80130271534233515728987750894609<32>
101054+1 is divisible by 111276132074930025328712302045364981<36>
101605+1 is divisible by 4298338634928851216299618775086771<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
6·10161-7 = 5(9)1603<162> = 59 · 4889 · 22063 · 61949 · 56338169 · 5137570679<10> · C130
C130 = P32 · P99
P32 = 25632208522320555148392302355173<32>
P99 = 205132168410612051871480238620927190554253620898540807301677670565578241342961193951890988344739443<99>
Number: 59993_161 N=5257990515336585603900960324981397066212063936330995720178877708548412575128763722465208456773985220196118351156898540333928188639 ( 130 digits) SNFS difficulty: 161 digits. Divisors found: r1=25632208522320555148392302355173 (pp32) r2=205132168410612051871480238620927190554253620898540807301677670565578241342961193951890988344739443 (pp99) Version: GGNFS-0.77.1-20060513-k8 Total time: 67.83 hours. Scaled time: 134.98 units (timescale=1.990). Factorization parameters were as follows: name: 59993_161 n: 5257990515336585603900960324981397066212063936330995720178877708548412575128763722465208456773985220196118351156898540333928188639 m: 100000000000000000000000000000000 c5: 60 c0: -7 skew: 0.65 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316366, largePrimes:5776158 encountered Relations: rels:5879966, finalFF:735887 Max relations in full relation-set: 28 Initial matrix: 632381 x 735887 with sparse part having weight 44476895. Pruned matrix : 553498 x 556723 with weight 31162467. Total sieving time: 64.08 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.36 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 67.83 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
10192+9 = 1(0)1919<193> = C193
C193 = P48 · P145
P48 = 325208379747671632800443572929049811907718391209<48>
P145 = 3074951515012920315894112276452006313835272802228418099697777887803931547784516799444634005241238767287033369894773351997005678938044816110863201<145>
By suberi / PRIMO
(13·102079-7)/3 is prime.
(13·102120-7)/3 is prime.
(13·102260-7)/3 is prime.
(13·102423-7)/3 is prime.
By Jo Yeong Uk / GGNFS
(4·10159+41)/9 = (4)1589<159> = 3709 · 3456197 · 40995079027450649<17> · C132
C132 = P48 · P85
P48 = 218551920024031168927773697661809538745109102567<48>
P85 = 3869686706115428835860198962763376764473465747888783930870949253002451781545174371711<85>
Number: 44449_159 N=845727459512995808632831376766004857195411667709864917200855795181161872981252627569069291871505578807711339836312388193111282282137 ( 132 digits) SNFS difficulty: 160 digits. Divisors found: r1=218551920024031168927773697661809538745109102567 (pp48) r2=3869686706115428835860198962763376764473465747888783930870949253002451781545174371711 (pp85) Version: GGNFS-0.77.1-20050930-nocona Total time: 27.95 hours. Scaled time: 59.92 units (timescale=2.144). Factorization parameters were as follows: n: 845727459512995808632831376766004857195411667709864917200855795181161872981252627569069291871505578807711339836312388193111282282137 m: 100000000000000000000000000000000 c5: 2 c0: 205 skew: 2.52 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283793, largePrimes:5629726 encountered Relations: rels:5660465, finalFF:657003 Max relations in full relation-set: 28 Initial matrix: 567004 x 657003 with sparse part having weight 41479342. Pruned matrix : 495662 x 498561 with weight 28049677. Total sieving time: 26.61 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 27.95 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
2·10161+3 = 2(0)1603<162> = 1645747984609139286241<22> · C141
C141 = P44 · P97
P44 = 23143371269685496536153160328427093498540901<44>
P97 = 5250976096680145607463471043357442149484478476541758912748098433643075952275139383190561991897383<97>
Number: n N=121525289333712574060203929849274253650679147008067862136662858454750139437642287196603579159652285468795971038414619211834083134495020362083 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: Sat Oct 06 11:57:55 2007 prp44 factor: 23143371269685496536153160328427093498540901 Sat Oct 06 11:57:55 2007 prp97 factor: 5250976096680145607463471043357442149484478476541758912748098433643075952275139383190561991897383 Sat Oct 06 11:57:55 2007 elapsed time 01:40:44 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.82 hours. Scaled time: 63.63 units (timescale=1.452). Factorization parameters were as follows: name: KA_2_0_160_3 n: 121525289333712574060203929849274253650679147008067862136662858454750139437642287196603579159652285468795971038414619211834083134495020362083 skew: 0.68 deg: 5 c5: 20 c0: 3 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300000) Primes: RFBsize:203362, AFBsize:203062, largePrimes:7438144 encountered Relations: rels:6924431, finalFF:458969 Max relations in full relation-set: 28 Initial matrix: 406490 x 458969 with sparse part having weight 41917861. Pruned matrix : 379962 x 382058 with weight 31649775. Total sieving time: 43.56 hours. Total relation processing time: 0.26 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 43.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
2·10160-9 = 1(9)1591<161> = 158642813009799873789292199<27> · C135
C135 = P48 · P87
P48 = 514829968216555250825419476063055331353216130401<48>
P87 = 244875747315362559771904473968778705005860870814895857896156971504755878896463497536209<87>
Number: n N=126069373207373321436708046654043582257956838503880528523913166513739523221993375991519276144852178818516438085011957703665140363189809 ( 135 digits) SNFS difficulty: 160 digits. Divisors found: r1=514829968216555250825419476063055331353216130401 (pp48) r2=244875747315362559771904473968778705005860870814895857896156971504755878896463497536209 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.32 hours. Scaled time: 46.99 units (timescale=1.195). Factorization parameters were as follows: name: KA_1_9_159_1 n: 126069373207373321436708046654043582257956838503880528523913166513739523221993375991519276144852178818516438085011957703665140363189809 type: snfs skew: 1.35 deg: 5 c5: 2 c0: -9 m: 100000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:230209, AFBsize:230337, largePrimes:6544960 encountered Relations: rels:6024747, finalFF:519640 Max relations in full relation-set: 28 Initial matrix: 460611 x 519640 with sparse part having weight 28682777. Pruned matrix : 405415 x 407782 with weight 18445497. Total sieving time: 35.33 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.68 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 39.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS
6·10160-7 = 5(9)1593<161> = 110893837864780114169227<24> · 53482456690377432712639319435401<32> · C107
C107 = P51 · P56
P51 = 125543951754463483312651367167081146619879782542807<51>
P56 = 80581749745901679359607613279455998414547734638470247237<56>
Number: 59993_160 N=10116551302389730489061629792753496443305947169260756466085450095805957750759395081955491468661781825974259 ( 107 digits) Divisors found: r1=125543951754463483312651367167081146619879782542807 (pp51) r2=80581749745901679359607613279455998414547734638470247237 (pp56) Version: GGNFS-0.77.1-20060513-k8 Total time: 16.09 hours. Scaled time: 31.66 units (timescale=1.968). Factorization parameters were as follows: name: 59993_160 n: 10116551302389730489061629792753496443305947169260756466085450095805957750759395081955491468661781825974259 skew: 8717.48 # norm 7.18e+14 c5: 34200 c4: 3446830450 c3: -49450344917839 c2: -282207816974048745 c1: 293743109705688382953 c0: -105852972657943776101076 # alpha -6.04 Y1: 1982489113 Y0: -196879813041941649923 # Murphy_E 1.63e-09 # M 8200850302644055184453131829831345367830490194178486463399401491964831823878780279463907218481306105711361 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182207, largePrimes:4770558 encountered Relations: rels:5287342, finalFF:797494 Max relations in full relation-set: 28 Initial matrix: 365359 x 797494 with sparse part having weight 66842766. Pruned matrix : 198399 x 200289 with weight 27225588. Total sieving time: 15.17 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.58 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 16.09 hours. --------- CPU info (if available) ----------
6·10148-7 = 5(9)1473<149> = 17 · 5261 · 7069 · 20877877 · 4124979457<10> · C124
C124 = P46 · P78
P46 = 2202754157836179317307651152968047629805882079<46>
P78 = 500267040879752050179524392513061490125276212618093746534715313369595549802451<78>
Number: 59993_148 N=1101965304326275718376569832258079442992217073921951287705392731002575698336321117095630581548488817660192266002626251175629 ( 124 digits) SNFS difficulty: 149 digits. Divisors found: r1=2202754157836179317307651152968047629805882079 (pp46) r2=500267040879752050179524392513061490125276212618093746534715313369595549802451 (pp78) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 38.13 hours. Scaled time: 25.82 units (timescale=0.677). Factorization parameters were as follows: name: 59993_148 n: 1101965304326275718376569832258079442992217073921951287705392731002575698336321117095630581548488817660192266002626251175629 m: 200000000000000000000000000000 c5: 375 c0: -14 skew: 0.52 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 4550001) Primes: RFBsize:114155, AFBsize:114432, largePrimes:3074783 encountered Relations: rels:3142613, finalFF:260671 Max relations in full relation-set: 28 Initial matrix: 228653 x 260671 with sparse part having weight 33256669. Pruned matrix : 220290 x 221497 with weight 26947508. Total sieving time: 35.67 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.06 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 38.13 hours. --------- CPU info (if available) ----------
By Bryan Koen / GGNFS
(61·10169-7)/9 = 6(7)169<170> = 679517 · 2099650316119<13> · 462133680259364512974037301324911<33> · C120
C120 = P38 · P82
P38 = 56540095809527061398275309610361450221<38>
P82 = 1818092044741429958746153841013907596909769895723120119363711217697392274661650529<82>
Number: 67777_169 N=102795098400219410634465090516194534805474053557213593780153631997610268197607479386423556429973192979895429973931816909 ( 120 digits) Divisors found: r1=56540095809527061398275309610361450221 (pp38) r2=1818092044741429958746153841013907596909769895723120119363711217697392274661650529 (pp82) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 57.70 hours. Scaled time: 129.60 units (timescale=2.246). Factorization parameters were as follows: name: 67777_169 n: 102795098400219410634465090516194534805474053557213593780153631997610268197607479386423556429973192979895429973931816909 skew: 105558.47 # norm 5.86e+015 c5: 3420 c4: -855817826 c3: -172975041238792 c2: 10097144255620342185 c1: 454824918396171751978112 c0: 4817673992078805183239899869 # alpha -4.79 Y1: 1203809206333 Y0: -124620494456053891335838 # Murphy_E 3.13e-010 # M 19860790920966959294374370574608201829699352757127470678651745225926909610626249915480516469649586859101696560082650191 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:316478, largePrimes:7651281 encountered Relations: rels:7683310, finalFF:711142 Max relations in full relation-set: 28 Initial matrix: 632504 x 711142 with sparse part having weight 59334766. Pruned matrix : 568876 x 572102 with weight 42656010. Total sieving time: 48.21 hours. Total relation processing time: 0.50 hours. Matrix solve time: 8.60 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 57.70 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / PRIMO
(55·102015+17)/9 is prime.
By Robert Backstrom / GGNFS, Msieve
6·10151-7 = 5(9)1503<152> = 38049083 · C145
C145 = P45 · P100
P45 = 163890451242523530323685961374784914589069397<45>
P100 = 9621735296463067319406359609200658570446718765888423723850749029550679811036943776234172558145948143<100>
Number: n N=1576910539473448019759109569079496607053578663117847018809888269843454571559582658010444036193986593579666558586970413978176556843695812590279771 ( 145 digits) SNFS difficulty: 151 digits. Divisors found: Fri Oct 05 09:28:44 2007 prp45 factor: 163890451242523530323685961374784914589069397 Fri Oct 05 09:28:44 2007 prp100 factor: 9621735296463067319406359609200658570446718765888423723850749029550679811036943776234172558145948143 Fri Oct 05 09:28:44 2007 elapsed time 00:54:09 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.99 hours. Scaled time: 26.51 units (timescale=1.326). Factorization parameters were as follows: name: KA_5_9_150_3 n: 1576910539473448019759109569079496607053578663117847018809888269843454571559582658010444036193986593579666558586970413978176556843695812590279771 skew: 0.65 deg: 5 c5: 60 c0: -7 m: 1000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 900000) Primes: RFBsize:216816, AFBsize:216901, largePrimes:6806958 encountered Relations: rels:6383461, finalFF:576223 Max relations in full relation-set: 28 Initial matrix: 433784 x 576223 with sparse part having weight 36816750. Pruned matrix : 309229 x 311461 with weight 17215851. Total sieving time: 19.80 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.99 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / Msieve, GGNFS, GMP-ECM
6·10159-7 = 5(9)1583<160> = 13 · 46099251251888935727327<23> · 24879066220185916328457524320554279793687<41> · C96
C96 = P41 · P56
P41 = 17014311483120697384989356382969398497597<41>
P56 = 23651874787979709585009977994193399030605069949949286937<56>
Thu Oct 4 21:37:14 2007 Thu Oct 4 21:37:14 2007 Thu Oct 4 21:37:14 2007 Msieve v. 1.28 Thu Oct 4 21:37:14 2007 random seeds: 1a77d3d5 9d0329b9 Thu Oct 4 21:37:14 2007 factoring 402420364802456082600245272138853200856277707189366407172983739323623291446802112677069257990389 (96 digits) Thu Oct 4 21:37:14 2007 commencing quadratic sieve (96-digit input) Thu Oct 4 21:37:14 2007 using multiplier of 1 Thu Oct 4 21:37:14 2007 using 32kb Intel Core sieve core Thu Oct 4 21:37:14 2007 sieve interval: 36 blocks of size 32768 Thu Oct 4 21:37:14 2007 processing polynomials in batches of 6 Thu Oct 4 21:37:14 2007 using a sieve bound of 2248781 (83529 primes) Thu Oct 4 21:37:14 2007 using large prime bound of 337317150 (28 bits) Thu Oct 4 21:37:14 2007 using double large prime bound of 2241140878991550 (43-51 bits) Thu Oct 4 21:37:14 2007 using trial factoring cutoff of 51 bits Thu Oct 4 21:37:14 2007 polynomial 'A' values have 12 factors Fri Oct 5 02:05:05 2007 83793 relations (19127 full + 64666 combined from 1276886 partial), need 83625 Fri Oct 5 02:05:06 2007 begin with 1296013 relations Fri Oct 5 02:05:07 2007 reduce to 225145 relations in 12 passes Fri Oct 5 02:05:07 2007 attempting to read 225145 relations Fri Oct 5 02:05:08 2007 recovered 225145 relations Fri Oct 5 02:05:08 2007 recovered 213597 polynomials Fri Oct 5 02:05:09 2007 attempting to build 83793 cycles Fri Oct 5 02:05:09 2007 found 83793 cycles in 6 passes Fri Oct 5 02:05:09 2007 distribution of cycle lengths: Fri Oct 5 02:05:09 2007 length 1 : 19127 Fri Oct 5 02:05:09 2007 length 2 : 13665 Fri Oct 5 02:05:09 2007 length 3 : 13753 Fri Oct 5 02:05:09 2007 length 4 : 11694 Fri Oct 5 02:05:09 2007 length 5 : 8929 Fri Oct 5 02:05:09 2007 length 6 : 6357 Fri Oct 5 02:05:09 2007 length 7 : 4300 Fri Oct 5 02:05:09 2007 length 9+: 5968 Fri Oct 5 02:05:09 2007 largest cycle: 20 relations Fri Oct 5 02:05:09 2007 matrix is 83529 x 83793 with weight 5817253 (avg 69.42/col) Fri Oct 5 02:05:10 2007 filtering completed in 4 passes Fri Oct 5 02:05:10 2007 matrix is 80599 x 80663 with weight 5617583 (avg 69.64/col) Fri Oct 5 02:05:11 2007 saving the first 48 matrix rows for later Fri Oct 5 02:05:11 2007 matrix is 80551 x 80663 with weight 4705622 (avg 58.34/col) Fri Oct 5 02:05:11 2007 matrix includes 64 packed rows Fri Oct 5 02:05:11 2007 using block size 32265 for processor cache size 4096 kB Fri Oct 5 02:05:14 2007 commencing Lanczos iteration Fri Oct 5 02:05:49 2007 lanczos halted after 1276 iterations Fri Oct 5 02:05:49 2007 recovered 17 nontrivial dependencies Fri Oct 5 02:05:50 2007 prp41 factor: 17014311483120697384989356382969398497597 Fri Oct 5 02:05:50 2007 prp56 factor: 23651874787979709585009977994193399030605069949949286937 Fri Oct 5 02:05:50 2007 elapsed time 04:28:36
(5·10161-23)/9 = (5)1603<161> = 181 · 9377 · 59980747 · 1556391950309252260727<22> · C126
C126 = P30 · P97
P30 = 204200339305081254682089876323<30>
P97 = 1717108343637436044836379289726170911481645229487158423846189656851215623920488863042590355402187<97>
6·10185-7 = 5(9)1843<186> = 1259 · 105094819 · 18234595094684519<17> · 496645177774564607081<21> · 91097916289552225379407273<26> · C112
C112 = P43 · P70
P43 = 1567828725851495950483147060696472797473131<43>
P70 = 3505861909643653215337674382799814173297028903124851463841838321295469<70>
Number: 59993_185 N=5496591010807901243959700004966756355343953965432332097077840850790392390952200017975624837864532764649639543439 ( 112 digits) Divisors found: r1=1567828725851495950483147060696472797473131 (pp43) r2=3505861909643653215337674382799814173297028903124851463841838321295469 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.45 hours. Scaled time: 37.14 units (timescale=2.129). Factorization parameters were as follows: name: 59993_185 n: 5496591010807901243959700004966756355343953965432332097077840850790392390952200017975624837864532764649639543439 skew: 31918.14 # norm 4.35e+15 c5: 49500 c4: 1148015948 c3: -102222124732255 c2: -6099585714717477637 c1: 33741417547897847981555 c0: 598316031826581667570223049 # alpha -6.53 Y1: 598253464301 Y0: -2565057913790794214018 # Murphy_E 7.81e-10 # M 3628664822376311219602672466853507363069765951502221673628741042021637214537904922189021557595578069943077896990 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2240001) Primes: RFBsize:203362, AFBsize:203437, largePrimes:7582629 encountered Relations: rels:7467623, finalFF:565840 Max relations in full relation-set: 28 Initial matrix: 406880 x 565840 with sparse part having weight 52660477. Pruned matrix : 291699 x 293797 with weight 29738311. Polynomial selection time: 0.94 hours. Total sieving time: 15.79 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.47 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 17.45 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Sinkiti Sibata / GGNFS
6·10142-7 = 5(9)1413<143> = 353 · 85223 · 1064743 · 17170804432778660568577<23> · C108
C108 = P32 · P76
P32 = 42191759522915775604583057626823<32>
P76 = 2585572109501371476246882696300039865583164290410873961325438433783561473999<76>
Number: 59993_142 N=109089836673239920516770319965068209364823641145718230527163887975622905277416393899382401902254788759475177 ( 108 digits) SNFS difficulty: 142 digits. Divisors found: r1=42191759522915775604583057626823 (pp32) r2=2585572109501371476246882696300039865583164290410873961325438433783561473999 (pp76) Version: GGNFS-0.77.1-20060513-k8 Total time: 17.01 hours. Scaled time: 34.09 units (timescale=2.004). Factorization parameters were as follows: name: 59993_142 n: 109089836673239920516770319965068209364823641145718230527163887975622905277416393899382401902254788759475177 m: 10000000000000000000000000000 c5: 600 c0: -7 skew: 0.41 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 2550001) Primes: RFBsize:100021, AFBsize:99733, largePrimes:2907987 encountered Relations: rels:2943976, finalFF:268434 Max relations in full relation-set: 28 Initial matrix: 199820 x 268434 with sparse part having weight 31091401. Pruned matrix : 182446 x 183509 with weight 19802614. Total sieving time: 16.40 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.42 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.01 hours. --------- CPU info (if available) ----------
6·10152-7 = 5(9)1513<153> = 19 · 79 · 317 · 683 · 194723 · C139
C139 = P61 · P79
P61 = 2422519199645591483038400362598333261141854085321449290981587<61>
P79 = 3913867442685506786621678329983313608259562954908441460080566565534765765237163<79>
Number: 59993_152 N=9481419024773431796374859861929423222068324195372690108617292629460624268055670298332904077189122625243218702260577584276221851166121117681 ( 139 digits) SNFS difficulty: 152 digits. Divisors found: r1=2422519199645591483038400362598333261141854085321449290981587 (pp61) r2=3913867442685506786621678329983313608259562954908441460080566565534765765237163 (pp79) Version: GGNFS-0.77.1-20060513-k8 Total time: 30.48 hours. Scaled time: 59.79 units (timescale=1.962). Factorization parameters were as follows: name: 59993_152 n: 9481419024773431796374859861929423222068324195372690108617292629460624268055670298332904077189122625243218702260577584276221851166121117681 m: 1000000000000000000000000000000 c5: 600 c0: -7 skew: 0.41 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:175743, largePrimes:5726784 encountered Relations: rels:5711566, finalFF:522112 Max relations in full relation-set: 28 Initial matrix: 352111 x 522112 with sparse part having weight 50262752. Pruned matrix : 292470 x 294294 with weight 27860308. Total sieving time: 28.94 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.25 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 30.48 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
6·10145-7 = 5(9)1443<146> = 1766550377<10> · 157012037513<12> · 4348276733443<13> · C113
C113 = P36 · P78
P36 = 208622310195879907337278472254444759<36>
P78 = 238459345830976112102219160803088310324167412809493635059788300420093626611189<78>
Number: 59993_145 N=49747939615056500626663559867471926285149195969519260672945306537946404080535869032470347651193685603727971808451 ( 113 digits) SNFS difficulty: 145 digits. Divisors found: r1=208622310195879907337278472254444759 (pp36) r2=238459345830976112102219160803088310324167412809493635059788300420093626611189 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.31 hours. Scaled time: 21.94 units (timescale=2.128). Factorization parameters were as follows: n: 49747939615056500626663559867471926285149195969519260672945306537946404080535869032470347651193685603727971808451 m: 100000000000000000000000000000 c5: 6 c0: -7 skew: 1.03 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1450001) Primes: RFBsize:114155, AFBsize:114412, largePrimes:3499162 encountered Relations: rels:3558668, finalFF:328093 Max relations in full relation-set: 28 Initial matrix: 228633 x 328093 with sparse part having weight 33496163. Pruned matrix : 202020 x 203227 with weight 17855809. Total sieving time: 10.03 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 10.31 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Robert Backstrom / GGNFS, Msieve
(17·10161-71)/9 = 1(8)1601<162> = 7 · 11 · 523 · 12553 · 892039002817<12> · C141
C141 = P70 · P71
P70 = 5517382888130356012700422947230695246102802588279510829603153154612691<70>
P71 = 75918829205014441614543498027493064480460216213141344861042989326442621<71>
Number: n N=418873249142637799821007491061910714467071107673848593381389819578321584166718844538758955967710943384855248756160831082732301629584089903111 ( 141 digits) SNFS difficulty: 162 digits. Divisors found: Thu Oct 04 19:17:06 2007 prp70 factor: 5517382888130356012700422947230695246102802588279510829603153154612691 Thu Oct 04 19:17:06 2007 prp71 factor: 75918829205014441614543498027493064480460216213141344861042989326442621 Thu Oct 04 19:17:06 2007 elapsed time 01:24:27 (Msieve 1.26) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 56.52 hours. Scaled time: 73.71 units (timescale=1.304). Factorization parameters were as follows: name: KA_1_8_160_1 n: 418873249142637799821007491061910714467071107673848593381389819578321584166718844538758955967710943384855248756160831082732301629584089903111 skew: 0.84 deg: 5 c5: 170 c0: -71 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2300000) Primes: RFBsize:216816, AFBsize:216842, largePrimes:7378545 encountered Relations: rels:6867652, finalFF:491420 Max relations in full relation-set: 28 Initial matrix: 433725 x 491420 with sparse part having weight 41722542. Pruned matrix : 394644 x 396876 with weight 30589920. Total sieving time: 55.53 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.74 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 56.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
6·10132-7 = 5(9)1313<133> = 17 · 31397 · 60607 · 17658261422573<14> · C110
C110 = P45 · P65
P45 = 157220545256202605499721340161299887750890477<45>
P65 = 66808873437291415726408144788722762650560407722248850407211168531<65>
Number: 59993_132 N=10503727509763587149462644038115572609411003558019047308296016303974338616397089884714139804160694574969979287 ( 110 digits) SNFS difficulty: 132 digits. Divisors found: r1=157220545256202605499721340161299887750890477 (pp45) r2=66808873437291415726408144788722762650560407722248850407211168531 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.23 hours. Scaled time: 5.57 units (timescale=0.677). Factorization parameters were as follows: name: 59993_132 n: 10503727509763587149462644038115572609411003558019047308296016303974338616397089884714139804160694574969979287 m: 100000000000000000000000000 c5: 600 c0: -7 skew: 0.41 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1300001) Primes: RFBsize:63951, AFBsize:63523, largePrimes:1546399 encountered Relations: rels:1543966, finalFF:157068 Max relations in full relation-set: 28 Initial matrix: 127540 x 157068 with sparse part having weight 14736218. Pruned matrix : 120366 x 121067 with weight 9730311. Total sieving time: 7.77 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.30 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 8.23 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
6·10159-7 = 5(9)1583<160> = 13 · 46099251251888935727327<23> · C137
C137 = P41 · C96
P41 = 24879066220185916328457524320554279793687<41>
C96 = [402420364802456082600245272138853200856277707189366407172983739323623291446802112677069257990389<96>]
By Sinkiti Sibata / GGNFS
6·10135-7 = 5(9)1343<136> = 13 · 414413481743<12> · 36564792200396563<17> · C107
C107 = P43 · P65
P43 = 1126059761985818701739729351936313997694323<43>
P65 = 27048891575232108774848633209666793723302095208678124558846257723<65>
Number: 59993_135 N=30458668409186085102726075004708104994463090774955003534458454777954452719667825900945750528186059032006529 ( 107 digits) SNFS difficulty: 135 digits. Divisors found: r1=1126059761985818701739729351936313997694323 (pp43) r2=27048891575232108774848633209666793723302095208678124558846257723 (pp65) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.79 hours. Scaled time: 15.48 units (timescale=1.986). Factorization parameters were as follows: name: 59993_135 n: 30458668409186085102726075004708104994463090774955003534458454777954452719667825900945750528186059032006529 m: 1000000000000000000000000000 c5: 6 c0: -7 skew: 1.03 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63888, largePrimes:1589402 encountered Relations: rels:1605693, finalFF:183280 Max relations in full relation-set: 28 Initial matrix: 142452 x 183280 with sparse part having weight 16657071. Pruned matrix : 130634 x 131410 with weight 10249543. Total sieving time: 7.56 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.79 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(73·10158-1)/9 = 8(1)158<159> = 26530558669965200379377507<26> · C134
C134 = P54 · P81
P54 = 212107814191998704725420221052699981457889085100997601<54>
P81 = 144137600146936537044461384043301075248536512091523845543692062426638973343118573<81>
Number: n N=30572711310047020199673079420220032560072723217483618025140594148989783940701088253778438397676150664410526395099842238233630731543373 ( 134 digits) SNFS difficulty: 159 digits. Divisors found: Thu Oct 04 16:13:30 2007 prp54 factor: 212107814191998704725420221052699981457889085100997601 Thu Oct 04 16:13:30 2007 prp81 factor: 144137600146936537044461384043301075248536512091523845543692062426638973343118573 Thu Oct 04 16:13:30 2007 elapsed time 01:50:08 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.48 hours. Scaled time: 60.38 units (timescale=1.196). Factorization parameters were as follows: name: KA_8_1_158 n: 30572711310047020199673079420220032560072723217483618025140594148989783940701088253778438397676150664410526395099842238233630731543373 type: snfs skew: 0.11 deg: 5 c5: 73000 c0: -1 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2100000) Primes: RFBsize:230209, AFBsize:230497, largePrimes:7060727 encountered Relations: rels:6539168, finalFF:541829 Max relations in full relation-set: 28 Initial matrix: 460773 x 541829 with sparse part having weight 34927383. Pruned matrix : 393656 x 396023 with weight 22051476. Total sieving time: 50.21 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 50.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / PRIMO
(38·102043+61)/9 is prime.
By Jo Yeong Uk / GGNFS, GMP-ECM
6·10131-7 = 5(9)1303<132> = 53 · 169607 · C125
C125 = P59 · P67
P59 = 12872498163753083570298872692434111691304047437203023579603<59>
P67 = 5185238891853061753866196726218370889062130742679403097113868915761<67>
Number: 59993_131 N=66746978113999611310097449475596804199185887107943546740850741408746145779182529734944412560401843507037523259931310684822883 ( 125 digits) SNFS difficulty: 131 digits. Divisors found: r1=12872498163753083570298872692434111691304047437203023579603 (pp59) r2=5185238891853061753866196726218370889062130742679403097113868915761 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.84 hours. Scaled time: 6.06 units (timescale=2.135). Factorization parameters were as follows: n: 66746978113999611310097449475596804199185887107943546740850741408746145779182529734944412560401843507037523259931310684822883 m: 100000000000000000000000000 c5: 60 c0: -7 skew: 0.65 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 1100001) Primes: RFBsize:78498, AFBsize:78436, largePrimes:1617139 encountered Relations: rels:1662134, finalFF:216620 Max relations in full relation-set: 28 Initial matrix: 157001 x 216620 with sparse part having weight 13625699. Pruned matrix : 135783 x 136632 with weight 6867620. Total sieving time: 2.75 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.84 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(86·10158+31)/9 = 9(5)1579<159> = 72 · 1657 · 48530561 · 369122094120620012071<21> · C126
C126 = P49 · P78
P49 = 3016236812826278990601156748919149544847529142617<49>
P78 = 217814388128186210847141219564082430746842862444289701637257172552121621783169<78>
Number: 95559_158 N=656979775835466476708907333677417137270421517155228763448205475015038680910810608163311078289165054665585517079132773251213273 ( 126 digits) SNFS difficulty: 161 digits. Divisors found: r1=3016236812826278990601156748919149544847529142617 (pp49) r2=217814388128186210847141219564082430746842862444289701637257172552121621783169 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 36.34 hours. Scaled time: 76.82 units (timescale=2.114). Factorization parameters were as follows: n: 656979775835466476708907333677417137270421517155228763448205475015038680910810608163311078289165054665585517079132773251213273 m: 100000000000000000000000000000000 c5: 43 c0: 1550 skew: 2.05 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4100001) Primes: RFBsize:283146, AFBsize:282493, largePrimes:5699146 encountered Relations: rels:5718310, finalFF:642706 Max relations in full relation-set: 28 Initial matrix: 565705 x 642706 with sparse part having weight 43053754. Pruned matrix : 513370 x 516262 with weight 31561464. Total sieving time: 34.80 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.38 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 36.34 hours. --------- CPU info (if available) ---------- Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
6·10141-7 = 5(9)1403<142> = 13 · 1447583 · 84331879 · C127
C127 = P37 · P90
P37 = 6476031936152650611823116269070611627<37>
P90 = 583799427952449996104077409330623614593075799711097271574870756751412606331718775669681999<90>
By Sinkiti Sibata / Msieve, GGNFS
6·10127-7 = 5(9)1263<128> = 343127 · 582525896334758811474813322548179<33> · C90
C90 = P42 · P48
P42 = 538379064288744086953750328027856177081161<42>
P48 = 557561730154771569560097260837268094018249256461<48>
Wed Oct 03 15:19:24 2007 Msieve v. 1.26 Wed Oct 03 15:19:24 2007 random seeds: ee28c423 6aa74c56 Wed Oct 03 15:19:24 2007 factoring 300179562563939145447468893460840371948057004209201877467016267991673377504711137500631221 (90 digits) Wed Oct 03 15:19:25 2007 commencing quadratic sieve (90-digit input) Wed Oct 03 15:19:26 2007 using multiplier of 5 Wed Oct 03 15:19:26 2007 using 64kb Pentium 2 sieve core Wed Oct 03 15:19:26 2007 sieve interval: 18 blocks of size 65536 Wed Oct 03 15:19:26 2007 processing polynomials in batches of 6 Wed Oct 03 15:19:26 2007 using a sieve bound of 1579619 (60000 primes) Wed Oct 03 15:19:26 2007 using large prime bound of 126369520 (26 bits) Wed Oct 03 15:19:26 2007 using double large prime bound of 382786039401520 (42-49 bits) Wed Oct 03 15:19:26 2007 using trial factoring cutoff of 49 bits Wed Oct 03 15:19:26 2007 polynomial 'A' values have 12 factors Thu Oct 04 01:00:41 2007 60563 relations (16228 full + 44335 combined from 633835 partial), need 60096 Thu Oct 04 01:00:52 2007 begin with 650063 relations Thu Oct 04 01:01:24 2007 reduce to 146669 relations in 10 passes Thu Oct 04 01:01:24 2007 attempting to read 146669 relations Thu Oct 04 01:01:38 2007 recovered 146669 relations Thu Oct 04 01:01:38 2007 recovered 124245 polynomials Thu Oct 04 01:02:13 2007 attempting to build 60563 cycles Thu Oct 04 01:02:14 2007 found 60563 cycles in 6 passes Thu Oct 04 01:02:17 2007 distribution of cycle lengths: Thu Oct 04 01:02:17 2007 length 1 : 16228 Thu Oct 04 01:02:17 2007 length 2 : 11907 Thu Oct 04 01:02:17 2007 length 3 : 10599 Thu Oct 04 01:02:17 2007 length 4 : 8065 Thu Oct 04 01:02:17 2007 length 5 : 5670 Thu Oct 04 01:02:17 2007 length 6 : 3510 Thu Oct 04 01:02:18 2007 length 7 : 2163 Thu Oct 04 01:02:18 2007 length 9+: 2421 Thu Oct 04 01:02:18 2007 largest cycle: 19 relations Thu Oct 04 01:02:20 2007 matrix is 60000 x 60563 with weight 3581602 (avg 59.14/col) Thu Oct 04 01:02:25 2007 filtering completed in 3 passes Thu Oct 04 01:02:25 2007 matrix is 55899 x 55963 with weight 3306276 (avg 59.08/col) Thu Oct 04 01:02:28 2007 saving the first 48 matrix rows for later Thu Oct 04 01:02:28 2007 matrix is 55851 x 55963 with weight 2583325 (avg 46.16/col) Thu Oct 04 01:02:28 2007 matrix includes 64 packed rows Thu Oct 04 01:02:28 2007 using block size 10922 for processor cache size 256 kB Thu Oct 04 01:02:29 2007 commencing Lanczos iteration Thu Oct 04 01:06:36 2007 lanczos halted after 885 iterations Thu Oct 04 01:06:37 2007 recovered 17 nontrivial dependencies Thu Oct 04 01:07:05 2007 prp42 factor: 538379064288744086953750328027856177081161 Thu Oct 04 01:07:05 2007 prp48 factor: 557561730154771569560097260837268094018249256461 Thu Oct 04 01:07:05 2007 elapsed time 09:47:41
6·10123-7 = 5(9)1223<124> = 132 · 1660493 · C116
C116 = P45 · P71
P45 = 419726743015322283340796841866026105998611897<45>
P71 = 50940224585810878707118381444742680923300871417714179798205170107648957<71>
Number: 59993_123 N=21380974553871444688254468890053067115588260258501612679604952428097769224215962068469171433819236054429504159841429 ( 116 digits) SNFS difficulty: 124 digits. Divisors found: r1=419726743015322283340796841866026105998611897 (pp45) r2=50940224585810878707118381444742680923300871417714179798205170107648957 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.06 hours. Scaled time: 2.07 units (timescale=0.677). Factorization parameters were as follows: name: 59993_123 n: 21380974553871444688254468890053067115588260258501612679604952428097769224215962068469171433819236054429504159841429 m: 2000000000000000000000000 c5: 375 c0: -14 skew: 0.52 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64283, largePrimes:2107214 encountered Relations: rels:2116210, finalFF:152007 Max relations in full relation-set: 28 Initial matrix: 113447 x 152007 with sparse part having weight 13697410. Pruned matrix : 103414 x 104045 with weight 7180122. Total sieving time: 2.74 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.06 hours. --------- CPU info (if available) ----------
6·10128-7 = 5(9)1273<129> = 47 · 157 · 8893 · C121
C121 = P35 · P42 · P46
P35 = 45062760365254252417196977668457049<35>
P42 = 107331866482129355939909099089742932497167<42>
P46 = 1890422922086710862023492300837255153472513593<46>
Number: 59993_128 N=9143352172651724671661080561054985575066639417445336126160095189610799042575211729177505031243824903769647139905342227519 ( 121 digits) SNFS difficulty: 129 digits. Divisors found: r1=45062760365254252417196977668457049 (pp35) r2=107331866482129355939909099089742932497167 (pp42) r3=1890422922086710862023492300837255153472513593 (pp46) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 5.27 hours. Scaled time: 3.57 units (timescale=0.677). Factorization parameters were as follows: name: 59993_128 n: 9143352172651724671661080561054985575066639417445336126160095189610799042575211729177505031243824903769647139905342227519 m: 20000000000000000000000000 c5: 375 c0: -14 skew: 0.52 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 950001) Primes: RFBsize:63951, AFBsize:64283, largePrimes:1484571 encountered Relations: rels:1488026, finalFF:176006 Max relations in full relation-set: 28 Initial matrix: 128300 x 176006 with sparse part having weight 12189392. Pruned matrix : 113811 x 114516 with weight 6184426. Total sieving time: 4.96 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 5.27 hours. --------- CPU info (if available) ----------
(37·10161-1)/9 = 4(1)161<162> = 3 · 41 · 1307 · 2075820356295079<16> · 1262790142328673659357<22> · C120
C120 = P38 · P83
P38 = 37343365815058483964552266720070550859<38>
P83 = 26124266598228484286956693574306899716358742145356317706463821362063741663610307863<83>
Number: 41111_161 N=975568044227759770362488001375467674400042183142302355527744077810832923409238855463500596189094164000811015620989104317 ( 120 digits) SNFS difficulty: 162 digits. Divisors found: r1=37343365815058483964552266720070550859 (pp38) r2=26124266598228484286956693574306899716358742145356317706463821362063741663610307863 (pp83) Version: GGNFS-0.77.1-20060513-k8 Total time: 73.17 hours. Scaled time: 146.20 units (timescale=1.998). Factorization parameters were as follows: name: 41111_161 n: 975568044227759770362488001375467674400042183142302355527744077810832923409238855463500596189094164000811015620989104317 m: 100000000000000000000000000000000 c5: 370 c0: -1 skew: 0.31 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:315496, largePrimes:5801398 encountered Relations: rels:5906549, finalFF:737188 Max relations in full relation-set: 28 Initial matrix: 631511 x 737188 with sparse part having weight 47432370. Pruned matrix : 551065 x 554286 with weight 33711664. Total sieving time: 69.23 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.52 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 73.17 hours. --------- CPU info (if available) ----------
By Robert Backstrom / Msieve, GGNFS
6·10155-7 = 5(9)1543<156> = 9151759 · 44509450084691841113<20> · 1276610766484719268151<22> · 1340426558177838497399939<25> · C84
C84 = P36 · P49
P36 = 217264834889735630458321389261532721<36>
P49 = 3961899731258636703690742682913482426977474823891<49>
Wed Oct 03 15:36:33 2007 Msieve v. 1.26 Wed Oct 03 15:36:33 2007 random seeds: 965c87cc d2ef83b1 Wed Oct 03 15:36:33 2007 factoring 860781490961595669697733605784670171336258336753794416470408536041356301000209037411 (84 digits) Wed Oct 03 15:36:34 2007 commencing quadratic sieve (84-digit input) Wed Oct 03 15:36:34 2007 using multiplier of 1 Wed Oct 03 15:36:34 2007 using 64kb Opteron sieve core Wed Oct 03 15:36:34 2007 sieve interval: 6 blocks of size 65536 Wed Oct 03 15:36:34 2007 processing polynomials in batches of 17 Wed Oct 03 15:36:34 2007 using a sieve bound of 1409117 (53799 primes) Wed Oct 03 15:36:34 2007 using large prime bound of 119774945 (26 bits) Wed Oct 03 15:36:34 2007 using trial factoring cutoff of 27 bits Wed Oct 03 15:36:34 2007 polynomial 'A' values have 11 factors Wed Oct 03 16:07:49 2007 54021 relations (27210 full + 26811 combined from 284568 partial), need 53895 Wed Oct 03 16:07:50 2007 begin with 311778 relations Wed Oct 03 16:07:50 2007 reduce to 77387 relations in 2 passes Wed Oct 03 16:07:50 2007 attempting to read 77387 relations Wed Oct 03 16:07:51 2007 recovered 77387 relations Wed Oct 03 16:07:51 2007 recovered 71517 polynomials Wed Oct 03 16:07:51 2007 attempting to build 54021 cycles Wed Oct 03 16:07:51 2007 found 54021 cycles in 1 passes Wed Oct 03 16:07:51 2007 distribution of cycle lengths: Wed Oct 03 16:07:51 2007 length 1 : 27210 Wed Oct 03 16:07:51 2007 length 2 : 26811 Wed Oct 03 16:07:51 2007 largest cycle: 2 relations Wed Oct 03 16:07:51 2007 matrix is 53799 x 54021 with weight 1755888 (avg 32.50/col) Wed Oct 03 16:07:51 2007 filtering completed in 4 passes Wed Oct 03 16:07:51 2007 matrix is 46702 x 46766 with weight 1491481 (avg 31.89/col) Wed Oct 03 16:07:52 2007 saving the first 48 matrix rows for later Wed Oct 03 16:07:52 2007 matrix is 46654 x 46766 with weight 1088600 (avg 23.28/col) Wed Oct 03 16:07:52 2007 matrix includes 64 packed rows Wed Oct 03 16:07:52 2007 commencing Lanczos iteration Wed Oct 03 16:08:46 2007 lanczos halted after 739 iterations Wed Oct 03 16:08:47 2007 recovered 6 nontrivial dependencies Wed Oct 03 16:08:47 2007 prp36 factor: 217264834889735630458321389261532721 Wed Oct 03 16:08:47 2007 prp49 factor: 3961899731258636703690742682913482426977474823891 Wed Oct 03 16:08:47 2007 elapsed time 00:32:14
(31·10158-13)/9 = 3(4)1573<159> = 7 · 127 · 78148787 · 4740691519332947<16> · C133
C133 = P41 · P92
P41 = 58339351804238222158586791687727596860143<41>
P92 = 17926350607259622695271137524190494788700231091726771361636249626207975716925845807554474581<92>
Number: n N=1045811674643038618720970610503378607430945162952929917680418191298320275906164719144573731068294405811697968071724804081565705525083 ( 133 digits) SNFS difficulty: 159 digits. Divisors found: Thu Oct 04 02:14:25 2007 prp41 factor: 58339351804238222158586791687727596860143 Thu Oct 04 02:14:25 2007 prp92 factor: 17926350607259622695271137524190494788700231091726771361636249626207975716925845807554474581 Thu Oct 04 02:14:25 2007 elapsed time 01:06:27 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.50 hours. Scaled time: 61.62 units (timescale=1.450). Factorization parameters were as follows: name: KA_3_4_157_3 n: 1045811674643038618720970610503378607430945162952929917680418191298320275906164719144573731068294405811697968071724804081565705525083 skew: 0.21 deg: 5 c5: 31000 c0: -13 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1800000) Primes: RFBsize:183072, AFBsize:182522, largePrimes:7262660 encountered Relations: rels:6751741, finalFF:444988 Max relations in full relation-set: 28 Initial matrix: 365661 x 444988 with sparse part having weight 40908464. Pruned matrix : 320686 x 322578 with weight 26986987. Total sieving time: 42.25 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 42.50 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(82·10160-1)/9 = 9(1)160<161> = 1183282325293<13> · 1398206145473<13> · C137
C137 = P59 · P79
P59 = 22056688036771319510990392077888123590637483193298813665679<59>
P79 = 2496729301249539633152615904948407043950273202114296465618776682890249002888781<79>
Number: n N=55069579309927136700780310410936392743026521929117229883721627958613372143091384300827504395420854995614166408956523800756004310953847299 ( 137 digits) SNFS difficulty: 161 digits. Divisors found: Thu Oct 04 02:36:45 2007 prp59 factor: 22056688036771319510990392077888123590637483193298813665679 Thu Oct 04 02:36:45 2007 prp79 factor: 2496729301249539633152615904948407043950273202114296465618776682890249002888781 Thu Oct 04 02:36:45 2007 elapsed time 01:27:51 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.40 hours. Scaled time: 48.16 units (timescale=1.323). Factorization parameters were as follows: name: KA_9_1_160 n: 55069579309927136700780310410936392743026521929117229883721627958613372143091384300827504395420854995614166408956523800756004310953847299 skew: 0.41 deg: 5 c5: 82 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:250150, AFBsize:250142, largePrimes:7161867 encountered Relations: rels:6671064, finalFF:562452 Max relations in full relation-set: 28 Initial matrix: 500360 x 562452 with sparse part having weight 39726103. Pruned matrix : 448099 x 450664 with weight 25765807. Total sieving time: 36.16 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 36.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10133-7 = 5(9)1323<134> = 419 · C132
C132 = P39 · P40 · P53
P39 = 803784771613572434432727851402219930947<39>
P40 = 8211994164161688590117664996602372379877<40>
P53 = 21694458850171435203820744840123411555745339465862013<53>
Number: n N=143198090692124105011933174224343675417661097852028639618138424821002386634844868735083532219570405727923627684964200477326968973747 ( 132 digits) SNFS difficulty: 134 digits. Divisors found: r1=803784771613572434432727851402219930947 (pp39) r2=8211994164161688590117664996602372379877 (pp40) r3=21694458850171435203820744840123411555745339465862013 (pp53) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.50 hours. Scaled time: 6.52 units (timescale=1.449). Factorization parameters were as follows: name: KA_5_9_132_3 n: 143198090692124105011933174224343675417661097852028639618138424821002386634844868735083532219570405727923627684964200477326968973747 skew: 0.52 deg: 5 c5: 375 c0: -14 m: 200000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:92938, AFBsize:93099, largePrimes:5807271 encountered Relations: rels:5166926, finalFF:262402 Max relations in full relation-set: 28 Initial matrix: 186103 x 262402 with sparse part having weight 21646923. Pruned matrix : 153360 x 154354 with weight 9710538. Total sieving time: 3.84 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.40 hours. Total square root time: 0.12 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,75000 total time: 4.50 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
6·10140-7 = 5(9)1393<141> = 118447393 · C133
C133 = P39 · P95
P39 = 488302592269751645844131141513207371459<39>
P95 = 10373772369705551105830529941865993946904275182321723727108870993322153016866124697921503890739<95>
Number: n N=5065539939743545052105958972013845842938898621432723301896564325396338609157906919910005955133178828173955673300466815677403723018201 ( 133 digits) SNFS difficulty: 140 digits. Divisors found: r1=488302592269751645844131141513207371459 (pp39) r2=10373772369705551105830529941865993946904275182321723727108870993322153016866124697921503890739 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.15 hours. Scaled time: 9.46 units (timescale=1.322). Factorization parameters were as follows: name: KA_5_9_139_3 n: 5065539939743545052105958972013845842938898621432723301896564325396338609157906919910005955133178828173955673300466815677403723018201 skew: 1.03 deg: 5 c5: 6 c0: -7 m: 10000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:114155, AFBsize:114412, largePrimes:6395094 encountered Relations: rels:5722594, finalFF:311875 Max relations in full relation-set: 48 Initial matrix: 228633 x 311875 with sparse part having weight 33205990. Pruned matrix : 195644 x 196851 with weight 15042093. Total sieving time: 5.86 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.01 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 7.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / PRIMO
(13·102563+41)/9 is prime.
(13·102641+41)/9 is prime.
By Robert Backstrom / GMP-ECM, Msieve
6·10125-7 = 5(9)1243<126> = 23 · 3623 · 10966621 · C114
C114 = P38 · P77
P38 = 50636596327829583320839536142290785563<38>
P77 = 12966349985343467300064590701602747532440337222241547532187032604088384653879<77>
6·10157-7 = 5(9)1563<158> = 53 · 97 · 739 · 1091 · 519487 · 709369890512947561<18> · 1398747574182377711176049107<28> · C98
C98 = P35 · P64
P35 = 22320341571287862440791180961911537<35>
P64 = 1258191770139023959637271001787399781177095229292345787867966729<64>
Wed Oct 03 16:19:38 2007 Msieve v. 1.26 Wed Oct 03 16:19:38 2007 random seeds: b8709f30 80cbbce4 Wed Oct 03 16:19:38 2007 factoring 28083270071686319089592401973395533416884243987372294079591744321397845903861895820202049357252473 (98 digits) Wed Oct 03 16:19:38 2007 commencing quadratic sieve (98-digit input) Wed Oct 03 16:19:38 2007 using multiplier of 1 Wed Oct 03 16:19:38 2007 using 64kb Opteron sieve core Wed Oct 03 16:19:38 2007 sieve interval: 18 blocks of size 65536 Wed Oct 03 16:19:38 2007 processing polynomials in batches of 6 Wed Oct 03 16:19:38 2007 using a sieve bound of 2473301 (90543 primes) Wed Oct 03 16:19:38 2007 using large prime bound of 370995150 (28 bits) Wed Oct 03 16:19:38 2007 using double large prime bound of 2659884601469100 (43-52 bits) Wed Oct 03 16:19:38 2007 using trial factoring cutoff of 52 bits Wed Oct 03 16:19:38 2007 polynomial 'A' values have 13 factors Wed Oct 03 23:18:45 2007 90718 relations (21893 full + 68825 combined from 1364772 partial), need 90639 Wed Oct 03 23:18:47 2007 begin with 1386665 relations Wed Oct 03 23:18:48 2007 reduce to 237587 relations in 12 passes Wed Oct 03 23:18:48 2007 attempting to read 237587 relations Wed Oct 03 23:18:52 2007 recovered 237587 relations Wed Oct 03 23:18:52 2007 recovered 225257 polynomials Wed Oct 03 23:18:52 2007 attempting to build 90718 cycles Wed Oct 03 23:18:53 2007 found 90718 cycles in 6 passes Wed Oct 03 23:18:53 2007 distribution of cycle lengths: Wed Oct 03 23:18:53 2007 length 1 : 21893 Wed Oct 03 23:18:53 2007 length 2 : 15660 Wed Oct 03 23:18:53 2007 length 3 : 15243 Wed Oct 03 23:18:53 2007 length 4 : 12310 Wed Oct 03 23:18:53 2007 length 5 : 9641 Wed Oct 03 23:18:53 2007 length 6 : 6118 Wed Oct 03 23:18:53 2007 length 7 : 4176 Wed Oct 03 23:18:53 2007 length 9+: 5677 Wed Oct 03 23:18:53 2007 largest cycle: 19 relations Wed Oct 03 23:18:53 2007 matrix is 90543 x 90718 with weight 6047781 (avg 66.67/col) Wed Oct 03 23:18:54 2007 filtering completed in 3 passes Wed Oct 03 23:18:54 2007 matrix is 86539 x 86603 with weight 5807038 (avg 67.05/col) Wed Oct 03 23:18:55 2007 saving the first 48 matrix rows for later Wed Oct 03 23:18:55 2007 matrix is 86491 x 86603 with weight 4591383 (avg 53.02/col) Wed Oct 03 23:18:55 2007 matrix includes 64 packed rows Wed Oct 03 23:18:55 2007 using block size 21845 for processor cache size 512 kB Wed Oct 03 23:18:55 2007 commencing Lanczos iteration Wed Oct 03 23:20:21 2007 lanczos halted after 1370 iterations Wed Oct 03 23:20:21 2007 recovered 17 nontrivial dependencies Wed Oct 03 23:20:22 2007 prp35 factor: 22320341571287862440791180961911537 Wed Oct 03 23:20:22 2007 prp64 factor: 1258191770139023959637271001787399781177095229292345787867966729 Wed Oct 03 23:20:22 2007 elapsed time 07:00:44
By Sinkiti Sibata / Msieve v. 1.26, GGNFS
6·10153-7 = 5(9)1523<154> = 13 · 139747 · 41191413729044567<17> · 28576336929599376517741<23> · 1025244729230700913218569<25> · C85
C85 = P42 · P43
P42 = 356746994819799697074718391780142365509993<42>
P43 = 7671217220429161293573234558957602035904237<43>
Wed Oct 03 14:47:30 2007 Msieve v. 1.26 Wed Oct 03 14:47:30 2007 random seeds: 460178a0 145787d5 Wed Oct 03 14:47:30 2007 factoring 2736683689998000234925592599907106848522357423838373040075488018168277701797414540341 (85 digits) Wed Oct 03 14:47:30 2007 commencing quadratic sieve (85-digit input) Wed Oct 03 14:47:31 2007 using multiplier of 21 Wed Oct 03 14:47:31 2007 using 64kb Pentium 2 sieve core Wed Oct 03 14:47:31 2007 sieve interval: 6 blocks of size 65536 Wed Oct 03 14:47:31 2007 processing polynomials in batches of 17 Wed Oct 03 14:47:31 2007 using a sieve bound of 1425547 (54412 primes) Wed Oct 03 14:47:31 2007 using large prime bound of 116894854 (26 bits) Wed Oct 03 14:47:31 2007 using double large prime bound of 332683806537686 (41-49 bits) Wed Oct 03 14:47:31 2007 using trial factoring cutoff of 49 bits Wed Oct 03 14:47:31 2007 polynomial 'A' values have 11 factors Wed Oct 03 19:20:05 2007 54584 relations (15772 full + 38812 combined from 574026 partial), need 54508 Wed Oct 03 19:20:07 2007 begin with 589798 relations Wed Oct 03 19:20:09 2007 reduce to 128585 relations in 11 passes Wed Oct 03 19:20:09 2007 attempting to read 128585 relations Wed Oct 03 19:20:14 2007 recovered 128585 relations Wed Oct 03 19:20:14 2007 recovered 109292 polynomials Wed Oct 03 19:20:15 2007 attempting to build 54584 cycles Wed Oct 03 19:20:15 2007 found 54584 cycles in 5 passes Wed Oct 03 19:20:19 2007 distribution of cycle lengths: Wed Oct 03 19:20:19 2007 length 1 : 15772 Wed Oct 03 19:20:19 2007 length 2 : 11077 Wed Oct 03 19:20:19 2007 length 3 : 9717 Wed Oct 03 19:20:19 2007 length 4 : 6987 Wed Oct 03 19:20:19 2007 length 5 : 4720 Wed Oct 03 19:20:19 2007 length 6 : 2838 Wed Oct 03 19:20:19 2007 length 7 : 1656 Wed Oct 03 19:20:19 2007 length 9+: 1817 Wed Oct 03 19:20:19 2007 largest cycle: 17 relations Wed Oct 03 19:20:20 2007 matrix is 54412 x 54584 with weight 2905977 (avg 53.24/col) Wed Oct 03 19:20:22 2007 filtering completed in 3 passes Wed Oct 03 19:20:22 2007 matrix is 49748 x 49812 with weight 2673600 (avg 53.67/col) Wed Oct 03 19:20:24 2007 saving the first 48 matrix rows for later Wed Oct 03 19:20:24 2007 matrix is 49700 x 49812 with weight 1993341 (avg 40.02/col) Wed Oct 03 19:20:24 2007 matrix includes 64 packed rows Wed Oct 03 19:20:24 2007 commencing Lanczos iteration Wed Oct 03 19:25:55 2007 lanczos halted after 787 iterations Wed Oct 03 19:25:56 2007 recovered 19 nontrivial dependencies Wed Oct 03 19:25:59 2007 prp42 factor: 356746994819799697074718391780142365509993 Wed Oct 03 19:25:59 2007 prp43 factor: 7671217220429161293573234558957602035904237 Wed Oct 03 19:25:59 2007 elapsed time 04:38:29
8·10160-3 = 7(9)1597<161> = 432 · 431 · 48859 · 4647456722639<13> · 626627965062020591<18> · C120
C120 = P47 · P74
P47 = 14692417462058974457446490078935236626410262041<47>
P74 = 48018970537507694295810504240418883922125431142142818767721221650978656473<74>
Number: 79997_160 N=705514761235373466365712554295053490555390684232165126019501416207453667149193594120119006252562816485365473350050841393 ( 120 digits) SNFS difficulty: 160 digits. Divisors found: r1=14692417462058974457446490078935236626410262041 (pp47) r2=48018970537507694295810504240418883922125431142142818767721221650978656473 (pp74) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 60.89 hours. Scaled time: 41.22 units (timescale=0.677). Factorization parameters were as follows: name: 79997_160 n: 705514761235373466365712554295053490555390684232165126019501416207453667149193594120119006252562816485365473350050841393 m: 100000000000000000000000000000000 c5: 8 c0: -3 skew: 0.82 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:283367, largePrimes:5694153 encountered Relations: rels:5794190, finalFF:713570 Max relations in full relation-set: 28 Initial matrix: 566578 x 713570 with sparse part having weight 44691099. Pruned matrix : 447630 x 450526 with weight 27726964. Total sieving time: 52.59 hours. Total relation processing time: 0.28 hours. Matrix solve time: 7.83 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 60.89 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
6·10111-7 = 5(9)1103<112> = 13 · 2423 · C108
C108 = P51 · P57
P51 = 360964079692659801539218828060656161476910423250161<51>
P57 = 527704135252280213728502010679882140961843051369612566587<57>
Number: 59993_111 N=190482237531350201593701387345630020000634940791771167338645671291152100066668783135972570557795485570970507 ( 108 digits) SNFS difficulty: 111 digits. Divisors found: r1=360964079692659801539218828060656161476910423250161 (pp51) r2=527704135252280213728502010679882140961843051369612566587 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.71 hours. Scaled time: 1.53 units (timescale=2.145). Factorization parameters were as follows: n: 190482237531350201593701387345630020000634940791771167338645671291152100066668783135972570557795485570970507 m: 10000000000000000000000 c5: 60 c0: -7 skew: 0.65 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 320001) Primes: RFBsize:30757, AFBsize:30694, largePrimes:1074870 encountered Relations: rels:1007128, finalFF:101389 Max relations in full relation-set: 28 Initial matrix: 61518 x 101389 with sparse part having weight 4955758. Pruned matrix : 50735 x 51106 with weight 1760939. Total sieving time: 0.68 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
6·10122-7 = 5(9)1213<123> = 29 · C122
C122 = P38 · P84
P38 = 68004493287578401111324018574258290351<38>
P84 = 304239531422152873078652750157120871113171209374964566110469309352350285844274312067<84>
Number: 59993_122 N=20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517 ( 122 digits) SNFS difficulty: 123 digits. Divisors found: r1=68004493287578401111324018574258290351 (pp38) r2=304239531422152873078652750157120871113171209374964566110469309352350285844274312067 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.52 hours. Scaled time: 3.26 units (timescale=2.144). Factorization parameters were as follows: n: 20689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517 m: 2000000000000000000000000 c5: 75 c0: -28 skew: 0.82 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [400000, 720001) Primes: RFBsize:63951, AFBsize:63523, largePrimes:1389910 encountered Relations: rels:1372098, finalFF:158574 Max relations in full relation-set: 28 Initial matrix: 127540 x 158574 with sparse part having weight 7799698. Pruned matrix : 114540 x 115241 with weight 4337757. Total sieving time: 1.46 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,800000,800000,25,25,45,45,2.2,2.2,40000 total time: 1.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
6·10137-7 = 5(9)1363<138> = C138
C138 = P44 · P95
P44 = 11930304707794017951010060929038611787637529<44>
P95 = 50292093512751817677191069598755399434481984540235534607565516222232375080068547729293970178017<95>
Number: 59993_137 N=599999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 138 digits) SNFS difficulty: 138 digits. Divisors found: r1=11930304707794017951010060929038611787637529 (pp44) r2=50292093512751817677191069598755399434481984540235534607565516222232375080068547729293970178017 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.81 hours. Scaled time: 10.24 units (timescale=2.129). Factorization parameters were as follows: n: 599999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 2000000000000000000000000000 c5: 75 c0: -28 skew: 0.82 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1600001) Primes: RFBsize:107126, AFBsize:106878, largePrimes:2399412 encountered Relations: rels:2552130, finalFF:267534 Max relations in full relation-set: 28 Initial matrix: 214070 x 267534 with sparse part having weight 24798377. Pruned matrix : 197717 x 198851 with weight 15730218. Total sieving time: 4.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 4.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
6·10130-7 = 5(9)1293<131> = 3581 · 11927683 · 77492399487775327777<20> · C101
C101 = P41 · P60
P41 = 41741913374238084153759348799228096820219<41>
P60 = 434269551129510598310111242531747787622152307167204480286557<60>
Number: 59993_130 N=18127241984317287948259696060358425132269108005734409737154495900535745003233991139307777121631495983 ( 101 digits) SNFS difficulty: 130 digits. Divisors found: r1=41741913374238084153759348799228096820219 (pp41) r2=434269551129510598310111242531747787622152307167204480286557 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.61 hours. Scaled time: 5.60 units (timescale=2.145). Factorization parameters were as follows: n: 18127241984317287948259696060358425132269108005734409737154495900535745003233991139307777121631495983 m: 100000000000000000000000000 c5: 6 c0: -7 skew: 1.03 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 1050001) Primes: RFBsize:78498, AFBsize:78516, largePrimes:1562106 encountered Relations: rels:1575211, finalFF:190100 Max relations in full relation-set: 28 Initial matrix: 157080 x 190100 with sparse part having weight 11252053. Pruned matrix : 145006 x 145855 with weight 6877487. Total sieving time: 2.51 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.61 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
The factor table of 599...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Jo Yeong Uk / GGNFS
4·10158+7 = 4(0)1577<159> = 11 · 37 · 12007 · 64184521 · 801992267819<12> · C133
C133 = P47 · P86
P47 = 40168232933255472863199410867005086259141899511<47>
P86 = 39586568659768781756154959633375249919813838935426658359620291935490219828230564916987<86>
Number: 40007_158 N=1590122510953903345542624420568097263521630484531474875782839648114082015795534996005269615326322770371113782601521530538607210893357 ( 133 digits) SNFS difficulty: 160 digits. Divisors found: r1=40168232933255472863199410867005086259141899511 (pp47) r2=39586568659768781756154959633375249919813838935426658359620291935490219828230564916987 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.50 hours. Scaled time: 52.33 units (timescale=2.136). Factorization parameters were as follows: n: 1590122510953903345542624420568097263521630484531474875782839648114082015795534996005269615326322770371113782601521530538607210893357 m: 100000000000000000000000000000000 c5: 1 c0: 175 skew: 2.81 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:283052, largePrimes:5731305 encountered Relations: rels:5871089, finalFF:749665 Max relations in full relation-set: 28 Initial matrix: 566262 x 749665 with sparse part having weight 45967150. Pruned matrix : 415205 x 418100 with weight 27576167. Total sieving time: 23.50 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.87 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Sinkiti Sibata / GGNFS
(5·10161+7)/3 = 1(6)1609<162> = 570049 · 111524293 · 148946655411315836615893811933<30> · C119
C119 = P59 · P60
P59 = 19431998449239836919883891499392364284154878753810288198627<59>
P60 = 905771934729220258028194158863173230204066471520265077490687<60>
Number: 16669_161 N=17600958831023174839925978092753242124486597026417452012549969280102392991960434543098921399672637559438776334598686749 ( 119 digits) SNFS difficulty: 161 digits. Divisors found: r1=19431998449239836919883891499392364284154878753810288198627 (pp59) r2=905771934729220258028194158863173230204066471520265077490687 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 73.18 hours. Scaled time: 146.44 units (timescale=2.001). Factorization parameters were as follows: name: 16669_161 n: 17600958831023174839925978092753242124486597026417452012549969280102392991960434543098921399672637559438776334598686749 m: 100000000000000000000000000000000 c5: 50 c0: 7 skew: 0.67 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:316881, largePrimes:5795306 encountered Relations: rels:5901400, finalFF:737692 Max relations in full relation-set: 28 Initial matrix: 632894 x 737692 with sparse part having weight 45414630. Pruned matrix : 553191 x 556419 with weight 32190862. Total sieving time: 69.32 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.47 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 73.18 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(4·10161-7)/3 = 1(3)1601<162> = 11 · 11124606089<11> · 100299923063<12> · C140
C140 = P45 · P95
P45 = 866216913035861859660556067350054626872174933<45>
P95 = 12541057250108172132778787912475915358164724857304431753382275697071209996577378790384734808091<95>
Number: n N=10863275897394715416026646238743388383563411275697039333548489540819916417179198180218113482105248693668875830361857053271903904435535782903 ( 140 digits) SNFS difficulty: 161 digits. Divisors found: prp45 factor: 866216913035861859660556067350054626872174933 prp95 factor: 12541057250108172132778787912475915358164724857304431753382275697071209996577378790384734808091 elapsed time 02:26:08 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.30 hours. Scaled time: 48.24 units (timescale=1.197). Factorization parameters were as follows: name: KA_1_3_160_1 n: 10863275897394715416026646238743388383563411275697039333548489540819916417179198180218113482105248693668875830361857053271903904435535782903 type: snfs skew: 0.71 deg: 5 c5: 40 c0: -7 m: 100000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:250150, AFBsize:249831, largePrimes:6771115 encountered Relations: rels:6304352, finalFF:590349 Max relations in full relation-set: 28 Initial matrix: 500047 x 590349 with sparse part having weight 31375036. Pruned matrix : 415114 x 417678 with weight 17906321. Total sieving time: 40.07 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 40.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
5·10161-1 = 4(9)161<162> = 23 · 5039 · 5503 · 121219311137<12> · C142
C142 = P69 · P74
P69 = 205172085665013628136788854347422145538579372307983152097920947502671<69>
P74 = 31521596990625887572504276079879084677165618298704568194646451128941172807<74>
Number: n N=6467351798058730387628097619584464793561004208531537922182496075642274563849187638841619505437822847268801141316782851382812647988076505067497 ( 142 digits) SNFS difficulty: 161 digits. Divisors found: Tue Oct 02 05:21:23 2007 prp69 factor: 205172085665013628136788854347422145538579372307983152097920947502671 Tue Oct 02 05:21:23 2007 prp74 factor: 31521596990625887572504276079879084677165618298704568194646451128941172807 Tue Oct 02 05:21:23 2007 elapsed time 01:18:32 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.84 hours. Scaled time: 43.39 units (timescale=1.454). Factorization parameters were as follows: name: KA_4_9_161 n: 6467351798058730387628097619584464793561004208531537922182496075642274563849187638841619505437822847268801141316782851382812647988076505067497 skew: 0.46 deg: 5 c5: 50 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1600000) Primes: RFBsize:203362, AFBsize:203587, largePrimes:7032000 encountered Relations: rels:6494307, finalFF:456833 Max relations in full relation-set: 28 Initial matrix: 407014 x 456833 with sparse part having weight 35481673. Pruned matrix : 369264 x 371363 with weight 25332214. Total sieving time: 29.63 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 29.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(28·10160-1)/9 = 3(1)160<161> = 53 · 113 · 367 · 10608547 · 331545143 · C139
C139 = P51 · P88
P51 = 633091035242735539801967600647466189684568802167457<51>
P88 = 6356680828325396531036158080960100862662205508268214943170736874990151494680541613194001<88>
Number: n N=4024357646312174958831474608222302299118450594684435034315875112537932079099180653597254994891579763036098222505425488832273115077429825457 ( 139 digits) SNFS difficulty: 161 digits. Divisors found: Tue Oct 02 06:04:18 2007 prp51 factor: 633091035242735539801967600647466189684568802167457 Tue Oct 02 06:04:18 2007 prp88 factor: 6356680828325396531036158080960100862662205508268214943170736874990151494680541613194001 Tue Oct 02 06:04:18 2007 elapsed time 01:22:53 (Msieve 1.26) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 34.41 hours. Scaled time: 44.59 units (timescale=1.296). Factorization parameters were as follows: name: KA_3_1_160 n: 4024357646312174958831474608222302299118450594684435034315875112537932079099180653597254994891579763036098222505425488832273115077429825457 skew: 0.51 deg: 5 c5: 28 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1700000) Primes: RFBsize:216816, AFBsize:216531, largePrimes:7070916 encountered Relations: rels:6546532, finalFF:488128 Max relations in full relation-set: 28 Initial matrix: 433413 x 488128 with sparse part having weight 35567073. Pruned matrix : 391277 x 393508 with weight 24641110. Total sieving time: 33.14 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.06 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 34.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10161-3 = 6(9)1607<162> = 11759927 · 890858477521139<15> · C140
C140 = P52 · P89
P52 = 5434034586523956104106766412088428719802308238404951<52>
P89 = 12295955952110120403085408303775786006169912054674465432621806697568821168788407881446399<89>
Number: n N=66816649918141495127926394200224912688873813650781970983701894207994243406438544537584681883365367975168764122211116754043488833134562721449 ( 140 digits) SNFS difficulty: 161 digits. Divisors found: Tue Oct 02 11:41:36 2007 prp52 factor: 5434034586523956104106766412088428719802308238404951 Tue Oct 02 11:41:36 2007 prp89 factor: 12295955952110120403085408303775786006169912054674465432621806697568821168788407881446399 Tue Oct 02 11:41:36 2007 elapsed time 02:02:16 (Msieve 1.26) Version: GGNFS-0.77.1-20051202-athlon Total time: 53.37 hours. Scaled time: 70.61 units (timescale=1.323). Factorization parameters were as follows: name: KA_6_9_160_7 n: 66816649918141495127926394200224912688873813650781970983701894207994243406438544537584681883365367975168764122211116754043488833134562721449 skew: 0.53 deg: 5 c5: 70 c0: -3 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2500000) Primes: RFBsize:250150, AFBsize:249361, largePrimes:7482224 encountered Relations: rels:6975734, finalFF:559949 Max relations in full relation-set: 28 Initial matrix: 499578 x 559949 with sparse part having weight 47483613. Pruned matrix : 454399 x 456960 with weight 33007219. Total sieving time: 53.09 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 53.37 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
2·10158-7 = 1(9)1573<159> = 953 · 25057 · 2414090848213589432916932990633<31> · C121
C121 = P53 · P69
P53 = 31571248495465350553236417278124057355578453451578557<53>
P69 = 109891134207565565423460471928953710097707635400211726467910976480493<69>
Number: 19993_158 N=3469400305515585275088518477571852718127951025814114467282749380810057951257353312433363378995962611612031180850967588601 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=31571248495465350553236417278124057355578453451578557 (pp53) r2=109891134207565565423460471928953710097707635400211726467910976480493 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 34.21 hours. Scaled time: 72.22 units (timescale=2.111). Factorization parameters were as follows: n: 3469400305515585275088518477571852718127951025814114467282749380810057951257353312433363378995962611612031180850967588601 m: 100000000000000000000000000000000 c5: 1 c0: -350 skew: 3.23 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4000001) Primes: RFBsize:283146, AFBsize:283727, largePrimes:5808005 encountered Relations: rels:5905005, finalFF:708062 Max relations in full relation-set: 28 Initial matrix: 566937 x 708062 with sparse part having weight 48034519. Pruned matrix : 464821 x 467719 with weight 33043298. Total sieving time: 32.81 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.26 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 34.21 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Jo Yeong Uk / PRIMO
4·102038+9 is prime!
By Sinkiti Sibata / GGNFS
(5·10159+7)/3 = 1(6)1589<160> = 61 · 139 · 22354882834663<14> · C142
C142 = P50 · P93
P50 = 20633650419206281386733031458970921470010125270621<50>
P93 = 426143283646225856200448242499018567906598044643963243984154881765936470251951711802769440857<93>
Number: 16669_159 N=8792891543248889413056523663055605397019366650336981625335329343284007000558823348485757194490519250667301471004607262229383740155945979162197 ( 142 digits) SNFS difficulty: 160 digits. Divisors found: r1=20633650419206281386733031458970921470010125270621 (pp50) r2=426143283646225856200448242499018567906598044643963243984154881765936470251951711802769440857 (pp93) Version: GGNFS-0.77.1-20060513-k8 Total time: 40.03 hours. Scaled time: 77.81 units (timescale=1.944). Factorization parameters were as follows: name: 16669_159 n: 8792891543248889413056523663055605397019366650336981625335329343284007000558823348485757194490519250667301471004607262229383740155945979162197 m: 100000000000000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3300001) Primes: RFBsize:283146, AFBsize:283092, largePrimes:5781861 encountered Relations: rels:5963802, finalFF:786585 Max relations in full relation-set: 28 Initial matrix: 566302 x 786585 with sparse part having weight 46911389. Pruned matrix : 388163 x 391058 with weight 28940900. Total sieving time: 37.70 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.02 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 40.03 hours. --------- CPU info (if available) ----------
(5·10154+7)/3 = 1(6)1539<155> = 172 · 211 · 89227 · 3642209 · 34988803 · C131
C131 = P64 · P67
P64 = 3039500772684756067905656547847651710767202885317667360748022141<64>
P67 = 7908169219491322981400916567456394408788268380654149703529298881099<67>
Number: 16669_154 N=24036886453165680508340850848781676496510660976142667106365241496273418489191071703314462061843335352040879870593174633908578412959 ( 131 digits) SNFS difficulty: 155 digits. Divisors found: r1=3039500772684756067905656547847651710767202885317667360748022141 (pp64) r2=7908169219491322981400916567456394408788268380654149703529298881099 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 35.56 hours. Scaled time: 24.07 units (timescale=0.677). Factorization parameters were as follows: name: 16669_154 n: 24036886453165680508340850848781676496510660976142667106365241496273418489191071703314462061843335352040879870593174633908578412959 m: 10000000000000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216671, largePrimes:5670953 encountered Relations: rels:5752856, finalFF:662121 Max relations in full relation-set: 28 Initial matrix: 433551 x 662121 with sparse part having weight 48626390. Pruned matrix : 281115 x 283346 with weight 30459459. Total sieving time: 31.66 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.54 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 35.56 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(5·10162+7)/3 = 1(6)1619<163> = 26605422918850732566241<23> · 63779260936918673666795069<26> · C114
C114 = P56 · P59
P56 = 12345841030073355518195566173708094971913700674342341749<56>
P59 = 79557003995848246810709883183266502089230667106521497802989<59>
Number: 16669_162 N=982198124161653180383430896087817726373941018203689950840839374285322703169061071123818762648082907378560911687761 ( 114 digits) Divisors found: r1=12345841030073355518195566173708094971913700674342341749 (pp56) r2=79557003995848246810709883183266502089230667106521497802989 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.98 hours. Scaled time: 53.55 units (timescale=2.144). Factorization parameters were as follows: name: 16669_162 n: 982198124161653180383430896087817726373941018203689950840839374285322703169061071123818762648082907378560911687761 skew: 79581.38 # norm 1.52e+16 c5: 14400 c4: -5104766820 c3: -426663243207224 c2: 28085394149617420745 c1: 790358088000437855793756 c0: -30202005118332397627600032105 # alpha -6.65 Y1: 1156683005687 Y0: -9263415975208444237468 # Murphy_E 5.69e-10 # M 282687440591493322167609652050488048787882302796981977330370789227978501143302103505532468545998949397979264317724 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3075001) Primes: RFBsize:256726, AFBsize:255796, largePrimes:7643428 encountered Relations: rels:7673917, finalFF:699431 Max relations in full relation-set: 28 Initial matrix: 512600 x 699431 with sparse part having weight 61343989. Pruned matrix : 366077 x 368704 with weight 35631843. Polynomial selection time: 1.18 hours. Total sieving time: 22.62 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.87 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 24.98 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Sinkiti Sibata / GGNFS
(5·10160+7)/3 = 1(6)1599<161> = 79 · 22979881 · 8218427297<10> · 120437201921<12> · 576732416278247<15> · C116
C116 = P55 · P61
P55 = 4977320437750921565229473834967340708864912661751976709<55>
P61 = 3231130839822657913824785584822600613852060607675347893277881<61>
Number: 16669_160 N=16082373566096614517840744716684819770544179685787058568186342091536319780818203204639102366383712317368525176873629 ( 116 digits) SNFS difficulty: 160 digits. Divisors found: r1=4977320437750921565229473834967340708864912661751976709 (pp55) r2=3231130839822657913824785584822600613852060607675347893277881 (pp61) Version: GGNFS-0.77.1-20060513-k8 Total time: 48.41 hours. Scaled time: 96.57 units (timescale=1.995). Factorization parameters were as follows: name: 16669_160 n: 16082373566096614517840744716684819770544179685787058568186342091536319780818203204639102366383712317368525176873629 m: 100000000000000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282597, largePrimes:5621726 encountered Relations: rels:5644743, finalFF:651649 Max relations in full relation-set: 28 Initial matrix: 565808 x 651649 with sparse part having weight 40725051. Pruned matrix : 498172 x 501065 with weight 27770530. Total sieving time: 45.45 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.62 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 48.41 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(5·10164+7)/3 = 1(6)1639<165> = 13 · 191 · 111667 · C156
C156 = P59 · P98
P59 = 26302708085062711351718348313317723934590092763062351780943<59>
P98 = 22853183997916580633609069137995891297392038889869322628145873448439676832765537008398620936667403<98>
Number: n N=601100627511426222646761161680965546206801796708529971231335989315691212650463737172222577853390145565689747467684178070804876373058548212170868388304701029 ( 156 digits) SNFS difficulty: 165 digits. Divisors found: Linear algebra by Msieve 1.26: Sun Sep 30 03:05:26 2007 commencing square root phase Sun Sep 30 03:05:26 2007 reading relations for dependency 1 Sun Sep 30 03:05:27 2007 read 217366 cycles Sun Sep 30 03:05:27 2007 cycles contain 795544 unique relations Sun Sep 30 03:06:01 2007 read 795544 relations Sun Sep 30 03:06:08 2007 multiplying 1142918 relations Sun Sep 30 03:08:47 2007 multiply complete, coefficients have about 24.09 million bits Sun Sep 30 03:08:48 2007 initial square root is modulo 8296751 Sun Sep 30 03:15:04 2007 prp59 factor: 26302708085062711351718348313317723934590092763062351780943 Sun Sep 30 03:15:04 2007 prp98 factor: 22853183997916580633609069137995891297392038889869322628145873448439676832765537008398620936667403 Sun Sep 30 03:15:04 2007 elapsed time 01:26:28 Version: GGNFS-0.77.1-20051202-athlon Total time: 40.61 hours. Scaled time: 53.77 units (timescale=1.324). Factorization parameters were as follows: name: KA_1_6_163_9 n: 601100627511426222646761161680965546206801796708529971231335989315691212650463737172222577853390145565689747467684178070804876373058548212170868388304701029 skew: 1.70 deg: 5 c5: 1 c0: 14 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1900000) Primes: RFBsize:250150, AFBsize:250091, largePrimes:7227599 encountered Relations: rels:6752702, finalFF:576673 Max relations in full relation-set: 28 Initial matrix: 500305 x 576673 with sparse part having weight 39570403. Pruned matrix : 436717 x 439282 with weight 24359944. Total sieving time: 40.39 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 40.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10163+7)/3 = 1(6)1629<164> = 19 · 932483 · 3338407 · C150
C150 = P36 · P115
P36 = 179096204859467232396164279888334937<36>
P115 = 1573361650372442894213033131277538811100419125034880034126626043409760465523866973561143332026778461515089011520283<115>
Number: n N=281783100453132491764192749729106318410556661674307444387519334626303961635821594561083163050656636337622215383852258673518554659375130169219873027171 ( 150 digits) SNFS difficulty: 164 digits. Divisors found: Linear algebra using Msieve 1.26: Sun Sep 30 18:13:20 2007 commencing square root phase Sun Sep 30 18:13:20 2007 reading relations for dependency 1 Sun Sep 30 18:13:21 2007 read 238377 cycles Sun Sep 30 18:13:21 2007 cycles contain 836180 unique relations Sun Sep 30 18:13:57 2007 read 836180 relations Sun Sep 30 18:14:04 2007 multiplying 1175696 relations Sun Sep 30 18:16:39 2007 multiply complete, coefficients have about 28.40 million bits Sun Sep 30 18:16:40 2007 initial square root is modulo 143457841 Sun Sep 30 18:22:25 2007 prp36 factor: 179096204859467232396164279888334937 Sun Sep 30 18:22:25 2007 prp115 factor: 1573361650372442894213033131277538811100419125034880034126626043409760465523866973561143332026778461515089011520283 Sun Sep 30 18:22:25 2007 elapsed time 01:32:22 Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 65.07 hours. Scaled time: 79.39 units (timescale=1.220). Factorization parameters were as follows: name: KA_1_6_162_9 n: 281783100453132491764192749729106318410556661674307444387519334626303961635821594561083163050656636337622215383852258673518554659375130169219873027171 skew: 0.45 deg: 5 c5: 8 c0: 35 m: 500000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3100000) Primes: RFBsize:216816, AFBsize:217636, largePrimes:7586330 encountered Relations: rels:7073916, finalFF:488697 Max relations in full relation-set: 28 Initial matrix: 434517 x 488697 with sparse part having weight 43843717. Pruned matrix : 412969 x 415205 with weight 33648580. Total sieving time: 64.61 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.20 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 65.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(55·10158-1)/9 = 6(1)158<159> = 13 · 23 · 5763827 · 1559789123863<13> · C138
C138 = P59 · P80
P59 = 15010258650299280272276491101329623983515589707475827317847<59>
P80 = 15145513101806035552114587951495643112100912817276775268355705388408504954678887<80>
Number: n N=227338069049605129053211193199122381737271351068558536526884137163254204545481577681925791011163714893896017433744000903964174094369196289 ( 138 digits) SNFS difficulty: 160 digits. Divisors found: Linear algebra using Msieve 1.26: Sun Sep 30 21:00:47 2007 commencing square root phase Sun Sep 30 21:00:47 2007 reading relations for dependency 1 Sun Sep 30 21:00:47 2007 read 187803 cycles Sun Sep 30 21:00:48 2007 cycles contain 698085 unique relations Sun Sep 30 21:01:15 2007 read 698085 relations Sun Sep 30 21:01:20 2007 multiplying 993110 relations Sun Sep 30 21:03:51 2007 multiply complete, coefficients have about 26.43 million bits Sun Sep 30 21:03:52 2007 initial square root is modulo 38909441 Sun Sep 30 21:09:48 2007 prp59 factor: 15010258650299280272276491101329623983515589707475827317847 Sun Sep 30 21:09:48 2007 prp80 factor: 15145513101806035552114587951495643112100912817276775268355705388408504954678887 Sun Sep 30 21:09:48 2007 elapsed time 01:03:31 Version: GGNFS-0.77.1-20051202-athlon Total time: 29.89 hours. Scaled time: 43.28 units (timescale=1.448). Factorization parameters were as follows: name: KA_6_1_158 n: 227338069049605129053211193199122381737271351068558536526884137163254204545481577681925791011163714893896017433744000903964174094369196289 skew: 0.56 deg: 5 c5: 88 c0: -5 m: 50000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1600000) Primes: RFBsize:183072, AFBsize:183537, largePrimes:7075458 encountered Relations: rels:6528000, finalFF:420262 Max relations in full relation-set: 28 Initial matrix: 366675 x 420262 with sparse part having weight 36710081. Pruned matrix : 330856 x 332753 with weight 26194028. Total sieving time: 29.67 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 29.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Bruce Dodson
(10339-1)/9 is divisible by 777734075184513369134763199249605543798943174359980119<54>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Yousuke Koide
101075+1 is divisible by 17749774754658825560922224895404476651<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / PRIMO
6·102593+7 is prime!
(55·102969+71)/9 is prime!
By Robert Backstrom / GGNFS, Msieve
(2·10165-17)/3 = (6)1641<165> = 24310071773347<14> · C152
C152 = P50 · P102
P50 = 51734164323600805573653584774564809428106146895381<50>
P102 = 530084446675280350994104791959744914314598013435184675057749458635575389733945696768078005752479641723<102>
Number: n N=27423475869683962390491718591322401700236139951798106363550172466967761626634044630890142340664811630560708218722793851241742987522268137155303643581463 ( 152 digits) SNFS difficulty: 165 digits. Divisors found: Linear algebra using Msieve 1.26: ... Sat Sep 29 12:41:06 2007 commencing square root phase Sat Sep 29 12:41:06 2007 reading relations for dependency 1 Sat Sep 29 12:41:06 2007 read 242194 cycles Sat Sep 29 12:41:07 2007 cycles contain 838445 unique relations Sat Sep 29 12:41:38 2007 read 838445 relations Sat Sep 29 12:41:44 2007 multiplying 1189934 relations Sat Sep 29 12:44:18 2007 multiply complete, coefficients have about 26.63 million bits Sat Sep 29 12:44:18 2007 initial square root is modulo 44576321 Sat Sep 29 12:50:18 2007 prp50 factor: 51734164323600805573653584774564809428106146895381 Sat Sep 29 12:50:18 2007 prp102 factor: 530084446675280350994104791959744914314598013435184675057749458635575389733945696768078005752479641723 Sat Sep 29 12:50:18 2007 elapsed time 01:33:37 Version: GGNFS-0.77.1-20051202-athlon Total time: 63.87 hours. Scaled time: 92.54 units (timescale=1.449). Factorization parameters were as follows: name: KA_6_164_1 n: 27423475869683962390491718591322401700236139951798106363550172466967761626634044630890142340664811630560708218722793851241742987522268137155303643581463 skew: 1.53 deg: 5 c5: 2 c0: -17 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300000) Primes: RFBsize:216816, AFBsize:216686, largePrimes:7771552 encountered Relations: rels:7297268, finalFF:503771 Max relations in full relation-set: 28 Initial matrix: 433567 x 503771 with sparse part having weight 49944999. Pruned matrix : 407928 x 410159 with weight 37183923. Total sieving time: 63.60 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
5·10167-7 = 4(9)1663<168> = 13 · C167
C167 = P47 · P121
P47 = 27166347444900583109731812696436491851217550133<47>
P121 = 1415778788059272495359858060016860902525618476647398886043545011620987173109239480930954828521246215935467936088821001417<121>
Number: n N=38461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461 ( 167 digits) SNFS difficulty: 167 digits. Divisors found: Linear algebra by Msieve 1.26: Sat Sep 29 23:21:09 2007 commencing square root phase Sat Sep 29 23:21:09 2007 reading relations for dependency 1 Sat Sep 29 23:21:09 2007 read 257497 cycles Sat Sep 29 23:21:10 2007 cycles contain 895173 unique relations Sat Sep 29 23:22:06 2007 read 895173 relations Sat Sep 29 23:22:16 2007 multiplying 1259610 relations Sat Sep 29 23:29:41 2007 multiply complete, coefficients have about 37.13 milli on bits Sat Sep 29 23:29:43 2007 initial square root is modulo 214451 Sat Sep 29 23:41:15 2007 prp47 factor: 27166347444900583109731812696436491851217550133 Sat Sep 29 23:41:15 2007 prp121 factor: 1415778788059272495359858060016860902525618476647398886043545011620987173109239480930954828521246215935467936088821001417 Sat Sep 29 23:41:15 2007 elapsed time 02:44:57 Version: GGNFS-0.77.1-20051202-athlon Total time: 199.44 hours. Scaled time: 238.33 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_9_166_3 n: 38461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461538461 type: snfs skew: 1.00 deg: 5 c5: 500 c0: -7 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 3300000) Primes: RFBsize:250150, AFBsize:249951, largePrimes:7696642 encountered Relations: rels:7217894, finalFF:566646 Max relations in full relation-set: 28 Initial matrix: 500167 x 566646 with sparse part having weight 45760093. Pruned matrix : 461435 x 463999 with weight 34043459. Total sieving time: 198.86 hours. Total relation processing time: 0.58 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.6,2.6,100000 total time: 199.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS
(5·10155+7)/3 = 1(6)1549<156> = 59 · 3975371759544157964120556169<28> · C126
C126 = P50 · P77
P50 = 12183673828219514815541105378476410328653530357743<50>
P77 = 58323116951920764556691672750208036680903493856562686440783028131664900724273<77>
Number: 16669_155 N=710589833587302941718597558350764196066850853049176811985093853269458721857536326881047933687224985740262132968074713493595839 ( 126 digits) SNFS difficulty: 155 digits. Divisors found: r1=12183673828219514815541105378476410328653530357743 (pp50) r2=58323116951920764556691672750208036680903493856562686440783028131664900724273 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 18.11 hours. Scaled time: 38.82 units (timescale=2.143). Factorization parameters were as follows: n: 710589833587302941718597558350764196066850853049176811985093853269458721857536326881047933687224985740262132968074713493595839 m: 10000000000000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:216351, largePrimes:5702060 encountered Relations: rels:5761249, finalFF:638372 Max relations in full relation-set: 28 Initial matrix: 433232 x 638372 with sparse part having weight 49932713. Pruned matrix : 308816 x 311046 with weight 30557046. Total sieving time: 17.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.57 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 18.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Sinkiti Sibata / GGNFS
(5·10152+7)/3 = 1(6)1519<153> = 13 · 4987 · 377579803 · 3436321013<10> · 6969202531<10> · 1361822893003<13> · C108
C108 = P46 · P62
P46 = 2737389693912651920291775161351885326232522611<46>
P62 = 76264635966685860724726069046227515943445121318873286926559367<62>
Number: 16669_152 N=208766028505206032982047684947445945022194314191543387718652600248442907703745958949603148169464391261347237 ( 108 digits) SNFS difficulty: 152 digits. Divisors found: r1=2737389693912651920291775161351885326232522611 (pp46) r2=76264635966685860724726069046227515943445121318873286926559367 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 26.20 hours. Scaled time: 51.28 units (timescale=1.957). Factorization parameters were as follows: name: 16669_152 n: 208766028505206032982047684947445945022194314191543387718652600248442907703745958949603148169464391261347237 m: 1000000000000000000000000000000 c5: 500 c0: 7 skew: 0.43 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176133, largePrimes:5921246 encountered Relations: rels:6179778, finalFF:785801 Max relations in full relation-set: 28 Initial matrix: 352501 x 785801 with sparse part having weight 71297699. Pruned matrix : 226386 x 228212 with weight 33405143. Total sieving time: 24.91 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.02 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.20 hours. --------- CPU info (if available) ----------
5·10161-7 = 4(9)1603<162> = 13 · 103 · 58693 · 85201 · 56518060850527<14> · C136
C136 = P49 · P87
P49 = 4798551110626920975723815067816871876805464439071<49>
P87 = 275334764005974011025338002993961748286200016743548777673724333243675964471822107503727<87>
Number: 49993_161 N=1321207937615067776138099496089850613691726498550114845141787036218852281776516361293885682470727693894523974030933270087638528096917617 ( 136 digits) SNFS difficulty: 161 digits. Divisors found: r1=4798551110626920975723815067816871876805464439071 (pp49) r2=275334764005974011025338002993961748286200016743548777673724333243675964471822107503727 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 94.90 hours. Scaled time: 64.25 units (timescale=0.677). Factorization parameters were as follows: name: 49993_161 n: 1321207937615067776138099496089850613691726498550114845141787036218852281776516361293885682470727693894523974030933270087638528096917617 m: 100000000000000000000000000000000 c5: 50 c0: -7 skew: 0.67 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:316881, largePrimes:5844440 encountered Relations: rels:5989509, finalFF:769982 Max relations in full relation-set: 28 Initial matrix: 632894 x 769982 with sparse part having weight 47420540. Pruned matrix : 526978 x 530206 with weight 32469606. Total sieving time: 82.02 hours. Total relation processing time: 0.37 hours. Matrix solve time: 12.29 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 94.90 hours. --------- CPU info (if available) ----------
By Bruce Dodson
10352+1 is divisible by 196492106862714324563103086902334481596741493532094589569<57>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
(14·10164-41)/9 = 1(5)1631<165> = 7394276783<10> · C155
C155 = P33 · P122
P33 = 241913548612846605274086927369517<33>
P122 = 86962022362460490445785055865229214136443842893085986014021798676035510354833177041605490276301765124099002836589234876341<122>
Number: n N=21037291424252539446163109033236138674247346680037789377346270695525241546202958190719320217737047557792989848315711277798343615987894452010473997907897297 ( 155 digits) SNFS difficulty: 165 digits. Divisors found: r1=241913548612846605274086927369517 (pp33) r2=86962022362460490445785055865229214136443842893085986014021798676035510354833177041605490276301765124099002836589234876341 (pp122) Version: GGNFS-0.77.1-20051202-athlon Total time: 74.48 hours. Scaled time: 98.54 units (timescale=1.323). Factorization parameters were as follows: name: KA_1_5_163_1 n: 21037291424252539446163109033236138674247346680037789377346270695525241546202958190719320217737047557792989848315711277798343615987894452010473997907897297 skew: 1.96 deg: 5 c5: 7 c0: -205 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:250150, AFBsize:250442, largePrimes:7581353 encountered Relations: rels:7099178, finalFF:586042 Max relations in full relation-set: 48 Initial matrix: 500657 x 586042 with sparse part having weight 50177668. Pruned matrix : 439767 x 442334 with weight 33392103. Total sieving time: 60.70 hours. Total relation processing time: 0.37 hours. Matrix solve time: 13.32 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 74.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
(5·10138+7)/3 = 1(6)1379<139> = 17 · 3307 · 111476834769978619<18> · C117
C117 = P58 · P60
P58 = 2207115310302675107711411136506882374916425885644292317671<58>
P60 = 120491380689937645366860425953951437824016468528431170048099<60>
Number: 16669_138 N=265938371080269481663171733466742068358255746135570115355624735763817783285646181622002721514196167950503021257657429 ( 117 digits) SNFS difficulty: 139 digits. Divisors found: r1=2207115310302675107711411136506882374916425885644292317671 (pp58) r2=120491380689937645366860425953951437824016468528431170048099 (pp60) Version: GGNFS-0.77.1-20060513-k8 Total time: 9.91 hours. Scaled time: 19.51 units (timescale=1.969). Factorization parameters were as follows: name: 16669_138 n: 265938371080269481663171733466742068358255746135570115355624735763817783285646181622002721514196167950503021257657429 m: 5000000000000000000000000000 c5: 8 c0: 35 skew: 1.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:63913, largePrimes:1600904 encountered Relations: rels:1609087, finalFF:168926 Max relations in full relation-set: 28 Initial matrix: 142476 x 168926 with sparse part having weight 16797660. Pruned matrix : 135545 x 136321 with weight 12105787. Total sieving time: 9.60 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.18 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 9.91 hours. --------- CPU info (if available) ----------
(5·10139+7)/3 = 1(6)1389<140> = 6871 · 89220757 · C128
C128 = P41 · P87
P41 = 68519056331623047707327877417940217357011<41>
P87 = 396781599919562194526485294892308063321566863525043969970677953144473101558904885402357<87>
Number: 16669_139 N=27187100796240000941757996128380631790386988553157290361212166281105529340875250396473903242091659504609700154156408933849874927 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=68519056331623047707327877417940217357011 (pp41) r2=396781599919562194526485294892308063321566863525043969970677953144473101558904885402357 (pp87) Version: GGNFS-0.77.1-20060513-k8 Total time: 7.76 hours. Scaled time: 15.49 units (timescale=1.996). Factorization parameters were as follows: name: 16669_139 n: 27187100796240000941757996128380631790386988553157290361212166281105529340875250396473903242091659504609700154156408933849874927 m: 10000000000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63623, largePrimes:1550075 encountered Relations: rels:1551224, finalFF:171077 Max relations in full relation-set: 28 Initial matrix: 142185 x 171077 with sparse part having weight 14886101. Pruned matrix : 133835 x 134609 with weight 10106155. Total sieving time: 7.52 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.76 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS, GMP-ECM
(5·10142+7)/3 = 1(6)1419<143> = 813978461 · C134
C134 = P40 · P94
P40 = 5800307603283903977690274884081525862077<40>
P94 = 3530082139245880010115509104883085123122514153709233376692762673105064986713732631002976914277<94>
Number: 16669_142 N=20475562272484586870004004524471890991064770529188077209658090285348062381550740648734029175578721691342968676743237148957761754173329 ( 134 digits) SNFS difficulty: 144 digits. Divisors found: r1=5800307603283903977690274884081525862077 (pp40) r2=3530082139245880010115509104883085123122514153709233376692762673105064986713732631002976914277 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.83 hours. Scaled time: 14.63 units (timescale=2.141). Factorization parameters were as follows: n: 20475562272484586870004004524471890991064770529188077209658090285348062381550740648734029175578721691342968676743237148957761754173329 m: 50000000000000000000000000000 c5: 4 c0: 175 skew: 2.13 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:114067, largePrimes:3312011 encountered Relations: rels:3363019, finalFF:351333 Max relations in full relation-set: 28 Initial matrix: 228286 x 351333 with sparse part having weight 30146662. Pruned matrix : 184826 x 186031 with weight 13060822. Total sieving time: 6.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 6.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10143+7)/3 = 1(6)1429<144> = 2597673844567493<16> · C128
C128 = P33 · P96
P33 = 434046091093577317652060703761719<33>
P96 = 147818325628859156953088758822031349145171816910978388451598502100954879491436158318814376510207<96>
Number: 16669_143 N=64159966431203876277211145259729258839851155070514316316238539204930112595630101081864207165422843650012653726820231156499365833 ( 128 digits) SNFS difficulty: 145 digits. Divisors found: r1=434046091093577317652060703761719 (pp33) r2=147818325628859156953088758822031349145171816910978388451598502100954879491436158318814376510207 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.24 hours. Scaled time: 17.65 units (timescale=2.141). Factorization parameters were as follows: n: 64159966431203876277211145259729258839851155070514316316238539204930112595630101081864207165422843650012653726820231156499365833 m: 100000000000000000000000000000 c5: 1 c0: 140 skew: 2.69 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114557, largePrimes:3356219 encountered Relations: rels:3388872, finalFF:326333 Max relations in full relation-set: 28 Initial matrix: 228776 x 326333 with sparse part having weight 29776228. Pruned matrix : 196932 x 198139 with weight 14882362. Total sieving time: 8.02 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.15 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 8.24 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10158+7)/3 = 1(6)1579<159> = 132 · 98960718128861<14> · C142
C142 = P31 · P112
P31 = 2810189725402685724689364943993<31>
P112 = 3546202774378704117363718958207959078238914256676956218627386149550232256336887900588798661867954338838309183537<112>
By Sinkiti Sibata / GGNFS
5·10179-7 = 4(9)1783<180> = 13 · 157 · 319001 · 740321 · 1275172341197<13> · 3168934862695211<16> · 185503352859609293<18> · C121
C121 = P59 · P62
P59 = 20824276942434306550878491316554921169577070969181605095403<59>
P62 = 66452449689374424275673726430638274402626958940230091126916841<62>
Number: 49993_179 N=1383824215834715620070456110706078885338595809203545862722727074810567580733069553796012130255235581892164045691052381923 ( 121 digits) Divisors found: r1=20824276942434306550878491316554921169577070969181605095403 (pp59) r2=66452449689374424275673726430638274402626958940230091126916841 (pp62) Version: GGNFS-0.77.1-20060513-k8 Total time: 84.55 hours. Scaled time: 168.59 units (timescale=1.994). Factorization parameters were as follows: name: 49993_179 n: 1383824215834715620070456110706078885338595809203545862722727074810567580733069553796012130255235581892164045691052381923 skew: 50602.07 # norm 4.41e+16 c5: 37800 c4: 20128544688 c3: 731574065956501 c2: -49160751458878107328 c1: 392457585328640355756184 c0: -30872663122950055012866120 # alpha -5.82 Y1: 2624022091559 Y0: -129633393211373317821743 # Murphy_E 2.81e-10 # M 506787805364640852991178403337491309782409889508448185433954099888929241273787199158859515253510600449456791072798496402 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 4960001) Primes: RFBsize:348513, AFBsize:348699, largePrimes:7743207 encountered Relations: rels:7931207, finalFF:836390 Max relations in full relation-set: 28 Initial matrix: 697293 x 836390 with sparse part having weight 72523171. Pruned matrix : 582401 x 585951 with weight 47666914. Total sieving time: 78.91 hours. Total relation processing time: 0.43 hours. Matrix solve time: 4.74 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: gnfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 84.55 hours. --------- CPU info (if available) ----------
By suberi / PRIMO
(17·102465-11)/3 is prime!
By Sinkiti Sibata / GGNFS
(5·10141+7)/3 = 1(6)1409<142> = 3643 · 25537 · 51757591 · 63071636252236439379138851123<29> · C97 = P33 · P65
P33 = 391280500666926357614593359860867<33>
P65 = 14025661202251856928100285392792838965856556326678840999770191689<65>
Number: 16669_141 N=5487967737401790843509693098739988690283003641505514417737061993133022559891161126165558959734363 ( 97 digits) Divisors found: r1=391280500666926357614593359860867 (pp33) r2=14025661202251856928100285392792838965856556326678840999770191689 (pp65) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 13.08 hours. Scaled time: 8.86 units (timescale=0.677). Factorization parameters were as follows: name: 16669_141 n: 5487967737401790843509693098739988690283003641505514417737061993133022559891161126165558959734363 m: 14369675926318849190988 deg: 4 c4: 128713368 c3: 321000566584 c2: 421345394109067688 c1: -1579948430526136245 c0: -274075801134666159754345 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.486 # E(F1,F2) = 1.904845e-05 # GGNFS version 0.77.1-20060513-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1190818402. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1680001) Primes: RFBsize:92938, AFBsize:92333, largePrimes:1922598 encountered Relations: rels:2011676, finalFF:220756 Max relations in full relation-set: 28 Initial matrix: 185350 x 220756 with sparse part having weight 21582414. Pruned matrix : 170926 x 171916 with weight 14807077. Polynomial selection time: 0.17 hours. Total sieving time: 11.89 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.81 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,96,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 13.08 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM, GGNFS
(5·10187+7)/3 = 1(6)1869<188> = C188
C188 = P30 · P158
P30 = 809800994185580459461342700011<30>
P158 = 20581188200970768756638678837132189543155931483203808645215586178063428078238759791181233823231551560665801684249575705334754779112834205568013634241048487879<158>
(5·10132+7)/3 = 1(6)1319<133> = 71 · C131
C131 = P34 · P97
P34 = 2485169554431976453434061661307773<34>
P97 = 9445704966847322970558865702100853962207830112965205476236509054211032779897889569875889195527943<97>
Number: 16669_132 N=23474178403755868544600938967136150234741784037558685446009389671361502347417840375586854460093896713615023474178403755868544600939 ( 131 digits) SNFS difficulty: 134 digits. Divisors found: r1=2485169554431976453434061661307773 (pp34) r2=9445704966847322970558865702100853962207830112965205476236509054211032779897889569875889195527943 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.33 hours. Scaled time: 4.95 units (timescale=2.128). Factorization parameters were as follows: n: 23474178403755868544600938967136150234741784037558685446009389671361502347417840375586854460093896713615023474178403755868544600939 m: 500000000000000000000000000 c5: 4 c0: 175 skew: 2.13 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1100001) Primes: RFBsize:107126, AFBsize:106873, largePrimes:2226874 encountered Relations: rels:2343305, finalFF:290382 Max relations in full relation-set: 28 Initial matrix: 214063 x 290382 with sparse part having weight 19190038. Pruned matrix : 176356 x 177490 with weight 8874710. Total sieving time: 2.19 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.33 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10135+7)/3 = 1(6)1349<136> = 283 · 92553614341<11> · C122
C122 = P49 · P74
P49 = 2576769183774005584057447380213481615877532498847<49>
P74 = 24694111962373273863858692871467284566884745178594644170287579543940440309<74>
Number: 16669_135 N=63631026725308488187427141159783305023986096327229654593888951415465371751129423611565979517723069748777754256294214823723 ( 122 digits) SNFS difficulty: 135 digits. Divisors found: r1=2576769183774005584057447380213481615877532498847 (pp49) r2=24694111962373273863858692871467284566884745178594644170287579543940440309 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.83 hours. Scaled time: 6.02 units (timescale=2.129). Factorization parameters were as follows: n: 63631026725308488187427141159783305023986096327229654593888951415465371751129423611565979517723069748777754256294214823723 m: 1000000000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:107203, largePrimes:2285972 encountered Relations: rels:2456639, finalFF:329462 Max relations in full relation-set: 28 Initial matrix: 214394 x 329462 with sparse part having weight 24010778. Pruned matrix : 168264 x 169399 with weight 9837861. Total sieving time: 2.69 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10151+7)/3 = 1(6)1509<152> = 17701418095831<14> · 1812077986113440186399161321739<31> · C108
C108 = P39 · P70
P39 = 194105463026917266409863270055667221771<39>
P70 = 2676862394581312139459903416519678229802305636596524777765101615813171<70>
(5·10137+7)/3 = 1(6)1369<138> = 293 · 132893 · 1015853 · 512709215972310397<18> · C106
C106 = P44 · P63
P44 = 33067855423525789757242415631561806102865053<44>
P63 = 248525526252847290942368984924627161881822914913147146704360297<63>
Number: 16669_137 N=8218206171184817335096503188675348229821826657900353296819064455753352874913254325905363890559179282000741 ( 106 digits) SNFS difficulty: 139 digits. Divisors found: r1=33067855423525789757242415631561806102865053 (pp44) r2=248525526252847290942368984924627161881822914913147146704360297 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.56 hours. Scaled time: 7.54 units (timescale=2.118). Factorization parameters were as follows: n: 8218206171184817335096503188675348229821826657900353296819064455753352874913254325905363890559179282000741 m: 5000000000000000000000000000 c5: 4 c0: 175 skew: 2.13 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:106873, largePrimes:2329174 encountered Relations: rels:2479966, finalFF:306952 Max relations in full relation-set: 28 Initial matrix: 214063 x 306952 with sparse part having weight 23622463. Pruned matrix : 181583 x 182717 with weight 11078387. Total sieving time: 3.40 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By Robert Backstrom / GGNFS
2·10167-7 = 1(9)1663<168> = 23 · C166
C166 = P33 · P134
P33 = 817671420061668453239381786225641<33>
P134 = 10634653432374120218546314263462036182748850386624188463030773029103326239415114946154180410545538376172609896000131661254182519321751<134>
Number: n N=8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391 ( 166 digits) SNFS difficulty: 167 digits. Divisors found: r1=817671420061668453239381786225641 (pp33) r2=10634653432374120218546314263462036182748850386624188463030773029103326239415114946154180410545538376172609896000131661254182519321751 (pp134) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 93.38 hours. Scaled time: 121.68 units (timescale=1.303). Factorization parameters were as follows: name: KA_1_9_166_3 n: 8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391 skew: 0.51 deg: 5 c5: 200 c0: -7 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4100001) Primes: RFBsize:216816, AFBsize:216921, largePrimes:7989364 encountered Relations: rels:7543447, finalFF:491774 Max relations in full relation-set: 28 Initial matrix: 433802 x 491774 with sparse part having weight 54393195. Pruned matrix : 412924 x 415157 with weight 43131647. Total sieving time: 87.10 hours. Total relation processing time: 0.32 hours. Matrix solve time: 5.82 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 93.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10148+7)/3 = 1(6)1479<149> = C149
C149 = P47 · P50 · P53
P47 = 18650313335606201329724729364112809673312876463<47>
P50 = 84145670486626078050750612549722130221630831476553<50>
P53 = 10620154668476690275768442467100096825061277196932171<53>
Number: n N=16666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 ( 149 digits) SNFS difficulty: 149 digits. Divisors found: r1=18650313335606201329724729364112809673312876463 (pp47) r2=84145670486626078050750612549722130221630831476553 (pp50) r3=10620154668476690275768442467100096825061277196932171 (pp53) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 14.42 hours. Scaled time: 18.77 units (timescale=1.302). Factorization parameters were as follows: name: KA_1_6_147_9 n: 16666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666669 skew: 0.84 deg: 5 c5: 8 c0: 35 m: 500000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:148933, AFBsize:149505, largePrimes:6860845 encountered Relations: rels:6228580, finalFF:338172 Max relations in full relation-set: 28 Initial matrix: 298503 x 338172 with sparse part having weight 28470354. Pruned matrix : 279282 x 280838 with weight 20632016. Total sieving time: 12.23 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.80 hours. Total square root time: 0.19 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 14.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
(5·10131+7)/3 = 1(6)1309<132> = 502809239 · 2578087651229<13> · C111
C111 = P40 · P71
P40 = 1302814026384104145222921505524360161093<40>
P71 = 98688238257748130465524894016056404057253771100584036810592603966756843<71>
Number: 16669_131 N=128572421041330628945312107304054615470294816718767333011548094860238837956131360269939220155411684012240109399 ( 111 digits) SNFS difficulty: 131 digits. Divisors found: r1=1302814026384104145222921505524360161093 (pp40) r2=98688238257748130465524894016056404057253771100584036810592603966756843 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.83 hours. Scaled time: 6.05 units (timescale=2.139). Factorization parameters were as follows: n: 128572421041330628945312107304054615470294816718767333011548094860238837956131360269939220155411684012240109399 m: 100000000000000000000000000 c5: 50 c0: 7 skew: 0.67 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 1100001) Primes: RFBsize:78498, AFBsize:78386, largePrimes:1577484 encountered Relations: rels:1592551, finalFF:190981 Max relations in full relation-set: 28 Initial matrix: 156949 x 190981 with sparse part having weight 11746680. Pruned matrix : 144889 x 145737 with weight 7156255. Total sieving time: 2.73 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
By JMB / GGNFS
8·10181+3 = 8(0)1803<182> = 17 · 47 · 120077 · 766223541469<12> · 752719880879203667<18> · 148057738580234774662331071<27> · C118
C118 = P45 · P74
P45 = 147863869707137044125193702898663252618158313<45>
P74 = 66039126656639520936203017529360818061007971819918535640380875386612837009<74>
Number: N N=9764800819530466924518836952107346921926064836602594080779488507011172569982077589063765484307783295905707377627405817 ( 118 digits) Divisors found: r1=147863869707137044125193702898663252618158313 (pp45) r2=66039126656639520936203017529360818061007971819918535640380875386612837009 (pp74) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 72.97 hours. Scaled time: 134.20 units (timescale=1.839). Factorization parameters were as follows: name: 8*10^181+3 n: 9764800819530466924518836952107346921926064836602594080779488507011172569982077589063765484307783295905707377627405817 skew: 67407.88 # norm 1.60e+16 c5: 12060 c4: 3987625233 c3: -501223287428036 c2: -13966524767850640108 c1: 532227260136176141487706 c0: 11552261902925874836942455365 # alpha -5.61 Y1: 2159113508321 Y0: -60487020326792030157938 # Murphy_E 3.57e-10 # M 5213949619208846846643369347895106390731876475313017475218358403523304199793861470938855378906618354132884471051345753 type: gnfs rlim: 3000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 25000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1500000, 1900001) Primes: RFBsize:216816, AFBsize:216818, largePrimes:8168351 encountered Relations: rels:8459764, finalFF:541290 Max relations in full relation-set: 28 Initial matrix: 433714 x 541290 with sparse part having weight 68304122. Pruned matrix : 370334 x 372566 with weight 51046323. Total sieving time: 68.03 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.39 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3000000,3000000,27,27,50,50,2.4,2.4,60000 total time: 72.97 hours. --------- CPU info (if available) ----------
By suberi / PRIMO
(52·102482-43)/9 is prime!
By Sinkiti Sibata / GGNFS, Msieve
(5·10109+7)/3 = 1(6)1089<110> = 192 · C107
C107 = P42 · P66
P42 = 153946522305899923004676383646159813796121<42>
P66 = 299896685009093874497686190587633018428192207232800575636015338349<66>
Number: 16669_109 N=46168051708217913204062788550323176361957525392428439519852262234533702677746999076638965835641735918744229 ( 107 digits) SNFS difficulty: 110 digits. Divisors found: r1=153946522305899923004676383646159813796121 (pp42) r2=299896685009093874497686190587633018428192207232800575636015338349 (pp66) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.17 hours. Scaled time: 0.79 units (timescale=0.677). Factorization parameters were as follows: name: 16669_109 n: 46168051708217913204062788550323176361957525392428439519852262234533702677746999076638965835641735918744229 m: 10000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:63623, largePrimes:1899503 encountered Relations: rels:1884233, finalFF:172922 Max relations in full relation-set: 28 Initial matrix: 112785 x 172922 with sparse part having weight 11280001. Pruned matrix : 87896 x 88523 with weight 3680813. Total sieving time: 1.01 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.17 hours. --------- CPU info (if available) ----------
(5·10115+7)/3 = 1(6)1149<116> = 83 · 1069 · 1180428929<10> · C102
C102 = P39 · P63
P39 = 296398376609473226797596655124462993281<39>
P63 = 536880075739627642112309347769656425847569291133442846496928603<63>
Number: 16669_115 N=159130382883196664131166647978403378748111484644347405870264581612954267174235629404567704102325716443 ( 102 digits) SNFS difficulty: 115 digits. Divisors found: r1=296398376609473226797596655124462993281 (pp39) r2=536880075739627642112309347769656425847569291133442846496928603 (pp63) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.63 hours. Scaled time: 1.10 units (timescale=0.677). Factorization parameters were as follows: name: 16669_115 n: 159130382883196664131166647978403378748111484644347405870264581612954267174235629404567704102325716443 m: 100000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64228, largePrimes:2093547 encountered Relations: rels:2213778, finalFF:271300 Max relations in full relation-set: 28 Initial matrix: 113391 x 271300 with sparse part having weight 21663794. Pruned matrix : 76323 x 76953 with weight 4050572. Total sieving time: 1.45 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.63 hours. --------- CPU info (if available) ----------
(5·10120+7)/3 = 1(6)1199<121> = 210451967185245864060738227648101<33> · C88
C88 = P34 · P55
P34 = 2003771457999863638436035664075387<34>
P55 = 3952278809073709433995319843828553332517951348922169387<55>
Wed Sep 26 14:24:28 2007 Msieve v. 1.26 Wed Sep 26 14:24:28 2007 random seeds: 5143490f 0701fb59 Wed Sep 26 14:24:28 2007 factoring 7919463471679591443105528414604368703900563230510077999800695379563554517322213551577769 (88 digits) Wed Sep 26 14:24:29 2007 commencing quadratic sieve (88-digit input) Wed Sep 26 14:24:30 2007 using multiplier of 1 Wed Sep 26 14:24:30 2007 using 64kb Pentium 2 sieve core Wed Sep 26 14:24:30 2007 sieve interval: 14 blocks of size 65536 Wed Sep 26 14:24:30 2007 processing polynomials in batches of 8 Wed Sep 26 14:24:30 2007 using a sieve bound of 1527497 (57880 primes) Wed Sep 26 14:24:30 2007 using large prime bound of 122199760 (26 bits) Wed Sep 26 14:24:30 2007 using double large prime bound of 360351695070240 (42-49 bits) Wed Sep 26 14:24:30 2007 using trial factoring cutoff of 49 bits Wed Sep 26 14:24:30 2007 polynomial 'A' values have 11 factors Wed Sep 26 19:19:22 2007 58229 relations (16203 full + 42026 combined from 608880 partial), need 57976 Wed Sep 26 19:19:29 2007 begin with 625083 relations Wed Sep 26 19:19:47 2007 reduce to 139473 relations in 10 passes Wed Sep 26 19:19:48 2007 attempting to read 139473 relations Wed Sep 26 19:19:56 2007 recovered 139473 relations Wed Sep 26 19:19:56 2007 recovered 112269 polynomials Wed Sep 26 19:20:15 2007 attempting to build 58229 cycles Wed Sep 26 19:20:15 2007 found 58229 cycles in 5 passes Wed Sep 26 19:20:17 2007 distribution of cycle lengths: Wed Sep 26 19:20:17 2007 length 1 : 16203 Wed Sep 26 19:20:17 2007 length 2 : 11462 Wed Sep 26 19:20:17 2007 length 3 : 10350 Wed Sep 26 19:20:17 2007 length 4 : 7641 Wed Sep 26 19:20:17 2007 length 5 : 5205 Wed Sep 26 19:20:17 2007 length 6 : 3172 Wed Sep 26 19:20:17 2007 length 7 : 1903 Wed Sep 26 19:20:17 2007 length 9+: 2293 Wed Sep 26 19:20:17 2007 largest cycle: 18 relations Wed Sep 26 19:20:18 2007 matrix is 57880 x 58229 with weight 3346646 (avg 57.47/col) Wed Sep 26 19:20:22 2007 filtering completed in 3 passes Wed Sep 26 19:20:22 2007 matrix is 53415 x 53479 with weight 3096508 (avg 57.90/col) Wed Sep 26 19:20:24 2007 saving the first 48 matrix rows for later Wed Sep 26 19:20:24 2007 matrix is 53367 x 53479 with weight 2483927 (avg 46.45/col) Wed Sep 26 19:20:24 2007 matrix includes 64 packed rows Wed Sep 26 19:20:24 2007 using block size 10922 for processor cache size 256 kB Wed Sep 26 19:20:24 2007 commencing Lanczos iteration Wed Sep 26 19:23:14 2007 lanczos halted after 845 iterations Wed Sep 26 19:23:15 2007 recovered 16 nontrivial dependencies Wed Sep 26 19:23:35 2007 prp34 factor: 2003771457999863638436035664075387 Wed Sep 26 19:23:35 2007 prp55 factor: 3952278809073709433995319843828553332517951348922169387 Wed Sep 26 19:23:35 2007 elapsed time 04:59:07
(5·10121+7)/3 = 1(6)1209<122> = 79 · 2382356651<10> · C110
C110 = P39 · P72
P39 = 275708725429269016809228525155998997753<39>
P72 = 321191741127943587251282728962673310095889920760636481110578718074425937<72>
Number: 16669_121 N=88555365564793051234214008584940727814733466817154162992301027014493685329128418132245529605674917232827919561 ( 110 digits) SNFS difficulty: 121 digits. Divisors found: r1=275708725429269016809228525155998997753 (pp39) r2=321191741127943587251282728962673310095889920760636481110578718074425937 (pp72) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.59 hours. Scaled time: 1.75 units (timescale=0.677). Factorization parameters were as follows: name: 16669_121 n: 88555365564793051234214008584940727814733466817154162992301027014493685329128418132245529605674917232827919561 m: 1000000000000000000000000 c5: 50 c0: 7 skew: 0.67 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63963, largePrimes:2104728 encountered Relations: rels:2144770, finalFF:180084 Max relations in full relation-set: 28 Initial matrix: 113126 x 180084 with sparse part having weight 15976568. Pruned matrix : 96531 x 97160 with weight 6113251. Total sieving time: 2.32 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
(5·10125+7)/3 = 1(6)1249<126> = 4105166921<10> · 20017012591<11> · C106
C106 = P33 · P74
P33 = 168513932435459060567620404345611<33>
P74 = 12036018680677828464748171772279011079478949036231241898241956856646325889<74>
Number: 16669_125 N=2028236838747666687478534951496303214000516428894914134664497036559678113327291556491062877412232492823179 ( 106 digits) SNFS difficulty: 125 digits. Divisors found: r1=168513932435459060567620404345611 (pp33) r2=12036018680677828464748171772279011079478949036231241898241956856646325889 (pp74) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 3.06 hours. Scaled time: 2.07 units (timescale=0.677). Factorization parameters were as follows: name: 16669_125 n: 2028236838747666687478534951496303214000516428894914134664497036559678113327291556491062877412232492823179 m: 10000000000000000000000000 c5: 5 c0: 7 skew: 1.07 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 650001) Primes: RFBsize:49098, AFBsize:64228, largePrimes:2213124 encountered Relations: rels:2360223, finalFF:266542 Max relations in full relation-set: 28 Initial matrix: 113391 x 266542 with sparse part having weight 25504051. Pruned matrix : 85873 x 86503 with weight 6283883. Total sieving time: 2.80 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.13 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.06 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
(5·10113+7)/3 = 1(6)1129<114> = 139 · C112
C112 = P56 · P56
P56 = 33323707073076001771345428051913373104674894761352370801<56>
P56 = 35981614073029109077263780581405124329331786404763064471<56>
Number: 16669_113 N=1199040767386091127098321342925659472422062350119904076738609112709832134292565947242206235011990407673860911271 ( 112 digits) SNFS difficulty: 115 digits. Divisors found: r1=33323707073076001771345428051913373104674894761352370801 (pp56) r2=35981614073029109077263780581405124329331786404763064471 (pp56) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.70 hours. Scaled time: 1.50 units (timescale=2.143). Factorization parameters were as follows: n: 1199040767386091127098321342925659472422062350119904076738609112709832134292565947242206235011990407673860911271 m: 100000000000000000000000 c5: 1 c0: 140 skew: 2.69 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 340001) Primes: RFBsize:30757, AFBsize:30764, largePrimes:1046995 encountered Relations: rels:964799, finalFF:87555 Max relations in full relation-set: 28 Initial matrix: 61585 x 87555 with sparse part having weight 4230236. Pruned matrix : 54927 x 55298 with weight 1881639. Total sieving time: 0.67 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10116+7)/3 = 1(6)1159<117> = 13 · C116
C116 = P32 · P84
P32 = 31003216721782548975602081797253<32>
P84 = 413522020491030430690268175769186538084881606692266956654906116015314098195825309421<84>
Number: 16669_116 N=12820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820513 ( 116 digits) SNFS difficulty: 116 digits. Divisors found: r1=31003216721782548975602081797253 (pp32) r2=413522020491030430690268175769186538084881606692266956654906116015314098195825309421 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.84 hours. Scaled time: 1.79 units (timescale=2.139). Factorization parameters were as follows: n: 12820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820512820513 m: 100000000000000000000000 c5: 50 c0: 7 skew: 0.67 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49041, largePrimes:1943562 encountered Relations: rels:1936531, finalFF:147809 Max relations in full relation-set: 28 Initial matrix: 98204 x 147809 with sparse part having weight 12274062. Pruned matrix : 85193 x 85748 with weight 4983589. Total sieving time: 0.78 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10117+7)/3 = 1(6)1169<118> = 337 · 509 · 23677 · C108
C108 = P48 · P60
P48 = 516041832369522017710254534990233044032515687357<48>
P60 = 795224009016448425092100987054725056223874009925853849747737<60>
Number: 16669_117 N=410368854757085343761438229042281635409146357321018036623580685567761868529348166730485220151100269610261109 ( 108 digits) SNFS difficulty: 119 digits. Divisors found: r1=516041832369522017710254534990233044032515687357 (pp48) r2=795224009016448425092100987054725056223874009925853849747737 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.79 hours. Scaled time: 1.67 units (timescale=2.113). Factorization parameters were as follows: n: 410368854757085343761438229042281635409146357321018036623580685567761868529348166730485220151100269610261109 m: 500000000000000000000000 c5: 4 c0: 175 skew: 2.13 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49096, largePrimes:1978458 encountered Relations: rels:2032316, finalFF:203074 Max relations in full relation-set: 28 Initial matrix: 98258 x 203074 with sparse part having weight 16906655. Pruned matrix : 75540 x 76095 with weight 4051422. Total sieving time: 0.74 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,119,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.79 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10119+7)/3 = 1(6)1189<120> = 179449580749<12> · C108
C108 = P50 · P59
P50 = 25753449757830406639991914695740623420290006566179<50>
P59 = 36063750448248243471048952703868375635140956097798086208939<59>
Number: 16669_119 N=928765985247894944730399218898130893992433011358033499769124983962581877754703244378693651035712215324874081 ( 108 digits) SNFS difficulty: 120 digits. Divisors found: r1=25753449757830406639991914695740623420290006566179 (pp50) r2=36063750448248243471048952703868375635140956097798086208939 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.78 hours. Scaled time: 1.67 units (timescale=2.129). Factorization parameters were as follows: n: 928765985247894944730399218898130893992433011358033499769124983962581877754703244378693651035712215324874081 m: 1000000000000000000000000 c5: 1 c0: 14 skew: 1.7 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:48926, largePrimes:1974603 encountered Relations: rels:2025360, finalFF:198858 Max relations in full relation-set: 28 Initial matrix: 98088 x 198858 with sparse part having weight 16755508. Pruned matrix : 76604 x 77158 with weight 4195384. Total sieving time: 0.73 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.78 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
(5·10128+7)/3 = 1(6)1279<129> = 13 · 29 · 41491 · C122
C122 = P33 · P89
P33 = 349983130933154147542494609343249<33>
P89 = 30444327507033853270702399006913464736680064207497013075681509886136946770149506545458183<89>
Number: 16669_128 N=10655001060066055465971858309540183216152828175044875135214627202503260377049374912642310058783427748363226684657422856567 ( 122 digits) SNFS difficulty: 130 digits. Divisors found: r1=349983130933154147542494609343249 (pp33) r2=30444327507033853270702399006913464736680064207497013075681509886136946770149506545458183 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.94 hours. Scaled time: 4.16 units (timescale=2.145). Factorization parameters were as follows: n: 10655001060066055465971858309540183216152828175044875135214627202503260377049374912642310058783427748363226684657422856567 m: 100000000000000000000000000 c5: 1 c0: 140 skew: 2.69 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78641, largePrimes:1495828 encountered Relations: rels:1503438, finalFF:186230 Max relations in full relation-set: 28 Initial matrix: 157203 x 186230 with sparse part having weight 9104275. Pruned matrix : 143047 x 143897 with weight 5517984. Total sieving time: 1.86 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167512k/8912896k available (2115k kernel code, 0k reserved, 1306k data, 208k init) Calibrating delay using timer specific routine.. 4815.34 BogoMIPS (lpj=2407674) Calibrating delay using timer specific routine.. 4684.13 BogoMIPS (lpj=2342066) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405119) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Total of 4 processors activated (19119.96 BogoMIPS).
The factor table of 166...669 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS
3·10158+7 = 3(0)1577<159> = 89 · 2076619 · 259656955391<12> · C139
C139 = P45 · P95
P45 = 252655059854571780687683274450095709673880513<45>
P95 = 24742664377819752522172823349240990874103759568271850621675059742047926996980289580771977958019<95>
Number: n N=6251359349339630621166108381490606750376571670303750482199645475819777412486638575944263953290323590162412366640843654132109482845536183747 ( 139 digits) SNFS difficulty: 158 digits. Divisors found: r1=252655059854571780687683274450095709673880513 (pp45) r2=24742664377819752522172823349240990874103759568271850621675059742047926996980289580771977958019 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.13 hours. Scaled time: 46.40 units (timescale=1.444). Factorization parameters were as follows: name: KA_3_0_157_7 n: 6251359349339630621166108381490606750376571670303750482199645475819777412486638575944263953290323590162412366640843654132109482845536183747 skew: 0.30 deg: 5 c5: 3000 c0: 7 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:183072, AFBsize:183021, largePrimes:7139599 encountered Relations: rels:6634469, finalFF:457174 Max relations in full relation-set: 28 Initial matrix: 366160 x 457174 with sparse part having weight 40338936. Pruned matrix : 305523 x 307417 with weight 25494270. Total sieving time: 28.79 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.99 hours. Total square root time: 0.12 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 32.13 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
5·10162-7 = 4(9)1613<163> = 17 · 1163 · 148309339 · 387720132193027<15> · C136
C136 = P41 · P96
P41 = 32186888333809678325979899492525673198029<41>
P96 = 136639266967774480350045857113895807555932147258323470751247259644932218298158286602940005007959<96>
Number: 49993_162 N=4397992827905366561495616972942610757769676397548052455720011518707669668467184795048847173974047956366224189761866099002983083128112811 ( 136 digits) SNFS difficulty: 162 digits. Divisors found: r1=32186888333809678325979899492525673198029 (pp41) r2=136639266967774480350045857113895807555932147258323470751247259644932218298158286602940005007959 (pp96) Version: GGNFS-0.77.1-20060513-k8 Total time: 66.77 hours. Scaled time: 132.61 units (timescale=1.986). Factorization parameters were as follows: name: 49993_162 n: 4397992827905366561495616972942610757769676397548052455720011518707669668467184795048847173974047956366224189761866099002983083128112811 m: 100000000000000000000000000000000 c5: 500 c0: -7 skew: 0.43 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:315206, largePrimes:5778555 encountered Relations: rels:5922064, finalFF:770316 Max relations in full relation-set: 28 Initial matrix: 631220 x 770316 with sparse part having weight 46730298. Pruned matrix : 518559 x 521779 with weight 31016251. Total sieving time: 63.45 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.94 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 66.77 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
(86·10182+31)/9 = 9(5)1819<183> = 7 · C183
C183 = P48 · P48 · P87
P48 = 219254706609281472076564248230371923805632108973<48>
P48 = 667127665052517179233067332728168025449200965073<48>
P87 = 933254357035504554827120249606468833406095139378559205785196446817284884193061670441653<87>
Number: n N=136507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 ( 183 digits) SNFS difficulty: 183 digits. Divisors found: (Completed by MSIEVE 1.26) Tue Sep 25 08:11:44 2007 prp48 factor: 219254706609281472076564248230371923805632108973 Tue Sep 25 08:11:44 2007 prp48 factor: 667127665052517179233067332728168025449200965073 Tue Sep 25 08:11:44 2007 prp87 factor: 933254357035504554827120249606468833406095139378559205785196446817284884193061670441653 Version: GGNFS-0.77.1-20051202-athlon Total time: 760.78 hours. Scaled time: 1004.23 units (timescale=1.320). Factorization parameters were as follows: name: KA_9_5_181_9 n: 136507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 skew: 0.32 deg: 5 c5: 8600 c0: 31 m: 1000000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 10800000) Primes: RFBsize:283146, AFBsize:283738, largePrimes:9358417 encountered Relations: rels:9011426, finalFF:643650 Max relations in full relation-set: 28 Initial matrix: Pruned matrix : Total sieving time: 759.81 hours. Total relation processing time: 0.97 hours. Matrix solve time: 0.00 hours. Total square root time: 0.00 hours, sqrts: 0. Prototype def-par.txt line would be: snfs,183,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 760.78 hours. --------- CPU info (if available) ---------- Mem Alloc Error by GGNFS ... [09/24 14:06:36] GGNFS-0.77.1-20051202-athlon : matbuild [09/24 14:07:59] largePrimes: 9358417 , relations: 9011426 [09/24 14:18:34] reduceRelSets dropped relation-set weight from 19495262 to 15297055. [09/24 14:24:25] reduceRelSets dropped relation-set weight from 15297055 to 15246628. [09/24 14:24:25] After removing heavy rel-sets, weight is 13333792. [09/24 14:32:44] Heap stats for matbuild run, after cycle-building [09/24 14:32:44] Max heap usage: 460 MB [09/24 14:32:44] malloc/realloc errors: 0 [09/24 14:32:44] total malloc's : 515 [09/24 14:32:44] total realloc's: 219 [09/24 14:32:44] rels:9011426, initialFF:0, finalFF:643650 [09/24 14:32:52] Memory allocation error (721935180 bytes requested). ... Linear Algebra completed by MSIEVE 1.26 ... Tue Sep 25 07:49:04 2007 reading relations for dependency 2 Tue Sep 25 07:49:04 2007 read 390086 cycles Tue Sep 25 07:49:05 2007 cycles contain 1234166 unique relations Tue Sep 25 07:50:17 2007 read 1234166 relations Tue Sep 25 07:50:29 2007 multiplying 1849254 relations Tue Sep 25 07:56:56 2007 multiply complete, coefficients have about 64.93 million bits Tue Sep 25 07:56:58 2007 initial square root is modulo 2099293891 Tue Sep 25 08:11:44 2007 prp48 factor: 219254706609281472076564248230371923805632108973 Tue Sep 25 08:11:44 2007 prp48 factor: 667127665052517179233067332728168025449200965073 Tue Sep 25 08:11:44 2007 prp87 factor: 933254357035504554827120249606468833406095139378559205785196446817284884193061670441653 Tue Sep 25 08:11:44 2007 elapsed time 05:11:32 Cygwin on AMD 64 3200+
By JMB / GMP-ECM
(16·10220-61)/9 = 1(7)2191<221> = 13 · 353 · 1877 · 16492937 · 1805034167<10> · 937019983238111<15> · C182
C182 = P35 · C148
P35 = 55949358235598934650206505967480781<35>
C148 = [1322414960079354351709834861520621170706984511895469829631709464819715591749118547779968053941698236864151284187903149814300379387206849149544675063<148>]
By Robert Backstrom / GGNFS
5·10163-7 = 4(9)1623<164> = 1244029 · C158
C158 = P40 · P119
P40 = 3045777474311016078416962103126374071511<40>
P119 = 13195970300684442140409379802151398451013119494061176587343764266942527286513791024515689055116238602995731201645467547<119>
Number: n N=40191989093501839587340809579197912588854439888459191867713694777211785255809952983411158421548050728720954254281853558076218480437353148519849617653607753517 ( 158 digits) SNFS difficulty: 163 digits. Divisors found: r1=3045777474311016078416962103126374071511 (pp40) r2=13195970300684442140409379802151398451013119494061176587343764266942527286513791024515689055116238602995731201645467547 (pp119) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.80 hours. Scaled time: 92.00 units (timescale=1.442). Factorization parameters were as follows: name: KA_4_9_162_3 n: 40191989093501839587340809579197912588854439888459191867713694777211785255809952983411158421548050728720954254281853558076218480437353148519849617653607753517 skew: 0.27 deg: 5 c5: 5000 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3000001) Primes: RFBsize:216816, AFBsize:217636, largePrimes:7601696 encountered Relations: rels:7098507, finalFF:494362 Max relations in full relation-set: 28 Initial matrix: 434517 x 494362 with sparse part having weight 44766005. Pruned matrix : 411191 x 413427 with weight 33800123. Total sieving time: 57.42 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.04 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 63.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
5·10169-7 = 4(9)1683<170> = 43 · 211 · 1472137 · 2321750736611301907097<22> · 574482675743693221950617<24> · C115
C115 = P43 · P72
P43 = 5744494079787571396717760190250240838888041<43>
P72 = 488569723676345326019989715470508850328546498038944485790862224772950377<72>
Number: 49993_169 N=2806585885222215377350944994569312431165970817862559316770088936318837708911961250594258617432022173022491551741457 ( 115 digits) Divisors found: r1=5744494079787571396717760190250240838888041 (pp43) r2=488569723676345326019989715470508850328546498038944485790862224772950377 (pp72) Version: GGNFS-0.77.1-20060513-k8 Total time: 48.07 hours. Scaled time: 95.70 units (timescale=1.991). Factorization parameters were as follows: name: 49993_169 n: 2806585885222215377350944994569312431165970817862559316770088936318837708911961250594258617432022173022491551741457 skew: 31373.54 # norm 3.83e+15 c5: 60840 c4: -720780132 c3: 72126305586899 c2: 1666649461314850199 c1: -116989157991344921484511 c0: 162800038608129701576075241 # alpha -6.02 Y1: 896315175217 Y0: -8566391803006571745272 # Murphy_E 5.55e-10 # M 2396840833491453209262727670434957761159698617278948458168476366281194806287209404389368742033257071680380836619726 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3050001) Primes: RFBsize:250150, AFBsize:250437, largePrimes:7884281 encountered Relations: rels:8065906, finalFF:781702 Max relations in full relation-set: 28 Initial matrix: 500667 x 781702 with sparse part having weight 75915276. Pruned matrix : 319011 x 321578 with weight 50104378. Total sieving time: 45.28 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.18 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 48.07 hours. --------- CPU info (if available) ----------
5·10153-7 = 4(9)1523<154> = 1487 · 12703 · 27064010767<11> · C136
C136 = P50 · P87
P50 = 23985742229316002405160508997718416270586975005491<50>
P87 = 407762626593054648807646182158981927854290181355167860837282173381501147582605582632029<87>
Number: 49993_153 N=9780489252209843258748295325322445828861819876619459830498259544007166236469918061045471477958043159769750664560714769953352476507471239 ( 136 digits) SNFS difficulty: 154 digits. Divisors found: r1=23985742229316002405160508997718416270586975005491 (pp50) r2=407762626593054648807646182158981927854290181355167860837282173381501147582605582632029 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 41.29 hours. Scaled time: 27.95 units (timescale=0.677). Factorization parameters were as follows: name: 49993_153 n: 9780489252209843258748295325322445828861819876619459830498259544007166236469918061045471477958043159769750664560714769953352476507471239 m: 5000000000000000000000000000000 c5: 8 c0: -35 skew: 1.34 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176798, largePrimes:5470514 encountered Relations: rels:5308781, finalFF:410488 Max relations in full relation-set: 28 Initial matrix: 353165 x 410488 with sparse part having weight 36573902. Pruned matrix : 331184 x 333013 with weight 26077344. Total sieving time: 36.51 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.39 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 41.29 hours. --------- CPU info (if available) ----------
By suberi / PRIMO
7·102559+3 is prime!
By Jo Yeong Uk / GMP-ECM
3·10169+7 = 3(0)1687<170> = 37 · C168
C168 = P39 · P130
P39 = 321485385345676762706421506544388644469<39>
P130 = 2522076734340466176982866611144735500345304211081851607078673956180783695480227990278425308960588927381717464690492823021851851119<130>
By Sinkiti Sibata / GGNFS
5·10159-7 = 4(9)1583<160> = 47 · 964644799 · 270706849725621910507211<24> · C126
C126 = P52 · P75
P52 = 1364391784808783411765902177253121572084574108528241<52>
P75 = 298583894675727940289845675134760397414301294012470876284306516517828237131<75>
Number: 49993_159 N=407385412971774246984894055262282656186910895322963362483310889127715264264776948863397719450706989787968437776460909958316571 ( 126 digits) SNFS difficulty: 160 digits. Divisors found: r1=1364391784808783411765902177253121572084574108528241 (pp52) r2=298583894675727940289845675134760397414301294012470876284306516517828237131 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 40.15 hours. Scaled time: 80.17 units (timescale=1.997). Factorization parameters were as follows: name: 49993_159 n: 407385412971774246984894055262282656186910895322963362483310889127715264264776948863397719450706989787968437776460909958316571 m: 100000000000000000000000000000000 c5: 1 c0: -14 skew: 1.7 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3300001) Primes: RFBsize:283146, AFBsize:283092, largePrimes:5702766 encountered Relations: rels:5817296, finalFF:727915 Max relations in full relation-set: 28 Initial matrix: 566302 x 727915 with sparse part having weight 43359878. Pruned matrix : 431450 x 434345 with weight 26402153. Total sieving time: 37.67 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.17 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 40.15 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
4·10162+7 = 4(0)1617<163> = 11 · 79 · 1139323553<10> · C151
C151 = P60 · P92
P60 = 234034230184541159881265925110454036781626436280873469868669<60>
P92 = 17262900077839710421537401417208645828242546967978794855357928428513665188571039974636777079<92>
Number: n N=4040109530469872295206417141478966201658930005731568037108063258312773845625926951228352920828858552387046131679020631083739483089980760886171559437851 ( 151 digits) SNFS difficulty: 162 digits. Divisors found: r1=234034230184541159881265925110454036781626436280873469868669 (pp60) r2=17262900077839710421537401417208645828242546967978794855357928428513665188571039974636777079 (pp92) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 39.72 hours. Scaled time: 54.22 units (timescale=1.365). Factorization parameters were as follows: name: KA_4_0_161_7 n: 4040109530469872295206417141478966201658930005731568037108063258312773845625926951228352920828858552387046131679020631083739483089980760886171559437851 skew: 0.45 deg: 5 c5: 400 c0: 7 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:216816, AFBsize:216976, largePrimes:7127302 encountered Relations: rels:6610032, finalFF:494318 Max relations in full relation-set: 28 Initial matrix: 433856 x 494318 with sparse part having weight 36516568. Pruned matrix : 386643 x 388876 with weight 24911065. Total sieving time: 36.27 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.13 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 39.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
5·10165-7 = 4(9)1643<166> = 914885729 · 4261399463897<13> · 6040387634947<13> · 1491052684691540816159207<25> · C108
C108 = P33 · P75
P33 = 319197319597996510039273971999701<33>
P75 = 446101691024302128170720348856355665147674572755074743500867309182182952809<75>
Number: 49993_165 N=142394464043090857513239492807664605923383657649420029924108397359976327605079156360506333452052514645110109 ( 108 digits) Divisors found: r1=319197319597996510039273971999701 (pp33) r2=446101691024302128170720348856355665147674572755074743500867309182182952809 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 16.02 hours. Scaled time: 31.80 units (timescale=1.985). Factorization parameters were as follows: name: 49993_165 n: 142394464043090857513239492807664605923383657649420029924108397359976327605079156360506333452052514645110109 skew: 13936.08 # norm 1.35e+15 c5: 76800 c4: -4242870768 c3: 25375181134756 c2: 1030238403227851652 c1: 2250557392389371098067 c0: -5950154183708608868842952 # alpha -5.91 Y1: 362384350823 Y0: -284205511495603330335 # Murphy_E 1.34e-09 # M 109003927296022212451091712878426486494476931109986893486521952118176755395827872047646424692080971536718213 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182559, largePrimes:4445338 encountered Relations: rels:4500132, finalFF:431528 Max relations in full relation-set: 28 Initial matrix: 365712 x 431528 with sparse part having weight 33237805. Pruned matrix : 316128 x 318020 with weight 20984545. Total sieving time: 14.64 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.00 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 16.02 hours. --------- CPU info (if available) ----------
2·10189-3 = 1(9)1887<190> = 31618164809434211754592287712179187<35> · 26515433818872756128486451063540368813<38> · C118
C118 = P57 · P61
P57 = 484578537409999154675042390540664390207331844965054363441<57>
P61 = 4923006679232260879844150105623901082760825132994000095977307<61>
Number: 19997_189 N=2385583376282025837302025573831625807718996619292106854661488654167073439506823897959332181406320971559780911666433387 ( 118 digits) Divisors found: r1=484578537409999154675042390540664390207331844965054363441 (pp57) r2=4923006679232260879844150105623901082760825132994000095977307 (pp61) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 89.74 hours. Scaled time: 60.75 units (timescale=0.677). Factorization parameters were as follows: name: 19997_189 n: 2385583376282025837302025573831625807718996619292106854661488654167073439506823897959332181406320971559780911666433387 skew: 144660.76 # norm 2.74e+16 c5: 9120 c4: -1709436956 c3: -853334330700080 c2: 38221101292867669503 c1: 5419411001140512770228250 c0: -113915253989648848942977150816 # alpha -6.21 Y1: 86650737107 Y0: -48252518012964347678477 # Murphy_E 3.65e-10 # M 654987332633075895838719954518597211946085969700968706963931960289336573203282116904651285610709249461397952456672945 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4110001) Primes: RFBsize:315948, AFBsize:315530, largePrimes:7677981 encountered Relations: rels:7786564, finalFF:780897 Max relations in full relation-set: 28 Initial matrix: 631557 x 780897 with sparse part having weight 63899163. Pruned matrix : 505956 x 509177 with weight 39093412. Total sieving time: 75.32 hours. Total relation processing time: 0.76 hours. Matrix solve time: 13.18 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 89.74 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
5·10156-7 = 4(9)1553<157> = 2269 · C154
C154 = P57 · P97
P57 = 702447342551455682763805673011418695171148173600333160411<57>
P97 = 3137052122420974879105045171402526152498877264559652000048811419905235475853470855786187595915127<97>
Number: n N=2203613926840017628911414720141031291317761128250330542089026002644336712208021154693697664169237549581313353900396650506831203173204054649625385632437197 ( 154 digits) SNFS difficulty: 156 digits. Divisors found: r1=702447342551455682763805673011418695171148173600333160411 (pp57) r2=3137052122420974879105045171402526152498877264559652000048811419905235475853470855786187595915127 (pp97) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.73 hours. Scaled time: 47.30 units (timescale=1.445). Factorization parameters were as follows: name: KA_4_9_155_3 n: 2203613926840017628911414720141031291317761128250330542089026002644336712208021154693697664169237549581313353900396650506831203173204054649625385632437197 skew: 1.00 deg: 5 c5: 50 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:148933, AFBsize:149340, largePrimes:7221415 encountered Relations: rels:6677603, finalFF:340291 Max relations in full relation-set: 28 Initial matrix: 298338 x 340291 with sparse part having weight 35254069. Pruned matrix : 282176 x 283731 with weight 26733037. Total sieving time: 29.31 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.95 hours. Total square root time: 0.24 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 32.73 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
3·10159-7 = 2(9)1583<160> = 2659 · 629501473 · 3776223670753814722104781857341<31> · C117
C117 = P43 · P75
P43 = 2429003868169712771564765938483840128221281<43>
P75 = 195398061142744316558324686703766895073805079591953321661587802348156465519<75>
Number: 29993_159 N=474622646348587991570103845490157192795552107865333169185229129045216764037235466499265469910571227154142957278509839 ( 117 digits) Divisors found: r1=2429003868169712771564765938483840128221281 (pp43) r2=195398061142744316558324686703766895073805079591953321661587802348156465519 (pp75) Version: GGNFS-0.77.1-20060513-k8 Total time: 56.60 hours. Scaled time: 112.69 units (timescale=1.991). Factorization parameters were as follows: name: 29993_159 n: 474622646348587991570103845490157192795552107865333169185229129045216764037235466499265469910571227154142957278509839 skew: 102878.62 # norm 3.14e+16 c5: 34440 c4: -149392696 c3: -462455782301352 c2: -52512162914560500217 c1: 816599221770534738053210 c0: 165609389373825212343298147000 # alpha -6.78 Y1: 2030600269627 Y0: -26782868643055112543701 # Murphy_E 3.95e-10 # M 344120893185492553582171471745909403370088932927055061806908622580423741637740107782212930561733866315489917027001449 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3870001) Primes: RFBsize:315948, AFBsize:316176, largePrimes:7649847 encountered Relations: rels:7779364, finalFF:809585 Max relations in full relation-set: 28 Initial matrix: 632210 x 809585 with sparse part having weight 68072410. Pruned matrix : 480081 x 483306 with weight 39163890. Total sieving time: 52.80 hours. Total relation processing time: 0.34 hours. Matrix solve time: 3.04 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 56.60 hours. --------- CPU info (if available) ----------
By suberi / PRIMO
5·102473+9 is prime!
By Robert Backstrom / GGNFS
5·10154-7 = 4(9)1533<155> = 19 · 149 · 147343123 · C144
C144 = P58 · P86
P58 = 2329496337443922537883208273725168308815052824721528210923<58>
P86 = 51456261798342511671036399891501546912876135404430952940563337964752143215157251247207<86>
Number: n N=119867173397794507936562028872143053364267557793942124954308317334879039092932793449039649487083341517467372369417965078031872011075677110642061 ( 144 digits) SNFS difficulty: 155 digits. Divisors found: r1=2329496337443922537883208273725168308815052824721528210923 (pp58) r2=51456261798342511671036399891501546912876135404430952940563337964752143215157251247207 (pp86) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 19.32 hours. Scaled time: 26.35 units (timescale=1.364). Factorization parameters were as follows: name: KA_4_9_153_3 n: 119867173397794507936562028872143053364267557793942124954308317334879039092932793449039649487083341517467372369417965078031872011075677110642061 skew: 1.00 deg: 5 c5: 1 c0: -14 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182621, largePrimes:6422576 encountered Relations: rels:5852822, finalFF:412844 Max relations in full relation-set: 28 Initial matrix: 365757 x 412844 with sparse part having weight 26329532. Pruned matrix : 325573 x 327465 with weight 17263082. Total sieving time: 17.06 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.76 hours. Total square root time: 0.33 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 19.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / PRIMO
(14·102003+1)/3 is prime!
By Jo Yeong Uk / GGNFS
5·10150-7 = 4(9)1493<151> = 384637449547853<15> · 100387217672603863429<21> · C117
C117 = P31 · P86
P31 = 6154380393511946888616304633963<31>
P86 = 21040482008161263229987519894156551396567478881186385296972651591714274238026715657003<86>
Number: 49993_150 N=129491129941068553703812537946480368789816344933526174856540977440519983389852818222234719791591816985068314972592889 ( 117 digits) SNFS difficulty: 150 digits. Divisors found: r1=6154380393511946888616304633963 (pp31) r2=21040482008161263229987519894156551396567478881186385296972651591714274238026715657003 (pp86) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.34 hours. Scaled time: 24.17 units (timescale=2.131). Factorization parameters were as follows: n: 129491129941068553703812537946480368789816344933526174856540977440519983389852818222234719791591816985068314972592889 m: 1000000000000000000000000000000 c5: 5 c0: -7 skew: 1.07 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175868, largePrimes:5272948 encountered Relations: rels:5112371, finalFF:430990 Max relations in full relation-set: 28 Initial matrix: 352235 x 430990 with sparse part having weight 34977477. Pruned matrix : 305477 x 307302 with weight 22005147. Total sieving time: 10.84 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.40 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 11.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10152-7 = 4(9)1513<153> = 4984608868886021<16> · 5760022922783149935357790511<28> · C110
C110 = P30 · P30 · P50
P30 = 188518073602970413450229413063<30>
P30 = 940840568278596734516455337701<30>
P50 = 98185120607867205620512879136643224913634476404281<50>
Number: 49993_152 N=17414648247137902210132824181583304066910194155046022301650741655577181114209034000065980412530628852712325803 ( 110 digits) Divisors found: r1=188518073602970413450229413063 (pp30) r2=940840568278596734516455337701 (pp30) r3=98185120607867205620512879136643224913634476404281 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 14.68 hours. Scaled time: 31.13 units (timescale=2.120). Factorization parameters were as follows: name: 49993_152 n: 17414648247137902210132824181583304066910194155046022301650741655577181114209034000065980412530628852712325803 skew: 56517.21 # norm 2.42e+15 c5: 2880 c4: 1175164712 c3: -29239402533387 c2: -938352304661497866 c1: 73927841365309126364192 c0: -902182295668313581002209856 # alpha -6.39 Y1: 72628709197 Y0: -1433186298969104262985 # Murphy_E 1.04e-09 # M 12838353175379424893908978938079702592009453283711586973468906081864813655034909619752608931304311664598306820 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 1920001) Primes: RFBsize:176302, AFBsize:176892, largePrimes:7434009 encountered Relations: rels:7156751, finalFF:427712 Max relations in full relation-set: 28 Initial matrix: 353274 x 427712 with sparse part having weight 39905520. Pruned matrix : 300831 x 302661 with weight 25640907. Polynomial selection time: 0.78 hours. Total sieving time: 13.25 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.43 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 14.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Robert Backstrom / GGNFS
3·10156-7 = 2(9)1553<157> = 20326576471807<14> · C144
C144 = P57 · P87
P57 = 755863572447083289435283827464011678816063064420816854967<57>
P87 = 195260141964162497840754186283403004144880025879973776465137141067044484471377181806897<87>
Number: n N=147590028461556508171293018028553114061238888148651494440046585451722939356778788070173271532586662801688015902136310673316237331594165849307399 ( 144 digits) SNFS difficulty: 156 digits. Divisors found: r1=755863572447083289435283827464011678816063064420816854967 (pp57) r2=195260141964162497840754186283403004144880025879973776465137141067044484471377181806897 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.23 hours. Scaled time: 54.00 units (timescale=1.194). Factorization parameters were as follows: name: KA_2_9_155_3 n: 147590028461556508171293018028553114061238888148651494440046585451722939356778788070173271532586662801688015902136310673316237331594165849307399 type: snfs skew: 1.00 deg: 5 c5: 30 c0: -7 m: 10000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:148933, AFBsize:148635, largePrimes:6806936 encountered Relations: rels:6172026, finalFF:337910 Max relations in full relation-set: 28 Initial matrix: 297635 x 337910 with sparse part having weight 32569506. Pruned matrix : 284193 x 285745 with weight 24619977. Total sieving time: 41.64 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.19 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 45.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS
5·10149-7 = 4(9)1483<150> = 13 · 67 · 223 · 61166327 · C137
C137 = P58 · P80
P58 = 1863894902146250689138702961366278706980495490732424870829<58>
P80 = 22579439841623531991161014465575701572092571425255411323896978985792253366291587<80>
Number: 49993_149 N=42085702814120047318762251527880567894812152207168529855646296135167386162678994579997839545194550841551120722204859676477586031224415623 ( 137 digits) SNFS difficulty: 150 digits. Divisors found: r1=1863894902146250689138702961366278706980495490732424870829 (pp58) r2=22579439841623531991161014465575701572092571425255411323896978985792253366291587 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.20 hours. Scaled time: 19.61 units (timescale=2.132). Factorization parameters were as follows: n: 42085702814120047318762251527880567894812152207168529855646296135167386162678994579997839545194550841551120722204859676477586031224415623 m: 1000000000000000000000000000000 c5: 1 c0: -14 skew: 1.7 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:134923, largePrimes:3682097 encountered Relations: rels:3704501, finalFF:337628 Max relations in full relation-set: 28 Initial matrix: 270059 x 337628 with sparse part having weight 29012768. Pruned matrix : 242332 x 243746 with weight 17407984. Total sieving time: 8.88 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.24 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.20 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10148-7 = 4(9)1473<149> = 43 · 4871 · C144
C144 = P47 · P97
P47 = 85730161306764919729693936025764142920932871039<47>
P97 = 2784516388469492464533403078786154427691160272586017433488469433231396033078317295048722652094979<97>
Number: 49993_148 N=238717039144820078967596549106482122480938444424286116694437415553847402519897065212720753581949172368025284908786219342764247826481358586413181 ( 144 digits) SNFS difficulty: 150 digits. Divisors found: r1=85730161306764919729693936025764142920932871039 (pp47) r2=2784516388469492464533403078786154427691160272586017433488469433231396033078317295048722652094979 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.50 hours. Scaled time: 26.56 units (timescale=2.124). Factorization parameters were as follows: n: 238717039144820078967596549106482122480938444424286116694437415553847402519897065212720753581949172368025284908786219342764247826481358586413181 m: 1000000000000000000000000000000 c5: 1 c0: -140 skew: 2.69 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1725001) Primes: RFBsize:135072, AFBsize:135583, largePrimes:3874933 encountered Relations: rels:4005276, finalFF:405690 Max relations in full relation-set: 28 Initial matrix: 270719 x 405690 with sparse part having weight 39826184. Pruned matrix : 229408 x 230825 with weight 20381958. Total sieving time: 12.17 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.25 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 12.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Robert Backstrom / GGNFS
3·10162-7 = 2(9)1613<163> = 311 · 839 · C158
C158 = P49 · P50 · P60
P49 = 4051197719261188815701375854427236740369079486103<49>
P50 = 20165397378055339711076080733916793276540156689149<50>
P60 = 140737126881900958635390331620494185432391996158454693370011<60>
Number: n N=11497380513473013731704793257936066899424747728309233546290370177327932119465448455326928014900605145461025796289412062285142701654473055888766675992319749817 ( 158 digits) SNFS difficulty: 162 digits. Divisors found: r1=4051197719261188815701375854427236740369079486103 (pp49) r2=20165397378055339711076080733916793276540156689149 (pp50) r3=140737126881900958635390331620494185432391996158454693370011 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.25 hours. Scaled time: 65.43 units (timescale=1.446). Factorization parameters were as follows: name: KA_2_9_161_3 n: 11497380513473013731704793257936066899424747728309233546290370177327932119465448455326928014900605145461025796289412062285142701654473055888766675992319749817 skew: 0.47 deg: 5 c5: 300 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7357986 encountered Relations: rels:6887181, finalFF:570721 Max relations in full relation-set: 28 Initial matrix: 499987 x 570721 with sparse part having weight 39576388. Pruned matrix : 441715 x 444278 with weight 26543781. Total sieving time: 39.63 hours. Total relation processing time: 0.23 hours. Matrix solve time: 5.09 hours. Total square root time: 0.31 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 45.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
5·10142-7 = 4(9)1413<143> = 29 · 31 · 1979 · 3277843 · C130
C130 = P46 · P85
P46 = 2223141064464610943664418818229457665011638221<46>
P85 = 3856642203506996485674317701132711550770098652412611342040704528870940226564907142911<85>
Number: n N=8573859653563686872153672611065011274732927198251276617077489205709398361640445149078749285697650620290539145986731822988676801331 ( 130 digits) SNFS difficulty: 142 digits. Divisors found: r1=2223141064464610943664418818229457665011638221 (pp46) r2=3856642203506996485674317701132711550770098652412611342040704528870940226564907142911 (pp85) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.11 hours. Scaled time: 22.82 units (timescale=1.194). Factorization parameters were as follows: name: KA_4_9_141_3 n: 8573859653563686872153672611065011274732927198251276617077489205709398361640445149078749285697650620290539145986731822988676801331 type: snfs skew: 1.00 deg: 5 c5: 500 c0: -7 m: 10000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:148933, AFBsize:148765, largePrimes:5656958 encountered Relations: rels:5036472, finalFF:365043 Max relations in full relation-set: 28 Initial matrix: 297764 x 365043 with sparse part having weight 18678812. Pruned matrix : 238754 x 240306 with weight 9621800. Total sieving time: 17.82 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.93 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 19.11 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(52·10181-7)/9 = 5(7)181<182> = 3 · 19 · C181
C181 = P81 · P100
P81 = 401904412375528539331847398345165066791473496316622080484846488508256710720903033<81>
P100 = 2522105239353325298748130209401148022385513396941975516899451253080021253195404610505390042856114817<100>
Number: n N=1013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961 ( 181 digits) SNFS difficulty: 182 digits. Divisors found: r1=401904412375528539331847398345165066791473496316622080484846488508256710720903033 (pp81) r2=2522105239353325298748130209401148022385513396941975516899451253080021253195404610505390042856114817 (pp100) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 730.72 hours. Scaled time: 997.43 units (timescale=1.365). Factorization parameters were as follows: name: KA_5_7_181 n: 1013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961013645224171539961 skew: 0.42 deg: 5 c5: 520 c0: -7 m: 1000000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 9700001) Primes: RFBsize:283146, AFBsize:283932, largePrimes:9499562 encountered Relations: rels:9301430, finalFF:638426 Max relations in full relation-set: 28 Initial matrix: 567145 x 638426 with sparse part having weight 92765702. Pruned matrix : 539903 x 542802 with weight 78313454. Total sieving time: 712.95 hours. Total relation processing time: 0.99 hours. Matrix solve time: 16.29 hours. Total square root time: 0.49 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 730.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS
5·10143-7 = 4(9)1423<144> = 13 · 665794015879030348762037<24> · C119
C119 = P43 · P77
P43 = 2457983453888362366242036666452627350164707<43>
P77 = 23502161675736277599130693612709951586027071255823077510499322192862480222179<77>
Number: 49993_143 N=57767924529568957888537801310876296895668866171545711112223603502784417848468335253465142833454489613026092525604436553 ( 119 digits) SNFS difficulty: 145 digits. Divisors found: r1=2457983453888362366242036666452627350164707 (pp43) r2=23502161675736277599130693612709951586027071255823077510499322192862480222179 (pp77) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.30 hours. Scaled time: 17.70 units (timescale=2.132). Factorization parameters were as follows: n: 57767924529568957888537801310876296895668866171545711112223603502784417848468335253465142833454489613026092525604436553 m: 100000000000000000000000000000 c5: 1 c0: -140 skew: 2.69 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114557, largePrimes:3355292 encountered Relations: rels:3393674, finalFF:331157 Max relations in full relation-set: 28 Initial matrix: 228776 x 331157 with sparse part having weight 30146465. Pruned matrix : 195268 x 196475 with weight 14800409. Total sieving time: 8.09 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.15 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 8.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10146-7 = 4(9)1453<147> = 17 · 14921539 · 248698679 · 471359479252760034787043<24> · C107
C107 = P47 · P60
P47 = 39419505496131463374918351524556451155850236259<47>
P60 = 426550611477417551441580681597762746623708391057419314031757<60>
Number: 49993_146 N=16814414173512297631896560241640536292869348031719843335103615147794108141962215977079516141086042278877063 ( 107 digits) SNFS difficulty: 146 digits. Divisors found: r1=39419505496131463374918351524556451155850236259 (pp47) r2=426550611477417551441580681597762746623708391057419314031757 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.51 hours. Scaled time: 22.53 units (timescale=2.143). Factorization parameters were as follows: n: 16814414173512297631896560241640536292869348031719843335103615147794108141962215977079516141086042278877063 m: 100000000000000000000000000000 c5: 50 c0: -7 skew: 0.67 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:135423, largePrimes:3793573 encountered Relations: rels:3866749, finalFF:362728 Max relations in full relation-set: 28 Initial matrix: 270560 x 362728 with sparse part having weight 34071867. Pruned matrix : 238068 x 239484 with weight 19000621. Total sieving time: 10.19 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.24 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.51 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10147-7 = 4(9)1463<148> = 181 · 1935949243<10> · C137
C137 = P44 · P93
P44 = 39143694405820216125374984826505126817968351<44>
P93 = 364531993422512812212311418475269937871127766102122723800434357272554629366883846804656575121<93>
Number: 49993_147 N=14269128951675306587656103056392781244121178891433426670144019869249655079558182381438140303751595107152717138583707250452128119031995471 ( 137 digits) SNFS difficulty: 149 digits. Divisors found: r1=39143694405820216125374984826505126817968351 (pp44) r2=364531993422512812212311418475269937871127766102122723800434357272554629366883846804656575121 (pp93) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.32 hours. Scaled time: 22.14 units (timescale=2.145). Factorization parameters were as follows: n: 14269128951675306587656103056392781244121178891433426670144019869249655079558182381438140303751595107152717138583707250452128119031995471 m: 500000000000000000000000000000 c5: 4 c0: -175 skew: 2.13 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134853, largePrimes:3806264 encountered Relations: rels:3951764, finalFF:434720 Max relations in full relation-set: 28 Initial matrix: 269989 x 434720 with sparse part having weight 39919688. Pruned matrix : 213923 x 215336 with weight 18154201. Total sieving time: 10.05 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Sinkiti Sibata / GGNFS
5·10194-1 = 4(9)194<195> = C195
C195 = P76 · P120
P76 = 2063673432680440504344308255721789938709506185655504408686729651476059482949<76>
P120 = 242286396714700023343462981244314581366417767442682354276028410445885393174798778445278457127741012032445076995991310451<120>
Number: 49999_194 N=499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 195 digits) SNFS difficulty: 195 digits. Divisors found: r1=2063673432680440504344308255721789938709506185655504408686729651476059482949 (pp76) r2=242286396714700023343462981244314581366417767442682354276028410445885393174798778445278457127741012032445076995991310451 (pp120) Version: GGNFS-0.77.1-20060513-k8 Total time: 2170.77 hours. Scaled time: 4335.02 units (timescale=1.997). Factorization parameters were as follows: name: 49999_194 n: 499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 1000000000000000000000000000000000000000 c5: 1 c0: -2 skew: 1.15 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 30600001) Primes: RFBsize:501962, AFBsize:501936, largePrimes:7672066 encountered Relations: rels:8446002, finalFF:1128792 Max relations in full relation-set: 28 Initial matrix: 1003962 x 1128792 with sparse part having weight 155448349. Pruned matrix : 921781 x 926864 with weight 139585169. Total sieving time: 2144.49 hours. Total relation processing time: 1.59 hours. Matrix solve time: 24.21 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,195,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2170.77 hours. --------- CPU info (if available) ----------
5·10130-7 = 4(9)1293<131> = 17 · 160668811253268490388087<24> · C107
C107 = P49 · P58
P49 = 6467580254270363725519254058868497565332259571617<49>
P58 = 2830399090682433194863117944409611442158552826222489705151<58>
Number: 49993_130 N=18305833270602497558634047496818074228604958225953465398543733671509497228985003045752560531079663898299167 ( 107 digits) SNFS difficulty: 130 digits. Divisors found: r1=6467580254270363725519254058868497565332259571617 (pp49) r2=2830399090682433194863117944409611442158552826222489705151 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 3.74 hours. Scaled time: 7.52 units (timescale=2.010). Factorization parameters were as follows: name: 49993_130 n: 18305833270602497558634047496818074228604958225953465398543733671509497228985003045752560531079663898299167 m: 100000000000000000000000000 c5: 5 c0: -7 skew: 1.07 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:64228, largePrimes:1510813 encountered Relations: rels:1545060, finalFF:204183 Max relations in full relation-set: 28 Initial matrix: 128244 x 204183 with sparse part having weight 12800443. Pruned matrix : 105593 x 106298 with weight 5310169. Total sieving time: 3.62 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 3.74 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / PRIMO
(5·102100+13)/9 is prime!
By Robert Backstrom / GGNFS
5·10125-7 = 4(9)1243<126> = 13 · 2857 · 1574782569067<13> · 5838950571776281<16> · C94
C94 = P36 · P58
P36 = 292924442772209379166691899342190629<36>
P58 = 4998105296856734377409878285199029073331658288276776782731<58>
Number: n N=1464067208998587059740499172572788768975253189359034678886007716300916068840034369544317227799 ( 94 digits) Divisors found: r1=292924442772209379166691899342190629 (pp36) r2=4998105296856734377409878285199029073331658288276776782731 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.66 hours. Scaled time: 7.97 units (timescale=1.196). Factorization parameters were as follows: name: n n: 1464067208998587059740499172572788768975253189359034678886007716300916068840034369544317227799 m: 2789993933216660492819 deg: 4 c4: 24162840 c3: -41310183912 c2: 305151674828780808 c1: 38958211045003735 c0: -144208424742214707916486 skew: 1635.250 type: gnfs # adj. I(F,S) = 54.410 # E(F1,F2) = 5.603157e-05 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1190129837. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [100000, 880001) Primes: RFBsize:92938, AFBsize:93172, largePrimes:1778839 encountered Relations: rels:1814450, finalFF:217215 Max relations in full relation-set: 28 Initial matrix: 186189 x 217215 with sparse part having weight 13772099. Pruned matrix : 164433 x 165427 with weight 8533423. Total sieving time: 6.03 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.47 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,93,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 6.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS, GMP-ECM
5·10145-7 = 4(9)1443<146> = C146
C146 = P69 · P78
P69 = 348607637797598731797334666578807254587298021398884344017102244986489<69>
P78 = 143427723832688809873861290555759641653195758704762012607777555925493706059137<78>
Number: 49993_145 N=49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 146 digits) SNFS difficulty: 145 digits. Divisors found: r1=348607637797598731797334666578807254587298021398884344017102244986489 (pp69) r2=143427723832688809873861290555759641653195758704762012607777555925493706059137 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.30 hours. Scaled time: 17.62 units (timescale=2.122). Factorization parameters were as follows: n: 49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 100000000000000000000000000000 c5: 5 c0: -7 skew: 1.07 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 47/47 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114162, largePrimes:3386072 encountered Relations: rels:3436911, finalFF:340015 Max relations in full relation-set: 28 Initial matrix: 228382 x 340015 with sparse part having weight 31556853. Pruned matrix : 193007 x 194212 with weight 15015116. Total sieving time: 8.09 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,47,47,2.3,2.3,50000 total time: 8.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10132-7 = 4(9)1313<133> = 1803259 · 21637095769<11> · 704898240089<12> · C105
C105 = P41 · P64
P41 = 66744018120546449161802491041419358230857<41>
P64 = 2723793341179006978601831413759133998675258378764478782653155571<64>
Number: 49993_132 N=181796912120275398531617563014368827286582977646429455177241425072313600143265207326873879751902953654347 ( 105 digits) SNFS difficulty: 134 digits. Divisors found: r1=66744018120546449161802491041419358230857 (pp41) r2=2723793341179006978601831413759133998675258378764478782653155571 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.35 hours. Scaled time: 5.04 units (timescale=2.140). Factorization parameters were as follows: n: 181796912120275398531617563014368827286582977646429455177241425072313600143265207326873879751902953654347 m: 500000000000000000000000000 c5: 4 c0: -175 skew: 2.13 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1100001) Primes: RFBsize:107126, AFBsize:106873, largePrimes:2194322 encountered Relations: rels:2272551, finalFF:259727 Max relations in full relation-set: 28 Initial matrix: 214063 x 259727 with sparse part having weight 16899820. Pruned matrix : 189994 x 191128 with weight 9651216. Total sieving time: 2.21 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.35 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
3·10156+7 = 3(0)1557<157> = 1428660435500894737<19> · C139
C139 = P59 · P80
P59 = 23751015386450850890960912782656510193131256880878674102473<59>
P80 = 88411764036120295668516229411892223895453769985635566390071101529293788597427807<80>
Number: 30007_156 N=2099869167965155124756908942201290754204400058585128654740282907304493380080285074505086695930477835539488663926721378385440839832137666711 ( 139 digits) SNFS difficulty: 156 digits. Divisors found: r1=23751015386450850890960912782656510193131256880878674102473 (pp59) r2=88411764036120295668516229411892223895453769985635566390071101529293788597427807 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.47 hours. Scaled time: 52.12 units (timescale=2.130). Factorization parameters were as follows: n: 2099869167965155124756908942201290754204400058585128654740282907304493380080285074505086695930477835539488663926721378385440839832137666711 m: 10000000000000000000000000000000 c5: 30 c0: 7 skew: 0.75 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3000001) Primes: RFBsize:216816, AFBsize:216451, largePrimes:5637735 encountered Relations: rels:5545407, finalFF:494569 Max relations in full relation-set: 28 Initial matrix: 433334 x 494569 with sparse part having weight 41922437. Pruned matrix : 408265 x 410495 with weight 30955997. Total sieving time: 23.46 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.88 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 24.47 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10133-7 = 4(9)1323<134> = 401238263593464253441<21> · C114
C114 = P39 · P75
P39 = 162299914415288288281496198151331987381<39>
P75 = 767802233705694607885077764652977937099475049390304533874402633274801489333<75>
Number: 49993_133 N=124614236818301411544359062366169325675748332513461267291694167073654610945066429659024926693632485623021562106873 ( 114 digits) SNFS difficulty: 135 digits. Divisors found: r1=162299914415288288281496198151331987381 (pp39) r2=767802233705694607885077764652977937099475049390304533874402633274801489333 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.90 hours. Scaled time: 6.13 units (timescale=2.113). Factorization parameters were as follows: n: 124614236818301411544359062366169325675748332513461267291694167073654610945066429659024926693632485623021562106873 m: 1000000000000000000000000000 c5: 1 c0: -140 skew: 2.69 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:107423, largePrimes:2258417 encountered Relations: rels:2365136, finalFF:274865 Max relations in full relation-set: 28 Initial matrix: 214613 x 274865 with sparse part having weight 19811144. Pruned matrix : 188857 x 189994 with weight 10562686. Total sieving time: 2.75 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10136-7 = 4(9)1353<137> = 19 · 139 · 6967 · 304949 · C124
C124 = P56 · P69
P56 = 43352727754257453263558076969496197958853012323126787749<56>
P69 = 205547477085329019216150576259951986360308957854427429660726601104519<69>
Number: 49993_136 N=8911043814654741266385357410993071277936469227783606071546576951629885484600301382670236701307968095738801477446099877737731 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=43352727754257453263558076969496197958853012323126787749 (pp56) r2=205547477085329019216150576259951986360308957854427429660726601104519 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.57 hours. Scaled time: 7.58 units (timescale=2.121). Factorization parameters were as follows: n: 8911043814654741266385357410993071277936469227783606071546576951629885484600301382670236701307968095738801477446099877737731 m: 1000000000000000000000000000 c5: 50 c0: -7 skew: 0.67 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:107448, largePrimes:2286653 encountered Relations: rels:2372902, finalFF:249972 Max relations in full relation-set: 28 Initial matrix: 214639 x 249972 with sparse part having weight 19123445. Pruned matrix : 202249 x 203386 with weight 12879625. Total sieving time: 3.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.57 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10137-7 = 4(9)1363<138> = 13 · 673573 · 7297977952249711<16> · C115
C115 = P34 · P81
P34 = 9394428712264339107505356592635883<34>
P81 = 832854352226576752484715428137571713119476790537271630219939252608157903031281189<81>
Number: 49993_137 N=7824190839691669749163653157266934458630643853189079636887156615889238145318912324273611451606146225919988064304887 ( 115 digits) SNFS difficulty: 139 digits. Divisors found: r1=9394428712264339107505356592635883 (pp34) r2=832854352226576752484715428137571713119476790537271630219939252608157903031281189 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.58 hours. Scaled time: 7.64 units (timescale=2.136). Factorization parameters were as follows: n: 7824190839691669749163653157266934458630643853189079636887156615889238145318912324273611451606146225919988064304887 m: 5000000000000000000000000000 c5: 4 c0: -175 skew: 2.13 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1350001) Primes: RFBsize:107126, AFBsize:106873, largePrimes:2324504 encountered Relations: rels:2470570, finalFF:302661 Max relations in full relation-set: 28 Initial matrix: 214063 x 302661 with sparse part having weight 23246989. Pruned matrix : 183090 x 184224 with weight 11133020. Total sieving time: 3.42 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 3.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
5·10151-7 = 4(9)1503<152> = 1413677 · 7305622079024944242228091<25> · C121
C121 = P33 · P89
P33 = 293508139448334928739242445881249<33>
P89 = 16494625527091676916421984392283134811156918776772753098253796574689797190832398167922951<89>
5·10138-7 = 4(9)1373<139> = 23 · 97 · 76129 · 335507 · C125
C125 = P51 · P75
P51 = 589299164638605947647771819491726255852140418406087<51>
P75 = 148895954377143576247780304403642128934646012521450079487879648263630397923<75>
Number: 49993_138 N=87744261532518692236722362187251629645597029515691483213116126366750425844988944265188979806400848045894132573044429215357301 ( 125 digits) SNFS difficulty: 140 digits. Divisors found: r1=589299164638605947647771819491726255852140418406087 (pp51) r2=148895954377143576247780304403642128934646012521450079487879648263630397923 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.39 hours. Scaled time: 11.50 units (timescale=2.133). Factorization parameters were as follows: n: 87744261532518692236722362187251629645597029515691483213116126366750425844988944265188979806400848045894132573044429215357301 m: 10000000000000000000000000000 c5: 1 c0: -140 skew: 2.69 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1050001) Primes: RFBsize:107126, AFBsize:107423, largePrimes:2239474 encountered Relations: rels:2359215, finalFF:276225 Max relations in full relation-set: 28 Initial matrix: 214613 x 276225 with sparse part having weight 22517328. Pruned matrix : 188495 x 189632 with weight 12308616. Total sieving time: 5.22 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 5.39 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Jo Yeong Uk / GGNFS
2·10156-7 = 1(9)1553<157> = 61 · 379561891 · 591755936832544670700889<24> · C123
C123 = P58 · P65
P58 = 2996976568019324627915945752938287251955921580343264766897<58>
P65 = 48707023203560580789797226764686962335766992120048448009260900471<65>
Number: 19993_156 N=145973807239044599895795366422383396989943956162809260080362174883363753419104691249139419330074996177706630877434132508487 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=2996976568019324627915945752938287251955921580343264766897 (pp58) r2=48707023203560580789797226764686962335766992120048448009260900471 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.84 hours. Scaled time: 35.96 units (timescale=2.135). Factorization parameters were as follows: n: 145973807239044599895795366422383396989943956162809260080362174883363753419104691249139419330074996177706630877434132508487 m: 10000000000000000000000000000000 c5: 20 c0: -7 skew: 0.81 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:215976, largePrimes:5451035 encountered Relations: rels:5348208, finalFF:507344 Max relations in full relation-set: 28 Initial matrix: 432858 x 507344 with sparse part having weight 36913541. Pruned matrix : 378693 x 380921 with weight 24853519. Total sieving time: 15.92 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.80 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 16.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By JMB / GGNFS
2·10173+3 = 2(0)1723<174> = 31 · 3164590541963<13> · 1377280097548571230432695973091803101076339<43> · C118
C118 = P53 · P66
P53 = 10704249832674713026912742559336870309487534796404441<53>
P66 = 138284106376553420246923079942434034576006381033927871198757392949<66>
Number: N N=1480227622542794165404399819785920618847153787232185974759390499635827513314206276438905310385107334421379192165686509 ( 118 digits) Divisors found: r1=10704249832674713026912742559336870309487534796404441 (pp53) r2=138284106376553420246923079942434034576006381033927871198757392949 (pp66) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 52.15 hours. Scaled time: 98.15 units (timescale=1.882). Factorization parameters were as follows: name: N n: 1480227622542794165404399819785920618847153787232185974759390499635827513314206276438905310385107334421379192165686509 skew: 33365.99 # norm 5.52e+15 c5: 8400 c4: 2858359922 c3: 69125290698979 c2: 2226394878652247136 c1: -27649659782574825693836 c0: -71117271795651997618937776 # alpha -4.79 Y1: 2892399891821 Y0: -44586966544883642201365 # Murphy_E 3.86e-10 # M 1116241208575494244563539100262926120008752083455990065001830398269407723172354643387959025093684663593340304927476381 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 10000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 2430001) Primes: RFBsize:315948, AFBsize:315227, largePrimes:7757737 encountered Relations: rels:7926431, finalFF:820826 Max relations in full relation-set: 28 Initial matrix: 631253 x 820826 with sparse part having weight 71065693. Pruned matrix : 476037 x 479257 with weight 42894052. Total sieving time: 46.30 hours. Total relation processing time: 0.27 hours. Matrix solve time: 5.31 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,117,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 52.15 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS, Msieve
5·10112-7 = 4(9)1113<113> = 31 · 199 · 1726577810038023749<19> · C91
C91 = P43 · P48
P43 = 6338023959737574815597795059605732175772951<43>
P48 = 740653709666671254036993453169242903252989973403<48>
Number: 49993_112 N=4694280957735879835192257868892353847777033806650163825970139352033222478931893194456822253 ( 91 digits) SNFS difficulty: 112 digits. Divisors found: r1=6338023959737574815597795059605732175772951 (pp43) r2=740653709666671254036993453169242903252989973403 (pp48) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 1.95 hours. Scaled time: 1.32 units (timescale=0.677). Factorization parameters were as follows: name: 49993_112 n: 4694280957735879835192257868892353847777033806650163825970139352033222478931893194456822253 m: 10000000000000000000000 c5: 500 c0: -7 skew: 0.43 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63743, largePrimes:2287037 encountered Relations: rels:2646059, finalFF:487489 Max relations in full relation-set: 28 Initial matrix: 112907 x 487489 with sparse part having weight 36961708. Pruned matrix : 59914 x 60542 with weight 4878956. Total sieving time: 1.79 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,112,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.95 hours. --------- CPU info (if available) ----------
5·10124-7 = 4(9)1233<125> = 38611 · 450361 · 2871839245138288177663<22> · C94
C94 = P32 · P62
P32 = 96307871964544146356044436726531<32>
P62 = 10396239289011278195567666108316680054766182724101112004334711<62>
Number: 49993_124 N=1001239682358861648336397232573322011186790460010738716001180000426506650931892738839297917541 ( 94 digits) SNFS difficulty: 125 digits. Divisors found: r1=96307871964544146356044436726531 (pp32) r2=10396239289011278195567666108316680054766182724101112004334711 (pp62) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2.52 hours. Scaled time: 1.71 units (timescale=0.677). Factorization parameters were as follows: name: 49993_124 n: 1001239682358861648336397232573322011186790460010738716001180000426506650931892738839297917541 m: 10000000000000000000000000 c5: 1 c0: -14 skew: 1.7 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63623, largePrimes:2113124 encountered Relations: rels:2175709, finalFF:203620 Max relations in full relation-set: 28 Initial matrix: 112785 x 203620 with sparse part having weight 17991882. Pruned matrix : 92175 x 92802 with weight 5574129. Total sieving time: 2.28 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.13 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.52 hours. --------- CPU info (if available) ----------
5·10103-7 = 4(9)1023<104> = 1054033 · 11594362361<11> · C88
C88 = P37 · P51
P37 = 4410131384499304810512717460695947827<37>
P51 = 927721024511601037911354571948957412235819374408843<51>
Tue Sep 18 16:15:04 2007 Msieve v. 1.26 Tue Sep 18 16:15:04 2007 random seeds: e103ff01 6e7fc021 Tue Sep 18 16:15:04 2007 factoring 4091371606258460579732267674655946076932554042364590956386352513061582689683113695434161 (88 digits) Tue Sep 18 16:15:05 2007 commencing quadratic sieve (88-digit input) Tue Sep 18 16:15:05 2007 using multiplier of 1 Tue Sep 18 16:15:05 2007 using 64kb Pentium 2 sieve core Tue Sep 18 16:15:05 2007 sieve interval: 14 blocks of size 65536 Tue Sep 18 16:15:05 2007 processing polynomials in batches of 8 Tue Sep 18 16:15:05 2007 using a sieve bound of 1527521 (57818 primes) Tue Sep 18 16:15:05 2007 using large prime bound of 122201680 (26 bits) Tue Sep 18 16:15:05 2007 using double large prime bound of 360361878370480 (42-49 bits) Tue Sep 18 16:15:05 2007 using trial factoring cutoff of 49 bits Tue Sep 18 16:15:05 2007 polynomial 'A' values have 11 factors Tue Sep 18 22:29:06 2007 58366 relations (16041 full + 42325 combined from 613107 partial), need 57914 Tue Sep 18 22:29:16 2007 begin with 629148 relations Tue Sep 18 22:29:19 2007 reduce to 140454 relations in 10 passes Tue Sep 18 22:29:19 2007 attempting to read 140454 relations Tue Sep 18 22:29:28 2007 recovered 140454 relations Tue Sep 18 22:29:28 2007 recovered 115367 polynomials Tue Sep 18 22:29:33 2007 attempting to build 58366 cycles Tue Sep 18 22:29:33 2007 found 58366 cycles in 6 passes Tue Sep 18 22:29:35 2007 distribution of cycle lengths: Tue Sep 18 22:29:35 2007 length 1 : 16041 Tue Sep 18 22:29:35 2007 length 2 : 11360 Tue Sep 18 22:29:35 2007 length 3 : 10344 Tue Sep 18 22:29:35 2007 length 4 : 7623 Tue Sep 18 22:29:35 2007 length 5 : 5353 Tue Sep 18 22:29:35 2007 length 6 : 3379 Tue Sep 18 22:29:35 2007 length 7 : 2011 Tue Sep 18 22:29:35 2007 length 9+: 2255 Tue Sep 18 22:29:35 2007 largest cycle: 16 relations Tue Sep 18 22:29:36 2007 matrix is 57818 x 58366 with weight 3358951 (avg 57.55/col) Tue Sep 18 22:29:39 2007 filtering completed in 3 passes Tue Sep 18 22:29:39 2007 matrix is 53411 x 53475 with weight 3081715 (avg 57.63/col) Tue Sep 18 22:29:41 2007 saving the first 48 matrix rows for later Tue Sep 18 22:29:42 2007 matrix is 53363 x 53475 with weight 2460669 (avg 46.02/col) Tue Sep 18 22:29:42 2007 matrix includes 64 packed rows Tue Sep 18 22:29:42 2007 using block size 10922 for processor cache size 256 kB Tue Sep 18 22:29:42 2007 commencing Lanczos iteration Tue Sep 18 22:32:34 2007 lanczos halted after 845 iterations Tue Sep 18 22:32:35 2007 recovered 14 nontrivial dependencies Tue Sep 18 22:32:48 2007 prp37 factor: 4410131384499304810512717460695947827 Tue Sep 18 22:32:48 2007 prp51 factor: 927721024511601037911354571948957412235819374408843 Tue Sep 18 22:32:48 2007 elapsed time 06:17:44
By Jo Yeong Uk / GMP-ECM
5·10177-7 = 4(9)1763<178> = C178
C178 = P33 · C146
P33 = 159222322628756092199652384637699<33>
C146 = [31402631976786545252692940445059838167581831564267435779280007674035294043391904450027457606945967767231885984890715247474553329384690419652493907<146>]
The factor table of 499...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS
3·10154-7 = 2(9)1533<155> = 34019 · 609903171398591373643<21> · C130
C130 = P43 · P87
P43 = 3638448521596708316295882652136033250258553<43>
P87 = 397395170759107781009516079528422156485067127226121794287339983126117723660641650772993<87>
Number: 29993_154 N=1445901871538147156341447649224847712631394873758699363989919101940155761354755440420714445084445119451525115463081130749559659129 ( 130 digits) SNFS difficulty: 155 digits. Divisors found: r1=3638448521596708316295882652136033250258553 (pp43) r2=397395170759107781009516079528422156485067127226121794287339983126117723660641650772993 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 57.07 hours. Scaled time: 38.64 units (timescale=0.677). Factorization parameters were as follows: name: 29993_154 n: 1445901871538147156341447649224847712631394873758699363989919101940155761354755440420714445084445119451525115463081130749559659129 m: 10000000000000000000000000000000 c5: 3 c0: -70 skew: 1.88 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2900001) Primes: RFBsize:216816, AFBsize:215951, largePrimes:5611743 encountered Relations: rels:5508735, finalFF:488116 Max relations in full relation-set: 28 Initial matrix: 432832 x 488116 with sparse part having weight 40130555. Pruned matrix : 407641 x 409869 with weight 29858979. Total sieving time: 49.60 hours. Total relation processing time: 0.28 hours. Matrix solve time: 6.99 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 57.07 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / PRIMO
(5·102007+1)/3 is prime!
By Jo Yeong Uk / GGNFS
3·10179-7 = 2(9)1783<180> = 73 · 3683111 · 16927973 · 584455519 · 482923793970269<15> · 75814253468842025360202563<26> · C115
C115 = P42 · P73
P42 = 666955264597468844867283661741291944087841<42>
P73 = 4618500484221053916134988602864131972644643376658791905760135103112512419<73>
Number: 29993_179 N=3080333212497190998320588518704248460835256890165010422176507062229667521801892368359086189741076768397158739397379 ( 115 digits) Divisors found: r1=666955264597468844867283661741291944087841 (pp42) r2=4618500484221053916134988602864131972644643376658791905760135103112512419 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.35 hours. Scaled time: 54.10 units (timescale=2.134). Factorization parameters were as follows: name: 29993_179 n: 3080333212497190998320588518704248460835256890165010422176507062229667521801892368359086189741076768397158739397379 skew: 64606.11 # norm 5.65e+15 c5: 24480 c4: -1282831244 c3: -285274267141254 c2: 2653256384091794754 c1: 627807025803164651781771 c0: 5959752286338459471323474153 # alpha -5.69 Y1: 974878789993 Y0: -10470265171305626182350 # Murphy_E 5.27e-10 # M 1462313019062199735784145259341739798397661617108705271681928514346601554110168923675620598322111573351965792712109 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3075001) Primes: RFBsize:256726, AFBsize:257074, largePrimes:7591771 encountered Relations: rels:7548192, finalFF:646497 Max relations in full relation-set: 28 Initial matrix: 513883 x 646497 with sparse part having weight 56504637. Pruned matrix : 406596 x 409229 with weight 33984511. Polynomial selection time: 1.33 hours. Total sieving time: 22.77 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.96 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 25.35 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
3·10155+7 = 3(0)1547<156> = 307 · 947 · 17011 · 85013863614622230403517<23> · C123
C123 = P50 · P73
P50 = 81026516161317424585126385687853691355677579362917<50>
P73 = 8806151149339157734770802696564069152769229056077368044884311562147487877<73>
Number: 30007_155 N=713531748420933277541673822962652894654142637485514664700401998801446798784016564278662446558305517823810235223089640857209 ( 123 digits) SNFS difficulty: 155 digits. Divisors found: r1=81026516161317424585126385687853691355677579362917 (pp50) r2=8806151149339157734770802696564069152769229056077368044884311562147487877 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.65 hours. Scaled time: 35.65 units (timescale=2.141). Factorization parameters were as follows: n: 713531748420933277541673822962652894654142637485514664700401998801446798784016564278662446558305517823810235223089640857209 m: 10000000000000000000000000000000 c5: 3 c0: 7 skew: 1.18 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216206, largePrimes:5559375 encountered Relations: rels:5517505, finalFF:555907 Max relations in full relation-set: 28 Initial matrix: 433087 x 555907 with sparse part having weight 41903022. Pruned matrix : 345203 x 347432 with weight 26197869. Total sieving time: 15.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.56 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 16.65 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Jo Yeong Uk / GGNFS
4·10177+7 = 4(0)1767<178> = 419 · 173767929557963321729<21> · 272757861127713014089301<24> · 55596506082506498754154195877<29> · C103
C103 = P37 · P67
P37 = 2168624917890105707938720036681408679<37>
P67 = 1670579402649688089552461215114367735067686171584466742428310437779<67>
Number: 40007_177 N=3622860119900081675144939418188208681175682968519562762569963159265022505636801426201586907652900083941 ( 103 digits) Divisors found: r1=2168624917890105707938720036681408679 (pp37) r2=1670579402649688089552461215114367735067686171584466742428310437779 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.70 hours. Scaled time: 12.10 units (timescale=2.122). Factorization parameters were as follows: name: 40007_177 n: 3622860119900081675144939418188208681175682968519562762569963159265022505636801426201586907652900083941 skew: 5201.92 # norm 2.88e+14 c5: 538560 c4: 53023360 c3: -50292647881684 c2: -6925540917256562 c1: 749244940025056718037 c0: -1154576317830065586983730 # alpha -6.47 Y1: 58997159591 Y0: -23204032905420498401 # Murphy_E 2.42e-09 # M 1370455034032052557571471097180820566906316879206462490274763309076187559978205487356334531363056920027 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1620001) Primes: RFBsize:135072, AFBsize:135194, largePrimes:4450489 encountered Relations: rels:4488383, finalFF:403745 Max relations in full relation-set: 28 Initial matrix: 270349 x 403745 with sparse part having weight 33923516. Pruned matrix : 193755 x 195170 with weight 15534745. Polynomial selection time: 0.35 hours. Total sieving time: 5.06 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.14 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 5.70 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
2·10155-7 = 1(9)1543<156> = 4339 · 5303 · 1439617218001<13> · 961207979097509279<18> · C118
C118 = P35 · P83
P35 = 80965371749079875135193964006734647<35>
P83 = 77580934154601854923447083339687231799885525920119624203485250965115554274629179933<83>
Number: 19993_155 N=6281369174468227010565931881995665318163438158792180025253984512757518274749245757587968753964874412460492994748238651 ( 118 digits) SNFS difficulty: 155 digits. Divisors found: r1=80965371749079875135193964006734647 (pp35) r2=77580934154601854923447083339687231799885525920119624203485250965115554274629179933 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.76 hours. Scaled time: 35.87 units (timescale=2.141). Factorization parameters were as follows: n: 6281369174468227010565931881995665318163438158792180025253984512757518274749245757587968753964874412460492994748238651 m: 10000000000000000000000000000000 c5: 2 c0: -7 skew: 1.28 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216386, largePrimes:5531502 encountered Relations: rels:5461621, finalFF:532447 Max relations in full relation-set: 28 Initial matrix: 433267 x 532447 with sparse part having weight 40040051. Pruned matrix : 362515 x 364745 with weight 25713600. Total sieving time: 15.99 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.65 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 16.76 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Jo Yeong Uk / PRIMO
(5·102002+7)/3 is prime!
By Jo Yeong Uk / GGNFS
7·10153+3 = 7(0)1523<154> = 73 · 131 · 23323831 · 1846251383033<13> · C131
C131 = P58 · P73
P58 = 2379079812909254428043276041211980572721289410506055623377<58>
P73 = 7145031581347695270977233930386125972534532154126683920313280001705450711<73>
Number: 70003_153 N=16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047 ( 131 digits) SNFS difficulty: 155 digits. Divisors found: r1=2379079812909254428043276041211980572721289410506055623377 (pp58) r2=7145031581347695270977233930386125972534532154126683920313280001705450711 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 20.08 hours. Scaled time: 42.73 units (timescale=2.128). Factorization parameters were as follows: n: 16998600397783389175759249569289061087069302188459355668140254648218552381501175502221072936905279990154489333515869992693852871047 m: 10000000000000000000000000000000 c5: 7 c0: 300 skew: 2.12 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216676, largePrimes:5675578 encountered Relations: rels:5689109, finalFF:598690 Max relations in full relation-set: 28 Initial matrix: 433559 x 598690 with sparse part having weight 47345346. Pruned matrix : 332263 x 334494 with weight 29525513. Total sieving time: 19.32 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.62 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 20.08 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
2·10163-7 = 1(9)1623<164> = 13 · 201757487 · 164834767007237<15> · 129162229318541414865248023<27> · C114
C114 = P49 · P66
P49 = 2870602702071050972528733922531425863733789921251<49>
P66 = 124766945602396491462945015979925208408928505160969226719559459403<66>
Number: 19993_163 N=358156331175391198893339808547858557746935279886252689505085670398402621508842992831589269212432640565739501473153 ( 114 digits) Divisors found: r1=2870602702071050972528733922531425863733789921251 (pp49) r2=124766945602396491462945015979925208408928505160969226719559459403 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 21.80 hours. Scaled time: 46.41 units (timescale=2.129). Factorization parameters were as follows: name: 19993_163 n: 358156331175391198893339808547858557746935279886252689505085670398402621508842992831589269212432640565739501473153 skew: 45628.38 # norm 6.02e+15 c5: 51840 c4: -3683687742 c3: -219889653043975 c2: 9456954518204852587 c1: 291767181530166543087243 c0: -21035126965595459418314492 # alpha -5.76 Y1: 58235380021 Y0: -5859783753033214798315 # Murphy_E 5.80e-10 # M 44894003223997302383774582468193933612947797133112838301158642168226836618277433846086123864581870351008011079287 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 2925001) Primes: RFBsize:256726, AFBsize:257368, largePrimes:7412290 encountered Relations: rels:7272447, finalFF:595178 Max relations in full relation-set: 28 Initial matrix: 514169 x 595178 with sparse part having weight 46315095. Pruned matrix : 446792 x 449426 with weight 29929625. Total sieving time: 20.50 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.01 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 21.80 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407686) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.11 BogoMIPS).
By Jo Yeong Uk / GMP-ECM
(73·10192-1)/9 = 8(1)192<193> = C193
C193 = P41 · C153
P41 = 73256271947274662782040893968743123700881<41>
C153 = [110722411822280385931003784443497819857603220976577157566466357414344260125670777720438670653233237078832661859484778212857408425370362300763453787759831<153>]
By Jo Yeong Uk / GGNFS
2·10180-3 = 1(9)1797<181> = 2593 · 51067720369<11> · 2039081640448510323571<22> · 112032125257256292325042410655727<33> · C113
C113 = P39 · P74
P39 = 905172686450661562749851540460137766673<39>
P74 = 73041953120006531682243304867114152425466458123310047541535943923877620801<74>
Number: 19997_180 N=66115580929239593359723808855458909629091457719484972084609617544199525101235044807799431332453896293536909365073 ( 113 digits) Divisors found: r1=905172686450661562749851540460137766673 (pp39) r2=73041953120006531682243304867114152425466458123310047541535943923877620801 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.07 hours. Scaled time: 40.84 units (timescale=2.142). Factorization parameters were as follows: name: 19997_180 n: 66115580929239593359723808855458909629091457719484972084609617544199525101235044807799431332453896293536909365073 skew: 50900.26 # norm 4.78e+15 c5: 35640 c4: 2092026780 c3: -257421258914871 c2: -3597313150952401664 c1: 336073469633725578681108 c0: 880253753751683250101584592 # alpha -6.29 Y1: 891128745329 Y0: -4504765787799004324305 # Murphy_E 6.77e-10 # M 31447131488392542736505992818019557460517464114991795498415980855609373894140662627343843911601067913431897504545 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2310001) Primes: RFBsize:203362, AFBsize:203921, largePrimes:7460034 encountered Relations: rels:7203107, finalFF:459537 Max relations in full relation-set: 28 Initial matrix: 407366 x 459537 with sparse part having weight 41639635. Pruned matrix : 368891 x 370991 with weight 29954447. Polynomial selection time: 1.04 hours. Total sieving time: 17.05 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.71 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 19.07 hours. --------- CPU info (if available) ----------
3·10153+7 = 3(0)1527<154> = 31 · 1960320883<10> · 234995429723777<15> · C129
C129 = P59 · P71
P59 = 12766708087797880775647643713694004841381361147278295433889<59>
P71 = 16454854639373394037106403236176282020045812281709905847229481803749603<71>
Number: 30007_153 N=210074325808026790448996368590420356086009745382036315917389148054666342924659655032019177558676920733305767288001767113996496067 ( 129 digits) SNFS difficulty: 155 digits. Divisors found: r1=12766708087797880775647643713694004841381361147278295433889 (pp59) r2=16454854639373394037106403236176282020045812281709905847229481803749603 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.75 hours. Scaled time: 35.43 units (timescale=2.116). Factorization parameters were as follows: n: 210074325808026790448996368590420356086009745382036315917389148054666342924659655032019177558676920733305767288001767113996496067 m: 10000000000000000000000000000000 c5: 3 c0: 700 skew: 2.98 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:5443893 encountered Relations: rels:5315927, finalFF:487026 Max relations in full relation-set: 28 Initial matrix: 433623 x 487026 with sparse part having weight 35101675. Pruned matrix : 395950 x 398182 with weight 25217603. Total sieving time: 15.90 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.73 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 16.75 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
4·10153+7 = 4(0)1527<154> = 15122759 · 24745976488388042357<20> · C128
C128 = P63 · P65
P63 = 309312185819485412279995450362993507710825827912972995314067713<63>
P65 = 34556307836253073852792654157706035652442377990012162822070317853<65>
Number: 40007_153 N=10688687110682450660439951947485525140658610226471628564203051191314620050655242128626856748244492908709436441566630388274780189 ( 128 digits) SNFS difficulty: 153 digits. Divisors found: r1=309312185819485412279995450362993507710825827912972995314067713 (pp63) r2=34556307836253073852792654157706035652442377990012162822070317853 (pp65) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 34.45 hours. Scaled time: 22.81 units (timescale=0.662). Factorization parameters were as follows: name: 40007_153 n: 10688687110682450660439951947485525140658610226471628564203051191314620050655242128626856748244492908709436441566630388274780189 m: 2000000000000000000000000000000 c5: 125 c0: 7 skew: 0.56 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176043, largePrimes:5482109 encountered Relations: rels:5371718, finalFF:399515 Max relations in full relation-set: 0 Initial matrix: 352410 x 399515 with sparse part having weight 26957995. Pruned matrix : 325683 x 327509 with weight 20456304. Total sieving time: 30.73 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.36 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 34.45 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / PRIMO
(25·102018-7)/9 is prime!
By Jo Yeong Uk / GGNFS
4·10154+7 = 4(0)1537<155> = 11 · 342802429 · 25012593481129<14> · 9378914296479408781<19> · C113
C113 = P37 · P76
P37 = 4999642122681669494026196348160121217<37>
P76 = 9044263464946840747038283509739191493041103507550062570873462979319591737141<76>
Number: 40007_154 N=45218080587979093989708475325381839456130749535604419753028667196019088987174074624391266950271169021962161020597 ( 113 digits) Divisors found: r1=4999642122681669494026196348160121217 (pp37) r2=9044263464946840747038283509739191493041103507550062570873462979319591737141 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.99 hours. Scaled time: 42.53 units (timescale=2.127). Factorization parameters were as follows: name: 40007_154 n: 45218080587979093989708475325381839456130749535604419753028667196019088987174074624391266950271169021962161020597 skew: 31283.77 # norm 1.65e+16 c5: 68040 c4: 13966398846 c3: -414229534697503 c2: 932493901125242698 c1: 180032739590643387395624 c0: 35538889773243182429407920 # alpha -6.92 Y1: 836403879509 Y0: -3668643396033347782541 # Murphy_E 6.56e-10 # M 28071116392022513803667070326716114062434066061004312341816282378150721023164556206800033729572617394388783406386 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2380001) Primes: RFBsize:203362, AFBsize:203919, largePrimes:7534644 encountered Relations: rels:7339518, finalFF:490981 Max relations in full relation-set: 28 Initial matrix: 407361 x 490981 with sparse part having weight 46092839. Pruned matrix : 345308 x 347408 with weight 30104251. Polynomial selection time: 1.07 hours. Total sieving time: 18.05 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.61 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 19.99 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
By Alban Nonymous
101231+1 is divisible by 8500614695927155829161050714503<31>
101313+1 is divisible by 34620946390749763175836315244453<32>
101345+1 is divisible by 21044037584000626448961059324881<32>
101354+1 is divisible by 36764627737869172094680667009<29>
101391+1 is divisible by 155490403648623445664788291934117<33>
101405+1 is divisible by 83260647980205591593475319975561<32>
101439+1 is divisible by 75673683062427966236317236967<29>
101459+1 is divisible by 794157316664184535777113799277<30>
101574+1 is divisible by 31760068204068839447245615309<29>
101594+1 is divisible by 4281518523436324087802519357629<31>
101612+1 is divisible by 144685957475846477676841682164313<33>
101661+1 is divisible by 260721284044113991032016909263383<33>
101687+1 is divisible by 135355988585304270436638671970733<33>
101727+1 is divisible by 197450481378401142788807346609757<33>
101761+1 is divisible by 221356639156600314082995856870369<33>
101844+1 is divisible by 9125072483779648050066911421569<31>
101854+1 is divisible by 122708016673764191207130969289<30>
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Jo Yeong Uk / GGNFS
3·10162+7 = 3(0)1617<163> = C163
C163 = P49 · P55 · P60
P49 = 3733216672222512252402080024047876262175838601063<49>
P55 = 1801107624738145935914817354265795383914325232132040341<55>
P60 = 446167973934504101158694839309139582095409259666991720176029<60>
Number: 30007_162 N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 163 digits) SNFS difficulty: 162 digits. Divisors found: r1=3733216672222512252402080024047876262175838601063 (pp49) r2=1801107624738145935914817354265795383914325232132040341 (pp55) r3=446167973934504101158694839309139582095409259666991720176029 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 43.21 hours. Scaled time: 91.29 units (timescale=2.113). Factorization parameters were as follows: n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 m: 100000000000000000000000000000000 c5: 300 c0: 7 skew: 0.47 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 4800001) Primes: RFBsize:348513, AFBsize:348181, largePrimes:5776537 encountered Relations: rels:5923973, finalFF:791467 Max relations in full relation-set: 28 Initial matrix: 696760 x 791467 with sparse part having weight 43570598. Pruned matrix : 617703 x 621250 with weight 30629496. Total sieving time: 41.23 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.80 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 43.21 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
By Sinkiti Sibata / GGNFS
4·10149+7 = 4(0)1487<150> = 19 · 372 · 79 · 156593 · 156967 · 6118218475309117<16> · C118
C118 = P45 · P73
P45 = 458151166462975414839515281092455846471073253<45>
P73 = 2825279191259063103973675923003172457201413683427285242607338783549973213<73>
Number: 40007_149 N=1294404957058911574763733833658886023194297370404618272196308663603704846302793844151119322689824792125201967510771889 ( 118 digits) SNFS difficulty: 150 digits. Divisors found: r1=458151166462975414839515281092455846471073253 (pp45) r2=2825279191259063103973675923003172457201413683427285242607338783549973213 (pp73) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 26.65 hours. Scaled time: 18.20 units (timescale=0.683). Factorization parameters were as follows: name: 40007_149 n: 1294404957058911574763733833658886023194297370404618272196308663603704846302793844151119322689824792125201967510771889 m: 1000000000000000000000000000000 c5: 2 c0: 35 skew: 1.77 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1550001) Primes: RFBsize:114155, AFBsize:113967, largePrimes:2700927 encountered Relations: rels:2700881, finalFF:256445 Max relations in full relation-set: 0 Initial matrix: 228187 x 256445 with sparse part having weight 13732659. Pruned matrix : 217172 x 218376 with weight 10745713. Total sieving time: 25.50 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.94 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 26.65 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
4·10161+7 = 4(0)1607<162> = 37 · C161
C161 = P60 · P101
P60 = 135634950176910695018973466825893607656590609530685636796371<60>
P101 = 79705199852324998153571878460082630852438535935125517735082254432468091835256979745543882602791947641<101>
Number: n N=10810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811 ( 161 digits) SNFS difficulty: 161 digits. Divisors found: r1=135634950176910695018973466825893607656590609530685636796371 (pp60) r2=79705199852324998153571878460082630852438535935125517735082254432468091835256979745543882602791947641 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.22 hours. Scaled time: 51.03 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_0_160_7 n: 10810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811 skew: 0.71 deg: 5 c5: 40 c0: 7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:250150, AFBsize:249831, largePrimes:7163858 encountered Relations: rels:6733578, finalFF:603451 Max relations in full relation-set: 28 Initial matrix: 500047 x 603451 with sparse part having weight 36708271. Pruned matrix : 409178 x 411742 with weight 20824560. Total sieving time: 31.18 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.64 hours. Total square root time: 0.20 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 35.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GMP-ECM, GGNFS
4·10159+7 = 4(0)1587<160> = 1759 · 665251 · 380206966797325875839<21> · C130
C130 = P35 · P96
P35 = 38552289465776278156018648781010077<35>
P96 = 233205275767539960164870481835449750381744466297103083038069953484504186782020869825210096921041<96>
2·10152-7 = 1(9)1513<153> = 43 · 204334865038223<15> · 16693847621802210188347<23> · C115
C115 = P54 · P61
P54 = 327984025003795812551523975755537204514529776773084171<54>
P61 = 4157286246714744149068820102379243249246807718475885348533501<61>
Number: 19993_152 N=1363523476290425092172349444739152306924486329874070738366011303585880390988622988895824915088159406187843686312671 ( 115 digits) SNFS difficulty: 152 digits. Divisors found: r1=327984025003795812551523975755537204514529776773084171 (pp54) r2=4157286246714744149068820102379243249246807718475885348533501 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.90 hours. Scaled time: 33.88 units (timescale=2.131). Factorization parameters were as follows: n: 1363523476290425092172349444739152306924486329874070738366011303585880390988622988895824915088159406187843686312671 m: 2000000000000000000000000000000 c5: 25 c0: -28 skew: 1.02 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:176668, largePrimes:5516420 encountered Relations: rels:5423681, finalFF:472836 Max relations in full relation-set: 28 Initial matrix: 353034 x 472836 with sparse part having weight 41918739. Pruned matrix : 303636 x 305465 with weight 23920078. Total sieving time: 15.34 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.44 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 15.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
4·10160+7 = 4(0)1597<161> = 11 · 1136957848708636651<19> · C142
C142 = P35 · P108
P35 = 25817512708582211180172834678179339<35>
P108 = 123882095407939278236523043249249576804371883991910405477004505369234945547803086828965151030213745119507133<108>
By Yousuke Koide
101383+1 is divisible by 19106661240397987951762164436636893943<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / GMP-ECM
2·10189-3 = 1(9)1887<190> = 26515433818872756128486451063540368813<38> · C152
C152 = P35 · C118
P35 = 31618164809434211754592287712179187<35>
C118 = [2385583376282025837302025573831625807718996619292106854661488654167073439506823897959332181406320971559780911666433387<118>]
By Sinkiti Sibata / GGNFS
4·10144+7 = 4(0)1437<145> = 11 · 179 · 18849577301<11> · 752837899459199<15> · C117
C117 = P35 · P82
P35 = 48338648874827112317609973195674549<35>
P82 = 2961533694098241796253566194687162650499134657877589080508209090117714412844440753<82>
Number: 40007_144 N=143156537369984557247257807124511565476769024965337464560184628079260630402615596072010099193813141404565420500495397 ( 117 digits) SNFS difficulty: 145 digits. Divisors found: r1=48338648874827112317609973195674549 (pp35) r2=2961533694098241796253566194687162650499134657877589080508209090117714412844440753 (pp82) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 13.12 hours. Scaled time: 8.96 units (timescale=0.683). Factorization parameters were as follows: name: 40007_144 n: 143156537369984557247257807124511565476769024965337464560184628079260630402615596072010099193813141404565420500495397 m: 100000000000000000000000000000 c5: 2 c0: 35 skew: 1.77 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1850001) Primes: RFBsize:100021, AFBsize:99918, largePrimes:2650465 encountered Relations: rels:2603751, finalFF:227166 Max relations in full relation-set: 0 Initial matrix: 200004 x 227166 with sparse part having weight 17999391. Pruned matrix : 191344 x 192408 with weight 13832480. Total sieving time: 12.00 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.91 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 13.12 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / PRIMO
(8·102090-53)/9 is prime!
By Robert Backstrom / GGNFS
4·10148+7 = 4(0)1477<149> = 11 · 23 · 2447 · C143
C143 = P66 · P78
P66 = 245114463615524143538086032433891970756683404064249115073005692163<66>
P78 = 263594632206945158216136499659187321494630614449650644664224883579346714068479<78>
Number: n N=64610856885336727557015043022754328523593462027391772776538505647796527489496697577577448226512742068613499469383337829172124938013959175630077 ( 143 digits) SNFS difficulty: 148 digits. Divisors found: r1=245114463615524143538086032433891970756683404064249115073005692163 (pp66) r2=263594632206945158216136499659187321494630614449650644664224883579346714068479 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.66 hours. Scaled time: 8.43 units (timescale=0.723). Factorization parameters were as follows: name: KA_4_0_147_7 n: 64610856885336727557015043022754328523593462027391772776538505647796527489496697577577448226512742068613499469383337829172124938013959175630077 skew: 0.56 deg: 5 c5: 125 c0: 7 m: 200000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:148933, AFBsize:148595, largePrimes:6600171 encountered Relations: rels:5970160, finalFF:355083 Max relations in full relation-set: 28 Initial matrix: 297593 x 355083 with sparse part having weight 26405611. Pruned matrix : 257089 x 258640 with weight 16503342. Total sieving time: 7.87 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.09 hours. Total square root time: 0.47 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 11.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS
4·10157+7 = 4(0)1567<158> = 17 · 19875157 · 1469183047<10> · 42169567669<11> · 46007753657<11> · 292957231827292399177<21> · C99
C99 = P40 · P59
P40 = 8814970410242325051502600691310445528441<40>
P59 = 16083084130339877401016180137996623124776743395012266452129<59>
Number: 40007_157 N=141771910714383936723190602488517820827004390019966573920874057536635436839306793283547283634500889 ( 99 digits) Divisors found: r1=8814970410242325051502600691310445528441 (pp40) r2=16083084130339877401016180137996623124776743395012266452129 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.05 hours. Scaled time: 6.54 units (timescale=2.142). Factorization parameters were as follows: name: 40007_157 n: 141771910714383936723190602488517820827004390019966573920874057536635436839306793283547283634500889 skew: 4008.53 # norm 3.45e+13 c5: 21960 c4: -71874162 c3: -4406460702773 c2: 2450429555282521 c1: 12809475412520706169 c0: 5116825832921210112837 # alpha -5.07 Y1: 14932061617 Y0: -5780858056141522292 # Murphy_E 4.14e-09 # M 88781377175097529873633494690642072436766223929986758768355796430593531738087159338827855254497350 type: gnfs rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [650000, 1050001) Primes: RFBsize:100021, AFBsize:99853, largePrimes:3742855 encountered Relations: rels:3574058, finalFF:242656 Max relations in full relation-set: 28 Initial matrix: 199952 x 242656 with sparse part having weight 17822918. Pruned matrix : 173035 x 174098 with weight 10123182. Polynomial selection time: 0.23 hours. Total sieving time: 2.58 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.14 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,26,26,48,48,2.5,2.5,50000 total time: 3.05 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
3·10184-1 = 2(9)184<185> = C185
C185 = P62 · P124
P62 = 10073641022189321360228001328707180659381468877455557544719139<62>
P124 = 2978069194040036330503581914737461793403041082476154833888528931755723356899703483852214198475678536123147506448805613562741<124>
Number: 29999_184 N=29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 185 digits) SNFS difficulty: 185 digits. Divisors found: r1=10073641022189321360228001328707180659381468877455557544719139 (pp62) r2=2978069194040036330503581914737461793403041082476154833888528931755723356899703483852214198475678536123147506448805613562741 (pp124) Version: GGNFS-0.77.1-20050930-nocona Total time: 343.63 hours. Scaled time: 729.87 units (timescale=2.124). Factorization parameters were as follows: n: 29999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 10000000000000000000000000000000000000 c5: 3 c0: -10 skew: 1.27 type: snfs Factor base limits: 11000000/11000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5500000, 11100001) Primes: RFBsize:726517, AFBsize:727028, largePrimes:11282043 encountered Relations: rels:11683743, finalFF:1645813 Max relations in full relation-set: 28 Initial matrix: 1453610 x 1645813 with sparse part having weight 94399149. Pruned matrix : 1285739 x 1293071 with weight 69947957. Total sieving time: 331.30 hours. Total relation processing time: 0.39 hours. Matrix solve time: 11.81 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,11000000,11000000,28,28,50,50,2.6,2.6,100000 total time: 343.63 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
By Sinkiti Sibata / GGNFS
4·10143+7 = 4(0)1427<144> = 37 · 43 · 2953 · 85208610560597464386908162003<29> · C108
C108 = P31 · P78
P31 = 1000749795659211467211625369787<31>
P78 = 998429423289612292605918747746093298336322693193270765403387192272005415284169<78>
Number: 40007_143 N=999178041337223852488855483773425882364042283838812522867286562602400394959670087123679083063501766312002003 ( 108 digits) SNFS difficulty: 143 digits. Divisors found: r1=1000749795659211467211625369787 (pp31) r2=998429423289612292605918747746093298336322693193270765403387192272005415284169 (pp78) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.96 hours. Scaled time: 8.85 units (timescale=0.683). Factorization parameters were as follows: name: 40007_143 n: 999178041337223852488855483773425882364042283838812522867286562602400394959670087123679083063501766312002003 m: 20000000000000000000000000000 c5: 125 c0: 7 skew: 0.56 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1850001) Primes: RFBsize:100021, AFBsize:99858, largePrimes:2670610 encountered Relations: rels:2631232, finalFF:227950 Max relations in full relation-set: 0 Initial matrix: 199944 x 227950 with sparse part having weight 17712373. Pruned matrix : 190831 x 191894 with weight 13565004. Total sieving time: 11.85 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.90 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 12.96 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
5·10182-3 = 4(9)1817<183> = 72 · C182
C182 = P47 · P135
P47 = 29770834642130994832881614532449420836505709773<47>
P135 = 342754301493868147025468004954466202887529212100972680571593317530253611454746160580734860582053102922819500742588146493363342762650561<135>
Number: n N=10204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653 ( 182 digits) SNFS difficulty: 182 digits. Divisors found: r1=29770834642130994832881614532449420836505709773 (pp47) r2=342754301493868147025468004954466202887529212100972680571593317530253611454746160580734860582053102922819500742588146493363342762650561 (pp135) Version: GGNFS-0.77.1-20051202-athlon Total time: 526.30 hours. Scaled time: 759.46 units (timescale=1.443). Factorization parameters were as follows: name: KA_4_9_181_7 n: 10204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653061224489795918367346938775510204081632653 skew: 1.36 deg: 5 c5: 500 c0: -3 m: 1000000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 7900001) Primes: RFBsize:283146, AFBsize:282917, largePrimes:9091651 encountered Relations: rels:8782511, finalFF:640766 Max relations in full relation-set: 28 Initial matrix: 566129 x 640766 with sparse part having weight 83377454. Pruned matrix : 535642 x 538536 with weight 69043920. Total sieving time: 508.12 hours. Total relation processing time: 0.68 hours. Matrix solve time: 17.38 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 526.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS
4·10139+7 = 4(0)1387<140> = 47 · 59 · 61 · 7229 · 8623 · 10837 · C123
C123 = P50 · P74
P50 = 31986300717986806917050274578788541806841309083879<50>
P74 = 10943861459545403346659982155635581621711169730625226161155822473142568559<74>
Number: 40007_139 N=350053643661005279748843704503251430769753790262193682777340431379729126555588061839938125103056209629639011990529239160361 ( 123 digits) SNFS difficulty: 140 digits. Divisors found: r1=31986300717986806917050274578788541806841309083879 (pp50) r2=10943861459545403346659982155635581621711169730625226161155822473142568559 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 8.92 hours. Scaled time: 6.09 units (timescale=0.683). Factorization parameters were as follows: name: 40007_139 n: 350053643661005279748843704503251430769753790262193682777340431379729126555588061839938125103056209629639011990529239160361 m: 10000000000000000000000000000 c5: 2 c0: 35 skew: 1.77 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1300001) Primes: RFBsize:78498, AFBsize:63938, largePrimes:1494045 encountered Relations: rels:1474401, finalFF:159762 Max relations in full relation-set: 0 Initial matrix: 142501 x 159762 with sparse part having weight 13322206. Pruned matrix : 137478 x 138254 with weight 9904526. Total sieving time: 8.38 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.40 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.92 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
3·10151+7 = 3(0)1507<152> = 37 · 73 · 1244863 · 20628811590269<14> · C129
C129 = P64 · P66
P64 = 1197832543309205649377891301884244716228803440401897936550987217<64>
P66 = 361081131072503212385537651948543045335365693158346674560705560593<66>
Number: n N=432514729573541165878814502602851075559541863386033196591231623575925857266862190179793058170814822307811485963457490435561939681 ( 129 digits) SNFS difficulty: 151 digits. Divisors found: r1=1197832543309205649377891301884244716228803440401897936550987217 (pp64) r2=361081131072503212385537651948543045335365693158346674560705560593 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.46 hours. Scaled time: 32.81 units (timescale=1.195). Factorization parameters were as follows: name: KA_3_0_150_7 n: 432514729573541165878814502602851075559541863386033196591231623575925857266862190179793058170814822307811485963457490435561939681 type: snfs skew: 1.00 deg: 5 c5: 30 c0: 7 m: 1000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:148933, AFBsize:148635, largePrimes:6069369 encountered Relations: rels:5430747, finalFF:346854 Max relations in full relation-set: 28 Initial matrix: 297635 x 346854 with sparse part having weight 25044237. Pruned matrix : 262468 x 264020 with weight 16394510. Total sieving time: 25.39 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.78 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 27.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS
4·10140+7 = 4(0)1397<141> = 11 · 37 · 84263 · 21289799939<11> · 339012053851<12> · 5722935804716380853<19> · C93
C93 = P39 · P55
P39 = 246523695335114998234346215684034044871<39>
P55 = 1145419047714673326600757462103639786711752383269528461<55>
Number: 40007_140 N=282372936349849676344049794975421655211442692035412953083742345621409096950554935978685573531 ( 93 digits) SNFS difficulty: 140 digits. Divisors found: r1=246523695335114998234346215684034044871 (pp39) r2=1145419047714673326600757462103639786711752383269528461 (pp55) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 8.01 hours. Scaled time: 5.47 units (timescale=0.683). Factorization parameters were as follows: n: 282372936349849676344049794975421655211442692035412953083742345621409096950554935978685573531 m: 10000000000000000000000000000 c5: 4 c0: 7 skew: 1.12 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1350001) Primes: RFBsize:100021, AFBsize:100128, largePrimes:2522999 encountered Relations: rels:2447285, finalFF:225591 Max relations in full relation-set: 0 Initial matrix: 200213 x 225591 with sparse part having weight 13214244. Pruned matrix : 190912 x 191977 with weight 9721443. Total sieving time: 7.15 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.69 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 8.01 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
4·10132+7 = 4(0)1317<133> = 11 · 1383665436911<13> · 15993881312447791<17> · C104
C104 = P42 · P63
P42 = 105178237608324529255932346205701327687403<42>
P63 = 156227130243012416024084470042988923198135605773570637061345279<63>
Number: 40007_132 N=16431694225566222948609513601281972899576566543250776087667169652945304700613585557818414923365161820437 ( 104 digits) SNFS difficulty: 132 digits. Divisors found: r1=105178237608324529255932346205701327687403 (pp42) r2=156227130243012416024084470042988923198135605773570637061345279 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.47 hours. Scaled time: 5.23 units (timescale=2.118). Factorization parameters were as follows: n: 16431694225566222948609513601281972899576566543250776087667169652945304700613585557818414923365161820437 m: 200000000000000000000000000 c5: 25 c0: 14 skew: 0.89 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78371, largePrimes:1569406 encountered Relations: rels:1611834, finalFF:216226 Max relations in full relation-set: 28 Initial matrix: 156933 x 216226 with sparse part having weight 10703211. Pruned matrix : 133627 x 134475 with weight 5265424. Total sieving time: 2.38 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 2.47 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
4·10133+7 = 4(0)1327<134> = 103 · 139 · 581182594323229533763<21> · C109
C109 = P35 · P75
P35 = 26266897688914103600761963556264623<35>
P75 = 183014957204357914443774593629154442488846573682381077826399652046581216079<75>
Number: 40007_133 N=4807235156427862477801484912313373050636771228697485220905861647175509857379509740170422840569881678066473217 ( 109 digits) SNFS difficulty: 135 digits. Divisors found: r1=26266897688914103600761963556264623 (pp35) r2=183014957204357914443774593629154442488846573682381077826399652046581216079 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.48 hours. Scaled time: 5.32 units (timescale=2.144). Factorization parameters were as follows: n: 4807235156427862477801484912313373050636771228697485220905861647175509857379509740170422840569881678066473217 m: 1000000000000000000000000000 c5: 1 c0: 175 skew: 2.81 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 47/47 Sieved algebraic special-q in [700000, 1100001) Primes: RFBsize:107126, AFBsize:107108, largePrimes:2183290 encountered Relations: rels:2279537, finalFF:274333 Max relations in full relation-set: 28 Initial matrix: 214298 x 274333 with sparse part having weight 17720307. Pruned matrix : 182909 x 184044 with weight 9107441. Total sieving time: 2.27 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,47,47,2.3,2.3,50000 total time: 2.48 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
By Jo Yeong Uk / GMP-ECM, GGNFS, Msieve
4·10142+7 = 4(0)1417<143> = 11 · 128425333 · 330484919 · 1110686627<10> · C116
C116 = P31 · P86
P31 = 2229599509718725418315923215401<31>
P86 = 34597646459065868838026205405922156262284783213861761567480768713986485734911023224453<86>
4·10105+7 = 4(0)1047<106> = C106
C106 = P37 · P70
P37 = 1043329248228030997017608973380352553<37>
P70 = 3833880826012994445256424591562881885990352920890139603449554354425519<70>
Number: 40007_105 N=4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 106 digits) SNFS difficulty: 105 digits. Divisors found: r1=1043329248228030997017608973380352553 (pp37) r2=3833880826012994445256424591562881885990352920890139603449554354425519 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.37 hours. Scaled time: 0.79 units (timescale=2.144). Factorization parameters were as follows: n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 m: 1000000000000000000000 c5: 4 c0: 7 skew: 1.12 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 240001) Primes: RFBsize:30757, AFBsize:30779, largePrimes:1084096 encountered Relations: rels:1048724, finalFF:128939 Max relations in full relation-set: 28 Initial matrix: 61600 x 128939 with sparse part having weight 5037821. Pruned matrix : 40561 x 40933 with weight 1175515. Total sieving time: 0.35 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
4·10117+7 = 4(0)1167<118> = 3372533359686783953<19> · C100
C100 = P46 · P54
P46 = 7571231308415109663829195119389645559083504639<46>
P54 = 156652461213639440290493125833595279391925366872158121<54>
Number: 40007_117 N=1186052018880990557463388064411320977047917277971455374837039249136844921468320398869036762045023319 ( 100 digits) SNFS difficulty: 117 digits. Divisors found: r1=7571231308415109663829195119389645559083504639 (pp46) r2=156652461213639440290493125833595279391925366872158121 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.85 hours. Scaled time: 1.81 units (timescale=2.142). Factorization parameters were as follows: n: 1186052018880990557463388064411320977047917277971455374837039249136844921468320398869036762045023319 m: 200000000000000000000000 c5: 25 c0: 14 skew: 0.89 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49126, largePrimes:2081921 encountered Relations: rels:2247563, finalFF:299949 Max relations in full relation-set: 28 Initial matrix: 98288 x 299949 with sparse part having weight 25856697. Pruned matrix : 64697 x 65252 with weight 4307300. Total sieving time: 0.80 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.85 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
4·10130+7 = 4(0)1297<131> = 11 · 1444520412397380043861<22> · C109
C109 = P36 · P73
P36 = 408504680191109431162215803581538597<36>
P73 = 6162353197057531640657105318413959662898339394094871838459411864184198861<73>
Number: 40007_130 N=2517350121988647718566832619749419527856760925822505300539585253388798073057602635805421866091633938194938017 ( 109 digits) SNFS difficulty: 130 digits. Divisors found: r1=408504680191109431162215803581538597 (pp36) r2=6162353197057531640657105318413959662898339394094871838459411864184198861 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.80 hours. Scaled time: 3.85 units (timescale=2.143). Factorization parameters were as follows: n: 2517350121988647718566832619749419527856760925822505300539585253388798073057602635805421866091633938194938017 m: 100000000000000000000000000 c5: 4 c0: 7 skew: 1.12 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78491, largePrimes:1505533 encountered Relations: rels:1534239, finalFF:204166 Max relations in full relation-set: 28 Initial matrix: 157053 x 204166 with sparse part having weight 9603809. Pruned matrix : 132553 x 133402 with weight 4860764. Total sieving time: 1.72 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,46,46,2.2,2.2,50000 total time: 1.80 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405124) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405117) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Total of 4 processors activated (19246.10 BogoMIPS).
4·10127+7 = 4(0)1267<128> = 606497 · 2268865117<10> · 211856473010664580779859<24> · C90
C90 = P39 · P51
P39 = 377275926509092007527238672431385514979<39>
P51 = 363682014571282571218438761205122109617347029045963<51>
Mon Sep 10 22:32:35 2007 Mon Sep 10 22:32:35 2007 Mon Sep 10 22:32:35 2007 Msieve v. 1.25 Mon Sep 10 22:32:35 2007 random seeds: 1cdda497 27465ce9 Mon Sep 10 22:32:35 2007 factoring 137208469002073731963742143203405569527855447772540937594569482584938095837884419815979777 (90 digits) Mon Sep 10 22:32:35 2007 commencing quadratic sieve (89-digit input) Mon Sep 10 22:32:35 2007 using multiplier of 1 Mon Sep 10 22:32:35 2007 using 32kb Intel Core sieve core Mon Sep 10 22:32:35 2007 sieve interval: 35 blocks of size 32768 Mon Sep 10 22:32:35 2007 processing polynomials in batches of 6 Mon Sep 10 22:32:35 2007 using a sieve bound of 1565341 (59667 primes) Mon Sep 10 22:32:35 2007 using large prime bound of 125227280 (26 bits) Mon Sep 10 22:32:35 2007 using double large prime bound of 376580721415840 (42-49 bits) Mon Sep 10 22:32:35 2007 using trial factoring cutoff of 49 bits Mon Sep 10 22:32:35 2007 polynomial 'A' values have 11 factors Mon Sep 10 23:20:35 2007 59861 relations (16019 full + 43842 combined from 631769 partial), need 59763 Mon Sep 10 23:20:36 2007 begin with 647788 relations Mon Sep 10 23:20:36 2007 reduce to 145237 relations in 10 passes Mon Sep 10 23:20:36 2007 attempting to read 145237 relations Mon Sep 10 23:20:37 2007 recovered 145237 relations Mon Sep 10 23:20:37 2007 recovered 120863 polynomials Mon Sep 10 23:20:37 2007 attempting to build 59861 cycles Mon Sep 10 23:20:37 2007 found 59861 cycles in 6 passes Mon Sep 10 23:20:38 2007 distribution of cycle lengths: Mon Sep 10 23:20:38 2007 length 1 : 16019 Mon Sep 10 23:20:38 2007 length 2 : 11430 Mon Sep 10 23:20:38 2007 length 3 : 10659 Mon Sep 10 23:20:38 2007 length 4 : 7965 Mon Sep 10 23:20:38 2007 length 5 : 5631 Mon Sep 10 23:20:38 2007 length 6 : 3573 Mon Sep 10 23:20:38 2007 length 7 : 2094 Mon Sep 10 23:20:38 2007 length 9+: 2490 Mon Sep 10 23:20:38 2007 largest cycle: 18 relations Mon Sep 10 23:20:38 2007 matrix is 59667 x 59861 with weight 3591214 (avg 59.99/col) Mon Sep 10 23:20:38 2007 filtering completed in 3 passes Mon Sep 10 23:20:38 2007 matrix is 55719 x 55783 with weight 3372987 (avg 60.47/col) Mon Sep 10 23:20:39 2007 saving the first 48 matrix rows for later Mon Sep 10 23:20:39 2007 matrix is 55671 x 55783 with weight 2801744 (avg 50.23/col) Mon Sep 10 23:20:39 2007 matrix includes 64 packed rows Mon Sep 10 23:20:39 2007 using block size 22313 for processor cache size 4096 kB Mon Sep 10 23:20:39 2007 commencing Lanczos iteration Mon Sep 10 23:20:58 2007 lanczos halted after 882 iterations Mon Sep 10 23:20:58 2007 recovered 14 nontrivial dependencies Mon Sep 10 23:20:58 2007 prp39 factor: 377275926509092007527238672431385514979 Mon Sep 10 23:20:58 2007 prp51 factor: 363682014571282571218438761205122109617347029045963 Mon Sep 10 23:20:58 2007 elapsed time 00:48:23
By suberi / GMP-ECM
2·10180-3 = 1(9)1797<181> = 2593 · 51067720369<11> · 2039081640448510323571<22> · C145
C145 = P33 · C113
P33 = 112032125257256292325042410655727<33>
C113 = [66115580929239593359723808855458909629091457719484972084609617544199525101235044807799431332453896293536909365073<113>]
By Sinkiti Sibata / GGNFS, Msieve
3·10160+7 = 3(0)1597<161> = 19 · 37 · 5987 · 190783 · 2301583954628587<16> · 30214589326193078803<20> · C114
C114 = P39 · P76
P39 = 168821492926505124753835321037510889107<39>
P76 = 3182333894509189879957908738033612846872644789961813377047250471481774358607<76>
Number: 30007_160 N=537246359061660705186390632240506481498326672090893936382168433356729665263223577193112313073083261784303227993949 ( 114 digits) SNFS difficulty: 160 digits. Divisors found: r1=168821492926505124753835321037510889107 (pp39) r2=3182333894509189879957908738033612846872644789961813377047250471481774358607 (pp76) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 62.61 hours. Scaled time: 42.82 units (timescale=0.684). Factorization parameters were as follows: name: 30007_160 n: 537246359061660705186390632240506481498326672090893936382168433356729665263223577193112313073083261784303227993949 m: 100000000000000000000000000000000 c5: 3 c0: 7 skew: 1.18 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282807, largePrimes:5650728 encountered Relations: rels:5709851, finalFF:639843 Max relations in full relation-set: 0 Initial matrix: 566018 x 639843 with sparse part having weight 34788105. Pruned matrix : 505676 x 508570 with weight 25305535. Total sieving time: 53.13 hours. Total relation processing time: 0.27 hours. Matrix solve time: 9.00 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 62.61 hours. --------- CPU info (if available) ----------
4·10102+7 = 4(0)1017<103> = 112 · C101
C101 = P46 · P56
P46 = 2585280752085942635036731470745668477195362783<46>
P56 = 12786948269736886765489577885313149519498166924858577249<56>
Number: 40007_102 N=33057851239669421487603305785123966942148760330578512396694214876033057851239669421487603305785123967 ( 101 digits) SNFS difficulty: 102 digits. Divisors found: r1=2585280752085942635036731470745668477195362783 (pp46) r2=12786948269736886765489577885313149519498166924858577249 (pp56) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 0.61 hours. Scaled time: 0.42 units (timescale=0.683). Factorization parameters were as follows: name: 40007_102 n: 33057851239669421487603305785123966942148760330578512396694214876033057851239669421487603305785123967 m: 200000000000000000000 c5: 25 c0: 14 skew: 0.89 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 290001) Primes: RFBsize:37706, AFBsize:41617, largePrimes:1013476 encountered Relations: rels:951414, finalFF:91482 Max relations in full relation-set: 0 Initial matrix: 79387 x 91482 with sparse part having weight 2362982. Pruned matrix : 65477 x 65937 with weight 1513258. Total sieving time: 0.53 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.61 hours. --------- CPU info (if available) ----------
4·10136+7 = 4(0)1357<137> = 11 · 79 · 113 · 151 · 967 · 8035637264791904171821<22> · 151132305869278356285433<24> · C82
C82 = P41 · P42
P41 = 13843131922546324190310604226546490969103<41>
P42 = 165938194222088675576956806070665609433217<42>
Mon Sep 10 12:56:10 2007 Mon Sep 10 12:56:10 2007 Mon Sep 10 12:56:10 2007 Msieve v. 1.26 Mon Sep 10 12:56:10 2007 random seeds: ae13a040 ea7e6816 Mon Sep 10 12:56:10 2007 factoring 2297104313605487751994058909995621445226670899397396722147182347374454856888894351 (82 digits) Mon Sep 10 12:56:11 2007 commencing quadratic sieve (82-digit input) Mon Sep 10 12:56:11 2007 using multiplier of 1 Mon Sep 10 12:56:11 2007 using 64kb Pentium 2 sieve core Mon Sep 10 12:56:11 2007 sieve interval: 6 blocks of size 65536 Mon Sep 10 12:56:11 2007 processing polynomials in batches of 17 Mon Sep 10 12:56:11 2007 using a sieve bound of 1338397 (51471 primes) Mon Sep 10 12:56:11 2007 using large prime bound of 125809318 (26 bits) Mon Sep 10 12:56:11 2007 using trial factoring cutoff of 27 bits Mon Sep 10 12:56:11 2007 polynomial 'A' values have 10 factors Mon Sep 10 14:47:10 2007 51608 relations (26063 full + 25545 combined from 276098 partial), need 51567 Mon Sep 10 14:47:12 2007 begin with 302161 relations Mon Sep 10 14:47:12 2007 reduce to 73959 relations in 2 passes Mon Sep 10 14:47:12 2007 attempting to read 73959 relations Mon Sep 10 14:47:15 2007 recovered 73959 relations Mon Sep 10 14:47:15 2007 recovered 65324 polynomials Mon Sep 10 14:47:15 2007 attempting to build 51608 cycles Mon Sep 10 14:47:15 2007 found 51608 cycles in 1 passes Mon Sep 10 14:47:15 2007 distribution of cycle lengths: Mon Sep 10 14:47:15 2007 length 1 : 26063 Mon Sep 10 14:47:15 2007 length 2 : 25545 Mon Sep 10 14:47:15 2007 largest cycle: 2 relations Mon Sep 10 14:47:16 2007 matrix is 51471 x 51608 with weight 1602662 (avg 31.05/col) Mon Sep 10 14:47:19 2007 filtering completed in 4 passes Mon Sep 10 14:47:19 2007 matrix is 44265 x 44329 with weight 1349414 (avg 30.44/col) Mon Sep 10 14:47:21 2007 saving the first 48 matrix rows for later Mon Sep 10 14:47:21 2007 matrix is 44217 x 44329 with weight 1066574 (avg 24.06/col) Mon Sep 10 14:47:21 2007 matrix includes 64 packed rows Mon Sep 10 14:47:21 2007 commencing Lanczos iteration Mon Sep 10 14:50:30 2007 lanczos halted after 700 iterations Mon Sep 10 14:50:31 2007 recovered 5 nontrivial dependencies Mon Sep 10 14:50:32 2007 prp41 factor: 13843131922546324190310604226546490969103 Mon Sep 10 14:50:32 2007 prp42 factor: 165938194222088675576956806070665609433217 Mon Sep 10 14:50:32 2007 elapsed time 01:54:22
4·10120+7 = 4(0)1197<121> = 11 · 1250831 · 51158077863472778717<20> · C94
C94 = P41 · P54
P41 = 16163441146585422712119803589901420539893<41>
P54 = 351577137058775393064141868807182275859318715677825467<54>
Number: 40007_120 N=5682696363334512849721537896612724909471809965504303562702985349408048099863665858911364855031 ( 94 digits) SNFS difficulty: 120 digits. Divisors found: r1=16163441146585422712119803589901420539893 (pp41) r2=351577137058775393064141868807182275859318715677825467 (pp54) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.14 hours. Scaled time: 1.46 units (timescale=0.683). Factorization parameters were as follows: name: 40007_120 n: 5682696363334512849721537896612724909471809965504303562702985349408048099863665858911364855031 m: 1000000000000000000000000 c5: 4 c0: 7 skew: 1.12 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63998, largePrimes:2233386 encountered Relations: rels:2497504, finalFF:145478 Max relations in full relation-set: 0 Initial matrix: 113160 x 145478 with sparse part having weight 5118153. Pruned matrix : 93207 x 93836 with weight 3055007. Total sieving time: 1.96 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.14 hours. --------- CPU info (if available) ----------
4·10106+7 = 4(0)1057<107> = 11 · 11887 · 96607700155906921<17> · C85
C85 = P35 · P50
P35 = 64819024777953578883539736640240237<35>
P50 = 48851826656369687093848975611401730998510732736463<50>
Mon Sep 10 12:52:04 2007 Msieve v. 1.26 Mon Sep 10 12:52:04 2007 random seeds: d51dc9a3 8d7922ad Mon Sep 10 12:52:04 2007 factoring 3166527762487519882929791626294636973417702535337351459863375266451834768004729661731 (85 digits) Mon Sep 10 12:52:05 2007 commencing quadratic sieve (85-digit input) Mon Sep 10 12:52:06 2007 using multiplier of 1 Mon Sep 10 12:52:06 2007 using 64kb Pentium 2 sieve core Mon Sep 10 12:52:06 2007 sieve interval: 6 blocks of size 65536 Mon Sep 10 12:52:06 2007 processing polynomials in batches of 17 Mon Sep 10 12:52:06 2007 using a sieve bound of 1426129 (54070 primes) Mon Sep 10 12:52:06 2007 using large prime bound of 116942578 (26 bits) Mon Sep 10 12:52:06 2007 using trial factoring cutoff of 27 bits Mon Sep 10 12:52:06 2007 polynomial 'A' values have 11 factors Mon Sep 10 16:46:56 2007 Mon Sep 10 16:46:56 2007 Mon Sep 10 16:46:56 2007 Msieve v. 1.26 Mon Sep 10 16:46:57 2007 random seeds: 2317f812 12a05399 Mon Sep 10 16:46:57 2007 factoring 3166527762487519882929791626294636973417702535337351459863375266451834768004729661731 (85 digits) Mon Sep 10 16:46:57 2007 commencing quadratic sieve (85-digit input) Mon Sep 10 16:46:58 2007 using multiplier of 1 Mon Sep 10 16:46:58 2007 using 64kb Pentium 2 sieve core Mon Sep 10 16:46:58 2007 sieve interval: 6 blocks of size 65536 Mon Sep 10 16:46:58 2007 processing polynomials in batches of 17 Mon Sep 10 16:46:58 2007 using a sieve bound of 1426129 (54070 primes) Mon Sep 10 16:46:58 2007 using large prime bound of 116942578 (26 bits) Mon Sep 10 16:46:58 2007 using trial factoring cutoff of 27 bits Mon Sep 10 16:46:58 2007 polynomial 'A' values have 11 factors Mon Sep 10 16:47:01 2007 restarting with 21856 full and 243609 partial relations Mon Sep 10 17:26:58 2007 54200 relations (26099 full + 28101 combined from 290676 partial), need 54166 Mon Sep 10 17:27:01 2007 begin with 316775 relations Mon Sep 10 17:27:01 2007 reduce to 78679 relations in 2 passes Mon Sep 10 17:27:01 2007 attempting to read 78679 relations Mon Sep 10 17:27:05 2007 recovered 78679 relations Mon Sep 10 17:27:05 2007 recovered 75104 polynomials Mon Sep 10 17:27:06 2007 attempting to build 54200 cycles Mon Sep 10 17:27:06 2007 found 54200 cycles in 1 passes Mon Sep 10 17:27:06 2007 distribution of cycle lengths: Mon Sep 10 17:27:06 2007 length 1 : 26099 Mon Sep 10 17:27:06 2007 length 2 : 28101 Mon Sep 10 17:27:06 2007 largest cycle: 2 relations Mon Sep 10 17:27:06 2007 matrix is 54070 x 54200 with weight 1761587 (avg 32.50/col) Mon Sep 10 17:27:08 2007 filtering completed in 3 passes Mon Sep 10 17:27:08 2007 matrix is 42387 x 42451 with weight 1482165 (avg 34.91/col) Mon Sep 10 17:27:10 2007 saving the first 48 matrix rows for later Mon Sep 10 17:27:10 2007 matrix is 42339 x 42451 with weight 1055687 (avg 24.87/col) Mon Sep 10 17:27:10 2007 matrix includes 64 packed rows Mon Sep 10 17:27:10 2007 commencing Lanczos iteration Mon Sep 10 17:29:38 2007 lanczos halted after 670 iterations Mon Sep 10 17:29:39 2007 recovered 17 nontrivial dependencies Mon Sep 10 17:29:40 2007 prp35 factor: 64819024777953578883539736640240237 Mon Sep 10 17:29:40 2007 prp50 factor: 48851826656369687093848975611401730998510732736463 Mon Sep 10 17:29:40 2007 elapsed time 00:42:43
4·10123+7 = 4(0)1227<124> = 67 · 79 · 1459 · 2333 · 19949 · 33829 · 46451 · C100
C100 = P45 · P55
P45 = 893003465557677469001745507020861686789619767<45>
P55 = 7931029477391238937468273562091619341494204808802031281<55>
Number: 40007_123 N=7082436808750471977331869139572712189502812999808595720773130522724928764839469912722939255229931527 ( 100 digits) SNFS difficulty: 123 digits. Divisors found: r1=893003465557677469001745507020861686789619767 (pp45) r2=7931029477391238937468273562091619341494204808802031281 (pp55) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.59 hours. Scaled time: 1.77 units (timescale=0.683). Factorization parameters were as follows: name: 40007_123 n: 7082436808750471977331869139572712189502812999808595720773130522724928764839469912722939255229931527 m: 2000000000000000000000000 c5: 125 c0: 7 skew: 0.56 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63758, largePrimes:2177651 encountered Relations: rels:2321280, finalFF:137515 Max relations in full relation-set: 0 Initial matrix: 112921 x 137515 with sparse part having weight 6377289. Pruned matrix : 100907 x 101535 with weight 4197773. Total sieving time: 2.36 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.12 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.59 hours. --------- CPU info (if available) ----------
4·10124+7 = 4(0)1237<125> = 113 · 29 · 709 · 1801 · 2531 · 260722306516963<15> · C97
C97 = P47 · P50
P47 = 67816150798627989304720548529530399180885482189<47>
P50 = 18135123580998002481347196781299085919725495181681<50>
Number: 40007_124 N=1229854275520714967260471838947950713893193162791736456300050444358471249630604163174163844579709 ( 97 digits) SNFS difficulty: 125 digits. Divisors found: r1=67816150798627989304720548529530399180885482189 (pp47) r2=18135123580998002481347196781299085919725495181681 (pp50) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.58 hours. Scaled time: 1.76 units (timescale=0.683). Factorization parameters were as follows: name: 40007_124 n: 1229854275520714967260471838947950713893193162791736456300050444358471249630604163174163844579709 m: 10000000000000000000000000 c5: 2 c0: 35 skew: 1.77 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63938, largePrimes:2187471 encountered Relations: rels:2353021, finalFF:136777 Max relations in full relation-set: 0 Initial matrix: 113101 x 136777 with sparse part having weight 5875625. Pruned matrix : 100625 x 101254 with weight 3925534. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.58 hours. --------- CPU info (if available) ----------
The factor table of 400...007 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS
3·10144+7 = 3(0)1437<145> = 23 · 459383 · 128248879471<12> · 1352119565902402853<19> · C109
C109 = P42 · P67
P42 = 412360496428279684134266762455314955302583<42>
P67 = 3970752049300281989132003305040428926587105565745390502436467127587<67>
Number: n N=1637381286243073167428156705928812402202347963241767077546317363263128053960163775922772278248987696451657221 ( 109 digits) SNFS difficulty: 145 digits. Divisors found: r1=412360496428279684134266762455314955302583 (pp42) r2=3970752049300281989132003305040428926587105565745390502436467127587 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 13.30 hours. Scaled time: 15.91 units (timescale=1.196). Factorization parameters were as follows: name: KA_3_0_143_7 n: 1637381286243073167428156705928812402202347963241767077546317363263128053960163775922772278248987696451657221 type: snfs skew: 1.00 deg: 5 c5: 3 c0: 70 m: 100000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:148933, AFBsize:148155, largePrimes:6391676 encountered Relations: rels:5742559, finalFF:361324 Max relations in full relation-set: 28 Initial matrix: 297153 x 361324 with sparse part having weight 25349389. Pruned matrix : 259545 x 261094 with weight 15462821. Total sieving time: 11.30 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.71 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 13.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Yousuke Koide
10911+1 is divisible by 12555609937128249776670687863910703<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
(16·10181-61)/9 = 1(7)1801<182> = 11 · C181
C181 = P84 · P97
P84 = 875423954337579283724570530051042761164622675183831303860786988601476587061520145977<84>
P97 = 1846147353123941432037361969644146179225690892776532016346590270070332318078159872250761970493993<97>
Number: n N=1616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161 ( 181 digits) SNFS difficulty: 182 digits. Divisors found: r1=875423954337579283724570530051042761164622675183831303860786988601476587061520145977 (pp84) r2=1846147353123941432037361969644146179225690892776532016346590270070332318078159872250761970493993 (pp97) Version: GGNFS-0.77.1-20051202-athlon Total time: 455.66 hours. Scaled time: 540.87 units (timescale=1.187). Factorization parameters were as follows: name: KA_1_7_180_1 n: 1616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161616161 type: snfs skew: 1.65 deg: 5 c5: 5 c0: -61 m: 2000000000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 5400001) Primes: RFBsize:283146, AFBsize:283778, largePrimes:8451586 encountered Relations: rels:8040019, finalFF:636287 Max relations in full relation-set: 28 Initial matrix: 566989 x 636287 with sparse part having weight 69987297. Pruned matrix : 537909 x 540807 with weight 56556721. Total sieving time: 440.13 hours. Total relation processing time: 0.50 hours. Matrix solve time: 14.43 hours. Total square root time: 0.60 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.6,2.6,100000 total time: 455.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
GMP-ECM 6.1.3 has been released.
By Sinkiti Sibata / GGNFS
3·10140+7 = 3(0)1397<141> = 886591 · 21345509 · C128
C128 = P57 · P71
P57 = 870020740547606992047908247418054629224598409723907992361<57>
P71 = 18220563960260903608607526139448840316782587407515464316476336274810173<71>
Number: 30007_140 N=15852268549901230174324386508028804607528286278559127718419294725472196231167351989448701028316117068813288359277306912809088453 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=870020740547606992047908247418054629224598409723907992361 (pp57) r2=18220563960260903608607526139448840316782587407515464316476336274810173 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.05 hours. Scaled time: 8.18 units (timescale=0.679). Factorization parameters were as follows: name: 30007_140 n: 15852268549901230174324386508028804607528286278559127718419294725472196231167351989448701028316117068813288359277306912809088453 m: 10000000000000000000000000000 c5: 3 c0: 7 skew: 1.18 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1675001) Primes: RFBsize:78498, AFBsize:63643, largePrimes:1566102 encountered Relations: rels:1559976, finalFF:160050 Max relations in full relation-set: 0 Initial matrix: 142206 x 160050 with sparse part having weight 15608362. Pruned matrix : 137606 x 138381 with weight 12130130. Total sieving time: 11.40 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.49 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.05 hours. --------- CPU info (if available) ----------
By Shaopu Lin
10610+1 is divisible by 27186363592392725942593454290345801336551729326489701011779461<62>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GMP-ECM
3·10171+7 = 3(0)1707<172> = C172
C172 = P44 · C128
P44 = 31620332097111024989233352721851562907652707<44>
C128 = [94875663885708949340722098875716958576811202800602452263648706419261724778781975587671373398601569684090092604704674588003973901<128>]
By Sinkiti Sibata / GGNFS
3·10138+7 = 3(0)1377<139> = 31 · 30347 · C133
C133 = P35 · P40 · P59
P35 = 27582727203473715137972750799973321<35>
P40 = 9338357328303256578758498008894337760073<40>
P59 = 12380440690635148293553334360514326357608119969517531812347<59>
Number: 30007_138 N=3188921262345111436853512649919160845999551425075763454324549272553911371374329396432872675940758346735660749800426677664901775910251 ( 133 digits) SNFS difficulty: 138 digits. Divisors found: r1=27582727203473715137972750799973321 (pp35) r2=9338357328303256578758498008894337760073 (pp40) r3=12380440690635148293553334360514326357608119969517531812347 (pp59) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 11.09 hours. Scaled time: 7.53 units (timescale=0.679). Factorization parameters were as follows: name: 30007_138 n: 3188921262345111436853512649919160845999551425075763454324549272553911371374329396432872675940758346735660749800426677664901775910251 m: 1000000000000000000000000000 c5: 3000 c0: 7 skew: 0.3 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1525001) Primes: RFBsize:78498, AFBsize:63898, largePrimes:1530665 encountered Relations: rels:1508359, finalFF:159826 Max relations in full relation-set: 0 Initial matrix: 142463 x 159826 with sparse part having weight 16585980. Pruned matrix : 138060 x 138836 with weight 12364485. Total sieving time: 10.41 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.52 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.09 hours. --------- CPU info (if available) ----------
By JMB / GGNFS
3·10174+7 = 3(0)1737<175> = 2131 · 2539 · 388785044783<12> · 372247744413533552867<21> · 3918018457203894704610101<25> · C111
C111 = P41 · P71
P41 = 83101205384307732797112639371594904845329<41>
P71 = 11766835380003014836384610732539311187782328395943642994305646727529367<71>
Number: N N=977838203636969263622248987068537357449295333609103753437784788553386921946103919242214810477100330081440276743 ( 111 digits) Divisors found: r1=83101205384307732797112639371594904845329 (pp41) r2=11766835380003014836384610732539311187782328395943642994305646727529367 (pp71) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 48.39 hours. Scaled time: 43.21 units (timescale=0.893). Factorization parameters were as follows: name: N n: 977838203636969263622248987068537357449295333609103753437784788553386921946103919242214810477100330081440276743 skew: 37355.45 # norm 3.46e+15 c5: 34020 c4: -62247927 c3: 40964358765630 c2: -919130756124140464 c1: -117696980178055287871024 c0: -943686829374413022658503360 # alpha -6.74 Y1: 512727852197 Y0: -1957521676766462803349 # Murphy_E 8.69e-10 # M 429058690311523254003492787243369289356028090221678835208754814859752251708490910300982484190538642312749052680 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 10000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1600000, 1900001) Relations: rels:7170449, finalFF:547721 Initial matrix: 460925 x 547721 with sparse part having weight 44666784. Pruned matrix : 422725 x 425093 with weight 25906024. Total sieving time: 40.38 hours. Total relation processing time: 0.41 hours. Matrix solve time: 7.33 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,10000 total time: 48.39 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
3·10152+7 = 3(0)1517<153> = 8347351 · 7811046197<10> · 858719673857<12> · 250559653015574120385408539<27> · C98
C98 = P39 · P59
P39 = 577938539278524803843369748270872920429<39>
P59 = 37001485905141343750684997572615954124281964070904019247443<59>
Number: 30007_152 N=21384584715152312399410371055118338529381577034286595544703207108885189504169973874072912200713047 ( 98 digits) SNFS difficulty: 152 digits. Divisors found: r1=577938539278524803843369748270872920429 (pp39) r2=37001485905141343750684997572615954124281964070904019247443 (pp59) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 36.57 hours. Scaled time: 24.97 units (timescale=0.683). Factorization parameters were as follows: name: 30007_152 n: 21384584715152312399410371055118338529381577034286595544703207108885189504169973874072912200713047 m: 1000000000000000000000000000000 c5: 300 c0: 7 skew: 0.47 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 4000000 ) Primes: RFBsize:176302, AFBsize:176433, largePrimes:5580476 encountered Relations: rels:5520272, finalFF:399263 Max relations in full relation-set: 0 Initial matrix: 352801 x 399263 with sparse part having weight 25768097. Pruned matrix : 328424 x 330252 with weight 19913239. Total sieving time: 33.78 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.40 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 36.57 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
3·10133+7 = 3(0)1327<134> = 37 · 29581 · C128
C128 = P38 · P90
P38 = 71206879090633339569010774993897538969<38>
P90 = 384932630573456592303493441248187029453637827755687637553671267379325800269120529793395199<90>
Number: 30007_133 N=27409851283283553997863858923322768358433143261242378919266110368507177269558527798614340651459072066894655718562956316920009831 ( 128 digits) SNFS difficulty: 134 digits. Divisors found: r1=71206879090633339569010774993897538969 (pp38) r2=384932630573456592303493441248187029453637827755687637553671267379325800269120529793395199 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.83 hours. Scaled time: 6.02 units (timescale=2.128). Factorization parameters were as follows: n: 27409851283283553997863858923322768358433143261242378919266110368507177269558527798614340651459072066894655718562956316920009831 m: 200000000000000000000000000 c5: 375 c0: 28 skew: 0.6 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:107333, largePrimes:1824277 encountered Relations: rels:1912873, finalFF:260803 Max relations in full relation-set: 28 Initial matrix: 214526 x 260803 with sparse part having weight 13896029. Pruned matrix : 187120 x 188256 with weight 7957202. Total sieving time: 2.68 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 2.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Total of 4 processors activated (19246.11 BogoMIPS).
3·10136+7 = 3(0)1357<137> = 37 · C135
C135 = P46 · P90
P46 = 6556535936327394866605979149660371778651962509<46>
P90 = 123664511059628497811157288760274150729201758246527989892496823924203364385516946923141479<90>
Number: 30007_136 N=810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811 ( 135 digits) SNFS difficulty: 136 digits. Divisors found: r1=6556535936327394866605979149660371778651962509 (pp46) r2=123664511059628497811157288760274150729201758246527989892496823924203364385516946923141479 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.25 hours. Scaled time: 9.13 units (timescale=2.146). Factorization parameters were as follows: n: 810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810810811 m: 1000000000000000000000000000 c5: 30 c0: 7 skew: 0.75 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1500001) Primes: RFBsize:107126, AFBsize:106593, largePrimes:1867694 encountered Relations: rels:1959724, finalFF:256837 Max relations in full relation-set: 28 Initial matrix: 213786 x 256837 with sparse part having weight 17263562. Pruned matrix : 196794 x 197926 with weight 10886320. Total sieving time: 4.07 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 4.25 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Total of 4 processors activated (19246.11 BogoMIPS).
By JMB
3·10164+7 = 3(0)1637<165> = 93463 · 102367 · 5561993 · 2697746404826036755483<22> · 4075016412566873951820653<25> · C102
C102 = P38 · P64
P38 = 85121969595848139659769186241637634013<38>
P64 = 6024471790877011640388025283913980838326383051453673075231227837<64>
By Yousuke Koide
(101205-1)/9 is divisible by 1231304918915627269216328559032281<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS
3·10132+7 = 3(0)1317<133> = C133
C133 = P44 · P90
P44 = 20590611374091488546520676374415000816224551<44>
P90 = 145697470827641601340741249542086188044830839410971692164392935223681417160709307626970657<90>
Number: 30007_132 N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 ( 133 digits) SNFS difficulty: 132 digits. Divisors found: r1=20590611374091488546520676374415000816224551 (pp44) r2=145697470827641601340741249542086188044830839410971692164392935223681417160709307626970657 (pp90) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.88 hours. Scaled time: 6.17 units (timescale=2.143). Factorization parameters were as follows: n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007 m: 100000000000000000000000000 c5: 300 c0: 7 skew: 0.47 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1100001) Primes: RFBsize:78498, AFBsize:78821, largePrimes:1567294 encountered Relations: rels:1589863, finalFF:196603 Max relations in full relation-set: 28 Initial matrix: 157385 x 196603 with sparse part having weight 11951565. Pruned matrix : 143201 x 144051 with weight 6940341. Total sieving time: 2.78 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.88 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 8167564k/8912896k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.37 BogoMIPS (lpj=2407685) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405122) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405130) Total of 4 processors activated (19246.11 BogoMIPS).
By JMB
3·10194+7 = 3(0)1937<195> = 1734986326637479007<19> · 431168604266382453431<21> · 248787236500857218390561<24> · 439982137238951968875436976379228563<36> · C97
C97 = P40 · P58
P40 = 2181760916727482904956744337987008327579<40>
P58 = 1679220662527382761557265816940310453170712534544646764943<58>
By Sinkiti Sibata / Msieve, GGNFS
3·10128+7 = 3(0)1277<129> = 2685101 · 33851255863<11> · 12978558218195034379386149<26> · C87
C87 = P36 · P51
P36 = 275313088291577407642928246977003907<36>
P51 = 923703385381580265251720036954725538332661715176123<51>
Mon Sep 03 18:48:38 2007 Mon Sep 03 18:48:38 2007 Msieve v. 1.26 Mon Sep 03 18:48:38 2007 random seeds: 07d98b2f 62ae921d Mon Sep 03 18:48:38 2007 factoring 254307631694787959686868018280051591889464233755615179663625686766286102906651364112561 (87 digits) Mon Sep 03 18:48:39 2007 commencing quadratic sieve (87-digit input) Mon Sep 03 18:48:39 2007 using multiplier of 1 Mon Sep 03 18:48:39 2007 using 64kb Pentium 2 sieve core Mon Sep 03 18:48:39 2007 sieve interval: 10 blocks of size 65536 Mon Sep 03 18:48:39 2007 processing polynomials in batches of 11 Mon Sep 03 18:48:39 2007 using a sieve bound of 1489667 (56613 primes) Mon Sep 03 18:48:39 2007 using large prime bound of 119173360 (26 bits) Mon Sep 03 18:48:40 2007 using double large prime bound of 344447000754720 (42-49 bits) Mon Sep 03 18:48:40 2007 using trial factoring cutoff of 49 bits Mon Sep 03 18:48:40 2007 polynomial 'A' values have 11 factors Tue Sep 04 00:36:23 2007 56728 relations (16053 full + 40675 combined from 592602 partial), need 56709 Tue Sep 04 00:36:31 2007 begin with 608655 relations Tue Sep 04 00:36:33 2007 reduce to 134614 relations in 8 passes Tue Sep 04 00:36:33 2007 attempting to read 134614 relations Tue Sep 04 00:36:45 2007 recovered 134614 relations Tue Sep 04 00:36:45 2007 recovered 109845 polynomials Tue Sep 04 00:36:57 2007 attempting to build 56728 cycles Tue Sep 04 00:36:57 2007 found 56728 cycles in 5 passes Tue Sep 04 00:37:01 2007 distribution of cycle lengths: Tue Sep 04 00:37:01 2007 length 1 : 16053 Tue Sep 04 00:37:01 2007 length 2 : 11398 Tue Sep 04 00:37:01 2007 length 3 : 9968 Tue Sep 04 00:37:01 2007 length 4 : 7465 Tue Sep 04 00:37:01 2007 length 5 : 4987 Tue Sep 04 00:37:01 2007 length 6 : 3064 Tue Sep 04 00:37:01 2007 length 7 : 1814 Tue Sep 04 00:37:01 2007 length 9+: 1979 Tue Sep 04 00:37:01 2007 largest cycle: 20 relations Tue Sep 04 00:37:03 2007 matrix is 56613 x 56728 with weight 3003083 (avg 52.94/col) Tue Sep 04 00:37:07 2007 filtering completed in 3 passes Tue Sep 04 00:37:07 2007 matrix is 52023 x 52087 with weight 2793711 (avg 53.64/col) Tue Sep 04 00:37:10 2007 saving the first 48 matrix rows for later Tue Sep 04 00:37:10 2007 matrix is 51975 x 52087 with weight 2063890 (avg 39.62/col) Tue Sep 04 00:37:10 2007 matrix includes 64 packed rows Tue Sep 04 00:37:10 2007 using block size 10922 for processor cache size 256 kB Tue Sep 04 00:37:11 2007 commencing Lanczos iteration Tue Sep 04 00:40:42 2007 lanczos halted after 824 iterations Tue Sep 04 00:40:43 2007 recovered 15 nontrivial dependencies Tue Sep 04 00:40:47 2007 prp36 factor: 275313088291577407642928246977003907 Tue Sep 04 00:40:47 2007 prp51 factor: 923703385381580265251720036954725538332661715176123 Tue Sep 04 00:40:47 2007 elapsed time 05:52:09
3·10131+7 = 3(0)1307<132> = 61 · 3889 · 16673127629<11> · 654750113451724387<18> · C99
C99 = P45 · P54
P45 = 367843730195277468720927798645873350770134361<45>
P54 = 314917983297778113935616240983926140815612293301748461<54>
Number: 30007_131 N=115840605681828788775531586500134003303645081903753785388762305681265629442829309689100981194968421 ( 99 digits) SNFS difficulty: 131 digits. Divisors found: r1=367843730195277468720927798645873350770134361 (pp45) r2=314917983297778113935616240983926140815612293301748461 (pp54) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 6.51 hours. Scaled time: 4.44 units (timescale=0.682). Factorization parameters were as follows: name: 30007_131 n: 115840605681828788775531586500134003303645081903753785388762305681265629442829309689100981194968421 m: 100000000000000000000000000 c5: 30 c0: 7 skew: 0.75 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1100001) Primes: RFBsize:63951, AFBsize:63528, largePrimes:1493297 encountered Relations: rels:1473265, finalFF:143512 Max relations in full relation-set: 0 Initial matrix: 127546 x 143512 with sparse part having weight 10871550. Pruned matrix : 123368 x 124069 with weight 8318483. Total sieving time: 6.09 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.51 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
3·10116+7 = 3(0)1157<117> = 941 · 7229 · 1005413 · 1768241 · C98
C98 = P45 · P53
P45 = 793456171721645674090119834605962552118405123<45>
P53 = 31263997790510739426533319802087948467956549868101057<53>
Number: 30007_116 N=24806611999572640200041003401784198951563928958349169644810919349055407530420374739405603430515011 ( 98 digits) SNFS difficulty: 116 digits. Divisors found: r1=793456171721645674090119834605962552118405123 (pp45) r2=31263997790510739426533319802087948467956549868101057 (pp53) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.15 hours. Scaled time: 1.47 units (timescale=0.683). Factorization parameters were as follows: name: 30007_116 n: 24806611999572640200041003401784198951563928958349169644810919349055407530420374739405603430515011 m: 100000000000000000000000 c5: 30 c0: 7 skew: 0.75 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63528, largePrimes:2164983 encountered Relations: rels:2305072, finalFF:137525 Max relations in full relation-set: 0 Initial matrix: 112693 x 137525 with sparse part having weight 6350152. Pruned matrix : 99939 x 100566 with weight 4135837. Total sieving time: 1.92 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.15 hours. --------- CPU info (if available) ----------
By Yousuke Koide
(101165-1)/9 is divisible by 8789828644372924439634809703641<31>
(101503-1)/9 is divisible by 3641337799926827172864056731857529<34>
10636+1 is divisible by 706882718657645277228087439919935993<36>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Kurt Beschorner
10635+1 is divisible by 202367638102311029520083171135894724910091<42>, cofactor is prime.
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
The factor table of 300...007 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By R.D. Silverman
(10345-1)/9 is divisible by 35645906496364306434849378023333297827811383782580351<53>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Yousuke Koide
(101401-1)/9 is divisible by 619629939179595688144939635183289<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
3·10151-7 = 2(9)1503<152> = 19 · 156901 · C146
C146 = P64 · P82
P64 = 2776542823659779412773229802771285257042021400690501832194379669<64>
P82 = 3624412053738393293775064001860434687254067055643958807515278373333482272091019563<82>
Number: 29993_151 N=10063335277793338675846217477396910354803011889159741694310089600582868379289790176105012916290829047750190448620132238934440389665759736528464647 ( 146 digits) SNFS difficulty: 151 digits. Divisors found: r1=2776542823659779412773229802771285257042021400690501832194379669 (pp64) r2=3624412053738393293775064001860434687254067055643958807515278373333482272091019563 (pp82) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 37.52 hours. Scaled time: 25.63 units (timescale=0.683). Factorization parameters were as follows: name: 29993_151 n: 10063335277793338675846217477396910354803011889159741694310089600582868379289790176105012916290829047750190448620132238934440389665759736528464647 m: 1000000000000000000000000000000 c5: 30 c0: -7 skew: 0.75 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175908, largePrimes:5608103 encountered Relations: rels:5543957, finalFF:398769 Max relations in full relation-set: 0 Initial matrix: 352277 x 398769 with sparse part having weight 27944746. Pruned matrix : 328978 x 330803 with weight 21639137. Total sieving time: 33.50 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.62 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 37.52 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
3·10148-7 = 2(9)1473<149> = 41 · 293 · 23176583 · C138
C138 = P45 · P93
P45 = 420246714641792212696158791990420325985853003<45>
P93 = 256398832799819491996337343700283603386076585422635350041027234530711778924253071751054434289<93>
Number: 29993_148 N=107750767122114335539918675404254523033081059324968763324951362955270960653144758698026016767014068999370645903693836817954006385276819867 ( 138 digits) SNFS difficulty: 148 digits. Divisors found: r1=420246714641792212696158791990420325985853003 (pp45) r2=256398832799819491996337343700283603386076585422635350041027234530711778924253071751054434289 (pp93) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 25.94 hours. Scaled time: 17.71 units (timescale=0.683). Factorization parameters were as follows: name: 29993_148 n: 107750767122114335539918675404254523033081059324968763324951362955270960653144758698026016767014068999370645903693836817954006385276819867 m: 100000000000000000000000000000 c5: 3000 c0: -7 skew: 0.3 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3150001) Primes: RFBsize:114155, AFBsize:114337, largePrimes:2805135 encountered Relations: rels:2752699, finalFF:257378 Max relations in full relation-set: 0 Initial matrix: 228559 x 257378 with sparse part having weight 32600512. Pruned matrix : 220942 x 222148 with weight 25462064. Total sieving time: 23.64 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.99 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 25.94 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
3·10150-7 = 2(9)1493<151> = 83 · 189651047 · C141
C141 = P53 · P89
P53 = 16655019752526043619345197086882937152885261185068417<53>
P89 = 11443075559040216743203773330203910152796400883206795006697965100458043235549364132362629<89>
Number: 29993_150 N=190584649465462808903938036705578268690445781961768618815589675746482134493536309892422886710060193892941055624300006842351026644099218988293 ( 141 digits) SNFS difficulty: 150 digits. Divisors found: r1=16655019752526043619345197086882937152885261185068417 (pp53) r2=11443075559040216743203773330203910152796400883206795006697965100458043235549364132362629 (pp89) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 32.25 hours. Scaled time: 22.03 units (timescale=0.683). Factorization parameters were as follows: name: 29993_150 n: 190584649465462808903938036705578268690445781961768618815589675746482134493536309892422886710060193892941055624300006842351026644099218988293 m: 1000000000000000000000000000000 c5: 3 c0: -7 skew: 1.18 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1750001) Primes: RFBsize:114155, AFBsize:113722, largePrimes:2720694 encountered Relations: rels:2701121, finalFF:257590 Max relations in full relation-set: 0 Initial matrix: 227942 x 257590 with sparse part having weight 18606649. Pruned matrix : 217974 x 219177 with weight 14397030. Total sieving time: 30.84 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.19 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 32.25 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS snfs, GMP-ECM
2·10170-7 = 1(9)1693<171> = C171
C171 = P50 · P56 · P66
P50 = 12830114637211177323355529618441346334457779697621<50>
P56 = 21211698624128416961087313467823336589027450130654173021<56>
P66 = 734892831044394689750114258247584690226884187718469681813063218073<66>
Number: 19993_170 N=199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 171 digits) SNFS difficulty: 170 digits. Divisors found: r1=12830114637211177323355529618441346334457779697621 (pp50) r2=21211698624128416961087313467823336589027450130654173021 (pp56) r3=734892831044394689750114258247584690226884187718469681813063218073 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 75.19 hours. Scaled time: 161.22 units (timescale=2.144). Factorization parameters were as follows: n: 199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 10000000000000000000000000000000000 c5: 2 c0: -7 skew: 1.28 type: snfs Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [3600000, 7100001) Primes: RFBsize:489319, AFBsize:488568, largePrimes:6562233 encountered Relations: rels:7021806, finalFF:1101502 Max relations in full relation-set: 28 Initial matrix: 977952 x 1101502 with sparse part having weight 56019192. Pruned matrix : 870570 x 875523 with weight 39881257. Total sieving time: 70.10 hours. Total relation processing time: 0.14 hours. Matrix solve time: 4.88 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,7200000,7200000,27,27,49,49,2.6,2.6,100000 total time: 75.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10137-7 = 2(9)1363<138> = 233 · 701 · 5477 · 21661 · 488603 · C119
C119 = P52 · P67
P52 = 6476427849686591970532300943502577690100886356016287<52>
P67 = 4892540299472487410211328047955667103685004673915706548024083374513<67>
Number: 29993_137 N=31686184251217596357918040854365672841886369996089982649246803699536335662325290122709751508408702299412468090548693231 ( 119 digits) SNFS difficulty: 137 digits. Divisors found: r1=6476427849686591970532300943502577690100886356016287 (pp52) r2=4892540299472487410211328047955667103685004673915706548024083374513 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.06 hours. Scaled time: 8.71 units (timescale=2.144). Factorization parameters were as follows: n: 31686184251217596357918040854365672841886369996089982649246803699536335662325290122709751508408702299412468090548693231 m: 1000000000000000000000000000 c5: 300 c0: -7 skew: 0.47 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1450001) Primes: RFBsize:107126, AFBsize:107463, largePrimes:1828766 encountered Relations: rels:1902577, finalFF:244082 Max relations in full relation-set: 28 Initial matrix: 214655 x 244082 with sparse part having weight 14922660. Pruned matrix : 203114 x 204251 with weight 10251762. Total sieving time: 3.87 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 4.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10160-7 = 2(9)1593<161> = 127 · 40829 · 1767818010311<13> · 16453710424472833724720213<26> · C117
C117 = P42 · P76
P42 = 156576499347676290337540161614647420749481<42>
P76 = 1270342440851204099715174694929205958381506676212657967303937958146615630937<76>
3·10146-7 = 2(9)1453<147> = C147
C147 = P46 · P102
P46 = 1854775915575395694657042218355139211068315081<46>
P102 = 161744606170893075229127752358828695970725053902533763048339214947771986894331414501673269180172824753<102>
Number: 29993_146 N=299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 147 digits) SNFS difficulty: 146 digits. Divisors found: r1=1854775915575395694657042218355139211068315081 (pp46) r2=161744606170893075229127752358828695970725053902533763048339214947771986894331414501673269180172824753 (pp102) Version: GGNFS-0.77.1-20050930-nocona Total time: 11.47 hours. Scaled time: 24.54 units (timescale=2.139). Factorization parameters were as follows: n: 299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 100000000000000000000000000000 c5: 30 c0: -7 skew: 0.75 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1650001) Primes: RFBsize:135072, AFBsize:134628, largePrimes:3935573 encountered Relations: rels:4115354, finalFF:442086 Max relations in full relation-set: 28 Initial matrix: 269767 x 442086 with sparse part having weight 44669293. Pruned matrix : 216898 x 218310 with weight 21091258. Total sieving time: 11.13 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.25 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 11.47 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Sinkiti Sibata / GGNFS snfs
3·10133-7 = 2(9)1323<134> = 19 · 23 · 29 · 41 · 4133 · 845895553 · 15285736889<11> · C106
C106 = P50 · P56
P50 = 63642234051349873089290850183434749198604956677859<50>
P56 = 16976338245683764819391125937000990768709124738416339799<56>
Number: 29993_133 N=1080412091966688465073393571002351107257249643609478820582139591078383292048067595486362712519605523810341 ( 106 digits) SNFS difficulty: 133 digits. Divisors found: r1=63642234051349873089290850183434749198604956677859 (pp50) r2=16976338245683764819391125937000990768709124738416339799 (pp56) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 6.23 hours. Scaled time: 4.26 units (timescale=0.683). Factorization parameters were as follows: name: 29993_133 n: 1080412091966688465073393571002351107257249643609478820582139591078383292048067595486362712519605523810341 m: 100000000000000000000000000 c5: 3000 c0: -7 skew: 0.3 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1050001) Primes: RFBsize:63951, AFBsize:63898, largePrimes:1485231 encountered Relations: rels:1478487, finalFF:143556 Max relations in full relation-set: 0 Initial matrix: 127916 x 143556 with sparse part having weight 8668341. Pruned matrix : 123225 x 123928 with weight 6769206. Total sieving time: 5.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.23 hours. --------- CPU info (if available) ----------
3·10140-7 = 2(9)1393<141> = 163 · 257 · 22303 · 277717378709055933498757<24> · C109
C109 = P38 · P71
P38 = 37093886403445655363232597242736014387<38>
P71 = 31169644391610806846824618395203670558943768245441618617177544108945299<71>
Number: 29993_140 N=1156203248298208234556461217638104374790212162863416385692985595553452438217200154827872278873776193460016713 ( 109 digits) SNFS difficulty: 140 digits. Divisors found: r1=37093886403445655363232597242736014387 (pp38) r2=31169644391610806846824618395203670558943768245441618617177544108945299 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 11.33 hours. Scaled time: 7.74 units (timescale=0.683). Factorization parameters were as follows: name: 29993_140 n: 1156203248298208234556461217638104374790212162863416385692985595553452438217200154827872278873776193460016713 m: 10000000000000000000000000000 c5: 3 c0: -7 skew: 1.18 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1600001) Primes: RFBsize:78498, AFBsize:63643, largePrimes:1541967 encountered Relations: rels:1525645, finalFF:159967 Max relations in full relation-set: 0 Initial matrix: 142206 x 159967 with sparse part having weight 16090240. Pruned matrix : 137684 x 138459 with weight 12233010. Total sieving time: 10.69 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.48 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.33 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS snfs
3·10128-7 = 2(9)1273<129> = 41 · 59 · 54773 · C121
C121 = P46 · P75
P46 = 7537788328018616405984189140699812345322214029<46>
P75 = 300382702420089950889070923665817867552296755414839069498484220494663049491<75>
Number: 29993_128 N=2264221228240843430860612299610477719961224154829802377186244279416764084156061387777267380382909546467657520568921509239 ( 121 digits) SNFS difficulty: 129 digits. Divisors found: r1=7537788328018616405984189140699812345322214029 (pp46) r2=300382702420089950889070923665817867552296755414839069498484220494663049491 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.00 hours. Scaled time: 4.28 units (timescale=2.143). Factorization parameters were as follows: n: 2264221228240843430860612299610477719961224154829802377186244279416764084156061387777267380382909546467657520568921509239 m: 20000000000000000000000000 c5: 375 c0: -28 skew: 0.6 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78556, largePrimes:1541786 encountered Relations: rels:1589228, finalFF:219946 Max relations in full relation-set: 28 Initial matrix: 157121 x 219946 with sparse part having weight 11082418. Pruned matrix : 127164 x 128013 with weight 5146045. Total sieving time: 1.92 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Sinkiti Sibata / GGNFS snfs
3·10124-7 = 2(9)1233<125> = 499 · 50123 · 4979165454103<13> · C105
C105 = P29 · P76
P29 = 32069277584934255341895947641<29>
P76 = 7511694512964920660213222237541918019312926923461518825741959466812334839383<76>
Number: 29993_124 N=240894616469499568232342324414062368452631433109656235581566054386083610865203017018054074083650312745503 ( 105 digits) SNFS difficulty: 125 digits. Divisors found: r1=32069277584934255341895947641 (pp29) r2=7511694512964920660213222237541918019312926923461518825741959466812334839383 (pp76) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 3.48 hours. Scaled time: 2.38 units (timescale=0.683). Factorization parameters were as follows: name: 29993_124 n: 240894616469499568232342324414062368452631433109656235581566054386083610865203017018054074083650312745503 m: 10000000000000000000000000 c5: 3 c0: -70 skew: 1.88 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 700001) Primes: RFBsize:49098, AFBsize:63523, largePrimes:2122134 encountered Relations: rels:2121787, finalFF:127648 Max relations in full relation-set: 0 Initial matrix: 112686 x 127648 with sparse part having weight 11268270. Pruned matrix : 108940 x 109567 with weight 8489035. Total sieving time: 3.12 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.23 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.48 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS snfs, GMP-ECM
3·10102-7 = 2(9)1013<103> = 5503 · C99
C99 = P43 · P57
P43 = 3539577321355187357058316586614016942558507<43>
P57 = 154017595180034784335600556931964288371618563510589261333<57>
Number: 29993_102 N=545157186988915137197892058876976194802834817372342358713429038706160276212974741050336180265309831 ( 99 digits) SNFS difficulty: 102 digits. Divisors found: r1=3539577321355187357058316586614016942558507 (pp43) r2=154017595180034784335600556931964288371618563510589261333 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.35 hours. Scaled time: 0.76 units (timescale=2.144). Factorization parameters were as follows: n: 545157186988915137197892058876976194802834817372342358713429038706160276212974741050336180265309831 m: 100000000000000000000 c5: 300 c0: -7 skew: 0.47 type: snfs Factor base limits: 240000/240000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [120000, 195001) Primes: RFBsize:21221, AFBsize:21254, largePrimes:888627 encountered Relations: rels:745957, finalFF:50115 Max relations in full relation-set: 28 Initial matrix: 42541 x 50115 with sparse part having weight 1437684. Pruned matrix : 37570 x 37846 with weight 922534. Total sieving time: 0.34 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,102,5,0,0,0,0,0,0,0,0,240000,240000,25,25,43,43,2.1,2.1,15000 total time: 0.35 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10107-7 = 2(9)1063<108> = 732 · 31957 · C100
C100 = P30 · P34 · P37
P30 = 277589851523296053332037672941<30>
P34 = 1002459894818158467774433246518331<34>
P37 = 6330513515041898460559917424038309211<37>
Number: 29993_107 N=1761609046186588232628906784240055920987324559373280100718000725465837400560765961236391885739829381 ( 100 digits) SNFS difficulty: 107 digits. Divisors found: r1=277589851523296053332037672941 (pp30) r2=1002459894818158467774433246518331 (pp34) r3=6330513515041898460559917424038309211 (pp37) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.45 hours. Scaled time: 0.95 units (timescale=2.129). Factorization parameters were as follows: n: 1761609046186588232628906784240055920987324559373280100718000725465837400560765961236391885739829381 m: 1000000000000000000000 c5: 300 c0: -7 skew: 0.47 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 260001) Primes: RFBsize:30757, AFBsize:30684, largePrimes:962858 encountered Relations: rels:879575, finalFF:80338 Max relations in full relation-set: 28 Initial matrix: 61507 x 80338 with sparse part having weight 3456094. Pruned matrix : 53164 x 53535 with weight 1683537. Total sieving time: 0.42 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.45 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10111-7 = 2(9)1103<112> = 23 · 373003 · C105
C105 = P44 · P62
P44 = 27835335642957025433655367694790412609627019<44>
P62 = 12562747515193989773402390442014510943362606451247158043351463<62>
Number: 29993_111 N=349688293683149068972402483299761314427008338550488403811649026252149271675050054965171628762981157978797 ( 105 digits) SNFS difficulty: 111 digits. Divisors found: r1=27835335642957025433655367694790412609627019 (pp44) r2=12562747515193989773402390442014510943362606451247158043351463 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.69 hours. Scaled time: 1.46 units (timescale=2.124). Factorization parameters were as follows: n: 349688293683149068972402483299761314427008338550488403811649026252149271675050054965171628762981157978797 m: 10000000000000000000000 c5: 30 c0: -7 skew: 0.75 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 320001) Primes: RFBsize:30757, AFBsize:30494, largePrimes:1020947 encountered Relations: rels:931251, finalFF:80704 Max relations in full relation-set: 28 Initial matrix: 61318 x 80704 with sparse part having weight 3972837. Pruned matrix : 55579 x 55949 with weight 2017566. Total sieving time: 0.66 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,111,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.69 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10129-7 = 2(9)1283<130> = C130
C130 = P29 · P48 · P55
P29 = 13634014563100632163485094139<29>
P48 = 139215960043020963366563162682325387847822463557<48>
P55 = 1580550856695477889083277991070258583743421455170186591<55>
Number: 29993_129 N=2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=13634014563100632163485094139 (pp29) r2=139215960043020963366563162682325387847822463557 (pp48) r3=1580550856695477889083277991070258583743421455170186591 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.83 hours. Scaled time: 6.07 units (timescale=2.146). Factorization parameters were as follows: n: 2999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 m: 100000000000000000000000000 c5: 3 c0: -70 skew: 1.88 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1100001) Primes: RFBsize:78498, AFBsize:78021, largePrimes:1578298 encountered Relations: rels:1600735, finalFF:197381 Max relations in full relation-set: 28 Initial matrix: 156584 x 197381 with sparse part having weight 12021455. Pruned matrix : 141849 x 142695 with weight 6882715. Total sieving time: 2.73 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10116-7 = 2(9)1153<117> = 5711 · C113
C113 = P43 · P71
P43 = 3219174617934997967729103654362313099113789<43>
P71 = 16317910987225509303709497983754427492567247926719168101616013003489667<71>
Number: 29993_116 N=52530204867798984416039222552967956575030642619506216074242689546489231308002101208194711959376641568902118718263 ( 113 digits) SNFS difficulty: 116 digits. Divisors found: r1=3219174617934997967729103654362313099113789 (pp43) r2=16317910987225509303709497983754427492567247926719168101616013003489667 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.83 hours. Scaled time: 1.78 units (timescale=2.145). Factorization parameters were as follows: n: 52530204867798984416039222552967956575030642619506216074242689546489231308002101208194711959376641568902118718263 m: 100000000000000000000000 c5: 30 c0: -7 skew: 0.75 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:48776, largePrimes:1881701 encountered Relations: rels:1830654, finalFF:116660 Max relations in full relation-set: 28 Initial matrix: 97941 x 116660 with sparse part having weight 9492117. Pruned matrix : 92238 x 92791 with weight 6099665. Total sieving time: 0.77 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.83 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10149-7 = 2(9)1483<150> = 179 · 521 · 3463 · 5282612227<10> · 35419352915554933199557<23> · C109
C109 = P35 · P75
P35 = 21272798033221076607577777047006013<35>
P75 = 233380215802854007300467394780726271343697166092228509059711875575719508047<75>
3·10126-7 = 2(9)1253<127> = 17 · C126
C126 = P37 · P89
P37 = 1947761627248864935777984869025486217<37>
P89 = 90601737793013067707297429917950567899839201443202358104654069381901149336940160966925537<89>
Number: 29993_126 N=176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529 ( 126 digits) SNFS difficulty: 126 digits. Divisors found: r1=1947761627248864935777984869025486217 (pp37) r2=90601737793013067707297429917950567899839201443202358104654069381901149336940160966925537 (pp89) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.98 hours. Scaled time: 4.25 units (timescale=2.144). Factorization parameters were as follows: n: 176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529 m: 10000000000000000000000000 c5: 30 c0: -7 skew: 0.75 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:77956, largePrimes:1553141 encountered Relations: rels:1599584, finalFF:219775 Max relations in full relation-set: 28 Initial matrix: 156521 x 219775 with sparse part having weight 11340321. Pruned matrix : 126978 x 127824 with weight 5262878. Total sieving time: 1.91 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.98 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
3·10167-7 = 2(9)1663<168> = C168
C168 = P42 · P126
P42 = 655467036657994741996643867126553366964783<42>
P126 = 457688919841947776110399176672643492197644369408954631966772160173721908536961345672536829147905758344010973197701056308278871<126>
By Sinkiti Sibata / GGNFS gnfs, snfs
3·10131-7 = 2(9)1303<132> = 67 · 73 · 1019 · 116345861 · 977792987 · 556928995904051921<18> · C90
C90 = P35 · P56
P35 = 59726562069597109314324525106720499<35>
P56 = 15906850721045874492067807848099118867247459356850020189<56>
Number: 29993_131 N=950061506922361956173978053504580512762590466557036500602670856517685312193088447730154311 ( 90 digits) Divisors found: r1=59726562069597109314324525106720499 (pp35) r2=15906850721045874492067807848099118867247459356850020189 (pp56) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 4.36 hours. Scaled time: 2.98 units (timescale=0.683). Factorization parameters were as follows: name: 29993_131 n: 950061506922361956173978053504580512762590466557036500602670856517685312193088447730154311 m: 576763940886060425848 deg: 4 c4: 8585376 c3: 46043290 c2: -8500336392011611 c1: -3690164694860894122 c0: -277517425059888154185 skew: 1635.250 type: gnfs # adj. I(F,S) = 51.668 # E(F1,F2) = 1.698649e-04 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1188125202. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [350000, 710001) Primes: RFBsize:56543, AFBsize:56519, largePrimes:1558747 encountered Relations: rels:1522078, finalFF:127569 Max relations in full relation-set: 0 Initial matrix: 113135 x 127569 with sparse part having weight 11105184. Pruned matrix : 108854 x 109483 with weight 7940686. Polynomial selection time: 0.17 hours. Total sieving time: 3.84 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.22 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,89,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 4.36 hours. --------- CPU info (if available) ----------
3·10117-7 = 2(9)1163<118> = 65663146013<11> · 1115445346207<13> · C95
C95 = P33 · P63
P33 = 218367804382939724096025924452209<33>
P63 = 187569691815535808504272490616328250324358050799297959129311747<63>
Number: 29993_117 N=40959181770543213619060402870043933276823141622498530960829661372304663576743954789636163799123 ( 95 digits) Divisors found: r1=218367804382939724096025924452209 (pp33) r2=187569691815535808504272490616328250324358050799297959129311747 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 10.53 hours. Scaled time: 7.19 units (timescale=0.683). Factorization parameters were as follows: name: 29993_117 n: 40959181770543213619060402870043933276823141622498530960829661372304663576743954789636163799123 m: 5448565826898695520624 deg: 4 c4: 46475328 c3: 101344500712 c2: -472255512414059034 c1: -394563556785377973 c0: 235363264286578010957443 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.318 # E(F1,F2) = 3.772756e-05 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1188142345. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1440001) Primes: RFBsize:92938, AFBsize:92847, largePrimes:1898276 encountered Relations: rels:1986717, finalFF:212386 Max relations in full relation-set: 0 Initial matrix: 185859 x 212386 with sparse part having weight 15227931. Pruned matrix : 173280 x 174273 with weight 11148304. Polynomial selection time: 0.17 hours. Total sieving time: 9.50 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.66 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 10.53 hours. --------- CPU info (if available) ----------
3·10122-7 = 2(9)1213<123> = 227 · 541 · 5821 · 2440113394861<13> · C102
C102 = P47 · P55
P47 = 83874866130091704225931620360708407017715883677<47>
P55 = 2050494856118000514981197734640153342657783824277403827<55>
Number: 29993_122 N=171984981557338943720876089963265461754031849148782559859775844954175603505748020782384283778686631879 ( 102 digits) SNFS difficulty: 122 digits. Divisors found: r1=83874866130091704225931620360708407017715883677 (pp47) r2=2050494856118000514981197734640153342657783824277403827 (pp55) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.62 hours. Scaled time: 1.79 units (timescale=0.683). Factorization parameters were as follows: name: 29993_122 n: 171984981557338943720876089963265461754031849148782559859775844954175603505748020782384283778686631879 m: 1000000000000000000000000 c5: 300 c0: -7 skew: 0.47 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:64153, largePrimes:2107885 encountered Relations: rels:2154235, finalFF:132169 Max relations in full relation-set: 0 Initial matrix: 113317 x 132169 with sparse part having weight 7558650. Pruned matrix : 105278 x 105908 with weight 5324836. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.62 hours. --------- CPU info (if available) ----------
3·10123-7 = 2(9)1223<124> = 41 · 73 · 25229 · 80436896303091941<17> · C99
C99 = P47 · P53
P47 = 25717660438571745381489038333885826323571075209<47>
P53 = 19205593766110280619993552722286434599284651570080801<53>
Number: 29993_123 N=493922938997974498580414521518774754063241395387693330419187722978244874523656899408600794577962409 ( 99 digits) SNFS difficulty: 123 digits. Divisors found: r1=25717660438571745381489038333885826323571075209 (pp47) r2=19205593766110280619993552722286434599284651570080801 (pp53) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.60 hours. Scaled time: 1.78 units (timescale=0.683). Factorization parameters were as follows: name: 29993_123 n: 493922938997974498580414521518774754063241395387693330419187722978244874523656899408600794577962409 m: 1000000000000000000000000 c5: 3000 c0: -7 skew: 0.3 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 600001) Primes: RFBsize:49098, AFBsize:63898, largePrimes:2059050 encountered Relations: rels:2063041, finalFF:130571 Max relations in full relation-set: 0 Initial matrix: 113063 x 130571 with sparse part having weight 8675304. Pruned matrix : 106089 x 106718 with weight 6142343. Total sieving time: 2.31 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,123,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.60 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / Msieve v. 1.26, GGNFS
3·10109-7 = 2(9)1083<110> = 83 · 56809 · 16216515547<11> · 1243071210473<13> · C81
C81 = P37 · P45
P37 = 2248059687775148500471809593908702163<37>
P45 = 140399198593424783364159287344550310097264723<45>
Sun Aug 26 13:50:58 2007 Msieve v. 1.26 Sun Aug 26 13:50:58 2007 random seeds: 1451f000 cc105488 Sun Aug 26 13:50:58 2007 factoring 315625778553815587004811754086956831579675851159971598797911152419592933173695849 (81 digits) Sun Aug 26 13:50:59 2007 commencing quadratic sieve (81-digit input) Sun Aug 26 13:50:59 2007 using multiplier of 41 Sun Aug 26 13:50:59 2007 using 64kb Pentium 2 sieve core Sun Aug 26 13:50:59 2007 sieve interval: 6 blocks of size 65536 Sun Aug 26 13:50:59 2007 processing polynomials in batches of 17 Sun Aug 26 13:50:59 2007 using a sieve bound of 1317713 (50343 primes) Sun Aug 26 13:50:59 2007 using large prime bound of 129135874 (26 bits) Sun Aug 26 13:50:59 2007 using trial factoring cutoff of 27 bits Sun Aug 26 13:50:59 2007 polynomial 'A' values have 10 factors Sun Aug 26 15:12:14 2007 50617 relations (26609 full + 24008 combined from 267360 partial), need 50439 Sun Aug 26 15:12:16 2007 begin with 293969 relations Sun Aug 26 15:12:16 2007 reduce to 71642 relations in 2 passes Sun Aug 26 15:12:16 2007 attempting to read 71642 relations Sun Aug 26 15:12:19 2007 recovered 71642 relations Sun Aug 26 15:12:19 2007 recovered 60192 polynomials Sun Aug 26 15:12:19 2007 attempting to build 50617 cycles Sun Aug 26 15:12:19 2007 found 50617 cycles in 1 passes Sun Aug 26 15:12:19 2007 distribution of cycle lengths: Sun Aug 26 15:12:19 2007 length 1 : 26609 Sun Aug 26 15:12:19 2007 length 2 : 24008 Sun Aug 26 15:12:19 2007 largest cycle: 2 relations Sun Aug 26 15:12:19 2007 matrix is 50343 x 50617 with weight 1561449 (avg 30.85/col) Sun Aug 26 15:12:22 2007 filtering completed in 4 passes Sun Aug 26 15:12:22 2007 matrix is 42140 x 42204 with weight 1269497 (avg 30.08/col) Sun Aug 26 15:12:24 2007 saving the first 48 matrix rows for later Sun Aug 26 15:12:24 2007 matrix is 42092 x 42204 with weight 1011189 (avg 23.96/col) Sun Aug 26 15:12:24 2007 matrix includes 64 packed rows Sun Aug 26 15:12:24 2007 commencing Lanczos iteration Sun Aug 26 15:15:12 2007 lanczos halted after 667 iterations Sun Aug 26 15:15:13 2007 recovered 13 nontrivial dependencies Sun Aug 26 15:15:13 2007 prp37 factor: 2248059687775148500471809593908702163 Sun Aug 26 15:15:13 2007 prp45 factor: 140399198593424783364159287344550310097264723 Sun Aug 26 15:15:13 2007 elapsed time 01:24:15
3·10101-7 = 2(9)1003<102> = 61 · 270538861909140599<18> · C83
C83 = P34 · P50
P34 = 1503944237661379360868402573256481<34>
P50 = 12087320199218433786007971497669328028718661880027<50>
Number: 29993_101 N=18178655562382559504603600172348702425295980655038020769681684834586255227122204987 ( 83 digits) Divisors found: r1=1503944237661379360868402573256481 (pp34) r2=12087320199218433786007971497669328028718661880027 (pp50) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.70 hours. Scaled time: 1.84 units (timescale=0.683). Factorization parameters were as follows: name: 29993_101 n: 18178655562382559504603600172348702425295980655038020769681684834586255227122204987 m: 13520163201302496320 deg: 4 c4: 544044 c3: 1525702999 c2: -2090212604885881 c1: -5785762335682389 c0: 1219195069438556895867 skew: 1379.250 type: gnfs # adj. I(F,S) = 47.935 # E(F1,F2) = 1.453982e-03 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=12, maxS1=56.00000000, seed=1188103115. # maxskew=1500.0 # These parameters should be manually set: rlim: 550000 alim: 550000 lpbr: 24 lpba: 24 mfbr: 40 mfba: 40 rlambda: 1.9 alambda: 1.9 qintsize: 10000 type: gnfs Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 24/24 Max factor residue bits: 40/40 Sieved algebraic special-q in [275000, 555001) Primes: RFBsize:45322, AFBsize:45360, largePrimes:833800 encountered Relations: rels:815718, finalFF:104325 Max relations in full relation-set: 0 Initial matrix: 90757 x 104325 with sparse part having weight 2839349. Pruned matrix : 78966 x 79483 with weight 2017468. Polynomial selection time: 0.10 hours. Total sieving time: 2.49 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,82,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,550000,550000,24,24,40,40,1.9,1.9,10000 total time: 2.70 hours. --------- CPU info (if available) ----------
3·10119-7 = 2(9)1183<120> = 78368605499<11> · 53095903456340370936693577<26> · C83
C83 = P39 · P45
P39 = 188290868464416554619696945024940247957<39>
P45 = 382903082208360177830892669855412560821185463<45>
Number: 29993_119 N=72097153886714024932882352086117787528471155467902080177717553304923243985903849091 ( 83 digits) Divisors found: r1=188290868464416554619696945024940247957 (pp39) r2=382903082208360177830892669855412560821185463 (pp45) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.71 hours. Scaled time: 1.85 units (timescale=0.683). Factorization parameters were as follows: name: 29993_119 n: 72097153886714024932882352086117787528471155467902080177717553304923243985903849091 m: 15077363100825086328 deg: 4 c4: 1395136 c3: 4169473474 c2: -4457287606760667 c1: -10940135386059515 c0: 222330235747687799275 skew: 1379.250 type: gnfs # adj. I(F,S) = 48.893 # E(F1,F2) = 1.238494e-03 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=2, maxS1=56.00000000, seed=1188114582. # maxskew=1500.0 # These parameters should be manually set: rlim: 550000 alim: 550000 lpbr: 24 lpba: 24 mfbr: 40 mfba: 40 rlambda: 1.9 alambda: 1.9 qintsize: 10000 type: gnfs Factor base limits: 550000/550000 Large primes per side: 3 Large prime bits: 24/24 Max factor residue bits: 40/40 Sieved algebraic special-q in [275000, 555001) Primes: RFBsize:45322, AFBsize:45273, largePrimes:832054 encountered Relations: rels:813824, finalFF:104604 Max relations in full relation-set: 0 Initial matrix: 90669 x 104604 with sparse part having weight 2856065. Pruned matrix : 78768 x 79285 with weight 2014929. Polynomial selection time: 0.14 hours. Total sieving time: 2.45 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.05 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,82,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,550000,550000,24,24,40,40,1.9,1.9,10000 total time: 2.71 hours. --------- CPU info (if available) ----------
The factor table of 299...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Yousuke Koide
(101127-1)/9 is divisible by 241553587165443690259691154554887409<36>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS gnfs
2·10161-7 = 1(9)1603<162> = 31 · 313 · 142448923 · 17325841849<11> · 15585783388091791295501248633<29> · C111
C111 = P36 · P76
P36 = 266553003634306871217586370997016387<36>
P76 = 2010287774860919418202526881731198334032989116402867831616415928274528790943<76>
Number: 19993_161 N=535848244558505326981889880448516590560696883242115262678313109743369334051689534371625931132298086183468182941 ( 111 digits) Divisors found: r1=266553003634306871217586370997016387 (pp36) r2=2010287774860919418202526881731198334032989116402867831616415928274528790943 (pp76) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 40.17 hours. Scaled time: 27.43 units (timescale=0.683). Factorization parameters were as follows: name: 19993_161 n: 535848244558505326981889880448516590560696883242115262678313109743369334051689534371625931132298086183468182941 skew: 38462.86 # norm 1.20e+15 c5: 14400 c4: 1189258772 c3: -61157220101536 c2: -1665797028207107129 c1: 35529798518665248099674 c0: 456489891463513885112956704 # alpha -6.23 Y1: 579357828269 Y0: -2061265089212221663831 # Murphy_E 1.01e-09 # M 180678419163438711842001077111863466249073647594527557717463130782957750173637314545849972614753799691397384718 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: RFBsize:230209, AFBsize:229517, largePrimes:7279052 encountered Relations: rels:6986811, finalFF:516183 Max relations in full relation-set: 0 Initial matrix: 459803 x 516183 with sparse part having weight 43767277. Pruned matrix : 413366 x 415729 with weight 29134753. Polynomial selection time: 2.18 hours. Total sieving time: 30.39 hours. Total relation processing time: 0.32 hours. Matrix solve time: 6.89 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 40.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
10182-3 = (9)1817<182> = C182
C182 = P62 · P121
P62 = 65534081280247754710444002932518609571718586565539736236949437<62>
P121 = 1525923581233455345160090558666254929382951100902891094757531494547444044927553100912619162340394581853825038559214658881<121>
Number: 99997_182 N=99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 182 digits) SNFS difficulty: 182 digits. Divisors found: r1=65534081280247754710444002932518609571718586565539736236949437 (pp62) r2=1525923581233455345160090558666254929382951100902891094757531494547444044927553100912619162340394581853825038559214658881 (pp121) Version: GGNFS-0.77.1-20050930-nocona Total time: 266.82 hours. Scaled time: 572.61 units (timescale=2.146). Factorization parameters were as follows: n: 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 1000000000000000000000000000000000000 c5: 100 c0: -3 skew: 0.5 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 9300001) Primes: RFBsize:664579, AFBsize:665255, largePrimes:11054485 encountered Relations: rels:11325581, finalFF:1493802 Max relations in full relation-set: 28 Initial matrix: 1329898 x 1493802 with sparse part having weight 90406090. Pruned matrix : 1184081 x 1190794 with weight 65471125. Total sieving time: 254.23 hours. Total relation processing time: 0.34 hours. Matrix solve time: 12.13 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,182,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 266.82 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Jo Yeong Uk / GGNFS gnfs
2·10165-7 = 1(9)1643<166> = 59797 · 246613 · 23678089 · 41577973901<11> · 34612991488332463201<20> · 336810499334585532769<21> · C98
C98 = P46 · P52
P46 = 8373248538781344557355140845393442753439917323<46>
P52 = 1411256395841790563687916889769452582264264863948791<52>
Number: 19993_165 N=11816800554328099620625661265085248289285152349800401170173394776530045681226710459572934345806493 ( 98 digits) Divisors found: r1=8373248538781344557355140845393442753439917323 (pp46) r2=1411256395841790563687916889769452582264264863948791 (pp52) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.74 hours. Scaled time: 5.88 units (timescale=2.144). Factorization parameters were as follows: name: 19993_165 n: 11816800554328099620625661265085248289285152349800401170173394776530045681226710459572934345806493 skew: 1237.28 # norm 1.21e+13 c5: 113220 c4: 480980685 c3: 2430122298256 c2: -1110451066817246 c1: -1086725127653307920 c0: 201867094610748041685 # alpha -5.21 Y1: 14369106697 Y0: -2533455370402983104 # Murphy_E 4.96e-09 # M 9593727833258514037579465404153082108432528258843425541809868831355743798983219962802223254495886 type: gnfs rlim: 1300000 alim: 1300000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [650000, 1000001) Primes: RFBsize:100021, AFBsize:100606, largePrimes:3733014 encountered Relations: rels:3561953, finalFF:244813 Max relations in full relation-set: 28 Initial matrix: 200709 x 244813 with sparse part having weight 18256185. Pruned matrix : 171699 x 172766 with weight 10219484. Polynomial selection time: 0.20 hours. Total sieving time: 2.33 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,26,26,48,48,2.5,2.5,50000 total time: 2.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Yousuke Koide
(101007-1)/9 is divisible by 172358178102983968116191222304067<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS
2·10160-7 = 1(9)1593<161> = 9778720056013703211871<22> · 3697455345403613029511363255055491<34> · C105
C105 = P35 · P70
P35 = 88983955588580213717636993253398599<35>
P70 = 6216319634016996326346051640131835569522780364047133332828651637579787<70>
Number: 19993_160 N=553152710237787609065609048212168477170736374711112981864333893174433466742570138896896172282264776518413 ( 105 digits) SNFS difficulty: 160 digits. Divisors found: r1=88983955588580213717636993253398599 (pp35) r2=6216319634016996326346051640131835569522780364047133332828651637579787 (pp70) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 66.09 hours. Scaled time: 45.14 units (timescale=0.683). Factorization parameters were as follows: name: 19993_160 n: 553152710237787609065609048212168477170736374711112981864333893174433466742570138896896172282264776518413 m: 100000000000000000000000000000000 c5: 2 c0: -7 skew: 1.28 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:282562, largePrimes:5694547 encountered Relations: rels:5775416, finalFF:641262 Max relations in full relation-set: 0 Initial matrix: 565773 x 641262 with sparse part having weight 34681631. Pruned matrix : 504212 x 507104 with weight 25688162. Total sieving time: 56.46 hours. Total relation processing time: 0.27 hours. Matrix solve time: 9.15 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 66.09 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
2·10148-7 = 1(9)1473<149> = 727 · 55259 · 689461 · 71275313 · C128
C128 = P48 · P80
P48 = 116574430973904193855146706732208499099941411897<48>
P80 = 86904130976575581951526367276706846060506184025707483584177277127705512595780481<80>
Number: n N=10130799617875939439341399345302520071267999743485898743887114293281557156798471710018762477085932643315539431360437715813782457 ( 128 digits) SNFS difficulty: 148 digits. Divisors found: r1=116574430973904193855146706732208499099941411897 (pp48) r2=86904130976575581951526367276706846060506184025707483584177277127705512595780481 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.29 hours. Scaled time: 20.70 units (timescale=1.197). Factorization parameters were as follows: name: KA_1_9_147_3 n: 10130799617875939439341399345302520071267999743485898743887114293281557156798471710018762477085932643315539431360437715813782457 type: snfs skew: 1.00 deg: 5 c5: 125 c0: -14 m: 200000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:148933, AFBsize:149045, largePrimes:6657395 encountered Relations: rels:5980839, finalFF:339775 Max relations in full relation-set: 28 Initial matrix: 298043 x 339775 with sparse part having weight 27123958. Pruned matrix : 283441 x 284995 with weight 19686152. Total sieving time: 14.52 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.42 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 17.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10153-7 = 1(9)1523<154> = 449 · 677 · C148
C148 = P46 · P103
P46 = 3762028438491263860353713420746250519837842493<46>
P103 = 1748931950489219682449972965472311190393808085080580038420592920946818270596715052250792592387757778537<103>
Number: n N=6579531734726439519299411460886328719984998667644823717895997341869179170518434203037769801923197126060538271491217970017073884851615110552581972741 ( 148 digits) SNFS difficulty: 153 digits. Divisors found: r1=3762028438491263860353713420746250519837842493 (pp46) r2=1748931950489219682449972965472311190393808085080580038420592920946818270596715052250792592387757778537 (pp103) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 26.79 hours. Scaled time: 36.59 units (timescale=1.366). Factorization parameters were as follows: name: KA_1_9_152_3 n: 6579531734726439519299411460886328719984998667644823717895997341869179170518434203037769801923197126060538271491217970017073884851615110552581972741 skew: 1.00 deg: 5 c5: 125 c0: -14 m: 2000000000000000000000000000000 type: snfs rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:203362, AFBsize:204052, largePrimes:6864428 encountered Relations: rels:6333807, finalFF:471535 Max relations in full relation-set: 28 Initial matrix: 407479 x 471535 with sparse part having weight 32214453. Pruned matrix : 354626 x 356727 with weight 20521709. Total sieving time: 23.94 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.55 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.5,2.5,100000 total time: 26.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(17·10164-71)/9 = 1(8)1631<165> = 216583463554531<15> · C150
C150 = P43 · P47 · P61
P43 = 5393696868579157005523711065632147602089029<43>
P47 = 38447484784957009504048982784105217220178467777<47>
P61 = 4205587262171089272039659014159109528298565349557528731191647<61>
Number: n N=872129782158233792110440795362543649954023480251741539294763244976946979043259196816200705125877018942721308771218136883684994106138959566906294693851 ( 150 digits) SNFS difficulty: 166 digits. Divisors found: r1=5393696868579157005523711065632147602089029 (pp43) r2=38447484784957009504048982784105217220178467777 (pp47) r3=4205587262171089272039659014159109528298565349557528731191647 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 96.76 hours. Scaled time: 140.39 units (timescale=1.451). Factorization parameters were as follows: name: KA_1_8_163_1 n: 872129782158233792110440795362543649954023480251741539294763244976946979043259196816200705125877018942721308771218136883684994106138959566906294693851 skew: 1.00 deg: 5 c5: 17 c0: -710 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4400001) Primes: RFBsize:250150, AFBsize:249432, largePrimes:8074559 encountered Relations: rels:7600831, finalFF:561306 Max relations in full relation-set: 28 Initial matrix: 499647 x 561306 with sparse part having weight 54689824. Pruned matrix : 472890 x 475452 with weight 43077382. Total sieving time: 87.19 hours. Total relation processing time: 0.31 hours. Matrix solve time: 9.05 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 96.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
3·10160+1 = 3(0)1591<161> = 12697 · 44454007667553277<17> · C140
C140 = P59 · P82
P59 = 29275289584766911761299359521184239465004060018132044373477<59>
P82 = 1815549170260446417865866950799703327121370197342878399772057644753731002595701977<82>
Number: n N=53150727714757855596028755975143659660511735972840980625776628679939604228946393189742287388651544032546054205292253547945196114285975264029 ( 140 digits) SNFS difficulty: 160 digits. Divisors found: r1=29275289584766911761299359521184239465004060018132044373477 (pp59) r2=1815549170260446417865866950799703327121370197342878399772057644753731002595701977 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.82 hours. Scaled time: 41.46 units (timescale=1.303). Factorization parameters were as follows: name: KA_3_0_159_1 n: 53150727714757855596028755975143659660511735972840980625776628679939604228946393189742287388651544032546054205292253547945196114285975264029 skew: 1.00 deg: 5 c5: 3 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:249986, largePrimes:7004434 encountered Relations: rels:6536240, finalFF:574940 Max relations in full relation-set: 48 Initial matrix: 500201 x 574940 with sparse part having weight 35481689. Pruned matrix : 432298 x 434863 with weight 21149842. Total sieving time: 27.52 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.95 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 31.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS
2·10150-7 = 1(9)1493<151> = 11952940053651615413333135761471<32> · C120
C120 = P55 · P65
P55 = 5135103254216728139255928526842762174060283210192549973<55>
P65 = 32584125786762908430335253253731098461829476256546485262340435371<65>
Number: 19993_150 N=167322850363413418158164834583548112090064493980285945977571771138046552314385841614896291617004196921469969657494294983 ( 120 digits) SNFS difficulty: 150 digits. Divisors found: r1=5135103254216728139255928526842762174060283210192549973 (pp55) r2=32584125786762908430335253253731098461829476256546485262340435371 (pp65) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 32.39 hours. Scaled time: 22.12 units (timescale=0.683). Factorization parameters were as follows: name: 19993_150 n: 167322850363413418158164834583548112090064493980285945977571771138046552314385841614896291617004196921469969657494294983 m: 1000000000000000000000000000000 c5: 2 c0: -7 skew: 1.28 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1750001) Primes: RFBsize:114155, AFBsize:113917, largePrimes:2699817 encountered Relations: rels:2662344, finalFF:256787 Max relations in full relation-set: 0 Initial matrix: 228137 x 256787 with sparse part having weight 20597364. Pruned matrix : 219117 x 220321 with weight 15817334. Total sieving time: 30.89 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.28 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 32.39 hours. --------- CPU info (if available) ----------
2·10154-7 = 1(9)1533<155> = 672 · 229 · 55049 · 50009407956250793<17> · 61602475925415368717517641<26> · C102
C102 = P39 · P63
P39 = 351490277394110695323131847836679690401<39>
P63 = 326386567160734215007637212280611893892518870849999885489152869<63>
Number: 19993_154 N=114721705029038009684258993602678013088151782796643426876986034777151039743560427927268917878680910469 ( 102 digits) Divisors found: r1=351490277394110695323131847836679690401 (pp39) r2=326386567160734215007637212280611893892518870849999885489152869 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.31 hours. Scaled time: 8.41 units (timescale=0.683). Factorization parameters were as follows: name: 19993_154 n: 114721705029038009684258993602678013088151782796643426876986034777151039743560427927268917878680910469 skew: 6838.50 # norm 1.98e+14 c5: 57420 c4: 806981968 c3: -8759452266381 c2: 58156300282939815 c1: 72656612070836578217 c0: -291819258638452880648082 # alpha -6.34 Y1: 18567356473 Y0: -18201837623511379385 # Murphy_E 2.96e-09 # M 87987576487836068557265036980859895901729801322279531052036278029304020648302296853134444042946255226 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: RFBsize:169511, AFBsize:170137, largePrimes:4352283 encountered Relations: rels:4419667, finalFF:389432 Max relations in full relation-set: 0 Initial matrix: 339732 x 389432 with sparse part having weight 18830906. Pruned matrix : 292135 x 293897 with weight 12311149. Polynomial selection time: 0.73 hours. Total sieving time: 9.40 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.79 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 12.31 hours. --------- CPU info (if available) ----------
By Bruce Dodson
10610+1 is divisible by 30177150878514090521547663054628235944221777770161<50>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS
7·10156+3 = 7(0)1553<157> = 131869366750590330739<21> · C137
C137 = P34 · P104
P34 = 1122763019112328991917896688146547<34>
P104 = 47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691<104>
Number: n N=53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977 ( 137 digits) SNFS difficulty: 156 digits. Divisors found: r1=1122763019112328991917896688146547 (pp34) r2=47278753694379635584088304024046021007264290269515393607169408994420953596008025338686045504887530367691 (pp104) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.61 hours. Scaled time: 58.14 units (timescale=1.196). Factorization parameters were as follows: name: KA_7_0_155_3 n: 53082836237769857722135010860503485221907656970354532121622796129493381197886353182035304221918803574861216603875564877388744020202012977 type: snfs skew: 1.00 deg: 5 c5: 70 c0: 3 m: 10000000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:148933, AFBsize:148155, largePrimes:7023899 encountered Relations: rels:6408331, finalFF:334175 Max relations in full relation-set: 28 Initial matrix: 297155 x 334175 with sparse part having weight 35120249. Pruned matrix : 287404 x 288953 with weight 27659186. Total sieving time: 44.44 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.56 hours. Total square root time: 0.31 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,100000 total time: 48.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(2·10165-11)/9 = (2)1641<165> = 13 · 724499 · C158
C158 = P39 · P119
P39 = 454131008520969815015609614546162302581<39>
P119 = 51954741289049915090131599165962689609766478375843775620784761410878644041216476959039033357173188712948113263437198543<119>
Number: n N=23594259059042309260736063257529815799737497351986812979857828781015700528356860525711000314829995754331053620631660076849097123797295916236038996732938339483 ( 158 digits) SNFS difficulty: 165 digits. Divisors found: r1=454131008520969815015609614546162302581 (pp39) r2=51954741289049915090131599165962689609766478375843775620784761410878644041216476959039033357173188712948113263437198543 (pp119) Version: GGNFS-0.77.1-20051202-athlon Total time: 49.52 hours. Scaled time: 65.56 units (timescale=1.324). Factorization parameters were as follows: name: KA_2_164_1 n: 23594259059042309260736063257529815799737497351986812979857828781015700528356860525711000314829995754331053620631660076849097123797295916236038996732938339483 skew: 1.00 deg: 5 c5: 2 c0: -11 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:250150, AFBsize:250187, largePrimes:7289192 encountered Relations: rels:6812467, finalFF:578182 Max relations in full relation-set: 48 Initial matrix: 500404 x 578182 with sparse part having weight 42208298. Pruned matrix : 436256 x 438822 with weight 26433646. Total sieving time: 44.02 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.18 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 49.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10134-7 = 1(9)1333<135> = 2857 · 27927023 · C124
C124 = P50 · P74
P50 = 53144573565322907925832295743438999653609663807679<50>
P74 = 47166775363319527326178169171770117349576735102560712103900237618601981697<74>
Number: n N=2506658163134994748187870797893663432529551237390369677630812454096726037917263172448982542288494354114405110663168086051263 ( 124 digits) SNFS difficulty: 135 digits. Divisors found: r1=53144573565322907925832295743438999653609663807679 (pp50) r2=47166775363319527326178169171770117349576735102560712103900237618601981697 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.42 hours. Scaled time: 5.81 units (timescale=1.315). Factorization parameters were as follows: name: KA_1_9_133_3 n: 2506658163134994748187870797893663432529551237390369677630812454096726037917263172448982542288494354114405110663168086051263 skew: 1.00 deg: 5 c5: 1 c0: -35 m: 1000000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:92938, AFBsize:93179, largePrimes:5793654 encountered Relations: rels:5159522, finalFF:291661 Max relations in full relation-set: 48 Initial matrix: 186181 x 291661 with sparse part having weight 28321965. Pruned matrix : 147755 x 148749 with weight 9548185. Total sieving time: 3.69 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.57 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,75000 total time: 4.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10146-7 = 1(9)1453<147> = 312 · 47 · C142
C142 = P42 · P43 · P58
P42 = 435789728193384491010265428807562407041323<42>
P43 = 7824864009218661541825600129317326360954459<43>
P58 = 1298538893538002080810765152446905474596595362243224337247<58>
Number: n N=4428011601390395642836584231850687448801115858923550379701994819226426373237097881196448734695684902694445059446055748666061505081143312595479 ( 142 digits) SNFS difficulty: 146 digits. Divisors found: r1=435789728193384491010265428807562407041323 (pp42) r2=7824864009218661541825600129317326360954459 (pp43) r3=1298538893538002080810765152446905474596595362243224337247 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.67 hours. Scaled time: 10.36 units (timescale=1.195). Factorization parameters were as follows: name: KA_1_9_145_3 n: 4428011601390395642836584231850687448801115858923550379701994819226426373237097881196448734695684902694445059446055748666061505081143312595479 type: snfs skew: 1.00 deg: 5 c5: 20 c0: -7 m: 100000000000000000000000000000 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1050001) Primes: RFBsize:135072, AFBsize:134113, largePrimes:5640095 encountered Relations: rels:4976824, finalFF:312780 Max relations in full relation-set: 28 Initial matrix: 269251 x 312780 with sparse part having weight 17817889. Pruned matrix : 235514 x 236924 with weight 10920385. Total sieving time: 7.28 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.10 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.3,2.3,100000 total time: 8.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10157-7 = 1(9)1563<158> = 13 · 19 · C155
C155 = P50 · P106
P50 = 34394983393086726911525485365768764383612514728573<50>
P106 = 2354170635689371043056236203816500880637102917069176450408667904943221662630923232028232978839918295665403<106>
Number: n N=80971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919 ( 155 digits) SNFS difficulty: 157 digits. Divisors found: r1=34394983393086726911525485365768764383612514728573 (pp50) r2=2354170635689371043056236203816500880637102917069176450408667904943221662630923232028232978839918295665403 (pp106) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 31.86 hours. Scaled time: 43.52 units (timescale=1.366). Factorization parameters were as follows: name: KA_1_9_156_3 n: 80971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919028340080971659919 skew: 1.00 deg: 5 c5: 200 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216921, largePrimes:6966596 encountered Relations: rels:6455257, finalFF:502554 Max relations in full relation-set: 28 Initial matrix: 433802 x 502554 with sparse part having weight 33690650. Pruned matrix : 377727 x 379960 with weight 21241570. Total sieving time: 28.24 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.20 hours. Total square root time: 0.21 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 31.86 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10138-7 = 1(9)1373<139> = 658279 · C133
C133 = P44 · P90
P44 = 20210881938782879485293912186383278080876647<44>
P90 = 150326217455104768578918165545438708371606106048971235069662906160218582347415312161469961<90>
Number: n N=3038225433288924604916760218691466688136793061908400541411772212086364596166670970819363825976523632076976479577808193790171036900767 ( 133 digits) SNFS difficulty: 138 digits. Divisors found: r1=20210881938782879485293912186383278080876647 (pp44) r2=150326217455104768578918165545438708371606106048971235069662906160218582347415312161469961 (pp90) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.57 hours. Scaled time: 8.62 units (timescale=1.311). Factorization parameters were as follows: name: KA_1_9_137_3 n: 3038225433288924604916760218691466688136793061908400541411772212086364596166670970819363825976523632076976479577808193790171036900767 skew: 1.00 deg: 5 c5: 125 c0: -14 m: 2000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 750001) Primes: RFBsize:114155, AFBsize:114067, largePrimes:6195557 encountered Relations: rels:5510791, finalFF:295473 Max relations in full relation-set: 48 Initial matrix: 228287 x 295473 with sparse part having weight 28469908. Pruned matrix : 197360 x 198565 with weight 13852233. Total sieving time: 5.39 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.94 hours. Total square root time: 0.08 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 6.57 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By JMB / GMP-ECM
2·10160-7 = 1(9)1593<161> = 9778720056013703211871<22> · C139
C139 = P34 · C105
P34 = 3697455345403613029511363255055491<34>
C105 = [553152710237787609065609048212168477170736374711112981864333893174433466742570138896896172282264776518413<105>]
By JMB / GMP-ECM
2·10158-7 = 1(9)1573<159> = 953 · 25057 · C151
C151 = P31 · C121
P31 = 2414090848213589432916932990633<31>
C121 = [3469400305515585275088518477571852718127951025814114467282749380810057951257353312433363378995962611612031180850967588601<121>]
2·10137-7 = 1(9)1363<138> = 748003 · 33310522579<11> · C121
C121 = P28 · P94
P28 = 2390131300820543368485406409<28>
P94 = 3358330630726815585866665148198037542537791667019952702420547131059345414855706436951109119321<94>
By Sinkiti Sibata / GGNFS
2·10113-7 = 1(9)1123<114> = 433 · 193594939 · 6438265937<10> · C93
C93 = P42 · P52
P42 = 103768776474506761548880707440030104142231<42>
P52 = 3571186177883878701163022523856197962069162111081437<52>
Number: 19993_113 N=370577620241680351107960936083701744464801655582601702548670887408021026411042271800671865947 ( 93 digits) SNFS difficulty: 113 digits. Divisors found: r1=103768776474506761548880707440030104142231 (pp42) r2=3571186177883878701163022523856197962069162111081437 (pp52) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.84 hours. Scaled time: 1.26 units (timescale=0.683). Factorization parameters were as follows: name: 19993_113 n: 370577620241680351107960936083701744464801655582601702548670887408021026411042271800671865947 m: 20000000000000000000000 c5: 125 c0: -14 skew: 0.65 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:1971406 encountered Relations: rels:1935298, finalFF:127077 Max relations in full relation-set: 0 Initial matrix: 112986 x 127077 with sparse part having weight 7926145. Pruned matrix : 106103 x 106731 with weight 5732448. Total sieving time: 1.58 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.84 hours. --------- CPU info (if available) ----------
2·10121-7 = 1(9)1203<122> = 13 · 192 · 29 · 67 · 449 · 105683783 · 560286053 · C95
C95 = P32 · P63
P32 = 84709044758553106779503153611219<32>
P63 = 973895486213706256874024049169829152280917871863189669742989003<63>
Number: 19993_121 N=82497756331829683462558669352925498586702592066075493931163282676698334873528872233466454424657 ( 95 digits) SNFS difficulty: 121 digits. Divisors found: r1=84709044758553106779503153611219 (pp32) r2=973895486213706256874024049169829152280917871863189669742989003 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.15 hours. Scaled time: 1.46 units (timescale=0.677). Factorization parameters were as follows: name: 19993_121 n: 82497756331829683462558669352925498586702592066075493931163282676698334873528872233466454424657 m: 1000000000000000000000000 c5: 20 c0: -7 skew: 0.81 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63823, largePrimes:2192336 encountered Relations: rels:2389469, finalFF:130435 Max relations in full relation-set: 0 Initial matrix: 112987 x 130435 with sparse part having weight 4525679. Pruned matrix : 99255 x 99883 with weight 3222049. Total sieving time: 1.95 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.10 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.15 hours. --------- CPU info (if available) ----------
2·10131-7 = 1(9)1303<132> = 31 · 43 · 547 · 17191 · C122
C122 = P39 · P83
P39 = 336512056301210231838855734796868432039<39>
P83 = 47414453712323773154974881733917128690695953514154501437581484178811965886517575607<83>
Number: 19993_131 N=15955535317132624037259941748282345796884680309287211931921457057513056386029490246875124343730473568510897621965723672673 ( 122 digits) SNFS difficulty: 131 digits. Divisors found: r1=336512056301210231838855734796868432039 (pp39) r2=47414453712323773154974881733917128690695953514154501437581484178811965886517575607 (pp83) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 4.50 hours. Scaled time: 3.07 units (timescale=0.683). Factorization parameters were as follows: name: 19993_131 n: 15955535317132624037259941748282345796884680309287211931921457057513056386029490246875124343730473568510897621965723672673 m: 100000000000000000000000000 c5: 20 c0: -7 skew: 0.81 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 850001) Primes: RFBsize:63951, AFBsize:63823, largePrimes:1471860 encountered Relations: rels:1489112, finalFF:145656 Max relations in full relation-set: 0 Initial matrix: 127840 x 145656 with sparse part having weight 5859360. Pruned matrix : 120924 x 121627 with weight 4468738. Total sieving time: 4.22 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.17 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 4.50 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS, Msieve
2·10103-7 = 1(9)1023<104> = 13 · 19 · 109 · 27271 · 45843061261<11> · C84
C84 = P37 · P48
P37 = 1499785301098546070559433483576047617<37>
P48 = 396189332056518295199839376172030596884900883633<48>
Sat Aug 18 00:41:33 2007 Msieve v. 1.25 Sat Aug 18 00:41:33 2007 random seeds: 45574060 fe00702c Sat Aug 18 00:41:33 2007 factoring 594198936670417142250034428006910675032083389876682398379113331137221661036983952561 (84 digits) Sat Aug 18 00:41:34 2007 commencing quadratic sieve (84-digit input) Sat Aug 18 00:41:34 2007 using multiplier of 1 Sat Aug 18 00:41:34 2007 using 64kb Opteron sieve core Sat Aug 18 00:41:34 2007 sieve interval: 6 blocks of size 65536 Sat Aug 18 00:41:34 2007 processing polynomials in batches of 17 Sat Aug 18 00:41:34 2007 using a sieve bound of 1409171 (53774 primes) Sat Aug 18 00:41:34 2007 using large prime bound of 119779535 (26 bits) Sat Aug 18 00:41:34 2007 using trial factoring cutoff of 27 bits Sat Aug 18 00:41:34 2007 polynomial 'A' values have 11 factors Sat Aug 18 01:03:48 2007 54036 relations (27875 full + 26161 combined from 277827 partial), need 53870 Sat Aug 18 01:03:49 2007 begin with 305702 relations Sat Aug 18 01:03:49 2007 reduce to 76900 relations in 2 passes Sat Aug 18 01:03:49 2007 attempting to read 76900 relations Sat Aug 18 01:03:49 2007 recovered 76900 relations Sat Aug 18 01:03:49 2007 recovered 69605 polynomials Sat Aug 18 01:03:50 2007 attempting to build 54036 cycles Sat Aug 18 01:03:50 2007 found 54036 cycles in 1 passes Sat Aug 18 01:03:50 2007 distribution of cycle lengths: Sat Aug 18 01:03:50 2007 length 1 : 27875 Sat Aug 18 01:03:50 2007 length 2 : 26161 Sat Aug 18 01:03:50 2007 largest cycle: 2 relations Sat Aug 18 01:03:50 2007 matrix is 53774 x 54036 with weight 1726315 (avg 31.95/col) Sat Aug 18 01:03:50 2007 filtering completed in 4 passes Sat Aug 18 01:03:50 2007 matrix is 46254 x 46318 with weight 1449783 (avg 31.30/col) Sat Aug 18 01:03:51 2007 saving the first 48 matrix rows for later Sat Aug 18 01:03:51 2007 matrix is 46206 x 46318 with weight 1037966 (avg 22.41/col) Sat Aug 18 01:03:51 2007 matrix includes 64 packed rows Sat Aug 18 01:03:51 2007 commencing Lanczos iteration Sat Aug 18 01:04:42 2007 lanczos halted after 732 iterations Sat Aug 18 01:04:42 2007 recovered 9 nontrivial dependencies Sat Aug 18 01:04:42 2007 prp37 factor: 1499785301098546070559433483576047617 Sat Aug 18 01:04:42 2007 prp48 factor: 396189332056518295199839376172030596884900883633 Sat Aug 18 01:04:42 2007 elapsed time 00:23:09
2·10101-7 = 1(9)1003<102> = 23 · 31 · C99
C99 = P32 · P67
P32 = 40817008110892419885360745295659<32>
P67 = 6872255508630705731993785461808742826606432539570772235049035346579<67>
Number: n N=280504908835904628330995792426367461430575035063113604488078541374474053295932678821879382889200561 ( 99 digits) SNFS difficulty: 101 digits. Divisors found: r1=40817008110892419885360745295659 (pp32) r2=6872255508630705731993785461808742826606432539570772235049035346579 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.58 hours. Scaled time: 0.69 units (timescale=1.195). Factorization parameters were as follows: name: KA_1_9_100_3 n: 280504908835904628330995792426367461430575035063113604488078541374474053295932678821879382889200561 type: snfs skew: 1.00 deg: 5 c5: 20 c0: -7 m: 100000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 150001) Primes: RFBsize:41538, AFBsize:41592, largePrimes:3289182 encountered Relations: rels:2767321, finalFF:227176 Max relations in full relation-set: 28 Initial matrix: 83196 x 227176 with sparse part having weight 6114936. Pruned matrix : 41906 x 42385 with weight 1147122. Total sieving time: 0.50 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,101,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.2,2.2,20000 total time: 0.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10107-7 = 1(9)1063<108> = C108
C108 = P53 · P55
P53 = 82054863816299707259814398629080646350578566200027409<53>
P55 = 2437393601039298755451892933667568529233231518271465577<55>
Number: n N=199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 ( 108 digits) SNFS difficulty: 107 digits. Divisors found: r1=82054863816299707259814398629080646350578566200027409 (pp53) r2=2437393601039298755451892933667568529233231518271465577 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.81 hours. Scaled time: 1.07 units (timescale=1.324). Factorization parameters were as follows: name: KA_1_9_106_3 n: 199999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999993 skew: 1.00 deg: 5 c5: 200 c0: -7 m: 1000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 150001) Primes: RFBsize:49098, AFBsize:49236, largePrimes:3580731 encountered Relations: rels:2988128, finalFF:136292 Max relations in full relation-set: 48 Initial matrix: 98399 x 136292 with sparse part having weight 7847627. Pruned matrix : 78677 x 79232 with weight 2761136. Total sieving time: 0.70 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.04 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10116-7 = 1(9)1153<117> = 31 · 15287 · 57388723099<11> · 7056481988900947<16> · C85
C85 = P38 · P47
P38 = 53770152002195367607766769002285035703<38>
P47 = 19381615468650712446069311543584612837099830391<47>
Sat Aug 18 01:11:25 2007 Msieve v. 1.25 Sat Aug 18 01:11:25 2007 random seeds: 8c7476f8 0ac7e520 Sat Aug 18 01:11:25 2007 factoring 1042152409797449813919505804291041079610830022103112436355806625120281914418679449873 (85 digits) Sat Aug 18 01:11:25 2007 commencing quadratic sieve (84-digit input) Sat Aug 18 01:11:25 2007 using multiplier of 23 Sat Aug 18 01:11:25 2007 using 64kb Opteron sieve core Sat Aug 18 01:11:25 2007 sieve interval: 6 blocks of size 65536 Sat Aug 18 01:11:25 2007 processing polynomials in batches of 17 Sat Aug 18 01:11:25 2007 using a sieve bound of 1412767 (54118 primes) Sat Aug 18 01:11:25 2007 using large prime bound of 118672428 (26 bits) Sat Aug 18 01:11:25 2007 using double large prime bound of 341845303975812 (41-49 bits) Sat Aug 18 01:11:25 2007 using trial factoring cutoff of 49 bits Sat Aug 18 01:11:25 2007 polynomial 'A' values have 11 factors Sat Aug 18 01:41:18 2007 54532 relations (16323 full + 38209 combined from 574167 partial), need 54214 Sat Aug 18 01:41:18 2007 begin with 590490 relations Sat Aug 18 01:41:19 2007 reduce to 127649 relations in 9 passes Sat Aug 18 01:41:19 2007 attempting to read 127649 relations Sat Aug 18 01:41:20 2007 recovered 127649 relations Sat Aug 18 01:41:20 2007 recovered 105145 polynomials Sat Aug 18 01:41:20 2007 attempting to build 54532 cycles Sat Aug 18 01:41:20 2007 found 54532 cycles in 6 passes Sat Aug 18 01:41:21 2007 distribution of cycle lengths: Sat Aug 18 01:41:21 2007 length 1 : 16323 Sat Aug 18 01:41:21 2007 length 2 : 10945 Sat Aug 18 01:41:21 2007 length 3 : 9517 Sat Aug 18 01:41:21 2007 length 4 : 6903 Sat Aug 18 01:41:21 2007 length 5 : 4676 Sat Aug 18 01:41:21 2007 length 6 : 2756 Sat Aug 18 01:41:21 2007 length 7 : 1628 Sat Aug 18 01:41:21 2007 length 9+: 1784 Sat Aug 18 01:41:21 2007 largest cycle: 20 relations Sat Aug 18 01:41:21 2007 matrix is 54118 x 54532 with weight 2861941 (avg 52.48/col) Sat Aug 18 01:41:21 2007 filtering completed in 3 passes Sat Aug 18 01:41:21 2007 matrix is 49283 x 49347 with weight 2589053 (avg 52.47/col) Sat Aug 18 01:41:22 2007 saving the first 48 matrix rows for later Sat Aug 18 01:41:22 2007 matrix is 49235 x 49347 with weight 1923717 (avg 38.98/col) Sat Aug 18 01:41:22 2007 matrix includes 64 packed rows Sat Aug 18 01:41:22 2007 commencing Lanczos iteration Sat Aug 18 01:42:37 2007 lanczos halted after 780 iterations Sat Aug 18 01:42:37 2007 recovered 16 nontrivial dependencies Sat Aug 18 01:42:37 2007 prp38 factor: 53770152002195367607766769002285035703 Sat Aug 18 01:42:37 2007 prp47 factor: 19381615468650712446069311543584612837099830391 Sat Aug 18 01:42:37 2007 elapsed time 00:31:12
7·10157+3 = 7(0)1563<158> = 229 · 20670690483852242291<20> · C137
C137 = P54 · P83
P54 = 289487332555897025292304347439098723403965940378647989<54>
P83 = 51083189905954193522289990799875185494212136099456609629347350039925026063426710793<83>
Number: n N=14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277 ( 137 digits) SNFS difficulty: 157 digits. Divisors found: r1=289487332555897025292304347439098723403965940378647989 (pp54) r2=51083189905954193522289990799875185494212136099456609629347350039925026063426710793 (pp83) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 31.10 hours. Scaled time: 42.45 units (timescale=1.365). Factorization parameters were as follows: name: KA_7_0_156_3 n: 14787936384321003708141216422843185879204009734434037034013241495186860920918712525674496781342997140195863042629969015291500910654045277 skew: 1.00 deg: 5 c5: 700 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6935490 encountered Relations: rels:6416479, finalFF:495576 Max relations in full relation-set: 28 Initial matrix: 433624 x 495576 with sparse part having weight 32902854. Pruned matrix : 382603 x 384835 with weight 21351181. Total sieving time: 28.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.62 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 31.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10129-7 = 1(9)1283<130> = 83639 · 3574169 · 129553992197347<15> · 261030882891310001<18> · C87
C87 = P31 · P57
P31 = 1486751042568008988903546205849<31>
P57 = 133065397594874242418254943012440252718810034095919697541<57>
Sat Aug 18 01:57:43 2007 Msieve v. 1.25 Sat Aug 18 01:57:43 2007 random seeds: cba2d240 7c081f2e Sat Aug 18 01:57:43 2007 factoring 197835118603905915720214023895293099346240518843919779049358943033088066153354205117309 (87 digits) Sat Aug 18 01:57:43 2007 commencing quadratic sieve (86-digit input) Sat Aug 18 01:57:43 2007 using multiplier of 11 Sat Aug 18 01:57:43 2007 using 64kb Opteron sieve core Sat Aug 18 01:57:43 2007 sieve interval: 10 blocks of size 65536 Sat Aug 18 01:57:43 2007 processing polynomials in batches of 11 Sat Aug 18 01:57:43 2007 using a sieve bound of 1477219 (56333 primes) Sat Aug 18 01:57:43 2007 using large prime bound of 118177520 (26 bits) Sat Aug 18 01:57:43 2007 using double large prime bound of 339283405529280 (41-49 bits) Sat Aug 18 01:57:43 2007 using trial factoring cutoff of 49 bits Sat Aug 18 01:57:43 2007 polynomial 'A' values have 11 factors Sat Aug 18 02:41:39 2007 56816 relations (15831 full + 40985 combined from 595388 partial), need 56429 Sat Aug 18 02:41:40 2007 begin with 611219 relations Sat Aug 18 02:41:41 2007 reduce to 136446 relations in 10 passes Sat Aug 18 02:41:41 2007 attempting to read 136446 relations Sat Aug 18 02:41:42 2007 recovered 136446 relations Sat Aug 18 02:41:42 2007 recovered 114684 polynomials Sat Aug 18 02:41:42 2007 attempting to build 56816 cycles Sat Aug 18 02:41:42 2007 found 56816 cycles in 5 passes Sat Aug 18 02:41:43 2007 distribution of cycle lengths: Sat Aug 18 02:41:43 2007 length 1 : 15831 Sat Aug 18 02:41:43 2007 length 2 : 11249 Sat Aug 18 02:41:43 2007 length 3 : 9985 Sat Aug 18 02:41:43 2007 length 4 : 7344 Sat Aug 18 02:41:43 2007 length 5 : 5110 Sat Aug 18 02:41:43 2007 length 6 : 3192 Sat Aug 18 02:41:43 2007 length 7 : 1864 Sat Aug 18 02:41:43 2007 length 9+: 2241 Sat Aug 18 02:41:43 2007 largest cycle: 22 relations Sat Aug 18 02:41:43 2007 matrix is 56333 x 56816 with weight 3281518 (avg 57.76/col) Sat Aug 18 02:41:44 2007 filtering completed in 3 passes Sat Aug 18 02:41:44 2007 matrix is 51901 x 51965 with weight 3009122 (avg 57.91/col) Sat Aug 18 02:41:44 2007 saving the first 48 matrix rows for later Sat Aug 18 02:41:44 2007 matrix is 51853 x 51965 with weight 2376073 (avg 45.72/col) Sat Aug 18 02:41:44 2007 matrix includes 64 packed rows Sat Aug 18 02:41:44 2007 using block size 20786 for processor cache size 512 kB Sat Aug 18 02:41:45 2007 commencing Lanczos iteration Sat Aug 18 02:42:09 2007 lanczos halted after 821 iterations Sat Aug 18 02:42:09 2007 recovered 18 nontrivial dependencies Sat Aug 18 02:42:10 2007 prp31 factor: 1486751042568008988903546205849 Sat Aug 18 02:42:10 2007 prp57 factor: 133065397594874242418254943012440252718810034095919697541 Sat Aug 18 02:42:10 2007 elapsed time 00:44:27
2·10105-7 = 1(9)1043<106> = 249871 · 19798132157<11> · C90
C90 = P40 · P51
P40 = 3163117297741861192762916686673115456869<40>
P51 = 127812881122780074917861322196995275825625504898951<51>
Sat Aug 18 02:48:52 2007 Msieve v. 1.25 Sat Aug 18 02:48:52 2007 random seeds: 17aa9510 0f4a9a94 Sat Aug 18 02:48:52 2007 factoring 404287135153689852139853507001355860700950742482453612994941638390577044704142200043844419 (90 digits) Sat Aug 18 02:48:52 2007 commencing quadratic sieve (90-digit input) Sat Aug 18 02:48:52 2007 using multiplier of 35 Sat Aug 18 02:48:52 2007 using 64kb Opteron sieve core Sat Aug 18 02:48:52 2007 sieve interval: 18 blocks of size 65536 Sat Aug 18 02:48:52 2007 processing polynomials in batches of 6 Sat Aug 18 02:48:52 2007 using a sieve bound of 1584941 (59865 primes) Sat Aug 18 02:48:52 2007 using large prime bound of 126795280 (26 bits) Sat Aug 18 02:48:52 2007 using double large prime bound of 385110612518640 (42-49 bits) Sat Aug 18 02:48:52 2007 using trial factoring cutoff of 49 bits Sat Aug 18 02:48:52 2007 polynomial 'A' values have 12 factors Sat Aug 18 04:06:48 2007 60026 relations (16158 full + 43868 combined from 635630 partial), need 59961 Sat Aug 18 04:06:48 2007 begin with 651788 relations Sat Aug 18 04:06:49 2007 reduce to 145703 relations in 10 passes Sat Aug 18 04:06:49 2007 attempting to read 145703 relations Sat Aug 18 04:06:51 2007 recovered 145703 relations Sat Aug 18 04:06:51 2007 recovered 125654 polynomials Sat Aug 18 04:06:51 2007 attempting to build 60026 cycles Sat Aug 18 04:06:51 2007 found 60026 cycles in 5 passes Sat Aug 18 04:06:51 2007 distribution of cycle lengths: Sat Aug 18 04:06:51 2007 length 1 : 16158 Sat Aug 18 04:06:51 2007 length 2 : 11640 Sat Aug 18 04:06:51 2007 length 3 : 10601 Sat Aug 18 04:06:51 2007 length 4 : 8002 Sat Aug 18 04:06:51 2007 length 5 : 5438 Sat Aug 18 04:06:51 2007 length 6 : 3507 Sat Aug 18 04:06:51 2007 length 7 : 2180 Sat Aug 18 04:06:51 2007 length 9+: 2500 Sat Aug 18 04:06:51 2007 largest cycle: 19 relations Sat Aug 18 04:06:51 2007 matrix is 59865 x 60026 with weight 3621110 (avg 60.33/col) Sat Aug 18 04:06:52 2007 filtering completed in 3 passes Sat Aug 18 04:06:52 2007 matrix is 55875 x 55939 with weight 3404274 (avg 60.86/col) Sat Aug 18 04:06:53 2007 saving the first 48 matrix rows for later Sat Aug 18 04:06:53 2007 matrix is 55827 x 55939 with weight 2670443 (avg 47.74/col) Sat Aug 18 04:06:53 2007 matrix includes 64 packed rows Sat Aug 18 04:06:53 2007 using block size 21845 for processor cache size 512 kB Sat Aug 18 04:06:53 2007 commencing Lanczos iteration Sat Aug 18 04:07:22 2007 lanczos halted after 884 iterations Sat Aug 18 04:07:22 2007 recovered 17 nontrivial dependencies Sat Aug 18 04:07:23 2007 prp40 factor: 3163117297741861192762916686673115456869 Sat Aug 18 04:07:23 2007 prp51 factor: 127812881122780074917861322196995275825625504898951 Sat Aug 18 04:07:23 2007 elapsed time 01:18:31
2·10118-7 = 1(9)1173<119> = 7603 · 15467 · 36691 · 560783 · 44963591969<11> · C90
C90 = P39 · P51
P39 = 228255834357666971162546058313791223921<39>
P51 = 805381494221740368380247875416367103097200384770669<51>
Sat Aug 18 06:06:11 2007 Msieve v. 1.25 Sat Aug 18 06:06:11 2007 random seeds: 5f6a4b80 2ab61692 Sat Aug 18 06:06:11 2007 factoring 183833024939807888384756175161493723771813679252307301971496985010466178538582354411973149 (90 digits) Sat Aug 18 06:06:11 2007 commencing quadratic sieve (89-digit input) Sat Aug 18 06:06:11 2007 using multiplier of 5 Sat Aug 18 06:06:11 2007 using 64kb Opteron sieve core Sat Aug 18 06:06:11 2007 sieve interval: 18 blocks of size 65536 Sat Aug 18 06:06:11 2007 processing polynomials in batches of 6 Sat Aug 18 06:06:11 2007 using a sieve bound of 1575227 (59526 primes) Sat Aug 18 06:06:11 2007 using large prime bound of 126018160 (26 bits) Sat Aug 18 06:06:11 2007 using double large prime bound of 380872498093920 (42-49 bits) Sat Aug 18 06:06:11 2007 using trial factoring cutoff of 49 bits Sat Aug 18 06:06:11 2007 polynomial 'A' values have 11 factors Sat Aug 18 07:19:05 2007 59934 relations (15603 full + 44331 combined from 637765 partial), need 59622 Sat Aug 18 07:19:06 2007 begin with 653368 relations Sat Aug 18 07:19:07 2007 reduce to 146935 relations in 11 passes Sat Aug 18 07:19:07 2007 attempting to read 146935 relations Sat Aug 18 07:19:08 2007 recovered 146935 relations Sat Aug 18 07:19:08 2007 recovered 124808 polynomials Sat Aug 18 07:19:09 2007 attempting to build 59934 cycles Sat Aug 18 07:19:09 2007 found 59934 cycles in 6 passes Sat Aug 18 07:19:09 2007 distribution of cycle lengths: Sat Aug 18 07:19:09 2007 length 1 : 15603 Sat Aug 18 07:19:09 2007 length 2 : 11295 Sat Aug 18 07:19:09 2007 length 3 : 10597 Sat Aug 18 07:19:09 2007 length 4 : 8235 Sat Aug 18 07:19:09 2007 length 5 : 5780 Sat Aug 18 07:19:09 2007 length 6 : 3694 Sat Aug 18 07:19:09 2007 length 7 : 2249 Sat Aug 18 07:19:09 2007 length 9+: 2481 Sat Aug 18 07:19:09 2007 largest cycle: 18 relations Sat Aug 18 07:19:09 2007 matrix is 59526 x 59934 with weight 3646667 (avg 60.84/col) Sat Aug 18 07:19:10 2007 filtering completed in 3 passes Sat Aug 18 07:19:10 2007 matrix is 55752 x 55815 with weight 3412104 (avg 61.13/col) Sat Aug 18 07:19:11 2007 saving the first 48 matrix rows for later Sat Aug 18 07:19:11 2007 matrix is 55704 x 55815 with weight 2806624 (avg 50.28/col) Sat Aug 18 07:19:11 2007 matrix includes 64 packed rows Sat Aug 18 07:19:11 2007 using block size 21845 for processor cache size 512 kB Sat Aug 18 07:19:11 2007 commencing Lanczos iteration Sat Aug 18 07:19:45 2007 lanczos halted after 883 iterations Sat Aug 18 07:19:45 2007 recovered 18 nontrivial dependencies Sat Aug 18 07:19:46 2007 prp39 factor: 228255834357666971162546058313791223921 Sat Aug 18 07:19:46 2007 prp51 factor: 805381494221740368380247875416367103097200384770669 Sat Aug 18 07:19:46 2007 elapsed time 01:13:35
The factor table of 199...993 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS
8·10147+3 = 8(0)1463<148> = 31466053047841<14> · 446393418652404001<18> · C117
C117 = P55 · P63
P55 = 2323850000470988610164769082031528440943605820371041061<55>
P63 = 245087883633789932212635585467307279310123198991773916587660103<63>
Number: 80003_147 N=569547478497816335653236580096415110037272527469806007281214758971851303247684071335941951908761857655410364124489283 ( 117 digits) SNFS difficulty: 147 digits. Divisors found: r1=2323850000470988610164769082031528440943605820371041061 (pp55) r2=245087883633789932212635585467307279310123198991773916587660103 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 18.83 hours. Scaled time: 12.86 units (timescale=0.683). Factorization parameters were as follows: name: 80003_147 n: 569547478497816335653236580096415110037272527469806007281214758971851303247684071335941951908761857655410364124489283 m: 200000000000000000000000000000 c5: 25 c0: 3 skew: 0.65 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2450001) Primes: RFBsize:114155, AFBsize:114287, largePrimes:2708471 encountered Relations: rels:2648929, finalFF:256730 Max relations in full relation-set: 0 Initial matrix: 228506 x 256730 with sparse part having weight 24970341. Pruned matrix : 219964 x 221170 with weight 19140475. Total sieving time: 17.03 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.55 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 18.83 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS
8·10161+3 = 8(0)1603<162> = 19 · 23 · 31 · 129126249073062336423461145334519<33> · C126
C126 = P52 · P75
P52 = 2631015527810085421291051911982281677569752486170207<52>
P75 = 173823667706511661436246647779256732900511330139840852735400152888111969953<75>
Number: 80003_161 N=457332768836732679329717365438668873227519038326297743384522304228837178049370592246469798154252278726522579730705927227790271 ( 126 digits) SNFS difficulty: 162 digits. Divisors found: r1=2631015527810085421291051911982281677569752486170207 (pp52) r2=173823667706511661436246647779256732900511330139840852735400152888111969953 (pp75) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 65.82 hours. Scaled time: 44.96 units (timescale=0.683). Factorization parameters were as follows: name: 80003_161 n: 457332768836732679329717365438668873227519038326297743384522304228837178049370592246469798154252278726522579730705927227790271 m: 200000000000000000000000000000000 c5: 5 c0: 6 skew: 1.04 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 3750001) Primes: RFBsize:315948, AFBsize:315696, largePrimes:5655636 encountered Relations: rels:5780972, finalFF:715488 Max relations in full relation-set: 0 Initial matrix: 631709 x 715488 with sparse part having weight 33633166. Pruned matrix : 558137 x 561359 with weight 23584636. Total sieving time: 54.70 hours. Total relation processing time: 0.28 hours. Matrix solve time: 10.64 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 65.82 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS
(7·10164-43)/9 = (7)1633<164> = 23 · 711289786791481<15> · C148
C148 = P52 · P96
P52 = 6711531394644396265684065465544051167200478004582667<52>
P96 = 708368916114260301416021742929112249942005710589804708659563255988563220760762909875017169699513<96>
Number: n N=4754240219491080788312230946104229406177747980744173052452025549226149029482922498597241709937906716835807695523262461778588861036905275229358141171 ( 148 digits) SNFS difficulty: 165 digits. Divisors found: r1=6711531394644396265684065465544051167200478004582667 (pp52) r2=708368916114260301416021742929112249942005710589804708659563255988563220760762909875017169699513 (pp96) Version: GGNFS-0.77.1-20051202-athlon Total time: 68.29 hours. Scaled time: 98.61 units (timescale=1.444). Factorization parameters were as follows: name: KA_7_163_3 n: 4754240219491080788312230946104229406177747980744173052452025549226149029482922498597241709937906716835807695523262461778588861036905275229358141171 skew: 1.00 deg: 5 c5: 7 c0: -430 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3100001) Primes: RFBsize:250150, AFBsize:249976, largePrimes:7609891 encountered Relations: rels:7117769, finalFF:563963 Max relations in full relation-set: 28 Initial matrix: 500191 x 563963 with sparse part having weight 43297342. Pruned matrix : 456543 x 459107 with weight 32040185. Total sieving time: 61.30 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.64 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 68.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10148+3 = 8(0)1473<149> = 7 · 11 · 29 · 317 · 509 · 13229 · C137
C137 = P43 · P95
P43 = 1633127480251888041774589540737718105895353<43>
P95 = 10277254618113551226936717541671467485926625997768564715394439356053800695383219974495822267431<95>
Number: n N=16784066938386863809673549107097123019053594081024750091689098181846065843165170875752881062581853809077533297118793759110758492866148143 ( 137 digits) SNFS difficulty: 150 digits. Divisors found: r1=1633127480251888041774589540737718105895353 (pp43) r2=10277254618113551226936717541671467485926625997768564715394439356053800695383219974495822267431 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.86 hours. Scaled time: 21.39 units (timescale=1.198). Factorization parameters were as follows: name: KA_8_0_147_3 n: 16784066938386863809673549107097123019053594081024750091689098181846065843165170875752881062581853809077533297118793759110758492866148143 type: snfs skew: 1.00 deg: 5 c5: 2 c0: 75 m: 1000000000000000000000000000000 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:134848, largePrimes:5661412 encountered Relations: rels:5066697, finalFF:360387 Max relations in full relation-set: 28 Initial matrix: 269985 x 360387 with sparse part having weight 21720490. Pruned matrix : 199413 x 200826 with weight 10892762. Total sieving time: 16.73 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.86 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.3,2.3,100000 total time: 17.86 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
7·10163-3 = 6(9)1627<164> = 521 · 8929 · 20049478817<11> · C147
C147 = P32 · P116
P32 = 18834724717582733339854276484953<32>
P116 = 39846954049113870438326350054437585548327057756753553930562437288636637623138186710621577302650844411531338277069533<116>
Number: n N=750506410349228396108340941035609903362273370421470668905748757604180204449969666910202490334397310209946975430176004793022692543599630852809236949 ( 147 digits) SNFS difficulty: 163 digits. Divisors found: r1=18834724717582733339854276484953 (pp32) r2=39846954049113870438326350054437585548327057756753553930562437288636637623138186710621577302650844411531338277069533 (pp116) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 69.78 hours. Scaled time: 94.62 units (timescale=1.356). Factorization parameters were as follows: name: KA_6_9_162_7 n: 750506410349228396108340941035609903362273370421470668905748757604180204449969666910202490334397310209946975430176004793022692543599630852809236949 skew: 1.00 deg: 5 c5: 7000 c0: -3 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2900001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7592845 encountered Relations: rels:7109288, finalFF:566068 Max relations in full relation-set: 28 Initial matrix: 499988 x 566068 with sparse part having weight 44087913. Pruned matrix : 452753 x 455316 with weight 32088899. Total sieving time: 64.59 hours. Total relation processing time: 0.30 hours. Matrix solve time: 4.73 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 69.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(83·10163+61)/9 = 9(2)1629<164> = 32 · 11 · 405948153112321<15> · C148
C148 = P45 · P103
P45 = 266614931935353132585870319448121552669271271<45>
P103 = 8606872108912684768820232718493204401373246518359328695784136236316614714942900588215155616801419951681<103>
Number: n N=2294720621494044723501193022587510995379466046473791605416061226154482486212075390007842580455013701527981276373027895660286461909530014578301456551 ( 148 digits) SNFS difficulty: 164 digits. Divisors found: r1=266614931935353132585870319448121552669271271 (pp45) r2=8606872108912684768820232718493204401373246518359328695784136236316614714942900588215155616801419951681 (pp103) Version: GGNFS-0.77.1-20051202-athlon Total time: 89.26 hours. Scaled time: 117.91 units (timescale=1.321). Factorization parameters were as follows: name: KA_9_2_162_9 n: 2294720621494044723501193022587510995379466046473791605416061226154482486212075390007842580455013701527981276373027895660286461909530014578301456551 skew: 1.00 deg: 5 c5: 83000 c0: 61 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3500001) Primes: RFBsize:250150, AFBsize:249877, largePrimes:7740802 encountered Relations: rels:7222735, finalFF:569028 Max relations in full relation-set: 48 Initial matrix: 500094 x 569028 with sparse part having weight 54550980. Pruned matrix : 469886 x 472450 with weight 38556850. Total sieving time: 80.47 hours. Total relation processing time: 0.32 hours. Matrix solve time: 8.13 hours. Total square root time: 0.34 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 89.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS
(2·10164+1)/3 = (6)1637<164> = 593 · 90617845494707<14> · C148
C148 = P69 · P79
P69 = 905685704538199081405478788593241373745603366270356038442638975449577<69>
P79 = 1369817790937139389142693698471450846149527260439060627521041224566510416295921<79>
Number: n N=1240624391073862584177081105224640061651512320190878112287750695849877675218001116528687519332352510520546136007485011619473977733985821548046275417 ( 148 digits) SNFS difficulty: 165 digits. Divisors found: r1=905685704538199081405478788593241373745603366270356038442638975449577 (pp69) r2=1369817790937139389142693698471450846149527260439060627521041224566510416295921 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.41 hours. Scaled time: 61.53 units (timescale=1.197). Factorization parameters were as follows: name: KA_6_163_7 n: 1240624391073862584177081105224640061651512320190878112287750695849877675218001116528687519332352510520546136007485011619473977733985821548046275417 type: snfs skew: 1.00 deg: 5 c5: 1 c0: 5 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:250150, AFBsize:249616, largePrimes:7240131 encountered Relations: rels:6756925, finalFF:561200 Max relations in full relation-set: 28 Initial matrix: 499830 x 561200 with sparse part having weight 36079230. Pruned matrix : 447952 x 450515 with weight 24495508. Total sieving time: 45.60 hours. Total relation processing time: 0.33 hours. Matrix solve time: 5.25 hours. Total square root time: 0.23 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 51.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By JMB / MSieve, GMP-ECM
8·10165+3 = 8(0)1643<166> = 17 · 83 · 2221 · 12653 · 1033040033209816345546009288939<31> · 19558081525904346337653953996359<32> · C94
C94 = P44 · P51
P44 = 31235192130845769254279459512560137999028121<44>
P51 = 319693142674609372256180538787347658839023974155301<51>
8·10172+3 = 8(0)1713<173> = 7 · 112 · 53 · 261587 · 13420331 · C156
C156 = P35 · C122
P35 = 14742878852145643127878371424312249<35>
C122 = [34432537221857307847885115428554920425568029885965301615634596789076443254421769772956443274804876835533993545735639636561<122>]
By JMB / GMP-ECM
8·10170+3 = 8(0)1693<171> = 11 · 73 · 25087 · 32666806785659<14> · C151
C151 = P33 · P118
P33 = 518810619846876503372769619770433<33>
P118 = 2343204381484500438488187466170885890773141731069741607646382933532921328434754372068190854059489563670232771599467309<118>
8·10165+3 = 8(0)1643<166> = 17 · 83 · 2221 · 12653 · 19558081525904346337653953996359<32> · C125
C125 = P31 · C94
P31 = 1033040033209816345546009288939<31>
C94 = [9985676734355312445998651932324904435324205513572694026740373190359859585183702210559920219421<94>]
By Sinkiti Sibata / GGNFS
8·10189+3 = 8(0)1883<190> = 619 · 1847 · 2087 · 17854618292333<14> · 66686803592942902296799<23> · 921080685636059212526826174467963<33> · C112
C112 = P47 · P66
P47 = 17588503812768618802899470677477549249528890421<47>
P66 = 173817279856071866628575928062476489118502849448260284689789701413<66>
Number: 80003_189 N=3057185889473590067108879535881711047802061887351934101508239518685119755420999299188104236165875118418785864873 ( 112 digits) Divisors found: r1=17588503812768618802899470677477549249528890421 (pp47) r2=173817279856071866628575928062476489118502849448260284689789701413 (pp66) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 44.29 hours. Scaled time: 30.21 units (timescale=0.682). Factorization parameters were as follows: name: 80003_189 n: 3057185889473590067108879535881711047802061887351934101508239518685119755420999299188104236165875118418785864873 skew: 42151.48 # norm 8.84e+15 c5: 37440 c4: -298371218 c3: -300194331630874 c2: -2696942357896617447 c1: -27789569306702796022486 c0: 469893487864104658111591365 # alpha -6.89 Y1: 204062775301 Y0: -2412110836924559280358 # Murphy_E 8.26e-10 # M 1005760143397642380352074720913871517578447049436816287197307383505060650599072483745071851791769646797691653031 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2550001) Primes: RFBsize:250150, AFBsize:250023, largePrimes:7400988 encountered Relations: rels:7270904, finalFF:564212 Max relations in full relation-set: 0 Initial matrix: 500263 x 564212 with sparse part having weight 39359534. Pruned matrix : 442161 x 444726 with weight 27121752. Polynomial selection time: 1.87 hours. Total sieving time: 34.72 hours. Total relation processing time: 0.37 hours. Matrix solve time: 7.00 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 44.29 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS
7·10179-3 = 6(9)1787<180> = C180
C180 = P74 · P106
P74 = 83251080449638728944649575376467201073537285846278352308844383882413696253<74>
P106 = 8408299282355291944507594847871979982320198163187651997979672667927349257101780731688554079997824589461249<106>
Number: 69997_179 N=699999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 180 digits) SNFS difficulty: 180 digits. Divisors found: r1=83251080449638728944649575376467201073537285846278352308844383882413696253 (pp74) r2=8408299282355291944507594847871979982320198163187651997979672667927349257101780731688554079997824589461249 (pp106) Version: GGNFS-0.77.1-20050930-nocona Total time: 259.62 hours. Scaled time: 556.63 units (timescale=2.144). Factorization parameters were as follows: n: 699999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 1000000000000000000000000000000000000 c5: 7 c0: -30 skew: 1.34 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 9200001) Primes: RFBsize:664579, AFBsize:664690, largePrimes:11188054 encountered Relations: rels:11548928, finalFF:1569648 Max relations in full relation-set: 28 Initial matrix: 1329334 x 1569648 with sparse part having weight 96955888. Pruned matrix : 1111881 x 1118591 with weight 66486936. Total sieving time: 248.05 hours. Total relation processing time: 0.34 hours. Matrix solve time: 11.11 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 259.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Robert Backstrom / GGNFS
(5·10163-41)/9 = (5)1621<163> = 6197 · 16253 · 7766599 · C148
C148 = P41 · P108
P41 = 44413093788181068954686083501992838352239<41>
P108 = 159908133455531109958414064342395777100821881761406305592132607285851371898166471209881193256579918516686151<108>
Number: n N=7102014928653478112505380375170028150587599569829032560645158534704706517857033098640933711918896001508344830631819199337896740041018214185551142089 ( 148 digits) SNFS difficulty: 164 digits. Divisors found: r1=44413093788181068954686083501992838352239 (pp41) r2=159908133455531109958414064342395777100821881761406305592132607285851371898166471209881193256579918516686151 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.01 hours. Scaled time: 91.16 units (timescale=1.321). Factorization parameters were as follows: name: KA_5_162_1 n: 7102014928653478112505380375170028150587599569829032560645158534704706517857033098640933711918896001508344830631819199337896740041018214185551142089 skew: 1.91 deg: 5 c5: 8 c0: -205 m: 500000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2900001) Primes: RFBsize:250150, AFBsize:250182, largePrimes:7611933 encountered Relations: rels:7124868, finalFF:583205 Max relations in full relation-set: 48 Initial matrix: 500397 x 583205 with sparse part having weight 50754245. Pruned matrix : 443931 x 446496 with weight 33952521. Total sieving time: 61.81 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.84 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 69.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10150+3 = 8(0)1493<151> = 112 · 333847094812043<15> · C135
C135 = P63 · P73
P63 = 123915190735934296426572399348483454050629019309155367871597523<63>
P73 = 1598204928807240823149342852972588765245266509250337333568977262671359787<73>
Number: n N=198041868588259539803544224019989437375283062870153485808447332705304657558186289935035160659072536263589755720823920126704382391007601 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=123915190735934296426572399348483454050629019309155367871597523 (pp63) r2=1598204928807240823149342852972588765245266509250337333568977262671359787 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.97 hours. Scaled time: 20.32 units (timescale=1.197). Factorization parameters were as follows: name: KA_8_0_149_3 n: 198041868588259539803544224019989437375283062870153485808447332705304657558186289935035160659072536263589755720823920126704382391007601 type: snfs skew: 1.00 deg: 5 c5: 8 c0: 3 m: 1000000000000000000000000000000 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:135053, largePrimes:5515066 encountered Relations: rels:4864048, finalFF:313876 Max relations in full relation-set: 28 Initial matrix: 270190 x 313876 with sparse part having weight 18476130. Pruned matrix : 235766 x 237180 with weight 11424414. Total sieving time: 15.58 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.12 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.3,2.3,100000 total time: 16.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
8·10159+3 = 8(0)1583<160> = 53 · 1249 · 15803 · C151
C151 = P63 · P89
P63 = 153231313845746405825884701365885833226325571486615400562069271<63>
P89 = 49907361884479263130985185256128895476821348429200465525031812515377456758530477125109523<89>
Number: n N=7647370632133883748883439676346985948647594574867711170484935573163178215153995040284393630963460365084651885728655779192405179039901887446685387767733 ( 151 digits) SNFS difficulty: 160 digits. Divisors found: r1=153231313845746405825884701365885833226325571486615400562069271 (pp63) r2=49907361884479263130985185256128895476821348429200465525031812515377456758530477125109523 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.43 hours. Scaled time: 42.61 units (timescale=1.448). Factorization parameters were as follows: name: KA_8_0_158_3 n: 7647370632133883748883439676346985948647594574867711170484935573163178215153995040284393630963460365084651885728655779192405179039901887446685387767733 skew: 1.00 deg: 5 c5: 4 c0: 15 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216826, largePrimes:7196792 encountered Relations: rels:6799215, finalFF:597924 Max relations in full relation-set: 28 Initial matrix: 433706 x 597924 with sparse part having weight 41582443. Pruned matrix : 302044 x 304276 with weight 22428346. Total sieving time: 26.46 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.67 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 29.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10163+3 = 8(0)1623<164> = C164
C164 = P45 · P52 · P69
P45 = 263814841588028840292075635769021187187588777<45>
P52 = 2946574066938041203271903376456481181720414869700453<52>
P69 = 102913749296606783576701454837580698830029182185894558528664578737263<69>
Number: n N=80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 164 digits) SNFS difficulty: 165 digits. Divisors found: r1=263814841588028840292075635769021187187588777 (pp45) r2=2946574066938041203271903376456481181720414869700453 (pp52) r3=102913749296606783576701454837580698830029182185894558528664578737263 (pp69) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 62.05 hours. Scaled time: 84.20 units (timescale=1.357). Factorization parameters were as follows: name: KA_8_0_162_3 n: 80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 skew: 1.00 deg: 5 c5: 2 c0: 75 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2500001) Primes: RFBsize:250150, AFBsize:249511, largePrimes:7415037 encountered Relations: rels:6927576, finalFF:563657 Max relations in full relation-set: 28 Initial matrix: 499726 x 563657 with sparse part having weight 39806187. Pruned matrix : 449061 x 451623 with weight 27825880. Total sieving time: 57.09 hours. Total relation processing time: 0.27 hours. Matrix solve time: 4.42 hours. Total square root time: 0.28 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 62.05 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS gnfs
8·10176+3 = 8(0)1753<177> = 11 · 29 · 31 · 97 · 62483 · 122288966750943559327954013<27> · 13203393905721557635469906716094551<35> · C106
C106 = P43 · P64
P43 = 4919037198222532817308550055704182012037503<43>
P64 = 1680548460217191645379213872474567141004274448100352481467434493<64>
Number: 80003_176 N=8266680389223966046190855264388717362005347788894913038658978035326508882118999267460085367871413111790979 ( 106 digits) Divisors found: r1=4919037198222532817308550055704182012037503 (pp43) r2=1680548460217191645379213872474567141004274448100352481467434493 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.56 hours. Scaled time: 22.54 units (timescale=2.135). Factorization parameters were as follows: name: 80003_176 n: 8266680389223966046190855264388717362005347788894913038658978035326508882118999267460085367871413111790979 skew: 8767.65 # norm 5.59e+14 c5: 116160 c4: 400128896 c3: 21447396988402 c2: 200361732810880499 c1: -1755467344504781210762 c0: 512626880120314573894360 # alpha -5.94 Y1: 2910066641 Y0: -148065849568313383617 # Murphy_E 1.51e-09 # M 3579913611478992133536848804092742505729175910292785985960854211602842315010438921637008484004440532117018 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135363, largePrimes:4572261 encountered Relations: rels:4637401, finalFF:384253 Max relations in full relation-set: 28 Initial matrix: 270519 x 384253 with sparse part having weight 37006164. Pruned matrix : 210066 x 211482 with weight 18180369. Polynomial selection time: 0.48 hours. Total sieving time: 9.69 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.22 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407677) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405125) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405121) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405131) Total of 4 processors activated (19246.10 BogoMIPS).
By Robert Backstrom / GGNFS
7·10161+3 = 7(0)1603<162> = 29 · 37 · 73 · 1403225401<10> · C148
C148 = P40 · P109
P40 = 3753845625711756879793515975255349607797<40>
P109 = 1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431<109>
Number: n N=6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: r1=3753845625711756879793515975255349607797 (pp40) r2=1696569329960212414283207012646965391569808922194244639849139334297461697448507406571284397297756255793527431 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 52.92 hours. Scaled time: 76.63 units (timescale=1.448). Factorization parameters were as follows: name: KA_7_0_160_3 n: 6368659357987869688073561004013094128236058980958992215610258085707689898194797495537752585473375498765201263898209639690325753644190663517010979507 skew: 0.53 deg: 5 c5: 70 c0: 3 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2400001) Primes: RFBsize:250150, AFBsize:249361, largePrimes:7501056 encountered Relations: rels:7035914, finalFF:574163 Max relations in full relation-set: 28 Initial matrix: 499578 x 574163 with sparse part having weight 42428847. Pruned matrix : 441215 x 443776 with weight 29106337. Total sieving time: 46.77 hours. Total relation processing time: 0.24 hours. Matrix solve time: 5.57 hours. Total square root time: 0.34 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 52.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(8·10164-71)/9 = (8)1631<164> = 34 · 499 · C160
C160 = P79 · P81
P79 = 6702863948665376016824925578772117152858124361875429504392949157960651371083473<79>
P81 = 328096432855899090449878151867788591711321056497892958204836930069357451062128363<81>
Number: n N=2199185751475516190130604143815752217741381253590857984831116279197627078574157918030849078128822803357057049627375464234367225534745760382218483606444713844699 ( 160 digits) SNFS difficulty: 165 digits. Divisors found: r1=6702863948665376016824925578772117152858124361875429504392949157960651371083473 (pp79) r2=328096432855899090449878151867788591711321056497892958204836930069357451062128363 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 92.52 hours. Scaled time: 110.83 units (timescale=1.198). Factorization parameters were as follows: name: KA_8_163_1 n: 2199185751475516190130604143815752217741381253590857984831116279197627078574157918030849078128822803357057049627375464234367225534745760382218483606444713844699 type: snfs skew: 2.45 deg: 5 c5: 4 c0: -355 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:250150, AFBsize:250837, largePrimes:7783343 encountered Relations: rels:7291842, finalFF:562621 Max relations in full relation-set: 28 Initial matrix: 501051 x 562621 with sparse part having weight 46426453. Pruned matrix : 472306 x 474875 with weight 35341023. Total sieving time: 83.37 hours. Total relation processing time: 0.36 hours. Matrix solve time: 8.48 hours. Total square root time: 0.30 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 92.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS
8·10142+3 = 8(0)1413<143> = 7 · 11 · 2052821 · 555623953052671<15> · 66874197333983887<17> · C104
C104 = P43 · P61
P43 = 7352063485952674581275466674908134761977993<43>
P61 = 1852675630827404483230700868124109595424698262269677635106219<61>
Number: 80003_142 N=13620988856720497819323489328579752204608642469675042020812530924002228230975710728961746240569095438467 ( 104 digits) SNFS difficulty: 142 digits. Divisors found: r1=7352063485952674581275466674908134761977993 (pp43) r2=1852675630827404483230700868124109595424698262269677635106219 (pp61) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 10.17 hours. Scaled time: 6.93 units (timescale=0.682). Factorization parameters were as follows: name: 80003_142 n: 13620988856720497819323489328579752204608642469675042020812530924002228230975710728961746240569095438467 m: 20000000000000000000000000000 c5: 25 c0: 3 skew: 0.65 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:100163, largePrimes:2522518 encountered Relations: rels:2425661, finalFF:224441 Max relations in full relation-set: 0 Initial matrix: 200248 x 224441 with sparse part having weight 19391779. Pruned matrix : 193093 x 194158 with weight 13708815. Total sieving time: 9.05 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.93 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 10.17 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM
8·10169+3 = 8(0)1683<170> = C170
C170 = P37 · P134
P37 = 1224246060187948513536044665977519421<37>
P134 = 65346340577741579518249257770472291479731205704109850662463019782005485937532123816920926149530479698626097812995924318713137169466943<134>
By Sinkiti Sibata / GGNFS gnfs
10177+9 = 1(0)1769<178> = 33223 · 58440312251<11> · 744650270536087<15> · 1299108566054859101828202487<28> · C120
C120 = P29 · P43 · P49
P29 = 47281281988259427195595389853<29>
P43 = 6045096991231523085796053943692409216016933<43>
P49 = 1862766037506329182860674793008889448818081551293<49>
Number: 10009_177 N=532415668670779658238030449477892100777113679642064502418427003147194580334216529773302144542970825544807513606040387757 ( 120 digits) Divisors found: r1=47281281988259427195595389853 (pp29) r2=6045096991231523085796053943692409216016933 (pp43) r3=1862766037506329182860674793008889448818081551293 (pp49) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 103.73 hours. Scaled time: 70.75 units (timescale=0.682). Factorization parameters were as follows: name: 10009_177 n: 532415668670779658238030449477892100777113679642064502418427003147194580334216529773302144542970825544807513606040387757 skew: 48264.27 # norm 2.43e+16 c5: 75600 c4: 16297075446 c3: -73949054544926 c2: -41520893798791949092 c1: 676986651332945360199391 c0: -51146483475813285206452764 # alpha -5.94 Y1: 12936640435517 Y0: -93227321831539954601855 # Murphy_E 3.10e-10 # M 480158086077406144788789117762923709702782058085914313143143829119151924171861230494781642332247911106356265369031255073 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4170001) Primes: RFBsize:315948, AFBsize:316216, largePrimes:7549833 encountered Relations: rels:7503324, finalFF:708238 Max relations in full relation-set: 0 Initial matrix: 632249 x 708238 with sparse part having weight 69993656. Pruned matrix : 571237 x 574462 with weight 47768804. Polynomial selection time: 5.21 hours. Total sieving time: 78.11 hours. Total relation processing time: 0.69 hours. Matrix solve time: 19.22 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 103.73 hours. --------- CPU info (if available) ----------
(2·10193-11)/9 = (2)1921<193> = 23 · 181 · 277 · 3511 · 281650732446817<15> · 54780711280843190885242223364871889<35> · 35938228281219889499007772234416370507<38> · C96
C96 = P42 · P55
P42 = 679822382825034769795684390738450884934873<42>
P55 = 1456061780748313525137900176910207059850883947091570327<55>
Number: 22221_193 N=989863389328781839230043303989307230434755222530043430476647889044550036356250295190656694313471 ( 96 digits) Divisors found: r1=679822382825034769795684390738450884934873 (pp42) r2=1456061780748313525137900176910207059850883947091570327 (pp55) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.06 hours. Scaled time: 8.22 units (timescale=0.682). Factorization parameters were as follows: name: 22221_193 n: 989863389328781839230043303989307230434755222530043430476647889044550036356250295190656694313471 m: 9969085082195574864923 deg: 4 c4: 100219920 c3: 489291912 c2: -3426064493939695 c1: 7273856613595100453 c0: -1638550796927040570617 skew: 1635.250 type: gnfs # adj. I(F,S) = 51.150 # E(F1,F2) = 2.262164e-05 # GGNFS version 0.77.1-20060722-pentium4 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1186765353. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1620001) Primes: RFBsize:92938, AFBsize:92821, largePrimes:1911630 encountered Relations: rels:1990482, finalFF:208813 Max relations in full relation-set: 0 Initial matrix: 185833 x 208813 with sparse part having weight 19174383. Pruned matrix : 176230 x 177223 with weight 14578587. Polynomial selection time: 0.17 hours. Total sieving time: 10.85 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.84 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 12.06 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM
8·10176+3 = 8(0)1753<177> = 11 · 29 · 31 · 97 · 62483 · 122288966750943559327954013<27> · C141
C141 = P35 · C106
P35 = 13203393905721557635469906716094551<35>
C106 = [8266680389223966046190855264388717362005347788894913038658978035326508882118999267460085367871413111790979<106>]
8·10175+3 = 8(0)1743<176> = 2311 · 8719 · 10144789 · 189170845637<12> · C151
C151 = P35 · P116
P35 = 64291971599470835512165635997396471<35>
P116 = 32178766751417498825847425179242872864738948414927779187900762406084025362150026649375978793241187540045915304472389<116>
8·10189+3 = 8(0)1883<190> = 619 · 1847 · 2087 · 17854618292333<14> · 66686803592942902296799<23> · C145
C145 = P33 · C112
P33 = 921080685636059212526826174467963<33>
C112 = [3057185889473590067108879535881711047802061887351934101508239518685119755420999299188104236165875118418785864873<112>]
By Robert Backstrom / GGNFS
8·10145+3 = 8(0)1443<146> = 11766775508491<14> · 605396612359960159<18> · C116
C116 = P50 · P66
P50 = 51046027337556414770008979411652470215926317473591<50>
P66 = 220004003518038430086171786263037474229055943495226606880307715457<66>
Number: n N=11230330377953647351813832317701470309443467192544987569991922681053152302088521038361975470850797594365793139996087 ( 116 digits) SNFS difficulty: 145 digits. Divisors found: r1=51046027337556414770008979411652470215926317473591 (pp50) r2=220004003518038430086171786263037474229055943495226606880307715457 (pp66) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 7.75 hours. Scaled time: 9.76 units (timescale=1.260). Factorization parameters were as follows: name: KA_8_0_144_3 n: 11230330377953647351813832317701470309443467192544987569991922681053152302088521038361975470850797594365793139996087 skew: 1.00 deg: 5 c5: 8 c0: 3 m: 100000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:148933, AFBsize:149135, largePrimes:6365962 encountered Relations: rels:5765123, finalFF:372600 Max relations in full relation-set: 28 Initial matrix: 298133 x 372600 with sparse part having weight 24992928. Pruned matrix : 240431 x 241985 with weight 13737511. Total sieving time: 6.21 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.30 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 7.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10153+3 = 8(0)1523<154> = 151 · 347 · 2843 · C146
C146 = P73 · P74
P73 = 1902048496423825078608398414836733249964757502655492013897910231644363411<73>
P74 = 28234826233775491249880369404044758618051858710202572340818371819411450863<74>
Number: n N=53704008784740644981520484142176234524761914856979746560176003073910054820985037452269471329883311728322482583806733611354063944463717843541573693 ( 146 digits) SNFS difficulty: 153 digits. Divisors found: r1=1902048496423825078608398414836733249964757502655492013897910231644363411 (pp73) r2=28234826233775491249880369404044758618051858710202572340818371819411450863 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.88 hours. Scaled time: 32.17 units (timescale=1.197). Factorization parameters were as follows: name: KA_8_0_152_3 n: 53704008784740644981520484142176234524761914856979746560176003073910054820985037452269471329883311728322482583806733611354063944463717843541573693 type: snfs skew: 1.00 deg: 5 c5: 250 c0: 3 m: 2000000000000000000000000000000 rlim: 1800000 alim: 1800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1200000) Primes: RFBsize:135072, AFBsize:134848, largePrimes:5889592 encountered Relations: rels:5236925, finalFF:309112 Max relations in full relation-set: 28 Initial matrix: 269986 x 309112 with sparse part having weight 23758236. Pruned matrix : 245541 x 246954 with weight 16261877. Total sieving time: 24.71 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.63 hours. Total square root time: 0.34 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,1800000,1800000,28,28,48,48,2.3,2.3,100000 total time: 26.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS
8·10138+3 = 8(0)1373<139> = 11 · 73 · 114702851 · C128
C128 = P37 · P45 · P48
P37 = 1670593388520748238821421178145481837<37>
P45 = 104636458414847985111598726280566932595983083<45>
P48 = 496874190989597803112505558533083407730421846981<48>
Number: n N=86856080845160518253064258730936858983574839513012302022899381995276333715215501484147076660404979494712817786900486579971431051 ( 128 digits) SNFS difficulty: 138 digits. Divisors found: r1=1670593388520748238821421178145481837 (pp37) r2=104636458414847985111598726280566932595983083 (pp45) r3=496874190989597803112505558533083407730421846981 (pp48) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 5.54 hours. Scaled time: 7.56 units (timescale=1.364). Factorization parameters were as follows: name: KA_8_0_137_3 n: 86856080845160518253064258730936858983574839513012302022899381995276333715215501484147076660404979494712817786900486579971431051 skew: 1.00 deg: 5 c5: 250 c0: 3 m: 2000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:114155, AFBsize:113962, largePrimes:5547105 encountered Relations: rels:4879377, finalFF:259041 Max relations in full relation-set: 28 Initial matrix: 228183 x 259041 with sparse part having weight 16762861. Pruned matrix : 205241 x 206445 with weight 11006091. Total sieving time: 4.58 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.70 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 5.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10144+3 = 8(0)1433<145> = 11 · 683 · C142
C142 = P51 · P91
P51 = 393806677683834962330167370796793978219439105832001<51>
P91 = 2703918032157216794192284740946405968077357310935054868472060871084932805552853385839924731<91>
Number: n N=1064820976973246372953547184879542126979901504059629974710501796885398642353254359110874484227339278583788100625582323971782244110208971116731 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: r1=393806677683834962330167370796793978219439105832001 (pp51) r2=2703918032157216794192284740946405968077357310935054868472060871084932805552853385839924731 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.79 hours. Scaled time: 8.99 units (timescale=1.324). Factorization parameters were as follows: name: KA_8_0_143_3 n: 1064820976973246372953547184879542126979901504059629974710501796885398642353254359110874484227339278583788100625582323971782244110208971116731 skew: 1.00 deg: 5 c5: 4 c0: 15 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:114155, AFBsize:113727, largePrimes:6267824 encountered Relations: rels:5579150, finalFF:297337 Max relations in full relation-set: 48 Initial matrix: 227946 x 297337 with sparse part having weight 29469240. Pruned matrix : 198102 x 199305 with weight 14244835. Total sieving time: 5.61 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.99 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 6.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10154+3 = 8(0)1533<155> = 72 · 11 · 73 · C151
C151 = P70 · P81
P70 = 6763250917489964555182738767583283902011275699423252245547421266789261<70>
P81 = 300623454884502196692218573721100636698457518684754797248879483662802680386190709<81>
Number: n N=2033191857066612448217144890334714209469591074287747477571352326733931430604620428495183876788573461763285638041019645716318906142780898162502859176049 ( 151 digits) SNFS difficulty: 155 digits. Divisors found: r1=6763250917489964555182738767583283902011275699423252245547421266789261 (pp70) r2=300623454884502196692218573721100636698457518684754797248879483662802680386190709 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.23 hours. Scaled time: 24.95 units (timescale=1.448). Factorization parameters were as follows: name: KA_8_0_153_3 n: 2033191857066612448217144890334714209469591074287747477571352326733931430604620428495183876788573461763285638041019645716318906142780898162502859176049 skew: 1.00 deg: 5 c5: 4 c0: 15 m: 10000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:148933, AFBsize:148725, largePrimes:6495234 encountered Relations: rels:5901096, finalFF:356866 Max relations in full relation-set: 28 Initial matrix: 297722 x 356866 with sparse part having weight 28838481. Pruned matrix : 256532 x 258084 with weight 18263570. Total sieving time: 15.26 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.67 hours. Total square root time: 0.14 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 17.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(10165+11)/3 = (3)1647<165> = 17 · 5623 · 36251 · 40841 · C151
C151 = P39 · P112
P39 = 251375332502629231539468126698454636637<39>
P112 = 9369636094184618241793486374540111317162701410154625358284353734039880944057232414047815901279320321000606011721<112>
Number: n N=2355295388604294669648572183314730221423189911340492129466961410071358157729919347954433141504960864116536706486551542372736924805270377019388818022277 ( 151 digits) SNFS difficulty: 165 digits. Divisors found: r1=251375332502629231539468126698454636637 (pp39) r2=9369636094184618241793486374540111317162701410154625358284353734039880944057232414047815901279320321000606011721 (pp112) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 48.70 hours. Scaled time: 66.62 units (timescale=1.368). Factorization parameters were as follows: name: KA_3_164_7 n: 2355295388604294669648572183314730221423189911340492129466961410071358157729919347954433141504960864116536706486551542372736924805270377019388818022277 skew: 1.62 deg: 5 c5: 1 c0: 11 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:250150, AFBsize:249887, largePrimes:7439713 encountered Relations: rels:7043065, finalFF:634459 Max relations in full relation-set: 28 Initial matrix: 500101 x 634459 with sparse part having weight 42656542. Pruned matrix : 388359 x 390923 with weight 24700758. Total sieving time: 45.21 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.12 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 48.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By JMB / GMP-ECM
8·10165+3 = 8(0)1643<166> = 17 · 83 · 2221 · 12653 · C156
C156 = P32 · C125
P32 = 19558081525904346337653953996359<32>
C125 = [10315603825280902403145997952176939809173663207855210896021945321896591973517956833167339304970176688502856732303629068284319<125>]
8·10197+3 = 8(0)1963<198> = 17 · 19 · 49701979 · 780808607 · C179
C179 = P29 · C151
P29 = 26076920319273076996675767301<29>
C151 = [2447444719548378339619829614249789627085695960053062447396841606685367979050190055438702256834046939845645421862753151405036735916578790278144353058537<151>]
8·10177+3 = 8(0)1763<178> = 385193 · C173
C173 = P34 · P139
P34 = 2734184657326888957539301452070127<34>
P139 = 7595979059565388610562921211099574234745355573365762780772087213624892584821367744840306376847974198287155385422756473803526652906088908773<139>
By JMB / GMP-ECM B1=3000000
(2·10193-11)/9 = (2)1921<193> = 23 · 181 · 277 · 3511 · 281650732446817<15> · 54780711280843190885242223364871889<35> · C134
C134 = P38 · C96
P38 = 35938228281219889499007772234416370507<38>
C96 = [989863389328781839230043303989307230434755222530043430476647889044550036356250295190656694313471<96>]
By Robert Backstrom / Msieve, GGNFS
8·10116+3 = 8(0)1153<117> = 11 · 31 · 501077 · 30244611063283188190841459<26> · C84
C84 = P35 · P49
P35 = 47772235073471907793622686848045341<35>
P49 = 3240466788618869376438883648133185467425146712141<49>
Thu Aug 09 14:29:32 2007 Msieve v. 1.25 Thu Aug 09 14:29:32 2007 random seeds: 96c33e48 849923a9 Thu Aug 09 14:29:32 2007 factoring 154804341173679230387244001472705605593917034967797099265321043659212166198643185081 (84 digits) Thu Aug 09 14:29:32 2007 commencing quadratic sieve (83-digit input) Thu Aug 09 14:29:32 2007 using multiplier of 1 Thu Aug 09 14:29:32 2007 using 64kb Opteron sieve core Thu Aug 09 14:29:32 2007 sieve interval: 6 blocks of size 65536 Thu Aug 09 14:29:32 2007 processing polynomials in batches of 17 Thu Aug 09 14:29:32 2007 using a sieve bound of 1392701 (52970 primes) Thu Aug 09 14:29:32 2007 using large prime bound of 121164987 (26 bits) Thu Aug 09 14:29:32 2007 using trial factoring cutoff of 27 bits Thu Aug 09 14:29:32 2007 polynomial 'A' values have 11 factors Thu Aug 09 14:55:43 2007 53067 relations (26868 full + 26199 combined from 280831 partial), need 53066 Thu Aug 09 14:55:44 2007 begin with 307699 relations Thu Aug 09 14:55:44 2007 reduce to 75934 relations in 2 passes Thu Aug 09 14:55:44 2007 attempting to read 75934 relations Thu Aug 09 14:55:45 2007 recovered 75934 relations Thu Aug 09 14:55:45 2007 recovered 69763 polynomials Thu Aug 09 14:55:45 2007 attempting to build 53067 cycles Thu Aug 09 14:55:45 2007 found 53067 cycles in 1 passes Thu Aug 09 14:55:45 2007 distribution of cycle lengths: Thu Aug 09 14:55:45 2007 length 1 : 26868 Thu Aug 09 14:55:45 2007 length 2 : 26199 Thu Aug 09 14:55:45 2007 largest cycle: 2 relations Thu Aug 09 14:55:45 2007 matrix is 52970 x 53067 with weight 1684778 (avg 31.75/col) Thu Aug 09 14:55:45 2007 filtering completed in 4 passes Thu Aug 09 14:55:45 2007 matrix is 46050 x 46114 with weight 1439023 (avg 31.21/col) Thu Aug 09 14:55:46 2007 saving the first 48 matrix rows for later Thu Aug 09 14:55:46 2007 matrix is 46002 x 46114 with weight 1048370 (avg 22.73/col) Thu Aug 09 14:55:46 2007 matrix includes 64 packed rows Thu Aug 09 14:55:46 2007 commencing Lanczos iteration Thu Aug 09 14:56:38 2007 lanczos halted after 729 iterations Thu Aug 09 14:56:38 2007 recovered 9 nontrivial dependencies Thu Aug 09 14:56:38 2007 prp35 factor: 47772235073471907793622686848045341 Thu Aug 09 14:56:38 2007 prp49 factor: 3240466788618869376438883648133185467425146712141 Thu Aug 09 14:56:38 2007 elapsed time 00:27:06
8·10102+3 = 8(0)1013<103> = 11 · 59 · 2909 · 250321394839<12> · C86
C86 = P32 · P54
P32 = 73893077891192132187902179374341<32>
P54 = 229086681980295270219691452305688749689507823847518717<54>
Thu Aug 09 14:31:54 2007 Msieve v. 1.25 Thu Aug 09 14:31:54 2007 random seeds: e58a55a8 3980cc5c Thu Aug 09 14:31:54 2007 factoring 16927920035404719454950678067803074038183144629096960489580783099151622954488347040497 (86 digits) Thu Aug 09 14:31:55 2007 commencing quadratic sieve (85-digit input) Thu Aug 09 14:31:55 2007 using multiplier of 1 Thu Aug 09 14:31:55 2007 using 64kb Opteron sieve core Thu Aug 09 14:31:55 2007 sieve interval: 7 blocks of size 65536 Thu Aug 09 14:31:55 2007 processing polynomials in batches of 15 Thu Aug 09 14:31:55 2007 using a sieve bound of 1449953 (55333 primes) Thu Aug 09 14:31:55 2007 using large prime bound of 115996240 (26 bits) Thu Aug 09 14:31:55 2007 using double large prime bound of 328094552866320 (41-49 bits) Thu Aug 09 14:31:55 2007 using trial factoring cutoff of 49 bits Thu Aug 09 14:31:55 2007 polynomial 'A' values have 11 factors Thu Aug 09 15:12:48 2007 55692 relations (15689 full + 40003 combined from 580417 partial), need 55429 Thu Aug 09 15:12:49 2007 begin with 596106 relations Thu Aug 09 15:12:50 2007 reduce to 132442 relations in 9 passes Thu Aug 09 15:12:50 2007 attempting to read 132442 relations Thu Aug 09 15:12:51 2007 recovered 132442 relations Thu Aug 09 15:12:51 2007 recovered 111632 polynomials Thu Aug 09 15:12:51 2007 attempting to build 55692 cycles Thu Aug 09 15:12:52 2007 found 55691 cycles in 4 passes Thu Aug 09 15:12:52 2007 distribution of cycle lengths: Thu Aug 09 15:12:52 2007 length 1 : 15689 Thu Aug 09 15:12:52 2007 length 2 : 11064 Thu Aug 09 15:12:52 2007 length 3 : 9749 Thu Aug 09 15:12:52 2007 length 4 : 7447 Thu Aug 09 15:12:52 2007 length 5 : 4954 Thu Aug 09 15:12:52 2007 length 6 : 3059 Thu Aug 09 15:12:52 2007 length 7 : 1772 Thu Aug 09 15:12:52 2007 length 9+: 1957 Thu Aug 09 15:12:52 2007 largest cycle: 16 relations Thu Aug 09 15:12:52 2007 matrix is 55333 x 55691 with weight 2873455 (avg 51.60/col) Thu Aug 09 15:12:52 2007 filtering completed in 3 passes Thu Aug 09 15:12:52 2007 matrix is 50648 x 50712 with weight 2633663 (avg 51.93/col) Thu Aug 09 15:12:53 2007 saving the first 48 matrix rows for later Thu Aug 09 15:12:53 2007 matrix is 50600 x 50712 with weight 1927165 (avg 38.00/col) Thu Aug 09 15:12:53 2007 matrix includes 64 packed rows Thu Aug 09 15:12:53 2007 using block size 20284 for processor cache size 512 kB Thu Aug 09 15:12:53 2007 commencing Lanczos iteration Thu Aug 09 15:13:14 2007 lanczos halted after 801 iterations Thu Aug 09 15:13:14 2007 recovered 16 nontrivial dependencies Thu Aug 09 15:13:14 2007 prp32 factor: 73893077891192132187902179374341 Thu Aug 09 15:13:14 2007 prp54 factor: 229086681980295270219691452305688749689507823847518717 Thu Aug 09 15:13:14 2007 elapsed time 00:41:20
8·10107+3 = 8(0)1063<108> = 192 · 53 · C104
C104 = P52(4311...) · P52(9698...)
P52(4311...) = 4311041529493168981918983158515670589329095421550917<52>
P52(9698...) = 9698949742404051679952742591797529833940595342191923<52>
Number: n N=41812575131970940260283280196519103120263419223331416923639784665238070349657659541106987926618930643391 ( 104 digits) SNFS difficulty: 107 digits. Divisors found: r1=4311041529493168981918983158515670589329095421550917 (pp52) r2=9698949742404051679952742591797529833940595342191923 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.82 hours. Scaled time: 0.98 units (timescale=1.196). Factorization parameters were as follows: name: KA_8_0_106_3 n: 41812575131970940260283280196519103120263419223331416923639784665238070349657659541106987926618930643391 type: snfs skew: 2.45 deg: 5 c5: 25 c0: 3 m: 2000000000000000000000 rlim: 500000 alim: 500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 150001) Primes: RFBsize:41538, AFBsize:41527, largePrimes:3147623 encountered Relations: rels:2766724, finalFF:215667 Max relations in full relation-set: 28 Initial matrix: 83129 x 215667 with sparse part having weight 9858859. Pruned matrix : 43285 x 43764 with weight 1396638. Total sieving time: 0.71 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.01 hours. Total square root time: 0.03 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,107,5,0,0,0,0,0,0,0,0,500000,500000,28,28,48,48,2.4,2.4,50000 total time: 0.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
8·10108+3 = 8(0)1073<109> = 11 · 5527 · C105
C105 = P31 · P74
P31 = 9958256083822556593072164658877<31>
P74 = 13213703178894954610665804924839486965167161792188153823634168464500913387<74>
Number: n N=131585440071056137638370314324719969735348783657088343174827705314406960869779758869681069789627777686399 ( 105 digits) SNFS difficulty: 108 digits. Divisors found: r1=9958256083822556593072164658877 (pp31) r2=13213703178894954610665804924839486965167161792188153823634168464500913387 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.96 hours. Scaled time: 1.27 units (timescale=1.318). Factorization parameters were as follows: name: KA_8_0_107_3 n: 131585440071056137638370314324719969735348783657088343174827705314406960869779758869681069789627777686399 skew: 1.91 deg: 5 c5: 250 c0: 3 m: 2000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 150001) Primes: RFBsize:49098, AFBsize:48961, largePrimes:3846138 encountered Relations: rels:3291694, finalFF:187322 Max relations in full relation-set: 48 Initial matrix: 98125 x 187322 with sparse part having weight 11179634. Pruned matrix : 63307 x 63861 with weight 2245348. Total sieving time: 0.84 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.02 hours. Total square root time: 0.03 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 0.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10117+3 = 8(0)1163<118> = 17 · 23 · 95569 · 3626149 · C104
C104 = P42 · P62
P42 = 743563094142647141671434594596447952314537<42>
P62 = 79402233062151798302517520827673963545042250342272076178284489<62>
Number: n N=59040570097529187032128911277836039384013278371200389290158971364162462588485899647445468362305596316593 ( 104 digits) SNFS difficulty: 117 digits. Divisors found: r1=743563094142647141671434594596447952314537 (pp42) r2=79402233062151798302517520827673963545042250342272076178284489 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.14 hours. Scaled time: 1.64 units (timescale=1.443). Factorization parameters were as follows: name: KA_8_0_116_3 n: 59040570097529187032128911277836039384013278371200389290158971364162462588485899647445468362305596316593 skew: 1.00 deg: 5 c5: 25 c0: 3 m: 200000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:63951, AFBsize:63918, largePrimes:4177926 encountered Relations: rels:3612878, finalFF:208283 Max relations in full relation-set: 28 Initial matrix: 127933 x 208283 with sparse part having weight 10962041. Pruned matrix : 86287 x 86990 with weight 3088440. Total sieving time: 1.00 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Total square root time: 0.02 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10126+3 = 8(0)1253<127> = 11 · 103 · 227 · 60103 · C117
C117 = P43 · P75
P43 = 2949429481414692226044768697960391260971797<43>
P75 = 175468859339115509595120669476348065354330998690902949927637469395852909063<75>
Number: n N=517533026804995032345061488216330006916176164718700807307201581209237696213471414277684828267532924867161658848696211 ( 117 digits) SNFS difficulty: 126 digits. Divisors found: r1=2949429481414692226044768697960391260971797 (pp43) r2=175468859339115509595120669476348065354330998690902949927637469395852909063 (pp75) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.10 hours. Scaled time: 2.86 units (timescale=1.363). Factorization parameters were as follows: name: KA_8_0_125_3 n: 517533026804995032345061488216330006916176164718700807307201581209237696213471414277684828267532924867161658848696211 skew: 1.00 deg: 5 c5: 80 c0: 3 m: 10000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 250001) Primes: RFBsize:63951, AFBsize:63988, largePrimes:4577180 encountered Relations: rels:3968605, finalFF:202139 Max relations in full relation-set: 28 Initial matrix: 128005 x 202139 with sparse part having weight 13983078. Pruned matrix : 98139 x 98843 with weight 4654958. Total sieving time: 1.87 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.11 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 2.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10130+3 = 8(0)1293<131> = 7 · 11 · 73 · 1301 · 1879 · 3920377 · 125920165279<12> · C104
C104 = P47 · P57
P47 = 15660751854468820254646065544043536489389591847<47>
P57 = 753072171293408570603918263199513415256851689104201069517<57>
Number: n N=11793676403132109337177444136713268893806641945749404632686412140850069050669393720927990575945503427899 ( 104 digits) SNFS difficulty: 130 digits. Divisors found: r1=15660751854468820254646065544043536489389591847 (pp47) r2=753072171293408570603918263199513415256851689104201069517 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.27 hours. Scaled time: 2.96 units (timescale=1.305). Factorization parameters were as follows: name: KA_8_0_129_3 n: 11793676403132109337177444136713268893806641945749404632686412140850069050669393720927990575945503427899 skew: 1.00 deg: 5 c5: 8 c0: 3 m: 100000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 300001) Primes: RFBsize:78498, AFBsize:78246, largePrimes:4755487 encountered Relations: rels:4123226, finalFF:215781 Max relations in full relation-set: 48 Initial matrix: 156809 x 215781 with sparse part having weight 16140594. Pruned matrix : 127889 x 128737 with weight 6317106. Total sieving time: 1.93 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.20 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10129+3 = 8(0)1283<130> = 4373 · 82883 · C122
C122 = P46 · P76
P46 = 9383621683393851037733688168129743757022677767<46>
P76 = 2352201687843988988161223366148433683159763965903221828415227547320810905051<76>
Number: n N=22072170761768469666239173783026516686523849108802583384253601362287757765121417259381934136261701937246009840562805701117 ( 122 digits) SNFS difficulty: 130 digits. Divisors found: r1=9383621683393851037733688168129743757022677767 (pp46) r2=2352201687843988988161223366148433683159763965903221828415227547320810905051 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.89 hours. Scaled time: 3.46 units (timescale=1.195). Factorization parameters were as follows: name: KA_8_0_128_3 n: 22072170761768469666239173783026516686523849108802583384253601362287757765121417259381934136261701937246009840562805701117 type: snfs skew: 1.00 deg: 5 c5: 4 c0: 15 m: 100000000000000000000000000 rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 450001) Primes: RFBsize:78498, AFBsize:78411, largePrimes:3620998 encountered Relations: rels:2967951, finalFF:178355 Max relations in full relation-set: 28 Initial matrix: 156973 x 178355 with sparse part having weight 5919463. Pruned matrix : 130863 x 131711 with weight 3517685. Total sieving time: 2.62 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.16 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.2,2.2,50000 total time: 2.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
8·10131+3 = 8(0)1303<132> = 31 · 18556133 · C124
C124 = P30 · P94
P30 = 140515311157889484872449865329<30>
P94 = 9897309858587474462533808559524778559507284816320764852168510088136599686173598612238548962409<94>
Number: n N=1390723574405466150002891922752752766517296638572619177330924811028871850790561074961733849709228297345315740432104733417561 ( 124 digits) SNFS difficulty: 131 digits. Divisors found: r1=140515311157889484872449865329 (pp30) r2=9897309858587474462533808559524778559507284816320764852168510088136599686173598612238548962409 (pp94) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.46 hours. Scaled time: 3.56 units (timescale=1.446). Factorization parameters were as follows: name: KA_8_0_130_3 n: 1390723574405466150002891922752752766517296638572619177330924811028871850790561074961733849709228297345315740432104733417561 skew: 1.00 deg: 5 c5: 80 c0: 3 m: 100000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 350001) Primes: RFBsize:78498, AFBsize:78611, largePrimes:4642958 encountered Relations: rels:3975934, finalFF:178377 Max relations in full relation-set: 28 Initial matrix: 157175 x 178377 with sparse part having weight 11167450. Pruned matrix : 144022 x 144871 with weight 7345153. Total sieving time: 2.06 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.26 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10132+3 = 8(0)1313<133> = 11 · 10091 · 41507 · 72923 · C119
C119 = P59 · P60
P59 = 59137933926855043059088194258782854822196623669244767645811<59>
P60 = 402634584408763303069783264206996096355933083613814946383593<60>
Number: n N=23810977449432183899061928385609941180131057745684131742392932620719752663657136531720801972378829641765634246765578923 ( 119 digits) SNFS difficulty: 132 digits. Divisors found: r1=59137933926855043059088194258782854822196623669244767645811 (pp59) r2=402634584408763303069783264206996096355933083613814946383593 (pp60) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.77 hours. Scaled time: 3.78 units (timescale=1.364). Factorization parameters were as follows: name: KA_8_0_131_3 n: 23810977449432183899061928385609941180131057745684131742392932620719752663657136531720801972378829641765634246765578923 skew: 1.00 deg: 5 c5: 25 c0: 3 m: 200000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 350001) Primes: RFBsize:78498, AFBsize:78411, largePrimes:4990879 encountered Relations: rels:4353452, finalFF:209067 Max relations in full relation-set: 28 Initial matrix: 156973 x 209067 with sparse part having weight 14999686. Pruned matrix : 132523 x 133371 with weight 7082557. Total sieving time: 2.37 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.26 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10134+3 = 8(0)1333<135> = 11 · 149 · 43405903 · 643534253 · C116
C116 = P53 · P63
P53 = 99025999314875960050767509377639719951680928982163689<53>
P63 = 176457993407320655445898143590093815879839497274040644855506527<63>
Number: n N=17473929134257721901626949367676531901183471917932969856802783667946806325413661744285936035329994212640218521898103 ( 116 digits) SNFS difficulty: 135 digits. Divisors found: r1=99025999314875960050767509377639719951680928982163689 (pp53) r2=176457993407320655445898143590093815879839497274040644855506527 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.16 hours. Scaled time: 4.11 units (timescale=1.301). Factorization parameters were as follows: name: KA_8_0_133_3 n: 17473929134257721901626949367676531901183471917932969856802783667946806325413661744285936035329994212640218521898103 skew: 1.00 deg: 5 c5: 4 c0: 15 m: 1000000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:92938, AFBsize:92529, largePrimes:4943597 encountered Relations: rels:4272145, finalFF:210944 Max relations in full relation-set: 48 Initial matrix: 185531 x 210944 with sparse part having weight 15009718. Pruned matrix : 169069 x 170060 with weight 9148254. Total sieving time: 2.53 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.44 hours. Total square root time: 0.09 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,75000 total time: 3.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10136+3 = 8(0)1353<137> = 7 · 11 · 525529 · 3285647117<10> · C120
C120 = P54 · P67
P54 = 143530513309195232999340064204983398299225538897530547<54>
P67 = 4192155846886791687644896239201840126733252957278980362790474381809<67>
Number: n N=601702280575805267699515045826589007810490254765282153660216860433071030113676661720770461574543961771608356536518619523 ( 120 digits) SNFS difficulty: 137 digits. Divisors found: r1=143530513309195232999340064204983398299225538897530547 (pp54) r2=4192155846886791687644896239201840126733252957278980362790474381809 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.95 hours. Scaled time: 4.27 units (timescale=1.446). Factorization parameters were as follows: name: KA_8_0_135_3 n: 601702280575805267699515045826589007810490254765282153660216860433071030113676661720770461574543961771608356536518619523 skew: 1.00 deg: 5 c5: 5 c0: 6 m: 2000000000000000000000000000 type: snfs rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 450001) Primes: RFBsize:92938, AFBsize:93119, largePrimes:5260301 encountered Relations: rels:4633571, finalFF:246993 Max relations in full relation-set: 28 Initial matrix: 186122 x 246993 with sparse part having weight 17116585. Pruned matrix : 152676 x 153670 with weight 8112545. Total sieving time: 2.48 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.34 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.5,2.5,75000 total time: 2.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
8·10135+3 = 8(0)1343<136> = 47 · 107 · 167 · 445141 · 64394703446581<14> · C111
C111 = P42 · P69
P42 = 671518907669361327306106053768429944141723<42>
P69 = 494864033010832382214144161118931762517426636975925163439107088158187<69>
Number: n N=332310554892288926436831772045323636037576637237580462259403763467341105224779770796417611307390273406570736201 ( 111 digits) SNFS difficulty: 135 digits. Divisors found: r1=671518907669361327306106053768429944141723 (pp42) r2=494864033010832382214144161118931762517426636975925163439107088158187 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.65 hours. Scaled time: 2.39 units (timescale=0.654). Factorization parameters were as follows: name: KA_8_0_134_3 n: 332310554892288926436831772045323636037576637237580462259403763467341105224779770796417611307390273406570736201 type: snfs skew: 1.00 deg: 5 c5: 8 c0: 3 m: 1000000000000000000000000000 rlim: 1200000 alim: 1200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:92938, AFBsize:92739, largePrimes:4242280 encountered Relations: rels:3637701, finalFF:220619 Max relations in full relation-set: 28 Initial matrix: 185742 x 220619 with sparse part having weight 11033317. Pruned matrix : 156303 x 157295 with weight 6162049. Total sieving time: 3.16 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.34 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1200000,1200000,28,28,48,48,2.3,2.3,75000 total time: 3.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor table of 800...003 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(8·10164-17)/9 = (8)1637<164> = 3 · 151 · 48781123 · C154
C154 = P69 · P86
P69 = 122357220642452584209664973630349681033155453532931520441153082441941<69>
P86 = 32875160220972597758764681161227086029639996457194993224995199129738972707239023844853<86>
Number: n N=4022513232813524398211303045208836597289264340939797746512434565865799965289774544812734306459747688749162392566060216989979878271103883598312223964179673 ( 154 digits) SNFS difficulty: 165 digits. Divisors found: r1=122357220642452584209664973630349681033155453532931520441153082441941 (pp69) r2=32875160220972597758764681161227086029639996457194993224995199129738972707239023844853 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 65.65 hours. Scaled time: 86.53 units (timescale=1.318). Factorization parameters were as follows: name: KA_8_163_7 n: 4022513232813524398211303045208836597289264340939797746512434565865799965289774544812734306459747688749162392566060216989979878271103883598312223964179673 skew: 1.84 deg: 5 c5: 4 c0: -85 m: 1000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 2700000) Primes: RFBsize:283146, AFBsize:283447, largePrimes:7572788 encountered Relations: rels:7122775, finalFF:638638 Max relations in full relation-set: 28 Initial matrix: 566657 x 638638 with sparse part having weight 44039280. Pruned matrix : 507869 x 510766 with weight 29149793. Total sieving time: 58.05 hours. Total relation processing time: 0.26 hours. Matrix solve time: 7.07 hours. Total square root time: 0.27 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 65.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(7·10164+11)/9 = (7)1639<164> = 511123815986207<15> · C150
C150 = P42 · P108
P42 = 395215337436906000005934571501636192952207<42>
P108 = 385030933976339826493877379968305215655393397579526887571960054940570793779333975437642428406825564469725571<108>
Number: n N=152170130495106219796450999003009138605715611628956873355664530278848244167737884492518709827802444530255770541483818513470450546436825988489608785197 ( 150 digits) SNFS difficulty: 165 digits. Divisors found: r1=395215337436906000005934571501636192952207 (pp42) r2=385030933976339826493877379968305215655393397579526887571960054940570793779333975437642428406825564469725571 (pp108) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 86.65 hours. Scaled time: 117.85 units (timescale=1.360). Factorization parameters were as follows: name: KA_7_163_9 n: 152170130495106219796450999003009138605715611628956873355664530278848244167737884492518709827802444530255770541483818513470450546436825988489608785197 skew: 1.73 deg: 5 c5: 7 c0: 110 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3800001) Primes: RFBsize:250150, AFBsize:250327, largePrimes:7881745 encountered Relations: rels:7397798, finalFF:565193 Max relations in full relation-set: 28 Initial matrix: 500542 x 565193 with sparse part having weight 50214723. Pruned matrix : 471840 x 474406 with weight 38505738. Total sieving time: 79.17 hours. Total relation processing time: 0.31 hours. Matrix solve time: 6.00 hours. Total square root time: 1.18 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 86.65 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10164-3 = 6(9)1637<165> = 47 · 193 · 1621 · 2267 · C155
C155 = P42 · P113
P42 = 610889581248729734327409484516692590832461<42>
P113 = 34375230566759292489277721179939552331809978623383280776559465068189748526644096155791768378027428880241905345241<113>
Number: n N=20999470206256118682944798667139458618641061580335085268363922120761568297261969524524443030033995145039545360363662467592334735070279038086473229794668101 ( 155 digits) SNFS difficulty: 165 digits. Divisors found: r1=610889581248729734327409484516692590832461 (pp42) r2=34375230566759292489277721179939552331809978623383280776559465068189748526644096155791768378027428880241905345241 (pp113) Version: GGNFS-0.77.1-20051202-athlon Total time: 71.77 hours. Scaled time: 103.50 units (timescale=1.442). Factorization parameters were as follows: name: KA_6_9_163_7 n: 20999470206256118682944798667139458618641061580335085268363922120761568297261969524524443030033995145039545360363662467592334735070279038086473229794668101 skew: 1.34 deg: 5 c5: 7 c0: -30 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3400001) Primes: RFBsize:250150, AFBsize:249671, largePrimes:7747415 encountered Relations: rels:7257732, finalFF:563161 Max relations in full relation-set: 28 Initial matrix: 499886 x 563161 with sparse part having weight 46183744. Pruned matrix : 466798 x 469361 with weight 34859573. Total sieving time: 64.19 hours. Total relation processing time: 0.26 hours. Matrix solve time: 7.23 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 71.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By JMB / GMP-ECM B1=3000000
(2·10193-11)/9 = (2)1921<193> = 23 · 181 · 277 · 3511 · 281650732446817<15> · C169
C169 = P35 · C134
P35 = 54780711280843190885242223364871889<35>
C134 = [35573936452919801666661978767493840314935627092380374712790703051952660053016745490719105773995659310348247513610333155438457937199797<134>]
By JMB / GMP-ECM B1=1000000
(2·10200-11)/9 = (2)1991<200> = 3 · 7 · 14001880603763633983098127<26> · C173
C173 = P36 · C138
P36 = 249790641645802510176227421442280099<36>
C138 = [302555921974370475370998169294219199252084902441380482697802372630541007145563557322381282854361483076742218761588448860732153113329663037<138>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(8·10163-53)/9 = (8)1623<163> = 3 · 2087570567<10> · C154
C154 = P40 · P114
P40 = 1901722501401858363651894167934894678547<40>
P114 = 746342052674360387307334925536045196341796871193013347158150552642871903024652042586940759722677149467693386559389<114>
Number: n N=1419335475313282170337747898973401727867416787047928791267999786357863016835187523010791214591292406817576559060081327043811957980610368972960789479727783 ( 154 digits) SNFS difficulty: 163 digits. Divisors found: r1=1901722501401858363651894167934894678547 (pp40) r2=746342052674360387307334925536045196341796871193013347158150552642871903024652042586940759722677149467693386559389 (pp114) Version: GGNFS-0.77.1-20051202-athlon Total time: 67.10 hours. Scaled time: 88.83 units (timescale=1.324). Factorization parameters were as follows: name: KA_8_162_3 n: 1419335475313282170337747898973401727867416787047928791267999786357863016835187523010791214591292406817576559060081327043811957980610368972960789479727783 skew: 0.73 deg: 5 c5: 250 c0: -53 m: 200000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2700001) Primes: RFBsize:283146, AFBsize:283257, largePrimes:7662329 encountered Relations: rels:7226501, finalFF:653830 Max relations in full relation-set: 48 Initial matrix: 566469 x 653828 with sparse part having weight 45553298. Pruned matrix : 494193 x 497089 with weight 29199532. Total sieving time: 59.93 hours. Total relation processing time: 0.27 hours. Matrix solve time: 6.79 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 67.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10143+3 = 7(0)1423<144> = 37 · 107 · 181 · 42929 · 55778925763273769417<20> · C114
C114 = P50 · P64
P50 = 99615388886871440186141889727022388487187792018971<50>
P64 = 4095308385474807274359199791739966295408609792078800566560390219<64>
Number: n N=407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649 ( 114 digits) SNFS difficulty: 143 digits. Divisors found: r1=99615388886871440186141889727022388487187792018971 (pp50) r2=4095308385474807274359199791739966295408609792078800566560390219 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.69 hours. Scaled time: 11.45 units (timescale=1.318). Factorization parameters were as follows: name: KA_7_0_142_3 n: 407955737430738536692939991644316206131841159102557048096582503950767590461218943000918208625655443001223610844649 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 10000000000000000000000000000 type: snfs rlim: 1300000 alim: 1300000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:100021, AFBsize:100188, largePrimes:6536058 encountered Relations: rels:5813023, finalFF:258829 Max relations in full relation-set: 48 Initial matrix: 200276 x 258829 with sparse part having weight 33020205. Pruned matrix : 185384 x 186449 with weight 17965451. Total sieving time: 7.28 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.13 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1300000,1300000,28,28,48,48,2.5,2.5,100000 total time: 8.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10164+31)/9 = (5)1639<164> = 17 · 51907 · 20894983 · C151
C151 = P38 · P113
P38 = 32744384953346829276967265860867079327<38>
P113 = 92018210830867189627110800207659209711575697364865394156667931972180333326904385340235396502563540887671080754821<113>
Number: n N=3013079718164143841497655666928758205678816669159984408897339155449092269654212483918172491212764027974836353746129082075124381070656207009312844685467 ( 151 digits) SNFS difficulty: 165 digits. Divisors found: r1=32744384953346829276967265860867079327 (pp38) r2=92018210830867189627110800207659209711575697364865394156667931972180333326904385340235396502563540887671080754821 (pp113) Version: GGNFS-0.77.1-20051202-athlon Total time: 54.24 hours. Scaled time: 64.65 units (timescale=1.192). Factorization parameters were as follows: name: KA_5_163_9 n: 3013079718164143841497655666928758205678816669159984408897339155449092269654212483918172491212764027974836353746129082075124381070656207009312844685467 type: snfs skew: 2.28 deg: 5 c5: 1 c0: 62 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:250150, AFBsize:250072, largePrimes:7300517 encountered Relations: rels:6821415, finalFF:564991 Max relations in full relation-set: 28 Initial matrix: 500286 x 564991 with sparse part having weight 37801274. Pruned matrix : 447562 x 450127 with weight 25647572. Total sieving time: 48.36 hours. Total relation processing time: 0.33 hours. Matrix solve time: 5.42 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 54.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Yousuke Koide
(101265-1)/9 is divisible by 937659362930322328142805649502351<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs
7·10164+3 = 7(0)1633<165> = 19 · 23 · 37 · 337 · 929 · 269413 · 347533 · 3469921837<10> · 10858699084919331104580583379<29> · 329805675824054241199035943707983<33> · 118849963103897079083614037915925391439183742364207872856583449031842800979<75>
C107 = P33 · P75
P33 = 329805675824054241199035943707983<33>
P75 = 118849963103897079083614037915925391439183742364207872856583449031842800979<75>
Number: 70003_164 N=39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357 ( 107 digits) Divisors found: r1=329805675824054241199035943707983 (pp33) r2=118849963103897079083614037915925391439183742364207872856583449031842800979 (pp75) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 19.99 hours. Scaled time: 13.63 units (timescale=0.682). Factorization parameters were as follows: name: 70003_164 n: 39197392403144687459815035426745024063531397479986412229829216553848174308140333001931690855527749962515357 skew: 20910.15 # norm 1.06e+15 c5: 9720 c4: 2125480070 c3: -30292207723211 c2: -241365060444554346 c1: 6224386460235202586792 c0: 9860520441272134662836800 # alpha -6.80 Y1: 174301888739 Y0: -331977164050768224741 # Murphy_E 1.59e-09 # M 19494045783360941309357024716550423366184593205803102929257298699651293357014392618726071159638485253850725 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182671, largePrimes:4488141 encountered Relations: rels:4624312, finalFF:419683 Max relations in full relation-set: 0 Initial matrix: 365820 x 419683 with sparse part having weight 23910189. Pruned matrix : 319973 x 321866 with weight 16314933. Polynomial selection time: 1.16 hours. Total sieving time: 15.72 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.66 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 19.99 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM B1=3000000
(2·10174-11)/9 = (2)1731<174> = 14519 · 48049681 · C162
C162 = P39 · C123
P39 = 498348657919234104075045395918906731471<39>
C123 = [639185595393241060368558509801103716904374062098782041091490513631206214345337531118525083250572654266352921615626524660709<123>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10164-17)/3 = 1(6)1631<165> = 7 · 89 · 397 · 5894957 · C153
C153 = P45 · P108
P45 = 161298457539788941817796286115085431869711519<45>
P108 = 708694953619147226673103188232021943957327776601583178016851560378815912464731109927271144169197806764708557<108>
Number: n N=114311402885000712403892487530808345971552888111341690651388701164490192899870173759027180390972569507303387784542444950170703623051519404536221700768083 ( 153 digits) SNFS difficulty: 165 digits. Divisors found: r1=161298457539788941817796286115085431869711519 (pp45) r2=708694953619147226673103188232021943957327776601583178016851560378815912464731109927271144169197806764708557 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.28 hours. Scaled time: 57.93 units (timescale=1.438). Factorization parameters were as follows: name: KA_1_6_163_1 n: 114311402885000712403892487530808345971552888111341690651388701164490192899870173759027180390972569507303387784542444950170703623051519404536221700768083 skew: 2.02 deg: 5 c5: 1 c0: -34 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:250150, AFBsize:249831, largePrimes:7181141 encountered Relations: rels:6707182, finalFF:566395 Max relations in full relation-set: 28 Initial matrix: 500045 x 566395 with sparse part having weight 35400182. Pruned matrix : 443290 x 445854 with weight 23187095. Total sieving time: 35.22 hours. Total relation processing time: 0.20 hours. Matrix solve time: 4.79 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 40.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By JMB / GMP-ECM B1=1000000
(2·10173-11)/9 = (2)1721<173> = 3 · 4780584353<10> · C163
C163 = P32 · P131
P32 = 37913745669376504562053041209773<32>
P131 = 40868486384377850363075248339637631162815021698805356262193295482622750962455291582666552767183399762886016728604351667010921652203<131>
(2·10196-11)/9 = (2)1951<196> = 165443 · 247462843 · C182
C182 = P33 · C150
P33 = 258199423348160658302432304492257<33>
C150 = [210219899230871720367863640427655425071639482317984140098945614468521925473775770678828557000890931928428063480054499871330273471885150271347346444797<150>]
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
(14·10190-41)/9 = 1(5)1891<191> = C191
C191 = P41 · P150
P41 = 35979232514979028691658608275491778123813<41>
P150 = 432348176106296870587027279656162097057836779149603113487443591832639183538536761174932277931864748203116574693057107906194995991781437958621511650227<150>
Number: 15551_190 N=15555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 ( 191 digits) SNFS difficulty: 191 digits. Divisors found: r1=35979232514979028691658608275491778123813 (pp41) r2=432348176106296870587027279656162097057836779149603113487443591832639183538536761174932277931864748203116574693057107906194995991781437958621511650227 (pp150) Version: GGNFS-0.77.1-20060513-k8 Total time: 1349.01 hours. Scaled time: 2702.07 units (timescale=2.003). Factorization parameters were as follows: name: 15551_190 n: 15555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555551 m: 100000000000000000000000000000000000000 c5: 14 c0: -41 skew: 1.24 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 19800001) Primes: RFBsize:501962, AFBsize:502607, largePrimes:7128971 encountered Relations: rels:7710294, finalFF:1147825 Max relations in full relation-set: 28 Initial matrix: 1004635 x 1147825 with sparse part having weight 130586785. Pruned matrix : 900542 x 905629 with weight 111974876. Total sieving time: 1328.99 hours. Total relation processing time: 0.88 hours. Matrix solve time: 18.70 hours. Time per square root: 0.44 hours. Prototype def-par.txt line would be: snfs,191,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 1349.01 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM B1=1000000
(2·10184-11)/9 = (2)1831<184> = 1326093162203393<16> · 5817057857572301<16> · C136
C136 = P34 · P102
P34 = 1754676921979215318291368793294107<34>
P102 = 698512124268376321562816716178278625864224388509844952931589370471677010602977158625180855254980820277<102>
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
7·10147+3 = 7(0)1463<148> = 31 · 151451 · 7030015143559119037524563<25> · C117
C117 = P32 · P85
P32 = 49184959607580348859573544470471<32>
P85 = 4311968914702968224249026994416631354378899830941813009414303440243079537179314918331<85>
Number: 70003_147 N=212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901 ( 117 digits) SNFS difficulty: 147 digits. Divisors found: r1=49184959607580348859573544470471 (pp32) r2=4311968914702968224249026994416631354378899830941813009414303440243079537179314918331 (pp85) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 22.87 hours. Scaled time: 15.60 units (timescale=0.682). Factorization parameters were as follows: name: 70003_147 n: 212084016898807566754857352490161533118634629504259292309654861162435026120974930470578532991845919966137704006103901 m: 100000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2850001) Primes: RFBsize:114155, AFBsize:114337, largePrimes:2762094 encountered Relations: rels:2702598, finalFF:256255 Max relations in full relation-set: 0 Initial matrix: 228559 x 256255 with sparse part having weight 29944652. Pruned matrix : 220754 x 221960 with weight 23313853. Total sieving time: 20.76 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.83 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 22.87 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM B1=1000000
(2·10182-11)/9 = (2)1811<182> = 3 · 73 · 15590527644441643987<20> · C160
C160 = P28 · P132
P28 = 3859810844261017292702989709<28>
P132 = 358876710814360315317023330251097074583196051792006020792471873976522644363636948726993210189326153704314907059958585059249644910303<132>
(2·10180-11)/9 = (2)1791<180> = 29 · 2699 · 27799 · C171
C171 = P32 · P139
P32 = 64863739486980795803630431431379<32>
P139 = 1574546342648474722022271751727776130594766428709953635443779531729815050710283278155800017708651481579996117040508836655706483328393873031<139>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
7·10152+3 = 7(0)1513<153> = 37 · 505533211217<12> · C140
C140 = P39 · P101
P39 = 710664466259752258736962985632455239789<39>
P101 = 52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563<101>
Number: n N=37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207 ( 140 digits) SNFS difficulty: 152 digits. Divisors found: r1=710664466259752258736962985632455239789 (pp39) r2=52660141650353797139373582732951853429418586057828085008415146466989469864283870303119649117935460563 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.23 hours. Scaled time: 31.40 units (timescale=1.197). Factorization parameters were as follows: name: KA_7_0_151_3 n: 37423691459111630694213075267719021502276516612327799793244021635177923501617996604911113655109015687913454442940049105499674605998317941207 type: snfs skew: 0.34 deg: 5 c5: 700 c0: 3 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6016357 encountered Relations: rels:5499110, finalFF:498155 Max relations in full relation-set: 28 Initial matrix: 433624 x 498155 with sparse part having weight 22030485. Pruned matrix : 366825 x 369057 with weight 12772769. Total sieving time: 23.88 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.02 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 26.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
7·10150+3 = 7(0)1493<151> = 71 · 89 · 191 · 5813 · 69387272384806722377<20> · C122
C122 = P52 · P70
P52 = 2860432727051506986615284475786112947115219635815431<52>
P70 = 5026948551624322877511681422548970043126094617265313823362275760438297<70>
Number: n N=14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007 ( 122 digits) SNFS difficulty: 150 digits. Divisors found: r1=2860432727051506986615284475786112947115219635815431 (pp52) r2=5026948551624322877511681422548970043126094617265313823362275760438297 (pp70) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 14.95 hours. Scaled time: 20.40 units (timescale=1.365). Factorization parameters were as follows: name: KA_7_0_149_3 n: 14379248154270385139813463545958394801202417801191544982206419087617630689229379296085630002943418668516430905971555961007 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:148270, largePrimes:5983637 encountered Relations: rels:5373975, finalFF:333157 Max relations in full relation-set: 28 Initial matrix: 297268 x 333157 with sparse part having weight 22706688. Pruned matrix : 269197 x 270747 with weight 15488628. Total sieving time: 13.19 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.53 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,100000 total time: 14.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
(101135-1)/9 is divisible by 19556724483255900086046136607479201<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
7·10158+3 = 7(0)1573<159> = 37 · C158
C158 = P52 · P106
P52 = 4683555637807654711165402911872475397796795663167619<52>
P106 = 4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701<106>
Number: n N=18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919 ( 158 digits) SNFS difficulty: 158 digits. Divisors found: r1=4683555637807654711165402911872475397796795663167619 (pp52) r2=4039435074966837668459019948543510692643700803297645131234240674842966427190365006893589626840507633222701 (pp106) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.49 hours. Scaled time: 51.00 units (timescale=1.325). Factorization parameters were as follows: name: KA_7_0_157_3 n: 18918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918918919 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7165440 encountered Relations: rels:6701601, finalFF:585929 Max relations in full relation-set: 48 Initial matrix: 499988 x 585929 with sparse part having weight 38496719. Pruned matrix : 424349 x 426912 with weight 22476047. Total sieving time: 34.02 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.17 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10148+3 = 7(0)1473<149> = 541 · 94793 · C142
C142 = P37 · P48 · P58
P37 = 1248139200509574640907510234705365019<37>
P48 = 668778149760661722591247508440960905084930985277<48>
P58 = 1635232116045943944454517876533152037422559560020696414537<58>
Number: n N=1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231 ( 142 digits) SNFS difficulty: 148 digits. Divisors found: r1=1248139200509574640907510234705365019 (pp37) r2=668778149760661722591247508440960905084930985277 (pp48) r3=1635232116045943944454517876533152037422559560020696414537 (pp58) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.09 hours. Scaled time: 21.91 units (timescale=1.362). Factorization parameters were as follows: name: KA_7_0_147_3 n: 1364974401952552982797637104512560523696218862959553488013662535779635256610215160329990751518441398909225555838538581966703087433649813048231 skew: 0.21 deg: 5 c5: 7000 c0: 3 m: 100000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:114155, AFBsize:114347, largePrimes:7377130 encountered Relations: rels:6857385, finalFF:270003 Max relations in full relation-set: 28 Initial matrix: 228569 x 270003 with sparse part having weight 30080076. Pruned matrix : 218314 x 219520 with weight 22382143. Total sieving time: 14.03 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.64 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,100000 total time: 16.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10165+3 = 7(0)1643<166> = C166
C166 = P36 · P49 · P83
P36 = 152833588533830632515504625196129899<36>
P49 = 2783607568442084600657258901797095301845534239737<49>
P83 = 16453989692271955709439095429034688807841041398306296314589415102129894839413356881<83>
Number: n N=7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 166 digits) SNFS difficulty: 165 digits. Divisors found: r1=152833588533830632515504625196129899 (pp36) r2=2783607568442084600657258901797095301845534239737 (pp49) r3=16453989692271955709439095429034688807841041398306296314589415102129894839413356881 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 52.97 hours. Scaled time: 76.80 units (timescale=1.450). Factorization parameters were as follows: name: KA_7_0_164_3 n: 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2400001) Primes: RFBsize:250150, AFBsize:249766, largePrimes:7413466 encountered Relations: rels:6928393, finalFF:560270 Max relations in full relation-set: 28 Initial matrix: 499981 x 560270 with sparse part having weight 40280814. Pruned matrix : 452422 x 454985 with weight 28649122. Total sieving time: 46.55 hours. Total relation processing time: 0.23 hours. Matrix solve time: 5.70 hours. Total square root time: 0.49 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 52.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
7·10138+3 = 7(0)1373<139> = 17 · 8243 · 68483 · 259690877 · 416873729 · 472302839 · C104
C104 = P32 · P72
P32 = 39500434691109480414761661938549<32>
P72 = 361158125739483496643032610400546386075176007047634753673066706124874797<72>
Number: 70003_138 N=14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553 ( 104 digits) SNFS difficulty: 138 digits. Divisors found: r1=39500434691109480414761661938549 (pp32) r2=361158125739483496643032610400546386075176007047634753673066706124874797 (pp72) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 12.90 hours. Scaled time: 8.80 units (timescale=0.682). Factorization parameters were as follows: name: 70003_138 n: 14265902958935973680620930474842135188483839358780870437646100498699296745754482441030588187552932849553 m: 1000000000000000000000000000 c5: 7000 c0: 3 skew: 0.21 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1750001) Primes: RFBsize:78498, AFBsize:64153, largePrimes:1565292 encountered Relations: rels:1549696, finalFF:159894 Max relations in full relation-set: 0 Initial matrix: 142718 x 159894 with sparse part having weight 17823941. Pruned matrix : 138506 x 139283 with weight 13759036. Total sieving time: 12.18 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.54 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 12.90 hours. --------- CPU info (if available) ----------
7·10108+3 = 7(0)1073<109> = 15932731 · C102
C102 = P35 · P68
P35 = 21135103243411643094225839323775893<35>
P68 = 20787556496228678876263628963578198111397575572164064323810422220341<68>
Number: 70003_108 N=439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513 ( 102 digits) SNFS difficulty: 108 digits. Divisors found: r1=21135103243411643094225839323775893 (pp35) r2=20787556496228678876263628963578198111397575572164064323810422220341 (pp68) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.97 hours. Scaled time: 1.30 units (timescale=0.661). Factorization parameters were as follows: name: 70003_108 n: 439347152726045522264827040637289363637658854593101458877326178418502138773321409870034208196950039513 m: 1000000000000000000000 c5: 7000 c0: 3 skew: 0.21 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64153, largePrimes:2383720 encountered Relations: rels:2939110, finalFF:154239 Max relations in full relation-set: 0 Initial matrix: 113318 x 154239 with sparse part having weight 3864688. Pruned matrix : 79599 x 80229 with weight 1974973. Total sieving time: 1.80 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,108,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.97 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
7·10180+3 = 7(0)1793<181> = C181
C181 = P37 · C145
P37 = 1661635052382325894228860798388965059<37>
C145 = [4212718063430313817949556918391010227926614475612398920219025346271127082558521092818662843579474726787185571200372160360259201106912513664366017<145>]
By Robert Backstrom / GMP-ECM 5.0 B1=536000, GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(10164+11)/3 = (3)1637<164> = 37 · 8419 · 279007 · C153
C153 = P31 · P48 · P75
P31 = 4161801207038325803680462744351<31>
P48 = 154736176694355509814594114434265558831989783897<48>
P75 = 595563698951275492246179266439849085291671641089578658213681985453227855151<75>
Number: n N=92155249753668515805069774853618530650531992960849125594638260650099015648789979128441694079227557758205130066181308303447 ( 122 digits) SNFS difficulty: 165 digits. Divisors found: r1=154736176694355509814594114434265558831989783897 (pp48) r2=595563698951275492246179266439849085291671641089578658213681985453227855151 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 96.22 hours. Scaled time: 115.08 units (timescale=1.196). Factorization parameters were as follows: name: KA_3_163_7 n: 92155249753668515805069774853618530650531992960849125594638260650099015648789979128441694079227557758205130066181308303447 # n: 383531829659736005765621077922788434765907478295374100321404205450489861931970595643574521924764095540194512505080222201006312737689809245844169493077897 type: snfs skew: 0.43 deg: 5 c5: 1 c0: 110 m: 1000000000000000000000000000000000 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:256726, AFBsize:257022, largePrimes:7802543 encountered Relations: rels:7325962, finalFF:593422 Max relations in full relation-set: 28 Initial matrix: 513812 x 593422 with sparse part having weight 45665185. Pruned matrix : 470389 x 473022 with weight 33187299. Total sieving time: 88.29 hours. Total relation processing time: 0.36 hours. Matrix solve time: 7.43 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.5,2.5,100000 total time: 96.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
7·10135+3 = 7(0)1343<136> = 75019561 · 127203697 · C120
C120 = P48 · P73
P48 = 498282829674007715259141593888416290550964085919<48>
P73 = 1472135771787141323267702134218700861789671776680188265909145553844113061<73>
Number: n N=733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059 ( 120 digits) SNFS difficulty: 135 digits. Divisors found: r1=498282829674007715259141593888416290550964085919 (pp48) r2=1472135771787141323267702134218700861789671776680188265909145553844113061 (pp73) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 3.62 hours. Scaled time: 4.92 units (timescale=1.358). Factorization parameters were as follows: name: KA_7_0_134_3 n: 733539978030426032474138343766645879888898534474528389024587518339851243854978692112465545639290426570208439273154088059 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 550001) Primes: RFBsize:78498, AFBsize:78031, largePrimes:5443174 encountered Relations: rels:4746285, finalFF:189754 Max relations in full relation-set: 28 Initial matrix: 156594 x 189754 with sparse part having weight 15131695. Pruned matrix : 142669 x 143515 with weight 9259290. Total sieving time: 3.03 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.43 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000 total time: 3.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10132+3 = 7(0)1313<133> = 31 · 1897144835436283709<19> · C114
C114 = P49 · P65
P49 = 1514672391291856973675707124754820474913203927051<49>
P65 = 78580927206153670651740539814203277361304443804223185859614493507<65>
Number: n N=119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857 ( 114 digits) SNFS difficulty: 132 digits. Divisors found: r1=1514672391291856973675707124754820474913203927051 (pp49) r2=78580927206153670651740539814203277361304443804223185859614493507 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.29 hours. Scaled time: 5.12 units (timescale=1.193). Factorization parameters were as follows: name: KA_7_0_131_3 n: 119024360921276121842517421424303849703442150179435383100670930768158762553946642889669912459689870973548741157857 type: snfs skew: 0.34 deg: 5 c5: 700 c0: 3 m: 100000000000000000000000000 rlim: 900000 alim: 900000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 50000 Factor base limits: 900000/900000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:71274, AFBsize:71340, largePrimes:3740700 encountered Relations: rels:3055228, finalFF:161685 Max relations in full relation-set: 28 Initial matrix: 142681 x 161685 with sparse part having weight 7259713. Pruned matrix : 128325 x 129102 with weight 4802914. Total sieving time: 3.74 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.40 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,900000,900000,28,28,48,48,2.2,2.2,50000 total time: 4.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
9·10163+1 = 9(0)1621<164> = 72 · 13 · 179 · 470008183 · C151
C151 = P36 · P45 · P71
P36 = 259481291797001816650176355670832013<36>
P45 = 580459551785892461725007555092462668798367841<45>
P71 = 11149788091046450752175493549254706615173820321550790352125382027235333<71>
Number: n N=1679363179430100904238066369647856492488978635545047894559404239979036929530217645752206682742665314434231355893232990238004850731203395449127465734689 ( 151 digits) SNFS difficulty: 163 digits. Divisors found: r1=259481291797001816650176355670832013 (pp36) r2=580459551785892461725007555092462668798367841 (pp45) r3=11149788091046450752175493549254706615173820321550790352125382027235333 (pp71) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 66.05 hours. Scaled time: 47.23 units (timescale=0.715). Factorization parameters were as follows: name: KA_9_0_162_1 n: 1679363179430100904238066369647856492488978635545047894559404239979036929530217645752206682742665314434231355893232990238004850731203395449127465734689 skew: 0.16 deg: 5 c5: 9000 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2700001) Primes: RFBsize:250150, AFBsize:250001, largePrimes:7541796 encountered Relations: rels:7066191, finalFF:569227 Max relations in full relation-set: 28 Initial matrix: 500218 x 569227 with sparse part having weight 42649432. Pruned matrix : 448769 x 451334 with weight 30222203. Total sieving time: 59.53 hours. Total relation processing time: 0.30 hours. Matrix solve time: 4.98 hours. Total square root time: 1.25 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 66.05 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10127+3 = 7(0)1263<128> = 277 · 683 · C123
C123 = P60 · P64
P60 = 101758248455110600982078958785140824830321627783059244018899<60>
P64 = 3636034073135055601486854090198041730366400527898690994554262567<64>
Number: n N=369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733 ( 123 digits) SNFS difficulty: 127 digits. Divisors found: r1=101758248455110600982078958785140824830321627783059244018899 (pp60) r2=3636034073135055601486854090198041730366400527898690994554262567 (pp64) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.70 hours. Scaled time: 3.67 units (timescale=1.358). Factorization parameters were as follows: name: KA_7_0_126_3 n: 369996458605324777605700059727999746288142670634438213234244757943031116702168707813796639375023124778662832798600356253733 skew: 0.34 deg: 5 c5: 700 c0: 3 m: 10000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:63951, AFBsize:63898, largePrimes:4621659 encountered Relations: rels:3934593, finalFF:151818 Max relations in full relation-set: 28 Initial matrix: 127916 x 151818 with sparse part having weight 11015888. Pruned matrix : 117329 x 118032 with weight 6729113. Total sieving time: 2.34 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.20 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 2.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10125+3 = 7(0)1243<126> = 37 · 499 · C122
C122 = P53 · P70
P53 = 13699452564493006814819701274146501315424887911148777<53>
P70 = 2767531402418291140749455418859878737861230939330176281407585478703253<70>
Number: n N=37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581 ( 122 digits) SNFS difficulty: 125 digits. Divisors found: r1=13699452564493006814819701274146501315424887911148777 (pp53) r2=2767531402418291140749455418859878737861230939330176281407585478703253 (pp70) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 2.02 hours. Scaled time: 2.73 units (timescale=1.352). Factorization parameters were as follows: name: KA_7_0_124_3 n: 37913665168174186210258354546931701240318474787412663164166170178194226290418675188214266370578995829496831500839516871581 skew: 0.84 deg: 5 c5: 7 c0: 3 m: 10000000000000000000000000 type: snfs rlim: 700000 alim: 700000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 300001) Primes: RFBsize:56543, AFBsize:56283, largePrimes:5007709 encountered Relations: rels:4440675, finalFF:243454 Max relations in full relation-set: 28 Initial matrix: 112891 x 243454 with sparse part having weight 20075677. Pruned matrix : 80668 x 81296 with weight 4508727. Total sieving time: 1.76 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.08 hours. Total square root time: 0.08 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,700000,700000,28,28,48,48,2.5,2.5,50000 total time: 2.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
7·10137+3 = 7(0)1363<138> = 372 · 73 · 373 · 521 · 18719 · 249341 · 960331 · 1467499879<10> · C103
C103 = P30 · P74
P30 = 139631923964055191736784404269<30>
P74 = 39243261185324721562992298947369650901900632234898044840233858916987494957<74>
Number: 70003_137 N=5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433 ( 103 digits) SNFS difficulty: 137 digits. Divisors found: r1=139631923964055191736784404269 (pp30) r2=39243261185324721562992298947369650901900632234898044840233858916987494957 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 9.59 hours. Scaled time: 6.54 units (timescale=0.682). Factorization parameters were as follows: name: 70003_137 n: 5479612061930819937675113993646705222614196918682242006504828855291692670246697931177796783015886771433 m: 1000000000000000000000000000 c5: 700 c0: 3 skew: 0.34 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1375001) Primes: RFBsize:78498, AFBsize:63898, largePrimes:1539023 encountered Relations: rels:1533849, finalFF:161515 Max relations in full relation-set: 0 Initial matrix: 142463 x 161515 with sparse part having weight 13047221. Pruned matrix : 136623 x 137399 with weight 9876416. Total sieving time: 9.04 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.40 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 9.59 hours. --------- CPU info (if available) ----------
7·10140+3 = 7(0)1393<141> = 37 · 8930917 · 113901888018295570523922817<27> · C107
C107 = P33 · P74
P33 = 278323359075849334609317178348129<33>
P74 = 66822032691525636457754568132542380413223137289570793768530446299737118299<74>
Number: 70003_140 N=18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571 ( 107 digits) SNFS difficulty: 140 digits. Divisors found: r1=278323359075849334609317178348129 (pp33) r2=66822032691525636457754568132542380413223137289570793768530446299737118299 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 9.94 hours. Scaled time: 6.78 units (timescale=0.682). Factorization parameters were as follows: name: 70003_140 n: 18598132598981632690429372380577188394736092833600211994959614409569142544257818749339461669680023478312571 m: 10000000000000000000000000000 c5: 7 c0: 3 skew: 0.84 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [650000, 1550001) Primes: RFBsize:100021, AFBsize:99538, largePrimes:2645025 encountered Relations: rels:2617239, finalFF:224213 Max relations in full relation-set: 0 Initial matrix: 199624 x 224213 with sparse part having weight 12939835. Pruned matrix : 190257 x 191319 with weight 10105839. Total sieving time: 9.03 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.72 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 9.94 hours. --------- CPU info (if available) ----------
By Yousuke Koide
10926+1 is divisible by 222918345451775051784679332634923849829<39>
101659+1 is divisible by154527628727094706891588937475019<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(43·10160-7)/9 = 4(7)160<161> = 5007179 · 7008751163<10> · 4421264001211142317908244507<28> · C117
C117 = P59 · P59
P59 = 10962690224883063587814306144466516475374288984362790602653<59>
P59 = 28088503235042124615343896925550058586948441134278026650631<59>
Number: 47777_160 N=307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043 ( 117 digits) SNFS difficulty: 161 digits. Divisors found: r1=10962690224883063587814306144466516475374288984362790602653 (pp59) r2=28088503235042124615343896925550058586948441134278026650631 (pp59) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 92.60 hours. Scaled time: 63.15 units (timescale=0.682). Factorization parameters were as follows: name: 47777_160 n: 307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043 m: 100000000000000000000000000000000 c5: 43 c0: -7 skew: 0.7 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4450001) Primes: RFBsize:315948, AFBsize:316331, largePrimes:5787779 encountered Relations: rels:5898099, finalFF:709902 Max relations in full relation-set: 0 Initial matrix: 632346 x 709902 with sparse part having weight 39393248. Pruned matrix : 573683 x 576908 with weight 30096165. Total sieving time: 78.88 hours. Total relation processing time: 0.34 hours. Matrix solve time: 13.14 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 92.60 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
7·10120+3 = 7(0)1193<121> = 23 · 366479 · 490913 · C109
C109 = P30 · P79
P30 = 787073943986243214424803305243<30>
P79 = 2149319812250807291486495152588101029793779750183550066121886943689304730180801<79>
Number: n N=1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643 ( 109 digits) SNFS difficulty: 120 digits. Divisors found: r1=787073943986243214424803305243 (pp30) r2=2149319812250807291486495152588101029793779750183550066121886943689304730180801 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.62 hours. Scaled time: 2.35 units (timescale=1.448). Factorization parameters were as follows: name: KA_7_0_119_3 n: 1691673621516014680304576988516586290004567558148171765518815439071657240016879833070443049183852561781239643 skew: 0.34 deg: 5 c5: 7 c0: 3 m: 1000000000000000000000000 type: snfs rlim: 800000 alim: 800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 250001) Primes: RFBsize:63951, AFBsize:63643, largePrimes:4609625 encountered Relations: rels:4046821, finalFF:240563 Max relations in full relation-set: 28 Initial matrix: 127659 x 240563 with sparse part having weight 15790458. Pruned matrix : 84816 x 85518 with weight 3791952. Total sieving time: 1.46 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.06 hours. Total square root time: 0.03 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,800000,800000,28,28,48,48,2.5,2.5,50000 total time: 1.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10145+3 = 7(0)1443<146> = 73 · 28793 · 63545947 · 288853667 · 53326121669<11> · 1531658044549<13> · C101
C101 = P44 · P57
P44 = 54389898345654421049856493544427544048520119<44>
P57 = 408415728230237921555405467245794348472339374239159426157<57>
Number: n N=22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683 ( 101 digits) Divisors found: r1=54389898345654421049856493544427544048520119 (pp44) r2=408415728230237921555405467245794348472339374239159426157 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.98 hours. Scaled time: 8.61 units (timescale=1.440). Factorization parameters were as follows: name: n n: 22213689941209063158208924297571722939004404285708946735588677498261543842008297054574418225109352683 skew: 9797.27 # norm 1.17e+14 c5: 52860 c4: 698483228 c3: -14911543473265 c2: -55584912348479370 c1: 671780603124125519596 c0: 65049529035605759990224 # alpha -6.39 Y1: 18029502491 Y0: -13325918615022094611 # Murphy_E 3.27e-09 # M 11752346036422637204237551646785296678119824290663937408764580117521053325165969638739266765025892067 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:135072, AFBsize:135185, largePrimes:3524807 encountered Relations: rels:3561278, finalFF:435975 Max relations in full relation-set: 28 Initial matrix: 270338 x 435975 with sparse part having weight 24359364. Pruned matrix : 135847 x 137262 with weight 7808751. Total sieving time: 5.46 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.28 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 5.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10166-3 = 6(9)1657<167> = 67 · 173 · C163
C163 = P42 · P49 · P74
P42 = 153583387324042801184481984693585153371533<42>
P49 = 2067097285247959280399851585395695989586036741113<49>
P74 = 19022691978446235710973810593733140748567297663247313327626391472876229823<74>
Number: n N=6039168320248468639461651281166422224139418514364593218876714692433784833060132861703045466310068156328185661288931067207316021050815287723233543266327322922957467 ( 163 digits) SNFS difficulty: 166 digits. Divisors found: r1=153583387324042801184481984693585153371533 (pp42) r2=2067097285247959280399851585395695989586036741113 (pp49) r3=19022691978446235710973810593733140748567297663247313327626391472876229823 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 97.45 hours. Scaled time: 128.92 units (timescale=1.323). Factorization parameters were as follows: name: KA_6_9_165_7 n: 6039168320248468639461651281166422224139418514364593218876714692433784833060132861703045466310068156328185661288931067207316021050815287723233543266327322922957467 skew: 0.53 deg: 5 c5: 70 c0: -3 m: 1000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4000001) Primes: RFBsize:283146, AFBsize:281947, largePrimes:7979224 encountered Relations: rels:7489789, finalFF:636155 Max relations in full relation-set: 48 Initial matrix: 565160 x 636155 with sparse part having weight 53405311. Pruned matrix : 527962 x 530851 with weight 38879892. Total sieving time: 87.02 hours. Total relation processing time: 0.32 hours. Matrix solve time: 9.88 hours. Total square root time: 0.23 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 97.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / Msieve v. 1.25
7·10122+3 = 7(0)1213<123> = 173 · 37 · 34057 · 121139 · 447641 · 1966357949<10> · C94
C94 = P41 · P53
P41 = 36803587049889567164794261972333592412847<41>
P53 = 28812211472214508546521155757658327809127986705923647<53>
Tue Jul 31 22:22:05 2007 Tue Jul 31 22:22:05 2007 Tue Jul 31 22:22:05 2007 Msieve v. 1.25 Tue Jul 31 22:22:05 2007 random seeds: 2df35130 45e71b74 Tue Jul 31 22:22:05 2007 factoring 1060392733017473507363436391125662056426006504379915175604094685956234092303916292830483893009 (94 digits) Tue Jul 31 22:22:05 2007 commencing quadratic sieve (93-digit input) Tue Jul 31 22:22:05 2007 using multiplier of 1 Tue Jul 31 22:22:05 2007 using 64kb Opteron sieve core Tue Jul 31 22:22:05 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 22:22:05 2007 processing polynomials in batches of 6 Tue Jul 31 22:22:05 2007 using a sieve bound of 1986401 (74118 primes) Tue Jul 31 22:22:05 2007 using large prime bound of 256245729 (27 bits) Tue Jul 31 22:22:05 2007 using double large prime bound of 1366412668937199 (42-51 bits) Tue Jul 31 22:22:05 2007 using trial factoring cutoff of 51 bits Tue Jul 31 22:22:05 2007 polynomial 'A' values have 12 factors Wed Aug 01 00:39:21 2007 74518 relations (18810 full + 55708 combined from 1024843 partial), need 74214 Wed Aug 01 00:39:22 2007 begin with 1043653 relations Wed Aug 01 00:39:23 2007 reduce to 190550 relations in 13 passes Wed Aug 01 00:39:23 2007 attempting to read 190550 relations Wed Aug 01 00:39:26 2007 recovered 190550 relations Wed Aug 01 00:39:26 2007 recovered 169642 polynomials Wed Aug 01 00:39:26 2007 attempting to build 74518 cycles Wed Aug 01 00:39:26 2007 found 74518 cycles in 5 passes Wed Aug 01 00:39:27 2007 distribution of cycle lengths: Wed Aug 01 00:39:27 2007 length 1 : 18810 Wed Aug 01 00:39:27 2007 length 2 : 13413 Wed Aug 01 00:39:27 2007 length 3 : 12787 Wed Aug 01 00:39:27 2007 length 4 : 10167 Wed Aug 01 00:39:27 2007 length 5 : 7362 Wed Aug 01 00:39:27 2007 length 6 : 4755 Wed Aug 01 00:39:27 2007 length 7 : 3092 Wed Aug 01 00:39:27 2007 length 9+: 4132 Wed Aug 01 00:39:27 2007 largest cycle: 20 relations Wed Aug 01 00:39:27 2007 matrix is 74118 x 74518 with weight 4440747 (avg 59.59/col) Wed Aug 01 00:39:28 2007 filtering completed in 3 passes Wed Aug 01 00:39:28 2007 matrix is 70053 x 70117 with weight 4190795 (avg 59.77/col) Wed Aug 01 00:39:29 2007 saving the first 48 matrix rows for later Wed Aug 01 00:39:29 2007 matrix is 70005 x 70117 with weight 3152619 (avg 44.96/col) Wed Aug 01 00:39:29 2007 matrix includes 64 packed rows Wed Aug 01 00:39:29 2007 using block size 21845 for processor cache size 512 kB Wed Aug 01 00:39:29 2007 commencing Lanczos iteration Wed Aug 01 00:40:15 2007 lanczos halted after 1108 iterations Wed Aug 01 00:40:15 2007 recovered 16 nontrivial dependencies Wed Aug 01 00:40:16 2007 prp41 factor: 36803587049889567164794261972333592412847 Wed Aug 01 00:40:16 2007 prp53 factor: 28812211472214508546521155757658327809127986705923647 Wed Aug 01 00:40:16 2007 elapsed time 02:18:11 AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, Msieve v. 1.25
(2·10164-17)/3 = (6)1631<164> = 29 · 107 · 210109 · C156
C156 = P45 · P54 · P58
P45 = 146792919660212633045160717534069008610074051<45>
P54 = 135010317731924137634438672025990319457714916359755721<54>
P58 = 5159531184859186656457275600237553641883637652588888601333<58>
Number: n N=102254471776071177570846050856197117511781240018413760317596990300367300976872093287863039783787909447720167299911482751852977440673142905577002399944662743 ( 156 digits) SNFS difficulty: 165 digits. Divisors found: r1=146792919660212633045160717534069008610074051 (pp45) r2=135010317731924137634438672025990319457714916359755721 (pp54) r3=5159531184859186656457275600237553641883637652588888601333 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.11 hours. Scaled time: 72.91 units (timescale=1.455). Factorization parameters were as follows: name: KA_6_163_1 n: 102254471776071177570846050856197117511781240018413760317596990300367300976872093287863039783787909447720167299911482751852977440673142905577002399944662743 skew: 2.43 deg: 5 c5: 1 c0: -85 m: 1000000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:250150, AFBsize:250371, largePrimes:7491975 encountered Relations: rels:7069787, finalFF:615528 Max relations in full relation-set: 28 Initial matrix: 500585 x 615528 with sparse part having weight 43347706. Pruned matrix : 408266 x 410832 with weight 26760517. Total sieving time: 44.47 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.99 hours. Total square root time: 0.43 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 50.11 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10136+3 = 7(0)1353<137> = C137
C137 = P33 · P43 · P63
P33 = 189532579450789969799143826592293<33>
P43 = 2381835865531583487969941738318774107993447<43>
P63 = 155060912820934332646084226028944988675098343203271382941181793<63>
Number: n N=70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 137 digits) SNFS difficulty: 136 digits. Divisors found: r1=189532579450789969799143826592293 (pp33) r2=2381835865531583487969941738318774107993447 (pp43) r3=155060912820934332646084226028944988675098343203271382941181793 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.52 hours. Scaled time: 8.03 units (timescale=1.455). Factorization parameters were as follows: name: KA_7_0_135_3 n: 70000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 skew: 0.53 deg: 5 c5: 70 c0: 3 m: 1000000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:78498, AFBsize:78021, largePrimes:6514103 encountered Relations: rels:5824178, finalFF:190944 Max relations in full relation-set: 28 Initial matrix: 156586 x 190944 with sparse part having weight 19426214. Pruned matrix : 147516 x 148362 with weight 12985709. Total sieving time: 4.77 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.53 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,75000 total time: 5.52 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10117+3 = 7(0)1163<118> = 31 · C117
C117 = P54 · P63
P54 = 796610382478821640289686993942482559318724926882166707<54>
P63 = 283459086875391589955150402968360965955345854041338678737403759<63>
Number: n N=225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613 ( 117 digits) SNFS difficulty: 117 digits. Divisors found: r1=796610382478821640289686993942482559318724926882166707 (pp54) r2=283459086875391589955150402968360965955345854041338678737403759 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.23 hours. Scaled time: 1.78 units (timescale=1.451). Factorization parameters were as follows: name: KA_7_0_116_3 n: 225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451612903225806451613 skew: 0.34 deg: 5 c5: 700 c0: 3 m: 100000000000000000000000 type: snfs rlim: 600000 alim: 600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:49098, AFBsize:48976, largePrimes:3849937 encountered Relations: rels:3225255, finalFF:131768 Max relations in full relation-set: 28 Initial matrix: 98141 x 131768 with sparse part having weight 8495908. Pruned matrix : 84202 x 84756 with weight 3752118. Total sieving time: 1.07 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.05 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,600000,28,28,48,48,2.5,2.5,50000 total time: 1.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10131+3 = 7(0)1303<132> = 37 · 167 · 821 · 86381 · 8277265193<10> · 1909043502241<13> · 11221997190059<14> · C85
C85 = P42 · P44
P42 = 245476063044641766698278446037400797293497<42>
P44 = 36697498431299323192437388994595232599875443<44>
Tue Jul 31 18:27:11 2007 Tue Jul 31 18:27:11 2007 Tue Jul 31 18:27:11 2007 Msieve v. 1.25 Tue Jul 31 18:27:11 2007 random seeds: 51a0e488 172d0ce2 Tue Jul 31 18:27:11 2007 factoring 9008357438502274995224625264375573726008762745952381754409588880984018651293713894171 (85 digits) Tue Jul 31 18:27:11 2007 commencing quadratic sieve (85-digit input) Tue Jul 31 18:27:11 2007 using multiplier of 59 Tue Jul 31 18:27:11 2007 using 64kb Opteron sieve core Tue Jul 31 18:27:11 2007 sieve interval: 6 blocks of size 65536 Tue Jul 31 18:27:11 2007 processing polynomials in batches of 17 Tue Jul 31 18:27:11 2007 using a sieve bound of 1442509 (54972 primes) Tue Jul 31 18:27:11 2007 using large prime bound of 115400720 (26 bits) Tue Jul 31 18:27:11 2007 using double large prime bound of 325068826146400 (41-49 bits) Tue Jul 31 18:27:11 2007 using trial factoring cutoff of 49 bits Tue Jul 31 18:27:11 2007 polynomial 'A' values have 11 factors Tue Jul 31 18:57:24 2007 55354 relations (16849 full + 38505 combined from 558450 partial), need 55068 Tue Jul 31 18:57:25 2007 begin with 575299 relations Tue Jul 31 18:57:25 2007 reduce to 126894 relations in 9 passes Tue Jul 31 18:57:25 2007 attempting to read 126894 relations Tue Jul 31 18:57:27 2007 recovered 126894 relations Tue Jul 31 18:57:27 2007 recovered 104607 polynomials Tue Jul 31 18:57:27 2007 attempting to build 55354 cycles Tue Jul 31 18:57:27 2007 found 55354 cycles in 5 passes Tue Jul 31 18:57:27 2007 distribution of cycle lengths: Tue Jul 31 18:57:27 2007 length 1 : 16849 Tue Jul 31 18:57:27 2007 length 2 : 11673 Tue Jul 31 18:57:27 2007 length 3 : 9808 Tue Jul 31 18:57:27 2007 length 4 : 6856 Tue Jul 31 18:57:27 2007 length 5 : 4419 Tue Jul 31 18:57:27 2007 length 6 : 2741 Tue Jul 31 18:57:27 2007 length 7 : 1489 Tue Jul 31 18:57:27 2007 length 9+: 1519 Tue Jul 31 18:57:27 2007 largest cycle: 18 relations Tue Jul 31 18:57:28 2007 matrix is 54972 x 55354 with weight 2949435 (avg 53.28/col) Tue Jul 31 18:57:28 2007 filtering completed in 3 passes Tue Jul 31 18:57:28 2007 matrix is 49563 x 49627 with weight 2651538 (avg 53.43/col) Tue Jul 31 18:57:29 2007 saving the first 48 matrix rows for later Tue Jul 31 18:57:29 2007 matrix is 49515 x 49627 with weight 2025706 (avg 40.82/col) Tue Jul 31 18:57:29 2007 matrix includes 64 packed rows Tue Jul 31 18:57:29 2007 commencing Lanczos iteration Tue Jul 31 18:58:45 2007 lanczos halted after 785 iterations Tue Jul 31 18:58:46 2007 recovered 12 nontrivial dependencies Tue Jul 31 18:58:46 2007 prp42 factor: 245476063044641766698278446037400797293497 Tue Jul 31 18:58:46 2007 prp44 factor: 36697498431299323192437388994595232599875443 Tue Jul 31 18:58:46 2007 elapsed time 00:31:35 AMD 64 3400+
7·10133+3 = 7(0)1323<134> = 29 · 59 · 1741 · 19286399236854181<17> · 46083256114156603252213<23> · C89
C89 = P40 · P49
P40 = 8783383808652802647890907770843019907393<40>
P49 = 3010184316154118713322706068056130317359871964857<49>
Tue Jul 31 19:07:15 2007 Tue Jul 31 19:07:15 2007 Tue Jul 31 19:07:15 2007 Msieve v. 1.25 Tue Jul 31 19:07:15 2007 random seeds: d5724f40 7200004e Tue Jul 31 19:07:15 2007 factoring 26439604183568695431333540511848343933708312285905784586381054531841927202958085090487801 (89 digits) Tue Jul 31 19:07:15 2007 commencing quadratic sieve (89-digit input) Tue Jul 31 19:07:15 2007 using multiplier of 1 Tue Jul 31 19:07:15 2007 using 64kb Opteron sieve core Tue Jul 31 19:07:15 2007 sieve interval: 15 blocks of size 65536 Tue Jul 31 19:07:15 2007 processing polynomials in batches of 7 Tue Jul 31 19:07:15 2007 using a sieve bound of 1544831 (58667 primes) Tue Jul 31 19:07:15 2007 using large prime bound of 123586480 (26 bits) Tue Jul 31 19:07:15 2007 using double large prime bound of 367745783685200 (42-49 bits) Tue Jul 31 19:07:15 2007 using trial factoring cutoff of 49 bits Tue Jul 31 19:07:15 2007 polynomial 'A' values have 11 factors Tue Jul 31 19:50:38 2007 58799 relations (16800 full + 41999 combined from 610095 partial), need 58763 Tue Jul 31 19:50:38 2007 begin with 626895 relations Tue Jul 31 19:50:39 2007 reduce to 139283 relations in 10 passes Tue Jul 31 19:50:39 2007 attempting to read 139283 relations Tue Jul 31 19:50:40 2007 recovered 139283 relations Tue Jul 31 19:50:40 2007 recovered 109037 polynomials Tue Jul 31 19:50:40 2007 attempting to build 58799 cycles Tue Jul 31 19:50:41 2007 found 58799 cycles in 5 passes Tue Jul 31 19:50:41 2007 distribution of cycle lengths: Tue Jul 31 19:50:41 2007 length 1 : 16800 Tue Jul 31 19:50:41 2007 length 2 : 11719 Tue Jul 31 19:50:41 2007 length 3 : 10451 Tue Jul 31 19:50:41 2007 length 4 : 7497 Tue Jul 31 19:50:41 2007 length 5 : 5180 Tue Jul 31 19:50:41 2007 length 6 : 3241 Tue Jul 31 19:50:41 2007 length 7 : 1863 Tue Jul 31 19:50:41 2007 length 9+: 2048 Tue Jul 31 19:50:41 2007 largest cycle: 18 relations Tue Jul 31 19:50:41 2007 matrix is 58667 x 58799 with weight 3374117 (avg 57.38/col) Tue Jul 31 19:50:42 2007 filtering completed in 3 passes Tue Jul 31 19:50:42 2007 matrix is 53856 x 53920 with weight 3132205 (avg 58.09/col) Tue Jul 31 19:50:43 2007 saving the first 48 matrix rows for later Tue Jul 31 19:50:43 2007 matrix is 53808 x 53920 with weight 2508505 (avg 46.52/col) Tue Jul 31 19:50:43 2007 matrix includes 64 packed rows Tue Jul 31 19:50:43 2007 using block size 21568 for processor cache size 512 kB Tue Jul 31 19:50:43 2007 commencing Lanczos iteration Tue Jul 31 19:51:11 2007 lanczos halted after 852 iterations Tue Jul 31 19:51:11 2007 recovered 17 nontrivial dependencies Tue Jul 31 19:51:11 2007 prp40 factor: 8783383808652802647890907770843019907393 Tue Jul 31 19:51:11 2007 prp49 factor: 3010184316154118713322706068056130317359871964857 Tue Jul 31 19:51:11 2007 elapsed time 00:43:56 AMD 64 3400+
7·10109+3 = 7(0)1083<110> = 61 · 283 · 6833 · 3752738047<10> · C93
C93 = P35 · P58
P35 = 94998794192060872628935849323365693<35>
P58 = 1664577444559100089652031980780871295487207378438987754367<58>
Tue Jul 31 20:06:20 2007 Tue Jul 31 20:06:20 2007 Tue Jul 31 20:06:20 2007 Msieve v. 1.25 Tue Jul 31 20:06:20 2007 random seeds: 58a7aa10 e5a73f18 Tue Jul 31 20:06:20 2007 factoring 158132850072416566802699765435756674614463053664908574703804989105665472581049135992398731331 (93 digits) Tue Jul 31 20:06:20 2007 commencing quadratic sieve (92-digit input) Tue Jul 31 20:06:20 2007 using multiplier of 5 Tue Jul 31 20:06:20 2007 using 64kb Opteron sieve core Tue Jul 31 20:06:20 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 20:06:20 2007 processing polynomials in batches of 6 Tue Jul 31 20:06:20 2007 using a sieve bound of 1885601 (70588 primes) Tue Jul 31 20:06:20 2007 using large prime bound of 220615317 (27 bits) Tue Jul 31 20:06:20 2007 using double large prime bound of 1043624286913572 (42-50 bits) Tue Jul 31 20:06:20 2007 using trial factoring cutoff of 50 bits Tue Jul 31 20:06:20 2007 polynomial 'A' values have 12 factors Tue Jul 31 22:12:14 2007 71029 relations (18147 full + 52882 combined from 923968 partial), need 70684 Tue Jul 31 22:12:15 2007 begin with 942115 relations Tue Jul 31 22:12:16 2007 reduce to 179413 relations in 13 passes Tue Jul 31 22:12:16 2007 attempting to read 179413 relations Tue Jul 31 22:12:18 2007 recovered 179413 relations Tue Jul 31 22:12:18 2007 recovered 159146 polynomials Tue Jul 31 22:12:18 2007 attempting to build 71029 cycles Tue Jul 31 22:12:18 2007 found 71029 cycles in 5 passes Tue Jul 31 22:12:19 2007 distribution of cycle lengths: Tue Jul 31 22:12:19 2007 length 1 : 18147 Tue Jul 31 22:12:19 2007 length 2 : 13037 Tue Jul 31 22:12:19 2007 length 3 : 12364 Tue Jul 31 22:12:19 2007 length 4 : 9648 Tue Jul 31 22:12:19 2007 length 5 : 7028 Tue Jul 31 22:12:19 2007 length 6 : 4488 Tue Jul 31 22:12:19 2007 length 7 : 2773 Tue Jul 31 22:12:19 2007 length 9+: 3544 Tue Jul 31 22:12:19 2007 largest cycle: 18 relations Tue Jul 31 22:12:19 2007 matrix is 70588 x 71029 with weight 4271043 (avg 60.13/col) Tue Jul 31 22:12:20 2007 filtering completed in 3 passes Tue Jul 31 22:12:20 2007 matrix is 66489 x 66553 with weight 4008580 (avg 60.23/col) Tue Jul 31 22:12:21 2007 saving the first 48 matrix rows for later Tue Jul 31 22:12:21 2007 matrix is 66441 x 66553 with weight 3003773 (avg 45.13/col) Tue Jul 31 22:12:21 2007 matrix includes 64 packed rows Tue Jul 31 22:12:21 2007 using block size 21845 for processor cache size 512 kB Tue Jul 31 22:12:21 2007 commencing Lanczos iteration Tue Jul 31 22:13:01 2007 lanczos halted after 1053 iterations Tue Jul 31 22:13:02 2007 recovered 19 nontrivial dependencies Tue Jul 31 22:13:02 2007 prp35 factor: 94998794192060872628935849323365693 Tue Jul 31 22:13:02 2007 prp58 factor: 1664577444559100089652031980780871295487207378438987754367 Tue Jul 31 22:13:02 2007 elapsed time 02:06:42 AMD 64 3400+
By Sinkiti Sibata / Msieve v. 1.23
7·10115+3 = 7(0)1143<116> = 71 · 571 · 1753 · 41759 · 101687624751179<15> · C90
C90 = P45 · P46
P45 = 229383234010881253145836095413674027664523319<45>
P46 = 1011211039809810274754617373533701326457880829<46>
Tue Jul 31 07:34:45 2007 Msieve v. 1.23 Tue Jul 31 07:34:45 2007 random seeds: f6cd87d8 a53fdc24 Tue Jul 31 07:34:45 2007 factoring 231954858579080269057677376740414939630659505325131391785225954643473927231021865193551451 (90 digits) Tue Jul 31 07:34:46 2007 commencing quadratic sieve (89-digit input) Tue Jul 31 07:34:46 2007 using multiplier of 11 Tue Jul 31 07:34:46 2007 using 64kb Pentium 2 sieve core Tue Jul 31 07:34:46 2007 sieve interval: 18 blocks of size 65536 Tue Jul 31 07:34:46 2007 processing polynomials in batches of 6 Tue Jul 31 07:34:46 2007 using a sieve bound of 1575269 (59601 primes) Tue Jul 31 07:34:46 2007 using large prime bound of 126021520 (26 bits) Tue Jul 31 07:34:46 2007 using double large prime bound of 380890718607520 (42-49 bits) Tue Jul 31 07:34:46 2007 using trial factoring cutoff of 49 bits Tue Jul 31 07:34:46 2007 polynomial 'A' values have 12 factors Tue Jul 31 17:16:16 2007 59785 relations (16189 full + 43596 combined from 628261 partial), need 59697 Tue Jul 31 17:16:20 2007 begin with 644450 relations Tue Jul 31 17:16:21 2007 reduce to 144357 relations in 9 passes Tue Jul 31 17:16:21 2007 attempting to read 144357 relations Tue Jul 31 17:16:29 2007 recovered 144357 relations Tue Jul 31 17:16:29 2007 recovered 122313 polynomials Tue Jul 31 17:16:29 2007 attempting to build 59785 cycles Tue Jul 31 17:16:30 2007 found 59785 cycles in 6 passes Tue Jul 31 17:16:34 2007 distribution of cycle lengths: Tue Jul 31 17:16:34 2007 length 1 : 16189 Tue Jul 31 17:16:34 2007 length 2 : 11643 Tue Jul 31 17:16:34 2007 length 3 : 10503 Tue Jul 31 17:16:34 2007 length 4 : 7913 Tue Jul 31 17:16:34 2007 length 5 : 5683 Tue Jul 31 17:16:34 2007 length 6 : 3388 Tue Jul 31 17:16:34 2007 length 7 : 2104 Tue Jul 31 17:16:34 2007 length 9+: 2362 Tue Jul 31 17:16:34 2007 largest cycle: 22 relations Tue Jul 31 17:16:35 2007 matrix is 59601 x 59785 with weight 3535144 (avg 59.13/col) Tue Jul 31 17:16:41 2007 filtering completed in 3 passes Tue Jul 31 17:16:41 2007 matrix is 55625 x 55687 with weight 3317745 (avg 59.58/col) Tue Jul 31 17:16:43 2007 saving the first 48 matrix rows for later Tue Jul 31 17:16:43 2007 matrix is 55577 x 55687 with weight 2590949 (avg 46.53/col) Tue Jul 31 17:16:43 2007 matrix includes 64 packed rows Tue Jul 31 17:16:43 2007 using block size 5461 for processor cache size 128 kB Tue Jul 31 17:16:44 2007 commencing Lanczos iteration Tue Jul 31 17:19:46 2007 lanczos halted after 879 iterations Tue Jul 31 17:19:47 2007 recovered 16 nontrivial dependencies Tue Jul 31 17:19:50 2007 prp45 factor: 229383234010881253145836095413674027664523319 Tue Jul 31 17:19:50 2007 prp46 factor: 1011211039809810274754617373533701326457880829 Tue Jul 31 17:19:50 2007 elapsed time 09:45:05
The factor table of 700...003 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(7·10163-1)/3 = 2(3)163<164> = 31 · 26480968333<11> · C152
C152 = P73 · P79
P73 = 6005499498342026296996247513568027884866123915015309416115316591128827611<73>
P79 = 4732951939505968237884782724690167133167712747934122360855348805147547921808661<79>
Number: n N=28423740498380012646351441222833046018885664846683919488791556370619977774011134692143246359762495624861587748954770936198932245142948442069275595738871 ( 152 digits) SNFS difficulty: 163 digits. Divisors found: r1=6005499498342026296996247513568027884866123915015309416115316591128827611 (pp73) r2=4732951939505968237884782724690167133167712747934122360855348805147547921808661 (pp79) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 62.00 hours. Scaled time: 84.63 units (timescale=1.365). Factorization parameters were as follows: name: KA_2_3_163 n: 28423740498380012646351441222833046018885664846683919488791556370619977774011134692143246359762495624861587748954770936198932245142948442069275595738871 skew: 0.17 deg: 5 c5: 7000 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:250150, AFBsize:250186, largePrimes:7515166 encountered Relations: rels:7038514, finalFF:567391 Max relations in full relation-set: 28 Initial matrix: 500403 x 567391 with sparse part having weight 42599784. Pruned matrix : 449316 x 451882 with weight 30245743. Total sieving time: 56.37 hours. Total relation processing time: 0.29 hours. Matrix solve time: 5.04 hours. Total square root time: 0.30 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 62.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(2·10160+1)/3 = (6)1597<160> = 227 · 419 · 1458595001<10> · 16026242851179144358700459<26> · C121
C121 = P48 · P74
P48 = 161463735175025949280548404486238854502944749577<48>
P74 = 18570663712910018221335055151517350281831147548443709556829543800274598713<74>
Number: 66667_160 N=2998488727765767306056724256898840427400661293190185342767414314752818203241712663724341297601486372223255855543951494401 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=161463735175025949280548404486238854502944749577 (pp48) r2=18570663712910018221335055151517350281831147548443709556829543800274598713 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.89 hours. Scaled time: 55.06 units (timescale=2.127). Factorization parameters were as follows: n: 2998488727765767306056724256898840427400661293190185342767414314752818203241712663724341297601486372223255855543951494401 m: 100000000000000000000000000000000 c5: 2 c0: 1 skew: 0.87 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282707, largePrimes:5745066 encountered Relations: rels:5888263, finalFF:750273 Max relations in full relation-set: 28 Initial matrix: 565918 x 750273 with sparse part having weight 47378726. Pruned matrix : 416316 x 419209 with weight 29586910. Total sieving time: 24.83 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.93 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 25.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
(83·10158+61)/9 = 9(2)1579<159> = 117545651888135840815842818880953169751<39> · C121
C121 = P53 · P69
P53 = 19948874429255659337544510594592376405101429806260627<53>
P69 = 393287929414931017949697007530034379610754908774038875145063023078177<69>
Number: 92229_158 N=7845651518440422046274124148055206572053296058018576850355756519442414234698093136206369834368093919414710356459458036979 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=19948874429255659337544510594592376405101429806260627 (pp53) r2=393287929414931017949697007530034379610754908774038875145063023078177 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 38.31 hours. Scaled time: 82.06 units (timescale=2.142). Factorization parameters were as follows: n: 7845651518440422046274124148055206572053296058018576850355756519442414234698093136206369834368093919414710356459458036979 m: 20000000000000000000000000000000 c5: 10375 c0: 244 skew: 0.47 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4200001) Primes: RFBsize:283146, AFBsize:283188, largePrimes:5761581 encountered Relations: rels:5805318, finalFF:660921 Max relations in full relation-set: 28 Initial matrix: 566401 x 660921 with sparse part having weight 47281694. Pruned matrix : 502096 x 504992 with weight 33891197. Total sieving time: 36.70 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.46 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 38.31 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(10163-7)/3 = (3)1621<163> = 401 · 340687 · C155
C155 = P34 · P58 · P65
P34 = 1169754593539985501873975459730137<34>
P58 = 1658788489453091556494815237092230110842898508302882101211<58>
P65 = 12574566972385656776513038298834533485077579778495931368800832559<65>
Number: n N=24399381113601954464601318101902556137967969424530421893773531937366173816979720120115908479199970449421545694400908832051620423776210184232870562715436013 ( 155 digits) SNFS difficulty: 163 digits. Divisors found: r1=1169754593539985501873975459730137 (pp34) r2=1658788489453091556494815237092230110842898508302882101211 (pp58) r3=12574566972385656776513038298834533485077579778495931368800832559 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.87 hours. Scaled time: 62.21 units (timescale=1.451). Factorization parameters were as follows: name: KA_3_162_1 n: 24399381113601954464601318101902556137967969424530421893773531937366173816979720120115908479199970449421545694400908832051620423776210184232870562715436013 skew: 0.37 deg: 5 c5: 1000 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:250150, AFBsize:249886, largePrimes:7373909 encountered Relations: rels:6949423, finalFF:611249 Max relations in full relation-set: 28 Initial matrix: 500102 x 611249 with sparse part having weight 41187658. Pruned matrix : 405991 x 408555 with weight 24372265. Total sieving time: 38.29 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.21 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 42.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(16·10163-7)/9 = 1(7)163<164> = 257 · 423277 · C156
C156 = P41 · P51 · P64
P41 = 73711078007185859471835668366940479393171<41>
P51 = 821912260604473840932297229077014953449618054109223<51>
P64 = 2697500027586692927181515435498036599615808525035592363867652721<64>
Number: n N=163425446216914956342510976477755726884460633328290330485790994496146586807310687393666786552509784278911484101296929939309989227903639425547667346331647893 ( 156 digits) SNFS difficulty: 164 digits. Divisors found: r1=73711078007185859471835668366940479393171 (pp41) r2=821912260604473840932297229077014953449618054109223 (pp51) r3=2697500027586692927181515435498036599615808525035592363867652721 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.71 hours. Scaled time: 73.69 units (timescale=1.194). Factorization parameters were as follows: name: KA_1_7_163 n: 163425446216914956342510976477755726884460633328290330485790994496146586807310687393666786552509784278911484101296929939309989227903639425547667346331647893 type: snfs skew: 0.43 deg: 5 c5: 500 c0: -7 m: 200000000000000000000000000000000 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:256726, AFBsize:256456, largePrimes:7276877 encountered Relations: rels:6788820, finalFF:601944 Max relations in full relation-set: 28 Initial matrix: 513248 x 601944 with sparse part having weight 36488675. Pruned matrix : 437144 x 439774 with weight 22807094. Total sieving time: 56.01 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.06 hours. Total square root time: 0.35 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.3,2.3,100000 total time: 61.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By honeycrack7 / GGNFS-0.77.1-20060513-k8
4·10170+3 = 4(0)1693<171> = 13 · 2332022449008725190543961<25> · 9091674957193157331925985427613<31> · C115
C115 = P52 · P63
P52 = 5519848976962319518553726010848147162459426482482457<52>
P63 = 262913457234491688131920560141939578410279343647748980394630731<63>
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
7·10150-3 = 6(9)1497<151> = 23537 · 117047527 · C139
C139 = P55 · P84
P55 = 8764729519896434388185150658193376696083145995054647761<55>
P84 = 289898636097657769901727571746993680083346617528438604091309287391756698440245150523<84>
Number: 69997_150 N=2540883133582855129103294851665209412058385608097038665067689287721635183644657611078834087886540221297369512376354576518671195152189929003 ( 139 digits) SNFS difficulty: 150 digits. Divisors found: r1=8764729519896434388185150658193376696083145995054647761 (pp55) r2=289898636097657769901727571746993680083346617528438604091309287391756698440245150523 (pp84) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 26.99 hours. Scaled time: 18.41 units (timescale=0.682). Factorization parameters were as follows: name: 69997_150 n: 2540883133582855129103294851665209412058385608097038665067689287721635183644657611078834087886540221297369512376354576518671195152189929003 m: 1000000000000000000000000000000 c5: 7 c0: -3 skew: 0.84 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1900001) Primes: RFBsize:176302, AFBsize:175733, largePrimes:5394959 encountered Relations: rels:5312038, finalFF:400934 Max relations in full relation-set: 0 Initial matrix: 352100 x 400934 with sparse part having weight 23256659. Pruned matrix : 317140 x 318964 with weight 17341814. Total sieving time: 23.86 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.81 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.99 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(2·10159+43)/9 = (2)1587<159> = 239 · 809 · 4027 · 238547 · 885263 · C139
C139 = P45 · P94
P45 = 347764084623597453108213934934669011761877139<45>
P94 = 3886229406208272471593857319229809807058694766986913068964477873900842341708025811926593810169<94>
Number: 22227_159 N=1351491012087326549211979087569214053838808220524355993937154678565591119267140370025719121273819964452615804361909214924166342965666826491 ( 139 digits) SNFS difficulty: 160 digits. Divisors found: r1=347764084623597453108213934934669011761877139 (pp45) r2=3886229406208272471593857319229809807058694766986913068964477873900842341708025811926593810169 (pp94) Version: GGNFS-0.77.1-20050930-nocona Total time: 29.92 hours. Scaled time: 63.91 units (timescale=2.136). Factorization parameters were as follows: n: 1351491012087326549211979087569214053838808220524355993937154678565591119267140370025719121273819964452615804361909214924166342965666826491 m: 100000000000000000000000000000000 c5: 1 c0: 215 skew: 2.93 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283892, largePrimes:5618226 encountered Relations: rels:5629970, finalFF:640876 Max relations in full relation-set: 28 Initial matrix: 567102 x 640876 with sparse part having weight 39940913. Pruned matrix : 509180 x 512079 with weight 28084715. Total sieving time: 27.43 hours. Total relation processing time: 0.09 hours. Matrix solve time: 2.35 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 29.92 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
2·10159-9 = 1(9)1581<160> = 11 · 24691 · 52861 · 266261 · 4151011 · C138
C138 = P47 · P91
P47 = 40930808775623536636245772098276860041853369431<47>
P91 = 3079296349757713797324715535825813229817563878384139018839754824005144136790174117702778331<91>
Number: 19991_159 N=126038090055408555107408847579488891171318490786133096772283218499151669830811145264505896403808824896321957494548755525749518542444599661 ( 138 digits) SNFS difficulty: 160 digits. Divisors found: r1=40930808775623536636245772098276860041853369431 (pp47) r2=3079296349757713797324715535825813229817563878384139018839754824005144136790174117702778331 (pp91) Version: GGNFS-0.77.1-20050930-nocona Total time: 23.56 hours. Scaled time: 50.48 units (timescale=2.143). Factorization parameters were as follows: n: 126038090055408555107408847579488891171318490786133096772283218499151669830811145264505896403808824896321957494548755525749518542444599661 m: 100000000000000000000000000000000 c5: 1 c0: -45 skew: 2.14 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3300001) Primes: RFBsize:283146, AFBsize:283177, largePrimes:5644839 encountered Relations: rels:5726943, finalFF:702143 Max relations in full relation-set: 28 Initial matrix: 566387 x 702143 with sparse part having weight 41923918. Pruned matrix : 452126 x 455021 with weight 25213445. Total sieving time: 22.45 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.97 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 23.56 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By JMB / GMP-ECM B1=1000000
(25·10197-7)/9 = 2(7)197<198> = 1373 · C195
C195 = P32 · C163
P32 = 85030629703280968207735306809773<32>
C163 = [2379312940877966056839041692231255679976556971431892634670943410004573553981330698167952823566726167898725398615761464958869155626448416241982456084785127904775513<163>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10162+1)/3 = (6)1617<162> = 89 · 5942153001947<13> · C148
C148 = P54 · P94
P54 = 260109084099025462382032890421450150382266857071125187<54>
P94 = 4846401432771397426216214806428116706548778140446303082763979669092372351100444829939195019827<94>
Number: n N=1260593037854372908702191537268240612213565622246104193999268784722069543835151571262530708956084288244937923573974982203746499701928418153664082649 ( 148 digits) SNFS difficulty: 162 digits. Divisors found: r1=260109084099025462382032890421450150382266857071125187 (pp54) r2=4846401432771397426216214806428116706548778140446303082763979669092372351100444829939195019827 (pp94) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.90 hours. Scaled time: 55.51 units (timescale=1.325). Factorization parameters were as follows: name: KA_6_161_7 n: 1260593037854372908702191537268240612213565622246104193999268784722069543835151571262530708956084288244937923573974982203746499701928418153664082649 skew: 0.35 deg: 5 c5: 200 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:249566, largePrimes:7143893 encountered Relations: rels:6652480, finalFF:561530 Max relations in full relation-set: 48 Initial matrix: 499781 x 561530 with sparse part having weight 37610274. Pruned matrix : 446875 x 449437 with weight 24206431. Total sieving time: 36.44 hours. Total relation processing time: 0.22 hours. Matrix solve time: 5.14 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 41.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
9·10161+1 = 9(0)1601<162> = 192 · 268115868282277<15> · C145
C145 = P43 · P103
P43 = 1452612416148001223786387377375980929408933<43>
P103 = 6401224184307784221531476143753944364302696193784598490179821129689892756268275790197304471135782300801<103>
Number: n N=9298497728672348738654088152725043047653335440887426945669034198013979457141066603768096625347093326453497719648788386059162812868886287742455333 ( 145 digits) SNFS difficulty: 161 digits. Divisors found: r1=1452612416148001223786387377375980929408933 (pp43) r2=6401224184307784221531476143753944364302696193784598490179821129689892756268275790197304471135782300801 (pp103) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 50.93 hours. Scaled time: 54.65 units (timescale=1.073). Factorization parameters were as follows: name: KA_9_0_160_1 n: 9298497728672348738654088152725043047653335440887426945669034198013979457141066603768096625347093326453497719648788386059162812868886287742455333 skew: 0.41 deg: 5 c5: 90 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:250150, AFBsize:249956, largePrimes:7360513 encountered Relations: rels:6909886, finalFF:585073 Max relations in full relation-set: 28 Initial matrix: 500173 x 585073 with sparse part having weight 41263807. Pruned matrix : 430599 x 433163 with weight 26317605. Total sieving time: 45.72 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.79 hours. Total square root time: 0.16 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 50.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
5·10163-3 = 4(9)1627<164> = 2833 · 184967 · 13315699 · C148
C148 = P35 · P113
P35 = 74998792236344109387450078891725779<35>
P113 = 95545654112791421636906751022948221950213818775035727503822215288586505310116495426553720942470582028517007755987<113>
Number: 49997_163 N=7165808661890840897859714216746508466161349306048122768370338285750348690423700476081529989454370863114686016738935169566343753929497072942549488873 ( 148 digits) SNFS difficulty: 164 digits. Divisors found: r1=74998792236344109387450078891725779 (pp35) r2=95545654112791421636906751022948221950213818775035727503822215288586505310116495426553720942470582028517007755987 (pp113) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 96.02 hours. Scaled time: 65.49 units (timescale=0.682). Factorization parameters were as follows: name: 49997_163 n: 7165808661890840897859714216746508466161349306048122768370338285750348690423700476081529989454370863114686016738935169566343753929497072942549488873 m: 500000000000000000000000000000000 c5: 8 c0: -15 skew: 1.13 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4550001) Primes: RFBsize:315948, AFBsize:315761, largePrimes:5791399 encountered Relations: rels:5931578, finalFF:709466 Max relations in full relation-set: 0 Initial matrix: 631774 x 709466 with sparse part having weight 36626735. Pruned matrix : 573328 x 576550 with weight 28530803. Total sieving time: 82.87 hours. Total relation processing time: 0.35 hours. Matrix solve time: 12.59 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 96.02 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10162-1 = 5(9)162<163> = 33413 · 15377792567<11> · C149
C149 = P40 · P109
P40 = 8461863041793557423309640118101540415199<40>
P109 = 1379989523873218126548187496324337406517253315539049102957670242333680936574239687581847686601665035459375931<109>
Number: n N=11677282350125072565528496755056693390894578124346913826602577065368169930338426882409563592311243405998642515404383594961811857506465947731167175269 ( 149 digits) SNFS difficulty: 162 digits. Divisors found: r1=8461863041793557423309640118101540415199 (pp40) r2=1379989523873218126548187496324337406517253315539049102957670242333680936574239687581847686601665035459375931 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.45 hours. Scaled time: 61.47 units (timescale=1.448). Factorization parameters were as follows: name: KA_5_9_162 n: 11677282350125072565528496755056693390894578124346913826602577065368169930338426882409563592311243405998642515404383594961811857506465947731167175269 skew: 0.28 deg: 5 c5: 600 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:250150, AFBsize:249916, largePrimes:7325134 encountered Relations: rels:6881070, finalFF:592491 Max relations in full relation-set: 28 Initial matrix: 500132 x 592491 with sparse part having weight 39869074. Pruned matrix : 421848 x 424412 with weight 24612582. Total sieving time: 37.71 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.45 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 42.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(13·10161-1)/3 = 4(3)161<162> = 35591 · 56617483129<11> · C147
C147 = P28 · P56 · P64
P28 = 6916321829686376333181913823<28>
P56 = 11574884111412367178608580326121743923707807455418638553<56>
P64 = 2686207161095289004338174437326230035207838243702836292283105613<64>
Number: n N=215045989550297315654863919994251904257815223605138461618086564897394811789556878090551491142316445311255103555809184394301856619887795350638801947 ( 147 digits) SNFS difficulty: 162 digits. Divisors found: r1=6916321829686376333181913823 (pp28) r2=11574884111412367178608580326121743923707807455418638553 (pp56) r3=2686207161095289004338174437326230035207838243702836292283105613 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.29 hours. Scaled time: 58.97 units (timescale=0.962). Factorization parameters were as follows: name: KA_4_3_161 n: 215045989550297315654863919994251904257815223605138461618086564897394811789556878090551491142316445311255103555809184394301856619887795350638801947 type: snfs skew: 1 deg: 5 c5: 130 c0: -1 m: 100000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1750000, 3750001) Primes: RFBsize:250150, AFBsize:250361, largePrimes:7677203 encountered Relations: rels:7173676, finalFF:581835 Max relations in full relation-set: 48 Initial matrix: 500578 x 581835 with sparse part having weight 54017180. Pruned matrix : 461516 x 464082 with weight 37017683. Total sieving time: 53.03 hours. Total relation processing time: 0.36 hours. Matrix solve time: 7.72 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 61.29 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2400+ stepping 01 Memory: 901612k/917504k available (1069k kernel code, 15504k reserved, 459k data, 96k init, 0k highmem) sisfb: Memory heap starting at 12288K, size 19960K Calibrating delay loop... 4010.80 BogoMIPS
By JMB / GMP-ECM B1=1000000
(25·10185-7)/9 = 2(7)185<186> = 809 · 1498561 · 4617297143<10> · C167
C167 = P32 · P135
P32 = 54832091297347447631038216522501<32>
P135 = 905006956151265763655758125706409102912355176390129079383960741381669849617325066992415304569102339104861501591003320417505261613287411<135>
By Jo Yeong Uk / Msieve v. 1.25, GGNFS-0.77.1-20050930-nocona
(25·10165-7)/9 = 2(7)165<166> = 296987 · 1840206433618866165991<22> · 26841431788288106581500307455836598045271854373<47> · C93
C93 = P44 · P49
P44 = 47762472444603047641362563601969990683449099<44>
P49 = 3964615152987551810337697840608378229741533181603<49>
Fri Jul 27 00:00:02 2007 Fri Jul 27 00:00:02 2007 Fri Jul 27 00:00:02 2007 Msieve v. 1.25 Fri Jul 27 00:00:02 2007 random seeds: 2bd8376f a00d4807 Fri Jul 27 00:00:02 2007 factoring 189359821998023639433196029818337369944098310651646127033896205015214673371291949815173725697 (93 digits) Fri Jul 27 00:00:02 2007 commencing quadratic sieve (92-digit input) Fri Jul 27 00:00:02 2007 using multiplier of 1 Fri Jul 27 00:00:02 2007 using 32kb Intel Core sieve core Fri Jul 27 00:00:02 2007 sieve interval: 36 blocks of size 32768 Fri Jul 27 00:00:02 2007 processing polynomials in batches of 6 Fri Jul 27 00:00:02 2007 using a sieve bound of 1888763 (70588 primes) Fri Jul 27 00:00:02 2007 using large prime bound of 220985271 (27 bits) Fri Jul 27 00:00:02 2007 using double large prime bound of 1046776511774331 (42-50 bits) Fri Jul 27 00:00:02 2007 using trial factoring cutoff of 50 bits Fri Jul 27 00:00:02 2007 polynomial 'A' values have 12 factors Fri Jul 27 01:44:58 2007 70722 relations (18185 full + 52537 combined from 929745 partial), need 70684 Fri Jul 27 01:44:59 2007 begin with 947930 relations Fri Jul 27 01:44:59 2007 reduce to 179343 relations in 10 passes Fri Jul 27 01:44:59 2007 attempting to read 179343 relations Fri Jul 27 01:45:01 2007 recovered 179343 relations Fri Jul 27 01:45:01 2007 recovered 160005 polynomials Fri Jul 27 01:45:01 2007 attempting to build 70722 cycles Fri Jul 27 01:45:01 2007 found 70722 cycles in 6 passes Fri Jul 27 01:45:01 2007 distribution of cycle lengths: Fri Jul 27 01:45:01 2007 length 1 : 18185 Fri Jul 27 01:45:01 2007 length 2 : 12896 Fri Jul 27 01:45:01 2007 length 3 : 12122 Fri Jul 27 01:45:01 2007 length 4 : 9485 Fri Jul 27 01:45:01 2007 length 5 : 6891 Fri Jul 27 01:45:01 2007 length 6 : 4485 Fri Jul 27 01:45:01 2007 length 7 : 2866 Fri Jul 27 01:45:01 2007 length 9+: 3792 Fri Jul 27 01:45:01 2007 largest cycle: 24 relations Fri Jul 27 01:45:01 2007 matrix is 70588 x 70722 with weight 4300045 (avg 60.80/col) Fri Jul 27 01:45:02 2007 filtering completed in 3 passes Fri Jul 27 01:45:02 2007 matrix is 66700 x 66763 with weight 4091463 (avg 61.28/col) Fri Jul 27 01:45:03 2007 saving the first 48 matrix rows for later Fri Jul 27 01:45:03 2007 matrix is 66652 x 66763 with weight 3180982 (avg 47.65/col) Fri Jul 27 01:45:03 2007 matrix includes 64 packed rows Fri Jul 27 01:45:03 2007 using block size 26705 for processor cache size 4096 kB Fri Jul 27 01:45:03 2007 commencing Lanczos iteration Fri Jul 27 01:45:24 2007 lanczos halted after 1056 iterations Fri Jul 27 01:45:24 2007 recovered 17 nontrivial dependencies Fri Jul 27 01:45:25 2007 prp44 factor: 47762472444603047641362563601969990683449099 Fri Jul 27 01:45:25 2007 prp49 factor: 3964615152987551810337697840608378229741533181603 Fri Jul 27 01:45:25 2007 elapsed time 01:45:23
(25·10176-7)/9 = 2(7)176<177> = 53 · 170174087 · 9924073470733<13> · 5048202952542749191<19> · 250364392061117480432331832411240313552347<42> · C94
C94 = P37 · P57
P37 = 3963347185486060546396209546732592561<37>
P57 = 619536279901870322724589710902400805635161682525735259507<57>
Fri Jul 27 01:51:19 2007 Fri Jul 27 01:51:19 2007 Fri Jul 27 01:51:19 2007 Msieve v. 1.25 Fri Jul 27 01:51:19 2007 random seeds: a432810d 7a7c1870 Fri Jul 27 01:51:19 2007 factoring 2455437371255581962526922265114020960306360460563718242524031556201268139958057995992232727427 (94 digits) Fri Jul 27 01:51:19 2007 commencing quadratic sieve (94-digit input) Fri Jul 27 01:51:19 2007 using multiplier of 3 Fri Jul 27 01:51:19 2007 using 32kb Intel Core sieve core Fri Jul 27 01:51:19 2007 sieve interval: 36 blocks of size 32768 Fri Jul 27 01:51:19 2007 processing polynomials in batches of 6 Fri Jul 27 01:51:19 2007 using a sieve bound of 2023097 (75294 primes) Fri Jul 27 01:51:19 2007 using large prime bound of 271094998 (28 bits) Fri Jul 27 01:51:19 2007 using double large prime bound of 1512232961643520 (42-51 bits) Fri Jul 27 01:51:19 2007 using trial factoring cutoff of 51 bits Fri Jul 27 01:51:19 2007 polynomial 'A' values have 12 factors Fri Jul 27 03:46:55 2007 75609 relations (19298 full + 56311 combined from 1057051 partial), need 75390 Fri Jul 27 03:46:55 2007 begin with 1076349 relations Fri Jul 27 03:46:56 2007 reduce to 193033 relations in 11 passes Fri Jul 27 03:46:56 2007 attempting to read 193033 relations Fri Jul 27 03:46:58 2007 recovered 193033 relations Fri Jul 27 03:46:58 2007 recovered 172661 polynomials Fri Jul 27 03:46:58 2007 attempting to build 75609 cycles Fri Jul 27 03:46:58 2007 found 75609 cycles in 5 passes Fri Jul 27 03:46:58 2007 distribution of cycle lengths: Fri Jul 27 03:46:58 2007 length 1 : 19298 Fri Jul 27 03:46:58 2007 length 2 : 13639 Fri Jul 27 03:46:58 2007 length 3 : 12851 Fri Jul 27 03:46:58 2007 length 4 : 10149 Fri Jul 27 03:46:58 2007 length 5 : 7572 Fri Jul 27 03:46:58 2007 length 6 : 4979 Fri Jul 27 03:46:58 2007 length 7 : 3073 Fri Jul 27 03:46:58 2007 length 9+: 4048 Fri Jul 27 03:46:58 2007 largest cycle: 19 relations Fri Jul 27 03:46:58 2007 matrix is 75294 x 75609 with weight 4735754 (avg 62.63/col) Fri Jul 27 03:46:59 2007 filtering completed in 3 passes Fri Jul 27 03:46:59 2007 matrix is 71057 x 71120 with weight 4477233 (avg 62.95/col) Fri Jul 27 03:47:00 2007 saving the first 48 matrix rows for later Fri Jul 27 03:47:00 2007 matrix is 71009 x 71120 with weight 3452561 (avg 48.55/col) Fri Jul 27 03:47:00 2007 matrix includes 64 packed rows Fri Jul 27 03:47:00 2007 using block size 28448 for processor cache size 4096 kB Fri Jul 27 03:47:00 2007 commencing Lanczos iteration Fri Jul 27 03:47:26 2007 lanczos halted after 1125 iterations Fri Jul 27 03:47:26 2007 recovered 15 nontrivial dependencies Fri Jul 27 03:47:26 2007 prp37 factor: 3963347185486060546396209546732592561 Fri Jul 27 03:47:26 2007 prp57 factor: 619536279901870322724589710902400805635161682525735259507 Fri Jul 27 03:47:26 2007 elapsed time 01:56:07
(7·10181-1)/3 = 2(3)181<182> = C182
C182 = P50 · P59 · P74
P50 = 63260551995570788106768735871476130074461634746477<50>
P59 = 25995503880899966863964451990659560723251183499345255736491<59>
P74 = 14188796769082230791752762485216295330686733826011471336380633628674520219<74>
Number: 23333_181 N=23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 ( 182 digits) SNFS difficulty: 181 digits. Divisors found: r1=63260551995570788106768735871476130074461634746477 (pp50) r2=25995503880899966863964451990659560723251183499345255736491 (pp59) r3=14188796769082230791752762485216295330686733826011471336380633628674520219 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 251.75 hours. Scaled time: 538.99 units (timescale=2.141). Factorization parameters were as follows: n: 23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 m: 1000000000000000000000000000000000000 c5: 70 c0: -1 skew: 0.43 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 9100001) Primes: RFBsize:664579, AFBsize:665975, largePrimes:11133286 encountered Relations: rels:11498215, finalFF:1574842 Max relations in full relation-set: 28 Initial matrix: 1330621 x 1574842 with sparse part having weight 97445326. Pruned matrix : 1107698 x 1114415 with weight 66130008. Total sieving time: 240.97 hours. Total relation processing time: 0.46 hours. Matrix solve time: 10.19 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,181,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 251.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
4·10194+1 = 4(0)1931<195> = 721324202162977116296517293557<30> · 230366834312643340988031253121778481<36> · C130
C130 = P46 · P84
P46 = 4539551603725680577678687090612374940158174209<46>
P84 = 530269411486144259272416902466941069870793165414892485082648513501276740375531374317<84>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(8·10158+1)/9 = (8)1579<158> = 251 · 19051 · 661553 · 16802878173815484403<20> · C127
C127 = P36 · P91
P36 = 507720820294334799136631537333312339<36>
P91 = 3293689718850709442805545468432778915791702568309037103083241191944222576426385744129092889<91>
Number: 88889_158 N=1672274845849899157699286610421044576382314630035217679398866050298573807484823525552765996029264801596675892531763861780857371 ( 127 digits) SNFS difficulty: 160 digits. Divisors found: r1=507720820294334799136631537333312339 (pp36) r2=3293689718850709442805545468432778915791702568309037103083241191944222576426385744129092889 (pp91) Version: GGNFS-0.77.1-20050930-nocona Total time: 26.23 hours. Scaled time: 56.17 units (timescale=2.141). Factorization parameters were as follows: n: 1672274845849899157699286610421044576382314630035217679398866050298573807484823525552765996029264801596675892531763861780857371 m: 100000000000000000000000000000000 c5: 2 c0: 25 skew: 1.66 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282402, largePrimes:5682679 encountered Relations: rels:5768719, finalFF:704676 Max relations in full relation-set: 28 Initial matrix: 565613 x 704676 with sparse part having weight 43802932. Pruned matrix : 450587 x 453479 with weight 27244630. Total sieving time: 25.05 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.04 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 26.23 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Alfred Reich
10515+1 is divisible by 896048585318577702680084550566846611<36>
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10161-1 = 5(9)161<162> = 43 · 836569 · 2898421 · C148
C148 = P43 · P48 · P58
P43 = 8293782204604425278695261694855447366239429<43>
P48 = 373661139043910874867543028013950188940119372163<48>
P58 = 1856902068363473523911678753942645197496692067981158293791<58>
Number: n N=5754658547595349311495950603756779150156168225617883200618038320893662324167945261296559539792048549985733231130607693324550635705623295348791018257 ( 148 digits) SNFS difficulty: 161 digits. Divisors found: r1=8293782204604425278695261694855447366239429 (pp43) r2=373661139043910874867543028013950188940119372163 (pp48) r3=1856902068363473523911678753942645197496692067981158293791 (pp58) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.23 hours. Scaled time: 50.61 units (timescale=1.324). Factorization parameters were as follows: name: KA_5_9_161 n: 5754658547595349311495950603756779150156168225617883200618038320893662324167945261296559539792048549985733231130607693324550635705623295348791018257 skew: 0.44 deg: 5 c5: 60 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7114930 encountered Relations: rels:6634553, finalFF:568518 Max relations in full relation-set: 48 Initial matrix: 499988 x 568518 with sparse part having weight 37166803. Pruned matrix : 440914 x 443477 with weight 23182215. Total sieving time: 33.28 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.57 hours. Total square root time: 0.15 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10163+1 = 6(0)1621<164> = 17 · 353 · 383 · C158
C158 = P55 · P103
P55 = 5215147241069255739103596758994562191897609456843465301<55>
P103 = 5005670690155230684429614037038784632521687552228111599112073609027731095334283017297356948767263632947<103>
Number: n N=26105309689464288588977555089817493429076006914426359749441237600521758122993426247931698067728485635335799124863001510192165535509094872351561945941994872047 ( 158 digits) SNFS difficulty: 164 digits. Divisors found: r1=5215147241069255739103596758994562191897609456843465301 (pp55) r2=5005670690155230684429614037038784632521687552228111599112073609027731095334283017297356948767263632947 (pp103) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.28 hours. Scaled time: 75.62 units (timescale=1.195). Factorization parameters were as follows: name: KA_6_0_162_1 n: 26105309689464288588977555089817493429076006914426359749441237600521758122993426247931698067728485635335799124863001510192165535509094872351561945941994872047 type: snfs skew: 0.35 deg: 5 c5: 375 c0: 2 m: 200000000000000000000000000000000 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2500001) Primes: RFBsize:256726, AFBsize:256771, largePrimes:7311903 encountered Relations: rels:6805144, finalFF:587598 Max relations in full relation-set: 28 Initial matrix: 513563 x 587598 with sparse part having weight 35738792. Pruned matrix : 452305 x 454936 with weight 23525858. Total sieving time: 57.84 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.04 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.3,2.3,100000 total time: 63.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By JMB / GMP-ECM B1=1000000
(25·10176-7)/9 = 2(7)176<177> = 53 · 170174087 · 9924073470733<13> · 5048202952542749191<19> · C135
C135 = P42 · C94
P42 = 250364392061117480432331832411240313552347<42>
C94 = [2455437371255581962526922265114020960306360460563718242524031556201268139958057995992232727427<94>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
7·10160-3 = 6(9)1597<161> = 1023557 · 676040311822727<15> · 225167822909311193771939915964703697<36> · C105
C105 = P47 · P59
P47 = 26553121374225817669622704350957054548498613613<47>
P59 = 16919655045991966846784423102442420227389002548091598746443<59>
Number: 69997_160 N=449269654046257004984956784811621039356018734468246305859975642850924126367108968544894530278674215128559 ( 105 digits) Divisors found: r1=26553121374225817669622704350957054548498613613 (pp47) r2=16919655045991966846784423102442420227389002548091598746443 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.63 hours. Scaled time: 18.49 units (timescale=2.142). Factorization parameters were as follows: name: 69997_160 n: 449269654046257004984956784811621039356018734468246305859975642850924126367108968544894530278674215128559 skew: 10958.86 # norm 7.52e+14 c5: 43560 c4: -563864382 c3: -51657033522313 c2: 36279037644759719 c1: 357816660151572433929 c0: 516503811917770537490127 # alpha -6.49 Y1: 32038029803 Y0: -100619974011831009902 # Murphy_E 2.05e-09 # M 112706527664659458380579445234447723037480698246914182616771058378695853459900351089940084316930206294864 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1320001) Primes: RFBsize:135072, AFBsize:135315, largePrimes:4535175 encountered Relations: rels:4601948, finalFF:406094 Max relations in full relation-set: 28 Initial matrix: 270467 x 406094 with sparse part having weight 36895626. Pruned matrix : 194220 x 195636 with weight 16421677. Polynomial selection time: 0.43 hours. Total sieving time: 7.88 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 8.63 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Alban Nonymous
101142+1 is divisible by 72902178953713285322996186513081<32>
101174+1 is divisible by 56360262697642563914567399981<29>
101348+1 is divisible by 28060177869481210079003327188873<32>
101348+1 is divisible by 87621827832372981614062571297033<32>
101382+1 is divisible by 897720822084629349764719120861<30>
101415+1 is divisible by 21279344764661594183530203415321<32>
101439+1 is divisible by 6652742443560007068799568102809<31>
101448+1 is divisible by 3741284323572778169733000409441<31>
101454+1 is divisible by 24474149875167364484471358364249<32>
101768+1 is divisible by 54377311669469461225374918721<29>
101828+1 is divisible by 99257142543720996230422229080081<32>
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By JMB / GMP-ECM B1=3000000
(25·10171-7)/9 = 2(7)171<172> = 17 · 2087 · 21787 · 105991859 · 5704794863611639<16> · 514082498989493831<18> · C122
C122 = P39 · P83
P39 = 197487969842997416603481017802302838281<39>
P83 = 58538648152060113017157905351021224725745777751121568986210159879682035562955814559<83>
(25·10165-7)/9 = 2(7)165<166> = 296987 · 1840206433618866165991<22> · C139
C139 = P47 · C93
P47 = 26841431788288106581500307455836598045271854373<47>
C93 = [189359821998023639433196029818337369944098310651646127033896205015214673371291949815173725697<93>]
(25·10161-7)/9 = 2(7)161<162> = 145934700643261<15> · 253469408840513<15> · C133
C133 = P37 · P97
P37 = 2540772921047677915010225799850512679<37>
P97 = 2955612696837122473621797379554555189784507453027799522994334517349252054962930031497122170904691<97>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
7·10158-3 = 6(9)1577<159> = 1303 · 2473 · 133346505599<12> · C142
C142 = P65 · P77
P65 = 42315979991490290739022320497289947523549183832673097091435256957<65>
P77 = 38498469586434182358752612193019411923606426698177641577645805015090636763441<77>
Number: n N=1629100468722546348836181865908396777509268424093637341521060707834668285197254554652258415454552586334588148334243116907405481886978658509037 ( 142 digits) SNFS difficulty: 158 digits. Divisors found: r1=42315979991490290739022320497289947523549183832673097091435256957 (pp65) r2=38498469586434182358752612193019411923606426698177641577645805015090636763441 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.97 hours. Scaled time: 51.83 units (timescale=1.441). Factorization parameters were as follows: name: KA_6_9_157_7 n: 1629100468722546348836181865908396777509268424093637341521060707834668285197254554652258415454552586334588148334243116907405481886978658509037 skew: 0.21 deg: 5 c5: 7000 c0: -3 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7127717 encountered Relations: rels:6646443, finalFF:562655 Max relations in full relation-set: 28 Initial matrix: 499988 x 562655 with sparse part having weight 34901852. Pruned matrix : 443280 x 445843 with weight 23027628. Total sieving time: 31.37 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.32 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 35.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10159-3 = 6(9)1587<160> = 11480647 · C153
C153 = P37 · P117
P37 = 2123843629199706450095966417930509967<37>
P117 = 287084098820217654683647609855563415797505527535490938568019121616173404487170471297898238166611115453129796922918453<117>
Number: n N=609721734323858228547572275325597938861808049668280890441104930758693303609108441362233330577971781555516862420732908171464552476876956499054452244721051 ( 153 digits) SNFS difficulty: 160 digits. Divisors found: r1=2123843629199706450095966417930509967 (pp37) r2=287084098820217654683647609855563415797505527535490938568019121616173404487170471297898238166611115453129796922918453 (pp117) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 52.22 hours. Scaled time: 71.22 units (timescale=1.364). Factorization parameters were as follows: name: KA_6_9_158_7 n: 609721734323858228547572275325597938861808049668280890441104930758693303609108441362233330577971781555516862420732908171464552476876956499054452244721051 skew: 1.34 deg: 5 c5: 7 c0: -30 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:250150, AFBsize:249671, largePrimes:7451024 encountered Relations: rels:7012972, finalFF:594936 Max relations in full relation-set: 28 Initial matrix: 499886 x 594936 with sparse part having weight 41833194. Pruned matrix : 422235 x 424798 with weight 26496990. Total sieving time: 46.74 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.28 hours. Total square root time: 0.93 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 52.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(7·10158-43)/9 = (7)1573<158> = 89 · 517482230513<12> · 5274627333364848091<19> · C126
C126 = P46 · P81
P46 = 2933276055435097150496053520245973899417083587<46>
P81 = 109150408258221546428199289249059666027298203143441744801893598785485031825721717<81>
Number: 77773_158 N=320168278984806550631540855094563858596255377566714042276093831735771608620605463361630935228187638716394639828145755590158879 ( 126 digits) SNFS difficulty: 159 digits. Divisors found: r1=2933276055435097150496053520245973899417083587 (pp46) r2=109150408258221546428199289249059666027298203143441744801893598785485031825721717 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 33.67 hours. Scaled time: 72.19 units (timescale=2.144). Factorization parameters were as follows: n: 320168278984806550631540855094563858596255377566714042276093831735771608620605463361630935228187638716394639828145755590158879 m: 20000000000000000000000000000000 c5: 875 c0: -172 skew: 0.72 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3900001) Primes: RFBsize:283146, AFBsize:283557, largePrimes:5672154 encountered Relations: rels:5680276, finalFF:635478 Max relations in full relation-set: 28 Initial matrix: 566770 x 635478 with sparse part having weight 40948383. Pruned matrix : 518482 x 521379 with weight 30154788. Total sieving time: 31.82 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.67 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 33.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
3·10163-1 = 2(9)163<164> = 997 · 2287 · C158
C158 = P50 · P108
P50 = 45747879641691574163746483574403221719068934066339<50>
P108 = 287600053136766851692762111657822054428122201049566171614253119368688303514147608918518033049860541686054719<108>
Number: n N=13157092615844911209360481970616703630787421293175547631087403004816811606660821993746872449442775199231274935431567987741098240063434729198526931910730003741 ( 158 digits) SNFS difficulty: 163 digits. Divisors found: r1=45747879641691574163746483574403221719068934066339 (pp50) r2=287600053136766851692762111657822054428122201049566171614253119368688303514147608918518033049860541686054719 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 63.42 hours. Scaled time: 82.76 units (timescale=1.305). Factorization parameters were as follows: name: KA_2_9_163 n: 13157092615844911209360481970616703630787421293175547631087403004816811606660821993746872449442775199231274935431567987741098240063434729198526931910730003741 skew: 0.20 deg: 5 c5: 3000 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:256726, AFBsize:256576, largePrimes:7639847 encountered Relations: rels:7209577, finalFF:633047 Max relations in full relation-set: 48 Initial matrix: 513369 x 633047 with sparse part having weight 51694938. Pruned matrix : 421670 x 424300 with weight 31990993. Total sieving time: 56.77 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.99 hours. Total square root time: 0.37 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.5,2.5,100000 total time: 63.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10149-3 = 6(9)1487<150> = 73 · 139 · C146
C146 = P44 · P50 · P53
P44 = 79426057057573470993450111694681586724818267<44>
P50 = 10135149856645968832942226206178100278444840800939<50>
P53 = 85697312347290420035372811292253154086540948455681127<53>
Number: n N=68985907164679215531684241647777668276337833842515029072632305114812259781216122992017345028087119345619394895042869813738050655366118064452547551 ( 146 digits) SNFS difficulty: 150 digits. Divisors found: r1=79426057057573470993450111694681586724818267 (pp44) r2=10135149856645968832942226206178100278444840800939 (pp50) r3=85697312347290420035372811292253154086540948455681127 (pp53) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.79 hours. Scaled time: 27.70 units (timescale=0.962). Factorization parameters were as follows: name: KA_6_9_148_7 n: 68985907164679215531684241647777668276337833842515029072632305114812259781216122992017345028087119345619394895042869813738050655366118064452547551 type: snfs skew: 1 deg: 5 c5: 7 c0: -30 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216451, largePrimes:7557334 encountered Relations: rels:7186983, finalFF:648300 Max relations in full relation-set: 48 Initial matrix: 433332 x 648300 with sparse part having weight 55843030. Pruned matrix : 303102 x 305332 with weight 30614410. Total sieving time: 24.47 hours. Total relation processing time: 0.27 hours. Matrix solve time: 3.92 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 28.79 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2400+ stepping 01 Memory: 901612k/917504k available (1069k kernel code, 15504k reserved, 459k data, 96k init, 0k highmem) sisfb: Memory heap starting at 12288K, size 19960K Calibrating delay loop... 4010.80 BogoMIPS
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000
7·10160-3 = 6(9)1597<161> = 1023557 · 676040311822727<15> · C141
C141 = P36 · C105
P36 = 225167822909311193771939915964703697<36>
C105 = [449269654046257004984956784811621039356018734468246305859975642850924126367108968544894530278674215128559<105>]
By Bruce Dodson
10271+1 is divisible by 256031814642414583920091086688834271205176259587307504943<57>, cofactor is prime.
Reference: ECMNET (Paul Zimmermann)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(73·10162-1)/9 = 8(1)162<163> = 1423 · 19441 · C156
C156 = P39 · P55 · P63
P39 = 543595994789336592839503974042022463653<39>
P55 = 3924592279844824544604200287483373227338892292932056637<55>
P63 = 137431427308481583890246932087896925834997509780593354650152457<63>
Number: n N=293195196143710420631604545613173914028188035172354414497687928953357773201281912052952080614926879909460680811214235894339953893730003460064788025275209177 ( 156 digits) SNFS difficulty: 163 digits. Divisors found: r1=543595994789336592839503974042022463653 (pp39) r2=3924592279844824544604200287483373227338892292932056637 (pp55) r3=137431427308481583890246932087896925834997509780593354650152457 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.55 hours. Scaled time: 100.51 units (timescale=1.445). Factorization parameters were as follows: name: KA_8_1_162 n: 293195196143710420631604545613173914028188035172354414497687928953357773201281912052952080614926879909460680811214235894339953893730003460064788025275209177 skew: 0.17 deg: 5 c5: 7300 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3200001) Primes: RFBsize:250150, AFBsize:251141, largePrimes:7701069 encountered Relations: rels:7215982, finalFF:564079 Max relations in full relation-set: 28 Initial matrix: 501358 x 564079 with sparse part having weight 45743064. Pruned matrix : 462725 x 465295 with weight 34374223. Total sieving time: 62.01 hours. Total relation processing time: 0.26 hours. Matrix solve time: 7.00 hours. Total square root time: 0.28 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 69.55 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10140-3 = 6(9)1397<141> = 991 · 1057391 · 345418457 · C124
C124 = P59 · P66
P59 = 11250180495689321348084945885182355115543862335246134474303<59>
P66 = 171903114767847828998563831031206474014001920428664101581017239147<66>
Number: n N=1933941068909484585739512229673477136075976625781953413961591541199884613868795341283880692719104589317952297566427277139541 ( 124 digits) SNFS difficulty: 140 digits. Divisors found: r1=11250180495689321348084945885182355115543862335246134474303 (pp59) r2=171903114767847828998563831031206474014001920428664101581017239147 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.58 hours. Scaled time: 8.26 units (timescale=0.963). Factorization parameters were as follows: name: KA_6_9_139_7 n: 1933941068909484585739512229673477136075976625781953413961591541199884613868795341283880692719104589317952297566427277139541 type: snfs skew: 1 deg: 5 c5: 7 c0: -3 m: 10000000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1250000, 1850001) Primes: RFBsize:183072, AFBsize:182526, largePrimes:6512840 encountered Relations: rels:5911205, finalFF:420901 Max relations in full relation-set: 48 Initial matrix: 365663 x 420901 with sparse part having weight 26924881. Pruned matrix : 322386 x 324278 with weight 16005615. Total sieving time: 6.02 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.27 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.3,2.3,100000 total time: 8.58 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2400+ stepping 01 Memory: 901612k/917504k available (1069k kernel code, 15504k reserved, 459k data, 96k init, 0k highmem) sisfb: Memory heap starting at 12288K, size 19960K Calibrating delay loop... 4010.80 BogoMIPS
(2·10161+7)/9 = (2)1603<161> = 1714933083439<13> · C149
C149 = P32 · P117
P32 = 21393514829134244932337814471241<32>
P117 = 605700824976428319254861005827037748162874928762405763234457258027843650353567084980102064536103816470993229797108377<117>
Number: n N=12958069581152065089700334183735480199819753791816814760004627272433457888819522067048753782066853574073171870347608059491626405404996336087026685857 ( 149 digits) SNFS difficulty: 161 digits. Divisors found: r1=21393514829134244932337814471241 (pp32) r2=605700824976428319254861005827037748162874928762405763234457258027843650353567084980102064536103816470993229797108377 (pp117) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 37.29 hours. Scaled time: 50.87 units (timescale=1.364). Factorization parameters were as follows: name: KA_2_160_3 n: 12958069581152065089700334183735480199819753791816814760004627272433457888819522067048753782066853574073171870347608059491626405404996336087026685857 skew: 0.81 deg: 5 c5: 20 c0: 7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:249316, largePrimes:7126735 encountered Relations: rels:6696335, finalFF:602076 Max relations in full relation-set: 28 Initial matrix: 499532 x 602076 with sparse part having weight 35432862. Pruned matrix : 408966 x 411527 with weight 19865620. Total sieving time: 33.82 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.16 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 37.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10146-3 = 6(9)1457<147> = 17 · C146
C146 = P58 · P89
P58 = 2772341545407390176277168504286752739988576758255116308281<58>
P89 = 14852596591660026569344293574475374603014785217941966344202020052222211474146804385683861<89>
Number: n N=41176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941 ( 146 digits) SNFS difficulty: 146 digits. Divisors found: r1=2772341545407390176277168504286752739988576758255116308281 (pp58) r2=14852596591660026569344293574475374603014785217941966344202020052222211474146804385683861 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.83 hours. Scaled time: 18.57 units (timescale=1.447). Factorization parameters were as follows: name: KA_6_9_145_7 n: 41176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941 skew: 0.53 deg: 5 c5: 70 c0: -3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:183072, AFBsize:182426, largePrimes:7031056 encountered Relations: rels:6506072, finalFF:476292 Max relations in full relation-set: 28 Initial matrix: 365565 x 476292 with sparse part having weight 34230439. Pruned matrix : 282716 x 284607 with weight 19056754. Total sieving time: 10.50 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.04 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 12.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(86·10162+31)/9 = 9(5)1619<163> = 13 · 137 · 191 · 733 · C155
C155 = P56 · P100
P56 = 15748989216219619926851701365192338858672015860064422379<56>
P100 = 2433335515280598540281314498084827557020483327676703163289609599551700916484623909357190520150067147<100>
Number: n N=38322574789598358592787335737630181268537088962417700159555639086291479506619682708714377535238568925490441405819861474435299782420863402913266182619482713 ( 155 digits) SNFS difficulty: 163 digits. Divisors found: r1=15748989216219619926851701365192338858672015860064422379 (pp56) r2=2433335515280598540281314498084827557020483327676703163289609599551700916484623909357190520150067147 (pp100) Version: GGNFS-0.77.1-20051202-athlon Total time: 72.01 hours. Scaled time: 86.12 units (timescale=1.196). Factorization parameters were as follows: name: KA_9_5_161_9 n: 38322574789598358592787335737630181268537088962417700159555639086291479506619682708714377535238568925490441405819861474435299782420863402913266182619482713 type: snfs skew: 0.32 deg: 5 c5: 8600 c0: 31 m: 100000000000000000000000000000000 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:256726, AFBsize:257352, largePrimes:7397949 encountered Relations: rels:6878522, finalFF:577657 Max relations in full relation-set: 28 Initial matrix: 514145 x 577657 with sparse part having weight 36827281. Pruned matrix : 463389 x 466023 with weight 25709396. Total sieving time: 65.41 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.74 hours. Total square root time: 0.55 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.3,2.3,100000 total time: 72.01 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / Msieve v. 1.23, GGNFS-0.77.1-20060722-pentium4
7·10145-3 = 6(9)1447<146> = 135899 · 2882653 · 4137260381<10> · 769330598837417<15> · 213310674409584473<18> · C93
C93 = P41 · P52
P41 = 38419676520928330018576887493317188578379<41>
P52 = 6850105473822077822398812945194215058951502092829389<52>
Sun Jul 22 08:36:10 2007 Msieve v. 1.23 Sun Jul 22 08:36:10 2007 random seeds: 3eab88d0 395fcfcd Sun Jul 22 08:36:10 2007 factoring 263178836438484716512595291995766692784822600963980076573334298726819222124062974186701180431 (93 digits) Sun Jul 22 08:36:11 2007 commencing quadratic sieve (93-digit input) Sun Jul 22 08:36:11 2007 using multiplier of 1 Sun Jul 22 08:36:11 2007 using 64kb Pentium 2 sieve core Sun Jul 22 08:36:12 2007 sieve interval: 18 blocks of size 65536 Sun Jul 22 08:36:12 2007 processing polynomials in batches of 6 Sun Jul 22 08:36:12 2007 using a sieve bound of 1923127 (71422 primes) Sun Jul 22 08:36:12 2007 using large prime bound of 232698367 (27 bits) Sun Jul 22 08:36:12 2007 using double large prime bound of 1148756443608092 (42-51 bits) Sun Jul 22 08:36:12 2007 using trial factoring cutoff of 51 bits Sun Jul 22 08:36:12 2007 polynomial 'A' values have 12 factors Mon Jul 23 02:26:32 2007 71761 relations (17892 full + 53869 combined from 964161 partial), need 71518 Mon Jul 23 02:26:37 2007 begin with 982053 relations Mon Jul 23 02:26:39 2007 reduce to 183833 relations in 10 passes Mon Jul 23 02:26:39 2007 attempting to read 183833 relations Mon Jul 23 02:26:48 2007 recovered 183833 relations Mon Jul 23 02:26:48 2007 recovered 165542 polynomials Mon Jul 23 02:26:49 2007 attempting to build 71761 cycles Mon Jul 23 02:26:49 2007 found 71761 cycles in 6 passes Mon Jul 23 02:26:55 2007 distribution of cycle lengths: Mon Jul 23 02:26:55 2007 length 1 : 17892 Mon Jul 23 02:26:55 2007 length 2 : 12817 Mon Jul 23 02:26:55 2007 length 3 : 12407 Mon Jul 23 02:26:55 2007 length 4 : 9896 Mon Jul 23 02:26:55 2007 length 5 : 7008 Mon Jul 23 02:26:55 2007 length 6 : 4784 Mon Jul 23 02:26:55 2007 length 7 : 2999 Mon Jul 23 02:26:55 2007 length 9+: 3958 Mon Jul 23 02:26:55 2007 largest cycle: 20 relations Mon Jul 23 02:26:57 2007 matrix is 71422 x 71761 with weight 4423886 (avg 61.65/col) Mon Jul 23 02:27:03 2007 filtering completed in 3 passes Mon Jul 23 02:27:03 2007 matrix is 67649 x 67713 with weight 4191481 (avg 61.90/col) Mon Jul 23 02:27:06 2007 saving the first 48 matrix rows for later Mon Jul 23 02:27:07 2007 matrix is 67601 x 67713 with weight 3220413 (avg 47.56/col) Mon Jul 23 02:27:07 2007 matrix includes 64 packed rows Mon Jul 23 02:27:07 2007 using block size 5461 for processor cache size 128 kB Mon Jul 23 02:27:07 2007 commencing Lanczos iteration Mon Jul 23 02:31:49 2007 lanczos halted after 1071 iterations Mon Jul 23 02:31:50 2007 recovered 17 nontrivial dependencies Mon Jul 23 02:31:51 2007 prp41 factor: 38419676520928330018576887493317188578379 Mon Jul 23 02:31:51 2007 prp52 factor: 6850105473822077822398812945194215058951502092829389 Mon Jul 23 02:31:51 2007 elapsed time 17:55:41
5·10161-3 = 4(9)1607<162> = 509 · 1747 · C156
C156 = P44 · P49 · P64
P44 = 84102469602460672319344905855931567246447997<44>
P49 = 2165440703043832390582601658352828177598414559503<49>
P64 = 3087480849537780573910857739142506288073610114206777292982835929<64>
Number: 49997_161 N=562288649753773800272822452860531047892373454127929664437379599942871473185016581892281238789370045534134857060602346093162232645804258324402315279744226139 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: r1=84102469602460672319344905855931567246447997 (pp44) r2=2165440703043832390582601658352828177598414559503 (pp49) r3=3087480849537780573910857739142506288073610114206777292982835929 (pp64) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 84.32 hours. Scaled time: 57.59 units (timescale=0.683). Factorization parameters were as follows: name: 49997_161 n: 562288649753773800272822452860531047892373454127929664437379599942871473185016581892281238789370045534134857060602346093162232645804258324402315279744226139 m: 100000000000000000000000000000000 c5: 50 c0: -3 skew: 0.57 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4250001) Primes: RFBsize:315948, AFBsize:315546, largePrimes:5795947 encountered Relations: rels:5955594, finalFF:716832 Max relations in full relation-set: 0 Initial matrix: 631559 x 716832 with sparse part having weight 35018298. Pruned matrix : 561436 x 564657 with weight 26268658. Total sieving time: 72.28 hours. Total relation processing time: 0.33 hours. Matrix solve time: 11.50 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 84.32 hours. --------- CPU info (if available) ----------
By JMB / GMP-ECM B1=1000000
(25·10173-7)/9 = 2(7)173<174> = 6169017583<10> · 20358471981247<14> · C151
C151 = P33 · P119
P33 = 147538874768229210393236316231919<33>
P119 = 14990973816674434798810951647946982968321498302818159656670508001237850390226986288400829699930440359734410720309273583<119>
(25·10168-7)/9 = 2(7)168<169> = 467 · 1951 · 669181 · 754597 · 1164052117<10> · 947954614376246137517748334624309<33> · C109
C109 = P30 · P79
P30 = 927132501806373661426134175901<30>
P79 = 5901506603211846125449705047676356701978336662915489305427354655975488018446161<79>
(25·10180-7)/9 = 2(7)180<181> = 29 · 1431838763<10> · C170
C170 = P38 · P133
P38 = 18470961602412156590684680364912916293<38>
P133 = 3621728413595020127934729686179752937236914591769684906994555969901118223512872261753854263218760544399218998367476041945127627646307<133>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, GMP-ECM 6.1.2 B1=1000000
7·10142-3 = 6(9)1417<143> = 41 · 684820152391010899426909<24> · C118
C118 = P42 · P76
P42 = 293996872467290101398339992619243102794207<42>
P76 = 8479982205197969383707708914235563099398323494880780373423205897700123689959<76>
Number: 69997_142 N=2493088246906476884084912070409326850502294819795549558679381121592194090497586991463738201828121886276619548249267513 ( 118 digits) SNFS difficulty: 142 digits. Divisors found: r1=293996872467290101398339992619243102794207 (pp42) r2=8479982205197969383707708914235563099398323494880780373423205897700123689959 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 7.68 hours. Scaled time: 16.37 units (timescale=2.132). Factorization parameters were as follows: n: 2493088246906476884084912070409326850502294819795549558679381121592194090497586991463738201828121886276619548249267513 m: 10000000000000000000000000000 c5: 700 c0: -3 skew: 0.34 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:114337, largePrimes:2621896 encountered Relations: rels:2599825, finalFF:287405 Max relations in full relation-set: 28 Initial matrix: 228559 x 287405 with sparse part having weight 18474157. Pruned matrix : 199501 x 200707 with weight 10381351. Total sieving time: 7.49 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 7.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10153-3 = 6(9)1527<154> = 232 · 10303 · 4132288063902465163<19> · 73545936976938384659<20> · C109
C109 = P33 · P77
P33 = 368950902030040136294932320283019<33>
P77 = 11454095970935197036364142614850850481119263863106296451412205403591388218697<77>
7·10143-3 = 6(9)1427<144> = 1390760561015147597115111631999<31> · C114
C114 = P48 · P67
P48 = 176985412377038489455150177398295039807447995083<48>
P67 = 2843859925569024851779496154354305448575151654276681477679351507241<67>
Number: 69997_143 N=503321721669367848389014004967846324275133410824146226320877399025698826072432114856210091439057067468359606896003 ( 114 digits) SNFS difficulty: 144 digits. Divisors found: r1=176985412377038489455150177398295039807447995083 (pp48) r2=2843859925569024851779496154354305448575151654276681477679351507241 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.45 hours. Scaled time: 22.29 units (timescale=2.133). Factorization parameters were as follows: n: 503321721669367848389014004967846324275133410824146226320877399025698826072432114856210091439057067468359606896003 m: 20000000000000000000000000000 c5: 875 c0: -12 skew: 0.42 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1450001) Primes: RFBsize:114155, AFBsize:114347, largePrimes:2712236 encountered Relations: rels:2714874, finalFF:310280 Max relations in full relation-set: 28 Initial matrix: 228569 x 310280 with sparse part having weight 22031944. Pruned matrix : 197851 x 199057 with weight 11694112. Total sieving time: 10.24 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 10.45 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10148-3 = 6(9)1477<149> = 311 · 7912579919<10> · C137
C137 = P30 · P43 · P65
P30 = 301037510767131424181611457969<30>
P43 = 5434594245435338312688573491110293470744533<43>
P65 = 17387286194393844709918894508724977643672044365413394191742373729<65>
Number: 69997_148 N=28445890993355795785465713412766066538152730750893507917803289805207609319238261618681814513715015288973371527222324093744020519559325733 ( 137 digits) SNFS difficulty: 149 digits. Divisors found: r1=301037510767131424181611457969 (pp30) r2=5434594245435338312688573491110293470744533 (pp43) r3=17387286194393844709918894508724977643672044365413394191742373729 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 12.60 hours. Scaled time: 27.00 units (timescale=2.143). Factorization parameters were as follows: n: 28445890993355795785465713412766066538152730750893507917803289805207609319238261618681814513715015288973371527222324093744020519559325733 m: 200000000000000000000000000000 c5: 875 c0: -12 skew: 0.42 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1725001) Primes: RFBsize:135072, AFBsize:135518, largePrimes:3840968 encountered Relations: rels:3910546, finalFF:354284 Max relations in full relation-set: 28 Initial matrix: 270657 x 354284 with sparse part having weight 33819268. Pruned matrix : 244258 x 245675 with weight 20068683. Total sieving time: 12.20 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.31 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 12.60 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By JMB / GMP-ECM B1=1000000
(25·10162-7)/9 = 2(7)162<163> = 31 · 193 · 419 · 5655980505619<13> · C144
C144 = P30 · P114
P30 = 757834905954475759153120346779<30>
P114 = 258512748121660648679500730489730055051223230946990605506285956104708110213970081444008373211813972771066168890501<114>
(25·10168-7)/9 = 2(7)168<169> = 467 · 1951 · 669181 · 754597 · 1164052117<10> · C142
C142 = P33 · C109
P33 = 947954614376246137517748334624309<33>
C109 = [5471478581462633018677789162246038606727580138540073007104958991038578407898337844421297328962275304272166061<109>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
7·10131-3 = 6(9)1307<132> = 23 · 43 · 200357 · 686073298051849<15> · C109
C109 = P49 · P61
P49 = 3492650375317905457798484924118526607821958419517<49>
P61 = 1474251565366503210694631337567966010127470661351122913594633<61>
Number: 69997_131 N=5149045283090327070069279376634643521531392220622868283592793023104111216823296932910173748751679693893652261 ( 109 digits) SNFS difficulty: 131 digits. Divisors found: r1=3492650375317905457798484924118526607821958419517 (pp49) r2=1474251565366503210694631337567966010127470661351122913594633 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.06 hours. Scaled time: 6.56 units (timescale=2.144). Factorization parameters were as follows: n: 5149045283090327070069279376634643521531392220622868283592793023104111216823296932910173748751679693893652261 m: 100000000000000000000000000 c5: 70 c0: -3 skew: 0.53 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1150001) Primes: RFBsize:78498, AFBsize:78021, largePrimes:1557428 encountered Relations: rels:1555267, finalFF:175874 Max relations in full relation-set: 28 Initial matrix: 156586 x 175874 with sparse part having weight 11502732. Pruned matrix : 150400 x 151246 with weight 8326009. Total sieving time: 2.95 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 3.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10158-1 = 4(9)158<159> = 929 · 2039 · 195480696444471195235091<24> · C130
C130 = P55 · P75
P55 = 3914379888823857856496565940348441055481401908952110819<55>
P75 = 344961172633478712235231612125560933379158026766703661954210221883077707201<75>
Number: 49999_158 N=1350309076581584038910089762282315799270660996144707824782483833075965830415212667287719844360646971845236733069095577551786307619 ( 130 digits) SNFS difficulty: 160 digits. Divisors found: r1=3914379888823857856496565940348441055481401908952110819 (pp55) r2=344961172633478712235231612125560933379158026766703661954210221883077707201 (pp75) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.89 hours. Scaled time: 53.09 units (timescale=2.133). Factorization parameters were as follows: n: 1350309076581584038910089762282315799270660996144707824782483833075965830415212667287719844360646971845236733069095577551786307619 m: 100000000000000000000000000000000 c5: 1 c0: -20 skew: 1.82 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:282402, largePrimes:5586780 encountered Relations: rels:5610115, finalFF:652381 Max relations in full relation-set: 28 Initial matrix: 565612 x 652381 with sparse part having weight 39533074. Pruned matrix : 493839 x 496731 with weight 26115813. Total sieving time: 23.41 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.35 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10136-3 = 6(9)1357<137> = 1911173014322791<16> · C122
C122 = P40 · P82
P40 = 6688529150867410750543674810071273572433<40>
P82 = 5476050080158143153708958738926903788962439257212131688978965251785087525399823499<82>
Number: 69997_136 N=36626720592747561803500026700296649794252768847574024237934710155034041818228816099980837330026827983143189237441392003067 ( 122 digits) SNFS difficulty: 136 digits. Divisors found: r1=6688529150867410750543674810071273572433 (pp40) r2=5476050080158143153708958738926903788962439257212131688978965251785087525399823499 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.99 hours. Scaled time: 10.69 units (timescale=2.143). Factorization parameters were as follows: n: 36626720592747561803500026700296649794252768847574024237934710155034041818228816099980837330026827983143189237441392003067 m: 1000000000000000000000000000 c5: 70 c0: -3 skew: 0.53 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1650001) Primes: RFBsize:107126, AFBsize:106428, largePrimes:1903120 encountered Relations: rels:2018723, finalFF:271339 Max relations in full relation-set: 28 Initial matrix: 213621 x 271339 with sparse part having weight 20879664. Pruned matrix : 192022 x 193154 with weight 12401408. Total sieving time: 4.80 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 4.99 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Yousuke Koide
(10853-1)/9 is divisible by 446687009597873860118984450851524186409<39>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
7·10132-3 = 6(9)1317<133> = 41 · 761 · 823 · 8863 · 6082088060418354263973053<25> · C97
C97 = P35 · P63
P35 = 27212650857151474320206035877612519<35>
P63 = 185834091366309855618215438086593893231210033409435324983518879<63>
Number: n N=5057038245707377286077394752451829803112566267314143247542799158823686682115360518604401883246201 ( 97 digits) SNFS difficulty: 132 digits. Divisors found: r1=27212650857151474320206035877612519 (pp35) r2=185834091366309855618215438086593893231210033409435324983518879 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.60 hours. Scaled time: 5.40 units (timescale=0.963). Factorization parameters were as follows: name: KA_6_9_131_7 n: 5057038245707377286077394752451829803112566267314143247542799158823686682115360518604401883246201 type: snfs skew: 1 deg: 5 c5: 700 c0: -3 m: 100000000000000000000000000 rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1250000, 1750001) Primes: RFBsize:183072, AFBsize:183021, largePrimes:5616253 encountered Relations: rels:5027789, finalFF:431914 Max relations in full relation-set: 48 Initial matrix: 366160 x 431914 with sparse part having weight 16649644. Pruned matrix : 301469 x 303363 with weight 9063422. Total sieving time: 4.17 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.2,2.2,50000 total time: 5.60 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2400+ stepping 01 Memory: 901612k/917504k available (1069k kernel code, 15504k reserved, 459k data, 96k init, 0k highmem) sisfb: Memory heap starting at 12288K, size 19960K Calibrating delay loop... 4010.80 BogoMIPS
By Jo Yeong Uk / Msieve v. 1.25, GGNFS-0.77.1-20050930-nocona
7·10116-3 = 6(9)1157<117> = 257 · 271861 · 9968346863<10> · 5492745356335264771<19> · C81
C81 = P35 · P46
P35 = 38690791643388328103740921502952607<35>
P46 = 4729310014865205650831153297596976512403898451<46>
Sat Jul 21 23:59:36 2007 Sat Jul 21 23:59:36 2007 Sat Jul 21 23:59:36 2007 Msieve v. 1.25 Sat Jul 21 23:59:36 2007 random seeds: 59986908 0149e5dc Sat Jul 21 23:59:36 2007 factoring 182980748402139428556729916605951877285225472985237924125874449528521933893711757 (81 digits) Sat Jul 21 23:59:36 2007 commencing quadratic sieve (80-digit input) Sat Jul 21 23:59:36 2007 using multiplier of 7 Sat Jul 21 23:59:36 2007 using 32kb Intel Core sieve core Sat Jul 21 23:59:36 2007 sieve interval: 12 blocks of size 32768 Sat Jul 21 23:59:36 2007 processing polynomials in batches of 17 Sat Jul 21 23:59:36 2007 using a sieve bound of 1305643 (50294 primes) Sat Jul 21 23:59:36 2007 using large prime bound of 129258657 (26 bits) Sat Jul 21 23:59:36 2007 using trial factoring cutoff of 27 bits Sat Jul 21 23:59:36 2007 polynomial 'A' values have 10 factors Sun Jul 22 00:11:15 2007 50465 relations (25708 full + 24757 combined from 274294 partial), need 50390 Sun Jul 22 00:11:15 2007 begin with 300002 relations Sun Jul 22 00:11:15 2007 reduce to 72144 relations in 2 passes Sun Jul 22 00:11:15 2007 attempting to read 72144 relations Sun Jul 22 00:11:16 2007 recovered 72144 relations Sun Jul 22 00:11:16 2007 recovered 61871 polynomials Sun Jul 22 00:11:16 2007 attempting to build 50465 cycles Sun Jul 22 00:11:16 2007 found 50465 cycles in 1 passes Sun Jul 22 00:11:16 2007 distribution of cycle lengths: Sun Jul 22 00:11:16 2007 length 1 : 25708 Sun Jul 22 00:11:16 2007 length 2 : 24757 Sun Jul 22 00:11:16 2007 largest cycle: 2 relations Sun Jul 22 00:11:16 2007 matrix is 50294 x 50465 with weight 1573880 (avg 31.19/col) Sun Jul 22 00:11:16 2007 filtering completed in 4 passes Sun Jul 22 00:11:16 2007 matrix is 42972 x 43036 with weight 1314047 (avg 30.53/col) Sun Jul 22 00:11:16 2007 saving the first 48 matrix rows for later Sun Jul 22 00:11:16 2007 matrix is 42924 x 43036 with weight 1004755 (avg 23.35/col) Sun Jul 22 00:11:16 2007 matrix includes 64 packed rows Sun Jul 22 00:11:16 2007 commencing Lanczos iteration Sun Jul 22 00:11:41 2007 lanczos halted after 680 iterations Sun Jul 22 00:11:41 2007 recovered 9 nontrivial dependencies Sun Jul 22 00:11:41 2007 prp35 factor: 38690791643388328103740921502952607 Sun Jul 22 00:11:41 2007 prp46 factor: 4729310014865205650831153297596976512403898451 Sun Jul 22 00:11:41 2007 elapsed time 00:12:05
7·10127-3 = 6(9)1267<128> = 412 · 151 · 2347 · 39819539 · 55136742586585039706768971261<29> · C83
C83 = P33 · P50
P33 = 996661217419669522960891631306797<33>
P50 = 53697664591766885637251106829273235075760230423267<50>
Sun Jul 22 00:13:13 2007 Sun Jul 22 00:13:13 2007 Sun Jul 22 00:13:13 2007 Msieve v. 1.25 Sun Jul 22 00:13:13 2007 random seeds: 103aacd2 23967dbd Sun Jul 22 00:13:13 2007 factoring 53518379764623465702863279224822425408675308236078968242775516646260859391644045799 (83 digits) Sun Jul 22 00:13:13 2007 commencing quadratic sieve (83-digit input) Sun Jul 22 00:13:13 2007 using multiplier of 5 Sun Jul 22 00:13:13 2007 using 32kb Intel Core sieve core Sun Jul 22 00:13:13 2007 sieve interval: 12 blocks of size 32768 Sun Jul 22 00:13:13 2007 processing polynomials in batches of 17 Sun Jul 22 00:13:13 2007 using a sieve bound of 1372627 (52647 primes) Sun Jul 22 00:13:13 2007 using large prime bound of 122163803 (26 bits) Sun Jul 22 00:13:13 2007 using trial factoring cutoff of 27 bits Sun Jul 22 00:13:13 2007 polynomial 'A' values have 11 factors Sun Jul 22 00:33:32 2007 52785 relations (26977 full + 25808 combined from 279646 partial), need 52743 Sun Jul 22 00:33:33 2007 begin with 306623 relations Sun Jul 22 00:33:33 2007 reduce to 75331 relations in 2 passes Sun Jul 22 00:33:33 2007 attempting to read 75331 relations Sun Jul 22 00:33:33 2007 recovered 75331 relations Sun Jul 22 00:33:33 2007 recovered 68714 polynomials Sun Jul 22 00:33:33 2007 attempting to build 52785 cycles Sun Jul 22 00:33:33 2007 found 52785 cycles in 1 passes Sun Jul 22 00:33:33 2007 distribution of cycle lengths: Sun Jul 22 00:33:33 2007 length 1 : 26977 Sun Jul 22 00:33:33 2007 length 2 : 25808 Sun Jul 22 00:33:33 2007 largest cycle: 2 relations Sun Jul 22 00:33:33 2007 matrix is 52647 x 52785 with weight 1723884 (avg 32.66/col) Sun Jul 22 00:33:33 2007 filtering completed in 4 passes Sun Jul 22 00:33:33 2007 matrix is 45365 x 45429 with weight 1454573 (avg 32.02/col) Sun Jul 22 00:33:34 2007 saving the first 48 matrix rows for later Sun Jul 22 00:33:34 2007 matrix is 45317 x 45429 with weight 1108107 (avg 24.39/col) Sun Jul 22 00:33:34 2007 matrix includes 64 packed rows Sun Jul 22 00:33:34 2007 commencing Lanczos iteration Sun Jul 22 00:34:03 2007 lanczos halted after 718 iterations Sun Jul 22 00:34:03 2007 recovered 10 nontrivial dependencies Sun Jul 22 00:34:03 2007 prp33 factor: 996661217419669522960891631306797 Sun Jul 22 00:34:03 2007 prp50 factor: 53697664591766885637251106829273235075760230423267 Sun Jul 22 00:34:03 2007 elapsed time 00:20:50
7·10134-3 = 6(9)1337<135> = 127 · 186103 · 284041 · 67139650373<11> · 224080515702813399469184201<27> · C85
C85 = P40 · P46
P40 = 1657367916841120248990423676418651639587<40>
P46 = 4181747575834472305239024549045571460403317707<46>
Sun Jul 22 01:59:47 2007 Sun Jul 22 01:59:47 2007 Sun Jul 22 01:59:47 2007 Msieve v. 1.25 Sun Jul 22 01:59:47 2007 random seeds: 7b30c364 1c9cc3ef Sun Jul 22 01:59:47 2007 factoring 6930694268516183887694709958969040895366115620435867716462445489842053938330019267009 (85 digits) Sun Jul 22 01:59:47 2007 commencing quadratic sieve (85-digit input) Sun Jul 22 01:59:48 2007 using multiplier of 1 Sun Jul 22 01:59:48 2007 using 32kb Intel Core sieve core Sun Jul 22 01:59:48 2007 sieve interval: 12 blocks of size 32768 Sun Jul 22 01:59:48 2007 processing polynomials in batches of 17 Sun Jul 22 01:59:48 2007 using a sieve bound of 1434241 (54497 primes) Sun Jul 22 01:59:48 2007 using large prime bound of 116173521 (26 bits) Sun Jul 22 01:59:48 2007 using double large prime bound of 328997602795950 (41-49 bits) Sun Jul 22 01:59:48 2007 using trial factoring cutoff of 49 bits Sun Jul 22 01:59:48 2007 polynomial 'A' values have 11 factors Sun Jul 22 02:21:27 2007 54900 relations (16114 full + 38786 combined from 570398 partial), need 54593 Sun Jul 22 02:21:27 2007 begin with 586512 relations Sun Jul 22 02:21:27 2007 reduce to 128737 relations in 9 passes Sun Jul 22 02:21:27 2007 attempting to read 128737 relations Sun Jul 22 02:21:28 2007 recovered 128737 relations Sun Jul 22 02:21:28 2007 recovered 106037 polynomials Sun Jul 22 02:21:28 2007 attempting to build 54900 cycles Sun Jul 22 02:21:28 2007 found 54900 cycles in 5 passes Sun Jul 22 02:21:28 2007 distribution of cycle lengths: Sun Jul 22 02:21:28 2007 length 1 : 16114 Sun Jul 22 02:21:28 2007 length 2 : 11199 Sun Jul 22 02:21:28 2007 length 3 : 9754 Sun Jul 22 02:21:28 2007 length 4 : 6903 Sun Jul 22 02:21:28 2007 length 5 : 4674 Sun Jul 22 02:21:28 2007 length 6 : 2887 Sun Jul 22 02:21:28 2007 length 7 : 1597 Sun Jul 22 02:21:28 2007 length 9+: 1772 Sun Jul 22 02:21:28 2007 largest cycle: 19 relations Sun Jul 22 02:21:29 2007 matrix is 54497 x 54900 with weight 2829346 (avg 51.54/col) Sun Jul 22 02:21:29 2007 filtering completed in 3 passes Sun Jul 22 02:21:29 2007 matrix is 49646 x 49710 with weight 2569219 (avg 51.68/col) Sun Jul 22 02:21:29 2007 saving the first 48 matrix rows for later Sun Jul 22 02:21:30 2007 matrix is 49598 x 49710 with weight 1887856 (avg 37.98/col) Sun Jul 22 02:21:30 2007 matrix includes 64 packed rows Sun Jul 22 02:21:30 2007 commencing Lanczos iteration Sun Jul 22 02:22:14 2007 lanczos halted after 786 iterations Sun Jul 22 02:22:14 2007 recovered 15 nontrivial dependencies Sun Jul 22 02:22:15 2007 prp40 factor: 1657367916841120248990423676418651639587 Sun Jul 22 02:22:15 2007 prp46 factor: 4181747575834472305239024549045571460403317707 Sun Jul 22 02:22:15 2007 elapsed time 00:22:28
7·10126-3 = 6(9)1257<127> = C127
C127 = P49 · P79
P49 = 3733064887567996534792974929164593204373697227583<49>
P79 = 1875134831787061276782822033581045574929236611892954682370632550609251043832259<79>
Number: 69997_126 N=6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 127 digits) SNFS difficulty: 126 digits. Divisors found: r1=3733064887567996534792974929164593204373697227583 (pp49) r2=1875134831787061276782822033581045574929236611892954682370632550609251043832259 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.18 hours. Scaled time: 4.65 units (timescale=2.128). Factorization parameters were as follows: n: 6999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 10000000000000000000000000 c5: 70 c0: -3 skew: 0.53 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78021, largePrimes:1558333 encountered Relations: rels:1597125, finalFF:213619 Max relations in full relation-set: 28 Initial matrix: 156586 x 213619 with sparse part having weight 11148790. Pruned matrix : 132114 x 132960 with weight 5515036. Total sieving time: 2.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10109-3 = 6(9)1087<110> = 23 · 73 · 8689 · C103
C103 = P42 · P62
P42 = 228859484167433722234911564635934681814193<42>
P62 = 20965664506503249718202161151414441563687134934979206768443859<62>
Number: 69997_109 N=4798191164185807622283101367066353705790409115027790780495023898762004988610807815924387635993589890787 ( 103 digits) SNFS difficulty: 110 digits. Divisors found: r1=228859484167433722234911564635934681814193 (pp42) r2=20965664506503249718202161151414441563687134934979206768443859 (pp62) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.61 hours. Scaled time: 1.31 units (timescale=2.143). Factorization parameters were as follows: n: 4798191164185807622283101367066353705790409115027790780495023898762004988610807815924387635993589890787 m: 10000000000000000000000 c5: 7 c0: -30 skew: 1.34 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30494, largePrimes:983606 encountered Relations: rels:888199, finalFF:73849 Max relations in full relation-set: 28 Initial matrix: 61316 x 73849 with sparse part having weight 3415148. Pruned matrix : 56457 x 56827 with weight 2004983. Total sieving time: 0.58 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.61 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10121-3 = 6(9)1207<122> = 47653 · 1369371443767<13> · C106
C106 = P35 · P71
P35 = 36358147136114613307985190682380569<35>
P71 = 29504263852952324258374435890140498246794971645497980237929073951677863<71>
Number: 69997_121 N=1072720366308388454659014573709742439750797378507314566568561935551101727969483113552373319637988658644047 ( 106 digits) SNFS difficulty: 121 digits. Divisors found: r1=36358147136114613307985190682380569 (pp35) r2=29504263852952324258374435890140498246794971645497980237929073951677863 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.34 hours. Scaled time: 2.86 units (timescale=2.142). Factorization parameters were as follows: n: 1072720366308388454659014573709742439750797378507314566568561935551101727969483113552373319637988658644047 m: 1000000000000000000000000 c5: 70 c0: -3 skew: 0.53 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 540001) Primes: RFBsize:49098, AFBsize:48796, largePrimes:2105450 encountered Relations: rels:2178868, finalFF:179576 Max relations in full relation-set: 28 Initial matrix: 97961 x 179576 with sparse part having weight 18093782. Pruned matrix : 84353 x 84906 with weight 6257540. Total sieving time: 1.27 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,121,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10123-3 = 6(9)1227<124> = 173 · 61027 · 713562389 · C108
C108 = P54 · P55
P54 = 135311009685237351278540689388809518241159030458513113<54>
P55 = 6866964940815089427027581044049877493885455562590216551<55>
Number: 69997_123 N=929175959614815900163066670327570369604706388965383155597477001152268117687211419282352024355512064143133263 ( 108 digits) SNFS difficulty: 124 digits. Divisors found: r1=135311009685237351278540689388809518241159030458513113 (pp54) r2=6866964940815089427027581044049877493885455562590216551 (pp55) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.38 hours. Scaled time: 2.94 units (timescale=2.131). Factorization parameters were as follows: n: 929175959614815900163066670327570369604706388965383155597477001152268117687211419282352024355512064143133263 m: 2000000000000000000000000 c5: 875 c0: -12 skew: 0.42 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 540001) Primes: RFBsize:49098, AFBsize:49241, largePrimes:2087615 encountered Relations: rels:2138687, finalFF:167675 Max relations in full relation-set: 28 Initial matrix: 98406 x 167675 with sparse part having weight 16330556. Pruned matrix : 86136 x 86692 with weight 6130758. Total sieving time: 1.31 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,124,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10124-3 = 6(9)1237<125> = 12435393851<11> · C115
C115 = P49 · P67
P49 = 1653859776119932304506498458736364717902994881823<49>
P67 = 3403610153505365266823631691628573931926592430091798145981178781689<67>
Number: 69997_124 N=5629093926475911824338727170724976501590661199557369773249492232749066308603561735312182192338670303366493671339047 ( 115 digits) SNFS difficulty: 125 digits. Divisors found: r1=1653859776119932304506498458736364717902994881823 (pp49) r2=3403610153505365266823631691628573931926592430091798145981178781689 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.76 hours. Scaled time: 3.78 units (timescale=2.145). Factorization parameters were as follows: n: 5629093926475911824338727170724976501590661199557369773249492232749066308603561735312182192338670303366493671339047 m: 10000000000000000000000000 c5: 7 c0: -30 skew: 1.34 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:77956, largePrimes:1482727 encountered Relations: rels:1490685, finalFF:186596 Max relations in full relation-set: 28 Initial matrix: 156519 x 186596 with sparse part having weight 8875261. Pruned matrix : 140381 x 141227 with weight 5293869. Total sieving time: 1.69 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.76 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
7·10130-3 = 6(9)1297<131> = 17 · 6967 · 22159 · C122
C122 = P56 · P67
P56 = 12377339630211913014729356379781933602404602590397460483<56>
P67 = 2154893656072748577302512740902433579438090282103291765000036292359<67>
Number: 69997_130 N=26671850648201471139952050436640275593130415064623068809555644373410921858636706510104666244043064581907285529588537349397 ( 122 digits) SNFS difficulty: 130 digits. Divisors found: r1=12377339630211913014729356379781933602404602590397460483 (pp56) r2=2154893656072748577302512740902433579438090282103291765000036292359 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.95 hours. Scaled time: 4.18 units (timescale=2.143). Factorization parameters were as follows: n: 26671850648201471139952050436640275593130415064623068809555644373410921858636706510104666244043064581907285529588537349397 m: 100000000000000000000000000 c5: 7 c0: -3 skew: 0.84 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78031, largePrimes:1497101 encountered Relations: rels:1513263, finalFF:193250 Max relations in full relation-set: 28 Initial matrix: 156594 x 193250 with sparse part having weight 9535488. Pruned matrix : 138779 x 139625 with weight 5365586. Total sieving time: 1.88 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.95 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Kenichiro Yamaguchi / Msieve v. 1.25
7·10137-3 = 6(9)1367<138> = 19 · 41 · 83 · 14431 · 32687 · 220474522090692269<18> · 3088175041540998887<19> · C89
C89 = P41 · P48
P41 = 53204897233454695830562193693392037137397<41>
P48 = 633576518273911287795959707919898837003414686923<48>
C89=P41*P48 P41=53204897233454695830562193693392037137397 P48=633576518273911287795959707919898837003414686923 Sun Jul 22 01:55:34 2007 Msieve v. 1.25 Sun Jul 22 01:55:34 2007 random seeds: 1d6eae68 a4f7c8cb Sun Jul 22 01:55:34 2007 factoring 33709373544293481213343982315692544285548550722517329478640267756974328368014399890159431 (89 digits) Sun Jul 22 01:55:34 2007 commencing quadratic sieve (89-digit input) Sun Jul 22 01:55:34 2007 using multiplier of 5 Sun Jul 22 01:55:34 2007 using 32kb Pentium M sieve core Sun Jul 22 01:55:34 2007 sieve interval: 32 blocks of size 32768 Sun Jul 22 01:55:34 2007 processing polynomials in batches of 7 Sun Jul 22 01:55:34 2007 using a sieve bound of 1556189 (58911 primes) Sun Jul 22 01:55:34 2007 using large prime bound of 124495120 (26 bits) Sun Jul 22 01:55:34 2007 using double large prime bound of 372626841652480 (42-49 bits) Sun Jul 22 01:55:34 2007 using trial factoring cutoff of 49 bits Sun Jul 22 01:55:34 2007 polynomial 'A' values have 11 factors Sun Jul 22 03:49:04 2007 59251 relations (15409 full + 43842 combined from 635927 partial), need 59007 Sun Jul 22 03:49:06 2007 begin with 651336 relations Sun Jul 22 03:49:07 2007 reduce to 146490 relations in 10 passes Sun Jul 22 03:49:07 2007 attempting to read 146490 relations Sun Jul 22 03:49:13 2007 recovered 146490 relations Sun Jul 22 03:49:13 2007 recovered 128156 polynomials Sun Jul 22 03:49:13 2007 attempting to build 59251 cycles Sun Jul 22 03:49:13 2007 found 59251 cycles in 5 passes Sun Jul 22 03:49:13 2007 distribution of cycle lengths: Sun Jul 22 03:49:13 2007 length 1 : 15409 Sun Jul 22 03:49:13 2007 length 2 : 11060 Sun Jul 22 03:49:13 2007 length 3 : 10314 Sun Jul 22 03:49:14 2007 length 4 : 8027 Sun Jul 22 03:49:14 2007 length 5 : 5815 Sun Jul 22 03:49:14 2007 length 6 : 3624 Sun Jul 22 03:49:14 2007 length 7 : 2227 Sun Jul 22 03:49:14 2007 length 9+: 2775 Sun Jul 22 03:49:15 2007 largest cycle: 18 relations Sun Jul 22 03:49:15 2007 matrix is 58911 x 59251 with weight 3663344 (avg 61.83/col) Sun Jul 22 03:49:17 2007 filtering completed in 4 passes Sun Jul 22 03:49:17 2007 matrix is 55380 x 55444 with weight 3442544 (avg 62.09/col) Sun Jul 22 03:49:18 2007 saving the first 48 matrix rows for later Sun Jul 22 03:49:18 2007 matrix is 55332 x 55444 with weight 2837873 (avg 51.18/col) Sun Jul 22 03:49:18 2007 matrix includes 64 packed rows Sun Jul 22 03:49:18 2007 using block size 22177 for processor cache size 2048 kB Sun Jul 22 03:49:18 2007 commencing Lanczos iteration Sun Jul 22 03:50:16 2007 lanczos halted after 876 iterations Sun Jul 22 03:50:16 2007 recovered 19 nontrivial dependencies Sun Jul 22 03:50:17 2007 prp41 factor: 53204897233454695830562193693392037137397 Sun Jul 22 03:50:17 2007 prp48 factor: 633576518273911287795959707919898837003414686923 Sun Jul 22 03:50:17 2007 elapsed time 01:54:43
7·10176-3 = 6(9)1757<177> = 127 · 1427 · 1823167117<10> · 3122832099875424913<19> · 4959902390670157503819923<25> · 96538958547137354194163712683<29> · C91
C91 = P42 · P49
P42 = 226468883271578475618379567962241702278977<42>
P49 = 6256204756417669062376992564657832577417523732181<49>
C91=P42*P49 P42=226468883271578475618379567962241702278977 P49=6256204756417669062376992564657832577417523732181 Sun Jul 22 11:36:57 2007 Msieve v. 1.25 Sun Jul 22 11:36:57 2007 random seeds: afc45a78 7d8aa159 Sun Jul 22 11:36:57 2007 factoring 1416835704704247144924541052389267917368021881114236322739410829329143705256446130294658837 (91 digits) Sun Jul 22 11:36:58 2007 commencing quadratic sieve (90-digit input) Sun Jul 22 11:36:58 2007 using multiplier of 5 Sun Jul 22 11:36:58 2007 using 32kb Pentium M sieve core Sun Jul 22 11:36:58 2007 sieve interval: 36 blocks of size 32768 Sun Jul 22 11:36:58 2007 processing polynomials in batches of 6 Sun Jul 22 11:36:58 2007 using a sieve bound of 1652491 (62295 primes) Sun Jul 22 11:36:58 2007 using large prime bound of 145419208 (27 bits) Sun Jul 22 11:36:58 2007 using double large prime bound of 492854925172808 (42-49 bits) Sun Jul 22 11:36:58 2007 using trial factoring cutoff of 49 bits Sun Jul 22 11:36:58 2007 polynomial 'A' values have 12 factors Sun Jul 22 14:18:41 2007 62560 relations (15701 full + 46859 combined from 707243 partial), need 62391 Sun Jul 22 14:18:54 2007 begin with 722944 relations Sun Jul 22 14:18:55 2007 reduce to 155793 relations in 10 passes Sun Jul 22 14:18:55 2007 attempting to read 155793 relations Sun Jul 22 14:19:06 2007 recovered 155793 relations Sun Jul 22 14:19:06 2007 recovered 138792 polynomials Sun Jul 22 14:19:06 2007 attempting to build 62560 cycles Sun Jul 22 14:19:06 2007 found 62560 cycles in 5 passes Sun Jul 22 14:19:06 2007 distribution of cycle lengths: Sun Jul 22 14:19:06 2007 length 1 : 15701 Sun Jul 22 14:19:06 2007 length 2 : 11811 Sun Jul 22 14:19:06 2007 length 3 : 11050 Sun Jul 22 14:19:06 2007 length 4 : 8666 Sun Jul 22 14:19:06 2007 length 5 : 6156 Sun Jul 22 14:19:06 2007 length 6 : 3886 Sun Jul 22 14:19:06 2007 length 7 : 2377 Sun Jul 22 14:19:06 2007 length 9+: 2913 Sun Jul 22 14:19:06 2007 largest cycle: 17 relations Sun Jul 22 14:19:07 2007 matrix is 62295 x 62560 with weight 3738751 (avg 59.76/col) Sun Jul 22 14:19:08 2007 filtering completed in 3 passes Sun Jul 22 14:19:08 2007 matrix is 59024 x 59088 with weight 3551902 (avg 60.11/col) Sun Jul 22 14:19:09 2007 saving the first 48 matrix rows for later Sun Jul 22 14:19:09 2007 matrix is 58976 x 59088 with weight 2711102 (avg 45.88/col) Sun Jul 22 14:19:09 2007 matrix includes 64 packed rows Sun Jul 22 14:19:09 2007 using block size 23635 for processor cache size 2048 kB Sun Jul 22 14:19:09 2007 commencing Lanczos iteration Sun Jul 22 14:20:07 2007 lanczos halted after 934 iterations Sun Jul 22 14:20:07 2007 recovered 17 nontrivial dependencies Sun Jul 22 14:20:08 2007 prp42 factor: 226468883271578475618379567962241702278977 Sun Jul 22 14:20:08 2007 prp49 factor: 6256204756417669062376992564657832577417523732181 Sun Jul 22 14:20:08 2007 elapsed time 02:43:11
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10158-3 = 1(9)1577<159> = 571 · 8308493 · 627908707 · 19547338624799<14> · C127
C127 = P48 · P79
P48 = 765613002593259893435771444351052001550447832917<48>
P79 = 4486195411014709158764439342476979691484480174887014872203008588690204116766979<79>
Number: 19997_158 N=3434689538847075156669170246694359027751302650612112051029535669072282263120505215768659729098715953969223080215754614814847743 ( 127 digits) SNFS difficulty: 158 digits. Divisors found: r1=765613002593259893435771444351052001550447832917 (pp48) r2=4486195411014709158764439342476979691484480174887014872203008588690204116766979 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.75 hours. Scaled time: 53.09 units (timescale=2.145). Factorization parameters were as follows: n: 3434689538847075156669170246694359027751302650612112051029535669072282263120505215768659729098715953969223080215754614814847743 m: 20000000000000000000000000000000 c5: 125 c0: -6 skew: 0.54 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:282582, largePrimes:5753873 encountered Relations: rels:5897488, finalFF:751668 Max relations in full relation-set: 28 Initial matrix: 565793 x 751668 with sparse part having weight 45568672. Pruned matrix : 412610 x 415502 with weight 27462155. Total sieving time: 23.64 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.98 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.75 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(28·10160+17)/9 = 3(1)1593<161> = 3 · 601 · 604411 · 92915322557<11> · C141
C141 = P50 · P91
P50 = 40211844589201070870193753925177566929720034091471<50>
P91 = 7640927890799418264376357335504587466320927492331080493247053896348840184348910650404572763<91>
Number: n N=307255804862118138238800959977993782051356232749794701698253135356472234511279752884270077185205828579676440295689321401915567074990617204373 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: r1=40211844589201070870193753925177566929720034091471 (pp50) r2=7640927890799418264376357335504587466320927492331080493247053896348840184348910650404572763 (pp91) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 43.45 hours. Scaled time: 59.31 units (timescale=1.365). Factorization parameters were as follows: name: KA_3_1_159_3 n: 307255804862118138238800959977993782051356232749794701698253135356472234511279752884270077185205828579676440295689321401915567074990617204373 skew: 0.91 deg: 5 c5: 28 c0: 17 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:251161, largePrimes:7385460 encountered Relations: rels:7003197, finalFF:646856 Max relations in full relation-set: 28 Initial matrix: 501377 x 646856 with sparse part having weight 41926338. Pruned matrix : 377245 x 379815 with weight 22916317. Total sieving time: 40.00 hours. Total relation processing time: 0.27 hours. Matrix solve time: 2.85 hours. Total square root time: 0.33 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 43.45 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10160+61)/9 = (2)1599<160> = 3 · 10103 · 15613457 · 416632441 · C140
C140 = P49 · P91
P49 = 2936151587344808656346302770353734642204342157279<49>
P91 = 3838709524601464946084217929761401324614789430983800435309597156231900651034036787115571447<91>
Number: n N=11271033064014227117251631716765959674881912246034154599682541233752667463468895884880810622635796812902030044764864707565008915372835612713 ( 140 digits) SNFS difficulty: 160 digits. Divisors found: r1=2936151587344808656346302770353734642204342157279 (pp49) r2=3838709524601464946084217929761401324614789430983800435309597156231900651034036787115571447 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.68 hours. Scaled time: 57.78 units (timescale=1.323). Factorization parameters were as follows: name: KA_2_159_9 n: 11271033064014227117251631716765959674881912246034154599682541233752667463468895884880810622635796812902030044764864707565008915372835612713 skew: 1.98 deg: 5 c5: 2 c0: 61 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:250287, largePrimes:7344485 encountered Relations: rels:6910066, finalFF:610929 Max relations in full relation-set: 48 Initial matrix: 500504 x 610929 with sparse part having weight 44987741. Pruned matrix : 407031 x 409597 with weight 25737146. Total sieving time: 38.85 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.52 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 43.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
The factor table of 699...997 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Bruce Dodson / Jul 17, 2007
10322+1 is divisible by 1009805096139614383066323378818605356821967673241<49>, cofactor is prime.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
2·10189+3 = 2(0)1883<190> = 211 · 617 · 186762743 · 3025939986458771807<19> · 299721566142829669823<21> · 6007634365195440036739<22> · C116
C116 = P57 · P59
P57 = 419817276608201618522516989479656415256109781516871114787<57>
P59 = 35960856659366982010140181518614170249139085672467809368871<59>
Number: 20003_189 N=15096988907233357495521287258396184736155032772962973177413972069504983979832606332318573583018636209111156665595477 ( 116 digits) Divisors found: r1=419817276608201618522516989479656415256109781516871114787 (pp57) r2=35960856659366982010140181518614170249139085672467809368871 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 26.59 hours. Scaled time: 56.99 units (timescale=2.143). Factorization parameters were as follows: name: 20003_189 n: 15096988907233357495521287258396184736155032772962973177413972069504983979832606332318573583018636209111156665595477 skew: 41912.62 # norm 2.16e+15 c5: 6360 c4: -1373737086 c3: -45296079427237 c2: 3778123322489630234 c1: -16523333732336258468648 c0: -33305705182922434771711568 # alpha -4.95 Y1: 311998665473 Y0: -18840262728057601590579 # Murphy_E 5.40e-10 # M 9806237666384931345996401187694326584755524337853627549119046455930816589581929721798263470708982718933220092999579 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3225001) Primes: RFBsize:256726, AFBsize:256878, largePrimes:7669673 encountered Relations: rels:7649278, finalFF:642547 Max relations in full relation-set: 28 Initial matrix: 513683 x 642547 with sparse part having weight 57962084. Pruned matrix : 414171 x 416803 with weight 36292501. Total sieving time: 25.12 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.19 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 26.59 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
5·10185+3 = 5(0)1843<186> = 7 · 505752502245677956259<21> · C165
C165 = P38 · P127
P38 = 18507977608619856746602644452748137837<38>
P127 = 7630885880694883788242610766381704283225279287936847958869670360168616422552526506424965632629458726936822609309848264083247763<127>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10160-13)/9 = (4)1593<160> = 32 · 305111482118759<15> · C145
C145 = P46 · P100
P46 = 1599713742434510285313677046167755092936978823<46>
P100 = 1011752171645268180409456572991158703185507059827665215709520041736230600671785104494834474709153811<100>
Number: n N=1618513852918894982244660695192826276506442011651985662185105820561633856669307795206595456944773683156646273494967998942230092499261817156744453 ( 145 digits) SNFS difficulty: 160 digits. Divisors found: r1=1599713742434510285313677046167755092936978823 (pp46) r2=1011752171645268180409456572991158703185507059827665215709520041736230600671785104494834474709153811 (pp100) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.16 hours. Scaled time: 56.97 units (timescale=1.320). Factorization parameters were as follows: name: KA_4_159_3 n: 1618513852918894982244660695192826276506442011651985662185105820561633856669307795206595456944773683156646273494967998942230092499261817156744453 skew: 1.27 deg: 5 c5: 4 c0: -13 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:250321, largePrimes:7367990 encountered Relations: rels:6945136, finalFF:621444 Max relations in full relation-set: 48 Initial matrix: 500535 x 621444 with sparse part having weight 45008824. Pruned matrix : 398253 x 400819 with weight 25062427. Total sieving time: 38.50 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.36 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 43.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10160-17)/3 = (6)1591<160> = 727 · 1583 · 95988095509<11> · C143
C143 = P45 · P99
P45 = 101750434942955870404274154756703815926783363<45>
P99 = 593116172250912842488653172573804937639666230962446807900778437541739835324711444191625551399818163<99>
Number: n N=60349828498231515075105017277191802863759950651617645337907466391569953750527359884165767483560724325965640457676728648881641211444679693622169 ( 143 digits) SNFS difficulty: 160 digits. Divisors found: r1=101750434942955870404274154756703815926783363 (pp45) r2=593116172250912842488653172573804937639666230962446807900778437541739835324711444191625551399818163 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.20 hours. Scaled time: 58.17 units (timescale=1.447). Factorization parameters were as follows: name: KA_6_159_1 n: 60349828498231515075105017277191802863759950651617645337907466391569953750527359884165767483560724325965640457676728648881641211444679693622169 skew: 1.53 deg: 5 c5: 2 c0: -17 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:250150, AFBsize:249961, largePrimes:7392335 encountered Relations: rels:6971314, finalFF:612340 Max relations in full relation-set: 28 Initial matrix: 500176 x 612340 with sparse part having weight 42132816. Pruned matrix : 405751 x 408315 with weight 24833572. Total sieving time: 35.40 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.23 hours. Total square root time: 0.36 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 40.20 hours. --------- CPU info (if available) ----------
5·10166+3 = 5(0)1653<167> = 58411 · C166
C162 = P69 · P94
P69 = 205212516206615635610167665320053000460472202204809200220862876866413<69>
P94 = 4171300883176815364229387134807678863679793387097531618573030009987940624111825593896704727821<94>
Number: n N=856003150091592337059800380065398640666997654551368749036996456146958620807724572426426529249627638629710157333378986834671551591309856020270154594168906541576073 ( 162 digits) SNFS difficulty: 166 digits. Divisors found: r1=205212516206615635610167665320053000460472202204809200220862876866413 (pp69) r2=4171300883176815364229387134807678863679793387097531618573030009987940624111825593896704727821 (pp94) Version: GGNFS-0.77.1-20051202-athlon Total time: 80.81 hours. Scaled time: 96.49 units (timescale=1.194). Factorization parameters were as follows: name: KA_5_0_165_3 n: 856003150091592337059800380065398640666997654551368749036996456146958620807724572426426529249627638629710157333378986834671551591309856020270154594168906541576073 type: snfs skew: 0.57 deg: 5 c5: 50 c0: 3 m: 1000000000000000000000000000000000 rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3000001) Primes: RFBsize:283146, AFBsize:283047, largePrimes:7663698 encountered Relations: rels:7215429, finalFF:636030 Max relations in full relation-set: 28 Initial matrix: 566258 x 636030 with sparse part having weight 42205013. Pruned matrix : 510577 x 513472 with weight 29645883. Total sieving time: 71.79 hours. Total relation processing time: 0.33 hours. Matrix solve time: 7.83 hours. Total square root time: 0.87 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 80.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(25·10160-7)/9 = 2(7)160<161> = 3 · 27947 · 7306883 · 138621983 · C141
C141 = P69 · P72
P69 = 883323744340659477525559747044983470768166295315797627245668926714929<69>
P72 = 370302704851532106577899935747396428452827041176147028833284274712784437<72>
Number: n N=327097171788929430479622084869129690697740912748786682229340262241719606549744366710334791145444653101642953787249946765260803343440926759973 ( 141 digits) SNFS difficulty: 161 digits. Divisors found: r1=883323744340659477525559747044983470768166295315797627245668926714929 (pp69) r2=370302704851532106577899935747396428452827041176147028833284274712784437 (pp72) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 36.41 hours. Scaled time: 49.70 units (timescale=1.365). Factorization parameters were as follows: name: KA_2_7_160 n: 327097171788929430479622084869129690697740912748786682229340262241719606549744366710334791145444653101642953787249946765260803343440926759973 skew: 0.78 deg: 5 c5: 25 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:250150, AFBsize:250196, largePrimes:7112312 encountered Relations: rels:6671455, finalFF:592115 Max relations in full relation-set: 28 Initial matrix: 500410 x 592115 with sparse part having weight 34549711. Pruned matrix : 418302 x 420868 with weight 20091437. Total sieving time: 33.04 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.04 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 36.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
5·10161+3 = 5(0)1603<162> = 72 · 1447 · 180463 · 26314542158435393005535533221629<32> · C121
C121 = P59 · P63
P59 = 11706943567107084998551285511603272813010623152246453284257<59>
P63 = 126846321501220363453898438705886991913400990993746411945018359<63>
Number: 50003_161 N=1484982727509908854740212306941041004792973008825939876458829727780821383869898582890053749715127694042906997885710674263 ( 121 digits) SNFS difficulty: 161 digits. Divisors found: r1=11706943567107084998551285511603272813010623152246453284257 (pp59) r2=126846321501220363453898438705886991913400990993746411945018359 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 80.52 hours. Scaled time: 54.99 units (timescale=0.683). Factorization parameters were as follows: name: 50003_161 n: 1484982727509908854740212306941041004792973008825939876458829727780821383869898582890053749715127694042906997885710674263 m: 100000000000000000000000000000000 c5: 50 c0: 3 skew: 0.57 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4150001) Primes: RFBsize:315948, AFBsize:315546, largePrimes:5714501 encountered Relations: rels:5824294, finalFF:708200 Max relations in full relation-set: 0 Initial matrix: 631559 x 708200 with sparse part having weight 36699917. Pruned matrix : 568992 x 572213 with weight 27259397. Total sieving time: 67.88 hours. Total relation processing time: 0.32 hours. Matrix solve time: 12.11 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 80.52 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
5·10157-3 = 4(9)1567<158> = 170751714607368696896080865604341002901<39> · C120
C120 = P50 · P70
P50 = 35723845046279761616907730154034566105895929934169<50>
P70 = 8196845212810478814820742135146474925279643255860336587608186692950513<70>
Number: 49997_157 N=292822828250781602016000167325285828040891795200764250827620597365088252659542353359323090342351116997142479928464778697 ( 120 digits) SNFS difficulty: 159 digits. Divisors found: r1=35723845046279761616907730154034566105895929934169 (pp50) r2=8196845212810478814820742135146474925279643255860336587608186692950513 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.71 hours. Scaled time: 53.00 units (timescale=2.145). Factorization parameters were as follows: n: 292822828250781602016000167325285828040891795200764250827620597365088252659542353359323090342351116997142479928464778697 m: 50000000000000000000000000000000 c5: 4 c0: -75 skew: 1.8 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:282917, largePrimes:5641286 encountered Relations: rels:5700798, finalFF:682263 Max relations in full relation-set: 28 Initial matrix: 566127 x 682263 with sparse part having weight 40514085. Pruned matrix : 469219 x 472113 with weight 25366768. Total sieving time: 23.34 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.24 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
5·10196+3 = 5(0)1953<197> = 53 · 4831 · 81435758513<11> · 620177514568967<15> · 8335212300603379<16> · 35165888307807931<17> · 1724266535012524133<19> · C115
C115 = P47 · P69
P47 = 18149768500139575450781954504934682959012295193<47>
P69 = 421514178392323250396382121254673947852157285795193589239114535798571<69>
Number: 50003_196 N=7650384757347202203321962443218518173640546585406568276655144521369399383167952622184566026725961406618337839569203 ( 115 digits) Divisors found: r1=18149768500139575450781954504934682959012295193 (pp47) r2=421514178392323250396382121254673947852157285795193589239114535798571 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 23.37 hours. Scaled time: 49.86 units (timescale=2.134). Factorization parameters were as follows: name: 50003_196 n: 7650384757347202203321962443218518173640546585406568276655144521369399383167952622184566026725961406618337839569203 skew: 19553.70 # norm 3.28e+15 c5: 16920 c4: -3549394118 c3: -96775513274836 c2: -922030925486182961 c1: 11391841096341814490596 c0: -17247691065672184548477665 # alpha -5.74 Y1: 678599985437 Y0: -13522515818159374759236 # Murphy_E 6.05e-10 # M 1884377264941917291735930955710612016215991487489349721733252967878467057857630059934213163822258669912389565149551 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 2925001) Primes: RFBsize:256726, AFBsize:255896, largePrimes:7598169 encountered Relations: rels:7604204, finalFF:692093 Max relations in full relation-set: 28 Initial matrix: 512710 x 692093 with sparse part having weight 60076442. Pruned matrix : 368783 x 371410 with weight 33519290. Polynomial selection time: 1.33 hours. Total sieving time: 20.87 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.88 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 23.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(25·10159-1)/3 = 8(3)159<160> = 13 · 67 · 2236664243479<13> · C145
C145 = P68 · P77
P68 = 85262497941625226303736633385477406332679270895304586298374767884871<68>
P77 = 50169728633912464831848958683943349449579452577543046686850278491362296324547<77>
Number: n N=4277596384380857709493007778877230054219181915921345009085918406957522336511160704245123636854674964203757729951971401133102929893914016547228437 ( 145 digits) SNFS difficulty: 160 digits. Divisors found: r1=85262497941625226303736633385477406332679270895304586298374767884871 (pp68) r2=50169728633912464831848958683943349449579452577543046686850278491362296324547 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.10 hours. Scaled time: 42.47 units (timescale=1.323). Factorization parameters were as follows: name: KA_8_3_159 n: 4277596384380857709493007778877230054219181915921345009085918406957522336511160704245123636854674964203757729951971401133102929893914016547228437 skew: 0.83 deg: 5 c5: 5 c0: -2 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:249566, largePrimes:6976915 encountered Relations: rels:6496813, finalFF:566255 Max relations in full relation-set: 48 Initial matrix: 499781 x 566255 with sparse part having weight 34478584. Pruned matrix : 438189 x 440751 with weight 21194488. Total sieving time: 27.82 hours. Total relation processing time: 0.20 hours. Matrix solve time: 4.02 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 32.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(67·10160+23)/9 = 7(4)1597<161> = 61 · 173 · 401199361 · C149
C149 = P59 · P91
P59 = 10926374007313810829354105515688558278231191096957190128523<59>
P91 = 1609237188318111563993645016667268783331795663193421462542500398194843294512175283899466533<91>
Number: n N=17583127386041774296839855493344250162140468475916165432870626962320083118392473075736410533833904510381392754713628615579892796163624551333407220759 ( 149 digits) SNFS difficulty: 161 digits. Divisors found: r1=10926374007313810829354105515688558278231191096957190128523 (pp59) r2=1609237188318111563993645016667268783331795663193421462542500398194843294512175283899466533 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.67 hours. Scaled time: 53.17 units (timescale=1.450). Factorization parameters were as follows: name: KA_7_4_159_7 n: 17583127386041774296839855493344250162140468475916165432870626962320083118392473075736410533833904510381392754713628615579892796163624551333407220759 skew: 0.81 deg: 5 c5: 67 c0: 23 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:249876, largePrimes:7232989 encountered Relations: rels:6812085, finalFF:613709 Max relations in full relation-set: 28 Initial matrix: 500091 x 613709 with sparse part having weight 37971848. Pruned matrix : 402209 x 404773 with weight 21189373. Total sieving time: 32.31 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.89 hours. Total square root time: 0.28 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 36.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(34·10159-7)/9 = 3(7)159<160>= 32 · 71 · 9849193859<10> · C147
C147 = P38 · P110
P38 = 15789711189493102093850282846783373661<38>
P110 = 38015497418106844664862291991531816509233084067775500201987562671218032336050381463628044115703545766523286857<110>
Number: n N=600253724956827777777889593571298375324011458737641410037337583447615653917558424232237914428509235194183545143746268503264957812846753488921273477 ( 147 digits) SNFS difficulty: 161 digits. Divisors found: r1=15789711189493102093850282846783373661 (pp38) r2=38015497418106844664862291991531816509233084067775500201987562671218032336050381463628044115703545766523286857 (pp110) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 45.27 hours. Scaled time: 61.80 units (timescale=1.365). Factorization parameters were as follows: name: KA_3_7_159 n: 600253724956827777777889593571298375324011458737641410037337583447615653917558424232237914428509235194183545143746268503264957812846753488921273477 skew: 1.16 deg: 5 c5: 17 c0: -35 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:250150, AFBsize:249491, largePrimes:7263434 encountered Relations: rels:6782000, finalFF:559844 Max relations in full relation-set: 28 Initial matrix: 499706 x 559844 with sparse part having weight 36936566. Pruned matrix : 449732 x 452294 with weight 25239638. Total sieving time: 40.93 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.98 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 45.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide
10863+1 is divisible by 1584705713225403483147160166143<31>
101329+1 is divisible by558143308808597896050937412527393543<36>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
5·10179-3 = 4(9)1787<180> = 1900472818297<13> · 143368179663990121285177<24> · 806484427355480910242618688187<30> · C115
C115 = P33 · P82
P33 = 621517573913879824531937479098749<33>
P82 = 3661054312333149079554418503387457027608632989634573487936702648419063794797276451<82>
Number: 49997_179 N=2275409594168246455928757421586717932537118162223751052838379676300521807658832201602602122092595306083443281259799 ( 115 digits) Divisors found: r1=621517573913879824531937479098749 (pp33) r2=3661054312333149079554418503387457027608632989634573487936702648419063794797276451 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.17 hours. Scaled time: 53.93 units (timescale=2.143). Factorization parameters were as follows: name: 49997_179 n: 2275409594168246455928757421586717932537118162223751052838379676300521807658832201602602122092595306083443281259799 skew: 48196.28 # norm 2.56e+15 c5: 17100 c4: -244455031 c3: -4688970535978 c2: 2873460003022738472 c1: -73570840875606184789656 c0: -1602366182681329256539047600 # alpha -5.29 Y1: 1286465858737 Y0: -10587973502887367643287 # Murphy_E 5.24e-10 # M 1767462674691911687831046393184802436937077927791968598803245797389906802841504982740536471287350721141060325879747 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3075001) Primes: RFBsize:256726, AFBsize:256075, largePrimes:7543117 encountered Relations: rels:7471856, finalFF:627137 Max relations in full relation-set: 28 Initial matrix: 512887 x 627137 with sparse part having weight 54070246. Pruned matrix : 419748 x 422376 with weight 33364516. Polynomial selection time: 1.32 hours. Total sieving time: 22.33 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.22 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 25.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By Robert Backstrom / GMP-ECM 5.0 B1=891500, GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
5·10151+3 = 5(0)1503<152> = 443 · 947 · C147
C147 = P35 · P40 · P73
P35 = 16270985621257205906905273044911329<35>
P40 = 1985841848915255165882503532099473704607<40>
P73 = 3688567872296026104787199609577180339676172266118012744852132484083849981<73>
Number: n N=7324912443369749282814026596498825470913846589987658708241984849562150308735119605514615544006418914029296562467 ( 112 digits) SNFS difficulty: 151 digits. Divisors found: r1=1985841848915255165882503532099473704607 (pp40) r2=3688567872296026104787199609577180339676172266118012744852132484083849981 (pp73) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 19.96 hours. Scaled time: 27.26 units (timescale=1.366). Factorization parameters were as follows: name: KA_5_0_150_3 n: 7324912443369749282814026596498825470913846589987658708241984849562150308735119605514615544006418914029296562467 # n: 119183545043037178115040725017341205803761909415738425490023145444447357819989940908798367662167090562808536402230162494845311676888642046524488643 skew: 0.57 deg: 5 c5: 50 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:216516, largePrimes:6804261 encountered Relations: rels:6450784, finalFF:626071 Max relations in full relation-set: 28 Initial matrix: 433397 x 626071 with sparse part having weight 36162324. Pruned matrix : 263684 x 265914 with weight 16092660. Total sieving time: 17.97 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.70 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.96 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10157+3 = 5(0)1563<158> = 53 · 149 · C154
C154 = P77 · P78
P77 = 13437119575793745653860491268913351112372015271429983467581637225087533319599<77>
P78 = 471196096929417376262628665137399248660726397583286864726053838970722199918901<78>
Number: n N=6331518298087881473977459794858807141952640243130302646574648600734456122578194250981385336203621628466506268203115107002659237685196910219070533113840699 ( 154 digits) SNFS difficulty: 157 digits. Divisors found: r1=13437119575793745653860491268913351112372015271429983467581637225087533319599 (pp77) r2=471196096929417376262628665137399248660726397583286864726053838970722199918901 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.27 hours. Scaled time: 38.69 units (timescale=1.322). Factorization parameters were as follows: name: KA_5_0_156_3 n: 6331518298087881473977459794858807141952640243130302646574648600734456122578194250981385336203621628466506268203115107002659237685196910219070533113840699 skew: 0.36 deg: 5 c5: 500 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:250150, AFBsize:249916, largePrimes:7074187 encountered Relations: rels:6675409, finalFF:633608 Max relations in full relation-set: 48 Initial matrix: 500132 x 633608 with sparse part having weight 36398161. Pruned matrix : 379352 x 381916 with weight 17859403. Total sieving time: 26.08 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.92 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 29.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10158+3 = 5(0)1573<159> = 23535093831695777<17> · C143
C143 = P43 · P100
P43 = 3336615942677038549001641449007892174836007<43>
P100 = 6367190586858022590177464026314548769045456613292917746979423848926661873487443619330012203341779877<100>
Number: n N=21244869622173647341125524581467461321857532311440306649055866165271370428262898974355677169015308439811677066930201131833443993338133967631139 ( 143 digits) SNFS difficulty: 159 digits. Divisors found: r1=3336615942677038549001641449007892174836007 (pp43) r2=6367190586858022590177464026314548769045456613292917746979423848926661873487443619330012203341779877 (pp100) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.31 hours. Scaled time: 42.38 units (timescale=1.446). Factorization parameters were as follows: name: KA_5_0_157_3 n: 21244869622173647341125524581467461321857532311440306649055866165271370428262898974355677169015308439811677066930201131833443993338133967631139 skew: 1.13 deg: 5 c5: 8 c0: 15 m: 50000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:249771, largePrimes:7121193 encountered Relations: rels:6715214, finalFF:623828 Max relations in full relation-set: 28 Initial matrix: 499986 x 623828 with sparse part having weight 35936151. Pruned matrix : 388924 x 391487 with weight 18826913. Total sieving time: 25.99 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.08 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 29.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
5·10152+3 = 5(0)1513<153> = 14869 · C149
C149 = P57 · P93
P57 = 135268966532217716081858222979343678676268459159986363363<57>
P93 = 248593672856895851344394797338957581879512075361661154360125070884478563005695290561420504349<93>
Number: n N=33627009213800524581343735288183468962270495662115811419732329006658147824332503867106059587060326854529558141098930661107001143318313269217835765687 ( 149 digits) SNFS difficulty: 152 digits. Divisors found: r1=135268966532217716081858222979343678676268459159986363363 (pp57) r2=248593672856895851344394797338957581879512075361661154360125070884478563005695290561420504349 (pp93) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.70 hours. Scaled time: 29.56 units (timescale=1.197). Factorization parameters were as follows: name: KA_5_0_151_3 n: 33627009213800524581343735288183468962270495662115811419732329006658147824332503867106059587060326854529558141098930661107001143318313269217835765687 type: snfs skew: 0.36 deg: 5 c5: 500 c0: 3 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:6041357 encountered Relations: rels:5535427, finalFF:506590 Max relations in full relation-set: 28 Initial matrix: 433818 x 506590 with sparse part having weight 22617044. Pruned matrix : 360584 x 362817 with weight 12620042. Total sieving time: 22.48 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.96 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 24.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs, GGNFS-0.77.1-20050930-nocona
(7·10160-1)/3 = 2(3)160<161> = 767759 · 101791091 · 144095279191<12> · 35667897961095649947526145377069<32> · C104
C104 = P50 · P54
P50 = 62240253527047472580312971081891307447294255689341<50>
P54 = 933347736560011308158563114276369605838717858921125863<54>
Number: 23333_160 N=58091799752391019095159666661111369201684177850360308694417611514513839600421435152360645238364888526283 ( 104 digits) Divisors found: r1=62240253527047472580312971081891307447294255689341 (pp50) r2=933347736560011308158563114276369605838717858921125863 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.76 hours. Scaled time: 14.49 units (timescale=2.143). Factorization parameters were as follows: name: 23333_160 n: 58091799752391019095159666661111369201684177850360308694417611514513839600421435152360645238364888526283 skew: 3825.25 # norm 1.63e+14 c5: 583440 c4: 2326542356 c3: -1039085397060 c2: -24696191837440549 c1: -63642552109250830002 c0: 197660511380706138491336 # alpha -5.58 Y1: 23540119783 Y0: -39776221118266163853 # Murphy_E 2.00e-09 # M 24646029232970984534273208895494097189591808184433543572167780495792969620406958018181523786806597925930 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:135103, largePrimes:4502987 encountered Relations: rels:4540682, finalFF:378476 Max relations in full relation-set: 28 Initial matrix: 270263 x 378476 with sparse part having weight 34673689. Pruned matrix : 213384 x 214799 with weight 18092350. Polynomial selection time: 0.39 hours. Total sieving time: 6.00 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.20 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 6.76 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
(8·10157+1)/9 = (8)1569<157> = 3 · 167 · 643 · 386810729226965311961660138063<30> · C122
C122 = P57 · P66
P57 = 584698862250581133160768195196298297489539613970663689401<57>
P66 = 122002299998521265446868714174191654500476089207312611183964015921<66>
Number: 88889_157 N=71334606001089460171433505241882854150874389311670197254671100147853471919307059160203441539544459417073704994902162953321 ( 122 digits) SNFS difficulty: 157 digits. Divisors found: r1=584698862250581133160768195196298297489539613970663689401 (pp57) r2=122002299998521265446868714174191654500476089207312611183964015921 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 19.80 hours. Scaled time: 42.41 units (timescale=2.142). Factorization parameters were as follows: n: 71334606001089460171433505241882854150874389311670197254671100147853471919307059160203441539544459417073704994902162953321 m: 20000000000000000000000000000000 c5: 25 c0: 1 skew: 0.53 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216556, largePrimes:5671234 encountered Relations: rels:5704347, finalFF:614436 Max relations in full relation-set: 28 Initial matrix: 433436 x 614436 with sparse part having weight 47552480. Pruned matrix : 325242 x 327473 with weight 29562975. Total sieving time: 19.05 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.62 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 19.80 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By JMB / GMP-ECM B1=1000000
5·10180+3 = 5(0)1793<181> = 3636511 · 10065320359<11> · 170781899320909<15> · C150
C150 = P35 · P116
P35 = 28365504652386968928074018263317721<35>
P116 = 28198443896462682489337688478809235310463625892214771261649188513799597672988910349570886709139480460830651399289823<116>
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000
(89·10159+1)/9 = 9(8)1589<160> = 11 · 1607 · 117727 · 9898242372013<13> · C138
C138 = P36 · P102
P36 = 748314670082521201732646760076033103<36>
P102 = 641535236229688185049707266010883443210404427579829424348071950643837839950313319024896633402043943969<102>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, GGNFS-0.77.1-20050930-nocona gnfs, GMP-ECM 6.1.2 B1=1000000
5·10149+3 = 5(0)1483<150> = 7 · 1931 · C146
C146 = P70 · P76
P70 = 5243209539041849099760187057760329315540666673453359958582230909941313<70>
P76 = 7054926221581529213954354507669417037749392705948230321975121930804768049743<76>
Number: 50003_149 N=36990456462232743952060368424946363838129762521269512465783827772434711844344159206924613449729969667825700969149959310497891543981652733594732559 ( 146 digits) SNFS difficulty: 150 digits. Divisors found: r1=5243209539041849099760187057760329315540666673453359958582230909941313 (pp70) r2=7054926221581529213954354507669417037749392705948230321975121930804768049743 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.32 hours. Scaled time: 22.11 units (timescale=2.143). Factorization parameters were as follows: n: 36990456462232743952060368424946363838129762521269512465783827772434711844344159206924613449729969667825700969149959310497891543981652733594732559 m: 1000000000000000000000000000000 c5: 1 c0: 6 skew: 1.43 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:135038, largePrimes:3902867 encountered Relations: rels:4084643, finalFF:460007 Max relations in full relation-set: 28 Initial matrix: 270174 x 460007 with sparse part having weight 43534247. Pruned matrix : 208806 x 210220 with weight 19236951. Total sieving time: 10.03 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.21 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10165+3 = 5(0)1643<166> = 107 · 3347 · 76127449 · 526115281 · 8629342554611<13> · 669110924591646330515236469<27> · C104
C104 = P44 · P60
P44 = 90824126989341694860705521906459719377905473<44>
P60 = 664708541046310574292268644887995665738412289611807142993429<60>
Number: 50003_165 N=60371572942890158021797115986528632028025448079180506843525853489532798120896719516288434944161422136917 ( 104 digits) Divisors found: r1=90824126989341694860705521906459719377905473 (pp44) r2=664708541046310574292268644887995665738412289611807142993429 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.17 hours. Scaled time: 13.22 units (timescale=2.141). Factorization parameters were as follows: name: 50003_165 n: 60371572942890158021797115986528632028025448079180506843525853489532798120896719516288434944161422136917 skew: 7512.98 # norm 2.02e+14 c5: 166500 c4: -1914787896 c3: -27411196426603 c2: 131255323836306125 c1: 909402917800101582079 c0: -10830259771894865408765 # alpha -5.96 Y1: 44183744759 Y0: -51509164741546869936 # Murphy_E 2.11e-09 # M 17593451203521667606384512745223636260136127566053466928071642609603807329680876842845993513292579249217 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1680001) Primes: RFBsize:135072, AFBsize:134796, largePrimes:4380469 encountered Relations: rels:4317631, finalFF:327814 Max relations in full relation-set: 28 Initial matrix: 269947 x 327814 with sparse part having weight 26520107. Pruned matrix : 232660 x 234073 with weight 15995712. Polynomial selection time: 0.39 hours. Total sieving time: 5.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.22 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 6.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
(71·10159-17)/9 = 7(8)1587<160> = 32 · 11 · 19 · 1109 · 3623 · 5261 · 267040418211849516599855437<27> · C120
C120 = P35 · P86
P35 = 40952345579027162659509811761961327<35>
P86 = 18142748524569935341717716457506943467605125808300221525169648512901304619161112676899<86>
(7·10160-1)/3 = 2(3)160<161> = 767759 · 101791091 · 144095279191<12> · C136
C136 = P32 · C104
P32 = 35667897961095649947526145377069<32>
C104 = [58091799752391019095159666661111369201684177850360308694417611514513839600421435152360645238364888526283<104>]
By suberi / GMP-ECM 6.1.2 B1=1000000
5·10173+3 = 5(0)1723<174> = 7 · 313 · 169061906987<12> · C160
C160 = P32 · P128
P32 = 59249254073379949902901368057587<32>
P128 = 22782373957682117221393919745453826568924577598689253992144435924521117243880060681895434415464594199441242777852408944634407357<128>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(19·10157-1)/9 = 2(1)157<158> = 3 · 7 · 4129 · 4139 · 136082245808735331544874467<27> · C123
C123 = P61 · P62
P61 = 6186192101868302643109806651993561689864386250254698505182203<61>
P62 = 69875771724775887872374741822268114523219808403456062141215761<62>
Number: n N=432264947155761060829306720543648014786687216349608237446155217915853935721724780996199161863813705702775908099453240301483 ( 123 digits) SNFS difficulty: 158 digits. Divisors found: r1=6186192101868302643109806651993561689864386250254698505182203 (pp61) r2=69875771724775887872374741822268114523219808403456062141215761 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.81 hours. Scaled time: 54.75 units (timescale=1.195). Factorization parameters were as follows: name: KA_2_1_157 n: 432264947155761060829306720543648014786687216349608237446155217915853935721724780996199161863813705702775908099453240301483 type: snfs skew: 0.22 deg: 5 c5: 1900 c0: -1 m: 10000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:249896, largePrimes:6865713 encountered Relations: rels:6360045, finalFF:568119 Max relations in full relation-set: 28 Initial matrix: 500113 x 568119 with sparse part having weight 30885928. Pruned matrix : 436560 x 439124 with weight 19548005. Total sieving time: 41.67 hours. Total relation processing time: 0.24 hours. Matrix solve time: 3.79 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 45.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
5·10136+3 = 5(0)1353<137> = 229 · 82132721813<11> · C124
C124 = P58 · P66
P58 = 5824999790723064946307734440392437977214744000689735893063<58>
P66 = 456375574500296265791802787296814526424506695836333278231520021053<66>
Number: n N=2658387625955344283447253598161736872225766192093870684024282834889948633340957531901645111619482902526329350996955516655339 ( 124 digits) SNFS difficulty: 136 digits. Divisors found: r1=5824999790723064946307734440392437977214744000689735893063 (pp58) r2=456375574500296265791802787296814526424506695836333278231520021053 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.26 hours. Scaled time: 6.96 units (timescale=1.324). Factorization parameters were as follows: name: KA_5_0_135_3 n: 2658387625955344283447253598161736872225766192093870684024282834889948633340957531901645111619482902526329350996955516655339 skew: 0.57 deg: 5 c5: 50 c0: 3 m: 1000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 500001) Primes: RFBsize:183072, AFBsize:182856, largePrimes:5537962 encountered Relations: rels:5074935, finalFF:454061 Max relations in full relation-set: 48 Initial matrix: 365993 x 454061 with sparse part having weight 18698401. Pruned matrix : 276551 x 278444 with weight 8183715. Total sieving time: 4.18 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.82 hours. Total square root time: 0.13 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,75000 total time: 5.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(73·10178-1)/9 = 8(1)178<179> = 3 · C179
C179 = P76 · P104
P76 = 1916119867312670924752148611535640415033386450801802237208935853302075657931<76>
P104 = 14110305674642407281721016340336939892095295727428257624280415428343597811358551505074904645162638085927<104>
Number: n N=27037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 ( 179 digits) SNFS difficulty: 179 digits. Divisors found: r1=1916119867312670924752148611535640415033386450801802237208935853302075657931 (pp76) r2=14110305674642407281721016340336939892095295727428257624280415428343597811358551505074904645162638085927 (pp104) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 432.02 hours. Scaled time: 590.57 units (timescale=1.367). Factorization parameters were as follows: name: KA_8_1_178 n: 27037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 skew: 0.11 deg: 5 c5: 73000 c0: -1 m: 100000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 17500001) Primes: RFBsize:380800, AFBsize:380932, largePrimes:10269650 encountered Relations: rels:10024620, finalFF:853883 Max relations in full relation-set: 28 Initial matrix: 761799 x 853883 with sparse part having weight 106544632. Pruned matrix : 703884 x 707756 with weight 90829890. Total sieving time: 405.67 hours. Total relation processing time: 1.62 hours. Matrix solve time: 24.13 hours. Total square root time: 0.60 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,179,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 432.02 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10137+3 = 5(0)1363<138> = 7 · 3343 · 1231884389<10> · C125
C125 = P56 · P70
P56 = 14133656423605033089328341238732583072598888641345800951<56>
P70 = 1227188017945406154897963678957290689881567366655657179710045847933577<70>
Number: n N=17344653812805218322201570213942926988367052498223811015981967787777496609303098136878312186566884764798888346267889311431727 ( 125 digits) SNFS difficulty: 137 digits. Divisors found: r1=14133656423605033089328341238732583072598888641345800951 (pp56) r2=1227188017945406154897963678957290689881567366655657179710045847933577 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.48 hours. Scaled time: 7.74 units (timescale=1.195). Factorization parameters were as follows: name: KA_5_0_136_3 n: 17344653812805218322201570213942926988367052498223811015981967787777496609303098136878312186566884764798888346267889311431727 type: snfs skew: 0.36 deg: 5 c5: 500 c0: 3 m: 1000000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:148735, largePrimes:5741066 encountered Relations: rels:5246168, finalFF:473203 Max relations in full relation-set: 28 Initial matrix: 297734 x 473203 with sparse part having weight 21419198. Pruned matrix : 149345 x 150897 with weight 8231855. Total sieving time: 5.80 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.48 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.3,2.3,75000 total time: 6.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
5·10144+3 = 5(0)1433<145> = 53 · C143
C143 = P67 · P77
P67 = 8915485535218874463020966252542555006448848732763244901456195853393<67>
P77 = 10581546262269091742312886939766011985159784242637011168380827339866200032807<77>
Number: n N=94339622641509433962264150943396226415094339622641509433962264150943396226415094339622641509433962264150943396226415094339622641509433962264151 ( 143 digits) SNFS difficulty: 145 digits. Divisors found: r1=8915485535218874463020966252542555006448848732763244901456195853393 (pp67) r2=10581546262269091742312886939766011985159784242637011168380827339866200032807 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.42 hours. Scaled time: 9.79 units (timescale=1.320). Factorization parameters were as follows: name: KA_5_0_143_3 n: 94339622641509433962264150943396226415094339622641509433962264150943396226415094339622641509433962264150943396226415094339622641509433962264151 skew: 1.43 deg: 5 c5: 1 c0: 6 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:183072, AFBsize:183151, largePrimes:6364163 encountered Relations: rels:5878097, finalFF:499432 Max relations in full relation-set: 48 Initial matrix: 366287 x 499432 with sparse part having weight 26509055. Pruned matrix : 248154 x 250049 with weight 10949064. Total sieving time: 6.14 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.04 hours. Total square root time: 0.08 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 7.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
5·10154+3 = 5(0)1533<155> = 31 · 4021 · C150
C150 = P36 · P115
P36 = 167160802616143494509108495516497129<36>
P115 = 2399605173928420299498820740137566306845129879546122780196166540333527775067120892884179276851300720910497809301857<115>
Number: n N=401119926835725345163697042141659513361304762898011247402748473738678390065061652132754650985551660235377173067203632542057424328725802440413634868553 ( 150 digits) SNFS difficulty: 155 digits. Divisors found: r1=167160802616143494509108495516497129 (pp36) r2=2399605173928420299498820740137566306845129879546122780196166540333527775067120892884179276851300720910497809301857 (pp115) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.03 hours. Scaled time: 26.12 units (timescale=1.449). Factorization parameters were as follows: name: KA_5_0_153_3 n: 401119926835725345163697042141659513361304762898011247402748473738678390065061652132754650985551660235377173067203632542057424328725802440413634868553 skew: 1.43 deg: 5 c5: 1 c0: 6 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:216821, largePrimes:6423682 encountered Relations: rels:5914055, finalFF:487619 Max relations in full relation-set: 28 Initial matrix: 433701 x 487619 with sparse part having weight 27166609. Pruned matrix : 381771 x 384003 with weight 17076701. Total sieving time: 15.26 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.48 hours. Total square root time: 0.15 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 18.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / Msieve v. 1.21, GGNFS-0.77.1-20050930-nocona gnfs
5·10160+3 = 5(0)1593<161> = 2207 · 7760503636757<13> · 120355074834623<15> · 82551714075637674821552052888550681<35> · C96
C96 = P43 · P54
P43 = 1770092901260328461943147499208826822490849<43>
P54 = 165993545605717346668480035353143215370070055379374031<54>
Sat Jul 14 21:15:30 2007 Sat Jul 14 21:15:30 2007 Sat Jul 14 21:15:30 2007 Msieve v. 1.21 Sat Jul 14 21:15:30 2007 random seeds: 7cf136d0 06e41b3c Sat Jul 14 21:15:30 2007 factoring 293823996731712864770458618120875378669709169546409049689172378069092682226620668855969845742319 (96 digits) Sat Jul 14 21:15:30 2007 commencing quadratic sieve (96-digit input) Sat Jul 14 21:15:30 2007 using multiplier of 1 Sat Jul 14 21:15:30 2007 using 32kb Intel Core sieve core Sat Jul 14 21:15:30 2007 sieve interval: 36 blocks of size 32768 Sat Jul 14 21:15:30 2007 processing polynomials in batches of 6 Sat Jul 14 21:15:30 2007 using a sieve bound of 2258261 (83529 primes) Sat Jul 14 21:15:30 2007 using large prime bound of 338739150 (28 bits) Sat Jul 14 21:15:30 2007 using double large prime bound of 2258175411908100 (43-52 bits) Sat Jul 14 21:15:30 2007 using trial factoring cutoff of 52 bits Sat Jul 14 21:15:30 2007 polynomial 'A' values have 12 factors Sun Jul 15 00:30:57 2007 83772 relations (20431 full + 63341 combined from 1261659 partial), need 83625 Sun Jul 15 00:30:57 2007 begin with 1282090 relations Sun Jul 15 00:30:58 2007 reduce to 219241 relations in 10 passes Sun Jul 15 00:30:58 2007 attempting to read 219241 relations Sun Jul 15 00:31:00 2007 recovered 219241 relations Sun Jul 15 00:31:00 2007 recovered 203549 polynomials Sun Jul 15 00:31:00 2007 attempting to build 83772 cycles Sun Jul 15 00:31:00 2007 found 83772 cycles in 6 passes Sun Jul 15 00:31:00 2007 distribution of cycle lengths: Sun Jul 15 00:31:00 2007 length 1 : 20431 Sun Jul 15 00:31:00 2007 length 2 : 14459 Sun Jul 15 00:31:00 2007 length 3 : 13979 Sun Jul 15 00:31:00 2007 length 4 : 11430 Sun Jul 15 00:31:00 2007 length 5 : 8505 Sun Jul 15 00:31:00 2007 length 6 : 5874 Sun Jul 15 00:31:00 2007 length 7 : 3781 Sun Jul 15 00:31:00 2007 length 9+: 5313 Sun Jul 15 00:31:00 2007 largest cycle: 25 relations Sun Jul 15 00:31:00 2007 matrix is 83529 x 83772 with weight 5702285 (avg 68.07/col) Sun Jul 15 00:31:01 2007 filtering completed in 3 passes Sun Jul 15 00:31:01 2007 matrix is 82006 x 82070 with weight 5508650 (avg 67.12/col) Sun Jul 15 00:31:02 2007 saving the first 48 matrix rows for later Sun Jul 15 00:31:02 2007 matrix is 81958 x 82070 with weight 4517163 (avg 55.04/col) Sun Jul 15 00:31:02 2007 matrix includes 32 packed rows Sun Jul 15 00:31:02 2007 using block size 32828 for processor cache size 4096 kB Sun Jul 15 00:31:40 2007 lanczos halted after 1298 iterations Sun Jul 15 00:31:40 2007 recovered 16 nontrivial dependencies Sun Jul 15 00:31:40 2007 prp43 factor: 1770092901260328461943147499208826822490849 Sun Jul 15 00:31:40 2007 prp54 factor: 165993545605717346668480035353143215370070055379374031 Sun Jul 15 00:31:40 2007 elapsed time 03:16:10
5·10156+3 = 5(0)1553<157> = 17 · 19 · 353 · 9781 · 2903959 · 3738923 · 48999199953669556762469285191647229<35> · C100
C100 = P44 · P57
P44 = 16220542161012079506892689114089790259652611<44>
P57 = 519539008028015605717126723388083053475004321678810798119<57>
Number: 50003_156 N=8427204384008820376729101935985157281095142510409891407641557472295423610841518758316232116592238709 ( 100 digits) Divisors found: r1=16220542161012079506892689114089790259652611 (pp44) r2=519539008028015605717126723388083053475004321678810798119 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.73 hours. Scaled time: 7.99 units (timescale=2.143). Factorization parameters were as follows: name: 50003_156 n: 8427204384008820376729101935985157281095142510409891407641557472295423610841518758316232116592238709 skew: 3444.23 # norm 9.10e+13 c5: 173280 c4: -628911052 c3: 10329441200556 c2: -274954422866913 c1: -77119095993536940626 c0: -44666410367268089640360 # alpha -6.59 Y1: 27461304337 Y0: -8657410638244314449 # Murphy_E 3.57e-09 # M 7478100621744003382968441551055951149169645585010492469244137615838640289772215551370324908911734284 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113396, largePrimes:3918665 encountered Relations: rels:3901134, finalFF:350563 Max relations in full relation-set: 28 Initial matrix: 227632 x 350563 with sparse part having weight 27724694. Pruned matrix : 160476 x 161678 with weight 11045630. Polynomial selection time: 0.25 hours. Total sieving time: 3.27 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 3.73 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10159+3 = 5(0)1583<160> = C160
C160 = P44 · P116
P44 = 83066365779588590821426749068056416859826527<44>
P116 = 60192834405048939466899798943567903902651745875844194867985009267232595787118690954252254004124505688435636777703389<116>
Number: 50003_159 N=5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 160 digits) SNFS difficulty: 160 digits. Divisors found: r1=83066365779588590821426749068056416859826527 (pp44) r2=60192834405048939466899798943567903902651745875844194867985009267232595787118690954252254004124505688435636777703389 (pp116) Version: GGNFS-0.77.1-20050930-nocona Total time: 24.58 hours. Scaled time: 51.97 units (timescale=2.114). Factorization parameters were as follows: n: 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 100000000000000000000000000000000 c5: 1 c0: 6 skew: 1.43 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3400001) Primes: RFBsize:283146, AFBsize:283322, largePrimes:5636652 encountered Relations: rels:5694712, finalFF:681230 Max relations in full relation-set: 28 Initial matrix: 566532 x 681230 with sparse part having weight 41699472. Pruned matrix : 471507 x 474403 with weight 26271016. Total sieving time: 23.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 1.18 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 24.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By JMB / GGNFS
5·10145+3 = 5(0)1443<146> = 10903 · 323797439456498340561904697913457873787<39> · C104
C104 = P46 · P58
P46 = 2465188889777582684991267296272427043966702509<46>
P58 = 5745136880246153704523428561631148137811827694096870119147<58>
By JMB / GMP-ECM B1=1000000
5·10178+3 = 5(0)1773<179> = 61 · 5813 · C174
C174 = P34 · C141
P34 = 1266095772152669053113048638910331<34>
C141 = [111371299677925599229304910106423605557497863192994526047063490147240879819809490792264436773201047749707743497289808646191385677866285614841<141>]
5·10172+3 = 5(0)1713<173> = 17 · 9089719 · 870832992287<12> · 13385200156201<14> · 47347314846917<14> · 724273923844727<15> · C111
C111 = P36 · P76
P36 = 199380097814707075827853407010411667<36>
P76 = 4060045237533688631179618384328067264911276818684333348445532508588775649451<76>
5·10179+3 = 5(0)1783<180> = 7 · 6581 · 274649101458389267214457<24> · 17442996660668102907927206569<29> · C124
C124 = P38 · P86
P38 = 58420054131152676580667221137068677907<38>
P86 = 38780985245897447564182837100518071852832635692767107596372080155550102208945138108939<86>
5·10145+3 = 5(0)1443<146> = 10903 · C142
C142 = P39 · C104
P39 = 323797439456498340561904697913457873787<39>
C104 = [14162847607434260658361502210554839882035030992737898227692191559764168402119735000385403725547533839823<104>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, GMP-ECM 6.1.2 B1=1000000
5·10130+3 = 5(0)1293<131> = 349 · C129
C129 = P45 · P84
P45 = 223050252687486781077222133508703494233225969<45>
P84 = 642305820856559171936319435779114051384175861818268799381835937621892642342986131663<84>
Number: 50003_130 N=143266475644699140401146131805157593123209169054441260744985673352435530085959885386819484240687679083094555873925501432664756447 ( 129 digits) SNFS difficulty: 130 digits. Divisors found: r1=223050252687486781077222133508703494233225969 (pp45) r2=642305820856559171936319435779114051384175861818268799381835937621892642342986131663 (pp84) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.97 hours. Scaled time: 4.23 units (timescale=2.144). Factorization parameters were as follows: n: 143266475644699140401146131805157593123209169054441260744985673352435530085959885386819484240687679083094555873925501432664756447 m: 100000000000000000000000000 c5: 5 c0: 3 skew: 0.9 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78421, largePrimes:1491823 encountered Relations: rels:1505178, finalFF:190379 Max relations in full relation-set: 28 Initial matrix: 156984 x 190379 with sparse part having weight 9500964. Pruned matrix : 140981 x 141829 with weight 5530242. Total sieving time: 1.90 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10131+3 = 5(0)1303<132> = 7 · 53 · 4048842607<10> · C120
C120 = P48 · P72
P48 = 523541404697611061806834745219853229328170446317<48>
P72 = 635790693115827427508005325491084683125703813484245526914108384957137147<72>
Number: 50003_131 N=332862752567528046530685118837102160591749923555522639241418808436225983242944407127183464433987927779293409445570037599 ( 120 digits) SNFS difficulty: 131 digits. Divisors found: r1=523541404697611061806834745219853229328170446317 (pp48) r2=635790693115827427508005325491084683125703813484245526914108384957137147 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.42 hours. Scaled time: 5.12 units (timescale=2.118). Factorization parameters were as follows: n: 332862752567528046530685118837102160591749923555522639241418808436225983242944407127183464433987927779293409445570037599 m: 100000000000000000000000000 c5: 50 c0: 3 skew: 0.57 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78466, largePrimes:1559164 encountered Relations: rels:1595536, finalFF:210853 Max relations in full relation-set: 28 Initial matrix: 157029 x 210853 with sparse part having weight 10838743. Pruned matrix : 135540 x 136389 with weight 5520586. Total sieving time: 2.34 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.42 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10132+3 = 5(0)1313<133> = 16187 · C129
C129 = P59 · P71
P59 = 18572566704029876782615951371188489713635855833627934104693<59>
P71 = 16631511131550278291805996309948604657716454712748581690326108061640533<71>
Number: 50003_132 N=308889849879532958546982146166676962994995984431951566071538889232099833199481065052202384629641069994439982702168406746154321369 ( 129 digits) SNFS difficulty: 134 digits. Divisors found: r1=18572566704029876782615951371188489713635855833627934104693 (pp59) r2=16631511131550278291805996309948604657716454712748581690326108061640533 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.52 hours. Scaled time: 5.41 units (timescale=2.144). Factorization parameters were as follows: n: 308889849879532958546982146166676962994995984431951566071538889232099833199481065052202384629641069994439982702168406746154321369 m: 500000000000000000000000000 c5: 4 c0: 75 skew: 1.8 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1150001) Primes: RFBsize:107126, AFBsize:106673, largePrimes:1795749 encountered Relations: rels:1865223, finalFF:245894 Max relations in full relation-set: 28 Initial matrix: 213863 x 245894 with sparse part having weight 12440753. Pruned matrix : 192707 x 193840 with weight 7862026. Total sieving time: 2.38 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,134,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 2.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10133+3 = 5(0)1323<134> = 11057031539<11> · C124
C124 = P42 · P82
P42 = 886544732452880113982144287654486535090287<42>
P82 = 5100711993689431955514377563639991758308507294250704290195426082082810455667928671<82>
Number: 50003_133 N=4522009349764594173325890157795994688624718772270474935469929475797618053624329089471361776496421369211037031120835260918577 ( 124 digits) SNFS difficulty: 135 digits. Divisors found: r1=886544732452880113982144287654486535090287 (pp42) r2=5100711993689431955514377563639991758308507294250704290195426082082810455667928671 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.78 hours. Scaled time: 5.91 units (timescale=2.128). Factorization parameters were as follows: n: 4522009349764594173325890157795994688624718772270474935469929475797618053624329089471361776496421369211037031120835260918577 m: 1000000000000000000000000000 c5: 1 c0: 60 skew: 2.27 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:106993, largePrimes:1858990 encountered Relations: rels:1990762, finalFF:296586 Max relations in full relation-set: 28 Initial matrix: 214183 x 296586 with sparse part having weight 15830089. Pruned matrix : 168876 x 170010 with weight 7418709. Total sieving time: 2.66 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 2.78 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
(19·10160-1)/9 = 2(1)160<161> = 32 · 15418862204910161<17> · C144
C144 = P33 · P111
P33 = 198440143099519652057552815018259<33>
P111 = 766631611792914428985345616031997540862285764082560979052617179307561469122129221254517402352149820216246478021<111>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(89·10158+1)/9 = 9(8)1579<159> = 19 · 1301 · 153009010613<12> · C144
C144 = P63 · P81
P63 = 424900550000295550092866554354772812998171689914130662333763053<63>
P81 = 615335965218209178221823895527708916744280900160476438475349268969266385168270279<81>
Number: n N=261456590056179812443165367795872934768914215004307843412220192729070446047275621879186181977133609132560926795382217178649634421230505048201787 ( 144 digits) SNFS difficulty: 159 digits. Divisors found: r1=424900550000295550092866554354772812998171689914130662333763053 (pp63) r2=615335965218209178221823895527708916744280900160476438475349268969266385168270279 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.67 hours. Scaled time: 48.65 units (timescale=1.445). Factorization parameters were as follows: name: KA_9_8_157_9 n: 261456590056179812443165367795872934768914215004307843412220192729070446047275621879186181977133609132560926795382217178649634421230505048201787 skew: 0.10 deg: 5 c5: 89000 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:249496, largePrimes:6906833 encountered Relations: rels:6429793, finalFF:563547 Max relations in full relation-set: 28 Initial matrix: 499713 x 563547 with sparse part having weight 31998849. Pruned matrix : 438837 x 441399 with weight 20235550. Total sieving time: 28.59 hours. Total relation processing time: 0.20 hours. Matrix solve time: 4.48 hours. Total square root time: 0.40 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 33.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(7·10157-61)/9 = (7)1561<157> = 536746193918741<15> · 74325871959677983<17> · C126
C126 = P57 · P69
P57 = 664828967518681180559161523946360773815099210144871733241<57>
P69 = 293249047514706248599001187604405935292797388117330624974946437107177<69>
Number: n N=194960461485038834727296645467655591808226295435757088586794057750949454544474226631511051570795485756565910575024330070570657 ( 126 digits) SNFS difficulty: 157 digits. Divisors found: r1=664828967518681180559161523946360773815099210144871733241 (pp57) r2=293249047514706248599001187604405935292797388117330624974946437107177 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.28 hours. Scaled time: 57.26 units (timescale=1.323). Factorization parameters were as follows: name: KA_7_156_1 n: 194960461485038834727296645467655591808226295435757088586794057750949454544474226631511051570795485756565910575024330070570657 skew: 0.61 deg: 5 c5: 700 c0: -61 m: 10000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:249972, largePrimes:7243078 encountered Relations: rels:6755304, finalFF:568264 Max relations in full relation-set: 48 Initial matrix: 500189 x 568264 with sparse part having weight 39667025. Pruned matrix : 443449 x 446013 with weight 25263932. Total sieving time: 37.86 hours. Total relation processing time: 0.28 hours. Matrix solve time: 5.05 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 43.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / Msieve v. 1.21, GMP-ECM 6.1.2 B1=1000000
5·10168+3 = 5(0)1673<169> = 30261601 · 890150258236321<15> · 498727304848409587637<21> · 142978063635046612431340573579<30> · C97
C97 = P44 · P54
P44 = 12718944880656352612135685179437522176294183<44>
P54 = 204659137232336784991399810699824456814839775637627027<54>
Sat Jul 14 01:19:05 2007 Sat Jul 14 01:19:05 2007 Sat Jul 14 01:19:05 2007 Msieve v. 1.21 Sat Jul 14 01:19:05 2007 random seeds: 2c6b3972 03752bf5 Sat Jul 14 01:19:05 2007 factoring 2603048285780775881221905377785187247573247246016520013086521779141708972201219207045854783683941 (97 digits) Sat Jul 14 01:19:05 2007 commencing quadratic sieve (97-digit input) Sat Jul 14 01:19:06 2007 using multiplier of 61 Sat Jul 14 01:19:06 2007 using 32kb Intel Core sieve core Sat Jul 14 01:19:06 2007 sieve interval: 36 blocks of size 32768 Sat Jul 14 01:19:06 2007 processing polynomials in batches of 6 Sat Jul 14 01:19:06 2007 using a sieve bound of 2361367 (87059 primes) Sat Jul 14 01:19:06 2007 using large prime bound of 354205050 (28 bits) Sat Jul 14 01:19:06 2007 using double large prime bound of 2447138225130900 (43-52 bits) Sat Jul 14 01:19:06 2007 using trial factoring cutoff of 52 bits Sat Jul 14 01:19:06 2007 polynomial 'A' values have 13 factors Sat Jul 14 05:43:47 2007 87427 relations (21313 full + 66114 combined from 1303942 partial), need 87155 Sat Jul 14 05:43:48 2007 begin with 1325255 relations Sat Jul 14 05:43:48 2007 reduce to 228294 relations in 12 passes Sat Jul 14 05:43:48 2007 attempting to read 228294 relations Sat Jul 14 05:43:50 2007 recovered 228294 relations Sat Jul 14 05:43:50 2007 recovered 215876 polynomials Sat Jul 14 05:43:51 2007 attempting to build 87427 cycles Sat Jul 14 05:43:51 2007 found 87427 cycles in 6 passes Sat Jul 14 05:43:51 2007 distribution of cycle lengths: Sat Jul 14 05:43:51 2007 length 1 : 21313 Sat Jul 14 05:43:51 2007 length 2 : 15209 Sat Jul 14 05:43:51 2007 length 3 : 14610 Sat Jul 14 05:43:51 2007 length 4 : 12030 Sat Jul 14 05:43:51 2007 length 5 : 8885 Sat Jul 14 05:43:51 2007 length 6 : 6060 Sat Jul 14 05:43:51 2007 length 7 : 3877 Sat Jul 14 05:43:51 2007 length 9+: 5443 Sat Jul 14 05:43:51 2007 largest cycle: 25 relations Sat Jul 14 05:43:51 2007 matrix is 87059 x 87427 with weight 5727486 (avg 65.51/col) Sat Jul 14 05:43:51 2007 filtering completed in 3 passes Sat Jul 14 05:43:51 2007 matrix is 85635 x 85699 with weight 5541486 (avg 64.66/col) Sat Jul 14 05:43:53 2007 saving the first 48 matrix rows for later Sat Jul 14 05:43:53 2007 matrix is 85587 x 85699 with weight 4247055 (avg 49.56/col) Sat Jul 14 05:43:53 2007 matrix includes 32 packed rows Sat Jul 14 05:43:53 2007 using block size 34279 for processor cache size 4096 kB Sat Jul 14 05:44:30 2007 lanczos halted after 1355 iterations Sat Jul 14 05:44:30 2007 recovered 14 nontrivial dependencies Sat Jul 14 05:44:30 2007 prp44 factor: 12718944880656352612135685179437522176294183 Sat Jul 14 05:44:30 2007 prp54 factor: 204659137232336784991399810699824456814839775637627027 Sat Jul 14 05:44:30 2007 elapsed time 04:25:25
5·10127+3 = 5(0)1263<128> = 1063 · 19759 · 9528013351973<13> · C108
C108 = P36 · P73
P36 = 231486198826356536297596881484840829<36>
P73 = 1079305320539789652825036330387473369897040690627974500945419108513238427<73>
5·10126+3 = 5(0)1253<127> = 23 · 32869 · C121
C121 = P40 · P82
P40 = 1771845148714035530042375961149100976639<40>
P82 = 3732758672015730547173100481173208742246650750942529540645311897013388939508906671<82>
5·10177+3 = 5(0)1763<178> = C178
C178 = P30 · C149
P30 = 176218992155079534631185354899<30>
C149 = [28373786155806670640998399527341074498848269897625772403660234914777229704006772677455191720133985486886631783071384944023777763803864984794834905297<149>]
By JMB / GMP-ECM B1=1000000
5·10187+3 = 5(0)1863<188> = 43951 · 881623824379321<15> · C169
C169 = P34 · P135
P34 = 7538781648531214385240912695837561<34>
P135 = 171165708092478089670945899225361876860032835861904429144861641040302889862809476562441735553451758084446668158294751605231000217623613<135>
5·10156+3 = 5(0)1553<157> = 17 · 19 · 353 · 9781 · 2903959 · 3738923 · C135
C135 = P35 · C100
P35 = 48999199953669556762469285191647229<35>
C100 = [8427204384008820376729101935985157281095142510409891407641557472295423610841518758316232116592238709<100>]
5·10161+3 = 5(0)1603<162> = 72 · 1447 · 180463 · C152
C152 = P32 · C121
P32 = 26314542158435393005535533221629<32>
C121 = [1484982727509908854740212306941041004792973008825939876458829727780821383869898582890053749715127694042906997885710674263<121>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
5·10128+3 = 5(0)1273<129> = 824220383604228418854258476629<30> · C99
C99 = P39 · P60
P39 = 778977109190834486013530928931812523699<39>
P60 = 778756989881128479103802248680558442310201163296540906795693<60>
Number: n N=606633868739757406203256446479850116767816318805314527242598676929677564111420625371388633713628407 ( 99 digits) SNFS difficulty: 129 digits. Divisors found: r1=778977109190834486013530928931812523699 (pp39) r2=778756989881128479103802248680558442310201163296540906795693 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.38 hours. Scaled time: 3.45 units (timescale=1.449). Factorization parameters were as follows: name: KA_5_0_127_3 n: 606633868739757406203256446479850116767816318805314527242598676929677564111420625371388633713628407 skew: 1.13 deg: 5 c5: 8 c0: 15 m: 50000000000000000000000000 type: snfs rlim: 1000000 alim: 1000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:78498, AFBsize:78351, largePrimes:5398510 encountered Relations: rels:4800608, finalFF:256002 Max relations in full relation-set: 28 Initial matrix: 156914 x 256002 with sparse part having weight 19788163. Pruned matrix : 117925 x 118773 with weight 6523826. Total sieving time: 2.01 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.18 hours. Total square root time: 0.04 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,129,5,0,0,0,0,0,0,0,0,1000000,1000000,28,28,48,48,2.5,2.5,50000 total time: 2.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
5·10110+3 = 5(0)1093<111> = 181 · 140869 · 11063288894785937<17> · C88
C88 = P31 · P57
P31 = 6039261878537983804809377055481<31>
P57 = 293499849169094259922144875395852639709254512750131598291<57>
Number: 50003_110 N=1772522450443559105303400406863312386769861079139349751622786142722504963484025911782971 ( 88 digits) SNFS difficulty: 110 digits. Divisors found: r1=6039261878537983804809377055481 (pp31) r2=293499849169094259922144875395852639709254512750131598291 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.51 hours. Scaled time: 1.08 units (timescale=2.144). Factorization parameters were as follows: n: 1772522450443559105303400406863312386769861079139349751622786142722504963484025911782971 m: 10000000000000000000000 c5: 5 c0: 3 skew: 0.9 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 280001) Primes: RFBsize:30757, AFBsize:30494, largePrimes:1050943 encountered Relations: rels:988188, finalFF:104048 Max relations in full relation-set: 28 Initial matrix: 61316 x 104048 with sparse part having weight 4750487. Pruned matrix : 47929 x 48299 with weight 1555471. Total sieving time: 0.48 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.51 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10114+3 = 5(0)1133<115> = 316469363851<12> · C104
C104 = P31 · P32 · P42
P31 = 1081354250785203149101117499513<31>
P32 = 33280544906954346861035663714839<32>
P42 = 439015556833735689338180321004768868727479<42>
Number: 50003_114 N=15799317631118626468490249640104333120774198019987032630994473961208379779282675169509041640621008750953 ( 104 digits) SNFS difficulty: 115 digits. Divisors found: r1=1081354250785203149101117499513 (pp31) r2=33280544906954346861035663714839 (pp32) r3=439015556833735689338180321004768868727479 (pp42) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.54 hours. Scaled time: 1.15 units (timescale=2.143). Factorization parameters were as follows: n: 15799317631118626468490249640104333120774198019987032630994473961208379779282675169509041640621008750953 m: 100000000000000000000000 c5: 1 c0: 6 skew: 1.43 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30754, largePrimes:976509 encountered Relations: rels:884427, finalFF:74434 Max relations in full relation-set: 28 Initial matrix: 61575 x 74434 with sparse part having weight 3217169. Pruned matrix : 56872 x 57243 with weight 1876427. Total sieving time: 0.51 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10119+3 = 5(0)1183<120> = 72 · 71843 · C114
C114 = P47 · P67
P47 = 90543020753040293576959578835244863827338385803<47>
P67 = 1568680455115318344001740770037613906724896970510571219229245382643<67>
Number: 50003_119 N=142033067002394961575794383842091044900345339199109623109575386464873660166570699657728715137628621594650693817329 ( 114 digits) SNFS difficulty: 120 digits. Divisors found: r1=90543020753040293576959578835244863827338385803 (pp47) r2=1568680455115318344001740770037613906724896970510571219229245382643 (pp67) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.79 hours. Scaled time: 1.69 units (timescale=2.143). Factorization parameters were as follows: n: 142033067002394961575794383842091044900345339199109623109575386464873660166570699657728715137628621594650693817329 m: 1000000000000000000000000 c5: 1 c0: 6 skew: 1.43 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49231, largePrimes:1971794 encountered Relations: rels:2027062, finalFF:202354 Max relations in full relation-set: 28 Initial matrix: 98393 x 202354 with sparse part having weight 16943511. Pruned matrix : 76211 x 76766 with weight 4142003. Total sieving time: 0.74 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.79 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
By JMB / GMP-ECM B1=1000000
5·10160+3 = 5(0)1593<161> = 2207 · 7760503636757<13> · 120355074834623<15> · C131
C131 = P35 · C96
P35 = 82551714075637674821552052888550681<35>
C96 = [293823996731712864770458618120875378669709169546409049689172378069092682226620668855969845742319<96>]
By Bruce Dodson / Jul 12, 2007
10337+1 is divisible by 1687858617956114857563779160203327248258725852773131<52>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v. 1.21, GGNFS-0.77.1-20050930-nocona gnfs
5·10123+3 = 5(0)1223<124> = C124
C124 = P47 · P78
P47 = 29103572282156559112182740936226932631374490509<47>
P78 = 171800215847231475291585450337672992777067604341481417436023086954002453065167<78>
Number: 50003_123 N=5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 124 digits) SNFS difficulty: 125 digits. Divisors found: r1=29103572282156559112182740936226932631374490509 (pp47) r2=171800215847231475291585450337672992777067604341481417436023086954002453065167 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.06 hours. Scaled time: 2.26 units (timescale=2.129). Factorization parameters were as follows: n: 5000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 10000000000000000000000000 c5: 1 c0: 60 skew: 2.27 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:48986, largePrimes:1922445 encountered Relations: rels:1871417, finalFF:110397 Max relations in full relation-set: 28 Initial matrix: 98148 x 110397 with sparse part having weight 9157899. Pruned matrix : 94827 x 95381 with weight 6835596. Total sieving time: 0.99 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
5·10135+3 = 5(0)1343<136> = 29 · 97 · 293 · 12415969 · 8179360663<10> · 3544624710199<13> · 502246085292724499<18> · C83
C83 = P33 · P51
P33 = 103888204664039275506234925332227<33>
P51 = 322982960901345113517889401979443805784667940709243<51>
Fri Jul 13 23:04:56 2007 Fri Jul 13 23:04:56 2007 Fri Jul 13 23:04:56 2007 Msieve v. 1.21 Fri Jul 13 23:04:56 2007 random seeds: d29e7421 231acc36 Fri Jul 13 23:04:56 2007 factoring 33554119945116336385337462642964476014723803391219875848421325898095952849784674161 (83 digits) Fri Jul 13 23:04:56 2007 commencing quadratic sieve (83-digit input) Fri Jul 13 23:04:56 2007 using multiplier of 1 Fri Jul 13 23:04:56 2007 using 32kb Intel Core sieve core Fri Jul 13 23:04:56 2007 sieve interval: 12 blocks of size 32768 Fri Jul 13 23:04:56 2007 processing polynomials in batches of 17 Fri Jul 13 23:04:56 2007 using a sieve bound of 1372829 (52647 primes) Fri Jul 13 23:04:56 2007 using large prime bound of 122181781 (26 bits) Fri Jul 13 23:04:56 2007 using trial factoring cutoff of 27 bits Fri Jul 13 23:04:56 2007 polynomial 'A' values have 10 factors Fri Jul 13 23:21:48 2007 52748 relations (27073 full + 25675 combined from 277937 partial), need 52743 Fri Jul 13 23:21:48 2007 begin with 305010 relations Fri Jul 13 23:21:48 2007 reduce to 75223 relations in 2 passes Fri Jul 13 23:21:48 2007 attempting to read 75223 relations Fri Jul 13 23:21:48 2007 recovered 75223 relations Fri Jul 13 23:21:48 2007 recovered 67365 polynomials Fri Jul 13 23:21:48 2007 attempting to build 52748 cycles Fri Jul 13 23:21:48 2007 found 52748 cycles in 1 passes Fri Jul 13 23:21:48 2007 distribution of cycle lengths: Fri Jul 13 23:21:48 2007 length 1 : 27073 Fri Jul 13 23:21:48 2007 length 2 : 25675 Fri Jul 13 23:21:48 2007 largest cycle: 2 relations Fri Jul 13 23:21:48 2007 matrix is 52647 x 52748 with weight 1615124 (avg 30.62/col) Fri Jul 13 23:21:48 2007 filtering completed in 4 passes Fri Jul 13 23:21:48 2007 matrix is 45423 x 45487 with weight 1365016 (avg 30.01/col) Fri Jul 13 23:21:49 2007 saving the first 48 matrix rows for later Fri Jul 13 23:21:49 2007 matrix is 45375 x 45487 with weight 1103284 (avg 24.25/col) Fri Jul 13 23:21:49 2007 matrix includes 32 packed rows Fri Jul 13 23:22:10 2007 lanczos halted after 719 iterations Fri Jul 13 23:22:10 2007 recovered 9 nontrivial dependencies Fri Jul 13 23:22:11 2007 prp33 factor: 103888204664039275506234925332227 Fri Jul 13 23:22:11 2007 prp51 factor: 322982960901345113517889401979443805784667940709243 Fri Jul 13 23:22:11 2007 elapsed time 00:17:15
5·10124+3 = 5(0)1233<125> = 17 · 31 · 139 · 199 · 353 · 17749 · 4211985913711273004737734377<28> · C84
C84 = P33 · P52
P33 = 128040753937687879477084697015491<33>
P52 = 1015097562328485295738336683852546474132803693053831<52>
Fri Jul 13 23:24:22 2007 Fri Jul 13 23:24:22 2007 Fri Jul 13 23:24:22 2007 Msieve v. 1.21 Fri Jul 13 23:24:22 2007 random seeds: 1a661020 c160427d Fri Jul 13 23:24:22 2007 factoring 129973857200848371297919511176220553709357372754369950897383608306308229333303896021 (84 digits) Fri Jul 13 23:24:23 2007 commencing quadratic sieve (83-digit input) Fri Jul 13 23:24:23 2007 using multiplier of 1 Fri Jul 13 23:24:23 2007 using 32kb Intel Core sieve core Fri Jul 13 23:24:23 2007 sieve interval: 12 blocks of size 32768 Fri Jul 13 23:24:23 2007 processing polynomials in batches of 17 Fri Jul 13 23:24:23 2007 using a sieve bound of 1388659 (53235 primes) Fri Jul 13 23:24:23 2007 using large prime bound of 120813333 (26 bits) Fri Jul 13 23:24:23 2007 using trial factoring cutoff of 27 bits Fri Jul 13 23:24:23 2007 polynomial 'A' values have 11 factors Fri Jul 13 23:45:21 2007 53475 relations (27195 full + 26280 combined from 283677 partial), need 53331 Fri Jul 13 23:45:21 2007 begin with 310872 relations Fri Jul 13 23:45:21 2007 reduce to 76468 relations in 2 passes Fri Jul 13 23:45:21 2007 attempting to read 76468 relations Fri Jul 13 23:45:21 2007 recovered 76468 relations Fri Jul 13 23:45:21 2007 recovered 69986 polynomials Fri Jul 13 23:45:21 2007 attempting to build 53475 cycles Fri Jul 13 23:45:21 2007 found 53475 cycles in 1 passes Fri Jul 13 23:45:21 2007 distribution of cycle lengths: Fri Jul 13 23:45:21 2007 length 1 : 27195 Fri Jul 13 23:45:21 2007 length 2 : 26280 Fri Jul 13 23:45:21 2007 largest cycle: 2 relations Fri Jul 13 23:45:21 2007 matrix is 53235 x 53475 with weight 1691816 (avg 31.64/col) Fri Jul 13 23:45:22 2007 filtering completed in 4 passes Fri Jul 13 23:45:22 2007 matrix is 46232 x 46296 with weight 1435739 (avg 31.01/col) Fri Jul 13 23:45:22 2007 saving the first 48 matrix rows for later Fri Jul 13 23:45:22 2007 matrix is 46184 x 46296 with weight 1076659 (avg 23.26/col) Fri Jul 13 23:45:22 2007 matrix includes 32 packed rows Fri Jul 13 23:45:47 2007 lanczos halted after 732 iterations Fri Jul 13 23:45:47 2007 recovered 12 nontrivial dependencies Fri Jul 13 23:45:47 2007 prp33 factor: 128040753937687879477084697015491 Fri Jul 13 23:45:47 2007 prp52 factor: 1015097562328485295738336683852546474132803693053831 Fri Jul 13 23:45:47 2007 elapsed time 00:21:25
5·10165-3 = 4(9)1647<166> = 19 · 57057317 · 98215463 · 2605629635761<13> · 3946732535812616137099<22> · C115
C115 = P34 · P81
P34 = 7543512127570632979961763022705421<34>
P81 = 605342568468243602479097354297941125861779312424902349610895360925921457852332187<81>
Number: 49997_165 N=4566409006574951863433979568362754800728318400898293602723291780776693632787788274495993362803824147636639137685727 ( 115 digits) Divisors found: r1=7543512127570632979961763022705421 (pp34) r2=605342568468243602479097354297941125861779312424902349610895360925921457852332187 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 27.02 hours. Scaled time: 57.56 units (timescale=2.130). Factorization parameters were as follows: name: 49997_165 n: 4566409006574951863433979568362754800728318400898293602723291780776693632787788274495993362803824147636639137685727 skew: 37063.96 # norm 4.73e+15 c5: 62160 c4: -3621719066 c3: -306726077373988 c2: 4532051020693653061 c1: 228973543810823218638998 c0: 1468727302885487696151709760 # alpha -5.55 Y1: 1746324969367 Y0: -9401858279023299564901 # Murphy_E 5.17e-10 # M 1002986331347959461341605441671137184505700766449988056152747414018476686730995147030702035468882560833614505929064 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3150001) Primes: RFBsize:256726, AFBsize:256682, largePrimes:7522227 encountered Relations: rels:7394243, finalFF:577903 Max relations in full relation-set: 28 Initial matrix: 513492 x 577903 with sparse part having weight 50045594. Pruned matrix : 462271 x 464902 with weight 35767881. Polynomial selection time: 1.34 hours. Total sieving time: 23.99 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.38 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 27.02 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
The factor table of 500...003 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs
5·10158-3 = 4(9)1577<159> = 7 · 2111 · 80552352457081<14> · 5710039315042630712188991<25> · C116
C116 = P54 · P63
P54 = 467341027637686776935113873903056598872599949645184321<54>
P63 = 157410063903105298144279249626151629802510455702264743972251571<63>
Number: 49997_158 N=73564181024991174831410187304979775278602449566930735136444638612241727301463214510006040339766493271745851676818291 ( 116 digits) Divisors found: r1=467341027637686776935113873903056598872599949645184321 (pp54) r2=157410063903105298144279249626151629802510455702264743972251571 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 75.59 hours. Scaled time: 51.55 units (timescale=0.682). Factorization parameters were as follows: name: 49997_158 n: 73564181024991174831410187304979775278602449566930735136444638612241727301463214510006040339766493271745851676818291 skew: 42822.68 # norm 5.10e+15 c5: 37680 c4: 38633798 c3: -353231884823776 c2: 649944449545850313 c1: 316689536566344976014916 c0: 2229243313064835235066218784 # alpha -5.41 Y1: 756740286929 Y0: -18118035169349655294225 # Murphy_E 4.48e-10 # M 18062748841787132536527980613922191917491498627232287844155502604722767071327377360711903467081749263690925827819192 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 3690001) Primes: RFBsize:315948, AFBsize:316005, largePrimes:7444584 encountered Relations: rels:7386540, finalFF:708105 Max relations in full relation-set: 0 Initial matrix: 632036 x 708105 with sparse part having weight 58435719. Pruned matrix : 566947 x 570171 with weight 38719113. Total sieving time: 58.58 hours. Total relation processing time: 0.57 hours. Matrix solve time: 15.99 hours. Time per square root: 0.46 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 75.59 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000
(7·10158-61)/9 = (7)1571<158> = 469891 · 36460481 · 4181947377644793050081<22> · C124
C124 = P35 · P89
P35 = 19452134249342894566208338343315587<35>
P89 = 55807194183615693406796837297244974493029600283991480615392292095590717453155106764298483<89>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0 B1=1221000
(64·10157-1)/9 = 7(1)157<158> = 8564115301768762508376928872997<31> · C127
C127 = P57 · P71
P57 = 311235374037474312294580186612322910045517898252957252213<57>
P71 = 26678782543165187104805765400094072904958914109911757415689580416168751<71>
Number: n N=8303380863686457181005966020913589977121038158477222397503411687450746021165003481262209392026801408206039035454342249876195963 ( 127 digits) SNFS difficulty: 158 digits. Divisors found: r1=311235374037474312294580186612322910045517898252957252213 (pp57) r2=26678782543165187104805765400094072904958914109911757415689580416168751 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.20 hours. Scaled time: 42.30 units (timescale=1.449). Factorization parameters were as follows: name: KA_7_1_157 n: 8303380863686457181005966020913589977121038158477222397503411687450746021165003481262209392026801408206039035454342249876195963 skew: 0.35 deg: 5 c5: 200 c0: -1 m: 20000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:249566, largePrimes:7196272 encountered Relations: rels:6819995, finalFF:650477 Max relations in full relation-set: 28 Initial matrix: 499781 x 650477 with sparse part having weight 38973134. Pruned matrix : 364784 x 367346 with weight 19461875. Total sieving time: 25.94 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.83 hours. Total square root time: 0.23 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 29.20 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(13·10160-1)/3 = 4(3)160<161> = 61 · 10722039721<11> · C149
C149 = P40 · P46 · P65
P40 = 1478358147879228767608167158274095081731<40>
P46 = 1068416170500962398505260990592751451937327749<46>
P65 = 41946404360747518012731992568602333958344340144878162072473881247<65>
Number: n N=44816216713394732869400742251936381608859550861620422044292600609519547873818196195562696333410057367543823003 ( 110 digits) SNFS difficulty: 161 digits. Divisors found: r1=1068416170500962398505260990592751451937327749 (pp46) r2=41946404360747518012731992568602333958344340144878162072473881247 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.22 hours. Scaled time: 49.26 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_3_160 n: 44816216713394732869400742251936381608859550861620422044292600609519547873818196195562696333410057367543823003 # n: 66254419135368374354145868844236142720498084646190457527394820437684299192700760966498827238982222849523472761840642307270779277283858346731482858193 type: snfs skew: 0.60 deg: 5 c5: 13 c0: -1 m: 100000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:249271, largePrimes:6713157 encountered Relations: rels:6239590, finalFF:580304 Max relations in full relation-set: 28 Initial matrix: 499486 x 580304 with sparse part having weight 30086204. Pruned matrix : 422637 x 425198 with weight 17790023. Total sieving time: 37.50 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.33 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 41.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10164+61)/9 = (2)1639<164> = 8599 · C160
C160 = P65 · P96
P65 = 22651222927647321814936310172131574319011957238861315512443742367<65>
P96 = 114090079554391502386878822975570247933855139052610776246086403516712638744974826517502878472813<96>
Number: n N=2584279825819539739763021539972348205863730924784535669522295874197258079104805468336111434146089338553578581488803607654636844077476709178069801398095385768371 ( 160 digits) SNFS difficulty: 165 digits. Divisors found: r1=22651222927647321814936310172131574319011957238861315512443742367 (pp65) r2=114090079554391502386878822975570247933855139052610776246086403516712638744974826517502878472813 (pp96) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.85 hours. Scaled time: 81.83 units (timescale=1.323). Factorization parameters were as follows: name: KA_2_163_9 n: 2584279825819539739763021539972348205863730924784535669522295874197258079104805468336111434146089338553578581488803607654636844077476709178069801398095385768371 skew: 3.14 deg: 5 c5: 1 c0: 305 m: 1000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2500001) Primes: RFBsize:283146, AFBsize:282858, largePrimes:7623038 encountered Relations: rels:7210159, finalFF:669993 Max relations in full relation-set: 48 Initial matrix: 566068 x 669993 with sparse part having weight 44463704. Pruned matrix : 477178 x 480072 with weight 26963646. Total sieving time: 55.32 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.10 hours. Total square root time: 0.18 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 61.85 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, GGNFS-0.77.1-20050930-pentium3 gnfs
(43·10160-7)/9 = 4(7)160<161> = 5007179 · 7008751163<10> · C145
C145 = P28 · C117
P28 = 4421264001211142317908244507<28>
C117 = [307925559846392608191890342655880287652240774038193999902100985083530393790025178760683643373658220133542015572724043<117>]
5·10171-3 = 4(9)1707<172> = 46000847 · 6121638571<10> · 958447987411<12> · 6312681043024475375491430161<28> · C115
C115 = P45 · P71
P45 = 241198112402284085400049735671995479639288153<45>
P71 = 12166907050378837298642013658257125610939904245160777794608634185199787<71>
Number: 49997_171 N=2934635014325417516096701273747698164950838782296104637022869061437943116969747674977296282584317681872004767223411 ( 115 digits) Divisors found: r1=241198112402284085400049735671995479639288153 (pp45) r2=12166907050378837298642013658257125610939904245160777794608634185199787 (pp71) Version: GGNFS-0.77.1-20050930-pentium3 Total time: 26.09 hours. Scaled time: 7.75 units (timescale=0.297). Factorization parameters were as follows: name: 49997_171 n: 2934635014325417516096701273747698164950838782296104637022869061437943116969747674977296282584317681872004767223411 skew: 74056.80 # norm 1.29e+16 c5: 33600 c4: -3746392840 c3: -544442683811411 c2: 17054315618171851220 c1: 1217441680378892041663324 c0: -19655107573523269710901021680 # alpha -6.40 Y1: 1547472681557 Y0: -9732950247591089513527 # Murphy_E 5.29e-10 # M 1529526105085601883212096215779823540361348901810900877749446168933591385261591139256845661451207162190541862940240 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3150000) Primes: RFBsize:256726, AFBsize:257300, largePrimes:7660466 encountered Relations: rels:7701963, finalFF:702520 Max relations in full relation-set: 28 Initial matrix: 514107 x 702520 with sparse part having weight 63078489. Pruned matrix : 368728 x 371362 with weight 37331473. Total sieving time: 23.97 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.93 hours. Time per square root: 1.02 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 26.09 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve v. 1.21
5·10159-3 = 4(9)1587<160> = 23 · 10611966307<11> · 4368534516821<13> · 5006536233163<13> · 3603669365157562557541028774720347<34> · C90
C90 = P42 · P49
P42 = 191027376246576260076013368620556928804243<42>
P49 = 1360606753360105851237415658886311322045879676319<49>
Thu Jul 12 08:25:38 2007 Thu Jul 12 08:25:38 2007 Thu Jul 12 08:25:38 2007 Msieve v. 1.21 Thu Jul 12 08:25:38 2007 random seeds: 3396b730 2c6be133 Thu Jul 12 08:25:38 2007 factoring 259913138197753528521831503031382370167660110953871390680307688669870475962297396553821517 (90 digits) Thu Jul 12 08:25:38 2007 commencing quadratic sieve (90-digit input) Thu Jul 12 08:25:38 2007 using multiplier of 29 Thu Jul 12 08:25:38 2007 using 32kb Intel Core sieve core Thu Jul 12 08:25:38 2007 sieve interval: 36 blocks of size 32768 Thu Jul 12 08:25:38 2007 processing polynomials in batches of 6 Thu Jul 12 08:25:38 2007 using a sieve bound of 1584931 (59872 primes) Thu Jul 12 08:25:38 2007 using large prime bound of 126794480 (26 bits) Thu Jul 12 08:25:38 2007 using double large prime bound of 385106280791040 (42-49 bits) Thu Jul 12 08:25:38 2007 using trial factoring cutoff of 49 bits Thu Jul 12 08:25:38 2007 polynomial 'A' values have 12 factors Thu Jul 12 09:21:20 2007 60317 relations (16443 full + 43874 combined from 635017 partial), need 59968 Thu Jul 12 09:21:20 2007 begin with 651460 relations Thu Jul 12 09:21:20 2007 reduce to 145915 relations in 10 passes Thu Jul 12 09:21:20 2007 attempting to read 145915 relations Thu Jul 12 09:21:22 2007 recovered 145915 relations Thu Jul 12 09:21:22 2007 recovered 124747 polynomials Thu Jul 12 09:21:22 2007 attempting to build 60317 cycles Thu Jul 12 09:21:22 2007 found 60317 cycles in 6 passes Thu Jul 12 09:21:22 2007 distribution of cycle lengths: Thu Jul 12 09:21:22 2007 length 1 : 16443 Thu Jul 12 09:21:22 2007 length 2 : 11820 Thu Jul 12 09:21:22 2007 length 3 : 10631 Thu Jul 12 09:21:22 2007 length 4 : 7828 Thu Jul 12 09:21:22 2007 length 5 : 5627 Thu Jul 12 09:21:22 2007 length 6 : 3460 Thu Jul 12 09:21:22 2007 length 7 : 2063 Thu Jul 12 09:21:22 2007 length 9+: 2445 Thu Jul 12 09:21:22 2007 largest cycle: 20 relations Thu Jul 12 09:21:22 2007 matrix is 59872 x 60317 with weight 3587835 (avg 59.48/col) Thu Jul 12 09:21:22 2007 filtering completed in 3 passes Thu Jul 12 09:21:22 2007 matrix is 58252 x 58316 with weight 3393360 (avg 58.19/col) Thu Jul 12 09:21:23 2007 saving the first 48 matrix rows for later Thu Jul 12 09:21:23 2007 matrix is 58204 x 58316 with weight 2649013 (avg 45.43/col) Thu Jul 12 09:21:23 2007 matrix includes 32 packed rows Thu Jul 12 09:21:23 2007 using block size 23326 for processor cache size 4096 kB Thu Jul 12 09:21:39 2007 lanczos halted after 922 iterations Thu Jul 12 09:21:39 2007 recovered 17 nontrivial dependencies Thu Jul 12 09:21:39 2007 prp42 factor: 191027376246576260076013368620556928804243 Thu Jul 12 09:21:39 2007 prp49 factor: 1360606753360105851237415658886311322045879676319 Thu Jul 12 09:21:39 2007 elapsed time 00:56:01
By Maksym Voznyy
(10270343-1)/9 is PRP.
By Jo Yeong Uk / Msieve v. 1.21
(2·10158+61)/9 = (2)1579<158> = 313251391 · 4232920182402397664794465973<28> · 8180004382945353667194983565175097<34> · C88
C88 = P37 · P52
P37 = 1173816789875564874460017932751680269<37>
P52 = 1745422399702334476184140689167794733731023214569971<52>
Wed Jul 11 19:35:21 2007 Wed Jul 11 19:35:21 2007 Wed Jul 11 19:35:21 2007 Msieve v. 1.21 Wed Jul 11 19:35:21 2007 random seeds: 5b524611 d566dca2 Wed Jul 11 19:35:21 2007 factoring 2048806118195499354913542723718755940102140970322140966978079897796843232293172520602199 (88 digits) Wed Jul 11 19:35:21 2007 commencing quadratic sieve (88-digit input) Wed Jul 11 19:35:21 2007 using multiplier of 35 Wed Jul 11 19:35:21 2007 using 32kb Intel Core sieve core Wed Jul 11 19:35:21 2007 sieve interval: 25 blocks of size 32768 Wed Jul 11 19:35:21 2007 processing polynomials in batches of 9 Wed Jul 11 19:35:21 2007 using a sieve bound of 1516987 (57667 primes) Wed Jul 11 19:35:21 2007 using large prime bound of 121358960 (26 bits) Wed Jul 11 19:35:21 2007 using double large prime bound of 355901048223760 (42-49 bits) Wed Jul 11 19:35:21 2007 using trial factoring cutoff of 49 bits Wed Jul 11 19:35:21 2007 polynomial 'A' values have 11 factors Wed Jul 11 20:23:35 2007 57807 relations (15424 full + 42383 combined from 616759 partial), need 57763 Wed Jul 11 20:23:36 2007 begin with 632183 relations Wed Jul 11 20:23:36 2007 reduce to 141408 relations in 12 passes Wed Jul 11 20:23:36 2007 attempting to read 141408 relations Wed Jul 11 20:23:37 2007 recovered 141408 relations Wed Jul 11 20:23:37 2007 recovered 123274 polynomials Wed Jul 11 20:23:37 2007 attempting to build 57807 cycles Wed Jul 11 20:23:37 2007 found 57807 cycles in 5 passes Wed Jul 11 20:23:37 2007 distribution of cycle lengths: Wed Jul 11 20:23:37 2007 length 1 : 15424 Wed Jul 11 20:23:37 2007 length 2 : 11026 Wed Jul 11 20:23:37 2007 length 3 : 10054 Wed Jul 11 20:23:37 2007 length 4 : 7830 Wed Jul 11 20:23:37 2007 length 5 : 5352 Wed Jul 11 20:23:37 2007 length 6 : 3440 Wed Jul 11 20:23:37 2007 length 7 : 2150 Wed Jul 11 20:23:37 2007 length 9+: 2531 Wed Jul 11 20:23:37 2007 largest cycle: 17 relations Wed Jul 11 20:23:37 2007 matrix is 57667 x 57807 with weight 3502421 (avg 60.59/col) Wed Jul 11 20:23:38 2007 filtering completed in 4 passes Wed Jul 11 20:23:38 2007 matrix is 56148 x 56212 with weight 3349462 (avg 59.59/col) Wed Jul 11 20:23:38 2007 saving the first 48 matrix rows for later Wed Jul 11 20:23:39 2007 matrix is 56100 x 56212 with weight 2776045 (avg 49.39/col) Wed Jul 11 20:23:39 2007 matrix includes 32 packed rows Wed Jul 11 20:23:39 2007 using block size 22484 for processor cache size 4096 kB Wed Jul 11 20:23:54 2007 lanczos halted after 888 iterations Wed Jul 11 20:23:54 2007 recovered 19 nontrivial dependencies Wed Jul 11 20:23:55 2007 prp37 factor: 1173816789875564874460017932751680269 Wed Jul 11 20:23:55 2007 prp52 factor: 1745422399702334476184140689167794733731023214569971 Wed Jul 11 20:23:55 2007 elapsed time 00:48:34
(23·10157+1)/3 = 7(6)1567<158> = 72 · 11 · 103 · 3931093 · 187918820385783433750403<24> · 20896654878601350360268149361<29> · C95
C95 = P41 · P55
P41 = 78193602897564757645098493674472199158583<41>
P55 = 1144060525373511021818728474775835114113368172612932063<55>
Wed Jul 11 20:25:41 2007 Wed Jul 11 20:25:41 2007 Wed Jul 11 20:25:41 2007 Msieve v. 1.21 Wed Jul 11 20:25:41 2007 random seeds: 124ff28c e04ddd07 Wed Jul 11 20:25:41 2007 factoring 89458214411835630370906446629114652455106051226197501160191146683705663732977188286693142346729 (95 digits) Wed Jul 11 20:25:41 2007 commencing quadratic sieve (95-digit input) Wed Jul 11 20:25:42 2007 using multiplier of 6 Wed Jul 11 20:25:42 2007 using 32kb Intel Core sieve core Wed Jul 11 20:25:42 2007 sieve interval: 36 blocks of size 32768 Wed Jul 11 20:25:42 2007 processing polynomials in batches of 6 Wed Jul 11 20:25:42 2007 using a sieve bound of 2196599 (81150 primes) Wed Jul 11 20:25:42 2007 using large prime bound of 329489850 (28 bits) Wed Jul 11 20:25:42 2007 using double large prime bound of 2148402323041500 (43-51 bits) Wed Jul 11 20:25:42 2007 using trial factoring cutoff of 51 bits Wed Jul 11 20:25:42 2007 polynomial 'A' values have 12 factors Wed Jul 11 23:02:25 2007 81576 relations (20604 full + 60972 combined from 1201596 partial), need 81246 Wed Jul 11 23:02:25 2007 begin with 1222200 relations Wed Jul 11 23:02:26 2007 reduce to 209892 relations in 12 passes Wed Jul 11 23:02:26 2007 attempting to read 209892 relations Wed Jul 11 23:02:28 2007 recovered 209892 relations Wed Jul 11 23:02:28 2007 recovered 192187 polynomials Wed Jul 11 23:02:28 2007 attempting to build 81576 cycles Wed Jul 11 23:02:28 2007 found 81576 cycles in 6 passes Wed Jul 11 23:02:28 2007 distribution of cycle lengths: Wed Jul 11 23:02:28 2007 length 1 : 20604 Wed Jul 11 23:02:28 2007 length 2 : 14493 Wed Jul 11 23:02:28 2007 length 3 : 13853 Wed Jul 11 23:02:28 2007 length 4 : 11006 Wed Jul 11 23:02:28 2007 length 5 : 8296 Wed Jul 11 23:02:28 2007 length 6 : 5403 Wed Jul 11 23:02:28 2007 length 7 : 3318 Wed Jul 11 23:02:28 2007 length 9+: 4603 Wed Jul 11 23:02:28 2007 largest cycle: 19 relations Wed Jul 11 23:02:28 2007 matrix is 81150 x 81576 with weight 5566718 (avg 68.24/col) Wed Jul 11 23:02:29 2007 filtering completed in 4 passes Wed Jul 11 23:02:29 2007 matrix is 79471 x 79535 with weight 5325669 (avg 66.96/col) Wed Jul 11 23:02:30 2007 saving the first 48 matrix rows for later Wed Jul 11 23:02:30 2007 matrix is 79423 x 79535 with weight 4374458 (avg 55.00/col) Wed Jul 11 23:02:30 2007 matrix includes 32 packed rows Wed Jul 11 23:02:30 2007 using block size 31814 for processor cache size 4096 kB Wed Jul 11 23:03:05 2007 lanczos error: not all columns used Wed Jul 11 23:03:05 2007 lanczos halted after 1257 iterations Wed Jul 11 23:03:05 2007 linear algebra failed; retrying... Wed Jul 11 23:03:40 2007 lanczos halted after 1258 iterations Wed Jul 11 23:03:40 2007 recovered 18 nontrivial dependencies Wed Jul 11 23:03:41 2007 prp41 factor: 78193602897564757645098493674472199158583 Wed Jul 11 23:03:41 2007 prp55 factor: 1144060525373511021818728474775835114113368172612932063 Wed Jul 11 23:03:41 2007 elapsed time 02:38:00
5·10159-3 = 4(9)1587<160> = 23 · 10611966307<11> · 4368534516821<13> · 5006536233163<13> · C123
C123 = P34 · C90
P34 = 3603669365157562557541028774720347<34>
C90 = [259913138197753528521831503031382370167660110953871390680307688669870475962297396553821517<90>]
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=1000000, GGNFS-0.77.1-20050930-nocona gnfs
(7·10157-1)/3 = 2(3)157<158> = 61 · 1279 · 14635063 · 3987383581<10> · 4581360201133<13> · C124
C124 = P42 · P83
P42 = 111804472216234621446149216648206991096293<42>
P83 = 10005531849149209867385888327748278326019822739848288047545094990750961458768022501<83>
(7·10159-61)/9 = (7)1581<159> = 33 · 43 · 263 · 349831 · 17126917 · 28619057539265783684510425072387757<35> · C107
C107 = P33 · P74
P33 = 797403209935797539434823436791693<33>
P74 = 18629310032851632076163322531678663673503016373642711951312754825678195311<74>
Number: 77771_159 N=14855071619085049328530992857412182242694733285669768452444236785568599716426578493792762350613756076351523 ( 107 digits) Divisors found: r1=797403209935797539434823436791693 (pp33) r2=18629310032851632076163322531678663673503016373642711951312754825678195311 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.49 hours. Scaled time: 22.36 units (timescale=2.132). Factorization parameters were as follows: name: 77771_159 n: 14855071619085049328530992857412182242694733285669768452444236785568599716426578493792762350613756076351523 skew: 17252.59 # norm 4.53e+14 c5: 24360 c4: 1552062034 c3: -12155455866301 c2: -501419086915678603 c1: 4107034064874536958069 c0: -110865863932083856105047 # alpha -5.86 Y1: 159151859009 Y0: -227528404968347614694 # Murphy_E 1.61e-09 # M 13177898755741697868442278760361905096607553508203604547219497232778306454584708936145593728319772417207638 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135225, largePrimes:4558581 encountered Relations: rels:4599743, finalFF:363106 Max relations in full relation-set: 28 Initial matrix: 270381 x 363106 with sparse part having weight 34524026. Pruned matrix : 218438 x 219853 with weight 18421094. Polynomial selection time: 0.54 hours. Total sieving time: 9.58 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.21 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.49 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.36 BogoMIPS (lpj=2407683) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405129) Total of 4 processors activated (19246.12 BogoMIPS).
(23·10157+1)/3 = 7(6)1567<158> = 72 · 11 · 103 · 3931093 · 187918820385783433750403<24> · C124
C124 = P29 · C95
P29 = 20896654878601350360268149361<29>
C95 = [89458214411835630370906446629114652455106051226197501160191146683705663732977188286693142346729<95>]
3·10159-1 = 2(9)159<160> = 1321 · 6967 · 398760584767619777<18> · C135
C135 = P34 · P102
P34 = 1365996837467415111026906770750469<34>
P102 = 598426350404332450433128876484310209991358869759713755798077815328602741567697247226824883321819832989<102>
(2·10158+61)/9 = (2)1579<158> = 313251391 · 4232920182402397664794465973<28> · C122
C122 = P34 · C88
P34 = 8180004382945353667194983565175097<34>
C88 = [2048806118195499354913542723718755940102140970322140966978079897796843232293172520602199<88>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
5·10156-3 = 4(9)1557<157> = 1973 · 2053063 · C148
C148 = P53 · P95
P53 = 88666131158617287229707084514778242205719232955907723<53>
P95 = 13921399093960280961780774878816447259601802769512930326480215435970153126193617396031190315661<95>
Number: n N=1234356597976538139280142028842356943894606126781952641732207333922863854916604980909466777183418645194248264906713195221843429918982863975157749903 ( 148 digits) SNFS difficulty: 156 digits. Divisors found: r1=88666131158617287229707084514778242205719232955907723 (pp53) r2=13921399093960280961780774878816447259601802769512930326480215435970153126193617396031190315661 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.75 hours. Scaled time: 40.30 units (timescale=1.194). Factorization parameters were as follows: name: KA_4_9_155_7 n: 1234356597976538139280142028842356943894606126781952641732207333922863854916604980909466777183418645194248264906713195221843429918982863975157749903 type: snfs skew: 0.57 deg: 5 c5: 50 c0: -3 m: 10000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250256, largePrimes:6432804 encountered Relations: rels:5951628, finalFF:565359 Max relations in full relation-set: 28 Initial matrix: 500471 x 565359 with sparse part having weight 25798180. Pruned matrix : 434020 x 436586 with weight 15831361. Total sieving time: 30.40 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.06 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.3,2.3,100000 total time: 33.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
5·10162-3 = 4(9)1617<163> = C163
C163 = P49 · P114
P49 = 8544406184158733288717788329856875808280189100763<49>
P114 = 585178172974730942884427619934926129351771486625491327311590996532550927049973737667478017100778019085012646208519<114>
Number: n N=4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 163 digits) SNFS difficulty: 162 digits. Divisors found: r1=8544406184158733288717788329856875808280189100763 (pp49) r2=585178172974730942884427619934926129351771486625491327311590996532550927049973737667478017100778019085012646208519 (pp114) Version: GGNFS-0.77.1-20051202-athlon Total time: 43.47 hours. Scaled time: 63.03 units (timescale=1.450). Factorization parameters were as follows: name: KA_4_9_161_7 n: 4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 skew: 0.36 deg: 5 c5: 500 c0: -3 m: 100000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:283146, AFBsize:282917, largePrimes:7337299 encountered Relations: rels:6908627, finalFF:639847 Max relations in full relation-set: 28 Initial matrix: 566129 x 639847 with sparse part having weight 37255811. Pruned matrix : 497961 x 500855 with weight 23972880. Total sieving time: 37.76 hours. Total relation processing time: 0.22 hours. Matrix solve time: 5.18 hours. Total square root time: 0.30 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 43.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
5·10150-3 = 4(9)1497<151> = 67 · 3116051 · 28212754553911189<17> · C126
C126 = P61 · P65
P61 = 9067846705098386264105687808083859986016022518939144596253611<61>
P65 = 93614039200569581281008047873083290213666429881740082969167944179<65>
Number: n N=848877756915836047327005956367688030754050414861578135676328925892022810228355445983559089497621983270454716296031158175180369 ( 126 digits) SNFS difficulty: 150 digits. Divisors found: r1=9067846705098386264105687808083859986016022518939144596253611 (pp61) r2=93614039200569581281008047873083290213666429881740082969167944179 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.95 hours. Scaled time: 21.05 units (timescale=1.320). Factorization parameters were as follows: name: KA_4_9_149_7 n: 848877756915836047327005956367688030754050414861578135676328925892022810228355445983559089497621983270454716296031158175180369 skew: 0.90 deg: 5 c5: 5 c0: -3 m: 1000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:250150, AFBsize:249871, largePrimes:6181244 encountered Relations: rels:5785296, finalFF:582205 Max relations in full relation-set: 48 Initial matrix: 500086 x 582205 with sparse part having weight 24719108. Pruned matrix : 412540 x 415104 with weight 13084779. Total sieving time: 13.54 hours. Total relation processing time: 0.15 hours. Matrix solve time: 2.16 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 15.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
5·10146-3 = 4(9)1457<147> = 7 · 797 · 239329 · 93483761128799642385893<23> · C115
C115 = P45 · P71
P45 = 128452413621408811962701715902967521602390963<45>
P71 = 31184577944989473183131805515755584538817242291977209687873566291246313<71>
Number: 49997_146 N=4005734304798850622326249951143037423616711644650164979183042659808685924415865726837714445893729270428277958269419 ( 115 digits) Divisors found: r1=128452413621408811962701715902967521602390963 (pp45) r2=31184577944989473183131805515755584538817242291977209687873566291246313 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 62.55 hours. Scaled time: 41.60 units (timescale=0.665). Factorization parameters were as follows: name: 49997_146 n: 4005734304798850622326249951143037423616711644650164979183042659808685924415865726837714445893729270428277958269419 skew: 36021.67 # norm 2.21e+16 c5: 39600 c4: -5544913316 c3: 808385282931308 c2: 4256940067114749501 c1: -289150373904486983283538 c0: -1001954365526770591150788255 # alpha -6.85 Y1: 195581790739 Y0: -10022997639641682506218 # Murphy_E 5.45e-10 # M 830918682632186915924213558878628963560867949599055263643356419771358536458349787830192216066526682747955092642640 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2950001) Primes: RFBsize:250150, AFBsize:250336, largePrimes:7615163 encountered Relations: rels:7554461, finalFF:563033 Max relations in full relation-set: 0 Initial matrix: 500568 x 563033 with sparse part having weight 41679643. Pruned matrix : 450560 x 453126 with weight 30186049. Polynomial selection time: 2.62 hours. Total sieving time: 50.83 hours. Total relation processing time: 0.45 hours. Matrix solve time: 8.26 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 62.55 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
5·10149-3 = 4(9)1487<150> = 29 · 6983106863<10> · C139
C139 = P48 · P92
P48 = 208747880384388120276325252490914165886057736101<48>
P92 = 11827725694599174236257190431349303144204489375682681972938043512380134113838243183754907011<92>
Number: n N=2469012668515542318460277664481179790737291307383604284844296502512716634601796579368377536357106844920154402705397083070678261616432704111 ( 139 digits) SNFS difficulty: 150 digits. Divisors found: r1=208747880384388120276325252490914165886057736101 (pp48) r2=11827725694599174236257190431349303144204489375682681972938043512380134113838243183754907011 (pp92) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.93 hours. Scaled time: 18.71 units (timescale=1.447). Factorization parameters were as follows: name: KA_4_9_148_7 n: 2469012668515542318460277664481179790737291307383604284844296502512716634601796579368377536357106844920154402705397083070678261616432704111 skew: 1.43 deg: 5 c5: 1 c0: -6 m: 1000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:250150, AFBsize:250351, largePrimes:5947139 encountered Relations: rels:5574191, finalFF:579093 Max relations in full relation-set: 28 Initial matrix: 500565 x 579093 with sparse part having weight 22226434. Pruned matrix : 404909 x 407475 with weight 11698567. Total sieving time: 10.91 hours. Total relation processing time: 0.13 hours. Matrix solve time: 1.85 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 12.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10179-17)/3 = 1(6)1781<180> = 11 · C179
C179 = P88 · P91
P88 = 1639019173770832049695358993053022960848462753158292470147701013746739785573856983124029<88>
P91 = 9244257415644875817165595378275105183625338529342101678091693130990885547247677848761743419<91>
Number: n N=15151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151 ( 179 digits) SNFS difficulty: 180 digits. Divisors found: r1=1639019173770832049695358993053022960848462753158292470147701013746739785573856983124029 (pp88) r2=9244257415644875817165595378275105183625338529342101678091693130990885547247677848761743419 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 227.13 hours. Scaled time: 330.25 units (timescale=1.454). Factorization parameters were as follows: name: KA_1_6_178_1 n: 15151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151515151 skew: 2.02 deg: 5 c5: 1 c0: -34 m: 1000000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3200001) Primes: RFBsize:380800, AFBsize:380652, largePrimes:8184922 encountered Relations: rels:7889387, finalFF:860871 Max relations in full relation-set: 28 Initial matrix: 761516 x 860871 with sparse part having weight 49715353. Pruned matrix : 669290 x 673161 with weight 32998412. Total sieving time: 216.42 hours. Total relation processing time: 0.31 hours. Matrix solve time: 10.21 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 227.13 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
P88 is the largest factor found by GGNFS so far in our tables. Congratulations!
(4·10174+23)/9 = (4)1737<174> = 3 · C174
C174 = P66 · P108
P66 = 431698729585373966167026238230882951903861668583514905584774408843<66>
P108 = 343174853190875443246946483687163515522963880644358945766137050568648583698244978599326968646362907761905343<108>
Number: n N=148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 ( 174 digits) SNFS difficulty: 175 digits. Divisors found: r1=431698729585373966167026238230882951903861668583514905584774408843 (pp66) r2=343174853190875443246946483687163515522963880644358945766137050568648583698244978599326968646362907761905343 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 219.68 hours. Scaled time: 290.86 units (timescale=1.324). Factorization parameters were as follows: name: KA_4_173_7 n: 148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148148149 skew: 2.25 deg: 5 c5: 2 c0: 115 m: 100000000000000000000000000000000000 type: snfs rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 8500001) Primes: RFBsize:380800, AFBsize:380192, largePrimes:9150545 encountered Relations: rels:8710774, finalFF:854421 Max relations in full relation-set: 48 Initial matrix: 761057 x 854421 with sparse part having weight 74383121. Pruned matrix : 692647 x 696516 with weight 56412545. Total sieving time: 199.12 hours. Total relation processing time: 0.62 hours. Matrix solve time: 19.49 hours. Total square root time: 0.45 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.5,2.5,100000 total time: 219.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(7·10174-61)/9 = (7)1731<174> = 3 · C174
C174 = P66 · P108
P66 = 592183130436863192470465165361108333811673611186266348002248596759<66>
P108 = 437802507254807238882928297138447646164159872834322448723319030478316704747682896028097705022390728332298223<108>
Number: n N=259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 ( 174 digits) SNFS difficulty: 175 digits. Divisors found: r1=592183130436863192470465165361108333811673611186266348002248596759 (pp66) r2=437802507254807238882928297138447646164159872834322448723319030478316704747682896028097705022390728332298223 (pp108) Version: GGNFS-0.77.1-20051202-athlon Total time: 333.18 hours. Scaled time: 397.82 units (timescale=1.194). Factorization parameters were as follows: name: KA_7_173_1 n: 259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259257 type: snfs skew: 2.44 deg: 5 c5: 7 c0: -610 m: 100000000000000000000000000000000000 rlim: 5500000 alim: 5500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 11600001) Primes: RFBsize:380800, AFBsize:381368, largePrimes:8890149 encountered Relations: rels:8648810, finalFF:860116 Max relations in full relation-set: 28 Initial matrix: 762233 x 860116 with sparse part having weight 86306908. Pruned matrix : 693173 x 697048 with weight 70123858. Total sieving time: 307.41 hours. Total relation processing time: 0.72 hours. Matrix solve time: 24.26 hours. Total square root time: 0.79 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,5500000,5500000,28,28,48,48,2.6,2.6,100000 total time: 333.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Yousuke Koide
101278+1 is divisible by 40006639726526214492389221911263641<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Torbjörn Granlund
(10857-1)/9 is divisible by 600675575158100017424925351819839677<36>, cofactor is probably prime
10531+1 is divisible by 216300405364911283995901633078340436727<39>
10841+1 is divisible by 1630777462352881403814023114519396413<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
5·10147-3 = 4(9)1467<148> = 19 · 139 · 601 · 13681 · 40487 · 354995006736248519<18> · C116
C116 = P47 · P70
P47 = 10067361505415681618873296936552921933923299611<47>
P70 = 1591313628803614731260135467601813388393486021881617569796951585055279<70>
Number: 49997_147 N=16020329569660849975695435240487629364228641450318647485024030704932582906631343798326668419485613524001679514196469 ( 116 digits) SNFS difficulty: 149 digits. Divisors found: r1=10067361505415681618873296936552921933923299611 (pp47) r2=1591313628803614731260135467601813388393486021881617569796951585055279 (pp70) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.23 hours. Scaled time: 19.79 units (timescale=2.144). Factorization parameters were as follows: n: 16020329569660849975695435240487629364228641450318647485024030704932582906631343798326668419485613524001679514196469 m: 500000000000000000000000000000 c5: 4 c0: -75 skew: 1.8 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:134758, largePrimes:3616122 encountered Relations: rels:3602120, finalFF:311536 Max relations in full relation-set: 28 Initial matrix: 269894 x 311536 with sparse part having weight 26078125. Pruned matrix : 251458 x 252871 with weight 18101350. Total sieving time: 8.87 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.28 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 9.23 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10148-3 = 4(9)1477<149> = 17 · 61 · 3907 · 184094837 · C134
C134 = P42 · P46 · P47
P42 = 856199339682423221681610853181988817318913<42>
P46 = 1556144666064391456467500163826224366444427919<46>
P47 = 50313134072976025481264005755700033644273942497<47>
Number: 49997_148 N=67035712232671026578085702644158591186552652917191706966233004080754358180856116346537407110225442792919527957856093621681551793501359 ( 134 digits) SNFS difficulty: 150 digits. Divisors found: r1=856199339682423221681610853181988817318913 (pp42) r2=1556144666064391456467500163826224366444427919 (pp46) r3=50313134072976025481264005755700033644273942497 (pp47) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.81 hours. Scaled time: 22.89 units (timescale=2.117). Factorization parameters were as follows: n: 67035712232671026578085702644158591186552652917191706966233004080754358180856116346537407110225442792919527957856093621681551793501359 m: 1000000000000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:134688, largePrimes:3788068 encountered Relations: rels:3897704, finalFF:405595 Max relations in full relation-set: 28 Initial matrix: 269824 x 405595 with sparse part having weight 37011153. Pruned matrix : 222190 x 223603 with weight 17763617. Total sieving time: 10.40 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.33 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,48,48,2.3,2.3,75000 total time: 10.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8, GGNFS-0.77.1-20060722-pentium4
(32·10186-23)/9 = 3(5)1853<187> = C187
C187 = P77 · P111
P77 = 22505468127454808181216964200487999120781593821049054585465704599969960629843<77>
P111 = 157986296282283153038019270956995707149770776451983434848501382962868901158389576269567185495417338509918446971<111>
Number: 35553_186 N=3555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 187 digits) SNFS difficulty: 187 digits. Divisors found: r1=22505468127454808181216964200487999120781593821049054585465704599969960629843 (pp77) r2=157986296282283153038019270956995707149770776451983434848501382962868901158389576269567185495417338509918446971 (pp111) Version: GGNFS-0.77.1-20060513-k8 Total time: 935.90 hours. Scaled time: 1881.16 units (timescale=2.010). Factorization parameters were as follows: name: 35553_186 n: 3555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 20000000000000000000000000000000000000 c5: 10 c0: -23 skew: 1.18 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 14600001) Primes: RFBsize:501962, AFBsize:502936, largePrimes:6862780 encountered Relations: rels:7364860, finalFF:1143693 Max relations in full relation-set: 28 Initial matrix: 1004964 x 1143693 with sparse part having weight 105432265. Pruned matrix : 897970 x 903058 with weight 86536058. Total sieving time: 920.03 hours. Total relation processing time: 0.64 hours. Matrix solve time: 14.83 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,187,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 935.90 hours. --------- CPU info (if available) ----------
3·10164-1 = 2(9)164<165> = 13 · 2591 · C160
C160 = P47 · P50 · P65
P47 = 20864331285956384714363476632186247632145067881<47>
P50 = 16745773198975668201316866017478902963614694091371<50>
P65 = 25491818321127692702503378138106307806982680946323585329451086103<65>
Number: 29999_164 N=8906570079862245049431463943235460024344624884956803135112668111510257399875308018881928569307959504794703559659175251610604756108422646438856396401745687735653 ( 160 digits) SNFS difficulty: 165 digits. Divisors found: r1=20864331285956384714363476632186247632145067881 (pp47) r2=16745773198975668201316866017478902963614694091371 (pp50) r3=25491818321127692702503378138106307806982680946323585329451086103 (pp65) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 125.82 hours. Scaled time: 85.56 units (timescale=0.680). Factorization parameters were as follows: name: 29999_164 n: 8906570079862245049431463943235460024344624884956803135112668111510257399875308018881928569307959504794703559659175251610604756108422646438856396401745687735653 m: 1000000000000000000000000000000000 c5: 3 c0: -10 skew: 1.27 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5400001) Primes: RFBsize:348513, AFBsize:348501, largePrimes:5894099 encountered Relations: rels:6079819, finalFF:784956 Max relations in full relation-set: 0 Initial matrix: 697079 x 784956 with sparse part having weight 43312634. Pruned matrix : 626895 x 630444 with weight 33519435. Total sieving time: 107.99 hours. Total relation processing time: 0.41 hours. Matrix solve time: 17.17 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 125.82 hours. --------- CPU info (if available) ----------
By Alban Nonymous
101063+1 is divisible by 2928852075918417027638457828557<31>
101217+1 is divisible by 1097021863038561688666089244771<31>
101249+1 is divisible by 83933507135165614961893401401<29>, cofactor is probably prime
101420+1 is divisible by 33233412196028093809254651841<29>
101480+1 is divisible by 2922137698079622949054068972641<31>
101643+1 is divisible by 1393949954184795816301811495623<31>
101706+1 is divisible by 2585176909735148567915152915961<31>
101737+1 is divisible by 5337159554189680210862121006289<31>
101841+1 is divisible by 1221836164173949226042017629809<31>
101925+1 is divisible by 1358137502639759693901685682201<31>
101939+1 is divisible by 8672844768252056198113722386329<31>, cofactor is probably prime
101941+1 is divisible by 315539166618894730521025791493<30>
101942+1 is divisible by 817080761838450112158972131041<30>
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, GGNFS-0.77.1-20050930-nocona
5·10157-3 = 4(9)1567<158> = C158
C158 = P39 · C120
P39 = 170751714607368696896080865604341002901<39>
C120 = [292822828250781602016000167325285828040891795200764250827620597365088252659542353359323090342351116997142479928464778697<120>]
5·10143-3 = 4(9)1427<144> = 409 · C142
C142 = P61 · P81
P61 = 2935742145013115478236491256387688161775892870102820487172343<61>
P81 = 416417323846778387561709274459675711946255835461780664134795831916578834221071331<81>
Number: 49997_143 N=1222493887530562347188264058679706601466992665036674816625916870415647921760391198044009779951100244498777506112469437652811735941320293398533 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: r1=2935742145013115478236491256387688161775892870102820487172343 (pp61) r2=416417323846778387561709274459675711946255835461780664134795831916578834221071331 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.13 hours. Scaled time: 17.41 units (timescale=2.143). Factorization parameters were as follows: n: 1222493887530562347188264058679706601466992665036674816625916870415647921760391198044009779951100244498777506112469437652811735941320293398533 m: 100000000000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:113882, largePrimes:2653193 encountered Relations: rels:2644766, finalFF:300265 Max relations in full relation-set: 28 Initial matrix: 228101 x 300265 with sparse part having weight 19434761. Pruned matrix : 195584 x 196788 with weight 10280185. Total sieving time: 7.95 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 8.13 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v. 1.21, GMP-ECM 6.1.2
5·10120-3 = 4(9)1197<121> = 109 · C119
C119 = P38 · P81
P38 = 71651015110439976712949381761124614909<38>
P81 = 640208091432102618875345096934692490876535014728092248096211914729816834699112037<81>
Number: 49997_120 N=45871559633027522935779816513761467889908256880733944954128440366972477064220183486238532110091743119266055045871559633 ( 119 digits) SNFS difficulty: 120 digits. Divisors found: r1=71651015110439976712949381761124614909 (pp38) r2=640208091432102618875345096934692490876535014728092248096211914729816834699112037 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.93 hours. Scaled time: 1.99 units (timescale=2.125). Factorization parameters were as follows: n: 45871559633027522935779816513761467889908256880733944954128440366972477064220183486238532110091743119266055045871559633 m: 1000000000000000000000000 c5: 5 c0: -3 skew: 0.9 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:48956, largePrimes:2046876 encountered Relations: rels:2149382, finalFF:235375 Max relations in full relation-set: 28 Initial matrix: 98119 x 235375 with sparse part having weight 21516547. Pruned matrix : 73294 x 73848 with weight 4654054. Total sieving time: 0.88 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.93 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10128-3 = 4(9)1277<129> = 7 · 1871 · 142184699 · C117
C117 = P52 · P65
P52 = 9755302500995483441296854824102920959702641390257253<52>
P65 = 27523557876492693925945733984595465953928510734994989947908285283<65>
Number: 49997_128 N=268500632988843114399137334497132172339031733517253072560760156230954193300391203370973608509515917709832913483907599 ( 117 digits) SNFS difficulty: 130 digits. Divisors found: r1=9755302500995483441296854824102920959702641390257253 (pp52) r2=27523557876492693925945733984595465953928510734994989947908285283 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.77 hours. Scaled time: 3.76 units (timescale=2.128). Factorization parameters were as follows: n: 268500632988843114399137334497132172339031733517253072560760156230954193300391203370973608509515917709832913483907599 m: 100000000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78351, largePrimes:1470489 encountered Relations: rels:1481355, finalFF:188290 Max relations in full relation-set: 28 Initial matrix: 156913 x 188290 with sparse part having weight 8758854. Pruned matrix : 139088 x 139936 with weight 5115713. Total sieving time: 1.69 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.77 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10154-3 = 4(9)1537<155> = 223 · 421 · 2256879067<10> · 7689247183<10> · 7976152762042959475996039114316239979<37> · C94
C94 = P46 · P49
P46 = 2921647769384774308532275896959632201186400323<46>
P49 = 1316950995804027485247023644858332723329794421707<49>
Fri Jul 6 00:56:55 2007 Fri Jul 6 00:56:55 2007 Fri Jul 6 00:56:55 2007 Msieve v. 1.21 Fri Jul 6 00:56:55 2007 random seeds: d977a1fa f013ce09 Fri Jul 6 00:56:55 2007 factoring 3847666939279894172268033897682969407262717898287172366419424639735420453122353902836783011361 (94 digits) Fri Jul 6 00:56:55 2007 commencing quadratic sieve (94-digit input) Fri Jul 6 00:56:55 2007 using multiplier of 1 Fri Jul 6 00:56:55 2007 using 32kb Intel Core sieve core Fri Jul 6 00:56:55 2007 sieve interval: 36 blocks of size 32768 Fri Jul 6 00:56:55 2007 processing polynomials in batches of 6 Fri Jul 6 00:56:55 2007 using a sieve bound of 2025281 (75006 primes) Fri Jul 6 00:56:55 2007 using large prime bound of 271387654 (28 bits) Fri Jul 6 00:56:55 2007 using double large prime bound of 1515172741378278 (42-51 bits) Fri Jul 6 00:56:55 2007 using trial factoring cutoff of 51 bits Fri Jul 6 00:56:55 2007 polynomial 'A' values have 12 factors Fri Jul 6 03:02:27 2007 75317 relations (18669 full + 56648 combined from 1068446 partial), need 75102 Fri Jul 6 03:02:28 2007 begin with 1087115 relations Fri Jul 6 03:02:28 2007 reduce to 195099 relations in 11 passes Fri Jul 6 03:02:28 2007 attempting to read 195099 relations Fri Jul 6 03:02:30 2007 recovered 195099 relations Fri Jul 6 03:02:30 2007 recovered 176930 polynomials Fri Jul 6 03:02:30 2007 attempting to build 75317 cycles Fri Jul 6 03:02:30 2007 found 75316 cycles in 5 passes Fri Jul 6 03:02:30 2007 distribution of cycle lengths: Fri Jul 6 03:02:30 2007 length 1 : 18669 Fri Jul 6 03:02:30 2007 length 2 : 13325 Fri Jul 6 03:02:30 2007 length 3 : 12721 Fri Jul 6 03:02:30 2007 length 4 : 10305 Fri Jul 6 03:02:30 2007 length 5 : 7536 Fri Jul 6 03:02:30 2007 length 6 : 4964 Fri Jul 6 03:02:30 2007 length 7 : 3344 Fri Jul 6 03:02:30 2007 length 9+: 4452 Fri Jul 6 03:02:30 2007 largest cycle: 19 relations Fri Jul 6 03:02:30 2007 matrix is 75006 x 75316 with weight 4694209 (avg 62.33/col) Fri Jul 6 03:02:30 2007 filtering completed in 3 passes Fri Jul 6 03:02:30 2007 matrix is 73619 x 73683 with weight 4526930 (avg 61.44/col) Fri Jul 6 03:02:32 2007 saving the first 48 matrix rows for later Fri Jul 6 03:02:32 2007 matrix is 73571 x 73683 with weight 3487432 (avg 47.33/col) Fri Jul 6 03:02:32 2007 matrix includes 32 packed rows Fri Jul 6 03:02:32 2007 using block size 29473 for processor cache size 4096 kB Fri Jul 6 03:02:58 2007 lanczos halted after 1165 iterations Fri Jul 6 03:02:58 2007 recovered 15 nontrivial dependencies Fri Jul 6 03:02:59 2007 prp46 factor: 2921647769384774308532275896959632201186400323 Fri Jul 6 03:02:59 2007 prp49 factor: 1316950995804027485247023644858332723329794421707 Fri Jul 6 03:02:59 2007 elapsed time 02:06:04
5·10175-3 = 4(9)1747<176> = C176
C176 = P38 · C138
P38 = 82494503209048359090450275383194039527<38>
C138 = [606100989217373462581008360915327251534574087696954550955083284282765441327791625110225200206880593890686186829406312682705912893389087611<138>]
5·10142-3 = 4(9)1417<143> = 71 · 2143 · 2343611 · 1711248061<10> · 2674951691<10> · 1461605018313863471<19> · C95
C95 = P34 · P61
P34 = 8731327716744500293395495818364077<34>
P61 = 2400295605687202500809285138795364428820556768937793554302027<61>
Fri Jul 6 08:21:10 2007 Fri Jul 6 08:21:10 2007 Fri Jul 6 08:21:10 2007 Msieve v. 1.21 Fri Jul 6 08:21:10 2007 random seeds: 58e36f1b b3909a7e Fri Jul 6 08:21:10 2007 factoring 20957767550316699204490665365600675841056124504326905194322448749729894011632283651292705084079 (95 digits) Fri Jul 6 08:21:10 2007 commencing quadratic sieve (95-digit input) Fri Jul 6 08:21:10 2007 using multiplier of 39 Fri Jul 6 08:21:10 2007 using 32kb Intel Core sieve core Fri Jul 6 08:21:10 2007 sieve interval: 36 blocks of size 32768 Fri Jul 6 08:21:10 2007 processing polynomials in batches of 6 Fri Jul 6 08:21:10 2007 using a sieve bound of 2128177 (78814 primes) Fri Jul 6 08:21:10 2007 using large prime bound of 310713842 (28 bits) Fri Jul 6 08:21:10 2007 using double large prime bound of 1933076650188010 (43-51 bits) Fri Jul 6 08:21:10 2007 using trial factoring cutoff of 51 bits Fri Jul 6 08:21:10 2007 polynomial 'A' values have 12 factors Fri Jul 6 10:59:50 2007 78971 relations (19724 full + 59247 combined from 1157803 partial), need 78910 Fri Jul 6 10:59:51 2007 begin with 1177527 relations Fri Jul 6 10:59:51 2007 reduce to 203965 relations in 11 passes Fri Jul 6 10:59:51 2007 attempting to read 203965 relations Fri Jul 6 10:59:53 2007 recovered 203965 relations Fri Jul 6 10:59:53 2007 recovered 187676 polynomials Fri Jul 6 10:59:53 2007 attempting to build 78971 cycles Fri Jul 6 10:59:53 2007 found 78971 cycles in 6 passes Fri Jul 6 10:59:53 2007 distribution of cycle lengths: Fri Jul 6 10:59:53 2007 length 1 : 19724 Fri Jul 6 10:59:53 2007 length 2 : 13855 Fri Jul 6 10:59:53 2007 length 3 : 13538 Fri Jul 6 10:59:53 2007 length 4 : 10684 Fri Jul 6 10:59:53 2007 length 5 : 7791 Fri Jul 6 10:59:53 2007 length 6 : 5465 Fri Jul 6 10:59:53 2007 length 7 : 3347 Fri Jul 6 10:59:53 2007 length 9+: 4567 Fri Jul 6 10:59:53 2007 largest cycle: 21 relations Fri Jul 6 10:59:54 2007 matrix is 78814 x 78971 with weight 5395208 (avg 68.32/col) Fri Jul 6 10:59:54 2007 filtering completed in 3 passes Fri Jul 6 10:59:54 2007 matrix is 77248 x 77312 with weight 5215318 (avg 67.46/col) Fri Jul 6 10:59:55 2007 saving the first 48 matrix rows for later Fri Jul 6 10:59:55 2007 matrix is 77200 x 77312 with weight 4324622 (avg 55.94/col) Fri Jul 6 10:59:55 2007 matrix includes 32 packed rows Fri Jul 6 10:59:55 2007 using block size 30924 for processor cache size 4096 kB Fri Jul 6 11:00:30 2007 lanczos halted after 1222 iterations Fri Jul 6 11:00:30 2007 recovered 18 nontrivial dependencies Fri Jul 6 11:00:31 2007 prp34 factor: 8731327716744500293395495818364077 Fri Jul 6 11:00:31 2007 prp61 factor: 2400295605687202500809285138795364428820556768937793554302027 Fri Jul 6 11:00:31 2007 elapsed time 02:39:21
5·10137-3 = 4(9)1367<138> = 23 · 163 · 39461 · 93871607 · C122
C122 = P31 · P37 · P54
P31 = 5891496177752933541219267704741<31>
P37 = 7812216930943689316265896059629904893<37>
P54 = 782262172768407880210825956642975867414150295248290803<54>
Number: 49997_137 N=36004121990432414722179291080937945766418689524785810698872912601379557840153318452414515762972516047917479488800024533539 ( 122 digits) SNFS difficulty: 139 digits. Divisors found: r1=5891496177752933541219267704741 (pp31) r2=7812216930943689316265896059629904893 (pp37) r3=782262172768407880210825956642975867414150295248290803 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.00 hours. Scaled time: 8.58 units (timescale=2.145). Factorization parameters were as follows: n: 36004121990432414722179291080937945766418689524785810698872912601379557840153318452414515762972516047917479488800024533539 m: 5000000000000000000000000000 c5: 4 c0: -75 skew: 1.8 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [700000, 1450001) Primes: RFBsize:107126, AFBsize:106673, largePrimes:1867994 encountered Relations: rels:1987379, finalFF:283262 Max relations in full relation-set: 28 Initial matrix: 213863 x 283262 with sparse part having weight 17166479. Pruned matrix : 184846 x 185979 with weight 9061365. Total sieving time: 3.84 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,139,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,45,45,2.3,2.3,50000 total time: 4.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
By Kenichiro Yamaguchi / Msieve v. 1.25
5·10122-3 = 4(9)1217<123> = 7 · 2446494083906698889244510653<28> · C95
C95 = P43 · P52
P43 = 6303845095126307972819884509608992783019357<43>
P52 = 4631506328102789383103305306718062753677381160084451<52>
Thu Jul 05 23:38:40 2007 Thu Jul 05 23:38:40 2007 Thu Jul 05 23:38:40 2007 Msieve v. 1.25 Thu Jul 05 23:38:40 2007 random seeds: c91b51d8 af500c75 Thu Jul 05 23:38:40 2007 factoring 29196298449457225683898977265132542300678896172777155830274719264937835884224090396632887718007 (95 digits) Thu Jul 05 23:38:41 2007 commencing quadratic sieve (95-digit input) Thu Jul 05 23:38:41 2007 using multiplier of 7 Thu Jul 05 23:38:41 2007 using 32kb Pentium M sieve core Thu Jul 05 23:38:41 2007 sieve interval: 36 blocks of size 32768 Thu Jul 05 23:38:41 2007 processing polynomials in batches of 6 Thu Jul 05 23:38:41 2007 using a sieve bound of 2115527 (78824 primes) Thu Jul 05 23:38:41 2007 using large prime bound of 308866942 (28 bits) Thu Jul 05 23:38:41 2007 using double large prime bound of 1912443258076426 (43-51 bits) Thu Jul 05 23:38:41 2007 using trial factoring cutoff of 51 bits Thu Jul 05 23:38:41 2007 polynomial 'A' values have 12 factors Fri Jul 06 04:10:53 2007 79253 relations (19388 full + 59865 combined from 1166604 partial), need 78920 Fri Jul 06 04:10:55 2007 begin with 1185992 relations Fri Jul 06 04:10:56 2007 reduce to 206355 relations in 10 passes Fri Jul 06 04:10:56 2007 attempting to read 206355 relations Fri Jul 06 04:11:00 2007 recovered 206355 relations Fri Jul 06 04:11:00 2007 recovered 189200 polynomials Fri Jul 06 04:11:00 2007 attempting to build 79253 cycles Fri Jul 06 04:11:00 2007 found 79252 cycles in 5 passes Fri Jul 06 04:11:00 2007 distribution of cycle lengths: Fri Jul 06 04:11:00 2007 length 1 : 19388 Fri Jul 06 04:11:00 2007 length 2 : 13782 Fri Jul 06 04:11:00 2007 length 3 : 13535 Fri Jul 06 04:11:00 2007 length 4 : 10814 Fri Jul 06 04:11:00 2007 length 5 : 8041 Fri Jul 06 04:11:00 2007 length 6 : 5414 Fri Jul 06 04:11:00 2007 length 7 : 3423 Fri Jul 06 04:11:00 2007 length 9+: 4855 Fri Jul 06 04:11:00 2007 largest cycle: 23 relations Fri Jul 06 04:11:01 2007 matrix is 78824 x 79252 with weight 5331274 (avg 67.27/col) Fri Jul 06 04:11:02 2007 filtering completed in 4 passes Fri Jul 06 04:11:02 2007 matrix is 75026 x 75090 with weight 5058349 (avg 67.36/col) Fri Jul 06 04:11:02 2007 saving the first 48 matrix rows for later Fri Jul 06 04:11:02 2007 matrix is 74978 x 75090 with weight 4132765 (avg 55.04/col) Fri Jul 06 04:11:02 2007 matrix includes 64 packed rows Fri Jul 06 04:11:02 2007 using block size 30036 for processor cache size 2048 kB Fri Jul 06 04:11:02 2007 commencing Lanczos iteration Fri Jul 06 04:11:51 2007 lanczos halted after 1187 iterations Fri Jul 06 04:11:51 2007 recovered 17 nontrivial dependencies Fri Jul 06 04:11:52 2007 prp43 factor: 6303845095126307972819884509608992783019357 Fri Jul 06 04:11:52 2007 prp52 factor: 4631506328102789383103305306718062753677381160084451 Fri Jul 06 04:11:52 2007 elapsed time 04:33:12
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
5·10106-3 = 4(9)1057<107> = C107
C107 = P53 · P54
P53 = 51379467791652406382241099912651400334898984400190777<53>
P54 = 973151380289763769238966237755432094392232133691333861<54>
Number: 49997_106 N=49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 107 digits) SNFS difficulty: 106 digits. Divisors found: r1=51379467791652406382241099912651400334898984400190777 (pp53) r2=973151380289763769238966237755432094392232133691333861 (pp54) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.45 hours. Scaled time: 0.96 units (timescale=2.145). Factorization parameters were as follows: n: 49999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 1000000000000000000000 c5: 50 c0: -3 skew: 0.57 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 260001) Primes: RFBsize:30757, AFBsize:30789, largePrimes:1045486 encountered Relations: rels:987914, finalFF:108071 Max relations in full relation-set: 28 Initial matrix: 61611 x 108071 with sparse part having weight 4604823. Pruned matrix : 46229 x 46601 with weight 1394879. Total sieving time: 0.43 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.45 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10113-3 = 4(9)1127<114> = C114
C114 = P48 · P66
P48 = 907436158859512909422687304965377963070381712507<48>
P66 = 551002949483974443730009627016215019549109574303626681725606916071<66>
Number: 49997_113 N=499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 114 digits) SNFS difficulty: 115 digits. Divisors found: r1=907436158859512909422687304965377963070381712507 (pp48) r2=551002949483974443730009627016215019549109574303626681725606916071 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.63 hours. Scaled time: 1.34 units (timescale=2.143). Factorization parameters were as follows: n: 499999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 100000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 320001) Primes: RFBsize:30757, AFBsize:30699, largePrimes:1057310 encountered Relations: rels:986957, finalFF:96871 Max relations in full relation-set: 28 Initial matrix: 61520 x 96871 with sparse part having weight 4430990. Pruned matrix : 51748 x 52119 with weight 1665807. Total sieving time: 0.60 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.63 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10123-3 = 4(9)1227<124> = C124
C124 = P59 · P66
P59 = 41339256942088911622012358254358042113678371404430757997789<59>
P66 = 120950408155723983526356287938613353278226690610618708055828192673<66>
Number: 49997_123 N=4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 124 digits) SNFS difficulty: 125 digits. Divisors found: r1=41339256942088911622012358254358042113678371404430757997789 (pp59) r2=120950408155723983526356287938613353278226690610618708055828192673 (pp66) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.04 hours. Scaled time: 2.23 units (timescale=2.145). Factorization parameters were as follows: n: 4999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 10000000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:48986, largePrimes:1922284 encountered Relations: rels:1871231, finalFF:110151 Max relations in full relation-set: 28 Initial matrix: 98148 x 110151 with sparse part having weight 9092255. Pruned matrix : 94832 x 95386 with weight 6810840. Total sieving time: 0.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.04 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
5·10118-3 = 4(9)1177<119> = 2887441 · C113
C113 = P56 · P57
P56 = 63010830359033312483466077306764627266644155646127728707<56>
P57 = 274815790254415776711435696262112720520718579760139674831<57>
Number: 49997_118 N=17316371139704672753486564747123837335550752379009649028326466237751697783608392344640115590240631756631564073517 ( 113 digits) SNFS difficulty: 120 digits. Divisors found: r1=63010830359033312483466077306764627266644155646127728707 (pp56) r2=274815790254415776711435696262112720520718579760139674831 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.78 hours. Scaled time: 1.68 units (timescale=2.145). Factorization parameters were as follows: n: 17316371139704672753486564747123837335550752379009649028326466237751697783608392344640115590240631756631564073517 m: 1000000000000000000000000 c5: 1 c0: -60 skew: 2.27 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:48986, largePrimes:1903519 encountered Relations: rels:1888791, finalFF:147578 Max relations in full relation-set: 28 Initial matrix: 98148 x 147578 with sparse part having weight 11914433. Pruned matrix : 85032 x 85586 with weight 4763073. Total sieving time: 0.73 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.78 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407679) Calibrating delay using timer specific routine.. 4810.25 BogoMIPS (lpj=2405128) Calibrating delay using timer specific routine.. 4810.23 BogoMIPS (lpj=2405118) Calibrating delay using timer specific routine.. 4810.24 BogoMIPS (lpj=2405120) Total of 4 processors activated (19246.09 BogoMIPS).
The factor table of 499...997 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Torbjörn Granlund
10799+1 is divisible by 84381206263904600374587469219832511232219<41>
10891+1 is divisible by 22663213771462227811088536403512441819<38>
10944+1 is divisible by 4859846047732923587514032493793<31>
(10815-1)/9 is divisible by 3664950640511701126041972679226717351<37>
Reference: Factoring and Prime Identification (Torbjörn Granlund)
By suberi / GMP-ECM 6.1.2 B1=11000000
4·10195-3 = 3(9)1947<196> = 7 · 101197 · C190
C190 = P37 · P154
P37 = 3771194733060677910727165656242155763<37>
P154 = 1497322513815848534027864445072580097326790638319429568818602330439582708603315019200778229678277949703995368212735241456117614079298626340503579378845661<154>
By Torbjörn Granlund
(10507-1)/9 is divisible by 82638297310634344310411757401076652003<38>
10680+1 is divisible by 1516395051122929541850783680941040161<37>
10691+1 is divisible by 26578194229497643738821679856668807<35>
10759+1 is divisible by 2832165561296805799533565929552471103<37>
By Yousuke Koide
101233+1 is divisible by 14881155992657195128437244984378939<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
9·10162+1 = 9(0)1611<163> = 17 · 233 · 5693 · 199673 · 3207278521<10> · 118788802665563673626749<24> · C118
C118 = P51 · P68
P51 = 152599297155465124131657187052166911440245078117469<51>
P68 = 34380518818628962059427663768446076926280486458367419362075072569669<68>
Number: 90001_162 N=5246443007563021739957261207032237060105169135561012564450700562709375031236031853655679900656876972792186038868447761 ( 118 digits) SNFS difficulty: 162 digits. Divisors found: r1=152599297155465124131657187052166911440245078117469 (pp51) r2=34380518818628962059427663768446076926280486458367419362075072569669 (pp68) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 87.52 hours. Scaled time: 59.60 units (timescale=0.681). Factorization parameters were as follows: name: 90001_162 n: 5246443007563021739957261207032237060105169135561012564450700562709375031236031853655679900656876972792186038868447761 m: 100000000000000000000000000000000 c5: 900 c0: 1 skew: 0.26 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2250000, 4350001) Primes: RFBsize:315948, AFBsize:315061, largePrimes:5796639 encountered Relations: rels:5953554, finalFF:716636 Max relations in full relation-set: 0 Initial matrix: 631072 x 716636 with sparse part having weight 34710609. Pruned matrix : 561549 x 564768 with weight 26227273. Total sieving time: 75.30 hours. Total relation processing time: 0.36 hours. Matrix solve time: 11.66 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 87.52 hours. --------- CPU info (if available) ----------
100...001 was updated.
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(46·10164-1)/9 = 5(1)164<165> = 7 · 149 · C162
C162 = P65 · P97
P65 = 92242528670324886100687746039495178044373011581100025580286480497<65>
P97 = 5312510652925782344961262133689200030431493691271417414388712363170017984463868615627801357604941<97>
Number: n N=490039416213912858208160221583040374986683711515926281026952167891765207201448812187067220624267604133375945456482369234047086396079684670288697134334718227335677 ( 162 digits) SNFS difficulty: 166 digits. Divisors found: r1=92242528670324886100687746039495178044373011581100025580286480497 (pp65) r2=5312510652925782344961262133689200030431493691271417414388712363170017984463868615627801357604941 (pp97) Version: GGNFS-0.77.1-20051202-athlon Total time: 58.95 hours. Scaled time: 85.31 units (timescale=1.447). Factorization parameters were as follows: name: KA_5_1_164 n: 490039416213912858208160221583040374986683711515926281026952167891765207201448812187067220624267604133375945456482369234047086396079684670288697134334718227335677 skew: 0.74 deg: 5 c5: 23 c0: -5 m: 1000000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:315948, AFBsize:316461, largePrimes:6886645 encountered Relations: rels:6655180, finalFF:711185 Max relations in full relation-set: 28 Initial matrix: 632474 x 711185 with sparse part having weight 40763719. Pruned matrix : 559689 x 562915 with weight 26736168. Total sieving time: 51.88 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.55 hours. Total square root time: 0.26 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 58.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(4·10164-13)/9 = (4)1633<164> = 367 · C162
C162 = P79 · P84
P79 = 1024998888971229736671457541060040483691797694445518916330624823174235310567513<79>
P84 = 118148448512489899718403228417122472387954784945079796830310415633311893761115829533<84>
Number: n N=121102028458976687859521646987587042082954889494399031183772328186497123826824099303663336360884044807750529821374508023009385407205570693309112927641537995761429 ( 162 digits) SNFS difficulty: 165 digits. Divisors found: r1=1024998888971229736671457541060040483691797694445518916330624823174235310567513 (pp79) r2=118148448512489899718403228417122472387954784945079796830310415633311893761115829533 (pp84) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 72.53 hours. Scaled time: 98.93 units (timescale=1.364). Factorization parameters were as follows: name: KA_4_163_3 n: 121102028458976687859521646987587042082954889494399031183772328186497123826824099303663336360884044807750529821374508023009385407205570693309112927641537995761429 skew: 2.01 deg: 5 c5: 2 c0: -65 m: 1000000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2900001) Primes: RFBsize:315948, AFBsize:315216, largePrimes:6629143 encountered Relations: rels:6530594, finalFF:741465 Max relations in full relation-set: 28 Initial matrix: 631229 x 741465 with sparse part having weight 44081270. Pruned matrix : 534485 x 537705 with weight 27414349. Total sieving time: 66.44 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.63 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 72.53 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(73·10157-1)/9 = 8(1)157<158> = 3 · 557 · 12503 · 21121 · 198623 · 24027128221834955244829<23> · C119
C119 = P48 · P71
P48 = 709366404715725202134278510977230883791091516457<48>
P71 = 54296667246476640184537223444832866376469118179207748377776959859458053<71>
Number: 81111_157 N=38516231632679209057909219312447870443031509684067141874491405901558633307604267425485343175874835928384687741950678221 ( 119 digits) SNFS difficulty: 158 digits. Divisors found: r1=709366404715725202134278510977230883791091516457 (pp48) r2=54296667246476640184537223444832866376469118179207748377776959859458053 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 81.74 hours. Scaled time: 55.66 units (timescale=0.681). Factorization parameters were as follows: name: 81111_157 n: 38516231632679209057909219312447870443031509684067141874491405901558633307604267425485343175874835928384687741950678221 m: 10000000000000000000000000000000 c5: 7300 c0: -1 skew: 0.17 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4000001) Primes: RFBsize:283146, AFBsize:284167, largePrimes:5778061 encountered Relations: rels:5850073, finalFF:638910 Max relations in full relation-set: 0 Initial matrix: 567380 x 638910 with sparse part having weight 36945897. Pruned matrix : 516655 x 519555 with weight 28801074. Total sieving time: 70.46 hours. Total relation processing time: 0.34 hours. Matrix solve time: 10.71 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 81.74 hours. --------- CPU info (if available) ----------
By Alfred Reich / GMP-ECM / Jun 24, 2007
101506+1 is divisible by 104384225205357273799356477841<30>
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10173-41)/9 = (5)1721<173> = 3 · 179 · C171
C171 = P42 · P129
P42 = 114384483875150871829057541898587264239841<42>
P129 = 904453184672326204317688425492042339266607258173108466450183893916706681010256982023307530563855324688384934286035740785881630103<129>
Number: n N=103455410717980550382785019656528036416304572729153734740326919097868818539209600662114628595075522449824125801779433064349265466583902338092282226360438650941444237533623 ( 171 digits) SNFS difficulty: 174 digits. Divisors found: r1=114384483875150871829057541898587264239841 (pp42) r2=904453184672326204317688425492042339266607258173108466450183893916706681010256982023307530563855324688384934286035740785881630103 (pp129) Version: GGNFS-0.77.1-20051202-athlon Total time: 204.90 hours. Scaled time: 268.42 units (timescale=1.310). Factorization parameters were as follows: name: KA_5_172_1 n: 103455410717980550382785019656528036416304572729153734740326919097868818539209600662114628595075522449824125801779433064349265466583902338092282226360438650941444237533623 skew: 1.91 deg: 5 c5: 8 c0: -205 m: 50000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 8100001) Primes: RFBsize:348513, AFBsize:348437, largePrimes:8931314 encountered Relations: rels:8460683, finalFF:782229 Max relations in full relation-set: 48 Initial matrix: 697015 x 782229 with sparse part having weight 77788583. Pruned matrix : 641763 x 645312 with weight 59397651. Total sieving time: 185.11 hours. Total relation processing time: 0.60 hours. Matrix solve time: 19.04 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 204.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(8·10164+1)/9 = (8)1639<164> = 881 · C162
C162 = P57 · P105
P57 = 438099651139842378074782985862900871663962476527603599689<57>
P105 = 230302504990454513418307626464605022752045200943246897387527811045552664240151617880164349500151770360321<105>
Number: n N=100895447092949930634380123596922688863665027115651406230293857989658216672972632109976037331315424391474334720645730861394879556060032791020305208727456173540169 ( 162 digits) SNFS difficulty: 165 digits. Divisors found: r1=438099651139842378074782985862900871663962476527603599689 (pp57) r2=230302504990454513418307626464605022752045200943246897387527811045552664240151617880164349500151770360321 (pp105) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.31 hours. Scaled time: 65.87 units (timescale=1.454). Factorization parameters were as follows: name: KA_8_163_9 n: 100895447092949930634380123596922688863665027115651406230293857989658216672972632109976037331315424391474334720645730861394879556060032791020305208727456173540169 skew: 1.05 deg: 5 c5: 4 c0: 5 m: 1000000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:283146, AFBsize:283197, largePrimes:5489253 encountered Relations: rels:5506229, finalFF:648965 Max relations in full relation-set: 28 Initial matrix: 566407 x 648965 with sparse part having weight 37677844. Pruned matrix : 491814 x 494710 with weight 23543322. Total sieving time: 39.96 hours. Total relation processing time: 0.18 hours. Matrix solve time: 5.09 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.5,2.5,100000 total time: 45.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By JMB / GMP-ECM 6.0.1 B1=1000000
(7·10159-61)/9 = (7)1581<159> = 33 · 43 · 263 · 349831 · 17126917 · C141
C141 = P35 · C107
P35 = 28619057539265783684510425072387757<35>
C107 = [14855071619085049328530992857412182242694733285669768452444236785568599716426578493792762350613756076351523<107>]
11...11 (Repunit) and 100...001 were updated.
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
Reference: Factorizations of numbers of the form 10^n+1 (Alfred Reich)
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(16·10163-61)/9 = 1(7)1621<164> = 11 · 347 · C160
C160 = P42 · P48 · P71
P42 = 646634560597002933420775479995833343960443<42>
P48 = 398763057690552657144449211172587774514959984401<48>
P71 = 18062650687187667320018671801554696018440996733928315494676273037001241<71>
Number: n N=4657526271359124385060984484615608534916892265595435624254068058102640235205076703635781445579716473088231013303059412569499024830436934183331877856373533606963 ( 160 digits) SNFS difficulty: 164 digits. Divisors found: r1=646634560597002933420775479995833343960443 (pp42) r2=398763057690552657144449211172587774514959984401 (pp48) r3=18062650687187667320018671801554696018440996733928315494676273037001241 (pp71) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 57.05 hours. Scaled time: 77.82 units (timescale=1.364). Factorization parameters were as follows: name: KA_1_7_162_1 n: 4657526271359124385060984484615608534916892265595435624254068058102640235205076703635781445579716473088231013303059412569499024830436934183331877856373533606963 skew: 0.66 deg: 5 c5: 500 c0: -61 m: 200000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:283146, AFBsize:283473, largePrimes:5594710 encountered Relations: rels:5651279, finalFF:678375 Max relations in full relation-set: 28 Initial matrix: 566685 x 678375 with sparse part having weight 40831702. Pruned matrix : 469314 x 472211 with weight 24216609. Total sieving time: 52.65 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.92 hours. Total square root time: 0.26 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.5,2.5,100000 total time: 57.05 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(25·10163-7)/9 = 2(7)163<164> = 33 · 53 · C161
C161 = P52 · P109
P52 = 5784099087847801999595098935811677620966410670797411<52>
P109 = 3356001460754311479240774153689287838703249898666255530643269682857515657144061974783366037668112153528135197<109>
Number: n N=19411444987964904107461759453373709138908300333876853792996350648342262598027797189222765742681885239537231151486916686078111654631570774128426120040375805574967 ( 161 digits) SNFS difficulty: 164 digits. Divisors found: r1=5784099087847801999595098935811677620966410670797411 (pp52) r2=3356001460754311479240774153689287838703249898666255530643269682857515657144061974783366037668112153528135197 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 55.82 hours. Scaled time: 81.11 units (timescale=1.453). Factorization parameters were as follows: name: KA_2_7_163 n: 19411444987964904107461759453373709138908300333876853792996350648342262598027797189222765742681885239537231151486916686078111654631570774128426120040375805574967 skew: 0.97 deg: 5 c5: 8 c0: -7 m: 500000000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:283146, AFBsize:282602, largePrimes:5499517 encountered Relations: rels:5503640, finalFF:637582 Max relations in full relation-set: 28 Initial matrix: 565813 x 637582 with sparse part having weight 38094152. Pruned matrix : 501050 x 503943 with weight 25009807. Total sieving time: 41.68 hours. Total relation processing time: 0.19 hours. Matrix solve time: 13.81 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.5,2.5,100000 total time: 55.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(55·10163-1)/9 = 6(1)163<164> = 503 · C162
C162 = P43 · P44 · P76
P43 = 1487407993549019848776612935809194872068909<43>
P44 = 11413058107787456233245536501918521595780953<44>
P76 = 7156819357030125486732946829220674112434544047932731153794325074222174276381<76>
Number: n N=121493262646344157278550916721890876960459465429644356085707974375966423680141373978352109564833222884912745747735807377954495250717914733819306383918709962447537 ( 162 digits) SNFS difficulty: 165 digits. Divisors found: r1=1487407993549019848776612935809194872068909 (pp43) r2=11413058107787456233245536501918521595780953 (pp44) r3=7156819357030125486732946829220674112434544047932731153794325074222174276381 (pp76) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 63.80 hours. Scaled time: 87.34 units (timescale=1.369). Factorization parameters were as follows: name: KA_6_1_163 n: 121493262646344157278550916721890876960459465429644356085707974375966423680141373978352109564833222884912745747735807377954495250717914733819306383918709962447537 skew: 0.56 deg: 5 c5: 88 c0: -5 m: 500000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2600001) Primes: RFBsize:250150, AFBsize:250657, largePrimes:7570457 encountered Relations: rels:7122095, finalFF:594860 Max relations in full relation-set: 28 Initial matrix: 500873 x 594860 with sparse part having weight 44530909. Pruned matrix : 429195 x 431763 with weight 29739754. Total sieving time: 58.27 hours. Total relation processing time: 0.28 hours. Matrix solve time: 4.83 hours. Total square root time: 0.42 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 63.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(16·10173-1)/3 = 5(3)173<174> = 67 · C172
C172 = P68 · P104
P68 = 96371276020696526133446288272274025697919084102770639532241766004453<68>
P104 = 82599290303737453966408350950661246292450859283670030355136080034796461939594945728788702602573657900283<104>
Number: n N=7960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199 ( 172 digits) SNFS difficulty: 174 digits. Divisors found: r1=96371276020696526133446288272274025697919084102770639532241766004453 (pp68) r2=82599290303737453966408350950661246292450859283670030355136080034796461939594945728788702602573657900283 (pp104) Version: GGNFS-0.77.1-20051202-athlon Total time: 172.53 hours. Scaled time: 206.34 units (timescale=1.196). Factorization parameters were as follows: name: KA_5_3_173 n: 7960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199004975124378109452736318407960199 type: snfs skew: 0.29 deg: 5 c5: 500 c0: -1 m: 20000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 6100001) Primes: RFBsize:348513, AFBsize:348381, largePrimes:8606327 encountered Relations: rels:8178018, finalFF:784475 Max relations in full relation-set: 28 Initial matrix: 696960 x 784475 with sparse part having weight 56036078. Pruned matrix : 632811 x 636359 with weight 42788642. Total sieving time: 158.37 hours. Total relation processing time: 0.66 hours. Matrix solve time: 13.29 hours. Total square root time: 0.20 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,174,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 172.53 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(8·10157-53)/9 = (8)1563<157> = 32 · 99259 · 298883603 · 412769895811232603033399<24> · C119
C119 = P41 · P78
P41 = 91704661940135167282070266149538417976081<41>
P78 = 879495360224213103544482307466419072309436217083572482010934548798414923507149<78>
Number: 88883_157 N=80653824687278864260499882306813850511268547403444054213087351371389500573348614528160269592553396427774786594914503069 ( 119 digits) SNFS difficulty: 157 digits. Divisors found: r1=91704661940135167282070266149538417976081 (pp41) r2=879495360224213103544482307466419072309436217083572482010934548798414923507149 (pp78) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 62.70 hours. Scaled time: 42.70 units (timescale=0.681). Factorization parameters were as follows: name: 88883_157 n: 80653824687278864260499882306813850511268547403444054213087351371389500573348614528160269592553396427774786594914503069 m: 20000000000000000000000000000000 c5: 25 c0: -53 skew: 1.16 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3000001) Primes: RFBsize:216816, AFBsize:217081, largePrimes:5636168 encountered Relations: rels:5570899, finalFF:488151 Max relations in full relation-set: 0 Initial matrix: 433961 x 488151 with sparse part having weight 34548626. Pruned matrix : 409449 x 411682 with weight 26681522. Total sieving time: 55.38 hours. Total relation processing time: 0.30 hours. Matrix solve time: 6.84 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 62.70 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM 5.0 B1=203500, B1=1024000
(14·10162-41)/9 = 1(5)1611<163> = 3 · 214219 · 10324063 · C150
C150 = P36 · P41 · P74
P36 = 110021344519261749564662722162683047<36>
P41 = 34504949858484862052592280714802542174189<41>
P74 = 61758578210491351731564901830521726152917416595997540856609496672738529267<74>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(34·10160-7)/9 = 3(7)160<161> = 37 · 739 · 1061 · 6359 · C150
C150 = P40 · P111
P40 = 1122510875599841509819333162942527354919<40>
P111 = 182429672649887044863888718305726909178631224196066040957083526804690245217425139299330145938851723157067710419<111>
Number: n N=204779291581617165659482935465497566962336896463508396519683855623161916137193553474407168443864391313760716948157646481601056640075903959403527201061 ( 150 digits) SNFS difficulty: 161 digits. Divisors found: r1=1122510875599841509819333162942527354919 (pp40) r2=182429672649887044863888718305726909178631224196066040957083526804690245217425139299330145938851723157067710419 (pp111) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.46 hours. Scaled time: 58.47 units (timescale=1.445). Factorization parameters were as follows: name: KA_3_7_160 n: 204779291581617165659482935465497566962336896463508396519683855623161916137193553474407168443864391313760716948157646481601056640075903959403527201061 skew: 0.73 deg: 5 c5: 34 c0: -7 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:249466, largePrimes:7231529 encountered Relations: rels:6757696, finalFF:567845 Max relations in full relation-set: 28 Initial matrix: 499682 x 567845 with sparse part having weight 37971589. Pruned matrix : 441964 x 444526 with weight 24954498. Total sieving time: 35.43 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.60 hours. Total square root time: 0.22 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 40.46 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(17·10162-71)/9 = 1(8)1611<163> = 3 · 1439 · C159
C159 = P70 · P90
P70 = 2583124372509618337040968830299059261714173907429069612978604367206603<70>
P90 = 169386598202867977225527166176651263517709056741805060006511940185061380465616968087449231<90>
Number: n N=437546650194322188762772501479937199186677991403495225593905232543175559158880910097032404190152626566803078269374308290222119270069235322883689805163050472293 ( 159 digits) SNFS difficulty: 163 digits. Divisors found: r1=2583124372509618337040968830299059261714173907429069612978604367206603 (pp70) r2=169386598202867977225527166176651263517709056741805060006511940185061380465616968087449231 (pp90) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 57.94 hours. Scaled time: 78.51 units (timescale=1.355). Factorization parameters were as follows: name: KA_1_8_161_1 n: 437546650194322188762772501479937199186677991403495225593905232543175559158880910097032404190152626566803078269374308290222119270069235322883689805163050472293 skew: 0.53 deg: 5 c5: 1700 c0: -71 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2400001) Primes: RFBsize:250150, AFBsize:250202, largePrimes:7459585 encountered Relations: rels:6986844, finalFF:572535 Max relations in full relation-set: 28 Initial matrix: 500419 x 572535 with sparse part having weight 41248883. Pruned matrix : 442792 x 445358 with weight 28101844. Total sieving time: 52.51 hours. Total relation processing time: 0.27 hours. Matrix solve time: 4.81 hours. Total square root time: 0.34 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 57.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM 6.1.2 B1=11000000
4·10166-3 = 3(9)1657<167> = 37 · 109 · 467 · 21467 · C156
C156 = P35 · P122
P35 = 10558902718487179894422921589845289<35>
P122 = 93696796766281288719136025075673968299994681684211285870697078809182558148593470010534568057803410687480015936158750023029<122>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(83·10161+61)/9 = 9(2)1609<162> = 7 · 11 · 12377 · 19541 · C152
C152 = P55 · P98
P55 = 1253925579802704887847319737479996409450417957300062431<55>
P98 = 39492162932172239037026100445899515906877612660361618281345600460588359473016205661201392275400531<98>
Number: n N=49520233302386964779546750368695160262255294423154139840175164473697688657347976477513615143791891804577561756279764230158227764030719676476471830550861 ( 152 digits) SNFS difficulty: 162 digits. Divisors found: r1=1253925579802704887847319737479996409450417957300062431 (pp55) r2=39492162932172239037026100445899515906877612660361618281345600460588359473016205661201392275400531 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 65.76 hours. Scaled time: 95.42 units (timescale=1.451). Factorization parameters were as follows: name: KA_9_2_160_9 n: 49520233302386964779546750368695160262255294423154139840175164473697688657347976477513615143791891804577561756279764230158227764030719676476471830550861 skew: 0.59 deg: 5 c5: 830 c0: 61 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2900001) Primes: RFBsize:250150, AFBsize:249517, largePrimes:7668454 encountered Relations: rels:7187894, finalFF:565601 Max relations in full relation-set: 28 Initial matrix: 499734 x 565601 with sparse part having weight 45402229. Pruned matrix : 454050 x 456612 with weight 33560178. Total sieving time: 58.49 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.82 hours. Total square root time: 0.19 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 65.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
4·10180+3 = 4(0)1793<181> = 7 · C180
C180 = P86 · P94
P86 = 83826283922298951250679670902394172492665030066721447476491438645405060824416416839171<86>
P94 = 6816818600216674079721080459803918316770769056707557617751767138646831184079876164364702748599<94>
Number: 40003_180 N=571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 180 digits) SNFS difficulty: 180 digits. Divisors found: r1=83826283922298951250679670902394172492665030066721447476491438645405060824416416839171 (pp86) r2=6816818600216674079721080459803918316770769056707557617751767138646831184079876164364702748599 (pp94) Version: GGNFS-0.77.1-20060513-k8 Total time: 402.02 hours. Scaled time: 805.24 units (timescale=2.003). Factorization parameters were as follows: name: 40003_180 n: 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8200001) Primes: RFBsize:501962, AFBsize:502056, largePrimes:6501623 encountered Relations: rels:7055323, finalFF:1224296 Max relations in full relation-set: 28 Initial matrix: 1004085 x 1224296 with sparse part having weight 64791188. Pruned matrix : 810729 x 815813 with weight 46491843. Total sieving time: 393.70 hours. Total relation processing time: 0.32 hours. Matrix solve time: 7.71 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 402.02 hours. --------- CPU info (if available) ----------
P86 is the largest factor found by GGNFS so far in our tables. Congratulations!
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GMP-ECM 5.0 B1=555500, GGNFS-0.77.1-20051202-athlon
(64·10161-1)/9 = 7(1)161<162>= 3 · 7001 · 16644197 · C151
C151 = P60 · P91
P60 = 242234408783777373086114783431817508160131008952509616569639<60>
P91 = 8397643833649287842181389119448886552064945552482189671050550356474674679669138218340127239<91>
Number: n N=2034198289220768944122855330305356229027758545561694863312919801308175051845084868498046294285027792142932415919483934510480134883453891368081964296721 ( 151 digits) SNFS difficulty: 162 digits. Divisors found: r1=242234408783777373086114783431817508160131008952509616569639 (pp60) r2=8397643833649287842181389119448886552064945552482189671050550356474674679669138218340127239 (pp91) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 38.61 hours. Scaled time: 52.75 units (timescale=1.366). Factorization parameters were as follows: name: KA_7_1_161 n: 2034198289220768944122855330305356229027758545561694863312919801308175051845084868498046294285027792142932415919483934510480134883453891368081964296721 skew: 0.55 deg: 5 c5: 20 c0: -1 m: 200000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:249621, largePrimes:7178047 encountered Relations: rels:6706081, finalFF:569137 Max relations in full relation-set: 28 Initial matrix: 499837 x 569137 with sparse part having weight 35817686. Pruned matrix : 439711 x 442274 with weight 23181566. Total sieving time: 34.90 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.38 hours. Total square root time: 0.12 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10171-7)/3 = 1(3)1701<172> = 11 · 509 · C168
C168 = P31 · P62 · P76
P31 = 1579581662729255260822279089299<31>
P62 = 15140952069917912762805059248526017411056580054721603176641137<62>
P76 = 9957103032241894992392055264616753554079600537545293015777629476295758102863<76>
Number: n N=150760019766408845647399019187174726946819254572510064535376429497480082829008432013771344824709618636211004729226783886499508955683275231 ( 138 digits) SNFS difficulty: 171 digits. Divisors found: r1=15140952069917912762805059248526017411056580054721603176641137 (pp62) r2=9957103032241894992392055264616753554079600537545293015777629476295758102863 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 92.21 hours. Scaled time: 122.09 units (timescale=1.324). Factorization parameters were as follows: name: KA_1_3_170_1 n: 150760019766408845647399019187174726946819254572510064535376429497480082829008432013771344824709618636211004729226783886499508955683275231 # n: 238137762695719473715544442459963088646782163481574090611418705721259748764660356015955230100613204738941477644817526939334404953265464070965053283324403167232243853069 skew: 0.71 deg: 5 c5: 40 c0: -7 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3700001) Primes: RFBsize:348513, AFBsize:348246, largePrimes:8112542 encountered Relations: rels:7771094, finalFF:817458 Max relations in full relation-set: 48 Initial matrix: 696825 x 817458 with sparse part having weight 48005762. Pruned matrix : 589738 x 593286 with weight 30161766. Total sieving time: 83.41 hours. Total relation processing time: 0.35 hours. Matrix solve time: 8.15 hours. Total square root time: 0.31 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 92.21 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(4·10177+41)/9 = (4)1769<177> = C177
C177 = P42 · P136
P42 = 168147754451668131804909254590792523405537<42>
P136 = 2643177994816423045994801272196432548527495305343780758343199586659007613587966246673472391393843105829320609766702837229594492464461377<136>
Number: 44449_177 N=444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 ( 177 digits) SNFS difficulty: 177 digits. Divisors found: r1=168147754451668131804909254590792523405537 (pp42) r2=2643177994816423045994801272196432548527495305343780758343199586659007613587966246673472391393843105829320609766702837229594492464461377 (pp136) Version: GGNFS-0.77.1-20050930-nocona Total time: 183.14 hours. Scaled time: 391.19 units (timescale=2.136). Factorization parameters were as follows: n: 444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444449 m: 200000000000000000000000000000000000 c5: 25 c0: 82 skew: 1.27 type: snfs Factor base limits: 10000000/10000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 50/50 Sieved algebraic special-q in [5000000, 7900001) Primes: RFBsize:664579, AFBsize:665706, largePrimes:10888385 encountered Relations: rels:11167090, finalFF:1501554 Max relations in full relation-set: 28 Initial matrix: 1330349 x 1501554 with sparse part having weight 84723705. Pruned matrix : 1171071 x 1177786 with weight 56372503. Total sieving time: 173.41 hours. Total relation processing time: 0.25 hours. Matrix solve time: 9.37 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,10000000,10000000,28,28,50,50,2.6,2.6,100000 total time: 183.14 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM 5.0 B1=235000, GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0 B1=148000, GGNFS-0.77.1-20060513-athlon-xp
8·10173-3 = 7(9)1727<174> = 11 · 17 · C172
C172 = P32 · P141
P32 = 16714781670858896574412244553011<32>
P141 = 255945602554216888346456751285955406140848117378586326431440585310105420050084687172161632857854573720137957976799629434184623898942614879421<141>
(5·10160-41)/9 = (5)1591<160> = 7 · 13 · 38339629 · C151
C151 = P59 · P92
P59 = 93930422496056102672951745999929180207457761507108874860957<59>
P92 = 16952428477316522540754897578493590824200183248034476666556039573794818514422723747420375637<92>
Number: n N=1592348769208513991125215662625766411590734512586468952556897748021011107359699830430311416447197781962393273577322854377674078720220820343907085304609 ( 151 digits) SNFS difficulty: 160 digits. Divisors found: r1=93930422496056102672951745999929180207457761507108874860957 (pp59) r2=16952428477316522540754897578493590824200183248034476666556039573794818514422723747420375637 (pp92) Version: GGNFS-0.77.1-20051202-athlon Total time: 34.68 hours. Scaled time: 50.01 units (timescale=1.442). Factorization parameters were as follows: name: KA_5_159_1 n: 1592348769208513991125215662625766411590734512586468952556897748021011107359699830430311416447197781962393273577322854377674078720220820343907085304609 skew: 1.52 deg: 5 c5: 5 c0: -41 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:250147, largePrimes:7174417 encountered Relations: rels:6714797, finalFF:578820 Max relations in full relation-set: 28 Initial matrix: 500362 x 578820 with sparse part having weight 36630150. Pruned matrix : 431983 x 434548 with weight 22708070. Total sieving time: 30.10 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.13 hours. Total square root time: 0.14 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 34.68 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(16·10161-1)/3 = 5(3)161<162> = 371464902031<12> · C151
C151 = P38 · P53 · P61
P38 = 21296628673706037218941669897405375529<38>
P53 = 18789442466366541078334745181943959375398817645988163<53>
P61 = 3588031028791720530702891116571104480395193265875079747911009<61>
Number: n N=67417102583019983171184801555027292869246270062017192633036181651915613927135668150787776143695353707888791386467 ( 113 digits) SNFS difficulty: 162 digits. Divisors found: r1=18789442466366541078334745181943959375398817645988163 (pp53) r2=3588031028791720530702891116571104480395193265875079747911009 (pp61) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 35.56 hours. Scaled time: 48.54 units (timescale=1.365). Factorization parameters were as follows: name: KA_5_3_161 n: 67417102583019983171184801555027292869246270062017192633036181651915613927135668150787776143695353707888791386467 # n: 1435756999967724720152252411207919472795542416216408834314647200422664077480544169773101373842224239920853631269279030738644813825332397365358703566043 skew: 0.72 deg: 5 c5: 5 c0: -1 m: 200000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:250150, AFBsize:249616, largePrimes:7109746 encountered Relations: rels:6650928, finalFF:579476 Max relations in full relation-set: 28 Initial matrix: 499831 x 579476 with sparse part having weight 35607840. Pruned matrix : 430167 x 432730 with weight 21710821. Total sieving time: 31.47 hours. Total relation processing time: 0.37 hours. Matrix solve time: 3.37 hours. Total square root time: 0.34 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 35.56 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM 6.1.2 B1=11000000
4·10179-3 = 3(9)1787<180> = 13 · 751609465955754276518902944827<30> · C149
C149 = P31 · P118
P31 = 5440737829768967253704195829959<31>
P118 = 7524308589497537700550163236387070963072198888286762101154838011070880004644191216696466958842086243668442125836776933<118>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(25·10171-1)/3 = 8(3)171<172> = 13 · 479 · C169
C169 = P68 · P101
P68 = 29118448070168224831416797259913943918883957045985714959238024271677<68>
P101 = 45959115678209855991045867600068525726469370895875466784175162434036104055601120929335967260638369027<101>
Number: n N=1338258123226807986724479417590064771693164177506557464803811359134949949146191317381296504469782131577538675659761254750816337455168352871901932444729939510732830148279 ( 169 digits) SNFS difficulty: 172 digits. Divisors found: r1=29118448070168224831416797259913943918883957045985714959238024271677 (pp68) r2=45959115678209855991045867600068525726469370895875466784175162434036104055601120929335967260638369027 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 134.87 hours. Scaled time: 158.06 units (timescale=1.172). Factorization parameters were as follows: name: KA_8_3_171 n: 1338258123226807986724479417590064771693164177506557464803811359134949949146191317381296504469782131577538675659761254750816337455168352871901932444729939510732830148279 type: snfs skew: 0.33 deg: 5 c5: 250 c0: -1 m: 10000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4800000) Primes: RFBsize:348513, AFBsize:348111, largePrimes:8295364 encountered Relations: rels:7898851, finalFF:788404 Max relations in full relation-set: 28 Initial matrix: 696690 x 788404 with sparse part having weight 47562588. Pruned matrix : 621809 x 625356 with weight 34416063. Total sieving time: 122.44 hours. Total relation processing time: 0.44 hours. Matrix solve time: 10.69 hours. Total square root time: 1.30 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 134.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By honeycrack7 / GGNFS-0.77.1-20060513-pentium4
2·10166+3 = 2(0)1653<167> = 79 · 729941 · 1137496712761<13> · 3151934443985899535720514258097<31> · C116
C116 = P38 · P39 · P41
P38 = 29139773847805639821445881025078673003<38>
P39 = 245334893549794309989767836564265608087<39>
P41 = 13531387192579406360450949532177073435621<41>
Number: 20003_166 N=96735931896521673246753209867323320086123873399038844839615081198086925909914926262118324884197380820104433849572081 ( 116 digits) SNFS difficulty: 166 digits. Divisors found: r1=29139773847805639821445881025078673003 (pp38) r2=245334893549794309989767836564265608087 (pp39) r3=13531387192579406360450949532177073435621 (pp41) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 149.93 hours. Scaled time: 223.25 units (timescale=1.489). Factorization parameters were as follows: n: 96735931896521673246753209867323320086123873399038844839615081198086925909914926262118324884197380820104433849572081 m: 1000000000000000000000000000000000 c5: 20 c0: 3 skew: 1 type: snfsFactor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 6300001) Primes: RFBsize:348513, AFBsize:348151, largePrimes:6025351 encountered Relations: rels:6221740, finalFF:823022 Max relations in full relation-set: 28 Initial matrix: 696730 x 823022 with sparse part having weight 62738206. Pruned matrix : 600136 x 603683 with weight 46382057. Total sieving time: 130.43 hours. Total relation processing time: 0.54 hours. Matrix solve time: 18.63 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 149.93 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0 B1=1739000
(7·10170-1)/3 = 2(3)170<171> = 311 · C168
C168 = P74 · P95
P74 = 11932010618769729868493135550576478670582273449378145996805715014527203523<74>
P95 = 62878585748162680828932573824793216019304952212408377491474470576966134103734657544119040624561<95>
Number: n N=750267952840300107181136120042872454448017148981779206859592711682743837084673097534833869239013933547695605573419078242229367631296891747052518756698821007502679528403 ( 168 digits) SNFS difficulty: 170 digits. Divisors found: r1=11932010618769729868493135550576478670582273449378145996805715014527203523 (pp74) r2=62878585748162680828932573824793216019304952212408377491474470576966134103734657544119040624561 (pp95) Version: GGNFS-0.77.1-20051202-athlon Total time: 89.70 hours. Scaled time: 118.41 units (timescale=1.320). Factorization parameters were as follows: name: KA_2_3_170 n: 750267952840300107181136120042872454448017148981779206859592711682743837084673097534833869239013933547695605573419078242229367631296891747052518756698821007502679528403 skew: 0.68 deg: 5 c5: 7 c0: -1 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:348513, AFBsize:348031, largePrimes:8026856 encountered Relations: rels:7665683, finalFF:795791 Max relations in full relation-set: 48 Initial matrix: 696611 x 795791 with sparse part having weight 46042124. Pruned matrix : 608294 x 611841 with weight 29860162. Total sieving time: 80.68 hours. Total relation processing time: 0.41 hours. Matrix solve time: 8.40 hours. Total square root time: 0.21 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 89.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(65·10161+43)/9 = 7(2)1607<162> = 11 · 3407 · C158
C158 = P44 · P114
P44 = 52947769774827685110950551656087356218398433<44>
P114 = 363963939109135155217567052297823083527155953215564045576179453409875651685542451308909281653467079298253731913847<114>
Number: n N=19271078854289890392033039523500339467465971721915367351234683198287542285194178355317187134034800603629485343603335971988745689949094704011052704918275801751 ( 158 digits) SNFS difficulty: 162 digits. Divisors found: r1=52947769774827685110950551656087356218398433 (pp44) r2=363963939109135155217567052297823083527155953215564045576179453409875651685542451308909281653467079298253731913847 (pp114) Version: GGNFS-0.77.1-20051202-athlon Total time: 51.24 hours. Scaled time: 74.29 units (timescale=1.450). Factorization parameters were as follows: name: KA_7_2_160_7 n: 19271078854289890392033039523500339467465971721915367351234683198287542285194178355317187134034800603629485343603335971988745689949094704011052704918275801751 skew: 0.58 deg: 5 c5: 650 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:250150, AFBsize:249736, largePrimes:7540584 encountered Relations: rels:7113733, finalFF:609923 Max relations in full relation-set: 28 Initial matrix: 499953 x 609923 with sparse part having weight 44644601. Pruned matrix : 412583 x 415146 with weight 28053407. Total sieving time: 45.96 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.95 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 51.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(83·10159+61)/9 = 9(2)1589<160> = 11 · 67 · 151901 · C152
C152 = P38 · P115
P38 = 79242765343021762777586110766574321493<38>
P115 = 1039555880362478945347803022950014270999726058613258831222612147118945027723605412596578155237411757742769127379669<115>
By suberi / Msieve v. 1.23
4·10184+3 = 4(0)1833<185> = 643 · 44017 · 49859134658930905291<20> · 3260581655841388369657396033<28> · 5986920270178566508580072759197219<34> · C97
C97 = P48 · P49
P48 = 598460262591086976314911215354850882063724060041<48>
P49 = 2426330557371719231339466672548563551076810498249<49>
Thu Jun 07 01:51:11 2007 Thu Jun 07 01:51:11 2007 Thu Jun 07 01:51:11 2007 Msieve v. 1.23 Thu Jun 07 01:51:11 2007 random seeds: 37e514e8 67c1b05e Thu Jun 07 01:51:11 2007 factoring 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 (115 digits) Thu Jun 07 01:51:12 2007 commencing quadratic sieve (114-digit input) Thu Jun 07 01:51:14 2007 using multiplier of 3 Thu Jun 07 01:51:14 2007 using 64kb Pentium 4 sieve core Thu Jun 07 01:51:14 2007 sieve interval: 35 blocks of size 65536 Thu Jun 07 01:51:14 2007 processing polynomials in batches of 3 Thu Jun 07 01:51:14 2007 using a sieve bound of 9160121 (306250 primes) Thu Jun 07 01:51:14 2007 using large prime bound of 1374018150 (30 bits) Thu Jun 07 01:51:14 2007 using double large prime bound of 28079309877748350 (47-55 bits) Thu Jun 07 01:51:14 2007 using trial factoring cutoff of 55 bits Thu Jun 07 01:51:14 2007 polynomial 'A' values have 15 factors Thu Jun 07 17:03:36 2007 2573 relations (2507 full + 66 combined from 147158 partial), need 306346 Thu Jun 07 17:03:36 2007 c115 factor: 1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067 Thu Jun 07 17:03:36 2007 elapsed time 15:12:25 Sun Jun 10 22:09:11 2007 Sun Jun 10 22:09:11 2007 Sun Jun 10 22:09:11 2007 Msieve v. 1.23 Sun Jun 10 22:09:11 2007 random seeds: c6371880 07cdeec2 Sun Jun 10 22:09:11 2007 factoring 1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209 (97 digits) Sun Jun 10 22:09:11 2007 commencing quadratic sieve (96-digit input) Sun Jun 10 22:09:12 2007 using multiplier of 1 Sun Jun 10 22:09:12 2007 using 64kb Pentium 4 sieve core Sun Jun 10 22:09:12 2007 sieve interval: 18 blocks of size 65536 Sun Jun 10 22:09:12 2007 processing polynomials in batches of 6 Sun Jun 10 22:09:12 2007 using a sieve bound of 2328947 (85882 primes) Sun Jun 10 22:09:12 2007 using large prime bound of 349342050 (28 bits) Sun Jun 10 22:09:12 2007 using double large prime bound of 2386995188843550 (43-52 bits) Sun Jun 10 22:09:12 2007 using trial factoring cutoff of 52 bits Sun Jun 10 22:09:12 2007 polynomial 'A' values have 12 factors Mon Jun 11 07:51:47 2007 86181 relations (21034 full + 65147 combined from 1292570 partial), need 85978 Mon Jun 11 07:51:49 2007 begin with 1313604 relations Mon Jun 11 07:51:52 2007 reduce to 225635 relations in 14 passes Mon Jun 11 07:51:52 2007 attempting to read 225635 relations Mon Jun 11 07:51:57 2007 recovered 225635 relations Mon Jun 11 07:51:57 2007 recovered 210860 polynomials Mon Jun 11 07:51:57 2007 attempting to build 86181 cycles Mon Jun 11 07:51:57 2007 found 86181 cycles in 6 passes Mon Jun 11 07:51:57 2007 distribution of cycle lengths: Mon Jun 11 07:51:57 2007 length 1 : 21034 Mon Jun 11 07:51:57 2007 length 2 : 15162 Mon Jun 11 07:51:57 2007 length 3 : 14263 Mon Jun 11 07:51:57 2007 length 4 : 11625 Mon Jun 11 07:51:57 2007 length 5 : 8916 Mon Jun 11 07:51:57 2007 length 6 : 6072 Mon Jun 11 07:51:57 2007 length 7 : 3792 Mon Jun 11 07:51:57 2007 length 9+: 5317 Mon Jun 11 07:51:57 2007 largest cycle: 20 relations Mon Jun 11 07:51:58 2007 matrix is 85882 x 86181 with weight 5832332 (avg 67.68/col) Mon Jun 11 07:52:00 2007 filtering completed in 3 passes Mon Jun 11 07:52:00 2007 matrix is 82073 x 82137 with weight 5580342 (avg 67.94/col) Mon Jun 11 07:52:01 2007 saving the first 48 matrix rows for later Mon Jun 11 07:52:02 2007 matrix is 82025 x 82137 with weight 4657748 (avg 56.71/col) Mon Jun 11 07:52:02 2007 matrix includes 64 packed rows Mon Jun 11 07:52:02 2007 using block size 21845 for processor cache size 512 kB Mon Jun 11 07:52:02 2007 commencing Lanczos iteration Mon Jun 11 07:53:56 2007 lanczos halted after 1299 iterations Mon Jun 11 07:53:57 2007 recovered 17 nontrivial dependencies Mon Jun 11 07:53:59 2007 prp48 factor: 598460262591086976314911215354850882063724060041 Mon Jun 11 07:53:59 2007 prp49 factor: 2426330557371719231339466672548563551076810498249 Mon Jun 11 07:53:59 2007 elapsed time 09:44:48
By Robert Backstrom / GMP-ECM 5.0 B1=166500, B1=621000
(34·10161-43)/9 = 3(7)1603<162> = 112 · 62134973 · C152
C152 = P31 · P33 · P89
P31 = 4307682285413506208225521446163<31>
P33 = 119609608489188908704802685341489<33>
P89 = 97522581802448847543848204896401695824467527895737868563689707593989646588087900743901683<89>
By suberi / GGNFS-0.77.1-20060722-pentium4, GMP-ECM 6.1.2 B1=11000000
(4·10171-1)/3 = 1(3)171<172> = 43 · 563075957 · C161
C161 = P62 · P100
P62 = 10565196783884673236263834339911427983584335421440205826081601<62>
P100 = 5212255627583432316510330673884890259823438206542422559981296851838922765444865400476740562332250083<100>
Number: 13333_171 N=55068506393329268228781801372382135819242644394692096548700842559697060441144881140842260739500877847149902384753995071567447570857215517700565083852457497022883 ( 161 digits) SNFS difficulty: 171 digits. Divisors found: r1=10565196783884673236263834339911427983584335421440205826081601 (pp62) r2=5212255627583432316510330673884890259823438206542422559981296851838922765444865400476740562332250083 (pp100) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 182.70 hours. Scaled time: 124.78 units (timescale=0.683). Factorization parameters were as follows: n: 55068506393329268228781801372382135819242644394692096548700842559697060441144881140842260739500877847149902384753995071567447570857215517700565083852457497022883 m: 10000000000000000000000000000000000 c5: 40 c0: -1 skew: 1 type: snfs Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [4200000, ) Primes: RFBsize:564877, AFBsize:564646, largePrimes:6291159 encountered Relations: rels:6883739, finalFF:1293233 Max relations in full relation-set: 32 Initial matrix: 1129589 x 1293233 with sparse part having weight 43585609. Pruned matrix : 977490 x 983201 with weight 30378877. Total sieving time: 140.70 hours. Total relation processing time: 0.70 hours. Matrix solve time: 41.01 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,8400000,8400000,27,27,48,48,2.6,2.6,100000 total time: 182.70 hours. --------- CPU info (if available) ----------
4·10175+3 = 4(0)1743<176> = 17 · 6883 · 19412177 · 169757677820354209<18> · C147
C147 = P31 · P116
P31 = 7869296226745426570552208159293<31>
P116 = 13182377316446225748087882274614574555076488881805882086115583209285537401151576878380413502502112486527863046837877<116>
4·10184+3 = 4(0)1833<185> = 643 · 44017 · 49859134658930905291<20> · 3260581655841388369657396033<28> · C130
C130 = P34 · C97
P34 = 5986920270178566508580072759197219<34>
C97 = [1452062422497457515275178568841712183672090367974976058364101164379409367802639948011198401368209<97>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(65·10160+43)/9 = 7(2)1597<161> = 1291 · 297457 · C153
C153 = P32 · P34 · P88
P32 = 17352541246944072825111665711753<32>
P34 = 2342545412736254376314836515222427<34>
P88 = 4626678339400851524807725560482691036987427405150010526072468457028149806517927931218291<88>
Number: n N=188070384038043145789855963382740207328959180189136326467303443069361466091139927156978142277394156582511341411629330403090273249350352884837936146356521 ( 153 digits) SNFS difficulty: 161 digits. Divisors found: r1=17352541246944072825111665711753 (pp32) r2=2342545412736254376314836515222427 (pp34) r3=4626678339400851524807725560482691036987427405150010526072468457028149806517927931218291 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.23 hours. Scaled time: 56.69 units (timescale=1.445). Factorization parameters were as follows: name: KA_7_2_159_7 n: 188070384038043145789855963382740207328959180189136326467303443069361466091139927156978142277394156582511341411629330403090273249350352884837936146356521 skew: 0.92 deg: 5 c5: 65 c0: 43 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:250296, largePrimes:7171287 encountered Relations: rels:6695030, finalFF:564527 Max relations in full relation-set: 28 Initial matrix: 500512 x 564527 with sparse part having weight 35787677. Pruned matrix : 445479 x 448045 with weight 23699811. Total sieving time: 34.25 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.54 hours. Total square root time: 0.23 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 39.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
(5·10184-17)/3 = 1(6)1831<185> = C185
C185 = P42 · C143
P42 = 650396194789255960015809850516619718777599<42>
C143 = [25625406175795767517350994169187890818937242743959519616955167305594370202781899645404855476406496245046648724032900205007202467374194220379739<143>]
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GMP-ECM 5.0 B1=367500
6·10160+1 = 6(0)1591<161> = 31 · 670853 · C154
C154 = P41 · P114
P41 = 27432596289301964073885280181487235430291<41>
P114 = 105170824355437139403715973975995678497668642440971399521069843399452536718803322806044637013799975195072495150977<114>
Number: n N=2885108765955793497955395545286278042836460061944246907992871665601660822478151672379743016630295863576285617689525078880075789883875814724662289604044307 ( 154 digits) SNFS difficulty: 160 digits. Divisors found: r1=27432596289301964073885280181487235430291 (pp41) r2=105170824355437139403715973975995678497668642440971399521069843399452536718803322806044637013799975195072495150977 (pp114) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 33.19 hours. Scaled time: 45.33 units (timescale=1.366). Factorization parameters were as follows: name: KA_6_0_159_1 n: 2885108765955793497955395545286278042836460061944246907992871665601660822478151672379743016630295863576285617689525078880075789883875814724662289604044307 skew: 0.70 deg: 5 c5: 6 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250351, largePrimes:7044823 encountered Relations: rels:6590876, finalFF:582384 Max relations in full relation-set: 28 Initial matrix: 500567 x 582384 with sparse part having weight 34717814. Pruned matrix : 426273 x 428839 with weight 20692604. Total sieving time: 29.74 hours. Total relation processing time: 0.26 hours. Matrix solve time: 2.86 hours. Total square root time: 0.33 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 33.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(8·10160-17)/9 = (8)1597<160> = 6934331 · C154
C154 = P33 · P121
P33 = 968995160047131185467992972361627<33>
P121 = 1322882591846643298048151628358822882762642650753662322011497085867674561864363575653354158395684834292581003964206621551<121>
By Alexander Mkrtychyan / GGNFS-0.77.1-20060513-pentium4
10179+7 = 1(0)1787<180> = 167 · C177
C177 = P53 · P124
P53 = 60950560869098197619847712489744585923674505423726671<53>
P124 = 9824395160130058065900701752890082125561413858734478820643602889430506537378449350699284748319422251954897604377774555118351<124>
Number: 10007_109 N=598802395209580838323353293413173652694610778443113772455089820359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239521 ( 177 digits) SNFS difficulty: 180 digits. Divisors found: r1=60950560869098197619847712489744585923674505423726671 (pp53) r2=9824395160130058065900701752890082125561413858734478820643602889430506537378449350699284748319422251954897604377774555118351 (pp124) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 409.50 hours. Scaled time: 819.00 units (timescale=2.000). Factorization parameters were as follows: n: 598802395209580838323353293413173652694610778443113772455089820359281437125748502994011976047904191616766467065868263473053892215568862275449101796407185628742514970059880239521 m: 1000000000000000000000000000000000000 c5: 1 c0: 70 skew: 2.34 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8700001) Primes: RFBsize:501962, AFBsize:503466, largePrimes:6469967 encountered Relations: rels:6943936, finalFF:1154759 Max relations in full relation-set: 28 Initial matrix: 1005492 x 1154759 with sparse part having weight 64569777. Pruned matrix : 877696 x 882787 with weight 48153746. Total sieving time: 382.49 hours. Total relation processing time: 0.69 hours. Matrix solve time: 26.02 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 409.50 hours.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(8·10161+1)/9 = (8)1609<161> = 2874007 · C155
C155 = P65 · P91
P65 = 20551810746861218705246366224186858134216473117184809940650521769<65>
P91 = 1504906659159028468961208577641797976861017330391535785231117565171524456762298528051525783<91>
Number: n N=30928556850727534375834466961593652655991752591030184995683339981040021436582753239254075890869051080560655867883720843021220508122940858838857695506270127 ( 155 digits) SNFS difficulty: 162 digits. Divisors found: r1=20551810746861218705246366224186858134216473117184809940650521769 (pp65) r2=1504906659159028468961208577641797976861017330391535785231117565171524456762298528051525783 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.08 hours. Scaled time: 50.90 units (timescale=1.451). Factorization parameters were as follows: name: KA_8_160_9 n: 30928556850727534375834466961593652655991752591030184995683339981040021436582753239254075890869051080560655867883720843021220508122940858838857695506270127 skew: 0.83 deg: 5 c5: 5 c0: 2 m: 200000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:249566, largePrimes:7153402 encountered Relations: rels:6692688, finalFF:576485 Max relations in full relation-set: 28 Initial matrix: 499781 x 576485 with sparse part having weight 35524689. Pruned matrix : 433288 x 435850 with weight 22114077. Total sieving time: 30.66 hours. Total relation processing time: 0.19 hours. Matrix solve time: 4.16 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 35.08 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GMP-ECM 5.0 B1=807000, GGNFS-0.77.1-20051202-athlon
8·10161-1 = 7(9)161<162> = 11448961 · C155
C155 = P43 · P50 · P64
P43 = 4539588034558524737970606694078211509057811<43>
P50 = 11816947682969491809277478418090336975083252421299<50>
P64 = 1302573251363958712781218721583539351026194452662047110920669831<64>
Number: n N=69875336285973897544065352305768182807156038002051015808334048827662178253555060585847047605455202441514125168213954087187474915846075464839123829664543359 ( 155 digits) SNFS difficulty: 162 digits. Divisors found: r1=4539588034558524737970606694078211509057811 (pp43) r2=11816947682969491809277478418090336975083252421299 (pp50) r3=1302573251363958712781218721583539351026194452662047110920669831 (pp64) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 39.71 hours. Scaled time: 54.29 units (timescale=1.367). Factorization parameters were as follows: name: KA_7_9_161 n: 69875336285973897544065352305768182807156038002051015808334048827662178253555060585847047605455202441514125168213954087187474915846075464839123829664543359 skew: 0.83 deg: 5 c5: 5 c0: -2 m: 200000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:250150, AFBsize:249566, largePrimes:7182966 encountered Relations: rels:6717273, finalFF:574042 Max relations in full relation-set: 28 Initial matrix: 499781 x 574042 with sparse part having weight 36072684. Pruned matrix : 435510 x 438072 with weight 22844668. Total sieving time: 35.55 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.71 hours. Total square root time: 0.24 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 39.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10171-11)/9 = (2)1701<171> = 13 · 23 · C168
C168 = P32 · P39 · P98
P32 = 27851033920037562716463233492393<32>
P39 = 275686147181721751471622993232321660739<39>
P98 = 96796584127055481810278948284165150853864843387232107130793898378385677491078494178075979521903877<98>
Number: n N=26685477338339329039543211617052433617893367389355907405472169844555157404025928817956271993597584603028709449313596895296724931762785103 ( 137 digits) SNFS difficulty: 171 digits. Divisors found: r1=275686147181721751471622993232321660739 (pp39) r2=96796584127055481810278948284165150853864843387232107130793898378385677491078494178075979521903877 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 109.28 hours. Scaled time: 144.57 units (timescale=1.323). Factorization parameters were as follows: name: KA_2_170_1 n: 26685477338339329039543211617052433617893367389355907405472169844555157404025928817956271993597584603028709449313596895296724931762785103 # n: 743218134522482348569305091044221479004087699739873652917131178000743218134522482348569305091044221479004087699739873652917131178000743218134522482348569305091044221479 skew: 0.89 deg: 5 c5: 20 c0: -11 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4300001) Primes: RFBsize:348513, AFBsize:348817, largePrimes:8249964 encountered Relations: rels:7870823, finalFF:800899 Max relations in full relation-set: 48 Initial matrix: 697396 x 800899 with sparse part having weight 47329242. Pruned matrix : 610868 x 614418 with weight 32155254. Total sieving time: 98.90 hours. Total relation processing time: 0.35 hours. Matrix solve time: 9.69 hours. Total square root time: 0.33 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 109.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM 6.1.2 B1=11000000
4·10163+3 = 4(0)1623<164> = 1316989799426812351<19> · C146
C146 = P40 · P106
P40 = 9122825587223042642884812944337703070033<40>
P106 = 3329263796544560932998781161768664065173476621162459775686753155158211188126981055831370511645586167117741<106>
4·10169+3 = 4(0)1683<170> = 23 · 43 · 2695744223<10> · C158
C158 = P37 · P122
P37 = 1095863878505531791352248008590604473<37>
P122 = 13690786705166299346121105341688039593329430814257896520268003985603036085194932170203623925361810203165403423559971573513<122>
4·10176+3 = 4(0)1753<177> = 132 · 14479 · 1727839 · C164
C164 = P38 · C127
P38 = 30175961085952909008534878737421283007<38>
C127 = [3135236706631199341096636684750581017076426724373352960266683033160613553116178668067537726925834017042340630910117649030813861<127>]
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
2·10171+3 = 2(0)1703<172> = 8627 · C168
C168 = P41 · P127
P41 = 41713247973026961742658321646485423054431<41>
P127 = 5557713951456074967962531890753686473889384220379793822875068616831334165905093911472798378503095080109303609626110094430409519<127>
Number: 20003_171 N=231830300220238785209226845948765503651327228468760867045322823693056682508403848382983655963834473165642749507360612031992581430392952358873304740929639503883157528689 ( 168 digits) SNFS difficulty: 171 digits. Divisors found: r1=41713247973026961742658321646485423054431 (pp41) r2=5557713951456074967962531890753686473889384220379793822875068616831334165905093911472798378503095080109303609626110094430409519 (pp127) Version: GGNFS-0.77.1-20060513-k8 Total time: 206.25 hours. Scaled time: 413.12 units (timescale=2.003). Factorization parameters were as follows: name: 20003_171 n: 231830300220238785209226845948765503651327228468760867045322823693056682508403848382983655963834473165642749507360612031992581430392952358873304740929639503883157528689 m: 10000000000000000000000000000000000 c5: 20 c0: 3 skew: 1 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 9300001) Primes: RFBsize:412849, AFBsize:412656, largePrimes:6353030 encountered Relations: rels:6686637, finalFF:976860 Max relations in full relation-set: 28 Initial matrix: 825571 x 976860 with sparse part having weight 78469523. Pruned matrix : 705516 x 709707 with weight 60130180. Total sieving time: 198.00 hours. Total relation processing time: 0.35 hours. Matrix solve time: 7.61 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 206.25 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(13·10171-1)/3 = 4(3)171<172> = 7 · C171
C171 = P80 · P92
P80 = 41301678601887909281508978574307473779381336266973146191783297973077225039301321<80>
P92 = 14988437274298150142827003772114850577864102899199141349041142889289160609017099225061284139<92>
Number: n N=619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 ( 171 digits) SNFS difficulty: 172 digits. Divisors found: r1=41301678601887909281508978574307473779381336266973146191783297973077225039301321 (pp80) r2=14988437274298150142827003772114850577864102899199141349041142889289160609017099225061284139 (pp92) Version: GGNFS-0.77.1-20051202-athlon Total time: 136.44 hours. Scaled time: 163.05 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_3_171 n: 619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619047619 type: snfs skew: 0.38 deg: 5 c5: 130 c0: -1 m: 10000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4800000) Primes: RFBsize:348513, AFBsize:349036, largePrimes:8355279 encountered Relations: rels:7958858, finalFF:790913 Max relations in full relation-set: 28 Initial matrix: 697616 x 790913 with sparse part having weight 49108257. Pruned matrix : 622652 x 626204 with weight 35955650. Total sieving time: 124.32 hours. Total relation processing time: 0.58 hours. Matrix solve time: 11.17 hours. Total square root time: 0.38 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 136.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(4·10161-13)/9 = (4)1603<161> = 7 · 77867 · C155
C155 = P54 · P102
P54 = 319550413044553780518507753936684693865291403825034473<54>
P102 = 255168238619378957640510165325532105096040257500576497491031577087931802511480908975140897813777669839<102>
Number: n N=81539116046673805416276552958330861678878168533606652450321783929088692338849658381680932954257982832346811953063638630053157388228727820596006091787359847 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=319550413044553780518507753936684693865291403825034473 (pp54) r2=255168238619378957640510165325532105096040257500576497491031577087931802511480908975140897813777669839 (pp102) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.78 hours. Scaled time: 58.92 units (timescale=1.445). Factorization parameters were as follows: name: KA_4_160_3 n: 81539116046673805416276552958330861678878168533606652450321783929088692338849658381680932954257982832346811953063638630053157388228727820596006091787359847 skew: 0.80 deg: 5 c5: 40 c0: -13 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:250150, AFBsize:250286, largePrimes:7303690 encountered Relations: rels:6857429, finalFF:592319 Max relations in full relation-set: 28 Initial matrix: 500502 x 592319 with sparse part having weight 38801200. Pruned matrix : 421594 x 424160 with weight 23783758. Total sieving time: 35.81 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.32 hours. Total square root time: 0.43 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 40.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By suberi / Msieve 1.22
4·10159+3 = 4(0)1583<160> = 17 · 29 · 409 · 4108499 · 39134819 · 417437569 · 3210493232143522115233150147270451<34> · C98
C98 = P46 · P53
P46 = 2111007970395248522288822270407200076593257339<46>
P53 = 43610401448779057354383384061999544768111674794916639<53>
Wed Jun 06 13:02:36 2007 Wed Jun 06 13:02:36 2007 Wed Jun 06 13:02:36 2007 Msieve v. 1.22 Wed Jun 06 13:02:36 2007 random seeds: 1e082aa8 9c72287f Wed Jun 06 13:02:36 2007 factoring 92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621 (98 digits) Wed Jun 06 13:02:37 2007 commencing quadratic sieve (98-digit input) Wed Jun 06 13:02:37 2007 using multiplier of 5 Wed Jun 06 13:02:37 2007 using 64kb Opteron sieve core Wed Jun 06 13:02:37 2007 sieve interval: 18 blocks of size 65536 Wed Jun 06 13:02:37 2007 processing polynomials in batches of 6 Wed Jun 06 13:02:37 2007 using a sieve bound of 2542703 (92941 primes) Wed Jun 06 13:02:37 2007 using large prime bound of 381405450 (28 bits) Wed Jun 06 13:02:37 2007 using double large prime bound of 2795737419206850 (43-52 bits) Wed Jun 06 13:02:37 2007 using trial factoring cutoff of 52 bits Wed Jun 06 13:02:37 2007 polynomial 'A' values have 13 factors Wed Jun 06 21:05:02 2007 93287 relations (22735 full + 70552 combined from 1389878 partial), need 93037 Wed Jun 06 21:05:26 2007 begin with 1412613 relations Wed Jun 06 21:05:28 2007 reduce to 242711 relations in 10 passes Wed Jun 06 21:05:28 2007 attempting to read 242711 relations Wed Jun 06 21:05:33 2007 recovered 242711 relations Wed Jun 06 21:05:33 2007 recovered 229853 polynomials Wed Jun 06 21:05:34 2007 attempting to build 93287 cycles Wed Jun 06 21:05:34 2007 found 93287 cycles in 6 passes Wed Jun 06 21:05:34 2007 distribution of cycle lengths: Wed Jun 06 21:05:34 2007 length 1 : 22735 Wed Jun 06 21:05:34 2007 length 2 : 16342 Wed Jun 06 21:05:34 2007 length 3 : 15825 Wed Jun 06 21:05:34 2007 length 4 : 12688 Wed Jun 06 21:05:34 2007 length 5 : 9623 Wed Jun 06 21:05:34 2007 length 6 : 6425 Wed Jun 06 21:05:34 2007 length 7 : 4104 Wed Jun 06 21:05:34 2007 length 9+: 5545 Wed Jun 06 21:05:34 2007 largest cycle: 20 relations Wed Jun 06 21:05:34 2007 matrix is 92941 x 93287 with weight 6011165 (avg 64.44/col) Wed Jun 06 21:05:35 2007 filtering completed in 3 passes Wed Jun 06 21:05:35 2007 matrix is 91290 x 91354 with weight 5815830 (avg 63.66/col) Wed Jun 06 21:05:36 2007 saving the first 48 matrix rows for later Wed Jun 06 21:05:36 2007 matrix is 91242 x 91354 with weight 4375853 (avg 47.90/col) Wed Jun 06 21:05:36 2007 matrix includes 64 packed rows Wed Jun 06 21:05:36 2007 using block size 10922 for processor cache size 256 kB Wed Jun 06 21:05:36 2007 commencing Lanczos iteration Wed Jun 06 21:07:07 2007 lanczos halted after 1445 iterations Wed Jun 06 21:07:07 2007 recovered 15 nontrivial dependencies Wed Jun 06 21:07:08 2007 prp46 factor: 2111007970395248522288822270407200076593257339 Wed Jun 06 21:07:08 2007 prp53 factor: 43610401448779057354383384061999544768111674794916639 Wed Jun 06 21:07:08 2007 elapsed time 08:04:32
4·10161+3 = 4(0)1603<162> = 93187 · 34563163 · 1429384127<10> · 174991800857<12> · 5565980346411937268388128381439563107<37> · C92
C92 = P39 · P54
P39 = 700131433832122433345260550981903682611<39>
P54 = 127409931013861119158868865095362078118650478133953821<54>
Wed Jun 06 13:03:32 2007 Wed Jun 06 13:03:32 2007 Wed Jun 06 13:03:32 2007 Msieve v. 1.22 Wed Jun 06 13:03:32 2007 random seeds: 42a4d6dc 17b79130 Wed Jun 06 13:03:32 2007 factoring 89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631 (92 digits) Wed Jun 06 13:03:33 2007 commencing quadratic sieve (92-digit input) Wed Jun 06 13:03:33 2007 using multiplier of 31 Wed Jun 06 13:03:33 2007 using 64kb Pentium 4 sieve core Wed Jun 06 13:03:33 2007 sieve interval: 18 blocks of size 65536 Wed Jun 06 13:03:33 2007 processing polynomials in batches of 6 Wed Jun 06 13:03:33 2007 using a sieve bound of 1854623 (69412 primes) Wed Jun 06 13:03:33 2007 using large prime bound of 209572399 (27 bits) Wed Jun 06 13:03:33 2007 using double large prime bound of 951483630575481 (42-50 bits) Wed Jun 06 13:03:33 2007 using trial factoring cutoff of 50 bits Wed Jun 06 13:03:33 2007 polynomial 'A' values have 12 factors Wed Jun 06 17:47:55 2007 69664 relations (17315 full + 52349 combined from 897404 partial), need 69508 Wed Jun 06 17:47:58 2007 begin with 914719 relations Wed Jun 06 17:47:59 2007 reduce to 178248 relations in 10 passes Wed Jun 06 17:47:59 2007 attempting to read 178248 relations Wed Jun 06 17:48:03 2007 recovered 178248 relations Wed Jun 06 17:48:03 2007 recovered 161681 polynomials Wed Jun 06 17:48:03 2007 attempting to build 69664 cycles Wed Jun 06 17:48:03 2007 found 69664 cycles in 6 passes Wed Jun 06 17:48:03 2007 distribution of cycle lengths: Wed Jun 06 17:48:03 2007 length 1 : 17315 Wed Jun 06 17:48:03 2007 length 2 : 12552 Wed Jun 06 17:48:03 2007 length 3 : 12009 Wed Jun 06 17:48:03 2007 length 4 : 9448 Wed Jun 06 17:48:03 2007 length 5 : 6958 Wed Jun 06 17:48:03 2007 length 6 : 4647 Wed Jun 06 17:48:03 2007 length 7 : 2820 Wed Jun 06 17:48:03 2007 length 9+: 3915 Wed Jun 06 17:48:03 2007 largest cycle: 19 relations Wed Jun 06 17:48:04 2007 matrix is 69412 x 69664 with weight 4316925 (avg 61.97/col) Wed Jun 06 17:48:05 2007 filtering completed in 3 passes Wed Jun 06 17:48:05 2007 matrix is 68116 x 68180 with weight 4166475 (avg 61.11/col) Wed Jun 06 17:48:05 2007 saving the first 48 matrix rows for later Wed Jun 06 17:48:05 2007 matrix is 68068 x 68180 with weight 3190313 (avg 46.79/col) Wed Jun 06 17:48:05 2007 matrix includes 64 packed rows Wed Jun 06 17:48:05 2007 using block size 21845 for processor cache size 512 kB Wed Jun 06 17:48:06 2007 commencing Lanczos iteration Wed Jun 06 17:49:11 2007 lanczos halted after 1078 iterations Wed Jun 06 17:49:11 2007 recovered 17 nontrivial dependencies Wed Jun 06 17:49:13 2007 prp39 factor: 700131433832122433345260550981903682611 Wed Jun 06 17:49:13 2007 prp54 factor: 127409931013861119158868865095362078118650478133953821 Wed Jun 06 17:49:13 2007 elapsed time 04:45:41
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(16·10160-7)/9 = 1(7)160<161> = 19 · 23603 · C155
C155 = P56 · P100
P56 = 16770759996905604146905291574126233673996019246169099349<56>
P100 = 2363762954520662154675832128367503145931432005400900847902652199986102917164639275903970666869960389<100>
Number: n N=39642101199842521752983625582336272547374169157305556113022603678341017706887790307159388253004809330164938394935919782226117058665106749984452863435686761 ( 155 digits) SNFS difficulty: 161 digits. Divisors found: r1=16770759996905604146905291574126233673996019246169099349 (pp56) r2=2363762954520662154675832128367503145931432005400900847902652199986102917164639275903970666869960389 (pp100) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 31.87 hours. Scaled time: 43.51 units (timescale=1.365). Factorization parameters were as follows: name: KA_1_7_160 n: 39642101199842521752983625582336272547374169157305556113022603678341017706887790307159388253004809330164938394935919782226117058665106749984452863435686761 skew: 1.70 deg: 5 c5: 1 c0: -14 m: 200000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250091, largePrimes:7003207 encountered Relations: rels:6534990, finalFF:569860 Max relations in full relation-set: 28 Initial matrix: 500305 x 569860 with sparse part having weight 31858690. Pruned matrix : 436112 x 438677 with weight 19800703. Total sieving time: 28.59 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.98 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 31.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM 6.1.2 B1=5000000
4·10159+3 = 4(0)1583<160> = 17 · 29 · 409 · 4108499 · 39134819 · 417437569 · C132
C132 = P34 · C98
P34 = 3210493232143522115233150147270451<34>
C98 = [92061905050509083573242674474131090797477960189592323155314191961704503438069174058130179979963621<98>]
4·10170+3 = 4(0)1693<171> = 13 · 2332022449008725190543961<25> · C146
C146 = P31 · C115
P31 = 9091674957193157331925985427613<31>
C115 = [1451242577945435488202684730983697729965218073649465682642517742785018455031453318180555507115689620266670700586067<115>]
4·10161+3 = 4(0)1603<162> = 93187 · 34563163 · 1429384127<10> · 174991800857<12> · C129
C129 = P37 · C92
P37 = 5565980346411937268388128381439563107<37>
C92 = [89203697685186390047288507359292435046300468270991492132748857979599129994346738197714706631<92>]
By suberi / GMP-ECM 6.1.2 B1=5000000
4·10165+3 = 4(0)1643<166> = 47 · 2239 · 64301 · 5622060993572083<16> · C141
C141 = P32 · P109
P32 = 17162193244336712083651773667387<32>
P109 = 6126634498248786631325750859569676596678356085694049608225501662771812141931771359526911934006293383097455871<109>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(46·10160-1)/9 = 5(1)160<161> = 3 · 16361 · C157
C157 = P56 · P101
P56 = 63188612413904730140907248034497209619568206489435363729<56>
P101 = 16479552118993128813473617476831373281686860448323688740205309001943172664096989506162049716810356373<101>
Number: n N=1041320031601799219915471978304323515496426687674166434633398755396188315936497587985883322354198217531754601615857040342096267773182387203535055133368194917 ( 157 digits) SNFS difficulty: 161 digits. Divisors found: r1=63188612413904730140907248034497209619568206489435363729 (pp56) r2=16479552118993128813473617476831373281686860448323688740205309001943172664096989506162049716810356373 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 42.51 hours. Scaled time: 61.64 units (timescale=1.450). Factorization parameters were as follows: name: KA_5_1_160 n: 1041320031601799219915471978304323515496426687674166434633398755396188315936497587985883322354198217531754601615857040342096267773182387203535055133368194917 skew: 0.46 deg: 5 c5: 46 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:250150, AFBsize:250556, largePrimes:7300603 encountered Relations: rels:6822189, finalFF:562929 Max relations in full relation-set: 28 Initial matrix: 500772 x 562929 with sparse part having weight 39004994. Pruned matrix : 449144 x 451711 with weight 26733692. Total sieving time: 37.13 hours. Total relation processing time: 0.22 hours. Matrix solve time: 5.08 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 42.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Torbjörn Granlund / GMP-ECM P-1 B1=100000000 / May 25, 2007
10926+1 = 1(0)9251<927> = 101 · 62969 · 118529 · 15103061 · C907
C907 = P29 · C879
P29 = 35034118330919297779082305261<29>
By Yousuke Koide / GMP-ECM B1=1000000 / May 26, 2007
101055+1 = 1(0)10541<1056> = 11 · 9091 · 14771 · 177196221721<12> · 8708337574089530396491<22> · 2708591227536778275869251<25> · 9376657450882829279982731<25> · 2764617069785703725933625413<28> · P183 · C754
C754 = P32 · C722
P32 = 19178509602144721723538217992641<32>
By Yousuke Koide / GMP-ECM B1=1000000 / May 26, 2007
(101149-1)/9 = (1)1149<1149> = 3 · 37 · 34471 · 852559 · 145364587 · 1628675880394909638591813700831880313095925587<46> · 23181229247696012268805890210990826546682789683<47> · C285 · C752
C752 = P33 · P719
P33 = 347266658845989451344982160757667<33>
By Yousuke Koide / GMP-ECM B1=5000000 / May 29, 2007
(10615-1)/9 = (1)615<615> = 3 · 31 · 37 · 412 · 83 · 271 · 1231 · 11071 · 275521 · 538987 · 1364071 · 1811791 · 2906161 · 21158848681<11> · 626920594693<12> · 9425856976319889649<19> · 201763709900322803748657942361<30> · 234065099292222402013296307835793151<36> · 5440907236518498609451112390256369995629321<43> · 8414640003465161203119978906558054839526493<43> · P143 · C232
C232 = P35 · P198
P35 = 41766848698222033158540558591648271<35>
By Yousuke Koide / GMP-ECM B1=1250000 / May 30, 2007
(10787-1)/9 = (1)787<787> = 26759 · 213141637 · 1074022836653095912870566750079013<34> · C741
C741 = P40 · C702
P40 = 1629242936815583422402932260494746089387<40>
By Yousuke Koide / GMP-ECM B1=1250000 / May 31, 2007
(10853-1)/9 = (1)853<853> = 5119 · 13649 · 34505557 · 872209561 · 258392363336333<15> · C814
C814 = P32 · C782
P32 = 87440115231123175885662305449333<32>
By Yousuke Koide / GMP-ECM B1=1000000 / Jun 2, 2007
(101311-1)/9 = (1)1311<1311> = 3 · 37 · 277 · 21319 · 23599 · 81283 · 10749631 · 9021705647077<13> · 203864078068831<15> · 1111111111111111111<19> · 11111111111111111111111<23> · 2152970896196020817900437<25> · 3931123022305129377976519<25> · 1595352086329224644348978893<28> · C363 · C780
C780 = P33 · C747
P33 = 933052229529582992021083478515963<33>
By Yousuke Koide / GMP-ECM B1=1000000 / Jun 2, 2007
(101407-1)/9 = (1)1407<1407> = 3 · 37 · 43 · 239 · 1609 · 1933 · 4649 · 493121 · 10838689 · 1695022306115797<16> · 2046166739518832881<19> · 25877379396467255119<20> · 79863595778924342083<20> · 28213380943176667001263153660999177245677<41> · 184976479633092931103313037835504355363361<42> · 1479324487468932812154772125499257696540643946328553680234277466780839<70> · C396 · C758
C758 = P35 · C723
P35 = 39184667823173817016379582631270559<35>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
9·10174+1 = 9(0)1731<175> = C175
C175 = P64 · P112
P64 = 6701858154129508946109631584557125937056799890919240999671909373<64>
P112 = 1342911143897373658594292493986198100072281134132513257099614367422167831910468286290583725850693432647730948437<112>
Number: 90001_174 N=9000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 175 digits) SNFS difficulty: 175 digits. Divisors found: r1=6701858154129508946109631584557125937056799890919240999671909373 (pp64) r2=1342911143897373658594292493986198100072281134132513257099614367422167831910468286290583725850693432647730948437 (pp112) Version: GGNFS-0.77.1-20050930-nocona Total time: 173.62 hours. Scaled time: 162.16 units (timescale=0.934). Factorization parameters were as follows: n: 9000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 100000000000000000000000000000000000 c5: 9 c0: 10 skew: 1.02 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [4500000, 7200001) Primes: RFBsize:602489, AFBsize:602235, largePrimes:10103196 encountered Relations: rels:10291943, finalFF:1454570 Max relations in full relation-set: 28 Initial matrix: 1204788 x 1454570 with sparse part having weight 67687049. Pruned matrix : 966267 x 972354 with weight 40422034. Total sieving time: 167.46 hours. Total relation processing time: 0.29 hours. Matrix solve time: 5.78 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,49,49,2.6,2.6,100000 total time: 173.62 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
8·10160-1 = 7(9)160<161> = 939359 · C155
C155 = P40 · P55 · P61
P40 = 7430283334715190763428010216563200237119<40>
P55 = 8371325514886127521657093908547021699702744768728781303<55>
P61 = 1369174436449288928232717093121729013383869942151960421280473<61>
Number: n N=85164457890966073673643410027476183227072929518959205160114503613634403886054213564781941728348799553738240651337773950108531456024799890137849320653764961 ( 155 digits) SNFS difficulty: 160 digits. Divisors found: r1=7430283334715190763428010216563200237119 (pp40) r2=8371325514886127521657093908547021699702744768728781303 (pp55) r3=1369174436449288928232717093121729013383869942151960421280473 (pp61) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 37.67 hours. Scaled time: 51.49 units (timescale=1.367). Factorization parameters were as follows: name: KA_7_9_160 n: 85164457890966073673643410027476183227072929518959205160114503613634403886054213564781941728348799553738240651337773950108531456024799890137849320653764961 skew: 0.66 deg: 5 c5: 8 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:250150, AFBsize:249851, largePrimes:7325544 encountered Relations: rels:6965044, finalFF:662712 Max relations in full relation-set: 28 Initial matrix: 500066 x 662712 with sparse part having weight 42447996. Pruned matrix : 358049 x 360613 with weight 22237841. Total sieving time: 34.43 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.83 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 37.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(14·10170-41)/9 = 1(5)1691<171> = 89 · C169
C169 = P47 · P122
P47 = 23562871960702446576109209737209512980072163311<47>
P122 = 74176663773255644917317906830538807621668868770340406914332112105118853831007147436387613726854741316452945435326628021369<122>
Number: n N=1747815230961298377028714107365792759051186017478152309612983770287141073657927590511860174781523096129837702871410736579275905118601747815230961298377028714107365792759 ( 169 digits) SNFS difficulty: 171 digits. Divisors found: r1=23562871960702446576109209737209512980072163311 (pp47) r2=74176663773255644917317906830538807621668868770340406914332112105118853831007147436387613726854741316452945435326628021369 (pp122) Version: GGNFS-0.77.1-20051202-athlon Total time: 101.58 hours. Scaled time: 134.39 units (timescale=1.323). Factorization parameters were as follows: name: KA_1_5_169_1 n: 1747815230961298377028714107365792759051186017478152309612983770287141073657927590511860174781523096129837702871410736579275905118601747815230961298377028714107365792759 skew: 1.24 deg: 5 c5: 14 c0: -41 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4000001) Primes: RFBsize:348513, AFBsize:349737, largePrimes:8140106 encountered Relations: rels:7766379, finalFF:797968 Max relations in full relation-set: 48 Initial matrix: 698316 x 797968 with sparse part having weight 47933037. Pruned matrix : 612389 x 615944 with weight 31910090. Total sieving time: 91.84 hours. Total relation processing time: 0.33 hours. Matrix solve time: 9.19 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 101.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GMP-ECM 5.0 B1=1175000, GGNFS-0.77.1-20051202-athlon
4·10159-3 = 3(9)1587<160> = 7 · 80177 · C154
C154 = P37 · P118
P37 = 6869025736566408403013738614059587089<37>
P118 = 1037569042972137310167842357523279974289448792553913560988035736213951007069294488349444811458102522621741991129070107<118>
(55·10159-1)/9 = 6(1)159<160> = 3 · 7 · 2879 · C154
C154 = P46(1033...) · P46(5512...) · P65
P46(1033...) = 1033119730398606727874017412985081979328287301<46>
P46(5512...) = 5512969028825793796895660458496810276891422129<46>
P65 = 17746920835907189395385191131490589648783353079850430487298717601<65>
Number: n N=101078600557586316530394335187666205380689576590931227957973355680893020246962588053244531188261650227610630528310278223442516599862900661789164741578774229 ( 156 digits) SNFS difficulty: 161 digits. Divisors found: r1=1033119730398606727874017412985081979328287301 (pp46) r2=5512969028825793796895660458496810276891422129 (pp46) r3=17746920835907189395385191131490589648783353079850430487298717601 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.00 hours. Scaled time: 42.05 units (timescale=1.450). Factorization parameters were as follows: name: KA_6_1_159 n: 101078600557586316530394335187666205380689576590931227957973355680893020246962588053244531188261650227610630528310278223442516599862900661789164741578774229 skew: 0.71 deg: 5 c5: 11 c0: -2 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250187, largePrimes:6962438 encountered Relations: rels:6492622, finalFF:567417 Max relations in full relation-set: 28 Initial matrix: 500404 x 567417 with sparse part having weight 32876452. Pruned matrix : 437769 x 440335 with weight 20727804. Total sieving time: 24.93 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.75 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 29.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
(82·10164-1)/9 = 9(1)164<165> = 23 · 29 · C163
C163 = P56 · P108
P56 = 11722798638770736454179599031506665643455103982980173427<56>
P108 = 116523683202366287222326406187442967335215483093587034853875156598506211825703054134781180379470982769675879<108>
Number: 91111_164 N=1365983674829252040646343494919207063135099117108112610361485923704814259536898217557887722805264034649341995668832250541395968682325503914709312010661335998667333 ( 163 digits) SNFS difficulty: 166 digits. Divisors found: r1=11722798638770736454179599031506665643455103982980173427 (pp56) r2=116523683202366287222326406187442967335215483093587034853875156598506211825703054134781180379470982769675879 (pp108) Version: GGNFS-0.77.1-20060513-k8 Total time: 94.93 hours. Scaled time: 190.15 units (timescale=2.003). Factorization parameters were as follows: name: 91111_164 n: 1365983674829252040646343494919207063135099117108112610361485923704814259536898217557887722805264034649341995668832250541395968682325503914709312010661335998667333 m: 1000000000000000000000000000000000 c5: 41 c0: -5 skew: 1 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5400001) Primes: RFBsize:348513, AFBsize:348787, largePrimes:5848756 encountered Relations: rels:6000231, finalFF:794384 Max relations in full relation-set: 28 Initial matrix: 697365 x 794384 with sparse part having weight 49085999. Pruned matrix : 622750 x 626300 with weight 35785753. Total sieving time: 90.29 hours. Total relation processing time: 0.20 hours. Matrix solve time: 4.20 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 94.93 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(8·10157-17)/9 = (8)1567<157> = 7 · C129
8739994595235952825155053837<28> · C129
C129 = P64 · P66
P64 = 1097338309267008237239239772614316948193823367920986887082646889<64>
P66 = 132402971590214069443001363228800248580081550757875671603997677837<66>
Number: n N=145290852986733231960131889761460491703794538807068334652232282714626655166495302127159129035785015114582751752183571455452299093 ( 129 digits) SNFS difficulty: 157 digits. Divisors found: r1=1097338309267008237239239772614316948193823367920986887082646889 (pp64) r2=132402971590214069443001363228800248580081550757875671603997677837 (pp66) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 33.76 hours. Scaled time: 46.21 units (timescale=1.369). Factorization parameters were as follows: name: KA_8_156_7 n: 145290852986733231960131889761460491703794538807068334652232282714626655166495302127159129035785015114582751752183571455452299093 skew: 0.93 deg: 5 c5: 25 c0: -17 m: 20000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:250150, AFBsize:250611, largePrimes:7095641 encountered Relations: rels:6625206, finalFF:569684 Max relations in full relation-set: 28 Initial matrix: 500825 x 569684 with sparse part having weight 34217548. Pruned matrix : 439147 x 441715 with weight 21728785. Total sieving time: 30.25 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.08 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 33.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10158-13)/9 = (4)1573<158> = 131 · 173 · 100467687810755071<18> · C137
C137 = P53 · P84
P53 = 24842867387305405261100498732839983321474852653757937<53>
P84 = 785727502087926126786887826591860692223274703506416827388958712572751463133189766243<84>
Number: n N=19519724136929079694548208428483677843768554481542628710715214750048789472954415174850519785238780109629364396557689211568718844535920691 ( 137 digits) SNFS difficulty: 158 digits. Divisors found: r1=24842867387305405261100498732839983321474852653757937 (pp53) r2=785727502087926126786887826591860692223274703506416827388958712572751463133189766243 (pp84) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.07 hours. Scaled time: 39.06 units (timescale=1.443). Factorization parameters were as follows: name: KA_4_157_3 n: 19519724136929079694548208428483677843768554481542628710715214750048789472954415174850519785238780109629364396557689211568718844535920691 skew: 0.64 deg: 5 c5: 125 c0: -13 m: 20000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:250150, AFBsize:249831, largePrimes:7081908 encountered Relations: rels:6691785, finalFF:636313 Max relations in full relation-set: 28 Initial matrix: 500046 x 636313 with sparse part having weight 35028177. Pruned matrix : 376037 x 378601 with weight 17367856. Total sieving time: 24.10 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.72 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 27.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
6·10159+1 = 6(0)1581<160> = 23 · 47 · 3167 · 36887 · 48599731 · 306920722151401391534780179<27> · C115
C115 = P42 · P73
P42 = 767698777607940194265527635370316671942213<42>
P73 = 4149093592080265396266679279339449692918936093049417612900424150237843877<73>
Number: 60001_159 N=3185254078820957394944482467613194905363252982304778574592502158674083161302549598773054153266870437616423059879801 ( 115 digits) Divisors found: r1=767698777607940194265527635370316671942213 (pp42) r2=4149093592080265396266679279339449692918936093049417612900424150237843877 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.89 hours. Scaled time: 24.21 units (timescale=0.935). Factorization parameters were as follows: name: 60001_159 n: 3185254078820957394944482467613194905363252982304778574592502158674083161302549598773054153266870437616423059879801 skew: 86870.00 # norm 7.86e+15 c5: 15660 c4: -1829222984 c3: -350509230841283 c2: 14133342017277827226 c1: 1344214957431756103806100 c0: -9726381717437035313270182575 # alpha -6.19 Y1: 302713102769 Y0: -11525790758021234641354 # Murphy_E 5.34e-10 # M 2665950469727377697888113665250745839518931865279047301705509598646406265442718423335461565637984496738017255771107 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3000001) Primes: RFBsize:256726, AFBsize:256454, largePrimes:7476860 encountered Relations: rels:7371207, finalFF:610629 Max relations in full relation-set: 28 Initial matrix: 513260 x 610629 with sparse part having weight 50672315. Pruned matrix : 433032 x 435662 with weight 31832537. Polynomial selection time: 1.33 hours. Total sieving time: 23.09 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.18 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 25.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
(10161-7)/3 = (3)1601<161> = 563 · C158
C158 = P66 · P93
P66 = 124141466019619851595478970162960620467203748722561182599049555651<66>
P93 = 476928725276457668401732704761502335824130724124126988122364575060825584612231412476856510987<93>
Number: 33331_161 N=59206631142687981053878034339846062759029011249259917110716400236826524570751924215512137359384251036116044997039668442865600947306098283007696862048549437537 ( 158 digits) SNFS difficulty: 161 digits. Divisors found: r1=124141466019619851595478970162960620467203748722561182599049555651 (pp66) r2=476928725276457668401732704761502335824130724124126988122364575060825584612231412476856510987 (pp93) Version: GGNFS-0.77.1-20060513-k8 Total time: 66.69 hours. Scaled time: 133.18 units (timescale=1.997). Factorization parameters were as follows: name: 33331_161 n: 59206631142687981053878034339846062759029011249259917110716400236826524570751924215512137359384251036116044997039668442865600947306098283007696862048549437537 m: 100000000000000000000000000000000 c5: 10 c0: -7 skew: 1 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 4300001) Primes: RFBsize:283146, AFBsize:283312, largePrimes:5877861 encountered Relations: rels:6000830, finalFF:721765 Max relations in full relation-set: 28 Initial matrix: 566524 x 721765 with sparse part having weight 54341674. Pruned matrix : 457362 x 460258 with weight 38665354. Total sieving time: 63.28 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.03 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 66.69 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GMP-ECM 5.0 B1=560000, GGNFS-0.77.1-20051202-athlon
4·10157-3 = 3(9)1567<158> = 37 · 233 · 654148025247903819445200473<27> · C127
C127 = P32 · P96
P32 = 62340393015907132203772014784207<32>
P96 = 113777601846523036079732053245822156937012105295007861651633387620863333730618728133717777250487<96>
(85·10169+41)/9 = 9(4)1689<170> = 3 · 11 · C169
C169 = P63 · P106
P63 = 337429506941298590268921093583466887034433804138214090669941277<63>
P106 = 8481631875930594596160003598731475226771065372836124267124902782195037863783694946883546357302023696007989<106>
Number: n N=2861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861953 ( 169 digits) SNFS difficulty: 171 digits. Divisors found: r1=337429506941298590268921093583466887034433804138214090669941277 (pp63) r2=8481631875930594596160003598731475226771065372836124267124902782195037863783694946883546357302023696007989 (pp106) Version: GGNFS-0.77.1-20051202-athlon Total time: 133.60 hours. Scaled time: 159.65 units (timescale=1.195). Factorization parameters were as follows: name: KA_9_4_168_9 n: 2861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861952861953 type: snfs skew: 1.37 deg: 5 c5: 17 c0: 82 m: 10000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 4600000) Primes: RFBsize:348513, AFBsize:348332, largePrimes:8361615 encountered Relations: rels:7975410, finalFF:799001 Max relations in full relation-set: 28 Initial matrix: 696910 x 799001 with sparse part having weight 48586055. Pruned matrix : 614721 x 618269 with weight 34462549. Total sieving time: 122.13 hours. Total relation processing time: 0.43 hours. Matrix solve time: 10.66 hours. Total square root time: 0.37 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 133.60 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
4·10156-3 = 3(9)1557<157> = 59 · 107 · 1194517 · 1712017 · 268088377 · 131763604859<12> · C121
C121 = P58 · P64
P58 = 2702234461760532104363775230161432847793282975403282127651<58>
P64 = 3245841528993986751667674942064439467735740830325023575616058697<64>
Number: n N=8771024837061048350610970945063973785556427253671346977621808892523940551674405429952867892855853749371963409409062730747 ( 121 digits) SNFS difficulty: 156 digits. Divisors found: r1=2702234461760532104363775230161432847793282975403282127651 (pp58) r2=3245841528993986751667674942064439467735740830325023575616058697 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.94 hours. Scaled time: 34.62 units (timescale=1.446). Factorization parameters were as follows: name: KA_3_9_155_7 n: 8771024837061048350610970945063973785556427253671346977621808892523940551674405429952867892855853749371963409409062730747 skew: 0.60 deg: 5 c5: 40 c0: -3 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:215821, largePrimes:7084810 encountered Relations: rels:6713200, finalFF:621804 Max relations in full relation-set: 28 Initial matrix: 432703 x 621804 with sparse part having weight 40249107. Pruned matrix : 274950 x 277177 with weight 20349576. Total sieving time: 21.56 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.09 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 23.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
4·10154+3 = 4(0)1533<155> = 1327 · 870755550325850941<18> · C134
C134 = P35 · P40 · P60
P35 = 22208856755600059957457268067062121<35>
P40 = 1894425688430070080563866230389466204449<40>
P60 = 822790066767611381874600814825665810874654564700976063637801<60>
Number: n N=34617270133071285415914354745753361151760004396813244310996447931454777677825544431616161322375402810136808065672456644101628679212529 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=22208856755600059957457268067062121 (pp35) r2=1894425688430070080563866230389466204449 (pp40) r3=822790066767611381874600814825665810874654564700976063637801 (pp60) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 28.57 hours. Scaled time: 38.97 units (timescale=1.364). Factorization parameters were as follows: name: KA_4_0_153_3 n: 34617270133071285415914354745753361151760004396813244310996447931454777677825544431616161322375402810136808065672456644101628679212529 skew: 1.50 deg: 5 c5: 2 c0: 15 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216721, largePrimes:6921372 encountered Relations: rels:6417283, finalFF:508343 Max relations in full relation-set: 28 Initial matrix: 433602 x 508343 with sparse part having weight 33814808. Pruned matrix : 369514 x 371746 with weight 20585563. Total sieving time: 25.59 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.38 hours. Total square root time: 0.41 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.57 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10155+3 = 4(0)1543<156> = 131 · 277 · 1597 · 131311 · 823553 · 667849372139<12> · C125
C125 = P54 · P72
P54 = 492825456187630481531157139782940959270957733499511907<54>
P72 = 193927631621634265976915268190761855606404319236001612241209942831445103<72>
Number: 40003_155 N=95572473521318661498662645987832126295159614647710436217024143597699587551562764245776486857662364971023065753927621965341421 ( 125 digits) SNFS difficulty: 155 digits. Divisors found: r1=492825456187630481531157139782940959270957733499511907 (pp54) r2=193927631621634265976915268190761855606404319236001612241209942831445103 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.81 hours. Scaled time: 16.60 units (timescale=0.932). Factorization parameters were as follows: n: 95572473521318661498662645987832126295159614647710436217024143597699587551562764245776486857662364971023065753927621965341421 m: 10000000000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:5532285 encountered Relations: rels:5477183, finalFF:544684 Max relations in full relation-set: 28 Initial matrix: 433819 x 544684 with sparse part having weight 40709982. Pruned matrix : 354442 x 356675 with weight 25742292. Total sieving time: 16.97 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.72 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 17.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4 gnfs
(2·10188-17)/3 = (6)1871<188> = 1249 · 4441 · 6752297 · 1389323376967<13> · 16824073891211<14> · 1216695017169281822145299803<28> · C122
C122 = P39 · P41 · P43
P39 = 615078923306073798787696079184152415389<39>
P41 = 85050733879933863941346674478983397401509<41>
P43 = 1196434264494666367424967458018651028134987<43>
Number: 66661_188 N=62588962571313430923171131998101606731573624728012758991844454013795770476577693323728766959320614463002807069297413648987 ( 122 digits) Divisors found: r1=615078923306073798787696079184152415389 (pp39) r2=85050733879933863941346674478983397401509 (pp41) r3=1196434264494666367424967458018651028134987 (pp43) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 159.90 hours. Scaled time: 97.54 units (timescale=0.610). Factorization parameters were as follows: name: 66661_188 n: 62588962571313430923171131998101606731573624728012758991844454013795770476577693323728766959320614463002807069297413648987 skew: 114576.20 # norm 3.31e+17 c5: 13440 c4: 2462590922 c3: -6373329795304895 c2: 17153346731370743370 c1: 5085559537440422841815590 c0: -17067805229319834584176509187 # alpha -6.44 Y1: 476997068339 Y0: -341680091446117488971230 # Murphy_E 2.10e-10 # M 45437465253762539043198554707571244147803654915231204116125873835555610032596555634445435860298252922599408721648658256309 type: gnfs rlim: 5000000 alim: 5000000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2500000, 5380001) Primes: RFBsize:348513, AFBsize:349461, largePrimes:7667930 encountered Relations: rels:7745473, finalFF:782034 Max relations in full relation-set: 0 Initial matrix: 698054 x 782034 with sparse part having weight 82397365. Pruned matrix : 631630 x 635184 with weight 58591835. Total sieving time: 128.25 hours. Total relation processing time: 1.52 hours. Matrix solve time: 29.47 hours. Time per square root: 0.66 hours. Prototype def-par.txt line would be: gnfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,5000000,5000000,27,27,50,50,2.4,2.4,60000 total time: 159.90 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0
(4·10170+23)/9 = (4)1697<170> = 193 · C168
C168 = P54 · P114
P54 = 549040020458710771002201900655139572384963724205511693<54>
P114 = 419426794015259711436313029497443646256396503285623169529962875069579148740583046787001583894004049064540008475803<114>
Number: n N=230282095567069660333909038572251007484168105929763960852043753598157743235463442717328727691421991940126655152561888313183649971214738054116292458261370178468624064479 ( 168 digits) SNFS difficulty: 170 digits. Divisors found: r1=549040020458710771002201900655139572384963724205511693 (pp54) r2=419426794015259711436313029497443646256396503285623169529962875069579148740583046787001583894004049064540008475803 (pp114) Version: GGNFS-0.77.1-20051202-athlon Total time: 100.59 hours. Scaled time: 130.46 units (timescale=1.297). Factorization parameters were as follows: name: KA_4_169_7 n: 230282095567069660333909038572251007484168105929763960852043753598157743235463442717328727691421991940126655152561888313183649971214738054116292458261370178468624064479 skew: 1.42 deg: 5 c5: 4 c0: 23 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4100001) Primes: RFBsize:348513, AFBsize:349036, largePrimes:8203799 encountered Relations: rels:7823329, finalFF:797317 Max relations in full relation-set: 48 Initial matrix: 697613 x 797316 with sparse part having weight 47748724. Pruned matrix : 612060 x 615612 with weight 32155030. Total sieving time: 90.86 hours. Total relation processing time: 0.33 hours. Matrix solve time: 9.30 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 100.59 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(89·10169+1)/9 = 9(8)1689<170> = 3 · 11 · C169
C169 = P31 · P31 · P109
P31 = 1043029760492294778115192930717<31>
P31 = 2137408286980640850586822612999<31>
P109 = 1344155050671296329476443457173504996983463628893573178601520913356656425293555294725257688032563620895713451<109>
4·10153-3 = 3(9)1527<154> = 7 · 36598463075809<14> · C140
C140 = P42 · P98
P42 = 701099996975822570854039960283603801308933<42>
P98 = 22269944676906901137452796561787706700352178347453639664548712306567745747002959525951900206522943<98>
Number: n N=15613458145631164347237085705726909851541504966835942770071043310541639583131603539496937230552694437403073893194338315775770015008095349819 ( 140 digits) SNFS difficulty: 153 digits. Divisors found: r1=701099996975822570854039960283603801308933 (pp42) r2=22269944676906901137452796561787706700352178347453639664548712306567745747002959525951900206522943 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.25 hours. Scaled time: 27.83 units (timescale=1.446). Factorization parameters were as follows: name: KA_3_9_152_7 n: 15613458145631164347237085705726909851541504966835942770071043310541639583131603539496937230552694437403073893194338315775770015008095349819 skew: 0.47 deg: 5 c5: 125 c0: -3 m: 2000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:216816, AFBsize:216491, largePrimes:6596221 encountered Relations: rels:6125563, finalFF:526499 Max relations in full relation-set: 28 Initial matrix: 433372 x 526499 with sparse part having weight 29888782. Pruned matrix : 349897 x 352127 with weight 15831553. Total sieving time: 16.64 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.14 hours. Total square root time: 0.30 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
4·10148+3 = 4(0)1473<149> = 43 · 433 · 100065703 · 12687175129<11> · 6739023729247306489<19> · C108
C108 = P45 · P63
P45 = 653001312242351067783538309652220151840959811<45>
P63 = 384540790042736112351657990250185253692610846424727214146899269<63>
Number: 40003_148 N=251105640508617088508594586058925115736503829395097331809337690282772505242310817076184722144502554494278159 ( 108 digits) SNFS difficulty: 148 digits. Divisors found: r1=653001312242351067783538309652220151840959811 (pp45) r2=384540790042736112351657990250185253692610846424727214146899269 (pp63) Version: GGNFS-0.77.1-20060513-k8 Total time: 20.03 hours. Scaled time: 40.12 units (timescale=2.003). Factorization parameters were as follows: name: 40003_148 n: 251105640508617088508594586058925115736503829395097331809337690282772505242310817076184722144502554494278159 m: 200000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 3150001) Primes: RFBsize:114155, AFBsize:113877, largePrimes:2878785 encountered Relations: rels:2881700, finalFF:275946 Max relations in full relation-set: 28 Initial matrix: 228097 x 275946 with sparse part having weight 29748606. Pruned matrix : 213753 x 214957 with weight 21355785. Total sieving time: 19.28 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.52 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 20.03 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
4·10146-3 = 3(9)1457<147> = 83 · 42777895789<11> · 15924396733100297500381<23> · C112
C112 = P54 · P59
P54 = 396348820700316782956965255363264113551018768822430003<54>
P59 = 17849330111541476189358027901066221476707550990700167833117<59>
Number: n N=7074560940000117910361767328829998654766660683366389419564365970920304578753086742163420558422550942946917809351 ( 112 digits) SNFS difficulty: 146 digits. Divisors found: r1=396348820700316782956965255363264113551018768822430003 (pp54) r2=17849330111541476189358027901066221476707550990700167833117 (pp59) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 9.64 hours. Scaled time: 12.58 units (timescale=1.305). Factorization parameters were as follows: name: KA_3_9_145_7 n: 7074560940000117910361767328829998654766660683366389419564365970920304578753086742163420558422550942946917809351 skew: 0.60 deg: 5 c5: 40 c0: -3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:183072, AFBsize:182506, largePrimes:6452273 encountered Relations: rels:5881816, finalFF:435332 Max relations in full relation-set: 28 Initial matrix: 365644 x 435332 with sparse part having weight 25318441. Pruned matrix : 305134 x 307026 with weight 14058892. Total sieving time: 7.61 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.77 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 9.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10152+3 = 4(0)1513<153> = 13 · 31 · 1051 · C147
C147 = P67 · P81
P67 = 2801114324800249062766187692606357600549569364661409619095961178167<67>
P81 = 337148626424781873328036805457958920928175121942812922349685550558244211164690453<81>
Number: n N=944391847065184286264056682398660852360861568682077567624358698911352298295608814009108659364943702441016826701735083921020509829938638139736939651 ( 147 digits) SNFS difficulty: 152 digits. Divisors found: r1=2801114324800249062766187692606357600549569364661409619095961178167 (pp67) r2=337148626424781873328036805457958920928175121942812922349685550558244211164690453 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.49 hours. Scaled time: 25.34 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_0_151_3 n: 944391847065184286264056682398660852360861568682077567624358698911352298295608814009108659364943702441016826701735083921020509829938638139736939651 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 2000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:215956, largePrimes:6769972 encountered Relations: rels:6408744, finalFF:619286 Max relations in full relation-set: 28 Initial matrix: 432836 x 619286 with sparse part having weight 33677825. Pruned matrix : 266552 x 268780 with weight 14872464. Total sieving time: 15.76 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.48 hours. Total square root time: 0.09 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 17.49 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
4·10151+3 = 4(0)1503<152> = 87523 · 4494503443<10> · C138
C138 = P43 · P95
P43 = 1297415475912073088053509540386798385058609<43>
P95 = 78374900853242505310466623601273918272208107442148395944232718006339250364736934925355798428203<95>
Number: n N=101684809290071168164673608485184602435969068234105883657731058672297789123043221176110896404625443994231824114694450958074636842233549627 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=1297415475912073088053509540386798385058609 (pp43) r2=78374900853242505310466623601273918272208107442148395944232718006339250364736934925355798428203 (pp95) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.66 hours. Scaled time: 22.81 units (timescale=1.369). Factorization parameters were as follows: name: KA_4_0_150_3 n: 101684809290071168164673608485184602435969068234105883657731058672297789123043221176110896404625443994231824114694450958074636842233549627 skew: 0.60 deg: 5 c5: 40 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:216816, AFBsize:215821, largePrimes:6287333 encountered Relations: rels:5832658, finalFF:518542 Max relations in full relation-set: 28 Initial matrix: 432703 x 518542 with sparse part having weight 27684554. Pruned matrix : 351235 x 353462 with weight 14649647. Total sieving time: 14.75 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.66 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 16.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10153+3 = 4(0)1523<154> = 163 · 647531 · 11061581 · 4124679348155700834063553597<28> · C111
C111 = P52 · P60
P52 = 3535740861654872658270519573725613482190542128854473<52>
P60 = 234922167135062332183441254151884253123634863112124506309891<60>
Number: 40003_153 N=830623905647955297761358148882626558774270445628540572480336272874132992508238565769278537971704421868179492443 ( 111 digits) SNFS difficulty: 153 digits. Divisors found: r1=3535740861654872658270519573725613482190542128854473 (pp52) r2=234922167135062332183441254151884253123634863112124506309891 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.10 hours. Scaled time: 15.97 units (timescale=0.934). Factorization parameters were as follows: n: 830623905647955297761358148882626558774270445628540572480336272874132992508238565769278537971704421868179492443 m: 2000000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175868, largePrimes:5638026 encountered Relations: rels:5620624, finalFF:535694 Max relations in full relation-set: 28 Initial matrix: 352235 x 535694 with sparse part having weight 48622419. Pruned matrix : 279893 x 281718 with weight 25069298. Total sieving time: 16.52 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.46 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 17.10 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
4·10152-3 = 3(9)1517<153> = 21200771 · 25893612998221<14> · 14503289669621063451952205056921<32> · C101
C101 = P45 · P57
P45 = 230079279032884613931774793453258451457362123<45>
P57 = 218359280476393118332391848988420792397153683310217125049<57>
Number: 39997_152 N=50239945822147965823364715757449975132547131611251114455272136849140078848825124186413611002367119027 ( 101 digits) Divisors found: r1=230079279032884613931774793453258451457362123 (pp45) r2=218359280476393118332391848988420792397153683310217125049 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.32 hours. Scaled time: 4.04 units (timescale=0.935). Factorization parameters were as follows: name: 39997_152 n: 50239945822147965823364715757449975132547131611251114455272136849140078848825124186413611002367119027 skew: 2745.59 # norm 4.18e+13 c5: 253440 c4: -2237299026 c3: -1907163396717 c2: 18351442515410243 c1: 16149480465216217123 c0: -4732032708429412165896 # alpha -5.26 Y1: 20037749981 Y0: -11466639011392083421 # Murphy_E 3.20e-09 # M 9786743912553846833483490233928381167753400889953592353099544647107720629570548238023689159496745801 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114153, largePrimes:3944606 encountered Relations: rels:3941658, finalFF:355357 Max relations in full relation-set: 28 Initial matrix: 228389 x 355357 with sparse part having weight 29022648. Pruned matrix : 163717 x 164922 with weight 11611115. Polynomial selection time: 0.28 hours. Total sieving time: 3.83 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 4.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Max Voznyy / GGNFS-0.77.1-20060513-pentium4
2·10155-3 = 1(9)1547<156> = 7 · 67 · 71 · 343866401642039<15> · 141423577541870006652967<24> · C114
C114 = P46 · P69
P46 = 1176075110392218874344361392155876226533549449<46>
P69 = 105015204394259862679542119957655122688478278199700532417643933576919<69>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10145-3 = 3(9)1447<146> = 29 · 37 · 636458547278605123477<21> · C122
C122 = P47 · P76
P47 = 22032652827179182252311595341228758697101383067<47>
P76 = 2658418526818926672086758087119698387445371990728081899202841400303836244571<76>
Number: 39997_145 N=58572012470742541478080301062763303277153080662009129442516557774603576611369036613001881755526790043397812934327370079257 ( 122 digits) SNFS difficulty: 145 digits. Divisors found: r1=22032652827179182252311595341228758697101383067 (pp47) r2=2658418526818926672086758087119698387445371990728081899202841400303836244571 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 9.31 hours. Scaled time: 8.69 units (timescale=0.933). Factorization parameters were as follows: n: 58572012470742541478080301062763303277153080662009129442516557774603576611369036613001881755526790043397812934327370079257 m: 100000000000000000000000000000 c5: 4 c0: -3 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1350001) Primes: RFBsize:114155, AFBsize:113917, largePrimes:2689998 encountered Relations: rels:2699548, finalFF:315804 Max relations in full relation-set: 28 Initial matrix: 228139 x 315804 with sparse part having weight 21287815. Pruned matrix : 191614 x 192818 with weight 10724400. Total sieving time: 9.13 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 9.31 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
2·10173+3 = 2(0)1723<174> = 31 · 3164590541963<13> · C160
C160 = P43 · C118
P43 = 1377280097548571230432695973091803101076339<43>
C118 = [1480227622542794165404399819785920618847153787232185974759390499635827513314206276438905310385107334421379192165686509<118>]
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
4·10144-3 = 3(9)1437<145> = 359 · 9311 · 8600737381<10> · C129
C129 = P37 · P44 · P49
P37 = 1127069158597835253730690599540227387<37>
P44 = 25704964961697827080699390888797399431064217<44>
P49 = 4802484227003858903586540234824184542371863661547<49>
Number: n N=139134082728901552207477531234965837137139548962918480744051676763860644141313152952523265954505770179676760121611692870007824513 ( 129 digits) SNFS difficulty: 145 digits. Divisors found: r1=1127069158597835253730690599540227387 (pp37) r2=25704964961697827080699390888797399431064217 (pp44) r3=4802484227003858903586540234824184542371863661547 (pp49) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 10.39 hours. Scaled time: 14.13 units (timescale=1.361). Factorization parameters were as follows: name: KA_3_9_143_7 n: 139134082728901552207477531234965837137139548962918480744051676763860644141313152952523265954505770179676760121611692870007824513 skew: 1.50 deg: 5 c5: 2 c0: -15 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:183072, AFBsize:182991, largePrimes:6720704 encountered Relations: rels:6184111, finalFF:468239 Max relations in full relation-set: 28 Initial matrix: 366128 x 468238 with sparse part having weight 29402590. Pruned matrix : 281075 x 282969 with weight 14990558. Total sieving time: 8.64 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.31 hours. Total square root time: 0.25 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 10.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10145+3 = 4(0)1443<146> = 15679 · 8391654179<10> · 1630535804362988309<19> · C114
C114 = P45 · P69
P45 = 646714525652426822605941812765336474593578059<45>
P69 = 288304285235034063465342910556093561504177705697017827218911974846793<69>
Number: n N=186450569069337016472379512674172687327990157379633781153481333472695354444304795726582573723536382949298211314787 ( 114 digits) SNFS difficulty: 145 digits. Divisors found: r1=646714525652426822605941812765336474593578059 (pp45) r2=288304285235034063465342910556093561504177705697017827218911974846793 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.95 hours. Scaled time: 11.52 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_0_144_3 n: 186450569069337016472379512674172687327990157379633781153481333472695354444304795726582573723536382949298211314787 skew: 0.94 deg: 5 c5: 4 c0: 3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182816, largePrimes:6481222 encountered Relations: rels:5947081, finalFF:465397 Max relations in full relation-set: 28 Initial matrix: 365955 x 465397 with sparse part having weight 26481654. Pruned matrix : 278114 x 280007 with weight 12854649. Total sieving time: 6.13 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.30 hours. Total square root time: 0.37 hours, sqrts: 9. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 7.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Sinkiti Sibata / GGNFS-0.77.1-20060513-k8
4·10146+3 = 4(0)1453<147> = 13 · 41023 · 2958721 · 248105437 · 1101807494113<13> · 7014417751034503<16> · C99
C99 = P41 · P58
P41 = 41503832743290556850451533494303423483207<41>
P58 = 3185395578251891000053013244421171035550838420033010094357<58>
Number: 40003_146 N=132206125300983790896326376581325564446111856146621668386739588502853251960027942344108792674962899 ( 99 digits) SNFS difficulty: 146 digits. Divisors found: r1=41503832743290556850451533494303423483207 (pp41) r2=3185395578251891000053013244421171035550838420033010094357 (pp58) Version: GGNFS-0.77.1-20060513-k8 Total time: 14.41 hours. Scaled time: 28.87 units (timescale=2.003). Factorization parameters were as follows: name: 40003_146 n: 132206125300983790896326376581325564446111856146621668386739588502853251960027942344108792674962899 m: 100000000000000000000000000000 c5: 40 c0: 3 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 2450001) Primes: RFBsize:114155, AFBsize:113697, largePrimes:2764799 encountered Relations: rels:2738945, finalFF:275539 Max relations in full relation-set: 28 Initial matrix: 227918 x 275539 with sparse part having weight 25625759. Pruned matrix : 211958 x 213161 with weight 17651075. Total sieving time: 13.81 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.41 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 14.41 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(5·10174+1)/3 = 1(6)1737<175> = C175
C175 = P38 · P137
P38 = 38957826032363776525856717580374065723<38>
P137 = 42781305745400219407473710733596304514150377883882257718360293742320702825809015275337663456972351386349942222557906259254671065933070929<137>
Number: 16667_174 N=1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 175 digits) SNFS difficulty: 175 digits. Divisors found: r1=38957826032363776525856717580374065723 (pp38) r2=42781305745400219407473710733596304514150377883882257718360293742320702825809015275337663456972351386349942222557906259254671065933070929 (pp137) Version: GGNFS-0.77.1-20050930-nocona Total time: 137.22 hours. Scaled time: 127.48 units (timescale=0.929). Factorization parameters were as follows: n: 1666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 100000000000000000000000000000000000 c5: 1 c0: 2 skew: 1.15 type: snfs Factor base limits: 9000000/9000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 49/49 Sieved algebraic special-q in [4500000, 6600001) Primes: RFBsize:602489, AFBsize:602700, largePrimes:10034680 encountered Relations: rels:10282311, finalFF:1497466 Max relations in full relation-set: 28 Initial matrix: 1205253 x 1497466 with sparse part having weight 66712191. Pruned matrix : 923325 x 929415 with weight 36490841. Total sieving time: 132.24 hours. Total relation processing time: 0.17 hours. Matrix solve time: 4.73 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,9000000,9000000,28,28,49,49,2.6,2.6,100000 total time: 137.22 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
4·10141-3 = 3(9)1407<142> = 7 · 52313 · C137
C137 = P62 · P75
P62 = 72534046490829353664593295091274835834185520668502881701648559<62>
P75 = 150594953495731883967116548567354812204313653884473343476632001562146074013<75>
Number: n N=10923261358143700964797059458042387715700276631593894989226933485530774923468900109505695115390602172090521066874936849895273231728797267 ( 137 digits) SNFS difficulty: 141 digits. Divisors found: r1=72534046490829353664593295091274835834185520668502881701648559 (pp62) r2=150594953495731883967116548567354812204313653884473343476632001562146074013 (pp75) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 7.74 hours. Scaled time: 10.58 units (timescale=1.366). Factorization parameters were as follows: name: KA_3_9_140_7 n: 10923261358143700964797059458042387715700276631593894989226933485530774923468900109505695115390602172090521066874936849895273231728797267 skew: 0.60 deg: 5 c5: 40 c0: -3 m: 10000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:183072, AFBsize:182506, largePrimes:5965783 encountered Relations: rels:5451650, finalFF:451267 Max relations in full relation-set: 28 Initial matrix: 365644 x 451267 with sparse part having weight 21857445. Pruned matrix : 283591 x 285483 with weight 10333770. Total sieving time: 6.72 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.83 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 7.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
4·10142+3 = 4(0)1413<143> = 19 · 397523109523<12> · 1792722597263327053<19> · C112
C112 = P51 · P61
P51 = 361944429343387970109181659326070203309043443208301<51>
P61 = 8161857721768944819535587526816743204330570033059102272751923<61>
Number: n N=2954138935487585358037504212441582467115017534237517833386470674579036800877959937028708758566992431307387312823 ( 112 digits) SNFS difficulty: 142 digits. Divisors found: r1=361944429343387970109181659326070203309043443208301 (pp51) r2=8161857721768944819535587526816743204330570033059102272751923 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.94 hours. Scaled time: 10.04 units (timescale=1.447). Factorization parameters were as follows: name: KA_4_0_141_3 n: 2954138935487585358037504212441582467115017534237517833386470674579036800877959937028708758566992431307387312823 skew: 0.75 deg: 5 c5: 25 c0: 6 m: 20000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:183072, AFBsize:182381, largePrimes:6642527 encountered Relations: rels:6258535, finalFF:588785 Max relations in full relation-set: 28 Initial matrix: 365517 x 588785 with sparse part having weight 31133532. Pruned matrix : 183587 x 185478 with weight 13613993. Total sieving time: 5.76 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.93 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 6.94 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(7·10160-61)/9 = (7)1591<160> = 1087 · C157
C157 = P60 · P98
P60 = 133767292172935551579599522862258137018645605013343066361981<60>
P98 = 53490425264281855146460077769801026058944569491640678743898434821351499978338309471009601998689593<98>
Number: n N=7155269344781764284984156189307983236226106511295103751405499335582132270264744965756925278544413779004395379740365940917918838802003475416538893999795563733 ( 157 digits) SNFS difficulty: 160 digits. Divisors found: r1=133767292172935551579599522862258137018645605013343066361981 (pp60) r2=53490425264281855146460077769801026058944569491640678743898434821351499978338309471009601998689593 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 34.44 hours. Scaled time: 49.48 units (timescale=1.437). Factorization parameters were as follows: name: KA_7_159_1 n: 7155269344781764284984156189307983236226106511295103751405499335582132270264744965756925278544413779004395379740365940917918838802003475416538893999795563733 skew: 1.54 deg: 5 c5: 7 c0: -61 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:250502, largePrimes:7175624 encountered Relations: rels:6724740, finalFF:585888 Max relations in full relation-set: 28 Initial matrix: 500717 x 585888 with sparse part having weight 36048352. Pruned matrix : 426488 x 429055 with weight 21797147. Total sieving time: 30.15 hours. Total relation processing time: 0.20 hours. Matrix solve time: 4.01 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 34.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10138+3 = 4(0)1373<139> = 7 · 1033 · C135
C135 = P48 · P87
P48 = 930729119481891694801482963283168394796716926087<48>
P87 = 594344609294641138185135993021839496344619029158623927721993187831394871362972952598299<87>
Number: 40003_138 N=553173834877610289033328723551376019914258055593970405199834047849536716913290001382934587194025722583321808878440049785645138984926013 ( 135 digits) SNFS difficulty: 138 digits. Divisors found: r1=930729119481891694801482963283168394796716926087 (pp48) r2=594344609294641138185135993021839496344619029158623927721993187831394871362972952598299 (pp87) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.68 hours. Scaled time: 4.37 units (timescale=0.934). Factorization parameters were as follows: n: 553173834877610289033328723551376019914258055593970405199834047849536716913290001382934587194025722583321808878440049785645138984926013 m: 2000000000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1550001) Primes: RFBsize:107126, AFBsize:107023, largePrimes:1652918 encountered Relations: rels:1714233, finalFF:241604 Max relations in full relation-set: 28 Initial matrix: 214214 x 241604 with sparse part having weight 12448402. Pruned matrix : 201680 x 202815 with weight 8746891. Total sieving time: 4.51 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 4.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10138-3 = 3(9)1377<139> = 167 · 61953817 · C129
C129 = P57 · P73
P57 = 234806247524789276541047560136279747605593670548390630143<57>
P73 = 1646515424474759157709862360552930904493428048558253258347121490936014861<73>
Number: 39997_138 N=386612108312603782474518587555742467131354168827475971306232718709990983848984480161415704893794803065494070892108722517002555123 ( 129 digits) SNFS difficulty: 138 digits. Divisors found: r1=234806247524789276541047560136279747605593670548390630143 (pp57) r2=1646515424474759157709862360552930904493428048558253258347121490936014861 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 4.94 hours. Scaled time: 4.61 units (timescale=0.934). Factorization parameters were as follows: n: 386612108312603782474518587555742467131354168827475971306232718709990983848984480161415704893794803065494070892108722517002555123 m: 2000000000000000000000000000 c5: 125 c0: -3 skew: 1 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1600001) Primes: RFBsize:107126, AFBsize:107023, largePrimes:1685915 encountered Relations: rels:1768512, finalFF:259015 Max relations in full relation-set: 28 Initial matrix: 214214 x 259015 with sparse part having weight 14204838. Pruned matrix : 192969 x 194104 with weight 8814070. Total sieving time: 4.78 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 4.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10139+3 = 4(0)1383<140> = 730085207 · 4622218820599<13> · 1090080139886653<16> · C104
C104 = P40 · P64
P40 = 2443464119454710007355153216679458364521<40>
P64 = 4450118210277028673112750346091921480847013205495714394729918167<64>
Number: 40003_139 N=10873704174143929896811554488954462461135888027735618494324499305001323585745628849144582691257986153007 ( 104 digits) SNFS difficulty: 140 digits. Divisors found: r1=2443464119454710007355153216679458364521 (pp40) r2=4450118210277028673112750346091921480847013205495714394729918167 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.54 hours. Scaled time: 7.97 units (timescale=0.934). Factorization parameters were as follows: n: 10873704174143929896811554488954462461135888027735618494324499305001323585745628849144582691257986153007 m: 10000000000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1250001) Primes: RFBsize:107126, AFBsize:107113, largePrimes:1679573 encountered Relations: rels:1762335, finalFF:255346 Max relations in full relation-set: 28 Initial matrix: 214304 x 255346 with sparse part having weight 13522951. Pruned matrix : 192825 x 193960 with weight 8429277. Total sieving time: 8.39 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 8.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(14·10159-41)/9 = 1(5)1581<160> = 32 · 11 · 5783 · 6871 · C150
C150 = P34 · P116
P34 = 6031459152120337884517237707176687<34>
P116 = 65562393470958923411536676667369852579711360794342128936197039393056889008855481635744308817305722437678656721468939<116>
Number: n N=395436898135329884560761905239269729221109523772888194939726864412661303745861547763429730960634179030786440951749566920750332476783936500229055425093 ( 150 digits) SNFS difficulty: 160 digits. Divisors found: r1=6031459152120337884517237707176687 (pp34) r2=65562393470958923411536676667369852579711360794342128936197039393056889008855481635744308817305722437678656721468939 (pp116) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 38.14 hours. Scaled time: 52.13 units (timescale=1.367). Factorization parameters were as follows: name: KA_1_5_158_1 n: 395436898135329884560761905239269729221109523772888194939726864412661303745861547763429730960634179030786440951749566920750332476783936500229055425093 skew: 1.96 deg: 5 c5: 7 c0: -205 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:250150, AFBsize:250442, largePrimes:7155416 encountered Relations: rels:6677810, finalFF:563496 Max relations in full relation-set: 28 Initial matrix: 500657 x 563496 with sparse part having weight 34543217. Pruned matrix : 444914 x 447481 with weight 22819760. Total sieving time: 33.89 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.39 hours. Total square root time: 0.64 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 38.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve 1.21
4·10127-3 = 3(9)1267<128> = 37 · 1663 · 18719 · 5365901 · C112
C112 = P48 · P64
P48 = 705022162775505898789224106446296802990040895033<48>
P64 = 9179899962009583566770141001685302094407984058465806768333958181<64>
Number: 39997_127 N=6472032925278781041797362499390546042050955598537907195224264982188752618866909381403194723929818401764832614973 ( 112 digits) SNFS difficulty: 127 digits. Divisors found: r1=705022162775505898789224106446296802990040895033 (pp48) r2=9179899962009583566770141001685302094407984058465806768333958181 (pp64) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.86 hours. Scaled time: 1.74 units (timescale=0.934). Factorization parameters were as follows: n: 6472032925278781041797362499390546042050955598537907195224264982188752618866909381403194723929818401764832614973 m: 20000000000000000000000000 c5: 25 c0: -6 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 850001) Primes: RFBsize:78498, AFBsize:78301, largePrimes:1560655 encountered Relations: rels:1638252, finalFF:247040 Max relations in full relation-set: 28 Initial matrix: 156863 x 247040 with sparse part having weight 11693537. Pruned matrix : 113199 x 114047 with weight 4653390. Total sieving time: 1.80 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.86 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10127+3 = 4(0)1263<128> = 17 · 432 · 59 · 11285195303<11> · C112
C112 = P54 · P58
P54 = 521293731281094645703485420673506602610925860757394203<54>
P58 = 3666321666068084664903157915264085011548958113765261075461<58>
Number: 40003_127 N=1911230501381351344749672587619391998018934950167832705841037082931427635475944060798992580228159562795706952583 ( 112 digits) SNFS difficulty: 127 digits. Divisors found: r1=521293731281094645703485420673506602610925860757394203 (pp54) r2=3666321666068084664903157915264085011548958113765261075461 (pp58) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.62 hours. Scaled time: 1.51 units (timescale=0.931). Factorization parameters were as follows: n: 1911230501381351344749672587619391998018934950167832705841037082931427635475944060798992580228159562795706952583 m: 20000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 800001) Primes: RFBsize:78498, AFBsize:78301, largePrimes:1453042 encountered Relations: rels:1464297, finalFF:189090 Max relations in full relation-set: 28 Initial matrix: 156863 x 189090 with sparse part having weight 8244070. Pruned matrix : 135788 x 136636 with weight 4723501. Total sieving time: 1.55 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,127,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10131+3 = 4(0)1303<132> = 29 · 199 · 122709869 · C120
C120 = P47 · P74
P47 = 17745113024976168939376435372018500870859981957<47>
P74 = 31831027271271917917211409577687106292138046864406391959013403689139371721<74>
Number: 40003_131 N=564845176629818951808827035744745452246841772623803650887282390890456141189641461532135200682772613833908993808376037997 ( 120 digits) SNFS difficulty: 132 digits. Divisors found: r1=17745113024976168939376435372018500870859981957 (pp47) r2=31831027271271917917211409577687106292138046864406391959013403689139371721 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.30 hours. Scaled time: 2.15 units (timescale=0.935). Factorization parameters were as follows: n: 564845176629818951808827035744745452246841772623803650887282390890456141189641461532135200682772613833908993808376037997 m: 200000000000000000000000000 c5: 5 c0: 12 skew: 1.19 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78441, largePrimes:1508956 encountered Relations: rels:1522496, finalFF:190629 Max relations in full relation-set: 28 Initial matrix: 157005 x 190629 with sparse part having weight 9748353. Pruned matrix : 142097 x 142946 with weight 5737145. Total sieving time: 2.22 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10132+3 = 4(0)1313<133> = 7 · 367699 · 75669648215166599173<20> · C107
C107 = P49 · P59
P49 = 1112013696695243458462948812197952325199534586937<49>
P59 = 18468756317073684462309916330756661620043623970152551745171<59>
Number: 40003_132 N=20537509985512737778662764382555381457009554393279769385933028106871931241847355158296348401924213969431227 ( 107 digits) SNFS difficulty: 132 digits. Divisors found: r1=1112013696695243458462948812197952325199534586937 (pp49) r2=18468756317073684462309916330756661620043623970152551745171 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.52 hours. Scaled time: 2.35 units (timescale=0.934). Factorization parameters were as follows: n: 20537509985512737778662764382555381457009554393279769385933028106871931241847355158296348401924213969431227 m: 200000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78301, largePrimes:1515396 encountered Relations: rels:1524246, finalFF:186816 Max relations in full relation-set: 28 Initial matrix: 156863 x 186816 with sparse part having weight 9456577. Pruned matrix : 145417 x 146265 with weight 5828837. Total sieving time: 2.43 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10133-3 = 3(9)1327<134> = 19 · 37 · 607 · 275521 · 267823455452010358133437<24> · C100
C100 = P41 · P59
P41 = 19092348197612899949161309484911390214209<41>
P59 = 66535483009793897303525410667693774065268754524280636711649<59>
Number: 39997_133 N=1270318609119342242678692386755510163774768851318400499046674123124105513718087324363376691475620641 ( 100 digits) SNFS difficulty: 133 digits. Divisors found: r1=19092348197612899949161309484911390214209 (pp41) r2=66535483009793897303525410667693774065268754524280636711649 (pp59) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.94 hours. Scaled time: 2.75 units (timescale=0.934). Factorization parameters were as follows: n: 1270318609119342242678692386755510163774768851318400499046674123124105513718087324363376691475620641 m: 200000000000000000000000000 c5: 125 c0: -3 skew: 1 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1200001) Primes: RFBsize:107126, AFBsize:107023, largePrimes:1614997 encountered Relations: rels:1684678, finalFF:247912 Max relations in full relation-set: 28 Initial matrix: 214214 x 247912 with sparse part having weight 10516119. Pruned matrix : 188686 x 189821 with weight 6629000. Total sieving time: 2.82 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 2.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10136-3 = 3(9)1357<137> = 23 · 37 · 2293 · C131
C131 = P35 · P97
P35 = 15081196794111057038592942294865571<35>
P97 = 1359222545014331678259321655350929515123649897436325733988274979310778665003786733637386489826449<97>
Number: 39997_136 N=20498702688353610820855175128104080113029846623581810066195435656365897743246574282430100705001632209201560156261610593319575287379 ( 131 digits) SNFS difficulty: 137 digits. Divisors found: r1=15081196794111057038592942294865571 (pp35) r2=1359222545014331678259321655350929515123649897436325733988274979310778665003786733637386489826449 (pp97) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.84 hours. Scaled time: 3.58 units (timescale=0.932). Factorization parameters were as follows: n: 20498702688353610820855175128104080113029846623581810066195435656365897743246574282430100705001632209201560156261610593319575287379 m: 2000000000000000000000000000 c5: 5 c0: -12 skew: 1.19 type: snfs Factor base limits: 1400000/1400000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [700000, 1400001) Primes: RFBsize:107126, AFBsize:106758, largePrimes:1667272 encountered Relations: rels:1757157, finalFF:266622 Max relations in full relation-set: 28 Initial matrix: 213950 x 266622 with sparse part having weight 12122124. Pruned matrix : 185668 x 186801 with weight 7034894. Total sieving time: 3.71 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1400000,1400000,25,25,44,44,2.3,2.3,50000 total time: 3.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10151-3 = 3(9)1507<152> = 172 · 19 · 37 · 813601 · 94455601 · 97616772977<11> · 196347596050337<15> · 5853974215361273<16> · C92
C92 = P43 · P50
P43 = 1910611134746116246492096414368671609087657<43>
P50 = 11950731510953569288974090598473301504132412787619<50>
Sun May 27 21:42:43 2007 Sun May 27 21:42:43 2007 Sun May 27 21:42:43 2007 Msieve v. 1.21 Sun May 27 21:42:43 2007 random seeds: 82914263 85d6b2cd Sun May 27 21:42:43 2007 factoring 22833200693189167378341858058780999507653626440332814574305576940890044459677406916695318683 (92 digits) Sun May 27 21:42:43 2007 commencing quadratic sieve (92-digit input) Sun May 27 21:42:43 2007 using multiplier of 3 Sun May 27 21:42:43 2007 using 32kb Intel Core sieve core Sun May 27 21:42:43 2007 sieve interval: 36 blocks of size 32768 Sun May 27 21:42:43 2007 processing polynomials in batches of 6 Sun May 27 21:42:43 2007 using a sieve bound of 1787717 (67004 primes) Sun May 27 21:42:43 2007 using large prime bound of 187710285 (27 bits) Sun May 27 21:42:43 2007 using double large prime bound of 780330238063215 (42-50 bits) Sun May 27 21:42:43 2007 using trial factoring cutoff of 50 bits Sun May 27 21:42:43 2007 polynomial 'A' values have 12 factors Sun May 27 23:02:34 2007 67494 relations (17641 full + 49853 combined from 828022 partial), need 67100 Sun May 27 23:02:35 2007 begin with 845663 relations Sun May 27 23:02:35 2007 reduce to 168237 relations in 10 passes Sun May 27 23:02:35 2007 attempting to read 168237 relations Sun May 27 23:02:36 2007 recovered 168237 relations Sun May 27 23:02:36 2007 recovered 147912 polynomials Sun May 27 23:02:36 2007 attempting to build 67494 cycles Sun May 27 23:02:36 2007 found 67493 cycles in 5 passes Sun May 27 23:02:37 2007 distribution of cycle lengths: Sun May 27 23:02:37 2007 length 1 : 17641 Sun May 27 23:02:37 2007 length 2 : 12653 Sun May 27 23:02:37 2007 length 3 : 11612 Sun May 27 23:02:37 2007 length 4 : 9122 Sun May 27 23:02:37 2007 length 5 : 6485 Sun May 27 23:02:37 2007 length 6 : 4245 Sun May 27 23:02:37 2007 length 7 : 2509 Sun May 27 23:02:37 2007 length 9+: 3226 Sun May 27 23:02:37 2007 largest cycle: 19 relations Sun May 27 23:02:37 2007 matrix is 67004 x 67493 with weight 4127294 (avg 61.15/col) Sun May 27 23:02:37 2007 filtering completed in 4 passes Sun May 27 23:02:37 2007 matrix is 65382 x 65446 with weight 3919902 (avg 59.90/col) Sun May 27 23:02:38 2007 saving the first 48 matrix rows for later Sun May 27 23:02:38 2007 matrix is 65334 x 65446 with weight 3070899 (avg 46.92/col) Sun May 27 23:02:38 2007 matrix includes 32 packed rows Sun May 27 23:02:38 2007 using block size 26178 for processor cache size 4096 kB Sun May 27 23:02:58 2007 lanczos halted after 1034 iterations Sun May 27 23:02:58 2007 recovered 18 nontrivial dependencies Sun May 27 23:02:59 2007 prp43 factor: 1910611134746116246492096414368671609087657 Sun May 27 23:02:59 2007 prp50 factor: 11950731510953569288974090598473301504132412787619 Sun May 27 23:02:59 2007 elapsed time 01:20:16
By suberi / GMP-ECM 6.1.2 B1=3000000, Msieve v. 1.21
4·10148-3 = 3(9)1477<149> = 37 · 157 · 373 · 2389 · 2917 · 201743 · 343164397202925323<18> · C113
C113 = P32 · P34 · P47
P32 = 64183606304071153348418983401419<32>
P34 = 6908604692602464799988145292045693<34>
P47 = 86294287414556460254625701135729827536592888259<47>
Sat May 19 13:39:49 2007 Sat May 19 13:39:49 2007 Sat May 19 13:39:49 2007 Msieve v. 1.21 Sat May 19 13:39:49 2007 random seeds: ab5a05f8 8d5d6b6c Sat May 19 13:39:49 2007 factoring 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 (107 digits) Sat May 19 13:39:49 2007 commencing quadratic sieve (106-digit input) Sat May 19 13:39:50 2007 using multiplier of 11 Sat May 19 13:39:50 2007 using 64kb Pentium 4 sieve core Sat May 19 13:39:50 2007 sieve interval: 21 blocks of size 65536 Sat May 19 13:39:50 2007 processing polynomials in batches of 5 Sat May 19 13:39:50 2007 using a sieve bound of 4662979 (163333 primes) Sat May 19 13:39:50 2007 using large prime bound of 699446850 (29 bits) Sat May 19 13:39:50 2007 using double large prime bound of 8328340221930300 (45-53 bits) Sat May 19 13:39:50 2007 using trial factoring cutoff of 53 bits Sat May 19 13:39:50 2007 polynomial 'A' values have 14 factors Sat May 19 13:42:08 2007 18 relations (18 full + 0 combined from 995 partial), need 163429 Sat May 19 13:42:08 2007 c107 factor: 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 Sat May 19 13:42:08 2007 elapsed time 00:02:19 Sun May 27 16:46:55 2007 Sun May 27 16:46:55 2007 Sun May 27 16:46:55 2007 Msieve v. 1.21 Sun May 27 16:46:55 2007 random seeds: 8d7ccf94 2a377ae6 Sun May 27 16:46:55 2007 factoring 79 (2 digits) Sun May 27 16:46:55 2007 p2 factor: 79 Sun May 27 16:46:55 2007 elapsed time 00:00:00 Sun May 27 16:47:44 2007 Sun May 27 16:47:44 2007 Sun May 27 16:47:44 2007 Msieve v. 1.21 Sun May 27 16:47:44 2007 random seeds: 48e51ae0 131d458c Sun May 27 16:47:44 2007 factoring 5538678569706254011261695426721774138491854232285156975782913679145001209039521 (79 digits) Sun May 27 16:47:45 2007 commencing quadratic sieve (79-digit input) Sun May 27 16:47:45 2007 using multiplier of 1 Sun May 27 16:47:45 2007 using 64kb Pentium 4 sieve core Sun May 27 16:47:45 2007 sieve interval: 6 blocks of size 65536 Sun May 27 16:47:45 2007 processing polynomials in batches of 17 Sun May 27 16:47:45 2007 using a sieve bound of 1168879 (45267 primes) Sun May 27 16:47:45 2007 using large prime bound of 116887900 (26 bits) Sun May 27 16:47:45 2007 using trial factoring cutoff of 27 bits Sun May 27 16:47:45 2007 polynomial 'A' values have 10 factors Sun May 27 16:59:38 2007 45549 relations (24447 full + 21102 combined from 238802 partial), need 45363 Sun May 27 16:59:38 2007 begin with 263249 relations Sun May 27 16:59:39 2007 reduce to 64059 relations in 2 passes Sun May 27 16:59:39 2007 attempting to read 64059 relations Sun May 27 16:59:40 2007 recovered 64059 relations Sun May 27 16:59:40 2007 recovered 47555 polynomials Sun May 27 16:59:40 2007 attempting to build 45549 cycles Sun May 27 16:59:40 2007 found 45549 cycles in 1 passes Sun May 27 16:59:40 2007 distribution of cycle lengths: Sun May 27 16:59:40 2007 length 1 : 24447 Sun May 27 16:59:40 2007 length 2 : 21102 Sun May 27 16:59:40 2007 largest cycle: 2 relations Sun May 27 16:59:40 2007 matrix is 45267 x 45549 with weight 1349433 (avg 29.63/col) Sun May 27 16:59:40 2007 filtering completed in 4 passes Sun May 27 16:59:40 2007 matrix is 37509 x 37573 with weight 1083366 (avg 28.83/col) Sun May 27 16:59:41 2007 saving the first 48 matrix rows for later Sun May 27 16:59:41 2007 matrix is 37461 x 37573 with weight 738243 (avg 19.65/col) Sun May 27 16:59:41 2007 matrix includes 32 packed rows Sun May 27 17:00:24 2007 lanczos halted after 593 iterations Sun May 27 17:00:25 2007 recovered 12 nontrivial dependencies Sun May 27 17:00:25 2007 prp32 factor: 64183606304071153348418983401419 Sun May 27 17:00:25 2007 prp47 factor: 86294287414556460254625701135729827536592888259 Sun May 27 17:00:25 2007 elapsed time 00:12:41
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(7·10160-43)/9 = (7)1593<160> = 32 · 67 · C158
C158 = P49 · P109
P49 = 7569214186545777793665631319644598306342954210369<49>
P109 = 1704069972394272056243610341411329237778860200857566090684279076415414313907033462129726700942953362876790039<109>
Number: n N=12898470609913395983047724341256679565137276580062649714391007923346231803943246729316381057674590012898470609913395983047724341256679565137276580062649714391 ( 158 digits) SNFS difficulty: 160 digits. Divisors found: r1=7569214186545777793665631319644598306342954210369 (pp49) r2=1704069972394272056243610341411329237778860200857566090684279076415414313907033462129726700942953362876790039 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.13 hours. Scaled time: 59.28 units (timescale=1.441). Factorization parameters were as follows: name: KA_7_159_3 n: 12898470609913395983047724341256679565137276580062649714391007923346231803943246729316381057674590012898470609913395983047724341256679565137276580062649714391 skew: 1.44 deg: 5 c5: 7 c0: -43 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:250150, AFBsize:250336, largePrimes:7244344 encountered Relations: rels:6806415, finalFF:586324 Max relations in full relation-set: 28 Initial matrix: 500553 x 586324 with sparse part having weight 39447333. Pruned matrix : 427427 x 429993 with weight 24457695. Total sieving time: 36.21 hours. Total relation processing time: 0.27 hours. Matrix solve time: 4.58 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 41.13 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
2·10160+3 = 2(0)1593<161> = 269741 · C155
C155 = P60 · P96
P60 = 300244161062830630302818080353294695395582491459143920704439<60>
P96 = 246949676822489123478546797860086337445136656832298441810501694114885422418729064737492466489097<96>
Number: n N=74145198542305396658275901698295772611505110457809528399464671666524555036127247989738304521744933102494615204955865070567692712639161269514089441353001583 ( 155 digits) SNFS difficulty: 160 digits. Divisors found: r1=300244161062830630302818080353294695395582491459143920704439 (pp60) r2=246949676822489123478546797860086337445136656832298441810501694114885422418729064737492466489097 (pp96) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 32.43 hours. Scaled time: 44.17 units (timescale=1.362). Factorization parameters were as follows: name: KA_2_0_159_3 n: 74145198542305396658275901698295772611505110457809528399464671666524555036127247989738304521744933102494615204955865070567692712639161269514089441353001583 skew: 1.08 deg: 5 c5: 2 c0: 3 m: 100000000000000000000000000000000 type: snfs rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:250150, AFBsize:250246, largePrimes:6994412 encountered Relations: rels:6520555, finalFF:565351 Max relations in full relation-set: 28 Initial matrix: 500461 x 565351 with sparse part having weight 33244971. Pruned matrix : 440405 x 442971 with weight 21278744. Total sieving time: 28.78 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.24 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 32.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10122+3 = 4(0)1213<123> = 13 · 31 · 751 · C118
C118 = P36 · P82
P36 = 140302808583575220937569935644682059<36>
P82 = 9419950992110895877545261702594558645655155927342812397620420321479963685240471389<82>
Number: 40003_122 N=1321645580912794520457421535553918183530313593455211083319841534694848555936997155157887085209794715400144720191109951 ( 118 digits) SNFS difficulty: 122 digits. Divisors found: r1=140302808583575220937569935644682059 (pp36) r2=9419950992110895877545261702594558645655155927342812397620420321479963685240471389 (pp82) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.17 hours. Scaled time: 1.08 units (timescale=0.927). Factorization parameters were as follows: n: 1321645580912794520457421535553918183530313593455211083319841534694848555936997155157887085209794715400144720191109951 m: 2000000000000000000000000 c5: 25 c0: 6 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:49121, largePrimes:2076587 encountered Relations: rels:2174816, finalFF:224976 Max relations in full relation-set: 28 Initial matrix: 98283 x 224976 with sparse part having weight 21075220. Pruned matrix : 75996 x 76551 with weight 4950199. Total sieving time: 1.11 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.17 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10125-3 = 3(9)1247<126> = 13 · 347 · 1919134447<10> · 3973122502709<13> · C101
C101 = P44 · P57
P44 = 14176781570225689422590837043552305747546179<44>
P57 = 820298957620154295413668754748555247326186604713123112531<57>
Number: 39997_125 N=11629199144464747273873992857836226276685046458776844818521404624591944271991616740778007884136069049 ( 101 digits) SNFS difficulty: 125 digits. Divisors found: r1=14176781570225689422590837043552305747546179 (pp44) r2=820298957620154295413668754748555247326186604713123112531 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.38 hours. Scaled time: 1.29 units (timescale=0.935). Factorization parameters were as follows: n: 11629199144464747273873992857836226276685046458776844818521404624591944271991616740778007884136069049 m: 10000000000000000000000000 c5: 4 c0: -3 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 750001) Primes: RFBsize:78498, AFBsize:78486, largePrimes:1470046 encountered Relations: rels:1503361, finalFF:207858 Max relations in full relation-set: 28 Initial matrix: 157051 x 207858 with sparse part having weight 9056955. Pruned matrix : 123990 x 124839 with weight 4351782. Total sieving time: 1.32 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.38 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=1000000
4·10154-3 = 3(9)1537<155> = 37 · 853 · C151
C151 = P32 · P119
P32 = 13650357197160249109048459378477<32>
P119 = 92846432266895293000127005136899584386269985976279393784014840396257054232599914470996487908411988310488572830000344201<119>
4·10135+3 = 4(0)1343<136> = 11328523 · C129
C129 = P30 · P100
P30 = 167209353214438072108071764699<30>
P100 = 2111670406352169953615950969505952926778362473341224768552933956228839776053527035084886239827494539<100>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
3·10170-1 = 2(9)170<171> = 13 · 5783 · C166
C166 = P54 · P113
P54 = 173013747441272949252140271307882198468644836377812061<54>
P113 = 23064502808650629916626080541133445738284945384523360813873885767965239712427790623664167124028559969692067948321<113>
Number: n N=3990476063794410673193311962117080567711728009151491772968515143856662099788504768618896234320754466007794729911278415514970936032668697375596908711209247263198499581 ( 166 digits) SNFS difficulty: 170 digits. Divisors found: r1=173013747441272949252140271307882198468644836377812061 (pp54) r2=23064502808650629916626080541133445738284945384523360813873885767965239712427790623664167124028559969692067948321 (pp113) Version: GGNFS-0.77.1-20051202-athlon Total time: 83.81 hours. Scaled time: 110.71 units (timescale=1.321). Factorization parameters were as follows: name: KA_2_9_170 n: 3990476063794410673193311962117080567711728009151491772968515143856662099788504768618896234320754466007794729911278415514970936032668697375596908711209247263198499581 skew: 0.80 deg: 5 c5: 3 c0: -1 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3300001) Primes: RFBsize:348513, AFBsize:348501, largePrimes:7962339 encountered Relations: rels:7605195, finalFF:792642 Max relations in full relation-set: 48 Initial matrix: 697079 x 792642 with sparse part having weight 44278165. Pruned matrix : 611079 x 614628 with weight 28486101. Total sieving time: 74.99 hours. Total relation processing time: 0.34 hours. Matrix solve time: 8.38 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 83.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10119-3 = 3(9)1187<120> = 13 · 17 · 85819 · 2138429 · C106
C106 = P44 · P63
P44 = 25985319399001881232057951389966634997820353<44>
P63 = 379543338404314085166151446656730517304702047891649789900943119<63>
Number: 39997_119 N=9862554874199558511652521413589225413570302672368196255395589043914114001064063424236049653226344033501007 ( 106 digits) SNFS difficulty: 120 digits. Divisors found: r1=25985319399001881232057951389966634997820353 (pp44) r2=379543338404314085166151446656730517304702047891649789900943119 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.95 hours. Scaled time: 0.89 units (timescale=0.934). Factorization parameters were as follows: n: 9862554874199558511652521413589225413570302672368196255395589043914114001064063424236049653226344033501007 m: 1000000000000000000000000 c5: 2 c0: -15 skew: 1.5 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49146, largePrimes:1924432 encountered Relations: rels:1892891, finalFF:125989 Max relations in full relation-set: 28 Initial matrix: 98309 x 125989 with sparse part having weight 10775752. Pruned matrix : 90888 x 91443 with weight 6048950. Total sieving time: 0.89 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.95 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10120-3 = 3(9)1197<121> = 311 · 2251511 · 9660397 · C105
C105 = P35 · P71
P35 = 14957350687977701210646823592952109<35>
P71 = 39534466142745973691646463023061454844518637076105956734312901955956709<71>
Number: 39997_120 N=591330874359032625073270746495953718723219748632694947903328381586309125199738351352363557080262714249281 ( 105 digits) SNFS difficulty: 120 digits. Divisors found: r1=14957350687977701210646823592952109 (pp35) r2=39534466142745973691646463023061454844518637076105956734312901955956709 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.00 hours. Scaled time: 0.94 units (timescale=0.934). Factorization parameters were as follows: n: 591330874359032625073270746495953718723219748632694947903328381586309125199738351352363557080262714249281 m: 1000000000000000000000000 c5: 4 c0: -3 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49031, largePrimes:2089674 encountered Relations: rels:2224684, finalFF:262044 Max relations in full relation-set: 28 Initial matrix: 98196 x 262044 with sparse part having weight 24274221. Pruned matrix : 70560 x 71114 with weight 4834916. Total sieving time: 0.95 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.00 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10120+3 = 4(0)1193<121> = 7 · C120
C120 = P43 · P78
P43 = 5612274364620889506308759859628576707925837<43>
P78 = 101817647232428482152474928700295254049026878546996061124502636639930949090617<78>
Number: 40003_120 N=571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 120 digits) SNFS difficulty: 120 digits. Divisors found: r1=5612274364620889506308759859628576707925837 (pp43) r2=101817647232428482152474928700295254049026878546996061124502636639930949090617 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.81 hours. Scaled time: 0.76 units (timescale=0.927). Factorization parameters were as follows: n: 571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 1000000000000000000000000 c5: 4 c0: 3 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:49031, largePrimes:1870291 encountered Relations: rels:1811935, finalFF:113613 Max relations in full relation-set: 28 Initial matrix: 98196 x 113613 with sparse part having weight 9031756. Pruned matrix : 93407 x 93961 with weight 6170340. Total sieving time: 0.75 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.81 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10121+3 = 4(0)1203<122> = 6961 · 170977595876812450723<21> · C98
C98 = P41 · P57
P41 = 34585230048100307623332840382749782681057<41>
P57 = 971758800986673748132478129675100273134597913849135461393<57>
Number: 40003_121 N=33608501683390235777263910364754662400497207736229051883674130597789461249450276268990816255932401 ( 98 digits) SNFS difficulty: 122 digits. Divisors found: r1=34585230048100307623332840382749782681057 (pp41) r2=971758800986673748132478129675100273134597913849135461393 (pp57) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.97 hours. Scaled time: 0.91 units (timescale=0.929). Factorization parameters were as follows: n: 33608501683390235777263910364754662400497207736229051883674130597789461249450276268990816255932401 m: 2000000000000000000000000 c5: 5 c0: 12 skew: 1.19 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 450001) Primes: RFBsize:49098, AFBsize:49316, largePrimes:1946453 encountered Relations: rels:1937498, finalFF:144532 Max relations in full relation-set: 28 Initial matrix: 98480 x 144532 with sparse part having weight 12447254. Pruned matrix : 87105 x 87661 with weight 5405410. Total sieving time: 0.92 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.97 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10122-3 = 3(9)1217<123> = 31391 · 2684288903<10> · 58006487029<11> · C98
C98 = P48 · P51
P48 = 344007467969662880678387556467819763326309749859<48>
P51 = 237892718439068787805376755582318249071248333701499<51>
Number: 39997_122 N=81836871718643986185728151933388840266271776853244320350768896586357955470594077763743698263338641 ( 98 digits) SNFS difficulty: 122 digits. Divisors found: r1=344007467969662880678387556467819763326309749859 (pp48) r2=237892718439068787805376755582318249071248333701499 (pp51) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.16 hours. Scaled time: 1.08 units (timescale=0.932). Factorization parameters were as follows: n: 81836871718643986185728151933388840266271776853244320350768896586357955470594077763743698263338641 m: 2000000000000000000000000 c5: 25 c0: -6 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 480001) Primes: RFBsize:49098, AFBsize:49121, largePrimes:2037427 encountered Relations: rels:2086785, finalFF:182743 Max relations in full relation-set: 28 Initial matrix: 98283 x 182743 with sparse part having weight 16947217. Pruned matrix : 82061 x 82616 with weight 5173414. Total sieving time: 1.10 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 1.16 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
4·10113+3 = 4(0)1123<114> = 151 · 2521 · 9341 · 9946673530747<13> · C92
C92 = P39 · P53
P39 = 213150967517384807318120724304052423803<39>
P53 = 53058095146024700376361296298594029717899946692445353<53>
Number: 40003_113 N=11309384315004623424899180326922060659645124717317858332549892278146483153678074568773937459 ( 92 digits) SNFS difficulty: 113 digits. Divisors found: r1=213150967517384807318120724304052423803 (pp39) r2=53058095146024700376361296298594029717899946692445353 (pp53) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.67 hours. Scaled time: 0.63 units (timescale=0.935). Factorization parameters were as follows: n: 11309384315004623424899180326922060659645124717317858332549892278146483153678074568773937459 m: 20000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30524, largePrimes:966239 encountered Relations: rels:870153, finalFF:70742 Max relations in full relation-set: 28 Initial matrix: 61346 x 70742 with sparse part having weight 3221294. Pruned matrix : 57493 x 57863 with weight 2097058. Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.67 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, GMP-ECM 6.1.2
4·10118+3 = 4(0)1173<119> = C119
C119 = P39 · P81
P39 = 211621276763532507670415744223334748617<39>
P81 = 189016910831212661627315911618686407924531685546937547055501093534558399895914859<81>
Number: 40003_118 N=40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 119 digits) SNFS difficulty: 118 digits. Divisors found: r1=211621276763532507670415744223334748617 (pp39) r2=189016910831212661627315911618686407924531685546937547055501093534558399895914859 (pp81) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.96 hours. Scaled time: 0.90 units (timescale=0.935). Factorization parameters were as follows: n: 40000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 200000000000000000000000 c5: 125 c0: 3 skew: 1 type: snfs Factor base limits: 600000/600000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [300000, 420001) Primes: RFBsize:49098, AFBsize:48756, largePrimes:1908722 encountered Relations: rels:1884500, finalFF:138422 Max relations in full relation-set: 28 Initial matrix: 97919 x 138422 with sparse part having weight 11276802. Pruned matrix : 86646 x 87199 with weight 5081607. Total sieving time: 0.90 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,600000,600000,25,25,46,46,2.4,2.4,30000 total time: 0.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10129+3 = 4(0)1283<130> = C130
C130 = P52 · P79
P52 = 2125328766779684187720000305302944444700439100557051<52>
P79 = 1882061760289836591422460816044047312356413460440607394774696364308476485811353<79>
Number: 40003_129 N=4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=2125328766779684187720000305302944444700439100557051 (pp52) r2=1882061760289836591422460816044047312356413460440607394774696364308476485811353 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.58 hours. Scaled time: 2.37 units (timescale=0.920). Factorization parameters were as follows: n: 4000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 100000000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1000001) Primes: RFBsize:78498, AFBsize:78671, largePrimes:1535768 encountered Relations: rels:1549847, finalFF:192091 Max relations in full relation-set: 28 Initial matrix: 157234 x 192091 with sparse part having weight 9975542. Pruned matrix : 143749 x 144599 with weight 5929322. Total sieving time: 2.49 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10174-3 = 3(9)1737<175> = C175
C175 = P32 · C143
P32 = 60245455742914874964935791279271<32>
C143 = [66395049231085237918736844489235035302968882127983995400674751551693234252075026857441283507447362557455506331177428848643832758876913437458107<143>]
4·10109+3 = 4(0)1083<110> = 157 · 659 · 3015622139<10> · C96
C96 = P46 · P50
P46 = 8789691551616868774948328182836667117193493269<46>
P50 = 14585602253855018384156891160085996096225659769091<50>
Number: 40003_109 N=128202944905953414864392618133593516660075229232730226022631615760351226868770194151050202748479 ( 96 digits) SNFS difficulty: 110 digits. Divisors found: r1=8789691551616868774948328182836667117193493269 (pp46) r2=14585602253855018384156891160085996096225659769091 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.62 hours. Scaled time: 0.58 units (timescale=0.931). Factorization parameters were as follows: n: 128202944905953414864392618133593516660075229232730226022631615760351226868770194151050202748479 m: 10000000000000000000000 c5: 2 c0: 15 skew: 1.5 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30809, largePrimes:1049595 encountered Relations: rels:976872, finalFF:96164 Max relations in full relation-set: 28 Initial matrix: 61631 x 96164 with sparse part having weight 4380179. Pruned matrix : 51415 x 51787 with weight 1652064. Total sieving time: 0.59 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.00 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.62 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
4·10179+3 = 4(0)1783<180> = C180
C180 = P37 · C143
P37 = 9679838127597185553923930374350132743<37>
C143 = [41323005067574566304410175051619336014247547874804676702862982021554231126531999977945569827460087540832516415965598056089191661607896947926821<143>]
4·10113-3 = 3(9)1127<114> = 13 · C113
C113 = P31 · P83
P31 = 1702356884234854309940250225619<31>
P83 = 18074488994744710410784707596626357056720051107053667811146452741104552488586191851<83>
Number: 39997_113 N=30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769 ( 113 digits) SNFS difficulty: 113 digits. Divisors found: r1=1702356884234854309940250225619 (pp31) r2=18074488994744710410784707596626357056720051107053667811146452741104552488586191851 (pp83) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.68 hours. Scaled time: 0.63 units (timescale=0.932). Factorization parameters were as follows: n: 30769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769230769 m: 20000000000000000000000 c5: 125 c0: -3 skew: 1 type: snfs Factor base limits: 360000/360000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [180000, 300001) Primes: RFBsize:30757, AFBsize:30524, largePrimes:971787 encountered Relations: rels:878648, finalFF:73299 Max relations in full relation-set: 28 Initial matrix: 61346 x 73299 with sparse part having weight 3338199. Pruned matrix : 56856 x 57226 with weight 1991611. Total sieving time: 0.65 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,360000,360000,25,25,44,44,2.2,2.2,20000 total time: 0.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10170+43)/9 = (2)1697<170> = 3 · 31 · C168
C168 = P72 · P96
P72 = 822727558550038088856535467720496024936606976987042056653456323459910599<72>
P96 = 290434693188738543956075989104111212671965096094614253375494043532658467524800249969328397926361<96>
Number: n N=238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400239 ( 168 digits) SNFS difficulty: 170 digits. Divisors found: r1=822727558550038088856535467720496024936606976987042056653456323459910599 (pp72) r2=290434693188738543956075989104111212671965096094614253375494043532658467524800249969328397926361 (pp96) Version: GGNFS-0.77.1-20051202-athlon Total time: 101.07 hours. Scaled time: 120.88 units (timescale=1.196). Factorization parameters were as follows: name: KA_2_169_7 n: 238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400238948626045400239 type: snfs skew: 1.85 deg: 5 c5: 2 c0: 43 m: 10000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3500001) Primes: RFBsize:348513, AFBsize:348531, largePrimes:8123742 encountered Relations: rels:7797506, finalFF:823183 Max relations in full relation-set: 28 Initial matrix: 697109 x 823183 with sparse part having weight 47249027. Pruned matrix : 584171 x 587720 with weight 29395354. Total sieving time: 92.50 hours. Total relation processing time: 0.38 hours. Matrix solve time: 8.04 hours. Total square root time: 0.15 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 101.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor tables of 399...997 and 400...003 were extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
2·10157-3 = 1(9)1567<158> = 43 · 179 · 2733863182530927049217<22> · C132
C132 = P42 · P91
P42 = 496078180985187011253921599029146472448633<42>
P91 = 1915938687245105985797755896058272648806048756431283226141003881366035015771171783110925141<91>
Number: n N=950455378847699300374424598634237722308057180347692882733859893445386580027802421982455311802165614024833261186121222088656230782253 ( 132 digits) SNFS difficulty: 157 digits. Divisors found: r1=496078180985187011253921599029146472448633 (pp42) r2=1915938687245105985797755896058272648806048756431283226141003881366035015771171783110925141 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.62 hours. Scaled time: 48.78 units (timescale=1.451). Factorization parameters were as follows: name: KA_1_9_156_7 n: 950455378847699300374424598634237722308057180347692882733859893445386580027802421982455311802165614024833261186121222088656230782253 skew: 0.43 deg: 5 c5: 200 c0: -3 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:183072, AFBsize:183041, largePrimes:7276973 encountered Relations: rels:6812530, finalFF:487659 Max relations in full relation-set: 28 Initial matrix: 366178 x 487659 with sparse part having weight 43287182. Pruned matrix : 296199 x 298093 with weight 25524280. Total sieving time: 30.36 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.00 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 33.62 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(22·10160-1)/3 = 7(3)160<161> = 13 · 263 · C158
C158 = P62 · P96
P62 = 23426441886445012154981750965676224184494269863736197144797481<62>
P96 = 915579361128915270723247955082996638837387785389087322699384546746236173167534267878078270621047<96>
Number: n N=21448766695914984888368918787169737740079945403139319489129375060933996295213025251048064736277664034318026713463975821390270059471580384127912645022911182607 ( 158 digits) SNFS difficulty: 161 digits. Divisors found: r1=23426441886445012154981750965676224184494269863736197144797481 (pp62) r2=915579361128915270723247955082996638837387785389087322699384546746236173167534267878078270621047 (pp96) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 40.17 hours. Scaled time: 54.87 units (timescale=1.366). Factorization parameters were as follows: name: KA_7_3_160 n: 21448766695914984888368918787169737740079945403139319489129375060933996295213025251048064736277664034318026713463975821390270059471580384127912645022911182607 skew: 0.54 deg: 5 c5: 22 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:315948, AFBsize:316347, largePrimes:7309058 encountered Relations: rels:6944667, finalFF:720963 Max relations in full relation-set: 28 Initial matrix: 632361 x 720963 with sparse part having weight 35299802. Pruned matrix : 543577 x 546802 with weight 21194774. Total sieving time: 35.03 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.43 hours. Total square root time: 0.49 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 40.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GMP-ECM 5.0 B1=1358500
2·10156+3 = 2(0)1553<157> = 97 · 125353 · 97436968800347339<17> · C133
C133 = P38 · P95
P38 = 43135946585687043827750397163601212657<38>
P95 = 39134557867852232577558454632800142255822036800416522850859882961102818904957125240913476934321<95>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10153-3 = 1(9)1527<154> = 8990693 · 921385311825262730764919<24> · C123
C123 = P44 · P80
P44 = 18536972846671778888746448349596139528250921<44>
P80 = 13024370107576147632519746158741250510023486439810098022457117528012765562134071<80>
Number: 19997_153 N=241432395029142644418795685506626823600720952779925262840558341180193330344056600225360186277355101442030529906274731229391 ( 123 digits) SNFS difficulty: 153 digits. Divisors found: r1=18536972846671778888746448349596139528250921 (pp44) r2=13024370107576147632519746158741250510023486439810098022457117528012765562134071 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 15.54 hours. Scaled time: 14.53 units (timescale=0.935). Factorization parameters were as follows: n: 241432395029142644418795685506626823600720952779925262840558341180193330344056600225360186277355101442030529906274731229391 m: 2000000000000000000000000000000 c5: 125 c0: -6 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175758, largePrimes:5489347 encountered Relations: rels:5372513, finalFF:457707 Max relations in full relation-set: 28 Initial matrix: 352125 x 457707 with sparse part having weight 40251711. Pruned matrix : 304309 x 306133 with weight 23581787. Total sieving time: 14.88 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.54 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 15.54 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(35·10158-53)/9 = 3(8)1573<159> = 27127 · 48923440453<11> · C144
C144 = P44 · P100
P44 = 42538481348207485813121172033846526577279483<44>
P100 = 6888502111425675766578155516284879416746833257639594662538596972928631754995038097561460112280873171<100>
Number: n N=293026418583968992746656536950228061925053866003057901150847188822375646935590181201198901295151639664429222267982877800737159427578360943450593 ( 144 digits) SNFS difficulty: 160 digits. Divisors found: r1=42538481348207485813121172033846526577279483 (pp44) r2=6888502111425675766578155516284879416746833257639594662538596972928631754995038097561460112280873171 (pp100) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 44.00 hours. Scaled time: 56.27 units (timescale=1.279). Factorization parameters were as follows: name: KA_3_8_157_3 n: 293026418583968992746656536950228061925053866003057901150847188822375646935590181201198901295151639664429222267982877800737159427578360943450593 skew: 1.36 deg: 5 c5: 56 c0: -265 m: 50000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:315948, AFBsize:315361, largePrimes:7625944 encountered Relations: rels:7354460, finalFF:807928 Max relations in full relation-set: 28 Initial matrix: 631375 x 807928 with sparse part having weight 42602060. Pruned matrix : 465064 x 468284 with weight 20824091. Total sieving time: 40.25 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.27 hours. Total square root time: 0.24 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 44.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
9·10184+1 = 9(0)1831<185> = 29 · 53 · 433 · 17907001038501948144357766109<29> · 56385136584339210524733082811161<32> · C120
C120 = P59 · P61
P59 = 13545949246627659985095780182634249171497673616306498864681<59>
P61 = 9887438744319177885322438170306294338262729295517657911743749<61>
Number: 90001_184 N=133934743409687504113918170515371822798346958185976385775707154210049376559761047550202532079443200522363980365498629069 ( 120 digits) Divisors found: r1=13545949246627659985095780182634249171497673616306498864681 (pp59) r2=9887438744319177885322438170306294338262729295517657911743749 (pp61) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 104.60 hours. Scaled time: 70.50 units (timescale=0.674). Factorization parameters were as follows: name: 90001_184 n: 133934743409687504113918170515371822798346958185976385775707154210049376559761047550202532079443200522363980365498629069 skew: 107220.47 # norm 2.15e+16 c5: 12600 c4: 3067381107 c3: -574230821471740 c2: -9105185955287273434 c1: 2636139457254556317179812 c0: 17112993314701970007764391495 # alpha -6.21 Y1: 12502178138059 Y0: -101228296750123928750236 # Murphy_E 3.30e-10 # M 38349749078379278951104040809096706378944396920633763085781647089002458673724715501130568777671997717738236889041282710 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [2250000, 4170001) Primes: RFBsize:315948, AFBsize:316633, largePrimes:7605542 encountered Relations: rels:7609290, finalFF:710379 Max relations in full relation-set: 0 Initial matrix: 632661 x 710379 with sparse part having weight 60425268. Pruned matrix : 569194 x 572421 with weight 42554618. Total sieving time: 83.95 hours. Total relation processing time: 1.24 hours. Matrix solve time: 18.90 hours. Time per square root: 0.51 hours. Prototype def-par.txt line would be: gnfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 104.60 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10152+3 = 2(0)1513<153> = 7 · 59 · 9437 · 1077079 · 3473719 · C134
C134 = P39 · P95
P39 = 764892666772199274490037661811796227973<39>
P95 = 17930947920257063532703516829435538148362253000748922501535367754063948223945638948206096726431<95>
Number: 20003_152 N=13715250572478845705802125321480208820321833385402835338596419671437335621017472336038044329692466760525852970011068555409269090654363 ( 134 digits) SNFS difficulty: 152 digits. Divisors found: r1=764892666772199274490037661811796227973 (pp39) r2=17930947920257063532703516829435538148362253000748922501535367754063948223945638948206096726431 (pp95) Version: GGNFS-0.77.1-20050930-nocona Total time: 17.03 hours. Scaled time: 15.86 units (timescale=0.931). Factorization parameters were as follows: n: 13715250572478845705802125321480208820321833385402835338596419671437335621017472336038044329692466760525852970011068555409269090654363 m: 2000000000000000000000000000000 c5: 25 c0: 12 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:176368, largePrimes:5425155 encountered Relations: rels:5251337, finalFF:405163 Max relations in full relation-set: 28 Initial matrix: 352734 x 405163 with sparse part having weight 35624313. Pruned matrix : 330434 x 332261 with weight 25625210. Total sieving time: 16.28 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.64 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 17.03 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
2·10151-3 = 1(9)1507<152> = 109 · 5351699092147<13> · 41659474526382217853629<23> · C114
C114 = P51 · P64
P51 = 232357967917576122963811199234684498812206335392391<51>
P64 = 3541933914244940727356281485918685455317930382157304642870395201<64>
Number: n N=822996566812300756270915694973657445507528537129099442009025996149706730952409519399555793857628590326355578315591 ( 114 digits) SNFS difficulty: 151 digits. Divisors found: r1=232357967917576122963811199234684498812206335392391 (pp51) r2=3541933914244940727356281485918685455317930382157304642870395201 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.36 hours. Scaled time: 28.14 units (timescale=1.454). Factorization parameters were as follows: name: KA_1_9_150_7 n: 822996566812300756270915694973657445507528537129099442009025996149706730952409519399555793857628590326355578315591 skew: 0.68 deg: 5 c5: 20 c0: -3 m: 1000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182801, largePrimes:6608095 encountered Relations: rels:6045586, finalFF:420551 Max relations in full relation-set: 28 Initial matrix: 365939 x 420551 with sparse part having weight 29835712. Pruned matrix : 321725 x 323618 with weight 19335173. Total sieving time: 16.77 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.32 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 19.36 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
5·10169-1 = 4(9)169<170> = 72 · 17 · C167
C167 = P38 · P64 · P66
P38 = 51971109847877751141565924226072367623<38>
P64 = 6247449254103117689987713647000874500741834590985633042232135777<64>
P66 = 184867374942010724757709190165050993402607186564005758034404013993<66>
Number: n N=60024009603841536614645858343337334933973589435774309723889555822328931572629051620648259303721488595438175270108043217286914765906362545018007202881152460984393757503 ( 167 digits) SNFS difficulty: 170 digits. Divisors found: r1=51971109847877751141565924226072367623 (pp38) r2=6247449254103117689987713647000874500741834590985633042232135777 (pp64) r3=184867374942010724757709190165050993402607186564005758034404013993 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 80.00 hours. Scaled time: 58.00 units (timescale=0.725). Factorization parameters were as follows: name: KA_4_9_169 n: 60024009603841536614645858343337334933973589435774309723889555822328931572629051620648259303721488595438175270108043217286914765906362545018007202881152460984393757503 skew: 1.15 deg: 5 c5: 1 c0: -2 m: 10000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3100001) Primes: RFBsize:348513, AFBsize:348176, largePrimes:7957180 encountered Relations: rels:7622391, finalFF:810632 Max relations in full relation-set: 48 Initial matrix: 696753 x 810632 with sparse part having weight 43718412. Pruned matrix : 593010 x 596557 with weight 26495728. Total sieving time: 70.42 hours. Total relation processing time: 0.28 hours. Matrix solve time: 8.76 hours. Total square root time: 0.54 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 80.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
(10178+17)/9 = (1)1773<178> = 32 · 72 · 1046641 · 1290857 · 468836928921920538313<21> · 297082579660968821734851624509405183<36> · C107
C107 = P34 · P73
P34 = 6351389277783512750660674500861871<34>
P73 = 2108022748500441599748310376090833021700915012375759080181462532721767521<73>
Number: 11113_178 N=13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 ( 107 digits) Divisors found: r1=6351389277783512750660674500861871 (pp34) r2=2108022748500441599748310376090833021700915012375759080181462532721767521 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 10.91 hours. Scaled time: 10.20 units (timescale=0.935). Factorization parameters were as follows: name: 11113_178 n: 13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791 skew: 24447.50 # norm 1.03e+15 c5: 11040 c4: 634721972 c3: -57395841951390 c2: -297909801429328773 c1: 7360634883314650193640 c0: 44733769501169737130602075 # alpha -6.20 Y1: 59180280269 Y0: -261068129944292921856 # Murphy_E 1.60e-09 # M 1848511566881534751075889082385374038136846422142820742013036141739596195580891966762660131878038833277554 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1440001) Primes: RFBsize:135072, AFBsize:135129, largePrimes:4628918 encountered Relations: rels:4758229, finalFF:429445 Max relations in full relation-set: 28 Initial matrix: 270283 x 429445 with sparse part having weight 42261017. Pruned matrix : 196380 x 197795 with weight 17946254. Total sieving time: 10.57 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.19 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 10.91 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
2·10147-3 = 1(9)1467<148> = 6328193 · 2807442959<10> · 9315019792951667720337833<25> · C107
C107 = P38 · P69
P38 = 19847917526656775016866295121378364453<38>
P69 = 608892479187265731705994468981721335175199066679255978067665568322719<69>
Number: n N=12085247709510427120634598202262732105264237067773714462472119550932718546531305768674719902899358701907707 ( 107 digits) SNFS difficulty: 147 digits. Divisors found: r1=19847917526656775016866295121378364453 (pp38) r2=608892479187265731705994468981721335175199066679255978067665568322719 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.22 hours. Scaled time: 17.76 units (timescale=1.454). Factorization parameters were as follows: name: KA_1_9_146_7 n: 12085247709510427120634598202262732105264237067773714462472119550932718546531305768674719902899358701907707 skew: 0.43 deg: 5 c5: 200 c0: -3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:183072, AFBsize:183041, largePrimes:6840115 encountered Relations: rels:6269711, finalFF:436586 Max relations in full relation-set: 28 Initial matrix: 366178 x 436586 with sparse part having weight 29446300. Pruned matrix : 310612 x 312506 with weight 17873574. Total sieving time: 9.61 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.38 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 12.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10147+3 = 2(0)1463<148> = 1689189684351792543788723<25> · C124
C124 = P32 · P92
P32 = 37217298101001103011342694765763<32>
P92 = 31813154456124267948681707302764451170058560372489661494512147777300060017072412206709935547<92>
Number: 20003_147 N=1183999652926768495616698876252051229605874742718666658960661269213398956494208102909274279905772503661905475316163992277361 ( 124 digits) SNFS difficulty: 147 digits. Divisors found: r1=37217298101001103011342694765763 (pp32) r2=31813154456124267948681707302764451170058560372489661494512147777300060017072412206709935547 (pp92) Version: GGNFS-0.77.1-20050930-nocona Total time: 16.66 hours. Scaled time: 15.51 units (timescale=0.931). Factorization parameters were as follows: n: 1183999652926768495616698876252051229605874742718666658960661269213398956494208102909274279905772503661905475316163992277361 m: 200000000000000000000000000000 c5: 25 c0: 12 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1950001) Primes: RFBsize:135072, AFBsize:135133, largePrimes:2850480 encountered Relations: rels:2879930, finalFF:356257 Max relations in full relation-set: 28 Initial matrix: 270269 x 356257 with sparse part having weight 24048209. Pruned matrix : 233955 x 235370 with weight 13959048. Total sieving time: 16.36 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.21 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 16.66 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10167+3 = 2(0)1663<168> = C168
C168 = P51 · P58 · P60
P51 = 337473788641314954387395638036113417304047480856561<51>
P58 = 4690700023174550771994364525354487199388452766958125990189<58>
P60 = 126343321023855007144178242728859599541361819987460022346207<60>
Number: 20003_167 N=200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 168 digits) SNFS difficulty: 167 digits. Divisors found: r1=337473788641314954387395638036113417304047480856561 (pp51) r2=4690700023174550771994364525354487199388452766958125990189 (pp58) r3=126343321023855007144178242728859599541361819987460022346207 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 86.06 hours. Scaled time: 79.78 units (timescale=0.927). Factorization parameters were as follows: n: 200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 2000000000000000000000000000000000 c5: 25 c0: 12 skew: 1 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7200001) Primes: RFBsize:412849, AFBsize:413001, largePrimes:6107027 encountered Relations: rels:6383488, finalFF:940116 Max relations in full relation-set: 28 Initial matrix: 825914 x 940116 with sparse part having weight 55379558. Pruned matrix : 732130 x 736323 with weight 40746913. Total sieving time: 81.90 hours. Total relation processing time: 0.13 hours. Matrix solve time: 3.96 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.5,2.5,100000 total time: 86.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
2·10146-3 = 1(9)1457<147> = 149 · 1570076584418759<16> · 2011840031262686851<19> · C111
C111 = P46 · P65
P46 = 4448748130740857754356733813222510745804262837<46>
P65 = 95519408968726075748994090904376099816839216393188114257850974641<65>
Number: n N=424941792099091652796628671010700958506423837145816971878241180930695799833275848461352158847044391932985716517 ( 111 digits) SNFS difficulty: 146 digits. Divisors found: r1=4448748130740857754356733813222510745804262837 (pp46) r2=95519408968726075748994090904376099816839216393188114257850974641 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.06 hours. Scaled time: 16.04 units (timescale=1.450). Factorization parameters were as follows: name: KA_1_9_145_7 n: 424941792099091652796628671010700958506423837145816971878241180930695799833275848461352158847044391932985716517 skew: 0.68 deg: 5 c5: 20 c0: -3 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:183072, AFBsize:182801, largePrimes:6838353 encountered Relations: rels:6284624, finalFF:453514 Max relations in full relation-set: 28 Initial matrix: 365939 x 453514 with sparse part having weight 30588863. Pruned matrix : 295556 x 297449 with weight 17145080. Total sieving time: 8.83 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.91 hours. Total square root time: 0.16 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 11.06 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
2·10157+3 = 2(0)1563<158> = 8678368395079<13> · C145
C145 = P44 · P101
P44 = 59573402681404398007654718102866364909302643<44>
P101 = 38684724398115424654512004896712075071304442379362845270019006771965113736013768988351468162809875399<101>
Number: n N=2304580664188079575933828712914557890427023054102125976725828086702081005763818534064969056410847081186110800103490795263920600961553242811379557 ( 145 digits) SNFS difficulty: 157 digits. Divisors found: r1=59573402681404398007654718102866364909302643 (pp44) r2=38684724398115424654512004896712075071304442379362845270019006771965113736013768988351468162809875399 (pp101) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 44.23 hours. Scaled time: 60.55 units (timescale=1.369). Factorization parameters were as follows: name: KA_2_0_156_3 n: 2304580664188079575933828712914557890427023054102125976725828086702081005763818534064969056410847081186110800103490795263920600961553242811379557 skew: 0.43 deg: 5 c5: 200 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:315948, AFBsize:316266, largePrimes:7406177 encountered Relations: rels:7093105, finalFF:765139 Max relations in full relation-set: 28 Initial matrix: 632279 x 765139 with sparse part having weight 36970198. Pruned matrix : 503294 x 506519 with weight 19243383. Total sieving time: 39.27 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.31 hours. Total square root time: 0.43 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 44.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona gnfs
2·10143+3 = 2(0)1423<144> = 31 · 79869969541<11> · 213191226127907995641964733297<30> · C102
C102 = P30 · P73
P30 = 228969479001528543632608227557<30>
P73 = 1654770841768982551074895703714451566312262310294250115213002864298336917<73>
Number: 20003_143 N=352782624717439820453701966298868758723803154243973650848982107895441604203274505013730356962554225349 ( 102 digits) Divisors found: r1=213191226127907995641964733297 (pp30) r2=1654770841768982551074895703714451566312262310294250115213002864298336917 (pp73) Version: GGNFS-0.77.1-20050930-nocona Total time: 5.26 hours. Scaled time: 4.92 units (timescale=0.935). Factorization parameters were as follows: name: 20003_143 n: 352782624717439820453701966298868758723803154243973650848982107895441604203274505013730356962554225349 skew: 4896.42 # norm 1.65e+14 c5: 414540 c4: -1516615299 c3: -29953559408092 c2: 22157126830643012 c1: 319304041463428098440 c0: -322389009793145912969625 # alpha -6.51 Y1: 29065820179 Y0: -15345772329994469954 # Murphy_E 2.97e-09 # M 71309661546094854819531043168860349419349509853588268376742292160086044115824039856088598435052274054 type: gnfs rlim: 1700000 alim: 1700000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 50000 Factor base limits: 1700000/1700000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [850000, 1450001) Primes: RFBsize:128141, AFBsize:128124, largePrimes:4351260 encountered Relations: rels:4289278, finalFF:336862 Max relations in full relation-set: 28 Initial matrix: 256353 x 336862 with sparse part having weight 27590776. Pruned matrix : 202920 x 204265 with weight 14425353. Polynomial selection time: 0.31 hours. Total sieving time: 4.63 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1700000,1700000,26,26,49,49,2.6,2.6,50000 total time: 5.26 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GMP-ECM 5.0 B1=1035500, GGNFS-0.77.1-20051202-athlon gnfs
2·10159-3 = 1(9)1587<160> = 52589677955822857981<20> · C140
C140 = P37 · P49 · P55
P37 = 3896040234710280092225221728653869867<37>
P49 = 5874207548035032880370430336726048734418437859121<49>
P55 = 1661715856862486631625209578684315662965911900561608691<55>
Number: n N=9761263829071121262365012249257222672340375008383646695682227981460573838578364015976442972225787220611 ( 103 digits) Divisors found: r1=5874207548035032880370430336726048734418437859121 (pp49) r2=1661715856862486631625209578684315662965911900561608691 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.26 hours. Scaled time: 11.92 units (timescale=1.443). Factorization parameters were as follows: name: KA_1_9_158_7 n: 9761263829071121262365012249257222672340375008383646695682227981460573838578364015976442972225787220611 skew: 17806.85 # norm 3.92e+14 c5: 24840 c4: 1198081196 c3: -24357592265018 c2: -210683013743336014 c1: 4490637563116177810311 c0: -6227635109584928607029385 # alpha -6.39 Y1: 15093872179 Y0: -52344334656327314746 # Murphy_E 2.17e-09 # M 5247268042512921953463320309399432360648469461756698860444742486375840947181248944205613969233916838496 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:169511, AFBsize:168934, largePrimes:4068833 encountered Relations: rels:4045535, finalFF:435835 Max relations in full relation-set: 28 Initial matrix: 338529 x 435835 with sparse part having weight 25375260. Pruned matrix : 245530 x 247286 with weight 10481944. Total sieving time: 7.28 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.75 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 8.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10168-13)/9 = (4)1673<168> = 17 · 419 · C164
C164 = P35 · P52 · P78
P35 = 57223726068551403899392214060994719<35>
P52 = 2958022467640268007405799325268632922692503207747423<52>
P78 = 368618337536960736026589540264509215386289010356520617633489625535863749834393<78>
Number: n N=62395682218790459700188746938711841140593070959489603319450294039652456050041337139469948679551375044846896594755642909510661862199135819801269752133152385854898841 ( 164 digits) SNFS difficulty: 168 digits. Divisors found: r1=57223726068551403899392214060994719 (pp35) r2=2958022467640268007405799325268632922692503207747423 (pp52) r3=368618337536960736026589540264509215386289010356520617633489625535863749834393 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 82.39 hours. Scaled time: 98.53 units (timescale=1.196). Factorization parameters were as follows: name: KA_4_167_3 n: 62395682218790459700188746938711841140593070959489603319450294039652456050041337139469948679551375044846896594755642909510661862199135819801269752133152385854898841 type: snfs skew: 0.64 deg: 5 c5: 125 c0: -13 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2800001) Primes: RFBsize:348513, AFBsize:348691, largePrimes:7837578 encountered Relations: rels:7490877, finalFF:784720 Max relations in full relation-set: 28 Initial matrix: 697269 x 784720 with sparse part having weight 41841324. Pruned matrix : 613981 x 617531 with weight 27192773. Total sieving time: 73.63 hours. Total relation processing time: 0.33 hours. Matrix solve time: 7.84 hours. Total square root time: 0.59 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 82.39 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10137+3 = 2(0)1363<138> = 17 · C137
C137 = P58 · P79
P58 = 1328613771450100770246781828785320550322299965818189662049<58>
P79 = 8854872751704570530521108482218419399537655969341394293738394189902236177869491<79>
Number: 20003_137 N=11764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647059 ( 137 digits) SNFS difficulty: 137 digits. Divisors found: r1=1328613771450100770246781828785320550322299965818189662049 (pp58) r2=8854872751704570530521108482218419399537655969341394293738394189902236177869491 (pp79) Version: GGNFS-0.77.1-20050930-nocona Total time: 6.22 hours. Scaled time: 5.78 units (timescale=0.928). Factorization parameters were as follows: n: 11764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647059 m: 2000000000000000000000000000 c5: 25 c0: 12 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1850001) Primes: RFBsize:100021, AFBsize:100128, largePrimes:1640721 encountered Relations: rels:1668665, finalFF:226443 Max relations in full relation-set: 28 Initial matrix: 200213 x 226443 with sparse part having weight 12812781. Pruned matrix : 188889 x 189954 with weight 9261748. Total sieving time: 6.07 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 6.22 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10141+3 = 2(0)1403<142> = 19 · 167 · 511171 · 31993217 · 416824282517<12> · 40464415611439<14> · C100
C100 = P35 · P65
P35 = 40059260051938443901187811141767299<35>
P65 = 57043556884754993123007599776067037686087494765852279033731828829<65>
Number: 20003_141 N=2285122679533943884995836369403375958380690166981928865619552380550189111322270262039694582417662871 ( 100 digits) Divisors found: r1=40059260051938443901187811141767299 (pp35) r2=57043556884754993123007599776067037686087494765852279033731828829 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.69 hours. Scaled time: 3.44 units (timescale=0.933). Factorization parameters were as follows: name: 20003_141 n: 2285122679533943884995836369403375958380690166981928865619552380550189111322270262039694582417662871 skew: 31367.47 # norm 6.42e+13 c5: 1440 c4: 75236316 c3: -4337450867666 c2: -75939829829144874 c1: 1832361831257217421219 c0: 16270129288624735982981380 # alpha -6.20 Y1: 10815828199 Y0: -17382273622225387341 # Murphy_E 3.72e-09 # M 1528662353311578042268050061954235525428090049383327581993882190980449819514204253607283249127063063 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:113995, largePrimes:3892638 encountered Relations: rels:3880924, finalFF:363769 Max relations in full relation-set: 28 Initial matrix: 228229 x 363769 with sparse part having weight 27334851. Pruned matrix : 151504 x 152709 with weight 10165771. Polynomial selection time: 0.25 hours. Total sieving time: 3.25 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.08 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 3.69 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10135+3 = 2(0)1343<136> = 257 · 1039 · 99257 · C125
C125 = P46 · P80
P46 = 7020006299581572894488170104402102406297674139<46>
P80 = 10749361742827382298904906120880763303050229911440763032084434365062835850279407<80>
Number: 20003_135 N=75460587151129379230670063280857121792718817008604043048671091197504696349160888652369718619579296555750824669583497388155573 ( 125 digits) SNFS difficulty: 135 digits. Divisors found: r1=7020006299581572894488170104402102406297674139 (pp46) r2=10749361742827382298904906120880763303050229911440763032084434365062835850279407 (pp80) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.55 hours. Scaled time: 3.32 units (timescale=0.934). Factorization parameters were as follows: n: 75460587151129379230670063280857121792718817008604043048671091197504696349160888652369718619579296555750824669583497388155573 m: 1000000000000000000000000000 c5: 2 c0: 3 skew: 1.08 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1300001) Primes: RFBsize:100021, AFBsize:100078, largePrimes:1574128 encountered Relations: rels:1626678, finalFF:245535 Max relations in full relation-set: 28 Initial matrix: 200164 x 245535 with sparse part having weight 8965702. Pruned matrix : 173620 x 174684 with weight 5510812. Total sieving time: 3.45 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 3.55 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Yousuke Koide / GMP-ECM B1=1250000 / May 15, 2007
(10893-1)/9 = (1)893<893> = 1787 · 37507 · 35121409 · 965588399 · 1111111111111111111<19> · 21638150846892565213405304766721<32> · 316362908763458525001406154038726382279<39> · C780
C780 = P41 · C740
P41 = 10493490498099374383685787869090487099769<41>
By Yousuke Koide / GMP-ECM B1=1250000 / May 15, 2007
(10899-1)/9 = (1)899<899> = 2791 · 3191 · 16763 · 43037 · 62003 · 6943319 · 77843839397<11> · 480833853881<12> · 57336415063790604359<20> · 2257918530532265915349804384025799<34> · C795
C795 = P36 · C760
P36 = 323713506321948847919927778598102721<36>
By Yousuke Koide / GMP-ECM B1=1250000 / May 17, 2007
(10923-1)/9 = (1)923<923> = 53 · 79 · 265371653 · 1632253507<10> · 104900736929<12> · 95520614386871982749923<23> · 241573142393627673576957439049<30> · 45994811347886846310221728895223034301839<41> · C797
C797 = P31 · C766
P31 = 7487500179911376323952478489837<31>
By Yousuke Koide / GMP-ECM B1=1000000 / May 18, 2007
101221+1 = 1(0)12201<1222> = 7 · 112 · 13 · 23 · 223 · 4093 · 4663 · 7253 · 8779 · 599144041 · 183411838171<12> · 409038414731<12> · 422650073734453<15> · 296557347313446299<18> · 182160098613913582339<21> · 21606064498691505246200058094681<32> · 84713181371149698699040859437321<32> · 48911689110891303706174193415115219<35> · 219750014263062386251162088588835607771<39> · C279 · C700
C700 = P38 · C663
P38 = 19505047835248219128488737914962029531<38>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
2·10154+3 = 2(0)1533<155> = 241 · 141906841 · C144
C144 = P53 · P92
P53 = 32826981394635607932036482961957538515492937504121287<53>
P92 = 17814706504328977485410892424619338104938573843248529336228689546358190125162267028033028349<92>
Number: n N=584803038968501293129681695754773285044568217236351897459123080525426305698095361365508658479597554195571988051288752034745016639946342805365163 ( 144 digits) SNFS difficulty: 155 digits. Divisors found: r1=32826981394635607932036482961957538515492937504121287 (pp53) r2=17814706504328977485410892424619338104938573843248529336228689546358190125162267028033028349 (pp92) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.71 hours. Scaled time: 30.05 units (timescale=1.451). Factorization parameters were as follows: name: KA_2_0_153_3 n: 584803038968501293129681695754773285044568217236351897459123080525426305698095361365508658479597554195571988051288752034745016639946342805365163 skew: 1.72 deg: 5 c5: 1 c0: 15 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:183072, AFBsize:182886, largePrimes:6936703 encountered Relations: rels:6500743, finalFF:530318 Max relations in full relation-set: 28 Initial matrix: 366022 x 530318 with sparse part having weight 39481451. Pruned matrix : 243009 x 244903 with weight 21177995. Total sieving time: 18.57 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.83 hours. Total square root time: 0.15 hours, sqrts: 3. [2 more had ODD EXPONENTS!] Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 20.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
2·10148+3 = 2(0)1473<149> = 151 · 54917 · 79496880961<11> · 360248308916767<15> · C116
C116 = P50 · P67
P50 = 22142194087798266515774322687941954125664442651683<50>
P67 = 3803413556430766247732445539023188610808389140958333384583058412229<67>
Number: n N=84215921162653090923161345791936118708491721223162198728702917790987256948208915116143433713706768557404516474631407 ( 116 digits) SNFS difficulty: 148 digits. Divisors found: r1=22142194087798266515774322687941954125664442651683 (pp50) r2=3803413556430766247732445539023188610808389140958333384583058412229 (pp67) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 12.42 hours. Scaled time: 16.92 units (timescale=1.363). Factorization parameters were as follows: name: KA_2_0_147_3 n: 84215921162653090923161345791936118708491721223162198728702917790987256948208915116143433713706768557404516474631407 skew: 0.54 deg: 5 c5: 125 c0: 6 m: 200000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:315948, AFBsize:315516, largePrimes:7024094 encountered Relations: rels:6715776, finalFF:774140 Max relations in full relation-set: 28 Initial matrix: 631529 x 774140 with sparse part having weight 27775308. Pruned matrix : 477072 x 480293 with weight 12291778. Total sieving time: 10.14 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.01 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 12.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10134+3 = 2(0)1333<135> = 7 · 157756740409116882389<21> · C114
C114 = P36 · P78
P36 = 245627325886145161242134796623575019<36>
P78 = 737339247296593171731659164098751163305183427019906464474193591876106604044019<78>
Number: n N=181110667584365268571506917891704517125360677457662669626156617049442655401350747509071891750331736847898624761361 ( 114 digits) SNFS difficulty: 135 digits. Divisors found: r1=245627325886145161242134796623575019 (pp36) r2=737339247296593171731659164098751163305183427019906464474193591876106604044019 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.54 hours. Scaled time: 5.12 units (timescale=1.448). Factorization parameters were as follows: name: KA_2_0_133_3 n: 181110667584365268571506917891704517125360677457662669626156617049442655401350747509071891750331736847898624761361 skew: 1.72 deg: 5 c5: 1 c0: 15 m: 1000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 500001) Primes: RFBsize:148933, AFBsize:148925, largePrimes:5017314 encountered Relations: rels:4491776, finalFF:346937 Max relations in full relation-set: 28 Initial matrix: 297922 x 346937 with sparse part having weight 14433488. Pruned matrix : 245580 x 247133 with weight 7586313. Total sieving time: 2.78 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.61 hours. Total square root time: 0.05 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 3.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona, Msieve v. 1.21
2·10126+3 = 2(0)1253<127> = 9496596035573<13> · 72990180616825855013<20> · C94
C94 = P34 · P61
P34 = 1363935016086710284190348118562849<34>
P61 = 2115455595883918282267614450587132366299796154935856176143403<61>
Number: 20003_126 N=2885343962202653372378528009811363064619245247881531993159016967031147098713516972051692235147 ( 94 digits) SNFS difficulty: 126 digits. Divisors found: r1=1363935016086710284190348118562849 (pp34) r2=2115455595883918282267614450587132366299796154935856176143403 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 2.12 hours. Scaled time: 1.97 units (timescale=0.932). Factorization parameters were as follows: n: 2885343962202653372378528009811363064619245247881531993159016967031147098713516972051692235147 m: 10000000000000000000000000 c5: 20 c0: 3 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78241, largePrimes:1570656 encountered Relations: rels:1629783, finalFF:230731 Max relations in full relation-set: 28 Initial matrix: 156805 x 230731 with sparse part having weight 11797616. Pruned matrix : 123689 x 124537 with weight 5161895. Total sieving time: 2.04 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,126,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.12 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10127+3 = 2(0)1263<128> = 79 · 83 · 32843 · 3835231 · 1195589420583881466001<22> · C92
C92 = P37 · P55
P37 = 8927757006598681262632931194240133629<37>
P55 = 2268642375519091333458799446695979155571481664083795247<55>
Sat May 19 19:31:19 2007 Sat May 19 19:31:19 2007 Sat May 19 19:31:19 2007 Msieve v. 1.21 Sat May 19 19:31:19 2007 random seeds: d716045e 858ea74d Sat May 19 19:31:19 2007 factoring 20253887863507244220879021005238400509953820135797606636390564270556960616638635630755061363 (92 digits) Sat May 19 19:31:20 2007 commencing quadratic sieve (92-digit input) Sat May 19 19:31:20 2007 using multiplier of 17 Sat May 19 19:31:20 2007 using 32kb Intel Core sieve core Sat May 19 19:31:20 2007 sieve interval: 36 blocks of size 32768 Sat May 19 19:31:20 2007 processing polynomials in batches of 6 Sat May 19 19:31:20 2007 using a sieve bound of 1783751 (67059 primes) Sat May 19 19:31:20 2007 using large prime bound of 187293855 (27 bits) Sat May 19 19:31:20 2007 using double large prime bound of 777217055970600 (42-50 bits) Sat May 19 19:31:20 2007 using trial factoring cutoff of 50 bits Sat May 19 19:31:20 2007 polynomial 'A' values have 12 factors Sat May 19 21:02:32 2007 67423 relations (17378 full + 50045 combined from 830306 partial), need 67155 Sat May 19 21:02:33 2007 begin with 847684 relations Sat May 19 21:02:33 2007 reduce to 169734 relations in 10 passes Sat May 19 21:02:33 2007 attempting to read 169734 relations Sat May 19 21:02:35 2007 recovered 169734 relations Sat May 19 21:02:35 2007 recovered 151296 polynomials Sat May 19 21:02:35 2007 attempting to build 67423 cycles Sat May 19 21:02:35 2007 found 67422 cycles in 5 passes Sat May 19 21:02:35 2007 distribution of cycle lengths: Sat May 19 21:02:35 2007 length 1 : 17378 Sat May 19 21:02:35 2007 length 2 : 12280 Sat May 19 21:02:35 2007 length 3 : 11630 Sat May 19 21:02:35 2007 length 4 : 8996 Sat May 19 21:02:35 2007 length 5 : 6589 Sat May 19 21:02:35 2007 length 6 : 4405 Sat May 19 21:02:35 2007 length 7 : 2691 Sat May 19 21:02:35 2007 length 9+: 3453 Sat May 19 21:02:35 2007 largest cycle: 19 relations Sat May 19 21:02:35 2007 matrix is 67059 x 67422 with weight 4070500 (avg 60.37/col) Sat May 19 21:02:35 2007 filtering completed in 3 passes Sat May 19 21:02:35 2007 matrix is 65530 x 65594 with weight 3893561 (avg 59.36/col) Sat May 19 21:02:36 2007 saving the first 48 matrix rows for later Sat May 19 21:02:36 2007 matrix is 65482 x 65594 with weight 2931664 (avg 44.69/col) Sat May 19 21:02:36 2007 matrix includes 32 packed rows Sat May 19 21:02:36 2007 using block size 26237 for processor cache size 4096 kB Sat May 19 21:02:56 2007 lanczos halted after 1037 iterations Sat May 19 21:02:57 2007 recovered 16 nontrivial dependencies Sat May 19 21:02:57 2007 prp37 factor: 8927757006598681262632931194240133629 Sat May 19 21:02:57 2007 prp55 factor: 2268642375519091333458799446695979155571481664083795247 Sat May 19 21:02:57 2007 elapsed time 01:31:38
By suberi / GMP-ECM 6.1.2 B1=11000000
(10178+17)/9 = (1)1773<178> = 32 · 72 · 1046641 · 1290857 · 468836928921920538313<21> · C142
C142 = P36 · C107
P36 = 297082579660968821734851624509405183<36>
C107 = [13388873082149435308539000672775350680618901926900711188810262897346981830451724894509157440592356995091791<107>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(2·10168+43)/9 = (2)1677<168> = 47 · C166
C166 = P41 · P55 · P71
P41 = 45965997803609570676069581691927428510183<41>
P55 = 2946919768053066098412187258879318843529311861174818097<55>
P71 = 34904757433689170732652558228154689367498858601950291450197647933335691<71>
Number: n N=4728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749408983451536643026004728132387706855791962174941 ( 166 digits) SNFS difficulty: 168 digits. Divisors found: r1=45965997803609570676069581691927428510183 (pp41) r2=2946919768053066098412187258879318843529311861174818097 (pp55) r3=34904757433689170732652558228154689367498858601950291450197647933335691 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 101.82 hours. Scaled time: 134.81 units (timescale=1.324). Factorization parameters were as follows: name: KA_2_167_7 n: 4728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749408983451536643026004728132387706855791962174941 skew: 0.93 deg: 5 c5: 125 c0: 86 m: 2000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4000001) Primes: RFBsize:348513, AFBsize:349516, largePrimes:8195682 encountered Relations: rels:7828220, finalFF:805085 Max relations in full relation-set: 48 Initial matrix: 698094 x 805085 with sparse part having weight 48480685. Pruned matrix : 604878 x 608432 with weight 31850567. Total sieving time: 92.31 hours. Total relation processing time: 0.35 hours. Matrix solve time: 8.93 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 101.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10150+3 = 2(0)1493<151> = 487 · C148
C148 = P64 · P85
P64 = 1824453361909318934020125483109157972584403451163125882265065433<64>
P85 = 2250962543871412830161298255938234659251521136933600855735504876723568950774217694093<85>
Number: n N=4106776180698151950718685831622176591375770020533880903490759753593429158110882956878850102669404517453798767967145790554414784394250513347022587269 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=1824453361909318934020125483109157972584403451163125882265065433 (pp64) r2=2250962543871412830161298255938234659251521136933600855735504876723568950774217694093 (pp85) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 16.18 hours. Scaled time: 22.14 units (timescale=1.368). Factorization parameters were as follows: name: KA_2_0_149_3 n: 4106776180698151950718685831622176591375770020533880903490759753593429158110882956878850102669404517453798767967145790554414784394250513347022587269 skew: 1.08 deg: 5 c5: 2 c0: 3 m: 1000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:315948, AFBsize:315821, largePrimes:6583994 encountered Relations: rels:6446442, finalFF:849439 Max relations in full relation-set: 28 Initial matrix: 631834 x 849439 with sparse part having weight 29055982. Pruned matrix : 406919 x 410142 with weight 10416091. Total sieving time: 14.39 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.56 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 16.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
2·10191-3 = 1(9)1907<192> = 7 · 53 · 829 · 1031 · 12110972033<11> · 1278085313563<13> · 18580007275894843<17> · 117121349237684572025004166361887<33> · C113
C113 = P47 · P66
P47 = 49371617551587041843675930397116659530937545163<47>
P66 = 379266725313477244975216442892897216971059794842475211319820147649<66>
Number: 19997_191 N=18725011712219814562530479034837840702529034807249997949068275863786847663649064207303543066082563170428265771787 ( 113 digits) Divisors found: r1=49371617551587041843675930397116659530937545163 (pp47) r2=379266725313477244975216442892897216971059794842475211319820147649 (pp66) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 56.52 hours. Scaled time: 38.15 units (timescale=0.675). Factorization parameters were as follows: name: 19997_191 n: 18725011712219814562530479034837840702529034807249997949068275863786847663649064207303543066082563170428265771787 skew: 59546.05 # norm 6.66e+15 c5: 10560 c4: -2374857106 c3: -195238124648465 c2: 1713791335976812382 c1: 286960883326780791878154 c0: -869102931125208602582566965 # alpha -6.63 Y1: 1066141682921 Y0: -4464330115947638126804 # Murphy_E 7.39e-10 # M 15931944624871609380286614016751846664857168747787310376807033596899975510455931096032109076919995223638073753024 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 2750001) Primes: RFBsize:250150, AFBsize:249696, largePrimes:7656920 encountered Relations: rels:7706870, finalFF:571600 Max relations in full relation-set: 0 Initial matrix: 499929 x 571600 with sparse part having weight 34433582. Pruned matrix : 435540 x 438103 with weight 23881885. Polynomial selection time: 2.15 hours. Total sieving time: 46.66 hours. Total relation processing time: 0.59 hours. Matrix solve time: 6.79 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 56.52 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / Msieve v. 1.21, GMP-ECM 6.1.2
2·10142+3 = 2(0)1413<143> = 29 · 18121 · 10062555889<11> · 5499130730309<13> · 142203315288161311512583<24> · C91
C91 = P40 · P52
P40 = 1628892178337141932454034590460430447783<40>
P52 = 2969240859409506695099012352547967144102089819518203<52>
Thu May 17 23:56:51 2007 Thu May 17 23:56:51 2007 Thu May 17 23:56:51 2007 Msieve v. 1.21 Thu May 17 23:56:51 2007 random seeds: ac10f82d 2d0dace6 Thu May 17 23:56:51 2007 factoring 4836573211491198755748211680523749919543813705587359988916604311081614199708621860609493949 (91 digits) Thu May 17 23:56:52 2007 commencing quadratic sieve (91-digit input) Thu May 17 23:56:52 2007 using multiplier of 29 Thu May 17 23:56:52 2007 using 32kb Intel Core sieve core Thu May 17 23:56:52 2007 sieve interval: 36 blocks of size 32768 Thu May 17 23:56:52 2007 processing polynomials in batches of 6 Thu May 17 23:56:52 2007 using a sieve bound of 1719869 (64560 primes) Thu May 17 23:56:52 2007 using large prime bound of 165107424 (27 bits) Thu May 17 23:56:52 2007 using double large prime bound of 619412223763104 (42-50 bits) Thu May 17 23:56:52 2007 using trial factoring cutoff of 50 bits Thu May 17 23:56:52 2007 polynomial 'A' values have 12 factors Fri May 18 01:24:55 2007 64901 relations (16394 full + 48507 combined from 770121 partial), need 64656 Fri May 18 01:24:55 2007 begin with 786515 relations Fri May 18 01:24:55 2007 reduce to 162698 relations in 10 passes Fri May 18 01:24:56 2007 attempting to read 162698 relations Fri May 18 01:24:57 2007 recovered 162698 relations Fri May 18 01:24:57 2007 recovered 145537 polynomials Fri May 18 01:24:57 2007 attempting to build 64901 cycles Fri May 18 01:24:57 2007 found 64901 cycles in 5 passes Fri May 18 01:24:57 2007 distribution of cycle lengths: Fri May 18 01:24:57 2007 length 1 : 16394 Fri May 18 01:24:57 2007 length 2 : 12017 Fri May 18 01:24:57 2007 length 3 : 11335 Fri May 18 01:24:57 2007 length 4 : 8916 Fri May 18 01:24:57 2007 length 5 : 6442 Fri May 18 01:24:57 2007 length 6 : 4126 Fri May 18 01:24:57 2007 length 7 : 2645 Fri May 18 01:24:57 2007 length 9+: 3026 Fri May 18 01:24:57 2007 largest cycle: 17 relations Fri May 18 01:24:57 2007 matrix is 64560 x 64901 with weight 3877029 (avg 59.74/col) Fri May 18 01:24:57 2007 filtering completed in 4 passes Fri May 18 01:24:57 2007 matrix is 63178 x 63242 with weight 3716626 (avg 58.77/col) Fri May 18 01:24:58 2007 saving the first 48 matrix rows for later Fri May 18 01:24:59 2007 matrix is 63130 x 63242 with weight 2795295 (avg 44.20/col) Fri May 18 01:24:59 2007 matrix includes 32 packed rows Fri May 18 01:24:59 2007 using block size 25296 for processor cache size 4096 kB Fri May 18 01:25:17 2007 lanczos halted after 1000 iterations Fri May 18 01:25:17 2007 recovered 17 nontrivial dependencies Fri May 18 01:25:17 2007 prp40 factor: 1628892178337141932454034590460430447783 Fri May 18 01:25:17 2007 prp52 factor: 2969240859409506695099012352547967144102089819518203 Fri May 18 01:25:17 2007 elapsed time 01:28:26
2·10181+3 = 2(0)1803<182> = C182
C182 = P34 · C148
P34 = 5511837461824511266624821670808689<34>
C148 = [3628554023684809875041241575766798527068771437488933383862974033044444603054287454851457985502624509381866036022786923582580265165248809496728968627<148>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
3·10158+1 = 3(0)1571<159> = 7 · 518209 · 1248630547<10> · C143
C143 = P68 · P76
P68 = 14187037984758391993529228654317591874792986868087928456850474187179<68>
P76 = 4668663539228271717902874354562882580267735906322278836949839530064145731879<76>
Number: n N=66234506969088041957193564483376377591189005460744403342598632681083858520789395982329953995232154901773260034664510126060898123874794593379341 ( 143 digits) SNFS difficulty: 158 digits. Divisors found: r1=14187037984758391993529228654317591874792986868087928456850474187179 (pp68) r2=4668663539228271717902874354562882580267735906322278836949839530064145731879 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.69 hours. Scaled time: 51.68 units (timescale=1.448). Factorization parameters were as follows: name: KA_3_0_157_1 n: 66234506969088041957193564483376377591189005460744403342598632681083858520789395982329953995232154901773260034664510126060898123874794593379341 skew: 0.20 deg: 5 c5: 3000 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:183072, AFBsize:183066, largePrimes:7144631 encountered Relations: rels:6604207, finalFF:421676 Max relations in full relation-set: 28 Initial matrix: 366205 x 421676 with sparse part having weight 37286804. Pruned matrix : 331020 x 332915 with weight 26592023. Total sieving time: 31.64 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.56 hours. Total square root time: 0.27 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 35.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(37·10158-1)/9 = 4(1)158<159> = 33 · 1113503211871<13> · C146
C146 = P51 · P95
P51 = 437047077000875706556100910362101256688838117136603<51>
P95 = 31287852560125735966912304307179361487093589834503079004811219125764118303034275852798460927361<95>
Number: n N=13674264507037318634426012072489013175752521746264239263365882696289761263584377804407017898506229087375374061783811632623995055437253177297294683 ( 146 digits) SNFS difficulty: 159 digits. Divisors found: r1=437047077000875706556100910362101256688838117136603 (pp51) r2=31287852560125735966912304307179361487093589834503079004811219125764118303034275852798460927361 (pp95) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 49.75 hours. Scaled time: 67.76 units (timescale=1.362). Factorization parameters were as follows: name: KA_4_1_158 n: 13674264507037318634426012072489013175752521746264239263365882696289761263584377804407017898506229087375374061783811632623995055437253177297294683 skew: 0.12 deg: 5 c5: 37000 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:315948, AFBsize:316896, largePrimes:7462039 encountered Relations: rels:7093511, finalFF:723313 Max relations in full relation-set: 28 Initial matrix: 632911 x 723313 with sparse part having weight 38195405. Pruned matrix : 545249 x 548477 with weight 23406323. Total sieving time: 44.78 hours. Total relation processing time: 0.25 hours. Matrix solve time: 4.31 hours. Total square root time: 0.41 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 49.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10144+3 = 2(0)1433<145> = 1201 · C142
C142 = P55 · P88
P55 = 1168960033824751568738318599288806794044795142960334049<55>
P88 = 1424581581949223240674405227318668880791852510435284297667922774714016704281163739428947<88>
Number: n N=1665278934221482098251457119067443796835970024979184013322231473771856786011656952539550374687760199833472106577851790174854288093255620316403 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: r1=1168960033824751568738318599288806794044795142960334049 (pp55) r2=1424581581949223240674405227318668880791852510435284297667922774714016704281163739428947 (pp88) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 9.47 hours. Scaled time: 12.92 units (timescale=1.364). Factorization parameters were as follows: name: KA_2_0_143_3 n: 1665278934221482098251457119067443796835970024979184013322231473771856786011656952539550374687760199833472106577851790174854288093255620316403 skew: 1.72 deg: 5 c5: 1 c0: 15 m: 100000000000000000000000000000 type: snfs rlim: 4000000 alim: 4000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:283146, AFBsize:282687, largePrimes:6448372 encountered Relations: rels:6058655, finalFF:650499 Max relations in full relation-set: 28 Initial matrix: 565897 x 650499 with sparse part having weight 22096768. Pruned matrix : 435350 x 438243 with weight 11275494. Total sieving time: 7.48 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.61 hours. Total square root time: 0.22 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,4000000,4000000,28,28,48,48,2.5,2.5,100000 total time: 9.47 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10155+3 = 2(0)1543<156> = 23 · C154
C154 = P76 · P79
P76 = 1111621257288759311574554337362336029819886569891919818320899807496833211589<76>
P79 = 7822495402005635711932598925376137473625943127630073484216479297850123896513649<79>
Number: n N=8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478261 ( 154 digits) SNFS difficulty: 155 digits. Divisors found: r1=1111621257288759311574554337362336029819886569891919818320899807496833211589 (pp76) r2=7822495402005635711932598925376137473625943127630073484216479297850123896513649 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.69 hours. Scaled time: 27.04 units (timescale=1.447). Factorization parameters were as follows: name: KA_2_0_154_3 n: 8695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478261 skew: 1.08 deg: 5 c5: 2 c0: 3 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:183201, largePrimes:6621471 encountered Relations: rels:6096384, finalFF:453480 Max relations in full relation-set: 28 Initial matrix: 366338 x 453480 with sparse part having weight 31199933. Pruned matrix : 295381 x 297276 with weight 17548748. Total sieving time: 16.52 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.97 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 18.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10119+3 = 2(0)1183<120> = C120
C120 = P49 · P71
P49 = 5228659514109126391498531522208323958331928046131<49>
P71 = 38250721711810786837816564744277352704880578237524903785562032046531313<71>
Number: 20003_119 N=200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 ( 120 digits) SNFS difficulty: 120 digits. Divisors found: r1=5228659514109126391498531522208323958331928046131 (pp49) r2=38250721711810786837816564744277352704880578237524903785562032046531313 (pp71) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.03 hours. Scaled time: 0.96 units (timescale=0.933). Factorization parameters were as follows: n: 200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003 m: 1000000000000000000000000 c5: 1 c0: 15 skew: 1.72 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 490001) Primes: RFBsize:56543, AFBsize:56578, largePrimes:2095809 encountered Relations: rels:2212502, finalFF:259212 Max relations in full relation-set: 28 Initial matrix: 113185 x 259212 with sparse part having weight 21628126. Pruned matrix : 80815 x 81444 with weight 4666548. Total sieving time: 0.97 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,35000 total time: 1.03 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10110+3 = 2(0)1093<111> = 7 · C110
C110 = P35 · P76
P35 = 26184862097599361168293556342151923<35>
P76 = 1091142984253028074855253881145711454222019861072878061773867745555021996423<76>
Number: 20003_110 N=28571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 ( 110 digits) SNFS difficulty: 110 digits. Divisors found: r1=26184862097599361168293556342151923 (pp35) r2=1091142984253028074855253881145711454222019861072878061773867745555021996423 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.48 hours. Scaled time: 0.44 units (timescale=0.935). Factorization parameters were as follows: n: 28571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571429 m: 10000000000000000000000 c5: 2 c0: 3 skew: 1.08 type: snfs Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 325001) Primes: RFBsize:41538, AFBsize:41512, largePrimes:1111312 encountered Relations: rels:1064225, finalFF:121436 Max relations in full relation-set: 28 Initial matrix: 83115 x 121436 with sparse part having weight 4674144. Pruned matrix : 63518 x 63997 with weight 1815360. Total sieving time: 0.45 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,25000 total time: 0.48 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10114+3 = 2(0)1133<115> = 29 · 79 · 269 · 46091 · C104
C104 = P33 · P72
P33 = 141642068744903728734080380860557<33>
P72 = 497100539534504959831516767690043182490203130774494939527873200330969211<72>
Number: 20003_114 N=70410348793875085321768849152758164549236425820919737153313863018456745454803368293180589836398051310527 ( 104 digits) SNFS difficulty: 115 digits. Divisors found: r1=141642068744903728734080380860557 (pp33) r2=497100539534504959831516767690043182490203130774494939527873200330969211 (pp72) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.64 hours. Scaled time: 0.60 units (timescale=0.930). Factorization parameters were as follows: n: 70410348793875085321768849152758164549236425820919737153313863018456745454803368293180589836398051310527 m: 100000000000000000000000 c5: 1 c0: 15 skew: 1.72 type: snfs Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 375001) Primes: RFBsize:41538, AFBsize:41382, largePrimes:1149521 encountered Relations: rels:1106102, finalFF:125588 Max relations in full relation-set: 28 Initial matrix: 82983 x 125588 with sparse part having weight 5422596. Pruned matrix : 65702 x 66180 with weight 2045419. Total sieving time: 0.61 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,25000 total time: 0.64 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10118+3 = 2(0)1173<119> = 714997972759321<15> · C104
C104 = P39 · P65
P39 = 991811671612623385550841555017839892819<39>
P65 = 28203043059484251487882072762043305121719614244673667495654922297<65>
Number: 20003_118 N=27972107281389871588317961432884759576381723602570236734004002563659504714454632356237779796988253285243 ( 104 digits) SNFS difficulty: 118 digits. Divisors found: r1=991811671612623385550841555017839892819 (pp39) r2=28203043059484251487882072762043305121719614244673667495654922297 (pp65) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.96 hours. Scaled time: 0.82 units (timescale=0.853). Factorization parameters were as follows: n: 27972107281389871588317961432884759576381723602570236734004002563659504714454632356237779796988253285243 m: 200000000000000000000000 c5: 125 c0: 6 skew: 1 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 455001) Primes: RFBsize:56543, AFBsize:56408, largePrimes:1928404 encountered Relations: rels:1883991, finalFF:137232 Max relations in full relation-set: 28 Initial matrix: 113016 x 137232 with sparse part having weight 10203633. Pruned matrix : 104024 x 104653 with weight 5985437. Total sieving time: 0.89 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,35000 total time: 0.96 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=11000000
(64·10235+53)/9 = 7(1)2347<236> = 7 · 11 · 193 · C232
C232 = P32 · C201
P32 = 28107359195838759279509711482249<32>
C201 = [170243048162211606139168092899412373887432262726392638811930752489088113456154186085588507167609348929816413787030872916649323684810730559987175370389656582406055523330513546443606392638754557740210553<201>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(35·10167-53)/9 = 3(8)1663<168> = 11 · 113 · C165
C165 = P46 · P120
P46 = 1481894566930897165561217886297315643190412863<46>
P120 = 211123754485119892507236798299021028208278038771361562866186890465260883878836081438303807062657374164385131676699256887<120>
Number: n N=312863144721551801197818896933941181728792348261374810047376419057834987038526861535711093233217127022436756950031286314472155180119781889693394118172879234826137481 ( 165 digits) SNFS difficulty: 168 digits. Divisors found: r1=1481894566930897165561217886297315643190412863 (pp46) r2=211123754485119892507236798299021028208278038771361562866186890465260883878836081438303807062657374164385131676699256887 (pp120) Version: GGNFS-0.77.1-20051202-athlon Total time: 94.40 hours. Scaled time: 112.80 units (timescale=1.195). Factorization parameters were as follows: name: KA_3_8_166_3 n: 312863144721551801197818896933941181728792348261374810047376419057834987038526861535711093233217127022436756950031286314472155180119781889693394118172879234826137481 type: snfs skew: 0.43 deg: 5 c5: 3500 c0: -53 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3200001) Primes: RFBsize:348513, AFBsize:348001, largePrimes:7992903 encountered Relations: rels:7653020, finalFF:801438 Max relations in full relation-set: 28 Initial matrix: 696581 x 801438 with sparse part having weight 45326608. Pruned matrix : 601811 x 605357 with weight 28677270. Total sieving time: 85.35 hours. Total relation processing time: 0.37 hours. Matrix solve time: 8.34 hours. Total square root time: 0.33 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 94.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor table of 200...003 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
2·10137-3 = 1(9)1367<138> = 72 · 283 · 317 · 653 · 17264088293<11> · C118
C118 = P58 · P60
P58 = 7000751848412477959806057766604418499857831431396426422451<58>
P60 = 576483264949148720398224057113036271804100390023761971950737<60>
Number: n N=4035816282671613171343262279759201422385931092225366246725375548600017972927485571480526777015219311635458678522796387 ( 118 digits) SNFS difficulty: 137 digits. Divisors found: r1=7000751848412477959806057766604418499857831431396426422451 (pp58) r2=576483264949148720398224057113036271804100390023761971950737 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.31 hours. Scaled time: 7.68 units (timescale=1.447). Factorization parameters were as follows: name: KA_1_9_136_7 n: 4035816282671613171343262279759201422385931092225366246725375548600017972927485571480526777015219311635458678522796387 skew: 0.43 deg: 5 c5: 200 c0: -3 m: 1000000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:114155, AFBsize:114342, largePrimes:6384288 encountered Relations: rels:5895003, finalFF:424935 Max relations in full relation-set: 28 Initial matrix: 228562 x 424935 with sparse part having weight 33701210. Pruned matrix : 150857 x 152063 with weight 10360660. Total sieving time: 4.55 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.44 hours. Total square root time: 0.17 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 5.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By suberi / GMP-ECM 6.1.2 B1=3000000
2·10177-3 = 1(9)1767<178> = 17 · 66090659226826860491<20> · C157
C157 = P33 · C124
P33 = 314129679887073807583524645188651<33>
C124 = [5666723452861111419953301719983874645151689206796263127100108210064996380732130563446722510620008860655369666194925533653301<124>]
2·10184-3 = 1(9)1837<185> = 292 · 2713 · 5237 · 66857737 · C167
C167 = P32 · P135
P32 = 89177151216694919128342839012937<32>
P135 = 280734873559781758253348251445739908956056985830730029555749391702366572037148720479831472201011105110825184173089405824194320945511353<135>
2·10185-3 = 1(9)1847<186> = 7 · 10139 · C181
C181 = P34 · C148
P34 = 1629098585915315381840811732409037<34>
C148 = [1729774401844928654956193898363519632991312797796196776125859358920365912442809486382638218734874672877056576604898068320294799461787530626132748997<148>]
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(55·10178-1)/9 = 6(1)178<179> = C179
C179 = P71 · P109
P71 = 10844535479140675215472164272317404597918151109866534169729050994698157<71>
P109 = 5635198596441272091330699355272671552551459731965648263799402079769287090412428090080019459707087511004675523<109>
Number: 61111_178 N=61111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 179 digits) SNFS difficulty: 180 digits. Divisors found: r1=10844535479140675215472164272317404597918151109866534169729050994698157 (pp71) r2=5635198596441272091330699355272671552551459731965648263799402079769287090412428090080019459707087511004675523 (pp109) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 699.57 hours. Scaled time: 471.51 units (timescale=0.674). Factorization parameters were as follows: name: 61111_178 n: 61111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 500000000000000000000000000000000000 c5: 88 c0: -5 skew: 1 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 8500001) Primes: RFBsize:501962, AFBsize:502697, largePrimes:6420312 encountered Relations: rels:6865276, finalFF:1126019 Max relations in full relation-set: 0 Initial matrix: 1004725 x 1126019 with sparse part having weight 61341522. Pruned matrix : 900119 x 905206 with weight 47244858. Total sieving time: 650.72 hours. Total relation processing time: 0.72 hours. Matrix solve time: 47.78 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,180,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 699.57 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
2·10139-3 = 1(9)1387<140> = 53 · 113 · 241 · C134
C134 = P38 · P96
P38 = 41803841074986331004467759752042705661<38>
P96 = 331468644256359068076837242793801952073119679096103445167011822018914725489819506339762119501373<96>
Number: n N=13856662525834015196601792082164466113185376509769986330402418264744008552332110944754179342626073111908485058014381830035563124372553 ( 134 digits) SNFS difficulty: 140 digits. Divisors found: r1=41803841074986331004467759752042705661 (pp38) r2=331468644256359068076837242793801952073119679096103445167011822018914725489819506339762119501373 (pp96) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.88 hours. Scaled time: 7.08 units (timescale=1.451). Factorization parameters were as follows: name: KA_1_9_138_7 n: 13856662525834015196601792082164466113185376509769986330402418264744008552332110944754179342626073111908485058014381830035563124372553 skew: 1.72 deg: 5 c5: 1 c0: -15 m: 10000000000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:148933, AFBsize:148925, largePrimes:5871911 encountered Relations: rels:5357002, finalFF:416257 Max relations in full relation-set: 28 Initial matrix: 297922 x 416257 with sparse part having weight 22774580. Pruned matrix : 197183 x 198736 with weight 9498448. Total sieving time: 4.11 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.59 hours. Total square root time: 0.06 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,75000 total time: 4.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(2·10158+1)/3 = (6)1577<158> = 17 · 277897 · 488347 · C146
C146 = P41 · P106
P41 = 21031561607724268249695576438281644154827<41>
P106 = 1373965780486348413798444543281701321099663088692889197539420932838074370643421175688293752426150951769707<106>
Number: n N=28896645959203594878243179450779359727070264879734381614242857401731103885737949305946301799304495401978678162311838251115093256907566767956425689 ( 146 digits) SNFS difficulty: 158 digits. Divisors found: r1=21031561607724268249695576438281644154827 (pp41) r2=1373965780486348413798444543281701321099663088692889197539420932838074370643421175688293752426150951769707 (pp106) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 29.31 hours. Scaled time: 40.01 units (timescale=1.365). Factorization parameters were as follows: name: KA_6_157_7 n: 28896645959203594878243179450779359727070264879734381614242857401731103885737949305946301799304495401978678162311838251115093256907566767956425689 skew: 0.44 deg: 5 c5: 125 c0: 2 m: 20000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:315948, AFBsize:316326, largePrimes:7115036 encountered Relations: rels:6794108, finalFF:747296 Max relations in full relation-set: 28 Initial matrix: 632339 x 747296 with sparse part having weight 32157852. Pruned matrix : 514318 x 517543 with weight 16887335. Total sieving time: 25.80 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.22 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 29.31 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10133-3 = 1(9)1327<134> = 557 · 71162352319717499<17> · C114
C114 = P40 · P74
P40 = 5387015255111323942626049346281287077863<40>
P74 = 93664776152606764401059753977917406656658975593547100495177002729005709733<74>
Number: n N=504573578000679980011194383314501795810950700707844710097611496380308437105732388873064306717211277180237947940579 ( 114 digits) SNFS difficulty: 133 digits. Divisors found: r1=5387015255111323942626049346281287077863 (pp40) r2=93664776152606764401059753977917406656658975593547100495177002729005709733 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 3.51 hours. Scaled time: 5.09 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_9_132_7 n: 504573578000679980011194383314501795810950700707844710097611496380308437105732388873064306717211277180237947940579 skew: 0.54 deg: 5 c5: 125 c0: -6 m: 200000000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 400001) Primes: RFBsize:114155, AFBsize:113572, largePrimes:5040741 encountered Relations: rels:4461042, finalFF:289507 Max relations in full relation-set: 28 Initial matrix: 227792 x 289507 with sparse part having weight 14730733. Pruned matrix : 176541 x 177743 with weight 6872155. Total sieving time: 3.03 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.36 hours. Total square root time: 0.02 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,75000 total time: 3.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
2·10124-3 = 1(9)1237<125> = 31536909893<11> · C114
C114 = P40 · P74
P40 = 9336975976397637344374611852234644275771<40>
P74 = 67921085334223439767801410472062272050391919676586092874931678368742117499<74>
Number: 19997_124 N=634177542056498147727386792391213558521105928315688960325495387938387321694086180962789993154640998992817840816729 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=9336975976397637344374611852234644275771 (pp40) r2=67921085334223439767801410472062272050391919676586092874931678368742117499 (pp74) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.37 hours. Scaled time: 1.28 units (timescale=0.933). Factorization parameters were as follows: n: 634177542056498147727386792391213558521105928315688960325495387938387321694086180962789993154640998992817840816729 m: 10000000000000000000000000 c5: 1 c0: -15 skew: 1.72 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 560001) Primes: RFBsize:56543, AFBsize:56578, largePrimes:2126235 encountered Relations: rels:2218039, finalFF:221963 Max relations in full relation-set: 28 Initial matrix: 113185 x 221963 with sparse part having weight 20278707. Pruned matrix : 90696 x 91325 with weight 5816729. Total sieving time: 1.30 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,35000 total time: 1.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10125-3 = 1(9)1247<126> = 7 · 233 · 144593 · 10817778017<11> · C107
C107 = P32 · P76
P32 = 70950032524214449038440162186879<32>
P76 = 1104938488904480115616998648501886905041655534575552950019302930656654642413<76>
Number: 19997_125 N=78395421725029230328818426014800087569324238426422046695751860537037254334678996299996708647592753825499027 ( 107 digits) SNFS difficulty: 125 digits. Divisors found: r1=70950032524214449038440162186879 (pp32) r2=1104938488904480115616998648501886905041655534575552950019302930656654642413 (pp76) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.41 hours. Scaled time: 1.31 units (timescale=0.929). Factorization parameters were as follows: n: 78395421725029230328818426014800087569324238426422046695751860537037254334678996299996708647592753825499027 m: 10000000000000000000000000 c5: 2 c0: -3 skew: 1.08 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 750001) Primes: RFBsize:78498, AFBsize:78591, largePrimes:1530358 encountered Relations: rels:1610360, finalFF:249014 Max relations in full relation-set: 28 Initial matrix: 157154 x 249014 with sparse part having weight 10838770. Pruned matrix : 105018 x 105867 with weight 4177813. Total sieving time: 1.36 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.41 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10132-3 = 1(9)1317<133> = 19 · 883 · 312007369 · 2035213286473<13> · C108
C108 = P48 · P60
P48 = 224921079033736342221790746096952105532091294451<48>
P60 = 834662212681919642405556463667806222934803506974724243740903<60>
Number: 19997_132 N=187733125505103299807786248565954705912786141137724869511999365125813198339801086514367050241684111925629253 ( 108 digits) SNFS difficulty: 132 digits. Divisors found: r1=224921079033736342221790746096952105532091294451 (pp48) r2=834662212681919642405556463667806222934803506974724243740903 (pp60) Version: GGNFS-0.77.1-20050930-nocona Total time: 3.24 hours. Scaled time: 3.02 units (timescale=0.930). Factorization parameters were as follows: n: 187733125505103299807786248565954705912786141137724869511999365125813198339801086514367050241684111925629253 m: 200000000000000000000000000 c5: 25 c0: -12 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1150001) Primes: RFBsize:78498, AFBsize:78531, largePrimes:1574002 encountered Relations: rels:1587278, finalFF:187947 Max relations in full relation-set: 28 Initial matrix: 157093 x 187947 with sparse part having weight 12103751. Pruned matrix : 146454 x 147303 with weight 7639030. Total sieving time: 3.14 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 3.24 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.2 B1=11000000
9·10186+1 = 9(0)1851<187> = 61 · 161271954417042232580477<24> · C162
C162 = P35 · P128
P35 = 71338953778563773721289257398483341<35>
P128 = 12824105714440400124634673307313813672129762979860127394144076399375268657498186011572935151644208597728853041885465975326330013<128>
By suberi / GMP-ECM 6.1.2 B1=3000000
(64·10210+53)/9 = 7(1)2097<211> = 13 · 1901 · 215887165601<12> · C196
C196 = P36 · C161
P36 = 120353750687524054661558403071957407<36>
C161 = [11074536064618948013173809104218434495785079170068678862536218619877065401976868698025916479343294712320399742216591613798301642308351142097007338459987719559387<161>]
(64·10221+53)/9 = 7(1)2207<222> = 32 · 11 · 128239 · 503398933 · 1004825417137<13> · 27740572834433626007911111<26> · C169
C169 = P38 · C132
P38 = 38068287072532520234581880952761336179<38>
C132 = [104857737776937132831500531794436978547677820037074899064862334390039119428558654617425288051798995857403608343118733866481109955753<132>]
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000, GGNFS-0.77.1-20050930-nocona
2·10189-3 = 1(9)1887<190> = C190
C190 = P38 · C152
P38 = 26515433818872756128486451063540368813<38>
C152 = [75427768357931602931753276660580155235389614555331854484100658108640121572138298453489837951680283043601403057326275895068893330216499198205413743316369<152>]
2·10138-3 = 1(9)1377<139> = C139
C139 = P43 · P96
P43 = 2792516776165070836944026656509845283656971<43>
P96 = 716199815546524866079650590503056034131183398218468977769146136824078266907549975600350599517207<96>
Number: 19997_138 N=1999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 139 digits) SNFS difficulty: 140 digits. Divisors found: r1=2792516776165070836944026656509845283656971 (pp43) r2=716199815546524866079650590503056034131183398218468977769146136824078266907549975600350599517207 (pp96) Version: GGNFS-0.77.1-20050930-nocona Total time: 8.55 hours. Scaled time: 7.97 units (timescale=0.932). Factorization parameters were as follows: n: 1999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 10000000000000000000000000000 c5: 1 c0: -150 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1200001) Primes: RFBsize:100021, AFBsize:99568, largePrimes:1619547 encountered Relations: rels:1694434, finalFF:263039 Max relations in full relation-set: 28 Initial matrix: 199653 x 263039 with sparse part having weight 10868421. Pruned matrix : 161528 x 162590 with weight 6105713. Total sieving time: 8.45 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.06 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 8.55 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10108-3 = 1(9)1077<109> = 97 · 907 · 2334911 · 62038633 · C90
C90 = P40 · P50
P40 = 9795426399848232136433658361416964220351<40>
P50 = 16021201316639818235833142024355288672757596038111<50>
Number: 19997_108 N=156934498334296931342888700420223926738874127226828735072542912178143222401314959597796961 ( 90 digits) SNFS difficulty: 110 digits. Divisors found: r1=9795426399848232136433658361416964220351 (pp40) r2=16021201316639818235833142024355288672757596038111 (pp50) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.51 hours. Scaled time: 0.46 units (timescale=0.909). Factorization parameters were as follows: n: 156934498334296931342888700420223926738874127226828735072542912178143222401314959597796961 m: 10000000000000000000000 c5: 1 c0: -150 skew: 2.72 type: snfs Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 325001) Primes: RFBsize:41538, AFBsize:41357, largePrimes:1146010 encountered Relations: rels:1115866, finalFF:136839 Max relations in full relation-set: 28 Initial matrix: 82959 x 136839 with sparse part having weight 5203852. Pruned matrix : 58367 x 58845 with weight 1641515. Total sieving time: 0.48 hours. Total relation processing time: 0.01 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,110,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,25000 total time: 0.51 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10114-3 = 1(9)1137<115> = 19 · 211 · C111
C111 = P50 · P61
P50 = 66720394280058370841709380872145894939733576500903<50>
P61 = 7477136952660057610131641830487159799848955980602003638351811<61>
Number: 19997_114 N=498877525567473185333000748316288351209777999501122474432526814666999251683711648790222000498877525567473185333 ( 111 digits) SNFS difficulty: 115 digits. Divisors found: r1=66720394280058370841709380872145894939733576500903 (pp50) r2=7477136952660057610131641830487159799848955980602003638351811 (pp61) Version: GGNFS-0.77.1-20050930-nocona Total time: 0.65 hours. Scaled time: 0.60 units (timescale=0.929). Factorization parameters were as follows: n: 498877525567473185333000748316288351209777999501122474432526814666999251683711648790222000498877525567473185333 m: 100000000000000000000000 c5: 1 c0: -15 skew: 1.72 type: snfs Factor base limits: 500000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 375001) Primes: RFBsize:41538, AFBsize:41382, largePrimes:1141363 encountered Relations: rels:1093722, finalFF:121200 Max relations in full relation-set: 28 Initial matrix: 82984 x 121200 with sparse part having weight 5257052. Pruned matrix : 66846 x 67324 with weight 2100764. Total sieving time: 0.62 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,500000,500000,25,25,44,44,2.2,2.2,25000 total time: 0.65 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10118-3 = 1(9)1177<119> = 191 · 8248949 · C110
C110 = P32 · P78
P32 = 22950984299621533137884728246439<32>
P78 = 553091130404568883549143340580413178416536717655739844547962308344784263446097<78>
Number: 19997_118 N=12693985850175186430016911327810157663880441074803615518059787935833747232907048068371437696826716606008698583 ( 110 digits) SNFS difficulty: 120 digits. Divisors found: r1=22950984299621533137884728246439 (pp32) r2=553091130404568883549143340580413178416536717655739844547962308344784263446097 (pp78) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.06 hours. Scaled time: 0.98 units (timescale=0.927). Factorization parameters were as follows: n: 12693985850175186430016911327810157663880441074803615518059787935833747232907048068371437696826716606008698583 m: 1000000000000000000000000 c5: 1 c0: -150 skew: 2.72 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 490001) Primes: RFBsize:56543, AFBsize:56408, largePrimes:2190525 encountered Relations: rels:2411404, finalFF:354493 Max relations in full relation-set: 28 Initial matrix: 113015 x 354493 with sparse part having weight 29047533. Pruned matrix : 69719 x 70348 with weight 4777254. Total sieving time: 1.00 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,35000 total time: 1.06 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
2·10122-3 = 1(9)1217<123> = 23 · 67 · 6389 · C116
C116 = P48 · P69
P48 = 171991496996710309484092016279706178541733683213<48>
P69 = 118110223750443992209744996157769492200408400398154132891719193722281<69>
Number: 19997_122 N=20313954193455270551906774388857227334172367354703680858028922804841099679659099346307111031706121274915953553768853 ( 116 digits) SNFS difficulty: 122 digits. Divisors found: r1=171991496996710309484092016279706178541733683213 (pp48) r2=118110223750443992209744996157769492200408400398154132891719193722281 (pp69) Version: GGNFS-0.77.1-20050930-nocona Total time: 1.36 hours. Scaled time: 1.27 units (timescale=0.929). Factorization parameters were as follows: n: 20313954193455270551906774388857227334172367354703680858028922804841099679659099346307111031706121274915953553768853 m: 2000000000000000000000000 c5: 25 c0: -12 skew: 1 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 560001) Primes: RFBsize:56543, AFBsize:56628, largePrimes:2122377 encountered Relations: rels:2193156, finalFF:202049 Max relations in full relation-set: 28 Initial matrix: 113235 x 202049 with sparse part having weight 18248550. Pruned matrix : 93995 x 94625 with weight 5931908. Total sieving time: 1.29 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,122,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,35000 total time: 1.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
2·10143-3 = 1(9)1427<144> = 7 · 367 · C140
C140 = P36 · P105
P36 = 300364480242690431385063688008727003<36>
P105 = 259189448587394079995709224242217573207735348894143323496982198581906017312796640460823662146191460771471<105>
Number: n N=77851304009342156481121058777734527053328143246399377189567925262748151031529778123783573374854028804982483456597898014791747761775009731413 ( 140 digits) SNFS difficulty: 143 digits. Divisors found: r1=300364480242690431385063688008727003 (pp36) r2=259189448587394079995709224242217573207735348894143323496982198581906017312796640460823662146191460771471 (pp105) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.88 hours. Scaled time: 9.96 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_9_142_7 n: 77851304009342156481121058777734527053328143246399377189567925262748151031529778123783573374854028804982483456597898014791747761775009731413 skew: 0.54 deg: 5 c5: 125 c0: -6 m: 20000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:183072, AFBsize:182636, largePrimes:6536042 encountered Relations: rels:6097591, finalFF:542478 Max relations in full relation-set: 28 Initial matrix: 365773 x 542478 with sparse part having weight 28309689. Pruned matrix : 211117 x 213009 with weight 11522988. Total sieving time: 5.77 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.85 hours. Total square root time: 0.11 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 6.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
9·10185+1 = 9(0)1841<186> = C186
C186 = P38 · C149
P38 = 14221071273845475492291671003825582287<38>
C149 = [63286371516555504143607328750089379622990817116008869593801609303856339184629344856413421757600029944178214967248795969528509796283408631275118450223<149>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(85·10156+41)/9 = 9(4)1559<157> = 7 · 43 · 1829647 · 59981311102477643861<20> · C129
C129 = P45 · P84
P45 = 623026004262418045585258199687571169731749999<45>
P84 = 458902564109778259210141897723342450686101445324350532928974904781714443488055487153<84>
Number: n N=285908230863093280149522567479878460620220761033945807669254236564669687489493297610088438129173451686543805526322851093152262847 ( 129 digits) SNFS difficulty: 157 digits. Divisors found: r1=623026004262418045585258199687571169731749999 (pp45) r2=458902564109778259210141897723342450686101445324350532928974904781714443488055487153 (pp84) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.23 hours. Scaled time: 47.88 units (timescale=1.441). Factorization parameters were as follows: name: KA_9_4_155_9 n: 285908230863093280149522567479878460620220761033945807669254236564669687489493297610088438129173451686543805526322851093152262847 skew: 0.55 deg: 5 c5: 850 c0: 41 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216852, largePrimes:7158635 encountered Relations: rels:6684140, finalFF:532075 Max relations in full relation-set: 28 Initial matrix: 433735 x 532075 with sparse part having weight 38484696. Pruned matrix : 354237 x 356469 with weight 22829842. Total sieving time: 29.61 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.29 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
2·10104-3 = 1(9)1037<105> = 397633 · C99
C99 = P47 · P52
P47 = 81143272388834334896650363044075567399043782163<47>
P52 = 6198620635061424030493749864953890386771151005333743<52>
Number: n N=502976362625838398724451944380873820834789869050103990362972892088936280439500745662457592805426109 ( 99 digits) SNFS difficulty: 105 digits. Divisors found: r1=81143272388834334896650363044075567399043782163 (pp47) r2=6198620635061424030493749864953890386771151005333743 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 0.86 hours. Scaled time: 1.25 units (timescale=1.449). Factorization parameters were as follows: name: KA_1_9_103_7 n: 502976362625838398724451944380873820834789869050103990362972892088936280439500745662457592805426109 skew: 1.72 deg: 5 c5: 1 c0: -15 m: 1000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:114155, AFBsize:114187, largePrimes:4382413 encountered Relations: rels:4136356, finalFF:487915 Max relations in full relation-set: 28 Initial matrix: 228406 x 487915 with sparse part having weight 13647573. Pruned matrix : 114742 x 115948 with weight 3325133. Total sieving time: 0.71 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.05 hours. Total square root time: 0.04 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,105,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,20000 total time: 0.86 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
2·10106-3 = 1(9)1057<107> = 53299 · 42876259 · C94
C94 = P43 · P52
P43 = 5159197730271147217349752990276548876845323<43>
P52 = 1696335989904637732334935062814384104990952215712079<52>
Number: n N=8751732788893266688487625777268063114486632739211302698544914987497525049574361686915585756517 ( 94 digits) SNFS difficulty: 106 digits. Divisors found: r1=5159197730271147217349752990276548876845323 (pp43) r2=1696335989904637732334935062814384104990952215712079 (pp52) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.03 hours. Scaled time: 1.49 units (timescale=1.449). Factorization parameters were as follows: name: KA_1_9_105_7 n: 8751732788893266688487625777268063114486632739211302698544914987497525049574361686915585756517 skew: 0.68 deg: 5 c5: 20 c0: -3 m: 1000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:114155, AFBsize:113992, largePrimes:4623427 encountered Relations: rels:4344731, finalFF:480702 Max relations in full relation-set: 28 Initial matrix: 228213 x 480702 with sparse part having weight 15679088. Pruned matrix : 114549 x 115754 with weight 4184415. Total sieving time: 0.87 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.07 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 1.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
The factor table of 199...997 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(37·10167-1)/9 = 4(1)167<168> = 32 · 373 · C165
C165 = P81 · P84
P81 = 918223766473056927120072370892676793977105023306840968715720117517723479949296603<81>
P84 = 133370366287984710553342761808911401909229691328395596089306523023084095806001884041<84>
Number: n N=122463840068844537119782874921391454009863303875815046503160891007182338728361963393241319961605931221659550524608612186807003607718531757852580015225234170721212723 ( 165 digits) SNFS difficulty: 168 digits. Divisors found: r1=918223766473056927120072370892676793977105023306840968715720117517723479949296603 (pp81) r2=133370366287984710553342761808911401909229691328395596089306523023084095806001884041 (pp84) Version: GGNFS-0.77.1-20051202-athlon Total time: 92.87 hours. Scaled time: 122.86 units (timescale=1.323). Factorization parameters were as follows: name: KA_4_1_167 n: 122463840068844537119782874921391454009863303875815046503160891007182338728361963393241319961605931221659550524608612186807003607718531757852580015225234170721212723 skew: 0.19 deg: 5 c5: 3700 c0: -1 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:348513, AFBsize:348256, largePrimes:8066454 encountered Relations: rels:7685936, finalFF:786082 Max relations in full relation-set: 48 Initial matrix: 696836 x 786082 with sparse part having weight 45848187. Pruned matrix : 617807 x 621355 with weight 30540514. Total sieving time: 83.57 hours. Total relation processing time: 0.32 hours. Matrix solve time: 8.75 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 92.87 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
P81 is the second largest factor found by GGNFS so far in our tables. Congratulations!
See also Records.
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GMP-ECM 5.0 B1=865000
(5·10159-17)/3 = 1(6)1581<160> = 11 · 10526074387<11> · C149
C149 = P49 · P100
P49 = 4281777787034366358534397847460791774293780003501<49>
P100 = 3361750706608769880083150153142444008856468108643668619700589506468289143083298686757456257443067273<100>
Number: n N=14394269501104516102021268331661041980010011828843017576094121090800487723317012837974305221059535679220116378939584964492187105376490962770118522773 ( 149 digits) SNFS difficulty: 160 digits. Divisors found: r1=4281777787034366358534397847460791774293780003501 (pp49) r2=3361750706608769880083150153142444008856468108643668619700589506468289143083298686757456257443067273 (pp100) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 28.58 hours. Scaled time: 39.01 units (timescale=1.365). Factorization parameters were as follows: name: KA_1_6_158_1 n: 14394269501104516102021268331661041980010011828843017576094121090800487723317012837974305221059535679220116378939584964492187105376490962770118522773 skew: 2.02 deg: 5 c5: 1 c0: -34 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:315948, AFBsize:315621, largePrimes:7083979 encountered Relations: rels:6741752, finalFF:731785 Max relations in full relation-set: 28 Initial matrix: 631633 x 731785 with sparse part having weight 31162081. Pruned matrix : 526231 x 529453 with weight 17073243. Total sieving time: 25.13 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.17 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 28.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10158-41)/9 = (5)1571<158> = 3 · 139 · 823 · 1460911 · C147
C147 = P33 · P114
P33 = 345932055663238901623643181254069<33>
P114 = 320314823938951775915028322935805675020923974788887849647682117084206664427032851449437721142740924025642142485979<114>
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(5·10159-23)/9 = (5)1583<159> = 72 · 79 · 941 · C153
C153 = P40 · P52 · P62
P40 = 1365275107933766940502292838105456569269<40>
P52 = 5993070696988687498185746545206764928030823906718791<52>
P62 = 18639966485678882898966502221797396041802923662890668936753337<62>
Number: n N=152515751903114429609847319836116334013035033264753100332578898914969387495825262581032000275504454237785905647228198551960545761146484089450000440770523 ( 153 digits) SNFS difficulty: 160 digits. Divisors found: r1=1365275107933766940502292838105456569269 (pp40) r2=5993070696988687498185746545206764928030823906718791 (pp52) r3=18639966485678882898966502221797396041802923662890668936753337 (pp62) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 37.16 hours. Scaled time: 50.72 units (timescale=1.365). Factorization parameters were as follows: name: KA_5_158_3 n: 152515751903114429609847319836116334013035033264753100332578898914969387495825262581032000275504454237785905647228198551960545761146484089450000440770523 skew: 2.15 deg: 5 c5: 1 c0: -46 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:315948, AFBsize:316251, largePrimes:7486977 encountered Relations: rels:7195105, finalFF:785470 Max relations in full relation-set: 28 Initial matrix: 632263 x 785470 with sparse part having weight 38165133. Pruned matrix : 485256 x 488481 with weight 18851472. Total sieving time: 33.59 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.14 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 37.16 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(10166+71)/9 = (1)1659<166> = 3 · 853 · C162
C162 = P52 · P54 · P57
P52 = 2941450565776713211063703481417686180142901689698887<52>
P54 = 444247718689605355281288325170529968377748965603234359<54>
P57 = 332277125209997397567433286536766521100002249200099342577<57>
Number: n N=434197386131735486952368546741348617081325170422474056706178628804654595979332204420129390821067257175111805826928921887890234900785897268898441231383787069601841 ( 162 digits) SNFS difficulty: 166 digits. Divisors found: r1=2941450565776713211063703481417686180142901689698887 (pp52) r2=444247718689605355281288325170529968377748965603234359 (pp54) r3=332277125209997397567433286536766521100002249200099342577 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 71.23 hours. Scaled time: 84.90 units (timescale=1.192). Factorization parameters were as follows: name: KA_1_165_9 n: 434197386131735486952368546741348617081325170422474056706178628804654595979332204420129390821067257175111805826928921887890234900785897268898441231383787069601841 type: snfs skew: 1.48 deg: 5 c5: 10 c0: 71 m: 1000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2500001) Primes: RFBsize:348513, AFBsize:347947, largePrimes:7816338 encountered Relations: rels:7510687, finalFF:820417 Max relations in full relation-set: 28 Initial matrix: 696526 x 820417 with sparse part having weight 42457592. Pruned matrix : 578274 x 581820 with weight 24476107. Total sieving time: 63.39 hours. Total relation processing time: 0.32 hours. Matrix solve time: 7.07 hours. Total square root time: 0.43 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 71.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(64·10156+53)/9 = 7(1)1557<157> = 13 · 113 · 239 · 52860592215645665953858467693317<32> · C120
C120 = P50 · P70
P50 = 49077828529847726066736868936370114562389265709103<50>
P70 = 7807291673078649995782734630227484536649932164015296032914517722906237<70>
Number: n N=383164922013861954685718096101603237579244787814536099238125074662505933186233933720729459506399443843513551211786375411 ( 120 digits) SNFS difficulty: 157 digits. Divisors found: r1=49077828529847726066736868936370114562389265709103 (pp50) r2=7807291673078649995782734630227484536649932164015296032914517722906237 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.78 hours. Scaled time: 44.47 units (timescale=1.445). Factorization parameters were as follows: name: KA_7_1_155_7 n: 383164922013861954685718096101603237579244787814536099238125074662505933186233933720729459506399443843513551211786375411 skew: 1.22 deg: 5 c5: 20 c0: 53 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:215751, largePrimes:7121172 encountered Relations: rels:6653609, finalFF:535901 Max relations in full relation-set: 28 Initial matrix: 432633 x 535901 with sparse part having weight 37968592. Pruned matrix : 347961 x 350188 with weight 22254553. Total sieving time: 27.34 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.18 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 30.78 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
5·10190-1 = 4(9)190<191> = C191
C191 = P35 · P156
P35 = 99540974625765465275232034702200919<35>
P156 = 502305710668196126484659145583463988849571937897513433848127456075026044866256022945692253079700553166877184985681787449184093822883155280824677517509895321<156>
By Yousuke Koide / GMP-ECM B1=1000000 / Apr 30, 2007
(101167-1)/9 = (1)1167<1167> = 3 · 37 · 466801 · 1991681 · 25779031 · 9673567199<10> · 7657037673276648858853<22> · 30613946219676519851696681<26> · 534106762532886493971950663223965323<36> · 295666607855148525951669299929669849601357<42> · C270 · C741
C741 = P32 · C710
P32 = 90840806850908670531036620137129<32>
By Yousuke Koide / GMP-ECM B1=1000000 / May 4, 2007
10874+1 = 1(0)8731<875> = 101 · 1289 · 8259301 · 1440247121<10> · 21631222069<11> · 18371524594609<14> · 722817036322379041<18> · 1369778187490592461<19> · 4181003300071669867932658901<28> · C766
C766 = P31 · C735
P31 = 8177669991059740173635806566781<31>
By Yousuke Koide / GMP-ECM B1=1000000 / May 8, 2007
10917+1 = 1(0)9161<918> = 11 · 263 · 144887 · 909091 · 288840329 · 1397382241<10> · 306662501757259<15> · 525786373041914526306757<24> · 112506283680098168752627601991569<33> · 1363608083180796048411168783196497071688492468691<49> · C767
C767 = P33 · C735
P33 = 223908687382121511269398989390133<33>
By Yousuke Koide / GMP-ECM B1=1000000 / May 8, 2007
101077+1 = 1(0)10761<1078> = 7 · 11 · 13 · 10771 · 25849 · 91631161 · 19210610797963667218565939<26> · C329 · C705
C705 = P34 · C671
P34 = 2586114064209667728427534023689533<34>
By Torbjörn Granlund / GMP-ECM P-1 B1=100000000 / May 9, 2007
(10615-1)/9 = (1)615<615> = 3 · 31 · 37 · 412 · 83 · 271 · 1231 · 11071 · 275521 · 538987 · 1364071 · 1811791 · 2906161 · 21158848681<11> · 626920594693<12> · 9425856976319889649<19> · 201763709900322803748657942361<30> · 5440907236518498609451112390256369995629321<43> · 8414640003465161203119978906558054839526493<43> · 37654445534598090531061637404570516695225922222356909916889395661871779838862063550827086195341481919418156260385301045484576632937146377914151<143> · C268
C268 = P36 · C232
P36 = 234065099292222402013296307835793151<36>
By Torbjörn Granlund / GMP-ECM P-1 B1=10000000 / May 9, 2007
10722+1 = 1(0)7211<723> = 101 · 1097441 · 722817036322379041<18> · 1369778187490592461<19> · C678
C678 = P34 · C645
P34 = 6309203540697794137728747763478561<34>
By Yousuke Koide / GMP-ECM B1=1000000 / May 7, 2007
10758+1 = 1(0)7571<759> = 101 · 4549 · C753
C753 = P32 · C721
P32 = 70488629165410024923533836947449<32>
By Yousuke Koide / GMP-ECM B1=1000000 / May 12, 2007
10773+1 = 1(0)7721<774> = 11 · 2514771527<10> · C763
C763 = P35 · C729
P35 = 27542107953980594633792218895027329<35>
By Yousuke Koide / GMP-ECM B1=1000000 / May 12, 2007
10778+1 = 1(0)7771<779> = 101 · 68050337401<11> · C766
C766 = P37 · C729
P37 = 1763722658625922307781888583674044509<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10157-13)/9 = (4)1563<157> = 3 · 1607 · 1605739 · 72888289607101616827<20> · C127
C127 = P38 · P90
P38 = 34994546482661762527459864491196336061<38>
P90 = 225085369058061657663884263348948816998805899513451328210121428150671196588503313350746851<90>
Number: n N=7876760410069416298662868647448204377450768132958815838678289103538428666499430415564938481187821565345250560533702189133493911 ( 127 digits) SNFS difficulty: 157 digits. Divisors found: r1=34994546482661762527459864491196336061 (pp38) r2=225085369058061657663884263348948816998805899513451328210121428150671196588503313350746851 (pp90) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.88 hours. Scaled time: 46.19 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_156_3 n: 7876760410069416298662868647448204377450768132958815838678289103538428666499430415564938481187821565345250560533702189133493911 skew: 1.01 deg: 5 c5: 25 c0: -26 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:217511, largePrimes:7047079 encountered Relations: rels:6530657, finalFF:496297 Max relations in full relation-set: 28 Initial matrix: 434391 x 496297 with sparse part having weight 34658844. Pruned matrix : 383891 x 386126 with weight 22977837. Total sieving time: 27.71 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.91 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 31.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
(23·10184+1)/3 = 7(6)1837<185> = C185
C185 = P37 · C149
P37 = 5774670075341229996045635806441711249<37>
C149 = [13276371752222809090293402882959411707829163970866879125339397751880657325581180279608246723848888791937781266906345533410485228874392140408836617083<149>]
By suberi / GMP-ECM 6.1.2 B1=3000000
(64·10191+53)/9 = 7(1)1907<192> = 3 · 11 · 239 · 2437 · 6599 · 244033 · C176
C176 = P34 · C143
P34 = 1215130975899590906278442010355229<34>
C143 = [18906899481973526282026704495069056756649983846456749409752956664140620093099092451844621769773689315721058796527997944133334364541384120005301<143>]
(64·10236+53)/9 = 7(1)2357<237> = 3 · 563 · 2383 · 20431 · 86381 · C222
C222 = P37 · C185
P37 = 6439440434086891745591132827876208899<37>
C185 = [15546326742142275797343802733855931211964187662623718039519045945410959794410303852402574597376122760199834255719754439546665593662708368862695746542115188846097476249599680897257390819<185>]
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
2·10160-1 = 1(9)160<161> = 7 · 719 · C157
C157 = P46 · P112
P46 = 3521112583666989208128791647491651766924820281<46>
P112 = 1128556103542058996746525728749181096617698429611282103116231114503378579024061149030723533547291222035342709663<112>
Number: n N=3973773097556129545002980329823167097158752235247367375322869064176435525531492151798132326644148619113848599244983111464335386449433737333598251539837075303 ( 157 digits) SNFS difficulty: 160 digits. Divisors found: r1=3521112583666989208128791647491651766924820281 (pp46) r2=1128556103542058996746525728749181096617698429611282103116231114503378579024061149030723533547291222035342709663 (pp112) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 35.80 hours. Scaled time: 26.88 units (timescale=0.751). Factorization parameters were as follows: name: KA_1_9_160 n: 3973773097556129545002980329823167097158752235247367375322869064176435525531492151798132326644148619113848599244983111464335386449433737333598251539837075303 skew: 0.87 deg: 5 c5: 2 c0: -1 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:315948, AFBsize:315591, largePrimes:7290686 encountered Relations: rels:6987505, finalFF:769990 Max relations in full relation-set: 28 Initial matrix: 631604 x 769990 with sparse part having weight 35494138. Pruned matrix : 494564 x 497786 with weight 17860283. Total sieving time: 30.25 hours. Total relation processing time: 0.20 hours. Matrix solve time: 5.14 hours. Total square root time: 0.20 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 35.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
(5·10169+13)/9 = (5)1687<169> = 7 · 25841 · 708371 · 14831317 · 13419206138394747668082246000933204319<38> · C114
C114 = P47 · P68
P47 = 18984589447258019171106580625816675813439927361<47>
P68 = 11474971458647067240492312991607096103710342389767647453209132372147<68>
Number: 55557_169 N=217847622061418072255581563015349258221880416028325068401083564087901225152792849614952022038191434366089299614067 ( 114 digits) Divisors found: r1=18984589447258019171106580625816675813439927361 (pp47) r2=11474971458647067240492312991607096103710342389767647453209132372147 (pp68) Version: GGNFS-0.77.1-20050930-nocona Total time: 23.52 hours. Scaled time: 21.99 units (timescale=0.935). Factorization parameters were as follows: name: 55557_169 n: 217847622061418072255581563015349258221880416028325068401083564087901225152792849614952022038191434366089299614067 skew: 93167.72 # norm 9.99e+15 c5: 7560 c4: 181240904 c3: -215160469783062 c2: 731926613668539534 c1: -336079217051183466131105 c0: -1719014552327535177050257095 # alpha -6.46 Y1: 515317817773 Y0: -7796973677105581012586 # Murphy_E 6.25e-10 # M 45979753848971241218306109270075070205023824708408177579147395268527404710642628807455036499266215840949482224176 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 2925001) Primes: RFBsize:256726, AFBsize:256868, largePrimes:7423035 encountered Relations: rels:7314425, finalFF:614838 Max relations in full relation-set: 28 Initial matrix: 513674 x 614838 with sparse part having weight 50290626. Pruned matrix : 428623 x 431255 with weight 30957143. Total sieving time: 22.00 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.24 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 23.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
(5·10160+13)/9 = (5)1597<160> = 443 · 149446961 · 954266828377<12> · C137
C137 = P34 · P104
P34 = 2950675052531348964676339874534843<34>
P104 = 29802003977964361400935073001776486894276408425662155711272488748993451457322768666516195405066304062469<104>
(5·10165+13)/9 = (5)1647<165> = 113 · 140207 · 7409646089513737<16> · C142
C142 = P42 · P101
P42 = 120251587054056382828063467457919777275513<42>
P101 = 39354198578549811165548493668314300005448817734165049827333990543389183856876706209828094658780016667<101>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0 B1=988000
(16·10166-61)/9 = 1(7)1651<167> = 13 · 257 · C163
C163 = P41 · P51 · P72
P41 = 15109262159303914200235970117303182989937<41>
P51 = 583000610683684808553479287729266199706051525409391<51>
P72 = 604072035468266231595132183421912411669884078283681280966762593973524393<72>
Number: n N=5321094815258239382753001430044231600651834114869134324387242675180418371079849679071468954737437227709601250457281585686254946955336060394426153181016994246566231 ( 163 digits) SNFS difficulty: 167 digits. Divisors found: r1=15109262159303914200235970117303182989937 (pp41) r2=583000610683684808553479287729266199706051525409391 (pp51) r3=604072035468266231595132183421912411669884078283681280966762593973524393 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 69.44 hours. Scaled time: 82.77 units (timescale=1.192). Factorization parameters were as follows: name: KA_1_7_165_1 n: 5321094815258239382753001430044231600651834114869134324387242675180418371079849679071468954737437227709601250457281585686254946955336060394426153181016994246566231 type: snfs skew: 1.65 deg: 5 c5: 5 c0: -61 m: 2000000000000000000000000000000000 rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:348513, AFBsize:348832, largePrimes:7702629 encountered Relations: rels:7363647, finalFF:782908 Max relations in full relation-set: 28 Initial matrix: 697410 x 782908 with sparse part having weight 38983048. Pruned matrix : 613328 x 616879 with weight 24922462. Total sieving time: 61.20 hours. Total relation processing time: 0.31 hours. Matrix solve time: 7.66 hours. Total square root time: 0.28 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.6,2.6,100000 total time: 69.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(2·10156+61)/9 = (2)1559<156> = 7 · 43651 · 6364525991<10> · 7275092106669707<16> · C125
C125 = P38 · P87
P38 = 16178975375611820184681864685192671467<38>
P87 = 970822145125557723186204385444462181385283099465504350555333554320195494843596374000943<87>
Number: n N=15706907580085043270694630057489479125382622982598428533807291223433624832987908942174576079356758981977113837332597347193381 ( 125 digits) SNFS difficulty: 156 digits. Divisors found: r1=16178975375611820184681864685192671467 (pp38) r2=970822145125557723186204385444462181385283099465504350555333554320195494843596374000943 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.90 hours. Scaled time: 35.95 units (timescale=1.444). Factorization parameters were as follows: name: KA_2_155_9 n: 15706907580085043270694630057489479125382622982598428533807291223433624832987908942174576079356758981977113837332597347193381 skew: 1.25 deg: 5 c5: 20 c0: 61 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217357, largePrimes:6745421 encountered Relations: rels:6220624, finalFF:488017 Max relations in full relation-set: 28 Initial matrix: 434239 x 488017 with sparse part having weight 29966477. Pruned matrix : 386169 x 388404 with weight 19662895. Total sieving time: 21.52 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.09 hours. Total square root time: 0.12 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 24.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
3·10156+1 = 3(0)1551<157> = 1297177961174555143<19> · 2667221954249769199<19> · C120
C120 = P44 · P77
P44 = 14120876924458604253497663539366736456941609<44>
P77 = 61404594566872242448503276730228599364013338843483356019440687469832045039377<77>
(83·10167+61)/9 = 9(2)1669<168> = 7 · 11 · 17 · C165
C165 = P36(1440...) · P36(2519...) · P46 · P49
P36(1440...) = 144036627455472159894503296079104823<36>
P36(2519...) = 251944573572582320400006996542619031<36>
P46 = 7807715710023051816711416095697929674094210463<46>
P49 = 2486531651431884079209006357389967329362985364599<49>
Number: n N=704524233935998641880994822171292759528053645700704524233935998641880994822171292759528053645700704524233935998641880994822171292759528053645700704524233935998641881 ( 165 digits) SNFS difficulty: 168 digits. Divisors found: r1=144036627455472159894503296079104823 (pp36) r2=251944573572582320400006996542619031 (pp36) r3=7807715710023051816711416095697929674094210463 (pp46) r4=2486531651431884079209006357389967329362985364599 (pp49) Version: GGNFS-0.77.1-20051202-athlon Total time: 124.98 hours. Scaled time: 164.85 units (timescale=1.319). Factorization parameters were as follows: name: KA_9_2_166_9 n: 704524233935998641880994822171292759528053645700704524233935998641880994822171292759528053645700704524233935998641880994822171292759528053645700704524233935998641881 skew: 0.37 deg: 5 c5: 8300 c0: 61 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4900001) Primes: RFBsize:348513, AFBsize:348547, largePrimes:8346543 encountered Relations: rels:7970546, finalFF:806767 Max relations in full relation-set: 48 Initial matrix: 697127 x 806767 with sparse part having weight 49889352. Pruned matrix : 609729 x 613278 with weight 34943447. Total sieving time: 112.71 hours. Total relation processing time: 0.41 hours. Matrix solve time: 10.22 hours. Total square root time: 1.64 hours, sqrts: 13. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 124.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GMP-ECM 5.0 B1=803000, GGNFS-0.77.1-20051202-athlon
(13·10156-31)/9 = 1(4)1551<157> = 81223 · 33503305313<11> · 109654833847764713<18> · C124
C124 = P32 · P93
P32 = 33221106335396792559728583649939<32>
P93 = 145710983338393792427706737229266963776824439301949657734730802429613705232080064468338379037<93>
(16·10155-1)/3 = 5(3)155<156> = 241 · 563 · 9720432861379084146529<22> · C129
C129 = P56 · P73
P56 = 90029914555725552917405713267859877539437849056631020317<56>
P73 = 4491597666962551358812885925456249780291015698726653486747753928606021907<73>
Number: n N=404378154175334737009800640537312448779192500233832940020546894325311977216650147743526077094343949934288407943962237103864084519 ( 129 digits) SNFS difficulty: 156 digits. Divisors found: r1=90029914555725552917405713267859877539437849056631020317 (pp56) r2=4491597666962551358812885925456249780291015698726653486747753928606021907 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.14 hours. Scaled time: 16.09 units (timescale=0.727). Factorization parameters were as follows: name: KA_5_3_155 n: 404378154175334737009800640537312448779192500233832940020546894325311977216650147743526077094343949934288407943962237103864084519 skew: 1.15 deg: 5 c5: 1 c0: -2 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216491, largePrimes:6892018 encountered Relations: rels:6481806, finalFF:584788 Max relations in full relation-set: 28 Initial matrix: 433371 x 584788 with sparse part having weight 34883238. Pruned matrix : 301211 x 303441 with weight 16933179. Total sieving time: 18.50 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.30 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 22.14 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(5·10159+31)/9 = (5)1589<159> = 13 · 97 · C156
C156 = P67 · P90
P67 = 1385395064995660441245964715337390478851164754214255342899601827751<67>
P90 = 318008532012570179000633455554438524970194717548867326486492267515298642222528842549960869<90>
Number: n N=440567450876729227244691162216935412811701471495285928275618997268481804564278791082914794255000440567450876729227244691162216935412811701471495285928275619 ( 156 digits) SNFS difficulty: 160 digits. Divisors found: r1=1385395064995660441245964715337390478851164754214255342899601827751 (pp67) r2=318008532012570179000633455554438524970194717548867326486492267515298642222528842549960869 (pp90) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 32.40 hours. Scaled time: 44.32 units (timescale=1.368). Factorization parameters were as follows: name: KA_5_158_9 n: 440567450876729227244691162216935412811701471495285928275618997268481804564278791082914794255000440567450876729227244691162216935412811701471495285928275619 skew: 2.28 deg: 5 c5: 1 c0: 62 m: 100000000000000000000000000000000 type: snfs rlim: 4500000 alim: 4500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:315948, AFBsize:316092, largePrimes:7163062 encountered Relations: rels:6818762, finalFF:732797 Max relations in full relation-set: 28 Initial matrix: 632104 x 732797 with sparse part having weight 32214102. Pruned matrix : 527782 x 531006 with weight 17799091. Total sieving time: 28.25 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.53 hours. Total square root time: 0.41 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4500000,4500000,28,28,48,48,2.5,2.5,100000 total time: 32.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-nocona
6·10162+1 = 6(0)1611<163> = 7 · 409 · 461 · 1297 · 71355177903228522649<20> · 105440523536650831469<21> · C114
C114 = P52 · P63
P52 = 2635929378062082616090181215642985097332592374330359<52>
P63 = 176734845085883901472849673672121748213269636335439399849960889<63>
Number: 60001_162 N=465860570289132470526766504662099277577757656808920530081522403634714863130373216991557016779244393574693715329151 ( 114 digits) Divisors found: r1=2635929378062082616090181215642985097332592374330359 (pp52) r2=176734845085883901472849673672121748213269636335439399849960889 (pp63) Version: GGNFS-0.77.1-20050930-nocona Total time: 25.27 hours. Scaled time: 23.50 units (timescale=0.930). Factorization parameters were as follows: name: 60001_162 n: 465860570289132470526766504662099277577757656808920530081522403634714863130373216991557016779244393574693715329151 skew: 52979.34 # norm 6.29e+15 c5: 28800 c4: -4744474328 c3: -240924644592942 c2: 12887096438141057377 c1: 343182609850863365434888 c0: -2211251175528614193036100335 # alpha -6.42 Y1: 962944882867 Y0: -6946638145470387030218 # Murphy_E 6.24e-10 # M 422905541741467303181853397627552337882467775546056669673492939882919014769355778867593327900220590802340709537733 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 2925001) Primes: RFBsize:256726, AFBsize:256259, largePrimes:7444354 encountered Relations: rels:7318652, finalFF:599647 Max relations in full relation-set: 28 Initial matrix: 513063 x 599647 with sparse part having weight 48328634. Pruned matrix : 441183 x 443812 with weight 30948811. Total sieving time: 21.86 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.08 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 25.27 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
(5·10169+13)/9 = (5)1687<169> = 7 · 25841 · 708371 · 14831317 · C151
C151 = P38 · C114
P38 = 13419206138394747668082246000933204319<38>
C114 = [217847622061418072255581563015349258221880416028325068401083564087901225152792849614952022038191434366089299614067<114>]
By Robert Backstrom / GMP-ECM 5.0 B1=618000, B1=522500, GGNFS-0.77.1-20060513-athlon-xp
3·10157+1 = 3(0)1561<158> = 17 · 772006355756021<15> · 7401761985090177770309<22> · C120
C120 = P36 · P85
P36 = 248529780208636811981353203838303673<36>
P85 = 1242618760787690302557066234608127824342363929964979635799811131131051551936554388849<85>
(34·10156-7)/9 = 3(7)156<157> = 3 · 131 · 3931 · 11472824853206904594929<23> · C129
C129 = P34 · P95
P34 = 6782564829732305170470333318140549<34>
P95 = 31425087546025715646735982184029372225640172487522725906443903355358448487384609969906116186239<95>
(10167+71)/9 = (1)1669<167> = 89 · C165
C165 = P59 · P106
P59 = 91311343163343446323968739512561574329110904059483452421063<59>
P106 = 1367233694562301051553984933575756012125192786758201704704070474144368666604173622117402417959850492600417<106>
Number: n N=124843945068664169787765293383270911360799001248439450686641697877652933832709113607990012484394506866416978776529338327091136079900124843945068664169787765293383271 ( 165 digits) SNFS difficulty: 167 digits. Divisors found: r1=91311343163343446323968739512561574329110904059483452421063 (pp59) r2=1367233694562301051553984933575756012125192786758201704704070474144368666604173622117402417959850492600417 (pp106) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 108.25 hours. Scaled time: 147.65 units (timescale=1.364). Factorization parameters were as follows: name: KA_1_166_9 n: 124843945068664169787765293383270911360799001248439450686641697877652933832709113607990012484394506866416978776529338327091136079900124843945068664169787765293383271 skew: 0.93 deg: 5 c5: 100 c0: 71 m: 1000000000000000000000000000000000 type: snfs rlim: 5000000 alim: 5000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4500001) Primes: RFBsize:348513, AFBsize:350387, largePrimes:7881774 encountered Relations: rels:7565246, finalFF:794688 Max relations in full relation-set: 28 Initial matrix: 698964 x 794688 with sparse part having weight 43936217. Pruned matrix : 616009 x 619567 with weight 29724900. Total sieving time: 98.17 hours. Total relation processing time: 0.59 hours. Matrix solve time: 8.69 hours. Total square root time: 0.80 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,28,28,48,48,2.5,2.5,100000 total time: 108.25 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10155-13)/9 = (4)1543<155> = 7 · 3808559 · 6125229081493124399<19> · C129
C129 = P64 · P66
P64 = 1430852648491397818456316645370885067116465513802945727285403371<64>
P66 = 190213574326970416645495975919797015608841251458428834035091173959<66>
Number: n N=272167596604760973939922895849222045319822735977613961182574173096110354671336539629503110460161984822070057750007276533246015789 ( 129 digits) SNFS difficulty: 155 digits. Divisors found: r1=1430852648491397818456316645370885067116465513802945727285403371 (pp64) r2=190213574326970416645495975919797015608841251458428834035091173959 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.66 hours. Scaled time: 35.49 units (timescale=1.439). Factorization parameters were as follows: name: KA_4_154_3 n: 272167596604760973939922895849222045319822735977613961182574173096110354671336539629503110460161984822070057750007276533246015789 skew: 1.27 deg: 5 c5: 4 c0: -13 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216856, largePrimes:6824327 encountered Relations: rels:6301687, finalFF:489949 Max relations in full relation-set: 28 Initial matrix: 433736 x 489949 with sparse part having weight 31276439. Pruned matrix : 385079 x 387311 with weight 20380733. Total sieving time: 21.27 hours. Total relation processing time: 0.17 hours. Matrix solve time: 3.16 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 24.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GMP-ECM 5.0 B1=184500, B1=595000, GGNFS-0.77.1-20051202-athlon
8·10167-3 = 7(9)1667<168> = 11 · 71 · C166
C166 = P31 · P35 · P100
P31 = 6263376936571872349805965794179<31>
P35 = 48366409729269876335151280681703887<35>
P100 = 3381322183264895436089159421503432927307771620830849708685343102501831818018700928611257460676963669<100>
6·10155-1 = 5(9)155<156> = 17 · 855694920236157839951575243<27> · C155
C155 = P38 · P91
P38 = 23563769814083175297504581851112348513<38>
P91 = 1750405235111493782019464819415041844908100509751846238928281927522333980653932785261889133<91>
Number: n N=41246146041533380581382937109329549557946829659714681794095420363066533915011986623900432662432693705651217155512046742663409229 ( 128 digits) SNFS difficulty: 155 digits. Divisors found: r1=23563769814083175297504581851112348513 (pp38) r2=1750405235111493782019464819415041844908100509751846238928281927522333980653932785261889133 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.30 hours. Scaled time: 28.06 units (timescale=1.454). Factorization parameters were as follows: name: KA_5_9_155 n: 41246146041533380581382937109329549557946829659714681794095420363066533915011986623900432662432693705651217155512046742663409229 skew: 0.70 deg: 5 c5: 6 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:216816, AFBsize:216821, largePrimes:6743866 encountered Relations: rels:6305075, finalFF:556166 Max relations in full relation-set: 28 Initial matrix: 433703 x 556166 with sparse part having weight 32299756. Pruned matrix : 326541 x 328773 with weight 16053392. Total sieving time: 16.97 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.06 hours. Total square root time: 0.10 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(86·10155+31)/9 = 9(5)1549<156> = 11 · 17 · 19 · 107 · 3329 · 234547 · 49916499175544369<17> · C125
C125 = P51 · P75
P51 = 146893790346276534914663990304041376179590078145821<51>
P75 = 439021432742427786693807047121586584432982187601506537680594815438795711667<75>
Number: n N=64489522298788131872083990903207589990122986848898622434996970678191618339288837124645592388512510110304876458442669496993607 ( 125 digits) SNFS difficulty: 156 digits. Divisors found: r1=146893790346276534914663990304041376179590078145821 (pp51) r2=439021432742427786693807047121586584432982187601506537680594815438795711667 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.08 hours. Scaled time: 36.31 units (timescale=1.448). Factorization parameters were as follows: name: KA_9_5_154_9 n: 64489522298788131872083990903207589990122986848898622434996970678191618339288837124645592388512510110304876458442669496993607 skew: 0.82 deg: 5 c5: 86 c0: 31 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:217122, largePrimes:6799735 encountered Relations: rels:6278199, finalFF:494460 Max relations in full relation-set: 28 Initial matrix: 434004 x 494460 with sparse part having weight 30387568. Pruned matrix : 381067 x 383301 with weight 19287909. Total sieving time: 21.81 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.02 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.08 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(43·10164-7)/9 = 4(7)164<165> = 32 · C164
C164 = P40 · P54 · P71
P40 = 2631129533782044843927495361912765542751<40>
P54 = 215880931151977979223281199254244241548167819075235827<54>
P71 = 93460247031749192280709130483295872291224585644076339206811461233287789<71>
Number: n N=53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753 ( 164 digits) SNFS difficulty: 166 digits. Divisors found: r1=2631129533782044843927495361912765542751 (pp40) r2=215880931151977979223281199254244241548167819075235827 (pp54) r3=93460247031749192280709130483295872291224585644076339206811461233287789 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 117.61 hours. Scaled time: 140.90 units (timescale=1.198). Factorization parameters were as follows: name: KA_4_7_164 n: 53086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753086419753 type: snfs skew: 1.10 deg: 5 c5: 43 c0: -70 m: 1000000000000000000000000000000000 rlim: 3500000 alim: 3500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 4500001) Primes: RFBsize:250150, AFBsize:248761, largePrimes:8106263 encountered Relations: rels:7638338, finalFF:562340 Max relations in full relation-set: 28 Initial matrix: 498976 x 562340 with sparse part having weight 56255595. Pruned matrix : 471675 x 474233 with weight 44274525. Total sieving time: 106.62 hours. Total relation processing time: 0.42 hours. Matrix solve time: 9.71 hours. Total square root time: 0.86 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,3500000,3500000,28,28,48,48,2.5,2.5,100000 total time: 117.61 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(16·10155-61)/9 = 1(7)1541<156> = 33 · 11 · 313 · 3413 · 564653293741502455894429<24> · C123
C123 = P57 · P67
P57 = 147578844538555167154379562564198635879111107545264229249<57>
P67 = 6724104070964062862708978830908866005677012688304296879046893860907<67>
Number: n N=992335509349871354723416775422313367980880327033705308667135048478218116917002201583659164168205143446837552843965167068843 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=147578844538555167154379562564198635879111107545264229249 (pp57) r2=6724104070964062862708978830908866005677012688304296879046893860907 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.42 hours. Scaled time: 28.06 units (timescale=1.445). Factorization parameters were as follows: name: KA_1_7_154_1 n: 992335509349871354723416775422313367980880327033705308667135048478218116917002201583659164168205143446837552843965167068843 skew: 2.61 deg: 5 c5: 1 c0: -122 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:216816, AFBsize:216857, largePrimes:6849328 encountered Relations: rels:6484465, finalFF:621032 Max relations in full relation-set: 28 Initial matrix: 433737 x 621032 with sparse part having weight 35182490. Pruned matrix : 269851 x 272083 with weight 16048658. Total sieving time: 17.58 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.63 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(31·10166-13)/9 = 3(4)1653<167> = 32 · C166
C166 = P44 · P55 · P68
P44 = 11249365279272105191944705856137109893341383<44>
P55 = 4629217185850101516750522211783509052473169342352740507<55>
P68 = 73492174772991205921386920343213336461480210780035033172068546448767<68>
Number: n N=3827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827 ( 166 digits) SNFS difficulty: 167 digits. Divisors found: r1=11249365279272105191944705856137109893341383 (pp44) r2=4629217185850101516750522211783509052473169342352740507 (pp55) r3=73492174772991205921386920343213336461480210780035033172068546448767 (pp68) Version: GGNFS-0.77.1-20051202-athlon Total time: 84.72 hours. Scaled time: 112.08 units (timescale=1.323). Factorization parameters were as follows: name: KA_3_4_165_3 n: 3827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827160493827 skew: 0.53 deg: 5 c5: 310 c0: -13 m: 1000000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:216816, AFBsize:216917, largePrimes:7638831 encountered Relations: rels:7082488, finalFF:488644 Max relations in full relation-set: 48 Initial matrix: 433800 x 488644 with sparse part having weight 62247574. Pruned matrix : 416718 x 418951 with weight 46486994. Total sieving time: 74.95 hours. Total relation processing time: 0.30 hours. Matrix solve time: 8.93 hours. Total square root time: 0.54 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 84.72 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM 5.0.3 B1=3000000
(8·10183-17)/9 = (8)1827<183> = C183
C183 = P31 · C153
P31 = 1259337356542822108306204266629<31>
C153 = [705838577939987753279711060237017228585936509399199518627682834424778845002336309634782236276759532406698056060483434655977248535150104022612858176741003<153>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(13·10155-1)/3 = 4(3)155<156> = 1217 · 1758541 · 451860930139252966767713<24> · C123
C123 = P42 · P81
P42 = 664604448458801168137249105380355621156169<42>
P81 = 674234521819545742193894263762175555094507255650621412062733023543616234671763137<81>
Number: n N=448099262505762739810790562822297173729543427286178125601790590364287468716846509427825261974678202403285587890997654342153 ( 123 digits) SNFS difficulty: 156 digits. Divisors found: r1=664604448458801168137249105380355621156169 (pp42) r2=674234521819545742193894263762175555094507255650621412062733023543616234671763137 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.55 hours. Scaled time: 31.23 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_3_155 n: 448099262505762739810790562822297173729543427286178125601790590364287468716846509427825261974678202403285587890997654342153 skew: 0.60 deg: 5 c5: 13 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:215931, largePrimes:7088794 encountered Relations: rels:6747346, finalFF:648840 Max relations in full relation-set: 28 Initial matrix: 432812 x 648840 with sparse part having weight 40651871. Pruned matrix : 253312 x 255540 with weight 20462953. Total sieving time: 19.43 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.90 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 21.55 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By suberi / GMP-ECM 6.1.2 B1=3000000
(5·10190+13)/9 = (5)1897<190> = 811 · 907 · 10837804441<11> · 2785656325929626661973<22> · C153
C153 = P30 · C124
P30 = 141420727163771568086127494461<30>
C124 = [1768957675798608538570697178394242001598658689261756493802670073290117602123758045787374992447868719160331461600669004667317<124>]
(5·10179+13)/9 = (5)1787<179> = 3 · 509 · 1067600111<10> · C167
C167 = P30 · C137
P30 = 501390694625542533719253930763<30>
C137 = [67967857156207860206815546895977987863005066787709361009704730235070830216414344853956065234054495527685695832614271671186671680546533287<137>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
7·10154+1 = 7(0)1531<155> = 43 · 5623 · 12401 · 79861933 · 1575233648179<13> · C126
C126 = P51 · P75
P51 = 193370246682439687632641395275617696499919070409857<51>
P75 = 959688618561589603204660736875782818852796083063317811556994979114317575491<75>
Number: n N=185575224909584348798499980746588371732865042833545760086485528245996049062231370685862811259790810958949845914972371908014787 ( 126 digits) SNFS difficulty: 155 digits. Divisors found: r1=193370246682439687632641395275617696499919070409857 (pp51) r2=959688618561589603204660736875782818852796083063317811556994979114317575491 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.11 hours. Scaled time: 40.70 units (timescale=1.448). Factorization parameters were as follows: name: KA_7_0_153_1 n: 185575224909584348798499980746588371732865042833545760086485528245996049062231370685862811259790810958949845914972371908014787 skew: 1.07 deg: 5 c5: 7 c0: 10 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:217031, largePrimes:7072813 encountered Relations: rels:6598043, finalFF:530393 Max relations in full relation-set: 28 Initial matrix: 433912 x 530393 with sparse part having weight 36370966. Pruned matrix : 353629 x 355862 with weight 21272652. Total sieving time: 24.79 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.07 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.11 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(4·10163-13)/9 = (4)1623<163> = 3 · C163
C163 = P65 · P99
P65 = 11928511488576416652518926449031014706382259688259889449372428463<65>
P99 = 124196676416856584831190356834443566414147381261107180590809616102721629362131706129660584348140487<99>
Number: n N=1481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 ( 163 digits) SNFS difficulty: 163 digits. Divisors found: r1=11928511488576416652518926449031014706382259688259889449372428463 (pp65) r2=124196676416856584831190356834443566414147381261107180590809616102721629362131706129660584348140487 (pp99) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 46.36 hours. Scaled time: 63.28 units (timescale=1.365). Factorization parameters were as follows: name: KA_4_162_3 n: 1481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481481 skew: 0.64 deg: 5 c5: 125 c0: -13 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:216816, AFBsize:216271, largePrimes:7206086 encountered Relations: rels:6681195, finalFF:486083 Max relations in full relation-set: 28 Initial matrix: 433152 x 486083 with sparse part having weight 37948638. Pruned matrix : 394389 x 396618 with weight 27334391. Total sieving time: 42.09 hours. Total relation processing time: 0.26 hours. Matrix solve time: 3.88 hours. Total square root time: 0.13 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 46.36 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GMP-ECM 6.1.2 B1=3000000
8·10184-1 = 7(9)184<185> = C185
C185 = P43 · C143
P43 = 1999080062901581503437318550484654902159553<43>
C143 = [40018407208705453170393588274967598668194718998797708185694406998207268713775631752044327280691107243190075250207288752868081397525726798190783<143>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
(5·10159+13)/9 = (5)1587<159> = 31 · 88422043643857462597<20> · 1425603659062897082122821966839<31> · C108
C108 = P42 · P66
P42 = 963375458771271206396670106466303330684323<42>
P66 = 147574347817773759929890143833175414071639106091723198758761439283<66>
Number: 55557_159 N=142169505031818941787456133521823682753734366848698561502053979968080314542932254864568794355447616804460409 ( 108 digits) Divisors found: r1=963375458771271206396670106466303330684323 (pp42) r2=147574347817773759929890143833175414071639106091723198758761439283 (pp66) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.50 hours. Scaled time: 10.75 units (timescale=0.935). Factorization parameters were as follows: name: 55557_159 n: 142169505031818941787456133521823682753734366848698561502053979968080314542932254864568794355447616804460409 skew: 26374.85 # norm 2.40e+15 c5: 35280 c4: 934399884 c3: -89832636229180 c2: 1523184560386315315 c1: 18999259139000664323700 c0: -99692038060039600471149984 # alpha -8.27 Y1: 264069173159 Y0: -331935532854754032235 # Murphy_E 1.80e-09 # M 123395139583000001562421371741684712074865364389449685364637536523825175006068414011882084180445111450434185 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [900000, 1380001) Primes: RFBsize:135072, AFBsize:134617, largePrimes:4669123 encountered Relations: rels:4865738, finalFF:485020 Max relations in full relation-set: 28 Initial matrix: 269770 x 485020 with sparse part having weight 47009771. Pruned matrix : 179665 x 181077 with weight 17208918. Polynomial selection time: 0.61 hours. Total sieving time: 10.58 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.16 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,49,49,2.6,2.6,60000 total time: 11.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Intel(R) Core(TM)2 Quad CPU @ 2.40GHz stepping 07 Memory: 4043036k/4718592k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4815.35 BogoMIPS (lpj=2407676) Calibrating delay using timer specific routine.. 4810.30 BogoMIPS (lpj=2405150) Calibrating delay using timer specific routine.. 4810.26 BogoMIPS (lpj=2405133) Calibrating delay using timer specific routine.. 4810.29 BogoMIPS (lpj=2405148) Total of 4 processors activated (19246.21 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(8·10163-71)/9 = (8)1621<163> = 107 · C161
C161 = P60 · P102
P60 = 331525272836625077861926530888596074621005958963348147811333<60>
P102 = 250580377244662029958853007009725953486242048898063827611155437846422355414015990463558317384787413751<102>
Number: n N=83073727933541017653167185877466251298026998961578400830737279335410176531671858774662512980269989615784008307372793354101765316718587746625129802699896157840083 ( 161 digits) SNFS difficulty: 163 digits. Divisors found: r1=331525272836625077861926530888596074621005958963348147811333 (pp60) r2=250580377244662029958853007009725953486242048898063827611155437846422355414015990463558317384787413751 (pp102) Version: GGNFS-0.77.1-20051202-athlon Total time: 76.77 hours. Scaled time: 111.16 units (timescale=1.448). Factorization parameters were as follows: name: KA_8_162_1 n: 83073727933541017653167185877466251298026998961578400830737279335410176531671858774662512980269989615784008307372793354101765316718587746625129802699896157840083 skew: 0.78 deg: 5 c5: 250 c0: -71 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3600001) Primes: RFBsize:216816, AFBsize:215722, largePrimes:7882612 encountered Relations: rels:7405836, finalFF:485486 Max relations in full relation-set: 28 Initial matrix: 432604 x 485486 with sparse part having weight 50002622. Pruned matrix : 413633 x 415860 with weight 39761888. Total sieving time: 68.97 hours. Total relation processing time: 0.28 hours. Matrix solve time: 7.34 hours. Total square root time: 0.18 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 76.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / Msieve v. 1.19
(5·10178+13)/9 = (5)1777<178> = 1528613 · 9850196670187<13> · 2526077546800091<16> · 51897680774988553<17> · 1936097886341375452565514421758559<34> · C94
C94 = P44 · P50
P44 = 24797876921485497067144513611132264335092469<44>
P50 = 58620376640769325233358205994469484508814376477459<50>
Wed May 2 08:05:47 2007 Wed May 2 08:05:47 2007 Wed May 2 08:05:47 2007 Msieve v. 1.19 Wed May 2 08:05:47 2007 random seeds: 0e7d1e7b 64086647 Wed May 2 08:05:47 2007 factoring 1453660885028921178823036658094874193257359268776143901154311382982677794100725313703259156271 (94 digits) Wed May 2 08:05:47 2007 commencing quadratic sieve (93-digit input) Wed May 2 08:05:47 2007 using multiplier of 1 Wed May 2 08:05:47 2007 sieve interval: 9 blocks of size 65536 Wed May 2 08:05:47 2007 processing polynomials in batches of 6 Wed May 2 08:05:47 2007 using a sieve bound of 1990607 (74118 primes) Wed May 2 08:05:47 2007 using large prime bound of 256788303 (27 bits) Wed May 2 08:05:47 2007 using double large prime bound of 1371624962518986 (42-51 bits) Wed May 2 08:05:47 2007 using trial factoring cutoff of 53 bits Wed May 2 08:05:47 2007 polynomial 'A' values have 12 factors Wed May 2 10:35:55 2007 74609 relations (19982 full + 54627 combined from 1001183 partial), need 74214 Wed May 2 10:35:56 2007 begin with 1021165 relations Wed May 2 10:35:56 2007 reduce to 185310 relations in 10 passes Wed May 2 10:35:56 2007 attempting to read 185310 relations Wed May 2 10:35:57 2007 recovered 185310 relations Wed May 2 10:35:57 2007 recovered 165356 polynomials Wed May 2 10:35:58 2007 attempting to build 74609 cycles Wed May 2 10:35:58 2007 found 74609 cycles in 6 passes Wed May 2 10:35:58 2007 distribution of cycle lengths: Wed May 2 10:35:58 2007 length 1 : 19982 Wed May 2 10:35:58 2007 length 2 : 14145 Wed May 2 10:35:58 2007 length 3 : 12995 Wed May 2 10:35:58 2007 length 4 : 9919 Wed May 2 10:35:58 2007 length 5 : 6952 Wed May 2 10:35:58 2007 length 6 : 4552 Wed May 2 10:35:58 2007 length 7 : 2683 Wed May 2 10:35:58 2007 length 9+: 3381 Wed May 2 10:35:58 2007 largest cycle: 21 relations Wed May 2 10:35:58 2007 matrix is 74118 x 74609 with weight 4562903 (avg 61.16/col) Wed May 2 10:35:58 2007 filtering completed in 4 passes Wed May 2 10:35:58 2007 matrix is 72366 x 72430 with weight 4338494 (avg 59.90/col) Wed May 2 10:35:59 2007 saving the first 48 matrix rows for later Wed May 2 10:35:59 2007 matrix is 72318 x 72430 with weight 3394140 (avg 46.86/col) Wed May 2 10:35:59 2007 matrix includes 32 packed rows Wed May 2 10:35:59 2007 using block size 28972 for processor cache size 4096 kB Wed May 2 10:36:24 2007 lanczos halted after 1146 iterations Wed May 2 10:36:24 2007 recovered 17 nontrivial dependencies Wed May 2 10:36:24 2007 prp44 factor: 24797876921485497067144513611132264335092469 Wed May 2 10:36:24 2007 prp50 factor: 58620376640769325233358205994469484508814376477459 Wed May 2 10:36:24 2007 elapsed time 02:30:37
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(7·10163+11)/9 = (7)1629<163> = 32 · 41 · C161
C161 = P54 · P107
P54 = 514515297087868502474983030087617316989796040442834827<54>
P107 = 40966689769893610626476927258402725629496499459917386396791475858410644488358780719013787208922173833093833<107>
Number: n N=21077988557663354411321890996687744655224330021077988557663354411321890996687744655224330021077988557663354411321890996687744655224330021077988557663354411321891 ( 161 digits) SNFS difficulty: 163 digits. Divisors found: r1=514515297087868502474983030087617316989796040442834827 (pp54) r2=40966689769893610626476927258402725629496499459917386396791475858410644488358780719013787208922173833093833 (pp107) Version: GGNFS-0.77.1-20051202-athlon Total time: 73.09 hours. Scaled time: 96.69 units (timescale=1.323). Factorization parameters were as follows: name: KA_7_162_9 n: 21077988557663354411321890996687744655224330021077988557663354411321890996687744655224330021077988557663354411321890996687744655224330021077988557663354411321891 skew: 0.27 deg: 5 c5: 7000 c0: 11 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3100001) Primes: RFBsize:216816, AFBsize:216287, largePrimes:7606035 encountered Relations: rels:7066578, finalFF:507191 Max relations in full relation-set: 48 Initial matrix: 433170 x 507191 with sparse part having weight 57968673. Pruned matrix : 408331 x 410560 with weight 39468405. Total sieving time: 65.31 hours. Total relation processing time: 0.29 hours. Matrix solve time: 7.28 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 73.09 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(34·10163-43)/9 = 3(7)1623<164> = 3 · 11 · 127 · C160
C160 = P65 · P95
P65 = 91390426373664897185118886740810108717145752199108537782197799559<65>
P95 = 98632046262711639984435686270799324642733520958702869493254441867094251159024695060193689043317<95>
Number: n N=9014024762056258119250245234497203001140009014024762056258119250245234497203001140009014024762056258119250245234497203001140009014024762056258119250245234497203 ( 160 digits) SNFS difficulty: 164 digits. Divisors found: r1=91390426373664897185118886740810108717145752199108537782197799559 (pp65) r2=98632046262711639984435686270799324642733520958702869493254441867094251159024695060193689043317 (pp95) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 79.19 hours. Scaled time: 108.17 units (timescale=1.366). Factorization parameters were as follows: name: KA_3_7_162_3 n: 9014024762056258119250245234497203001140009014024762056258119250245234497203001140009014024762056258119250245234497203001140009014024762056258119250245234497203 skew: 0.53 deg: 5 c5: 2125 c0: -86 m: 200000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 3500001) Primes: RFBsize:216816, AFBsize:216441, largePrimes:7805786 encountered Relations: rels:7321063, finalFF:489799 Max relations in full relation-set: 28 Initial matrix: 433323 x 489799 with sparse part having weight 49107580. Pruned matrix : 412563 x 414793 with weight 38441893. Total sieving time: 73.32 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.20 hours. Total square root time: 0.36 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 79.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
8·10163-3 = 7(9)1627<164> = 7 · 11 · C163
C163 = P47 · P52 · P64
P47 = 89581069649366015235300671433024669118796111357<47>
P52 = 1328960328047374779277655762328347541585843851574289<52>
P64 = 8727121078291846984177702899623421473981265858116567223440296757<64>
Number: n N=1038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961 ( 163 digits) SNFS difficulty: 163 digits. Divisors found: r1=89581069649366015235300671433024669118796111357 (pp47) r2=1328960328047374779277655762328347541585843851574289 (pp52) r3=8727121078291846984177702899623421473981265858116567223440296757 (pp64) Version: GGNFS-0.77.1-20051202-athlon Total time: 56.88 hours. Scaled time: 68.02 units (timescale=1.196). Factorization parameters were as follows: name: KA_7_9_162_7 n: 1038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961038961 type: snfs skew: 0.41 deg: 5 c5: 250 c0: -3 m: 200000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2300001) Primes: RFBsize:216816, AFBsize:216651, largePrimes:7103403 encountered Relations: rels:6546431, finalFF:496607 Max relations in full relation-set: 28 Initial matrix: 433533 x 496607 with sparse part having weight 35754138. Pruned matrix : 386820 x 389051 with weight 24746569. Total sieving time: 51.96 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.31 hours. Total square root time: 0.34 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,163,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 56.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By suberi / GMP-ECM 6.1.2 B1=3000000
(5·10195+13)/9 = (5)1947<195> = C195
C195 = P39 · P157
P39 = 293923582732541876305980115142461713161<39>
P157 = 1890136036008678464132934523184891613446562306896411362973575981503407833876886244603645696907973797637476002009415129925578694940419444733815604163115952637<157>
(5·10175+13)/9 = (5)1747<175> = 7 · 43 · 149 · 1499 · 14251 · C163
C163 = P31 · C133
P31 = 3245287931581745301311295513847<31>
C133 = [1786794155374191302871466689817032767120466283217883352210266480367265472931130656381364399208145044807027729642278741101891201645531<133>]
(5·10197+13)/9 = (5)1967<197> = 3 · 151 · 4039753 · 51553300303<11> · 33119551843253<14> · C164
C164 = P31 · P133
P31 = 6580404024701852906940026053969<31>
P133 = 2701972951016802964778536554653481812241749050896874603933106059438368263044746699896453605189606469163356710583422716412312190699563<133>
(5·10159+13)/9 = (5)1587<159> = 31 · 88422043643857462597<20> · C138
C138 = P31 · C108
P31 = 1425603659062897082122821966839<31>
C108 = [142169505031818941787456133521823682753734366848698561502053979968080314542932254864568794355447616804460409<108>]
(5·10178+13)/9 = (5)1777<178> = 1528613 · 9850196670187<13> · 2526077546800091<16> · 51897680774988553<17> · C127
C127 = P34 · C94
P34 = 1936097886341375452565514421758559<34>
C94 = [1453660885028921178823036658094874193257359268776143901154311382982677794100725313703259156271<94>]
By suberi / GMP-ECM 6.1.2 B1=3000000
(10176+17)/9 = (1)1753<176> = 13 · 1879391 · 6718199 · C161
C161 = P35 · C127
P35 = 43731936268508244866927446133249317<35>
C127 = [1547908998692254006817668407385442013503701471074265130054570365447559543406277463390309132007591482864040879451770914663198017<127>]
By suberi / GMP-ECM 6.1.2 B1=3000000
(10198+17)/9 = (1)1973<198> = 10903 · 14765887 · 30620063 · C179
C179 = P37 · P143
P37 = 1106470306688059445573370198780657763<37>
P143 = 20370706632593519622375724577942747394309044829544818549592211014459360143604890305766200820243688122193921133924400853893810356993408166701557<143>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10162+1)/3 = 1(6)1617<163> = 67 · C161
C161 = P77 · P85
P77 = 15021343982458863265099067005237957428313579616162543134808299151295298507741<77>
P85 = 1656018390870730922037745080017419987395416242647949264972839350025244821735227203661<85>
Number: n N=24875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039801 ( 161 digits) SNFS difficulty: 162 digits. Divisors found: r1=15021343982458863265099067005237957428313579616162543134808299151295298507741 (pp77) r2=1656018390870730922037745080017419987395416242647949264972839350025244821735227203661 (pp85) Version: GGNFS-0.77.1-20051202-athlon Total time: 40.32 hours. Scaled time: 58.51 units (timescale=1.451). Factorization parameters were as follows: name: KA_1_6_161_7 n: 24875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039800995024875621890547263681592039801 skew: 0.29 deg: 5 c5: 500 c0: 1 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2100001) Primes: RFBsize:216816, AFBsize:216391, largePrimes:7234005 encountered Relations: rels:6721359, finalFF:495113 Max relations in full relation-set: 28 Initial matrix: 433273 x 495113 with sparse part having weight 39011344. Pruned matrix : 387351 x 389581 with weight 27248773. Total sieving time: 35.60 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.43 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 40.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
P77 is the fourth largest factor found by GGNFS so far in our tables. Congratulations!
See Records.
(83·10160+61)/9 = 9(2)1599<161> = 3 · C161
C161 = P60 · P101
P60 =763644251892931073537547192111224194051499190901748667513491<60>
P101 = 40255316090627542913753162624598825771292696705345565195696208829537695183338310830115705652897654973<101>
Number: n N=30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 161 digits) SNFS difficulty: 161 digits. Divisors found: r1=763644251892931073537547192111224194051499190901748667513491 (pp60) r2=40255316090627542913753162624598825771292696705345565195696208829537695183338310830115705652897654973 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 61.80 hours. Scaled time: 73.97 units (timescale=1.197). Factorization parameters were as follows: name: KA_9_2_159_9 n: 30740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 type: snfs skew: 0.94 deg: 5 c5: 83 c0: 61 m: 100000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2500001) Primes: RFBsize:216816, AFBsize:216307, largePrimes:7209488 encountered Relations: rels:6639658, finalFF:486906 Max relations in full relation-set: 28 Initial matrix: 433188 x 486906 with sparse part having weight 36566778. Pruned matrix : 396137 x 398366 with weight 26704077. Total sieving time: 56.15 hours. Total relation processing time: 0.27 hours. Matrix solve time: 5.25 hours. Total square root time: 0.13 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 61.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(82·10159-1)/9 = 9(1)159<160> = 3 · C160
C160 = P48 · P113
P48 = 241647557727089005892292451432908599283904128733<48>
P113 = 12568043582161895072963384363446372944023458284330325387157152352247464883030826446963412997874721323844798980689<113>
Number: n N=3037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=241647557727089005892292451432908599283904128733 (pp48) r2=12568043582161895072963384363446372944023458284330325387157152352247464883030826446963412997874721323844798980689 (pp113) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 45.19 hours. Scaled time: 61.95 units (timescale=1.371). Factorization parameters were as follows: name: KA_9_1_159 n: 3037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037037 skew: 0.66 deg: 5 c5: 41 c0: -5 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:216816, AFBsize:216857, largePrimes:7255543 encountered Relations: rels:6763085, finalFF:512657 Max relations in full relation-set: 28 Initial matrix: 433738 x 512657 with sparse part having weight 40151255. Pruned matrix : 373681 x 375913 with weight 26539749. Total sieving time: 40.91 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.52 hours. Total square root time: 0.51 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 45.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10161+31)/9 = (5)1609<161> = 7 · C160
C160 = P49 · P51 · P62
P49 = 2438969913365590123358917315136313969549616824191<49>
P51 = 126382113975161545904668128138667915671155888382263<51>
P62 = 25747638113606124053747971056356175569815887788007147104126489<62>
Number: n N=7936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 ( 160 digits) SNFS difficulty: 161 digits. Divisors found: r1=2438969913365590123358917315136313969549616824191 (pp49) r2=126382113975161545904668128138667915671155888382263 (pp51) r3=25747638113606124053747971056356175569815887788007147104126489 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.81 hours. Scaled time: 67.32 units (timescale=1.325). Factorization parameters were as follows: name: KA_5_160_9 n: 7936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507936507937 skew: 0.91 deg: 5 c5: 50 c0: 31 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2200001) Primes: RFBsize:216816, AFBsize:217337, largePrimes:7429297 encountered Relations: rels:6959464, finalFF:557409 Max relations in full relation-set: 48 Initial matrix: 434218 x 557409 with sparse part having weight 52928452. Pruned matrix : 357779 x 360014 with weight 31099006. Total sieving time: 45.45 hours. Total relation processing time: 0.25 hours. Matrix solve time: 4.87 hours. Total square root time: 0.24 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 50.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Yousuke Koide / GMP-ECM B1=1e6 / Apr 25, 2007
101810+1 = 1(0)18091<1811> = 101 · 3541 · 27961 · 928417781 · 3655211741<10> · 469968172441<12> · 2136569912461<13> · 196636530190361<15> · 263346017179961<15> · 15470952779187481<17> · 3294170239985256241<19> · 3467369151629862044701<22> · 3973728652754811772515860861<28> · 314547891171506427278717744569<30> · 22780106292572351730658730234738216404394547689<47> · 2763057708101686443032907255670870301200401399657924257107762182149956480304265507465823191458543338192444247826866701172774820848970862394309509034525824920430145923354279701799097867258088089212682054699054590801<214> · C651 · C706
C706 = P38 · C668
P38 = 81685556537224955443340015680020142181<38>
By Yousuke Koide / GMP-ECM B1=125e4 / Apr 28, 2007
(10787-1)/9 = (1)787<787> = 26759 · 213141637 · C774
C774 = P34 · C741
P34 = 1074022836653095912870566750079013<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GMP-ECM 5.0 B1=548000, B1=580000
(32·10161-23)/9 = 3(5)1603<162> = 11 · C161
C161 = P35 · P36 · P91
P35 = 27259050424085339529239969264230591<35>
P36 = 803134225042376363531999194958705621<36>
P91 = 1476440423481398408509200960925473650542806915465777143424498012793825455523287350714672393<91>
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(4·10159-7)/3 = 1(3)1581<160> = 11 · 23 · C157
C157 = P53 · P105
P53 = 17459658467387443869331205970366143563395038136006397<53>
P105 = 301843947088533742600289415675999685198956945601568904220026735567745228859461977377699316648532130087291<105>
Number: n N=5270092226613965744400527009222661396574440052700922266139657444005270092226613965744400527009222661396574440052700922266139657444005270092226613965744400527 ( 157 digits) SNFS difficulty: 160 digits. Divisors found: r1=17459658467387443869331205970366143563395038136006397 (pp53) r2=301843947088533742600289415675999685198956945601568904220026735567745228859461977377699316648532130087291 (pp105) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 27.80 hours. Scaled time: 37.95 units (timescale=1.365). Factorization parameters were as follows: name: KA_1_3_158_1 n: 5270092226613965744400527009222661396574440052700922266139657444005270092226613965744400527009222661396574440052700922266139657444005270092226613965744400527 skew: 1.77 deg: 5 c5: 2 c0: -35 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216006, largePrimes:6763878 encountered Relations: rels:6238378, finalFF:487616 Max relations in full relation-set: 28 Initial matrix: 432887 x 487616 with sparse part having weight 29932096. Pruned matrix : 383769 x 385997 with weight 19502837. Total sieving time: 24.57 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.79 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 27.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10158-9 = 1(9)1571<159> = 449 · 647 · 263423 · C148
C148 = P59 · P90
P59 = 24629981367007296663635744349139127212651564923379917379247<59>
P90 = 106111291216604957235287331858373630426835509120007905601583219050565604016518888425492737<90>
Number: n N=2613519125494065116104920898710776208411387878266129214050977218917923341224771005061211782302690175095868199383407515341058443407151053865673029039 ( 148 digits) SNFS difficulty: 158 digits. Divisors found: r1=24629981367007296663635744349139127212651564923379917379247 (pp59) r2=106111291216604957235287331858373630426835509120007905601583219050565604016518888425492737 (pp90) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.18 hours. Scaled time: 44.43 units (timescale=1.195). Factorization parameters were as follows: name: KA_1_9_157_1 n: 2613519125494065116104920898710776208411387878266129214050977218917923341224771005061211782302690175095868199383407515341058443407151053865673029039 type: snfs skew: 0.68 deg: 5 c5: 125 c0: -18 m: 20000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216826, largePrimes:6772566 encountered Relations: rels:6340882, finalFF:591658 Max relations in full relation-set: 28 Initial matrix: 433708 x 591658 with sparse part having weight 33045348. Pruned matrix : 297330 x 299562 with weight 16786027. Total sieving time: 34.67 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.20 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 37.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(65·10158+43)/9 = 7(2)1577<159> = 19 · 7448303743<10> · C148
C148 = P70 · P79
P70 = 2283906434721397222715225004575163162522053541582590209420748519155831<70>
P79 = 2234506175283351071706709697979013414681324521591035009309462144344402039107001<79>
Number: n N=5103403032154343834741178855604673819491372467573218373515476529946980780374398851423525859559148205166416041259945688339089065263392267437602072831 ( 148 digits) SNFS difficulty: 160 digits. Divisors found: r1=2283906434721397222715225004575163162522053541582590209420748519155831 (pp70) r2=2234506175283351071706709697979013414681324521591035009309462144344402039107001 (pp79) Version: GGNFS-0.77.1-20051202-athlon Total time: 48.27 hours. Scaled time: 63.86 units (timescale=1.323). Factorization parameters were as follows: name: KA_7_2_157_7 n: 5103403032154343834741178855604673819491372467573218373515476529946980780374398851423525859559148205166416041259945688339089065263392267437602072831 skew: 1.16 deg: 5 c5: 104 c0: 215 m: 50000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2000001) Primes: RFBsize:216816, AFBsize:216546, largePrimes:7326828 encountered Relations: rels:6829370, finalFF:530036 Max relations in full relation-set: 48 Initial matrix: 433428 x 530036 with sparse part having weight 48883949. Pruned matrix : 366007 x 368238 with weight 29896532. Total sieving time: 42.64 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.80 hours. Total square root time: 0.60 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 48.27 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10159-13)/9 = (4)1583<159> = 19 · C158
C157 = P32 · P60 · P67
P32 = 84189747192092171468535381286471<32>
P60 = 154525079685364105720550993011600245901181046815079559422881<60>
P67 = 1798066291303254277894237143922564989013145315594815253125477086847<67>
Number: n N=23391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497 ( 158 digits) SNFS difficulty: 160 digits. Divisors found: r1=84189747192092171468535381286471 (pp32) r2=154525079685364105720550993011600245901181046815079559422881 (pp60) r3=1798066291303254277894237143922564989013145315594815253125477086847 (pp67) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.54 hours. Scaled time: 57.33 units (timescale=1.450). Factorization parameters were as follows: name: KA_4_158_3 n: 23391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497076023391812865497 skew: 2.00 deg: 5 c5: 2 c0: -65 m: 100000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1900001) Primes: RFBsize:216816, AFBsize:216126, largePrimes:7250354 encountered Relations: rels:6745505, finalFF:499663 Max relations in full relation-set: 28 Initial matrix: 433007 x 499663 with sparse part having weight 38893311. Pruned matrix : 382407 x 384636 with weight 26621486. Total sieving time: 34.75 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.30 hours. Total square root time: 0.29 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 39.54 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Wataru Sakai / GMP-ECM 6.1.2 B1=11000000
9·10187+1 = 9(0)1861<188> = 7 · 13 · 4373 · 5717 · 20183 · C175
C175 = P32 · C143
P32 = 24068660737760877432355395211891<32>
C143 = [81435881553600072016173523292608504397039692207307496066394773089520233394402320905105063604429647318463867320494190178646753385161893694575807<143>]
9·10176+1 = 9(0)1751<177> = 382561419661867013<18> · C160
C160 = P34 · C126
P34 = 4153302760261926665697975045884449<34>
C126 = [566431958152526346806249739676161934366904899317226070390042476342664318676795495580542611504898377157441268210176302406249773<126>]
By Wataru Sakai / GMP-ECM 6.1.2 B1=11000000
9·10164+1 = 9(0)1631<165> = 206021 · 987313 · 288154417 · C146
C146 = P33 · P113
P33 = 941596665917777874062834896326197<33>
P113 = 16307446785923947920819586784374506111817003364273287474816055749579556455124440591984263685499136336546651516313<113>
By suberi / GMP-ECM 6.1.2 B1=11000000
(10191+53)/9 = (1)1907<191> = 83 · 257 · 2309 · 4481 · 30274753811<11> · C169
C169 = P41 · P129
P41 = 14781772991827325758273699724307624723203<41>
P129 = 112496820824306141289466401848140159736387544454873436102425778272976103436914816351733511282110806424845862379940475925100721451<129>
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(14·10158-41)/9 = 1(5)1571<159> = 29 · 31 · 32117 · C151
C151 = P74 · P78
P74 = 16890701960639836030505223027599141408171380796039886568589214265562803591<74>
P78 = 318965097991281408955651198675474281172186567241455132017352484669834254010167<78>
Number: n N=5387544406017014319327230238368785164959317286062833999131843397922409716848868223346056288825362813499140553902753137939643009070235018963983138109697 ( 151 digits) SNFS difficulty: 159 digits. Divisors found: r1=16890701960639836030505223027599141408171380796039886568589214265562803591 (pp74) r2=318965097991281408955651198675474281172186567241455132017352484669834254010167 (pp78) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 33.67 hours. Scaled time: 43.06 units (timescale=1.279). Factorization parameters were as follows: name: KA_1_5_157_1 n: 5387544406017014319327230238368785164959317286062833999131843397922409716848868223346056288825362813499140553902753137939643009070235018963983138109697 skew: 0.62 deg: 5 c5: 875 c0: -82 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:217337, largePrimes:7010678 encountered Relations: rels:6493609, finalFF:497084 Max relations in full relation-set: 28 Initial matrix: 434219 x 497084 with sparse part having weight 34384792. Pruned matrix : 382432 x 384667 with weight 22554464. Total sieving time: 30.59 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.75 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.67 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(13·10158-31)/9 = 1(4)1571<159> = 32 · 59 · 1151 · 1259 · C150
C150 = P40 · P110
P40 = 2666207182373154418160383393318256974037<40>
P110 = 70406276040739502591454509881526959077496256123980929796389336194469708080034764900330162435965741985863807867<110>
Number: n N=187717718863966599371265116913856542848046308152222523692546770394181583257740021639356423657330507580390137290199780576440743769826051452345775349079 ( 150 digits) SNFS difficulty: 159 digits. Divisors found: r1=2666207182373154418160383393318256974037 (pp40) r2=70406276040739502591454509881526959077496256123980929796389336194469708080034764900330162435965741985863807867 (pp110) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.69 hours. Scaled time: 51.68 units (timescale=1.448). Factorization parameters were as follows: name: KA_1_4_157_1 n: 187717718863966599371265116913856542848046308152222523692546770394181583257740021639356423657330507580390137290199780576440743769826051452345775349079 skew: 0.30 deg: 5 c5: 13000 c0: -31 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:216816, AFBsize:217162, largePrimes:7086581 encountered Relations: rels:6568699, finalFF:493501 Max relations in full relation-set: 28 Initial matrix: 434045 x 493501 with sparse part having weight 35899314. Pruned matrix : 385935 x 388169 with weight 24270637. Total sieving time: 31.12 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.85 hours. Total square root time: 0.50 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 35.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(67·10158+23)/9 = 7(4)1577<159> = 3 · 31 · 1709 · C154
C154 = P44 · P111
P44 = 29260919942103733509905823159085703681886443<44>
P111 = 160073450317003468362082050116843117920380447672897296042460127280985936066587164006989343231612150440123554917<111>
Number: n N=4683896414582157989923330907494443990036583328264937959345177299461072276716211105308672269166049720609074315259784974200119823857531251026786993868290231 ( 154 digits) SNFS difficulty: 159 digits. Divisors found: r1=29260919942103733509905823159085703681886443 (pp44) r2=160073450317003468362082050116843117920380447672897296042460127280985936066587164006989343231612150440123554917 (pp111) Version: GGNFS-0.77.1-20051202-athlon Total time: 39.41 hours. Scaled time: 51.55 units (timescale=1.308). Factorization parameters were as follows: name: KA_7_4_157_7 n: 4683896414582157989923330907494443990036583328264937959345177299461072276716211105308672269166049720609074315259784974200119823857531251026786993868290231 skew: 0.20 deg: 5 c5: 67000 c0: 23 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:216816, AFBsize:217321, largePrimes:7168927 encountered Relations: rels:6688652, finalFF:543810 Max relations in full relation-set: 48 Initial matrix: 434204 x 543810 with sparse part having weight 44745238. Pruned matrix : 347629 x 349864 with weight 25223265. Total sieving time: 35.47 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.64 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 39.41 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(5·10158+13)/9 = (5)1577<158> = 33 · C157
C157 = P33 · P124
P33 = 382853825496553598188403176353457<33>
P124 = 5374409322031972772894913517826689979791154924734271046070635240945189138433355533839639709026504877244886570211096873586863<124>
Number: n N=2057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835391 ( 157 digits) SNFS difficulty: 159 digits. Divisors found: r1=382853825496553598188403176353457 (pp33) r2=5374409322031972772894913517826689979791154924734271046070635240945189138433355533839639709026504877244886570211096873586863 (pp124) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.40 hours. Scaled time: 27.15 units (timescale=0.598). Factorization parameters were as follows: name: KA_5_157_7 n: 2057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835390946502057613168724279835391 type: snfs skew: 1.52 deg: 5 c5: 8 c0: 65 m: 50000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:216816, AFBsize:217216, largePrimes:6949869 encountered Relations: rels:6482428, finalFF:569218 Max relations in full relation-set: 28 Initial matrix: 434097 x 569218 with sparse part having weight 35384681. Pruned matrix : 323170 x 325404 with weight 19605330. Total sieving time: 40.67 hours. Total relation processing time: 0.24 hours. Matrix solve time: 4.31 hours. Total square root time: 0.17 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 45.40 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+ (Timesharing)
By Wataru Sakai / GMP-ECM 6.1.2 B1=11000000
9·10194+1 = 9(0)1931<195> = 17 · 1249 · 8089 · 1037297 · 106869415441<12> · C170
C170 = P34 · P136
P34 = 6800424794926771388308831050471833<34>
P136 = 6950942827174514887338020534901240077527602856760093566826256645756923667399042440819259600295410278353642353978340831657491455631029153<136>
By Robert Backstrom / GMP-ECM 5.0 B1=124000, GGNFS-0.77.1-20060513-athlon-xp gnfs, GGNFS-0.77.1-20051202-athlon
(89·10157+1)/9 = 9(8)1569<158> = 3 · 11 · 83 · 507109 · 7608147321531382277<19> · C130
C130 = P30 · P45 · P56
P30 = 998766999662301920263579973857<30>
P45 = 671276082185180309721450498078371896813263139<45>
P56 = 13957571951968016563167181516143946350859587741613040809<56>
Number: n N=9369384216734849844858838821136383764594390595025958560650767203742805702183608663516846355662439451 ( 100 digits) SNFS difficulty: 158 digits. Divisors found: r1=671276082185180309721450498078371896813263139 (pp45) r2=13957571951968016563167181516143946350859587741613040809 (pp56) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 30.98 hours. Scaled time: 42.35 units (timescale=1.367). Factorization parameters were as follows: name: KA_9_8_156_9 n: 9369384216734849844858838821136383764594390595025958560650767203742805702183608663516846355662439451 # n: 9357831762831592716696047258075955006494138738306098602738469766935052019174596543063795350498288700538403141385637434411425432507 skew: 0.16 deg: 5 c5: 8900 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:217461, largePrimes:6928854 encountered Relations: rels:6418255, finalFF:501673 Max relations in full relation-set: 28 Initial matrix: 434344 x 501673 with sparse part having weight 33339151. Pruned matrix : 377922 x 380157 with weight 21090312. Total sieving time: 28.11 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.53 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 30.98 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(4·10158-7)/3 = 1(3)1571<159> = 19 · C157
C157 = P57 · P101
P57 = 115570041668777500610211129739853968547382455176953878951<57>
P101 = 60721132901910066040884017345234420133773553977363086094391872306702156725540345706908544495936768599<101>
Number: n N=7017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649 ( 157 digits) SNFS difficulty: 158 digits. Divisors found: r1=115570041668777500610211129739853968547382455176953878951 (pp57) r2=60721132901910066040884017345234420133773553977363086094391872306702156725540345706908544495936768599 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.26 hours. Scaled time: 37.76 units (timescale=1.438). Factorization parameters were as follows: name: KA_1_3_157_1 n: 7017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649122807017543859649 skew: 0.56 deg: 5 c5: 125 c0: -7 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216506, largePrimes:6919954 encountered Relations: rels:6439560, finalFF:527050 Max relations in full relation-set: 28 Initial matrix: 433387 x 527050 with sparse part having weight 34175911. Pruned matrix : 352937 x 355167 with weight 19432489. Total sieving time: 23.13 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.78 hours. Total square root time: 0.17 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(13·10156-1)/3 = 4(3)156<157> = 482233522412249138299599463<27> · C130
C130 = P51 · P80
P51 = 137685447586916374009095336332502139351312592931137<51>
P80 = 65264446602257434699232134121438332071155454252336113787950688082621777887383843<80>
Number: n N=8985964541944218457144242823891451622905412479065263958964874992630944518378669494178261920751344671254683705993473379975985419491 ( 130 digits) SNFS difficulty: 157 digits. Divisors found: r1=137685447586916374009095336332502139351312592931137 (pp51) r2=65264446602257434699232134121438332071155454252336113787950688082621777887383843 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.28 hours. Scaled time: 42.09 units (timescale=1.193). Factorization parameters were as follows: name: KA_4_3_156 n: 8985964541944218457144242823891451622905412479065263958964874992630944518378669494178261920751344671254683705993473379975985419491 type: snfs skew: 0.38 deg: 5 c5: 130 c0: -1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1400000) Primes: RFBsize:216816, AFBsize:216816, largePrimes:6426802 encountered Relations: rels:5897314, finalFF:498059 Max relations in full relation-set: 28 Initial matrix: 433699 x 498059 with sparse part having weight 28485229. Pruned matrix : 374897 x 377129 with weight 17607571. Total sieving time: 31.93 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.95 hours. Total square root time: 0.18 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 35.28 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(83·10156+61)/9 = 9(2)1559<157> = 115603 · 31695397 · 11905360919303<14> · C132
C132 = P45 · P88
P45 = 185694616568789821030958057358645587169415001<45>
P88 = 1138487858025295935614061399440799079483198341134630811712967349874304476402618347315973<88>
Number: n N=211411066264230152062340716870399973612067889013296080886298760548537066854582641830091382226851007304354037398622074774304913110973 ( 132 digits) SNFS difficulty: 157 digits. Divisors found: r1=185694616568789821030958057358645587169415001 (pp45) r2=1138487858025295935614061399440799079483198341134630811712967349874304476402618347315973 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 46.26 hours. Scaled time: 60.70 units (timescale=1.312). Factorization parameters were as follows: name: KA_9_2_155_9 n: 211411066264230152062340716870399973612067889013296080886298760548537066854582641830091382226851007304354037398622074774304913110973 skew: 0.59 deg: 5 c5: 830 c0: 61 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 18400001) Primes: RFBsize:216816, AFBsize:216337, largePrimes:7238483 encountered Relations: rels:6703027, finalFF:495978 Max relations in full relation-set: 48 Initial matrix: 433220 x 495978 with sparse part having weight 46386571. Pruned matrix : 387853 x 390083 with weight 30950811. Total sieving time: 40.61 hours. Total relation processing time: 0.25 hours. Matrix solve time: 5.13 hours. Total square root time: 0.28 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 46.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10171+1 = 6(0)1701<172> = C172
C172 = P48 · P125
P48 = 154699561095803788960811837883435548718183965521<48>
P125 = 38784854704818871237674570715604655076738950339421849949486353744053423298050903282396196418361477719330298221232535393256881<125>
Number: 60001_171 N=6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 172 digits) SNFS difficulty: 171 digits. Divisors found: r1=154699561095803788960811837883435548718183965521 (pp48) r2=38784854704818871237674570715604655076738950339421849949486353744053423298050903282396196418361477719330298221232535393256881 (pp125) Version: GGNFS-0.77.1-20050930-k8 Total time: 121.74 hours. Scaled time: 109.20 units (timescale=0.897). Factorization parameters were as follows: n: 6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 10000000000000000000000000000000000 c5: 60 c0: 1 skew: 1 type: snfs Factor base limits: 8400000/8400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved algebraic special-q in [4200000, 8300001) Primes: RFBsize:564877, AFBsize:563981, largePrimes:6631468 encountered Relations: rels:7286289, finalFF:1293157 Max relations in full relation-set: 28 Initial matrix: 1128925 x 1293157 with sparse part having weight 57494928. Pruned matrix : 980575 x 986283 with weight 39531468. Total sieving time: 115.09 hours. Total relation processing time: 0.17 hours. Matrix solve time: 6.39 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,171,5,0,0,0,0,0,0,0,0,8400000,8400000,27,27,49,49,2.6,2.6,100000 total time: 121.74 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.60 BogoMIPS (lpj=2335802) Calibrating delay using timer specific routine.. 4668.49 BogoMIPS (lpj=2334246) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(5·10155-23)/9 = (5)1543<155> = 455809 · 22178359105380078019<20> · C130
C130 = P41(7816...) · P41(9862...) · P48
P41(7816...) = 78168599768506389915769096471731999506381<41>
P41(9862...) = 98627970534811576733762760709847556429329<41>
P48 = 712824730143064724192573094052187772119187236807<48>
Number: n N=5495600920608415791807485198227477664347272781973051325964290441482871529967054684754824258422291187953818426925644487404889381643 ( 130 digits) SNFS difficulty: 155 digits. Divisors found: r1=78168599768506389915769096471731999506381 (pp41) r2=98627970534811576733762760709847556429329 (pp41) r3=712824730143064724192573094052187772119187236807 (pp48) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 25.32 hours. Scaled time: 34.53 units (timescale=1.364). Factorization parameters were as follows: name: KA_5_154_3 n: 5495600920608415791807485198227477664347272781973051325964290441482871529967054684754824258422291187953818426925644487404889381643 skew: 1.36 deg: 5 c5: 5 c0: -23 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217341, largePrimes:6728171 encountered Relations: rels:6204172, finalFF:487768 Max relations in full relation-set: 28 Initial matrix: 434222 x 487768 with sparse part having weight 30334453. Pruned matrix : 385580 x 387815 with weight 19867980. Total sieving time: 22.41 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.52 hours. Total square root time: 0.21 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.32 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(55·10157-1)/9 = 6(1)157<158> = 12659 · 5115353 · 2427133077049363<16> · C132
C132 = P61 · P72
P61 = 1756885727384775588518191961618990892705830617844120872919597<61>
P72 = 221313582188953735910104077220440356480321006702394425598594316859809763<72>
Number: n N=388822673824170299517613128480124207165358916317761241208979819858125521756603961615264259628492731976257986840051227899003814625511 ( 132 digits) SNFS difficulty: 160 digits. Divisors found: r1=1756885727384775588518191961618990892705830617844120872919597 (pp61) r2=221313582188953735910104077220440356480321006702394425598594316859809763 (pp72) Version: GGNFS-0.77.1-20051202-athlon Total time: 37.76 hours. Scaled time: 54.64 units (timescale=1.447). Factorization parameters were as follows: name: KA_6_1_157 n: 388822673824170299517613128480124207165358916317761241208979819858125521756603961615264259628492731976257986840051227899003814625511 skew: 0.89 deg: 5 c5: 44 c0: -25 m: 50000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:216816, AFBsize:217237, largePrimes:7155233 encountered Relations: rels:6639789, finalFF:492384 Max relations in full relation-set: 28 Initial matrix: 434120 x 492384 with sparse part having weight 37041926. Pruned matrix : 389521 x 391755 with weight 25693721. Total sieving time: 33.10 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.39 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 37.76 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
4·10194+1 = 4(0)1931<195> = 721324202162977116296517293557<30> · C165
C165 = P36 · C130
P36 = 230366834312643340988031253121778481<36>
C130 = [2407185357318598997321950360974409607977596627073563023341105908056951583447549498371976960901544198606857339244488454067274390253<130>]
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp, GGNFS-0.77.1-20051202-athlon
(5·10156-17)/3 = 1(6)1551<157> = 23 · 45530803605118052249663<23> · C133
C133 = P43 · P90
P43 = 6980802854042367720418771014299511108668407<43>
P90 = 227987074000655558378765635891409896833438917225088630429302578069324695128035262416578827<90>
Number: n N=1591532816868544812411804196768146464448799537512375973859933367030542841491293027937220386483931368319354400599625525690188520018589 ( 133 digits) SNFS difficulty: 156 digits. Divisors found: r1=6980802854042367720418771014299511108668407 (pp43) r2=227987074000655558378765635891409896833438917225088630429302578069324695128035262416578827 (pp90) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 25.80 hours. Scaled time: 35.30 units (timescale=1.368). Factorization parameters were as follows: name: KA_1_6_155_1 n: 1591532816868544812411804196768146464448799537512375973859933367030542841491293027937220386483931368319354400599625525690188520018589 skew: 0.81 deg: 5 c5: 50 c0: -17 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217226, largePrimes:6873287 encountered Relations: rels:6405229, finalFF:536584 Max relations in full relation-set: 28 Initial matrix: 434107 x 536584 with sparse part having weight 33216707. Pruned matrix : 344478 x 346712 with weight 17968311. Total sieving time: 23.46 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.06 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.80 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(34·10155-7)/9 = 3(7)155<156> = 1963259 · 15914463295100393<17> · C134
C134 = P63 · P71
P63 = 614145112547407319622447176567788678504259865720750939348025889<63>
P71 = 19687737655841001340058422437548321514709788974293541871489336377296939<71>
Number: n N=12091127858450300921796173885173780987451322407445921454256127552779197749846655382931701572574680369104650104260662112804527612453771 ( 134 digits) SNFS difficulty: 156 digits. Divisors found: r1=614145112547407319622447176567788678504259865720750939348025889 (pp63) r2=19687737655841001340058422437548321514709788974293541871489336377296939 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.10 hours. Scaled time: 43.17 units (timescale=1.196). Factorization parameters were as follows: name: KA_3_7_155 n: 12091127858450300921796173885173780987451322407445921454256127552779197749846655382931701572574680369104650104260662112804527612453771 type: snfs skew: 0.73 deg: 5 c5: 34 c0: -7 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6612115 encountered Relations: rels:6128536, finalFF:545288 Max relations in full relation-set: 28 Initial matrix: 433623 x 545288 with sparse part having weight 31990210. Pruned matrix : 334870 x 337102 with weight 17003441. Total sieving time: 33.37 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.42 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 36.10 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Bos
10307+1 = 1(0)3061<308> = 11 · 3311436805543<13> · 1490473286202873492575327109823<31> · C264
C264 = P52 · C212
P52 = 5523722596446330977448218249241349336929189661174997<52>
By Yousuke Koide / GMP-ECM / Apr 19, 2007
10799+1 = 1(0)7981<800> = 11 · 103 · 4013 · 6299 · 21993833369<11> · 4855067598095567<16> · 149419107039492234761<21> · 297262705009139006771611927<27> · C716
C716 = P31 · C686
P31 = 4588162642029183238011363957761<31>
By Yousuke Koide / GMP-ECM / Apr 20, 2007
10889+1 = 1(0)8881<890> = 11 · 3557 · 909091 · 857772733 · 1094479651<10> · 1125629957<10> · 616896149073719728613<21> · 4514666454616035926293<22> · 10860110813777339731289<23> · 52034716615139419063969613<26> · 36099531273603138218699301565567581705151216702113889<53> · C709
C709 = P31 · C679
P31 = 1515780514077670348158815644201<31>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / GGNFS-0.77.1-20060513-pentium4 gnfs
(16·10235-61)/9 = 1(7)2341<236> = 11 · 29 · 37037719357719760261079<23> · 386429589610739568586536276533<30> · 713567298076051856522358950335091<33> · 151909019354249419571440528481694434053<39> · C110
C110 = P39 · P72
P39 = 125605990791686900936504691140588363699<39>
P72 = 285985047765230062977841876142162519940065363490818809053547121928669731<72>
Number: 17771_235 N=35921435276159625817527432090229298251807652677226377310650377800268125022879271309502187214950639477080494969 ( 110 digits) Divisors found: r1=125605990791686900936504691140588363699 (pp39) r2=285985047765230062977841876142162519940065363490818809053547121928669731 (pp72) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 41.18 hours. Scaled time: 24.75 units (timescale=0.601). Factorization parameters were as follows: name: 17771_235 n: 35921435276159625817527432090229298251807652677226377310650377800268125022879271309502187214950639477080494969 skew: 72976.38 # norm 1.70e+015 c5: 1260 c4: -836799224 c3: -25758351942273 c2: 3873905822348724057 c1: 36021861400424370105497 c0: -2749686868191143529867179949 # alpha -6.14 Y1: 46032740939 Y0: -1954330392375004368760 # Murphy_E 1.02e-009 # M 29519177398588835710920117477561627763408019706375126725127183876838642123095149601369374918428495280763074661 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: RFBsize:230209, AFBsize:230179, largePrimes:7349364 encountered Relations: rels:7139629, finalFF:551314 Max relations in full relation-set: 28 Initial matrix: 460468 x 551314 with sparse part having weight 43597310. Pruned matrix : 383114 x 385480 with weight 25752079. Total sieving time: 31.84 hours. Total relation processing time: 0.46 hours. Matrix solve time: 8.38 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 41.18 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(25·10155-7)/9 = 2(7)155<156> = 17 · 402851 · 119336766838382837<18> · C132
C132 = P31 · P101
P31 = 5881365932046077344716432736879<31>
P101 = 57789862723272576198135690999645341036774247444723327437699375463079889097341640177561574510207039697<101>
Number: n N=339883329838274876627404891772536715222229406033570353904935102531895001966367483580976478361229259406097110234232438139054308885663 ( 132 digits) SNFS difficulty: 156 digits. Divisors found: r1=5881365932046077344716432736879 (pp31) r2=57789862723272576198135690999645341036774247444723327437699375463079889097341640177561574510207039697 (pp101) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.44 hours. Scaled time: 29.59 units (timescale=1.319). Factorization parameters were as follows: name: KA_2_7_155 n: 339883329838274876627404891772536715222229406033570353904935102531895001966367483580976478361229259406097110234232438139054308885663 skew: 0.78 deg: 5 c5: 25 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:6631137 encountered Relations: rels:6138516, finalFF:516545 Max relations in full relation-set: 48 Initial matrix: 433786 x 516545 with sparse part having weight 31142732. Pruned matrix : 360553 x 362785 with weight 16512544. Total sieving time: 19.62 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.53 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 22.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(61·10155-7)/9 = 6(7)155<156> = 103651 · 971857 · 19870534292309<14> · C132
C132 = P43 · P89
P43 = 9817212608718080906317171875037375502190241<43>
P89 = 34491630159507572267087764175508621104295293798871859880831023317096973793390053303999519<89>
Number: n N=338611666497158570577221038924531523369668099643294585815227989598756413572175554597195188944774585124940329355800182760989710494079 ( 132 digits) SNFS difficulty: 156 digits. Divisors found: r1=9817212608718080906317171875037375502190241 (pp43) r2=34491630159507572267087764175508621104295293798871859880831023317096973793390053303999519 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.00 hours. Scaled time: 36.23 units (timescale=1.449). Factorization parameters were as follows: name: KA_6_7_155 n: 338611666497158570577221038924531523369668099643294585815227989598756413572175554597195188944774585124940329355800182760989710494079 skew: 0.65 deg: 5 c5: 61 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217077, largePrimes:6791757 encountered Relations: rels:6281039, finalFF:499165 Max relations in full relation-set: 28 Initial matrix: 433958 x 499165 with sparse part having weight 31139720. Pruned matrix : 377515 x 379748 with weight 19352078. Total sieving time: 21.80 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.97 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0, GGNFS-0.77.1-20060513-athlon-xp
(5·10157-17)/3 = 1(6)1561<158> = 11 · 29 · 2757874996319<13> · C143
C143 = P70 · P74
P70 = 1656783190595643799692672752239702194832989548613617120528492532923753<70>
P74 = 11434516605064564778112562546194861690949907853799120239681553336330622717<74>
Number: n N=18944514903857738707332591646436452068207141455181594958816450014272137613307196266921465281243223714647216073470199710589087367939471170696901 ( 143 digits) SNFS difficulty: 159 digits. Divisors found: r1=1656783190595643799692672752239702194832989548613617120528492532923753 (pp70) r2=11434516605064564778112562546194861690949907853799120239681553336330622717 (pp74) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.71 hours. Scaled time: 34.64 units (timescale=1.297). Factorization parameters were as follows: name: KA_1_6_156_1 n: 18944514903857738707332591646436452068207141455181594958816450014272137613307196266921465281243223714647216073470199710589087367939471170696901 # skew: 0.51 # deg: 5 # c5: 500 # c0: -17 # m: 10000000000000000000000000000000 skew: 2.54 deg: 5 c5: 4 c0: -425 m: 50000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:215811, largePrimes:6744488 encountered Relations: rels:6227113, finalFF:502366 Max relations in full relation-set: 48 Initial matrix: 432691 x 502366 with sparse part having weight 33307367. Pruned matrix : 372729 x 374956 with weight 19077430. Total sieving time: 23.44 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.03 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.71 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(17·10157-71)/9 = 1(8)1561<158> = 11 · 67 · 233 · 257 · 100133357531<12> · C139
C139 = P34 · P50 · P56
P34 = 1974898746446825564654925588408067<34>
P50 = 26084785568241325536093167306732883156016781297647<50>
P56 = 82973420930499973861919069602007448123945832667668347767<56>
Number: n N=2164343892835518454505300706637153514507175780157952502388586254372879429209130030340885911229358734804249 ( 106 digits) SNFS difficulty: 158 digits. Divisors found: r1=26084785568241325536093167306732883156016781297647 (pp50) r2=82973420930499973861919069602007448123945832667668347767 (pp56) Version: GGNFS-0.77.1-20051202-athlon Total time: 31.74 hours. Scaled time: 45.71 units (timescale=1.440). Factorization parameters were as follows: name: KA_1_8_156_1 n: 2164343892835518454505300706637153514507175780157952502388586254372879429209130030340885911229358734804249 # n: 4274360040840707962086046706090075912461905742295530890501180085682533476011747446857603996863402993422314665552906852413675572058777476683 skew: 0.53 deg: 5 c5: 1700 c0: -71 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216847, largePrimes:6984289 encountered Relations: rels:6460078, finalFF:494384 Max relations in full relation-set: 28 Initial matrix: 433730 x 494384 with sparse part having weight 33551013. Pruned matrix : 384136 x 386368 with weight 22030613. Total sieving time: 27.98 hours. Total relation processing time: 0.21 hours. Matrix solve time: 3.49 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 31.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(10155+11)/3 = (3)1547<155> = 37 · 56896144739519611259<20> · C134
C134 = P66 · P68
P66 = 208670671770760497643092645164757469100993644951788309366799053839<66>
P68 = 75880951367873792594180307042805485428254654408601835762623060247601<68>
Number: n N=15834129096538631981876151311557857936639270420692829139295670131179001593315499680760105008976521203731578626121888596331739869590239 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=208670671770760497643092645164757469100993644951788309366799053839 (pp66) r2=75880951367873792594180307042805485428254654408601835762623060247601 (pp68) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 20.74 hours. Scaled time: 28.29 units (timescale=1.364). Factorization parameters were as follows: name: KA_3_154_7 n: 15834129096538631981876151311557857936639270420692829139295670131179001593315499680760105008976521203731578626121888596331739869590239 skew: 1.62 deg: 5 c5: 1 c0: 11 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:216602, largePrimes:6531775 encountered Relations: rels:6070085, finalFF:530729 Max relations in full relation-set: 28 Initial matrix: 433482 x 530729 with sparse part having weight 30061199. Pruned matrix : 345492 x 347723 with weight 15473918. Total sieving time: 18.60 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.83 hours. Total square root time: 0.16 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 20.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GMP-ECM 5.0 B1=297500
(8·10156-17)/9 = (8)1557<156> = 191413 · 294293 · 2247379721<10> · C136
C136 = P31 · P106
P31 = 5289913621585527848874348853313<31>
P106 = 1327306059679471772390175491604367168135356343238374722780556040926974678339394316436973392646103133527191<106>
6·10157+1 = 6(0)1561<158> = 83 · 151 · 72179234791<11> · C143
C143 = P62 · P81
P62 = 72357737078330308558694680661590216271249223389638162975859539<62>
P81 = 916640329258611436341178406620060063987449880780814068401233780150914565592579353<81>
Number: n N=66326019939888731124137750913895090055834491742411539232321131200926135913206081132490874613518312074140366269836829752912617349628935239498267 ( 143 digits) SNFS difficulty: 157 digits. Divisors found: r1=72357737078330308558694680661590216271249223389638162975859539 (pp62) r2=916640329258611436341178406620060063987449880780814068401233780150914565592579353 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 34.58 hours. Scaled time: 41.32 units (timescale=1.195). Factorization parameters were as follows: name: KA_6_0_156_1 n: 66326019939888731124137750913895090055834491742411539232321131200926135913206081132490874613518312074140366269836829752912617349628935239498267 type: snfs skew: 0.28 deg: 5 c5: 600 c0: 1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216936, largePrimes:6418969 encountered Relations: rels:5891747, finalFF:502734 Max relations in full relation-set: 28 Initial matrix: 433818 x 502734 with sparse part having weight 28026248. Pruned matrix : 370197 x 372430 with weight 16844017. Total sieving time: 31.66 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.62 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 34.58 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10157-7)/3 = 1(3)1561<158> = 112 · 829048691 · C147
C147 = P43 · P51 · P54
P43 = 1298908648477793769569563217697406042467797<43>
P51 = 227836378491183675155418024092575662345597837669647<51>
P54 = 449129571882613139545490492415647300223051508767591019<54>
Number: n N=132914795791607779393998246218504139069715027270851061093644960498598981368472560242293430048107688956563142563482955158125504335329938049244764521 ( 147 digits) SNFS difficulty: 157 digits. Divisors found: r1=1298908648477793769569563217697406042467797 (pp43) r2=227836378491183675155418024092575662345597837669647 (pp51) r3=449129571882613139545490492415647300223051508767591019 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.19 hours. Scaled time: 34.65 units (timescale=1.323). Factorization parameters were as follows: name: KA_1_3_156_1 n: 132914795791607779393998246218504139069715027270851061093644960498598981368472560242293430048107688956563142563482955158125504335329938049244764521 skew: 0.89 deg: 5 c5: 25 c0: -14 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216976, largePrimes:6729179 encountered Relations: rels:6208493, finalFF:500339 Max relations in full relation-set: 48 Initial matrix: 433856 x 500339 with sparse part having weight 32743641. Pruned matrix : 376565 x 378798 with weight 19065606. Total sieving time: 22.56 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.26 hours. Total square root time: 0.19 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.19 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
2·10157-1 = 1(9)157<158> = 29 · 121465463101<12> · C145
C145 = P36 · P46 · P63
P36 = 904379301033768345717044160825785309<36>
P46 = 6457091006561228200494377454089107772956770149<46>
P63 = 972280702625490682212362702573778085813248187465970804365743191<63>
Number: n N=5677788194330897959207179477750316482872150625851073181155520400292142060208311316770349874503902856555645676417079579230816761535189098741201831 ( 145 digits) SNFS difficulty: 157 digits. Divisors found: r1=904379301033768345717044160825785309 (pp36) r2=6457091006561228200494377454089107772956770149 (pp46) r3=972280702625490682212362702573778085813248187465970804365743191 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.26 hours. Scaled time: 36.63 units (timescale=1.450). Factorization parameters were as follows: name: KA_1_9_157 n: 5677788194330897959207179477750316482872150625851073181155520400292142060208311316770349874503902856555645676417079579230816761535189098741201831 skew: 0.35 deg: 5 c5: 200 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216391, largePrimes:6772954 encountered Relations: rels:6243826, finalFF:486214 Max relations in full relation-set: 28 Initial matrix: 433272 x 486214 with sparse part having weight 30147915. Pruned matrix : 387238 x 389468 with weight 19941665. Total sieving time: 21.50 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.35 hours. Total square root time: 0.23 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.26 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(34·10157-43)/9 = 3(7)1563<158> = 32 · 11 · 19 · 199194337 · C147
C147 = P42 · P43 · P62
P42 = 173250819925329757405611840037528690186427<42>
P43 = 9035055010084847015301845327796377263688437<43>
P62 = 64411664896149439159157921804791266771402346028235778213017491<62>
Number: n N=100825555763678864123952879910449161112867780638776593433396049472041667630761409311563611469958002535998500901578741834425443631381346614299281109 ( 147 digits) SNFS difficulty: 158 digits. Divisors found: r1=173250819925329757405611840037528690186427 (pp42) r2=9035055010084847015301845327796377263688437 (pp43) r3=64411664896149439159157921804791266771402346028235778213017491 (pp62) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 36.63 hours. Scaled time: 50.00 units (timescale=1.365). Factorization parameters were as follows: name: KA_3_7_156_3 n: 100825555763678864123952879910449161112867780638776593433396049472041667630761409311563611469958002535998500901578741834425443631381346614299281109 skew: 0.42 deg: 5 c5: 3400 c0: -43 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216666, largePrimes:7082322 encountered Relations: rels:6565724, finalFF:496808 Max relations in full relation-set: 28 Initial matrix: 433549 x 496808 with sparse part having weight 35449720. Pruned matrix : 382013 x 384244 with weight 23549409. Total sieving time: 32.88 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.07 hours. Total square root time: 0.46 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 36.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(67·10157+23)/9 = 7(4)1567<158> = 7 · 11 · 127 · 6967 · C151
C151 = P63 · P88
P63 = 196947610222755818047239895555064844541747218059447880546494957<63>
P88 = 5548062197786922108597350799550470655831242112272889027561109789284452833290497739281647<88>
Number: n N=1092677591221344731989402195062399694133774596337703177710456117434346634094828337879663080921205556013746255934117947275589207350751367595680888154179 ( 151 digits) SNFS difficulty: 158 digits. Divisors found: r1=196947610222755818047239895555064844541747218059447880546494957 (pp63) r2=5548062197786922108597350799550470655831242112272889027561109789284452833290497739281647 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 45.06 hours. Scaled time: 53.85 units (timescale=1.195). Factorization parameters were as follows: name: KA_7_4_156_7 n: 1092677591221344731989402195062399694133774596337703177710456117434346634094828337879663080921205556013746255934117947275589207350751367595680888154179 type: snfs skew: 0.32 deg: 5 c5: 6700 c0: 23 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1800001) Primes: RFBsize:216816, AFBsize:217156, largePrimes:6920532 encountered Relations: rels:6425312, finalFF:546121 Max relations in full relation-set: 28 Initial matrix: 434039 x 546121 with sparse part having weight 33794146. Pruned matrix : 340986 x 343220 with weight 19013316. Total sieving time: 41.78 hours. Total relation processing time: 0.25 hours. Matrix solve time: 2.93 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 45.06 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By suberi / GMP-ECM 6.1.2 B1=5000000
(16·10235-61)/9 = 1(7)2341<236> = 11 · 29 · 37037719357719760261079<23> · 386429589610739568586536276533<30> · 713567298076051856522358950335091<33> · C148
C148 = P39 · C110
P39 = 151909019354249419571440528481694434053<39>
C110 = [35921435276159625817527432090229298251807652677226377310650377800268125022879271309502187214950639477080494969<110>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0
4·10157+1 = 4(0)1561<158> = 1321757 · C152
C152 = P65 · P87
P65 = 46712194341161070054665870112933244096080435997557581817007450649<65>
P87 = 647855429982898406721265781990638069224565341233236221727068040304877394852504476748157<87>
Number: n N=30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893 ( 152 digits) SNFS difficulty: 157 digits. Divisors found: r1=46712194341161070054665870112933244096080435997557581817007450649 (pp65) r2=647855429982898406721265781990638069224565341233236221727068040304877394852504476748157 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.48 hours. Scaled time: 37.71 units (timescale=1.324). Factorization parameters were as follows: name: KA_4_0_156_1 n: 30262748750337618790745954059634259549977794708104439772212290156208743362055203793132928367317139232097881834558091994216788713810481049088448179203893 skew: 0.60 deg: 5 c5: 25 c0: 2 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216361, largePrimes:6961579 encountered Relations: rels:6487180, finalFF:542616 Max relations in full relation-set: 48 Initial matrix: 433241 x 542616 with sparse part having weight 39514323. Pruned matrix : 341666 x 343896 with weight 20499298. Total sieving time: 25.18 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.92 hours. Total square root time: 0.19 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(25·10157-7)/9 = 2(7)157<158> = 3 · 10521845651<11> · C147
C147 = P31 · P39 · P79
P31 = 4362956850742075039517980258627<31>
P39 = 100040644971784701090248442620273077603<39>
P79 = 2016168926089972285768717434483905209452257464658912852672219715284978714326289<79>
(22·10157-1)/3 = 7(3)157<158> = 19 · 673 · 10321 · C150
C150 = P42 · P109
P42 = 115927686658862052161466450041710948154663<42>
P109 = 4793180825233510269061418780918265393286504290775973495713741172906980788176434671437734774907012714375415233<109>
Number: n N=555662364806936210043869518444127395285863041941640292215664555985699685541322525073954809005319888749019410627569595884012866604527954705515730181479 ( 150 digits) SNFS difficulty: 158 digits. Divisors found: r1=115927686658862052161466450041710948154663 (pp42) r2=4793180825233510269061418780918265393286504290775973495713741172906980788176434671437734774907012714375415233 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.30 hours. Scaled time: 38.12 units (timescale=1.449). Factorization parameters were as follows: name: KA_7_3_157 n: 555662364806936210043869518444127395285863041941640292215664555985699685541322525073954809005319888749019410627569595884012866604527954705515730181479 skew: 0.43 deg: 5 c5: 275 c0: -4 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216402, largePrimes:6807486 encountered Relations: rels:6293241, finalFF:497347 Max relations in full relation-set: 28 Initial matrix: 433285 x 497347 with sparse part having weight 31188309. Pruned matrix : 378686 x 380916 with weight 19580498. Total sieving time: 22.84 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.22 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Wataru Sakai / GMP-ECM 6.1.2 B1=11000000
9·10182+1 = 9(0)1811<183> = 96497 · C178
C178 = P37 · C142
P37 = 6693857016013088704017026959632722629<37>
C142 = [1393324476133628308508018984618709804986257885467422408615899381022222419474636732587515795416876689048777120508243524120001407382238214675677<142>]
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
9·10157+1 = 9(0)1561<158> = 7 · 13 · C156
C156 = P46 · P111
P46 = 2130403278394440947268336034474352786160213379<46>
P111 = 464236512889873201316103265893901452919829671364175589843047024998926643175420109046920841497010559322144023409<111>
Number: n N=989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989011 ( 156 digits) SNFS difficulty: 157 digits. Divisors found: r1=2130403278394440947268336034474352786160213379 (pp46) r2=464236512889873201316103265893901452919829671364175589843047024998926643175420109046920841497010559322144023409 (pp111) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 28.69 hours. Scaled time: 39.18 units (timescale=1.366). Factorization parameters were as follows: name: KA_9_0_156_1 n: 989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989010989011 skew: 0.26 deg: 5 c5: 900 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:215581, largePrimes:6978011 encountered Relations: rels:6516913, finalFF:544066 Max relations in full relation-set: 28 Initial matrix: 432461 x 544066 with sparse part having weight 35226913. Pruned matrix : 337254 x 339480 with weight 19166632. Total sieving time: 25.92 hours. Total relation processing time: 0.24 hours. Matrix solve time: 2.07 hours. Total square root time: 0.45 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(71·10176-17)/9 = 7(8)1757<177> = C177
C177 = P38 · P40 · P101
P38 = 12444683223615891402820327212798136433<38>
P40 = 3674375738140870081368352967131977691087<40>
P101 = 17252356679429901956285793702431420438333359105122269293068907650150673519737446668316923181906393897<101>
Number: 78887_176 N=788888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 ( 177 digits) SNFS difficulty: 177 digits. Divisors found: r1=12444683223615891402820327212798136433 (pp38) r2=3674375738140870081368352967131977691087 (pp40) r3=17252356679429901956285793702431420438333359105122269293068907650150673519737446668316923181906393897 (pp101) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 853.40 hours. Scaled time: 520.57 units (timescale=0.610). Factorization parameters were as follows: name: 78887_176 n: 788888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888887 m: 100000000000000000000000000000000000 c5: 710 c0: -17 skew: 4 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 21600001 ) Primes: RFBsize:501962, AFBsize:500612, largePrimes:7104377 encountered Relations: rels:7627236, finalFF:1123512 Max relations in full relation-set: 0 Initial matrix: 1002641 x 1123512 with sparse part having weight 126171183. Pruned matrix : 914469 x 919546 with weight 104654058. Total sieving time: 754.46 hours. Total relation processing time: 2.84 hours. Matrix solve time: 95.54 hours. Time per square root: 0.56 hours. Prototype def-par.txt line would be: snfs,177,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 853.40 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GMP-ECM 5.0
5·10157-1 = 4(9)157<158> = 7 · 1784911 · 8397428359<10> · C141
C141 = P54 · P88
P54 = 154950203473026832889059234829083441818646269399640511<54>
P88 = 3075508559189988737150043030934655780723081191090507472552844326729132490697996382741663<88>
Number: n N=476550677029524343665946953895574025260049383895835025193583187834239548403156077893198662913632520004443527829226385778591426880376782309793 ( 141 digits) SNFS difficulty: 159 digits. Divisors found: r1=154950203473026832889059234829083441818646269399640511 (pp54) r2=3075508559189988737150043030934655780723081191090507472552844326729132490697996382741663 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.22 hours. Scaled time: 43.28 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_9_157 n: 476550677029524343665946953895574025260049383895835025193583187834239548403156077893198662913632520004443527829226385778591426880376782309793 type: snfs skew: 1.44 deg: 5 c5: 4 c0: -25 m: 50000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:216391, largePrimes:6478765 encountered Relations: rels:5936078, finalFF:494034 Max relations in full relation-set: 28 Initial matrix: 433271 x 494034 with sparse part having weight 27845713. Pruned matrix : 377954 x 380184 with weight 17470532. Total sieving time: 33.06 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.86 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,159,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 36.22 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
8·10157-3 = 7(9)1567<158> = 7 · 11 · 17 · C155
C155 = P33 · P45 · P78
P33 = 483761069946232439153779120078097<33>
P45 = 436213016886190495057964600551787363398983829<45>
P78 = 289614834453526840832030464582741641059169146938996316648050252271982757768141<78>
Number: n N=126333760671967568596793372125212909881306461592993045537085173685497608635758283948439567406499845534841917918495390391889 ( 123 digits) SNFS difficulty: 157 digits. Divisors found: r1=436213016886190495057964600551787363398983829 (pp45) r2=289614834453526840832030464582741641059169146938996316648050252271982757768141 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.82 hours. Scaled time: 31.43 units (timescale=1.440). Factorization parameters were as follows: name: KA_7_9_156_7 # n: 61115355233002291825821237585943468296409472880061115355233002291825821237585943468296409472880061115355233002291825821237585943468296409472880061115355233 n: 126333760671967568596793372125212909881306461592993045537085173685497608635758283948439567406499845534841917918495390391889 skew: 0.65 deg: 5 c5: 25 c0: -3 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216986, largePrimes:6644013 encountered Relations: rels:6128099, finalFF:494219 Max relations in full relation-set: 28 Initial matrix: 433866 x 494219 with sparse part having weight 28895318. Pruned matrix : 378977 x 381210 with weight 17891718. Total sieving time: 18.85 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.72 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 21.82 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10157+41)/9 = (4)1569<157> = 3 · 17 · 1777 · 2051898841117<13> · C140
C140 = P69 · P71
P69 = 260221357440021455388738938889122776721896955085397138037228688252251<69>
P71 = 91846157923309577470616859933689268561584874926674871536459883391952261<71>
Number: n N=23900331890454200261779183585229763492153402399157688484259917920736681255730620727738466525300767323925829369751318965287932481166917789511 ( 140 digits) SNFS difficulty: 157 digits. Divisors found: r1=260221357440021455388738938889122776721896955085397138037228688252251 (pp69) r2=91846157923309577470616859933689268561584874926674871536459883391952261 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.44 hours. Scaled time: 44.13 units (timescale=1.450). Factorization parameters were as follows: name: KA_4_156_9 n: 23900331890454200261779183585229763492153402399157688484259917920736681255730620727738466525300767323925829369751318965287932481166917789511 skew: 1.27 deg: 5 c5: 25 c0: 82 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:217007, largePrimes:6992395 encountered Relations: rels:6471718, finalFF:493995 Max relations in full relation-set: 28 Initial matrix: 433887 x 493995 with sparse part having weight 33421745. Pruned matrix : 384649 x 386882 with weight 22052690. Total sieving time: 26.58 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.55 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 30.44 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(14·10157-41)/9 = 1(5)1561<158> = 11 · 71 · 41893 · 4009117163<10> · C141
C141 = P46 · P95
P46 = 1367055426296824724730956100096423270901258669<46>
P95 = 86747738019244962078804322447103067350502553941506493682108511037049165854640129475050452781201<95>
Number: n N=118588965978184191291589169425730928531988106038187106414487352675590392264054198803378536910232046817358432344625794912915634728702561481469 ( 141 digits) SNFS difficulty: 158 digits. Divisors found: r1=1367055426296824724730956100096423270901258669 (pp46) r2=86747738019244962078804322447103067350502553941506493682108511037049165854640129475050452781201 (pp95) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 30.51 hours. Scaled time: 41.55 units (timescale=1.362). Factorization parameters were as follows: name: KA_1_5_156_1 n: 118588965978184191291589169425730928531988106038187106414487352675590392264054198803378536910232046817358432344625794912915634728702561481469 skew: 0.49 deg: 5 c5: 1400 c0: -41 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216347, largePrimes:6833902 encountered Relations: rels:6305635, finalFF:490090 Max relations in full relation-set: 28 Initial matrix: 433230 x 490090 with sparse part having weight 31304275. Pruned matrix : 384277 x 386507 with weight 20392536. Total sieving time: 27.27 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.93 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 30.51 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(16·10157-1)/3 = 5(3)157<158> = 41 · 53 · C155
C155 = P39 · P117
P39 = 129797383107911921189114592848736731761<39>
P117 = 189091960678640538527657346264288860676014584874491438046542017422669365733841635944493393437125375006515513942447561<117>
Number: n N=24543641662831722656849210001533977603926982666053075625095873600245436416628317226568492100015339776039269826660530756250958736002454364166283172265684921 ( 155 digits) SNFS difficulty: 158 digits. Divisors found: r1=129797383107911921189114592848736731761 (pp39) r2=189091960678640538527657346264288860676014584874491438046542017422669365733841635944493393437125375006515513942447561 (pp117) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.92 hours. Scaled time: 33.95 units (timescale=1.310). Factorization parameters were as follows: name: KA_5_3_157 n: 24543641662831722656849210001533977603926982666053075625095873600245436416628317226568492100015339776039269826660530756250958736002454364166283172265684921 skew: 0.46 deg: 5 c5: 50 c0: -1 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216926, largePrimes:6830845 encountered Relations: rels:6343658, finalFF:527782 Max relations in full relation-set: 48 Initial matrix: 433807 x 527782 with sparse part having weight 36099796. Pruned matrix : 353105 x 355338 with weight 19042809. Total sieving time: 22.85 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.82 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.92 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10156+41)/9 = (4)1559<156> = 35407 · 66888310787<11> · C141
C141 = P43 · P98
P43 = 2320556509695116444764087997770288474407797<43>
P98 = 80869726412245288072803531579541476425890112919981517500054469876923320277924027316762711210159313<98>
Number: n N=187662770063198897254648711120578344957882722203045389305266787504281116290486371530577287601901816312256753988043095526936254851027699363461 ( 141 digits) SNFS difficulty: 156 digits. Divisors found: r1=2320556509695116444764087997770288474407797 (pp43) r2=80869726412245288072803531579541476425890112919981517500054469876923320277924027316762711210159313 (pp98) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.23 hours. Scaled time: 50.65 units (timescale=1.325). Factorization parameters were as follows: name: KA_4_155_9 n: 187662770063198897254648711120578344957882722203045389305266787504281116290486371530577287601901816312256753988043095526936254851027699363461 skew: 1.00 deg: 5 c5: 40 c0: 41 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1600001) Primes: RFBsize:216816, AFBsize:215452, largePrimes:7235441 encountered Relations: rels:6753303, finalFF:539005 Max relations in full relation-set: 48 Initial matrix: 432334 x 539005 with sparse part having weight 48979549. Pruned matrix : 350527 x 352752 with weight 27546472. Total sieving time: 33.84 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.08 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 38.23 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
4·10191+1 = 4(0)1901<192> = 7 · 19 · 41 · 647 · 46903543 · 4164599914798824246547757<25> · C153
C153 = P36 · P117
P36 = 765226605021062082766257793518013247<36>
P117 = 758492370060731172732749892408126693839219951872236949815340112500285954615089467270693873387494136665940937734088263<117>
By Robert Backstrom / GMP-ECM 5.0 B1=624500, GGNFS-0.77.1-20051202-athlon
(5·10157+1)/3 = 1(6)1567<158> = 398873142122850667<18> · C140
C140 = P37 · P104
P37 = 2404393197926639638979396362008033281<37>
P104 = 17378346996287391689755245493306607889153873952262426287646796171801225403604837211739059462503566941121<104>
3·10156-1 = 2(9)156<157> = 232 · 757 · 37958325803<11> · C140
C141 = P68 · P73
P68 = 34508927160252119290871470429799344288040408510935452205656946628557<68>
P73 = 5719146168209700929932117892283471025039070385347664045593119483067546173<73>
Number: n N=197361598537583584072731037228204834039638876801120022701727429667743993129175140505213658215476850235031414454539015439269856571655277862361 ( 141 digits) SNFS difficulty: 156 digits. Divisors found: r1=34508927160252119290871470429799344288040408510935452205656946628557 (pp68) r2=5719146168209700929932117892283471025039070385347664045593119483067546173 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.42 hours. Scaled time: 34.63 units (timescale=1.177). Factorization parameters were as follows: name: KA_2_9_156 n: 197361598537583584072731037228204834039638876801120022701727429667743993129175140505213658215476850235031414454539015439269856571655277862361 type: snfs skew: 0.51 deg: 5 c5: 30 c0: -1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:215581, largePrimes:6375624 encountered Relations: rels:5906725, finalFF:544951 Max relations in full relation-set: 28 Initial matrix: 432464 x 544951 with sparse part having weight 28722573. Pruned matrix : 329414 x 331640 with weight 14402843. Total sieving time: 27.08 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.98 hours. Total square root time: 0.15 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 29.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Alfred Reich / GMP-ECM B1=1000000, B1=250000
101443+1 = 1(0)14421<1444> = 7 · 11 · 132 · 157 · 223 · 859 · 2887 · 4663 · 6397 · 7253 · 158731 · 216451 · 1058313049<10> · 1961853739<10> · 78426117823<11> · 388847808493<12> · 126294442654927<15> · 422650073734453<15> · 1690016281413487<16> · 296557347313446299<18> · 5406655992229067083561<22> · 21606064498691505246200058094681<32> · 48911689110891303706174193415115219<35> · C406 · C801
C801 = P32 · C779
P32 = 37344700192938647404842813656089<32>
101709+1 = 1(0)17081<1710> = 11 · 6157019338133<13> · C1696
C1696 = P34 · C1662
P34 = 5903378160150749077165810087494863<34>
101892+1 = 1(0)18911<1893> = 73 · 137 · 617 · 1207097 · 7265281 · 1110411017<10> · 277641151780258438310079109077611969<36> · 2645778409917434965592366282025495569<37> · 16205834846012967584927082656402106953<38> · 38993135849791157061060738352944105076217<41> · 34908493290773859017057784025792153817150916131843303273<56> · C1659
C1659 = P25 · C1634
P25 = 2565225443270547964001657<25>
By Yousuke Koide / GMP-ECM B1=1000000 / Apr 10, 2007
10743+1 = 1(0)7421<744> = 11 · 1487 · 8172691019111011124393086241<28> · C711
C711 = P37 · C675
P37 = 2750793293893633690646483974559334689<37>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Robert Backstrom / GGNFS-0.77.1-20060513-athlon-xp
(4·10156+23)/9 = (4)1557<156> = 3 · 29 · 31 · 233 · 1162061 · C144
C144 = P60 · P84
P60 = 658237800790060433128895853813992111237171477712259462648973<60>
P84 = 924631893046383441534389809744737352040680519541286830846552261752181915098853210999<84>
Number: n N=608627663819201808417041980929346102662496861775520416798486790021398126579659692253604025739413646460016835809359875088363094393568287439654027 ( 144 digits) SNFS difficulty: 156 digits. Divisors found: r1=658237800790060433128895853813992111237171477712259462648973 (pp60) r2=924631893046383441534389809744737352040680519541286830846552261752181915098853210999 (pp84) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 33.77 hours. Scaled time: 46.16 units (timescale=1.367). Factorization parameters were as follows: name: KA_4_155_7 n: 608627663819201808417041980929346102662496861775520416798486790021398126579659692253604025739413646460016835809359875088363094393568287439654027 skew: 0.90 deg: 5 c5: 40 c0: 23 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 2900001) Primes: RFBsize:216816, AFBsize:216736, largePrimes:7433946 encountered Relations: rels:6919180, finalFF:495297 Max relations in full relation-set: 28 Initial matrix: 433618 x 495297 with sparse part having weight 39970576. Pruned matrix : 400661 x 402893 with weight 28886141. Total sieving time: 29.38 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.80 hours. Total square root time: 0.42 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10156-41)/9 = (5)1551<156> = 31 · 97 · 2749 · 24137 · C145
C145 = P46 · P47 · P54
P46 = 1600207301265369924631020682960816113990739459<46>
P47 = 16568556547968489324062487443384412430491937807<47>
P54 = 105020749778702090985515156596077622754794211159073697<54>
Number: n N=2784428283225929846214187821651575527617305853520025468536849587506685784217150177340144999173317301288623436378801171185958744655260831867158861 ( 145 digits) SNFS difficulty: 156 digits. Divisors found: r1=1600207301265369924631020682960816113990739459 (pp46) r2=16568556547968489324062487443384412430491937807 (pp47) r3=105020749778702090985515156596077622754794211159073697 (pp54) Version: GGNFS-0.77.1-20051202-athlon Total time: 34.15 hours. Scaled time: 40.63 units (timescale=1.190). Factorization parameters were as follows: name: KA_5_155_1 n: 2784428283225929846214187821651575527617305853520025468536849587506685784217150177340144999173317301288623436378801171185958744655260831867158861 type: snfs skew: 0.96 deg: 5 c5: 50 c0: -41 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1500000) Primes: RFBsize:216816, AFBsize:217342, largePrimes:6380461 encountered Relations: rels:5851563, finalFF:499097 Max relations in full relation-set: 28 Initial matrix: 434223 x 499097 with sparse part having weight 26951928. Pruned matrix : 373558 x 375793 with weight 16358185. Total sieving time: 30.79 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.65 hours. Total square root time: 0.49 hours, sqrts: 6. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 34.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(52·10156-7)/9 = 5(7)156<157> = 219147336769<12> · C146
C146 = P47 · P99
P47 = 43392867949703635301629857402687959159726060863<47>
P99 = 607583935024911523260847922586741220802757668680390878600315487487290409913946585708438696721115791<99>
Number: n N=26364809460897299259653125087975172032777393582242597341147785718166934780842624212004109229722134427960631940677808720415122325641908370536387633 ( 146 digits) SNFS difficulty: 158 digits. Divisors found: r1=43392867949703635301629857402687959159726060863 (pp47) r2=607583935024911523260847922586741220802757668680390878600315487487290409913946585708438696721115791 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 36.15 hours. Scaled time: 47.79 units (timescale=1.322). Factorization parameters were as follows: name: KA_5_7_156 n: 26364809460897299259653125087975172032777393582242597341147785718166934780842624212004109229722134427960631940677808720415122325641908370536387633 skew: 0.84 deg: 5 c5: 65 c0: -28 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1500001) Primes: RFBsize:216816, AFBsize:217161, largePrimes:7027687 encountered Relations: rels:6501938, finalFF:500738 Max relations in full relation-set: 48 Initial matrix: 434044 x 500738 with sparse part having weight 41292245. Pruned matrix : 382040 x 384274 with weight 25445788. Total sieving time: 31.64 hours. Total relation processing time: 0.21 hours. Matrix solve time: 4.23 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 36.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(2·10156-17)/3 = (6)1551<156> = 582040501417<12> · C145
C145 = P57 · P88
P57 = 262422346638094064709676275686532663519430097478059007977<57>
P88 = 4364703230483737983340490207355193123826831844937412896837700663993603235377768373454229<88>
Number: n N=1145395664122412462028343745791750881390136369783276989631757880007432044155235692531185871687582370102016007875929567627122973983826576555384733 ( 145 digits) SNFS difficulty: 156 digits. Divisors found: r1=262422346638094064709676275686532663519430097478059007977 (pp57) r2=4364703230483737983340490207355193123826831844937412896837700663993603235377768373454229 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.89 hours. Scaled time: 41.65 units (timescale=1.442). Factorization parameters were as follows: name: KA_6_155_1 n: 1145395664122412462028343745791750881390136369783276989631757880007432044155235692531185871687582370102016007875929567627122973983826576555384733 skew: 0.97 deg: 5 c5: 20 c0: -17 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216481, largePrimes:7006733 encountered Relations: rels:6508602, finalFF:508486 Max relations in full relation-set: 28 Initial matrix: 433363 x 508486 with sparse part having weight 34854295. Pruned matrix : 370976 x 373206 with weight 21764226. Total sieving time: 25.33 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.31 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.89 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon, GGNFS-0.77.1-20060513-athlon-xp
(43·10156-7)/9 = 4(7)156<157> = 86036339801<11> · C146
C146 = P38 · P109
P38 = 19163362490036635820158997010258849551<38>
P109 = 2897826003981773784334186754550525299012182064741398699239307009312692916090017208342332671221035127546930327<109>
Number: n N=55532090147357078614709045295335410496884507949289740354906265287483458384991574448553960954638656267233942947332864511635639261192072916572233177 ( 146 digits) SNFS difficulty: 157 digits. Divisors found: r1=19163362490036635820158997010258849551 (pp38) r2=2897826003981773784334186754550525299012182064741398699239307009312692916090017208342332671221035127546930327 (pp109) Version: GGNFS-0.77.1-20051202-athlon Total time: 29.34 hours. Scaled time: 42.51 units (timescale=1.449). Factorization parameters were as follows: name: KA_4_7_156 n: 55532090147357078614709045295335410496884507949289740354906265287483458384991574448553960954638656267233942947332864511635639261192072916572233177 skew: 0.44 deg: 5 c5: 430 c0: -7 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216651, largePrimes:6922881 encountered Relations: rels:6392211, finalFF:486337 Max relations in full relation-set: 28 Initial matrix: 433534 x 486337 with sparse part having weight 33091584. Pruned matrix : 388899 x 391130 with weight 22447641. Total sieving time: 25.47 hours. Total relation processing time: 0.26 hours. Matrix solve time: 3.53 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 29.34 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
(31·10156-13)/9 = 3(4)1553<157> = 4253 · 3873379 · C147
C147 = P47 · P101
P47 = 11446246509035109137458172315152085129446188827<47>
P101 = 18267146564210168096334403162624796291792049909993727669100813582789777576039312403346776495047622407<101>
Number: n N=209090262590623324674662272817826497803277807296152930210058551570312356683432041453306992533523096953980424674313366594580396798468355453918246589 ( 147 digits) SNFS difficulty: 157 digits. Divisors found: r1=11446246509035109137458172315152085129446188827 (pp47) r2=18267146564210168096334403162624796291792049909993727669100813582789777576039312403346776495047622407 (pp101) Version: GGNFS-0.77.1-20060513-athlon-xp Total time: 38.38 hours. Scaled time: 52.43 units (timescale=1.366). Factorization parameters were as follows: name: KA_3_4_155_3 n: 209090262590623324674662272817826497803277807296152930210058551570312356683432041453306992533523096953980424674313366594580396798468355453918246589 skew: 0.53 deg: 5 c5: 310 c0: -13 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1300001) Primes: RFBsize:216816, AFBsize:216917, largePrimes:7085921 encountered Relations: rels:6631140, finalFF:560970 Max relations in full relation-set: 48 Initial matrix: 433800 x 560970 with sparse part having weight 45010433. Pruned matrix : 328753 x 330986 with weight 22946855. Total sieving time: 35.71 hours. Total relation processing time: 0.34 hours. Matrix solve time: 2.22 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 38.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(4·10158+41)/9 = (4)1579<158> = 7 · C157
C157 = P33 · P124
P33 = 707520375170029031923901699222657<33>
P124 = 8973884812406325767083604587285833707833311930101241764893886063877897082565108219201301770248476197905635918804130248304151<124>
Number: 44449_158 N=6349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207 ( 157 digits) SNFS difficulty: 158 digits. Divisors found: r1=707520375170029031923901699222657 (pp33) r2=8973884812406325767083604587285833707833311930101241764893886063877897082565108219201301770248476197905635918804130248304151 (pp124) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 71.54 hours. Scaled time: 48.29 units (timescale=0.675). Factorization parameters were as follows: name: 44449_158 n: 6349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349206349207 m: 20000000000000000000000000000000 c5: 125 c0: 41 skew: 1 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2000000, 3600001) Primes: RFBsize:283146, AFBsize:283743, largePrimes:5731791 encountered Relations: rels:5827031, finalFF:640293 Max relations in full relation-set: 0 Initial matrix: 566954 x 640293 with sparse part having weight 33663472. Pruned matrix : 507252 x 510150 with weight 25148829. Total sieving time: 61.49 hours. Total relation processing time: 0.49 hours. Matrix solve time: 9.35 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 71.54 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10156-13)/9 = (4)1553<156> = 467 · 907 · 4013 · C147
C147 = P71 · P76
P71 = 64377798252552010796638898829797497824812459415960828753897946965206549<71>
P76 = 4061514751851283812525668056120841387861479610200189702623134793785876634331<76>
Number: n N=261471377294445792783700915361605809384343473963181914540349510658242476460029162453106898744077559972780706732100864581694126371426615288359433719 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: r1=64377798252552010796638898829797497824812459415960828753897946965206549 (pp71) r2=4061514751851283812525668056120841387861479610200189702623134793785876634331 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.69 hours. Scaled time: 37.95 units (timescale=1.323). Factorization parameters were as follows: name: KA_4_155_3 n: 261471377294445792783700915361605809384343473963181914540349510658242476460029162453106898744077559972780706732100864581694126371426615288359433719 skew: 0.80 deg: 5 c5: 40 c0: -13 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216811, largePrimes:7010544 encountered Relations: rels:6558496, finalFF:561592 Max relations in full relation-set: 48 Initial matrix: 433693 x 561592 with sparse part having weight 41536616. Pruned matrix : 326842 x 329074 with weight 20810724. Total sieving time: 25.66 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.76 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.69 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(89·10156+1)/9 = 9(8)1559<157> = 23 · 173 · 3395911 · C147
C147 = P59 · P89
P59 = 35190907398243504644236934773128038169516636457174728867557<59>
P89 = 20796334442362108455107590366458381110422317923673323714312825264926001029408728804836633<89>
Number: n N=731841879584066931047543751234400010997014602921761226349534798267800406145405129532579566785063134021457398220721966959322822974289311948478815581 ( 147 digits) SNFS difficulty: 157 digits. Divisors found: r1=35190907398243504644236934773128038169516636457174728867557 (pp59) r2=20796334442362108455107590366458381110422317923673323714312825264926001029408728804836633 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.30 hours. Scaled time: 42.22 units (timescale=1.196). Factorization parameters were as follows: name: KA_9_8_155_9 n: 731841879584066931047543751234400010997014602921761226349534798267800406145405129532579566785063134021457398220721966959322822974289311948478815581 type: snfs skew: 0.26 deg: 5 c5: 890 c0: 1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:217061, largePrimes:6420765 encountered Relations: rels:5891265, finalFF:498686 Max relations in full relation-set: 28 Initial matrix: 433944 x 498686 with sparse part having weight 28275743. Pruned matrix : 373550 x 375783 with weight 17348083. Total sieving time: 32.31 hours. Total relation processing time: 0.22 hours. Matrix solve time: 2.69 hours. Total square root time: 0.09 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 35.30 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
3·10162+1 = 3(0)1611<163> = 7130941393003213<16> · 103809697153908617469853075665675511<36> · C112
C112 = P43 · P70
P43 = 3853176322382181446159610642291595255342267<43>
P70 = 1051762253929606176068974362696177686302006839768383025664246236931321<70>
Number: 30001_162 N=4052625413616873991636843572634283505999285953539026570840954837694883840351540445126100833603885531257627444707 ( 112 digits) Divisors found: r1=3853176322382181446159610642291595255342267 (pp43) r2=1051762253929606176068974362696177686302006839768383025664246236931321 (pp70) Version: GGNFS-0.77.1-20050930-k8 Total time: 22.19 hours. Scaled time: 20.06 units (timescale=0.904). Factorization parameters were as follows: name: 30001_162 n: 4052625413616873991636843572634283505999285953539026570840954837694883840351540445126100833603885531257627444707 skew: 24998.54 # norm 8.26e+14 c5: 30720 c4: 13614228 c3: -60084665928514 c2: -116456741736186697 c1: 23483511012036749253564 c0: 202273762000039556636441520 # alpha -4.74 Y1: 33561962467 Y0: -2654990979919421104393 # Murphy_E 7.76e-10 # M 2153405058310236367653909476962872255556716105115408821461399974313824697223037807778680206665493728900569170632 type: gnfs rlim: 2800000 alim: 2800000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 70000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1400000, 2310001) Primes: RFBsize:203362, AFBsize:203526, largePrimes:7619804 encountered Relations: rels:7521013, finalFF:564629 Max relations in full relation-set: 28 Initial matrix: 406962 x 564629 with sparse part having weight 52440036. Pruned matrix : 295985 x 298083 with weight 30474900. Total sieving time: 21.10 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.81 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2800000,2800000,27,27,50,50,2.6,2.6,70000 total time: 22.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335815) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.10 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
10156-3 = (9)1557<156> = 47 · 193 · 123229 · C147
C147 = P39 · P45 · P65
P39 = 216167489536594248535065060052412135027<39>
P45 = 272299045624505473727969700938204637516311713<45>
P65 = 15198313925884879986745118948436722105397649149262271143998265333<65>
Number: n N=894606210623443562437370687971114782906997814554858187251616555435460536420072344317247852347721206591645711492794592431809126919097277671344041583 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: r1=216167489536594248535065060052412135027 (pp39) r2=272299045624505473727969700938204637516311713 (pp45) r3=15198313925884879986745118948436722105397649149262271143998265333 (pp65) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.97 hours. Scaled time: 37.69 units (timescale=1.451). Factorization parameters were as follows: name: KA_9_155_7 n: 894606210623443562437370687971114782906997814554858187251616555435460536420072344317247852347721206591645711492794592431809126919097277671344041583 skew: 0.78 deg: 5 c5: 10 c0: -3 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:6968935 encountered Relations: rels:6496067, finalFF:534842 Max relations in full relation-set: 28 Initial matrix: 433623 x 534842 with sparse part having weight 36166595. Pruned matrix : 346951 x 349183 with weight 20208618. Total sieving time: 22.49 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.90 hours. Total square root time: 0.41 hours, sqrts: 7. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(28·10156+17)/9 = 3(1)1553<157> = 569 · 49207 · C150
C150 = P51 · P99
P51 = 258041949489809142594628345727012558270007587714629<51>
P99 = 430611925331515945278355234075202645116773258228763345695469212454697948997089854505386842086459659<99>
Number: n N=111115940686104503581856079641429811828289504979952561192074352342782581339735770340843425627146405295941295416701187016275354222042833472837412651511 ( 150 digits) SNFS difficulty: 158 digits. Divisors found: r1=258041949489809142594628345727012558270007587714629 (pp51) r2=430611925331515945278355234075202645116773258228763345695469212454697948997089854505386842086459659 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.65 hours. Scaled time: 18.48 units (timescale=0.414). Factorization parameters were as follows: name: KA_3_1_155_3 n: 111115940686104503581856079641429811828289504979952561192074352342782581339735770340843425627146405295941295416701187016275354222042833472837412651511 skew: 1.14 deg: 5 c5: 35 c0: 68 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216351, largePrimes:6885946 encountered Relations: rels:6345666, finalFF:487688 Max relations in full relation-set: 48 Initial matrix: 433234 x 487688 with sparse part having weight 35977625. Pruned matrix : 388722 x 390952 with weight 23183672. Total sieving time: 37.04 hours. Total relation processing time: 0.38 hours. Matrix solve time: 6.68 hours. Total square root time: 0.55 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 44.65 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10149+1 = 7(0)1481<150> = 353 · 4957 · 2883242209<10> · C135
C135 = P41 · P94
P41 = 27592287833712963754580710491390334851359<41>
P94 = 5028466680407615659824747536024164572850397380074196151582478698822339725661178413486182331051<94>
Number: 70001_149 N=138746900008042067535370063618473556687052409299714471241482567692765626546602017744157274419812068105656310602659059177232164215248309 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=27592287833712963754580710491390334851359 (pp41) r2=5028466680407615659824747536024164572850397380074196151582478698822339725661178413486182331051 (pp94) Version: GGNFS-0.77.1-20050930-k8 Total time: 18.01 hours. Scaled time: 16.32 units (timescale=0.906). Factorization parameters were as follows: n: 138746900008042067535370063618473556687052409299714471241482567692765626546602017744157274419812068105656310602659059177232164215248309 m: 1000000000000000000000000000000 c5: 7 c0: 10 skew: 1.07 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176463, largePrimes:5488427 encountered Relations: rels:5366494, finalFF:447917 Max relations in full relation-set: 28 Initial matrix: 352830 x 447917 with sparse part having weight 39079032. Pruned matrix : 310526 x 312354 with weight 23800589. Total sieving time: 17.11 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.77 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 18.01 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.64 BogoMIPS (lpj=2335820) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334232) Total of 2 processors activated (9340.10 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
7·10150+1 = 7(0)1491<151> = 12583 · 7011677 · 48703953167<11> · C130
C130 = P57 · P73
P57 = 565102429506584132764175102442628047540137331998418471757<57>
P73 = 2882707341673302681845839339823884543514446084956768454184275090583469569<73>
Number: n N=1629024922336050068657788659269692317382596619897579011120619204318148940361751514344610856083178940847911436720610767527695462733 ( 130 digits) SNFS difficulty: 150 digits. Divisors found: r1=565102429506584132764175102442628047540137331998418471757 (pp57) r2=2882707341673302681845839339823884543514446084956768454184275090583469569 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 15.03 hours. Scaled time: 21.67 units (timescale=1.442). Factorization parameters were as follows: name: KA_7_0_149_1 n: 1629024922336050068657788659269692317382596619897579011120619204318148940361751514344610856083178940847911436720610767527695462733 skew: 0.68 deg: 5 c5: 7 c0: 1 m: 1000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:216816, AFBsize:216696, largePrimes:6671835 encountered Relations: rels:6397715, finalFF:678424 Max relations in full relation-set: 28 Initial matrix: 433579 x 678424 with sparse part having weight 37818009. Pruned matrix : 218215 x 220446 with weight 16835240. Total sieving time: 13.48 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.35 hours. Total square root time: 0.04 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 15.03 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
7·10148+1 = 7(0)1471<149> = 3684925389750999011<19> · C131
C131 = P47 · P84
P47 = 22029725720760974922384230516355618304117854041<47>
P84 = 862303702875318574684178933529694530368164638218030948135135277879348224342523674051<84>
Number: n N=18996314062339835051280977654167871538038033379285440954628687044055360698019796646292113856477734419790670423046806412629077190091 ( 131 digits) SNFS difficulty: 150 digits. Divisors found: r1=22029725720760974922384230516355618304117854041 (pp47) r2=862303702875318574684178933529694530368164638218030948135135277879348224342523674051 (pp84) Version: GGNFS-0.77.1-20051202-athlon Total time: 23.53 hours. Scaled time: 27.62 units (timescale=1.174). Factorization parameters were as follows: name: KA_7_0_147_1 n: 18996314062339835051280977654167871538038033379285440954628687044055360698019796646292113856477734419790670423046806412629077190091 type: snfs skew: 1.7 deg: 5 c5: 7 c0: 100 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [100000, 1000000) Primes: RFBsize:216816, AFBsize:216861, largePrimes:6027370 encountered Relations: rels:5537118, finalFF:521472 Max relations in full relation-set: 28 Initial matrix: 433744 x 521472 with sparse part having weight 22021191. Pruned matrix : 345863 x 348095 with weight 11418721. Total sieving time: 21.50 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.71 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 23.53 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(71·10156-17)/9 = 7(8)1557<157> = 3 · 599 · 12277 · C150
C150 = P29 · P53 · P69
P29 = 31099767261536178071546920819<29>
P53 = 36223816354507886781000373247374248840998059419011231<53>
P69 = 317412601069020689414883025797217762217539557105881695471292639044507<69>
Number: n N=357581882436031711187298212073967816854980617777699009036351023750130322227963174162910004582537732531280192848039016675810941946173440982402131437823 ( 150 digits) SNFS difficulty: 157 digits. Divisors found: r1=31099767261536178071546920819 (pp29) r2=36223816354507886781000373247374248840998059419011231 (pp53) r3=317412601069020689414883025797217762217539557105881695471292639044507 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 41.42 hours. Scaled time: 54.67 units (timescale=1.320). Factorization parameters were as follows: name: KA_7_8_155_7 n: 357581882436031711187298212073967816854980617777699009036351023750130322227963174162910004582537732531280192848039016675810941946173440982402131437823 skew: 0.47 deg: 5 c5: 710 c0: -17 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1700001) Primes: RFBsize:216816, AFBsize:216537, largePrimes:7225880 encountered Relations: rels:6720908, finalFF:521001 Max relations in full relation-set: 48 Initial matrix: 433420 x 521001 with sparse part having weight 48206832. Pruned matrix : 366512 x 368743 with weight 28578075. Total sieving time: 36.36 hours. Total relation processing time: 0.22 hours. Matrix solve time: 4.66 hours. Total square root time: 0.17 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 41.42 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Alfred Reich / GMP-ECM B1=250000
101837+1 = 1(0)18361<1838> = 112 · 23 · 4093 · 8779 · 18371 · 84503 · 15849637 · 63716179 · 76272241 · 79402489 · 1657278943<10> · 116011189311149998139<21> · 272828068791212993437<21> · 301525294918950432087520298129941558711551656822567015411<57> · 14950128044255312629457887411604300692966728690551568705030373<62> · C1619
C1619 = P27 · C1592
P27 = 562460722085835631233826201<27>
101669+1 = 1(0)16681<1670> = 11 · 114715401881453<15> · 534378091190893<15> · C1640
C1640 = P28 · C1612
P28 = 1988409572496065915208771397<28>
101786+1 = 1(0)17851<1787> = 101 · 45121 · 117640249 · 722817036322379041<18> · 1369778187490592461<19> · 2144906157509411684424913774078958939881<40> · 1023037643093214557651333120422980213172396059301<49> · C1648
C1648 = P28 · C1621
P28 = 2660633905954597855218572789<28>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(16·10156-7)/9 = 1(7)156<157> = 1528717 · C151
C151 = P69 · P82
P69 = 692135084257927329335410999683545165787859841786762908730251918987703<69>
P82 = 1680194326615894932898979882414438056196314851519751157531292592032120525164197427<82>
Number: n N=1162921441821983910545756852169353632999291417428979842428505588528012560714493119248217804719760281188590025346599650411278070288861691063668277240181 ( 151 digits) SNFS difficulty: 157 digits. Divisors found: r1=692135084257927329335410999683545165787859841786762908730251918987703 (pp69) r2=1680194326615894932898979882414438056196314851519751157531292592032120525164197427 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.60 hours. Scaled time: 38.99 units (timescale=1.196). Factorization parameters were as follows: name: KA_1_7_156 n: 1162921441821983910545756852169353632999291417428979842428505588528012560714493119248217804719760281188590025346599650411278070288861691063668277240181 type: snfs skew: 1.07 deg: 5 c5: 5 c0: -7 m: 20000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216351, largePrimes:6344958 encountered Relations: rels:5824312, finalFF:504391 Max relations in full relation-set: 28 Initial matrix: 433232 x 504391 with sparse part having weight 26881004. Pruned matrix : 366674 x 368904 with weight 15845665. Total sieving time: 29.40 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.84 hours. Total square root time: 0.16 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 32.60 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(8·10156-53)/9 = (8)1553<156> = 17 · 67 · 1723 · C150
C150 = P39 · P111
P39 = 512558391416894469920990361025843583071<39>
P111 = 883680207797077854491786259675284953644239544020825359606312622673009480184253210227866307594638649702739828909<111>
Number: n N=452937705835417271409275473485507946707123062551886137348943151958392236466546898613801136454674268999590261227858635650851384174798172373710068799539 ( 150 digits) SNFS difficulty: 157 digits. Divisors found: r1=512558391416894469920990361025843583071 (pp39) r2=883680207797077854491786259675284953644239544020825359606312622673009480184253210227866307594638649702739828909 (pp111) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.95 hours. Scaled time: 41.97 units (timescale=1.450). Factorization parameters were as follows: name: KA_8_155_3 n: 452937705835417271409275473485507946707123062551886137348943151958392236466546898613801136454674268999590261227858635650851384174798172373710068799539 skew: 1.84 deg: 5 c5: 5 c0: -106 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216631, largePrimes:6978351 encountered Relations: rels:6449777, finalFF:487734 Max relations in full relation-set: 28 Initial matrix: 433512 x 487734 with sparse part having weight 33253798. Pruned matrix : 388763 x 390994 with weight 22572948. Total sieving time: 24.84 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.85 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.95 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
9·10156+1 = 9(0)1551<157> = 29 · C156
C156 = P39 · P40 · P77
P39 = 706993936910368903640116661982625450877<39>
P40 = 8380009192709174113059633311180980138633<40>
P77 = 52382271492126465895543889093087824425922340013871527868319133952371915809809<77>
Number: n N=310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 ( 156 digits) SNFS difficulty: 158 digits. Divisors found: r1=706993936910368903640116661982625450877 (pp39) r2=8380009192709174113059633311180980138633 (pp40) r3=52382271492126465895543889093087824425922340013871527868319133952371915809809 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 33.66 hours. Scaled time: 44.53 units (timescale=1.323). Factorization parameters were as follows: name: KA_9_0_155_1 n: 310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862069 skew: 1.22 deg: 5 c5: 10 c0: 27 m: 30000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1400001) Primes: RFBsize:216816, AFBsize:216791, largePrimes:7067476 encountered Relations: rels:6585869, finalFF:536410 Max relations in full relation-set: 48 Initial matrix: 433674 x 536410 with sparse part having weight 43854241. Pruned matrix : 350813 x 353045 with weight 23765257. Total sieving time: 29.76 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.46 hours. Total square root time: 0.21 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 33.66 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(68·10156+13)/9 = 7(5)1557<157> = 3 · 10891 · C153
C153 = P59 · P94
P59 = 31355131076919367852714514174234199910740419431555686047929<59>
P94 = 7375114545207978805546688095481618474842984019533230866001850209009963716005668089754841511021<94>
Number: n N=231247683272290746351897761318383850750024655083878295704574283217199386513499083511019972318292031816960657287532689240521395511754523782804014187725509 ( 153 digits) SNFS difficulty: 158 digits. Divisors found: r1=31355131076919367852714514174234199910740419431555686047929 (pp59) r2=7375114545207978805546688095481618474842984019533230866001850209009963716005668089754841511021 (pp94) Version: GGNFS-0.77.1-20051202-athlon Total time: 47.14 hours. Scaled time: 38.93 units (timescale=0.826). Factorization parameters were as follows: name: KA_7_5_155_7 n: 231247683272290746351897761318383850750024655083878295704574283217199386513499083511019972318292031816960657287532689240521395511754523782804014187725509 skew: 0.91 deg: 5 c5: 85 c0: 52 m: 20000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [1500000, 1500000) Primes: RFBsize:216816, AFBsize:216711, largePrimes:7114301 encountered Relations: rels:6617701, finalFF:528432 Max relations in full relation-set: 28 Initial matrix: 433594 x 528432 with sparse part having weight 42665152. Pruned matrix : 357775 x 360006 with weight 24579218. Total sieving time: 42.61 hours. Total relation processing time: 0.41 hours. Matrix solve time: 3.98 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 47.14 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(7·10154+11)/9 = (7)1539<154> = 33 · 7337683 · C146
C146 = P61 · P85
P61 = 4690896086141897500802584645763269881758309040800801140340477<61>
P85 = 8369066300074838263082780406544591031236656625018906009192714626063310059189782184047<85>
Number: trial N=39258420351683109907409806377308183471730678056647106489618840664198654664521826615849423260912085866169540206093100999511586553239286882257770419 ( 146 digits) SNFS difficulty: 155 digits. Divisors found: r1=4690896086141897500802584645763269881758309040800801140340477 (pp61) r2=8369066300074838263082780406544591031236656625018906009192714626063310059189782184047 (pp85) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 84.95 hours. Scaled time: 45.45 units (timescale=0.535). Factorization parameters were as follows: n: 39258420351683109907409806377308183471730678056647106489618840664198654664521826615849423260912085866169540206093100999511586553239286882257770419 m: 10000000000000000000000000000000 c5: 7 c0: 110 skew: 1.73 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1 ) Primes: RFBsize:216816, AFBsize:217222, largePrimes:5753913 encountered Relations: rels:5757438, finalFF:546532 Max relations in full relation-set: 0 Initial matrix: 434103 x 546532 with sparse part having weight 42400010. Pruned matrix : 403492 x 405726 with weight 24843896. Total sieving time: 77.64 hours. Total relation processing time: 0.62 hours. Matrix solve time: 6.39 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 84.95 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10155+13)/9 = (5)1547<155> = 3 · 107 · 197 · 3333804296728811<16> · C135
C135 = P35 · P100
P35 = 41216820093313356609207852589825031<35>
P100 = 6393543903130201756244045739931302422886188966077224891742387211909421803577183769409636962325124421<100>
Number: n N=263521548814018004580209891831459686451851910557430681666590679838019891784536826927571192291545123292460712443696823152316035695182051 ( 135 digits) SNFS difficulty: 155 digits. Divisors found: r1=41216820093313356609207852589825031 (pp35) r2=6393543903130201756244045739931302422886188966077224891742387211909421803577183769409636962325124421 (pp100) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.43 hours. Scaled time: 32.98 units (timescale=1.297). Factorization parameters were as follows: name: KA_5_154_7 n: 263521548814018004580209891831459686451851910557430681666590679838019891784536826927571192291545123292460712443696823152316035695182051 skew: 1.21 deg: 5 c5: 5 c0: 13 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217321, largePrimes:6770644 encountered Relations: rels:6260192, finalFF:509405 Max relations in full relation-set: 48 Initial matrix: 434202 x 509405 with sparse part having weight 33986023. Pruned matrix : 369089 x 371324 with weight 19110819. Total sieving time: 22.15 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.97 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.43 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
(68·10155+13)/9 = 7(5)1547<156> = 11 · 29 · 421 · 2475023 · 80018997103<11> · C134
C134 = P48 · P86
P48 = 557831249566315798418346398963812640291677422857<48>
P86 = 50923523018443023950549144339844652596348663112551716875431260247044827931812945961671<86>
Number: n N=28406732477697117682136345726381636050128121431425594294290731080826521212711193096225911030485159627911792905855674723329202781314047 ( 134 digits) SNFS difficulty: 156 digits. Divisors found: r1=557831249566315798418346398963812640291677422857 (pp48) r2=50923523018443023950549144339844652596348663112551716875431260247044827931812945961671 (pp86) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.88 hours. Scaled time: 37.40 units (timescale=1.445). Factorization parameters were as follows: name: KA_7_5_154_7 n: 28406732477697117682136345726381636050128121431425594294290731080826521212711193096225911030485159627911792905855674723329202781314047 skew: 0.72 deg: 5 c5: 68 c0: 13 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:217331, largePrimes:6856703 encountered Relations: rels:6351061, finalFF:504197 Max relations in full relation-set: 28 Initial matrix: 434213 x 504197 with sparse part having weight 32033747. Pruned matrix : 373953 x 376188 with weight 19778157. Total sieving time: 22.57 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.07 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 25.88 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
9·10150+1 = 9(0)1491<151> = 4253 · C148
C148 = P61 · P87
P61 = 3566992060520775519655367333427319075823880194840139594754009<61>
P87 = 593259886101759296204495700498020412031125484426971874909743168024374007473423673233213<87>
Number: n N=2116153303550434987067952033858452856806959793087232541735245708911356689395720667763931342581707030331530684222901481307312485304490947566423700917 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=3566992060520775519655367333427319075823880194840139594754009 (pp61) r2=593259886101759296204495700498020412031125484426971874909743168024374007473423673233213 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.35 hours. Scaled time: 24.33 units (timescale=1.196). Factorization parameters were as follows: name: KA_9_0_149_1 n: 2116153303550434987067952033858452856806959793087232541735245708911356689395720667763931342581707030331530684222901481307312485304490947566423700917 type: snfs skew: .64 deg: 5 c5: 9 c0: 1 m: 1000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:216846, largePrimes:6003304 encountered Relations: rels:5565342, finalFF:557446 Max relations in full relation-set: 28 Initial matrix: 433726 x 557446 with sparse part having weight 22454058. Pruned matrix : 311345 x 313577 with weight 9852861. Total sieving time: 18.68 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.33 hours. Total square root time: 0.16 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 20.35 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
2·10156-1 = 1(9)156<157> = 31543 · C152
C152 = P32 · P120
P32 = 99879751314103257507070930078903<32>
P120 = 634818460244410667590194554947948312452377489168571246831381943469948522781850559392697592627523228359592226813837713231<120>
Number: n N=63405509938813682909044795992771771866975240148368893256824018007164822623085946168722061947183210220968202136765684938021114034809624956408711917065593 ( 152 digits) SNFS difficulty: 156 digits. Divisors found: r1=99879751314103257507070930078903 (pp32) r2=634818460244410667590194554947948312452377489168571246831381943469948522781850559392697592627523228359592226813837713231 (pp120) Version: GGNFS-0.77.1-20051202-athlon Total time: 21.97 hours. Scaled time: 31.77 units (timescale=1.446). Factorization parameters were as follows: name: KA_1_9_156 n: 63405509938813682909044795992771771866975240148368893256824018007164822623085946168722061947183210220968202136765684938021114034809624956408711917065593 skew: 0.55 deg: 5 c5: 20 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216361, largePrimes:6725175 encountered Relations: rels:6222839, finalFF:505496 Max relations in full relation-set: 28 Initial matrix: 433243 x 505496 with sparse part having weight 30126514. Pruned matrix : 369600 x 371830 with weight 17843621. Total sieving time: 19.07 hours. Total relation processing time: 0.17 hours. Matrix solve time: 2.68 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 21.97 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By suberi / GMP-ECM 6.1.2 B1=3000000
(16·10156-61)/9 = 1(7)1551<157> = 353 · 9320453 · 52622551337<11> · 118052925097<12> · C125
C125 = P40 · P86
P40 = 2966774020885178915193117624664369288559<40>
P86 = 29317884310296032844640928591941378129027096529790688817039501129820426892441986873169<86>
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(2·10157+61)/9 = (2)1569<157> = 3 · C156
C156 = P70 · P87
P70 = 2124001047704260764969871594481033371460532700579941038302624662161929<70>
P87 = 348747822672392181906445498167694063047435422994624510314413787974685333027581184663567<87>
Number: 22229_157 N=740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 ( 156 digits) SNFS difficulty: 157 digits. Divisors found: r1=2124001047704260764969871594481033371460532700579941038302624662161929 (pp70) r2=348747822672392181906445498167694063047435422994624510314413787974685333027581184663567 (pp87) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 62.82 hours. Scaled time: 42.34 units (timescale=0.674). Factorization parameters were as follows: name: 22229_157 n: 740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740740743 m: 10000000000000000000000000000000 c5: 200 c0: 61 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3000001) Primes: RFBsize:216816, AFBsize:216677, largePrimes:5625784 encountered Relations: rels:5541384, finalFF:486522 Max relations in full relation-set: 0 Initial matrix: 433558 x 486522 with sparse part having weight 37329396. Pruned matrix : 410517 x 412748 with weight 28627425. Total sieving time: 54.70 hours. Total relation processing time: 0.49 hours. Matrix solve time: 7.44 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 62.82 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(85·10155+41)/9 = 9(4)1549<156> = 11 · 541 · 12918769 · C146
C146 = P42 · P48 · P57
P42 = 211700555063119929890875235473012007515787<42>
P48 = 168922285910824157078507837032846030320795260327<48>
P57 = 343523448472478512600512197801355359657515353958015774379<57>
Number: n N=12284722009921359929131917984001874509741121627632771385728056425443589682952011109511750289812874167807618558883312054960486639823425788913136271 ( 146 digits) SNFS difficulty: 156 digits. Divisors found: r1=211700555063119929890875235473012007515787 (pp42) r2=168922285910824157078507837032846030320795260327 (pp48) r3=343523448472478512600512197801355359657515353958015774379 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.63 hours. Scaled time: 39.03 units (timescale=1.196). Factorization parameters were as follows: name: KA_9_4_154_9 n: 12284722009921359929131917984001874509741121627632771385728056425443589682952011109511750289812874167807618558883312054960486639823425788913136271 type: snfs skew: 1 deg: 5 c5: 85 c0: 41 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216987, largePrimes:6273146 encountered Relations: rels:5738314, finalFF:489456 Max relations in full relation-set: 28 Initial matrix: 433869 x 489456 with sparse part having weight 25703479. Pruned matrix : 380465 x 382698 with weight 16215397. Total sieving time: 29.29 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.69 hours. Total square root time: 0.41 hours, sqrts: 5. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 32.63 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
9·10141+1 = 9(0)1401<142> = 66031908616111316843093170997<29> · C114
C114 = P35 · P80
P35 = 10183815601095370522960916473439173<35>
P80 = 13383759748561580248834032773181350478449614572726727955728581327175944905132921<80>
Number: n N=136297741328713674413693066891690669437698508191359111723956358226887622689098652320651044431037249295329573314333 ( 114 digits) SNFS difficulty: 143 digits. Divisors found: r1=10183815601095370522960916473439173 (pp35) r2=13383759748561580248834032773181350478449614572726727955728581327175944905132921 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.33 hours. Scaled time: 9.37 units (timescale=0.827). Factorization parameters were as follows: name: KA_9_0_140_1 n: 136297741328713674413693066891690669437698508191359111723956358226887622689098652320651044431037249295329573314333 skew: 1.22 deg: 5 c5: 10 c0: 27 m: 30000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:183066, largePrimes:6647249 encountered Relations: rels:6179370, finalFF:529120 Max relations in full relation-set: 48 Initial matrix: 366205 x 529120 with sparse part having weight 32879271. Pruned matrix : 228116 x 230011 with weight 13740621. Total sieving time: 9.36 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.59 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 11.33 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
By Jo Yeong Uk / GMP-ECM 5.0.3 B1=3000000, GGNFS-0.77.1-20050930-k8
9·10160+1 = 9(0)1591<161> = C161
C161 = P42 · C120
P42 = 196668336511615844317373683402996797341833<42>
C120 = [457623233085536978487969224809644797039838287759370817200669676684400841774026444495529209155367065867115087869248173497<120>]
9·10142+1 = 9(0)1411<143> = 229133 · C138
C138 = P39 · P100
P39 = 310418237090102149002920451352517921093<39>
P100 = 1265341173550541325953165241360932050982648906067589633583866154278345401523423025383948873896217729<100>
Number: 90001_142 N=392784976411080027756804999716321961480886646620085277982656361152692977441049521456970405834166182959242012281076929119768867862769657797 ( 138 digits) SNFS difficulty: 142 digits. Divisors found: r1=310418237090102149002920451352517921093 (pp39) r2=1265341173550541325953165241360932050982648906067589633583866154278345401523423025383948873896217729 (pp100) Version: GGNFS-0.77.1-20050930-k8 Total time: 9.89 hours. Scaled time: 8.98 units (timescale=0.908). Factorization parameters were as follows: n: 392784976411080027756804999716321961480886646620085277982656361152692977441049521456970405834166182959242012281076929119768867862769657797 m: 10000000000000000000000000000 c5: 900 c0: 1 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:113802, largePrimes:2682733 encountered Relations: rels:2690141, finalFF:314070 Max relations in full relation-set: 28 Initial matrix: 228021 x 314070 with sparse part having weight 20532393. Pruned matrix : 190077 x 191281 with weight 10216464. Total sieving time: 9.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 9.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
7·10168+1 = 7(0)1671<169> = C169
C169 = P32 · P138
P32 = 39874420514155621405930029196213<32>
P138 = 175551140549239192504522004124894766597610705708295751211644739831183679452961360088433039867758405935282447575807483052676447787480773277<138>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
9·10139+1 = 9(0)1381<140> = 7 · 132 · 59 · 4424608127<10> · C126
C126 = P38 · P41 · P47
P38 = 78922087410589632675170017604509175183<38>
P41 = 80446991336116621276555908785459354423609<41>
P47 = 45901044757666544367296133139543971866289750757<47>
Number: 90001_139 N=291427774943488532047152968430812186544474227918461927420354897872451236915447049045959903935550375259390389351446759644503379 ( 126 digits) SNFS difficulty: 140 digits. Divisors found: r1=78922087410589632675170017604509175183 (pp38) r2=80446991336116621276555908785459354423609 (pp41) r3=45901044757666544367296133139543971866289750757 (pp47) Version: GGNFS-0.77.1-20050930-k8 Total time: 7.37 hours. Scaled time: 6.69 units (timescale=0.908). Factorization parameters were as follows: n: 291427774943488532047152968430812186544474227918461927420354897872451236915447049045959903935550375259390389351446759644503379 m: 10000000000000000000000000000 c5: 9 c0: 10 skew: 1.02 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114347, largePrimes:2606524 encountered Relations: rels:2587319, finalFF:291732 Max relations in full relation-set: 28 Initial matrix: 228566 x 291732 with sparse part having weight 17521246. Pruned matrix : 192093 x 193299 with weight 9457557. Total sieving time: 7.17 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.13 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 7.37 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(7·10155-1)/3 = 2(3)155<156> = 23 · 179 · 2130837571<10> · C143
C143 = P68 · P75
P68 = 77461896204587304692802549568692094784149038435678059800315429975651<68>
P75 = 343366126043325324679343651655973979954780461786276458351742207522660246169<75>
Number: n N=26597791215739308044490594222247537267372861584429149293061049124427324190079794935545891769979405882539329762729960567612604616679833336031019 ( 143 digits) SNFS difficulty: 155 digits. Divisors found: r1=77461896204587304692802549568692094784149038435678059800315429975651 (pp68) r2=343366126043325324679343651655973979954780461786276458351742207522660246169 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.30 hours. Scaled time: 23.40 units (timescale=0.827). Factorization parameters were as follows: name: KA_2_3_155 n: 26597791215739308044490594222247537267372861584429149293061049124427324190079794935545891769979405882539329762729960567612604616679833336031019 skew: 1 deg: 5 c5: 7 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:216816, AFBsize:216696, largePrimes:6565054 encountered Relations: rels:6066011, finalFF:508144 Max relations in full relation-set: 48 Initial matrix: 433579 x 508144 with sparse part having weight 30474705. Pruned matrix : 365661 x 367892 with weight 17059396. Total sieving time: 24.44 hours. Total relation processing time: 0.32 hours. Matrix solve time: 3.44 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.30 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
By Philippe Strohl / GGNFS-0.77.1-20060722-pentium-m
(7·10175+11)/9 = (7)1749<175> = 3 · 506195919767<12> · 18822712509076627<17> · 12007442890556404705517171537299<32> · C116
C116 = P36 · P80
P36 = 498624942550109485805814460298361641<36>
P80 = 45447384816690114799306728579382713054661212062218116456521891841090634833086503<80>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10155-17)/3 = 1(6)1541<156> = 11 · 61 · 10061 · 10351541267<11> · C139
C139 = P64 · P76
P64 = 1850217218604904705518625678066942001084019396417929806014990607<64>
P76 = 1289013139523539875414561025232330466630448746167402715567364053956199454099<76>
Number: n N=2384954305754419907374721739212565653128503425209626432308736488438207987809067828309162718996422968888385930009018811111685156024012648093 ( 139 digits) SNFS difficulty: 155 digits. Divisors found: r1=1850217218604904705518625678066942001084019396417929806014990607 (pp64) r2=1289013139523539875414561025232330466630448746167402715567364053956199454099 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.79 hours. Scaled time: 25.77 units (timescale=1.302). Factorization parameters were as follows: name: KA_1_6_154_1 n: 2384954305754419907374721739212565653128503425209626432308736488438207987809067828309162718996422968888385930009018811111685156024012648093 skew: 1.28 deg: 5 c5: 5 c0: -17 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:216816, AFBsize:216751, largePrimes:6454719 encountered Relations: rels:5971797, finalFF:513567 Max relations in full relation-set: 48 Initial matrix: 433632 x 513567 with sparse part having weight 28449479. Pruned matrix : 359396 x 361628 with weight 15123330. Total sieving time: 17.30 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.27 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 19.79 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10151+1 = 9(0)1501<152> = 7 · 13 · 157 · C148
C148 = P37 · P55 · P57
P37 = 1740270742464737399801648274260382251<37>
P55 = 6819290242424764524862346427986183895917940998262231863<55>
P57 = 530817791290284114816038893859259470090732398434626858971<57>
Number: n N=6299433051025407713305802477777000069993700566948974592286694197522222999930006299433051025407713305802477777000069993700566948974592286694197522223 ( 148 digits) SNFS difficulty: 153 digits. Divisors found: r1=1740270742464737399801648274260382251 (pp37) r2=6819290242424764524862346427986183895917940998262231863 (pp55) r3=530817791290284114816038893859259470090732398434626858971 (pp57) Version: GGNFS-0.77.1-20051202-athlon Total time: 18.56 hours. Scaled time: 26.73 units (timescale=1.440). Factorization parameters were as follows: name: KA_9_0_150_1 n: 6299433051025407713305802477777000069993700566948974592286694197522222999930006299433051025407713305802477777000069993700566948974592286694197522223 skew: 1.22 deg: 5 c5: 10 c0: 27 m: 3000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 850001) Primes: RFBsize:183072, AFBsize:183066, largePrimes:6485918 encountered Relations: rels:5920454, finalFF:416460 Max relations in full relation-set: 28 Initial matrix: 366205 x 416460 with sparse part having weight 28593043. Pruned matrix : 325166 x 327061 with weight 18726059. Total sieving time: 16.07 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.24 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 18.56 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
9·10137+1 = 9(0)1361<138> = 12487 · C134
C134 = P30 · P38 · P67
P30 = 499844315469822755436751497077<30>
P38 = 22694932497912076567821810183311352533<38>
P67 = 6353612804509099688291593709903803564908420180194675150217717604303<67>
Number: 90001_137 N=72074957956274525506526787859373748698646592456154400576599663650196204052214302874989989589172739649235204612797309201569632417714423 ( 134 digits) SNFS difficulty: 137 digits. Divisors found: r1=499844315469822755436751497077 (pp30) r2=22694932497912076567821810183311352533 (pp38) r3=6353612804509099688291593709903803564908420180194675150217717604303 (pp67) Version: GGNFS-0.77.1-20050930-k8 Total time: 6.82 hours. Scaled time: 6.18 units (timescale=0.905). Factorization parameters were as follows: n: 72074957956274525506526787859373748698646592456154400576599663650196204052214302874989989589172739649235204612797309201569632417714423 m: 1000000000000000000000000000 c5: 900 c0: 1 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1700001) Primes: RFBsize:100021, AFBsize:99793, largePrimes:1621648 encountered Relations: rels:1655072, finalFF:231349 Max relations in full relation-set: 28 Initial matrix: 199878 x 231349 with sparse part having weight 11731570. Pruned matrix : 185095 x 186158 with weight 8027989. Total sieving time: 6.66 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 6.82 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Alfred Reich / GMP-ECM B1=150000
101823+1 = 1(0)18221<1824> = 11 · 1187345615675521<16> · C1807
C1807 = P26 · C1782
P26 = 31955183441582314302903853<26>
101943+1 = 1(0)19421<1944> = 11 · 59 · 8685211 · 182142902141813<15> · 154083204930662557781201849<27> · 909090909090909090909090909090909090909090909090909090909090909091<66> · C1827
C1827 = P27 · C1801
P27 = 549079354489571267845038917<27>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10147+1 = 7(0)1461<148> = 283183 · 1902961 · 4224729381223999559<19> · C118
C118 = P43 · P76
P43 = 1257698080821893649965656268769551561386291<43>
P76 = 2444700608743657571446769617615111125524512245960929287873490693266909697683<76>
Number: 70001_147 N=3074695263801013246179651465377774841536765090589909013606376195809919254938620808513180930889035167934758547190663753 ( 118 digits) SNFS difficulty: 147 digits. Divisors found: r1=1257698080821893649965656268769551561386291 (pp43) r2=2444700608743657571446769617615111125524512245960929287873490693266909697683 (pp76) Version: GGNFS-0.77.1-20050930-k8 Total time: 15.32 hours. Scaled time: 13.88 units (timescale=0.906). Factorization parameters were as follows: n: 3074695263801013246179651465377774841536765090589909013606376195809919254938620808513180930889035167934758547190663753 m: 100000000000000000000000000000 c5: 700 c0: 1 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1725001) Primes: RFBsize:135072, AFBsize:134603, largePrimes:2749251 encountered Relations: rels:2756068, finalFF:334962 Max relations in full relation-set: 28 Initial matrix: 269742 x 334962 with sparse part having weight 19110574. Pruned matrix : 236626 x 238038 with weight 11511077. Total sieving time: 15.00 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.24 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 15.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
9·10118+1 = 9(0)1171<119> = 196073 · C114
C114 = P33 · P40 · P43
P33 = 186381179361616798004946995918881<33>
P40 = 1741085366837536144261031347273683656221<40>
P43 = 1414498837021419722168181729011819304044237<43>
Number: 90001_118 N=459012714652195865825483365889235131813151224288912802884639904525355352343259908299459895039092582864545347906137 ( 114 digits) SNFS difficulty: 118 digits. Divisors found: r1=186381179361616798004946995918881 (pp33) r2=1741085366837536144261031347273683656221 (pp40) r3=1414498837021419722168181729011819304044237 (pp43) Version: GGNFS-0.77.1-20050930-k8 Total time: 1.71 hours. Scaled time: 1.55 units (timescale=0.903). Factorization parameters were as follows: n: 459012714652195865825483365889235131813151224288912802884639904525355352343259908299459895039092582864545347906137 m: 100000000000000000000000000000 c4: 900 c0: 1 skew: 1 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 625001) Primes: RFBsize:56543, AFBsize:56367, largePrimes:1979349 encountered Relations: rels:1930833, finalFF:130207 Max relations in full relation-set: 28 Initial matrix: 112979 x 130207 with sparse part having weight 10923724. Pruned matrix : 108529 x 109157 with weight 7699852. Total sieving time: 1.63 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,118,4,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,25000 total time: 1.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
9·10130+1 = 9(0)1291<131> = 17 · 24593 · C126
C126 = P33 · P93
P33 = 216594009296418960195645951195437<33>
P93 = 993883859583954448735204608842181266122491024424875540660278630042828155798346154067493353733<93>
Number: 90001_130 N=215269289922287786338054109131962466603361549556186480610216680499711778339604048019402938664995539141936610369760883656516321 ( 126 digits) SNFS difficulty: 130 digits. Divisors found: r1=216594009296418960195645951195437 (pp33) r2=993883859583954448735204608842181266122491024424875540660278630042828155798346154067493353733 (pp93) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.48 hours. Scaled time: 2.26 units (timescale=0.909). Factorization parameters were as follows: n: 215269289922287786338054109131962466603361549556186480610216680499711778339604048019402938664995539141936610369760883656516321 m: 100000000000000000000000000 c5: 9 c0: 1 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78476, largePrimes:1520791 encountered Relations: rels:1555753, finalFF:208863 Max relations in full relation-set: 28 Initial matrix: 157038 x 208863 with sparse part having weight 10306656. Pruned matrix : 132322 x 133171 with weight 5117766. Total sieving time: 2.41 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.48 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Shaopu Lin / GGNFS-0.77.1-20060722-pentium4
9·10115+1 = 9(0)1141<116> = 7 · 13 · 103 · 3391343 · 4528368424529<13> · C93
C93 = P35 · P59
P35 = 40963716780981360581121590745000013<35>
P59 = 15263392336091573406619034605037192244798168990720053726167<59>
Number: 9.115.+1 N=625245280772656676746155571910659372750816392845660093458760975741039193818228550885113440171 ( 93 digits) SNFS difficulty: 115 digits. Divisors found: r1=40963716780981360581121590745000013 (pp35) r2=15263392336091573406619034605037192244798168990720053726167 (pp59) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.71 hours. Scaled time: 2.14 units (timescale=1.248). Factorization parameters were as follows: n: 625245280772656676746155571910659372750816392845660093458760975741039193818228550885113440171 m: 100000000000000000000000 c5: 9 c0: 1 skew: 0.6443940149772542505082929811 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:64013, largePrimes:2156403 encountered Relations: rels:2356568, finalFF:351185 Max relations in full relation-set: 32 Initial matrix: 113175 x 351185 with sparse part having weight 28702487. Pruned matrix : 67902 x 68531 with weight 4049822. Total sieving time: 1.55 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.04 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.71 hours. --------- CPU info (if available) ----------
9·10106+1 = 9(0)1051<107> = 53 · 109 · 601 · C101
C101 = P36 · P65
P36 = 273608402981042587412878642296398297<36>
P65 = 94740623536944631063360702956769539501899999853290343142238204929<65>
Number: 9.106.+1 N=25921830703371594915519313636006229303938361342831476130170217141415395320879141768508259127292605913 ( 101 digits) SNFS difficulty: 106 digits. Divisors found: r1=273608402981042587412878642296398297 (pp36) r2=94740623536944631063360702956769539501899999853290343142238204929 (pp65) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.31 hours. Scaled time: 1.64 units (timescale=1.253). Factorization parameters were as follows: n: 25921830703371594915519313636006229303938361342831476130170217141415395320879141768508259127292605913 m: 1000000000000000000000 c5: 90 c0: 1 skew: 0.4065851364889782182814046414 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 450001) Primes: RFBsize:49098, AFBsize:64158, largePrimes:1914669 encountered Relations: rels:1900606, finalFF:178309 Max relations in full relation-set: 32 Initial matrix: 113323 x 178309 with sparse part having weight 12518519. Pruned matrix : 87858 x 88488 with weight 3836011. Total sieving time: 1.14 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,106,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.31 hours. --------- CPU info (if available) ----------
9·10120+1 = 9(0)1191<121> = 261066330188528555113<21> · C101
C101 = P36 · P66
P36 = 177543491136813067537023060576498121<36>
P66 = 194172127768048952704457311156481550648638322505777201579412750737<66>
Number: 9.120.+1 N=34473997445402733752180794441478216709139205993978969681670845367942169957821117137970678303321865177 ( 101 digits) SNFS difficulty: 120 digits. Divisors found: r1=177543491136813067537023060576498121 (pp36) r2=194172127768048952704457311156481550648638322505777201579412750737 (pp66) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.19 hours. Scaled time: 2.78 units (timescale=1.270). Factorization parameters were as follows: n: 34473997445402733752180794441478216709139205993978969681670845367942169957821117137970678303321865177 m: 1000000000000000000000000 c5: 9 c0: 1 skew: 0.6443940149772542505082929811 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:64013, largePrimes:2116235 encountered Relations: rels:2216077, finalFF:252753 Max relations in full relation-set: 32 Initial matrix: 113175 x 252753 with sparse part having weight 22900072. Pruned matrix : 83496 x 84125 with weight 4936282. Total sieving time: 1.99 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.19 hours. --------- CPU info (if available) ----------
9·10113+1 = 9(0)1121<114> = 22699 · 1184459 · C104
C104 = P45 · P60
P45 = 184673635431641860805463910676143935673766213<45>
P60 = 181263705428764681773841097459967268253297158583781910475797<60>
Number: 9.113.+1 N=33474627453340210450558941161791675296296994782280919086160013356355525225661891419848286880377772846761 ( 104 digits) SNFS difficulty: 115 digits. Divisors found: r1=184673635431641860805463910676143935673766213 (pp45) r2=181263705428764681773841097459967268253297158583781910475797 (pp60) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.33 hours. Scaled time: 2.97 units (timescale=1.277). Factorization parameters were as follows: n: 33474627453340210450558941161791675296296994782280919086160013356355525225661891419848286880377772846761 m: 100000000000000000000000 c5: 9 c0: 100 skew: 1.618644582767346099223495031 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63918, largePrimes:2311851 encountered Relations: rels:2665234, finalFF:483823 Max relations in full relation-set: 32 Initial matrix: 113080 x 483823 with sparse part having weight 41507232. Pruned matrix : 65593 x 66222 with weight 6026429. Total sieving time: 2.12 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.05 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,115,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.33 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
9·10111+1 = 9(0)1101<112> = 89 · C111
C111 = P38 · P73
P38 = 76439746214259187150670786361768507023<38>
P73 = 1322919037723783381478589398425519069856963653988055358561452629090981383<73>
Number: n N=101123595505617977528089887640449438202247191011235955056179775280898876404494382022471910112359550561797752809 ( 111 digits) SNFS difficulty: 113 digits. Divisors found: r1=76439746214259187150670786361768507023 (pp38) r2=1322919037723783381478589398425519069856963653988055358561452629090981383 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 1.17 hours. Scaled time: 1.55 units (timescale=1.324). Factorization parameters were as follows: name: KA_9_0_110_1 n: 101123595505617977528089887640449438202247191011235955056179775280898876404494382022471910112359550561797752809 skew: 1.22 deg: 5 c5: 10 c0: 27 m: 30000000000000000000000 type: snfs rlim: 1500000 alim: 1500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 200001) Primes: RFBsize:114155, AFBsize:114062, largePrimes:4028981 encountered Relations: rels:3581766, finalFF:312084 Max relations in full relation-set: 48 Initial matrix: 228284 x 312084 with sparse part having weight 9536524. Pruned matrix : 136996 x 138201 with weight 2950017. Total sieving time: 0.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Total square root time: 0.01 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,113,5,0,0,0,0,0,0,0,0,1500000,1500000,28,28,48,48,2.5,2.5,50000 total time: 1.17 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
9·10116+1 = 9(0)1151<117> = 3917 · 719189 · C108
C108 = P34 · P75
P34 = 1814814873154884385579882421783353<34>
P75 = 176040896601909387016192468843434263374254628094985647651842242628087932409<75>
Number: n N=319481637436666301862417530975811618189214620608706212631721564718698248156838639004348142600655848305387377 ( 108 digits) SNFS difficulty: 118 digits. Divisors found: r1=1814814873154884385579882421783353 (pp34) r2=176040896601909387016192468843434263374254628094985647651842242628087932409 (pp75) Version: GGNFS-0.77.1-20051202-athlon Total time: 2.15 hours. Scaled time: 3.12 units (timescale=1.451). Factorization parameters were as follows: name: KA_9_0_115_1 n: 319481637436666301862417530975811618189214620608706212631721564718698248156838639004348142600655848305387377 skew: 1.22 deg: 5 c5: 10 c0: 27 m: 300000000000000000000000 type: snfs rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [500000, 600001) Primes: RFBsize:148933, AFBsize:148730, largePrimes:6414980 encountered Relations: rels:5825796, finalFF:426956 Max relations in full relation-set: 28 Initial matrix: 297730 x 426956 with sparse part having weight 22437789. Pruned matrix : 181983 x 183535 with weight 7617386. Total sieving time: 1.61 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.41 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,118,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.5,2.5,50000 total time: 2.15 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3400+
By Thomas Womack / ggnfs
(52·10180-7)/9 = 5(7)180<181> = 1907145664709063958354268537876114943171<40> · C142
C142 = P49 · P94
P49 = 2282249079063136761889376337454791894323802478621<49>
P94 = 1327437030532454031084789475205826920108788207304808616927065055833914814194080582426819377847<94>
57777_180 factors as 1907145664709063958354268537876114943171 * 2282249079063136761889376337454791894323802478621 * 1327437030532454031084789475205826920108788207304808616927065055833914814194080582426819377847 The calculation took about 300 CPU-hours on a Core2 system, using ggnfs with a factor base bound of 7400000 on each side and a large- prime bound of 2^27; 7883395 relations were collected and converted into 1146658 full relations, which were pruned to a 951774*956854 matrix of sparse-weight 53453875 which took 6.7 hours to solve. The factors were found using the first three dependencies, each sqrt took about nine minutes.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
9·10117+1 = 9(0)1161<118> = 12527 · C114
C114 = P38 · P77
P38 = 12134790579207611427656536951386453899<38>
P77 = 59205649022301612078526981553969233951090001376598142943906491679184248013837<77>
Number: 90001_117 N=718448151991697932465873712780394348207870998642931268460126127564460764748144008940688113674463159575317314600463 ( 114 digits) SNFS difficulty: 117 digits. Divisors found: r1=12134790579207611427656536951386453899 (pp38) r2=59205649022301612078526981553969233951090001376598142943906491679184248013837 (pp77) Version: GGNFS-0.77.1-20050930-k8 Total time: 1.19 hours. Scaled time: 1.08 units (timescale=0.903). Factorization parameters were as follows: n: 718448151991697932465873712780394348207870998642931268460126127564460764748144008940688113674463159575317314600463 m: 100000000000000000000000000000 c4: 90 c0: 1 skew: 1 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 525001) Primes: RFBsize:56543, AFBsize:56607, largePrimes:1944145 encountered Relations: rels:1962930, finalFF:194575 Max relations in full relation-set: 28 Initial matrix: 113217 x 194575 with sparse part having weight 14642351. Pruned matrix : 89791 x 90421 with weight 4553687. Total sieving time: 1.13 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,117,4,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,25000 total time: 1.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(19·10155-1)/9 = 2(1)155<156> = 47 · 1013 · 9323 · C147
C147 = P50 · P97
P50 = 77169526100999077209508970939525278156116721502063<50>
P97 = 6163143371863327704942361909436417682834706242621502254644653631482204422647185993572154300515649<97>
Number: n N=475606853299206529041167619811211929776266623611930728781991072004773154333717744575067588796563610919593618264888389363516617868790235646717283887 ( 147 digits) SNFS difficulty: 156 digits. Divisors found: r1=77169526100999077209508970939525278156116721502063 (pp50) r2=6163143371863327704942361909436417682834706242621502254644653631482204422647185993572154300515649 (pp97) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.43 hours. Scaled time: 25.17 units (timescale=0.827). Factorization parameters were as follows: name: KA_2_1_155 n: 475606853299206529041167619811211929776266623611930728781991072004773154333717744575067588796563610919593618264888389363516617868790235646717283887 skew: 1 deg: 5 c5: 19 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:216816, AFBsize:216156, largePrimes:6663371 encountered Relations: rels:6163538, finalFF:514891 Max relations in full relation-set: 48 Initial matrix: 433037 x 514891 with sparse part having weight 31257635. Pruned matrix : 360736 x 362965 with weight 16947413. Total sieving time: 26.40 hours. Total relation processing time: 0.32 hours. Matrix solve time: 3.49 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 30.43 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
9·10155-1 = 8(9)155<156> = 20201 · 1225603 · C146
C146 = P69 · P77
P69 = 884030473598129112046273401306743817009226878392237244963203638811597<69>
P77 = 41119951100362876196136581974904931337399314543041289673940222500296800769089<77>
Number: n N=36351289845585703754357293351820365559093981716913508546008889472133037852153863056158211461589371839905909794802634372142747091837105359572325133 ( 146 digits) SNFS difficulty: 155 digits. Divisors found: r1=884030473598129112046273401306743817009226878392237244963203638811597 (pp69) r2=41119951100362876196136581974904931337399314543041289673940222500296800769089 (pp77) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.22 hours. Scaled time: 29.07 units (timescale=1.030). Factorization parameters were as follows: name: KA_8_9_155 n: 36351289845585703754357293351820365559093981716913508546008889472133037852153863056158211461589371839905909794802634372142747091837105359572325133 type: snfs skew: .68 deg: 5 c5: 9 c0: -1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216846, largePrimes:6333419 encountered Relations: rels:5866544, finalFF:544993 Max relations in full relation-set: 48 Initial matrix: 433726 x 544993 with sparse part having weight 28008672. Pruned matrix : 331320 x 333552 with weight 13763173. Total sieving time: 26.29 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.64 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 28.22 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
(28·10155-1)/9 = 3(1)155<156> = 281 · 503771 · C148
C148 = P37 · P39 · P73
P37 = 1832323937877638424687563602099971871<37>
P39 = 528132257091941690986148848873348959257<39>
P73 = 2271072974612884347124933126129315615770172419175193664363341850801604363<73>
Number: n N=2197738613463458673765104938773203892054743135182716091261846294825289666128882382672101325759210236475583788427898222997958020616419230301091312461 ( 148 digits) SNFS difficulty: 156 digits. Divisors found: r1=1832323937877638424687563602099971871 (pp37) r2=528132257091941690986148848873348959257 (pp39) r3=2271072974612884347124933126129315615770172419175193664363341850801604363 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 32.07 hours. Scaled time: 38.39 units (timescale=1.197). Factorization parameters were as follows: name: KA_3_1_155 n: 2197738613463458673765104938773203892054743135182716091261846294825289666128882382672101325759210236475583788427898222997958020616419230301091312461 type: snfs skew: 1 deg: 5 c5: 28 c0: -1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1300001) Primes: RFBsize:216816, AFBsize:216531, largePrimes:6407029 encountered Relations: rels:5912080, finalFF:529027 Max relations in full relation-set: 28 Initial matrix: 433413 x 529027 with sparse part having weight 28005595. Pruned matrix : 346817 x 349048 with weight 14991508. Total sieving time: 29.48 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.24 hours. Total square root time: 0.15 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 32.07 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
9·10114+1 = 9(0)1131<115> = 17 · C114
C114 = P37 · P78
P37 = 4029232093952705808639019244540988181<37>
P78 = 131392720091863853149542807291473246596308272142652439543027874153558812956013<78>
Number: 90001_114 N=529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882353 ( 114 digits) SNFS difficulty: 114 digits. Divisors found: r1=4029232093952705808639019244540988181 (pp37) r2=131392720091863853149542807291473246596308272142652439543027874153558812956013 (pp78) Version: GGNFS-0.77.1-20050930-k8 Total time: 1.42 hours. Scaled time: 1.20 units (timescale=0.845). Factorization parameters were as follows: n: 529411764705882352941176470588235294117647058823529411764705882352941176470588235294117647058823529411764705882353 m: 10000000000000000000000000000 c4: 900 c0: 1 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [250000, 550001) Primes: RFBsize:37706, AFBsize:41295, largePrimes:1090214 encountered Relations: rels:1015192, finalFF:91472 Max relations in full relation-set: 28 Initial matrix: 79070 x 91472 with sparse part having weight 5609598. Pruned matrix : 76378 x 76837 with weight 3831971. Total sieving time: 1.38 hours. Total relation processing time: 0.02 hours. Matrix solve time: 0.01 hours. Time per square root: 0.00 hours. Prototype def-par.txt line would be: snfs,114,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,25000 total time: 1.42 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By suberi / GMP-ECM 6.1.2, Msieve 1.16
(16·10232-61)/9 = 1(7)2311<233> = 132 · 107 · 5424611 · 2251879303<10> · 3383480632586611<16> · 659860332420269216293<21> · C176
C176 = P33 · C143
P33 = 401303020798046802054496312007947<33>
C143 = [89826636072279131116714353972287582321596844330753481523328414047161154003015891965880718193219424721650631512860323732891810346797182170707969<143>]
(16·10213-61)/9 = 1(7)2121<214> = 7 · 11 · 36739 · 701735753995253<15> · 9242562959716967<16> · C176 = P38 · C139
P38 = 15343317696192422017522869439279665157<38>
C139 = [6315011082326212861759378001460381655744123914330053236853058428366793582916494518062439711742158493507181037630191574610156925315769334851<139>]
(4·10199-1)/3 = 1(3)199<200> = 13 · 55845151 · 75263849 · 2539115591<10> · 420639307341993281<18> · 1360635813347265266561<22> · C135
C135 = P37 · P44 · P56
P37 = 1123948400800834624403052798992224711<37>
P44 = 12880349982971406781750299797656170118282799<44>
P56 = 11598857935350921114383370001898924491763276297022728801<56>
Tue Mar 27 13:24:17 2007 Tue Mar 27 13:24:17 2007 Tue Mar 27 13:24:17 2007 Msieve v. 1.16 Tue Mar 27 13:24:17 2007 random seeds: ff62f22c 6ed97300 Tue Mar 27 13:24:17 2007 factoring 149397349610085003198289424892102693516048525125417141999554174989126877688006523176555899200193999 (99 digits) Tue Mar 27 13:24:18 2007 using multiplier of 1 Tue Mar 27 13:24:18 2007 sieve interval: 9 blocks of size 65536 Tue Mar 27 13:24:18 2007 processing polynomials in batches of 6 Tue Mar 27 13:24:18 2007 using a sieve bound of 2577427 (93822 primes) Tue Mar 27 13:24:18 2007 using large prime bound of 386614050 (28 bits) Tue Mar 27 13:24:18 2007 using double large prime bound of 2864835627027300 (43-52 bits) Tue Mar 27 13:24:18 2007 using trial factoring cutoff of 56 bits Tue Mar 27 13:24:18 2007 polynomial 'A' values have 13 factors Tue Mar 27 22:30:35 2007 Tue Mar 27 22:30:35 2007 Tue Mar 27 22:30:35 2007 Msieve v. 1.16 Tue Mar 27 22:30:35 2007 random seeds: 9434b414 a2be0c24 Tue Mar 27 22:30:35 2007 factoring 149397349610085003198289424892102693516048525125417141999554174989126877688006523176555899200193999 (99 digits) Tue Mar 27 22:30:35 2007 using multiplier of 1 Tue Mar 27 22:30:35 2007 sieve interval: 9 blocks of size 65536 Tue Mar 27 22:30:35 2007 processing polynomials in batches of 6 Tue Mar 27 22:30:35 2007 using a sieve bound of 2577427 (93822 primes) Tue Mar 27 22:30:35 2007 using large prime bound of 386614050 (28 bits) Tue Mar 27 22:30:35 2007 using double large prime bound of 2864835627027300 (43-52 bits) Tue Mar 27 22:30:35 2007 using trial factoring cutoff of 56 bits Tue Mar 27 22:30:35 2007 polynomial 'A' values have 13 factors Tue Mar 27 22:30:48 2007 restarting with 23343 full and 1384965 partial relations Tue Mar 27 22:31:53 2007 94284 relations (23387 full + 70897 combined from 1387390 partial), need 93918 Tue Mar 27 22:31:56 2007 begin with 1410777 relations Tue Mar 27 22:31:58 2007 reduce to 244426 relations in 10 passes Tue Mar 27 22:31:58 2007 attempting to read 244426 relations Tue Mar 27 22:32:03 2007 recovered 244426 relations Tue Mar 27 22:32:03 2007 recovered 231965 polynomials Tue Mar 27 22:32:04 2007 attempting to build 94284 cycles Tue Mar 27 22:32:04 2007 found 94284 cycles in 6 passes Tue Mar 27 22:32:04 2007 distribution of cycle lengths: Tue Mar 27 22:32:04 2007 length 1 : 23387 Tue Mar 27 22:32:04 2007 length 2 : 16540 Tue Mar 27 22:32:04 2007 length 3 : 15894 Tue Mar 27 22:32:04 2007 length 4 : 12715 Tue Mar 27 22:32:04 2007 length 5 : 9498 Tue Mar 27 22:32:04 2007 length 6 : 6539 Tue Mar 27 22:32:04 2007 length 7 : 4103 Tue Mar 27 22:32:04 2007 length 9+: 5608 Tue Mar 27 22:32:04 2007 largest cycle: 19 relations Tue Mar 27 22:32:04 2007 matrix is 93822 x 94284 with weight 6322109 (avg 67.05/col) Tue Mar 27 22:32:05 2007 filtering completed in 4 passes Tue Mar 27 22:32:05 2007 matrix is 92216 x 92280 with weight 6091770 (avg 66.01/col) Tue Mar 27 22:32:06 2007 saving the first 48 matrix rows for later Tue Mar 27 22:32:06 2007 matrix is 92168 x 92280 with weight 4799651 (avg 52.01/col) Tue Mar 27 22:32:06 2007 matrix includes 32 packed rows Tue Mar 27 22:38:17 2007 lanczos halted after 1459 iterations Tue Mar 27 22:38:18 2007 recovered 16 nontrivial dependencies Tue Mar 27 22:38:21 2007 prp44 factor: 12880349982971406781750299797656170118282799 Tue Mar 27 22:38:21 2007 prp56 factor: 11598857935350921114383370001898924491763276297022728801 Tue Mar 27 22:38:21 2007 elapsed time 00:07:46
By Jo Yeong Uk / Msieve 1.17
9·10177+1 = 9(0)1761<178> = 3167 · 387077 · 2076611 · 308752979 · 54988062023<11> · 212417999009<12> · 60289087720622533<17> · 479166086119340027893509641<27> · C89
C89 = P32 · P57
P32 = 54841284613190781418275599643521<32>
P57 = 618783381714794412883445208544663378606596249013437821041<57>
Wed Apr 4 18:38:40 2007 Wed Apr 4 18:38:40 2007 Wed Apr 4 18:38:40 2007 Msieve v. 1.17 Wed Apr 4 18:38:40 2007 random seeds: 4ee254d4 6fb50e17 Wed Apr 4 18:38:40 2007 factoring 33934875550533712760892172906874721223936456836224646032179227094613311427555598593125361 (89 digits) Wed Apr 4 18:38:40 2007 commencing quadratic sieve (89-digit input) Wed Apr 4 18:38:40 2007 using multiplier of 1 Wed Apr 4 18:38:40 2007 sieve interval: 8 blocks of size 65536 Wed Apr 4 18:38:40 2007 processing polynomials in batches of 7 Wed Apr 4 18:38:40 2007 using a sieve bound of 1556179 (58760 primes) Wed Apr 4 18:38:40 2007 using large prime bound of 124494320 (26 bits) Wed Apr 4 18:38:40 2007 using double large prime bound of 372622455260160 (42-49 bits) Wed Apr 4 18:38:40 2007 using trial factoring cutoff of 49 bits Wed Apr 4 18:38:40 2007 polynomial 'A' values have 11 factors Wed Apr 4 19:42:36 2007 59084 relations (16766 full + 42318 combined from 610550 partial), need 58856 Wed Apr 4 19:42:36 2007 begin with 627316 relations Wed Apr 4 19:42:36 2007 reduce to 139149 relations in 10 passes Wed Apr 4 19:42:36 2007 attempting to read 139149 relations Wed Apr 4 19:42:37 2007 recovered 139149 relations Wed Apr 4 19:42:37 2007 recovered 117719 polynomials Wed Apr 4 19:42:38 2007 attempting to build 59084 cycles Wed Apr 4 19:42:38 2007 found 59084 cycles in 5 passes Wed Apr 4 19:42:38 2007 distribution of cycle lengths: Wed Apr 4 19:42:38 2007 length 1 : 16766 Wed Apr 4 19:42:38 2007 length 2 : 12234 Wed Apr 4 19:42:38 2007 length 3 : 10460 Wed Apr 4 19:42:38 2007 length 4 : 7570 Wed Apr 4 19:42:38 2007 length 5 : 5279 Wed Apr 4 19:42:38 2007 length 6 : 3087 Wed Apr 4 19:42:38 2007 length 7 : 1738 Wed Apr 4 19:42:38 2007 length 9+: 1950 Wed Apr 4 19:42:38 2007 largest cycle: 18 relations Wed Apr 4 19:42:38 2007 matrix is 58760 x 59084 with weight 3361174 (avg 56.89/col) Wed Apr 4 19:42:38 2007 filtering completed in 3 passes Wed Apr 4 19:42:38 2007 matrix is 56982 x 57046 with weight 3171521 (avg 55.60/col) Wed Apr 4 19:42:39 2007 saving the first 48 matrix rows for later Wed Apr 4 19:42:39 2007 matrix is 56934 x 57046 with weight 2578905 (avg 45.21/col) Wed Apr 4 19:42:39 2007 matrix includes 32 packed rows Wed Apr 4 19:43:20 2007 lanczos halted after 902 iterations Wed Apr 4 19:43:20 2007 recovered 14 nontrivial dependencies Wed Apr 4 19:43:20 2007 prp32 factor: 54841284613190781418275599643521 Wed Apr 4 19:43:20 2007 prp57 factor: 618783381714794412883445208544663378606596249013437821041 Wed Apr 4 19:43:20 2007 elapsed time 01:04:40
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(73·10155-1)/9 = 8(1)155<156> = 7 · 2381242217<10> · C146
C146 = P56 · P91
P56 = 15791022294533422641288302975988124695328339669549748081<56>
P91 = 3081544831696971298063038747475176795596646326721934407174520528715845529258633313218743849<91>
Number: n N=48660743138931117403363681365899398975704039381650133500834457897155563917113693551241063443598865051121287514059312460533229751601122345218303769 ( 146 digits) SNFS difficulty: 156 digits. Divisors found: r1=15791022294533422641288302975988124695328339669549748081 (pp56) r2=3081544831696971298063038747475176795596646326721934407174520528715845529258633313218743849 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.00 hours. Scaled time: 34.22 units (timescale=1.316). Factorization parameters were as follows: name: KA_8_1_155 n: 48660743138931117403363681365899398975704039381650133500834457897155563917113693551241063443598865051121287514059312460533229751601122345218303769 skew: 1.0 deg: 5 c5: 73 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:217091, largePrimes:6703712 encountered Relations: rels:6172652, finalFF:490474 Max relations in full relation-set: 48 Initial matrix: 433972 x 490474 with sparse part having weight 32278992. Pruned matrix : 383630 x 385863 with weight 19757440. Total sieving time: 22.53 hours. Total relation processing time: 0.18 hours. Matrix solve time: 3.22 hours. Total square root time: 0.07 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 26.00 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Robert Backstrom / GMP-ECM 6.0.1 B1=477500
7·10153+1 = 7(0)1521<154> = 53 · 167 · 569 · 173483 · 58181687021<11> · 240810772871<12> · 438563879448152243<18> · C103
C103 = P38 · P65
P38 = 20339748706129911647205888791801144203<38>
P65 = 64105581640209598722446044764182036063686833229677824048410717867<65>
The factor table of 900...001 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(29·10156+7)/9 = 3(2)1553<157> = 47 · C155
C155 = P45 · P111
P45 = 132991322100848707636379191275380420166513791<45>
P111 = 515506715316065682586052266156769034918158527259325062152327432762009776789896785062695830891823340065597055199<111>
Number: 32223_156 N=68557919621749408983451536643026004728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749409 ( 155 digits) SNFS difficulty: 157 digits. Divisors found: r1=132991322100848707636379191275380420166513791 (pp45) r2=515506715316065682586052266156769034918158527259325062152327432762009776789896785062695830891823340065597055199 (pp111) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 55.91 hours. Scaled time: 34.22 units (timescale=0.612). Factorization parameters were as follows: name: 32223_156 n: 68557919621749408983451536643026004728132387706855791962174940898345153664302600472813238770685579196217494089834515366430260047281323877068557919621749409 m: 10000000000000000000000000000000 c5: 290 c0: 7 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216531, largePrimes:5599595 encountered Relations: rels:5525117, finalFF:486163 Max relations in full relation-set: 0 Initial matrix: 433414 x 486163 with sparse part having weight 34136603. Pruned matrix : 403149 x 405380 with weight 26162517. Total sieving time: 48.51 hours. Total relation processing time: 0.44 hours. Matrix solve time: 6.75 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 55.91 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
(5·10188+1)/3 = 1(6)1877<189> = 27749 · C184
C184
C184 = P39 · C145
P39 = 755690361809164985290505633810819050583<39>
C145 = [7947993980067834235465756271687538769230388089784361354522292128822489146923171127507833276229709407451844578838435579896131515961401437185117001<145>]
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
4·10162+1 = 4(0)1611<163> = 2497329853<10> · 75396687085921<14> · 376268494658838666197<21> · C119
C119 = P34 · P85
P34 = 7033585355523255976857977544415093<34>
P85 = 8027072786280128866004929270459039253458495879153981797095597384581952824282996219837<85>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10155+1)/3 = (6)1547<155> = 1329067 · C149
C149 = P72 · P78
P72 = 288925333565467115077893873169172388791121847831390307889083748917752483<72>
P78 = 173610601895909678116740701583211225083394536165258694847576929928468819956747<78>
Number: n N=50160501063277221288818898269738596072783890252836513634501997767356097673530880434670838013935088800389044846246778128316079374980092551140511852801 ( 149 digits) SNFS difficulty: 155 digits. Divisors found: r1=288925333565467115077893873169172388791121847831390307889083748917752483 (pp72) r2=173610601895909678116740701583211225083394536165258694847576929928468819956747 (pp78) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.24 hours. Scaled time: 22.53 units (timescale=0.827). Factorization parameters were as follows: name: KA_6_154_7 n: 50160501063277221288818898269738596072783890252836513634501997767356097673530880434670838013935088800389044846246778128316079374980092551140511852801 skew: 1 deg: 5 c5: 2 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:182816, largePrimes:6581937 encountered Relations: rels:6044442, finalFF:453719 Max relations in full relation-set: 48 Initial matrix: 365953 x 453719 with sparse part having weight 34516891. Pruned matrix : 295057 x 296950 with weight 18465767. Total sieving time: 23.76 hours. Total relation processing time: 0.30 hours. Matrix solve time: 2.98 hours. Total square root time: 0.20 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 27.24 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
(82·10155-1)/9 = 9(1)155<156> = 32527021 · C149
C149 = P47 · P103
P47 = 20585795344968187217304961622088033967729763899<47>
P103 = 1360690654509266104508496867081510258619887149538180594731855032123036171966583286697625777439752406809<103>
Number: n N=28010899341538566077450225494400827887408167846391807940576885633366520441915388166383607988912083621525349988586754105490051213454534035290569988291 ( 149 digits) SNFS difficulty: 156 digits. Divisors found: r1=20585795344968187217304961622088033967729763899 (pp47) r2=1360690654509266104508496867081510258619887149538180594731855032123036171966583286697625777439752406809 (pp103) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.64 hours. Scaled time: 37.75 units (timescale=1.318). Factorization parameters were as follows: name: KA_9_1_155 n: 28010899341538566077450225494400827887408167846391807940576885633366520441915388166383607988912083621525349988586754105490051213454534035290569988291 skew: 1.0 deg: 5 c5: 82 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:216816, AFBsize:216752, largePrimes:7136773 encountered Relations: rels:6741053, finalFF:610738 Max relations in full relation-set: 48 Initial matrix: 433636 x 610738 with sparse part having weight 47311105. Pruned matrix : 290143 x 292375 with weight 22847109. Total sieving time: 25.77 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.60 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.5,2.5,100000 total time: 28.64 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
7·10140+1 = 7(0)1391<141> = 53 · 19597 · 61541309707039<14> · 52143054355223185883<20> · C102
C102 = P32 · P71
P32 = 10854524950314912484667997912049<32>
P71 = 19349001352421860990031887892254003455517463005159744816652778091636397<71>
Number: n N=210024217943540075133468448585998713651423975051285334416970611675803218930172853494308591985693247453 ( 102 digits) Divisors found: r1=10854524950314912484667997912049 (pp32) r2=19349001352421860990031887892254003455517463005159744816652778091636397 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.73 hours. Scaled time: 7.94 units (timescale=1.027). Factorization parameters were as follows: name: n n: 210024217943540075133468448585998713651423975051285334416970611675803218930172853494308591985693247453 skew: 4857.17 # norm 1.15e+13 c5: 17700 c4: 289407331 c3: -1642729399766 c2: -6867015070714932 c1: 17195621348974928392 c0: 769880280619743055872 # alpha -4.40 Y1: 10035206137 Y0: -25993135675887091241 # Murphy_E 3.01e-09 # M 78178482628374967068165789630605424947992957095981539722006975876156390065512434849895881884496153165 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 800001) Primes: RFBsize:169511, AFBsize:169675, largePrimes:3831878 encountered Relations: rels:3726342, finalFF:397041 Max relations in full relation-set: 48 Initial matrix: 339264 x 397041 with sparse part having weight 19046546. Pruned matrix : 268634 x 270394 with weight 8777420. Total sieving time: 6.72 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.73 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 7.73 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10163+1 = 3(0)1621<164> = C164
C164 = P43 · P122
P43 = 2693727049321118094591486398079193352608837<43>
P122 = 11136985838101413491867306813366781640721780664180020279181015243224647866545476655493916704578164265918304339860447237773<122>
Number: 30001_163 N=30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 164 digits) SNFS difficulty: 164 digits. Divisors found: r1=2693727049321118094591486398079193352608837 (pp43) r2=11136985838101413491867306813366781640721780664180020279181015243224647866545476655493916704578164265918304339860447237773 (pp122) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.52 hours. Scaled time: 62.78 units (timescale=0.903). Factorization parameters were as follows: n: 30000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 500000000000000000000000000000000 c5: 24 c0: 25 skew: 1.01 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [2500000, 5400001) Primes: RFBsize:348513, AFBsize:348511, largePrimes:5904444 encountered Relations: rels:6083619, finalFF:819600 Max relations in full relation-set: 28 Initial matrix: 697090 x 819600 with sparse part having weight 50328626. Pruned matrix : 598977 x 602526 with weight 35613761. Total sieving time: 66.39 hours. Total relation processing time: 0.13 hours. Matrix solve time: 2.94 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,164,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.3,2.3,100000 total time: 69.52 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
7·10133+1 = 7(0)1321<134> = 43 · 31938787737893<14> · C119
C119 = P34 · P86
P34 = 2453625078680201566748816367059723<34>
P86 = 20773178568202312946561506523760891062078565941949791090519972188145838947872363815413<86>
Number: 70001_133 N=50969591898843277031731533454957690483593397704702865881216299727962991255065213977531205848685177328201602448718910599 ( 119 digits) SNFS difficulty: 135 digits. Divisors found: r1=2453625078680201566748816367059723 (pp34) r2=20773178568202312946561506523760891062078565941949791090519972188145838947872363815413 (pp86) Version: GGNFS-0.77.1-20050930-k8 Total time: 5.53 hours. Scaled time: 5.00 units (timescale=0.904). Factorization parameters were as follows: n: 50969591898843277031731533454957690483593397704702865881216299727962991255065213977531205848685177328201602448718910599 m: 500000000000000000000000000 c5: 56 c0: 25 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1450001) Primes: RFBsize:100021, AFBsize:100763, largePrimes:1591563 encountered Relations: rels:1628120, finalFF:233486 Max relations in full relation-set: 28 Initial matrix: 200851 x 233486 with sparse part having weight 10220243. Pruned matrix : 184070 x 185138 with weight 6892410. Total sieving time: 5.38 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 5.53 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
4·10155+1 = 4(0)1541<156> = 7 · 19 · 90173 · C149
C149 = P68 · P81
P68 = 63329687397592132145980877526417873030946686466430656344663544587463<68>
P81 = 526652909060236900579923203193911048657743442112564846958614597680814721066334503<81>
Number: n N=33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889 ( 149 digits) SNFS difficulty: 155 digits. Divisors found: r1=63329687397592132145980877526417873030946686466430656344663544587463 (pp68) r2=526652909060236900579923203193911048657743442112564846958614597680814721066334503 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 25.81 hours. Scaled time: 30.85 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_0_154_1 n: 33352764097817320073719614485405622558942463897092047542030527951742552682150075931736564193356312831917327836575458252386869717182735375250698135889 type: snfs skew: 1 deg: 5 c5: 4 c0: 1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216491, largePrimes:6134762 encountered Relations: rels:5639317, finalFF:512645 Max relations in full relation-set: 28 Initial matrix: 433371 x 512645 with sparse part having weight 23754018. Pruned matrix : 355721 x 357951 with weight 13043634. Total sieving time: 23.48 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.02 hours. Total square root time: 0.13 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 25.81 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10144+1 = 7(0)1431<145> = 23 · C144
C144 = P66 · P78
P66 = 809940785427965343526229739355042505157936405047381591533420897433<66>
P78 = 375765527014597615163944861799356289186159071363960150031523628164542872741439<78>
Number: 70001_144 N=304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826087 ( 144 digits) SNFS difficulty: 145 digits. Divisors found: r1=809940785427965343526229739355042505157936405047381591533420897433 (pp66) r2=375765527014597615163944861799356289186159071363960150031523628164542872741439 (pp78) Version: GGNFS-0.77.1-20050930-k8 Total time: 14.94 hours. Scaled time: 13.49 units (timescale=0.903). Factorization parameters were as follows: n: 304347826086956521739130434782608695652173913043478260869565217391304347826086956521739130434782608695652173913043478260869565217391304347826087 m: 100000000000000000000000000000 c5: 7 c0: 10 skew: 1.07 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1600001) Primes: RFBsize:114155, AFBsize:114342, largePrimes:2746135 encountered Relations: rels:2738222, finalFF:297904 Max relations in full relation-set: 28 Initial matrix: 228562 x 297904 with sparse part having weight 23793466. Pruned matrix : 205655 x 206861 with weight 13817480. Total sieving time: 14.65 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.21 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 14.94 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
7·10155+1 = 7(0)1541<156> = 1129 · 1193 · C150
C150 = P62 · P88
P62 = 55130793260966415361235729756577932205405829083406166227977587<62>
P88 = 9426911131444313172543736731542159160773688947699429609478209619825750212976152411926859<88>
Number: n N=519713088677159426444635335886856975700443315264641616990757273941511489000272478147920739299293115954672109300117232423860176390622297027909335309233 ( 150 digits) SNFS difficulty: 155 digits. Divisors found: r1=55130793260966415361235729756577932205405829083406166227977587 (pp62) r2=9426911131444313172543736731542159160773688947699429609478209619825750212976152411926859 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.19 hours. Scaled time: 27.90 units (timescale=1.026). Factorization parameters were as follows: name: KA_7_0_154_1 n: 519713088677159426444635335886856975700443315264641616990757273941511489000272478147920739299293115954672109300117232423860176390622297027909335309233 type: snfs skew: .68 deg: 5 c5: 7 c0: 1 m: 10000000000000000000000000000000 rlim: 3000000 alim: 3000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:216816, AFBsize:216696, largePrimes:6092352 encountered Relations: rels:5565111, finalFF:487372 Max relations in full relation-set: 48 Initial matrix: 433579 x 487372 with sparse part having weight 24045932. Pruned matrix : 379538 x 381769 with weight 14885224. Total sieving time: 24.79 hours. Total relation processing time: 0.21 hours. Matrix solve time: 2.03 hours. Total square root time: 0.15 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,28,28,48,48,2.3,2.3,100000 total time: 27.19 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Alfred Reich / GMP-ECM B1=250000
101792+1 = 1(0)17911<1793> = 10753 · 32257 · 8253953 · 9524994049<10> · 73171503617<11> · 45723922339769773677559297<26> · 161659663356434944948942201164163009493717089102370771373121362150985544514761379133487997023996012149425048654486737380370333511296921220558813648612791137845552210697266256120930676972710885926127946416909582894897995807233<225> · C1506
C1506 = P30 · C1476
P30 = 949383321082513089661541033473<30>
By Bruce Dodson / GMP-ECM B1=43000000 / Mar 30, 2007
10361+1 = 1(0)3601<362> = 11 · 43321 · 909090909090909091<18> · C338
C338 = P55 · C283
P55 = 5140192330491733331414521378576126342075768810496980939<55>
By Yousuke Koide / GMP-ECM B1=1250000 / Apr 2, 2007
(10895-1)/9 = (1)895<895> = 41 · 271 · 359 · 36558961 · 252812074841<12> · 4201521652717<13> · 352543640588653<15> · 571544047837540227171107263031017853607119654486278118381637405539602949994236278780111557713711574640626700398384915989416568503505447054089<141> · C701
C701 = P42 · C660
P42 = 160448729579634932307271265568632037109271<42>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10138+1 = 7(0)1371<139> = 683 · 323565643 · C128
C128 = P34 · P94
P34 = 5455759339741710826253913205440113<34>
P94 = 5805768712228287085116276448327387554343755401317995474938232335903884659779580329249392645433<94>
Number: 70001_138 N=31674876876119682273182173592100422640303476152979377067510779551529709019971793502322392463306558652053674526010259588124453929 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=5455759339741710826253913205440113 (pp34) r2=5805768712228287085116276448327387554343755401317995474938232335903884659779580329249392645433 (pp94) Version: GGNFS-0.77.1-20050930-k8 Total time: 10.45 hours. Scaled time: 9.26 units (timescale=0.886). Factorization parameters were as follows: n: 31674876876119682273182173592100422640303476152979377067510779551529709019971793502322392463306558652053674526010259588124453929 m: 5000000000000000000000000000 c5: 56 c0: 25 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1250001) Primes: RFBsize:100021, AFBsize:100763, largePrimes:1595353 encountered Relations: rels:1636224, finalFF:234205 Max relations in full relation-set: 28 Initial matrix: 200851 x 234205 with sparse part having weight 10228624. Pruned matrix : 183788 x 184856 with weight 6854937. Total sieving time: 10.30 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.09 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 10.45 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
(16·10187-61)/9 = 1(7)1861<188> = 11 · C187
C187 = P36 · P151
P36 = 224187443841669121284171214256607419<36>
P151 = 7208974724307126960936798016662298358054035706538253992990330169438604402959170146020867892824891898686186801010965926966443527148977721432936345060819<151>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10155+43)/9 = (2)1547<155> = 32 · 31 · C152
C152 = P42 · P50 · P61
P42 = 661935245772807400405303706022642863715601<42>
P50 = 39969992495755205306998842332734817740510356056777<50>
P61 = 3010465883270152612607869483290283204139039754469978537289069<61>
Number: n N=79649542015133412982875348466746316208681800079649542015133412982875348466746316208681800079649542015133412982875348466746316208681800079649542015133413 ( 152 digits) SNFS difficulty: 155 digits. Divisors found: r1=661935245772807400405303706022642863715601 (pp42) r2=39969992495755205306998842332734817740510356056777 (pp50) r3=3010465883270152612607869483290283204139039754469978537289069 (pp61) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.67 hours. Scaled time: 25.36 units (timescale=0.827). Factorization parameters were as follows: name: KA_2_154_7 n: 79649542015133412982875348466746316208681800079649542015133412982875348466746316208681800079649542015133412982875348466746316208681800079649542015133413 skew: 1 deg: 5 c5: 2 c0: 43 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:183072, AFBsize:183126, largePrimes:6529615 encountered Relations: rels:5939827, finalFF:413909 Max relations in full relation-set: 48 Initial matrix: 366263 x 413909 with sparse part having weight 31561080. Pruned matrix : 329480 x 331375 with weight 20050356. Total sieving time: 26.37 hours. Total relation processing time: 0.31 hours. Matrix solve time: 3.66 hours. Total square root time: 0.33 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 30.67 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
7·10132+1 = 7(0)1311<133> = 3917 · 8731 · C126
C126 = P47 · P80
P47 = 14638283495713663736241157708855869290229636409<47>
P80 = 13982677029538623333501754987296211103374639783010627959614701454655065820539607<80>
Number: n N=204682390387389786939374567224670824662719240059899424336625103763006798350154668248296231092500738391723322508656383793751263 ( 126 digits) SNFS difficulty: 132 digits. Divisors found: r1=14638283495713663736241157708855869290229636409 (pp47) r2=13982677029538623333501754987296211103374639783010627959614701454655065820539607 (pp80) Version: GGNFS-0.77.1-20051202-athlon Total time: 5.29 hours. Scaled time: 6.32 units (timescale=1.195). Factorization parameters were as follows: name: KA_7_0_131_1 n: 204682390387389786939374567224670824662719240059899424336625103763006798350154668248296231092500738391723322508656383793751263 type: snfs skew: .27 deg: 5 c5: 700 c0: 1 m: 100000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:148933, AFBsize:148445, largePrimes:5256226 encountered Relations: rels:4734818, finalFF:475275 Max relations in full relation-set: 28 Initial matrix: 297445 x 475275 with sparse part having weight 14694290. Pruned matrix : 149989 x 151540 with weight 4433861. Total sieving time: 4.88 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.24 hours. Total square root time: 0.03 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.2,2.2,50000 total time: 5.29 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
(32·10155-23)/9 = 3(5)1543<156> = 11 · 6121 · C151
C151 = P44 · P107
P44 = 61328780631367967021026430277387968633477083<44>
P107 = 86104941161045057261632331707436338464311272986903568019467121044209094189256912159281648305922546899162961<107>
Number: n N=5280711047742578538200168652709087278602063767886345896474960353411586870172068669046287082555666120443117665793699121586721652070451286265695675922763 ( 151 digits) SNFS difficulty: 156 digits. Divisors found: r1=61328780631367967021026430277387968633477083 (pp44) r2=86104941161045057261632331707436338464311272986903568019467121044209094189256912159281648305922546899162961 (pp107) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.77 hours. Scaled time: 27.49 units (timescale=1.324). Factorization parameters were as follows: name: KA_3_5_154_3 n: 5280711047742578538200168652709087278602063767886345896474960353411586870172068669046287082555666120443117665793699121586721652070451286265695675922763 skew: 1.0 deg: 5 c5: 1 c0: -23 m: 20000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:183106, largePrimes:6476865 encountered Relations: rels:5900796, finalFF:422371 Max relations in full relation-set: 48 Initial matrix: 366242 x 422371 with sparse part having weight 31319894. Pruned matrix : 321698 x 323593 with weight 18573106. Total sieving time: 18.14 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.41 hours. Total square root time: 0.05 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 20.77 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By suberi / GMP-ECM 6.1.2 B1=1500000
(16·10243-61)/9 = 1(7)2421<244> = 7 · 11 · 30296731 · 60143609 · 1911168697<10> · C217
C217 = P32 · P185
P32 = 73816070285390658060425630041457<32>
P185 = 89815552858504538029397848590765921832955963914835824465961063265706776182932599671826275231815308372814936304804714931802441141565531885161718561173705190056377611445342403457383082453<185>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10145+1 = 7(0)1441<146> = 67 · 599 · 412457 · 466747 · 1141698744217337<16> · 2434518084465653<16> · C100
C100 = P34 · P67
P34 = 1795008466954729168800209414936453<34>
P67 = 1815955371841082430332694563327821684185611841419005671789292422271<67>
Number: 70001_145 N=3259655268066666531787153780348226028624564585225737486803402609014796394727034639592215715906944763 ( 100 digits) Divisors found: r1=1795008466954729168800209414936453 (pp34) r2=1815955371841082430332694563327821684185611841419005671789292422271 (pp67) Version: GGNFS-0.77.1-20050930-k8 Total time: 4.36 hours. Scaled time: 3.94 units (timescale=0.904). Factorization parameters were as follows: name: 70001_145 n: 3259655268066666531787153780348226028624564585225737486803402609014796394727034639592215715906944763 skew: 5434.66 # norm 8.87e+13 c5: 138600 c4: -628977735 c3: -4844662654778 c2: 56975616878785198 c1: 12597830851657240872 c0: -315955197528020586762632 # alpha -6.43 Y1: 27202766879 Y0: -7486573984825469671 # Murphy_E 3.49e-09 # M 2021588631885662640472603336663148478076687078668088154026142239430095812078564709322760587979382906 type: gnfs rlim: 1500000 alim: 1500000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 48/48 Sieved algebraic special-q in [750000, 1200001) Primes: RFBsize:114155, AFBsize:114915, largePrimes:3762566 encountered Relations: rels:3629001, finalFF:277528 Max relations in full relation-set: 28 Initial matrix: 229154 x 277528 with sparse part having weight 19757876. Pruned matrix : 193470 x 194679 with weight 11201879. Polynomial selection time: 0.25 hours. Total sieving time: 3.82 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.16 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,26,26,48,48,2.5,2.5,50000 total time: 4.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10155+23)/9 = (4)1547<155> = 13 · 61 · C152
C152 = P54 · P99
P54 = 148385991234646868255677763169400682719601527549176821<54>
P99 = 377703833218830785744902903453732714767953802089122910383042080301772785279239335742045411173229499<99>
Number: n N=56045957685301947597029564242678996777357433095138013170800056045957685301947597029564242678996777357433095138013170800056045957685301947597029564242679 ( 152 digits) SNFS difficulty: 155 digits. Divisors found: r1=148385991234646868255677763169400682719601527549176821 (pp54) r2=377703833218830785744902903453732714767953802089122910383042080301772785279239335742045411173229499 (pp99) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.59 hours. Scaled time: 36.56 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_154_7 n: 56045957685301947597029564242678996777357433095138013170800056045957685301947597029564242678996777357433095138013170800056045957685301947597029564242679 type: snfs skew: 1 deg: 5 c5: 4 c0: 23 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [1600000, 1600000) Primes: RFBsize:230209, AFBsize:230627, largePrimes:6238983 encountered Relations: rels:5736835, finalFF:526134 Max relations in full relation-set: 28 Initial matrix: 460900 x 526134 with sparse part having weight 23788925. Pruned matrix : 395232 x 397600 with weight 14177810. Total sieving time: 27.64 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.50 hours. Total square root time: 0.26 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 30.59 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
7·10131+1 = 7(0)1301<132> = 16573 · 827182080526619<15> · C113
C113 = P32 · P81
P32 = 60570823643539584765292420545299<32>
P81 = 843009197215127294834358695906019746493107625259983272341093175391722476971875477<81>
Number: n N=51061761414399357027026281791696991073532907727375622679324186881116608610691045434679404986513298702271065732623 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=60570823643539584765292420545299 (pp32) r2=843009197215127294834358695906019746493107625259983272341093175391722476971875477 (pp81) Version: GGNFS-0.77.1-20051202-athlon Total time: 6.67 hours. Scaled time: 6.85 units (timescale=1.027). Factorization parameters were as follows: name: KA_7_0_130_1 n: 51061761414399357027026281791696991073532907727375622679324186881116608610691045434679404986513298702271065732623 type: snfs skew: 2.34 deg: 5 c5: 70 c0: 1 m: 100000000000000000000000000 rlim: 2000000 alim: 2000000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2000000/2000000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 700001) Primes: RFBsize:148933, AFBsize:149260, largePrimes:4789248 encountered Relations: rels:4160441, finalFF:353209 Max relations in full relation-set: 48 Initial matrix: 298260 x 353209 with sparse part having weight 10465394. Pruned matrix : 209368 x 210923 with weight 4935962. Total sieving time: 6.13 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.34 hours. Total square root time: 0.07 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,2000000,2000000,28,28,48,48,2.2,2.2,50000 total time: 6.67 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs
7·10157+1 = 7(0)1561<158> = 107 · 131 · 257 · 44701 · 36067159 · 412688953 · 11433124763162139881<20> · 50150999103831809543<20> · C92
C92 = P44 · P48
P44 = 58723657563182981121109730736410322969118927<44>
P48 = 867361611497461809778725449710059255808380370747<48>
Number: n N=50934646257027501761195466390338358257517450725863747999950593705003914525713753040194828469 ( 92 digits) Divisors found: r1=58723657563182981121109730736410322969118927 (pp44) r2=867361611497461809778725449710059255808380370747 (pp48) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.26 hours. Scaled time: 4.37 units (timescale=1.027). Factorization parameters were as follows: name: KA_7_0_156_1 n: 50934646257027501761195466390338358257517450725863747999950593705003914525713753040194828469 m: 1232264682236136063145 deg: 4 c4: 22090080 c3: -246466740744 c2: -33306940536444256 c1: 1000581673960989041 c0: 43321014325197429213924 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.214 # E(F1,F2) = 1.198140e-04 # GGNFS version 0.77.1-20051202-athlon polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1175417502. # maxskew=2000.0 # These parameters should be manually set: rlim: 700000 alim: 700000 lpbr: 25 lpba: 25 mfbr: 44 mfba: 44 rlambda: 2.4 alambda: 2.4 qintsize: 40000 type: gnfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [175000, 655001) Primes: RFBsize:56543, AFBsize:57008, largePrimes:1529129 encountered Relations: rels:1493247, finalFF:136569 Max relations in full relation-set: 48 Initial matrix: 113627 x 136569 with sparse part having weight 12059376. Pruned matrix : 106514 x 107146 with weight 7026392. Polynomial selection time: 0.17 hours. Total sieving time: 3.73 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.17 hours. Total square root time: 0.10 hours, sqrts: 3. Prototype def-par.txt line would be: gnfs,91,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,700000,700000,25,25,44,44,2.4,2.4,40000 total time: 4.26 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
7·10118+1 = 7(0)1171<119> = 233 · 2053 · 3761 · 68777 · C105
C105 = P45 · P60
P45 = 573478493821804383126117265442725302450908591<45>
P60 = 986482696674090871440722049772557294942194567424256350401987<60>
Number: 70001_118 N=565726611069929549103721920736813842762633274721108994347074829384094876815420884707818446157636241770317 ( 105 digits) SNFS difficulty: 120 digits. Divisors found: r1=573478493821804383126117265442725302450908591 (pp45) r2=986482696674090871440722049772557294942194567424256350401987 (pp60) Version: GGNFS-0.77.1-20050930-k8 Total time: 1.23 hours. Scaled time: 1.11 units (timescale=0.908). Factorization parameters were as follows: n: 565726611069929549103721920736813842762633274721108994347074829384094876815420884707818446157636241770317 m: 500000000000000000000000 c5: 56 c0: 25 skew: 1 type: snfs Factor base limits: 700000/700000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [350000, 500001) Primes: RFBsize:56543, AFBsize:56853, largePrimes:2008292 encountered Relations: rels:2032184, finalFF:180139 Max relations in full relation-set: 28 Initial matrix: 113463 x 180139 with sparse part having weight 15070540. Pruned matrix : 95115 x 95746 with weight 5531881. Total sieving time: 1.15 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,120,5,0,0,0,0,0,0,0,0,700000,700000,25,25,46,46,2.4,2.4,25000 total time: 1.23 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
7·10129+1 = 7(0)1281<130> = C130
C130 = P47 · P84
P47 = 20339094283792370330464042356579607994600801891<47>
P84 = 344164784445593301152541755553359867327580661913692995263470054136783938426510011211<84>
Number: 70001_129 N=7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 130 digits) SNFS difficulty: 130 digits. Divisors found: r1=20339094283792370330464042356579607994600801891 (pp47) r2=344164784445593301152541755553359867327580661913692995263470054136783938426510011211 (pp84) Version: GGNFS-0.77.1-20050930-k8 Total time: 3.36 hours. Scaled time: 3.05 units (timescale=0.906). Factorization parameters were as follows: n: 7000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 100000000000000000000000000 c5: 7 c0: 10 skew: 1.07 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 1050001) Primes: RFBsize:78498, AFBsize:78531, largePrimes:1534031 encountered Relations: rels:1534832, finalFF:179547 Max relations in full relation-set: 28 Initial matrix: 157094 x 179547 with sparse part having weight 10290326. Pruned matrix : 149259 x 150108 with weight 7019841. Total sieving time: 3.25 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 3.36 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.61 BogoMIPS (lpj=2335806) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(67·10155+23)/9 = 7(4)1547<156> = 32 · 11 · 59 · 757 · 1277 · 769297 · 1235879 · 433604364641179<15> · C120
C120 = P50 · P71
P50 = 22928700027420573259550411439689826644603502508189<50>
P71 = 13948106057056804745088320535643843511280832362656801314221379280509351<71>
Number: n N=319811939732903422928211520638581135594400328539761352160261824264315953518741377685581991531923423122342513529968575339 ( 120 digits) SNFS difficulty: 156 digits. Divisors found: r1=22928700027420573259550411439689826644603502508189 (pp50) r2=13948106057056804745088320535643843511280832362656801314221379280509351 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 28.49 hours. Scaled time: 29.26 units (timescale=1.027). Factorization parameters were as follows: name: KA_7_4_154_7 n: 319811939732903422928211520638581135594400328539761352160261824264315953518741377685581991531923423122342513529968575339 type: snfs skew: 1 deg: 5 c5: 67 c0: 23 m: 10000000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1700001) Primes: RFBsize:203362, AFBsize:203097, largePrimes:6631404 encountered Relations: rels:6131336, finalFF:499186 Max relations in full relation-set: 48 Initial matrix: 406524 x 499186 with sparse part having weight 36598443. Pruned matrix : 333552 x 335648 with weight 20323473. Total sieving time: 25.34 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.56 hours. Total square root time: 0.41 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,100000 total time: 28.49 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
The factor table of 700...001 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
3·10155+1 = 3(0)1541<156> = 13 · 292 · C152
C152 = P42 · P51 · P60
P42 = 847002118930358570602520920381717175156063<42>
P51 = 213090300524279549137442960054809434214996463074123<51>
P60 = 152031551632891694465641580404499699339343734544590141354153<60>
Number: n N=27439860971371078386536174883380590871672916857221256745632488795390103356809658831061922619592060733558949967986828866733741882374462636055977316381597 ( 152 digits) SNFS difficulty: 155 digits. Divisors found: r1=847002118930358570602520920381717175156063 (pp42) r2=213090300524279549137442960054809434214996463074123 (pp51) r3=152031551632891694465641580404499699339343734544590141354153 (pp60) Version: GGNFS-0.77.1-20051202-athlon Total time: 19.48 hours. Scaled time: 25.79 units (timescale=1.324). Factorization parameters were as follows: name: KA_3_0_154_1 n: 27439860971371078386536174883380590871672916857221256745632488795390103356809658831061922619592060733558949967986828866733741882374462636055977316381597 skew: 1.0 deg: 5 c5: 3 c0: 1 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 900001) Primes: RFBsize:183072, AFBsize:183166, largePrimes:6441974 encountered Relations: rels:5875787, finalFF:426749 Max relations in full relation-set: 48 Initial matrix: 366303 x 426749 with sparse part having weight 31449065. Pruned matrix : 316723 x 318618 with weight 18266116. Total sieving time: 16.85 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.29 hours. Total square root time: 0.18 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 19.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
3·10178+1 = 3(0)1771<179> = 2050459 · 12264541 · 340688242377207018081711127<27> · C139
C139 = P31 · P108
P31 = 5069346827014420672241942756293<31>
P108 = 690732220068543526727568186205626712603241853899400661384995347253624067067728995244495344555464573552973589<108>
3·10162+1 = 3(0)1611<163> = 7130941393003213<16> · C147
C147 = P36 · C112
P36 = 103809697153908617469853075665675511<36>
C112 = [4052625413616873991636843572634283505999285953539026570840954837694883840351540445126100833603885531257627444707<112>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(2·10172+43)/9 = (2)1717<172> = C172
C172 = P43 · P130
P43 = 1754614804757565785712489120426881346518977<43>
P130 = 1266501465846952949874835380376498574495553770154845880082310728334619055651692455210844385139552416214859403953453928983218567251<130>
Number: n N=2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 172 digits) SNFS difficulty: 172 digits. Divisors found: r1=1754614804757565785712489120426881346518977 (pp43) r2=1266501465846952949874835380376498574495553770154845880082310728334619055651692455210844385139552416214859403953453928983218567251 (pp130) Version: GGNFS-0.77.1-20051202-athlon Total time: 271.55 hours. Scaled time: 224.57 units (timescale=0.827). Factorization parameters were as follows: name: KA_C172_2_171_7 n: 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 skew: 1 deg: 5 c5: 200 c0: 43 m: 10000000000000000000000000000000000 type: snfs rlim: 4800000 alim: 4800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 200000 Factor base limits: 4800000/4800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [2400000, 10000001) Primes: RFBsize:335439, AFBsize:335372, largePrimes:8991273 encountered Relations: rels:8540919, finalFF:760748 Max relations in full relation-set: 48 Initial matrix: 670876 x 760748 with sparse part having weight 107554650. Pruned matrix : 626583 x 630001 with weight 85954256. Total sieving time: 236.73 hours. Total relation processing time: 0.72 hours. Matrix solve time: 33.80 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,4800000,4800000,28,28,48,48,2.5,2.5,100000 total time: 271.55 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 2100+ stepping 02 Memory: 904260k/917504k available (1815k kernel code, 12496k reserved, 846k data, 272k init, 0k highmem) Calibrating delay loop... 3440.64 BogoMIPS
By suberi / GGNFS-0.77.1-20060513-pentium4, GMP-ECM 6.1.2 B1=1500000
6·10134+1 = 6(0)1331<135> = 13183 · 56512788861073<14> · C117
C117 = P37 · P38 · P43
P37 = 4433404553816215317147736447963746529<37>
P38 = 95562856740921441632025329178966092257<38>
P43 = 1900919699476513791402495760985135475898063<43>
Number: 60001_134 N=805360376054171448926513211091415837287242409322705512939398427708441937403689882581959931662204102681244824764929039 ( 117 digits) SNFS difficulty: 135 digits. Divisors found: r1=4433404553816215317147736447963746529 (pp37) r2=95562856740921441632025329178966092257 (pp38) r3=1900919699476513791402495760985135475898063 (pp43) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 8.00 hours. Scaled time: 4.86 units (timescale=0.607). Factorization parameters were as follows: n: 805360376054171448926513211091415837287242409322705512939398427708441937403689882581959931662204102681244824764929039 m: 1000000000000000000000000000 c5: 3 c0: 5 skew: 1.11 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1075001) Primes: RFBsize:78498, AFBsize:63968, largePrimes:1495955 encountered Relations: rels:1492100, finalFF:171961 Max relations in full relation-set: 28 Initial matrix: 142531 x 171961 with sparse part having weight 12288325. Pruned matrix : 132417 x 133193 with weight 7795674. Total sieving time: 7.41 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.43 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.00 hours. --------- CPU info (if available) ----------
The factor table of 600...001 was completed up to n=150.
(16·10238-61)/9 = 1(7)2371<239> = 13 · 127 · 5657 · 46430180224264648553519<23> · 254357642020012614687158935739<30> · C180
C180 = P37 · P143
P37 = 2995094195117222887884298164866532149<37>
P143 = 53813170009834495019293890293026883737954771285601624407366337052839069598577066902859258931966909830488746548353116927917982040532206068831417<143>
(16·10216-61)/9 = 1(7)2151<217> = 83 · 45734749 · 13663537919328949<17> · C191
C191 = P38 · C154
P38 = 16993254544088994418802208329222111041<38>
C154 = [2017034616574578333352594311052563596623521835744304536991343545930368699537861663516241055764361488063643138782918033528620871827176764508692767386386057<154>]
(16·10203-61)/9 = 1(7)2021<204> = 3 · 11 · C202
C202 = P29 · C173
P29 = 91665371598605909009152456397<29>
C173 = [58770343623276365051701043350027004518200626964137470076070836828570454371967585994649096276964859765755465444625233759214408845503984098397332260968196397777431561428879671<173>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(25·10155-1)/3 = 8(3)155<156> = 2203249 · 37543801 · 49716496603<11> · 1653308001329<13> · C120
C120 = P50 · P70
P50 = 65913944802091178855770112634329104658420382602159<50>
P70 = 1859453593432094313519823692595586227335273265860674689594622234181449<70>
Number: n N=122563921519533157167610503791526745333137558744384949027973528499465329568652035634459486477105324578747237805985148391 ( 120 digits) SNFS difficulty: 156 digits. Divisors found: r1=65913944802091178855770112634329104658420382602159 (pp50) r2=1859453593432094313519823692595586227335273265860674689594622234181449 (pp70) Version: GGNFS-0.77.1-20051202-athlon Total time: 24.11 hours. Scaled time: 31.49 units (timescale=1.306). Factorization parameters were as follows: name: KA_8_3_155 n: 122563921519533157167610503791526745333137558744384949027973528499465329568652035634459486477105324578747237805985148391 skew: 1.0 deg: 5 c5: 25 c0: -1 m: 10000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1100001) Primes: RFBsize:183072, AFBsize:182826, largePrimes:6955717 encountered Relations: rels:6516252, finalFF:543037 Max relations in full relation-set: 48 Initial matrix: 365962 x 543037 with sparse part having weight 47109883. Pruned matrix : 241555 x 243448 with weight 23127030. Total sieving time: 21.71 hours. Total relation processing time: 0.19 hours. Matrix solve time: 2.11 hours. Total square root time: 0.11 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 24.11 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10154+1 = 6(0)1531<155> = 53 · 110164333547<12> · C143
C143 = P39 · P104
P39 = 238374791151267475667638647382887847013<39>
P104 = 43109605018575408648854020726186133527988347085935528901089943775031879035223884740987728777643420089547<104>
Number: 60001_154 N=10276243092916545282599038127331836714616312273924222818750214626679157163539329590634914587427396014343641520606720047587449248821562496473111 ( 143 digits) SNFS difficulty: 155 digits. Divisors found: r1=238374791151267475667638647382887847013 (pp39) r2=43109605018575408648854020726186133527988347085935528901089943775031879035223884740987728777643420089547 (pp104) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.24 hours. Scaled time: 19.28 units (timescale=0.908). Factorization parameters were as follows: n: 10276243092916545282599038127331836714616312273924222818750214626679157163539329590634914587427396014343641520606720047587449248821562496473111 m: 10000000000000000000000000000000 c5: 3 c0: 5 skew: 1.11 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216596, largePrimes:5572811 encountered Relations: rels:5543695, finalFF:566815 Max relations in full relation-set: 28 Initial matrix: 433477 x 566815 with sparse part having weight 42556585. Pruned matrix : 338451 x 340682 with weight 26438100. Total sieving time: 20.17 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.93 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 21.24 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10153+1 = 6(0)1521<154> = 21617 · 1541654209<10> · C141
C141 = P36 · P105
P36 = 984429390961917259297755699215421271<36>
P105 = 182887609531191459362098716133019089012168238316933698590744176357181073877813369466618012759402594754327<105>
Number: n N=180039938065271742432802419890207882745250058570293387508818336338413580893400078723650876563405461280952457200558289033306093322248055089617 ( 141 digits) SNFS difficulty: 154 digits. Divisors found: r1=984429390961917259297755699215421271 (pp36) r2=182887609531191459362098716133019089012168238316933698590744176357181073877813369466618012759402594754327 (pp105) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.14 hours. Scaled time: 27.95 units (timescale=1.030). Factorization parameters were as follows: name: KA_6_0_152_1 n: 180039938065271742432802419890207882745250058570293387508818336338413580893400078723650876563405461280952457200558289033306093322248055089617 type: snfs skew: 1 deg: 5 c5: 375 c0: 2 m: 2000000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1700001) Primes: RFBsize:203362, AFBsize:203002, largePrimes:6512346 encountered Relations: rels:5970054, finalFF:457938 Max relations in full relation-set: 48 Initial matrix: 406430 x 457938 with sparse part having weight 33384429. Pruned matrix : 366052 x 368148 with weight 21666820. Total sieving time: 23.81 hours. Total relation processing time: 0.19 hours. Matrix solve time: 3.02 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,100000 total time: 27.14 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Alfred Reich / GMP-ECM B1=250000
101502+1 = 1(0)15011<1503> = 101 · C1500
C1500 = P29 · C1472
P29 = 15038232004133372033157105509<29>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10151+1 = 6(0)1501<152> = 139 · 498255827 · C141
C141 = P35 · P52 · P55
P35 = 85355460087173921743066987368891301<35>
P52 = 4059984657865523211612358150944087268984576395068423<52>
P55 = 2499932966831125928910143611140847400709468157774550779<55>
Number: n N=866331416248530507913950966103277323181094369907219304082316894962353482612304182861456519612999020205316992825763695151993423853564736053617 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=85355460087173921743066987368891301 (pp35) r2=4059984657865523211612358150944087268984576395068423 (pp52) r3=2499932966831125928910143611140847400709468157774550779 (pp55) Version: GGNFS-0.77.1-20051202-athlon Total time: 17.90 hours. Scaled time: 23.70 units (timescale=1.324). Factorization parameters were as follows: name: KA_6_0_150_1 n: 866331416248530507913950966103277323181094369907219304082316894962353482612304182861456519612999020205316992825763695151993423853564736053617 skew: 1.0 deg: 5 c5: 60 c0: 1 m: 1000000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [625000, 1225001) Primes: RFBsize:183072, AFBsize:182401, largePrimes:6997715 encountered Relations: rels:6415375, finalFF:435403 Max relations in full relation-set: 48 Initial matrix: 365540 x 435403 with sparse part having weight 40361151. Pruned matrix : 313619 x 315510 with weight 23532552. Total sieving time: 14.43 hours. Total relation processing time: 0.15 hours. Matrix solve time: 3.06 hours. Total square root time: 0.27 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 17.90 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10149+1 = 6(0)1481<150> = 19 · 109 · 113 · 10579907627<11> · 5679856078924981<16> · C119
C119 = P38 · P82
P38 = 22501049938160881627846852996382188283<38>
P82 = 1896141385290142214720833871694818954129695297495385547007001852440390777837062947<82>
Number: 60001_149 N=42665172000227042905248666636269907370987871316211270116976905960540274050479954940900986182398874236738120753476850001 ( 119 digits) SNFS difficulty: 150 digits. Divisors found: r1=22501049938160881627846852996382188283 (pp38) r2=1896141385290142214720833871694818954129695297495385547007001852440390777837062947 (pp82) Version: GGNFS-0.77.1-20050930-k8 Total time: 16.31 hours. Scaled time: 14.81 units (timescale=0.908). Factorization parameters were as follows: n: 42665172000227042905248666636269907370987871316211270116976905960540274050479954940900986182398874236738120753476850001 m: 1000000000000000000000000000000 c5: 3 c0: 5 skew: 1.11 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:135068, largePrimes:2722233 encountered Relations: rels:2706884, finalFF:317643 Max relations in full relation-set: 28 Initial matrix: 270205 x 317643 with sparse part having weight 18554762. Pruned matrix : 249291 x 250706 with weight 12273618. Total sieving time: 15.95 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.29 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 16.31 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.09 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=1500000
10193-3 = (9)1927<193> = 7 · 877 · 8231 · 1678751 · C180
C180 = P40 · C140
P40 = 2788197000323965150474047104253804184927<40>
C140 = [42280491275836758755087153978652869290832724846826455289157915903635208116355748143771841425689564560801169376081032947336654089972281806529<140>]
By Jo Yeong Uk / GMP-ECM 6.1.1 B1=1000000
6·10155+1 = 6(0)1541<156> = 15679 · C152
C152 = P28 · P124
P28 = 5838172087029064235976796069<28>
P124 = 6554747975404540742365128375128746950110811434716985062195497790142313250580415385937683038666601418715210100773572817781651<124>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10147+1 = 6(0)1461<148> = 17 · 2543 · C144
C144 = P57 · P88
P57 = 115760644183242053581470522727778242831221097437922034717<57>
P88 = 1198933330911430747361811027483210008562962708283177147904000051570352016647574586611563<88>
Number: n N=138789294719067335939487867502486641530383289768915824292752885660752700608359741851911822534755152552566445374846753487081029816566815479632671 ( 144 digits) SNFS difficulty: 148 digits. Divisors found: r1=115760644183242053581470522727778242831221097437922034717 (pp57) r2=1198933330911430747361811027483210008562962708283177147904000051570352016647574586611563 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 13.08 hours. Scaled time: 13.45 units (timescale=1.028). Factorization parameters were as follows: name: KA_6_0_146_1 n: 138789294719067335939487867502486641530383289768915824292752885660752700608359741851911822534755152552566445374846753487081029816566815479632671 type: snfs skew: 1 deg: 5 c5: 75 c0: 4 m: 200000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1900001) Primes: RFBsize:203362, AFBsize:203327, largePrimes:6772732 encountered Relations: rels:6313076, finalFF:556374 Max relations in full relation-set: 48 Initial matrix: 406755 x 556374 with sparse part having weight 34465165. Pruned matrix : 285284 x 287381 with weight 17097564. Total sieving time: 10.71 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.79 hours. Total square root time: 0.38 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,100000 total time: 13.08 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Yousuke Koide / GMP-ECM B1=1000000
101281+1 = 1(0)12801<1282> = 72 · 11 · 13 · 127 · 367 · 2689 · 81131 · 169093 · 459691 · 909091 · 51745081 · 55405813 · 2483310733<10> · 231360835259<12> · 40498340376691<14> · 169894323769969<15> · 1332637657781062159783634743<28> · 42936744040512685057308971520417028077990465463<47> · 33277993916065498965234812212436587255656671587921<50> · 11205222530116836855321528257890437575145023592596037161<56> · [85811889790895883206807096720145730209605387250726861790562462772043327254561512798528835064828732240331260028758501757852432823556792336743465054983401115181231428794965186955289754661244071239184706008290121155783429407286412102316839112807634956146135131037171420203944224539158836762412373845312102917244800561831603104330815842760273933<341>] · C664
C664 = P33 · C632
P33 = 182686188880054439969850506100637<33>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Alfred Reich / GMP-ECM B1=3000000
10608+1 = 1(0)6071<609> = 1217 · 19841 · 665153 · 976193 · 1601473 · 6187457 · 65384321 · 834427406578561<15> · 911712031611457<15> · 18542613285686578370456001857<29> · C510
C510 = P35 · C475
P35 = 89360919064107809136921297069895873<35>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10144+1 = 6(0)1431<145> = 7 · 29 · 9419 · C139
C139 = P52 · P87
P52 = 8690737773132673400046895125462569162199460287601619<52>
P87 = 361071965016480062594290480035242393015221651315524279120702561149015142886111978824947<87>
Number: n N=3137981765187962492749954630013644990708958990239307719382842666301266123342557256399783060860633338859667886469911723342975653968474789193 ( 139 digits) SNFS difficulty: 145 digits. Divisors found: r1=8690737773132673400046895125462569162199460287601619 (pp52) r2=361071965016480062594290480035242393015221651315524279120702561149015142886111978824947 (pp87) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.84 hours. Scaled time: 11.70 units (timescale=1.323). Factorization parameters were as follows: name: KA_6_0_143_1 n: 3137981765187962492749954630013644990708958990239307719382842666301266123342557256399783060860633338859667886469911723342975653968474789193 skew: 1.0 deg: 5 c5: 3 c0: 5 m: 100000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [625000, 1425001) Primes: RFBsize:183072, AFBsize:183061, largePrimes:6812550 encountered Relations: rels:6210007, finalFF:436143 Max relations in full relation-set: 48 Initial matrix: 366198 x 436143 with sparse part having weight 31494582. Pruned matrix : 309296 x 311190 with weight 17011799. Total sieving time: 6.46 hours. Total relation processing time: 0.14 hours. Matrix solve time: 2.19 hours. Total square root time: 0.06 hours, sqrts: 1 Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,100000 total time: 8.84 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10142+1 = 6(0)1411<143> = 179 · 193 · 1949 · 20250697 · C128
C128 = P36 · P93
P36 = 168722167314338241440719151552099503<36>
P93 = 260805622756239731875686742670995926907630708041156681530524921153215720747176911819093845937<93>
Number: 60001_142 N=44003689919198461148612843709883711482295308168094192381135593052331773504067100100819483505234335724777643856075977739176269311 ( 128 digits) SNFS difficulty: 143 digits. Divisors found: r1=168722167314338241440719151552099503 (pp36) r2=260805622756239731875686742670995926907630708041156681530524921153215720747176911819093845937 (pp93) Version: GGNFS-0.77.1-20050930-k8 Total time: 9.01 hours. Scaled time: 7.81 units (timescale=0.867). Factorization parameters were as follows: n: 44003689919198461148612843709883711482295308168094192381135593052331773504067100100819483505234335724777643856075977739176269311 m: 20000000000000000000000000000 c5: 75 c0: 4 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1250001) Primes: RFBsize:114155, AFBsize:113902, largePrimes:2662818 encountered Relations: rels:2669079, finalFF:313554 Max relations in full relation-set: 28 Initial matrix: 228123 x 313554 with sparse part having weight 20150084. Pruned matrix : 187065 x 188269 with weight 9927048. Total sieving time: 8.80 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,143,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 9.01 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.09 BogoMIPS).
By suberi / GGNFS-0.77.1-20060513-pentium4
6·10132+1 = 6(0)1311<133> = 72 · 347 · C129
C129 = P62 · P67
P62 = 36596493239037447170949018613664094139517120346108317971376267<62>
P67 = 9642423972646013466783289114801468750815943389674239701142494172201<67>
Number: 60001_132 N=352878903722872434276304181615009116038346174204552137858025054402164323942833617596894665647238722578368523201787919778862553667 ( 129 digits) SNFS difficulty: 132 digits. Divisors found: r1=36596493239037447170949018613664094139517120346108317971376267 (pp62) r2=9642423972646013466783289114801468750815943389674239701142494172201 (pp67) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 6.36 hours. Scaled time: 3.95 units (timescale=0.620). Factorization parameters were as follows: n: 352878903722872434276304181615009116038346174204552137858025054402164323942833617596894665647238722578368523201787919778862553667 m: 100000000000000000000000000 c5: 600 c0: 1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [400000, 1000001) Primes: RFBsize:63951, AFBsize:63758, largePrimes:1465168 encountered Relations: rels:1451436, finalFF:159411 Max relations in full relation-set: 28 Initial matrix: 127775 x 159411 with sparse part having weight 11544070. Pruned matrix : 118379 x 119081 with weight 6897026. Total sieving time: 5.94 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,132,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.36 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
6·10135+1 = 6(0)1341<136> = C136
C136 = P46 · P90
P46 = 6880668114947944749317742283818949380447951589<46>
P90 = 872008342760387973294859623740096978369380316479863520578687666785407351034250325563331309<90>
Number: n N=6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 136 digits) SNFS difficulty: 135 digits. Divisors found: r1=6880668114947944749317742283818949380447951589 (pp46) r2=872008342760387973294859623740096978369380316479863520578687666785407351034250325563331309 (pp90) Version: GGNFS-0.77.1-20051202-athlon Total time: 4.93 hours. Scaled time: 6.43 units (timescale=1.303). Factorization parameters were as follows: name: KA_6_0_134_1 n: 6000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 skew: 1.0 deg: 5 c5: 6 c0: 1 m: 1000000000000000000000000000 type: snfs rlim: 2500000 alim: 2500000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [625000, 1025001) Primes: RFBsize:183072, AFBsize:183151, largePrimes:6757053 encountered Relations: rels:6176901, finalFF:469461 Max relations in full relation-set: 48 Initial matrix: 366289 x 469461 with sparse part having weight 27534006. Pruned matrix : 275137 x 277032 with weight 11713717. Total sieving time: 3.49 hours. Total relation processing time: 0.12 hours. Matrix solve time: 1.27 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,2500000,2500000,28,28,48,48,2.5,2.5,75000 total time: 4.93 hours. --------- CPU info (if available) ---------- Cygwin on AMD 64 3200+
6·10139+1 = 6(0)1381<140> = 2277647 · 1508867401072225998121996787<28> · C107
C107 = P36 · P71
P36 = 323196751600306705639682362661998583<36>
P71 = 54019028760861303562927364638531753025925788771571944925497170577303123<71>
Number: n N=17458774620113914470450750350485650721062967459553658304917158020724895264651040876779047803300485387474709 ( 107 digits) SNFS difficulty: 140 digits. Divisors found: r1=323196751600306705639682362661998583 (pp36) r2=54019028760861303562927364638531753025925788771571944925497170577303123 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.00 hours. Scaled time: 7.19 units (timescale=1.027). Factorization parameters were as follows: name: KA_6_0_138_1 n: 17458774620113914470450750350485650721062967459553658304917158020724895264651040876779047803300485387474709 type: snfs skew: 1 deg: 5 c5: 3 c0: 5 m: 10000000000000000000000000000 rlim: 2800000 alim: 2800000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 2800000/2800000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [700000, 1300001) Primes: RFBsize:203362, AFBsize:203187, largePrimes:6332246 encountered Relations: rels:5935476, finalFF:580430 Max relations in full relation-set: 48 Initial matrix: 406614 x 580430 with sparse part having weight 28996765. Pruned matrix : 249589 x 251686 with weight 11668387. Total sieving time: 5.78 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.00 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,2800000,2800000,28,28,48,48,2.3,2.3,75000 total time: 7.00 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10137+1 = 6(0)1361<138> = 23 · 48323971 · 4272684397523<13> · C117
C117 = P35 · P82
P35 = 14655169765563672253443781435081771<35>
P82 = 8621228002824546712512779722593849212894060284244445369802723033429410273152233309<82>
Number: 60001_137 N=126345559969025178596852180111068916025623690265881256100032965758421964815162261474428762273655471555768749684910239 ( 117 digits) SNFS difficulty: 138 digits. Divisors found: r1=14655169765563672253443781435081771 (pp35) r2=8621228002824546712512779722593849212894060284244445369802723033429410273152233309 (pp82) Version: GGNFS-0.77.1-20050930-k8 Total time: 6.19 hours. Scaled time: 5.61 units (timescale=0.906). Factorization parameters were as follows: n: 126345559969025178596852180111068916025623690265881256100032965758421964815162261474428762273655471555768749684910239 m: 2000000000000000000000000000 c5: 75 c0: 4 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1600001) Primes: RFBsize:100021, AFBsize:99653, largePrimes:1606035 encountered Relations: rels:1640566, finalFF:232314 Max relations in full relation-set: 28 Initial matrix: 199740 x 232314 with sparse part having weight 11569395. Pruned matrix : 183772 x 184834 with weight 7837658. Total sieving time: 6.03 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 6.19 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By Jo Yeong Uk / GMP-ECM 6.1.1 B1=1000000
6·10152+1 = 6(0)1511<153> = 97 · 107 · 4413797 · 146950709 · 312531144238105714806234223<27> · C108
C108 = P36 · P72
P36 = 298164910200576610275597713265821141<36>
P72 = 956449101954012566944100844383139842704712531307907202661451759300471921<72>
By Shaopu Lin / GGNFS-0.77.1-20060722-pentium4
6·10116+1 = 6(0)1151<117> = 29 · 83 · 131 · 685813586041<12> · C100
C100 = P49 · P52
P49 = 1844456395138388719546644007583570020351357048013<49>
P52 = 1504282446191996744686075825671917165322581155319641<52>
Number: 6.116.+1 N=2774583377973247515120418666588758007725716130878216258584319823955305330744998010385552113198923333 ( 100 digits) SNFS difficulty: 116 digits. Divisors found: r1=1844456395138388719546644007583570020351357048013 (pp49) r2=1504282446191996744686075825671917165322581155319641 (pp52) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 1.68 hours. Scaled time: 2.14 units (timescale=1.277). Factorization parameters were as follows: n: 2774583377973247515120418666588758007725716130878216258584319823955305330744998010385552113198923333 m: 100000000000000000000000 c5: 60 c0: 1 skew: 0.4409301031108602482135000634 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 500001) Primes: RFBsize:49098, AFBsize:63828, largePrimes:2028041 encountered Relations: rels:2073919, finalFF:216782 Max relations in full relation-set: 32 Initial matrix: 112993 x 216782 with sparse part having weight 17583425. Pruned matrix : 84139 x 84767 with weight 4244399. Total sieving time: 1.49 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,116,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 1.68 hours. --------- CPU info (if available) ----------
6·10133+1 = 6(0)1321<134> = 4390696903639<13> · 206718352549405901933<21> · C101
C101 = P48 · P54
P48 = 366262675924266703046624692745658752739944862649<48>
P54 = 180487069279920119803199143358086060304773059562666427<54>
Number: 6.133.+1 N=66105676964192055331339699187649664746820562965637914107453371282434427610071830386331809334718585123 ( 101 digits) SNFS difficulty: 135 digits. Divisors found: r1=366262675924266703046624692745658752739944862649 (pp48) r2=180487069279920119803199143358086060304773059562666427 (pp54) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 7.67 hours. Scaled time: 8.97 units (timescale=1.170). Factorization parameters were as follows: n: 66105676964192055331339699187649664746820562965637914107453371282434427610071830386331809334718585123 m: 1000000000000000000000000000 c5: 3 c0: 50 skew: 1.755374357613263695354790869 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [400000, 1150001) Primes: RFBsize:78498, AFBsize:64108, largePrimes:1522627 encountered Relations: rels:1528331, finalFF:182412 Max relations in full relation-set: 32 Initial matrix: 142671 x 182412 with sparse part having weight 13819576. Pruned matrix : 129373 x 130150 with weight 7940935. Total sieving time: 7.28 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.19 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.67 hours. --------- CPU info (if available) ----------
6·10117+1 = 6(0)1161<118> = 19249 · 104513 · C109
C109 = P38 · P71
P38 = 84949547191298834829861938440359659209<38>
P71 = 35108453167910401652183651057262560059278692771200689617890345494466697<71>
Number: 6.117.+1 N=2982447199200909740641087772219643336028900593358218233194233006680820410004800661338976420353409286119862673 ( 109 digits) SNFS difficulty: 117 digits. Divisors found: r1=84949547191298834829861938440359659209 (pp38) r2=35108453167910401652183651057262560059278692771200689617890345494466697 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 2.30 hours. Scaled time: 2.94 units (timescale=1.282). Factorization parameters were as follows: n: 2982447199200909740641087772219643336028900593358218233194233006680820410004800661338976420353409286119862673 m: 100000000000000000000000 c5: 600 c0: 1 skew: 0.2782080869602061787542021946 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 46/46 Sieved algebraic special-q in [400000, 550001) Primes: RFBsize:49098, AFBsize:63758, largePrimes:2260345 encountered Relations: rels:2575810, finalFF:449631 Max relations in full relation-set: 32 Initial matrix: 112922 x 449631 with sparse part having weight 38977979. Pruned matrix : 65873 x 66501 with weight 5825304. Total sieving time: 2.11 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.05 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,117,5,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.30 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10136+1 = 6(0)1351<137> = 287271635614354961093<21> · C117
C117 = P32 · P85
P32 = 41930632229393576833881200665999<32>
P85 = 4981121010552314579673023411353830652553041863694028008692298895946066995164432699043<85>
Number: 60001_136 N=208861553183574384641496570438992202326763001190184099906600714715092191323809412019926563630101556877732704729938957 ( 117 digits) SNFS difficulty: 136 digits. Divisors found: r1=41930632229393576833881200665999 (pp32) r2=4981121010552314579673023411353830652553041863694028008692298895946066995164432699043 (pp85) Version: GGNFS-0.77.1-20050930-k8 Total time: 5.30 hours. Scaled time: 4.80 units (timescale=0.906). Factorization parameters were as follows: n: 208861553183574384641496570438992202326763001190184099906600714715092191323809412019926563630101556877732704729938957 m: 1000000000000000000000000000 c5: 60 c0: 1 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1450001) Primes: RFBsize:100021, AFBsize:99983, largePrimes:1573606 encountered Relations: rels:1601867, finalFF:226059 Max relations in full relation-set: 28 Initial matrix: 200071 x 226059 with sparse part having weight 9991724. Pruned matrix : 187226 x 188290 with weight 7125975. Total sieving time: 5.14 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 5.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs
4·10153+1 = 4(0)1521<154> = 59 · 397 · 13063 · 167318969 · 606641514185778295831468249<27> · C111
C111 = P40 · P71
P40 = 3183635597702264953513076409369407360357<40>
P71 = 40455156645999949292666657280615001667447267467607551015375410772491397<71>
Number: n N=128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729 ( 111 digits) Divisors found: r1=3183635597702264953513076409369407360357 (pp40) r2=40455156645999949292666657280615001667447267467607551015375410772491397 (pp71) Version: GGNFS-0.77.1-20051202-athlon Total time: 26.67 hours. Scaled time: 27.47 units (timescale=1.030). Factorization parameters were as follows: name: KA_4_0_152_1 n: 128794476808826804929695919713988641507228964089871710247262117670748049694912958575750188571024002234261348729 skew: 14591.00 # norm 2.53e+15 c5: 36480 c4: -8024516008 c3: -131143870906614 c2: 1592694215541131949 c1: 3060500624120386397906 c0: -21438494886951988228976328 # alpha -5.87 Y1: 296695470809 Y0: -1286983226642882909381 # Murphy_E 9.13e-10 # M 81130056266918107766482766309667539814896027352219876292127076829404897674136589364351342555408655652570877199 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [800000, 1600001) Primes: RFBsize:230209, AFBsize:230219, largePrimes:7117685 encountered Relations: rels:6769651, finalFF:521875 Max relations in full relation-set: 48 Initial matrix: 460509 x 521875 with sparse part having weight 43506096. Pruned matrix : 404830 x 407196 with weight 25473744. Total sieving time: 22.50 hours. Total relation processing time: 0.25 hours. Matrix solve time: 3.57 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 26.67 hours. --------- CPU info (if available) ---------- CPU: AMD Athlon(tm) XP 3000+ stepping 00 Memory: 2076900k/2097088k available (1540k kernel code, 19412k reserved, 599k data, 144k init, 0k highmem) Calibrating delay loop... 4292.60 BogoMIPS x86info v1.12b. Dave Jones 2001-2003 Feedback to <davej@redhat.com>. Found 1 CPU -------------------------------------------------------------------------- Family: 6 Model: 10 Stepping: 0 CPU Model : Athlon XP (Barton) 2.2Ghz processor (estimate).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10130+1 = 6(0)1291<131> = 31 · 325910589480211013<18> · C112
C112 = P32 · P80
P32 = 80533406104775313809314886144551<32>
P80 = 73742017814548265755028178719963181032292046951828193081508776580982918009049717<80>
Number: 60001_130 N=5938695867644591250096964108036195170468256919566410685964230328223435047888048980160458151235501463313407642067 ( 112 digits) SNFS difficulty: 130 digits. Divisors found: r1=80533406104775313809314886144551 (pp32) r2=73742017814548265755028178719963181032292046951828193081508776580982918009049717 (pp80) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.49 hours. Scaled time: 2.26 units (timescale=0.907). Factorization parameters were as follows: n: 5938695867644591250096964108036195170468256919566410685964230328223435047888048980160458151235501463313407642067 m: 100000000000000000000000000 c5: 6 c0: 1 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 900001) Primes: RFBsize:78498, AFBsize:78381, largePrimes:1552605 encountered Relations: rels:1607977, finalFF:227611 Max relations in full relation-set: 28 Initial matrix: 156945 x 227611 with sparse part having weight 11540004. Pruned matrix : 124379 x 125227 with weight 5154950. Total sieving time: 2.41 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,130,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.49 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
10188-3 = (9)1877<188> = 330546084791304846847511<24> · 3562247528919238271756225579280817<34> · C131
C131 = P37 · P95
P37 = 4509864049590597579503737782555387503<37>
P95 = 18831305910794443918566298283063276453852879246305489811969783216115588049782475570558077809077<95>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
6·10123+1 = 6(0)1221<124> = 677 · 85482211 · C114
C114 = P50 · P64
P50 = 46731777018239824577493857223667185843576140952323<50>
P64 = 2218577168058000218769466780291988857687020303171346242507278821<64>
Number: 60001_123 N=103678053515444447646496968098004446630653870257492258219735430328279463228768508005623250938029042426190228651183 ( 114 digits) SNFS difficulty: 125 digits. Divisors found: r1=46731777018239824577493857223667185843576140952323 (pp50) r2=2218577168058000218769466780291988857687020303171346242507278821 (pp64) Version: GGNFS-0.77.1-20050930-k8 Total time: 1.95 hours. Scaled time: 1.77 units (timescale=0.907). Factorization parameters were as follows: n: 103678053515444447646496968098004446630653870257492258219735430328279463228768508005623250938029042426190228651183 m: 10000000000000000000000000 c5: 3 c0: 50 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 800001) Primes: RFBsize:78498, AFBsize:78466, largePrimes:1533564 encountered Relations: rels:1603464, finalFF:239699 Max relations in full relation-set: 28 Initial matrix: 157029 x 239699 with sparse part having weight 10890124. Pruned matrix : 112192 x 113041 with weight 4386011. Total sieving time: 1.88 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,125,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 1.95 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(55·10154-1)/9 = 6(1)154<155> = 19 · 128377 · 226199 · C144
C144 = P50 · P94
P50 = 16248596023798486378875874181609325104910632542109<50>
P94 = 6816678862166327195133898481525866304745806685872685135817314924536862399999758640164030283967<94>
Number: trial N=110761461055306974447980312674705813315103228543298256296113664338475244695680369736492417399835256980582636072338158897343349693799730355066403 ( 144 digits) SNFS difficulty: 156 digits. Divisors found: r1=16248596023798486378875874181609325104910632542109 (pp50) r2=6816678862166327195133898481525866304745806685872685135817314924536862399999758640164030283967 (pp94) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 54.70 hours. Scaled time: 28.44 units (timescale=0.520). Factorization parameters were as follows: n: 110761461055306974447980312674705813315103228543298256296113664338475244695680369736492417399835256980582636072338158897343349693799730355066403 m: 10000000000000000000000000000000 c5: 11 c0: -2 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:216807, largePrimes:5696111 encountered Relations: rels:5771677, finalFF:510455 Max relations in full relation-set: 0 Initial matrix: 433690 x 510455 with sparse part having weight 27237870. Pruned matrix : 372255 x 374487 with weight 19501034. Total sieving time: 44.73 hours. Total relation processing time: 0.45 hours. Matrix solve time: 9.25 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 54.70 hours. --------- CPU info (if available) ----------
By Yousuke Koide / GMP-ECM / Mar 25, 2007
(10773-1)/9 = (1)773<773> = 375567158615806379291689<24> · C749
C749 = P34 · C715
P34 = 6567859785032228933216616467308837<34>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10154+1 = 3(0)1531<155> = 709 · C152
C152 = P55 · P97
P55 = 8035475151373083659527183835942623308307448782043954239<55>
P97 = 5265789050328925623147256769024288482438775097245447059422020562309429069222311849609536376272051<97>
Number: 30001_154 N=42313117066290550070521861777150916784203102961918194640338504936530324400564174894217207334273624823695345557122708039492242595204513399153737658674189 ( 152 digits) SNFS difficulty: 155 digits. Divisors found: r1=8035475151373083659527183835942623308307448782043954239 (pp55) r2=5265789050328925623147256769024288482438775097245447059422020562309429069222311849609536376272051 (pp97) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.09 hours. Scaled time: 22.81 units (timescale=0.909). Factorization parameters were as follows: n: 42313117066290550070521861777150916784203102961918194640338504936530324400564174894217207334273624823695345557122708039492242595204513399153737658674189 m: 10000000000000000000000000000000 c5: 3 c0: 10 skew: 1.27 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:5696550 encountered Relations: rels:5707769, finalFF:592403 Max relations in full relation-set: 28 Initial matrix: 433622 x 592403 with sparse part having weight 47733820. Pruned matrix : 340633 x 342865 with weight 29522903. Total sieving time: 23.87 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.08 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 25.09 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs
4·10161+1 = 4(0)1601<162> = 7 · 41 · 24481 · 1793611 · 6778769 · 51739157 · 24543891373<11> · 7075521653495357<16> · C108
C108 = P33 · P76
P33 = 365498852272237776807460331845037<33>
P76 = 1425813087563283653143535013962362288561660254770001654328238688640363615813<76>
Number: n N=521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081 ( 108 digits) Divisors found: r1=365498852272237776807460331845037 (pp33) r2=1425813087563283653143535013962362288561660254770001654328238688640363615813 (pp76) Version: GGNFS-0.77.1-20051202-athlon Total time: 20.75 hours. Scaled time: 12.43 units (timescale=0.599). Factorization parameters were as follows: name: n n: 521133047059115837675537348646844584746004512762351827978879158236088378419334683421375333805308762918770081 skew: 40447.48 # norm 6.43e+14 c5: 9420 c4: -213953527 c3: -44488420510166 c2: 182961566955378338 c1: 36117031924044341100564 c0: 205146067720706725943643840 # alpha -5.48 Y1: 186574095169 Y0: -560505913690756339519 # Murphy_E 1.20e-09 # M 494134786016776996625202565666137705191913286564593986533208980979121777485925174812435415313414375388025445 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1750001) Primes: RFBsize:183072, AFBsize:182852, largePrimes:4389613 encountered Relations: rels:4471974, finalFF:474620 Max relations in full relation-set: 28 Initial matrix: 366004 x 474620 with sparse part having weight 34411549. Pruned matrix : 274273 x 276167 with weight 17131889. Total sieving time: 16.62 hours. Total relation processing time: 0.23 hours. Matrix solve time: 3.50 hours. Total square root time: 0.40 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 20.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor table of 600...001 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
4·10147+1 = 4(0)1461<148> = 47 · 251 · 733 · 863 · C138
C138 = P55 · P83
P55 = 6442862514461602713781483216855754068454488467466706327<55>
P83 = 83194530963377483428159654973172315536690121265505564170886744203220844329565112601<83>
Number: n N=536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527 ( 138 digits) SNFS difficulty: 147 digits. Divisors found: r1=6442862514461602713781483216855754068454488467466706327 (pp55) r2=83194530963377483428159654973172315536690121265505564170886744203220844329565112601 (pp83) Version: GGNFS-0.77.1-20051202-athlon Total time: 12.48 hours. Scaled time: 14.92 units (timescale=1.196). Factorization parameters were as follows: name: KA_4_0_146_1 n: 536010924952159916075418732709442497083178964476160436594019920977080518174084042417641026577862786883052013317047243497600983876354126527 type: snfs skew: 1 deg: 5 c5: 25 c0: 2 m: 200000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1200001) Primes: RFBsize:230209, AFBsize:229762, largePrimes:6131938 encountered Relations: rels:5626042, finalFF:530810 Max relations in full relation-set: 28 Initial matrix: 460035 x 530810 with sparse part having weight 20240880. Pruned matrix : 379958 x 382322 with weight 10978773. Total sieving time: 10.35 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.87 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 12.48 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor table of 400...001 was completed up to n=150.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(82·10154-1)/9 = 9(1)154<155> = 607 · 40241 · C148
C148 = P60 · P89
P60 = 232620404026051435877540073297669760912942073309419855799819<60>
P89 = 16034893568762225974436715045034787578075921818623102241641956001895225911887448184842587<89>
Number: 91111_154 N=3730043420480202787722551164289157460203063654787611031963683678616856958698270887880385222326713475163503610315849932947693241756764387117498091753 ( 148 digits) SNFS difficulty: 156 digits. Divisors found: r1=232620404026051435877540073297669760912942073309419855799819 (pp60) r2=16034893568762225974436715045034787578075921818623102241641956001895225911887448184842587 (pp89) Version: GGNFS-0.77.1-20050930-k8 Total time: 27.18 hours. Scaled time: 24.63 units (timescale=0.906). Factorization parameters were as follows: n: 3730043420480202787722551164289157460203063654787611031963683678616856958698270887880385222326713475163503610315849932947693241756764387117498091753 m: 10000000000000000000000000000000 c5: 41 c0: -5 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216857, largePrimes:5742989 encountered Relations: rels:5785422, finalFF:617603 Max relations in full relation-set: 28 Initial matrix: 433738 x 617603 with sparse part having weight 50496076. Pruned matrix : 331821 x 334053 with weight 31384416. Total sieving time: 25.97 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 27.18 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335810) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.08 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=3000000
(4·10189-1)/3 = 1(3)189<190> = 1379239 · 1407246178887083<16> · 13561187776115168413489<23> · C146
C146 = P45 · P101
P45 = 609907445068425332836810159001893712243111053<45>
P101 = 83055321804349639576102906880439026197926622771540000562342810500715775296766525603462725052646736477<101>
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
4·10178+1 = 4(0)1771<179> = 13 · C178
C178 = P36 · C142
P36 = 566167021042476149422414249581680453<36>
C142 = [5434656139556799894979519578367289662179199394390968777423929565472413299191034750588773051949376501146939751768504380636817182877903411483009<142>]
4·10194+1 = 4(0)1931<195> = C195
C195 = P30 · C165
P30 = 721324202162977116296517293557<30>
C165 = [554535670369234852818186783094108976406476630773560262269780712723019734760680133249031167487487578182210303192224034007942925509576722640178918674833524064211545693<165>]
4·10179+1 = 4(0)1781<180> = 7 · 18457340200388066441<20> · C160
C160 = P34 · P126
P34 = 6004231495142581556980974994915411<34>
P126 = 515626709759236369230555350134883854087864590105169849025864162520888571350730707352467835084057429485986388639654825004337893<126>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon gnfs
4·10171+1 = 4(0)1701<172> = 23 · 41 · 641 · 55305917 · 571780967537331426467595011<27> · 983788565105385106532942023<27> · C105
C105 = P43 · P62
P43 = 3392183977152881040429986688657533088590419<43>
P62 = 62705813661270651499429351472678860702534232323580249870005333<62>
Number: n N=212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527 ( 105 digits) Divisors found: r1=3392183977152881040429986688657533088590419 (pp43) r2=62705813661270651499429351472678860702534232323580249870005333 (pp62) Version: GGNFS-0.77.1-20051202-athlon Total time: 10.75 hours. Scaled time: 10.64 units (timescale=0.990). Factorization parameters were as follows: name: KA_4_0_170_1 n: 212709656376096539510259200807618971840532704002253441256324493571381200520965039506099236731956982704527 skew: 14380.93 # norm 3.19e+14 c5: 48600 c4: -227361600 c3: -38191978082154 c2: 33010484434394054 c1: 3025096088669510617169 c0: -3257925683541972899940235 # alpha -6.19 Y1: 130154725151 Y0: -84767780379198762372 # Murphy_E 1.99e-09 # M 125472220538461468590658822163936950389663905049084161686308835154986406703146680462682841295132032235112 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [100000, 1150001) Primes: RFBsize:183072, AFBsize:182819, largePrimes:4056153 encountered Relations: rels:4064115, finalFF:467875 Max relations in full relation-set: 28 Initial matrix: 365969 x 467875 with sparse part having weight 24168525. Pruned matrix : 265860 x 267753 with weight 9755268. Total sieving time: 9.31 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.10 hours. Total square root time: 0.14 hours, sqrts: 1. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 10.75 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
4·10146+1 = 4(0)1451<147> = 41 · 2729 · C142
C142 = P34 · P45 · P64
P34 = 2184156109565083400994331504190413<34>
P45 = 185296227258331476479382730913150879294782961<45>
P64 = 8833287103024449941246276528945173645345205610821578498935895813<64>
Number: 40001_146 N=3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009 ( 142 digits) SNFS difficulty: 147 digits. Divisors found: r1=2184156109565083400994331504190413 (pp34) r2=185296227258331476479382730913150879294782961 (pp45) r3=8833287103024449941246276528945173645345205610821578498935895813 (pp64) Version: GGNFS-0.77.1-20050930-k8 Total time: 11.10 hours. Scaled time: 10.07 units (timescale=0.907). Factorization parameters were as follows: n: 3574971623662737177023657374719588163268954052677206874670432303443591416493131585768037966198643298268819991241319522026293916292039431937009 m: 200000000000000000000000000000 c5: 5 c0: 4 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1500001) Primes: RFBsize:135072, AFBsize:135393, largePrimes:2641367 encountered Relations: rels:2616307, finalFF:305586 Max relations in full relation-set: 28 Initial matrix: 270531 x 305586 with sparse part having weight 16440611. Pruned matrix : 246464 x 247880 with weight 11245106. Total sieving time: 10.77 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.26 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 11.10 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
4·10137+1 = 4(0)1361<138> = 7 · 19 · 53 · 1009 · 3823 · 218117 · 1603681 · C116
C116 = P44 · P73
P44 = 23055346723785830899288317321960983887657807<44>
P73 = 1824138707895749513832021600956777695371243638120294559951871173502726613<73>
Number: n N=42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691 ( 116 digits) SNFS difficulty: 137 digits. Divisors found: r1=23055346723785830899288317321960983887657807 (pp44) r2=1824138707895749513832021600956777695371243638120294559951871173502726613 (pp73) Version: GGNFS-0.77.1-20051202-athlon Total time: 7.70 hours. Scaled time: 9.21 units (timescale=1.195). Factorization parameters were as follows: name: KA_4_0_136_1 n: 42056150382815187340608288415963360727540025238675488454995900690060512257700402921594947707089725919687392816117691 type: snfs skew: 1 deg: 5 c5: 25 c0: 2 m: 2000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 600001) Primes: RFBsize:230209, AFBsize:229762, largePrimes:5695614 encountered Relations: rels:5305013, finalFF:609531 Max relations in full relation-set: 28 Initial matrix: 460035 x 609531 with sparse part having weight 16764403. Pruned matrix : 274172 x 276536 with weight 5369499. Total sieving time: 6.73 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.71 hours. Total square root time: 0.11 hours, sqrts: 3. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,75000 total time: 7.70 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
3·10149+1 = 3(0)1481<150> = 13 · 43 · 280811 · C142
C142 = P38 · P105
P38 = 18451977947946169372964490164450899739<38>
P105 = 103574394682250651492366474771488310679253472549528420564006228321981430254572052540584974107852577311191<105>
Number: n N=1911152446648762013735210554754743749526551797018741060305721068612736293216245262117711459414680641106790682028450574753297771585417343679149 ( 142 digits) SNFS difficulty: 150 digits. Divisors found: r1=18451977947946169372964490164450899739 (pp38) r2=103574394682250651492366474771488310679253472549528420564006228321981430254572052540584974107852577311191 (pp105) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.38 hours. Scaled time: 26.75 units (timescale=1.195). Factorization parameters were as follows: name: KA_3_0_148_1 n: 1911152446648762013735210554754743749526551797018741060305721068612736293216245262117711459414680641106790682028450574753297771585417343679149 type: snfs skew: 1 deg: 5 c5: 3 c0: 10 m: 1000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [100000, 1000001) Primes: RFBsize:230209, AFBsize:230152, largePrimes:6038524 encountered Relations: rels:5584733, finalFF:558762 Max relations in full relation-set: 28 Initial matrix: 460426 x 558762 with sparse part having weight 21884723. Pruned matrix : 358008 x 360374 with weight 10725995. Total sieving time: 20.29 hours. Total relation processing time: 0.18 hours. Matrix solve time: 1.86 hours. Total square root time: 0.06 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 22.38 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
The factor table of 300...001 was completed up to n=150.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
4·10141+1 = 4(0)1401<142> = 41 · 3167 · C137
C137 = P40 · P41 · P57
P40 = 1385099246529648770253437136267455844731<40>
P41 = 41102459480233672086378912659093765960173<41>
P57 = 541102285545511773447658741193840771596059733459284964441<57>
Number: 40001_141 N=30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183 ( 137 digits) SNFS difficulty: 142 digits. Divisors found: r1=1385099246529648770253437136267455844731 (pp40) r2=41102459480233672086378912659093765960173 (pp41) r3=541102285545511773447658741193840771596059733459284964441 (pp57) Version: GGNFS-0.77.1-20050930-k8 Total time: 7.40 hours. Scaled time: 6.62 units (timescale=0.895). Factorization parameters were as follows: n: 30805486457138016280699592597441604349734687747887898834782474758754534182537910001771315471285435936140226574352892250109744545503554183 m: 20000000000000000000000000000 c5: 5 c0: 4 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1150001) Primes: RFBsize:114155, AFBsize:114197, largePrimes:2653362 encountered Relations: rels:2673267, finalFF:324511 Max relations in full relation-set: 28 Initial matrix: 228418 x 324511 with sparse part having weight 19927266. Pruned matrix : 177819 x 179025 with weight 9374541. Total sieving time: 7.21 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.12 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 7.40 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=1500000
(10190+53)/9 = (1)1897<190> = 317 · 827 · 44875162230601<14> · C170
C170 = P33 · P138
P33 = 497811278826090990386154752018161<33>
P138 = 189723861350920471225486081015749698379077197353000850772531811636527991762209575613746494032092565495097753015031636182159064743140805883<138>
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(61·10154-7)/9 = 6(7)154<155> = 47 · 1901127231469<13> · C141
C141 = P65 · P77
P65 = 15449228959889505678903871315182748873746361954118799891643517789<65>
P77 = 49098867557942295120670149975881643072020141070454812365305226919065044586551<77>
Number: trial N=758539646573941437749720403994032529006687526133316212579427198765475459899081071283698953488066677740729619955184599536546418305464718655739 ( 141 digits) SNFS difficulty: 156 digits. Divisors found: r1=15449228959889505678903871315182748873746361954118799891643517789 (pp65) r2=49098867557942295120670149975881643072020141070454812365305226919065044586551 (pp77) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 86.37 hours. Scaled time: 45.95 units (timescale=0.532). Factorization parameters were as follows: n: 758539646573941437749720403994032529006687526133316212579427198765475459899081071283698953488066677740729619955184599536546418305464718655739 m: 10000000000000000000000000000000 c5: 61 c0: -70 skew: 1.03 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 3100001) Primes: RFBsize:216816, AFBsize:215937, largePrimes:5630489 encountered Relations: rels:5528421, finalFF:498175 Max relations in full relation-set: 0 Initial matrix: 432818 x 498175 with sparse part having weight 45488559. Pruned matrix : 406257 x 408485 with weight 32614309. Total sieving time: 68.87 hours. Total relation processing time: 0.60 hours. Matrix solve time: 16.55 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 86.37 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM 6.1.2 B1=1500000
(10181+53)/9 = (1)1807<181> = 7 · 191 · 1447 · 12373 · C170
C170 = P35 · P135
P35 = 59944560930672769912224103774471799<35>
P135 = 774341892801138722769038296323949007707741157304392299689179236900059833331313025992038840594454667820419468024609247807834263463108289<135>
(10198+53)/9 = (1)1977<198> = 3 · 11618966467<11> · 272033009875993867<18> · C170
C170 = P32 · C138
P32 = 30874217309083734095351287845727<32>
C138 = [379534425199519751802558862062259553534112280564965144585212678040651849592463853984445240166695146589693057988042923980473715294957117713<138>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(10154+11)/3 = (3)1537<154> = 379 · 22973 · 120588737 · C139
C139 = P43 · P47 · P49
P43 = 7544120729352931097852968698233932678745227<43>
P47 = 48431736813392301590373185023279934003162249891<47>
P49 = 8689132158836105024407698702203742306290102326679<49>
Number: n N=3174790529927899534422665391360944333364806413078654198479087131608603674228467671965504741912997056441681538202948620630712819782034036503 ( 139 digits) SNFS difficulty: 155 digits. Divisors found: r1=7544120729352931097852968698233932678745227 (pp43) r2=48431736813392301590373185023279934003162249891 (pp47) r3=8689132158836105024407698702203742306290102326679 (pp49) Version: GGNFS-0.77.1-20051202-athlon Total time: 35.18 hours. Scaled time: 42.19 units (timescale=1.199). Factorization parameters were as follows: name: KA_3_153_7 n: 3174790529927899534422665391360944333364806413078654198479087131608603674228467671965504741912997056441681538202948620630712819782034036503 type: snfs skew: 1 deg: 5 c5: 1 c0: 110 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2800001) Primes: RFBsize:230209, AFBsize:230648, largePrimes:7397308 encountered Relations: rels:6898240, finalFF:534130 Max relations in full relation-set: 28 Initial matrix: 460921 x 534130 with sparse part having weight 38277702. Pruned matrix : 408055 x 410423 with weight 26420103. Total sieving time: 29.30 hours. Total relation processing time: 0.19 hours. Matrix solve time: 5.21 hours. Total square root time: 0.49 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 35.18 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
4·10139+1 = 4(0)1381<140> = 641 · 27851 · C133
C133 = P61 · P72
P61 = 7102095496029555951338486428062736055043334947960741098720689<61>
P72 = 315482054875753501037036269251586513863489506091455405288439226913423699<72>
Number: 30001_139 N=2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611 ( 133 digits) SNFS difficulty: 140 digits. Divisors found: r1=7102095496029555951338486428062736055043334947960741098720689 (pp61) r2=315482054875753501037036269251586513863489506091455405288439226913423699 (pp72) Version: GGNFS-0.77.1-20050930-k8 Total time: 8.58 hours. Scaled time: 7.77 units (timescale=0.905). Factorization parameters were as follows: n: 2240583681011238151583440092477850850057843468454906376930815985287431317007805801442498976753440178180176648737702766521489914208611 m: 10000000000000000000000000000 c5: 2 c0: 5 skew: 1.2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1150001) Primes: RFBsize:100021, AFBsize:99363, largePrimes:1578992 encountered Relations: rels:1629798, finalFF:241123 Max relations in full relation-set: 28 Initial matrix: 199449 x 241123 with sparse part having weight 10143150. Pruned matrix : 172207 x 173268 with weight 6295764. Total sieving time: 8.46 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 8.58 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS).
By Alfred Reich / GMP-ECM B1=500000
10908+1 = 1(0)9071<909> = 73 · 137 · 285113 · 9419593 · 227165039897<12> · C881
C881 = P37 · C844
P37 = 3807960958399006163762044938087483809<37>
C844 = [4304011589843391014650658235505329949871751140563599604819840057463188843469403445050796836064297177141743491344058167353249785331012310283113532723970464380415218789297453601728394059603084153179243926781291576513844045576686305866338578844027945196495337813932986508166348651300882380217196839427590038172195743290681854096987188298138279008174571726499244450616512700403834454792857104888796722367969930545996327346289992694880432920507844931852753107934643879174985688347282698671170664733023120429358285265783370040535302435624377564200840845165362706841047727730263552281976488781141247675441240545610662922217686249874781389229039939830542986976575550678328214886238059683964908857311171270037200840332507004282564390954411475394337980444799820049557055125339576122509817486779514751262773644681965508670248363470452661827609186970683193<844>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10177+1 = 3(0)1761<178> = 67 · 971 · 1181 · 1487 · 230479 · 825733 · 3109400284219346651<19> · 126785306124523882133503879<27> · C111
C111 = P36 · P75
P36 = 559219839704943337643116206350631409<36>
P75 = 625845632053760575390249120386323002760427242323498242975273828154385498197<75>
Number: 30001_177 N=349985294037142937023626087334501084652991562744579542870530549887165774441375073483589661777470537343981069573 ( 111 digits) Divisors found: r1=559219839704943337643116206350631409 (pp36) r2=625845632053760575390249120386323002760427242323498242975273828154385498197 (pp75) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.23 hours. Scaled time: 19.24 units (timescale=0.906). Factorization parameters were as follows: name: 30001_177 n: 349985294037142937023626087334501084652991562744579542870530549887165774441375073483589661777470537343981069573 skew: 15601.15 # norm 9.84e+14 c5: 29640 c4: 5032753936 c3: -30601470931224 c2: -1120220487668463327 c1: 7586541853076428459816 c0: 4867968944726300546755167 # alpha -5.28 Y1: 215853844679 Y0: -1638446920404058499690 # Murphy_E 8.64e-10 # M 310554946319189235575576633090641599125096887599022052198451856874598952273869120055693059034498175184100593502 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176298, largePrimes:7590968 encountered Relations: rels:7376238, finalFF:430717 Max relations in full relation-set: 28 Initial matrix: 352681 x 430717 with sparse part having weight 43746566. Pruned matrix : 303195 x 305022 with weight 28868426. Total sieving time: 20.15 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.81 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 21.23 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS).
By Shaopu Lin / Msieve v. 1.17
4·10134+1 = 4(0)1331<135> = 2521769 · 6482122769<10> · 498771505631914848917<21> · C98
C98 = P45 · P54
P45 = 339732985011027186094197732510445277293910533<45>
P54 = 144410272621457596142773322790127495868916847945915681<54>
Fri Mar 23 14:54:47 2007 Fri Mar 23 14:54:47 2007 Fri Mar 23 14:54:47 2007 Msieve v. 1.17 Fri Mar 23 14:54:47 2007 random seeds: 43e71c9a 60c79983 Fri Mar 23 14:54:47 2007 factoring 49060932983944003138619507865794328431537398530751722286000745421350817401943951719152669975767973 (98 digits) Fri Mar 23 14:54:48 2007 commencing quadratic sieve (98-digit input) Fri Mar 23 14:54:48 2007 using multiplier of 13 Fri Mar 23 14:54:48 2007 sieve interval: 9 blocks of size 65536 Fri Mar 23 14:54:48 2007 processing polynomials in batches of 6 Fri Mar 23 14:54:48 2007 using a sieve bound of 2500601 (91765 primes) Fri Mar 23 14:54:48 2007 using large prime bound of 375090150 (28 bits) Fri Mar 23 14:54:48 2007 using double large prime bound of 2712964789985100 (43-52 bits) Fri Mar 23 14:54:48 2007 using trial factoring cutoff of 57 bits Fri Mar 23 14:54:48 2007 polynomial 'A' values have 13 factors Sat Mar 24 01:26:18 2007 92124 relations (23135 full + 68989 combined from 1351734 partial), need 91861 Sat Mar 24 01:26:19 2007 begin with 1374869 relations Sat Mar 24 01:26:22 2007 reduce to 237829 relations in 11 passes Sat Mar 24 01:26:22 2007 attempting to read 237829 relations Sat Mar 24 01:26:26 2007 recovered 237829 relations Sat Mar 24 01:26:26 2007 recovered 225415 polynomials Sat Mar 24 01:26:27 2007 attempting to build 92124 cycles Sat Mar 24 01:26:27 2007 found 92124 cycles in 5 passes Sat Mar 24 01:26:27 2007 distribution of cycle lengths: Sat Mar 24 01:26:27 2007 length 1 : 23135 Sat Mar 24 01:26:27 2007 length 2 : 16209 Sat Mar 24 01:26:27 2007 length 3 : 15558 Sat Mar 24 01:26:27 2007 length 4 : 12658 Sat Mar 24 01:26:27 2007 length 5 : 9124 Sat Mar 24 01:26:27 2007 length 6 : 6091 Sat Mar 24 01:26:27 2007 length 7 : 4022 Sat Mar 24 01:26:27 2007 length 9+: 5327 Sat Mar 24 01:26:27 2007 largest cycle: 19 relations Sat Mar 24 01:26:28 2007 matrix is 91765 x 92124 with weight 5948053 (avg 64.57/col) Sat Mar 24 01:26:29 2007 filtering completed in 3 passes Sat Mar 24 01:26:29 2007 matrix is 90084 x 90148 with weight 5741377 (avg 63.69/col) Sat Mar 24 01:26:30 2007 saving the first 48 matrix rows for later Sat Mar 24 01:26:30 2007 matrix is 90036 x 90148 with weight 4391751 (avg 48.72/col) Sat Mar 24 01:26:30 2007 matrix includes 32 packed rows Sat Mar 24 01:31:47 2007 lanczos halted after 1425 iterations Sat Mar 24 01:31:48 2007 recovered 14 nontrivial dependencies Sat Mar 24 01:31:50 2007 prp45 factor: 339732985011027186094197732510445277293910533 Sat Mar 24 01:31:50 2007 prp54 factor: 144410272621457596142773322790127495868916847945915681 Sat Mar 24 01:31:50 2007 elapsed time 10:37:03
The factor table of 400...001 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Alfred Reich / GMP-ECM B1=1000000
101329+1 = 1(0)13281<1330> = 7 · 11 · 13 · 887 · 2659 · 37265161 · 68209597 · 3646836465960880692292201915543408162476049<43> · [1056936920749964722929828576624217604146887673567661698146974403860730882430792714566017124364090647084708761042672412110583342292077804307482388499001109008194875836195841990475402074719478633242189283412047635153545645032028344137331511134704077687538175641102136020445005471151998617932091877877913277007525468543178676185089859186550080677532355108510234998991838967281973483348896796755223<394>] · C869
C869 = P29 · C840
P29 = 88069370339005814813332403179<29>
C840 = [490891182024055768303752448641711254423965418035815948434540059825112526865794436891158692344525740667640215258095895206329386376678402738775497808175021519842805327426106442373856336850571315530961479638250093659953397539875582001392216062410162111734230403799329909279629474278117095074949361610801053309078179578765676913094212535145467716201912187985533289286101878598434483506183916691225899431281901210559325567363985600274656341045284488282414867400615456204294619663505148649829642437069440418643662744942039427890109652539672121197076171571860904552661826173448806554360971818577812524996561063671351439779588997281497543003882019346099698333311943121452149103038987112141501284299533953009969661940609519236049791940648085437210318272370951609760658678065732274533718045425407568887423257854476732620452773560574452704443488415877<840>]
By Yousuke Koide / GMP-ECM / Mar 15, 2007
101044+1 = 1(0)10431<1045> = 73 · 137 · 233 · 3169 · 13921 · 98641 · 355193 · 99990001 · 21591416633<11> · 192346125251257<15> · 3199044596370769<16> · 11090099157944399977<20> · 17468739848498438039329935679794457<35> · 246900403017958787131873605843061988161<39> · 320326994163169943384295066992439316655840979654890345228609<60> · 2623709608263520547879954791214412810391703985166673562220208867630775121385164482905259044455273939230491414883050557483687370269811018178176841590586944036054473<163> · C658
C658 = P31 · P628
P31 = 1625458218739290128864916634393<31>
P628 = 3198458699783050536968283401478982683944528000068135835839586527370144819849764922320573399552615795836284837690553084192932370474126106776285338588228275657236279389210630068653431296486652949237156444521521152418640091807354686792087134015545130855986648074389240747528765978498126669434936092301530847500040330892702072177445595054747262623246459270677168775935422451177882409563066968720256690285465719695234904487207368361185299854596149960626836167373098838553773698029915536112232582904128376139462422005842249372344048254807991740818332936597022240787264242857005018741508465960721402060639401624790434299746509191318001<628>
By Yousuke Koide / GMP-ECM / Mar 17, 2007
(10719-1)/9 = (1)719<719> = 1439 · 1153277 · 6699643 · C702
C702 = P40 · C663
P40 = 3713656876665286297046096029015677459199<40>
C663 = [269097479386038576036358324111351774806252265640747217262071077189387212219811678802485493254067295614358833851846346846112373614951579138009912107531825433722907258144026470897326730436327972589621793493828435956171945704741239221872251269735271946392127516869504289440634603138735776750777050975850022700923009814235995356036666401273827145316553631769106025832008477594679623338432757544279350895770964184294952891206974288204046187565654983102962849566418022038627835250348032633372718008292520671008293816721752400771336200089796153543716360753236555894101881377432325335995230001091002680143876905641146960653145348907542114406930665370204654545512135947241<663>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10145+1 = 3(0)1441<146> = 23 · 163365916333<12> · C133
C133 = P43 · P91
P43 = 1512111483928357227059586147307533255856999<43>
P91 = 5280173022660233758936952412889720282802454835751048118163212654450579862340614890525644261<91>
Number: 30001_145 N=7984210264693245460064507559711094683106232413676197102921955777594960957994230311233711913285244527822227900636517028122986161032739 ( 133 digits) SNFS difficulty: 145 digits. Divisors found: r1=1512111483928357227059586147307533255856999 (pp43) r2=5280173022660233758936952412889720282802454835751048118163212654450579862340614890525644261 (pp91) Version: GGNFS-0.77.1-20050930-k8 Total time: 9.90 hours. Scaled time: 8.99 units (timescale=0.908). Factorization parameters were as follows: n: 7984210264693245460064507559711094683106232413676197102921955777594960957994230311233711913285244527822227900636517028122986161032739 m: 100000000000000000000000000000 c5: 3 c0: 1 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114062, largePrimes:2646018 encountered Relations: rels:2633399, finalFF:294706 Max relations in full relation-set: 28 Initial matrix: 228282 x 294706 with sparse part having weight 19441463. Pruned matrix : 198508 x 199713 with weight 10628700. Total sieving time: 9.68 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.15 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 9.90 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335813) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334235) Total of 2 processors activated (9340.09 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(71·10154-17)/9 = 7(8)1537<155> = 197 · 520867 · 5751145261<10> · C138
C138 = P47 · P91
P47 = 53701924431312439410408177111495360811709318993<47>
P91 = 2489307707460823521893037761555514767129507905859057023337340854513007304174704820222113581<91>
Number: n N=133680614392344757498170778665032531414430724998130071499961029024244849458358250472303926326253296322462495221636126193770469832606543933 ( 138 digits) SNFS difficulty: 156 digits. Divisors found: r1=53701924431312439410408177111495360811709318993 (pp47) r2=2489307707460823521893037761555514767129507905859057023337340854513007304174704820222113581 (pp91) Version: GGNFS-0.77.1-20051202-athlon Total time: 44.09 hours. Scaled time: 52.56 units (timescale=1.192). Factorization parameters were as follows: name: KA_7_8_153_7 n: 133680614392344757498170778665032531414430724998130071499961029024244849458358250472303926326253296322462495221636126193770469832606543933 type: snfs skew: 1 deg: 5 c5: 71 c0: -170 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 3100001) Primes: RFBsize:230209, AFBsize:229943, largePrimes:7474870 encountered Relations: rels:6962838, finalFF:520544 Max relations in full relation-set: 28 Initial matrix: 460217 x 520544 with sparse part having weight 39980357. Pruned matrix : 426050 x 428415 with weight 29284340. Total sieving time: 36.86 hours. Total relation processing time: 0.21 hours. Matrix solve time: 6.44 hours. Total square root time: 0.58 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 44.09 hours. --------- CPU info (if available) ---------- Cygwin on Amd XP 2700+
By Shaopu Lin / Msieve v. 1.17, GGNFS-0.77.1-20060722-pentium4 gnfs
3·10151+1 = 3(0)1501<152> = 31 · 397 · 38197 · 60017 · 2703403 · 2730124326417233<16> · 373344263955479291<18> · C99
C99 = P35 · P64
P35 = 62705195924448530372188252023190597<35>
P64 = 6154025449218468087679049299048266043351577284513852625291792459<64>
Wed Mar 21 14:15:09 2007 Wed Mar 21 14:15:09 2007 Wed Mar 21 14:15:09 2007 Msieve v. 1.17 Wed Mar 21 14:15:09 2007 random seeds: 98c0ffc5 75556fe9 Wed Mar 21 14:15:09 2007 factoring 385889371517286421442250331069095000754556604021618402863747194455031301300113592412525634324308023 (99 digits) Wed Mar 21 14:15:09 2007 commencing quadratic sieve (99-digit input) Wed Mar 21 14:15:09 2007 using multiplier of 47 Wed Mar 21 14:15:09 2007 sieve interval: 9 blocks of size 65536 Wed Mar 21 14:15:09 2007 processing polynomials in batches of 6 Wed Mar 21 14:15:09 2007 using a sieve bound of 2611159 (95294 primes) Wed Mar 21 14:15:09 2007 using large prime bound of 391673850 (28 bits) Wed Mar 21 14:15:09 2007 using double large prime bound of 2932676752219800 (43-52 bits) Wed Mar 21 14:15:09 2007 using trial factoring cutoff of 57 bits Wed Mar 21 14:15:09 2007 polynomial 'A' values have 13 factors Wed Mar 21 14:34:52 2007 535 relations (527 full + 8 combined from 29903 partial), need 95390 Wed Mar 21 14:34:52 2007 c99 factor: 385889371517286421442250331069095000754556604021618402863747194455031301300113592412525634324308023 Wed Mar 21 14:34:52 2007 elapsed time 00:19:43 Wed Mar 21 14:47:22 2007 Wed Mar 21 14:47:22 2007 Wed Mar 21 14:47:22 2007 Msieve v. 1.17 Wed Mar 21 14:47:22 2007 random seeds: 74180741 05ba4e00 Wed Mar 21 14:47:22 2007 factoring 385889371517286421442250331069095000754556604021618402863747194455031301300113592412525634324308023 (99 digits) Wed Mar 21 14:47:23 2007 commencing quadratic sieve (99-digit input) Wed Mar 21 14:47:23 2007 using multiplier of 47 Wed Mar 21 14:47:23 2007 sieve interval: 9 blocks of size 65536 Wed Mar 21 14:47:23 2007 processing polynomials in batches of 6 Wed Mar 21 14:47:23 2007 using a sieve bound of 2611159 (95294 primes) Wed Mar 21 14:47:23 2007 using large prime bound of 391673850 (28 bits) Wed Mar 21 14:47:23 2007 using double large prime bound of 2932676752219800 (43-52 bits) Wed Mar 21 14:47:23 2007 using trial factoring cutoff of 57 bits Wed Mar 21 14:47:23 2007 polynomial 'A' values have 13 factors Wed Mar 21 14:47:23 2007 restarting with 527 full and 29903 partial relations Wed Mar 21 17:41:13 2007 6172 relations (5073 full + 1099 combined from 300728 partial), need 95390 Wed Mar 21 17:41:13 2007 c99 factor: 385889371517286421442250331069095000754556604021618402863747194455031301300113592412525634324308023 Wed Mar 21 17:41:13 2007 elapsed time 02:53:51 Wed Mar 21 18:24:55 2007 Wed Mar 21 18:24:55 2007 Wed Mar 21 18:24:55 2007 Msieve v. 1.17 Wed Mar 21 18:24:55 2007 random seeds: b2ab1b94 1f8bf804 Wed Mar 21 18:24:55 2007 factoring 385889371517286421442250331069095000754556604021618402863747194455031301300113592412525634324308023 (99 digits) Wed Mar 21 18:24:55 2007 commencing quadratic sieve (99-digit input) Wed Mar 21 18:24:56 2007 using multiplier of 47 Wed Mar 21 18:24:56 2007 sieve interval: 9 blocks of size 65536 Wed Mar 21 18:24:56 2007 processing polynomials in batches of 6 Wed Mar 21 18:24:56 2007 using a sieve bound of 2611159 (95294 primes) Wed Mar 21 18:24:56 2007 using large prime bound of 391673850 (28 bits) Wed Mar 21 18:24:56 2007 using double large prime bound of 2932676752219800 (43-52 bits) Wed Mar 21 18:24:56 2007 using trial factoring cutoff of 57 bits Wed Mar 21 18:24:56 2007 polynomial 'A' values have 13 factors Wed Mar 21 18:24:57 2007 restarting with 5073 full and 300728 partial relations Thu Mar 22 06:26:27 2007 95394 relations (23334 full + 72060 combined from 1407826 partial), need 95390 Thu Mar 22 06:26:31 2007 begin with 1431160 relations Thu Mar 22 06:26:34 2007 reduce to 248028 relations in 12 passes Thu Mar 22 06:26:34 2007 attempting to read 248028 relations Thu Mar 22 06:26:39 2007 recovered 248028 relations Thu Mar 22 06:26:39 2007 recovered 237984 polynomials Thu Mar 22 06:26:39 2007 attempting to build 95394 cycles Thu Mar 22 06:26:40 2007 found 95394 cycles in 6 passes Thu Mar 22 06:26:40 2007 distribution of cycle lengths: Thu Mar 22 06:26:40 2007 length 1 : 23334 Thu Mar 22 06:26:40 2007 length 2 : 17078 Thu Mar 22 06:26:40 2007 length 3 : 15986 Thu Mar 22 06:26:40 2007 length 4 : 13025 Thu Mar 22 06:26:40 2007 length 5 : 9632 Thu Mar 22 06:26:40 2007 length 6 : 6464 Thu Mar 22 06:26:40 2007 length 7 : 4197 Thu Mar 22 06:26:40 2007 length 9+: 5678 Thu Mar 22 06:26:40 2007 largest cycle: 20 relations Thu Mar 22 06:26:41 2007 matrix is 95294 x 95394 with weight 6270112 (avg 65.73/col) Thu Mar 22 06:26:42 2007 filtering completed in 3 passes Thu Mar 22 06:26:42 2007 matrix is 93740 x 93804 with weight 6115800 (avg 65.20/col) Thu Mar 22 06:26:43 2007 saving the first 48 matrix rows for later Thu Mar 22 06:26:43 2007 matrix is 93692 x 93804 with weight 4698380 (avg 50.09/col) Thu Mar 22 06:26:43 2007 matrix includes 32 packed rows Thu Mar 22 06:32:36 2007 lanczos halted after 1483 iterations Thu Mar 22 06:32:37 2007 recovered 16 nontrivial dependencies Thu Mar 22 06:32:38 2007 prp35 factor: 62705195924448530372188252023190597 Thu Mar 22 06:32:38 2007 prp64 factor: 6154025449218468087679049299048266043351577284513852625291792459 Thu Mar 22 06:32:38 2007 elapsed time 12:07:43
3·10143+1 = 3(0)1421<144> = 13 · 47 · 2099 · 4231 · 4259 · 17736799 · 74115735887240684807<20> · C103
C103 = P33 · P71
P33 = 120940167904876203213061027933433<33>
P71 = 81650848796699811506688800647364367461674661533783095495619303656848309<71>
Number: 3.143.+1 N=9874867363048534300768923310572398538246738841229883690278000169463929671639994810806096769076230614797 ( 103 digits) Divisors found: r1=120940167904876203213061027933433 (pp33) r2=81650848796699811506688800647364367461674661533783095495619303656848309 (pp71) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 13.81 hours. Scaled time: 17.13 units (timescale=1.241). Factorization parameters were as follows: name: 3.143.+1 n: 9874867363048534300768923310572398538246738841229883690278000169463929671639994810806096769076230614797 skew: 6749.35 # norm 4.00e+13 c5: 48600 c4: -371210235 c3: -5500894816123 c2: 14026046391797824 c1: 138005832591685066335 c0: -1470412156833659345697 # alpha -4.71 Y1: 37579168649 Y0: -45875366177130951970 # Murphy_E 2.38e-09 # M 9655638943442329929065301975488399586430887237464357172778108578355126427732345746409409778290330587088 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1950001) Primes: RFBsize:169511, AFBsize:169084, largePrimes:4511450 encountered Relations: rels:4703975, finalFF:560178 Max relations in full relation-set: 32 Initial matrix: 338670 x 560178 with sparse part having weight 43990815. Pruned matrix : 196015 x 197772 with weight 20038421. Total sieving time: 12.47 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.82 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 13.81 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10150+1 = 3(0)1491<151> = C151
C151 = P61 · P90
P61 = 3757884014173930271262822327673582373969961097805606684684809<61>
P90 = 798321605638876885936868160206937968803884648888029502380986396890251623546215931267628089<90>
Number: 30001_150 N=3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 ( 151 digits) SNFS difficulty: 150 digits. Divisors found: r1=3757884014173930271262822327673582373969961097805606684684809 (pp61) r2=798321605638876885936868160206937968803884648888029502380986396890251623546215931267628089 (pp90) Version: GGNFS-0.77.1-20050930-k8 Total time: 16.21 hours. Scaled time: 14.65 units (timescale=0.904). Factorization parameters were as follows: n: 3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 m: 1000000000000000000000000000000 c5: 3 c0: 1 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1800001) Primes: RFBsize:135072, AFBsize:134928, largePrimes:2726191 encountered Relations: rels:2710347, finalFF:316135 Max relations in full relation-set: 28 Initial matrix: 270065 x 316135 with sparse part having weight 18817652. Pruned matrix : 250350 x 251764 with weight 12558643. Total sieving time: 15.84 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.29 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 16.21 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335812) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
3·10142+1 = 3(0)1411<143> = 97 · 203543020951<12> · C130
C130 = P47 · P83
P47 = 33690430121780543888212711166213824692220327981<47>
P83 = 45101059976427355505564135250839549784926008407968873075769527543445669278405405443<83>
Number: 30001_142 N=1519474109554059084609548420833139409946353621611335173749042270509374517238216006850359020183147921673643448703289388436742600583 ( 130 digits) SNFS difficulty: 142 digits. Divisors found: r1=33690430121780543888212711166213824692220327981 (pp47) r2=45101059976427355505564135250839549784926008407968873075769527543445669278405405443 (pp83) Version: GGNFS-0.77.1-20050930-k8 Total time: 9.87 hours. Scaled time: 8.98 units (timescale=0.909). Factorization parameters were as follows: n: 1519474109554059084609548420833139409946353621611335173749042270509374517238216006850359020183147921673643448703289388436742600583 m: 10000000000000000000000000000 c5: 300 c0: 1 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [750000, 1300001) Primes: RFBsize:114155, AFBsize:114347, largePrimes:2642238 encountered Relations: rels:2618585, finalFF:286160 Max relations in full relation-set: 28 Initial matrix: 228568 x 286160 with sparse part having weight 18940398. Pruned matrix : 202223 x 203429 with weight 10814074. Total sieving time: 9.64 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,50000 total time: 9.87 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335812) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
3·10135+1 = 3(0)1341<136> = 523 · 13477 · 1075774213<10> · 5752978421<10> · C110
C110 = P36 · P75
P36 = 147095946235219350911667697013541493<36>
P75 = 467532449005166182402814318007788918674002841796260849988478421239468688979<75>
Number: 30001_135 N=68772127982084357672888092300112850412086888448042124154539344177097592160142571052867879456959527938528305647 ( 110 digits) SNFS difficulty: 135 digits. Divisors found: r1=147095946235219350911667697013541493 (pp36) r2=467532449005166182402814318007788918674002841796260849988478421239468688979 (pp75) Version: GGNFS-0.77.1-20050930-k8 Total time: 4.34 hours. Scaled time: 3.93 units (timescale=0.907). Factorization parameters were as follows: n: 68772127982084357672888092300112850412086888448042124154539344177097592160142571052867879456959527938528305647 m: 1000000000000000000000000000 c5: 3 c0: 1 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 43/43 Sieved algebraic special-q in [650000, 1300001) Primes: RFBsize:100021, AFBsize:99933, largePrimes:1571319 encountered Relations: rels:1618924, finalFF:241524 Max relations in full relation-set: 28 Initial matrix: 200019 x 241524 with sparse part having weight 8834742. Pruned matrix : 176061 x 177125 with weight 5550943. Total sieving time: 4.21 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.08 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1300000,1300000,25,25,43,43,2.3,2.3,50000 total time: 4.34 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335812) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(67·10154+23)/9 = 7(4)1537<155> = 233168882957420675233<21> · C135
C135 = P41 · P43 · P53
P41 = 11379813213676719854455664457933030998149<41>
P43 = 1587248342657233076523061352021858322701023<43>
P53 = 17675906074957204594524237615101714309571956136443117<53>
Number: trial N=319272638356460530808654765903576271179526029216138353262035954538553273441603920608246228075825386906312739402331673810547706147712959 ( 135 digits) SNFS difficulty: 156 digits. Divisors found: r1=11379813213676719854455664457933030998149 (pp41) r2=1587248342657233076523061352021858322701023 (pp43) r3=17675906074957204594524237615101714309571956136443117 (pp53) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 71.79 hours. Scaled time: 36.11 units (timescale=0.503). Factorization parameters were as follows: n: 319272638356460530808654765903576271179526029216138353262035954538553273441603920608246228075825386906312739402331673810547706147712959 m: 10000000000000000000000000000000 c5: 67 c0: 230 skew: 1.28 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1 ) Primes: RFBsize:216816, AFBsize:216516, largePrimes:5701357 encountered Relations: rels:5685937, finalFF:503412 Max relations in full relation-set: 0 Initial matrix: 433397 x 503412 with sparse part having weight 33046809. Pruned matrix : 393045 x 395275 with weight 24591541. Total sieving time: 63.79 hours. Total relation processing time: 0.59 hours. Matrix solve time: 7.10 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 71.79 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM 6.1.2 B1=1500000
(5·10170+1)/3 = 1(6)1697<171> = 7487 · 169321 · 3120931921<10> · 2094038676000833609<19> · C134
C134 = P34 · P100
P34 = 6330148428935272130730269808330421<34>
P100 = 3177951057107386168338512979344112428416946032503776796031417480994030657221820623388204144977247009<100>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10151+1)/3 = 1(6)1507<152> = 19 · 9241 · 131331427 · C138
C138 = P37 · P39 · P63
P37 = 1738813535312938111598190623296264579<37>
P39 = 559577859531754734428273075732784737987<39>
P63 = 742837774773700873641647036143752794028585520948746579669338563<63>
Number: n N=722782310870289627746169413515506430457992195423434849290341876222067869070125129260611987346780261939106059985584469415989129554547446299 ( 138 digits) SNFS difficulty: 151 digits. Divisors found: r1=1738813535312938111598190623296264579 (pp37) r2=559577859531754734428273075732784737987 (pp39) r3=742837774773700873641647036143752794028585520948746579669338563 (pp63) Version: GGNFS-0.77.1-20051202-athlon Total time: 22.24 hours. Scaled time: 26.69 units (timescale=1.200). Factorization parameters were as follows: name: KA_1_6_150_7 n: 722782310870289627746169413515506430457992195423434849290341876222067869070125129260611987346780261939106059985584469415989129554547446299 type: snfs skew: 1 deg: 5 c5: 50 c0: 1 m: 1000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [1600000, 1600000) Primes: RFBsize:230209, AFBsize:230262, largePrimes:7152336 encountered Relations: rels:6642883, finalFF:526015 Max relations in full relation-set: 28 Initial matrix: 460536 x 526015 with sparse part having weight 34370220. Pruned matrix : 407274 x 409640 with weight 22436194. Total sieving time: 17.08 hours. Total relation processing time: 0.17 hours. Matrix solve time: 4.77 hours. Total square root time: 0.22 hours, sqrts: 2. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 22.24 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Shaopu Lin / GGNFS-0.77.1-20060722-pentium4
(5·10172+1)/3 = 1(6)1717<173> = 7 · 23 · 787 · 3592897283321<13> · 13409369737723<14> · 720221664378281653603080022761581<33> · C109
C109 = P35 · P75
P35 = 11187158312418767561564578896159263<35>
P75 = 338851185355906112703584873042435753235342294622312755124422330024404931569<75>
Number: 5.172.+1 N=3790781854927277631648278252606516515296395111422830767220826618421065775857484773239829096077858370440473647 ( 109 digits) Divisors found: r1=11187158312418767561564578896159263 (pp35) r2=338851185355906112703584873042435753235342294622312755124422330024404931569 (pp75) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 25.37 hours. Scaled time: 32.65 units (timescale=1.287). Factorization parameters were as follows: name: 5.172.+1 n: 3790781854927277631648278252606516515296395111422830767220826618421065775857484773239829096077858370440473647 skew: 32948.05 # norm 1.51e+15 c5: 17220 c4: 14458390 c3: -103341475597152 c2: 281584288696052283 c1: 39073308390551941890838 c0: -86019664049948734884907152 # alpha -6.16 Y1: 177045558749 Y0: -738820796836376918465 # Murphy_E 1.15e-09 # M 2907907167967925298903030487242863143011263020191204105775196844047268453970546110481020997988859280422515842 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2900001) Primes: RFBsize:230209, AFBsize:229950, largePrimes:7404566 encountered Relations: rels:7327936, finalFF:671556 Max relations in full relation-set: 32 Initial matrix: 460245 x 671556 with sparse part having weight 56363648. Pruned matrix : 300813 x 303178 with weight 28748107. Total sieving time: 21.88 hours. Total relation processing time: 0.47 hours. Matrix solve time: 2.60 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 25.37 hours. --------- CPU info (if available) ----------
The factor table of 300...001 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000, GMP-ECM 6.1 B1=11000000
10173+3 = 1(0)1723<174> = 8753 · 14107 · 2625274331<10> · C156
C156 = P34 · P122
P34 = 4654165597283817538340682232414823<34>
P122 = 66281431794713202969955544003490886754601337940508012963182198582216786419780605860128839549004095099134596062756894253661<122>
(5·10197+1)/3 = 1(6)1967<198> = 43 · 1108021631163049657<19> · C178
C178 = P31 · C147
P31 = 3724929267509920843996372775497<31>
C147 = [939104723049981509289811750930030691770734096377436694089298811115147192934297884941625038686793082121971137561628863866898691665347893823937479361<147>]
By Kenichiro Yamaguchi / GGNFS-0.77.1
(5·10143+1)/3 = 1(6)1427<144> = 390953 · C138
C138 = P31 · P45 · P63
P31 = 6125134479493857489788596359529<31>
P45 = 124754495274432898134178118407138197155338843<45>
P63 = 557894869819739178785330732398794202349486582304975230797045537<63>
Number: 16667.143 N=426308703774281477995223637282912950320541514367882243304608652873022247346015164653210658740735246095225427779468802302749094307158831539 ( 138 digits) SNFS difficulty: 144 digits. Divisors found: r1=6125134479493857489788596359529 (pp31) r2=124754495274432898134178118407138197155338843 (pp45) r3=557894869819739178785330732398794202349486582304975230797045537 (pp63) Version: GGNFS-0.77.1 Total time: 27.46 hours. Scaled time: 32.98 units (timescale=1.201). Factorization parameters were as follows: name: 16667_143 n: 426308703774281477995223637282912950320541514367882243304608652873022247346015164653210658740735246095225427779468802302749094307158831539 m: 1000000000000000000000000 c6: 1 c0: 2 type: snfs skew: 1 qintsize: 200000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 3850001) Relations: rels:3273771, finalFF:255803 Initial matrix: 199682 x 255803 with sparse part having weight 32662078. Pruned matrix : 193403 x 194465 with weight 20914869. Total sieving time: 26.78 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.41 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 27.46 hours. --------- CPU info (if available) ----------
The factor table of 166...667 was completed up to n=150.
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10147+1)/3 = 1(6)1467<148> = 131 · 1571 · 128991859 · 10296803609<11> · C124
C124 = P36 · P89
P36 = 327551454911584926725646090308651051<36>
P89 = 18614741295214149817808628598816185490713815805914154383801682093489728139240162417517307<89>
Number: n N=6097285594050155593811700550087359412458342325601225900151084559740331348920054275523792364740957682431413803457047616239657 ( 124 digits) SNFS difficulty: 147 digits. Divisors found: r1=327551454911584926725646090308651051 (pp36) r2=18614741295214149817808628598816185490713815805914154383801682093489728139240162417517307 (pp89) Version: GGNFS-0.77.1-20051202-athlon Total time: 16.83 hours. Scaled time: 19.86 units (timescale=1.180). Factorization parameters were as follows: name: KA_1_6_146_7 n: 6097285594050155593811700550087359412458342325601225900151084559740331348920054275523792364740957682431413803457047616239657 type: snfs skew: 1 deg: 5 c5: 500 c0: 1 m: 100000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved special-q in [1600000, 1600000) Primes: RFBsize:230209, AFBsize:229657, largePrimes:7379076 encountered Relations: rels:6932372, finalFF:607364 Max relations in full relation-set: 28 Initial matrix: 459932 x 607364 with sparse part having weight 37170701. Pruned matrix : 343861 x 346224 with weight 21575208. Total sieving time: 12.31 hours. Total relation processing time: 0.20 hours. Matrix solve time: 3.86 hours. Total square root time: 0.47 hours, sqrts: 4. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 16.83 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
(5·10178+1)/3 = 1(6)1777<179> = 7 · 227 · 11827 · 533310941 · 28380115229<11> · C152
C152 = P31 · P122
P31 = 3220880018492646919471597460249<31>
P122 = 18192025687327268232347237399252291090017208324941923677752372262674478864504639217167680287671601149803384330379323729349<122>
(5·10181+1)/3 = 1(6)1807<182> = 1127133396136907<16> · 18168259852882193<17> · 72958897769204360339<20> · C131
C131 = P41 · P90
P41 = 18041178939320340671069908987346459308697<41>
P90 = 618325163147533482267971198200954906059845807104977100519107654516931740581366986358909699<90>
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
10170+3 = 1(0)1693<171> = 1447 · 101377 · 5131069 · 10740883 · 91413901 · 1019392014671857<16> · C126
C126 = P36 · P90
P36 = 979614353591462245935054061765020517<36>
P90 = 135498841902904458414080769423196258648267894198367246061470273791512538221196685877755299<90>
By suberi / GMP-ECM 6.1.2 B1=1500000, B1=1000000
(5·10159+1)/3 = 1(6)1587<160> = 39161 · 286393 · 208426562849<12> · 113625146795456899764043<24> · C115
C115 = P34 · P82
P34 = 1779063191475882495566028532059457<34>
P82 = 3527066754417390898547821450334261762905883906849574519258881288012421214812083921<82>
(5·10172+1)/3 = 1(6)1717<173> = 7 · 23 · 787 · 3592897283321<13> · 13409369737723<14> · C142
C142 = P33 · C109
P33 = 720221664378281653603080022761581<33>
C109 = [3790781854927277631648278252606516515296395111422830767220826618421065775857484773239829096077858370440473647<109>]
(16·10235-61)/9 = 1(7)2341<236> = 11 · 29 · 37037719357719760261079<23> · 713567298076051856522358950335091<33> · C178
C178 = P30 · C148
P30 = 386429589610739568586536276533<30>
C148 = [5456790006598550442100281169561982842187688146957656961433830490109471823566646007637536015206945208419922672451393758392495497829432520817568779357<148>]
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10138+1)/3 = 1(6)1377<139> = 367 · 292141 · 6732116563<10> · C121
C121 = P52 · P69
P52 = 5548241825186025128783144564510863551756594191888167<52>
P69 = 416181877384096850179759514496060513542552738308357607455754502385541<69>
Number: n N=2309077698986888021355688003609105465986085718091745417948908205191294380281367690505515257298840643484242072112589793347 ( 121 digits) SNFS difficulty: 140 digits. Divisors found: r1=5548241825186025128783144564510863551756594191888167 (pp52) r2=416181877384096850179759514496060513542552738308357607455754502385541 (pp69) Version: GGNFS-0.77.1-20051202-athlon Total time: 8.99 hours. Scaled time: 10.78 units (timescale=1.199). Factorization parameters were as follows: name: KA_1_6_137_7 n: 2309077698986888021355688003609105465986085718091745417948908205191294380281367690505515257298840643484242072112589793347 type: snfs skew: 1 deg: 5 c5: 1 c0: 20 m: 10000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2200001) Primes: RFBsize:230209, AFBsize:229762, largePrimes:7160178 encountered Relations: rels:6743778, finalFF:629465 Max relations in full relation-set: 28 Initial matrix: 460035 x 629465 with sparse part having weight 33199001. Pruned matrix : 307762 x 310126 with weight 14695744. Total sieving time: 6.80 hours. Total relation processing time: 0.16 hours. Matrix solve time: 1.95 hours. Total square root time: 0.08 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,75000 total time: 8.99 hours. --------- CPU info (if available) ---------- Cygwin on Athlon Xp 2700+
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(5·10146+1)/3 = 1(6)1457<147> = 109 · 4129 · 50372423 · 53207489069674132147<20> · C114
C114 = P56 · P58
P56 = 55066090111194564517518085962596060838780437707542837161<56>
P58 = 2509155181218576475680066474978312365041289615110565064467<58>
Number: 16667_146 N=138169365311952859564155138398408649511921930828779762166404664699158735354281554235583735296178334497870048258187 ( 114 digits) SNFS difficulty: 146 digits. Divisors found: r1=55066090111194564517518085962596060838780437707542837161 (pp56) r2=2509155181218576475680066474978312365041289615110565064467 (pp58) Version: GGNFS-0.77.1-20050930-k8 Total time: 12.66 hours. Scaled time: 11.49 units (timescale=0.907). Factorization parameters were as follows: n: 138169365311952859564155138398408649511921930828779762166404664699158735354281554235583735296178334497870048258187 m: 100000000000000000000000000000 c5: 50 c0: 1 skew: 1 type: snfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 45/45 Sieved algebraic special-q in [900000, 1575001) Primes: RFBsize:135072, AFBsize:135393, largePrimes:2813371 encountered Relations: rels:2890053, finalFF:395475 Max relations in full relation-set: 28 Initial matrix: 270530 x 395475 with sparse part having weight 22426642. Pruned matrix : 198270 x 199686 with weight 11742078. Total sieving time: 12.41 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,146,5,0,0,0,0,0,0,0,0,1800000,1800000,26,26,45,45,2.3,2.3,75000 total time: 12.66 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(5·10145+1)/3 = 1(6)1447<146> = 17 · 89 · 95083 · 147933658601<12> · 545549849591657<15> · C112
C112 = P46 · P66
P46 = 9821450547370350820743186696589047734433957809<46>
P66 = 146160450531063005964151508951960723735329958138243051493844149721<66>
Number: n N=1435507636872205843232453222119746091816963578756254265764847729490824807382928031939507196894054566414393121289 ( 112 digits) SNFS difficulty: 145 digits. Divisors found: r1=9821450547370350820743186696589047734433957809 (pp46) r2=146160450531063005964151508951960723735329958138243051493844149721 (pp66) Version: GGNFS-0.77.1-20051202-athlon Total time: 11.15 hours. Scaled time: 13.33 units (timescale=1.195). Factorization parameters were as follows: name: KA_1_6_144_7 n: 1435507636872205843232453222119746091816963578756254265764847729490824807382928031939507196894054566414393121289 type: snfs skew: 1 deg: 5 c5: 5 c0: 1 m: 100000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2400001) Primes: RFBsize:230209, AFBsize:229802, largePrimes:6958890 encountered Relations: rels:6414597, finalFF:521730 Max relations in full relation-set: 28 Initial matrix: 460076 x 521730 with sparse part having weight 27949889. Pruned matrix : 404635 x 406999 with weight 17520948. Total sieving time: 7.73 hours. Total relation processing time: 0.16 hours. Matrix solve time: 3.16 hours. Total square root time: 0.10 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 11.15 hours. --------- CPU info (if available) ---------- Cygwin on Athlon XP 2700+
By Shaopu Lin / Msieve v. 1.17
(5·10154+1)/3 = 1(6)1537<155> = 7 · 3301 · 888048827 · 186987050313163<15> · 400255206926456710904556653969<30> · C98
C98 = P45 · P53
P45 = 263599823092139043940210571668030772184899849<45>
P53 = 41169415837319584505469666667843139597894309850912601<53>
Sun Mar 18 10:36:11 2007 Sun Mar 18 10:36:11 2007 Sun Mar 18 10:36:11 2007 Msieve v. 1.17 Sun Mar 18 10:36:11 2007 random seeds: abffae1c f2f3b328 Sun Mar 18 10:36:11 2007 factoring 10852250731524149884902936866649181051649532146672309543153103356807939508754099359950924437097249 (98 digits) Sun Mar 18 10:36:11 2007 commencing quadratic sieve (97-digit input) Sun Mar 18 10:36:12 2007 using multiplier of 41 Sun Mar 18 10:36:12 2007 sieve interval: 9 blocks of size 65536 Sun Mar 18 10:36:12 2007 processing polynomials in batches of 6 Sun Mar 18 10:36:12 2007 using a sieve bound of 2435183 (89412 primes) Sun Mar 18 10:36:12 2007 using large prime bound of 365277450 (28 bits) Sun Mar 18 10:36:12 2007 using double large prime bound of 2586551540097000 (43-52 bits) Sun Mar 18 10:36:12 2007 using trial factoring cutoff of 57 bits Sun Mar 18 10:36:12 2007 polynomial 'A' values have 13 factors Sun Mar 18 12:50:27 2007 5404 relations (4490 full + 914 combined from 274893 partial), need 89508 Sun Mar 18 12:50:27 2007 c98 factor: 10852250731524149884902936866649181051649532146672309543153103356807939508754099359950924437097249 Sun Mar 18 12:50:27 2007 elapsed time 02:14:16 Sun Mar 18 13:08:15 2007 Sun Mar 18 13:08:15 2007 Sun Mar 18 13:08:15 2007 Msieve v. 1.17 Sun Mar 18 13:08:15 2007 random seeds: fdcc0646 c4cb6867 Sun Mar 18 13:08:15 2007 factoring 10852250731524149884902936866649181051649532146672309543153103356807939508754099359950924437097249 (98 digits) Sun Mar 18 13:08:15 2007 commencing quadratic sieve (97-digit input) Sun Mar 18 13:08:15 2007 using multiplier of 41 Sun Mar 18 13:08:15 2007 sieve interval: 9 blocks of size 65536 Sun Mar 18 13:08:15 2007 processing polynomials in batches of 6 Sun Mar 18 13:08:15 2007 using a sieve bound of 2435183 (89412 primes) Sun Mar 18 13:08:15 2007 using large prime bound of 365277450 (28 bits) Sun Mar 18 13:08:15 2007 using double large prime bound of 2586551540097000 (43-52 bits) Sun Mar 18 13:08:15 2007 using trial factoring cutoff of 57 bits Sun Mar 18 13:08:15 2007 polynomial 'A' values have 13 factors Sun Mar 18 13:08:17 2007 restarting with 4490 full and 274893 partial relations Sun Mar 18 18:26:23 2007 36017 relations (14885 full + 21132 combined from 912309 partial), need 89508 Sun Mar 18 18:26:23 2007 c98 factor: 10852250731524149884902936866649181051649532146672309543153103356807939508754099359950924437097249 Sun Mar 18 18:26:23 2007 elapsed time 05:18:08 Sun Mar 18 18:29:05 2007 Sun Mar 18 18:29:05 2007 Sun Mar 18 18:29:05 2007 Msieve v. 1.17 Sun Mar 18 18:29:05 2007 random seeds: 3dc363ff e8b00b47 Sun Mar 18 18:29:05 2007 factoring 10852250731524149884902936866649181051649532146672309543153103356807939508754099359950924437097249 (98 digits) Sun Mar 18 18:29:05 2007 commencing quadratic sieve (97-digit input) Sun Mar 18 18:29:06 2007 using multiplier of 41 Sun Mar 18 18:29:06 2007 sieve interval: 9 blocks of size 65536 Sun Mar 18 18:29:06 2007 processing polynomials in batches of 6 Sun Mar 18 18:29:06 2007 using a sieve bound of 2435183 (89412 primes) Sun Mar 18 18:29:06 2007 using large prime bound of 365277450 (28 bits) Sun Mar 18 18:29:06 2007 using double large prime bound of 2586551540097000 (43-52 bits) Sun Mar 18 18:29:06 2007 using trial factoring cutoff of 57 bits Sun Mar 18 18:29:06 2007 polynomial 'A' values have 13 factors Sun Mar 18 18:29:07 2007 restarting with 14885 full and 912309 partial relations Sun Mar 18 21:53:48 2007 89522 relations (21678 full + 67844 combined from 1325295 partial), need 89508 Sun Mar 18 21:53:49 2007 begin with 1346973 relations Sun Mar 18 21:53:52 2007 reduce to 233154 relations in 11 passes Sun Mar 18 21:53:52 2007 attempting to read 233154 relations Sun Mar 18 21:53:56 2007 recovered 233154 relations Sun Mar 18 21:53:56 2007 recovered 221559 polynomials Sun Mar 18 21:53:56 2007 attempting to build 89522 cycles Sun Mar 18 21:53:57 2007 found 89522 cycles in 6 passes Sun Mar 18 21:53:57 2007 distribution of cycle lengths: Sun Mar 18 21:53:57 2007 length 1 : 21678 Sun Mar 18 21:53:57 2007 length 2 : 15736 Sun Mar 18 21:53:57 2007 length 3 : 15185 Sun Mar 18 21:53:57 2007 length 4 : 12099 Sun Mar 18 21:53:57 2007 length 5 : 9330 Sun Mar 18 21:53:57 2007 length 6 : 6140 Sun Mar 18 21:53:57 2007 length 7 : 3886 Sun Mar 18 21:53:57 2007 length 9+: 5468 Sun Mar 18 21:53:57 2007 largest cycle: 20 relations Sun Mar 18 21:53:57 2007 matrix is 89412 x 89522 with weight 5818568 (avg 65.00/col) Sun Mar 18 21:53:58 2007 filtering completed in 3 passes Sun Mar 18 21:53:58 2007 matrix is 87956 x 88020 with weight 5671841 (avg 64.44/col) Sun Mar 18 21:54:00 2007 saving the first 48 matrix rows for later Sun Mar 18 21:54:00 2007 matrix is 87908 x 88020 with weight 4314822 (avg 49.02/col) Sun Mar 18 21:54:00 2007 matrix includes 32 packed rows Sun Mar 18 21:58:43 2007 lanczos halted after 1392 iterations Sun Mar 18 21:58:44 2007 recovered 13 nontrivial dependencies Sun Mar 18 21:58:47 2007 prp45 factor: 263599823092139043940210571668030772184899849 Sun Mar 18 21:58:47 2007 prp53 factor: 41169415837319584505469666667843139597894309850912601 Sun Mar 18 21:58:47 2007 elapsed time 03:29:42
By suberi / GMP-ECM 6.1.2 B1=1000000
(16·10214-61)/9 = 1(7)2131<215> = 13 · 863 · 18661 · 369819256019<12> · 584833068852155422531<21> · C174
C174 = P34 · C140
P34 = 4516565897012282883697690057920883<34>
C140 = [86927786155318407263273710266523202940690097929584601977940218641236715258445415008714444666356629075405450626239173034367866144188409959887<140>]
(10185+53)/9 = (1)1847<185> = 8527 · C181
C181 = P29 · C152
P29 = 29587001068429855351442206649<29>
C152 = [44041315240731342627152033825315210424898830618066156602341326236451254516042808567074969782491829929498528258973637320140692358628653317197742809301179<152>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(5·10131+1)/3 = 1(6)1307<132> = 295411 · 545641 · 21429691 · C113
C113 = P38 · P75
P38 = 71278904279841751639280680665781860691<38>
P75 = 676921279683403714414286009774964550351851826502560543637491151314943810657<75>
Number: 16667_131 N=48250207099541320381486426234048916572401910715200651510201078518073780540340990694316873955109328373331455183987 ( 113 digits) SNFS difficulty: 131 digits. Divisors found: r1=71278904279841751639280680665781860691 (pp38) r2=676921279683403714414286009774964550351851826502560543637491151314943810657 (pp75) Version: GGNFS-0.77.1-20050930-k8 Total time: 2.80 hours. Scaled time: 2.54 units (timescale=0.907). Factorization parameters were as follows: n: 48250207099541320381486426234048916572401910715200651510201078518073780540340990694316873955109328373331455183987 m: 100000000000000000000000000 c5: 50 c0: 1 skew: 1 type: snfs Factor base limits: 1000000/1000000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 44/44 Sieved algebraic special-q in [500000, 950001) Primes: RFBsize:78498, AFBsize:78411, largePrimes:1554495 encountered Relations: rels:1599498, finalFF:217269 Max relations in full relation-set: 28 Initial matrix: 156974 x 217269 with sparse part having weight 10967430. Pruned matrix : 130993 x 131841 with weight 5274102. Total sieving time: 2.71 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,131,5,0,0,0,0,0,0,0,0,1000000,1000000,25,25,44,44,2.2,2.2,50000 total time: 2.80 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
8·10155-1 = 7(9)155<156> = 24391 · 918839 · 3132989706569<13> · C134
C134 = P44 · P90
P44 = 25299121414677623214283953730819328916466561<44>
P90 = 450356622042797048454591109679905092704867767939346295702116218557105008704105348263325639<90>
Number: n N=11393626860964803334816245374068666021838036458519996173075889805142698696785738778530768098113617739706030753107072643747962797457479 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=25299121414677623214283953730819328916466561 (pp44) r2=450356622042797048454591109679905092704867767939346295702116218557105008704105348263325639 (pp90) Version: GGNFS-0.77.1-20051202-athlon Total time: 30.40 hours. Scaled time: 36.30 units (timescale=1.194). Factorization parameters were as follows: name: KA_7_9_155 n: 11393626860964803334816245374068666021838036458519996173075889805142698696785738778530768098113617739706030753107072643747962797457479 type: snfs skew: 1 deg: 5 c5: 8 c0: -1 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2600001) Primes: RFBsize:230209, AFBsize:230077, largePrimes:7417752 encountered Relations: rels:6972041, finalFF:576947 Max relations in full relation-set: 28 Initial matrix: 460351 x 576947 with sparse part having weight 41539673. Pruned matrix : 373294 x 375659 with weight 25838093. Total sieving time: 25.61 hours. Total relation processing time: 0.19 hours. Matrix solve time: 4.49 hours. Total square root time: 0.11 hours, sqrts: 1. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 30.40 hours. --------- CPU info (if available) ----------
The factor table of 166...667 was extended to n=200. Those composite numbers had been tested 430 times by GMP-ECM B1=250000. So, unknown prime factors of them are probably greater than 1030.
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
3·10154-1 = 2(9)154<155> = 169973521 · 3541566709633<13> · C134
C134 = P44 · P90
P44 = 62282513633822346544465252554897044469175211<44>
P90 = 800162926125406274759982565017119197917086497848155175255046781462749015168218472947165613<90>
Number: trial N=49836158355684799392710790914879561735438604550081498928621816209020362192917352507673034351473382284833557383946745371232190331219343 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=62282513633822346544465252554897044469175211 (pp44) r2=800162926125406274759982565017119197917086497848155175255046781462749015168218472947165613 (pp90) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 63.81 hours. Scaled time: 33.88 units (timescale=0.531). Factorization parameters were as follows: n: 49836158355684799392710790914879561735438604550081498928621816209020362192917352507673034351473382284833557383946745371232190331219343 m: 10000000000000000000000000000000 c5: 3 c0: -10 skew: 1.27 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216741, largePrimes:5681901 encountered Relations: rels:5682246, finalFF:509993 Max relations in full relation-set: 0 Initial matrix: 433622 x 509993 with sparse part having weight 32711006. Pruned matrix : 380977 x 383209 with weight 23958820. Total sieving time: 51.96 hours. Total relation processing time: 0.48 hours. Matrix solve time: 11.09 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 63.81 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(2·10168-17)/3 = (6)1671<168> = C168
C168 = P54 · P115
P54 = 386717692502497012381472407394111919698336364510087247<54>
P115 = 1723910438006045045271405706885467846235237280071891245137997281599442943976319787475472022679721558948263592668363<115>
Number: 66661_168 N=666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 168 digits) SNFS difficulty: 168 digits. Divisors found: r1=386717692502497012381472407394111919698336364510087247 (pp54) r2=1723910438006045045271405706885467846235237280071891245137997281599442943976319787475472022679721558948263592668363 (pp115) Version: GGNFS-0.77.1-20050930-k8 Total time: 129.30 hours. Scaled time: 117.14 units (timescale=0.906). Factorization parameters were as follows: n: 666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 2000000000000000000000000000000000 c5: 125 c0: -34 skew: 1 type: snfs Factor base limits: 7200000/7200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3600000, 8200001) Primes: RFBsize:489319, AFBsize:489193, largePrimes:6257089 encountered Relations: rels:6681474, finalFF:1112392 Max relations in full relation-set: 28 Initial matrix: 978577 x 1112392 with sparse part having weight 52925354. Pruned matrix : 861071 x 866027 with weight 38066993. Total sieving time: 123.69 hours. Total relation processing time: 0.15 hours. Matrix solve time: 5.37 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,7200000,7200000,27,27,48,48,2.6,2.6,100000 total time: 129.30 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335817) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334239) Total of 2 processors activated (9340.11 BogoMIPS).
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
3·10155-1 = 2(9)155<156> = 72 · 844643 · 159010443754010418818537<24> · C125
C125 = P43 · P82
P43 = 5423853441107577188852485479594908047413233<43>
P82 = 8404625993321570476494919510450078586561494231252473102406403901939727050282602317<82>
Number: n N=45585459615099389086179041758110407185275001961176861368273277748048769706955256547000294966297413952381207813653575502260861 ( 125 digits) SNFS difficulty: 155 digits. Divisors found: r1=5423853441107577188852485479594908047413233 (pp43) r2=8404625993321570476494919510450078586561494231252473102406403901939727050282602317 (pp82) Version: GGNFS-0.77.1-20051202-athlon Total time: 27.74 hours. Scaled time: 32.59 units (timescale=1.175). Factorization parameters were as follows: name: KA_2_9_155 n: 45585459615099389086179041758110407185275001961176861368273277748048769706955256547000294966297413952381207813653575502260861 type: snfs skew: 1 deg: 5 c5: 3 c0: -1 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2500001) Primes: RFBsize:230209, AFBsize:230192, largePrimes:7224662 encountered Relations: rels:6717869, finalFF:525864 Max relations in full relation-set: 28 Initial matrix: 460466 x 525864 with sparse part having weight 36596595. Pruned matrix : 410679 x 413045 with weight 24697501. Total sieving time: 22.73 hours. Total relation processing time: 0.18 hours. Matrix solve time: 4.69 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 27.74 hours. --------- CPU info (if available) ---------- Cygwin on AMD XP 2700+
By suberi / GGNFS-0.77.1-20060513-pentium4, GMP-ECM 6.1.2 B1=1000000
(8·10154+1)/9 = (8)1539<154> = 32 · 17 · 111479075100979<15> · C138
C138 = P56 · P83
P56 = 32177707529893710433902536146572371561641868491685058673<56>
P83 = 16195993354003447450979603450797475454295102425384430441701793883484636403132310539<83>
Number: 88889_154 N=521149937301225221583231257120702045795537650550148843910205812236172301369042097361478079470627378071760856736045886848228640350271254747 ( 138 digits) SNFS difficulty: 155 digits. Divisors found: r1=32177707529893710433902536146572371561641868491685058673 (pp56) r2=16195993354003447450979603450797475454295102425384430441701793883484636403132310539 (pp83) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 32.41 hours. Scaled time: 20.03 units (timescale=0.618). Factorization parameters were as follows: n: 521149937301225221583231257120702045795537650550148843910205812236172301369042097361478079470627378071760856736045886848228640350271254747 m: 10000000000000000000000000000000 c5: 4 c0: 5 skew: 1.05 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216926, largePrimes:5533675 encountered Relations: rels:5520996, finalFF:582833 Max relations in full relation-set: 28 Initial matrix: 433806 x 582833 with sparse part having weight 41783728. Pruned matrix : 323178 x 325411 with weight 25316982. Total sieving time: 26.72 hours. Total relation processing time: 0.35 hours. Matrix solve time: 5.18 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 32.41 hours. --------- CPU info (if available) ----------
(7·10188+11)/9 = (7)1879<188> = 17 · 41 · 337511 · 321348211 · 16826529918033630069673<23> · C149
C149 = P36P36 = 335115240990780875742167474614245799<36>
P114 = 182461059486518113964270665145747212245055354341456620345081920388280026228471754639932704349932407082619966553521<114>
(7·10156+11)/9 = (7)1559<156> = 17 · 22067 · 40360471134589043064933745786051<32> · C119
C119 = P30 · P90
P30 = 180456851647834561315931550073<30>
P90 = 284664762455700346404377228916434989848075119780853356972582547306819635356646779045237907<90>
By suberi / GMP-ECM 6.1.2 B1=1000000, GGNFS-0.77.1-20060722-pentium4
(7·10190+11)/9 = (7)1899<190> = 32 · 187603427717<12> · C178
C178 = P37 · P141
P37 = 6177774173350487484434222587767501487<37>
P141 = 745658929842245053745336194347900728624922448846406553486583278902680688904222161398693614637129510927532193940569066916225861802470289225489<141>
(16·10245-61)/9 = 1(7)2441<246> = 32 · 11 · 23 · 661 · 3593 · 10301 · 4840133 · 5764841 · 679164323 · 3629375857<10> · 334689967902904368763<21> · C180
C180 = P34 · P146
P34 = 6805943732941698014429478017066561<34>
P146 = 20370134213368423426672455205813626417541067572894236720844778196943084983955699624795881283538877410006319344463020634482928235221594799195308979<146>
(68·10154+13)/9 = 7(5)1537<155> = 47 · 498630726983<12> · 481480518643109<15> · C127
C127 = P36 · P41 · P52
P36 = 180048411580101335807564711501968399<36>
P41 = 12885467681488848348054410283777960509393<41>
P52 = 2886166011333284120917867347222492944354289914055239<52>
Number: 75557_154 N=6695928202484655635452379415298947471387647632758248358468768790611612165249036732543960482350604990882306999581263998199946873 ( 127 digits) SNFS difficulty: 156 digits. Divisors found: r1=180048411580101335807564711501968399 (pp36) r2=12885467681488848348054410283777960509393 (pp41) r3=2886166011333284120917867347222492944354289914055239 (pp52) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 35.03 hours. Scaled time: 23.96 units (timescale=0.684). Factorization parameters were as follows: n: 6695928202484655635452379415298947471387647632758248358468768790611612165249036732543960482350604990882306999581263998199946873 m: 10000000000000000000000000000000 c5: 34 c0: 65 skew: 1.14 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216756, largePrimes:5724145 encountered Relations: rels:5759916, finalFF:625672 Max relations in full relation-set: 32 Initial matrix: 433638 x 625672 with sparse part having weight 52507304. Pruned matrix : 324341 x 326573 with weight 31231916. Total sieving time: 29.41 hours. Total relation processing time: 0.26 hours. Matrix solve time: 5.20 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 35.03 hours. --------- CPU info (if available) ----------
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(4·10154-13)/9 = (4)1533<154> = 3 · 491279 · 233281879 · 2378170747<10> · C130
C130 = P42 · P88
P42 = 623157291540903823369569922445206459369843<42>
P88 = 8722607053645853108078000019436196832381880430877361385183603912492573372633755625577521<88>
Number: n N=5435556186725533001281237955401538909720919357929426277835504923537027699853207670533178790001606769710481300713046036238606099203 ( 130 digits) SNFS difficulty: 155 digits. Divisors found: r1=623157291540903823369569922445206459369843 (pp42) r2=8722607053645853108078000019436196832381880430877361385183603912492573372633755625577521 (pp88) Version: GGNFS-0.77.1-20051202-athlon Total time: 38.86 hours. Scaled time: 46.52 units (timescale=1.197). Factorization parameters were as follows: name: KA_4_153_3 n: 5435556186725533001281237955401538909720919357929426277835504923537027699853207670533178790001606769710481300713046036238606099203 type: snfs skew: 1 deg: 5 c5: 2 c0: -65 m: 10000000000000000000000000000000 rlim: 3200000 alim: 3200000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1600000, 2900001) Primes: RFBsize:230209, AFBsize:229447, largePrimes:7489861 encountered Relations: rels:6997333, finalFF:538310 Max relations in full relation-set: 28 Initial matrix: 459721 x 538310 with sparse part having weight 40517081. Pruned matrix : 409453 x 411815 with weight 28003554. Total sieving time: 33.07 hours. Total relation processing time: 0.20 hours. Matrix solve time: 5.47 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3200000,3200000,28,28,48,48,2.3,2.3,100000 total time: 38.86 hours. --------- CPU info (if available) ---------- AMD XP 2700+
By NFSNET / SNFS / Mar 7, 2007
10229+1 = 1(0)2281<230> = 11 · 2317091604522004723965449<25> · 22122368173743271094350225612207534262957<41> · C164
C164 = P59 · P106
P59 = 13270807703600518273110858480695033043595534787235597140531<59>
P106 = 1336395914067475494619360928220680511145198857935330550248985354190742963795052553003443246310484435548877<106>
By Yousuke Koide / GMP-ECM / Mar 9, 2007
(101221-1)/9 = (1)1221<1221> = 3 · 372 · 67 · 21649 · 46399 · 390721 · 513239 · 2028119 · 247629013 · 3306121237<10> · 37232500009<11> · 2377517312347<13> · 171055055020477<15> · 30557051518647307<17> · 1344628210313298373<19> · 2212394296770203368013<22> · 14922184078787276001107<23> · 8845981170865629119271997<25> · 90077814396055017938257237117<29> · [1399300708003111495578140482186320347277273505089781034200096366442134264784657534390363164267749971684437448447281946338001226312001060024115902223232728865313091486857448782879187621243824754236824516208584519649679801623269793676780347076796179020835671903144327739679125772035571304791326088307189347498475947401<316>] · C686
C686 = P31 · C655
P31 = 9557310079389075405641287553803<31>
C655 = [5515824196307780952584504442192890690575562875540825114944734663606474647281575002887478680286288052210526929443365680648852789555336764321822510527238695441418410283165718247242678059529341629517493669953736654452852386489889645013663965799353193599363460281027545061024040407073689527881928488768231400642687569429481473171385035979460579452200774729679752710793572101391827980965952297964933833022089122319372818564966309988014980282039713988319062537834423629632975228839285882370287649636569520965917059633562233758023513111518386548144522612870452249743261736259162946084327556981920462966793150850301959340294903413186803082903485275606383479206757<655>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GMP-ECM 6.1.1 B1=1000000
(83·10154+61)/9 = 9(2)1539<155> = 34 · 43 · 2137 · 11165990385401<14> · C136
C136 = P34 · P103
P34 = 1080410951908217088203068529610239<34>
P103 = 1027049460661970594903506561912251124101625777138266370978214953652943793348367291441285157423461027041<103>
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(25·10154-7)/9 = 2(7)154<155> = 32 · 768787 · 1165904386753975531948451<25> · C124
C124 = P52 · P73
P52 = 1229703685613870565482097442621203311966911738729487<52>
P73 = 2800177411079931025313554235270821858708785199889560692524686905876053087<73>
Number: trial N=3443388482777697502163738810997444139894472237224630200880616654110118907544360097930000698844817572230384236838239544276369 ( 124 digits) SNFS difficulty: 155 digits. Divisors found: r1=1229703685613870565482097442621203311966911738729487 (pp52) r2=2800177411079931025313554235270821858708785199889560692524686905876053087 (pp73) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 63.39 hours. Scaled time: 32.45 units (timescale=0.512). Factorization parameters were as follows: n: 3443388482777697502163738810997444139894472237224630200880616654110118907544360097930000698844817572230384236838239544276369 m: 10000000000000000000000000000000 c5: 5 c0: -14 skew: 1.23 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:217381, largePrimes:5516679 encountered Relations: rels:5409954, finalFF:500848 Max relations in full relation-set: 0 Initial matrix: 434262 x 500848 with sparse part having weight 38610131. Pruned matrix : 391194 x 393429 with weight 26929819. Total sieving time: 48.84 hours. Total relation processing time: 0.47 hours. Matrix solve time: 13.72 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 63.39 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM 6.1.2 B1=1000000
(2·10181+1)/3 = (6)1807<181> = 7 · C180
C180 = P32 · P149
P32 = 67255070283668769619862559473201<32>
P149 = 14160730906443116746495111115047641558481701837678541313334391465479394184166860056522357072852820398128709983357170191950212503099674765380256703181<149>
(7·10175+11)/9 = (7)1749<175> = 3 · 506195919767<12> · 18822712509076627<17> · C147
C147 = P32 · C116
P32 = 12007442890556404705517171537299<32>
C116 = [22661199643274826616506037502975050665929602295137054181268069957443993666880701283713935646994058586764830130031423<116>]
(7·10156+11)/9 = (7)1559<156> = 17 · 22067 · C151
C151 = P32 · C119
P32 = 40360471134589043064933745786051<32>
C119 = [51369706807834383019335582860585395422013721864161473338139081911966650927257577175840142699944608709208573947568217211<119>]
(16·10246-61)/9 = 1(7)2451<247> = 7873 · 73735471 · C235
C235 = P29 · P206
P29 = 50471251208266401221148968621<29>
P206 = 60675964949918263205609110309720019624586192956489493080965555374327360718253084322742804690412945082154262349245969473440450190732883309700083469169362728986304992360444260458290295833946365316166058187897<206>
By Robert Backstrom / GGNFS-0.77.1-20051202-athlon
(79·10153-7)/9 = 8(7)153<154> = 1609 · 194886308091743<15> · C137
C137 = P53 · P84
P53 = 33189147649745737114986138374689356517744711840673371<53>
P84 = 843434011803161407008535388292933087394417867330522649337638124595057972951922937301<84>
Number: n N=27992855950552512708828138574591719985934225428898365721529634560471152640342015896190558043914185790452999492624622285097241644053311671 ( 137 digits) SNFS difficulty: 156 digits. Divisors found: r1=33189147649745737114986138374689356517744711840673371 (pp53) r2=843434011803161407008535388292933087394417867330522649337638124595057972951922937301 (pp84) Version: GGNFS-0.77.1-20051202-athlon Total time: 50.61 hours. Scaled time: 60.58 units (timescale=1.197). Factorization parameters were as follows: name: KA_87_153 n: 27992855950552512708828138574591719985934225428898365721529634560471152640342015896190558043914185790452999492624622285097241644053311671 type: snfs skew: 1 deg: 5 c5: 79 c0: -700 m: 10000000000000000000000000000000 rlim: 3600000 alim: 3600000 lpbr: 28 lpba: 28 mfbr: 48 mfba: 48 qintsize: 100000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 28/28 Max factor residue bits: 48/48 Sieved algebraic special-q in [1800000, 3500001) Primes: RFBsize:256726, AFBsize:256641, largePrimes:7837103 encountered Relations: rels:7422443, finalFF:649186 Max relations in full relation-set: 28 Initial matrix: 513434 x 649186 with sparse part having weight 47166009. Pruned matrix : 421054 x 423685 with weight 31807317. Total sieving time: 43.89 hours. Total relation processing time: 0.23 hours. Matrix solve time: 6.34 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3600000,3600000,28,28,48,48,2.3,2.3,100000 total time: 50.61 hours. --------- CPU info (if available) ----------
By Shaopu Lin / GGNFS-0.77.1-20060722-pentium4 gnfs
(2·10173+1)/3 = (6)1727<173> = 3229 · 11430617272077882869154127363<29> · 12285208461573705537910016528766093075163<41> · C102
C102 = P44 · P58
P44 = 66429507839354412739936008855315386915039609<44>
P58 = 2213234580595026489302987004215298111708002099947957511663<58>
Number: 2_173_+1 N=147024083921967587987395231596813878970053978418196045340299325824837867451060084011196308738724459767 ( 102 digits) Divisors found: r1=66429507839354412739936008855315386915039609 (pp44) r2=2213234580595026489302987004215298111708002099947957511663 (pp58) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 11.33 hours. Scaled time: 14.45 units (timescale=1.275). Factorization parameters were as follows: name: 2_173_+1 n: 147024083921967587987395231596813878970053978418196045340299325824837867451060084011196308738724459767 skew: 8504.53 # norm 7.18e+13 c5: 27720 c4: 928856 c3: 838999784614 c2: 13811724910760072 c1: -145254733038042269233 c0: 586307634080437791242630 # alpha -6.12 Y1: 9676492943 Y0: -22126822396585063233 # Murphy_E 2.89e-09 # M 27762482580871199612752955659640071218869230702763312386995455804620665012658065600234887922006868397 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1150000, 1750001) Primes: RFBsize:169511, AFBsize:169435, largePrimes:4472688 encountered Relations: rels:4713994, finalFF:404523 Max relations in full relation-set: 0 Initial matrix: 339029 x 404523 with sparse part having weight 16607813. Pruned matrix : 274559 x 276318 with weight 10059418. Total sieving time: 9.84 hours. Total relation processing time: 0.24 hours. Matrix solve time: 1.03 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 11.33 hours. --------- CPU info (if available) ----------
By suberi / GMP-ECM 6.1.2 B1=1000000
(2·10182+1)/3 = (6)1817<182> = 14376697 · C175
C175 = P31 · P145
P31 = 1585124564388882215739248989409<31>
P145 = 2925406520016824459793686144437048199244743707159174486289472705344922902509467003357759004945188155785099130434982841704107321288453540961497379<145>
(2·10173+1)/3 = (6)1727<173> = 3229 · 12285208461573705537910016528766093075163<41> · C130
C130 = P29 · C102
P29 = 11430617272077882869154127363<29>
C102 = [147024083921967587987395231596813878970053978418196045340299325824837867451060084011196308738724459767<102>]
(7·10193+11)/9 = (7)1929<193> = 3 · 41 · 1645791483541<13> · C179
C179 = P31 · C148
P31 = 6062012711580861138593484137483<31>
C148 = [6338095311422806628041681278497479626715196088761396462118763294477096960206884824639260108850297771297395071653505161859348368210705651421925743791<148>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
(82·10153-1)/9 = 9(1)153<154> = 34 · 688622185393<12> · 1797980043765438104625447953831<31> · C110
C110 = P46 · P65
P46 = 5439400968192000070068961568453812223828872829<46>
P65 = 16702034347162201771602568558900760327009737339991475475328660533<65>
Number: 91111_153 N=90849061798730120134415671857022727048215492925996768275275430895716965482161611441749945949212881419768357857 ( 110 digits) Divisors found: r1=5439400968192000070068961568453812223828872829 (pp46) r2=16702034347162201771602568558900760327009737339991475475328660533 (pp65) Version: GGNFS-0.77.1-20050930-k8 Total time: 19.93 hours. Scaled time: 18.12 units (timescale=0.909). Factorization parameters were as follows: name: 91111_153 n: 90849061798730120134415671857022727048215492925996768275275430895716965482161611441749945949212881419768357857 skew: 18321.44 # norm 7.82e+14 c5: 74040 c4: -141551270 c3: -75674640805143 c2: 234083487897747316 c1: 11789311970640685195440 c0: 30586280943535814825544832 # alpha -5.50 Y1: 590458278671 Y0: -1041767732293455366015 # Murphy_E 1.00e-09 # M 28565350679692008008041514640150531919897960650683454797846857629211816849063124324921802901586270592034102610 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2040001) Primes: RFBsize:176302, AFBsize:175819, largePrimes:7573923 encountered Relations: rels:7368554, finalFF:446585 Max relations in full relation-set: 28 Initial matrix: 352201 x 446585 with sparse part having weight 44352998. Pruned matrix : 290898 x 292723 with weight 27846011. Total sieving time: 18.94 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.72 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 19.93 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335814) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.09 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(23·10153+1)/3 = 7(6)1527<154> = 11 · 41 · 36217 · C147
C147 = P65 · P82
P65 = 66701654924490943009481067725328090047586712513646273561735978657<65>
P82 = 7036893156669408344386011389295761191203948118542807066538803903115219196386336993<82>
Number: 76667_153 N=469372419076674658038213894276638022500530135739850622431703813106024841923022066156573129110618242861085293927437187205373146889629177626257558401 ( 147 digits) SNFS difficulty: 155 digits. Divisors found: r1=66701654924490943009481067725328090047586712513646273561735978657 (pp65) r2=7036893156669408344386011389295761191203948118542807066538803903115219196386336993 (pp82) Version: GGNFS-0.77.1-20050930-k8 Total time: 21.84 hours. Scaled time: 18.68 units (timescale=0.855). Factorization parameters were as follows: n: 469372419076674658038213894276638022500530135739850622431703813106024841923022066156573129110618242861085293927437187205373146889629177626257558401 m: 5000000000000000000000000000000 c5: 184 c0: 25 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2500001) Primes: RFBsize:216816, AFBsize:217116, largePrimes:5508950 encountered Relations: rels:5404912, finalFF:505602 Max relations in full relation-set: 28 Initial matrix: 433999 x 505602 with sparse part having weight 37622010. Pruned matrix : 382479 x 384712 with weight 25700698. Total sieving time: 20.53 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.17 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 21.84 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.62 BogoMIPS (lpj=2335814) Calibrating delay using timer specific routine.. 4668.46 BogoMIPS (lpj=2334234) Total of 2 processors activated (9340.09 BogoMIPS).
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(35·10153-53)/9 = 3(8)1523<154> = 11 · 5119 · 29729852380307<14> · C136
C136 = P64 · P73
P64 = 1336857265227055891602255144595312710366914084138447152868661721<64>
P73 = 1737680497099652281480746842090914423799196760175286953572897766236908421<73>
Number: trial N=2323030797191032176060172857078046465138870277980828896592371826135653611090689420139183547157987504868205237165243564748675554705252541 ( 136 digits) SNFS difficulty: 155 digits. Divisors found: r1=1336857265227055891602255144595312710366914084138447152868661721 (pp64) r2=1737680497099652281480746842090914423799196760175286953572897766236908421 (pp73) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 65.51 hours. Scaled time: 34.79 units (timescale=0.531). Factorization parameters were as follows: n: 2323030797191032176060172857078046465138870277980828896592371826135653611090689420139183547157987504868205237165243564748675554705252541 m: 5000000000000000000000000000000 c5: 56 c0: -265 skew: 1.36 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216291, largePrimes:5713559 encountered Relations: rels:5732506, finalFF:501309 Max relations in full relation-set: 0 Initial matrix: 433173 x 501309 with sparse part having weight 30175485. Pruned matrix : 383318 x 385547 with weight 22673806. Total sieving time: 54.21 hours. Total relation processing time: 0.49 hours. Matrix solve time: 10.52 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 65.51 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GMP-ECM 6.1.1 B1=1000000
(82·10153-1)/9 = 9(1)153<154> = 34 · 688622185393<12> · C141
C141 = P31 · C110
P31 = 1797980043765438104625447953831<31>
C110 = [90849061798730120134415671857022727048215492925996768275275430895716965482161611441749945949212881419768357857<110>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 snfs, gnfs
(34·10153-7)/9 = 3(7)153<154> = 3 · 14556803 · C146
C146 = P34 · P43 · P70
P34 = 8594268236093335921513615334779403<34>
P43 = 2721524007350718785531830805984150175159193<43>
P70 = 3698520874245273856922213592778507670368184847406373387779530756679507<70>
Number: 37777_153 N=86506581098834631426918345962314613947805658925195268443164289525609384097542520789713184911498717078142725381339519347706997151727564030320342953 ( 146 digits) SNFS difficulty: 154 digits. Divisors found: r1=8594268236093335921513615334779403 (pp34) r2=2721524007350718785531830805984150175159193 (pp43) r3=3698520874245273856922213592778507670368184847406373387779530756679507 (pp70) Version: GGNFS-0.77.1-20050930-k8 Total time: 29.32 hours. Scaled time: 26.56 units (timescale=0.906). Factorization parameters were as follows: n: 86506581098834631426918345962314613947805658925195268443164289525609384097542520789713184911498717078142725381339519347706997151727564030320342953 m: 2000000000000000000000000000000 c5: 2125 c0: -14 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2900001) Primes: RFBsize:216816, AFBsize:216796, largePrimes:5647466 encountered Relations: rels:5576706, finalFF:516040 Max relations in full relation-set: 28 Initial matrix: 433678 x 516040 with sparse part having weight 42818916. Pruned matrix : 393255 x 395487 with weight 29312729. Total sieving time: 27.82 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.34 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 29.32 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335817) Calibrating delay using timer specific routine.. 4668.49 BogoMIPS (lpj=2334245) Total of 2 processors activated (9340.12 BogoMIPS).
(4·10181-1)/3 = 1(3)181<182> = 13 · 208003 · 947369 · 6213997 · 422657489810930235663875844391<30> · 95889960353472897975804675641271719639<38> · C95
C95 = P44 · P52
P44 = 18428292279714960219702287943095725613326919<44>
P52 = 1121472882089843997692184363087036030254868910061009<52>
Number: 13333_181 N=20666830054925958025154487842787710069959392668108893582404651266727653619739610443131752001271 ( 95 digits) Divisors found: r1=18428292279714960219702287943095725613326919 (pp44) r2=1121472882089843997692184363087036030254868910061009 (pp52) Version: GGNFS-0.77.1-20050930-k8 Total time: 4.51 hours. Scaled time: 4.08 units (timescale=0.905). Factorization parameters were as follows: name: 13333_181 n: 20666830054925958025154487842787710069959392668108893582404651266727653619739610443131752001271 m: 3520571363530624627796 deg: 4 c4: 134530656 c3: -818416215523 c2: 77204166447062888 c1: 3032188238699940176 c0: -27449618853113239775241 skew: 1635.250 type: gnfs # adj. I(F,S) = 53.726 # E(F1,F2) = 4.428722e-05 # GGNFS version 0.77.1-20050930-k8 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1173454162. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 50000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Max factor residue bits: 45/45 Sieved algebraic special-q in [600000, 1200001) Primes: RFBsize:92938, AFBsize:93069, largePrimes:1870373 encountered Relations: rels:1942169, finalFF:238237 Max relations in full relation-set: 28 Initial matrix: 186084 x 238237 with sparse part having weight 16401459. Pruned matrix : 161680 x 162674 with weight 8895346. Polynomial selection time: 0.08 hours. Total sieving time: 4.26 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.10 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: gnfs,94,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,50000 total time: 4.51 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335817) Calibrating delay using timer specific routine.. 4668.49 BogoMIPS (lpj=2334245) Total of 2 processors activated (9340.12 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=1000000
(4·10181-1)/3 = 1(3)181<182> = 13 · 208003 · 947369 · 6213997 · 422657489810930235663875844391<30> · C133
C133 = P38 · C95
P38 = 95889960353472897975804675641271719639<38>
C95 = [20666830054925958025154487842787710069959392668108893582404651266727653619739610443131752001271<95>]
By Philippe Strohl / gmp-ecm 6.1.1, msieve
(31·10159-13)/9 = 3(4)1583<160> = 11 · 29 · 103 · 31495525256123412108590573<26> · C130
C130 = P32 · P99
P32 = 18220801332111452637905105535377<32>
P99 = 182673246922664922215116667618385192896049286094122406240480789269739834481068876099995763335349519<99>
(31·10161-13)/9 = 3(4)1603<162> = 11 · 71160562589767531<17> · 35346772348313233757<20> · C125
C125 = P31 · P94
P31 = 9214711542428400460620693533887<31>
P94 = 1351000839508368862206252121522886281976194919602387289398936256144347787863519361665877324497<94>
(31·10169-13)/9 = 3(4)1683<170> = 3 · 11 · 17 · 79531 · C162
C162 = P39 · P124
P39 = 522235888582298378420929116637405995083<39>
P124 = 1478267967438312308101056504254553548511855058325922241446036981530842781007936900982261738169354345327696013073609676251331<124>
(31·10174-13)/9 = 3(4)1733<175> = 293617 · 1436471 · 7557443 · 130775549186455666311890896219<30> · C127
C127 = P27 · P46 · P56
P27 = 527793365692251166832991629<27>
P46 = 1413255507990492806168595079438433390439397411<46>
P56 = 11077839744989375386501684687854942571016255668118907163<56>
(31·10177-13)/9 = 3(4)1763<178> = 11 · 173 · 227 · 223461044467<12> · C161
C161 = P35 · P36 · P90
P35 = 65219477847426587077518315943625357<35>
P36 = 719038817915347421940630071846579687<36>
P90 = 760892074198757200697890675804603439092610757105817352711491913696740817887672336986109351<90>
(31·10184-13)/9 = 3(4)1833<185> = 32 · C184
C184 = P29 · P155
P29 = 50860390743863081094178433417<29>
P155 = 75248350196541765986731032991141074676843238579485128560091333022256455922893727877575862591799754153933049498279895799619706673770461385880459855652498731<155>
(31·10185-13)/9 = 3(4)1843<186> = 112 · 17 · 181 · 41131 · 1592243039<10> · 2417267440429797889605030637<28> · C139
C139 = P41 · P99
P41 = 17757128990144490057865326416335009059131<41>
P99 = 329101785627995503144769772900089826205540526094392828018012426909891788968440162312882573944829573<99>
(31·10192-13)/9 = 3(4)1913<193> = 157 · 1936999 · C185
C185 = P32 · P36 · P118
P32 = 12156616229645126390322167911417<32>
P36 = 606268239934794595379364961442940829<36>
P118 = 1536783223791944940826326054744739537580422334052791100435400818238680780875852116995008930134240059957027789762086957<118>
(31·10194-13)/9 = 3(4)1933<195> = 7 · 24851 · 578959 · C184
C184 = P33 · P34 · P119
P33 = 117602516565159674781337594954997<33>
P34 = 1736648356153263282151812902240569<34>
P119 = 16745609548147609812124124983067904018895063174524086172259099007693123279142523007585234586580156877839035349260578677<119>
(31·10195-13)/9 = 3(4)1943<196> = 11 · 409 · 433 · 1231 · 9857 · 29106199 · 226024859 · C167
C167 = P34 · C133
P34 = 5027043972621015155274153602261603<34>
C133 = [4406138049467862108822304886904684665095340472558491300911579282015207482952828657413786426677152881312064869462756319604850096004769<133>]
(31·10197-13)/9 = 3(4)1963<198> = 11 · 8529173 · 16832693 · C183
C183 = P35 · C148
P35 = 31718978554313454335064248296767941<35>
P148 = [6876172764021503279846353192025765375761066473830933599403773173852114080803102720428674084422381287992997630233231841600216245045225929329829236037<148>]
Note: for all the composites submitted today gmp-ecm 6.1.1 option -I between 1e6 and 3e6 plus a few extra curves at 10e6 (so level 35 digits should be complete) pp1 done at 10e9 one time for the ten first remaining composites of the list, one time(Philippe Strohl)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(68·10153+13)/9 = 7(5)1527<154> = 32 · 11 · 1129 · 1375013 · C143
C143 = P38 · P105
P38 = 61065373075425676577973996838542929633<38>
P105 = 805073344781424198084009165594160318465099225536810480321303682980714430410153103765571332168602554390323<105>
Number: 75557_153 N=49162104152158473852257356247164514014169615600587153399576969092026274841248343978397668819540045798313854721876473148828889098776674605141459 ( 143 digits) SNFS difficulty: 154 digits. Divisors found: r1=61065373075425676577973996838542929633 (pp38) r2=805073344781424198084009165594160318465099225536810480321303682980714430410153103765571332168602554390323 (pp105) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.50 hours. Scaled time: 23.18 units (timescale=0.909). Factorization parameters were as follows: n: 49162104152158473852257356247164514014169615600587153399576969092026274841248343978397668819540045798313854721876473148828889098776674605141459 m: 2000000000000000000000000000000 c5: 2125 c0: 13 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:216466, largePrimes:5605113 encountered Relations: rels:5534336, finalFF:522965 Max relations in full relation-set: 28 Initial matrix: 433348 x 522965 with sparse part having weight 41494477. Pruned matrix : 379741 x 381971 with weight 27448128. Total sieving time: 24.12 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.23 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 25.50 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1299k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335817) Calibrating delay using timer specific routine.. 4668.49 BogoMIPS (lpj=2334245) Total of 2 processors activated (9340.12 BogoMIPS).
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(82·10153+71)/9 = 9(1)1529<154> = 11 · 65519 · 237466693823083<15> · C134
C134 = P51 · P84
P51 = 146390585269811370845985545630132602549881181957493<51>
P84 = 363660008608730922630636735619631543462580645365161805226770939783787413528491520389<84>
Number: trial N=53236401499456761316073245652900249749764555961276757346582245881790826230770824257629997843337224692510634933036878499624830740824777 ( 134 digits) SNFS difficulty: 155 digits. Divisors found: r1=146390585269811370845985545630132602549881181957493 (pp51) r2=363660008608730922630636735619631543462580645365161805226770939783787413528491520389 (pp84) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 75.52 hours. Scaled time: 38.14 units (timescale=0.505). Factorization parameters were as follows: n: 53236401499456761316073245652900249749764555961276757346582245881790826230770824257629997843337224692510634933036878499624830740824777 m: 2000000000000000000000000000000 c5: 5125 c0: 142 skew: 1 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1 ) Primes: RFBsize:216816, AFBsize:216828, largePrimes:5610853 encountered Relations: rels:5499955, finalFF:500031 Max relations in full relation-set: 0 Initial matrix: 433710 x 500031 with sparse part having weight 46174110. Pruned matrix : 407069 x 409301 with weight 32384029. Total sieving time: 66.29 hours. Total relation processing time: 0.59 hours. Matrix solve time: 8.29 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 75.52 hours. --------- CPU info (if available) ----------
By Bruce Dodson / GMP-ECM / Feb 25, 2007
10379+1 = 1(0)3781<380> = 11 · 10613 · 30817249 · 4918445244727502358176820280164673127<37> · C330
C330 = P53 · C278
P53 = 33584520860278767011970207517032237108309731086439023<53>
C278 = [16827061636858301807417830743016139436111697678133727198462189350037543615130040061453939200050698409557403053836355657478868125072163055516431199446323056297229473485500285538897823057447955700947790298371668529982572265464316125827004742058791596076336326778009636479204734783<278>]
By Bruce Dodson / GMP-ECM / Mar 2, 2007
10394+1 = 1(0)3931<395> = 101 · 27581 · 39183683903547299202471125940449908897423309<44> · C344
C344 = P53 · P291
P53 = 95857172574244109092139928579854506165297073472804809<53>
P291 = 955737746910848289298542541424663089706331830294404692746411509225952770622079883261039291690273699630517609797375668184351088065578009261657806563698330735168868137570443380377516027002412525522935434804743886172764249065452729071714341068915031993169251851872703748461050312064423743542541<291>
By Yousuke Koide / GMP-ECM / Mar 6, 2007
(101011-1)/9 = (1)1011<1011> = 3 · 37 · 248707 · 427991 · 282549563 · 288525099368866187<18> · 16917315519781128734365649437223631827<38> · [1882405423818571330780209095519806749563519430700453721593179952656343963131813810925373770836559341617884038513747354594918124525467950655542193487570841729702485413334783631101246494629336094540357234595856835370463421588982989455925674466916759281841736587368701683<268>] · C667
C667 = P32 · C636
P32 = 12652477149085504014830875594123<32>
C636 = [286294793881282912130855648097538698206027889766121394515256725961872922751483459413620078771040119414455975097318456561036922025364700573661111764253749922304265639740420941814888613838229170105845271060995650346929300836861427222478412662698349880700722276694945914794152736979267379128349311405152497674634320275965800024192769244850307821227101765226856267317872753791085432843605201253802719836972476742620905073236547193718736530795849658690715813666409811296034926060045018355572062333758848573919367583116604677220526788431409580883989472938335069801691982943912731447595279635026489033797287399458502618926938385063431899021231<636>]
(101041-1)/9 = (1)1041<1041> = 3 · 37 · 2083 · 8329 · 27067 · 387498606374535498907<21> · 410503975731004954782987073229804230653973883737063993464776706362401119854845794181516647988735770905941224040754834710574171910854956630254964019326527177415713271183031407659183179189090446340972812321687335541844722766139990065803787309680094251712827838737618173832013563051358152403706029892899512731780807297118672594344076222378213733<342> · C665
C665 = P36 · C629
P36 = 577252559308332845030620001242246603<36>
C629 = [23214475573112864700395259491972658202333453156514809632205180386220897847773687197971996181780712132346732719148680085001157370374533487762518892347421470715193616477326444632942199942405300688391126791278435320093415489210733243143059636998103080857040663665750148760924967727020431499198996537173570939491700490193438339980421604001945908933355246620462076573217246166796652564502969051366151263217279284957832647067808529306065284071704810178613972436255263012347169862879437715552991430838967498025200325707172390079310740595199412531636776504037915756237589195211740726755394516519375380035197743847351595531386777246611253<629>]
By Yousuke Koide / GMP-ECM / Mar 7, 2007
(101059-1)/9 = (1)1059<1059> = 3 · 37 · 137079079 · 1781225293<10> · 1044667255801249<16> · 276218418252581926399<21> · [5971186761077908392402271407138469531337493584613277755428999212784863535602930319390757965057266944400930822994221431803426200382259169609623749938890624018856064323434210138683794638398181555480636589432967847046558303900493221643545118097808466487261074656366822115475153656260621410869928975265101194270553763134331528776323<328>] · C676
C676 = P34 · C642
P34 = 2691389034550013371833520881354751<34>
C642 = [884049801030082601270977336088490220653550515011911834288189327905733002820208844890522745337342941036583290341313709289759140020077635739025637834248112703394232284208374017876926369421341920680738712424467307084277330820948742870649808872849518268665410142792357137992362367708470343491917411114590672611542431152126603857084300670009823350599290435359606828975158445248233289321388028791829142849297518966358279310536561694746192762490653696178155614179174376659813367065368915000672478855509803415476012840941116146020460058072391134226210532777512274239989720039594198159975070372096719717717606732379981908825888205585620356444445343321<642>]
By Yousuke Koide / GMP-ECM / Mar 8, 2007
(101107-1)/9 = (1)1107<1107> = 33 · 37 · 83 · 757 · 1231 · 333667 · 538987 · 1811791 · 626920594693<12> · 440334654777631<15> · 9425856976319889649<19> · 3244514648940691294717<22> · 1900016393894413508477719<25> · 201763709900322803748657942361<30> · 3151445759294008336434146467746716852125711<43> · 8414640003465161203119978906558054839526493<43> · 4624740815741021164555032450406356165555243059597323<52> · 36075379229129405137442680972370788324414060277012433191198831287911648192680373281921936535843435181632954359677168188643<122> · C699
C699 = P29P29 = 36598745651481177932875978009<29>
C670 = [8421395407701451357967778582252244520221237772223889951133870001343239320459225863280237771550205743834888122813777081705029318772145397879204796376432965690632959491597520423303205670492188492743468799736285667411811792446094603419983097940429401208865957790402408688555656858847087828907487521626755717445454039822609326576086912994025567567275380187461141741370039005225985561644299683996212863959980256694546773043469777628715362669884539629551914663581747854969463992070819901996738139264576576055976866608541775357637709419786900480317302741392460029144631200537648005105676799674440167889384770969409630530611228585776516841744339495137905408376149866733190857117<670>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / GMP-ECM 6.1.2 B1=1000000
10197+3 = 1(0)1963<198> = 19106066785697<14> · 23966692732375924083199<23> · C162
C162 = P40 · P123
P40 = 1506740400796917587901655344160313161129<40>
P123 = 144937967623748042799512511778911106094684897095036555622767428355565706896710086626493506929331448785972737501085874126869<123>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(4·10153-31)/9 = (4)1521<153> = 3 · 7 · 173 · 3385201 · C143
C143 = P67 · P76
P67 = 4560488305057311382507435593928027003772055069381323048336055152141<67>
P76 = 7924215490068690146402503872065403399730977147986139905338185035670928531997<76>
Number: 44441_153 N=36138292069212252804360029632108275578414345782524514470030745613346797095292264523197204403608737079442116410293774845823464966686989621555577 ( 143 digits) SNFS difficulty: 153 digits. Divisors found: r1=4560488305057311382507435593928027003772055069381323048336055152141 (pp67) r2=7924215490068690146402503872065403399730977147986139905338185035670928531997 (pp76) Version: GGNFS-0.77.1-20050930-k8 Total time: 24.08 hours. Scaled time: 21.67 units (timescale=0.900). Factorization parameters were as follows: n: 36138292069212252804360029632108275578414345782524514470030745613346797095292264523197204403608737079442116410293774845823464966686989621555577 m: 2000000000000000000000000000000 c5: 125 c0: -31 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:175914, largePrimes:5665459 encountered Relations: rels:5608318, finalFF:477939 Max relations in full relation-set: 28 Initial matrix: 352281 x 477939 with sparse part having weight 46352456. Pruned matrix : 305368 x 307193 with weight 27517089. Total sieving time: 23.11 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.82 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 24.08 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334236) Total of 2 processors activated (9340.10 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=1000000
(10189-7)/3 = (3)1881<189> = 6271 · 32299 · 49499 · C176
C176 = P39 · C137
P39 = 390260975373901404701261090769277737521<39>
C137 = [85192491022602890603074871079556893265640713223062077079739053971510944948117291577066638568041553214076814786971563038486205148193680341<137>]
(10198-7)/3 = (3)1971<198> = 5227 · 46166297 · 22914711330208754233<20> · 23718216221212076013091<23> · C145
C145 = P31 · P114
P31 = 7696067714948962015077813118481<31>
P114 = 330244740180740509985313674081442941277435825012140259779350607572345764737082477798183352202923318056811684612243<114>
2·10197-1 = 1(9)197<198> = 3489781 · 1544884849<10> · C182
C182 = P29 · C153
P29 = 99635152957880897351925251119<29>
C153 = [372325786866169441250327851059588119485775841500993243856730119954248515508380134433190793829593497441299946322830257214959074704367324446826072083886109<153>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(8·10153-17)/9 = (8)1527<153> = 89 · 22286723 · 94976111 · C136
C136 = P33 · P104
P33 = 217268134271750274716736715143719<33>
P104 = 21717050344389871464856176217536012976372677149540834313494789291293540788172416316018723197631883531069<104>
Number: 88887_153 N=4718423010211259138794297245007442786322594410737558694288228071792107072248790299828640538720776084278326199636955123467452167536705611 ( 136 digits) SNFS difficulty: 153 digits. Divisors found: r1=217268134271750274716736715143719 (pp33) r2=21717050344389871464856176217536012976372677149540834313494789291293540788172416316018723197631883531069 (pp104) Version: GGNFS-0.77.1-20050930-k8 Total time: 25.48 hours. Scaled time: 23.11 units (timescale=0.907). Factorization parameters were as follows: n: 4718423010211259138794297245007442786322594410737558694288228071792107072248790299828640538720776084278326199636955123467452167536705611 m: 2000000000000000000000000000000 c5: 250 c0: -17 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2500001) Primes: RFBsize:176302, AFBsize:176403, largePrimes:5745221 encountered Relations: rels:5725835, finalFF:503365 Max relations in full relation-set: 28 Initial matrix: 352771 x 503365 with sparse part having weight 49566596. Pruned matrix : 300196 x 302023 with weight 28750459. Total sieving time: 24.47 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.87 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 25.48 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334236) Total of 2 processors activated (9340.10 BogoMIPS).
By suberi / GMP-ECM 6.1.2 B1=11000000
(10191-7)/3 = (3)1901<191> = 38299 · C186
C186 = P32 · P155
P32 = 47001744539769751968602827241659<32>
P155 = 18517285944918351763957129214874859790396179101241321575840473185447049981337656206617185899986468939901439768367561621500456875804784348671181349229107691<155>
(10196-7)/3 = (3)1951<196> = 109 · 11741231 · 633752989 · 28326817297<11> · 527066786539<12> · C156
C156 = P29 · C127
P29 = 67704288545514248426941515407<29>
C127 = [4065734211912069651889418786821571190367441227208124424697089378343489919175810203932388911072813673779896556294261144324891921<127>]
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
8·10153-3 = 7(9)1527<154> = 11 · 678555051229694470501<21> · C133
C133 = P37 · P96
P37 = 3958588948165095373557421558315246987<37>
P96 = 270752082824477123437977810221348106655215927606556266395115229672809633068748701952340775747521<96>
Number: trial N=1071796202761655680975767715160548894626826466165230156972830778309328057835702269408135222770727052795304362435081217609366667969227 ( 133 digits) SNFS difficulty: 153 digits. Divisors found: r1=3958588948165095373557421558315246987 (pp37) r2=270752082824477123437977810221348106655215927606556266395115229672809633068748701952340775747521 (pp96) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 49.08 hours. Scaled time: 25.13 units (timescale=0.512). Factorization parameters were as follows: n: 1071796202761655680975767715160548894626826466165230156972830778309328057835702269408135222770727052795304362435081217609366667969227 m: 2000000000000000000000000000000 c5: 250 c0: -3 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176393, largePrimes:5374741 encountered Relations: rels:5178886, finalFF:405889 Max relations in full relation-set: 0 Initial matrix: 352761 x 405889 with sparse part having weight 35888798. Pruned matrix : 327530 x 329357 with weight 25113503. Total sieving time: 38.95 hours. Total relation processing time: 0.37 hours. Matrix solve time: 9.27 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 49.08 hours. --------- CPU info (if available) ----------
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(2·10153+1)/3 = (6)1527<153> = 57301 · 45531221 · C141
C141 = P31 · P111
P31 = 1246958727165838831404081235523<31>
P111 = 204920385309652616260714333673676048692818683964619270985352641874084886153793092233456525778430057468791514049<111>
Number: 66667_153 N=255527262836057684415306691004922423526332419823667789088261154131521107217490488391670035818390945946835122826285976260835405729617732362627 ( 141 digits) SNFS difficulty: 153 digits. Divisors found: r1=1246958727165838831404081235523 (pp31) r2=204920385309652616260714333673676048692818683964619270985352641874084886153793092233456525778430057468791514049 (pp111) Version: GGNFS-0.77.1-20050930-k8 Total time: 18.10 hours. Scaled time: 16.02 units (timescale=0.885). Factorization parameters were as follows: n: 255527262836057684415306691004922423526332419823667789088261154131521107217490488391670035818390945946835122826285976260835405729617732362627 m: 2000000000000000000000000000000 c5: 125 c0: 2 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176703, largePrimes:5568032 encountered Relations: rels:5511902, finalFF:508441 Max relations in full relation-set: 28 Initial matrix: 353070 x 508441 with sparse part having weight 44296531. Pruned matrix : 286818 x 288647 with weight 23160247. Total sieving time: 17.32 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.65 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 18.10 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Shaopu Lin / Msieve v. 1.16
10190+3 = 1(0)1893<191> = 7 · 109 · 1999 · 9733 · 3233311 · 754010347 · 2866919243941<13> · 17720582280902798851<20> · 655722163172284079918744219522347<33> · C100
C100 = P45 · P56
P45 = 623346172585568150454866799443866912070379169<45>
P56 = 13306031615599752194914775123337309874878370542863648083<56>
Wed Feb 28 11:34:08 2007 Wed Feb 28 11:34:08 2007 Wed Feb 28 11:34:08 2007 Msieve v. 1.16 Wed Feb 28 11:34:08 2007 random seeds: fd3e5e78 9c85d5b5 Wed Feb 28 11:34:08 2007 factoring 8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027 (100 digits) Wed Feb 28 11:34:08 2007 using multiplier of 3 Wed Feb 28 11:34:08 2007 sieve interval: 9 blocks of size 65536 Wed Feb 28 11:34:08 2007 processing polynomials in batches of 6 Wed Feb 28 11:34:08 2007 using a sieve bound of 2751557 (99744 primes) Wed Feb 28 11:34:08 2007 using large prime bound of 412733550 (28 bits) Wed Feb 28 11:34:08 2007 using double large prime bound of 3222593841584400 (43-52 bits) Wed Feb 28 11:34:08 2007 using trial factoring cutoff of 57 bits Wed Feb 28 11:34:08 2007 polynomial 'A' values have 13 factors Wed Feb 28 13:55:54 2007 3251 relations (2946 full + 305 combined from 185074 partial), need 99840 Wed Feb 28 13:55:54 2007 elapsed time 02:21:46 Wed Feb 28 20:46:51 2007 Wed Feb 28 20:46:51 2007 Wed Feb 28 20:46:51 2007 Msieve v. 1.16 Wed Feb 28 20:46:51 2007 random seeds: 6c76c7ad 23a675ba Wed Feb 28 20:46:51 2007 factoring 8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027 (100 digits) Wed Feb 28 20:46:51 2007 using multiplier of 3 Wed Feb 28 20:46:51 2007 sieve interval: 9 blocks of size 65536 Wed Feb 28 20:46:51 2007 processing polynomials in batches of 6 Wed Feb 28 20:46:51 2007 using a sieve bound of 2751557 (99744 primes) Wed Feb 28 20:46:51 2007 using large prime bound of 412733550 (28 bits) Wed Feb 28 20:46:51 2007 using double large prime bound of 3222593841584400 (43-52 bits) Wed Feb 28 20:46:51 2007 using trial factoring cutoff of 57 bits Wed Feb 28 20:46:51 2007 polynomial 'A' values have 13 factors Wed Feb 28 20:46:52 2007 restarting with 2946 full and 185074 partial relations Wed Feb 28 21:53:31 2007 4826 relations (4151 full + 675 combined from 263698 partial), need 99840 Wed Feb 28 21:53:31 2007 elapsed time 01:06:40 Wed Feb 28 22:39:39 2007 Wed Feb 28 22:39:39 2007 Wed Feb 28 22:39:39 2007 Msieve v. 1.16 Wed Feb 28 22:39:39 2007 random seeds: 101005eb 187da084 Wed Feb 28 22:39:39 2007 factoring 8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027 (100 digits) Wed Feb 28 22:39:40 2007 using multiplier of 3 Wed Feb 28 22:39:40 2007 sieve interval: 9 blocks of size 65536 Wed Feb 28 22:39:40 2007 processing polynomials in batches of 6 Wed Feb 28 22:39:40 2007 using a sieve bound of 2751557 (99744 primes) Wed Feb 28 22:39:40 2007 using large prime bound of 412733550 (28 bits) Wed Feb 28 22:39:40 2007 using double large prime bound of 3222593841584400 (43-52 bits) Wed Feb 28 22:39:40 2007 using trial factoring cutoff of 57 bits Wed Feb 28 22:39:40 2007 polynomial 'A' values have 13 factors Wed Feb 28 22:39:40 2007 restarting with 4151 full and 263698 partial relations Thu Mar 1 02:26:09 2007 12719 relations (8672 full + 4047 combined from 550728 partial), need 99840 Thu Mar 1 02:26:09 2007 elapsed time 03:46:30 Thu Mar 1 02:40:22 2007 Thu Mar 1 02:40:22 2007 Thu Mar 1 02:40:22 2007 Msieve v. 1.16 Thu Mar 1 02:40:22 2007 random seeds: e3b4d815 047781cd Thu Mar 1 02:40:22 2007 factoring 8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027 (100 digits) Thu Mar 1 02:40:22 2007 using multiplier of 3 Thu Mar 1 02:40:22 2007 sieve interval: 9 blocks of size 65536 Thu Mar 1 02:40:22 2007 processing polynomials in batches of 6 Thu Mar 1 02:40:22 2007 using a sieve bound of 2751557 (99744 primes) Thu Mar 1 02:40:22 2007 using large prime bound of 412733550 (28 bits) Thu Mar 1 02:40:22 2007 using double large prime bound of 3222593841584400 (43-52 bits) Thu Mar 1 02:40:22 2007 using trial factoring cutoff of 57 bits Thu Mar 1 02:40:22 2007 polynomial 'A' values have 13 factors Thu Mar 1 02:40:25 2007 restarting with 8672 full and 550728 partial relations Thu Mar 1 07:20:08 2007 30190 relations (14336 full + 15854 combined from 903383 partial), need 99840 Thu Mar 1 07:20:08 2007 elapsed time 04:39:46 Thu Mar 1 07:30:56 2007 Thu Mar 1 07:30:56 2007 Thu Mar 1 07:30:56 2007 Msieve v. 1.16 Thu Mar 1 07:30:56 2007 random seeds: 38d2b3b4 69611d54 Thu Mar 1 07:30:56 2007 factoring 8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027 (100 digits) Thu Mar 1 07:30:57 2007 using multiplier of 3 Thu Mar 1 07:30:57 2007 sieve interval: 9 blocks of size 65536 Thu Mar 1 07:30:57 2007 processing polynomials in batches of 6 Thu Mar 1 07:30:57 2007 using a sieve bound of 2751557 (99744 primes) Thu Mar 1 07:30:57 2007 using large prime bound of 412733550 (28 bits) Thu Mar 1 07:30:57 2007 using double large prime bound of 3222593841584400 (43-52 bits) Thu Mar 1 07:30:57 2007 using trial factoring cutoff of 57 bits Thu Mar 1 07:30:57 2007 polynomial 'A' values have 13 factors Thu Mar 1 07:31:00 2007 restarting with 14336 full and 903383 partial relations Thu Mar 1 15:05:37 2007 100015 relations (23609 full + 76406 combined from 1496872 partial), need 99840 Thu Mar 1 15:05:39 2007 begin with 1520481 relations Thu Mar 1 15:05:42 2007 reduce to 264112 relations in 11 passes Thu Mar 1 15:05:42 2007 attempting to read 264112 relations Thu Mar 1 15:05:46 2007 recovered 264112 relations Thu Mar 1 15:05:46 2007 recovered 255700 polynomials Thu Mar 1 15:05:47 2007 attempting to build 100015 cycles Thu Mar 1 15:05:47 2007 found 100015 cycles in 6 passes Thu Mar 1 15:05:47 2007 distribution of cycle lengths: Thu Mar 1 15:05:47 2007 length 1 : 23609 Thu Mar 1 15:05:47 2007 length 2 : 17124 Thu Mar 1 15:05:47 2007 length 3 : 16634 Thu Mar 1 15:05:47 2007 length 4 : 13670 Thu Mar 1 15:05:47 2007 length 5 : 10309 Thu Mar 1 15:05:47 2007 length 6 : 7296 Thu Mar 1 15:05:47 2007 length 7 : 4705 Thu Mar 1 15:05:47 2007 length 9+: 6668 Thu Mar 1 15:05:47 2007 largest cycle: 23 relations Thu Mar 1 15:05:48 2007 matrix is 99744 x 100015 with weight 6892518 (avg 68.91/col) Thu Mar 1 15:05:49 2007 filtering completed in 3 passes Thu Mar 1 15:05:49 2007 matrix is 98293 x 98357 with weight 6706543 (avg 68.19/col) Thu Mar 1 15:05:51 2007 saving the first 48 matrix rows for later Thu Mar 1 15:05:51 2007 matrix is 98245 x 98357 with weight 5288937 (avg 53.77/col) Thu Mar 1 15:05:51 2007 matrix includes 32 packed rows Thu Mar 1 15:12:18 2007 lanczos halted after 1555 iterations Thu Mar 1 15:12:18 2007 recovered 15 nontrivial dependencies Thu Mar 1 15:12:20 2007 prp45 factor: 623346172585568150454866799443866912070379169 Thu Mar 1 15:12:20 2007 prp56 factor: 13306031615599752194914775123337309874878370542863648083 Thu Mar 1 15:12:21 2007 elapsed time 07:41:25
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(23·10174+1)/3 = 7(6)1737<175> = C175
C175 = P82 · P94
P82 = 1160607580637197436909970824725037202415122085752327758687078618700131481703406693<82>
P94 = 6605735473877836429266158816256245412965621347106431956774582202198506986337160850347488301519<94>
Number: trial N=7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 175 digits) SNFS difficulty: 176 digits. Divisors found: r1=1160607580637197436909970824725037202415122085752327758687078618700131481703406693 (pp82) r2=6605735473877836429266158816256245412965621347106431956774582202198506986337160850347488301519 (pp94) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 524.24 hours. Scaled time: 261.59 units (timescale=0.499). Factorization parameters were as follows: n: 7666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 100000000000000000000000000000000000 c5: 23 c0: 10 skew: 1 type: snfsFactor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 12000001) Primes: RFBsize:501962, AFBsize:502936, largePrimes:6573231 encountered Relations: rels:7075654, finalFF:1156659 Max relations in full relation-set: 0 Initial matrix: 1004963 x 1156659 with sparse part having weight 73670169. Pruned matrix : 875281 x 880369 with weight 56635738. Total sieving time: 421.19 hours. Total relation processing time: 2.85 hours. Matrix solve time: 99.19 hours. Time per square root: 1.01 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 524.24 hours. --------- CPU info (if available) ----------
P82 is the largest factor found by GGNFS so far in our tables. Congratulations!
See also Records.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
2·10153-1 = 1(9)153<154> = 15691768246211<14> · C141
C141 = P69 · P72
P69 = 353513036560672278720383066571230366372013904846573971289155955705721<69>
P72 = 360539354070797054614614477395854393904128587102075385793873356333263229<72>
Number: 19999_153 N=127455361857190846931918977265359562320737650559762438370891685772080440799934245153725798549661033306725368901569294000250485152745554233109 ( 141 digits) SNFS difficulty: 153 digits. Divisors found: r1=353513036560672278720383066571230366372013904846573971289155955705721 (pp69) r2=360539354070797054614614477395854393904128587102075385793873356333263229 (pp72) Version: GGNFS-0.77.1-20050930-k8 Total time: 18.09 hours. Scaled time: 16.28 units (timescale=0.900). Factorization parameters were as follows: n: 127455361857190846931918977265359562320737650559762438370891685772080440799934245153725798549661033306725368901569294000250485152745554233109 m: 2000000000000000000000000000000 c5: 125 c0: -2 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176703, largePrimes:5510413 encountered Relations: rels:5411193, finalFF:473639 Max relations in full relation-set: 28 Initial matrix: 353070 x 473639 with sparse part having weight 41868614. Pruned matrix : 299602 x 301431 with weight 23572181. Total sieving time: 17.27 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.69 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 18.09 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(10153+11)/3 = (3)1527<153> = 21713 · 1958639 · C142
C142 = P47 · P96
P47 = 56012047933977242644746128635736463158657930621<47>
P96 = 139933940296037326170860171696111127188198457902149369986513673643425230148449166105666454124371<96>
Number: 33337_153 N=7837986571451952337344021664199398173461416743422190003615130300703792594977381173662233460335937902016270973969313815005514673204533423264391 ( 142 digits) SNFS difficulty: 153 digits. Divisors found: r1=56012047933977242644746128635736463158657930621 (pp47) r2=139933940296037326170860171696111127188198457902149369986513673643425230148449166105666454124371 (pp96) Version: GGNFS-0.77.1-20050930-k8 Total time: 23.71 hours. Scaled time: 21.41 units (timescale=0.903). Factorization parameters were as follows: n: 7837986571451952337344021664199398173461416743422190003615130300703792594977381173662233460335937902016270973969313815005514673204533423264391 m: 2000000000000000000000000000000 c5: 125 c0: 44 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2400001) Primes: RFBsize:176302, AFBsize:176309, largePrimes:5522255 encountered Relations: rels:5355675, finalFF:397759 Max relations in full relation-set: 28 Initial matrix: 352677 x 397759 with sparse part having weight 36285588. Pruned matrix : 338033 x 339860 with weight 27748899. Total sieving time: 22.55 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.02 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 23.71 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
10190+3 = 1(0)1893<191> = 7 · 109 · 1999 · 9733 · 3233311 · 754010347 · 2866919243941<13> · 17720582280902798851<20> · C133
C133 = P33 · C100
P33 = 655722163172284079918744219522347<33>
C100 = [8294263879886669337889452986894589163143089933573829537603544076933357431118781123536752128389983027<100>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
10178+3 = 1(0)1773<179> = 7 · 157 · 24245477791<11> · 5078466902270143<16> · 4569709099059178801353087954144739<34> · C116
C116 = P57 · P59
P57 = 841050813852720381404892919400005717849954152346218888253<57>
P59 = 19227735730244777938096884405431184217580235872014168819807<59>
Number: 10003_178 N=16171502784467401319287662621859897744129487788677630030766407486502790213752219467024595149277155013321436626027171 ( 116 digits) Divisors found: r1=841050813852720381404892919400005717849954152346218888253 (pp57) r2=19227735730244777938096884405431184217580235872014168819807 (pp59) Version: GGNFS-0.77.1-20050930-k8 Total time: 31.02 hours. Scaled time: 28.04 units (timescale=0.904). Factorization parameters were as follows: name: 10003_178 n: 16171502784467401319287662621859897744129487788677630030766407486502790213752219467024595149277155013321436626027171 skew: 59320.44 # norm 8.29e+15 c5: 18360 c4: -5896211018 c3: -169978952505995 c2: 19216375200484044757 c1: 295044772439832950255035 c0: -5091579523182641313914445475 # alpha -6.33 Y1: 648790286489 Y0: -15451715806320998022694 # Murphy_E 5.24e-10 # M 2075202453831472643899126093394648510121006128741731540160248918241614765343065675054342930282131187537282500185585 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3075001) Primes: RFBsize:256726, AFBsize:257167, largePrimes:7603714 encountered Relations: rels:7597769, finalFF:672489 Max relations in full relation-set: 28 Initial matrix: 513974 x 672489 with sparse part having weight 59145054. Pruned matrix : 388056 x 390689 with weight 34744662. Total sieving time: 29.17 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.52 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 31.02 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
10178+3 = 1(0)1773<179> = 7 · 157 · 24245477791<11> · 5078466902270143<16> · C149
C149 = P34 · C116
P34 = 4569709099059178801353087954144739<34>
C116 = [16171502784467401319287662621859897744129487788677630030766407486502790213752219467024595149277155013321436626027171<116>]
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(55·10153-1)/9 = 6(1)153<154> = 3 · 72 · 59 · 499 · 4433601500999501<16> · C132
C132 = P36 · P96
P36 = 443171310398193925665075725975649587<36>
P96 = 718657553936836885321598272947467364542248403492347369865271322934439134580238588061966073028939<96>
Number: 61111_153 N=318488409905748732335262453779275118109518084807264340557733279354756102540104018347999743339896897734455486744819880964471174398193 ( 132 digits) SNFS difficulty: 156 digits. Divisors found: r1=443171310398193925665075725975649587 (pp36) r2=718657553936836885321598272947467364542248403492347369865271322934439134580238588061966073028939 (pp96) Version: GGNFS-0.77.1-20050930-k8 Total time: 23.26 hours. Scaled time: 21.07 units (timescale=0.906). Factorization parameters were as follows: n: 318488409905748732335262453779275118109518084807264340557733279354756102540104018347999743339896897734455486744819880964471174398193 m: 10000000000000000000000000000000 c5: 11 c0: -20 skew: 1.13 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2600001) Primes: RFBsize:216816, AFBsize:217532, largePrimes:5648529 encountered Relations: rels:5672716, finalFF:610597 Max relations in full relation-set: 28 Initial matrix: 434414 x 610597 with sparse part having weight 46505927. Pruned matrix : 319951 x 322187 with weight 28817513. Total sieving time: 22.20 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.91 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 23.26 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
10180+3 = 1(0)1793<181>= 28123846354801856041<20> · 846519155191153820587<21> · C140
C140 = P35 · P105
P35 = 77061435151581887669779157560546231<35>
P105 = 545068896844122913071888795078742584270297590744667404658731433888121502839542622364777079658746154067239<105>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(28·10153-1)/9 = 3(1)153<154> = 3 · 2156207 · 8622287 · 599155396153<12> · C128
C128 = P51 · P78
P51 = 758789025710646472692249434850475074640894740293827<51>
P78 = 122693293575279404068194860876165197135028729140976454096131624341950993818503<78>
Number: 31111_153 N=93098324693216579417753550046991752832637021075594278760522148525511109448795692087399923815341074215583301555795522034929280981 ( 128 digits) SNFS difficulty: 155 digits. Divisors found: r1=758789025710646472692249434850475074640894740293827 (pp51) r2=122693293575279404068194860876165197135028729140976454096131624341950993818503 (pp78) Version: GGNFS-0.77.1-20050930-k8 Total time: 19.61 hours. Scaled time: 17.77 units (timescale=0.906). Factorization parameters were as follows: n: 93098324693216579417753550046991752832637021075594278760522148525511109448795692087399923815341074215583301555795522034929280981 m: 10000000000000000000000000000000 c5: 7 c0: -25 skew: 1.29 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2400001) Primes: RFBsize:216816, AFBsize:216906, largePrimes:5406288 encountered Relations: rels:5274106, finalFF:488668 Max relations in full relation-set: 28 Initial matrix: 433788 x 488668 with sparse part having weight 34023429. Pruned matrix : 393569 x 395801 with weight 23880608. Total sieving time: 18.36 hours. Total relation processing time: 0.09 hours. Matrix solve time: 1.12 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 19.61 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Yousuke Koide / GMP-ECM
10812+1 = 1(0)8111<813> = 73 · 137 · 233 · 7841 · 355193 · 17456377 · 21591416633<11> · 127522001020150503761<21> · 17468739848498438039329935679794457<35> · 320326994163169943384295066992439316655840979654890345228609<60> · C665
C665 = P33 · C633
P33 = 144919694966021542240510318821809<33>
C633 = [395331939737645320291413064117561097049246687109905814427194810304353495921929416126294305229072789125855534815576659488174603154390875860634149548209175383448724590281810799154139648183136729921980128112325848586411749334562196253224749514725985439259582812608720279719207754040268684455927656154375997917489451629418896999620634088684149924321190877325892101533587902648474485664803938673414481754826326389029692982503772120395159833178519597418300782371333265894526366450300708586722070814774924029567261873002611140424872633891019926511850875956451902172967028046865109519247953630446750690804572155699886510959628554374758738857<633>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(86·10153+31)/9 = 9(5)1529<154> = 11 · 157 · 593447 · 355701609695516717<18> · C128
C128 = P43 · P86
P43 = 2333147258247029252947881169964585045658781<43>
P86 = 11234498342156787134685645268358398193131468455122513168368272096894919519757431168343<86>
Number: 95559_153 N=26211739004783903442088690574964455578189548285351447620659647136122658039301734190181588545726298787223130741712855492947169883 ( 128 digits) SNFS difficulty: 155 digits. Divisors found: r1=2333147258247029252947881169964585045658781 (pp43) r2=11234498342156787134685645268358398193131468455122513168368272096894919519757431168343 (pp86) Version: GGNFS-0.77.1-20050930-k8 Total time: 28.68 hours. Scaled time: 25.98 units (timescale=0.906). Factorization parameters were as follows: n: 26211739004783903442088690574964455578189548285351447620659647136122658039301734190181588545726298787223130741712855492947169883 m: 2000000000000000000000000000000 c5: 5375 c0: 62 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216097, largePrimes:5600692 encountered Relations: rels:5519089, finalFF:512518 Max relations in full relation-set: 28 Initial matrix: 432979 x 512518 with sparse part having weight 41128559. Pruned matrix : 389202 x 391430 with weight 27957400. Total sieving time: 27.31 hours. Total relation processing time: 0.11 hours. Matrix solve time: 1.20 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 28.68 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1.1 B1=11000000
10199+3 = 1(0)1983<200> = 13 · 4533299 · 259556761 · 111011352372742720485057131<27> · 505135145839533539009957298516389<33> · C125
C125 = P41 · P84
P41 = 16093036459190114862200718359175889466551<41>
P84 = 724430892695841602220008780254282449815290128891715782166558993784367540920500492781<84>
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
(52·10199-7)/9 = 5(7)199<200> = 3 · 19 · 13119178847<11> · 21322941493829819<17> · 27313233753447177563<20> · 411351101494831873367498992021260976263151<42> · C111
C111 = P46 · P66
P46 = 1272101379026747903707298354196236477819089199<46>
P66 = 253527282351532668908867579235496341067847640059655454647818415871<66>
Number: 57777_199 N=322512405500288394218032710154255774087278705689799529635356287413030666368619768153870436563708339820226277329 ( 111 digits) Divisors found: r1=1272101379026747903707298354196236477819089199 (pp46) r2=253527282351532668908867579235496341067847640059655454647818415871 (pp66) Version: GGNFS-0.77.1-20050930-k8 Total time: 19.89 hours. Scaled time: 17.98 units (timescale=0.904). Factorization parameters were as follows: name: 57777_199 n: 322512405500288394218032710154255774087278705689799529635356287413030666368619768153870436563708339820226277329 skew: 19049.31 # norm 4.62e+15 c5: 56940 c4: 8333311569 c3: 130378450823455 c2: -3457389236060032737 c1: 7122233774699597553648 c0: 26218571313762820195500400 # alpha -5.75 Y1: 129261245377 Y0: -1414570610242647704179 # Murphy_E 8.37e-10 # M 244908670307495451176391156578070089225011585752165573221271866723377090566827216829777892597738977141074837489 type: gnfs rlim: 2400000 alim: 2400000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 60000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1200000, 2040001) Primes: RFBsize:176302, AFBsize:176810, largePrimes:7526749 encountered Relations: rels:7290349, finalFF:434299 Max relations in full relation-set: 28 Initial matrix: 353195 x 434299 with sparse part having weight 42494161. Pruned matrix : 299074 x 300903 with weight 27376589. Total sieving time: 18.86 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.75 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2400000,2400000,27,27,50,50,2.6,2.6,60000 total time: 19.89 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
(2·10157-17)/3 = (6)1561<157> = C157
C157 = P60 · P98
P60 = 628486628437275763243226019561267587348336747741014522686317<60>
P98 = 10607491655380562300466288136354207234632798963479344661061680154739676571597744074392683606884633<98>
Number: 66661_157 N=6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 157 digits) SNFS difficulty: 157 digits. Divisors found: r1=628486628437275763243226019561267587348336747741014522686317 (pp60) r2=10607491655380562300466288136354207234632798963479344661061680154739676571597744074392683606884633 (pp98) Version: GGNFS-0.77.1-20050930-k8 Total time: 27.11 hours. Scaled time: 24.59 units (timescale=0.907). Factorization parameters were as follows: n: 6666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 10000000000000000000000000000000 c5: 200 c0: -17 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216541, largePrimes:5667132 encountered Relations: rels:5652586, finalFF:569599 Max relations in full relation-set: 28 Initial matrix: 433422 x 569599 with sparse part having weight 46045150. Pruned matrix : 356719 x 358950 with weight 28863014. Total sieving time: 25.81 hours. Total relation processing time: 0.10 hours. Matrix solve time: 1.15 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 27.11 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.63 BogoMIPS (lpj=2335816) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.10 BogoMIPS).
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
(52·10199-7)/9 = 5(7)199<200> = 3 · 19 · 13119178847<11> · 21322941493829819<17> · 27313233753447177563<20> · C153
C153 = P42 · C111
P42 = 411351101494831873367498992021260976263151<42>
C111 = [322512405500288394218032710154255774087278705689799529635356287413030666368619768153870436563708339820226277329<111>]
By Yousuke Koide / GMP-ECM
(101485-1)/9 = (1)1485<1485> = 33 · 31 · 37 · 41 · 67 · 199 · 271 · 397 · 757 · 991 · 1321 · 21649 · 34849 · 55243 · 62921 · 198397 · 238681 · 333667 · 471241 · 513239 · 1577071 · 2906161 · 16357951 · 18679321 · 60834511 · 83251631 · 310362841 · 1981560241<10> · 31351842721<11> · 258360989311<12> · 31600574312077<14> · 440334654777631<15> · 545431981101481<15> · 596298133647227881<18> · 1344628210313298373<19> · 4185502830133110721<19> · 165426670443186506567467<24> · 1300635692678058358830121<25> · 138267770127916457629034873443951<33> · 483418418597220677238517353915231961831<39> · 16860090181450569942798606214497570829921<41> · 1703548913892494075097664562023844278044121<43> · 362853724342990469324766235474268869786311886053883<51> · 7907009307594694001053552000588658391100974093457603716419437<61> · 1113954903312329460800701782039373182801635744784098645224633477<64> · [88415092713367678139008031849456036531214635443710603842417450647749425991456343388066542975721610469026836129783834813518385505575072089337317444944320083700084281<164>] · C695
C695 = P34 · C662
P34 = 4035237932666608861051093768608241<34>
C662 = [14491961854759997987318745440205865717215092235131607457539451297044985828137745987618751910779935337450743029169715116165130001535712858818542505553012159022658570403931283147158358096058156927519056819695880820440205164069148370546551136152026451401191468202488142651601966386910139935847132556803499130069122366612387262070859275372869822375695150111399077632325143331047045000707169517942466827613230622811019760241780737321155276049750304376977883406746688008002436878234529678022439754363890579416396792468847348438177735168318288241130782120589812040887053417704682926423525859672694505398099632321848048462247957579965155055393914376032729548547886567561<662>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Thomas Womack / gmp-ecm 6.1.2 B1=10^7
(52·10180-7)/9 = 5(7)180<181> = C181
C181 = P40 · C142
P40 = 1907145664709063958354268537876114943171<40>
C142 = [3029541940446998167772966488018297475181566383829140811226747765285330708447334102021603405973003072683807287017514072821950182110331738508987<142>]
By Thomas Womack / gmp-ecm 6.1.2 B1=10000000
(4·10174-13)/9 = (4)1733<174> = C174
C174 = P35 · P139
P35 = 87397362083737992740080811306657947<35>
P139 = 5085330195877183357332537501058300188350678694002609720879352861143821239003179780252075511657845817249891108582299028154671201878554346369<139>
By Thomas Womack / ggnfs-0.77.0
8·10161-3 = 7(9)1607<162> = 112 · C160
C160 = P51 · P110
P51 = 250747836796484155922888159263112237486391376320671<51>
P110 = 26367406923235271511544763325616291041131768180892905671230128715401910040795595415317934691655387997292702267<110>
r1 = 26367406923235271511544763325616291041131768180892905671230128715401910040795595415317934691655387997292702267 r2 = 250747836796484155922888159263112237486391376320671 Total time: 42.61 hours. Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 3850001) Relations: rels:5942000, finalFF:809129 Initial matrix: 631709 x 809129 with sparse part having weight 46075762. Pruned matrix : 557525 x 560747 with weight 22467359. Total sieving time: 39.60 hours. Total relation processing time: 0.16 hours. Matrix solve time: 2.76 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 42.61 hours.
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8
2·10166-9 = 1(9)1651<167> = C167
C167 = P43 · P124
P43 = 4342608369450320053307697679764984011450663<43>
P124 = 4605526977909722451833107953713650779997398871974627226660275324682668177795505331963035514480056136584527504258436835169457<124>
Number: 19991_166 N=19999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 167 digits) SNFS difficulty: 166 digits. Divisors found: r1=4342608369450320053307697679764984011450663 (pp43) r2=4605526977909722451833107953713650779997398871974627226660275324682668177795505331963035514480056136584527504258436835169457 (pp124) Version: GGNFS-0.77.1-20050930-k8 Total time: 69.64 hours. Scaled time: 63.03 units (timescale=0.905). Factorization parameters were as follows: n: 19999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 1000000000000000000000000000000000 c5: 20 c0: -9 skew: 1 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 5700001) Primes: RFBsize:412849, AFBsize:412306, largePrimes:5923360 encountered Relations: rels:6223470, finalFF:960819 Max relations in full relation-set: 28 Initial matrix: 825222 x 960819 with sparse part having weight 43152556. Pruned matrix : 703215 x 707405 with weight 28666743. Total sieving time: 66.35 hours. Total relation processing time: 0.12 hours. Matrix solve time: 3.11 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,166,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.5,2.5,100000 total time: 69.64 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.60 BogoMIPS (lpj=2335804) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.08 BogoMIPS).
(10395-1)/9 = (1)395<395> = 41 · 271 · 317 · 6163 · 10271 · 307627 · 870801991 · 25439781075319591<17> · 49172195536083790769<20> · 4706625334158237778391951<25> · 3660574762725521461527140564875080461079917<43> · C262
C262 = P54 · P209
P54 = 388603184868446209952357338208961774763421470820867551<54>
P209 = 22212532982654486103266742473370118653419410820133470750925842805231785671919088995453275587554965715421794773862472837122581772057977997807066409510062713778700204701764277608437512924874155027264480537635511<209>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Shusuke Kubota / GGNFS-0.77.0
(73·10154-1)/9 = 8(1)154<155> = 32 · C154
C154 = P41 · P113
P41 = 93458549042255332010768816824559015680981<41>
P113 = 96431474395537659290440617511664931557542477458136745046691918305873367117076472604700705384745959369588944243859<113>
Number: 88881-155 N=9012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 ( 154 digits) SNFS difficulty: 156 digits. Divisors found: r1=93458549042255332010768816824559015680981 (pp41) r2=96431474395537659290440617511664931557542477458136745046691918305873367117076472604700705384745959369588944243859 (pp113) Version: GGNFS-0.77.0 Total time: 56.41 hours. Scaled time: 46.48 units (timescale=0.824). Factorization parameters were as follows: n: 9012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679012345679 m: 10000000000000000000000000000000 c5: 73 c0: -10 skew: 1 type: snfs qintsize: 25000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2875000) Relations: rels:5526542, finalFF:505041 Initial matrix: 433502 x 505041 with sparse part having weight 40814331. Pruned matrix : 418963 x 421194 with weight 26453378. Total sieving time: 51.15 hours. Total relation processing time: 0.43 hours. Matrix solve time: 4.69 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 56.41 hours. --------- CPU info (if available) ----------
By Thomas Womack / GGNFS-0.77.0
(5·10153+13)/9 = (5)1527<153> = 109 · 1756903 · 1035843636655735339<19> · C127
C127 = P35 · P92
P35 = 50145955190901622584127136372141099<35>
P92 = 55849990274513738302544705045190770656055373081642160005471409653566216764003101702841243831<92>
r1 = 50145955190901622584127136372141099 r2 = 55849990274513738302544705045190770656055373081642160005471409653566216764003101702841243831 SNFS difficulty: 154 digits. Divisors found: r1=50145955190901622584127136372141099 (pp35) r2=55849990274513738302544705045190770656055373081642160005471409653566216764003101702841243831 (pp92) Version: GGNFS-0.77.0 Total time: 26.69 hours. Scaled time: 42.86 units (timescale=1.606). Sieved special-q in [1200000, 2300001) Relations: rels:5620503, finalFF:527326 Initial matrix: 352875 x 527326 with sparse part having weight 48316105. Pruned matrix : 321712 x 323540 with weight 19282768. Total sieving time: 24.69 hours. Total relation processing time: 0.15 hours. Matrix solve time: 1.79 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.69 hours.
By Yousuke Koide / GMP-ECM
(10825-1)/9 = (1)825<825> = 3 · 31 · 37 · 41 · 67 · 151 · 271 · 1321 · 4201 · 7151 · 15401 · 21401 · 21649 · 25601 · 59951 · 62921 · 143551 · 471241 · 513239 · 2906161 · 83251631 · 182521213001<12> · 1344628210313298373<19> · 155460646275454423201<21> · 1300635692678058358830121<25> · 138267770127916457629034873443951<33> · 2495283264895779020253203931608951<34> · 15763985553739191709164170940063151<35> · 1703548913892494075097664562023844278044121<43> · 6069650333889644423896816835276507778804898705650161138729963603757211141984131085449988328049514249213169785004014797295919583814686411189300687347453551<154> · C375
C375 = P43 · P333
P43 = 2088776436021648629103222560680031099644951<43>
P333 = 214528843968953631928063476651039061041063809962416030964828547787541153707714846521305533494862873734486298787721809249575564868485587852627557513243818964260757025571864734011221992206979184553651791551471337682785524853615509168758324340944481464694072720676919519406523000680246989690635604205812979868199506676258154640779755801<333>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Jo Yeong Uk / GGNFS-0.77.1-20050930-k8 gnfs
(7·10184-43)/9 = (7)1833<184> = 3 · 2087 · 173267 · 92637580320041260534335543461<29> · 54923797941083258665408610502743<32> · C115
C115 = P49 · P67
P49 = 1383615489945228484659595198563915740434096933951<49>
P67 = 1018433770708324513989795221242712535071162592913196540345250819023<67>
Number: 77773_184 N=1409120740635364908607465067802764562290036915063588145837948055243262006073639575459991601899495173541955885349873 ( 115 digits) Divisors found: r1=1383615489945228484659595198563915740434096933951 (pp49) r2=1018433770708324513989795221242712535071162592913196540345250819023 (pp67) Version: GGNFS-0.77.1-20050930-k8 Total time: 31.91 hours. Scaled time: 28.94 units (timescale=0.907). Factorization parameters were as follows: name: 77773_184 n: 1409120740635364908607465067802764562290036915063588145837948055243262006073639575459991601899495173541955885349873 skew: 57408.89 # norm 1.21e+16 c5: 14280 c4: -8199350774 c3: -148304488649521 c2: 21405458101595154052 c1: 142537809412331697636336 c0: -11062522908965943983877268608 # alpha -6.44 Y1: 1229138586269 Y0: -9973558664403551923037 # Murphy_E 5.60e-10 # M 936351327745923239120694157973164494754818427960473456494344742826592099052997543653036754399328806873797529005227 type: gnfs rlim: 3600000 alim: 3600000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 75000 Factor base limits: 3600000/3600000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1800000, 3075001) Primes: RFBsize:256726, AFBsize:256781, largePrimes:7532171 encountered Relations: rels:7446703, finalFF:614994 Max relations in full relation-set: 28 Initial matrix: 513590 x 614994 with sparse part having weight 53608083. Pruned matrix : 430894 x 433525 with weight 34153324. Polynomial selection time: 1.31 hours. Total sieving time: 28.56 hours. Total relation processing time: 0.17 hours. Matrix solve time: 1.72 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3600000,3600000,27,27,50,50,2.4,2.4,75000 total time: 31.91 hours. --------- CPU info (if available) ---------- CPU0: Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz stepping 06 Memory: 4037276k/5242880k available (2106k kernel code, 0k reserved, 1297k data, 196k init) Calibrating delay using timer specific routine.. 4671.60 BogoMIPS (lpj=2335804) Calibrating delay using timer specific routine.. 4668.47 BogoMIPS (lpj=2334238) Total of 2 processors activated (9340.08 BogoMIPS).
By Yousuke Koide / GMP-ECM
(10765-1)/9 = (1)765<765> = 32 · 31 · 37 · 41 · 271 · 307 · 613 · 18973 · 210631 · 238681 · 333667 · 2071723 · 2906161 · 11910133 · 52986961 · 262533041 · 5363222357<10> · 8119594779271<13> · 25332185271529<14> · 77967508765681<14> · 13168164561429877<17> · 41331541464123787<17> · 4185502830133110721<19> · 17452955481423492661946457391<29> · 34194473116159546979818689031<29> · 4222100119405530170179331190291488789678081<43> · 13753721844250167674053932561585423251305429858083649<53> · 2385503624916094046163570223793978575506412147454036200711<58> · C385
C385 = P39 · P346
P39 = 513179642980665929403935269209265889161<39>
P346 = 1950585947224940419950248867026805880899314052934810675053013776673117345436439511928719471294613511792179585771032825256940078928817403205519252806576240803441065824757216160174665670758508088069382574508854177932682656221426002932789572902329615434652326605290218636214671926683628663404694204326895954873066839725116831163068208522081531521441<346>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Philippe Strohl / GMP-ECM, GGNFS-0.77.1-20060722-pentium-m
(7·10181-43)/9 = (7)1803<181> = 3 · 60487457 · 63749185262142707<17> · C156
C156 = P35 · P122
P35 = 64777876741657802572555583806019627<35>
P122 = 10379288937582466970916981607412631488017397024321519329007965704922134757985272848817679210368742928554294200964291659967<122>
(7·10184-43)/9 = (7)1833<184> = 3 · 2087 · 173267 · 92637580320041260534335543461<29> · C146
C146 = P32 · C115
P32 = 54923797941083258665408610502743<32>
C115 = [1409120740635364908607465067802764562290036915063588145837948055243262006073639575459991601899495173541955885349873<115>]
(7·10190-43)/9 = (7)1893<190> = 3 · 379853 · 1653502611689<13> · 223033235529943<15> · C158
C158 = P32 · P126
P32 = 30617702251306471516292760426167<32>
P126 = 604465682901527770286687448552777681175592272944031753571377173281664702601341986824877637011967643421219608087996220150348483<126>
(7·10171-43)/9 = (7)1703<171> = 199 · 151305076042521491<18> · C152
C152 = P42 · P43 · P68
P42 = 121495956675387278043299989858967591123701<42>
P43 = 7068538249965126094045281972629883093163147<43>
P68 = 30078593090070246841437934832118520753770865013385674443419876087151<68>
By Philippe Strohl / GMP-ECM
(7·10191-43)/9 = (7)1903<191> = 896542069 · 151215945352530419<18> · 834957171990917126025520458563<30> · C152
C152 = P37 · P99
P37 = 1555638964216566815934684090827554843<37>
P99 = 441686633572614353856740837849121421170592905576897104142793452892615860092900755744822879464359827<99>
By Shusuke Kubota / GMP-ECM 6.0.1 B1=1000000, GGNFS-0.77.0 gnfs
(17·10153-71)/9 = 1(8)1521<154> = 3 · 11 · 458033732131576820267<21> · C132
C132 = P34 · P45 · P53
P34 = 2487441325075200197121778501595359<34>
P45 = 935061187428302940375031505062267678199121469<45>
P53 = 53728180464604315513396648915975156149011893915038001<53>
Number: 18881-153 N=50239136223595060423269539592167071615943681788416865006866027868792606935588881818866205949943469 ( 98 digits) Divisors found: r1=935061187428302940375031505062267678199121469 (pp45) r2=53728180464604315513396648915975156149011893915038001 (pp53) Version: GGNFS-0.77.0 Total time: 16.77 hours. Scaled time: 13.76 units (timescale=0.820). Factorization parameters were as follows: name: 18881-153 n: 50239136223595060423269539592167071615943681788416865006866027868792606935588881818866205949943469 m: 1709282966443362906 deg: 5 c5: 3443280 c4: 4131057000 c3: -144180038412326 c2: -1723950652316668 c1: 5865605519247624248 c0: -848169666955669766435 skew: 725.838 type: gnfs # adj. I(F,S) = 47.844 # E(F1,F2) = 2.926012e-03 # GGNFS version 0.77.0 polyselect. # Options were: # lcd=1, enumLCD=2, maxS1=58.00000000, seed=1170826781. # maxskew=1500.0 # These parameters should be manually set: rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 50000 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 1950001) Relations: rels:3911307, finalFF:340161 Initial matrix: 270265 x 340161 with sparse part having weight 28787639. Pruned matrix : 247996 x 249411 with weight 15276957. Total sieving time: 14.69 hours. Total relation processing time: 0.35 hours. Matrix solve time: 1.51 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,97,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 16.77 hours. --------- CPU info (if available) ----------
By Bruce Dodson / GMP-ECM
10266+1 = 1(0)2651<267> = 29 · 101 · 281 · 2129 · 121499449 · 14691812549<11> · 722817036322379041<18> · 1369778187490592461<19> · 1728095716605342484009<22> · C182
C182 = P52 · P130
P52 = 3845225778323318739662926792353902964405172909187389<52>
P130 = 4859378131018035310593858490137688922829468686775068797577396520148545290055799616742354372616293735785798821073310265896384033181<130>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(13·10153-1)/3 = 4(3)153<154> = 7 · 661 · 797 · 460916575998112074071727299<27> · C121
C121 = P54 · P68
P54 = 199795892670038144209829374746205946009729446983267859<54>
P68 = 12760138661362256349935504330320109597229231443037841109860164508027<68>
Number: trial N=2549423294440337571087290903497700361859461239948612878825560392658318637774911572584694853772175150748353008237496604193 ( 121 digits) SNFS difficulty: 154 digits. Divisors found: r1=199795892670038144209829374746205946009729446983267859 (pp54) r2=12760138661362256349935504330320109597229231443037841109860164508027 (pp68) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 70.94 hours. Scaled time: 38.88 units (timescale=0.548). Factorization parameters were as follows: n: 2549423294440337571087290903497700361859461239948612878825560392658318637774911572584694853772175150748353008237496604193 m: 1000000000000000000000000000000 c5: 13000 c0: -1 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2600001) Primes: RFBsize:176302, AFBsize:176953, largePrimes:5649921 encountered Relations: rels:5555582, finalFF:412943 Max relations in full relation-set: 0 Initial matrix: 353322 x 412943 with sparse part having weight 38504182. Pruned matrix : 331910 x 333740 with weight 28482681. Total sieving time: 59.58 hours. Total relation processing time: 0.57 hours. Matrix solve time: 10.38 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 70.94 hours. --------- CPU info (if available) ----------
By suberi / GGNFS-0.77.1-20060513-pentium4
(8·10154-53)/9 = (8)1533<154> = 3 · 7 · 19 · C152
C152 = P49 · P104
P49 = 2109117000218396790445988790435409265621492648171<49>
P104 = 10562674812469988978662532655660065618933586481087912099926424984662629593973290757990833266941366306327<104>
Number: 88883_154 N=22277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917 ( 152 digits) SNFS difficulty: 155 digits. Divisors found: r1=2109117000218396790445988790435409265621492648171 (pp49) r2=10562674812469988978662532655660065618933586481087912099926424984662629593973290757990833266941366306327 (pp104) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 53.54 hours. Scaled time: 33.84 units (timescale=0.632). Factorization parameters were as follows: n: 22277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917014759120022277917 m: 10000000000000000000000000000000 c5: 4 c0: -265 skew: 2.31 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216371, largePrimes:5634709 encountered Relations: rels:5587850, finalFF:541403 Max relations in full relation-set: 28 Initial matrix: 433251 x 541403 with sparse part having weight 43022066. Pruned matrix : 372854 x 375084 with weight 27680522. Total sieving time: 46.09 hours. Total relation processing time: 0.35 hours. Matrix solve time: 6.91 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 53.54 hours. --------- CPU info (if available) ----------
By Anonymous
101001+1 = 1(0)10001<1002> = 112 · 23 · 463 · 859 · 4093 · 8009 · 8779 · 24179 · 51767 · 590437 · 909091 · 7444361 · 21705503 · 1058313049<10> · 22144088539<11> · 109313560357<12> · 264752347289<12> · 4539402627853030477<19> · 104730101107272149081<21> · 216031795247629116757<21> · 4924630160315726207887<22> · 50678387411703889101759125785290439894389920385627096501794498837<65> · 34607524609209512562213651270561528862879196390936320471942325254862879783<74> · C685
C685 = P32 · C653
P32 = 82618024434905595106111659338321<32>
C653 = [58178503308788154426291302030707350928236341702129983308363771602879105119870038450937896434351306926832195838172811764529737671608235809780061534507676893306702862878665952965468559129218515193819486430054025214904255822372500866194419422851643203261474792811499761645758008369734627788354249782503720864053338330703456736872798891065209921648587941030445907386080167626025743023118127792717574879066917697833440606515276780249741342049676747757046612644216010177666746964557488809230177420595138964543098172211888391402341224671422980295129401586274555426919525435497071806104833893258096563326906555680874384650491265582875651844594074431054692116931<653>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Kurt Beschorner / GMP-ECM
(101363-1)/9 = (1)1363<1363> = 3191 · 16763 · 43037 · 62003 · 580639 · 35121409 · 569205157 · 77843839397<11> · 509649121665126339920293<24> · 221693470933128952318104031<27> · 316362908763458525001406154038726382279<39> · C1224
C1224 = P30 · C1194
P30 = 795287068884583505529998090507<30>
C1194 = [303053550423437757744577970664347139058174265460996097827735855091960961366617190860861899538339427405302065921323308004694332410780453265553794004513756822368209038844441902309599726063212073788915315822866313526643695616771407660238952357090919109445769850894110083406400864937888101833288067278306468763556061991141637735812818752063838929845320254221932028730902118799572921376401194490286744053625633974823222256070386822901071470266212047977758083287736560454805962821410294269221218466138883248534724699124803763016999874119320088188873423380603419044661818905203746741225061226597240721791112435539530002691526296718763907292498223321401320012291219342972873336424886111381568035786397233783154826935657629585333161391381414575770495792384239420277817996166704389686399904195136501855409808019538835646562852044459239211575894673645778708008519647683157375573098405948287435014337255947307010911001292419835690084361858589494681751918742740383645957261693219402585237639569461609996150772869934210727941413121840947487571997838497930100990291001100537076969586874801586276569972001567327069012872244703569759943095969578175595127498839339587510269198005621059667948789447437782642986957<1194>]
(101417-1)/9 = (1)1417<1417> = 53 · 79 · 592307 · 1192679 · 74383999 · 265371653 · 35224702898191<14> · 712767480971213008079<21> · 5295275348767234696493<22> · 246829743984355435962408390910378218537282105150086881669547<60> · C1269
C1269 = P27 · C1243
P27 = 320759296668278219098942271<27>
C1243 = [1807962964739891266189097056530234806062431767311423328744246983012018469480509986030486092575806531205340633799701714501165255757647960636778704332848091002970907847614870031786506197311736491694548091615354728702238276470555753505102286480946750577799105829175873448773931411486194802387560478953556109800421252377051910887848432972004805875176348604596991067283393186015327300001219122275166001470317555037985576878046909924066826046595406861138007407044607947349804561692439601682308891050632770431801025387194322134807435474333209341495146357837941837551706663872277184691379667841049800124927701696945137899749848756941018168966978497219949386544439607730078717943844176715497535766483923175904691169486082589380849466712498419529363740988161052645728327293980736354239984569025476919263028684103495974518096875427430007362125003715323349166458392306648079506655261994595408652409837318999606971784596145004271200346154069050284165284502300089336496441994324497430903465478316042118552841508288916762534034593841431651854367051273254973426855748143399608480280391066558807548859322585665145716396172940250714548218710694760335882280800696008224923355890289479592821583051861272228680196273820468893343061082725120024319369835150920080067<1243>]
(101541-1)/9 = (1)1541<1541> = 3083 · 416071 · 493121 · 73169879117<11> · 79863595778924342083<20> · 11111111111111111111111<23> · 28213380943176667001263153660999177245677<41> · C1432
C1432 = P27 · C1406
P27 = 453705568156105320101001973<27>
C1406 = [21134651516625743546890394107470844907479101338767920175606829641381409740006066105359778875852557693330672741609769971903490143459321853791621927150388840080978939724048850901854316724028594840222545578756237289839719333944013510117329696331418528887043082498707522884927211722756355953420758843956706414456395748205730175240795380943328077101500432000606746309699225335852275849208810579013996932425337858730804408430076455488292782663754279650536042416841571872994763623564370557928084924692369433971807291184955462748659972340620316419998766214376110878039100970605546328475282329672793112780945215005900449423748649485575832923817067261319677247616470177480667543260307649641155900211417251124900673058337339052575004426303516852740850083831820888199155367665484662813601732714457812587267307725453146328707543884479978031437792448373540869436638720441463327503700034899467797981715427485727388369367494620211186531624606909762218646618344073281919148141141103101374642913607603429301308817846134680270940432922295257930326912840385952450105869326719027661322184642246076759572589955126651100077599548810133757709419575105659702183751467048010072475380106330080726264759988336691270828091597604129022525679595125180138288946082224994462694280827181587124958906971098972669340113833079048056605666830126595568874371693442218186856330033320899529202798532949224792235565371115950824730876872577562530307<1406>]
(101789-1)/9 = (1)1789<1789> = 39359 · 15367511 · 1553903933<10> · 1036330801552389631<19> · C1750
C1750 = P24 · C1726
P24 = 289319996763559834545559<24>
C1726 = [3942837499439788061006944005045960718031486305577669627347253650039890321211994289379151938973310874850909435607956123122373090697532769795751167924693837794161082874840439638501132104303263899086924115533649057636244015830444657773516604004037438543727777073203302412364862600498176849479949473377539411452728745169933045051932389267734062359088160828713934870961080362842267605776193414549899550396053896313811933135608302426066443951706346413481958933433688342021908673459058683089585505795767461215484375046250361597762305765392896560557743728592263890398335486220705008931781533659816577900022386517954802174214486603572948890913445984059319713144031993677879920870496666548344818537213927754061002698478647910543381380073623428605053342609122482475738206920326824464327619038724816610030642905609614072435312429524191225206369486913501903002277803975049628855245626076186828913477216013920331439226922420525254233442729472850030206453751204580226244005963622625739486689341400829788024746459418073871675281540798930149401936448596412966292470988929859007344438577764846698397140012506376736645041912539548266216913362399399032412908581595079247559109902038049591748329385786055846889351909274757252136756090688205433305699729684759624710529568581942894558580807538053455910285653760969235114134103679010678018567507583541013942437863524408140562028399790265985729515306715849629150272650273129300704875740641586416956958650682921949181587381455061374245833631347378093122836134452241005704894394879066045192375148941067473715818860137578458100687319496055787232337883524420144853590949474086092966954941929991699950779540584381552340206530079269381878652437099530645734013689177173442931238693436585294711171175497278627<1726>]
101173+1 = 1(0)11721<1174> = 7 · 11 · 13 · 47 · 103 · 139 · 2531 · 4013 · 31051 · 2955961 · 2140571729<10> · 21993833369<11> · 37633218241<11> · 291078844423<12> · 837042695779<12> · 9101279023169<13> · 143574021480139<15> · 549797184491917<15> · 377526955309799110357<21> · 24649445347649059192745899<26> · 473608692432035450677211738101499095303<39> · 10716938719047367538834654373404752406351326801836497222088230040131663586216274781916394062442922695303181507242106723273347077744999936956310904046369389147208937313522359019479619429347564668082983985444056247726866683751993403229947286059050999830315193876492518147194037<275> · C693
C693 = P28 · C665
P28 = 5718695187661520881538869249<28>
C665 = [19010644145695322442596197267125042884422868255022599767493290364039234062415429333907999864691739173795260320378861055964127145682409009427107712529810252464517289298080164319904869840576256342883389125818582402079952512042858297115608946297491656759114204785207287207243576094138786865390191547258635907677241328093726205037638267062013156683163911676808858057446736948956303893626662973050170317203867973298049356744746481831901972743222598577141036541608397443502337218886325093431887273649028091617509913303741217594022418581681618959379282154580275142153998626983832153956552170243293669205787041806706605636159791777704358392669878320221138319342230431351721<665>]
101193+1 = 1(0)11921<1194> = 11 · 59651 · 53979914146049857432194823<26> · C1162
C1162 = P30 · C1133
P30 = 198967330445464802733582366889<30>
C1133 = [14189778742392371822642464950295420598664613116648809753042689444870476667678262283972005038116540843336863837863764148879121448975368096535914316580611824820280358541845177484282962523673492504056748411707282673481645254762423336182533392931917615081877746791397835188974222778151311424184745536567736162654982777184515925485753546325716404087091870903092275328177951082186392981158347804800448785726152060403108870700513166920826189555108851673010918501338004327589779330197106265408955344060922120410917888447706962950356306376942817414547580241131328456968130947355118062783781411462622375933899030723810309604218581357118013526489734378995893972825454915362359640168679374586440064527973918906860115103631093524224684768949076317452365838495117769189761295766298889392238273398605877114850710885226216618560741198378653014548830718195754193150403671240372569916849086223167646058546438327863231841205948476087420301663949934620211238040821675676819201872339480134979460270733168740906651295908694282683598843883004034032243280079564829227845090271498824504246761717903627496937462197957747979655626804393725202656530686491589503<1133>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(67·10153+23)/9 = 7(4)1527<154> = 11 · 6030653 · 8193403 · 326176421242447441543<21> · C119
C119 = P43 · P76
P43 = 5154315594748468038755725836892835668230311<43>
P76 = 8146806128868512010643223189999358487179665174602492096290584650206693233411<76>
Number: trial N=41991209877419369037432001482964525746811820171841723098290931984019537579033702205003427059699691239093343828828120821 ( 119 digits) SNFS difficulty: 154 digits. Divisors found: r1=5154315594748468038755725836892835668230311 (pp43) r2=8146806128868512010643223189999358487179665174602492096290584650206693233411 (pp76) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 67.72 hours. Scaled time: 34.88 units (timescale=0.515). Factorization parameters were as follows: n: 41991209877419369037432001482964525746811820171841723098290931984019537579033702205003427059699691239093343828828120821 m: 1000000000000000000000000000000 c5: 67000 c0: 23 skew: 1 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2700001) Primes: RFBsize:216816, AFBsize:217321, largePrimes:5617548 encountered Relations: rels:5590468, finalFF:508481 Max relations in full relation-set: 0 Initial matrix: 434204 x 508481 with sparse part having weight 32443032. Pruned matrix : 382267 x 384502 with weight 23492975. Total sieving time: 55.64 hours. Total relation processing time: 0.56 hours. Matrix solve time: 11.02 hours. Time per square root: 0.50 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 67.72 hours. --------- CPU info (if available) ----------
By suberi / GGNFS-0.77.1-20060513-pentium4
(5·10156-23)/9 = (5)1553<156> = C156
C156 = P49 · P108
P49 = 2560846149716872439579858329726586825671575032531<49>
P108 = 216942183589192918421663964578069355218853581414103484953743923902937473987096413182058653625995214621863163<108>
Number: 55553_156 N=555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 ( 156 digits) SNFS difficulty: 156 digits. Divisors found: r1=2560846149716872439579858329726586825671575032531 (pp49) r2=216942183589192918421663964578069355218853581414103484953743923902937473987096413182058653625995214621863163 (pp108) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 62.22 hours. Scaled time: 37.96 units (timescale=0.610). Factorization parameters were as follows: n: 555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555553 m: 10000000000000000000000000000000 c5: 50 c0: -23 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, ) Primes: RFBsize:216816, AFBsize:217086, largePrimes:5742807 encountered Relations: rels:5740934, finalFF:571746 Max relations in full relation-set: 28 Initial matrix: 433967 x 571746 with sparse part having weight 48670665. Pruned matrix : 367071 x 369304 with weight 30938760. Total sieving time: 53.91 hours. Total relation processing time: 0.44 hours. Matrix solve time: 7.68 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 62.22 hours. --------- CPU info (if available) ----------
By Kurt Beschorner / GMP-ECM
(101075-1)/9 = (1)1075<1075> = 41 · 173 · 271 · 431 · 21401 · 25601 · 1527791 · 182521213001<12> · 1963506722254397<16> · 2140992015395526641<19> · 41398275939670867448911914339156680381343777006826487831<56> · C840
C840 = P32 · C809
P32 = 28808518895110018881804272718751<32>
C809 = [34711607481137779185343172568717063853649585607981256386198377523802955101674937658780544823861348911920227642123216535679247669103837522475155674109571330827877424273413589767269899876630170875051449423734879644153648797148657214133378174948653045435306621735367968242996150776676173929074851994253401369223360251902080671630146157701604684771369403136781086510374585437847110162407898647867517026085273167889611696348163648367323493946325384541861626251628996810055789736484792164758749290264880489129700245642965069450249435987606544165556441089849084572024845424821961153276851461743602388067096595478280474790653411469219889993269156750027876209726144359277423206345399199574980124591526006741368479442403172140074454806048167074796407295825522453850061099531834063042167111891660292294188880701000618751<809>]
(101339-1)/9 = (1)1339<1339> = 53 · 79 · 1031 · 2948479 · 7034077 · 265371653 · 376778533 · 134914656772016146559<21> · 153211620887015423991278431667808361439217294295901387715486473457925534859044796980526236853<93> · C1189
C1189 = P34 · C1155
P34 = 9493900906734104973632584503630517<34>
C1155 = [632491207186448318890356683644297741034601907694816173005638750740737186940122497932594560862737202522189814350559651835868449534354515462709460091660741392814285242480113401500238396839063375106786760174836622425912148172669874591463607503550390352096721622033738764417670476128739126566593652232366036313115036262621351370531942058662970675263252135456180530041111456576490840059497947547656297180150865169781921026697092535326559189090901016073621062270288251905350095113048701395892474088679773730180957620791457786874975077274963046507870295886492068449779576980621429573621987926862106957358529979871749003078012483311918918056897022178680906927333023672650547467196330473015376365169819270298135302424463054955275154178508872212669165606005556186097344135313836949668943436468735757706714806656076555645025638238949490301337481793952710831287244059417539551759685294285676541444031993261039619459300689558717767780552414413207728044156319556290785341776021015215167915759238562759219794577748280605771163176444321516668102067580717790586331168633043863180135666797505171251204514617530287681136978427097385346931445452216068468197848426615040752671<1155>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Wataru Sakai / GGNFS-0.77.1-20060513-pentium4
(2·10192-11)/9 = (2)1911<192> = C192
C192 = P51 · P141
P51 = 558618399051833370115786772061914616637233905518207<51>
P141 = 397806843812179113084158478278673278462548559737123328190563207638690256907455600564416540019096658258610880726309405139019884843047677986803<141>
Number: 22221_192 N=222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 ( 192 digits) SNFS difficulty: 192 digits. Divisors found: r1=558618399051833370115786772061914616637233905518207 (pp51) r2=397806843812179113084158478278673278462548559737123328190563207638690256907455600564416540019096658258610880726309405139019884843047677986803 (pp141) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 2650.61 hours. Scaled time: 3353.02 units (timescale=1.265). Factorization parameters were as follows: n: 222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222221 m: 100000000000000000000000000000000000000 c5: 200 c0: -11 skew: 1 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 30100001) Primes: RFBsize:501962, AFBsize:503807, largePrimes:7704137 encountered Relations: rels:8480417, finalFF:1132965 Max relations in full relation-set: 28 Initial matrix: 1005834 x 1132965 with sparse part having weight 156672342. Pruned matrix : 922746 x 927839 with weight 141023585. Total sieving time: 2579.02 hours. Total relation processing time: 2.88 hours. Matrix solve time: 68.25 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: snfs,192,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 2650.61 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(52·10152-7)/9 = 5(7)152<153> = 1621 · 50957 · C145
C145 = P67 · P79
P67 = 2709042073446592170792934274741551206028921382492321254041066670097<67>
P79 = 2582011769442852651209968987523621441279428819480352551729492154606092853851153<79>
Number: trial N=6994778517554969842395789230498133434609117309353844380649105034970307763784602289934718310510036879660349374148178058000442508521116536194071841 ( 145 digits) SNFS difficulty: 154 digits. Divisors found: r1=2709042073446592170792934274741551206028921382492321254041066670097 (pp67) r2=2582011769442852651209968987523621441279428819480352551729492154606092853851153 (pp79) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 62.87 hours. Scaled time: 32.76 units (timescale=0.521). Factorization parameters were as follows: n: 6994778517554969842395789230498133434609117309353844380649105034970307763784602289934718310510036879660349374148178058000442508521116536194071841 m: 2000000000000000000000000000000 c5: 325 c0: -14 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2400001) Primes: RFBsize:176302, AFBsize:176488, largePrimes:5582957 encountered Relations: rels:5444690, finalFF:406954 Max relations in full relation-set: 0 Initial matrix: 352856 x 406954 with sparse part having weight 35869280. Pruned matrix : 334041 x 335869 with weight 26580813. Total sieving time: 51.60 hours. Total relation processing time: 0.49 hours. Matrix solve time: 10.36 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,154,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 62.87 hours. --------- CPU info (if available) ----------
By anonymous / GMP-ECM B1=1000000
(5·10197-41)/9 = (5)1961<197> = 33 · 113 · 7057 · 98731 · 180990319 · 2368810349<10> · 112482036837773<15> · 5364655462624710751<19> · C135
C135 = P32 · P103
P32 = 11964267951850715104560344952589<32>
P103 = 8443351287853077133602447796951347937273196183236859341898751751641591112408103384212454905661287831579<103>
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
(14·10175-41)/9 = 1(5)1741<176> = 11 · 43 · C173
C173 = P46 · P128
P46 = 1971848954400133691125566917937107287858416479<46>
P128 = 16678260045126227226173832334535265219726130696522534014568395028983269564908150799866271813714347853920132775969907902330680553<128>
Number: 15551_175 N=32887009631195677707305614282358468404980032887009631195677707305614282358468404980032887009631195677707305614282358468404980032887009631195677707305614282358468404980032887 ( 173 digits) SNFS difficulty: 176 digits. Divisors found: r1=1971848954400133691125566917937107287858416479 (pp46) r2=16678260045126227226173832334535265219726130696522534014568395028983269564908150799866271813714347853920132775969907902330680553 (pp128) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 390.89 hours. Scaled time: 238.83 units (timescale=0.611). Factorization parameters were as follows: name: 15551_175 n: 32887009631195677707305614282358468404980032887009631195677707305614282358468404980032887009631195677707305614282358468404980032887009631195677707305614282358468404980032887 m: 100000000000000000000000000000000000 c5: 14 c0: -41 skew: 4 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11300001) Primes: RFBsize:501962, AFBsize:502607, largePrimes:6474994 encountered Relations: rels:6944147, finalFF:1127040 Max relations in full relation-set: 0 Initial matrix: 1004635 x 1127040 with sparse part having weight 69379171. Pruned matrix : 898670 x 903757 with weight 54223156. Total sieving time: 335.51 hours. Total relation processing time: 1.06 hours. Matrix solve time: 53.90 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: snfs,176,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 390.89 hours. --------- CPU info (if available) ----------
By anonymous / GMP-ECM B1=250000
(28·10170+17)/9 = 3(1)1693<171> = C171
C171 = P40 · C132
P40 = 1364116464566141004805456799576331094877<40>
C132 = [228067851383980179396737331050460171350301360191884615279312516244379676595735991540084639749089760281280334949498526496536231019869<132>]
By anonymous / GMP-ECM B1=250000
(2·10164-11)/9 = (2)1631<164> = 3 · 7 · C163
C163 = P28 · P135
P28 = 2705744860522788636251121991<28>
P135 = 391094176557577793883311466250837928124679378240286597104225549984604139382887743727588795990566928192149494732283550828037750266209311<135>
(89·10166+1)/9 = 9(8)1659<167> = 3 · 7 · C166
C166 = P31 · C136
P31 = 2145267415169671460471822733293<31>
C136 = [2195061872331785564833392556541334193678898931031362398283536977263473924321435784902869096812578999064592069887228245952439930289418313<136>]
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(14·10152-41)/9 = 1(5)1511<153> = 151 · 973057 · 847196941648551132106333324010269<33> · C112
C112 = P36 · P77
P36 = 108123011159930669845571642420238883<36>
P77 = 11557603368746529230971013510751174250574322894480256454543811212283540578959<77>
Number: trial N=1249642878021033284825168208794036075612473963907528490275936932677995158635356633750195668907903252864903462797 ( 112 digits) SNFS difficulty: 153 digits. Divisors found: r1=108123011159930669845571642420238883 (pp36) r2=11557603368746529230971013510751174250574322894480256454543811212283540578959 (pp77) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 47.63 hours. Scaled time: 26.15 units (timescale=0.549). Factorization parameters were as follows: n: 1249642878021033284825168208794036075612473963907528490275936932677995158635356633750195668907903252864903462797 m: 1000000000000000000000000000000 c5: 1400 c0: -41 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176059, largePrimes:5528339 encountered Relations: rels:5432457, finalFF:410172 Max relations in full relation-set: 0 Initial matrix: 352428 x 410172 with sparse part having weight 28109504. Pruned matrix : 318706 x 320532 with weight 20499291. Total sieving time: 39.98 hours. Total relation processing time: 0.37 hours. Matrix solve time: 6.94 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 47.63 hours. --------- CPU info (if available) ----------
By Shaopu Lin / Msieve v. 1.16
2·10179-9 = 1(9)1781<180> = 11 · 109 · 1531 · 197084090167072070444501<24> · 30192185167289557139962813541<29> · 11175180923359872868625684424731<32> · C91
C91 = P44 · P47
P44 = 38745744185364135989275373176013064492968519<44>
P47 = 42287395639301185430766513250585783292869637311<47>
Fri Jan 26 22:27:14 2007 Fri Jan 26 22:27:14 2007 Fri Jan 26 22:27:14 2007 Msieve v. 1.16 Fri Jan 26 22:27:14 2007 random seeds: a6eb1203 b5238d3a Fri Jan 26 22:27:14 2007 factoring 1638456613705646625512724389739829497429579295062517050049568260367385691018719269270812409 (91 digits) Fri Jan 26 22:27:14 2007 using multiplier of 41 Fri Jan 26 22:27:14 2007 sieve interval: 9 blocks of size 65536 Fri Jan 26 22:27:14 2007 processing polynomials in batches of 6 Fri Jan 26 22:27:14 2007 using a sieve bound of 1648483 (62353 primes) Fri Jan 26 22:27:14 2007 using large prime bound of 145066504 (27 bits) Fri Jan 26 22:27:14 2007 using double large prime bound of 490705292959992 (42-49 bits) Fri Jan 26 22:27:14 2007 using trial factoring cutoff of 51 bits Fri Jan 26 22:27:14 2007 polynomial 'A' values have 12 factors Sat Jan 27 01:15:16 2007 62806 relations (17263 full + 45543 combined from 679877 partial), need 62449 Sat Jan 27 01:15:17 2007 begin with 697140 relations Sat Jan 27 01:15:19 2007 reduce to 149952 relations in 11 passes Sat Jan 27 01:15:19 2007 attempting to read 149952 relations Sat Jan 27 01:15:21 2007 recovered 149952 relations Sat Jan 27 01:15:21 2007 recovered 133574 polynomials Sat Jan 27 01:15:21 2007 attempting to build 62806 cycles Sat Jan 27 01:15:21 2007 found 62806 cycles in 5 passes Sat Jan 27 01:15:21 2007 distribution of cycle lengths: Sat Jan 27 01:15:21 2007 length 1 : 17263 Sat Jan 27 01:15:21 2007 length 2 : 12770 Sat Jan 27 01:15:21 2007 length 3 : 11417 Sat Jan 27 01:15:21 2007 length 4 : 8177 Sat Jan 27 01:15:21 2007 length 5 : 5706 Sat Jan 27 01:15:21 2007 length 6 : 3337 Sat Jan 27 01:15:21 2007 length 7 : 1922 Sat Jan 27 01:15:21 2007 length 9+: 2214 Sat Jan 27 01:15:21 2007 largest cycle: 18 relations Sat Jan 27 01:15:22 2007 matrix is 62353 x 62806 with weight 3655627 (avg 58.21/col) Sat Jan 27 01:15:22 2007 filtering completed in 4 passes Sat Jan 27 01:15:22 2007 matrix is 60789 x 60853 with weight 3464835 (avg 56.94/col) Sat Jan 27 01:15:23 2007 saving the first 48 matrix rows for later Sat Jan 27 01:15:23 2007 matrix is 60741 x 60853 with weight 2679405 (avg 44.03/col) Sat Jan 27 01:15:23 2007 matrix includes 32 packed rows Sat Jan 27 01:17:20 2007 lanczos halted after 962 iterations Sat Jan 27 01:17:20 2007 recovered 17 nontrivial dependencies Sat Jan 27 01:17:23 2007 prp44 factor: 38745744185364135989275373176013064492968519 Sat Jan 27 01:17:23 2007 prp47 factor: 42287395639301185430766513250585783292869637311 Sat Jan 27 01:17:23 2007 elapsed time 02:50:09
(7·10185-61)/9 = (7)1841<185> = 15869070719<11> · 221773283827<12> · 277298503527337722497<21> · 6105120015064145026321<22> · 148620272450318305620892247<27> · C95
C95 = P45 · P51
P45 = 224862363761607190215772027417022972537690791<45>
P51 = 390623396058772295453140324659480039189781576841383<51>
Sat Jan 27 01:39:07 2007 Sat Jan 27 01:39:07 2007 Sat Jan 27 01:39:07 2007 Msieve v. 1.16 Sat Jan 27 01:39:07 2007 random seeds: 423f607f 2ef68dad Sat Jan 27 01:39:07 2007 factoring 87836500178362012339391534087557870391705073829131196795608369383843280519245566419346506803953 (95 digits) Sat Jan 27 01:39:07 2007 using multiplier of 33 Sat Jan 27 01:39:07 2007 sieve interval: 9 blocks of size 65536 Sat Jan 27 01:39:07 2007 processing polynomials in batches of 6 Sat Jan 27 01:39:07 2007 using a sieve bound of 2190817 (81176 primes) Sat Jan 27 01:39:07 2007 using large prime bound of 328622550 (28 bits) Sat Jan 27 01:39:07 2007 using double large prime bound of 2138233886692800 (43-51 bits) Sat Jan 27 01:39:07 2007 using trial factoring cutoff of 55 bits Sat Jan 27 01:39:07 2007 polynomial 'A' values have 12 factors Sat Jan 27 08:17:49 2007 81535 relations (20590 full + 60945 combined from 1191119 partial), need 81272 Sat Jan 27 08:17:51 2007 begin with 1211709 relations Sat Jan 27 08:17:53 2007 reduce to 208204 relations in 10 passes Sat Jan 27 08:17:53 2007 attempting to read 208204 relations Sat Jan 27 08:17:56 2007 recovered 208204 relations Sat Jan 27 08:17:56 2007 recovered 193380 polynomials Sat Jan 27 08:17:57 2007 attempting to build 81535 cycles Sat Jan 27 08:17:57 2007 found 81535 cycles in 6 passes Sat Jan 27 08:17:57 2007 distribution of cycle lengths: Sat Jan 27 08:17:57 2007 length 1 : 20590 Sat Jan 27 08:17:57 2007 length 2 : 14946 Sat Jan 27 08:17:57 2007 length 3 : 14053 Sat Jan 27 08:17:57 2007 length 4 : 10885 Sat Jan 27 08:17:57 2007 length 5 : 8137 Sat Jan 27 08:17:57 2007 length 6 : 5231 Sat Jan 27 08:17:57 2007 length 7 : 3252 Sat Jan 27 08:17:57 2007 length 9+: 4441 Sat Jan 27 08:17:57 2007 largest cycle: 18 relations Sat Jan 27 08:17:58 2007 matrix is 81176 x 81535 with weight 5530736 (avg 67.83/col) Sat Jan 27 08:17:59 2007 filtering completed in 3 passes Sat Jan 27 08:17:59 2007 matrix is 79614 x 79678 with weight 5312625 (avg 66.68/col) Sat Jan 27 08:18:00 2007 saving the first 48 matrix rows for later Sat Jan 27 08:18:00 2007 matrix is 79566 x 79678 with weight 4464667 (avg 56.03/col) Sat Jan 27 08:18:00 2007 matrix includes 32 packed rows Sat Jan 27 08:21:49 2007 lanczos halted after 1260 iterations Sat Jan 27 08:21:49 2007 recovered 17 nontrivial dependencies Sat Jan 27 08:21:50 2007 prp45 factor: 224862363761607190215772027417022972537690791 Sat Jan 27 08:21:50 2007 prp51 factor: 390623396058772295453140324659480039189781576841383 Sat Jan 27 08:21:50 2007 elapsed time 06:42:43
By anonymous / GMP-ECM B1=1000000
3·10187-1 = 2(9)187<188> = 337638313967807182936900258849<30> · 99433004049017708218656527004744377<35> · C123
C123 = P38 · P86
P38 = 47527930809248160978423930812756482163<38>
P86 = 18801394593718690635972065355070083787495002798358052698294076860191499763907183853901<86>
By anonymous / GMP-ECM B1=250000, MSieve v1.16
(88·10194-7)/9 = 9(7)194<195> = 43 · 23003 · 634535111927<12> · 1951393022626261924751<22> · 547570844499373857530554471573<30> · C127
C127 = P32 · P95
P32 = 48107124890599585578495748781261<32>
P95 = 30306592044099494833296625144191873374602388878007797681916634756640525090115817870813053056673<95>
(2·10191-17)/3 = (6)1901<191> = 7 · 173 · 971 · 2927 · 14214359 · 100193434669659501271<21> · 1602281856559924955652817548643<31> · C124
C124 = P31 · P94
P31 = 1644531636700037764624359507241<31>
P94 = 5161488372639752825103822995595924817290232477476092481206743069772069525520002906576390320729<94>
(37·10195-1)/9 = 4(1)195<196> = 71 · 113 · 46807 · 3384119 · 486904141 · 417295439123<12> · 4293419064773<13> · 97703178491495521151<20> · C128
C128 = P27 · P31 · P35 · P37
P27 = 196191505225250176990551527<27>
P31 = 1761861763144099356621413608877<31>
P35 = 20971151211185507399381645857980401<35>
P37 = 5235915257838810422327427243635140559<37>
By Yousuke Koide / GMP-ECM
101122+1 = 1(0)11211<1123> = 89 · 101 · 409 · 3061 · 7481 · 9901 · 1867009 · 5969449 · 28559389 · 134703241 · 259377229 · 330669109 · 1052788969<10> · 1056689261<10> · 1491383821<10> · 5419170769<10> · 155623169021<12> · 225974065503889<15> · 789390798020221<15> · 2324557465671829<16> · 2361000305507449<16> · 44398000479007997569751764249<29> · [86753591722429179196277499864388589956480152295384249796160875422130713714757701234774165691602257489604032643162429671366217011869609438248577758376700876992475958101904038555335751011999472619586747569193118442466419043654128126430212767873933904801118916504403436000264521920016711367535910291073154001<305>] · C617
C617 = P34 · C584
P34 = 1626069667027811730097890497028709<34>
C584 = [38024895493148854800653422613283099215921829542069685361376149530438607273756761856080690798460858306013738403327210096775753858364955072111700913685550086323551314496528572109201746210331371495892159739537730861707388507713450420982812460820500955660272354154047565719880526386831017892454808856584932783761589855269118267078394398844310325020537409424027865400201612007047186241443549154632450444461827579970147399485860432046334343781990972197401352137429710056905803889915605437642224194276297147589246706218777067781645257302547483648186681711700509728333708023948604899809154361<584>]
101134+1 = 1(0)11331<1135> = 29 · 101 · 109 · 281 · 1009 · 2269 · 9901 · 138349 · 153469 · 226549 · 2925721 · 121499449 · 605070649 · 43266855241<11> · 999999000001<12> · 4458192223320340849<19> · 59779577156334533866654838281<29> · 165358820733883770736233015527320175869593121<45> · 22906246896437231227899575633620139766044690040039603689929<59> · 341796090604674881849636380229010216626944264336893367139245334739710314141368913850637159182300704681<102> · [6047454835259897495291763612688187307633783265817592232229921776128879618476797113843402906053007327639026397234531321020396264462376520701053491628306270734047741866573281<172>] · C631
C631 = P31 · C600
P31 = 9391041808951630899634282002781<31>
C600 = [560621332357238934616966299475879185594948023213484989719849902347321607522840870868240982017830818609496576717751001846384992466019177575772113466002928362881638102389245311752023261289995871190888731510926552515187860263342389008022937210983038113151859183801393207845341298386085668783815342356365241094283815795715052041003342637144443511871673205339970315039695946256107631941004511626733919690430244484123521955214196537703861419349594802139614911527667460644786375501470464939842659073308365090467618293426438485316382071831630280526263470317231189296842007453423797425254132235918123995126309<600>]
101176+1 = 1(0)11751<1177> = 17 · 113 · 337 · 54881 · 5882353 · 90982417 · 9999999900000001<16> · 243827582384762881<18> · 73765755896403138401<20> · 403539336813078648113<21> · 119968369144846370226083377<27> · 2070270028985341766616009080161<31> · 5649333362757164788488040397332687608183771313<46> · 1433319827159466789806966856379479179916136529424792832495021393<64> · [7992725630817993387509447658266753245639852185667964923325577122343436495149387850592327530913518038942862729080180818453049855292323904941844008543186707256609661088744711417696766636212293916732420331335060909121431187023889518420170993615058113539941380716719809<265>] · C647
C647 = P31 · P616
P31 = 6026493503971642113374043042529<31>
P616 = 7479886445735310298212281574509336546511732856430925087547061188016676845865995264958848117161322132078362683907579847337705836608461661471467610052096672642482112477495893044762678819315272269257998380984735846571207890240541285222802753354488658169465262832949126119749586317994111722121309522760462519340189609610673636927758365329167905230525383356760951540829820516095240537115382434110142048426496301179744763138100240260075123226913663798333509484702964612409358454187157356940022441684271671949641382237872243785316464905028255039958968839518027891677204894071733245344036271799385225297918407032044365486097<616>
101197+1 = 1(0)11961<1198> = 72 · 11 · 13 · 192 · 127 · 2053 · 2689 · 52579 · 459691 · 909091 · 1458973 · 3014047 · 5274739 · 4410785971<10> · 2911579215499<13> · 425991366045253<15> · 909090909090909091<18> · 247025236977306025681323889<27> · 307010852070382484317401373<27> · 1512142910568778709935813681<28> · 189772422673235585874485732659<30> · 753201806271328462547977919407<30> · 61828645758322140842666144519962696417487<41> · 72021403933746126426491665754465510017877<41> · 17499101101496101893247811440257935152097401<44> · 9284668536078237580134472469990637899155265743957<49> · 6508684267533856834852965580950145565983063793936631379<55> · 13147963643704652632557279758698587212033283223333451187877069162714784603584406816150353817835190742091970171<110> · C615
C615 = P30 · C585
P30 = 237496748126669166794404728277<30>
C585 = [922922847813274238465132665036974822845258340644871405049259288157037278960832039185277361106989442033855182445021438441460557399754790305129137620361964345260321681895127537725577401157304125322364765852776880361958443014430688589178204497272072060536416186604376537044072702325440583554858414064745202261449782554748371997504328009626327185383358681482752898447663266556749331693716692867547107530177574318083085484173010253581739509297324615785328784094793245470981713427472307156882602024997235453435574170873703830526131287425439986638786476519308647363490124573515449894635706459<585>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By anonymous / GMP-ECM
2·10179-9 = 1(9)1781<180> = 11 · 109 · 1531 · 197084090167072070444501<24> · 30192185167289557139962813541<29> · C122
C122 = P32 · C91
P32 = 11175180923359872868625684424731<32>
C91 = [1638456613705646625512724389739829497429579295062517050049568260367385691018719269270812409<91>]
(7·10185-61)/9 = (7)1841<185> = 15869070719<11> · 221773283827<12> · 277298503527337722497<21> · 6105120015064145026321<22> · C122
C122 = P27 · C95
P27 = 148620272450318305620892247<27>
C95 = [87836500178362012339391534087557870391705073829131196795608369383843280519245566419346506803953<95>]
(46·10185-1)/9 = 5(1)185<186> = 408259642487330101945035612397<30> · 3203645235931038405785927946751<31> · C126
C126 = P29 · P97
P29 = 42225614244343951163609141599<29>
P97 = 9254617593308380520522644377019828568736648765423288773779267862870153521377141934322650187063587<97>
By Bruce Dodson / GMP-ECM
10319+1 = 1(0)3181<320> = 112 · 23 · 59 · 1277 · 4093 · 8779 · 357281 · 49561573447<11> · 154083204930662557781201849<27> · C261
C261 = P48 · P213
P48 = 776277205967881079419436133930781972785940099183<48>
P213 = 626657074575157591670286302317367581085608444623672462325497948095754924038193523465028605939320242167544103268138744951272220715162590347092606720139597682209974278152746342271155492839334102785932336774383913103<213>
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By suberi / GGNFS-0.77.1-20060513-pentium4
(65·10152+43)/9 = 7(2)1517<153> = C153
C153 = P67 · P87
P67 = 6550213397685364775986550762989701971314721157128662740183066777671<67>
P87 = 110259342463168051908664963775205452537386095869746869361395515038990560570276567780437<87>
Number: 72227_152 N=722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 ( 153 digits) SNFS difficulty: 153 digits. Divisors found: r1=6550213397685364775986550762989701971314721157128662740183066777671 (pp67) r2=110259342463168051908664963775205452537386095869746869361395515038990560570276567780437 (pp87) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 43.65 hours. Scaled time: 28.11 units (timescale=0.644). Factorization parameters were as follows: n: 722222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222227 m: 1000000000000000000000000000000 c5: 6500 c0: 43 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 100000 ) Primes: RFBsize:176302, AFBsize:176528, largePrimes:5513675 encountered Relations: rels:5400593, finalFF:452520 Max relations in full relation-set: 28 Initial matrix: 352897 x 452520 with sparse part having weight 40973848. Pruned matrix : 314268 x 316096 with weight 25151271. Total sieving time: 38.70 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.53 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 43.65 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
(64·10199-1)/9 = 7(1)199<200> = 213858623010582669308138843<27> · C174
C174 = P37 · P138
P37 = 1077191248228337884969877852893668437<37>
P138 = 308686674498773596485102045607380792674577494444212073502216332070219814475881776793364497854287456457170773816915942831194015229438823921<138>
By anonymous / GGNFS-0.77.1-20060513-athlon-xp
(88·10199-7)/9 = 9(7)199<200> = 4519 · 896656869650457347<18> · 8483312795598774487816778893<28> · 1543835570469777214012062083587<31> · C121
C121 = P48 · P73
P48 = 914873563129692842500063828197206474139300829067<48>
P73 = 2013927998159455384275057837246928675939493887607041425750660883017786337<73>
By suberi / GGNFS-0.77.1-20060513-pentium4
(46·10156-1)/9 = 5(1)156<157> = C157
C157 = P71 · P86
P71 = 67019244981090782189600282925830264926764069416668648055858406658449659<71>
P86 = 76263334696670950528282975338822886018690472664746650628843107889406583521316114469029<86>
Number: 51111_156 N=5111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 ( 157 digits) SNFS difficulty: 157 digits. Divisors found: r1=67019244981090782189600282925830264926764069416668648055858406658449659 (pp71) r2=76263334696670950528282975338822886018690472664746650628843107889406583521316114469029 (pp86) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 51.94 hours. Scaled time: 32.88 units (timescale=0.633). Factorization parameters were as follows: n: 5111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 m: 10000000000000000000000000000000 c5: 460 c0: -1 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2800001) Primes: RFBsize:216816, AFBsize:216621, largePrimes:5675467 encountered Relations: rels:5682667, finalFF:589446 Max relations in full relation-set: 28 Initial matrix: 433504 x 589446 with sparse part having weight 47631889. Pruned matrix : 344252 x 346483 with weight 29516259. Total sieving time: 45.09 hours. Total relation processing time: 0.38 hours. Matrix solve time: 6.28 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 51.94 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(32·10152-23)/9 = 3(5)1513<153> = 166436508169<12> · C142
C142 = P56 · P86
P56 = 24983431076103788248780535505480205082016621953205041909<56>
P86 = 85508008469422781728401987797180068200107544091935710529435160405484716934720561999893<86>
Number: trial N=2136283436050723047271475802452405123406573092123782739942106166426777071226645962304450583198389424242352782711578731736541539865039918515737 ( 142 digits) SNFS difficulty: 153 digits. Divisors found: r1=24983431076103788248780535505480205082016621953205041909 (pp56) r2=85508008469422781728401987797180068200107544091935710529435160405484716934720561999893 (pp86) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 48.45 hours. Scaled time: 26.60 units (timescale=0.549). Factorization parameters were as follows: n: 2136283436050723047271475802452405123406573092123782739942106166426777071226645962304450583198389424242352782711578731736541539865039918515737 m: 2000000000000000000000000000000 c5: 100 c0: -23 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:176568, largePrimes:5365061 encountered Relations: rels:5173821, finalFF:395912 Max relations in full relation-set: 0 Initial matrix: 352934 x 395912 with sparse part having weight 33592138. Pruned matrix : 332328 x 334156 with weight 25008927. Total sieving time: 38.94 hours. Total relation processing time: 0.36 hours. Matrix solve time: 8.79 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 48.45 hours. --------- CPU info (if available) ----------
By anonymous / GMP-ECM 6.0.1 B1=250000
(14·10152-41)/9 = 1(5)1511<153> = 151 · 973057 · C145
C145 = P33 · C112
P33 = 847196941648551132106333324010269<33>
C112 = [1249642878021033284825168208794036075612473963907528490275936932677995158635356633750195668907903252864903462797<112>]
By Philippe Strohl / GMP-ECM 6.1.1, Msieve v. 1.15
(7·10166-43)/9 = (7)1653<166> = 3 · 7481 · 13757 · 148473482141539<15> · 853488537369761<15> · C129
C129 = P32 · P98
P32 = 14538253415215247868020585242079<32>
P98 = 13673889379613398816674163054944244938766219062696794576223016527492008237104180821858195847688303<98>
(7·10167-43)/9 = (7)1663<167> = 53 · 229 · 3067 · 2967427 · 50588827 · C146
C146 = P38 · P108
P38 = 47278220151991681544364704654234008633<38>
P108 = 294397847651944968902502340312163444716371421074662099661707779901800819546932063167621491168426789665148391<108>
(7·10169-43)/9 = (7)1683<169> = 32 · 113 · 49991 · C162
C162 = P31 · C131
P31 = 5632442647674936588605121832519<31>
C131 = [27161013734198267779787441623856865261526769714349621384721227945530504045181223735394220143911476359430775105460879711466662180261<131>]
(7·10174-43)/9 = (7)1733<174> = 2763763 · 684763151954031346584259<24> · C144
C144 = P40 · P41 · P64
P40 = 2473302413612770799643152842693818608929<40>
P41 = 48717161252159813125322496014384853177479<41>
P64 = 3410791362646423058561965131274823744860566964407906465017976259<64>
Msieve v. 1.15 Thu Jan 18 12:37:58 2007 random seeds: 1cc05034 008c3284 Thu Jan 18 12:37:58 2007 factoring 166164072811519690832461794293729536181397138309018877229323442903299839132241567459806526348130335471061 (105 digits) Thu Jan 18 12:37:59 2007 using multiplier of 5 Thu Jan 18 12:37:59 2007 sieve interval: 9 blocks of size 65536 Thu Jan 18 12:37:59 2007 processing polynomials in batches of 6 Thu Jan 18 12:37:59 2007 using a sieve bound of 3877483 (137335 primes) Thu Jan 18 12:37:59 2007 using large prime bound of 581622450 (29 bits) Thu Jan 18 12:37:59 2007 using double large prime bound of 5975222047534050 (44-53 bits) Thu Jan 18 12:37:59 2007 using trial factoring cutoff of 60 bits Thu Jan 18 12:37:59 2007 polynomial 'A' values have 14 factors Thu Jan 18 12:38:05 2007 restarting with 28567 full and 1880708 partial relations Thu Jan 18 17:57:13 2007 137489 relations (31331 full + 106158 combined from 2063696 partial), need 137431 Thu Jan 18 17:58:20 2007 begin with 2095027 relations Thu Jan 18 17:58:39 2007 reduce to 368362 relations in 12 passes Thu Jan 18 17:58:39 2007 attempting to read 368362 relations Thu Jan 18 17:59:35 2007 recovered 368362 relations Thu Jan 18 17:59:36 2007 recovered 362031 polynomials Thu Jan 18 17:59:36 2007 attempting to build 137489 cycles Thu Jan 18 17:59:36 2007 found 137489 cycles in 6 passes Thu Jan 18 17:59:36 2007 distribution of cycle lengths: Thu Jan 18 17:59:36 2007 length 1 : 31331 Thu Jan 18 17:59:36 2007 length 2 : 22747 Thu Jan 18 17:59:36 2007 length 3 : 22468 Thu Jan 18 17:59:36 2007 length 4 : 19018 Thu Jan 18 17:59:36 2007 length 5 : 14682 Thu Jan 18 17:59:36 2007 length 6 : 10283 Thu Jan 18 17:59:36 2007 length 7 : 6972 Thu Jan 18 17:59:36 2007 length 9+: 9988 Thu Jan 18 17:59:36 2007 largest cycle: 25 relations Thu Jan 18 17:59:38 2007 matrix is 137335 x 137489 with weight 9928481 (avg 72.21/col) Thu Jan 18 17:59:39 2007 filtering completed in 3 passes Thu Jan 18 17:59:39 2007 matrix is 135618 x 135682 with weight 9726461 (avg 71.69/col) Thu Jan 18 17:59:40 2007 saving the first 48 matrix rows for later Thu Jan 18 17:59:41 2007 matrix is 135570 x 135682 with weight 7744943 (avg 57.08/col) Thu Jan 18 17:59:41 2007 matrix includes 32 packed rows Thu Jan 18 18:14:22 2007 lanczos halted after 2145 iterations Thu Jan 18 18:14:24 2007 recovered 16 nontrivial dependencies Thu Jan 18 18:14:25 2007 prp41 factor: 48717161252159813125322496014384853177479 Thu Jan 18 18:14:25 2007 prp64 factor: 3410791362646423058561965131274823744860566964407906465017976259
By suberi / GGNFS-0.77.1-20060513-pentium4
(82·10152-1)/9 = 9(1)152<153> = 62011 · 1325918057<10> · C140
C140 = P50 · P90
P50 = 22550069509713664559026749569442993274151819905367<50>
P90 = 491403265370574320319518339345132528573678706318350804575322001861825388135684665475793579<90>
Number: 91111_152 N=11081177791406720661140565361292085684700961206642439012506081693013377229211683049809107096356752560306216353598571706777675679193006238493 ( 140 digits) SNFS difficulty: 153 digits. Divisors found: r1=22550069509713664559026749569442993274151819905367 (pp50) r2=491403265370574320319518339345132528573678706318350804575322001861825388135684665475793579 (pp90) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 50.37 hours. Scaled time: 31.94 units (timescale=0.634). Factorization parameters were as follows: n: 11081177791406720661140565361292085684700961206642439012506081693013377229211683049809107096356752560306216353598571706777675679193006238493 m: 1000000000000000000000000000000 c5: 8200 c0: -1 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2700001) Primes: RFBsize:176302, AFBsize:176209, largePrimes:5716740 encountered Relations: rels:5645464, finalFF:433017 Max relations in full relation-set: 28 Initial matrix: 352578 x 433017 with sparse part having weight 45882923. Pruned matrix : 324886 x 326712 with weight 31719937. Total sieving time: 43.89 hours. Total relation processing time: 0.40 hours. Matrix solve time: 5.88 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 50.37 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
5·10152-1 = 4(9)152<153> = 6855481 · 2245341102733892629<19> · C128
C128 = P54 · P74
P54 = 744672514925099317753393598897750509322858911004792161<54>
P74 = 43619875480449736340301463870436173570992711432762799275899219166322466491<74>
Number: trial N=32482522374746180058621483531208610399036688675149812231189223879705895716746882551984274642698225023160685803137554338341977051 ( 128 digits) SNFS difficulty: 152 digits. Divisors found: r1=744672514925099317753393598897750509322858911004792161 (pp54) r2=43619875480449736340301463870436173570992711432762799275899219166322466491 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 47.42 hours. Scaled time: 24.85 units (timescale=0.524). Factorization parameters were as follows: n: 32482522374746180058621483531208610399036688675149812231189223879705895716746882551984274642698225023160685803137554338341977051 m: 1000000000000000000000000000000 c5: 500 c0: -1 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:175758, largePrimes:5321331 encountered Relations: rels:5123801, finalFF:397027 Max relations in full relation-set: 0 Initial matrix: 352126 x 397027 with sparse part having weight 34163740. Pruned matrix : 330330 x 332154 with weight 25010739. Total sieving time: 37.60 hours. Total relation processing time: 0.37 hours. Matrix solve time: 9.06 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 47.42 hours. --------- CPU info (if available) ----------
By Yousuke Koide / GMP-ECM
(101083-1)/9 = (1)1083<1083> = 3 · 37 · 21319 · 10749631 · 81671197 · 14830831597<11> · 100110048074161<15> · 1111111111111111111<19> · 88231338953639484307<20> · 103143975536225777711<21> · 1290118416840734700343441<25> · 2747268108721464854672161<25> · 3931123022305129377976519<25> · 4604283618329785428488803<25> · 11614395396735967816534625117<29> · 220706363362058009698248377980921202870796191<45> · [191052108988079642161639478453077817431939492714409561224107609992762821015057864360563144173296784309543301342314616278756836677316469309622645791578584595972760708661277734651667182128879712026387<198>] · C612
C612 = P33 · C579
P33 = 281997552115245416778864294482683<33>
C579 = [402086827149525774203662574494762629781977575683448426528585129955793038573903462046000944607841346127321128768455654455924188986573902734362553095147618565475236745929228030480592036362734811733853089917782754468236923798842212827701672228437829439017037811329791783886407486347321166723616477001381322703982864461430430770579143530473025432640645589916634282025494866497100131324334144862038619504404398219865858608567272827886724898522016094545757984781148617753287717459033960492246352633577245622244313202654308552812851000246392034695534030715521754959243493574827942501717<579>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(7·10152-1)/3 = 2(3)152<153> = 83 · 113 · 727 · 2451016031350978753621<22> · C125
C125 = P44 · P81
P44 = 26409294675329952520047051769456344988144483<44>
P81 = 528667830402888076655586260487501175538292363907075027865455219436299973499985007<81>
Number: trial N=13961744518477230470350606331141294339438120672030969453053758445119353748825714158062698843568975300693893288090793249766381 ( 125 digits) SNFS difficulty: 152 digits. Divisors found: r1=26409294675329952520047051769456344988144483 (pp44) r2=528667830402888076655586260487501175538292363907075027865455219436299973499985007 (pp81) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 43.19 hours. Scaled time: 22.16 units (timescale=0.513). Factorization parameters were as follows: n: 13961744518477230470350606331141294339438120672030969453053758445119353748825714158062698843568975300693893288090793249766381 m: 1000000000000000000000000000000 c5: 700 c0: -1 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:176098, largePrimes:5270546 encountered Relations: rels:5044165, finalFF:395396 Max relations in full relation-set: 0 Initial matrix: 352467 x 395396 with sparse part having weight 33232459. Pruned matrix : 329623 x 331449 with weight 23770136. Total sieving time: 33.68 hours. Total relation processing time: 0.32 hours. Matrix solve time: 8.80 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 43.19 hours. --------- CPU info (if available) ----------
By suberi / GGNFS-0.77.1-20060513-pentium4
(89·10152+1)/9 = 9(8)1519<153> = C153
C153 = P44 · P110
P44 = 10190419905946011268576405253557768498330481<44>
P110 = 97041034424094909444203541070911753967506741360316917336324363078053621728588507016698294822884773453384829769<110>
Number: 98889_152 N=988888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 ( 153 digits) SNFS difficulty: 153 digits. Divisors found: r1=10190419905946011268576405253557768498330481 (pp44) r2=97041034424094909444203541070911753967506741360316917336324363078053621728588507016698294822884773453384829769 (pp110) Version: GGNFS-0.77.1-20060513-pentium4 Total time: 43.91 hours. Scaled time: 25.77 units (timescale=0.587). Factorization parameters were as follows: n: 988888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888889 m: 1000000000000000000000000000000 c5: 8900 c0: 1 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176708, largePrimes:5432566 encountered Relations: rels:5283059, finalFF:427140 Max relations in full relation-set: 28 Initial matrix: 353077 x 427140 with sparse part having weight 38289802. Pruned matrix : 323868 x 325697 with weight 25340331. Total sieving time: 38.58 hours. Total relation processing time: 0.32 hours. Matrix solve time: 4.83 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,153,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 43.91 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(82·10151+71)/9 = 9(1)1509<152> = 3 · 11 · C151
C151 = P44 · P107
P44 = 35069973450053660193547829746422455292614743<44>
P107 = 78726685233305657195869491293886236269349095897975770932964245045062337031935266807921069259133902472143401<107>
Number: trial N=2760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760943 ( 151 digits) SNFS difficulty: 152 digits. Divisors found: r1=35069973450053660193547829746422455292614743 (pp44) r2=78726685233305657195869491293886236269349095897975770932964245045062337031935266807921069259133902472143401 (pp107) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 48.94 hours. Scaled time: 26.53 units (timescale=0.542). Factorization parameters were as follows: n: 2760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760942760943 m: 1000000000000000000000000000000 c5: 820 c0: 71 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2100001) Primes: RFBsize:176302, AFBsize:177415, largePrimes:5450553 encountered Relations: rels:5305620, finalFF:400263 Max relations in full relation-set: 0 Initial matrix: 353784 x 400263 with sparse part having weight 29574952. Pruned matrix : 328941 x 330773 with weight 22211379. Total sieving time: 39.83 hours. Total relation processing time: 0.37 hours. Matrix solve time: 8.35 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 48.94 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1-20060722-pentium4
10174+9 = 1(0)1739<175> = 17 · 61 · 1549 · 2389 · 100193 · 322986173 · 6165013601203081<16> · C136
C136 = P60 · P76
P60 = 208421712381864306682687832510484289595729702062678553885057<60>
P76 = 6266937537962105847323092604694692272408337913842644374735743827566692617849<76>
Number: 10009_174 N=1306165853052246849781899785761522612064909196147670902104619894369304705937455838360831479554162941730696135578839680075251560772582393 ( 136 digits) SNFS difficulty: 175 digits. Divisors found: r1=208421712381864306682687832510484289595729702062678553885057 (pp60) r2=6266937537962105847323092604694692272408337913842644374735743827566692617849 (pp76) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 377.97 hours. Scaled time: 255.13 units (timescale=0.675). Factorization parameters were as follows: name: 10009_174 n: 1306165853052246849781899785761522612064909196147670902104619894369304705937455838360831479554162941730696135578839680075251560772582393 m: 100000000000000000000000000000000000 c5: 1 c0: 90 skew: 4 type: snfs Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3700000, 11100001) Primes: RFBsize:501962, AFBsize:502106, largePrimes:6479175 encountered Relations: rels:6943230, finalFF:1125572 Max relations in full relation-set: 0 Initial matrix: 1004132 x 1125572 with sparse part having weight 67043105. Pruned matrix : 899940 x 905024 with weight 52364715. Total sieving time: 323.38 hours. Total relation processing time: 1.57 hours. Matrix solve time: 52.66 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 377.97 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(71·10151-17)/9 = 7(8)1507<152> = 7 · 11 · C151
C151 = P31 · P120
P31 = 2205331001349523573387368105769<31>
P120 = 464570181938256034584375771245098460597040578279992603056301171490975801434203173520421749936099623719003021600191268699<120>
Number: trial N=1024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531 ( 151 digits) SNFS difficulty: 152 digits. Divisors found: r1=2205331001349523573387368105769 (pp31) r2=464570181938256034584375771245098460597040578279992603056301171490975801434203173520421749936099623719003021600191268699 (pp120) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 56.86 hours. Scaled time: 27.41 units (timescale=0.482). Factorization parameters were as follows: n: 1024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531024531 m: 1000000000000000000000000000000 c5: 710 c0: -17 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2300001) Primes: RFBsize:176302, AFBsize:176394, largePrimes:5541572 encountered Relations: rels:5380892, finalFF:396083 Max relations in full relation-set: 0 Initial matrix: 352763 x 396083 with sparse part having weight 35361529. Pruned matrix : 336068 x 337895 with weight 27207539. Total sieving time: 46.19 hours. Total relation processing time: 0.48 hours. Matrix solve time: 9.73 hours. Time per square root: 0.47 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 56.86 hours. --------- CPU info (if available) ----------
By Alexander Mkrtychyan / ECM 6.1.1 B1=250000, GGNFS gnfs
(13·10152-31)/9 = 1(4)1511<153>= 3 · 19 · 13897843 · 1472439017099<13> · C132
C132 = P29 · P36 · P67
P29 = 69203916985256093273443311767<29>
P36 = 348036351261652831474816398956189791<36>
P67 = 5141454366009327072515341569204717595183088932017476504080654912297<67>
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(32·10151-23)/9 = 3(5)1503<152> = 33 · 11 · 751 · C147
C147 = P35 · P49 · P63
P35 = 29704376250087176089384555018418717<35>
P49 = 7329957724845526430867535194461391003844188206139<49>
P63 = 732131639319491982759033718127556933102481696860560835703262873<63>
Number: trial N=159408355887124935800775422021168433359585896943494221198023535647444509702240135736215037886882834360271851024921005687391247385329350117040603799 ( 147 digits) SNFS difficulty: 152 digits. Divisors found: r1=29704376250087176089384555018418717 (pp35) r2=7329957724845526430867535194461391003844188206139 (pp49) r3=732131639319491982759033718127556933102481696860560835703262873 (pp63) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 42.66 hours. Scaled time: 23.16 units (timescale=0.543). Factorization parameters were as follows: n: 159408355887124935800775422021168433359585896943494221198023535647444509702240135736215037886882834360271851024921005687391247385329350117040603799 m: 2000000000000000000000000000000 c5: 10 c0: -23 skew: 1.18 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2000001) Primes: RFBsize:176302, AFBsize:176848, largePrimes:5314675 encountered Relations: rels:5109303, finalFF:397925 Max relations in full relation-set: 0 Initial matrix: 353216 x 397925 with sparse part having weight 34108941. Pruned matrix : 329641 x 331471 with weight 24727169. Total sieving time: 33.39 hours. Total relation processing time: 0.31 hours. Matrix solve time: 8.56 hours. Time per square root: 0.40 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 42.66 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.1 B1=11000000
(22·10199-1)/3 = 7(3)199<200> = C200
C200 = P37 · C164
P37 = 3916191119470963292419684811737586897<37>
C164 = [18725677857938635102800293854827076679431418635663009851050014378555511187283752984298513248021481688538630054612852943075905187223262519297988713024848150252683589<164>]
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(68·10151+13)/9 = 7(5)1507<152> = 7 · 112 · 47419 · 12673998341<11> · C135
C135 = P65 · P70
P65 = 49485565672041586998733670851755250709829332943434100817742227397<65>
P70 = 2999427830798455535060535857115593476513217672800509841431136058898137<70>
Number: trial N=148428382899526212777811198132944467792004330764376905321699883663179315020730966778383238234201544317147463027711347263226731913659389 ( 135 digits) SNFS difficulty: 152 digits. Divisors found: r1=49485565672041586998733670851755250709829332943434100817742227397 (pp65) r2=2999427830798455535060535857115593476513217672800509841431136058898137 (pp70) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 49.49 hours. Scaled time: 26.87 units (timescale=0.543). Factorization parameters were as follows: n: 148428382899526212777811198132944467792004330764376905321699883663179315020730966778383238234201544317147463027711347263226731913659389 m: 1000000000000000000000000000000 c5: 680 c0: 13 skew: 1 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 1 ) Primes: RFBsize:176302, AFBsize:176093, largePrimes:5609088 encountered Relations: rels:5535765, finalFF:399520 Max relations in full relation-set: 0 Initial matrix: 352462 x 399520 with sparse part having weight 27003417. Pruned matrix : 328388 x 330214 with weight 20757565. Total sieving time: 44.17 hours. Total relation processing time: 0.46 hours. Matrix solve time: 4.47 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 49.49 hours. --------- CPU info (if available) ----------
By Alexander Mkrtychyan / GMP-ECM 6.1.1
2·10154-1 = 1(9)154<155> = 7 · 47 · 6473 · 60889 · 820757286744157311721<21> · C123
C123 = P30 · P93
P30 = 709409658839905576587856324121<30>
P93 = 264897466561486457459040040838987171311953866242931984277806029435709662518462889628767297703<93>
(8·10157-17)/9 = (8)1567<157> = 7 · C157
C157 = P28 · C129
P28 = 8739994595235952825155053837<28>
C129 = [145290852986733231960131889761460491703794538807068334652232282714626655166495302127159129035785015114582751752183571455452299093<129>]
By Yousuke Koide / GMP-ECM
(10767-1)/9 = (1)767<767> = 53 · 79 · 305267 · 52306333 · 265371653 · 22214840363<11> · 2559647034361<13> · 4340876285657460212144534289928559826755746751<46> · C673
C673 = P40 · C633
P40 = 2853501516303948010794020280793592455507<40>
C633 = [889174648697326939177684178268996371003045246228078861746645062156730400269719384944790989153058757148303931075688667206199979737929977594118405280407892375436810251127379517901088006159225027254825092728128056986443222555451048911731324918821013872861811819723206169438781888017389966772691574054134710717924112989922189761624097116462890343930462811061144042405510972749980054180919764197806156130640326602991234046425531622069602350611573632172807373054802126586780509133235592708043145380986200739118832686526332661035841701755113675284212097858014641864160740582669607631627484363510546376918980352636496474171658410323177124641<633>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Alexander Mkrtychyan / GMP-ECM 6.1.1 B1=250000
(71·10198-17)/9 = 7(8)1977<199> = 3 · 214174957 · C191
C191 = P31 · C160
P31 = 7028572982139370167790480255649<31>
C160 = [1746862562467380248119030911967387426321458529683450495371415590591659222234729701631478386438280766700113951265045633708921823699119520795223624506675796515953<160>]
By Alexander Mkrtychyan / ggnfs-0.77.1-20060513-win32-athlon-xp gnfs
(71·10182-17)/9 = 7(8)1817<183> = 379 · 1021 · 2254085732632417<16> · 70354500661406300509<20> · 12897936240962970721879<23> · C120
C120 = P44 · P77
P44 = 13855196374270107186027526900439874151942013<44>
P77 = 71937552978293304611770250967086159641208638041183449177873097949335842345303<77>
r1=13855196374270107186027526900439874151942013 (pp44) r2=71937552978293304611770250967086159641208638041183449177873097949335842345303 (pp77) skew: 44899.59 # norm 2.44e+016 c5: 36540 c4: -12653216212 c3: 487308661251077 c2: 24468059663304010833 c1: 43344197537957658137219 c0: -2793341395855198500654392085 # alpha -5.46 Y1: 1416246269647 Y0: -122225074088335592900342 # Murphy_E 2.94e-010 # M 892389320392560569094612128195562317644209955514499986657591571589603307854782580578088218581614492481306060370855465122 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.4 alambda: 2.4 special-q: [2000000;2708819)U[3000000;3256093) maxrelsinff=14 rels:9724854, initialFF:0, finalFF:772267 Pruning matrix with wt=0.700 Initial matrix is 664491 x 772267 with sparse part having weight 50696051. (total weight is 89193220) Matrix pruned to 610266 x 613652 with weight 33681497. factors found on 0 dependency
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(64·10151+53)/9 = 7(1)1507<152> = 7 · 11 · 16094242777874151616807<23> · C128
C128 = P55 · P74
P55 = 1203829898530831982368976018578666612940790262374639019<55>
P74 = 47666258705407778643846255032921079760125039476078784971539438996875578437<74>
Number: trial N=57382067380675432813932087137355619458933771524799307680083423847570082150658194677901984048504274751332116408746591264695233303 ( 128 digits) SNFS difficulty: 152 digits. Divisors found: r1=1203829898530831982368976018578666612940790262374639019 (pp55) r2=47666258705407778643846255032921079760125039476078784971539438996875578437 (pp74) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 54.26 hours. Scaled time: 27.83 units (timescale=0.513). Factorization parameters were as follows: n: 57382067380675432813932087137355619458933771524799307680083423847570082150658194677901984048504274751332116408746591264695233303 m: 2000000000000000000000000000000 c5: 20 c0: 53 skew: 1.22 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1200000, 2200001) Primes: RFBsize:176302, AFBsize:175293, largePrimes:5554678 encountered Relations: rels:5471328, finalFF:394558 Max relations in full relation-set: 0 Initial matrix: 351661 x 394558 with sparse part having weight 26795082. Pruned matrix : 329629 x 331451 with weight 20952925. Total sieving time: 45.59 hours. Total relation processing time: 0.51 hours. Matrix solve time: 7.79 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 54.26 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20060722-pentium4
(2·10157+7)/9 = (2)1563<157> = 32 · 109 · 2617 · 532529 · 1600321 · 10276598863<11> · C128
C128 = P57 · P72
P57 = 275644563889396195991601548242531083466591268839139865547<57>
P72 = 358563065522327430052239803536935822255232574805406605801612939291916351<72>
Number: trial N=98835959822746937698308102564263258552782657865133587909723978877125659006562567345781266447367330423891517396177228162110858997 ( 128 digits) SNFS difficulty: 157 digits. Divisors found: r1=275644563889396195991601548242531083466591268839139865547 (pp57) r2=358563065522327430052239803536935822255232574805406605801612939291916351 (pp72) Version: GGNFS-0.77.1-20060722-pentium4 Total time: 71.01 hours. Scaled time: 31.96 units (timescale=0.450). Factorization parameters were as follows: n: 98835959822746937698308102564263258552782657865133587909723978877125659006562567345781266447367330423891517396177228162110858997 m: 10000000000000000000000000000000 c5: 200 c0: 7 skew: 1 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 1 ) Primes: RFBsize:216816, AFBsize:216921, largePrimes:5627776 encountered Relations: rels:5564900, finalFF:499188 Max relations in full relation-set: 0 Initial matrix: 433802 x 499188 with sparse part having weight 36071355. Pruned matrix : 403610 x 405843 with weight 26335382. Total sieving time: 59.98 hours. Total relation processing time: 0.55 hours. Matrix solve time: 10.00 hours. Time per square root: 0.48 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 71.01 hours. --------- CPU info (if available) ----------