By Sinkiti Sibata / GGNFS-0.77.1
(2·10151+43)/9 = (2)1507<151> = 7 · 24749 · 18201677391168885163267<23> · C123
C123 = P40 · P84
P40 = 1585382450759782582185874826963629040021<40>
P84 = 444514908669606312113740192443485361556662962048015388348253890530047576482332604727<84>
Number: 22227_151 N=704726135305881380763457905432516149604684708960469500046876760389060373827717286927921031365688899072885646461907456779267 ( 123 digits) SNFS difficulty: 151 digits. Divisors found: r1=1585382450759782582185874826963629040021 (pp40) r2=444514908669606312113740192443485361556662962048015388348253890530047576482332604727 (pp84) Version: GGNFS-0.77.1 Total time: 40.28 hours. Scaled time: 24.05 units (timescale=0.597). Factorization parameters were as follows: name: 22227_151 n: 704726135305881380763457905432516149604684708960469500046876760389060373827717286927921031365688899072885646461907456779267 m: 1000000000000000000000000000000 c5: 20 c0: 43 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2200001) Relations: rels:5286269, finalFF:407284 Initial matrix: 352666 x 407284 with sparse part having weight 36430728. Pruned matrix : 342380 x 344207 with weight 24722093. Total sieving time: 35.20 hours. Total relation processing time: 0.27 hours. Matrix solve time: 4.64 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 40.28 hours. --------- CPU info (if available) ----------
By Yousuke Koide / GMP-ECM
(10867-1)/9 = (1)867<867> = 3 · 37 · 613 · 42773 · 210631 · 2071723 · 52986961 · 93101929 · 1112647111<10> · 5363222357<10> · 234771432523<12> · 6270681177984151<16> · 13168164561429877<17> · 93195753455238027770502373<26> · 25086158646798685749029022942725879293529996353937930044688310225209792405267161387550045665503080767367139652501504645587640324255739525766942448322852994756555563269219516158897234150632016254115138596672215506548424356751044570760748443769<242> · C500
C500 = P35 · C465
P35 = 74451201112778571232641337987561693<35>
C465 = [880749077926577843124022815543905243436243176981401822934212608916166210959442844004644678747282196938320657996123515308248887369738488527950161888653706681327573251104889523953376829693033793283094622861344739155192294195184259873540811658992698965037197713469231389139638849886390678504680208926869468306142739078126584537647973856670716121049791242618239094923624268494318233201634115438047557084451257111644843007270532012304405353201017823761171061173636448711<465>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS-0.77.1
(10172+17)/9 = (1)1713<172> = 3 · 7 · 72168249258114728606726201031397<32> · C138
C138 = P56 · P83
P56 = 63400031508097228233880422309192926529285713463921363067<56>
P83 = 11563852734794061499333658649310855699552076107764096814479223746909899650565236147<83>
Number: 11113_172 N=733148627740939799927300997517632842383966933831900770855308243545825232400868389092834346740014256341748837898283664204679161320979182849 ( 138 digits) SNFS difficulty: 172 digits. Divisors found: r1=63400031508097228233880422309192926529285713463921363067 (pp56) r2=11563852734794061499333658649310855699552076107764096814479223746909899650565236147 (pp83) Version: GGNFS-0.77.1 Total time: -596245.03 hours. Scaled time: -396502.95 units (timescale=0.665). Factorization parameters were as follows: name: 11113_172 n: 733148627740939799927300997517632842383966933831900770855308243545825232400868389092834346740014256341748837898283664204679161320979182849 m: 10000000000000000000000000000000000 c5: 100 c0: 17 skew: 3 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 9100001) Relations: rels:6487146, finalFF:930680 Initial matrix: 825809 x 930680 with sparse part having weight 68493812. Pruned matrix : 788756 x 792949 with weight 49116979. Total sieving time: -596270.61 hours. Total relation processing time: 1.42 hours. Matrix solve time: 23.87 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: -596245.03 hours. --------- CPU info (if available) ----------
Note: The informations of the elapsed time are something wrong. Corrected sieving time is 252.63 hours and total time is 278.21 hours.
The repunit factor tables, Factorizations of 11...11 (Repunit) and Factorizations of 100...001, were updated in response to the changes of Factorizations of Repunit Numbers maintained by Yousuke Koide. There are more than 300 factors which have been imported and four corrected factorizations; (101488-1)/9, (101626-1)/9, 101116+1 and 101860+1.
By Sinkiti Sibata / GGNFS-0.77.1
(10172+53)/9 = (1)1717<172> = C172
C172 = P61 · P111
P61 = 1820564273244167614352936931494044490043637812425486039550179<61>
P111 = 610311389408492932205757446216163980731782153242779699711015601594898956611692200384114483457561447170835483023<111>
Number: 11117_172 N=1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 ( 172 digits) SNFS difficulty: 172 digits. Divisors found: r1=1820564273244167614352936931494044490043637812425486039550179 (pp61) r2=610311389408492932205757446216163980731782153242779699711015601594898956611692200384114483457561447170835483023 (pp111) Version: GGNFS-0.77.1 Total time: 324.90 hours. Scaled time: 216.06 units (timescale=0.665). Factorization parameters were as follows: name: 11117_172 n: 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111117 m: 10000000000000000000000000000000000 c5: 100 c0: 53 skew: 3 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 10500001) Relations: rels:6689497, finalFF:941034 Initial matrix: 825039 x 941034 with sparse part having weight 80343340. Pruned matrix : 789261 x 793450 with weight 57498680. Total sieving time: 297.79 hours. Total relation processing time: 2.20 hours. Matrix solve time: 24.62 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: snfs,172,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 324.90 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10167+53)/9 = (1)1667<167> = 367 · 3779 · C160
C160 = P41 · P120
P41 = 72180524179814281371646723253295317425753<41>
P120 = 110992722143284079668473710836385761364736707416721224780341636632728276454533977666549953684709379743979990569220351273<120>
Number: 11117_167 N=8011512864446724521005665982243122656982990837152621803636698080609759448718185981983549640174916962672038225812020906523510545594441035545720622363160756533569 ( 160 digits) SNFS difficulty: 167 digits. Divisors found: r1=72180524179814281371646723253295317425753 (pp41) r2=110992722143284079668473710836385761364736707416721224780341636632728276454533977666549953684709379743979990569220351273 (pp120) Version: GGNFS-0.77.1 Total time: 191.80 hours. Scaled time: 127.74 units (timescale=0.666). Factorization parameters were as follows: name: 1111_167 n: 8011512864446724521005665982243122656982990837152621803636698080609759448718185981983549640174916962672038225812020906523510545594441035545720622363160756533569 m: 1000000000000000000000000000000000 c5: 100 c0: 53 skew: 3 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 6900001) Relations: rels:6266779, finalFF:815614 Initial matrix: 696598 x 815614 with sparse part having weight 65714425. Pruned matrix : 662725 x 666271 with weight 43445378. Total sieving time: 173.36 hours. Total relation processing time: 0.74 hours. Matrix solve time: 17.46 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,167,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 191.80 hours. --------- CPU info (if available) ----------
By Yousuke Koide / GMP-ECM
10497+1 = 1(0)4961<498> = 11 · 290249 · 909091 · 31321069464181068355415209323405389541706979493156189716729115659<65> · C421
C421 = P45 · C376
P45 = 257206104226396960131527490253249591680919459<45>
C376 = [4276725442844752084195044656852273452212189375274225952303705838930103356448606379274091472971879572677521453500151622763813191162899831949211457740137364703233755308405775264223457732676289894608533653739990364258897375954976343843923488590427317885165863553810505710052210760654344760310403003777839499733979012393924648170070669849341581368014258278534406166148949196622329<376>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
Jason Papadopoulos's Msieve Version 1.03 was released.
By Robert Backstrom / GGNFS-0.77.1-20050930-athlon gnfs
(32·10160-23)/9 = 3(5)1593<161> = 32 · 7 · 16878144188469281<17> · 189434529856544291359630189822681<33> · C111
C111 = P35(4118...) · P35(4759...) · P41
P35(4118...) = 41188122897353797743078248493349093<35>
P35(4759...) = 47593069691496385363636147203850481<35>
P41 = 90046609522723902890416032436182592043387<41>
Number: n N=1765155955283971894965184413924047407319434606138080431576 95885317846927354528755225679405187762112269145483671 ( 111 digits) Divisors found: r1=41188122897353797743078248493349093 (pp35) r2=47593069691496385363636147203850481 (pp35) r3=90046609522723902890416032436182592043387 (pp41) Version: GGNFS-0.77.1-20050930-athlon Total time: 28.34 hours. Scaled time: 18.91 units (timescale=0.667). Factorization parameters were as follows: # 355555...555553 (159 5's) # (32*10^160-23)/9 name: n n: 176515595528397189496518441392404740731943460613808043157 695885317846927354528755225679405187762112269145483671 skew: 21821.03 # norm 2.65e+014 c5: 3900 c4: 640497854 c3: 131320705402 c2: -172149383147910141 c1: -1100165321270460367988 c0: 8860814731706342417727825 # alpha -4.35 Y1: 11634369223 Y0: -2143599354655530493828 # Murphy_E 9.26e-010 # M 100301042918189501491054762514367770434534098282913556488800 758058426232457447529369045821047415529707263817393 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [640000, 1840001) Primes: RFBsize:230209, AFBsize:230031, largePrimes:7309111 encountered Relations: rels:7052907, finalFF:531991 Max relations in full relation-set: 28 Initial matrix: 460320 x 531991 with sparse part having weight 41456589. Pruned matrix : 399066 x 401431 with weight 25779177. Total sieving time: 23.72 hours. Total relation processing time: 0.51 hours. Matrix solve time: 3.94 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,max Time,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 28.34 hours. --------- CPU info (if available) ---------- Athlon 64 3400+, using Win 2000 and Cygwin
(10164+53)/9 = (1)1637<164> = 23 · 1181 · 1072846141<10> · 4979637490110920135575357<25> · C125
C125 = P45 · P81
P45 = 579666422697751975195269908990369569487929393<45>
P81 = 132088935761780860187538433903244358628257819621586279422515597881892186313365999<81>
Number: 11117_164 N=76567520870984671402216372146068685131617912693435529484170929976066856392989540304421179373251166466237815528208010678908607 ( 125 digits) SNFS difficulty: 165 digits. Divisors found: r1=579666422697751975195269908990369569487929393 (pp45) r2=132088935761780860187538433903244358628257819621586279422515597881892186313365999 (pp81) Version: GGNFS-0.77.1 Total time: 129.67 hours. Scaled time: 86.23 units (timescale=0.665). Factorization parameters were as follows: name: 11117_164 n: 76567520870984671402216372146068685131617912693435529484170929976066856392989540304421179373251166466237815528208010678908607 m: 1000000000000000000000000000000000 c5: 1 c0: 530 skew: 3 type:snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 5400001) Relations: rels:6106429, finalFF:833852 Initial matrix: 696993 x 833852 with sparse part having weight 50667968. Pruned matrix : 649687 x 653235 with weight 30381938. Total sieving time: 116.64 hours. Total relation processing time: 0.64 hours. Matrix solve time: 12.16 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: type:snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 129.67 hours. --------- CPU info (if available) ----------
Jason Papadopoulos's Msieve Version 1.02 was released.
By Kenichiro Yamaguchi / GGNFS-0.77.1
10175-3 = (9)1747<175> = 7 · 1597 · 29881 · 172999063 · C159
C159 = P49 · P110
P49 = 9268821528859618014021841051698997978389808253059<49>
P110 = 18669541205894303564860318174560332272211175169567548259092720680541673892290464197693810037820913078505439459<110>
Number: 99997_175 N=173044645463124875308654250148307327141282691858450047624533570449134406107713916877846274540355538407060169874982484056017148608411257699070904980141876055081 ( 159 digits) SNFS difficulty: 175 digits. Divisors found: r1=9268821528859618014021841051698997978389808253059 (pp49) r2=18669541205894303564860318174560332272211175169567548259092720680541673892290464197693810037820913078505439459 (pp110) Version: GGNFS-0.77.1 Total time: 291.77 hours. Scaled time: 228.75 units (timescale=0.784). Factorization parameters were as follows: name: 99997_175 n: 173044645463124875308654250148307327141282691858450047624533570449134406107713916877846274540355538407060169874982484056017148608411257699070904980141876055081 m: 100000000000000000000000000000000000 c5: 1 c0: -3 type: snfs skew: 1 qintsize: 10000 Factor base limits: 7400000/7400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3700000, 9880001) Relations: rels:6823811, finalFF:1152346 Initial matrix: 1003587 x 1152346 with sparse part having weight 62879673. Pruned matrix : 940067 x 945148 with weight 42644863. Total sieving time: 274.39 hours. Total relation processing time: 0.55 hours. Matrix solve time: 16.56 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: snfs,175,5,0,0,0,0,0,0,0,0,7400000,7400000,27,27,48,48,2.6,2.6,100000 total time: 291.77 hours. --------- CPU info (if available) ----------
By Bruce Dodson / GMP-ECM
10337+1 = 1(0)3361<338> = 11 · 121321 · 2251702571<10> · 55027074590990508852961<23> · C299
C299 = P50 · C249
P50 = 71489171229856447321502908314697600957469967193571<50>
C249 = [845947911267668011260418402905221798709538045194622532077124717667915696516323339976849125310476270253990769838122404582089780235313355012026006342260665712122542154882083354742870813133191883569094583330071977149328116963184987608368374283219788971<249>]
Reference: Factorizations of Repunit Numbers (Yousuke Koide)
By Sinkiti Sibata / GGNFS-0.77.1
(10162+53)/9 = (1)1617<162> = 3 · 17 · 122719115923<12> · 8289991952909<13> · 2341170250453601111<19> · C117
C117 = P53 · P65
P53 = 24506725673911022704067759597717156724027838359864899<53>
P65 = 37325247945845446415539113922343529144726238473977360155829584229<65>
Number: 11117_162 N=914719612119545263675461937241443063013555037248436307849707742871314393654601415900660242680746530526004491781077871 ( 117 digits) SNFS difficulty: 162 digits. Divisors found: r1=24506725673911022704067759597717156724027838359864899 (pp53) r2=37325247945845446415539113922343529144726238473977360155829584229 (pp65) Version: GGNFS-0.77.1 Total time: 105.69 hours. Scaled time: 70.39 units (timescale=0.666). Factorization parameters were as follows: name: 11117_162 n: 914719612119545263675461937241443063013555037248436307849707742871314393654601415900660242680746530526004491781077871 m: 100000000000000000000000000000000 c5: 100 c0: 53 skew: 2 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 4750001) Relations: rels:5972203, finalFF:751230 Initial matrix: 631348 x 751230 with sparse part having weight 49104424. Pruned matrix : 595482 x 598702 with weight 29675461. Total sieving time: 94.57 hours. Total relation processing time: 0.69 hours. Matrix solve time: 10.23 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 105.69 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10161+53)/9 = (1)1607<161> = 281 · 4013 · C154
C154 = P35 · P58 · P62
P35 = 50739852137588998696251543347050693<35>
P58 = 3262787785327459169159050401052035323713463022204671436907<58>
P62 = 59517404782483971274142048942014964043816026944188184646684639<62>
Number: 11117_161 N=9853306922529458185373613257900356857216813249387099676151361377224297821325453052588971173854998932394194943933205614769003506496334520558284428907750089 ( 154 digits) SNFS difficulty: 161 digits. Divisors found: r1=50739852137588998696251543347050693 (pp35) r2=3262787785327459169159050401052035323713463022204671436907 (pp58) r3=59517404782483971274142048942014964043816026944188184646684639 (pp62) Version: GGNFS-0.77.1 Total time: 83.06 hours. Scaled time: 49.51 units (timescale=0.596). Factorization parameters were as follows: name: 11117_161 n: 9853306922529458185373613257900356857216813249387099676151361377224297821325453052588971173854998932394194943933205614769003506496334520558284428907750089 m: 100000000000000000000000000000000 c5: 10 c0: 53 skew: 3 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2000000, 3900001) Relations: rels:5837083, finalFF:702561 Initial matrix: 566664 x 702561 with sparse part having weight 45920716. Pruned matrix : 526237 x 529134 with weight 25119688. Total sieving time: 74.33 hours. Total relation processing time: 0.54 hours. Matrix solve time: 7.98 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 83.06 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10158+53)/9 = (1)1577<158> = 292 · 97 · 463247 · 626147 · C141
C141 = P60 · P81
P60 = 985983236774903257591498125826627448246288079036449469432979<60>
P81 = 476245965444136338163665893620237334994768974375044142478647515154052568234133411<81>
Number: 11117_158 N=469570538509598273965270891402290886093146419388365280422511467051739803132582009457307720315293338569836222653663259799014426447555609161369 ( 141 digits) SNFS difficulty: 158 digits. Divisors found: r1=985983236774903257591498125826627448246288079036449469432979 (pp60) r2=476245965444136338163665893620237334994768974375044142478647515154052568234133411 (pp81) Version: GGNFS-0.77.1 Total time: 67.58 hours. Scaled time: 45.08 units (timescale=0.667). Factorization parameters were as follows: name: 11117_158 n: 469570538509598273965270891402290886093146419388365280422511467051739803132582009457307720315293338569836222653663259799014426447555609161369 m: 10000000000000000000000000000000 c5: 1000 c0: 53 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 3200001) Relations: rels:5754223, finalFF:563571 Initial matrix: 433663 x 563571 with sparse part having weight 51133785. Pruned matrix : 408428 x 410660 with weight 26962081. Total sieving time: 61.35 hours. Total relation processing time: 0.33 hours. Matrix solve time: 5.74 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,158,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 67.58 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
10170-3 = (9)1697<170> = 38817280012777264790994290797<29> · C142
C142 = P69 · P73
P69 = 785177523560258358188968099569100871126763206274307022292736906310723<69>
P73 = 3281006120624321591156094138451344572368459459917701683211206237910480987<73>
Number: 99997_170 N=2576172260577855142848298542798072596718901873646661264007524216056015115292366099141617460574776708224208202201460542857840458968464605723601 ( 142 digits) SNFS difficulty: 170 digits. Divisors found: r1=785177523560258358188968099569100871126763206274307022292736906310723 (pp69) r2=3281006120624321591156094138451344572368459459917701683211206237910480987 (pp73) Version: GGNFS-0.77.1 Total time: 117.10 hours. Scaled time: 131.62 units (timescale=1.124). Factorization parameters were as follows: name: 99997_170 n: 2576172260577855142848298542798072596718901873646661264007524216056015115292366099141617460574776708224208202201460542857840458968464605723601 m: 10000000000000000000000000000000000 c5: 1 c0: -3 type: snfs skew: 1 qintsize: 10000 Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 6770001) Relations: rels:6238207, finalFF:927778 Initial matrix: 825609 x 927778 with sparse part having weight 50425277. Pruned matrix : 785050 x 789242 with weight 35183083. Total sieving time: 110.15 hours. Total relation processing time: 0.28 hours. Matrix solve time: 6.51 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 117.10 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10156+53)/9 = (1)1557<156> = 33 · 243871 · 773779 · 7628621820151<13> · C130
C130 = P44 · P86
P44 = 80973023481624511633767692358155083219925491<44>
P86 = 35304509873348597125490432448515136345367528972449377872256910472199043353418974134759<86>
Number: 11117_156 N=2858712906981900368281118448301739997723969786176745172377611548740090357833579081883869141630888902748695880468417245300173241669 ( 130 digits) SNFS difficulty: 156 digits. Divisors found: r1=80973023481624511633767692358155083219925491 (pp44) r2=35304509873348597125490432448515136345367528972449377872256910472199043353418974134759 (pp86) Version: GGNFS-0.77.1 Total time: 52.52 hours. Scaled time: 35.03 units (timescale=0.667). Factorization parameters were as follows: name: 11117_156 n: 2858712906981900368281118448301739997723969786176745172377611548740090357833579081883869141630888902748695880468417245300173241669 m: 10000000000000000000000000000000 c5: 10 c0: 53 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2700001) Relations: rels:5615157, finalFF:560696 Initial matrix: 433643 x 560696 with sparse part having weight 45021990. Pruned matrix : 400970 x 403202 with weight 22657062. Total sieving time: 47.23 hours. Total relation processing time: 0.29 hours. Matrix solve time: 4.85 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 52.52 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10155+53)/9 = (1)1547<155> = 233 · 3037 · 107857 · 169803233 · C135
C135 = P50 · P86
P50 = 15565457897782952939101666553930106105882725052823<50>
P86 = 55080843875587155475209767290120086884583549324550097061432527306270679817057702993679<86>
Number: 11117_155 N=857358556319807883303961653311890561571369091658335896770480362432033819097213029290292821918924367560869953150832995161829340510105817 ( 135 digits) SNFS difficulty: 155 digits. Divisors found: r1=15565457897782952939101666553930106105882725052823 (pp50) r2=55080843875587155475209767290120086884583549324550097061432527306270679817057702993679 (pp86) Version: GGNFS-0.77.1 Total time: 48.39 hours. Scaled time: 32.23 units (timescale=0.666). Factorization parameters were as follows: name: 11117_155 n: 857358556319807883303961653311890561571369091658335896770480362432033819097213029290292821918924367560869953150832995161829340510105817 m: 10000000000000000000000000000000 c5: 1 c0: 53 skew: 2 type: snfsFactor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2700001) Relations: rels:5706648, finalFF:592979 Initial matrix: 433781 x 592979 with sparse part having weight 47303127. Pruned matrix : 394227 x 396459 with weight 21255170. Total sieving time: 43.27 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.71 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 48.39 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1-20050930-pentium4
(5·10170+31)/9 = (5)1699<170> = C170
C170 = P77 · P94
P77 = 10324769197737224566684914222305982001893528968121934066755022389561971195587<77>
P94 = 5380803627816794763419223827948916327062256097990336526388743980119926827911302731685260313357<94>
Number: 55559_170 N=55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 ( 170 digits) SNFS difficulty: 170 digits. Divisors found: r1=10324769197737224566684914222305982001893528968121934066755022389561971195587 (pp77) r2=5380803627816794763419223827948916327062256097990336526388743980119926827911302731685260313357 (pp94) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 188.51 hours. Scaled time: 115.75 units (timescale=0.614). Factorization parameters were as follows: type: snfs n: 55555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555559 m: 10000000000000000000000000000000000 c5: 5 c0: 31 skew: 3 rlim: 6000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 q0: 3000000 qintsize: 25000 Factor base limits: 6000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 8925001) Primes: RFBsize:412849, AFBsize:217137, largePrimes:6461696 encountered Relations: rels:6759240, finalFF:709598 Max relations in full relation-set: 28 Initial matrix: 630051 x 709598 with sparse part having weight 95754203. Pruned matrix : 572543 x 575757 with weight 81682473. Total sieving time: 161.54 hours. Total relation processing time: 0.47 hours. Matrix solve time: 26.36 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 188.51 hours. --------- CPU info (if available) ----------
Note: P77 is the largest factor found by GGNFS in our tables so far. The changes of qintsize were 1000000(3000000-), 500000(7000000-), 100000(8500000-) and 25000(8900000-).
By Sinkiti Sibata / GGNFS-0.77.1
(10160+17)/9 = (1)1593<160> = 33 · 7 · 232 · 53 · 107881 · 301787558315959860024628403<27> · C121
C121 = P49 · P73
P49 = 2658405350165222545211816611457772806715036944933<49>
P73 = 2422683311177048724550239437910491994873142257019128245981528735469849839<73>
Number: 11113_160 N=6440474276189063029469896370990258701549175964742824120735650981327705765751244667703443710331099759156990377210821915787 ( 121 digits) SNFS difficulty: 160 digits. Divisors found: r1=2658405350165222545211816611457772806715036944933 (pp49) r2=2422683311177048724550239437910491994873142257019128245981528735469849839 (pp73) Version: GGNFS-0.77.1 Total time: 59.99 hours. Scaled time: 39.96 units (timescale=0.666). Factorization parameters were as follows: name: 11113_160 n: 6440474276189063029469896370990258701549175964742824120735650981327705765751244667703443710331099759156990377210821915787 m: 100000000000000000000000000000000 c5: 1 c0: 17 skew: 2 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2000000, 3400001) Relations: rels:5785461, finalFF:720044 Initial matrix: 566192 x 720044 with sparse part having weight 43544586. Pruned matrix : 506039 x 508933 with weight 21456343. Total sieving time: 52.98 hours. Total relation processing time: 0.26 hours. Matrix solve time: 6.59 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 59.99 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(7·10194-43)/9 = (7)1933<194> = 73 · 109 · 3137 · 9001482062398106549<19> · 54197355242387283113232438971<29> · 494427323393845610326557724357<30> · C110
C110 = P43 · P68
P43 = 1081275244876495547140212463963289256888791<43>
P68 = 11947053709410444515749918449698943779961647139818245895249015990389<68>
Number: (7*10^194-43)/9 N=12918053425195422867659167365721895242221179503016675627829364459926836953922196214827503153705191131697829699 ( 110 digits) Divisors found: r1=1081275244876495547140212463963289256888791 (pp43) r2=11947053709410444515749918449698943779961647139818245895249015990389 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 49.83 hours. Scaled time: 20.13 units (timescale=0.404). Factorization parameters were as follows: name: try n: 12918053425195422867659167365721895242221179503016675627829364459926836953922196214827503153705191131697829699 skew: 40217.58 # norm 2.28e+015 c5: 22980 c4: -2308719653 c3: -119209020031866 c2: 3825072400142755084 c1: 101184301382580690814260 c0: 20189302016292719852953675 # alpha -6.27 Y1: 249823805609 Y0: -891193184845354492152 # Murphy_E 1.01e-009 # M 3247585310473453904553525590428175069451308527492470094601002246311000322146842698721636642813183484508254259 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: RFBsize:230209, AFBsize:230488, largePrimes:7738317 encountered Relations: rels:7912072, finalFF:822785 Max relations in full relation-set: 28 Initial matrix: 460777 x 822785 with sparse part having weight 72672320. Pruned matrix : 236281 x 238648 with weight 44311067. Polynomial selection time: 1.54 hours. Total sieving time: 40.36 hours. Total relation processing time: 0.59 hours. Matrix solve time: 6.97 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 49.83 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
10164-3 = (9)1637<164> = 78059 · C160
C160 = P41 · P119
P41 = 36841398161094229698993656374635785098993<41>
P119 = 34772900113347798545372640730250755934955225972025356975366115874254163597722740653619367252030365507420285880379259431<119>
Number: 99997_164 N=1281082258291804916793707323947270654248709309624771006546330339871123124815844425370553043210904572182579843451748036741439167808965013643526050807722363852983 ( 160 digits) SNFS difficulty: 165 digits. Divisors found: r1=36841398161094229698993656374635785098993 (pp41) r2=34772900113347798545372640730250755934955225972025356975366115874254163597722740653619367252030365507420285880379259431 (pp119) Version: GGNFS-0.77.1 Total time: 77.00 hours. Scaled time: 88.24 units (timescale=1.146). Factorization parameters were as follows: name: 99997_164 n: 1281082258291804916793707323947270654248709309624771006546330339871123124815844425370553043210904572182579843451748036741439167808965013643526050807722363852983 m: 1000000000000000000000000000000000 c5: 1 c0: -30 type: snfs skew: 1 qintsize: 50000 Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 2500000) Relations: rels:5962757, finalFF:812872 Initial matrix: 695898 x 812872 with sparse part having weight 43782554. Pruned matrix : 654120 x 657663 with weight 27274461. Total sieving time: 69.67 hours. Total relation processing time: 0.28 hours. Matrix solve time: 6.92 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 77.00 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(7·10171-61)/9 = (7)1701<171> = 3 · 97 · 98333484653<11> · 1030337843974634773078693<25> · 1608163357158121809183067<25> · C110
C110 = P39 · P72
P39 = 145160982436224533924365721104515797101<39>
P72 = 113005973089572296166577050378866003855682441563366862432565161842558567<72>
Number: (7*10^171-61)/9 N=16404058074843866413203250080722427658419280579547665355776861624584879423383374349231509019779885495281314267 ( 110 digits) Divisors found: r1=145160982436224533924365721104515797101 (pp39) r2=113005973089572296166577050378866003855682441563366862432565161842558567 (pp72) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 45.77 hours. Scaled time: 17.67 units (timescale=0.386). Factorization parameters were as follows: name: try n: 16404058074843866413203250080722427658419280579547665355776861624584879423383374349231509019779885495281314267 skew: 15788.24 # norm 2.64e+015 c5: 33120 c4: -3158144124 c3: -136143136634800 c2: 579236881561412623 c1: 1283117346222394733180 c0: 1757819858480988492648801 # alpha -5.91 Y1: 126558381103 Y0: -868907208907688768974 # Murphy_E 1.05e-009 # M 1265261254848970518326315911817369956861032884890814274159155170256657252766785777509296940963679378982401841 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2300001) Primes: RFBsize:230209, AFBsize:230471, largePrimes:7554026 encountered Relations: rels:7539830, finalFF:686292 Max relations in full relation-set: 28 Initial matrix: 460765 x 686292 with sparse part having weight 60201416. Pruned matrix : 284724 x 287091 with weight 30728785. Polynomial selection time: 1.52 hours. Total sieving time: 36.54 hours. Total relation processing time: 0.57 hours. Matrix solve time: 6.81 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 45.77 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10157+17)/9 = (1)1563<157> = 3 · 47 · 827 · 83419111680189269<17> · C135
C135 = P61 · P74
P61 = 1992907785089724401736692803191942559636217788879327403377931<61>
P74 = 57316558239739679762000092791164075709222001905279934665087887287062125681<74>
Number: 11113_157 N=114226615130525798068763885215758604153133743497447747112539887636766023645114797421390064065956019652684501981144198433020012663746011 ( 135 digits) SNFS difficulty: 157 digits. Divisors found: r1=1992907785089724401736692803191942559636217788879327403377931 (pp61) r2=57316558239739679762000092791164075709222001905279934665087887287062125681 (pp74) Version: GGNFS-0.77.1 Total time: 55.76 hours. Scaled time: 37.14 units (timescale=0.666). Factorization parameters were as follows: name: 11113_157 n: 114226615130525798068763885215758604153133743497447747112539887636766023645114797421390064065956019652684501981144198433020012663746011 m: 10000000000000000000000000000000 c5: 100 c0: 17 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2900001) Relations: rels:5735686, finalFF:595903 Initial matrix: 433371 x 595903 with sparse part having weight 48980564. Pruned matrix : 397323 x 399553 with weight 22135603. Total sieving time: 50.49 hours. Total relation processing time: 0.30 hours. Matrix solve time: 4.83 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 55.76 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(23·10169+1)/3 = 7(6)1687<170> = 7 · 11 · 307 · 197299 · 811313057572823714632721<24> · 850908127744709147996007641<27> · C110
C110 = P43 · P68
P43 = 2255893164629642733089623238927689598361181<43>
P68 = 10555114055732885485312192583694318747498275071125810970198577216467<68>
Number: try N=23811209650214082238434949499281475004034199848735514583488009825882078773367231952275599070289522527886767527 ( 110 digits) Divisors found: r1=2255893164629642733089623238927689598361181 (pp43) r2=10555114055732885485312192583694318747498275071125810970198577216467 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 49.69 hours. Scaled time: 19.78 units (timescale=0.398). Factorization parameters were as follows: name: try n: 23811209650214082238434949499281475004034199848735514583488009825882078773367231952275599070289522527886767527 skew: 22528.09 # norm 9.93e+014 c5: 11340 c4: 1139681156 c3: 4693303870705 c2: -990151315178811603 c1: 9197042496933003054123 c0: -323691855527389356795780 # alpha -4.81 Y1: 401728873579 Y0: -1159926999478108316447 # Murphy_E 9.97e-010 # M 14694032273146011863960366719819754479068580131505534245951780169933627126701086429550806317509406549314577040 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: RFBsize:230209, AFBsize:230050, largePrimes:7525678 encountered Relations: rels:7458025, finalFF:638536 Max relations in full relation-set: 28 Initial matrix: 460338 x 638536 with sparse part having weight 53856376. Pruned matrix : 317504 x 319869 with weight 28592124. Polynomial selection time: 1.50 hours. Total sieving time: 39.44 hours. Total relation processing time: 0.53 hours. Matrix solve time: 7.86 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 49.69 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0.1
(68·10168+13)/9 = 7(5)1677<169> = 3 · 12601 · 6602087 · 322284503543<12> · 13712914668917<14> · 60589014077011390427<20> · C114
C114 = P35 · P79
P35 = 18711449755162914969992390184458317<35>
P79 = 6042106462649302363645103003440378703457286001372598528340319970726964942489453<79>
By Sinkiti Sibata / GGNFS-0.77.1
(10169+17)/9 = (1)1683<169> = 32 · 54903351101<11> · C157
C157 = P35 · P50 · P73
P35 = 21232995076811297683181478966026917<35>
P50 = 33149331188093851489952154515789188799603080087969<50>
P73 = 3194700122655132752414961601112331804319081313944131723954617902155264209<73>
Number: 11113_169 N=2248620305459062767809772678076967463018479078965333156949894392994654487136799481012371039815171119557429327913999784897333713725890520546584625558679340757 ( 157 digits) SNFS difficulty: 170 digits. Divisors found: r1=21232995076811297683181478966026917 (pp35) r2=33149331188093851489952154515789188799603080087969 (pp50) r3=3194700122655132752414961601112331804319081313944131723954617902155264209 (pp73) Version: GGNFS-0.77.1 Total time: 190.80 hours. Scaled time: 127.07 units (timescale=0.666). Factorization parameters were as follows: name: 11113_169 n: 2248620305459062767809772678076967463018479078965333156949894392994654487136799481012371039815171119557429327913999784897333713725890520546584625558679340757 m: 10000000000000000000000000000000000 c5: 1 c0: 170 skew: 3 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 7100001) Relations: rels:6305104, finalFF:934883 Initial matrix: 826254 x 934883 with sparse part having weight 54575048. Pruned matrix : 784432 x 788627 with weight 37666446. Total sieving time: 172.51 hours. Total relation processing time: 0.69 hours. Matrix solve time: 17.35 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 190.80 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
10163-3 = (9)1627<163> = 7 · 857 · C160
C160 = P39 · P59 · P63
P39 = 101212127218177995051360397159896256673<39>
P59 = 53769799816620504426761135790381137170338896156057801450767<59>
P63 = 306302235001175754564541527345578429311753804119402165243024733<63>
Number: 99997_163 N=1666944490748458076346057676279379896649441573595599266544424070678446407734622437072845474245707617936322720453408901483580596766127687947991331888648108018003 ( 160 digits) SNFS difficulty: 163 digits. Divisors found: r1=101212127218177995051360397159896256673 (pp39) r2=53769799816620504426761135790381137170338896156057801450767 (pp59) r3=306302235001175754564541527345578429311753804119402165243024733 (pp63) Version: GGNFS-0.77.1 Total time: 70.90 hours. Scaled time: 81.25 units (timescale=1.146). Factorization parameters were as follows: name: 99997_163 n: 1666944490748458076346057676279379896649441573595599266544424070678446407734622437072845474245707617936322720453408901483580596766127687947991331888648108018003 m: 1000000000000000000000000000 skew: 1 c6: 10 c0: -3 type: snfs qintsize: 50000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 2250000) Relations: rels:5944699, finalFF:727207 Initial matrix: 631557 x 727207 with sparse part having weight 46978771. Pruned matrix : 596258 x 599479 with weight 30108459. Total sieving time: 66.78 hours. Total relation processing time: 0.22 hours. Matrix solve time: 3.67 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,163,6,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 70.90 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(61·10159-7)/9 = 6(7)159<160> = 3 · 83 · 163145798897<12> · 14892937766618321<17> · 663591791263033860467<21> · C110
C110 = P30 · P80
P30 = 429706828190475769330186160509<30>
P80 = 39287866818500422501117149315362999958470759043260102926022320322953846895310943<80>
Number: (61*10^159-7)/9 N=16882264636947654927210637990821794430288374826123266463960628674670628333828142140182869970014317344862149987 ( 110 digits) Divisors found: r1=429706828190475769330186160509 (pp30) r2=39287866818500422501117149315362999958470759043260102926022320322953846895310943 (pp80) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 49.57 hours. Scaled time: 19.98 units (timescale=0.403). Factorization parameters were as follows: name: try n: 16882264636947654927210637990821794430288374826123266463960628674670628333828142140182869970014317344862149987 skew: 16504.26 # norm 1.53e+015 c5: 18000 c4: -1956903384 c3: 80245250362830 c2: 445677873798170857 c1: -5498878229434910255052 c0: -1024546863621114157630495 # alpha -5.60 Y1: 480596537267 Y0: -987270673283473006812 # Murphy_E 1.02e-009 # M 12485693622819643989647908903408667736033745497216867751433471780695150903816315809677336356594047647921736928 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2400001) Primes: RFBsize:230209, AFBsize:230990, largePrimes:7749135 encountered Relations: rels:7910311, finalFF:807539 Max relations in full relation-set: 28 Initial matrix: 461275 x 807539 with sparse part having weight 71743266. Pruned matrix : 242986 x 245356 with weight 43808192. Polynomial selection time: 1.52 hours. Total sieving time: 40.05 hours. Total relation processing time: 0.58 hours. Matrix solve time: 7.07 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 49.57 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0.1
(68·10176+13)/9 = 7(5)1757<177> = 16223 · 17119019860271735061587461<26> · C148
C148 = P33 · C115
P33 = 619193651836871434301224119229241<33>
C115 = [4393694374867054312301107826304771911374972036279600016021736599645847049491465120275629018011759197571909779771959<115>]
(68·10189+13)/9 = 7(5)1887<190> = 32 · 11 · 933389 · 3475483210660030976531<22> · C161
C161 = P30 · C132
P30 = 167456950534562681320501751047<30>
C132 = [140491534853109484986754548242952399389515438770363777285457862248011616087412384135885187516878636187876872889038035235947402642391<132>]
By Makoto Kamada / GGNFS-0.77.1-20050930-pentium4
8·10169-1 = 7(9)169<170> = C170
C170 = P64 · P107
P64 = 4983552831382432977450129148648011664663860982879601254876558471<64>
P107 = 16052804636929688872053966123659744300097772329558086445649204239307760835424404643147419426717309547130569<107>
Number: 79999_169 N=79999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ( 170 digits) SNFS difficulty: 170 digits. Divisors found: r1=4983552831382432977450129148648011664663860982879601254876558471 (pp64) r2=16052804636929688872053966123659744300097772329558086445649204239307760835424404643147419426717309547130569 (pp107) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 139.10 hours. Scaled time: 85.41 units (timescale=0.614). Factorization parameters were as follows: type: snfs n: 79999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 m: 10000000000000000000000000000000000 c5: 4 c0: -5 skew: 1 rlim: 6000000 alim: 3000000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 q0: 3000000 qintsize: 100000 Factor base limits: 6000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [3000000, 7200001) Primes: RFBsize:412849, AFBsize:216926, largePrimes:6232330 encountered Relations: rels:6453116, finalFF:737763 Max relations in full relation-set: 28 Initial matrix: 629839 x 737763 with sparse part having weight 88375505. Pruned matrix : 546338 x 549551 with weight 71524892. Total sieving time: 117.48 hours. Total relation processing time: 0.26 hours. Matrix solve time: 21.24 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 139.10 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(46·10172-1)/9 = 5(1)172<173> = 3 · 74377 · 190941040859<12> · 329219420716929877<18> · C110
C110 = P33 · P36 · P41
P33 = 565136006549966812916113719736759<33>
P36 = 725753339313232876234657295548868177<36>
P41 = 42146405201794140986772964098305943887101<41>
Number: (46*10^172-1)/9 N=17286320442093215817833832514423465830114202513721854972729385622355164152982248553813025024575959082173293643 ( 110 digits) Divisors found: r1=565136006549966812916113719736759 (pp33) r2=725753339313232876234657295548868177 (pp36) r3=42146405201794140986772964098305943887101 (pp41) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 42.67 hours. Scaled time: 17.11 units (timescale=0.401). Factorization parameters were as follows: name: try n: 17286320442093215817833832514423465830114202513721854972729385622355164152982248553813025024575959082173293643 skew: 27422.06 # norm 8.50e+014 c5: 17820 c4: -1663476960 c3: -40868357908375 c2: 1072596167948350522 c1: 19114471823374771735884 c0: 2112584404026467554128000 # alpha -5.79 Y1: 233603525713 Y0: -993941622567834158561 # Murphy_E 1.10e-009 # M 3035570654687124468805151776380123179146811487172510248074143189454353921004656028578945679782393418883769009 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2200001 ) Primes: RFBsize:230209, AFBsize:230467, largePrimes:7607976 encountered Relations: rels:7661248, finalFF:739651 Max relations in full relation-set: 28 Initial matrix: 460754 x 739651 with sparse part having weight 62677286. Pruned matrix : 257304 x 259671 with weight 33728811. Total sieving time: 39.20 hours. Total relation processing time: 0.50 hours. Matrix solve time: 2.62 hours. Time per square root: 0.35 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 42.67 hours. --------- CPU info (if available) ----------
Contribution and reservation page is now available. To submit factors or reserve numbers, click the buttons added to each tables.
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(88·10176-7)/9 = 9(7)176<177> = 409 · 7537 · 324781 · 413681 · 1423125493501272389<19> · 410457956356423407164533980040111<33> · C109
C109 = P45 · P64
P45 = 835872596553895914344667418154479252677921823<45>
P64 = 4835152605189833378023630969247444104166394077022867478908079337<64>
Number: (88*10^176-7)/9 N=4041571562834360371743685234852647890311532253351853063967401402695698925006 352905491532472725195117567671351 ( 109 digits) Divisors found: r1=835872596553895914344667418154479252677921823 (pp45) r2=4835152605189833378023630969247444104166394077022867478908079337 (pp64) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.27 hours. Scaled time: 14.72 units (timescale=0.406). Factorization parameters were as follows: name: try n: 404157156283436037174368523485264789031153225335185306396740140269569892500635 2905491532472725195117567671351 skew: 38498.37 # norm 2.49e+015 c5: 26520 c4: 1946519488 c3: -151784333575201 c2: -2228343102101464652 c1: 88389977576972041157614 c0: 33232882418034968623948840 # alpha -6.89 Y1: 283181162789 Y0: -686424412541168763879 # Murphy_E 1.19e-009 # M 188368404868095941682196676154981872952159147822480941013453087251238659102523 22088524972815061166582374873 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800001) Primes: RFBsize:230209, AFBsize:230878, largePrimes:7173427 encountered Relations: rels:6897326, finalFF:524313 Max relations in full relation-set: 28 Initial matrix: 461175 x 524313 with sparse part having weight 39321246. Pruned matrix : 409401 x 411770 with weight 25761163. Polynomial selection time: 1.83 hours. Total sieving time: 22.49 hours. Total relation processing time: 0.58 hours. Matrix solve time: 10.96 hours. Time per square root: 0.41 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,32000 00,27,27,50,50,2.6,2.6,100000 total time: 36.27 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
All near-repdigit palindrome numbers of the form (R)wD(R)w (R∈{ 1, 3, 7, 9 }) were factored up to 151-digit!
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10151-9·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777776777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 3 · 601 · 11383 · 42793 · C139
C139 = P60 · P80
P60 = 249800844041590041816371889865466295254944741238479812710059<60>
P80 = 35451648348814097560568927220058803113875106220262988808144613437817611427638679<80>
Number: 77677_75 N=8855851680199403507014948920034626906365254291951379383455451181216021223647712208022089324382154605350418715068061995832798124546040772061 ( 139 digits) SNFS difficulty: 151 digits. Divisors found: r1=249800844041590041816371889865466295254944741238479812710059 (pp60) r2=35451648348814097560568927220058803113875106220262988808144613437817611427638679 (pp80) Version: GGNFS-0.77.1 Total time: 35.58 hours. Scaled time: 40.88 units (timescale=1.149). Factorization parameters were as follows: name: 77677_75 n: 8855851680199403507014948920034626906365254291951379383455451181216021223647712208022089324382154605350418715068061995832798124546040772061 m: 10000000000000000000000000 skew: 1 c6: 70 c3: -9 c0: -7 type: snfs qintsize: 20000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2400001) Relations: rels:5254753, finalFF:400616 Initial matrix: 353367 x 400616 with sparse part having weight 37333710. Pruned matrix : 344269 x 346099 with weight 26748128. Total sieving time: 33.95 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.16 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 35.58 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(83·10155+61)/9 = 9(2)1549<156> = 7 · 11 · 677 · 27308707004207<14> · 269008383909264096142333777961<30> · C109
C109 = P41 · P68
P41 = 30295007697022134838984570079567204171383<41>
P68 = 79491038089640736612271099429455527317299371392929750668334411393461<68>
Number: (83*10^155+61)/9 N=2408181610769945812962333186745918035714702222148442267020189048305134759924 582421450957807124592080889526563 ( 109 digits) Divisors found: r1=30295007697022134838984570079567204171383 (pp41) r2=79491038089640736612271099429455527317299371392929750668334411393461 (pp68) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 30.03 hours. Scaled time: 14.02 units (timescale=0.467). Factorization parameters were as follows: name: try n: 240818161076994581296233318674591803571470222214844226702018904830513475992458 2421450957807124592080889526563 skew: 41300.17 # norm 1.49e+015 c5: 21840 c4: -520985140 c3: -89382173038333 c2: 580391369538706862 c1: 61888653113728831548948 c0: -4027525537794873658238520 # alpha -6.61 Y1: 30186814603 Y0: -643409423763948635099 # Murphy_E 1.27e-009 # M 168488224660201944470680222562849441160467531529578345322462885992793667233986 2597588346741021480834950876662 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800001) Primes: RFBsize:230209, AFBsize:230480, largePrimes:7363708 encountered Relations: rels:7268183, finalFF:648534 Max relations in full relation-set: 28 Initial matrix: 460772 x 648534 with sparse part having weight 49895252. Pruned matrix : 310865 x 313232 with weight 25057293. Total sieving time: 22.62 hours. Total relation processing time: 0.59 hours. Matrix solve time: 6.55 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,32000 00,27,27,50,50,2.6,2.6,100000 total time: 30.03 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Sinkiti Sibata / GGNFS-0.77.1
(10165+53)/9 = (1)1647<165> = 32 · 13 · 6973466407<10> · 71041638549203500785349<23> · C130
C130 = P37 · P93
P37 = 2958560207690742100530842527527150137<37>
P93 = 647932156418649906721064138734891794612517911912705433862271929711288746481553278804265823211<93>
Number: 11117_165 N=1916946295263471265415298868868483054850763678961235587943344428327025342624879175301961114952795962919895969967530419087096429907 ( 130 digits) SNFS difficulty: 165 digits. Divisors found: r1=2958560207690742100530842527527150137 (pp37) r2=647932156418649906721064138734891794612517911912705433862271929711288746481553278804265823211 (pp93) Version: GGNFS-0.77.1 Total time: 125.51 hours. Scaled time: 74.05 units (timescale=0.590). Factorization parameters were as follows: name: 11117_165 n: 1916946295263471265415298868868483054850763678961235587943344428327025342624879175301961114952795962919895969967530419087096429907 m: 1000000000000000000000000000000000 c5: 1 c0: 53 skew: 2 type: snfs Factor base limits: 5000000/5000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2500000, 5400001) Relations: rels:6102841, finalFF:829838 Initial matrix: 697513 x 829838 with sparse part having weight 49988564. Pruned matrix : 652318 x 655869 with weight 30397504. Total sieving time: 113.27 hours. Total relation processing time: 0.64 hours. Matrix solve time: 11.36 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: snfs,165,5,0,0,0,0,0,0,0,0,5000000,5000000,27,27,48,48,2.5,2.5,100000 total time: 125.51 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(68·10177+13)/9 = 7(5)1767<178> = 3 · 11 · 2976541 · 1986024611<10> · 21372627064267161524638651<26> · 584163599840517891765685151<27> · C109
C109 = P32 · P78
P32 = 16649041345956785978066544251831<32>
P78 = 186326375883529372573195580204691042271311165907598423871225253573728851230609<78>
Number: (68*10^177+13)/9 N=3102155535927165892282359467707887179211221218792713523148538014622726901451 107019748936781002601979551495079 ( 109 digits) Divisors found: r1=16649041345956785978066544251831 (pp32) r2=18632637588352937257319558020469104227131116590759842387122525357372885123 0609 (pp78) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.35 hours. Scaled time: 14.87 units (timescale=0.409). Factorization parameters were as follows: name: try n: 310215553592716589228235946770788717921122121879271352314853801462272690145110 7019748936781002601979551495079 skew: 16007.37 # norm 6.73e+014 c5: 17640 c4: 2003010208 c3: -37663238995726 c2: -683336483422674291 c1: 2276175730375724357224 c0: -1562408208188556542452639 # alpha -5.36 Y1: 212258499739 Y0: -706366401851154172710 # Murphy_E 1.14e-009 # M 154008773663557641889006013134644205760428391139451314764373726368221190933273 8275423455721797031470782496548 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3000001) Primes: RFBsize:230209, AFBsize:230204, largePrimes:7413846 encountered Relations: rels:7314723, finalFF:628477 Max relations in full relation-set: 28 Initial matrix: 460490 x 628477 with sparse part having weight 49150211. Pruned matrix : 330401 x 332767 with weight 26801905. Polynomial selection time: 1.37 hours. Total sieving time: 25.64 hours. Total relation processing time: 0.61 hours. Matrix solve time: 8.35 hours. Time per square root: 0.37 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,32000 00,27,27,50,50,2.6,2.6,100000 total time: 36.35 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10151+12·1075-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333333333337333333333333333333333333333333333333333333333333333333333333333333333333333<151> = 191 · 11931431 · 681375942817<12> · C130
C130 = P51 · P79
P51 = 358116504234562342596071833930926313362871743635963<51>
P79 = 5994344678963701828178210901524903350941465357133653014136011304901355320255463<79>
Number: 33733_75 N=2146673761607530771831613636839932881610318515734641655480199502544435528652664132738873360216986828768270794320322697617634015869 ( 130 digits) SNFS difficulty: 151 digits. Divisors found: r1=358116504234562342596071833930926313362871743635963 (pp51) r2=5994344678963701828178210901524903350941465357133653014136011304901355320255463 (pp79) Version: GGNFS-0.77.1 Total time: 45.89 hours. Scaled time: 35.93 units (timescale=0.783). Factorization parameters were as follows: name: 33733_75 n: 2146673761607530771831613636839932881610318515734641655480199502544435528652664132738873360216986828768270794320322697617634015869 m: 10000000000000000000000000 skew: 1 c6: 10 c3: 12 c0: -1 type: snfs qintsize: 5000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2285001) Relations: rels:5141030, finalFF:398079 Initial matrix: 352254 x 398079 with sparse part having weight 34475505. Pruned matrix : 341622 x 343447 with weight 24401876. Total sieving time: 42.31 hours. Total relation processing time: 0.81 hours. Matrix solve time: 2.51 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 45.89 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(10157+11)/3 = (3)1567<157> = 7 · 31 · 1039 · 839073889 · 3476724404519<13> · 829739033255217100531<21> · C109
C109 = P39 · P71
P39 = 378641528748782707426215729102157462649<39>
P71 = 16131071839146853642865220379938327843341868838763312362360548919746331<71>
Number: (10^157+11)/3 N=6107893701531002525130019529075276284955785449103867411849283231781999198579 385084177229691980422107687290819 ( 109 digits) Divisors found: r1=378641528748782707426215729102157462649 (pp39) r2=16131071839146853642865220379938327843341868838763312362360548919746331 (pp71) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 31.82 hours. Scaled time: 12.86 units (timescale=0.404). Factorization parameters were as follows: name: try n: 610789370153100252513001952907527628495578544910386741184928323178199919857938 5084177229691980422107687290819 skew: 9058.61 # norm 2.20e+015 c5: 154080 c4: 6110803044 c3: 32795731415593 c2: 630913785227512583 c1: -2864372629028806713417 c0: 2566916076660438766607829 # alpha -6.85 Y1: 202851276947 Y0: -524357769549258114412 # Murphy_E 1.30e-009 # M 317910874579676561136488685553457244397721500482553101581063326181871375691269 9220581530997512231364664097615 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 2800001) Primes: RFBsize:230209, AFBsize:230034, largePrimes:7382776 encountered Relations: rels:7273605, finalFF:632430 Max relations in full relation-set: 28 Initial matrix: 460324 x 632430 with sparse part having weight 49982759. Pruned matrix : 322846 x 325211 with weight 25665486. Polynomial selection time: 1.35 hours. Total sieving time: 22.30 hours. Total relation processing time: 0.60 hours. Matrix solve time: 7.23 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,32000 00,27,27,50,50,2.6,2.6,100000 total time: 31.82 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10151-18·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 19514434918236191<17> · C135
C135 = P44 · P91
P44 = 72308150330953793895675530638511015061428929<44>
P91 = 5512039211966234235551907731910904762055139651456464595200599313208098872408793062774532143<91>
Number: 77577_75 N=398565359968966549341377531325669743755397248409857683088797348989747039065173941147576061184729542897773767978865832805924423020564847 ( 135 digits) SNFS difficulty: 151 digits. Divisors found: r1=72308150330953793895675530638511015061428929 (pp44) r2=5512039211966234235551907731910904762055139651456464595200599313208098872408793062774532143 (pp91) Version: GGNFS-0.77.1 Total time: 27.67 hours. Scaled time: 31.76 units (timescale=1.148). Factorization parameters were as follows: name: 77577_75 n: 398565359968966549341377531325669743755397248409857683088797348989747039065173941147576061184729542897773767978865832805924423020564847 m: 10000000000000000000000000 skew: 1 c6: 70 c3: -18 c0: -7 type: snfs qintsize: 30000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2160001) Relations: rels:5031482, finalFF:399322 Initial matrix: 352518 x 399322 with sparse part having weight 33679212. Pruned matrix : 339877 x 341703 with weight 23541606. Total sieving time: 26.29 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.04 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 27.67 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(29·10158+7)/9 = 3(2)1573<159> = 23 · 461 · 919 · 863812865659156741<18> · 7045637575330861378982261<25> · C109
C109 = P49 · P61
P49 = 2116535804504319328369428583266721511884186009621<49>
P61 = 2567116797056076871290015842910679596990176871546012502135159<61>
Number: (29*10^158+7)/9 N=5433394615313635112798817586709646547401897350053964709573034550371009972141 238554431351626062312978616364739 ( 109 digits) Divisors found: r1=2116535804504319328369428583266721511884186009621 (pp49) r2=2567116797056076871290015842910679596990176871546012502135159 (pp61) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 35.59 hours. Scaled time: 13.99 units (timescale=0.393). Factorization parameters were as follows: name: try n: 543339461531363511279881758670964654740189735005396470957303455037100997214123 8554431351626062312978616364739 skew: 4652.08 # norm 1.12e+014 c5: 98280 c4: 3818806790 c3: -4441339703579 c2: -82541178637438376 c1: 54001702042996081950 c0: 70418619847262199232112 # alpha -4.54 Y1: 222077875609 Y0: -560428074010936900223 # Murphy_E 1.22e-009 # M 379863157542711794085504968705971263337986613117844641695867590909277059725078 6087715244613101294906565924990 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1600000, 3000001) Primes: RFBsize:230209, AFBsize:229654, largePrimes:7435034 encountered Relations: rels:7325286, finalFF:610069 Max relations in full relation-set: 28 Initial matrix: 459948 x 610069 with sparse part having weight 51050438. Pruned matrix : 343766 x 346129 with weight 28709445. Total sieving time: 25.58 hours. Total relation processing time: 0.69 hours. Matrix solve time: 8.94 hours. Time per square root: 0.39 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,32000 00,27,27,50,50,2.6,2.6,100000 total time: 35.59 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10151+54·1075-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111111117111111111111111111111111111111111111111111111111111111111111111111111111111<151> = 1669 · 138785947 · 235905331 · C131
C131 = P47 · P84
P47 = 79027681330367899231677917406107438100664743149<47>
P84 = 257299336087399060220843117297804476699656822157989198103045370221839707270878173383<84>
Number: 11711_75 N=20333769938830202187732061659293609278456675839917955719876353937255008520612525303600881960818597681659697496362221845269983403067 ( 131 digits) SNFS difficulty: 151 digits. Divisors found: r1=79027681330367899231677917406107438100664743149 (pp47) r2=257299336087399060220843117297804476699656822157989198103045370221839707270878173383 (pp84) Version: GGNFS-0.77.1 Total time: 41.64 hours. Scaled time: 32.39 units (timescale=0.778). Factorization parameters were as follows: name: 11711_75 n: 20333769938830202187732061659293609278456675839917955719876353937255008520612525303600881960818597681659697496362221845269983403067 m: 10000000000000000000000000 skew: 1 c6: 10 c3: 54 c0: -1 type: snfs qintsize: 10000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2140001) Relations: rels:5078042, finalFF:399979 Initial matrix: 352648 x 399979 with sparse part having weight 33797228. Pruned matrix : 339823 x 341650 with weight 23533753. Total sieving time: 38.62 hours. Total relation processing time: 0.43 hours. Matrix solve time: 2.35 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 41.64 hours. --------- CPU info (if available) ----------
(10151+72·1075-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111111119111111111111111111111111111111111111111111111111111111111111111111111111111<151> = 3 · 7 · 181 · 599 · 715580836889<12> · C132
C132 = P41 · P92
P41 = 25811783920037444519059410337596468279431<41>
P92 = 26421415210765064781080941513216314237349498070491943916815078971473151712607316063339389271<92>
Number: 11911_75 N=681983860281858447199499453039476758065682295124277463319202780109961012947032676873540027146900147014424578914207148061683711384801 ( 132 digits) SNFS difficulty: 151 digits. Divisors found: r1=25811783920037444519059410337596468279431 (pp41) r2=26421415210765064781080941513216314237349498070491943916815078971473151712607316063339389271 (pp92) Version: GGNFS-0.77.1 Total time: 28.16 hours. Scaled time: 32.39 units (timescale=1.150). Factorization parameters were as follows: name: 11911_75 n: 681983860281858447199499453039476758065682295124277463319202780109961012947032676873540027146900147014424578914207148061683711384801 m: 10000000000000000000000000 skew: 1 c6: 10 c3: 72 c0: -1 type: snfs qintsize: 10000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2200001) Relations: rels:5261228, finalFF:443207 Initial matrix: 352437 x 443207 with sparse part having weight 39027910. Pruned matrix : 330898 x 332724 with weight 21289060. Total sieving time: 26.87 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.96 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 28.16 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1-20050930-pentium4 gnfs
10175-9 = (9)1741<175> = 83 · 89 · 277590538396397099817467<24> · 896295447371381022541530417241001<33> · C115
C115 = P53 · P62
P53 = 61949583081432845501932022855183580890650237564733399<53>
P62 = 87828944454424628608061572314719937855686216572417491650902721<62>
Number: 99991_175 N=5440966491433929111554214944089000588930816682352861497343960642779983221200574467638376340734669429663292048678679 ( 115 digits) Divisors found: r1=61949583081432845501932022855183580890650237564733399 (pp53) r2=87828944454424628608061572314719937855686216572417491650902721 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 54.99 hours. Scaled time: 33.82 units (timescale=0.615). Factorization parameters were as follows: name: 99991_175 n: 5440966491433929111554214944089000588930816682352861497343960642779983221200574467638376340734669429663292048678679 skew: 12259.14 # norm 3.08e+15 c5: 104520 c4: 7638682094 c3: -13306257396319 c2: 829995983020823370 c1: -2328325729794149148560 c0: -11666567813441271123193328 # alpha -5.01 Y1: 2599311618277 Y0: -8775936050106772370895 # Murphy_E 5.25e-10 # M 2151975845047172818369237269379495346341326179997150033209270845249862371353526224289632275292325915697762213426926 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 10000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved algebraic special-q in [1750000, 3170001) Primes: RFBsize:250150, AFBsize:250066, largePrimes:7625714 encountered Relations: rels:7518040, finalFF:566228 Max relations in full relation-set: 28 Initial matrix: 500296 x 566228 with sparse part having weight 50888876. Pruned matrix : 449739 x 452304 with weight 36817983. Total sieving time: 46.10 hours. Total relation processing time: 0.69 hours. Matrix solve time: 7.89 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 54.99 hours. --------- CPU info (if available) ----------
Note: qintsize is 100000 in [1750000, 3150001), 10000 in [3150001, 3170001)
By Sinkiti Sibata / GGNFS-0.77.1
(10162+17)/9 = (1)1613<162> = 161566269551183775607139<24> · C138
C138 = P40 · P99
P40 = 4331670272403487898909497310204173448519<40>
P99 = 158763769737372670586126591456916292403844026842433021792146864283443725955106629960071436214057093<99>
Number: 11113_162a N=6877123017060897044374571042740713156798005893398859541715948321496825270290162856653716529390380241038691567683902526773330081417 62295267 ( 138 digits) SNFS difficulty: 162 digits. Divisors found: r1=4331670272403487898909497310204173448519 (pp40) r2=158763769737372670586126591456916292403844026842433021792146864283443725955106629960071436214057093 (pp99) Version: GGNFS-0.77.1 Total time: 92.17 hours. Scaled time: 61.38 units (timescale=0.666). Factorization parameters were as follows: name: 11113_162a n: 687712301706089704437457104274071315679800589339885954171594832149682527029016285665371652939038024103869156768390252677333008141762 295267 m: 100000000000000000000000000000000 c5: 100 c0: 17 skew: 2 type: snfs Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 4450001) Relations: rels:5964189, finalFF:774005 Initial matrix: 631658 x 774005 with sparse part having weight 46258015. Pruned matrix : 584262 x 587484 with weight 25832727. Total sieving time: 83.18 hours. Total relation processing time: 0.45 hours. Matrix solve time: 8.35 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: snfs,162,5,0,0,0,0,0,0,0,0,4500000,4500000,27,27,48,48,2.3,2.3,100000 total time: 92.17 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(2·10177-17)/3 = (6)1761<177> = 677 · 25349 · 393013 · 79420666569772996063969<23> · 6533336840575541762728113725218487<34> · C108
C108 = P46 · P62
P46 = 2508303240011545881154329734545373079401137891<46>
P62 = 75945790705547000003969998101719766791828803553193380743769093<62>
Number: (2*10^177-17)/3 N=1904950728919622871558958045227159083213904486368722486272007274299386560985 79795909141221381162892357002863 ( 108 digits) Divisors found: r1=2508303240011545881154329734545373079401137891 (pp46) r2=75945790705547000003969998101719766791828803553193380743769093 (pp62) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 26.05 hours. Scaled time: 10.50 units (timescale=0.403). Factorization parameters were as follows: name: try n: 190495072891962287155895804522715908321390448636872248627200727429938656098579 795909141221381162892357002863 skew: 44710.17 # norm 1.51e+015 c5: 11760 c4: -1356718216 c3: -59223065866209 c2: 2476319066249658648 c1: 57022542762163081239412 c0: -597914298298749620967297984 # alpha -6.37 Y1: 258874617767 Y0: -438430947650082959389 # Murphy_E 1.29e-009 # M 139741455458744718520467859768361375222069394858895968479384688294767949543813 82813981484924261786365258542 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:183100, largePrimes:4483939 encountered Relations: rels:4595368, finalFF:474163 Max relations in full relation-set: 28 Initial matrix: 366252 x 474163 with sparse part having weight 36230380. Pruned matrix : 286780 x 288675 with weight 20170098. Total sieving time: 20.57 hours. Total relation processing time: 0.34 hours. Matrix solve time: 4.85 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 26.05 hours. --------- CPU info (if available) ---------- p4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10151+45·1075-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111111116111111111111111111111111111111111111111111111111111111111111111111111111111<151> = 3 · 23 · 97655713 · C141
C141 = P58 · P83
P58 = 1997027338650943457295969265979479820897340416602456368571<58>
P83 = 82570846009916462739671939974233945618960329221370464288990761278297434149703773953<83>
Number: 11611_75 N=164896236857340347160931352501873584310988886992857541745026654917937090476762831264174071474529422002054982975724753347212523279098237631163 ( 141 digits) SNFS difficulty: 151 digits. Divisors found: r1=1997027338650943457295969265979479820897340416602456368571 (pp58) r2=82570846009916462739671939974233945618960329221370464288990761278297434149703773953 (pp83) Version: GGNFS-0.77.1 Total time: 28.75 hours. Scaled time: 33.10 units (timescale=1.151). Factorization parameters were as follows: name: 11611_75 n: 164896236857340347160931352501873584310988886992857541745026654917937090476762831264174071474529422002054982975724753347212523279098237631163 m: 10000000000000000000000000 skew: 1 c6: 10 c3: 45 c0: -1 type: snfs qintsize: 300000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 1200000) Relations: rels:5128742, finalFF:425200 Initial matrix: 352781 x 425200 with sparse part having weight 35870333. Pruned matrix : 334485 x 336312 with weight 21340437. Total sieving time: 27.51 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.95 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 28.75 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10149+9·1074-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777777777777777777777<149> = 32 · 2277249907<10> · C139
C139 = P37 · P44 · P60
P37 = 1376809726708478490931468014548893543<37>
P44 = 21636652521774899503817611495057606654171231<44>
P60 = 127390878380641808134389173992511049895610289858081131674763<60>
Number: 77877_74 N=3794917405453636630071437876950575415543084401865769977893768032830125090286406769739341752338069771519848576616095749280927040456384315379 ( 139 digits) SNFS difficulty: 150 digits. Divisors found: r1=1376809726708478490931468014548893543 (pp37) r2=21636652521774899503817611495057606654171231 (pp44) r3=127390878380641808134389173992511049895610289858081131674763 (pp60) Version: GGNFS-0.77.1 Total time: 32.20 hours. Scaled time: 37.80 units (timescale=1.174). Factorization parameters were as follows: name: 77877_74 n: 3794917405453636630071437876950575415543084401865769977893768032830125090286406769739341752338069771519848576616095749280927040456384315379 m: 10000000000000000000000000 skew: 1 c6: 7 c3: 9 c0: -70 type: snfs qintsize: 1130000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2330001) Relations: rels:5222436, finalFF:412613 Initial matrix: 353361 x 412613 with sparse part having weight 36495424. Pruned matrix : 341137 x 342967 with weight 23907762. Total sieving time: 30.02 hours. Total relation processing time: 0.27 hours. Matrix solve time: 1.75 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 32.20 hours. --------- CPU info (if available) ----------
(10151+27·1075-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111111114111111111111111111111111111111111111111111111111111111111111111111111111111<151> = 17 · 9514504624407953<16> · C133
C133 = P45 · P88
P45 = 911463651618491369778595517029111315386354569<45>
P88 = 7536731326772967130509679175251284771071788374984822276636018012186639357985777581655919<88>
Number: 11411_75 N=6869456656367965950826409688732436447972845946436054099997224976731461178767749312890367640861378810215838503327678485314019891543911 ( 133 digits) SNFS difficulty: 151 digits. Divisors found: r1=911463651618491369778595517029111315386354569 (pp45) r2=7536731326772967130509679175251284771071788374984822276636018012186639357985777581655919 (pp88) Version: GGNFS-0.77.1 Total time: 41.58 hours. Scaled time: 32.60 units (timescale=0.784). Factorization parameters were as follows: name: 11411_75 n: 6869456656367965950826409688732436447972845946436054099997224976731461178767749312890367640861378810215838503327678485314019891543911 m: 10000000000000000000000000 skew: 1 c6: 10 c3: 27 c0: -1 type: snfs qintsize: 10000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2150001) Relations: rels:5153068, finalFF:426567 Initial matrix: 352501 x 426567 with sparse part having weight 36783631. Pruned matrix : 334430 x 336256 with weight 21860821. Total sieving time: 38.85 hours. Total relation processing time: 0.33 hours. Matrix solve time: 2.16 hours. Time per square root: 0.24 hours. Prototype def-par.txt line would be: snfs,151,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 41.58 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
5·10156-1 = 4(9)156<157> = 325933631 · 418725471349<12> · 64649255422764285424382191141<29> · C108
C108 = P34 · P75
P34 = 1196044320747080988848275421315051<34>
P75 = 473806101133225839977941970810800179066086580068330368731246322000830542731<75>
Number: 5*10^156-1 N=5666930963957118597398027696961429470504668076802124580255755170769910100673 67217253155674205481178068944281 ( 108 digits) Divisors found: r1=1196044320747080988848275421315051 (pp34) r2=47380610113322583997794197081080017906608658006833036873124632200083054273 1 (pp75) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 27.31 hours. Scaled time: 10.82 units (timescale=0.396). Factorization parameters were as follows: name: try n: 566693096395711859739802769696142947050466807680212458025575517076991010067367 217253155674205481178068944281 skew: 23384.96 # norm 1.59e+015 c5: 45360 c4: 2173952544 c3: -108307711201354 c2: -1584442317506962255 c1: 18603058138119602723048 c0: -29070695707283682987819135 # alpha -6.53 Y1: 287398706837 Y0: -416228775137597942374 # Murphy_E 1.31e-009 # M 344927149656073652139561026162681144229007553496406963348579794490013423602004 069969632527639127675644284764 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:183165, largePrimes:4494666 encountered Relations: rels:4615459, finalFF:480406 Max relations in full relation-set: 28 Initial matrix: 366318 x 480406 with sparse part having weight 37843115. Pruned matrix : 283252 x 285147 with weight 20950955. Polynomial selection time: 1.21 hours. Total sieving time: 20.70 hours. Total relation processing time: 0.34 hours. Matrix solve time: 4.78 hours. Time per square root: 0.29 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 27.31 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Makoto Kamada / GGNFS-0.77.1-20050930-pentium4
10153-9 = (9)1521<153> = 7351 · 12177173 · 4869339071<10> · 1717538402791591<16> · C118
C118 = P51 · P67
P51 = 212160165998317320103944607230187712351218102168603<51>
P67 = 6296029889857224726698251701700348692740511088455095303322626184799<67>
Number: 99991_153 N=1335766746562476311394979112050139074304751101054445997162839406395615947883173967919903824012052485594710774133665797 ( 118 digits) SNFS difficulty: 155 digits. Divisors found: r1=212160165998317320103944607230187712351218102168603 (pp51) r2=6296029889857224726698251701700348692740511088455095303322626184799 (pp67) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 36.60 hours. Scaled time: 22.47 units (timescale=0.614). Factorization parameters were as follows: n: 1335766746562476311394979112050139074304751101054445997162839406395615947883173967919903824012052485594710774133665797 m: 10000000000000000000000000000000 c5: 1 c0: -900 skew: 1 type: snfs qintsize: 10000 Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved algebraic special-q in [1500000, 2670001) Primes: RFBsize:216816, AFBsize:215581, largePrimes:5493083 encountered Relations: rels:5394281, finalFF:509333 Max relations in full relation-set: 28 Initial matrix: 432461 x 509333 with sparse part having weight 37353617. Pruned matrix : 382056 x 384282 with weight 25246154. Total sieving time: 31.51 hours. Total relation processing time: 0.26 hours. Matrix solve time: 4.73 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 36.60 hours. --------- CPU info (if available) ----------
Note: Table 99...991 had been completed up to 172.
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10149+6·1074-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333333333533333333333333333333333333333333333333333333333333333333333333333333333333<149> = 17 · C148
C148 = P44 · P51 · P53
P44 = 88225351162645633129590559359575807063473939<44>
P51 = 596171206798901535940028504016067250123297431811291<51>
P53 = 37279101041130413646579997617877471987264017638997701<53>
Number: 33533_74 N=1960784313725490196078431372549019607843137254901960784313725490196078431384313725490196078431372549019607843137254901960784313725490196078431372549 ( 148 digits) SNFS difficulty: 150 digits. Divisors found: r1=88225351162645633129590559359575807063473939 (pp44) r2=596171206798901535940028504016067250123297431811291 (pp51) r3=37279101041130413646579997617877471987264017638997701 (pp53) Version: GGNFS-0.77.1 Total time: 95.13 hours. Scaled time: 74.68 units (timescale=0.785). Factorization parameters were as follows: name: 33533_74 n: 1960784313725490196078431372549019607843137254901960784313725490196078431384313725490196078431372549019607843137254901960784313725490196078431372549 m: 10000000000000000000000000 skew: 1 c6: 1 c3: 6 c0: -10 type: snfs qintsize: 10000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 3530001) Relations: rels:3128579, finalFF:256205 Initial matrix: 228278 x 256205 with sparse part having weight 32403815. Pruned matrix : 224321 x 225526 with weight 26008950. Total sieving time: 93.32 hours. Total relation processing time: 0.32 hours. Matrix solve time: 1.34 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 95.13 hours. --------- CPU info (if available) ----------
(7·10149-45·1074-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777777277777777777777777777777777777777777777777777777777777777777777777777777777<149>= 3 · 113 · 57787253 · 361862503 · C131
C131 = P47 · P84
P47 = 43690240966887319700391058410971274669303866911<47>
P84 = 251128359341732237335451035980116098703524354436581362431552219509789432846317838807<84>
Number: 77277_74 N=10971858533259349729606961439732430619173992815736139317480397222220293539177218969395198134603391721823640452845516819285479015177 ( 131 digits) SNFS difficulty: 150 digits. Divisors found: r1=43690240966887319700391058410971274669303866911 (pp47) r2=251128359341732237335451035980116098703524354436581362431552219509789432846317838807 (pp84) Version: GGNFS-0.77.1 Total time: 35.63 hours. Scaled time: 40.37 units (timescale=1.133). Factorization parameters were as follows: name: 77277_74 n: 10971858533259349729606961439732430619173992815736139317480397222220293539177218969395198134603391721823640452845516819285479015177 m: 10000000000000000000000000 skew: 1 c6: 7 c3: -45 c0: -70 type: snfs qintsize: 1000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2191001) Relations: rels:5999055, finalFF:666354 Initial matrix: 352272 x 666354 with sparse part having weight 66571545. Pruned matrix : 287276 x 289101 with weight 19542312. Total sieving time: 34.49 hours. Total relation processing time: 0.24 hours. Matrix solve time: 0.75 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 35.63 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(2·10174+43)/9 = (2)1737<174> = 19 · 29 · 10487 · 6423559 · 70532117404207<14> · 1540114041453736417<19> · 5158919117740298720237<22> · C107
C107 = P50 · P57
P50 = 16589785580222462313620004621034206905394890056421<50>
P57 = 643975889848444833589206338819758992526723894368360535163<57>
Number: (2*10^174+43)/9 N=1068342193141865885207490124807043809609279694110080063954719974376318104533 8481648052480636402786824431623 ( 107 digits) Divisors found: r1=16589785580222462313620004621034206905394890056421 (pp50) r2=643975889848444833589206338819758992526723894368360535163 (pp57) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 24.23 hours. Scaled time: 11.10 units (timescale=0.458). Factorization parameters were as follows: name: try n: 106834219314186588520749012480704380960927969411008006395471997437631810453384 81648052480636402786824431623 skew: 2720.79 # norm 1.86e+014 c5: 51240 c4: -1838166622 c3: -24219162956639 c2: 10168342829104629 c1: 21096891196156716135 c0: -91052948473760103831 # alpha -4.87 Y1: 201854090653 Y0: -183579286751225615786 # Murphy_E 1.71e-009 # M 733719521123377486365851574149728043023425514504936044930653925694570774332361 6712501588363526878946778594 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 215001 ) Primes: RFBsize:183072, AFBsize:182689, largePrimes:4420527 encountered Relations: rels:4459503, finalFF:425544 Max relations in full relation-set: 28 Initial matrix: 365844 x 425544 with sparse part having weight 32093553. Pruned matrix : 319476 x 321369 with weight 20432088. Total sieving time: 17.91 hours. Total relation processing time: 0.32 hours. Matrix solve time: 5.75 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 24.23 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 mb RAM
By Sinkiti Sibata / GGNFS-0.77.1
(10159+17)/9 = (1)1583<159> = 59 · 2287 · 3164748030433471<16> · 508869722003299131338159<24> · C114
C114 = P56 · P59
P56 = 21918177097312530089488698643486364254620637121125951583<56>
P59 = 23328624540169739236194673078124052370965189712818664481803<59>
Number: 11113_159 N=511320924108151432134411856740119469240746334836833853266717925421242537177166214682377974271237996992591962544149 ( 114 digits) SNFS difficulty: 160 digits. Divisors found: r1=21918177097312530089488698643486364254620637121125951583 (pp56) r2=23328624540169739236194673078124052370965189712818664481803 (pp59) Version: GGNFS-0.77.1 Total time: 67.08 hours. Scaled time: 44.67 units (timescale=0.666). Factorization parameters were as follows: name: 11113_159 n: 511320924108151432134411856740119469240746334836833853266717925421242537177166214682377974271237996992591962544149 m: 100000000000000000000000000000000 c5: 1 c0: 170 skew: 2 type: snfs Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2000000, 3600001) Relations: rels:5721497, finalFF:679529 Initial matrix: 566942 x 679529 with sparse part having weight 42317335. Pruned matrix : 526225 x 529123 with weight 24144214. Total sieving time: 59.87 hours. Total relation processing time: 0.30 hours. Matrix solve time: 6.73 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 67.08 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(79·10155-7)/9 = 8(7)155<156> = 233 · 10433 · 1481882918251259<16> · 5408053588527112006899636743<28> · C107
C107 = P32 · P36 · P40
P32 = 65284723197930261268166364053401<32>
P36 = 220613673743668983159486374835774857<36>
P40 = 3128387783845623068000754294540409148477<40>
Number: (79*10^155-7)/9 N=4505723894338902964140327779686729741311239594801929956356130151671147707340 2428700617197619020871097375389 ( 107 digits) Divisors found: r1=65284723197930261268166364053401 (pp32) r2=220613673743668983159486374835774857 (pp36) r3=3128387783845623068000754294540409148477 (pp40) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 25.03 hours. Scaled time: 9.59 units (timescale=0.383). Factorization parameters were as follows: name: try n: 450572389433890296414032777968672974131123959480192995635613015167114770734024 28700617197619020871097375389 skew: 7506.17 # norm 1.01e+015 c5: 213900 c4: -7403477846 c3: -32887963032294 c2: 773836973533045521 c1: 2748630794139355627220 c0: -32390891210355041649585 # alpha -6.36 Y1: 158162055491 Y0: -183955739673748343164 # Murphy_E 1.51e-009 # M 349232844417089456923012602886975953832958237685576428817163596546270173401719 60503832660864490474369591153 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183308, largePrimes:4450570 encountered Relations: rels:4550175, finalFF:473900 Max relations in full relation-set: 28 Initial matrix: 366465 x 473900 with sparse part having weight 35821290. Pruned matrix : 282153 x 284049 with weight 19342175. Polynomial selection time: 1.10 hours. Total sieving time: 18.80 hours. Total relation processing time: 0.32 hours. Matrix solve time: 4.56 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 25.03 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10149+36·1074-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111111111111111111111<149> = 32 · 1171619 · 1465837 · C135
C135 = P67 · P69
P67 = 1485829062303075804614751162714480283789423224355929438379270591453<67>
P69 = 483809115449734222243654827741611582855330882250280741427084513028781<69>
Number: 11511_74 N=718857644342359144530468425402489027160430984958775365098933616672882490982373246082553637242045511104119086887127401684920254281608793 ( 135 digits) SNFS difficulty: 150 digits. Divisors found: r1=1485829062303075804614751162714480283789423224355929438379270591453 (pp67) r2=483809115449734222243654827741611582855330882250280741427084513028781 (pp69) Version: GGNFS-0.77.1 Total time: 37.92 hours. Scaled time: 43.53 units (timescale=1.148). Factorization parameters were as follows: name: 11511_74 n: 718857644342359144530468425402489027160430984958775365098933616672882490982373246082553637242045511104119086887127401684920254281608793 m: 10000000000000000000000000 skew: 1 c6: 1 c3: 36 c0: -10 type: snfs qintsize: 500000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:3058806, finalFF:360391 Initial matrix: 228323 x 360391 with sparse part having weight 37258670. Pruned matrix : 208045 x 209250 with weight 14860349. Total sieving time: 37.01 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.71 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 37.92 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
2·10158-1 = 1(9)158<159> = 1285907719<10> · 586074106312714207<18> · 19164974945145553260890513<26> · C107
C107 = P49 · P58
P49 = 2146234644932441031676835698745485661674751462177<49>
P58 = 6451819391586870357110797574746788420003224310291851364103<58>
Number: 2*10^158-1 N=1384711830107068442565172130932484068051186395984570664728366915515022174594 9123264400015684619851260032231 ( 107 digits) Divisors found: r1=2146234644932441031676835698745485661674751462177 (pp49) r2=6451819391586870357110797574746788420003224310291851364103 (pp58) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 26.18 hours. Scaled time: 10.31 units (timescale=0.394). Factorization parameters were as follows: name: try n: 138471183010706844256517213093248406805118639598457066472836691551502217459491 23264400015684619851260032231 skew: 10001.41 # norm 1.09e+014 c5: 19800 c4: -1174885606 c3: -5073349303007 c2: 127575625577585060 c1: 218203622201729620404 c0: -637911282839856843706560 # alpha -4.91 Y1: 11004478363 Y0: -233850921171800466889 # Murphy_E 1.58e-009 # M 491573396812418272626164234090827900025760171418064334326265164723476745324268 3248376707376062596967517286 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2450001) Primes: RFBsize:183072, AFBsize:182111, largePrimes:4598405 encountered Relations: rels:4853200, finalFF:577774 Max relations in full relation-set: 28 Initial matrix: 365262 x 577774 with sparse part having weight 46599461. Pruned matrix : 233939 x 235829 with weight 24674938. Polynomial selection time: 1.38 hours. Total sieving time: 20.14 hours. Total relation processing time: 0.33 hours. Matrix solve time: 4.06 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 26.18 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 mb RAM
By Sinkiti Sibata / GGNFS-0.77.1
(4·10157-1)/3 = 1(3)157<158> = 13 · 17978551 · C149
C149 = P59 · P91
P59 = 11784742985942415665452704376248438748650663844739813180159<59>
P91 = 4840838372269646675533865959695954366979220927876263504066982745751369848416622643705577249<91>
Number: 13333_157 N=5704803605368561910387778334533331640718103620481014521279501477293835532271989136616324869705245020252330908234156499269744491787 1358244667528602591 ( 149 digits) SNFS difficulty: 157 digits. Divisors found: r1=11784742985942415665452704376248438748650663844739813180159 (pp59) r2=4840838372269646675533865959695954366979220927876263504066982745751369848416622643705577249 (pp91) Version: GGNFS-0.77.1 Total time: 58.92 hours. Scaled time: 39.24 units (timescale=0.666). Factorization parameters were as follows: name: 13333_157 n: 570480360536856191038777833453333164071810362048101452127950147729383553227198913661632486970524502025233090823415649926974449178713 58244667528602591 m: 10000000000000000000000000000000 c5: 400 c0: -1 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 3000001) Relations: rels:5740073, finalFF:596250 Initial matrix: 433241 x 596250 with sparse part having weight 48785569. Pruned matrix : 398328 x 400558 with weight 22242951. Total sieving time: 53.87 hours. Total relation processing time: 0.36 hours. Matrix solve time: 4.54 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,157,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 58.92 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(19·10166-1)/9 = 2(1)166<167> = 3 · 17 · 3175751 · 112713619 · 4135365673<10> · 4176850455607<13> · 829442422864343185621<21> · C107
C107 = P49 · P59
P49 = 6213420216137445595425609090774885058694729937893<49>
P59 = 12990870768842369846194484414899045383684817307326588209343<59>
Number: (19*10^166-1)/9 N=8071773906035418168761429981225195262410509225568634914700240596107186489084 7712340814918817438448472334299 ( 107 digits) Divisors found: r1=6213420216137445595425609090774885058694729937893 (pp49) r2=12990870768842369846194484414899045383684817307326588209343 (pp59) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 23.65 hours. Scaled time: 9.74 units (timescale=0.412). Factorization parameters were as follows: name: try n: 807177390603541816876142998122519526241050922556863491470024059610718648908477 12340814918817438448472334299 skew: 21189.28 # norm 8.62e+014 c5: 42120 c4: 2117628782 c3: -39470352317003 c2: -896927806804315054 c1: 12531840400201270107300 c0: -414969552295676222425200 # alpha -7.01 Y1: 187282096837 Y0: -286083800478025317019 # Murphy_E 1.71e-009 # M 755630682329984662755267528254778032545734178085067267716763282150772773740590 43361589693688544433793590347 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:184066, largePrimes:4563908 encountered Relations: rels:4796309, finalFF:571617 Max relations in full relation-set: 28 Initial matrix: 367221 x 571617 with sparse part having weight 44686172. Pruned matrix : 231109 x 233009 with weight 22844294. Polynomial selection time: 1.08 hours. Total sieving time: 18.34 hours. Total relation processing time: 0.34 hours. Matrix solve time: 3.64 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 23.65 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10147-45·1073-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777777727777777777777777777777777777777777777777777777777777777777777777777777777<147> = 1213 · 13034011 · 6512155106833<13> · C124
C124 = P57 · P68
P57 = 539961070762634006739314270069931772179621616448110278727<57>
P68 = 13990378383901381343792947008641308012832419025677415186235716656729<68>
Number: 77277_73 N=7554259692545798967586280271285939786581999954198002876496391846168266464680777432501131491117539365680769859033428770103983 ( 124 digits) SNFS difficulty: 147 digits. Divisors found: r1=539961070762634006739314270069931772179621616448110278727 (pp57) r2=13990378383901381343792947008641308012832419025677415186235716656729 (pp68) Version: GGNFS-0.77.1 Total time: 99.69 hours. Scaled time: 78.16 units (timescale=0.784). Factorization parameters were as follows: name: 77277_73 n: 7554259692545798967586280271285939786581999954198002876496391846168266464680777432501131491117539365680769859033428770103983 m: 1000000000000000000000000 skew: 1 c6: 7000 c3: -450 c0: -7 type: snfs qintsize: 1000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 8578001) Relations: rels:3905231, finalFF:265759 Initial matrix: 228574 x 265759 with sparse part having weight 38529934. Pruned matrix : 224715 x 225921 with weight 30012635. Total sieving time: 97.59 hours. Total relation processing time: 0.45 hours. Matrix solve time: 1.48 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 99.69 hours. --------- CPU info (if available) ----------
(10149+27·1074-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111111411111111111111111111111111111111111111111111111111111111111111111111111111<149> = 337 · 14864488977819792974162295667<29> · C118
C118 = P58 · P60
P58 = 7384067216102462621256190273252185567572437363247736668941<58>
P60 = 300387575100043727996533019070652041405300440160360920438849<60>
Number: 11411_74 N=2218082045420749310403162020312681994837057759081352978041132837998260454070077557220057065863299438613020175148088909 ( 118 digits) SNFS difficulty: 150 digits. Divisors found: r1=7384067216102462621256190273252185567572437363247736668941 (pp58) r2=300387575100043727996533019070652041405300440160360920438849 (pp60) Version: GGNFS-0.77.1 Total time: 48.86 hours. Scaled time: 56.28 units (timescale=1.152). Factorization parameters were as follows: name: 11411_74 n: 2218082045420749310403162020312681994837057759081352978041132837998260454070077557220057065863299438613020175148088909 m: 10000000000000000000000000 skew: 1 c6: 1 c3: 27 c0: -10 type: snfs qintsize: 1000000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:3287976, finalFF:402614 Initial matrix: 228183 x 402614 with sparse part having weight 46738573. Pruned matrix : 203566 x 204770 with weight 17113970. Total sieving time: 48.22 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.42 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 48.86 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(86·10151+31)/9 = 9(5)1509<152> = 3 · 11 · 29 · 769 · 3557 · 2756057507779<13> · 3581409699470998083447593<25> · C106
C106 = P40 · P66
P40 = 3849646161001019789143190583478641330829<40>
P66 = 960662205499588834060367844684766611533009035501918866249588434953<66>
Number: N=3698209571420264915006403117467418197659829602978111398572047205250720231665 990030552863508178431220066037 ( 106 digits) Divisors found: r1=3849646161001019789143190583478641330829 (pp40) r2=960662205499588834060367844684766611533009035501918866249588434953 (pp66) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 23.14 hours. Scaled time: 9.30 units (timescale=0.402). Factorization parameters were as follows: name: try n: 369820957142026491500640311746741819765982960297811139857204720525072023166599 0030552863508178431220066037 skew: 7197.39 # norm 7.49e+013 c5: 36960 c4: -1283510322 c3: -4245517100537 c2: 67583707016215790 c1: 97718921109775493596 c0: -246087869822037563183364 # alpha -4.77 Y1: 108319835719 Y0: -158509016913006468127 # Murphy_E 1.73e-009 # M 712218549404954049250323867705569303904109697594251628932317675254645248677021 599919584691883154339899468 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:182479, largePrimes:4437804 encountered Relations: rels:4508549, finalFF:451875 Max relations in full relation-set: 28 Initial matrix: 365636 x 451875 with sparse part having weight 34605517. Pruned matrix : 297560 x 299452 with weight 19797121. Total sieving time: 17.39 hours. Total relation processing time: 0.31 hours. Matrix solve time: 5.18 hours. Time per square root: 0.27 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 23.14 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1-24 mb RAM
By Sinkiti Sibata / GGNFS-0.77.1
(16·10155-7)/9 = 1(7)155<156> = 3 · C155
C155 = P73 · P82
P73 = 7125116857458280461046747727398728822550057760790147950702735682169465159<73>
P82 = 8316952612114578036270856577542486539606426446517458465945695974546403895108089901<82>
Number: 17777_155 N=59259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 ( 155 digits) SNFS difficulty: 156 digits. Divisors found: r1=7125116857458280461046747727398728822550057760790147950702735682169465159 (pp73) r2=8316952612114578036270856577542486539606426446517458465945695974546403895108089901 (pp82) Version: GGNFS-0.77.1 Total time: 41.01 hours. Scaled time: 26.08 units (timescale=0.636). Factorization parameters were as follows: name: 17777_155 n: 59259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 m: 10000000000000000000000000000000 c5: 16 c0: -7 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2500001) Relations: rels:5565484, finalFF:566524 Initial matrix: 433551 x 566524 with sparse part having weight 42334961. Pruned matrix : 393901 x 396132 with weight 20273014. Total sieving time: 36.19 hours. Total relation processing time: 0.37 hours. Matrix solve time: 4.29 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 41.01 hours. --------- CPU info (if available) ----------
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(65·10164+43)/9 = 7(2)1637<165> = 439 · 4969 · 1121788638739<13> · 2208509897446174801<19> · 16593692615156902858999<23> · C106
C106 = P37 · P70
P37 = 1553337788003002160800207996061988253<37>
P70 = 5184632701156864875628511570734466621572003441098635405139333298106509<70>
Number: (65*10^164+43)/9 N=8053485891623034627982576910582286856970550711314674708525483252408106062221 222245761854654180314700838777 ( 106 digits) Divisors found: r1=1553337788003002160800207996061988253 (pp37) r2=5184632701156864875628511570734466621572003441098635405139333298106509 (pp70) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 22.14 hours. Scaled time: 8.86 units (timescale=0.400). Factorization parameters were as follows: name: try n: 805348589162303462798257691058228685697055071131467470852548325240810606222122 2245761854654180314700838777 skew: 3388.87 # norm 1.04e+014 c5: 154800 c4: 4535508726 c3: 2007460750209 c2: -47855158595518438 c1: 21461941375814145016 c0: 41209937517651963176512 # alpha -4.84 Y1: 68288415041 Y0: -139072524934748618113 # Murphy_E 1.70e-009 # M 537681203801633681325264430261461671417437663604990151656345544577484227514235 8511605319487823555631443577 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183756, largePrimes:4509358 encountered Relations: rels:4666894, finalFF:513689 Max relations in full relation-set: 28 Initial matrix: 366904 x 513689 with sparse part having weight 39246364. Pruned matrix : 258718 x 260616 with weight 20299421. Total sieving time: 17.67 hours. Total relation processing time: 0.31 hours. Matrix solve time: 3.90 hours. Time per square root: 0.25 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 22.14 hours. --------- CPU info (if available) ---------- P4 3.2 gig 1024 MB RAM
By Tyler Cadigan / GGNFS-0.77.1-20050930-pentium4 gnfs
(28·10165-1)/9 = 3(1)165<166> = 3 · 1997 · 41029853253616558862159<23> · 1479931381061176239842955946643233<34> · C106
C106 = P49 · P58
P49 = 2662130344631855481640471681171550281616064848447<49>
P58 = 3212516327124022069219127196505956546984798871424714788369<58>
Number: (28*10^165-1)/9 N=8552137197062135452946734939039401000390352520643770708997187105215087703113 602922115601036755747663312943 ( 106 digits) Divisors found: r1=2662130344631855481640471681171550281616064848447 (pp49) r2=3212516327124022069219127196505956546984798871424714788369 (pp58) Version: GGNFS-0.77.1-20050930-pentium4 Total time: 23.43 hours. Scaled time: 9.30 units (timescale=0.397). Factorization parameters were as follows: name: try n: 855213719706213545294673493903940100039035252064377070899718710521508770311360 2922115601036755747663312943 skew: 3561.77 # norm 1.93e+014 c5: 794880 c4: -6039392880 c3: -36285420045202 c2: 86961503898225370 c1: 341611607879687875799 c0: -1923453437557448661618 # alpha -5.39 Y1: 262642520107 Y0: -101474361206990021707 # Murphy_E 1.62e-009 # M 844269480175799858330152333171433464083953649561414481424416189593910037841661 9571100566992690139641353636 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183326, largePrimes:4461973 encountered Relations: rels:4570043, finalFF:480671 Max relations in full relation-set: 28 Initial matrix: 366478 x 480671 with sparse part having weight 36716103. Pruned matrix : 279123 x 281019 with weight 19473805. Polynomial selection time: 0.97 hours. Total sieving time: 17.53 hours. Total relation processing time: 0.32 hours. Matrix solve time: 4.35 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,25000 00,26,26,49,49,2.6,2.6,150000 total time: 23.43 hours. --------- CPU info (if available) ---------- P4 3.2 gig, 1024 Mb RAM
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10147-36·1073-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777777737777777777777777777777777777777777777777777777777777777777777777777777777<147> = 11 · 21023 · 239282508927295175522107<24> · C119
C119 = P48 · P71
P48 = 788329650501503801440820969644645670224132529951<48>
P71 = 17829917756532436365539600908128276083256168083369835172387518102946537<71>
Number: 77377_73 N=14055852833477772307971316696272095272055107070214374330386574894351597475885168693977768149430530967932009405504229687 ( 119 digits) SNFS difficulty: 147 digits. Divisors found: r1=788329650501503801440820969644645670224132529951 (pp48) r2=17829917756532436365539600908128276083256168083369835172387518102946537 (pp71) Version: GGNFS-0.77.1 Total time: 37.52 hours. Scaled time: 44.68 units (timescale=1.191). Factorization parameters were as follows: name: 77377_73 n: 14055852833477772307971316696272095272055107070214374330386574894351597475885168693977768149430530967932009405504229687 m: 1000000000000000000000000 skew: 1 c6: 7000 c3: -360 c0: -7 type: snfs qintsize: 1000000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:3447321, finalFF:365681 Initial matrix: 228599 x 365681 with sparse part having weight 46064972. Pruned matrix : 211359 x 212565 with weight 20555344. Total sieving time: 36.16 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.07 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 37.52 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10153+17)/9 = (1)1523<153> = 719 · 13931 · 2014069 · C139
C139 = P57 · P83
P57 = 114521833356465900020415825623800689715941506216490899461<57>
P83 = 48093199574286224364697377298058658387570280747098458767424524501531862989782136013<83>
Number: 11113_153 N=5507721387225663752003822340429316847883989899167841894194808756524630892595224851466945354593237482894480141458263717053006855884 210388993 ( 139 digits) SNFS difficulty: 155 digits. Divisors found: r1=114521833356465900020415825623800689715941506216490899461 (pp57) r2=48093199574286224364697377298058658387570280747098458767424524501531862989782136013 (pp83) Version: GGNFS-0.77.1 Total time: 48.49 hours. Scaled time: 28.95 units (timescale=0.597). Factorization parameters were as follows: name: 11113_153 n: 550772138722566375200382234042931684788398989916784189419480875652463089259522485146694535459323748289448014145826371705300685588421 0388993 m: 10000000000000000000000000000000 c5: 1 c0: 1700 skew: 2 type: snfs Factor base limits: 3000000/3000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1500000, 2700001) Relations: rels:5752017, finalFF:621608 Initial matrix: 433576 x 621608 with sparse part having weight 48464154. Pruned matrix : 385028 x 387259 with weight 19679907. Total sieving time: 43.67 hours. Total relation processing time: 0.31 hours. Matrix solve time: 4.34 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,155,5,0,0,0,0,0,0,0,0,3000000,3000000,27,27,48,48,2.3,2.3,100000 total time: 48.49 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10147+12·1073-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333333373333333333333333333333333333333333333333333333333333333333333333333333333<147> = 3607 · 1724094571309367654105702489<28> · C116
C116 = P45 · P71
P45 = 884687692177158110023475232489995040629719097<45>
P71 = 60587290803002915341399965280998780397341568241359510179116666563824643<71>
Number: 33733_73 N=53600830475775005772757206877238796840764060857339607199248591985979911597205365826066623301705750025992467056307371 ( 116 digits) SNFS difficulty: 147 digits. Divisors found: r1=884687692177158110023475232489995040629719097 (pp45) r2=60587290803002915341399965280998780397341568241359510179116666563824643 (pp71) Version: GGNFS-0.77.1 Total time: 83.82 hours. Scaled time: 65.71 units (timescale=0.784). Factorization parameters were as follows: name: 33733_73 n: 53600830475775005772757206877238796840764060857339607199248591985979911597205365826066623301705750025992467056307371 m: 1000000000000000000000000 skew: 1 c6: 1000 c3: 120 c0: -1 type: snfs qintsize: 5000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 7390001) Relations: rels:3697112, finalFF:256799 Initial matrix: 227255 x 256799 with sparse part having weight 35514151. Pruned matrix : 223927 x 225127 with weight 28819130. Total sieving time: 81.64 hours. Total relation processing time: 0.55 hours. Matrix solve time: 1.44 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 83.82 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10147+9·1073-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777777777777777777777<147> = 1333100720561341<16> · C132
C132 = P44 · P89
P44 = 49133589931465103711288641263105967143862201<44>
P89 = 11874465513153241064602344533676608741669729094829753777928244341436139904807094249036397<89>
Number: 77877_73 N=583435119178595691211498028354094852670593276016544554582023360518588724917133541375680240070991827336262450168816109961717201529797 ( 132 digits) SNFS difficulty: 147 digits. Divisors found: r1=49133589931465103711288641263105967143862201 (pp44) r2=11874465513153241064602344533676608741669729094829753777928244341436139904807094249036397 (pp89) Version: GGNFS-0.77.1 Total time: 60.20 hours. Scaled time: 70.01 units (timescale=1.163). Factorization parameters were as follows: name: 77877_73 n: 583435119178595691211498028354094852670593276016544554582023360518588724917133541375680240070991827336262450168816109961717201529797 m: 1000000000000000000000000 skew: 1 c6: 7000 c3: 90 c0: -7 type: snfs qintsize: 50000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:3741675, finalFF:257125 Initial matrix: 228049 x 257125 with sparse part having weight 36934181. Pruned matrix : 224720 x 225924 with weight 30177991. Total sieving time: 58.40 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.47 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 60.20 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(4·10151-1)/3 = 1(3)151<152> = 13 · C151
C151 = P41 · P110
P41 = 19189093080851200410980502927963609734231<41>
P110 = 53449166217475541516043374758811117038579535369434935912619763380540917747872212270502296452889286207638946111<110>
Number: 13333_151 N=1025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025 641025641025641025641 ( 151 digits) SNFS difficulty: 151 digits. Divisors found: r1=19189093080851200410980502927963609734231 (pp41) r2=53449166217475541516043374758811117038579535369434935912619763380540917747872212270502296452889286207638946111 (pp110) Version: GGNFS-0.77.1 Total time: 29.47 hours. Scaled time: 17.62 units (timescale=0.598). Factorization parameters were as follows: number: 13333_151 n: 102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564102564 1025641025641025641 m: 1000000000000000000000000000000 c5: 40 c0: -1 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 1900001) Relations: rels:5224649, finalFF:459283 Initial matrix: 353071 x 459283 with sparse part having weight 37699179. Pruned matrix : 325069 x 326898 with weight 18529479. Total sieving time: 25.90 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.12 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 29.47 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1
10169-9 = (9)1681<169> = C169
C169 = P56 · P114
P56 = 94211591202708488915524241578569786726705726654902440361<56>
P114 = 106144051621882701124925887117325659671531292461815961898361365027825862303359296356795774245471393139352946460831<114>
Number: 99991_169 N=9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 ( 169 digits) SNFS difficulty: 170 digits. Divisors found: r1=94211591202708488915524241578569786726705726654902440361 (pp56) r2=106144051621882701124925887117325659671531292461815961898361365027825862303359296356795774245471393139352946460831 (pp114) Version: GGNFS-0.77.1 Total time: 168.51 hours. Scaled time: 144.92 units (timescale=0.860). Factorization parameters were as follows: n: 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991 m: 10000000000000000000000000000000000 c5: 1 c0: -90 skew: 3 type: snfs Factor base limits: 6000000/6000000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [3000000, 7600001) Relations: rels:6364281, finalFF:925392 Initial matrix: 826019 x 925392 with sparse part having weight 57695015. Pruned matrix : 789184 x 793378 with weight 41189257. Total sieving time: 141.03 hours. Total relation processing time: 0.68 hours. Matrix solve time: 26.66 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,170,5,0,0,0,0,0,0,0,0,6000000,6000000,27,27,48,48,2.6,2.6,100000 total time: 168.51 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10151+71)/9 = (1)1509<151> = 3 · 23 · 61 · 1163 · 1392536443<10> · C135
C135 = P52 · P84
P52 = 1435575192424309524768909293072449589412358289040997<52>
P84 = 113544561029960344981988582475143875453433518727002828818207021463470771560713531067<84>
Number: 11119_151 N=1630017550493190787306213877005142857399139736124182065763045639252398292930256964576559345971400401608702061247664839746110369961 53799 ( 135 digits) SNFS difficulty: 151 digits. Divisors found: r1=1435575192424309524768909293072449589412358289040997 (pp52) r2=113544561029960344981988582475143875453433518727002828818207021463470771560713531067 (pp84) Version: GGNFS-0.77.1 Total time: 29.11 hours. Scaled time: 19.42 units (timescale=0.667). Factorization parameters were as follows: name: 11119_151 n: 163001755049319078730621387700514285739913973612418206576304563925239829293025696457655934597140040160870206124766483974611036996153 799 m: 1000000000000000000000000000000 c5: 10 c0: 71 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 1900001) Relations: rels:5167413, finalFF:440239 Initial matrix: 352962 x 440239 with sparse part having weight 35869279. Pruned matrix : 329115 x 330943 with weight 19351732. Total sieving time: 25.62 hours. Total relation processing time: 0.24 hours. Matrix solve time: 3.12 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 29.11 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10147+63·1073-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111111111181111111111111111111111111111111111111111111111111111111111111111111111111<147> = 41 · 733 · 5669 · C138
C138 = P59 · P80
P59 = 18043670197968668793984586707577096674672799298135615597639<59>
P80 = 36144175451666733695082301849669634364211513159356501466289901979180714137743657<80>
Number: 11811_73 N=652173581427389791594625534819755229694025596885680192259571805404684165289942910179028932880723041736696821275246747216925708611036425823 ( 138 digits) SNFS difficulty: 147 digits. Divisors found: r1=18043670197968668793984586707577096674672799298135615597639 (pp59) r2=36144175451666733695082301849669634364211513159356501466289901979180714137743657 (pp80) Version: GGNFS-0.77.1 Total time: 43.92 hours. Scaled time: 34.43 units (timescale=0.784). Factorization parameters were as follows: name: 11811_73 n: 652173581427389791594625534819755229694025596885680192259571805404684165289942910179028932880723041736696821275246747216925708611036425823 m: 1000000000000000000000000 skew: 1 c6: 1000 c3: 630 c0: -1 type: snfs qintsize: 200000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 4750001) Relations: rels:3206706, finalFF:261356 Initial matrix: 228140 x 261356 with sparse part having weight 32357297. Pruned matrix : 223464 x 224668 with weight 25007265. Total sieving time: 42.12 hours. Total relation processing time: 0.39 hours. Matrix solve time: 1.25 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 43.92 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(7·10149+18·1074-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777777977777777777777777777777777777777777777777777777777777777777777777777777777<149> = C149
C149 = P46 · P50 · P55
P46 = 5404604503922020712999254263107777804727300539<46>
P50 = 10192808475155750989833315677764597817385059969119<50>
P55 = 1411879875419220434906116593970461441967036874923815197<55>
Number: 77977_74 N=7777777777777777777777777777777777777777777777777777777777777777777777777797777777777777777777777777777777777777777777777777777777 7777777777777777777 ( 149 digits) SNFS difficulty: 150 digits. Divisors found: r1=5404604503922020712999254263107777804727300539 (pp46) r2=10192808475155750989833315677764597817385059969119 (pp50) r3=1411879875419220434906116593970461441967036874923815197 (pp55) Version: GGNFS-0.77.1 Total time: 39.25 hours. Scaled time: 26.14 units (timescale=0.666). Factorization parameters were as follows: name: 77977_74 n: 777777777777777777777777777777777777777777777777777777777777777777777777779777777777777777777777777777777777777777777777777777777777 77777777777777777 m: 10000000000000000000000000 c6: 7 c3: 18 c0: -70 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2100001) Relations: rels:5297545, finalFF:484339 Initial matrix: 352514 x 484339 with sparse part having weight 41780222. Pruned matrix : 319653 x 321479 with weight 18586160. Total sieving time: 35.85 hours. Total relation processing time: 0.35 hours. Matrix solve time: 2.84 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 39.25 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10147+54·1073-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111111111171111111111111111111111111111111111111111111111111111111111111111111111111<147> = 32 · 17 · 19 · C143
C143 = P62 · P81
P62 = 50183216683544210347493719943505384799366983609805300613170571<62>
P81 = 761647398729307770338953052863586957090523894962597420009504549850879755898450863<81>
Number: 11711_73 N=38221916446890647097045445858655352979398387035125941214692504682184764764744104269388067117685280739976302411802927798799831823567633681152773 ( 143 digits) SNFS difficulty: 147 digits. Divisors found: r1=50183216683544210347493719943505384799366983609805300613170571 (pp62) r2=761647398729307770338953052863586957090523894962597420009504549850879755898450863 (pp81) Version: GGNFS-0.77.1 Total time: 29.19 hours. Scaled time: 32.46 units (timescale=1.112). Factorization parameters were as follows: name: 11711_73 n: 38221916446890647097045445858655352979398387035125941214692504682184764764744104269388067117685280739976302411802927798799831823567633681152773 m: 1000000000000000000000000 skew: 1 c6: 1000 c3: 540 c0: -1 type: snfs qintsize: 3211000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:3080495, finalFF:269591 Initial matrix: 227947 x 269591 with sparse part having weight 31198209. Pruned matrix : 222150 x 223353 with weight 22383978. Total sieving time: 27.82 hours. Total relation processing time: 0.14 hours. Matrix solve time: 1.12 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,147,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 29.19 hours. --------- CPU info (if available) ----------
By Anton Korobeynikov / GGNFS-0.77.1-20050918-athlon gnfs
(31·10175-13)/9 = 3(4)1743<176> = 33 · 11 · 1758714678208981<16> · 218277674307795096958217<24> · 33833568313095695481541775239<29> · C106
C106 = P52 · P55
P52 = 1338118630701493155755390329944470852310677155961119<52>
P55 = 6672915229960602211087964240079771261594177163348746167<55>
Number: tst106 N=8929152190302020347429266526432030524488161133378763203396320408660623788598621809325516977041298452280873 ( 106 digits) Divisors found: r1=1338118630701493155755390329944470852310677155961119 (pp52) r2=6672915229960602211087964240079771261594177163348746167 (pp55) Version: GGNFS-0.77.1-20050918-athlon Total time: 23.25 hours. Scaled time: 6.16 units (timescale=0.265). Factorization parameters were as follows: name: tst106 n: 8929152190302020347429266526432030524488161133378763203396320408660623788598621809325516977041298452280873 skew: 13988.75 # norm 9.24e+014 c5: 109200 c4: -124756648 c3: -97486167632234 c2: 70373387485007969 c1: 5966520956209533976686 c0: -9599423711263654546510848 # alpha -6.21 Y1: 137916226933 Y0: -152236085177219492257 # Murphy_E 1.53e-009 # M 4204347915402033042204649121630437412441159100594441987808255706056133265569276024396700002667842788525704 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2010089) Primes: RFBsize:183072, AFBsize:182943, largePrimes:4365341 encountered Relations: rels:4362550, finalFF:391364 Max relations in full relation-set: 28 Initial matrix: 366103 x 391364 with sparse part having weight 32502185. Pruned matrix : 344921 x 346815 with weight 25664956. Total sieving time: 15.74 hours. Total relation processing time: 0.42 hours. Matrix solve time: 6.56 hours. Time per square root: 0.53 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 23.25 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10145-5·1072-1 = 9999999999999999999999999999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999999999999999999999999999<145> = 81839 · 98272507 · C133
C133 = P39 · P94
P39 = 152850960360368016481796770480122031721<39>
P94 = 8134661370956745828048953759976786314450618333909639195969999821733276700744096239942518707403<94>
Number: 99499_72 N=1243390802757126501296053602554702077688262967135835473292833861150048331817913321440621720655003863799081320556499282362379083530 563 ( 133 digits) SNFS difficulty: 145 digits. Divisors found: r1=152850960360368016481796770480122031721 (pp39) r2=8134661370956745828048953759976786314450618333909639195969999821733276700744096239942518707403 (pp94) Version: GGNFS-0.77.1 Total time: 46.05 hours. Scaled time: 30.71 units (timescale=0.667). Factorization parameters were as follows: name: 99499_72 n: 124339080275712650129605360255470207768826296713583547329283386115004833181791332144062172065500386379908132055649928236237908353056 3 m: 1000000000000000000000000 c6: 10 c3: -5 c0: -1 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 4350001) Relations: rels:3306355, finalFF:225841 Initial matrix: 200206 x 225841 with sparse part having weight 29679208. Pruned matrix : 197120 x 198185 with weight 23952291. Total sieving time: 43.47 hours. Total relation processing time: 0.51 hours. Matrix solve time: 1.91 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,145,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 46.05 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10145-54·1072-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777777777777777777777<145> = 71 · 199 · 12188058719659076574629<23> · C119
C119 = P38 · P81
P38 = 87564312641068638841591256231009360261<38>
P81 = 515801290798649563626167419342575214155540733512744334738972726184941404656543177<81>
Number: 77177_72 N=45165785488159710973051639553481235178894347636073938747091935366976442830753362823507269199197784011139077746494489197 ( 119 digits) SNFS difficulty: 145 digits. Divisors found: r1=87564312641068638841591256231009360261 (pp38) r2=515801290798649563626167419342575214155540733512744334738972726184941404656543177 (pp81) Version: GGNFS-0.77.1 Total time: 37.81 hours. Scaled time: 29.65 units (timescale=0.784). Factorization parameters were as follows: n: 45165785488159710973051639553481235178894347636073938747091935366976442830753362823507269199197784011139077746494489197 m: 1000000000000000000000000 c6: 70 c3: -54 c0: -7 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 3650001) Relations: rels:3437217, finalFF:375900 Initial matrix: 199834 x 375900 with sparse part having weight 48486997. Pruned matrix : 180127 x 181190 with weight 17117184. Total sieving time: 36.78 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.60 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,145,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 37.81 hours. --------- CPU info (if available) ----------
(7·10145+9·1072-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777778777777777777777777777777777777777777777777777777777777777777777777777777<145> = 383 · 811 · 6089 · 383303 · 30615034603619<14> · C117
C117 = P47 · P70
P47 = 68431689554799209491887690638309240442707468639<47>
P70 = 5121010810333912608676067303823655313256339089261174668305011424165007<70>
Number: 77877_72 N=350439421979541043162765261875902491018760357666792585244047074023727465476969676295663708562855325114746563213715473 ( 117 digits) SNFS difficulty: 145 digits. Divisors found: r1=68431689554799209491887690638309240442707468639 (pp47) r2=5121010810333912608676067303823655313256339089261174668305011424165007 (pp70) Version: GGNFS-0.77.1 Total time: 26.81 hours. Scaled time: 31.27 units (timescale=1.166). Factorization parameters were as follows: name: 77877_72 n: 350439421979541043162765261875902491018760357666792585244047074023727465476969676295663708562855325114746563213715473 m: 1000000000000000000000000 skew: 1 c6: 70 c3: 9 c0: -7 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 650000) Relations: rels:3227183, finalFF:235032 Initial matrix: 200272 x 235032 with sparse part having weight 31149252. Pruned matrix : 196449 x 197514 with weight 23376361. Total sieving time: 25.10 hours. Total relation processing time: 0.21 hours. Matrix solve time: 1.40 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,145,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 26.81 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10143-5·1071-1 = 99999999999999999999999999999999999999999999999999999999999999999999999499999999999999999999999999999999999999999999999999999999999999999999999<143> = 7 · 829 · 51157 · C135
C135 = P64 · P71
P64 = 4226983455085368113131838522651325280201438948126519944281685689<64>
P71 = 79691465468688137474165323187199380282822368311237342631970794505834321<71>
Number: 99499_71 N=3368545060476516876978352830039846755318530951493958324111239450057935758079663335210410154349732676137827403168637406444513792307 32169 ( 135 digits) SNFS difficulty: 144 digits. Divisors found: r1=4226983455085368113131838522651325280201438948126519944281685689 (pp64) r2=79691465468688137474165323187199380282822368311237342631970794505834321 (pp71) Version: GGNFS-0.77.1 Total time: 29.81 hours. Scaled time: 19.82 units (timescale=0.665). Factorization parameters were as follows: name: 99499_71 n: 336854506047651687697835283003984675531853095149395832411123945005793575807966333521041015434973267613782740316863740644451379230732 169 m: 1000000000000000000000000 c6: 1 c3: -5 c0: -10 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 3150001) Relations: rels:3013005, finalFF:231737 Initial matrix: 200200 x 231737 with sparse part having weight 27088785. Pruned matrix : 196177 x 197242 with weight 20373082. Total sieving time: 27.65 hours. Total relation processing time: 0.37 hours. Matrix solve time: 1.66 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 29.81 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10143+36·1071-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111111111111111111<143> = 3 · 23908939 · 25810517 · C127
C127 = P46 · P82
P46 = 2607668807327004985161783467552891735050687879<46>
P82 = 2301583820944128487085008688078452990774158844979393223368239060897835128041394781<82>
(10145+72·1072-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111119111111111111111111111111111111111111111111111111111111111111111111111111<145> = 32 · 2107327 · 2723333 · 10118441480393<14> · C118
C118 = P58 · P60
P58 = 4061310944478199450935127095296114671511035658753832154961<58>
P60 = 523482822214804830828357706751542295784338038432502503653253<60>
Number: 11911_72 N=2126026515107322376424368162911387965905961350419462213637544985698108336765616243172222324940307551568433484107738133 ( 118 digits) SNFS difficulty: 145 digits. Divisors found: r1=4061310944478199450935127095296114671511035658753832154961 (pp58) r2=523482822214804830828357706751542295784338038432502503653253 (pp60) Version: GGNFS-0.77.1 Total time: 36.58 hours. Scaled time: 28.68 units (timescale=0.784). Factorization parameters were as follows: n: 2126026515107322376424368162911387965905961350419462213637544985698108336765616243172222324940307551568433484107738133 m: 1000000000000000000000000 c6: 10 c3: 72 c0: -1 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 3650001) Relations: rels:3399791, finalFF:386171 Initial matrix: 200402 x 386171 with sparse part having weight 49013167. Pruned matrix : 179494 x 180560 with weight 16551419. Total sieving time: 35.63 hours. Total relation processing time: 0.23 hours. Matrix solve time: 0.59 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,145,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 36.58 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10149-5·1074-1 = 99999999999999999999999999999999999999999999999999999999999999999999999999499999999999999999999999999999999999999999999999999999999999999999999999999<149> = 73 · 1697 · 4253 · 94379 · 140363 · 419683619 · C122
C122 = P49 · P73
P49 = 7607082794944975537132889579438640845935478194747<49>
P73 = 4487781874349498160146767447626885491119476257355891326606162986068662363<73>
Number: 99499_74 N=34138928283829981483835794161021640466040291417085193935654332119712915240943444241925776849647744784377979912928303207161 ( 122 digits) SNFS difficulty: 150 digits. Divisors found: r1=7607082794944975537132889579438640845935478194747 (pp49) r2=4487781874349498160146767447626885491119476257355891326606162986068662363 (pp73) Version: GGNFS-0.77.1 Total time: 67.74 hours. Scaled time: 45.12 units (timescale=0.666). Factorization parameters were as follows: name: 99499_74 n: 34138928283829981483835794161021640466040291417085193935654332119712915240943444241925776849647744784377979912928303207161 m: 10000000000000000000000000 c6: 1 c3: -5 c0: -10 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 2650001) Relations: rels:3003478, finalFF:284308 Initial matrix: 228589 x 284308 with sparse part having weight 32723180. Pruned matrix : 220909 x 222115 with weight 20791093. Total sieving time: 65.15 hours. Total relation processing time: 0.38 hours. Matrix solve time: 2.05 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 67.74 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10143-18·1071-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777577777777777777777777777777777777777777777777777777777777777777777777777<143> = 33 · 811 · 16126223813047<14> · C126
C126 = P41 · P86
P41 = 16713088988339994082589554888842125451283<41>
P86 = 13178971039368712383242077555833066132886647279685469526123716787222619190917368268741<86>
Number: 77577_71 N=220261315755724913572106880169066606847972296952932304551593314722275727161329532239306795331791596332030899244084219047244703 ( 126 digits) SNFS difficulty: 144 digits. Divisors found: r1=16713088988339994082589554888842125451283 (pp41) r2=13178971039368712383242077555833066132886647279685469526123716787222619190917368268741 (pp86) Version: GGNFS-0.77.1 Total time: 25.58 hours. Scaled time: 20.11 units (timescale=0.786). Factorization parameters were as follows: n: 220261315755724913572106880169066606847972296952932304551593314722275727161329532239306795331791596332030899244084219047244703 m: 1000000000000000000000000 c6: 7 c3: -18 c0: -70 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2650001) Relations: rels:2893823, finalFF:282437 Initial matrix: 199870 x 282437 with sparse part having weight 31188111. Pruned matrix : 188368 x 189431 with weight 15596429. Total sieving time: 24.69 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.58 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 25.58 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10143-45·1071-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777277777777777777777777777777777777777777777777777777777777777777777777777<143>= 3 · 97 · 167 · 220169 · 1193809768201760719<19> · C115
C115 = P45 · P71
P45 = 403057793911824167022356193780204947197145521<45>
P71 = 15107320712864825916941842087195959008317378609606036377161301236408411<71>
Number: 77277_71 N=6089123358445703566359338445691733135195466081478896948086918682260578617109915516309164751062799007898897355377131 ( 115 digits) SNFS difficulty: 144 digits. Divisors found: r1=403057793911824167022356193780204947197145521 (pp45) r2=15107320712864825916941842087195959008317378609606036377161301236408411 (pp71) Version: GGNFS-0.77.1 Total time: 36.13 hours. Scaled time: 28.29 units (timescale=0.783). Factorization parameters were as follows: n: 6089123358445703566359338445691733135195466081478896948086918682260578617109915516309164751062799007898897355377131 m: 1000000000000000000000000 c6: 7 c3: -45 c0: -70 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 3650001) Relations: rels:3149530, finalFF:284155 Initial matrix: 200442 x 284155 with sparse part having weight 35293446. Pruned matrix : 190418 x 191484 with weight 18747386. Total sieving time: 35.05 hours. Total relation processing time: 0.20 hours. Matrix solve time: 0.73 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 36.13 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1
(10152-7)/3 = (3)1511<152> = 31 · 877 · 17333 · 15137587596899<14> · 105778309518031<15> · C116
C116 = P57 · P60
P57 = 247445620284419286332024260400277258105853174549257067019<57>
P60 = 178529775276009541114346689149194427116014977593144491500851<60>
Number: 33331_152 N=44176410982410163299974310599844589781710735107169108719596941998844558831709354455120517448624649334307593602533169 ( 116 digits) SNFS difficulty: 152 digits. Divisors found: r1=247445620284419286332024260400277258105853174549257067019 (pp57) r2=178529775276009541114346689149194427116014977593144491500851 (pp60) Version: GGNFS-0.77.1 Total time: 26.58 hours. Scaled time: 22.96 units (timescale=0.864). Factorization parameters were as follows: n: 44176410982410163299974310599844589781710735107169108719596941998844558831709354455120517448624649334307593602533169 m: 1000000000000000000000000000000 c5: 100 c0: -7 skew: 1 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2100001) Relations: rels:5323108, finalFF:450213 Initial matrix: 353124 x 450213 with sparse part having weight 38399849. Pruned matrix : 332963 x 334792 with weight 20317823. Total sieving time: 23.60 hours. Total relation processing time: 0.20 hours. Matrix solve time: 2.70 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 26.58 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10149-7·1074-1 = 99999999999999999999999999999999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999999999999999999999999999999<149> = 9721 · 4189623909880529<16> · C130
C130 = P58 · P72
P58 = 7690770857933312118597753750628516117910872540228607770081<58>
P72 = 319259732546553198230034160874462037912072645302944776190499583078669031<72>
Number: 99299_74a N=2455353447180614710113666508161868422147013669430768580779628319622623794987516791058193652895797157987678638831283467974343061511 ( 130 digits) SNFS difficulty: 150 digits. Divisors found: r1=7690770857933312118597753750628516117910872540228607770081 (pp58) r2=319259732546553198230034160874462037912072645302944776190499583078669031 (pp72) Version: GGNFS-0.77.1 Total time: 64.62 hours. Scaled time: 38.58 units (timescale=0.597). Factorization parameters were as follows: name: 99299_74a n: 2455353447180614710113666508161868422147013669430768580779628319622623794987516791058193652895797157987678638831283467974343061511 m: 10000000000000000000000000 c6: 1 c3: -7 c0: -10 skew: 2 type: snfsFactor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 2550001) Relations: rels:2963705, finalFF:277804 Initial matrix: 227971 x 277804 with sparse part having weight 31390705. Pruned matrix : 220823 x 222026 with weight 20682772. Total sieving time: 62.19 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.96 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 64.62 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1
(10151+53)/9 = (1)1507<151> = 73 · 109 · 12170033 · 1474257115384270604354669957<28> · C112
C112 = P41 · P72
P41 = 13895338835485101820598178988327586760611<41>
P72 = 119207270151444009334181713166925566184534569334425892610231192042679801<72>
Number: 11117_151 N=1656425410407523938008362100731804302338694799025320828075910612347370794803640653528089475607271904065112118411 ( 112 digits) SNFS difficulty: 151 digits. Divisors found: r1=13895338835485101820598178988327586760611 (pp41) r2=119207270151444009334181713166925566184534569334425892610231192042679801 (pp72) Version: GGNFS-0.77.1 Total time: 23.80 hours. Scaled time: 20.52 units (timescale=0.862). Factorization parameters were as follows: n: 1656425410407523938008362100731804302338694799025320828075910612347370794803640653528089475607271904065112118411 m: 1000000000000000000000000000000 c5: 10 c0: 53 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2000001) Relations: rels:5606912, finalFF:570395 Initial matrix: 352511 x 570395 with sparse part having weight 50641858. Pruned matrix : 303423 x 305249 with weight 16702260. Total sieving time: 21.61 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.92 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 23.80 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10143+54·1071-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111711111111111111111111111111111111111111111111111111111111111111111111111<143> = 83 · 615542356384709107<18> · C123
C123 = P44 · P80
P44 = 16197706322224665168921392016601227322415057<44>
P80 = 13426658248042374703718480358757697751184371777828778917717953298882176929884383<80>
Number: 11711_71 N=217481067190665919305659947718591517014168410662205738485389977121150613582384490369998327579625463670744837070699348354831 ( 123 digits) SNFS difficulty: 144 digits. Divisors found: r1=16197706322224665168921392016601227322415057 (pp44) r2=13426658248042374703718480358757697751184371777828778917717953298882176929884383 (pp80) Version: GGNFS-0.77.1 Total time: 25.39 hours. Scaled time: 19.88 units (timescale=0.783). Factorization parameters were as follows: n: 217481067190665919305659947718591517014168410662205738485389977121150613582384490369998327579625463670744837070699348354831 m: 1000000000000000000000000 c6: 1 c3: 54 c0: -10 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2650001) Relations: rels:2901329, finalFF:277370 Initial matrix: 199736 x 277370 with sparse part having weight 30762538. Pruned matrix : 189016 x 190078 with weight 15898623. Total sieving time: 24.50 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.61 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 25.39 hours. --------- CPU info (if available) ----------
(7·10143-54·1071-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777177777777777777777777777777777777777777777777777777777777777777777777777<143> = 13 · 239 · 398456431 · C131
C131 = P38 · P93
P38 = 66093701362031281001731974225870390331<38>
P93 = 950546490842008147042688248625215333783327711118993319756406892329103327678906354661218607151<93>
Number: 77177_71 N=62825135896438488441436771449779334797836466675272274335222651757497832551376624905031688189002553707685874429427514139316517856981 ( 131 digits) SNFS difficulty: 144 digits. Divisors found: r1=66093701362031281001731974225870390331 (pp38) r2=950546490842008147042688248625215333783327711118993319756406892329103327678906354661218607151 (pp93) Version: GGNFS-0.77.1 Total time: 28.48 hours. Scaled time: 22.33 units (timescale=0.784). Factorization parameters were as follows: n: 62825135896438488441436771449779334797836466675272274335222651757497832551376624905031688189002553707685874429427514139316517856981 m: 1000000000000000000000000 c6: 7 c3: -54 c0: -70 skew: 1 type: snfs qintsize: 2275000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2925001) Relations: rels:2876776, finalFF:253359 Initial matrix: 199830 x 253359 with sparse part having weight 28229248. Pruned matrix : 192552 x 193615 with weight 17525880. Total sieving time: 27.46 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.70 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 28.48 hours. --------- CPU info (if available) ----------
Wataru Sakai's 56 digits factor was placed on eighth of the largest factor found by ECM. Congratulations!
See Large Factors Found By ECM (Richard Brent).
By Wataru Sakai / GMP-ECM 6.0.1
3·10166-1 = 2(9)166<167> = 47 · 71 · 2667289 · 10991159 · 627960539 · 2137781721901653563<19> · C123
C123 = P56 · P68
P56 = 10345389693582740479529989859541374220406006881752101849<56>
P68 = 22080500640751102476087504432625828948573909939464280318314247588489<68>
Note: P56 is the second largest prime factor found by GMP-ECM in our tables. Congratulations!
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10143+45·1071-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111611111111111111111111111111111111111111111111111111111111111111111111111<143> = 31 · 3067 · C138
C138 = P56 · P82
P56 = 20200641684724245754250086231892578489308178227109512851<56>
P82 = 5785179724796597502347433085972931672675889015378672672873247829853702152891246393<82>
Number: 11611_71 N=116864342702347687780547462699823417978176752643763592783860566815434980185650694816949536808177699244939481800131589249882843496440896443 ( 138 digits) SNFS difficulty: 144 digits. Divisors found: r1=20200641684724245754250086231892578489308178227109512851 (pp56) r2=5785179724796597502347433085972931672675889015378672672873247829853702152891246393 (pp82) Version: GGNFS-0.77.1 Total time: 25.50 hours. Scaled time: 19.97 units (timescale=0.783). Factorization parameters were as follows: n: 116864342702347687780547462699823417978176752643763592783860566815434980185650694816949536808177699244939481800131589249882843496440896443 m: 1000000000000000000000000 c6: 1 c3: 45 c0: -10 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2650001) Relations: rels:3000030, finalFF:315372 Initial matrix: 200165 x 315372 with sparse part having weight 34901610. Pruned matrix : 184321 x 185385 with weight 14536167. Total sieving time: 24.68 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.54 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,144,6,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 25.50 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10141-45·1070-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777727777777777777777777777777777777777777777777777777777777777777777777777<141> = 3089 · 8563 · 283909 · C129
C129 = P41 · P88
P41 = 58652798393860565815370026873212851538391<41>
P88 = 1765809221960943255769182473012586637075182623140275690951647167662713926381035549130169<88>
Number: 77277_70 N=103569652297694987953627625628198793313050449057259381408529923443451276790035858088726254060204366784359552640911552933559818079 ( 129 digits) SNFS difficulty: 141 digits. Divisors found: r1=58652798393860565815370026873212851538391 (pp41) r2=1765809221960943255769182473012586637075182623140275690951647167662713926381035549130169 (pp88) Version: GGNFS-0.77.1 Total time: 56.05 hours. Scaled time: 43.89 units (timescale=0.783). Factorization parameters were as follows: n: 103569652297694987953627625628198793313050449057259381408529923443451276790035858088726254060204366784359552640911552933559818079 m: 100000000000000000000000000000000000 c4: 70 c2: -45 c0: -7 skew: 1 type: snfs qintsize: 1500000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 6650001) Relations: rels:3442872, finalFF:353628 Initial matrix: 200453 x 353628 with sparse part having weight 50737412. Pruned matrix : 184335 x 185401 with weight 21626407. Total sieving time: 55.03 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.79 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 56.05 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
3·10190-1 = 2(9)190<191> = 97 · 29924824213<11> · 7668447060104434870881489582121<31> · 512358733922895524489343752888689<33> · C115
C115 = P30 · P86
P30 = 247984694771318430568948981693<30>
P86 = 10607461577425281731753905244766737614406396259890391295260540539167282031764330723127<86>
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10145+27·1072-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111114111111111111111111111111111111111111111111111111111111111111111111111111<145> = 89 · 113 · C141
C141 = P51 · P90
P51 = 231765555870207670623710560918298164819618843538357<51>
P90 = 476694506664627985476181685621420487293201128856842553222172695669351321716815243796911539<90>
Number: 11411_72 N=110481367317401920166163976445372487929910620573840221846585573343055693955564394064940947709168848673671185354589948405201462773303282401423 ( 141 digits) SNFS difficulty: 145 digits. Divisors found: r1=231765555870207670623710560918298164819618843538357 (pp51) r2=476694506664627985476181685621420487293201128856842553222172695669351321716815243796911539 (pp90) Version: GGNFS-0.77.1 Total time: 219.73 hours. Scaled time: 165.46 units (timescale=0.753). Factorization parameters were as follows: n: 110481367317401920166163976445372487929910620573840221846585573343055693955564394064940947709168848673671185354589948405201462773303282401423 m: 1000000000000000000000000000000000000 c4: 10 c2: 27 c0: -1 skew: 1 type: snfs qintsize: 2000000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 24650001) Relations: rels:5746658, finalFF:225648 Initial matrix: 199560 x 225648 with sparse part having weight 36716766. Pruned matrix : 196561 x 197622 with weight 30648658. Total sieving time: 217.96 hours. Total relation processing time: 0.50 hours. Matrix solve time: 1.19 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 219.73 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
3·10153-1 = 2(9)153<154> = 72019 · 1472927109551<13> · 6437899768974245773<19> · C118
C118 = P41 · P77
P41 = 45425367911692522245626027985214885364243<41>
P77 = 96705293648696981037155654696825961344230797647139452351613239823428072265389<77>
By Sinkiti Sibata / GGNFS-0.77.1
10143-8·1071-1 = 99999999999999999999999999999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999999999999999999999999999<143> = 939623 · 692765651 · C129
C129 = P40 · P89
P40 = 5545315714417291165686064725832927750643<40>
P89 = 27703442430900092553537300647051906583048198294477171096908738767897374226177031471283041<89>
Number: 99199_71 N=153624334655525044186691865819496479895855337929403934446979662530604532822145983919217173587198722294170547473315529189322745363 ( 129 digits) SNFS difficulty: 144 digits. Divisors found: r1=5545315714417291165686064725832927750643 (pp40) r2=27703442430900092553537300647051906583048198294477171096908738767897374226177031471283041 (pp89) Version: GGNFS-0.77.1 Total time: 174.95 hours. Scaled time: 116.52 units (timescale=0.666). Factorization parameters were as follows: name: 99199_71 n: 153624334655525044186691865819496479895855337929403934446979662530604532822145983919217173587198722294170547473315529189322745363 m: 1000000000000000000000000000000000000 c4: 1 c2: -8 c0: -10 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 21650001) Relations: rels:5428768, finalFF:224431 Initial matrix: 200191 x 224431 with sparse part having weight 36189694. Pruned matrix : 197524 x 198588 with weight 30573016. Total sieving time: 170.54 hours. Total relation processing time: 1.72 hours. Matrix solve time: 2.62 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 174.95 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
3·10172-1 = 2(9)172<173>= C173
C173 = P35 · C138
P35 = 38122987748499595028686163894145203<35>
C138 = [786926780186075758268741106446345233058414651262593009833784935602647827417065446546566009104898212188196236218414523309890529326286496133<138>]
By Wataru Sakai / GMP-ECM 6.0.1, Msieve 1.01
3·10173-1 = 2(9)173<174> = 7 · 107 · 157 · 3013176114760906824959<22> · 3438554741560059188437<22> · C126
C126 = P38 · P40 · P49
P38 = 30644010457996651884427900089832310981<38>
P40 = 1965123061305630337817335362597030221689<40>
P49 = 4088876295547466384808084321913583821345407444169<49>
By Sinkiti Sibata / GGNFS-0.77.1
(10143+72·1071-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111911111111111111111111111111111111111111111111111111111111111111111111111<143> = 7 · 277 · 727 · 279778297 · C128
C128 = P62 · P66
P62 = 72273103620858305018095324741944225768771546360367998482307077<62>
P66 = 389811406670462912882304861142771874917257621758577152758207354823<66>
Number: 11911_71 N=28172880186886902382565907756058819960301220351512976216723917393317410772426832760524239874187807805214575110233631418582982371 ( 128 digits) SNFS difficulty: 144 digits. Divisors found: r1=72273103620858305018095324741944225768771546360367998482307077 (pp62) r2=389811406670462912882304861142771874917257621758577152758207354823 (pp66) Version: GGNFS-0.77.1 Total time: 101.15 hours. Scaled time: 60.49 units (timescale=0.598). Factorization parameters were as follows: name: 11911_71 n: 28172880186886902382565907756058819960301220351512976216723917393317410772426832760524239874187807805214575110233631418582982371 m: 1000000000000000000000000000000000000 c4: 1 c2: 72 c0: -10 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 10950001) Relations: rels:3887908, finalFF:225098 Initial matrix: 200057 x 225098 with sparse part having weight 33768894. Pruned matrix : 196511 x 197575 with weight 28081749. Total sieving time: 97.82 hours. Total relation processing time: 0.84 hours. Matrix solve time: 2.41 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 101.15 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
(10141-6·1070-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333313333333333333333333333333333333333333333333333333333333333333333333333<141> = 5679008497<10> · C131
C131 = P38 · P94
P38 = 22054166497043884847287870515417562787<38>
P94 = 2661433247090910549892098768566601079816496655240836213664857059852920403942119789232108468247<94>
Number: 33133_70 N=5869569195211107875426961759189868902450654905814157180919134894073628524337341440208331727969473635625259979837873683909251832438 9 ( 131 digits) SNFS difficulty: 141 digits. Divisors found: r1=22054166497043884847287870515417562787 (pp38) r2=2661433247090910549892098768566601079816496655240836213664857059852920403942119789232108468247 (pp94) Version: GGNFS-0.77.1 Total time: 45.73 hours. Scaled time: 27.30 units (timescale=0.597). Factorization parameters were as follows: name: 33133_70 n: 58695691952111078754269617591898689024506549058141571809191348940736285243373414402083317279694736356252599798378736839092518324389 m: 100000000000000000000000000000000000 c4: 10 c2: -6 c0: -1 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 5450001) Relations: rels:3031774, finalFF:224692 Initial matrix: 199975 x 224692 with sparse part having weight 30681510. Pruned matrix : 196584 x 197647 with weight 25191896. Total sieving time: 43.36 hours. Total relation processing time: 0.33 hours. Matrix solve time: 1.97 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 45.73 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10147-8·1073-1 = 999999999999999999999999999999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999999999999999999999999999999<147> = 268621621 · 1246336831459<13> · 3257510230715911<16> · C111
C111 = P43 · P69
P43 = 6918532079648681928624227305677184757812901<43>
P69 = 132532947820656116347673308311597774490809937550021677979979509663531<69>
Number: 99199_73 N=916933451107614207977491393274790653521017522562624288275315249667852377151353868032210260082035715381961013431 ( 111 digits) Divisors found: r1=6918532079648681928624227305677184757812901 (pp43) r2=132532947820656116347673308311597774490809937550021677979979509663531 (pp69) Version: GGNFS-0.77.1 Total time: 46.39 hours. Scaled time: 30.90 units (timescale=0.666). Factorization parameters were as follows: name: 99199_73 n: 916933451107614207977491393274790653521017522562624288275315249667852377151353868032210260082035715381961013431 skew: 92018.84 # norm 2.29e+15 c5: 2580 c4: -164595030 c3: -93487085999328 c2: 891120778083026509 c1: 250431877736007509209512 c0: -2277452151238083520167368440 # alpha -5.69 Y1: 2577594437 Y0: -3237006910593019894047 # Murphy_E 8.15e-10 # M 755602497340319720753600300174863421702075262789471555617565943466725266074363016624019553016563101108387204505 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1600000, 2500001) Relations: rels:7840940, finalFF:767722 Initial matrix: 460794 x 767722 with sparse part having weight 68953522. Pruned matrix : 350229 x 352596 with weight 20384629. Total sieving time: 41.69 hours. Total relation processing time: 0.60 hours. Matrix solve time: 3.69 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 46.39 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10145-18·1072-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777777777777<145> = 31337 · 10207927 · 4373145025202319447727<22> · C112
C112 = P35 · P77
P35 = 92866052707040947788116402231861249<35>
P77 = 59870059706292377489750144616722782975145763789830724139519840298455819562801<77>
Number: 77577_72 N=5559896120258236414034846893348395205002429377172857370701234440446468916392707974193072114223436257151673798449 ( 112 digits) Divisors found: r1=92866052707040947788116402231861249 (pp35) r2=59870059706292377489750144616722782975145763789830724139519840298455819562801 (pp77) Version: GGNFS-0.77.1 Total time: 53.43 hours. Scaled time: 35.59 units (timescale=0.666). Factorization parameters were as follows: name: 77577_72 n: 5559896120258236414034846893348395205002429377172857370701234440446468916392707974193072114223436257151673798449 skew: 57568.01 # norm 9.18e+15 c5: 12360 c4: 4125169214 c3: -83810437096847 c2: -2565486382885458031 c1: 175872415273834200941691 c0: -3283473328532952956915197019 # alpha -6.18 Y1: 424712788957 Y0: -3393173080646087123664 # Murphy_E 6.70e-10 # M 5048155764753586441569837315618718831685323041662770967849248395447341958506427926356149893035522071106858837755 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1750000, 2750001) Relations: rels:7252580, finalFF:581163 Initial matrix: 499706 x 581163 with sparse part having weight 46847319. Pruned matrix : 462887 x 465449 with weight 28851319. Total sieving time: 45.39 hours. Total relation processing time: 0.61 hours. Matrix solve time: 6.92 hours. Time per square root: 0.52 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 53.43 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10151-4·1075-1 = 9999999999999999999999999999999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999999999999999999999999999999<151> = 13 · 1399 · 16302156079139241779389<23> · C125
C125 = P45 · P81
P45 = 140684559337675769430249526788079461538589821<45>
P81 = 239743837024742116073004013726167157177219146951323324165616082687053255604169333<81>
Number: 99599_75 N=33728256065749401321947519978188403445131969827166842882306756094510580657741804858054977739871277830956367256686320914159393 ( 125 digits) SNFS difficulty: 152 digits. Divisors found: r1=140684559337675769430249526788079461538589821 (pp45) r2=239743837024742116073004013726167157177219146951323324165616082687053255604169333 (pp81) Version: GGNFS-0.77.1 Total time: 96.94 hours. Scaled time: 57.87 units (timescale=0.597). Factorization parameters were as follows: name: 99599_75 n: 33728256065749401321947519978188403445131969827166842882306756094510580657741804858054977739871277830956367256686320914159393 m: 100000000000000000000000000000000000000 c4: 1 c2: -4 c0: -10 skew: 2 type: snfs Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, ) Relations: rels:5108890, finalFF:395238 Initial matrix: 352394 x 395238 with sparse part having weight 44599917. Pruned matrix : 345737 x 347562 with weight 34987824. Total sieving time: 89.92 hours. Total relation processing time: 0.55 hours. Matrix solve time: 6.37 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,152,4,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 96.94 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
10139-8·1069-1 = 9999999999999999999999999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999999999999999999999999<139> = 163 · 1062432269<10> · C128
C128 = P48 · P81
P48 = 302855476516074177647629415714756028303921414367<48>
P81 = 190667078116784852082971325091397033054587376040953643790001855636676885107219351<81>
Number: 99199_69 N=57744568798986415510773932976505073180299887158946907306679422930356375851224384106461875755450059382111512647059891598431815817 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=302855476516074177647629415714756028303921414367 (pp48) r2=190667078116784852082971325091397033054587376040953643790001855636676885107219351 (pp81) Version: GGNFS-0.77.1 Total time: 208.65 hours. Scaled time: 163.79 units (timescale=0.785). Factorization parameters were as follows: n: 57744568798986415510773932976505073180299887158946907306679422930356375851224384106461875755450059382111512647059891598431815817 m: 100000000000000000000000000000000000 c4: 1 c2: -8 c0: -10 skew: 1 type: snfs qintsize: 1500000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 28900001) Relations: rels:3968017, finalFF:182233 Initial matrix: 142444 x 182233 with sparse part having weight 29662836. Pruned matrix : 140031 x 140807 with weight 20887958. Total sieving time: 207.86 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.44 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 208.65 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10139-4·1069-1 = 9999999999999999999999999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999999999999999999999999<139> = 13 · 3371 · 4459361 · C128
C128 = P34 · P94
P34 = 9093166788015632376354737529539617<34>
P94 = 5627430068621602347797796257575031305382650518686424260015430403586239623261886314643346512049<94>
Number: 99599_69 N=51171160201870485513080405198795010591453381095677096444927440835929973402710848191919926612329176065107845063847929701713345233 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=9093166788015632376354737529539617 (pp34) r2=5627430068621602347797796257575031305382650518686424260015430403586239623261886314643346512049 (pp94) Version: GGNFS-0.77.1 Total time: 72.45 hours. Scaled time: 43.32 units (timescale=0.598). Factorization parameters were as follows: name: 99599_69 n: 51171160201870485513080405198795010591453381095677096444927440835929973402710848191919926612329176065107845063847929701713345233 m: 100000000000000000000000000000000000 c4: 1 c2: -4 c0: -10 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 9475001) Relations: rels:2395349, finalFF:162523 Initial matrix: 142408 x 162523 with sparse part having weight 23836958. Pruned matrix : 140648 x 141424 with weight 19421252. Total sieving time: 70.56 hours. Total relation processing time: 0.89 hours. Matrix solve time: 0.94 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 72.45 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10141-4·1070-1 = 999999999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999999999<141> = 166609 · 168892705626840317<18> · C119
C119 = P38 · P81
P38 = 69601747779002689794628246744089845171<38>
P81 = 510587882640423485418476391438744702348606597088037480834827701746902682358566873<81>
Number: 99599_70 N=35537809026553781358388852153474695439648624939407069519743470077963216916534262677747826085919217510685375636019620283 ( 119 digits) Divisors found: r1=69601747779002689794628246744089845171 (pp38) r2=510587882640423485418476391438744702348606597088037480834827701746902682358566873 (pp81) Version: GGNFS-0.77.1 Total time: 161.09 hours. Scaled time: 96.01 units (timescale=0.596). Factorization parameters were as follows: name: 99599_70 n: 35537809026553781358388852153474695439648624939407069519743470077963216916534262677747826085919217510685375636019620283 skew: 189526.16 # norm 6.13e+16 c5: 1920 c4: 1859260232 c3: 940958798448133 c2: -45971932498535203527 c1: -9004151374362697326116263 c0: 77743814714520445390033373470 # alpha -5.98 Y1: 1364027900503 Y0: -113103714933809449396359 # Murphy_E 2.87e-10 # M 12071100189367619106537480873581774950505039136236748682596382857408903799569354795385588773392413321309616487608958455 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 5610001) Relations: rels:8011734, finalFF:732220 Initial matrix: 631506 x 732220 with sparse part having weight 74395567. Pruned matrix : 593341 x 596562 with weight 50427406. Total sieving time: 142.27 hours. Total relation processing time: 1.46 hours. Matrix solve time: 16.55 hours. Time per square root: 0.80 hours. Prototype def-par.txt line would be: gnfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 161.09 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
3·10186-1 = 2(9)186<187> = 1000926126622857454738657<25> · 5038740629385387262999058978219<31> · C132
C132 = P30 · P103
P30 = 169578631674993232722608070359<30>
P103 = 3507729531114303162480919388024654186192017726789378826407554907313223454226891369837005953138455530667<103>
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10139-18·1069-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777777777<139> = 107 · 9592227941<10> · C127
C127 = P50 · P78
P50 = 29507116701653644529662901060986428986529525108467<50>
P78 = 256818016930257453229026060731674332126048439991708092787438809811276850360013<78>
Number: 77577_69 N=7577959196648368142289258349347952581746683504023822980886262846418308000216869677607333548989045910320123116523470011824530071 ( 127 digits) SNFS difficulty: 140 digits. Divisors found: r1=29507116701653644529662901060986428986529525108467 (pp50) r2=256818016930257453229026060731674332126048439991708092787438809811276850360013 (pp78) Version: GGNFS-0.77.1 Total time: 92.73 hours. Scaled time: 72.70 units (timescale=0.784). Factorization parameters were as follows: n: 7577959196648368142289258349347952581746683504023822980886262846418308000216869677607333548989045910320123116523470011824530071 m: 100000000000000000000000000000000000 c4: 7 c2: -18 c0: -70 skew: 1 type: snfs qintsize: 1500000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 11150001) Relations: rels:4171683, finalFF:254395 Initial matrix: 199731 x 254395 with sparse part having weight 39370616. Pruned matrix : 194294 x 195356 with weight 27320206. Total sieving time: 91.38 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.06 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 92.73 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10147-7·1073-1 = 999999999999999999999999999999999999999999999999999999999999999999999999929999999999999999999999999999999999999999999999999999999999999999999999999<147> = 1523 · 33359 · 163141831126890373902190714753<30> · C111
C111 = P37 · P74
P37 = 6771196048922895791023493473450472633<37>
P74 = 17817893241367170326405819488787733173549447168880253186019589405975907843<74>
Number: 99299_73 N=120648448316075352508465667748310321521825875484704823624632616876735833966375958575301853071848881879601560619 ( 111 digits) Divisors found: r1=6771196048922895791023493473450472633 (pp37) r2=17817893241367170326405819488787733173549447168880253186019589405975907843 (pp74) Version: GGNFS-0.77.1 Total time: 50.84 hours. Scaled time: 30.30 units (timescale=0.596). Factorization parameters were as follows: name: 99299_73 n: 120648448316075352508465667748310321521825875484704823624632616876735833966375958575301853071848881879601560619 skew: 68786.20 # norm 5.53e+15 c5: 540 c4: -144692729 c3: 144683750682965 c2: -315598007552356899 c1: -117835315053291737704530 c0: 576691279009697362689399375 # alpha -5.75 Y1: 25102374517 Y0: -2950025664308419358918 # Murphy_E 7.98e-10 # M 41342611917903131408145342621498957256392081985933491949904044448483573025062860196910456489936128726693837630 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1600000, 2600001) Relations: rels:7540133, finalFF:630849 Initial matrix: 460865 x 630849 with sparse part having weight 54947476. Pruned matrix : 398156 x 400524 with weight 23631619. Total sieving time: 44.42 hours. Total relation processing time: 0.60 hours. Matrix solve time: 5.36 hours. Time per square root: 0.46 hours. Prototype def-par.txt line would be: gnfs,110,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 50.84 hours. --------- CPU info (if available) ----------
By Samuel Chong / GMP-ECM 6.0.1
(4·10156-7)/3 = 1(3)1551<157> = 139 · 24919 · 252324847 · C142
C142 = P36 · P106
P36 = 436423983918762045596465851491938171<36>
P106 = 3495623885562373118078106033211400844430238147690721820383657027903206171888118531038163898577322216417043<106>
By Sinkiti Sibata / GGNFS-0.77.1
10151-2·1075-1 = 9999999999999999999999999999999999999999999999999999999999999999999999999997999999999999999999999999999999999999999999999999999999999999999999999999999<151> = 11 · 26293 · C146
C146 = P44 · P102
P44 = 58045103092320579472867801802574971275755973<44>
P102 = 595664319591700023546971601179237285279082212336048740598250401382315669912840159022722808886547371381<102>
Number: 99799_75 N=3457539683911722096790365911424748377549503324424406081120796063936823834894873505910664089647088924463130525580607351420875933103 5221956760008713 ( 146 digits) SNFS difficulty: 152 digits. Divisors found: r1=58045103092320579472867801802574971275755973 (pp44) r2=595664319591700023546971601179237285279082212336048740598250401382315669912840159022722808886547371381 (pp102) Version: GGNFS-0.77.1 Total time: 121.32 hours. Scaled time: 80.68 units (timescale=0.665). Factorization parameters were as follows: name: 99799_75 n: 345753968391172209679036591142474837754950332442440608112079606393682383489487350591066408964708892446313052558060735142087593310352 21956760008713 m: 100000000000000000000000000000000000000 c4: 1 c2: -2 c0: -10 skew: 2 type: snfsFactor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 4800001) Relations: rels:5437942, finalFF:397574 Initial matrix: 352076 x 397574 with sparse part having weight 50831921. Pruned matrix : 345772 x 347596 with weight 40312253. Total sieving time: 113.68 hours. Total relation processing time: 0.53 hours. Matrix solve time: 7.01 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,152,4,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 121.32 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10139-45·1069-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777772777777777777777777777777777777777777777777777777777777777777777777777<139> = 53 · 761 · C135
C135 = P38 · P97
P38 = 31370267024602331790139632007760286403<38>
P97 = 6147192152516161778791945160290758775994299914230005225313499885002983578636522012827875264702823<97>
Number: 77277_69 N=192839059275971977729843497329179029027788108441667561990870447965134574114937589015887183640636148508114392129962506577189343162615669 ( 135 digits) SNFS difficulty: 140 digits. Divisors found: r1=31370267024602331790139632007760286403 (pp38) r2=6147192152516161778791945160290758775994299914230005225313499885002983578636522012827875264702823 (pp97) Version: GGNFS-0.77.1 Total time: 55.35 hours. Scaled time: 43.45 units (timescale=0.785). Factorization parameters were as follows: n: 192839059275971977729843497329179029027788108441667561990870447965134574114937589015887183640636148508114392129962506577189343162615669 m: 100000000000000000000000000000000000 c4: 7 c2: -45 c0: -70 skew: 1 type: snfs qintsize: 1500000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 6650001) Relations: rels:3418067, finalFF:350126 Initial matrix: 200408 x 350126 with sparse part having weight 50275219. Pruned matrix : 184489 x 185555 with weight 21546300. Total sieving time: 54.36 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.77 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 55.35 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
2·10171-1 = 1(9)171<172> = 6569 · 568471 · 1534359796328829895031<22> · 5602144536868763044479389<25> · C116
C116 = P49 · P68
P49 = 4966249304875500322389200136777001930696447359469<49>
P68 = 12546205073768228751789097590163050732197922850972414927607422229231<68>
Number: 19999_171 N=62307582226426941282730497418239251189478704230641873240737131725763565707384336402366220505143817417223703576438339 ( 116 digits) Divisors found: r1=4966249304875500322389200136777001930696447359469 (pp49) r2=12546205073768228751789097590163050732197922850972414927607422229231 (pp68) Version: GGNFS-0.77.1 Total time: 79.11 hours. Scaled time: 52.61 units (timescale=0.665). Factorization parameters were as follows: name: 19999_171 n: 62307582226426941282730497418239251189478704230641873240737131725763565707384336402366220505143817417223703576438339 skew: 70354.31 # norm 9.98e+15 c5: 38640 c4: 1313355052 c3: -485208951307114 c2: -3328343126631723698 c1: 1184501065996951583035211 c0: 1182890042528989462722002970 # alpha -6.01 Y1: 3292182191399 Y0: -17438141564269073661799 # Murphy_E 4.65e-10 # M 36587589753890054593003890281994435471974230965745336332136226976327519198887792848608176262548012425841009218266819 type: gnfs rlim: 4500000 alim: 4500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 60000 Factor base limits: 4500000/4500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [2250000, 3750001) Relations: rels:7479223, finalFF:723613 Initial matrix: 631644 x 723613 with sparse part having weight 56162146. Pruned matrix : 586230 x 589452 with weight 35466708. Total sieving time: 66.72 hours. Total relation processing time: 0.90 hours. Matrix solve time: 10.85 hours. Time per square root: 0.64 hours. Prototype def-par.txt line would be: gnfs,115,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,4500000,4500000,27,27,50,50,2.4,2.4,60000 total time: 79.11 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10139+72·1069-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111119111111111111111111111111111111111111111111111111111111111111111111111<139> = 3 · 7 · 23 · 1733 · 19559 · C128
C128 = P55 · P74
P55 = 2102636820980948431411101834133362573625938170634857087<55>
P74 = 32277573963617792933707000434735378858759799425351836764860151133226259153<74>
Number: 11911_69 N=67868015507838747378914853125651927919516752750147719318540558200482113588765095169744389164671930658702571029994341807780667311 ( 128 digits) SNFS difficulty: 140 digits. Divisors found: r1=2102636820980948431411101834133362573625938170634857087 (pp55) r2=32277573963617792933707000434735378858759799425351836764860151133226259153 (pp74) Version: GGNFS-0.77.1 Total time: 85.37 hours. Scaled time: 67.01 units (timescale=0.785). Factorization parameters were as follows: n: 67868015507838747378914853125651927919516752750147719318540558200482113588765095169744389164671930658702571029994341807780667311 m: 100000000000000000000000000000000000 c4: 1 c2: 72 c0: -10 skew: 1 type: snfs qintsize: 10802000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 11202001) Relations: rels:2528812, finalFF:160615 Initial matrix: 142042 x 160615 with sparse part having weight 23462234. Pruned matrix : 140515 x 141289 with weight 19416061. Total sieving time: 84.75 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.42 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 85.37 hours. --------- CPU info (if available) ----------
Jason Papadopoulos's SIQS implementation msieve 1.01 was released.
Quadratic Sieve Source Code (Jason Papadopoulos)
By Wataru Sakai / GMP-ECM 6.0.1
(28·10165-1)/9 = 3(1)165<166> = 3 · 1997 · 41029853253616558862159<23> · C140
C140 = P34 · C106
P34 = 1479931381061176239842955946643233<34>
C106 = [8552137197062135452946734939039401000390352520643770708997187105215087703113602922115601036755747663312943<106>]
3·10183-1 = 2(9)183<184> = 757 · 705259 · C175
C175 = P26 · P149
P26 = 94685971491169408238495197<26>
P149 = 59345951695499727131645089060192058135909213873136735226382733194452511684809704681156559640467203767085254024562482893630526915384657525961066917309<149>
By Patrick Keller / GGNFS-0.77.1-050714
(31·10154-13)/9 = 3(4)1533<155> = 3 · 19 · 1231 · 10318115811615833350849<23> · 26353110139075738702819279411<29> · C100
C100 = P35 · P66
P35 = 12023093835959132067018090663212227<35>
P66 = 150154296621491793394346450363895517375583748113591057346186864293<66>
By Patrick Keller / msieve
(55·10169-1)/9 = 6(1)169<170> = 1267789 · 417120271237<12> · 3193089992685293<16> · 23746197743073512431<20> · 11655965793025266695761<23> · C96
C96 = P35 · P61
P35 = 82969538107201187912861308387895899<35>
P61 = 1575940183105005638700269656685989140264638789120620298877671<61>
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10182-43)/9 = (7)1813<182> = 811 · 9803 · 43541 · 964128448187225411<18> · 63518786855336021873<20> · 6317515667788841649784757<25> · C108
C108 = P52 · P57
P52 = 4075754667318562343182746279281284062224460215903653<52>
P57 = 142490470262200698619444326172501867664906279915719834307<57>
Number: 77773_182 N=580756199219581309176798751506149414432555926561180701540672917837877847873829728066568125486993571436023471 ( 108 digits) Divisors found: r1=4075754667318562343182746279281284062224460215903653 (pp52) r2=142490470262200698619444326172501867664906279915719834307 (pp57) Version: GGNFS-0.77.1 Total time: 25.80 hours. Scaled time: 15.38 units (timescale=0.596). Factorization parameters were as follows: name: 77773_182 n: 580756199219581309176798751506149414432555926561180701540672917837877847873829728066568125486993571436023471 skew: 37739.91 # norm 1.93e+15 c5: 7380 c4: 1656265443 c3: -45444609960584 c2: -510192825638705008 c1: 40308296871262418615274 c0: -240458323485339314699172120 # alpha -6.37 Y1: 42407195303 Y0: -601431435567597392371 # Murphy_E 1.18e-09 # M 270318479892486145518999499963405043139584006942110790385476246090737366897252067273220988440866932939604189 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2600001) Relations: rels:4657789, finalFF:475385 Initial matrix: 365521 x 475385 with sparse part having weight 39940865. Pruned matrix : 328652 x 330543 with weight 19349984. Polynomial selection time: 0.50 hours. Total sieving time: 21.53 hours. Total relation processing time: 0.39 hours. Matrix solve time: 3.04 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 25.80 hours. --------- CPU info (if available) ----------
By Samuel Chong / GMP-ECM 6.0.1, GGNFS-0.77.1-050706, GGNFS-0.77.1
(4·10151-7)/3 = 1(3)1501<152> = 11 · C151
C151 = P34 · P117
P34 = 2654556875419822081359149595230891<34>
P117 = 456619040015676200361886468778998703135419004800522660645707221302698105894404427756432042889553089487767871029499531<117>
(4·10152-7)/3 = 1(3)1511<153> = 4710903416984659<16> · C137
C137 = P33 · P104
P33 = 284380384951060053674387900671561<33>
P104 = 99525621536122188377243271405135370562885542102702768696714945192631799716649369603171814530522932702969<104>
(4·10153-7)/3 = 1(3)1521<154> = 11 · 53 · 2530547 · 83672528054113<14> · 54946641131623793491<20> · C111
C111 = P37 · P74
P37 = 7443975329698353653369348809552558177<37>
P74 = 26407470826627688333874212135138982379401990967198526622236551592059175341<74>
(64·10151-1)/9 = 7(1)151<152> = 293 · 45025957 · 726274511 · 1305759391<10> · C124
C124 = P45 · P80
P45 = 168926696146768039588385780025811918524845557<45>
P80 = 33646867900134114396506115605045020905798675373641624350409023079910457482818323<80>
Number: 71111_151 N=5683854230056398741879882474777030568379236876305051951381289709413124448281187852368728736937435648737392529868114664740911 ( 124 digits) SNFS difficulty: 152 digits. Divisors found: r1=168926696146768039588385780025811918524845557 (pp45) r2=33646867900134114396506115605045020905798675373641624350409023079910457482818323 (pp80) Version: GGNFS-0.77.1-050706 Total time: 26.68 hours. Scaled time: 29.14 units (timescale=1.092). Factorization parameters were as follows: name: 71111_151 n: 5683854230056398741879882474777030568379236876305051951381289709413124448281187852368728736937435648737392529868114664740911 m: 2000000000000000000000000000000 c5: 20 c0: -1 type: snfs skew: 0.9 lss: 1 mfbr: 50 mfba: 50 rlambda: 2.4 alambda: 2.4 qintsize: 50000 # q0: 3000000 # qintsize: 1000 # total yield: 10652, 0.00956 sec/rel Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 50/50 Sieved rational special-q in [1200000, 1850001) Primes: RFBsize:176302, AFBsize:175838, largePrimes:8141148 encountered Relations: rels:8678748, finalFF:727638 Max relations in full relation-set: 20 Initial matrix: 352206 x 727638 with sparse part having weight 66095382. Pruned matrix : 239046 x 240871 with weight 27394237. Total sieving time: 23.87 hours. Total relation processing time: 0.28 hours. Matrix solve time: 2.42 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,152,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,50,50,2.4,2.4,100000 total time: 26.68 hours. --------- CPU info (if available) ---------- dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM total actual time: 16h04m13.062s
(14·10167-41)/9 = 1(5)1661<168> = 11 · C167
C167 = P70 · P97
P70 = 1551762673453065953013392460694176562588480360498237956375794389510177<70>
P97 = 9113129464537192620276698738976018093378747212696395351751862940975801863458685343597372761347933<97>
Number: 15551_167 N=14141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141 ( 167 digits) SNFS difficulty: 168 digits. Divisors found: r1=1551762673453065953013392460694176562588480360498237956375794389510177 (pp70) r2=9113129464537192620276698738976018093378747212696395351751862940975801863458685343597372761347933 (pp97) Version: GGNFS-0.77.1 Total time: 97.14 hours. Scaled time: 106.07 units (timescale=1.092). Factorization parameters were as follows: name: 15551_167 n: 14141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141 deg: 5 m: 1000000000000000000000000000000000 c5: 1400 c0: -41 skew: 0.75 type: snfs lss: 1 rlim: 5500000 alim: 5500000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.6 alambda: 2.6 # q0: 8000000 # qintsize: 1000 # total yield: 5585, 0.02661 sec/rel Factor base limits: 5500000/5500000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 52/52 Sieved rational special-q in [2750000, 4650001) Primes: RFBsize:380800, AFBsize:379898, largePrimes:10060309 encountered Relations: rels:10612927, finalFF:857796 Max relations in full relation-set: 20 Initial matrix: 760765 x 857796 with sparse part having weight 65863381. Pruned matrix : 725154 x 729021 with weight 48141392. Total sieving time: 79.66 hours. Total relation processing time: 0.39 hours. Matrix solve time: 16.77 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: snfs,168,5,0,0,0,0,0,0,0,0,5500000,5500000,27,27,52,52,2.6,2.6,100000 total time: 97.14 hours. --------- CPU info (if available) ---------- dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM total actual time: 57h10m9.750s
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(4·10155-31)/9 = (4)1541<155> = 4969 · 1161384764379587557<19> · 782494652727784355839<21> · C112
C112 = P53P53 = 32446837159203339193884150697151992926501317981434793<53>
P60 = 303332268525905712949350851846704001699989866755046360134251<60>
Number: 44441_155 N=9842172721991802980016493108579024883977588247997182207655686748197703648161747117498644119268354472329082395043 ( 112 digits) Divisors found: r1=32446837159203339193884150697151992926501317981434793 (pp53) r2=303332268525905712949350851846704001699989866755046360134251 (pp60) Version: GGNFS-0.77.1 Total time: 57.17 hours. Scaled time: 34.19 units (timescale=0.598). Factorization parameters were as follows: name: 44441_155 n: 9842172721991802980016493108579024883977588247997182207655686748197703648161747117498644119268354472329082395043 skew: 49671.47 # norm 8.35e+15 c5: 12960 c4: 4476295394 c3: -299143304227205 c2: -8043965794808848098 c1: 220316302410226109388396 c0: 804656506548070477807120440 # alpha -6.26 Y1: 250338497129 Y0: -3767863863528840852709 # Murphy_E 6.93e-10 # M 7565174254746187767176314659151201359252327605151860423427946056328323373590570349809585549819597165985588730847 type: gnfs rlim: 3500000 alim: 3500000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3500000/3500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1750000, 2850001) Relations: rels:7724215, finalFF:718164 Initial matrix: 500042 x 718164 with sparse part having weight 63219417. Pruned matrix : 416794 x 419358 with weight 24674328. Polynomial selection time: 0.52 hours. Total sieving time: 49.85 hours. Total relation processing time: 0.61 hours. Matrix solve time: 5.70 hours. Time per square root: 0.49 hours. Prototype def-par.txt line would be: gnfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3500000,3500000,27,27,50,50,2.6,2.6,100000 total time: 57.17 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10139+54·1069-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111117111111111111111111111111111111111111111111111111111111111111111111111<139> = 3361 · C135
C135 = P62 · P73
P62 = 52070496553369761790102847965951773055481163109715236258179551<62>
P73 = 6348882051363135965307216999905078239101419073148489032611069392180478201<73>
Number: 11711_69 N=330589440973255314225263645079176171113094647756950642996462692981587953320770934576349631392773314820324638831035736718569208899467751 ( 135 digits) SNFS difficulty: 140 digits. Divisors found: r1=52070496553369761790102847965951773055481163109715236258179551 (pp62) r2=6348882051363135965307216999905078239101419073148489032611069392180478201 (pp73) Version: GGNFS-0.77.1 Total time: 95.27 hours. Scaled time: 74.79 units (timescale=0.785). Factorization parameters were as follows: n: 330589440973255314225263645079176171113094647756950642996462692981587953320770934576349631392773314820324638831035736718569208899467751 m: 100000000000000000000000000000000000 c4: 1 c2: 54 c0: -10 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 12400001) Relations: rels:2666570, finalFF:167117 Initial matrix: 142442 x 167117 with sparse part having weight 24961771. Pruned matrix : 140358 x 141134 with weight 19591177. Total sieving time: 94.65 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.42 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 95.27 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10137+18·1068-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777977777777777777777777777777777777777777777777777777777777777777777777<137> = 10506477473<11> · C127
C127 = P50 · P78
P50 = 51057648425002667453045636059406307164844188663419<50>
P78 = 144989845932924771329522847083309110544324949053020515127168660970901874753571<78>
Number: 77977_68 N=7402840578838575860122417432586996779617782537245038242683507420087529633042194957341034768882883586588905236381862442487319249 ( 127 digits) SNFS difficulty: 137 digits. Divisors found: r1=51057648425002667453045636059406307164844188663419 (pp50) r2=144989845932924771329522847083309110544324949053020515127168660970901874753571 (pp78) Version: GGNFS-0.77.1 Total time: 122.47 hours. Scaled time: 116.23 units (timescale=0.949). Factorization parameters were as follows: name: 77977_68 n: 7402840578838575860122417432586996779617782537245038242683507420087529633042194957341034768882883586588905236381862442487319249 m: 10000000000000000000000000000000000 c4: 70 c2: 18 c0: -7 skew: 1 type: snfs qintsize: 1000000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 14400001) Relations: rels:3014398, finalFF:164178 Initial matrix: 142052 x 164178 with sparse part having weight 26085903. Pruned matrix : 140755 x 141529 with weight 21127433. Total sieving time: 121.87 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.29 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 122.47 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(4·10166+41)/9 = (4)1659<166> = 3 · 1259 · 8881923858737<13> · 40401364458263<14> · 51065495646920997327834599<26> · C110
C110 = P36 · P75
P36 = 252853655896565745602501592959710301<36>
P75 = 253963105929661508765623961233148369053911499956655824042019151346308187173<75>
Number: 44449_166 N=64215499797161706827556621033272257352479923928817161623830377582115563446339781572769051365696464966564169073 ( 110 digits) Divisors found: r1=252853655896565745602501592959710301 (pp36) r2=253963105929661508765623961233148369053911499956655824042019151346308187173 (pp75) Version: GGNFS-0.77.1 Total time: 41.77 hours. Scaled time: 27.86 units (timescale=0.667). Factorization parameters were as follows: name: 44449_166 n: 64215499797161706827556621033272257352479923928817161623830377582115563446339781572769051365696464966564169073 skew: 51100.86 # norm 2.02e+15 c5: 16380 c4: 697501395 c3: -110197902058147 c2: -1221084352388025982 c1: 133445717291689851669595 c0: 306001293022180624140253150 # alpha -6.00 Y1: 86760301183 Y0: -1314210551609021917161 # Murphy_E 9.54e-10 # M 1101232051600298967678521977257133459155584196269097313965937274557513455965430142008081627143156241433344184 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1600000, 2400001) Relations: rels:7822421, finalFF:783387 Initial matrix: 460487 x 783387 with sparse part having weight 69725892. Pruned matrix : 340230 x 342596 with weight 19674972. Total sieving time: 37.50 hours. Total relation processing time: 0.63 hours. Matrix solve time: 3.29 hours. Time per square root: 0.34 hours. Prototype def-par.txt line would be: gnfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 41.77 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(22·10155-1)/3 = 7(3)155<156> = 66463 · 294067 · 10793869098912920411<20> · 84564878541774027181<20> · C107
C107 = P46 · P61
P46 = 8394639465107877835800536533522911091629400829<46>
P61 = 4896727872734246461613189779121106863103962201653671255815107<61>
Number: 73333_155 N=41106265050348651209109426079823610418401505792705524390769516294978128829630033410243134554955236416523703 ( 107 digits) Divisors found: r1=8394639465107877835800536533522911091629400829 (pp46) r2=4896727872734246461613189779121106863103962201653671255815107 (pp61) Version: GGNFS-0.77.1 Total time: 24.93 hours. Scaled time: 14.91 units (timescale=0.598). Factorization parameters were as follows: name: 73333_155 n: 41106265050348651209109426079823610418401505792705524390769516294978128829630033410243134554955236416523703 skew: 15824.46 # norm 1.24e+15 c5: 30960 c4: 2295784782 c3: -7907675997233 c2: 318189896619804173 c1: -1630944452349060114983 c0: -10672555180726442152409139 # alpha -5.94 Y1: 212316019289 Y0: -265837515430114422086 # Murphy_E 1.34e-09 # M 11587786637167125728995468002773571506908754310662218139944668555444326562087581892928045032656288300419183 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2600001) Relations: rels:4641823, finalFF:461556 Initial matrix: 366018 x 461556 with sparse part having weight 40158039. Pruned matrix : 334009 x 335903 with weight 21203944. Total sieving time: 21.05 hours. Total relation processing time: 0.37 hours. Matrix solve time: 3.18 hours. Time per square root: 0.33 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 24.93 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(28·10157-1)/9 = 3(1)157<158> = 311 · 487 · 480670490093480346271<21> · 6438097168233354220222049<25> · C107
C107 = P49 · P59
P49 = 2963884335817527111335736587670265958585892914749<49>
P59 = 22395457197128163961438045327803254457295208979708748555213<59>
Number: 31111_157 N=66377544780040065582029086378904075006514291269444715000330262029447448632398896725246594427162887128536537 ( 107 digits) Divisors found: r1=2963884335817527111335736587670265958585892914749 (pp49) r2=22395457197128163961438045327803254457295208979708748555213 (pp59) Version: GGNFS-0.77.1 Total time: 21.35 hours. Scaled time: 12.72 units (timescale=0.596). Factorization parameters were as follows: name: 31111_157 n: 66377544780040065582029086378904075006514291269444715000330262029447448632398896725246594427162887128536537 skew: 38410.06 # norm 1.14e+15 c5: 17400 c4: 8935325 c3: -44831202975396 c2: 516808779302800968 c1: 1325186689434675137624 c0: -206609403013721160074402976 # alpha -6.35 Y1: 29364425377 Y0: -328317765419041739371 # Murphy_E 1.38e-09 # M 17489802452575438360601809893882234647113953374254161428124547585323647853048195622704181285091601406412204 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2300001) Relations: rels:4383088, finalFF:412079 Initial matrix: 367037 x 412079 with sparse part having weight 29666911. Pruned matrix : 344995 x 346894 with weight 19885069. Polynomial selection time: 0.50 hours. Total sieving time: 17.10 hours. Total relation processing time: 0.30 hours. Matrix solve time: 3.12 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 21.35 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10143+27·1071-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111411111111111111111111111111111111111111111111111111111111111111111111111<143> = 347 · 10691 · C136
C136 = P47 · P90
P47 = 15914364112759625740263793294061180343689180989<47>
P90 = 188200336645953221237336848625512956963451186790808407736477939103129232513949203654597987<90>
Number: 11411_71 N=2995088683527638214132847098656094722435098150403949108291714329759204235486691278508414686680927481924415163259438804842207796078069143 ( 136 digits) SNFS difficulty: 144 digits. Divisors found: r1=15914364112759625740263793294061180343689180989 (pp47) r2=188200336645953221237336848625512956963451186790808407736477939103129232513949203654597987 (pp90) Version: GGNFS-0.77.1 Total time: 126.44 hours. Scaled time: 99.38 units (timescale=0.786). Factorization parameters were as follows: n: 2995088683527638214132847098656094722435098150403949108291714329759204235486691278508414686680927481924415163259438804842207796078069143 m: 1000000000000000000000000000000000000 c4: 1 c2: 27 c0: -10 skew: 1 type: snfs qintsize: 14450000 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 15100001) Relations: rels:4493677, finalFF:224737 Initial matrix: 200220 x 224737 with sparse part having weight 34853767. Pruned matrix : 196913 x 197978 with weight 29246889. Total sieving time: 124.98 hours. Total relation processing time: 0.26 hours. Matrix solve time: 1.15 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 126.44 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(10159-7)/3 = (3)1581<159> = 218417 · 27524743 · 4049888683661543<16> · 146342914665017035903297<24> · C107
C107 = P46 · P62
P46 = 1437241274453822339930106600253026833902238939<46>
P62 = 65091543130661698240983562654299215624196046775187187189769129<62>
Number: 33331_159 N=93552252405278164056093123002242187278556911562047528926414562232061920013364791286396112008530147603914131 ( 107 digits) Divisors found: r1=1437241274453822339930106600253026833902238939 (pp46) r2=65091543130661698240983562654299215624196046775187187189769129 (pp62) Version: GGNFS-0.77.1 Total time: 22.80 hours. Scaled time: 15.16 units (timescale=0.665). Factorization parameters were as follows: name: 33331_159 n: 93552252405278164056093123002242187278556911562047528926414562232061920013364791286396112008530147603914131 skew: 9012.57 # norm 2.80e+14 c5: 171780 c4: -736144756 c3: -40002967490366 c2: 9797259494568875 c1: 1725079583276220128486 c0: -552403386950124191411875 # alpha -5.36 Y1: 135665563319 Y0: -222441880033545947406 # Murphy_E 1.37e-09 # M 60963646720127694611986479636083141002695212684264197567402216133526579579768781913627043647677979834881598 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2450001) Relations: rels:4650778, finalFF:492472 Initial matrix: 367188 x 492472 with sparse part having weight 39431197. Pruned matrix : 324884 x 326783 with weight 17475231. Polynomial selection time: 0.50 hours. Total sieving time: 18.98 hours. Total relation processing time: 0.36 hours. Matrix solve time: 2.65 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 22.80 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(10147+15·1073-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333333383333333333333333333333333333333333333333333333333333333333333333333333333<147> = 21045023536608059<17> · 2943338195446139826253<22> · C109
C109 = P35 · P74
P35 = 61663742529777984145787311663377961<35>
P74 = 87268856142282606568015304626665065775597133889887534234132816390578397939<74>
Number: 33833_73 N=5381324276025948628264789591339838362751594049171286745485802590192048962658866690069049686584029264420422379 ( 109 digits) Divisors found: r1=61663742529777984145787311663377961 (pp35) r2=87268856142282606568015304626665065775597133889887534234132816390578397939 (pp74) Version: GGNFS-0.77.1 Total time: 29.54 hours. Scaled time: 17.66 units (timescale=0.598). Factorization parameters were as follows: name: 33833_73 n: 5381324276025948628264789591339838362751594049171286745485802590192048962658866690069049686584029264420422379 skew: 22965.87 # norm 3.24e+15 c5: 63180 c4: -2354866206 c3: -196521512139646 c2: 3142903222265383123 c1: 38224404509356591504146 c0: -1401084493545404024478072 # alpha -6.53 Y1: 15249752903 Y0: -611029234085923076071 # Murphy_E 1.09e-09 # M 2400683074171014488282108658979366985264222852706522840103408779063430082332428060153359032052580550833211202 type: gnfs rlim: 3200000 alim: 3200000 lpbr: 27 lpba: 27 mfbr: 50 mfba: 50 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 3200000/3200000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1600000, 2900001) Relations: rels:6965797, finalFF:529710 Initial matrix: 460592 x 529710 with sparse part having weight 40085239. Pruned matrix : 428098 x 430464 with weight 25148310. Polynomial selection time: 0.51 hours. Total sieving time: 22.85 hours. Total relation processing time: 0.57 hours. Matrix solve time: 5.19 hours. Time per square root: 0.42 hours. Prototype def-par.txt line would be: gnfs,108,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,3200000,3200000,27,27,50,50,2.6,2.6,100000 total time: 29.54 hours. --------- CPU info (if available) ----------
By Samuel Chong / GMP-ECM 6.0.1, GGNFS-0.77.1-050703
(10168+53)/9 = (1)1677<168> = 3 · C167
C167 = P36 · P38 · P95
P36 = 261878964938555063242744473807304607<36>
P38 = 11515180136795295248507748540824609267<38>
P95 = 12281880964654498189309969065968311562811764670747209318989527925662296843913202781884529405131<95>
(23·10160+1)/3 = 7(6)1597<161> = C161
C161 = P53 · P109
P53 = 74162648820128283692300826847968772682286328601604349<53>
P109 = 1033763867477435275629351214656637596846353731784895260192061546747433303133364923712335701819135369025949383<109>
Number: 76667_160 N=76666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 ( 161 digits) SNFS difficulty: 161 digits. Divisors found: r1=74162648820128283692300826847968772682286328601604349 (pp53) r2=1033763867477435275629351214656637596846353731784895260192061546747433303133364923712335701819135369025949383 (pp109) Version: GGNFS-0.77.1-050703 Total time: 76.08 hours. Scaled time: 65.35 units (timescale=0.859). Factorization parameters were as follows: name: 76667_160 n: 76666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666667 m: 100000000000000000000000000000000 c5: 23 c0: 1 type: snfs skew: 0.9 lss: 1 mrif: 24 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 48/48 Sieved rational special-q in [2000000, 3100001) Primes: RFBsize:283146, AFBsize:283082, largePrimes:5799177 encountered Relations: rels:5914757, finalFF:716943 Max relations in full relation-set: 24 Initial matrix: 566293 x 716943 with sparse part having weight 43490331. Pruned matrix : 438661 x 441556 with weight 25817526. Total sieving time: 66.80 hours. Total relation processing time: 0.41 hours. Matrix solve time: 8.67 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,48,48,2.3,2.3,100000 total time: 76.08 hours. --------- CPU info (if available) ---------- dual Pentium 3 (1.4GHz Tualatins), 1GB RAM total elapsed time: 44h28m9s
By Anton Korobeynikov / GGNFS-0.77.1-050628 gnfs
8·10186-1 = 7(9)186<187> = 7 · 47 · 504034073 · 1220285033049641423<19> · 1709433494016512071<19> · 6918484257964090228128626296689623<34> · C106
C106 = P50 · P56
P50 = 43460179064912309703242130945598534289867760101911<50>
P56 = 76916272754778138630365695931283055966594931721405006103<56>
Number: tst106 N=3342794986928293928439711298315328817078274017058526064300434345723697116171884783306122260523044856962833 ( 106 digits) Divisors found: r1=43460179064912309703242130945598534289867760101911 (pp50) r2=76916272754778138630365695931283055966594931721405006103 (pp56) Version: GGNFS-0.77.1-050628 Total time: 36.76 hours. Scaled time: 20.81 units (timescale=0.566). Factorization parameters were as follows: name: tst106 n: 3342794986928293928439711298315328817078274017058526064300434345723697116171884783306122260523044856962833 skew: 22980.06 # norm 8.68e+014 c5: 30600 c4: -1740003667 c3: -32467901597076 c2: 654242532677148186 c1: 13394235132160573893740 c0: 36538250124711699962490585 # alpha -6.50 Y1: 39769527721 Y0: -161316533433319433986 # Murphy_E 1.66e-009 # M 56150422288104883049063045575509703078018856389528110844811427753787327203841613591346077155156319932432 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2300001) Primes: RFBsize:183072, AFBsize:183400, largePrimes:4475736 encountered Relations: rels:4611750, finalFF:500978 Max relations in full relation-set: 28 Initial matrix: 366553 x 500978 with sparse part having weight 38609386. Pruned matrix : 316753 x 318649 with weight 15939717. Total sieving time: 31.89 hours. Total relation processing time: 0.52 hours. Matrix solve time: 3.91 hours. Time per square root: 0.45 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 36.76 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / msieve.exe 0.88
(4·10163+41)/9 = (4)1629<163> = 32 · 449 · 12791459 · 339418278537910189<18> · 229015775528644936079<21> · C115
C115 = P43 · P72
P43 = 1501711131465614823052960975609372409365361<43>
P72 = 736582713701113557971116973157308599992470800719116072776400587601760481<72>
Msieve v. 0.88 Tue May 10 13:02:21 2005 random seeds: f8379780 a1d52400 factoring 1106134460410112267004053938425590422740448760975684649017855331687415017137528661799083521671787787034735540098641 (115 digits) using multiplier of 21 using sieve block of 65536 using a sieve bound of 2010923 (75000 primes) using large prime bound of 603276900 using double large prime bound of 6381606628102200 sieving in progress (press Ctrl-C to pause) found 75129 relations (13111 full + 62018 partial), need 75096 found 75129 relations (13111 full + 62018 partial), need 75096 begin with 1701662 relations reduce to 210934 relations in 14 passes attempting to read 13111 full and 210934 partial relations recovered 13111 full and 210934 partial relations recovered 223991 polynomials attempting to build 62018 cycles found 62018 cycles in 6 passes distribution of cycle lengths: length 2 : 10643 length 3 : 11401 length 4 : 10352 length 5 : 8929 length 6 : 6946 length 7 : 4908 length 8 : 3391 length 9+: 5448 largest cycle: 25 relations 75000 x 75064 system, weight 7220674 (avg 96.19/col) reduce to 74822 x 74886 in 3 passes lanczos halted after 1184 iterations recovered 63 nontrivial dependencies prp43 factor: 1501711131465614823052960975609372409365361 prp72 factor: 736582713701113557971116973157308599992470800719116072776400587601760481 elapsed time 1349:25:37
By Wataru Sakai / GMP-ECM 6.0.1
(28·10179-1)/9 = 3(1)179<180> = 17 · 158980370820846386325091<24> · C156
C156 = P33 · C123
P33 = 130636323549165510465523960184309<33>
C123 = [881168868410478910122156183182007485081616751855695907325787140382716064689547642860087787997396259439449517750318095543657<123>]
By Sinkiti Sibata / GGNFS-0.77.1
10137-2·1068-1 = 99999999999999999999999999999999999999999999999999999999999999999999799999999999999999999999999999999999999999999999999999999999999999999<137> = 7 · 19 · 506600706529<12> · C124
C124 = P47 · P77
P47 = 38441493794379124235296597148224755847178273731<47>
P77 = 38608445186394108523037268509940384027364224838065637538612437090089075939697<77>
Number: 99799_68 N=1484166306043395693283781916997564678996258611726252697225202884766580785126185686120553035776283831475482882848471115199507 ( 124 digits) SNFS difficulty: 137 digits. Divisors found: r1=38441493794379124235296597148224755847178273731 (pp47) r2=38608445186394108523037268509940384027364224838065637538612437090089075939697 (pp77) Version: GGNFS-0.77.1 Total time: 35.10 hours. Scaled time: 20.92 units (timescale=0.596). Factorization parameters were as follows: name: 99799_68 n: 1484166306043395693283781916997564678996258611726252697225202884766580785126185686120553035776283831475482882848471115199507 m: 10000000000000000000000000000000000 c4: 10 c2: -2 c0: -1 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4525001) Relations: rels:1843421, finalFF:165720 Initial matrix: 142193 x 165720 with sparse part having weight 21722790. Pruned matrix : 140008 x 140782 with weight 16736465. Total sieving time: 33.90 hours. Total relation processing time: 0.27 hours. Matrix solve time: 0.88 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 35.10 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1, GMP-ECM 6.0
(7·10137-45·1068-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777277777777777777777777777777777777777777777777777777777777777777777777<137> = 32 · 1187 · 83165363 · 33715779863<11> · C115
C115 = P57 · P58
P57 = 261916745177383314877528648985844868003430140154044524611<57>
P58 = 9913416204895503222150086051146754399161046075676293950141<58>
Number: 77277_68 N=2596489705974957897267536554345254312471558114972188002436074720437635301385207442774309289275158481611765681420151 ( 115 digits) SNFS difficulty: 137 digits. Divisors found: r1=261916745177383314877528648985844868003430140154044524611 (pp57) r2=9913416204895503222150086051146754399161046075676293950141 (pp58) Version: GGNFS-0.77.1 Total time: 38.49 hours. Scaled time: 30.22 units (timescale=0.785). Factorization parameters were as follows: n: 2596489705974957897267536554345254312471558114972188002436074720437635301385207442774309289275158481611765681420151 m: 10000000000000000000000000000000000 c4: 70 c2: -45 c0: -7 skew: 1 type: snfs qintsize: 50000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4950001) Relations: rels:1875197, finalFF:163000 Initial matrix: 142526 x 163000 with sparse part having weight 21649316. Pruned matrix : 140549 x 141325 with weight 17256639. Total sieving time: 37.95 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.37 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 38.49 hours. --------- CPU info (if available) ----------
10143-7·1071-1 = 99999999999999999999999999999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999999999999999999999999999<143> = 631 · 4993 · 113021 · 711889 · 8174189 · 1018445325323<13> · C107
C107 = P36 · P72
P36 = 124081059014402609188910712167753797<36>
P72 = 381900090388147519926382272844193239916998973958499765471774268565374743<72>
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10137+15·1068-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333833333333333333333333333333333333333333333333333333333333333333333333<137> = 23 · 1301 · C133
C133 = P36 · P97
P36 = 267585440783358957736467000710402543<36>
P97 = 4163045262442537352797969001234701845700259730698574326340078542301228772173015352281880886073097<97>
Number: 33833_68 N=1113970301551760630061602557675812362842406621439472423665185086165619534583208011674408760262451403045594804442513562588421392685671 ( 133 digits) SNFS difficulty: 137 digits. Divisors found: r1=267585440783358957736467000710402543 (pp36) r2=4163045262442537352797969001234701845700259730698574326340078542301228772173015352281880886073097 (pp97) Version: GGNFS-0.77.1 Total time: 35.69 hours. Scaled time: 28.02 units (timescale=0.785). Factorization parameters were as follows: n: 1113970301551760630061602557675812362842406621439472423665185086165619534583208011674408760262451403045594804442513562588421392685671 m: 10000000000000000000000000000000000 c4: 10 c2: 15 c0: -1 skew: 1 type: snfs qintsize: 50000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4650001) Relations: rels:1837054, finalFF:160049 Initial matrix: 142315 x 160049 with sparse part having weight 21226657. Pruned matrix : 140547 x 141322 with weight 17398011. Total sieving time: 35.16 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.38 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 35.69 hours. --------- CPU info (if available) ----------
By Samuel Chong / GGNFS-0.77.1-050612 gnfs
(4·10169-7)/3 = 1(3)1681<170> = 11 · 61 · 97 · 659 · 54096433 · 54290441 · 64308106981<11> · 3765965069522130999796999696397<31> · C105
C105 = P45 · P60
P45 = 687458054229396231638810565700743919885244773<45>
P60 = 635738994891674777504228524674028850752300643056700335656779<60>
Number: 13331_169 N=437043892425982813077935152545705581918969058064574850936440789645498900517989233477364470144410131766167 ( 105 digits) Divisors found: r1=687458054229396231638810565700743919885244773 (pp45) r2=635738994891674777504228524674028850752300643056700335656779 (pp60) Version: GGNFS-0.77.1-050612 Total time: 12.67 hours. Scaled time: 15.19 units (timescale=1.199). Factorization parameters were as follows: name: 13331_169 n: 437043892425982813077935152545705581918969058064574850936440789645498900517989233477364470144410131766167 skew: 3275.14 # norm 6.26e+014 c5: 954720 c4: -15574121622 c3: 37178338993774 c2: 208878367728459544 c1: 57838636510205381169 c0: -331890594985075502529 # alpha -6.11 Y1: 82518468697 Y0: -53967459406002339472 # Murphy_E 2.01e-009 # M 194674284298753262814761309149263309265107036091190640020265067214269292704064162381532010415288947872535 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Max factor residue bits: 49/49 Sieved algebraic special-q in [1250000, 2150001) Primes: RFBsize:183072, AFBsize:182604, largePrimes:4439867 encountered Relations: rels:4561010, finalFF:508893 Max relations in full relation-set: 32 Initial matrix: 365760 x 508893 with sparse part having weight 38261347. Pruned matrix : 254279 x 256171 with weight 17951282. Polynomial selection time: 0.95 hours. Total sieving time: 10.77 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.59 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 12.67 hours. --------- CPU info (if available) ---------- Pentium M 745 (1.8GHz Dothan), 1GB RAM total elapsed time: 13h5m7.618s
By Kenichiro Yamaguchi / GGNFS-0.77.0
(10137+6·1068-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333533333333333333333333333333333333333333333333333333333333333333333333<137> = 431 · C134
C134 = P60 · P75
P60 = 752933367455375140891409663863210594909534577360491740045359<60>
P75 = 102717615977560843468390580689681339283912919142680246353484793776583549877<75>
Number: 33533_68 N=77339520494972931167826759474091260634184068058778035576179427687548801237432327919566898685228151585460170146945088940448569218870843 ( 134 digits) SNFS difficulty: 137 digits. Divisors found: r1=752933367455375140891409663863210594909534577360491740045359 (pp60) r2=102717615977560843468390580689681339283912919142680246353484793776583549877 (pp75) Version: GGNFS-0.77.0 Total time: 38.49 hours. Scaled time: 25.60 units (timescale=0.665). Factorization parameters were as follows: n: 77339520494972931167826759474091260634184068058778035576179427687548801237432327919566898685228151585460170146945088940448569218870843 m: 10000000000000000000000000000000000 c4: 10 c2: 6 c0: -1 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4825001) Relations: rels:1886029, finalFF:162916 Initial matrix: 142156 x 162916 with sparse part having weight 21913619. Pruned matrix : 140301 x 141075 with weight 17429400. Total sieving time: 37.61 hours. Total relation processing time: 0.47 hours. Matrix solve time: 0.37 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 38.49 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10137+12·1068-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333733333333333333333333333333333333333333333333333333333333333333333333<137> = 7 · 59 · 216015925796663<15> · C120
C120 = P48 · P72
P48 = 433966982010329182008430441728765593758343711477<48>
P72 = 860966463396356312426055258598349988964676061853126175816825690309059091<72>
Number: 33733_68 N=373631017732223298003759928827137458608805528199800698744377777259181496818183259206815312632016168818390425264647887407 ( 120 digits) SNFS difficulty: 137 digits. Divisors found: r1=433966982010329182008430441728765593758343711477 (pp48) r2=860966463396356312426055258598349988964676061853126175816825690309059091 (pp72) Version: GGNFS-0.77.1 Total time: 28.14 hours. Scaled time: 26.85 units (timescale=0.954). Factorization parameters were as follows: name: 33733_68 n: 373631017732223298003759928827137458608805528199800698744377777259181496818183259206815312632016168818390425264647887407 m: 10000000000000000000000000000000000 c4: 10 c2: 12 c0: -1 skew: 1 type: snfs qintsize: 300000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4300001) Relations: rels:1813869, finalFF:172676 Initial matrix: 142279 x 172676 with sparse part having weight 22257568. Pruned matrix : 139729 x 140504 with weight 15929721. Total sieving time: 27.77 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.22 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 28.14 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(28·10191-1)/9 = 3(1)191<192> = 6197 · 17839635938857<14> · 257151644189669463738913<24> · C152
C152 = P31 · P121
P31 = 6640250143350598462463268599219<31>
P121 = 1648064835818731819503175566093799461463906092440925968516339312383305952539020121973929333839216181356636543190133684097<121>
(79·10170-7)/9 = 8(7)170<171> = 1765641831386057<16> · C156
C156 = P30 · C126
P30 = 519984567881869875839623965217<30>
C126 = [956074021105397536437342755056849754612201290610974264349641650804121960025424871623231611685371025112062981295261387784719433<126>]
By Makoto Kamada / PFGW 1.2
(505·1018470-1)/9 = 56(1)18470<18472> is PRP.
This is the second largest known PRP of the smallest prime or PRP of a quasi-repdigit sequence. The largest one is (2·1019153+691)/9 = (2)1915199<19153>, and the third largest one is (64·1010906+53)/9 = 7(1)109057<10907>
By Kenichiro Yamaguchi / GGNFS-0.77.0
(10137+45·1068-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111611111111111111111111111111111111111111111111111111111111111111111111<137> = 559166411 · C128
C128 = P45 · P83
P45 = 704654122261087194924139620175139766287597353<45>
P83 = 28199435724179175393788787025494771519765673504676048833953469555595431725123255917<83>
Number: 11611_68 N=19870848628479422579463756650989379816505307059853262736683071457079368651689471939885729493703639346661527405499167422470787701 ( 128 digits) SNFS difficulty: 137 digits. Divisors found: r1=704654122261087194924139620175139766287597353 (pp45) r2=28199435724179175393788787025494771519765673504676048833953469555595431725123255917 (pp83) Version: GGNFS-0.77.0 Total time: 59.56 hours. Scaled time: 39.61 units (timescale=0.665). Factorization parameters were as follows: n: 19870848628479422579463756650989379816505307059853262736683071457079368651689471939885729493703639346661527405499167422470787701 m: 10000000000000000000000000000000000 c4: 10 c2: 45 c0: -1 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 7450001) Relations: rels:2229625, finalFF:162723 Initial matrix: 142652 x 162723 with sparse part having weight 23393520. Pruned matrix : 140936 x 141713 with weight 19021909. Total sieving time: 58.23 hours. Total relation processing time: 0.87 hours. Matrix solve time: 0.41 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 59.56 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10137-18·1068-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777577777777777777777777777777777777777777777777777777777777777777777777<137> = 3 · 884363 · 553505604161<12> · 3799866671149<13> · C106
C106 = P46 · P61
P46 = 3139584356142145225486413564783334191312242041<46>
P61 = 4439572722040745954689283568061219008015925598950385086497757<61>
Number: 77577_68 N=13938413066074526459550572217872702166758177181291534495675201749827826630037025580766549200053608187602037 ( 107 digits) Divisors found: r1=3139584356142145225486413564783334191312242041 (pp46) r2=4439572722040745954689283568061219008015925598950385086497757 (pp61) Version: GGNFS-0.77.1 Total time: 24.73 hours. Scaled time: 16.47 units (timescale=0.666). Factorization parameters were as follows: name: 77577_68 n: 13938413066074526459550572217872702166758177181291534495675201749827826630037025580766549200053608187602037 skew: 26153.90 # norm 7.56e+14 c5: 5160 c4: -1257012006 c3: 4533546271449 c2: 976361616744067814 c1: 7358141065657339478068 c0: -304290792462030617262216 # alpha -5.32 Y1: 18800850643 Y0: -306417823973357441825 # Murphy_E 1.34e-09 # M 8780830775051261192254256101566781879965777699126972178494282960650192075929371822912518153518254264739592 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2600001) Relations: rels:4745417, finalFF:509851 Initial matrix: 365625 x 509851 with sparse part having weight 42527875. Pruned matrix : 318993 x 320885 with weight 17837218. Total sieving time: 21.14 hours. Total relation processing time: 0.35 hours. Matrix solve time: 2.92 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: gnfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 24.73 hours. --------- CPU info (if available) ----------
By Samuel Chong / GGNFS-0.77.1
10161-3 = (9)1607<161> = C161
C161 = P70 · P92
P70 = 1832934247661461281400687301882801770474799900077065371833785212553683<70>
P92 = 54557330753999730405854658459191838430800911789742566920056359690858206347228970175385246959<92>
Number: 99997_161 N=99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 ( 161 digits) SNFS difficulty: 161 digits. Divisors found: r1=1832934247661461281400687301882801770474799900077065371833785212553683 (pp70) r2=54557330753999730405854658459191838430800911789742566920056359690858206347228970175385246959 (pp92) Version: GGNFS-0.77.1 Total time: 60.24 hours. Scaled time: 66.50 units (timescale=1.104). Factorization parameters were as follows: name: 99997_161 n: 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999997 m: 100000000000000000000000000000000 c5: 10 c0: -3 type: snfs skew: 0.7 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [2000000, 3500001) Primes: RFBsize:283146, AFBsize:282917, largePrimes:7030172 encountered Relations: rels:7299800, finalFF:756318 Max relations in full relation-set: 20 Initial matrix: 566129 x 756318 with sparse part having weight 56526770. Pruned matrix : 506316 x 509210 with weight 28850611. Total sieving time: 52.95 hours. Total relation processing time: 0.23 hours. Matrix solve time: 6.89 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: snfs,161,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,49,49,2.4,2.4,100000 total time: 60.24 hours. --------- CPU info (if available) ---------- dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM total elapsed time: 32h51m31.406s
By Patrick De Geest / Jun 23, 2005
(82·1043880+71)/9 = 9(1)438799<43881> is PRP.
By Patrick De Geest / Jun 26, 2005
(83·1037786+61)/9 = 9(2)377859<37787> is PRP.
By Samuel Chong / GMP-ECM 6.0.1
(52·10165-7)/9 = 5(7)165<166> = C166
C166 = P36 · P131
P36 = 313862789381081919213237110091137467<36>
P131 = 18408610301244054879443279259036322031382779494497999913003479922425729679234475767694159477151224688418434556725166139285255188931<131>
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10143-36·1071-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777377777777777777777777777777777777777777777777777777777777777777777777777<143> = 11 · 102071 · 28754261 · 80205253763<11> · 260823065549741<15> · C105
C105 = P52 · P53
P52 = 4761533364231980885181395443753493341945745354531189<52>
P53 = 24185920515192961128829497062761621587444827284965931<53>
Number: 77377_71 N=115162067477754024562918087384556074401558244350589408628121212622470605598872704565867664652208341921959 ( 105 digits) Divisors found: r1=4761533364231980885181395443753493341945745354531189 (pp52) r2=24185920515192961128829497062761621587444827284965931 (pp53) Version: GGNFS-0.77.1 Total time: 17.06 hours. Scaled time: 10.19 units (timescale=0.597). Factorization parameters were as follows: name: 77377_71 n: 115162067477754024562918087384556074401558244350589408628121212622470605598872704565867664652208341921959 skew: 57212.05 # norm 2.28e+14 c5: 1200 c4: 70737284 c3: -4449365244275 c2: -414628910607682135 c1: 5334143461390647495891 c0: 377185919224996589423906979 # alpha -5.98 Y1: 38161745767 Y0: -157189813397099087098 # Murphy_E 2.00e-09 # M 41335342175943446713747996473584525357871536267380113466463065723278983495237115314914455851303348086074 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2150001) Relations: rels:4880913, finalFF:645857 Initial matrix: 366203 x 645857 with sparse part having weight 46801850. Pruned matrix : 266297 x 268192 with weight 11558815. Total sieving time: 14.82 hours. Total relation processing time: 0.30 hours. Matrix solve time: 1.66 hours. Time per square root: 0.28 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 17.06 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.0
(10139+18·1069-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111113111111111111111111111111111111111111111111111111111111111111111111111<139> = 3 · 14479 · 1369466309<10> · C125
C125 = P34 · P45 · P46
P34 = 4184092094865800336916701845043237<34>
P45 = 893293804598802393281431649437994473684771919<45>
P46 = 4997476473310700634780909783179017146879542389<46>
Number: 11311_69 N=18678685738298794174046969957192960070916336444334060987947992036477848302805534597394113440809379070205875036128435095867367 ( 125 digits) SNFS difficulty: 140 digits. Divisors found: r1=4184092094865800336916701845043237 (pp34) r2=893293804598802393281431649437994473684771919 (pp45) r3=4997476473310700634780909783179017146879542389 (pp46) Version: GGNFS-0.77.0 Total time: 147.72 hours. Scaled time: 98.09 units (timescale=0.664). Factorization parameters were as follows: n: 18678685738298794174046969957192960070916336444334060987947992036477848302805534597394113440809379070205875036128435095867367 m: 100000000000000000000000000000000000 c4: 1 c2: 18 c0: -10 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 19000001) Relations: rels:3237474, finalFF:160698 Initial matrix: 142026 x 160698 with sparse part having weight 24923450. Pruned matrix : 140878 x 141652 with weight 20807866. Total sieving time: 143.31 hours. Total relation processing time: 3.89 hours. Matrix solve time: 0.45 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 147.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10145-36·1072-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777773777777777777777777777777777777777777777777777777777777777777777777777777<145> = 3 · 33857 · 507060199 · 3766094209<10> · 5935426430706088879<19> · C103
C103 = P47 · P57
P47 = 59443464427074334729157629370808569275103035673<47>
P57 = 113652517762689411836180240338141093896068762859504638971<57>
Number: 77377_72 N=6755899396673862009459505046706354892272941224688720232306642587547168598726070408097424680947999012483 ( 103 digits) Divisors found: r1=59443464427074334729157629370808569275103035673 (pp47) r2=113652517762689411836180240338141093896068762859504638971 (pp57) Version: GGNFS-0.77.1 Total time: 15.72 hours. Scaled time: 9.37 units (timescale=0.596). Factorization parameters were as follows: name: 77377_72 n: 6755899396673862009459505046706354892272941224688720232306642587547168598726070408097424680947999012483 skew: 40431.19 # norm 2.35e+14 c5: 3420 c4: 74118908 c3: -13835575302323 c2: 3726605185089849 c1: 11625778199282227060071 c0: -72042042160946319937303365 # alpha -5.79 Y1: 19670678723 Y0: -72298768767220674274 # Murphy_E 2.12e-09 # M 4280733064584259016568351758730077648894595582757764707168292691492191195813666337574719453010791144127 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1150000, 1950001) Relations: rels:4455020, finalFF:454450 Initial matrix: 339213 x 454450 with sparse part having weight 32467197. Pruned matrix : 293588 x 295348 with weight 13619684. Total sieving time: 12.96 hours. Total relation processing time: 0.38 hours. Matrix solve time: 2.08 hours. Time per square root: 0.30 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 15.72 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(10149-6·1074-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333333333133333333333333333333333333333333333333333333333333333333333333333333333333<149> = 1645105959193<13> · 549896263989365396087204809637734957<36> · C101
C101 = P35 · P66
P35 = 59088507105035948455390819680301591<35>
P66 = 623592787042734103807313228026615522730609051188413739373310403063<66>
Number: 33133_74 N=36847166827823763228931277868889258433231567607583557023069093744296139031526987578002088737610173233 ( 101 digits) Divisors found: r1=59088507105035948455390819680301591 (pp35) r2=623592787042734103807313228026615522730609051188413739373310403063 (pp66) Version: GGNFS-0.77.1 Total time: 12.14 hours. Scaled time: 7.25 units (timescale=0.597). Factorization parameters were as follows: name: 33133_74 n: 36847166827823763228931277868889258433231567607583557023069093744296139031526987578002088737610173233 skew: 2061.15 # norm 3.94e+13 c5: 510600 c4: -64342220 c3: -897473158979 c2: 10537454224105978 c1: -7393730521069466568 c0: -7372732815319682194560 # alpha -5.43 Y1: 24084012007 Y0: -9368384053546856099 # Murphy_E 3.10e-09 # M 15436513662557387529294245143531416636201359402394397310204520111026845119130537766733719357288242835 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 1600001) Relations: rels:4228087, finalFF:487758 Initial matrix: 269868 x 487758 with sparse part having weight 39557090. Pruned matrix : 208691 x 210104 with weight 9874067. Polynomial selection time: 0.33 hours. Total sieving time: 10.27 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.99 hours. Time per square root: 0.21 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 12.14 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10137+36·1068-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111111111111111<137> = 3 · 19 · 71 · 337 · 17041 · C126
C126 = P48 · P79
P48 = 421441220072673151631405605916567018262009237257<48>
P79 = 1134389761960460886881885376405743011940355015986793071521429235760879875030177<79>
Number: 11511_68 N=478078605318565907109850453990751759110387649253025838582800077989769882303434166081105987077670852646915556998044155627704489 ( 126 digits) SNFS difficulty: 137 digits. Divisors found: r1=421441220072673151631405605916567018262009237257 (pp48) r2=1134389761960460886881885376405743011940355015986793071521429235760879875030177 (pp79) Version: GGNFS-0.77.1 Total time: 31.93 hours. Scaled time: 30.50 units (timescale=0.955). Factorization parameters were as follows: n: 478078605318565907109850453990751759110387649253025838582800077989769882303434166081105987077670852646915556998044155627704489 m: 10000000000000000000000000000000000 c4: 10 c2: 36 c0: -1 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 3775001) Relations: rels:1717393, finalFF:167714 Initial matrix: 142708 x 167714 with sparse part having weight 20985311. Pruned matrix : 140336 x 141113 with weight 15721069. Total sieving time: 31.44 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.33 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 31.93 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10139+9·1069-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777778777777777777777777777777777777777777777777777777777777777777777777777<139> = 17 · 677 · 174799 · 10796089709966723892211355663<29> · C102
C102 = P40 · P63
P40 = 1619431214291851515000749284302973001453<40>
P63 = 221131191553095858102340548721362892234957240074748045127193473<63>
Number: 77877_69 N=358106754054634044213737010315384421193531136375089526504295315148840154621966188339153429665041116269 ( 102 digits) Divisors found: r1=1619431214291851515000749284302973001453 (pp40) r2=221131191553095858102340548721362892234957240074748045127193473 (pp63) Version: GGNFS-0.77.1 Total time: 13.75 hours. Scaled time: 9.16 units (timescale=0.666). Factorization parameters were as follows: name: 77877_69 n: 358106754054634044213737010315384421193531136375089526504295315148840154621966188339153429665041116269 skew: 42781.62 # norm 8.30e+13 c5: 840 c4: -35969722 c3: -2811953398404 c2: 12278280375104019 c1: 3172243310071161156676 c0: 42538643512976530241454951 # alpha -5.61 Y1: 10846187899 Y0: -53204382058511610320 # Murphy_E 2.74e-09 # M 295627027199131448071231397144316424902116359664442363969762974700191693172407930679170263033594015990 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1150000, 1850001) Relations: rels:4610174, finalFF:531429 Initial matrix: 338852 x 531429 with sparse part having weight 39765774. Pruned matrix : 264693 x 266451 with weight 11933215. Polynomial selection time: 0.33 hours. Total sieving time: 11.53 hours. Total relation processing time: 0.32 hours. Matrix solve time: 1.33 hours. Time per square root: 0.23 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 13.75 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(28·10164-1)/9 = 3(1)164<165> = 1737265539857<13> · 252249696241091<15> · C138
C138 = P29 · P110
P29 = 26106630115401509928704918723<29>
P110 = 27193671615382449140729179756297345921271319139648222513354703536214203678797979436152365081608209288658796511<110>
(28·10170-1)/9 = 3(1)170<171> = 19 · 194022611 · 5328187985291<13> · C149
C149 = P27 · C122
P27 = 523160083277781738962657179<27>
C122 = [30275786718939073262198283789978155876672082056701271284678851780538889561037058996711978385933115010226062811804230797911<122>]
(28·10174-1)/9 = 3(1)174<175> = 3 · 2971 · 10799 · 451939 · 605286277 · 5324553890743<13> · C140
C140 = P33 · P108
P33 = 168517515354625529559054637391101<33>
P108 = 131685862319569826123767299065424365952891770022473676802466204675977540215100361667406077973313830273073557<108>
(79·10182-7)/9 = 8(7)182<183> = 115987387 · 125687914650272813477483495359<30> · C146
C146 = P30 · C117
P30 = 277453739305469829129656557217<30>
C117 = [217014980556087308878927231813617367028075041392377799114208275145971398575415608280897569212675022064944352895246557<117>]
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10141-18·1070-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777757777777777777777777777777777777777777777777777777777777777777777777777<141> = 233 · 11113 · 232007 · 2111792219969<13> · 84353798525778169<17> · C100
C100 = P39 · P62
P39 = 352953140580240685743783096160847197447<39>
P62 = 20591800718093390918495913306836168292815036621125855831795577<62>
Number: 77577_70 N=7267940733653517707296451012967115921766358184798910647895987149003799541521580764580071594260291919 ( 100 digits) Divisors found: r1=352953140580240685743783096160847197447 (pp39) r2=20591800718093390918495913306836168292815036621125855831795577 (pp62) Version: GGNFS-0.77.1 Total time: 10.63 hours. Scaled time: 6.35 units (timescale=0.597). Factorization parameters were as follows: name: 77577_70 n: 7267940733653517707296451012967115921766358184798910647895987149003799541521580764580071594260291919 skew: 6644.82 # norm 1.59e+14 c5: 123120 c4: -974480016 c3: -9144399786380 c2: -8942139643844767 c1: 17268803406231924610 c0: -204465531944783777912712 # alpha -6.28 Y1: 11687674721 Y0: -8999480637777053393 # Murphy_E 3.13e-09 # M 2714786103330676513410033898228265489317158329577837996874109066379092597344062163433877596636689516 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 1500001) Relations: rels:4129872, finalFF:475867 Initial matrix: 270228 x 475867 with sparse part having weight 36702839. Pruned matrix : 205040 x 206455 with weight 9063096. Polynomial selection time: 0.33 hours. Total sieving time: 8.95 hours. Total relation processing time: 0.30 hours. Matrix solve time: 0.86 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 10.63 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10151-5·1075-1 = 9999999999999999999999999999999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999999999999999999999999999999<151> = 7 · 293 · 9539 · 15683 · 54258411269768597<17> · 427783759648005329<18> · C106
C106 = P46 · P60
P46 = 3517062300547732144252876581838513053265293857<46>
P60 = 399237126270832542031473445700832275264923599868927241797897<60>
Number: 99499_75 N=1404141845786159730429740222071762294828945006292206142265896945850516241497742346324533224878476709618729 ( 106 digits) Divisors found: r1=3517062300547732144252876581838513053265293857 (pp46) r2=399237126270832542031473445700832275264923599868927241797897 (pp60) Version: GGNFS-0.77.1 Total time: 20.20 hours. Scaled time: 13.45 units (timescale=0.666). Factorization parameters were as follows: name: 99499_75 n: 1404141845786159730429740222071762294828945006292206142265896945850516241497742346324533224878476709618729 skew: 20417.01 # norm 3.32e+14 c5: 11400 c4: -311860810 c3: 12167755640755 c2: 169336099166944217 c1: -3517189059279253542489 c0: -20222946190198593400537881 # alpha -5.97 Y1: 31933474111 Y0: -165234863264426566960 # Murphy_E 1.71e-09 # M 442288634088352137625259821992219151505734991060703111706403952540384173456401162565088843827489791074009 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2300001) Relations: rels:4763016, finalFF:564391 Initial matrix: 366513 x 564391 with sparse part having weight 45649436. Pruned matrix : 296929 x 298825 with weight 15263831. Polynomial selection time: 0.50 hours. Total sieving time: 16.98 hours. Total relation processing time: 0.47 hours. Matrix solve time: 1.98 hours. Time per square root: 0.26 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 20.20 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
(7·10135-36·1067-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777737777777777777777777777777777777777777777777777777777777777777777777<135> = 11 · 172 · 67 · 72707 · 15985362517<11> · C115
C115 = P53 · P63
P53 = 24134275568127256336038479726753542342790015428526783<53>
P63 = 130183881963273175231533304158072486413518393051052112152990257<63>
Number: 77377_67 N=3141893681830186390130089036773194660026081857624140780532314295921848830769954838208312142442422878159973662553231 ( 115 digits) SNFS difficulty: 136 digits. Divisors found: r1=24134275568127256336038479726753542342790015428526783 (pp53) r2=130183881963273175231533304158072486413518393051052112152990257 (pp63) Version: GGNFS-0.77.1 Total time: 37.79 hours. Scaled time: 19.31 units (timescale=0.511). Factorization parameters were as follows: n: 3141893681830186390130089036773194660026081857624140780532314295921848830769954838208312142442422878159973662553231 m: 10000000000000000000000000000000000 c4: 7 c2: -36 c0: -70 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4225001) Relations: rels:1763505, finalFF:160460 Initial matrix: 142552 x 160460 with sparse part having weight 19861054. Pruned matrix : 140766 x 141542 with weight 16130213. Total sieving time: 36.91 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.73 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 37.79 hours. --------- CPU info (if available) ----------
By Samuel Chong / GGNFS-0.77.1
(5·10160-17)/3 = 1(6)1591<161> = C161
C161 = P73 · P88
P73 = 7882418625046493137079200109466142233457102918797363849268660188394441163<73>
P88 = 2114410241256167881019929854171578797976297286873491215535819386209922986237183824564047<88>
Number: 16661_160 N=16666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 ( 161 digits) SNFS difficulty: 160 digits. Divisors found: r1=7882418625046493137079200109466142233457102918797363849268660188394441163 (pp73) r2=2114410241256167881019929854171578797976297286873491215535819386209922986237183824564047 (pp88) Version: GGNFS-0.77.1 Total time: 44.33 hours. Scaled time: 48.94 units (timescale=1.104). Factorization parameters were as follows: name: 16661_160 n: 16666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661 m: 100000000000000000000000000000000 c5: 5 c0: -17 type: snfs skew: 1.4 mfbr: 49 mfba: 49 rlambda: 2.4 alambda: 2.4 Factor base limits: 4000000/4000000 Large primes per side: 3 Large prime bits: 27/27 Max factor residue bits: 49/49 Sieved rational special-q in [2000000, 3100001) Relations: rels:7740521, finalFF:1050646 Max relations in full relation-set: 24 Initial matrix: 565968 x 1050646 with sparse part having weight 83903736. Pruned matrix : 417609 x 420502 with weight 23392534. Total sieving time: 39.65 hours. Total relation processing time: 0.23 hours. Matrix solve time: 4.31 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: snfs,160,5,0,0,0,0,0,0,0,0,4000000,4000000,27,27,49,49,2.4,2.4,100000 total time: 44.33 hours. --------- CPU info (if available) ---------- dual Athlon MP 2600+ (2.0GHz Bartons), 3GB RAM total elapsed time: 26h34m15.203s
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(7·10151+18·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777779777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 3 · 3371 · 167747 · 943601 · 24185170832763180443818023037<29> · C108
C108 = P48 · P61
P48 = 169346109874757417843904031977676871790741094379<48>
P61 = 1186336752025393198584033912651226741202452028767265265831509<61>
Number: 77977_75 N=200901513956955081270327293751799424826200226008456663010883334938513692421828631863588058922940782080987911 ( 108 digits) Divisors found: r1=169346109874757417843904031977676871790741094379 (pp48) r2=1186336752025393198584033912651226741202452028767265265831509 (pp61) Version: GGNFS-0.77.1 Total time: 23.62 hours. Scaled time: 15.73 units (timescale=0.666). Factorization parameters were as follows: name: 77977_75 n: 200901513956955081270327293751799424826200226008456663010883334938513692421828631863588058922940782080987911 skew: 13846.45 # norm 2.03e+14 c5: 23400 c4: 809845272 c3: -2641094002024 c2: -213525271454027953 c1: 564132403817719659842 c0: 2480299527894433387021947 # alpha -5.24 Y1: 144903312829 Y0: -386146713039942139214 # Murphy_E 1.47e-09 # M 98349779625979756049703595573081058560548083551952179451017366893202083963636831223866291457045693186532823 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2450001) Relations: rels:4474962, finalFF:414352 Initial matrix: 366187 x 414352 with sparse part having weight 32180827. Pruned matrix : 345910 x 347804 with weight 21662205. Polynomial selection time: 0.94 hours. Total sieving time: 18.59 hours. Total relation processing time: 0.36 hours. Matrix solve time: 3.41 hours. Time per square root: 0.32 hours. Prototype def-par.txt line would be: gnfs,107,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 23.62 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(79·10155-7)/9 = 8(7)155<156> = 233 · 10433 · 1481882918251259<16> · C135
C135 = P28 · C107
P28 = 5408053588527112006899636743<28>
C107 = [45057238943389029641403277796867297413112395948019299563561301516711477073402428700617197619020871097375389<107>]
(79·10163-7)/9 = 8(7)163<164> = 3 · 74843 · 38060733327077701<17> · C143
C143 = P28 · P115
P28 = 1083398825202294831704209103<28>
P115 = 9480835858431198174849223900216501761666793567184223673469931008775997377554534316342050879918045338480030893555971<115>
(79·10174-7)/9 = 8(7)174<175> = 23 · 111847 · 2700199 · 11341333 · 28678103502931<14> · 5767905468864376763<19> · C123
C123 = P26 · P97
P26 = 73719021324300880388201021<26>
P97 = 9137437277905360554319628040724189738408180401913813774870087386642308107897726771619334377416327<97>
(79·10182-7)/9 = 8(7)182<183> = 115987387 · C175
C175 = P30 · C146
P30 = 125687914650272813477483495359<30>
C146 = [60211617840590252087949989171340449444131975941613010385946043012464564059565044302335961986003621602364869851210827579943438660712327824992751869<146>]
(79·10191-7)/9 = 8(7)191<192> = 163 · 818566172909689<15> · C175
C175 = P31 · P145
P31 = 2085333327995178647780613948737<31>
P145 = 3154769981065663717423453824301089431621799766297681716683244043756090996193911841402129171004373985965188845124589593043288901552008988704958003<145>
(79·10198-7)/9 = 8(7)198<199> = 1286209 · C193
C193 = P26 · C168
P26 = 47217478072347778516414417<26>
C168 = [144534076007327483294015834553477161019199808201781278959371252262113722534800307802918300030512630351102520759280855616387259510287054700793882474466213738567899443809<168>]
(28·10186-1)/9 = 3(1)186<187> = 34 · 53 · 131 · 199 · 4067309 · C172
C172 = P27 · P145
P27 = 916625868678918833697444587<27>
P145 = 7456430668834257789935629689706953845490417530837617773240220206737721146056877271697384437834443068299796703587179227184524836846837788764124001<145>
(28·10187-1)/9 = 3(1)187<188> = 179 · 1858889 · 48572115197<11> · C169
C169 = P27 · C142
P27 = 440201725980094243625218327<27>
C142 = [4372907351289223229267778825845950022974115758147345589181819982954699556380698836382389471097593379123455797524271583494620312221578927889999<142>]
By Kenichiro Yamaguchi / GGNFS-0.77.1, GMP-ECM 6.0
(10135-6·1067-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333313333333333333333333333333333333333333333333333333333333333333333333<135> = 2083 · 321323 · 114664909 · 647245309 · C109
C109 = P40 · P69
P40 = 9251834436414450825830648393219171960261<40>
P69 = 725304492835519725799380775948829474578870894276745894551318459324057<69>
Number: 33133_67 N=6710397083701779729142349441629579134917644441680414304107635663746250452060508983802785279082528965725298877 ( 109 digits) SNFS difficulty: 136 digits. Divisors found: r1=9251834436414450825830648393219171960261 (pp40) r2=725304492835519725799380775948829474578870894276745894551318459324057 (pp69) Version: GGNFS-0.77.1 Total time: 36.38 hours. Scaled time: 18.63 units (timescale=0.512). Factorization parameters were as follows: n: 6710397083701779729142349441629579134917644441680414304107635663746250452060508983802785279082528965725298877 m: 10000000000000000000000000000000000 c4: 1 c2: -6 c0: -10 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4075001) Relations: rels:1764008, finalFF:159951 Initial matrix: 142152 x 159951 with sparse part having weight 20310478. Pruned matrix : 140403 x 141177 with weight 16509283. Total sieving time: 35.54 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.70 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 36.38 hours. --------- CPU info (if available) ----------
(10141+36·1070-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111111151111111111111111111111111111111111111111111111111111111111111111111111<141> = 23 · 941 · 16741 · 118251965119<12> · C121
C121 = P30 · P91
P30 = 899184948562321468607927788999<30>
P91 = 2884039734134237755177191008659240780879866778331898494027158997512479778098162515038302937<91>
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(10141+15·1070-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333383333333333333333333333333333333333333333333333333333333333333333333333<141> = 4796218403<10> · 4871092716755507520521488122659<31> · C101
C101 = P45 · P56
P45 = 410088344293830932028617665624544383991341829<45>
P56 = 34791725834592404126743198643481717824252849248670997001<56>
Number: 33833_70 N=14267681242632902152177306366085252051103423473492844666433028856134586465350584189623177369224854829 ( 101 digits) Divisors found: r1=410088344293830932028617665624544383991341829 (pp45) r2=34791725834592404126743198643481717824252849248670997001 (pp56) Version: GGNFS-0.77.1 Total time: 11.78 hours. Scaled time: 7.86 units (timescale=0.667). Factorization parameters were as follows: name: 33833_70 n: 14267681242632902152177306366085252051103423473492844666433028856134586465350584189623177369224854829 skew: 4550.09 # norm 2.02e+14 c5: 136620 c4: 2274727068 c3: 6251553728793 c2: 18111130590571063 c1: -117823739326202695257 c0: 77998512955209787799585 # alpha -6.15 Y1: 5724874627 Y0: -10087115709131999442 # Murphy_E 3.11e-09 # M 10545509366654402031879847064245549972665555353600098223002255672948515358606393081821442210908882037 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 1600001) Relations: rels:4031378, finalFF:410818 Initial matrix: 270514 x 410818 with sparse part having weight 32167846. Pruned matrix : 227406 x 228822 with weight 10938842. Polynomial selection time: 0.35 hours. Total sieving time: 9.81 hours. Total relation processing time: 0.35 hours. Matrix solve time: 1.07 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: gnfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 11.78 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10135-4·1067-1 = 999999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999999<135> = 7 · 199 · 776868191153854013968671748788920791<36> · C96
C96 = P46 · P51
P46 = 4793208491666876855263351806795609063791229239<46>
P51 = 192785880758047470136230491036835852228315194280607<51>
Number: 99599_67 N=924062920722951092337151139218331456487917511128942688202089863029871990343024979764022829068073 ( 96 digits) Divisors found: r1=4793208491666876855263351806795609063791229239 (pp46) r2=192785880758047470136230491036835852228315194280607 (pp51) Version: GGNFS-0.77.1 Total time: 16.97 hours. Scaled time: 10.11 units (timescale=0.596). Factorization parameters were as follows: name: 99599_67 n: 924062920722951092337151139218331456487917511128942688202089863029871990343024979764022829068073 m: 12476103279229687596272 deg: 4 c4: 38140440 c3: 19204245495 c2: 1110840043842648582 c1: -1228880260873486718 c0: -1807720023387482217793719 skew: 1635.250 type: gnfs # adj. I(F,S) = 55.250 # E(F1,F2) = 1.827654e-05 # GGNFS version 0.77.1 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=60.00000000, seed=1119393583. # maxskew=2000.0 # These parameters should be manually set: rlim: 1200000 alim: 1200000 lpbr: 25 lpba: 25 mfbr: 45 mfba: 45 rlambda: 2.4 alambda: 2.4 qintsize: 60000 type: gnfs Factor base limits: 1200000/1200000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [600000, 1920001) Relations: rels:2029757, finalFF:208466 Initial matrix: 185873 x 208466 with sparse part having weight 21798430. Pruned matrix : 180086 x 181079 with weight 16867637. Polynomial selection time: 0.17 hours. Total sieving time: 15.16 hours. Total relation processing time: 0.28 hours. Matrix solve time: 1.26 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: gnfs,95,4,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1200000,1200000,25,25,45,45,2.4,2.4,60000 total time: 16.97 hours. --------- CPU info (if available) ----------
By Samuel Chong / GMP-ECM 6.0.1
(10165+17)/9 = (1)1643<165> = C165
C165 = P39 · P42 · P85
P39 = 392969699434825172058725656086390773767<39>
P42 = 111993188756365886853577743582861876119213<42>
P85 = 2524682766072869954796262839242693272891413803764401705446617232172532105793639005003<85>
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
(10151+63·1075-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111111111111<151> = 317 · 226621 · 544031 · 66083711 · 21179257669<11> · 3209121692237716133<19> · C100
C100 = P40 · P61
P40 = 4275012957575822946139264624771833515353<40>
P61 = 1480626951383711539346468832225704939396997616241389872569663<61>
Number: 11811_75 N=6329699402501354882735536081773742734114882424106313872387063047939192886925373223865767700672536039 ( 100 digits) Divisors found: r1=4275012957575822946139264624771833515353 (pp40) r2=1480626951383711539346468832225704939396997616241389872569663 (pp61) Version: GGNFS-0.77.1 Total time: 10.51 hours. Scaled time: 7.00 units (timescale=0.666). Factorization parameters were as follows: name: 11811_75 n: 6329699402501354882735536081773742734114882424106313872387063047939192886925373223865767700672536039 skew: 14052.57 # norm 8.35e+13 c5: 11760 c4: -18831542 c3: -8407661837023 c2: 27703402906256100 c1: 648695911680263659976 c0: 1428862511036605250637360 # alpha -5.79 Y1: 4538224819 Y0: -14002165221965969653 # Murphy_E 3.34e-09 # M 6163038367697848901014003635137676956818102186607531755848034578477748423578243747962055261019178131 type: gnfs rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 1500001) Relations: rels:4192995, finalFF:499837 Initial matrix: 270060 x 499837 with sparse part having weight 37923867. Pruned matrix : 199682 x 201096 with weight 8631624. Total sieving time: 9.21 hours. Total relation processing time: 0.33 hours. Matrix solve time: 0.80 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,99,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 10.51 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1, GGNFS-0.77.0, GMP-ECM 6.0, msieve 0.88
(10135+27·1067-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111111111111<135> = 3 · 43 · 47 · 1129 · 332518649210987<15> · C113
C113 = P39 · P75
P39 = 331592363289251899675730190676028301829<39>
P75 = 147216148957514532570301830992508374412275270603655466615305118535416845991<75>
Number: 11411_67 N=48815750747164781210733193033741522989460097994089613327715561193663369421731621664134355683888570277934956617539 ( 113 digits) SNFS difficulty: 136 digits. Divisors found: r1=331592363289251899675730190676028301829 (pp39) r2=147216148957514532570301830992508374412275270603655466615305118535416845991 (pp75) Version: GGNFS-0.77.1 Total time: 34.19 hours. Scaled time: 17.50 units (timescale=0.512). Factorization parameters were as follows: n: 48815750747164781210733193033741522989460097994089613327715561193663369421731621664134355683888570277934956617539 m: 10000000000000000000000000000000000 c4: 1 c2: 27 c0: -10 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 3925001) Relations: rels:1740943, finalFF:163904 Initial matrix: 142455 x 163904 with sparse part having weight 20477588. Pruned matrix : 140378 x 141154 with weight 15960162. Total sieving time: 33.37 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.68 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 34.19 hours. --------- CPU info (if available) ----------
(10139+27·1069-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111114111111111111111111111111111111111111111111111111111111111111111111111<139> = 19 · 193 · C135
C135 = P51 · P84
P51 = 458969205309706883462311407189939442568908790037727<51>
P84 = 660181018289950526503265195915261314434343241524003356600318014477235944992007303779<84>
Number: 11411_69 N=303002757325091658334090840226646062479168560433899948489531254734418901312001939217646880586613338181377450534799866678786776959670333 ( 135 digits) SNFS difficulty: 140 digits. Divisors found: r1=458969205309706883462311407189939442568908790037727 (pp51) r2=660181018289950526503265195915261314434343241524003356600318014477235944992007303779 (pp84) Version: GGNFS-0.77.0 Total time: 105.88 hours. Scaled time: 70.31 units (timescale=0.664). Factorization parameters were as follows: n: 303002757325091658334090840226646062479168560433899948489531254734418901312001939217646880586613338181377450534799866678786776959670333 m: 100000000000000000000000000000000000 c4: 1 c2: 27 c0: -10 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 13600001) Relations: rels:2781306, finalFF:160760 Initial matrix: 142455 x 160760 with sparse part having weight 24151731. Pruned matrix : 141051 x 141827 with weight 20142129. Total sieving time: 104.11 hours. Total relation processing time: 1.28 hours. Matrix solve time: 0.43 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 105.88 hours. --------- CPU info (if available) ----------
(10145+63·1072-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111111111<145> = 292 · 27594667 · 31879662713<11> · 2049991686221<13> · C111
C111 = P30 · P41 · P42
P30 = 172611700167822112088799043051<30>
P41 = 11930586995803733710783320728974898140249<41>
P42 = 355744731831617320345646967221453595047219<42>
By Sinkiti Sibata / GGNFS-0.77.1 gnfs
10147-2·1073-1 = 999999999999999999999999999999999999999999999999999999999999999999999999979999999999999999999999999999999999999999999999999999999999999999999999999<147> = 11 · 79 · 5413 · 624835533695896517<18> · 364226024782606601290393<24> · C99
C99 = P45 · P55
P45 = 469193742913951833708341512136612121140630107<45>
P55 = 1990917625212558203593236322683252097549924778395642201<55>
Number: 99799_73 N=934126092406836543261982582105796335015126432024245162073851432590364960820851929663448772060345507 ( 99 digits) Divisors found: r1=469193742913951833708341512136612121140630107 (pp45) r2=1990917625212558203593236322683252097549924778395642201 (pp55) Version: GGNFS-0.77.1 Total time: 21.34 hours. Scaled time: 12.72 units (timescale=0.596). Factorization parameters were as follows: name: 99799_73 n: 934126092406836543261982582105796335015126432024245162073851432590364960820851929663448772060345507 m: 2625189263492199113 deg: 5 c5: 7492080 c4: 1337515694 c3: -220253052859479 c2: -32970669423909232 c1: 18849870306766471780 c0: 465432639242354972464 skew: 107.623 type: gnfs # adj. I(F,S) = 46.631 # E(F1,F2) = 2.310504e-03 # GGNFS version 0.77.1 polyselect. # Options were: # lcd=1, enumLCD=24, maxS1=58.00000000, seed=1119252564. # maxskew=1500.0 # These parameters should be manually set: rlim: 1800000 alim: 1800000 lpbr: 26 lpba: 26 mfbr: 48 mfba: 48 rlambda: 2.5 alambda: 2.5 qintsize: 100000 type: gnfs Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [900000, 2200001) Relations: rels:4011223, finalFF:329970 Initial matrix: 270323 x 329970 with sparse part having weight 31478392. Pruned matrix : 251943 x 253358 with weight 18834109. Polynomial selection time: 0.57 hours. Total sieving time: 18.11 hours. Total relation processing time: 0.55 hours. Matrix solve time: 1.89 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: gnfs,98,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1800000,1800000,26,26,48,48,2.5,2.5,100000 total time: 21.34 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10145-2·1072-1 = 9999999999999999999999999999999999999999999999999999999999999999999999997999999999999999999999999999999999999999999999999999999999999999999999999<145>= 72 · 43 · C142
C142 = P33 · P110
P33 = 333494405578599951508082591758373<33>
P110 = 14231376601563902084598105879773330680524057902968345305670008783724452852536115763742510732038567091916804809<110>
Number: 979_72 N=4746084480303749406739439962031324157570004746084480303749406739439962030374940673943996203132415757000474608448030374940673943996203132415757 ( 142 digits) SNFS difficulty: 145 digits. Divisors found: r1=333494405578599951508082591758373 (pp33) r2=14231376601563902084598105879773330680524057902968345305670008783724452852536115763742510732038567091916804809 (pp110) Version: GGNFS-0.77.1 Total time: 133.37 hours. Scaled time: 88.83 units (timescale=0.666). Factorization parameters were as follows: name: 979_72 n: 474608448030374940673943996203132415757000474608448030374940673943996203037494067394399620313241575700047460844803037494067394399620 3132415757 m: 1000000000000000000000000000000000000 c4: 10 c2: -2 c0: -1 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 16150001) Relations: rels:4671165, finalFF:224076 Initial matrix: 199802 x 224076 with sparse part having weight 35215044. Pruned matrix : 196560 x 197623 with weight 29642185. Total sieving time: 129.03 hours. Total relation processing time: 1.88 hours. Matrix solve time: 2.39 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,145,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 133.37 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1
10133-4·1066-1 = 9999999999999999999999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999999999999999999999<133> = 31 · 137 · 7487097543124525709<19> · C111
C111 = P40 · P71
P40 = 8115887942020483700339664052724822716727<40>
P71 = 38749687619167420472280512971306132884586542208501397825133375024471019<71>
Number: 99599_66 N=314488122505461292879671976094673380968666017980658029490893650491710086845199482260127907636464602097658034813 ( 111 digits) SNFS difficulty: 133 digits. Divisors found: r1=8115887942020483700339664052724822716727 (pp40) r2=38749687619167420472280512971306132884586542208501397825133375024471019 (pp71) Version: GGNFS-0.77.1 Total time: 17.31 hours. Scaled time: 8.92 units (timescale=0.515). Factorization parameters were as follows: n: 314488122505461292879671976094673380968666017980658029490893650491710086845199482260127907636464602097658034813 m: 1000000000000000000000000000000000 c4: 10 c2: -4 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2200001) Relations: rels:1525062, finalFF:153120 Initial matrix: 127839 x 153120 with sparse part having weight 17151520. Pruned matrix : 125304 x 126007 with weight 12135532. Total sieving time: 16.78 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.42 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 17.31 hours. --------- CPU info (if available) ----------
jasonp's SIQS implementation msieve 1.0 was released.
Quadratic Sieve Source Code (jasonp)
By Kenichiro Yamaguchi / GGNFS-0.77.1
10133-5·1066-1 = 9999999999999999999999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999999999999999999999<133> = 47 · 73 · 829 · 6761 · 50506030969<11> · C113
C113 = P51 · P62
P51 = 131323299422472148930024532895341746762555988587153<51>
P62 = 78402297452355609333372855409892683866758653385085863058626413<62>
Number: 99499_66 N=10296048383745421024561376170444650610292091750811585702005887128202389975444353604023827357653984040572718272189 ( 113 digits) SNFS difficulty: 133 digits. Divisors found: r1=131323299422472148930024532895341746762555988587153 (pp51) r2=78402297452355609333372855409892683866758653385085863058626413 (pp62) Version: GGNFS-0.77.1 Total time: 18.98 hours. Scaled time: 10.04 units (timescale=0.529). Factorization parameters were as follows: n: 10296048383745421024561376170444650610292091750811585702005887128202389975444353604023827357653984040572718272189 m: 1000000000000000000000000000000000 c4: 10 c2: -5 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2450001) Relations: rels:1564415, finalFF:146100 Initial matrix: 127969 x 146100 with sparse part having weight 17258837. Pruned matrix : 126104 x 126807 with weight 13491526. Total sieving time: 18.42 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.46 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 18.98 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0
(10151-6·1075-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333333333331333333333333333333333333333333333333333333333333333333333333333333333333333<151>= 3411719 · 1367564468672449529<19> · C126
C126 = P30 · P97
P30 = 136186205419691511152381762567<30>
P97 = 5245955029205056738452064982416906027584911995774032103739413097905785105699345110067479580185549<97>
By Kenichiro Yamaguchi / GGNFS-0.77.1
(10133+45·1066-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111116111111111111111111111111111111111111111111111111111111111111111111<133> = 3 · 17 · 1741 · 121843 · 206197 · 93151601 · C109
C109 = P38 · P71
P38 = 82126757743495966723850217964403708639<38>
P71 = 65107439502914542128868047516770487220133623571504393789439718324411409<71>
Number: 11611_66 N=5347062911355182067317850414313628272751587444555896181283436861210857551786593304439312027915642766403462351 ( 109 digits) SNFS difficulty: 133 digits. Divisors found: r1=82126757743495966723850217964403708639 (pp38) r2=65107439502914542128868047516770487220133623571504393789439718324411409 (pp71) Version: GGNFS-0.77.1 Total time: 26.69 hours. Scaled time: 13.05 units (timescale=0.489). Factorization parameters were as follows: n: 5347062911355182067317850414313628272751587444555896181283436861210857551786593304439312027915642766403462351 m: 1000000000000000000000000000000000 c4: 10 c2: 45 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 3250001) Relations: rels:1741242, finalFF:145760 Initial matrix: 128105 x 145760 with sparse part having weight 19065191. Pruned matrix : 126315 x 127019 with weight 15293701. Total sieving time: 25.69 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.83 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 26.69 hours. --------- CPU info (if available) ----------
(10133+63·1066-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111<133> = 197759 · C127
C127 = P36 · P92
P36 = 396019314659061651581554906203926729<36>
P92 = 14187467032567588459817376264714088126285697525200698406889689033176784521761952527073842801<92>
Number: 11811_66 N=5618510970985447494734050592443889335560511082231964720245910988213487685066728245546908667171208951861159851693784409868127929 ( 127 digits) SNFS difficulty: 133 digits. Divisors found: r1=396019314659061651581554906203926729 (pp36) r2=14187467032567588459817376264714088126285697525200698406889689033176784521761952527073842801 (pp92) Version: GGNFS-0.77.1 Total time: 22.79 hours. Scaled time: 11.40 units (timescale=0.500). Factorization parameters were as follows: n: 5618510970985447494734050592443889335560511082231964720245910988213487685066728245546908667171208951861159851693784409868127929 m: 1000000000000000000000000000000000 c4: 10 c2: 63 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2900001) Relations: rels:1670903, finalFF:149663 Initial matrix: 127595 x 149663 with sparse part having weight 18686273. Pruned matrix : 125471 x 126172 with weight 14133399. Total sieving time: 21.90 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.77 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 22.79 hours. --------- CPU info (if available) ----------
(10133+6·1066-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333335333333333333333333333333333333333333333333333333333333333333333333<133> = 2347 · 3299 · 665236259 · 4857693449317<13> · C105
C105 = P45 · P60
P45 = 382754370924383984959075115125158011950131091<45>
P60 = 348062442898497241099906585776506243077787356301089086819257<60>
Number: 33533_66 N=133222421374018633445036267132297777880987508567292617948187809460625006845713817438019021165601373219387 ( 105 digits) SNFS difficulty: 133 digits. Divisors found: r1=382754370924383984959075115125158011950131091 (pp45) r2=348062442898497241099906585776506243077787356301089086819257 (pp60) Version: GGNFS-0.77.1 Total time: 19.51 hours. Scaled time: 9.33 units (timescale=0.478). Factorization parameters were as follows: n: 133222421374018633445036267132297777880987508567292617948187809460625006845713817438019021165601373219387 m: 1000000000000000000000000000000000 c4: 10 c2: 6 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2500001) Relations: rels:1586273, finalFF:146265 Initial matrix: 127609 x 146265 with sparse part having weight 17690356. Pruned matrix : 125447 x 126149 with weight 13804026. Total sieving time: 18.63 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.77 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 19.51 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(64·10218+53)/9 = 7(1)2177<219> = 3 · 97 · 1189063 · C211
C211 = P36 · P176
P36 = 147855171751831253349724806756031159<36>
P176 = 13899625209206719452266689137337415260247158225314828795695264116500577538568280157205216813917164312242868729226115248983024299005746787654425475727273955434558847898710484111<176>
By Makoto Kamada / GGNFS-0.77.1 gnfs
(10151+15·1075-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333333333338333333333333333333333333333333333333333333333333333333333333333333333333333<151> = 12309198275401<14> · 172106671835554626673000063095659<33> · C106
C106 = P33 · P73
P33 = 180796577788983913476033549582953<33>
P73 = 8702841337317158145154140979945685450708672292591206796298372882756012079<73>
Number: 33833_75 N=1573443930827446372689026635213482110463063784004453956533964342474724679041538499190915825174503880489287 ( 106 digits) Divisors found: r1=180796577788983913476033549582953 (pp33) r2=8702841337317158145154140979945685450708672292591206796298372882756012079 (pp73) Version: GGNFS-0.77.1 Total time: 14.00 hours. Scaled time: 12.03 units (timescale=0.859). Factorization parameters were as follows: name: 33833_75 n: 1573443930827446372689026635213482110463063784004453956533964342474724679041538499190915825174503880489287 skew: 26835.40 # norm 8.84e+14 c5: 32400 c4: 545718690 c3: -59957662137174 c2: 177053209068922201 c1: 21457461955680775036278 c0: -117977289162991443359241340 # alpha -6.86 Y1: 208093605929 Y0: -137169966717657942903 # Murphy_E 1.74e-09 # M 1099431901685208804753203883261783164596230715929709106406232058505912280650126081584776517850710123787560 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2150001) Relations: rels:4402773, finalFF:444850 Initial matrix: 366823 x 444850 with sparse part having weight 31071633. Pruned matrix : 331769 x 333667 with weight 16381417. Polynomial selection time: 0.50 hours. Total sieving time: 10.83 hours. Total relation processing time: 0.23 hours. Matrix solve time: 2.28 hours. Time per square root: 0.15 hours. Prototype def-par.txt line would be: gnfs,105,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 14.00 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.1, GGNFS-0.77.0, GMP-ECM 6.0
(10133+18·1066-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111113111111111111111111111111111111111111111111111111111111111111111111<133> = 33 · 11939 · 26523766451086123<17> · C111
C111 = P37 · P74
P37 = 9334726029996629638747991841927534061<37>
P74 = 13921595242630642337527890331543853920769032729565157899809032183338983129<74>
Number: 11311_66 N=129954277490461501898569740299982637721262154720309083556129626220110992716308982330303455565220754050251856869 ( 111 digits) SNFS difficulty: 133 digits. Divisors found: r1=9334726029996629638747991841927534061 (pp37) r2=13921595242630642337527890331543853920769032729565157899809032183338983129 (pp74) Version: GGNFS-0.77.1 Total time: 18.64 hours. Scaled time: 8.91 units (timescale=0.478). Factorization parameters were as follows: n: 129954277490461501898569740299982637721262154720309083556129626220110992716308982330303455565220754050251856869 m: 1000000000000000000000000000000000 c4: 10 c2: 18 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 400000) Relations: rels:1534758, finalFF:145793 Initial matrix: 127704 x 145793 with sparse part having weight 16630836. Pruned matrix : 125843 x 126545 with weight 12930014. Total sieving time: 17.79 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.73 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,133,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 18.64 hours. --------- CPU info (if available) ----------
10141-5·1070-1 = 999999999999999999999999999999999999999999999999999999999999999999999949999999999999999999999999999999999999999999999999999999999999999999999<141> = 94199759 · C134
C134 = P62 · P72
P62 = 45991197802202921691212410956857205150918173681404816125050149<62>
P72 = 230821090102296748368286382776743795682256488181171518047153819469404989<72>
Number: 99499_70 N=10615738411814832774678330121842456093757097616353774323350445089779900073842014818742795297384996494523940342564995309595218815793361 ( 134 digits) SNFS difficulty: 141 digits. Divisors found: r1=45991197802202921691212410956857205150918173681404816125050149 (pp62) r2=230821090102296748368286382776743795682256488181171518047153819469404989 (pp72) Version: GGNFS-0.77.0 Total time: 49.67 hours. Scaled time: 33.08 units (timescale=0.666). Factorization parameters were as follows: n: 10615738411814832774678330121842456093757097616353774323350445089779900073842014818742795297384996494523940342564995309595218815793361 type: snfs m: 100000000000000000000000000000000000 c4: 10 c2: -5 c0: -1 skew: 1 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 5850001) Relations: rels:3120132, finalFF:235006 Initial matrix: 200325 x 235006 with sparse part having weight 32657448. Pruned matrix : 196328 x 197393 with weight 24975412. Total sieving time: 48.48 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.97 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 49.67 hours. --------- CPU info (if available) ----------
(10151+15·1075-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333333333338333333333333333333333333333333333333333333333333333333333333333333333333333<151> = 12309198275401<14> · C138
C138 = P33 · C106
P33 = 172106671835554626673000063095659<33>
C106 = [1573443930827446372689026635213482110463063784004453956533964342474724679041538499190915825174503880489287<106>]
By Patrick Keller / GMP-ECM
10160-3 = (9)1597<160> = 13 · 383 · C157
C157 = P35 · C122
P35 = 52771123082243438120761219452533939<35>
C122 = [38059364885428552053660274073288904257094149099533297652419641952424130876827819709343439432012909374053370298093233227637<122>]
By Kenichiro Yamaguchi / GGNFS-0.77.0
(10131+72·1065-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111911111111111111111111111111111111111111111111111111111111111111111<131> = 7 · 43 · 4954121 · 85469737850611<14> · C107
C107 = P34 · P74
P34 = 1230727592846495882729200715541547<34>
P74 = 70835355177759964699490320620695881186959903046346813983743027104356745723<74>
By Sinkiti Sibata / GGNFS-0.77.1
10143-2·1071-1 = 99999999999999999999999999999999999999999999999999999999999999999999999799999999999999999999999999999999999999999999999999999999999999999999999<143> = 11 · 3420316723<10> · 2689592284789<13> · 388813191244537<15> · C106
C106 = P44 · P62
P44 = 35851493023476203089118525408940305117995409<44>
P62 = 70893481324272999965729006376984212264740636943886258399324859<62>
Number: 979_71 N=2541637151107113953623598003361310381710168418705511140128203704600780699595071560156063742850017061572331 ( 106 digits) SNFS difficulty: 144 digits. Divisors found: r1=35851493023476203089118525408940305117995409 (pp44) r2=70893481324272999965729006376984212264740636943886258399324859 (pp62) Version: GGNFS-0.77.1 Total time: 134.64 hours. Scaled time: 89.54 units (timescale=0.665). Factorization parameters were as follows: name: 979_71 n: 2541637151107113953623598003361310381710168418705511140128203704600780699595071560156063742850017061572331 m: 1000000000000000000000000000000000000 c4: 1 c2: -2 c0: -10 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 16350001) Relations: rels:4721621, finalFF:224199 Initial matrix: 199561 x 224199 with sparse part having weight 35297191. Pruned matrix : 196371 x 197432 with weight 29645821. Total sieving time: 129.63 hours. Total relation processing time: 2.58 hours. Matrix solve time: 2.37 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,144,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 134.64 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(64·10202+53)/9 = 7(1)2017<203> = 19 · 31 · 818287 · 5871400771<10> · 42012020311282391<17> · C168
C168 = P45 · P124
P45 = 414262356522265732594185716792549665295299883<45>
P124 = 1443862225455375214388574781017889982382760095348505921318244823845160256575391921560376858209721365591185744334089652279113<124>
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10131-9·1065-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777677777777777777777777777777777777777777777777777777777777777777777<131> = 23430181 · 74475769173523<14> · C110
C110 = P39 · P72
P39 = 281478789560806858905657716699014710967<39>
P72 = 158350418321298062938651182777170100239832005553412269462756155532807337<72>
By Patrick Keller / GMP-ECM
10188-3 = (9)1877<188> = 330546084791304846847511<24> · C165
C165 = P34 · C131
P34 = 3562247528919238271756225579280817<34>
C131 = [84926629533934787347098461076879779993835578096771335069286037224593611629072092542412229917972168238434939842601618598076985764731<131>]
10173-3 = (9)1727<173> = 379 · 443 · 587 · 15166668857<11> · 47348365966898498973654947<26> · C130
C130 = P32 · P98
P32 = 35007558660244164081437512887499<32>
P98 = 40361001768340277480175803085457851847516030385154257084426979718995820425855241290021507034719463<98>
10176-3 = (9)1757<176> = 1630871011403<13> · 274954356330508669<18> · C147
C147 = P34 · C113
P34 = 6165326947505579813146109111140967<34>
C113 = [36171262684763804729310148527389239248018395875233064507433824238903582995595207747275554709544383072041835224613<113>]
By Kenichiro Yamaguchi / GGNFS-0.77.0
10129-8·1064-1 = 999999999999999999999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999999999999999999999<129> = 13 · 355137916961<12> · 8620582561926197<16> · C101
C101 = P47 · P55
P47 = 17394065538852265094936421036067329135787440209<47>
P55 = 1444514437885723676563046033646529294763844095412943391<55>
Number: 99199_64 N=25125978804402617019237644455161878627703533121609959064723179872696218764222048022455380870114208719 ( 101 digits) SNFS difficulty: 129 digits. Divisors found: r1=17394065538852265094936421036067329135787440209 (pp47) r2=1444514437885723676563046033646529294763844095412943391 (pp55) Version: GGNFS-0.77.0 Total time: 9.29 hours. Scaled time: 4.31 units (timescale=0.464). Factorization parameters were as follows: n: 25125978804402617019237644455161878627703533121609959064723179872696218764222048022455380870114208719 m: 100000000000000000000000000000000 c4: 10 c2: -8 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1300001) Relations: rels:1343062, finalFF:146400 Initial matrix: 127676 x 146400 with sparse part having weight 11815575. Pruned matrix : 125060 x 125762 with weight 8495459. Total sieving time: 8.79 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.41 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 9.29 hours. --------- CPU info (if available) ----------
(10131+36·1065-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111111111111<131> = 33 · 35822616597460223<17> · C113
C113 = P34 · P39 · P40
P34 = 3463774676480380599377313037027121<34>
P39 = 447944509182035286828280572358113016049<39>
P40 = 7403934554416997775323358565782275753179<40>
Number: 11511_65 N=11487788241968689340130776832134924441428019779863485243117750832304657883327884605483628835179286604237872959291 ( 113 digits) SNFS difficulty: 132 digits. Divisors found: r1=3463774676480380599377313037027121 (pp34) r2=447944509182035286828280572358113016049 (pp39) r3=7403934554416997775323358565782275753179 (pp40) Version: GGNFS-0.77.0 Total time: 29.88 hours. Scaled time: 13.77 units (timescale=0.461). Factorization parameters were as follows: n: 11487788241968689340130776832134924441428019779863485243117750832304657883327884605483628835179286604237872959291 m: 1000000000000000000000000000000000 c4: 1 c2: 36 c0: -10 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 3550001) Relations: rels:1820801, finalFF:147499 Initial matrix: 128035 x 147499 with sparse part having weight 19613667. Pruned matrix : 126086 x 126790 with weight 15472562. Total sieving time: 28.95 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.77 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,132,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 29.88 hours. --------- CPU info (if available) ----------
(10141+12·1070-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333373333333333333333333333333333333333333333333333333333333333333333333333<141> = C141
C141 = P42 · P100
P42 = 200311877610642489279530769709399194453521<42>
P100 = 1664071733086403198656808450987068467724401913778352054621573899139316031505755175689630352671770373<100>
Number: 33733_70 N=333333333333333333333333333333333333333333333333333333333333333333333373333333333333333333333333333333333333333333333333333333333333333333333 ( 141 digits) SNFS difficulty: 141 digits. Divisors found: r1=200311877610642489279530769709399194453521 (pp42) r2=1664071733086403198656808450987068467724401913778352054621573899139316031505755175689630352671770373 (pp100) Version: GGNFS-0.77.0 Total time: 46.04 hours. Scaled time: 30.66 units (timescale=0.666). Factorization parameters were as follows: n: 333333333333333333333333333333333333333333333333333333333333333333333373333333333333333333333333333333333333333333333333333333333333333333333 type: snfs m: 100000000000000000000000000000000000 c4: 10 c2: 12 c0: -1 skew: 1 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 5350001) Relations: rels:3024687, finalFF:237683 Initial matrix: 199722 x 237683 with sparse part having weight 32230331. Pruned matrix : 195415 x 196477 with weight 23977961. Total sieving time: 44.88 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.94 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 46.04 hours. --------- CPU info (if available) ----------
By Patrick Keller / GMP-ECM
10196-3 = (9)1957<196> = 13 · 23 · 769 · 13230939634531520926993<23> · C169
C169 = P30 · C139
P30 = 925002610176773043912732992351<30>
C139 = [3553602327402028893556119121731169668177136744575884432068937264628665391192256931521572516434709261481036470145815539584064245135671768409<139>]
10184-3 = (9)1837<184> = 132 · 71 · 682781111 · 21237789308365515286691<23> · C149
C149 = P29 · P32 · P89
P29 = 59850981433891272224551448459<29>
P32 = 35526514573141366935363086929873<32>
P89 = 27029640058852148978865133701306270767865770018364227207516059812926505552026723332704229<89>
10186-3 = (9)1857<186> = C186
C186 = P31 · C156
P31 = 2794375354729699423195302414791<31>
C156 = [357861730460591695334295972163707008646716815727382711793133213691689104359175453265821274899204460799312954283262817577846710943629938175631885534582999067<156>]
10165-3 = (9)1647<165> = 431 · 56725169383<11> · C152
C152 = P31 · P121
P31 = 6697081516361988272236718453873<31>
P121 = 6107470012775150366829754092015054516474407019707159078145089779525145974239872649362120407931411527628863447502994173893<121>
By Patrick Keller / GMP-ECM
10190-3 = (9)1897<190> = 13 · 83 · 4643 · 60176382186443<14> · 24247727135706472746493<23> · 15856958895942670619463887<26> · C122
C122 = P29 · P94
P29 = 33133578244863317770306493209<29>
P94 = 2603721449712924915210778259443446461003757003516119146794621306240164054740371466779177155953<94>
10170-3 = (9)1697<170> = C170
C170 = P29 · C142
P29 = 38817280012777264790994290797<29>
C142 = [2576172260577855142848298542798072596718901873646661264007524216056015115292366099141617460574776708224208202201460542857840458968464605723601<142>]
10192-3 = (9)1917<192> = 3373 · 1103279 · 30864312787215673925304239<26> · C157
C157 = P33 · C125
P33 = 728214226699773901950646153594957<33>
C125 = [11955907219789388090396927468596102846705760576688639467787460136053127454112956393569754103555054189544180606793438498318517<125>]
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10129-36·1064-7)/9 = 777777777777777777777777777777777777777777777777777777777777777737777777777777777777777777777777777777777777777777777777777777777<129> = 19 · 1511 · 9605209 · C118
C118 = P52 · P67
P52 = 1155085458264857585266897235557737528591882771994781<52>
P67 = 2441836210773539912784657450229065206157326950101786073984835385257<67>
Number: 77377_64 N=2820529498529077726842896203812445693193396455368434647369401615489798725369725785914995995923727056965474236528343717 ( 118 digits) SNFS difficulty: 129 digits. Divisors found: r1=1155085458264857585266897235557737528591882771994781 (pp52) r2=2441836210773539912784657450229065206157326950101786073984835385257 (pp67) Version: GGNFS-0.77.0 Total time: 12.67 hours. Scaled time: 5.87 units (timescale=0.463). Factorization parameters were as follows: n: 2820529498529077726842896203812445693193396455368434647369401615489798725369725785914995995923727056965474236528343717 m: 100000000000000000000000000000000 c4: 70 c2: -36 c0: -7 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1650001) Relations: rels:1425379, finalFF:147524 Initial matrix: 128326 x 147524 with sparse part having weight 14352688. Pruned matrix : 125920 x 126625 with weight 10649810. Total sieving time: 12.04 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.52 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 12.67 hours. --------- CPU info (if available) ----------
(7·10129+9·1064-7)/9 = 777777777777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777777777777<129> = 13 · 199 · 47527 · 23171657182230449<17> · C105
C105 = P38 · P67
P38 = 37119386704565155173903619705798504661<38>
P67 = 7354629739257217030665179729307139819782167801514595066178110388257<67>
Number: 77877_64 N=272999345360383835733402078463522430412780573580465174510215546558101877901304328609826050405380734165877 ( 105 digits) SNFS difficulty: 129 digits. Divisors found: r1=37119386704565155173903619705798504661 (pp38) r2=7354629739257217030665179729307139819782167801514595066178110388257 (pp67) Version: GGNFS-0.77.0 Total time: 11.30 hours. Scaled time: 5.20 units (timescale=0.460). Factorization parameters were as follows: n: 272999345360383835733402078463522430412780573580465174510215546558101877901304328609826050405380734165877 m: 100000000000000000000000000000000 c4: 70 c2: 9 c0: -7 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1500001) Relations: rels:1420198, finalFF:158526 Initial matrix: 127529 x 158526 with sparse part having weight 14556171. Pruned matrix : 124013 x 124714 with weight 9056737. Total sieving time: 10.76 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.43 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 11.30 hours. --------- CPU info (if available) ----------
(7·10135-54·1067-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777717777777777777777777777777777777777777777777777777777777777777777777<135> = 3 · C135
C135 = P37 · P98
P37 = 8609335615997087769295147065984241781<37>
P98 = 30113735928417888896209552856994879338389993563417374885930712104650757947392219012502066601505839<98>
Number: 77177_67 N=259259259259259259259259259259259259259259259259259259259259259259239259259259259259259259259259259259259259259259259259259259259259259 ( 135 digits) SNFS difficulty: 136 digits. Divisors found: r1=8609335615997087769295147065984241781 (pp37) r2=30113735928417888896209552856994879338389993563417374885930712104650757947392219012502066601505839 (pp98) Version: GGNFS-0.77.0 Total time: 39.03 hours. Scaled time: 25.96 units (timescale=0.665). Factorization parameters were as follows: n: 259259259259259259259259259259259259259259259259259259259259259259239259259259259259259259259259259259259259259259259259259259259259259 type: snfs m: 10000000000000000000000000000000000 c4: 7 c2: -54 c0: -70 skew: 1 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4825001) Relations: rels:1859071, finalFF:159520 Initial matrix: 142322 x 159520 with sparse part having weight 21080069. Pruned matrix : 140699 x 141474 with weight 17383565. Total sieving time: 38.52 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.37 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,136,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 39.03 hours. --------- CPU info (if available) ----------
By Patrick De Geest
(23·1035460+1)/3 = 7(6)354597<35461> is PRP.
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10127+18·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777779777777777777777777777777777777777777777777777777777777777777777<127> = 34 · 47 · 307 · 479 · C119
C119 = P53 · P66
P53 = 30631312724444235160545468056330338717803991423558901<53>
P66 = 453558338502367035792988320604203378441041457101622160922749407487<66>
Number: 77977_63 N=13893087305445341048925261340766454185809264453199872033789614218575666284298934646766277478837935790738765550594891787 ( 119 digits) SNFS difficulty: 128 digits. Divisors found: r1=30631312724444235160545468056330338717803991423558901 (pp53) r2=453558338502367035792988320604203378441041457101622160922749407487 (pp66) Version: GGNFS-0.77.0 Total time: 10.44 hours. Scaled time: 4.88 units (timescale=0.467). Factorization parameters were as follows: n: 13893087305445341048925261340766454185809264453199872033789614218575666284298934646766277478837935790738765550594891787 m: 100000000000000000000000000000000 c4: 7 c2: 18 c0: -70 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1400001) Relations: rels:1368098, finalFF:149950 Initial matrix: 127779 x 149950 with sparse part having weight 12746454. Pruned matrix : 124860 x 125562 with weight 8766000. Total sieving time: 9.93 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.41 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 10.44 hours. --------- CPU info (if available) ----------
(7·10129-54·1064-7)/9 = 777777777777777777777777777777777777777777777777777777777777777717777777777777777777777777777777777777777777777777777777777777777<129> = 3 · 239 · 313 · 1483 · C121
C121 = P51 · P70
P51 = 819258050104320640258922665017523576202239376194061<51>
P70 2852529660156642180800542536179761829606560163797913118844620621882899<70>
Number: 77177_64 N=2336957887244671088095507911334083067482589873231609235540989577299026381579397913694934679868703977009259361334241262839 ( 121 digits) SNFS difficulty: 129 digits. Divisors found: r1=819258050104320640258922665017523576202239376194061 (pp51) r2=2852529660156642180800542536179761829606560163797913118844620621882899 (pp70) Version: GGNFS-0.77.0 Total time: 11.35 hours. Scaled time: 5.27 units (timescale=0.464). Factorization parameters were as follows: n: 2336957887244671088095507911334083067482589873231609235540989577299026381579397913694934679868703977009259361334241262839 m: 100000000000000000000000000000000 c4: 70 c2: -54 c0: -7 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1500001) Relations: rels:1399530, finalFF:152818 Initial matrix: 128020 x 152818 with sparse part having weight 13877072. Pruned matrix : 124879 x 125583 with weight 9359137. Total sieving time: 10.79 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.45 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 11.35 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(55·10176-1)/9 = 6(1)176<177> = 132 · 229 · 566862379 · 17219215952723<14> · C151
C151 = P24 · P127
P24 = 779422317838387832571071<24>
P127 = 2075554531348294889830930553233256268923715932872011145984533488782114391510180113128553636420840720194863555419433818464208973<127>
By Wataru Sakai / GMP-ECM 6.0.1
(64·10232+53)/9 = 7(1)2317<233> = 29 · 31 · 25544394638150569<17> · 21891861055037187204902189298063661<35> · C180
C180 = P37 · C144
P37 = 1156244055915277149927645527883080159<37>
C144 = [122334784589234392683295194652612149338189319179115868523072772347572950426690801931827228533310815015647306731512386262336087369965447853346893<144>]
(64·10222+53)/9 = 7(1)2217<223> = 132 · 246803 · 4770541 · 13798085473433<14> · C196
C196 = P33 · C164
P33 = 133768138077661809781256269946047<33>
C164 = [19362488808251570928408592638883352854542686275616458245323596532144869362459816277922928623970254458332657237249177487701925662754754556973546573906513628028715141<164>]
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10127-45·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777772777777777777777777777777777777777777777777777777777777777777777<127> = 347 · 14879 · C121
C121 = P44 · P77
P44 = 81725313759064580459926606720379788176638261<44>
P77 = 18432986941378272876589867076688241033356098954517364832256309192034177979689<77>
Number: 77277_63 N=1506441641300879501519321717334002021257311918017207738539061933947828095295862663483082025510642289255862376828758280829 ( 121 digits) SNFS difficulty: 128 digits. Divisors found: r1=81725313759064580459926606720379788176638261 (pp44) r2=18432986941378272876589867076688241033356098954517364832256309192034177979689 (pp77) Version: GGNFS-0.77.0 Total time: 11.35 hours. Scaled time: 5.30 units (timescale=0.467). Factorization parameters were as follows: n: 1506441641300879501519321717334002021257311918017207738539061933947828095295862663483082025510642289255862376828758280829 m: 100000000000000000000000000000000 c4: 7 c2: -45 c0: -70 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1450001) Relations: rels:1389505, finalFF:153588 Initial matrix: 127798 x 153588 with sparse part having weight 13736900. Pruned matrix : 124704 x 125406 with weight 9065744. Total sieving time: 10.83 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.42 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 11.35 hours. --------- CPU info (if available) ----------
(7·10127-9·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777776777777777777777777777777777777777777777777777777777777777777777<127> = 3 · 499 · 6217261 · C117
C117 = P48 · P70
P48 = 713181490360387714741821527620115836086086347897<48>
P70 = 1171748935652690342842549975717980454423586038390038934347362604423173<70>
Number: 77677_63 N=835669652256983742388095383122039530657312474352999172652316222358429427543858949880937914363786422476409261886617181 ( 117 digits) SNFS difficulty: 128 digits. Divisors found: r1=713181490360387714741821527620115836086086347897 (pp48) r2=1171748935652690342842549975717980454423586038390038934347362604423173 (pp70) Version: GGNFS-0.77.0 Total time: 10.42 hours. Scaled time: 4.87 units (timescale=0.467). Factorization parameters were as follows: n: 835669652256983742388095383122039530657312474352999172652316222358429427543858949880937914363786422476409261886617181 m: 100000000000000000000000000000000 c4: 7 c2: -9 c0: -70 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1400001) Relations: rels:1378927, finalFF:151771 Initial matrix: 127527 x 151771 with sparse part having weight 13117428. Pruned matrix : 124438 x 125139 with weight 8778971. Total sieving time: 9.91 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.41 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 10.42 hours. --------- CPU info (if available) ----------
(10139+63·1069-1)/9 = 1111111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111111<139> = C139
C139 = P57 · P82
P57 = 467652694300191693736261084612152646516775813624373744143<57>
P82 = 2375932234868887528151906009973851128781214167960123415164812510915805241727384777<82>
Number: 11811_69 N=1111111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111111 ( 139 digits) SNFS difficulty: 140 digits. Divisors found: r1=467652694300191693736261084612152646516775813624373744143 (pp57) r2=2375932234868887528151906009973851128781214167960123415164812510915805241727384777 (pp82) Version: GGNFS-0.77.0 Total time: 104.76 hours. Scaled time: 69.77 units (timescale=0.666). Factorization parameters were as follows: n: 1111111111111111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111111111111111 m: 100000000000000000000000000000000000 c4: 1 c2: 63 c0: -10 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 13450001) Relations: rels:2762046, finalFF:159690 Initial matrix: 142405 x 159690 with sparse part having weight 23961681. Pruned matrix : 140864 x 141640 with weight 20171454. Total sieving time: 104.04 hours. Total relation processing time: 0.25 hours. Matrix solve time: 0.43 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,140,4,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 104.76 hours. --------- CPU info (if available) ----------
By Tomoya Adachi / GGNFS-0.73.5-nu6
(7·10131-27·1065-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777477777777777777777777777777777777777777777777777777777777777777777<131> = C131
C131 = P64 · P68
P64 = 2329957521561874313076509630588577468145156433739855730454265377<64>
P68 = 33381629088945736991421982152696814983525014160319979864132043781201<68># (7*10^131-27*10^65-7)/9 P64 = 2329957521561874313076509630588577468145156433739855730454265377 P68 = 33381629088945736991421982152696814983525014160319979864132043781201 sieve range: 130->169*10^4 with 12siever, on Ath64 3200+ maxrelsinff: 19 latsieve: 278:50 (4.65h) procrels: 16:57 matsolve: 31:49 sqrt : 10:15 (5deps) ----------------- total : 337:51 (5.63h) # 7*10^131-27*10^65-7 n: 77777777777777777777777777777777777777777777777777777777777777777477777777777777777777777777777777777777777777777777777777777777777 m: 1000000000000000000000000000000000 c4: 7 c2: -27 c0: -70 skew: 1.5 rlim: 1720000 alim: 1650000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 q0: 1720000 qintsize: 10000
(7·10149-27·1074-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777777477777777777777777777777777777777777777777777777777777777777777777777777777<149> = 499 · 6521 · 18713 · 6818941 · C132
C132 = P37 · P95
P37 = 3554935765272149714852015404523879867<37>
P95 = 52692484515080030103968291662915380368443323585405263535692294815978557940825988997011167138933<95>
# (7*10^149-27*10^74-7)/9 P37 = 3554935765272149714852015404523879867 P95 = 52692484515080030103968291662915380368443323585405263535692294815978557940825988997011167138933 sieve range: 125->235*10^4 with 13 siever, on Ath64 3200+ (16%), Pen4 3.4CGHz (62%), Pen4 2.4AGHz (22%) maxrelsinff: 48 latsieve: 1881:12 (31.35h) procrels: 61:23 matsolve: 126:24 sqrt : 9:25 (2deps) ----------------- total : 2078:24 (34.64h) # 7*10^149-27*10^74-7 n: 187318397763706925489496815847839758402513445252289852932278615416975849395188720690201203856299281148291551563449197762190990561911 m: 10000000000000000000000000000000000000 c4: 70 c2: -27 c0: -7 skew: 0.8 rlim: 1950000 alim: 1800000 lpbr: 27 lpba: 27 mfbr: 52 mfba: 52 rlambda: 2.5 alambda: 2.5 q0: 1950000 qintsize: 10000
By Kenichiro Yamaguchi / GGNFS-0.77.0
10125-7·1062-1 = 99999999999999999999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999999999999999999<125> = 71 · 26144460523<11> · C113
C113 = P30 · P32 · P52
P30 = 472286871059656343279061123671<30>
P32 = 55356921844173914450279278756291<32>
P52 = 2060554760283018418628476621621143873632350669384223<52>
Number: 99299_62 N=53871859508682512074646120936835098683229656719794964681152215122436137607489527995062577692969086789420004154203 ( 113 digits) SNFS difficulty: 125 digits. Divisors found: r1=472286871059656343279061123671 (pp30) r2=55356921844173914450279278756291 (pp32) r3=2060554760283018418628476621621143873632350669384223 (pp52) Version: GGNFS-0.77.0 Total time: 6.20 hours. Scaled time: 3.15 units (timescale=0.509). Factorization parameters were as follows: n: 53871859508682512074646120936835098683229656719794964681152215122436137607489527995062577692969086789420004154203 m: 10000000000000000000000000000000 c4: 10 c2: -7 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1000001) Relations: rels:2081493, finalFF:156249 Initial matrix: 112617 x 156249 with sparse part having weight 15831289. Pruned matrix : 109326 x 109953 with weight 8067291. Total sieving time: 5.78 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.30 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 6.20 hours. --------- CPU info (if available) ----------
(10127+6·1063-1)/3 = 3333333333333333333333333333333333333333333333333333333333333335333333333333333333333333333333333333333333333333333333333333333<127> = 240893977 · C119
C119 = P50 · P60
P50 = 17148521859053648456529543149900190796330362694433<50>
P69 = 806911885145198528723082540871527824980437341465412948199217266210813<69>
Number: 33533_63 N=13837346100742623935895804208227810250869548861046589526534045869205494221772648692388574469561492329604128430879504029 ( 119 digits) SNFS difficulty: 128 digits. Divisors found: r1=17148521859053648456529543149900190796330362694433 (pp50) r2=806911885145198528723082540871527824980437341465412948199217266210813 (pp69) Version: GGNFS-0.77.0 Total time: 8.50 hours. Scaled time: 4.34 units (timescale=0.511). Factorization parameters were as follows: n: 13837346100742623935895804208227810250869548861046589526534045869205494221772648692388574469561492329604128430879504029 m: 100000000000000000000000000000000 c4: 1 c2: 6 c0: -10 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1300001) Relations: rels:1384878, finalFF:160526 Initial matrix: 127835 x 160526 with sparse part having weight 12651030. Pruned matrix : 123784 x 124487 with weight 7412218. Total sieving time: 8.08 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.34 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 8.50 hours. --------- CPU info (if available) ----------
(7·10127-27·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777774777777777777777777777777777777777777777777777777777777777777777<127> = 1311131228976887739433<22> · C106
C106 = P49 · P58
P49 = 4522206285626725741274186571771733389102946815497<49>
P58 = 1311773942191118801724309113945969200258141511100574341377<58>
Number: 77477_63 N=5932112366698026612643230407147817616017134496767110825184794419449538664238789943499702740785470311919369 ( 106 digits) SNFS difficulty: 128 digits. Divisors found: r1=4522206285626725741274186571771733389102946815497 (pp49) r2=1311773942191118801724309113945969200258141511100574341377 (pp58) Version: GGNFS-0.77.0 Total time: 9.99 hours. Scaled time: 4.76 units (timescale=0.476). Factorization parameters were as follows: n: 5932112366698026612643230407147817616017134496767110825184794419449538664238789943499702740785470311919369 m: 100000000000000000000000000000000 c4: 7 c2: -27 c0: -70 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1350001) Relations: rels:1375961, finalFF:156458 Initial matrix: 127414 x 156458 with sparse part having weight 12906960. Pruned matrix : 123672 x 124373 with weight 8006852. Total sieving time: 9.49 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.39 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 9.99 hours. --------- CPU info (if available) ----------
(7·10127-18·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777<127> = C127
C127 = P40 · P42 · P47
P40 = 5524802449290085157573703075130787287549<40>
P42 = 116659172373616594305474819802771926786157<42>
P47 = 12067571647473808661607754552473705721153447289<47>
Number: 77577_63 N=7777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777 ( 127 digits) SNFS difficulty: 128 digits. Divisors found: r1=5524802449290085157573703075130787287549 (pp40) r2=116659172373616594305474819802771926786157 (pp42) r3=12067571647473808661607754552473705721153447289 (pp47) Version: GGNFS-0.77.0 Total time: 14.69 hours. Scaled time: 7.52 units (timescale=0.512). Factorization parameters were as follows: n: 7777777777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777777777 m: 100000000000000000000000000000000 c4: 7 c2: -18 c0: -70 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2000001) Relations: rels:1532950, finalFF:150473 Initial matrix: 127501 x 150473 with sparse part having weight 16717144. Pruned matrix : 125244 x 125945 with weight 12107412. Total sieving time: 14.03 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.54 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,128,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 14.69 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10141-2·1070-1 = 999999999999999999999999999999999999999999999999999999999999999999999979999999999999999999999999999999999999999999999999999999999999999999999<141> = 151 · 29952681391<11> · 26707653448326308357669563<26> · C103
C103 = P33 · P71
P33 = 776542093594587270889336430100377<33>
P71 = 10660721824502037370806767990901105962219062345005297373975234579520189<71>
Number: 979_70 N=8278499244828320278031558513661543374807561301980190150664926388700788596726190851264578119573768011253 ( 103 digits) SNFS difficulty: 141 digits. Divisors found: r1=776542093594587270889336430100377 (pp33) r2=10660721824502037370806767990901105962219062345005297373975234579520189 (pp71) Version: GGNFS-0.77.1 Total time: 46.66 hours. Scaled time: 27.81 units (timescale=0.596). Factorization parameters were as follows: name: 979_70 n: 8278499244828320278031558513661543374807561301980190150664926388700788596726190851264578119573768011253 m: 100000000000000000000000000000000000 c4: 10 c2: -2 c0: -1 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 5550001) Relations: rels:3063360, finalFF:234257 Initial matrix: 199802 x 234257 with sparse part having weight 32040517. Pruned matrix : 195862 x 196925 with weight 24490361. Total sieving time: 43.91 hours. Total relation processing time: 0.71 hours. Matrix solve time: 1.96 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,141,4,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 46.66 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0
10135-4·1067-1 = 999999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999999<135> = 7 · 199 · C132
C132 = P36 · C96
P36 = 776868191153854013968671748788920791<36>
C96 = [924062920722951092337151139218331456487917511128942688202089863029871990343024979764022829068073<96>]
By Sinkiti Sibata / GGNFS-0.77.1
10149-1074-1 = 99999999999999999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999999999999999<149> = 61 · 18917 · 44457307 · 2986416743<10> · 34754472743<11> · C116
C116 = P44 · P72
P44 = 34517731760870911581764325642423398651167757<44>
P72 = 544090801698841188467997932847833144106032723664810376251870210457031777<72>
Number: 989_74 N=18780780346597807427108915807137709206674619173761487048601495290033742608032378270882237240993404172741573106814189 ( 116 digits) SNFS difficulty: 150 digits. Divisors found: r1=34517731760870911581764325642423398651167757 (pp44) r2=544090801698841188467997932847833144106032723664810376251870210457031777 (pp72) Version: GGNFS-0.77.1 Total time: 64.30 hours. Scaled time: 42.82 units (timescale=0.666). Factorization parameters were as follows: name: 989_74 n: 18780780346597807427108915807137709206674619173761487048601495290033742608032378270882237240993404172741573106814189 m: 10000000000000000000000000 c6: 1 c3: -1 c0: -10 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 2550001) Relations: rels:2975533, finalFF:284922 Initial matrix: 228217 x 284922 with sparse part having weight 31497873. Pruned matrix : 220442 x 221647 with weight 19729500. Total sieving time: 61.82 hours. Total relation processing time: 0.31 hours. Matrix solve time: 2.02 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 64.30 hours. --------- CPU info (if available) ----------
By Makoto Kamada / PFGW 1.2
(2·1019153+691)/9 = (2)1915199<19153> is PRP.
I was surprized that this 19153 digit number is the smallest prime or PRP of the form 22...2299.
By Makoto Kamada / GMP-ECM 6.0.1
(5·10155-41)/9 = (5)1541<155> = 3 · 67 · 32728614939259<14> · C139
C139 = P36 · P104
P36 = 192515053023680624529300156089570641<36>
P104 = 43867119492678689661734121972076445309646265049947481084645349682018075487964108144385723980490281754229<104>
(7·10131-18·1065-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777577777777777777777777777777777777777777777777777777777777777777777<131> = 3 · 109 · 823 · 81331 · 82320101 · 9514718303<10> · C103
C103 = P30 · P74
P30 = 341218957060259517352733160503<30>
P74 = 13295872745065450636615972105518984032973924478911738099361722222461180503<74>
By Kenichiro Yamaguchi / GGNFS-0.77.0
10111-8·1055-1 = 999999999999999999999999999999999999999999999999999999919999999999999999999999999999999999999999999999999999999<111> = 79 · C110
C110 = P34 · P76
P34 = 5016332105457035533508494815374477<34>
P76 = 2523403072601785194850307494500371919914170316323356023807466059956538685653<76>
Number: 99199_55 N=12658227848101265822784810126582278481012658227848101264810126582278481012658227848101265822784810126582278481 ( 110 digits) SNFS difficulty: 112 digits. Divisors found: r1=5016332105457035533508494815374477 (pp34) r2=2523403072601785194850307494500371919914170316323356023807466059956538685653 (pp76) Version: GGNFS-0.77.0 Total time: 1.67 hours. Scaled time: 0.87 units (timescale=0.520). Factorization parameters were as follows: n: 12658227848101265822784810126582278481012658227848101264810126582278481012658227848101265822784810126582278481 m: 10000000000000000000000000000 c4: 1 c2: -8 c0: -10 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 430001) Relations: rels:994974, finalFF:105148 Initial matrix: 79232 x 105148 with sparse part having weight 4446466. Pruned matrix : 72703 x 73163 with weight 2092781. Total sieving time: 1.58 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.67 hours. --------- CPU info (if available) ----------
(10121+72·1060-1)/9 = 1111111111111111111111111111111111111111111111111111111111119111111111111111111111111111111111111111111111111111111111111<121> = 3 · 39499 · 4366643 · 113400914609<12> · C98
C98 = P44 · P55
P44 = 18603945024252359647586172479299347296895947<44>
P55 = 1017843114992066265791411519193442648002770541494100167<55>
Number: 11911_60 N=18935897354626173534745801627323526764844167635587724246545604319900046630019556936284612994323149 ( 98 digits) SNFS difficulty: 121 digits. Divisors found: r1=18603945024252359647586172479299347296895947 (pp44) r2=1017843114992066265791411519193442648002770541494100167 (pp55) Version: GGNFS-0.77.0 Total time: 3.85 hours. Scaled time: 1.99 units (timescale=0.517). Factorization parameters were as follows: n: 18935897354626173534745801627323526764844167635587724246545604319900046630019556936284612994323149 m: 1000000000000000000000000000000 c4: 10 c2: 72 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 750001) Relations: rels:1953840, finalFF:155694 Initial matrix: 112777 x 155694 with sparse part having weight 12620463. Pruned matrix : 107652 x 108279 with weight 5697265. Total sieving time: 3.53 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.22 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.85 hours. --------- CPU info (if available) ----------
(10125+54·1062-1)/9 = 11111111111111111111111111111111111111111111111111111111111111711111111111111111111111111111111111111111111111111111111111111<125> = 7 · 17 · 317 · C120
C120 = P40 · P80
P40 = 7973322074105264033384947437846009001513<40>
P80 = 36941281712920258112424104486852540883846738400367841483096109228211987802564989<80>
Number: 11711_62 N=294544736927368213321080272277154815659176394006603693001911611248074413782337330305413437719988100392628134324181828357 ( 120 digits) SNFS difficulty: 125 digits. Divisors found: r1=7973322074105264033384947437846009001513 (pp40) r2=36941281712920258112424104486852540883846738400367841483096109228211987802564989 (pp80) Version: GGNFS-0.77.0 Total time: 4.43 hours. Scaled time: 2.05 units (timescale=0.464). Factorization parameters were as follows: n: 294544736927368213321080272277154815659176394006603693001911611248074413782337330305413437719988100392628134324181828357 m: 10000000000000000000000000000000 c4: 10 c2: 54 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:1845599, finalFF:135937 Initial matrix: 113024 x 135937 with sparse part having weight 10344713. Pruned matrix : 110853 x 111482 with weight 6388512. Total sieving time: 4.07 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.25 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.43 hours. --------- CPU info (if available) ----------
(10125+6·1062-1)/3 = 33333333333333333333333333333333333333333333333333333333333333533333333333333333333333333333333333333333333333333333333333333<125> = 743 · 6737 · C118
C118 = P50 · P69
P50 = 36758479527898023340004448251397139898197187184737<50>
P69 = 181161473815681904121219350710639752665780284481427976281055477903699<69>
Number: 33533_62 N=6659220326497577075980305489068789945749329766122188835111245312158610907949397650214197151411957815437444516208642163 ( 118 digits) SNFS difficulty: 125 digits. Divisors found: r1=36758479527898023340004448251397139898197187184737 (pp50) r2=181161473815681904121219350710639752665780284481427976281055477903699 (pp69) Version: GGNFS-0.77.0 Total time: 4.94 hours. Scaled time: 2.48 units (timescale=0.502). Factorization parameters were as follows: n: 6659220326497577075980305489068789945749329766122188835111245312158610907949397650214197151411957815437444516208642163 m: 10000000000000000000000000000000 c4: 10 c2: 6 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 850001) Relations: rels:1877389, finalFF:126846 Initial matrix: 112756 x 126846 with sparse part having weight 10771632. Pruned matrix : 111361 x 111988 with weight 8080776. Total sieving time: 4.53 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.30 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.94 hours. --------- CPU info (if available) ----------
(7·10125-18·1062-7)/9 = 77777777777777777777777777777777777777777777777777777777777777577777777777777777777777777777777777777777777777777777777777777<125> = 32 · 47475031 · 120939911024162888803<21> · C97
C97 = P38 · P59
P38 = 60970037018125996965377217842992612127<38>
P59 = 24686621629077471969947980022232477103969504451669996673323<59>
Number: 77577_62 N=1505144234577323370608265076869619977152542106177086227670600044322931113862861205128956067188021 ( 97 digits) SNFS difficulty: 125 digits. Divisors found: r1=60970037018125996965377217842992612127 (pp38) r2=24686621629077471969947980022232477103969504451669996673323 (pp59) Version: GGNFS-0.77.0 Total time: 5.94 hours. Scaled time: 3.05 units (timescale=0.513). Factorization parameters were as follows: n: 1505144234577323370608265076869619977152542106177086227670600044322931113862861205128956067188021 m: 10000000000000000000000000000000 c4: 70 c2: -18 c0: -7 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 950001) Relations: rels:2017584, finalFF:147669 Initial matrix: 112930 x 147669 with sparse part having weight 14603951. Pruned matrix : 110170 x 110798 with weight 8204709. Total sieving time: 5.51 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.30 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 5.94 hours. --------- CPU info (if available) ----------
(7·10125+9·1062-7)/9 = 77777777777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777777777<125> = 3 · 99524603534812785324188777<26> · C99
C99 = P47 · P53
P47 = 19672192045799176624374177119391737000240110877<47>
P53 = 13241923182778468223372021017297185130734815430594271<53>
Number: 77877_62 N=260497655907338299050539410778430931302480341020225880621971057677621936464392053126200123040985667 ( 99 digits) SNFS difficulty: 125 digits. Divisors found: r1=19672192045799176624374177119391737000240110877 (pp47) r2=13241923182778468223372021017297185130734815430594271 (pp53) Version: GGNFS-0.77.0 Total time: 5.84 hours. Scaled time: 2.94 units (timescale=0.504). Factorization parameters were as follows: n: 260497655907338299050539410778430931302480341020225880621971057677621936464392053126200123040985667 m: 10000000000000000000000000000000 c4: 70 c2: 9 c0: -7 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 950001) Relations: rels:2062439, finalFF:167522 Initial matrix: 112676 x 167522 with sparse part having weight 16536364. Pruned matrix : 108237 x 108864 with weight 7240777. Total sieving time: 5.46 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.26 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,125,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 5.84 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.0
(10123+54·1061-1)/9 = 111111111111111111111111111111111111111111111111111111111111171111111111111111111111111111111111111111111111111111111111111<123> = 3 · 19 · 163 · 739 · 1933727 · C109
C109 = P50 · P60
P50 = 24177014076442824163935261435022122376098464369513<50>
P60 = 346140779655288965633172120469218510283083951282762618834289<60>
Number: 11711_61 N=8368650502156815251315435496144790676963884516443182209963302915957985851729118082729617851799027005410631257 ( 109 digits) SNFS difficulty: 124 digits. Divisors found: r1=24177014076442824163935261435022122376098464369513 (pp50) r2=346140779655288965633172120469218510283083951282762618834289 (pp60) Version: GGNFS-0.77.0 Total time: 4.36 hours. Scaled time: 2.29 units (timescale=0.525). Factorization parameters were as follows: n: 8368650502156815251315435496144790676963884516443182209963302915957985851729118082729617851799027005410631257 m: 10000000000000000000000000000000 c4: 1 c2: 54 c0: -10 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:1922294, finalFF:164446 Initial matrix: 113042 x 164446 with sparse part having weight 12521145. Pruned matrix : 108306 x 108935 with weight 5022358. Total sieving time: 4.07 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.20 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.36 hours. --------- CPU info (if available) ----------
(10123+72·1061-1)/9 = 111111111111111111111111111111111111111111111111111111111111191111111111111111111111111111111111111111111111111111111111111<123> = 830741 · C117
C117 = P57 · P60
P57 = 333943384135918323799284829426734387858561633507038519893<57>
P60 = 400515199053720590198605795341928759454360997189738245325247<60>
Number: 11911_61 N=133749400969870406192918263467327495706978602369584637222806134657024404851946769343406803216780092846159165264638571 ( 117 digits) SNFS difficulty: 124 digits. Divisors found: r1=333943384135918323799284829426734387858561633507038519893 (pp57) r2=400515199053720590198605795341928759454360997189738245325247 (pp60) Version: GGNFS-0.77.0 Total time: 4.75 hours. Scaled time: 2.46 units (timescale=0.517). Factorization parameters were as follows: n: 133749400969870406192918263467327495706978602369584637222806134657024404851946769343406803216780092846159165264638571 m: 10000000000000000000000000000000 c4: 1 c2: 72 c0: -10 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 850001) Relations: rels:2002893, finalFF:178465 Initial matrix: 112642 x 178465 with sparse part having weight 15245143. Pruned matrix : 106754 x 107381 with weight 5458667. Total sieving time: 4.45 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.21 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.75 hours. --------- CPU info (if available) ----------
(10123+6·1061-1)/3 = 333333333333333333333333333333333333333333333333333333333333353333333333333333333333333333333333333333333333333333333333333<123> = 17 · C122
C122 = P47 · P75
P47 = 27814144339367109918804963147451053819016220333<47>
P75 = 704959422731645455575289184902418785159553295349154642026036197242998215353<75>
Number: 33533_61 N=19607843137254901960784313725490196078431372549019607843137256078431372549019607843137254901960784313725490196078431372549 ( 122 digits) SNFS difficulty: 124 digits. Divisors found: r1=27814144339367109918804963147451053819016220333 (pp47) r2=704959422731645455575289184902418785159553295349154642026036197242998215353 (pp75) Version: GGNFS-0.77.0 Total time: 4.31 hours. Scaled time: 2.22 units (timescale=0.514). Factorization parameters were as follows: n: 19607843137254901960784313725490196078431372549019607843137256078431372549019607843137254901960784313725490196078431372549 m: 10000000000000000000000000000000 c4: 1 c2: 6 c0: -10 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:1864426, finalFF:139284 Initial matrix: 112982 x 139284 with sparse part having weight 10485798. Pruned matrix : 110583 x 111211 with weight 6085535. Total sieving time: 3.98 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.25 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.31 hours. --------- CPU info (if available) ----------
(7·10123-45·1061-7)/9 = 777777777777777777777777777777777777777777777777777777777777727777777777777777777777777777777777777777777777777777777777777<123> = 23 · 70924381691<11> · C111
C111 = P49 · P62
P49 = 6449837247782303232093281784658518590839975860721<49>
P62 = 73923646265105422719114933120555496355101491772474460906208709<62>
Number: 77277_61 N=476795487172560099236739945180836688228943989965368243984533468565741111902447129669718872492083435995141219189 ( 111 digits) SNFS difficulty: 124 digits. Divisors found: r1=6449837247782303232093281784658518590839975860721 (pp49) r2=73923646265105422719114933120555496355101491772474460906208709 (pp62) Version: GGNFS-0.77.0 Total time: 5.32 hours. Scaled time: 2.70 units (timescale=0.508). Factorization parameters were as follows: n: 476795487172560099236739945180836688228943989965368243984533468565741111902447129669718872492083435995141219189 m: 10000000000000000000000000000000 c4: 7 c2: -45 c0: -70 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 900001) Relations: rels:1992194, finalFF:160633 Initial matrix: 112945 x 160633 with sparse part having weight 14658643. Pruned matrix : 109130 x 109758 with weight 6724701. Total sieving time: 4.96 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.26 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,124,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 5.32 hours. --------- CPU info (if available) ----------
By Anton Korobeynikov / GGNFS-0.77.1
(10127+45·1063-1)/9 = 1111111111111111111111111111111111111111111111111111111111111116111111111111111111111111111111111111111111111111111111111111111<127> = 3 · 29 · 113 · 20039627 · 17943655390847<14> · C102
C102 = P45 · P57
P45 = 388892054665769589332251337459778952118466577<45>
P57 = 808221074329162557129786383917012036277024262407706022637<57>
Number: gnfs8 N=314310754220043711687892510706249953140553848186409630996780015742951816371022475594518847348089903549 ( 102 digits) Divisors found: r1=388892054665769589332251337459778952118466577 (pp45) r2=808221074329162557129786383917012036277024262407706022637 (pp57) Version: GGNFS-0.77.1 Total time: 10.57 hours. Scaled time: 10.05 units (timescale=0.951). Factorization parameters were as follows: name: gnfs8 n: 314310754220043711687892510706249953140553848186409630996780015742951816371022475594518847348089903549 skew: 8020.53 # norm 1.24e+014 c5: 81900 c4: 958525056 c3: -8399637298891 c2: -51851268458066371 c1: -7008102930395279189 c0: 653324131452677932541295 # alpha -6.22 Y1: 14806327663 Y0: -20740266957471591364 # Murphy_E 2.85e-009 # M 37358659076484039915362325711913352536141497804833547942517755482835183282465168705003579414882783923 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1150000, 1750001) Relations: rels:4327228, finalFF:438560 Initial matrix: 339049 x 438560 with sparse part having weight 30684901. Pruned matrix : 292635 x 294394 with weight 13463839. Polynomial selection time: 0.33 hours. Total sieving time: 8.66 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.21 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: gnfs,101,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 10.57 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(4·10175+23)/9 = (4)1747<175> = 74 · 151 · 4077068417<10> · 912028673482967<15> · C145
C145 = P32 · C114
P32 = 18287204296526384115739261382729<32>
C114 = [180278761593532432612303389060257361960331553150960921382583597306562657112851496908359299109733878279188096704087<114>]
(10139+6·1069-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333335333333333333333333333333333333333333333333333333333333333333333333333<139> = 4423 · 7690519 · C128
C128 = P30 · P99
P30 = 257984303314597788657955894013<30>
P99 = 379850649833740727794024738173681159907765233717802570010963219776843219340065788338846223366687193<99>
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10119-9·1059-7)/9 = 77777777777777777777777777777777777777777777777777777777777677777777777777777777777777777777777777777777777777777777777<119> = 59 · 101312879 · C110
C110 = P52 · P59
P52 = 1055735817849591341311284793442382288948131189800529<52>
P59 = 12324905726071694420147494916645611671169597636672802224733<59>
Number: 77677_59 N=13011844426633411696577142064020591468054991892446231480897212799833099168305360834237775532889986189700283757 ( 110 digits) SNFS difficulty: 120 digits. Divisors found: r1=1055735817849591341311284793442382288948131189800529 (pp52) r2=12324905726071694420147494916645611671169597636672802224733 (pp59) Version: GGNFS-0.77.0 Total time: 3.44 hours. Scaled time: 1.81 units (timescale=0.526). Factorization parameters were as follows: n: 13011844426633411696577142064020591468054991892446231480897212799833099168305360834237775532889986189700283757 m: 1000000000000000000000000000000 c4: 7 c2: -9 c0: -70 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:2033915, finalFF:206716 Initial matrix: 112674 x 206716 with sparse part having weight 16486606. Pruned matrix : 99880 x 100507 with weight 4201408. Total sieving time: 3.20 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.15 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,120,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.44 hours. --------- CPU info (if available) ----------
10119-2·1059-1 = 99999999999999999999999999999999999999999999999999999999999799999999999999999999999999999999999999999999999999999999999<119> = 11 · 317 · 4463 · C112
C112 = P43 · P70
P43 = 3167237723290723022627763701000062201290487<43>
P70 = 2028805924177070278738189526016446215925057127787218042322616836553417<70>
Number: 99799_59 N=6425710656289315309043590157636176391155112092988258106146429994035012797766628598614835256666337456090709444079 ( 112 digits) SNFS difficulty: 120 digits. Divisors found: r1=3167237723290723022627763701000062201290487 (pp43) r2=2028805924177070278738189526016446215925057127787218042322616836553417 (pp70) Version: GGNFS-0.77.0 Total time: 3.34 hours. Scaled time: 1.79 units (timescale=0.536). Factorization parameters were as follows: n: 6425710656289315309043590157636176391155112092988258106146429994035012797766628598614835256666337456090709444079 m: 1000000000000000000000000000000 c4: 1 c2: -2 c0: -10 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:1977300, finalFF:185338 Initial matrix: 112808 x 185338 with sparse part having weight 14329446. Pruned matrix : 102276 x 102904 with weight 4355231. Total sieving time: 3.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.16 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,120,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.34 hours. --------- CPU info (if available) ----------
(10121+12·1060-1)/3 = 3333333333333333333333333333333333333333333333333333333333337333333333333333333333333333333333333333333333333333333333333<121> = 7 · 23 · 1051 · C116
C116 = P32 · P85
P32 = 11577286871594539754300974611271<32>
P85 = 1701544683868553106986624465217486015780816568224111390083016841578865269040518765593<85>
Number: 33733_60 N=19699270929982881333561844876121134756802650733896338496512267720971646839350475638896604436669798850744533944798703 ( 116 digits) SNFS difficulty: 121 digits. Divisors found: r1=11577286871594539754300974611271 (pp32) r2=1701544683868553106986624465217486015780816568224111390083016841578865269040518765593 (pp85) Version: GGNFS-0.77.0 Total time: 2.84 hours. Scaled time: 1.50 units (timescale=0.529). Factorization parameters were as follows: n: 19699270929982881333561844876121134756802650733896338496512267720971646839350475638896604436669798850744533944798703 m: 1000000000000000000000000000000 c4: 10 c2: 12 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 650001) Relations: rels:1815599, finalFF:140222 Initial matrix: 112879 x 140222 with sparse part having weight 9965266. Pruned matrix : 104985 x 105613 with weight 5387966. Total sieving time: 2.56 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.19 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.84 hours. --------- CPU info (if available) ----------
10121-5·1060-1 = 9999999999999999999999999999999999999999999999999999999999994999999999999999999999999999999999999999999999999999999999999<121> = 165149106706211<15> · C107
C107 = P50 · P58
P50 = 27611806515679263468269678707072310135743844147387<50>
P58 = 2192951110112010923330726818171905685664179773222579832207<58>
Number: 99499_60 N=60551341750756897169375054885967551734285315006056608046414443048414744433045704281283606426609557437493109 ( 107 digits) SNFS difficulty: 121 digits. Divisors found: r1=27611806515679263468269678707072310135743844147387 (pp50) r2=2192951110112010923330726818171905685664179773222579832207 (pp58) Version: GGNFS-0.77.0 Total time: 3.35 hours. Scaled time: 1.80 units (timescale=0.537). Factorization parameters were as follows: n: 60551341750756897169375054885967551734285315006056608046414443048414744433045704281283606426609557437493109 m: 1000000000000000000000000000000 c4: 10 c2: -5 c0: -1 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:1995927, finalFF:187028 Initial matrix: 113116 x 187028 with sparse part having weight 15033671. Pruned matrix : 102851 x 103480 with weight 4651587. Total sieving time: 3.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.35 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.77.1
10147-1073-1 = 999999999999999999999999999999999999999999999999999999999999999999999999989999999999999999999999999999999999999999999999999999999999999999999999999<147> = 83 · 113 · 3708202526668109917228307<25> · C119
C119 = P41 · P79
P41 = 15862558419952376316679770375454352915971<41>
P79 = 1812620068912988621361116139700801998459166922290934821642168987677184217078173<79>
Number: 989_73 N=28752791736310384258994159713610632907858424717545098891662337574971643090487313928602053858226252879580881560207200983 ( 119 digits) SNFS difficulty: 150 digits. Divisors found: r1=15862558419952376316679770375454352915971 (pp41) r2=1812620068912988621361116139700801998459166922290934821642168987677184217078173 (pp79) Version: GGNFS-0.77.1 Total time: 85.26 hours. Scaled time: 56.78 units (timescale=0.666). Factorization parameters were as follows: name: 989_73 n: 28752791736310384258994159713610632907858424717545098891662337574971643090487313928602053858226252879580881560207200983 m: 10000000000000000000000000 c6: 1 c3: -10 c0: -1000 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 3250001) Relations: rels:3094322, finalFF:267557 Initial matrix: 227718 x 267557 with sparse part having weight 32169776. Pruned matrix : 222525 x 223727 with weight 23359531. Total sieving time: 82.46 hours. Total relation processing time: 0.41 hours. Matrix solve time: 2.22 hours. Time per square root: 0.16 hours. Prototype def-par.txt line would be: snfs,150,6,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 85.26 hours. --------- CPU info (if available) ----------
By Anton Korobeynikov / GGNFS-0.77.1
10121-7·1060-1 = 9999999999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999999999<121> = 172 · 2679387385562077<16> · C104
C104 = P40 · P64
P40 = 1335873289098187876976634772360781468609<40>
P64 = 9667215115747825770030400192699700127010095463540775936360554987<64>
Number: s19 N=12914174453093767034501179933316415145561857054268499217949403546002182396170844498997776114748158903083 ( 104 digits) SNFS difficulty: 121 digits. Divisors found: r1=1335873289098187876976634772360781468609 (pp40) r2=9667215115747825770030400192699700127010095463540775936360554987 (pp64) Version: GGNFS-0.77.1 Total time: 3.44 hours. Scaled time: 3.21 units (timescale=0.934). Factorization parameters were as follows: n: 12914174453093767034501179933316415145561857054268499217949403546002182396170844498997776114748158903083 type: snfs m: 1000000000000000000000000000000 c4: 10 c3: 0 c2: -7 c1: 0 c0: -1 skew: 5 Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:2108758, finalFF:201985 Initial matrix: 112617 x 201985 with sparse part having weight 17976734. Pruned matrix : 105217 x 105844 with weight 5153253. Total sieving time: 3.20 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.14 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,121,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.44 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(4·10179-13)/9 = (4)1783<179> = 7 · 1013 · 2251 · C172
C172 = P27 · C145
P27 = 607175123604322858135135231<27>
C145 = [4585857248574766089191494016033277701621126655166426719485801290460110069261918937045523340271990532330502656789332671663584490375191831250740533<145>]
(10123+27·1061-1)/9 = 111111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111111<123> = 32 · 541 · 1447 · 10613 · C112
C112 = P34 · P78
P34 = 1491236505937046539712208375143009<34>
P78 = 996470609446539272051543512629299492739204426788529430247477074535696369474681<78>
By Anton Korobeynikov / GGNFS-0.77.1
(7·10129-27·1064-7)/9 = 777777777777777777777777777777777777777777777777777777777777777747777777777777777777777777777777777777777777777777777777777777777<129> = 32 · 197578793 · 2636458466448601<16> · C105
C105 = P33 · P72
P33 = 567407713687278541368501853162777<33>
P72 = 292385966049692665103126366443203312040271377398528823419532158227576273<72>
Number: s12 N=165902052510502359722292919432116786913193202889433615056681365454285324108031138863369931419144051990121 ( 105 digits) SNFS difficulty: 129 digits. Divisors found: r1=567407713687278541368501853162777 (pp33) r2=292385966049692665103126366443203312040271377398528823419532158227576273 (pp72) Version: GGNFS-0.77.1 Total time: 10.53 hours. Scaled time: 9.90 units (timescale=0.940). Factorization parameters were as follows: n: 165902052510502359722292919432116786913193202889433615056681365454285324108031138863369931419144051990121 type: snfs m: 100000000000000000000000000000000 c4: 70 c3: 0 c2: -27 c1: 0 c0: -7 skew: 5 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1850001) Relations: rels:1487984, finalFF:147832 Initial matrix: 127675 x 147832 with sparse part having weight 16062468. Pruned matrix : 125434 x 126136 with weight 11973543. Total sieving time: 10.06 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.37 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 10.53 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GGNFS-0.77.0
(7·10109-54·1054-7)/9 = 7777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777<109> = C109
C109 = P52 · P58
P52 = 1199703120496327971166912328502612111741137333287561<52>
P58 = 6483085394126541203968119534230642078504648703049343858857<58>
Number: 77177_54 N=7777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777 ( 109 digits) SNFS difficulty: 109 digits. Divisors found: r1=1199703120496327971166912328502612111741137333287561 (pp52) r2=6483085394126541203968119534230642078504648703049343858857 (pp58) Version: GGNFS-0.77.0 Total time: 1.14 hours. Scaled time: 0.76 units (timescale=0.666). Factorization parameters were as follows: n: 7777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777 type: snfs m: 1000000000000000000000000000 c4: 70 c2: -54 c0: -7 skew: 1 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 350001) Relations: rels:923700, finalFF:95410 Initial matrix: 79373 x 95410 with sparse part having weight 3880661. Pruned matrix : 70270 x 70730 with weight 2181274. Total sieving time: 1.07 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.14 hours. --------- CPU info (if available) ----------
(7·10109-36·1054-7)/9 = 7777777777777777777777777777777777777777777777777777773777777777777777777777777777777777777777777777777777777<109> = 3 · C109
C109 = P44 · P66
P44 = 12680912768470105963886993540873101421968241<44>
P66 = 204448421018937189061839562936315415779422772088695429945210627499<66>
Number: 77377_54 N=2592592592592592592592592592592592592592592592592592591259259259259259259259259259259259259259259259259259259 ( 109 digits) SNFS difficulty: 109 digits. Divisors found: r1=12680912768470105963886993540873101421968241 (pp44) r2=204448421018937189061839562936315415779422772088695429945210627499 (pp66) Version: GGNFS-0.77.0 Total time: 1.33 hours. Scaled time: 0.89 units (timescale=0.666). Factorization parameters were as follows: n: 2592592592592592592592592592592592592592592592592592591259259259259259259259259259259259259259259259259259259 type: snfs m: 1000000000000000000000000000 c4: 70 c2: -36 c0: -7 skew: 1 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 370001) Relations: rels:1014791, finalFF:116034 Initial matrix: 79397 x 116034 with sparse part having weight 5113163. Pruned matrix : 68542 x 69002 with weight 1976194. Total sieving time: 1.26 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.33 hours. --------- CPU info (if available) ----------
(7·10109-18·1054-7)/9 = 7777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777<109> = 71 · 2269 · 829093 · C98
C98 = P49 · P50
P49 = 1146077995900808636576232065781733351502351670241<49>
P50 = 50809540009458185463854001724535026723990503184471<50>
Number: 77577_54 N=58231695786681790693737480616980718072598650023369764628293961039044313473091885771662036184027511 ( 98 digits) SNFS difficulty: 109 digits. Divisors found: r1=1146077995900808636576232065781733351502351670241 (pp49) r2=50809540009458185463854001724535026723990503184471 (pp50) Version: GGNFS-0.77.0 Total time: 1.08 hours. Scaled time: 0.49 units (timescale=0.458). Factorization parameters were as follows: n: 58231695786681790693737480616980718072598650023369764628293961039044313473091885771662036184027511 type: snfs m: 1000000000000000000000000000 c4: 70 c2: -18 c0: -7 skew: 1 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 350001) Relations: rels:907095, finalFF:89598 Initial matrix: 79336 x 89598 with sparse part having weight 3677030. Pruned matrix : 70757 x 71217 with weight 2402107. Total sieving time: 0.99 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.08 hours. --------- CPU info (if available) ----------
10109-8·1054-1 = 9999999999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999999999<109> = 127 · 71761 · C103
C103 = P40 · P63
P40 = 7456148442940953114594620702636947234993<40>
P63 = 147161176532989056677907743727305226400991662335578342609981569<63>
Number: 99199_54 N=1097255577267805083958156378012007706684272498155787687629332143323084600489792944580802833377241844017 ( 103 digits) SNFS difficulty: 109 digits. Divisors found: r1=7456148442940953114594620702636947234993 (pp40) r2=147161176532989056677907743727305226400991662335578342609981569 (pp63) Version: GGNFS-0.77.0 Total time: 1.13 hours. Scaled time: 0.75 units (timescale=0.666). Factorization parameters were as follows: n: 1097255577267805083958156378012007706684272498155787687629332143323084600489792944580802833377241844017 m: 1000000000000000000000000000 c4: 10 c2: -8 c0: -1 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 350001) Relations: rels:1069397, finalFF:137108 Initial matrix: 79111 x 137108 with sparse part having weight 5528967. Pruned matrix : 63351 x 63810 with weight 1553078. Total sieving time: 1.07 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.01 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,109,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.13 hours. --------- CPU info (if available) ----------
(7·10111-18·1055-7)/9 = 777777777777777777777777777777777777777777777777777777757777777777777777777777777777777777777777777777777777777<111> = 757 · 157931 · C103
C103 = P42 · P62
P42 = 348384003690657101398486903557887748697859<42>
P62 = 18673858341305959736691429802824396637093126317551470492389709<62>
Number: 77577_55 N=6505673533296343374757716984173135906104721717198403106426397904950814120125363994409124538733921933031 ( 103 digits) SNFS difficulty: 112 digits. Divisors found: r1=348384003690657101398486903557887748697859 (pp42) r2=18673858341305959736691429802824396637093126317551470492389709 (pp62) Version: GGNFS-0.77.0 Total time: 2.09 hours. Scaled time: 1.07 units (timescale=0.510). Factorization parameters were as follows: n: 6505673533296343374757716984173135906104721717198403106426397904950814120125363994409124538733921933031 m: 10000000000000000000000000000 c4: 7 c2: -18 c0: -70 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 470001) Relations: rels:1003159, finalFF:98699 Initial matrix: 78902 x 98699 with sparse part having weight 4611079. Pruned matrix : 74991 x 75449 with weight 2531539. Total sieving time: 1.99 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.09 hours. --------- CPU info (if available) ----------
(7·10111+9·1055-7)/9 = 777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777<111> = C111
C111 = P32 · P80
P32 = 47939686313793314714985650540221<32>
P80 = 16224089842531860718820219676597897505473209526363831248251537182669333181917637<80>
Number: 77877_55 N=777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777 ( 111 digits) SNFS difficulty: 112 digits. Divisors found: r1=47939686313793314714985650540221 (pp32) r2=16224089842531860718820219676597897505473209526363831248251537182669333181917637 (pp80) Version: GGNFS-0.77.0 Total time: 1.78 hours. Scaled time: 1.19 units (timescale=0.666). Factorization parameters were as follows: n: 777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777 m: 10000000000000000000000000000 c4: 7 c2: 9 c0: -70 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 430001) Relations: rels:941384, finalFF:90105 Initial matrix: 79417 x 90105 with sparse part having weight 3879540. Pruned matrix : 74636 x 75097 with weight 2602581. Total sieving time: 1.70 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.78 hours. --------- CPU info (if available) ----------
10111-4·1055-1 = 999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999<111> = 7 · C111
C111 = P34 · P77
P34 = 1590646496312418081825900969362419<34>
P77 = 89810742480071673480034617705907970811706653082603487540435533001853035752403<77>
Number: 99599_55 N=142857142857142857142857142857142857142857142857142857137142857142857142857142857142857142857142857142857142857 ( 111 digits) SNFS difficulty: 112 digits. Divisors found: r1=1590646496312418081825900969362419 (pp34) r2=89810742480071673480034617705907970811706653082603487540435533001853035752403 (pp77) Version: GGNFS-0.77.0 Total time: 1.26 hours. Scaled time: 0.84 units (timescale=0.666). Factorization parameters were as follows: n: 142857142857142857142857142857142857142857142857142857137142857142857142857142857142857142857142857142857142857 m: 10000000000000000000000000000 c4: 1 c2: -4 c0: -10 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 370001) Relations: rels:926136, finalFF:94399 Initial matrix: 79138 x 94399 with sparse part having weight 3770620. Pruned matrix : 70758 x 71217 with weight 2135238. Total sieving time: 1.20 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,112,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.26 hours. --------- CPU info (if available) ----------
(10113+36·1056-1)/9 = 11111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111<113> = 32 · 16815523 · C104
C104 = P50 · P55
P50 = 13450495962423405602197324564053281711475193853233<50>
P55 = 5458411877441488623204973599968579973704875381179652981<55>
Number: 11511_56 N=73418346918770703785696579359117637984531786566172690631092018112015448206934291944354769440059184937573 ( 104 digits) SNFS difficulty: 113 digits. Divisors found: r1=13450495962423405602197324564053281711475193853233 (pp50) r2=5458411877441488623204973599968579973704875381179652981 (pp55) Version: GGNFS-0.77.0 Total time: 1.45 hours. Scaled time: 0.75 units (timescale=0.514). Factorization parameters were as follows: n: 73418346918770703785696579359117637984531786566172690631092018112015448206934291944354769440059184937573 m: 10000000000000000000000000000 c4: 10 c2: 36 c0: -1 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 390001) Relations: rels:969958, finalFF:104541 Initial matrix: 79334 x 104541 with sparse part having weight 4541630. Pruned matrix : 70384 x 70844 with weight 2156526. Total sieving time: 1.37 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.45 hours. --------- CPU info (if available) ----------
(10113+15·1056-1)/3 = 33333333333333333333333333333333333333333333333333333333833333333333333333333333333333333333333333333333333333333<113> = 969767 · C107
C107 = P44 · P63
P44 = 72268729819325236883478278411242078137715177<44>
P63 = 475620890884244851498460963052289624304871649082765230602975787<63>
Number: 33833_56 N=34372517659740260633052406746500276183179396012994186576603795894615235755942750509486643011500013233419299 ( 107 digits) SNFS difficulty: 113 digits. Divisors found: r1=72268729819325236883478278411242078137715177 (pp44) r2=475620890884244851498460963052289624304871649082765230602975787 (pp63) Version: GGNFS-0.77.0 Total time: 1.61 hours. Scaled time: 1.07 units (timescale=0.666). Factorization parameters were as follows: n: 34372517659740260633052406746500276183179396012994186576603795894615235755942750509486643011500013233419299 m: 10000000000000000000000000000 c4: 10 c2: 15 c0: -1 skew: 3 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 410001) Relations: rels:940009, finalFF:91111 Initial matrix: 79221 x 91111 with sparse part having weight 3921157. Pruned matrix : 73467 x 73927 with weight 2533907. Total sieving time: 1.54 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.61 hours. --------- CPU info (if available) ----------
(7·10113+9·1056-7)/9 = 77777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777<113> = 32 · 59 · 352753 · C105
C105 = P45 · P60
P45 = 943405915407871419942166753517422955179200619<45>
P60 = 440140870971496639432675443055051578823488257567227387284881<60>
Number: 77877_56 N=415231501287282608061134595626063952495399758454022460170218803398233489047341111142544135758558404541339 ( 105 digits) SNFS difficulty: 113 digits. Divisors found: r1=943405915407871419942166753517422955179200619 (pp45) r2=440140870971496639432675443055051578823488257567227387284881 (pp60) Version: GGNFS-0.77.0 Total time: 1.59 hours. Scaled time: 0.82 units (timescale=0.517). Factorization parameters were as follows: n: 415231501287282608061134595626063952495399758454022460170218803398233489047341111142544135758558404541339 m: 10000000000000000000000000000 c4: 70 c2: 9 c0: -7 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 410001) Relations: rels:932542, finalFF:90825 Initial matrix: 78942 x 90825 with sparse part having weight 3937923. Pruned matrix : 72901 x 73359 with weight 2542620. Total sieving time: 1.50 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.04 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,113,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.59 hours. --------- CPU info (if available) ----------
(10115+63·1057-1)/9 = 1111111111111111111111111111111111111111111111111111111118111111111111111111111111111111111111111111111111111111111<115> = 106633193 · 273798101 · C98
C98 = P40 · P59
P40 = 1281789999038424466872827278709808221353<40>
P59 = 29690517433133448228875820017684038502497597814228332473659<59>
Number: 11811_57 N=38057008312066447475703826101172590857550272118867171381121362891239260797229344859549025513840627 ( 98 digits) SNFS difficulty: 116 digits. Divisors found: r1=1281789999038424466872827278709808221353 (pp40) r2=29690517433133448228875820017684038502497597814228332473659 (pp59) Version: GGNFS-0.77.0 Total time: 2.30 hours. Scaled time: 1.53 units (timescale=0.666). Factorization parameters were as follows: n: 38057008312066447475703826101172590857550272118867171381121362891239260797229344859549025513840627 m: 100000000000000000000000000000 c4: 1 c2: 63 c0: -10 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 490001) Relations: rels:982926, finalFF:99137 Initial matrix: 79121 x 99137 with sparse part having weight 4321812. Pruned matrix : 75548 x 76007 with weight 2364921. Total sieving time: 2.22 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.30 hours. --------- CPU info (if available) ----------
(10115+12·1057-1)/3 = 3333333333333333333333333333333333333333333333333333333337333333333333333333333333333333333333333333333333333333333<115> = 2027 · C112
C112 = P51 · P61
P51 = 413428623552526058738397724493803821597046811065223<51>
P61 = 3977630664592314289649198080860208324298283709925435865124873<61>
Number: 33733_57 N=1644466370662719947377076138792961683933563558625226114127939483637559611905936523598092419010031244861042591679 ( 112 digits) SNFS difficulty: 116 digits. Divisors found: r1=413428623552526058738397724493803821597046811065223 (pp51) r2=3977630664592314289649198080860208324298283709925435865124873 (pp61) Version: GGNFS-0.77.0 Total time: 2.55 hours. Scaled time: 1.31 units (timescale=0.515). Factorization parameters were as follows: n: 1644466370662719947377076138792961683933563558625226114127939483637559611905936523598092419010031244861042591679 m: 100000000000000000000000000000 c4: 1 c2: 12 c0: -10 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 530001) Relations: rels:996336, finalFF:98105 Initial matrix: 79114 x 98105 with sparse part having weight 4967314. Pruned matrix : 76348 x 76807 with weight 2816378. Total sieving time: 2.44 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.05 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.55 hours. --------- CPU info (if available) ----------
(10115+15·1057-1)/3 = 3333333333333333333333333333333333333333333333333333333338333333333333333333333333333333333333333333333333333333333<115> = 2393 · 1231157788181<13> · C100
C100 = P48 · P52
P48 = 306958124382034974756967068594314634533151237563<48>
P52 = 3685897020730000823308245598219789448649704874744427<52>
Number: 33833_57 N=1131416036148611738512520531035854993593229590770021923344217337935033316596665569289423158387311401 ( 100 digits) SNFS difficulty: 116 digits. Divisors found: r1=306958124382034974756967068594314634533151237563 (pp48) r2=3685897020730000823308245598219789448649704874744427 (pp52) Version: GGNFS-0.77.0 Total time: 2.10 hours. Scaled time: 1.40 units (timescale=0.666). Factorization parameters were as follows: n: 1131416036148611738512520531035854993593229590770021923344217337935033316596665569289423158387311401 m: 100000000000000000000000000000 c4: 1 c2: 15 c0: -10 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 470001) Relations: rels:940975, finalFF:89665 Initial matrix: 79221 x 89665 with sparse part having weight 3802201. Pruned matrix : 75690 x 76150 with weight 2618646. Total sieving time: 2.02 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.10 hours. --------- CPU info (if available) ----------
(7·10115-18·1057-7)/9 = 7777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777<115> = C115
C115 = P52 · P64
P52 = 4908080039210391222640407293380788169196549342459237<52>
P64 = 1584688455697854041471015089623685838814364850834967536965947421<64>
Number: 77577_57 N=7777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777 ( 115 digits) SNFS difficulty: 116 digits. Divisors found: r1=4908080039210391222640407293380788169196549342459237 (pp52) r2=1584688455697854041471015089623685838814364850834967536965947421 (pp64) Version: GGNFS-0.77.0 Total time: 3.59 hours. Scaled time: 1.77 units (timescale=0.493). Factorization parameters were as follows: n: 7777777777777777777777777777777777777777777777777777777775777777777777777777777777777777777777777777777777777777777 m: 100000000000000000000000000000 c4: 7 c2: -18 c0: -70 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 650001) Relations: rels:1065108, finalFF:100595 Initial matrix: 78902 x 100595 with sparse part having weight 7168396. Pruned matrix : 76776 x 77234 with weight 4019116. Total sieving time: 3.46 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.07 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,116,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 3.59 hours. --------- CPU info (if available) ----------
10115-4·1057-1 = 9999999999999999999999999999999999999999999999999999999995999999999999999999999999999999999999999999999999999999999<115> = 13 · 137 · 1194883 · C106
C106 = P34 · P72
P34 = 4852747805592539495163744803133599<34>
P72 = 968329084334870313982674682982929518043498846672500388409613165012933887<72>
Number: 99599_57 N=4699056839097475027923240697895219089490982623407994609623557602711362938725638519273752326011402215369313 ( 106 digits) SNFS difficulty: 116 digits. Divisors found: r1=4852747805592539495163744803133599 (pp34) r2=968329084334870313982674682982929518043498846672500388409613165012933887 (pp72) Version: GGNFS-0.77.0 Total time: 3.09 hours. Scaled time: 2.06 units (timescale=0.666). Factorization parameters were as follows: n: 4699056839097475027923240697895219089490982623407994609623557602711362938725638519273752326011402215369313 m: 100000000000000000000000000000 c4: 1 c2: -4 c0: -10 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 470001) Relations: rels:950866, finalFF:94878 Initial matrix: 79138 x 94878 with sparse part having weight 3927146. Pruned matrix : 75076 x 75535 with weight 2345605. Total sieving time: 3.01 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,116,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 3.09 hours. --------- CPU info (if available) ----------
(10117+27·1058-1)/9 = 111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111<117> = 3 · 577 · 8027653 · 61641233 · C99
C99 = P43 · P56
P43 = 5065140752510854061760607620209676868683793<43>
P56 = 25609965628497937933852965660649941693207706728575971433<56>
Number: 11411_58 N=129718080575307152939593060677792797508185443603287980222315432916655409434376032657182061078085369 ( 99 digits) SNFS difficulty: 117 digits. Divisors found: r1=5065140752510854061760607620209676868683793 (pp43) r2=25609965628497937933852965660649941693207706728575971433 (pp56) Version: GGNFS-0.77.0 Total time: 2.69 hours. Scaled time: 1.40 units (timescale=0.520). Factorization parameters were as follows: n: 129718080575307152939593060677792797508185443603287980222315432916655409434376032657182061078085369 m: 100000000000000000000000000000 c4: 10 c2: 27 c0: -1 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 550001) Relations: rels:1007723, finalFF:98616 Initial matrix: 78891 x 98616 with sparse part having weight 5615518. Pruned matrix : 76245 x 76703 with weight 3186772. Total sieving time: 2.58 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,117,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.69 hours. --------- CPU info (if available) ----------
(10117+45·1058-1)/9 = 111111111111111111111111111111111111111111111111111111111161111111111111111111111111111111111111111111111111111111111<117> = 61 · 236738683 · 796661287 · C97
C97 = P48 · P50
P48 = 135787335879847052117995871864275155605531819309<48>
P50 = 71125518781059145398811824502730133138028838682859<50>
Number: 11611_58 N=9657944708352047860960209932867324070349109088768119335634894324290753178813349969885085543524431 ( 97 digits) SNFS difficulty: 117 digits. Divisors found: r1=135787335879847052117995871864275155605531819309 (pp48) r2=71125518781059145398811824502730133138028838682859 (pp50) Version: GGNFS-0.77.0 Total time: 2.91 hours. Scaled time: 1.55 units (timescale=0.531). Factorization parameters were as follows: n: 9657944708352047860960209932867324070349109088768119335634894324290753178813349969885085543524431 m: 100000000000000000000000000000 c4: 10 c2: 45 c0: -1 skew: 1 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 570001) Relations: rels:1014071, finalFF:97992 Initial matrix: 79572 x 97992 with sparse part having weight 5837598. Pruned matrix : 77309 x 77770 with weight 3430827. Total sieving time: 2.79 hours. Total relation processing time: 0.04 hours. Matrix solve time: 0.06 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,117,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.91 hours. --------- CPU info (if available) ----------
(7·10117-54·1058-7)/9 = 777777777777777777777777777777777777777777777777777777777717777777777777777777777777777777777777777777777777777777777<117> = 3 · 31 · 246215477721397<15> · C101
C101 = P43 · P58
P43 = 7436133140659442385548835932506707046413757<43>
P58 = 4567831495851777890065525263466628947820067971004992971141<58>
Number: 77177_58 N=33967003167251399794645133260045825646916219341299905478454692307871488279924961341548732236246386737 ( 101 digits) SNFS difficulty: 117 digits. Divisors found: r1=7436133140659442385548835932506707046413757 (pp43) r2=4567831495851777890065525263466628947820067971004992971141 (pp58) Version: GGNFS-0.77.0 Total time: 2.55 hours. Scaled time: 1.35 units (timescale=0.528). Factorization parameters were as follows: n: 33967003167251399794645133260045825646916219341299905478454692307871488279924961341548732236246386737 m: 100000000000000000000000000000 c4: 70 c2: -54 c0: -7 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 600001) Relations: rels:2067303, finalFF:237523 Initial matrix: 113167 x 237523 with sparse part having weight 18271994. Pruned matrix : 92912 x 93541 with weight 3526662. Total sieving time: 2.35 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.11 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,117,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.55 hours. --------- CPU info (if available) ----------
(10119+12·1059-1)/3 = 33333333333333333333333333333333333333333333333333333333333733333333333333333333333333333333333333333333333333333333333<119> = 111324733043870420471<21> · C99
C99 = P48 · P51
P48 = 308211849605544240835568581016509315437856263793<48>
P51 = 971488695035825098075317941943151005423919561020611<51>
Number: 33733_59 N=299424327567868159034205996320781824853881802541928041446853984801691227231070885593718410326037523 ( 99 digits) SNFS difficulty: 120 digits. Divisors found: r1=308211849605544240835568581016509315437856263793 (pp48) r2=971488695035825098075317941943151005423919561020611 (pp51) Version: GGNFS-0.77.0 Total time: 3.36 hours. Scaled time: 1.75 units (timescale=0.522). Factorization parameters were as follows: n: 299424327567868159034205996320781824853881802541928041446853984801691227231070885593718410326037523 m: 1000000000000000000000000000000 c4: 1 c2: 12 c0: -10 skew: 1 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:1962436, finalFF:174914 Initial matrix: 112797 x 174914 with sparse part having weight 13616240. Pruned matrix : 103663 x 104290 with weight 4646396. Total sieving time: 3.10 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.17 hours. Time per square root: 0.02 hours. Prototype def-par.txt line would be: snfs,120,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.36 hours. --------- CPU info (if available) ----------
(10129+36·1064-1)/9 = 111111111111111111111111111111111111111111111111111111111111111151111111111111111111111111111111111111111111111111111111111111111<129> = C129
C129 = P44 · P85
P44 = 27945924115886081520186115873492249633626509<44>
P85 = 3975932613656140341832640138776451769428432018427577039849181790005930696680086774179<85>
Number: 11511_64 N=111111111111111111111111111111111111111111111111111111111111111151111111111111111111111111111111111111111111111111111111111111111 ( 129 digits) SNFS difficulty: 129 digits. Divisors found: r1=27945924115886081520186115873492249633626509 (pp44) r2=3975932613656140341832640138776451769428432018427577039849181790005930696680086774179 (pp85) Version: GGNFS-0.77.0 Total time: 8.58 hours. Scaled time: 5.71 units (timescale=0.666). Factorization parameters were as follows: n: 111111111111111111111111111111111111111111111111111111111111111151111111111111111111111111111111111111111111111111111111111111111 m: 100000000000000000000000000000000 c4: 10 c2: 36 c0: -1 skew: 1 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1300001) Relations: rels:1354867, finalFF:151956 Initial matrix: 128161 x 151956 with sparse part having weight 12215409. Pruned matrix : 124885 x 125589 with weight 8140496. Total sieving time: 8.33 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.16 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,129,4,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 8.58 hours. --------- CPU info (if available) ----------
Note: Anton Korobeynikov factored (10113+36·1056-1)/9 and 10109-8·1054-1, but his contribution was nine minutes later than Kenichiro Yamaguchi's.
By Wataru Sakai / GMP-ECM 6.0.1
(7·10135+18·1067-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777797777777777777777777777777777777777777777777777777777777777777777777<135> = 773 · 86243 · 8614488740089<13> · C115
C115 = P37 · P40
P37 = 1663324327429868751805378948966050587<37>
P39 = 387650468324949599507682683465222114951<39>
P40 = 2100416500199564786760232889489961369251<40>
By Anton Korobeynikov / GGNFS-0.77.1
(10121+27·1060-1)/9 = 1111111111111111111111111111111111111111111111111111111111114111111111111111111111111111111111111111111111111111111111111<121> = 17 · 115095827706061<15> · C105
C105 = P47 · P59
P47 = 47459086872093725996332476011943002625277029271<47>
P59 = 11965465825127895232065620165417313902504402599170293517893<59>
Number: gnfs5 N=567870082059813415535159171601683123876552480939754994178199080429482139951219591100555235087242923246003 ( 105 digits) Divisors found: r1=47459086872093725996332476011943002625277029271 (pp47) r2=11965465825127895232065620165417313902504402599170293517893 (pp59) Version: GGNFS-0.77.1 Total time: 16.43 hours. Scaled time: 15.33 units (timescale=0.933). Factorization parameters were as follows: name: gnfs5 n: 567870082059813415535159171601683123876552480939754994178199080429482139951219591100555235087242923246003 skew: 14335.76 # norm 5.12e+014 c5: 37440 c4: 1944510404 c3: -45387576263895 c2: -426643148999114482 c1: 3709450062469033051632 c0: -83630126705488587555040 # alpha -6.10 Y1: 37786218649 Y0: -108687865900264580697 # Murphy_E 1.75e-009 # M 15469832489107710233407678271545753777254619409811618845587885605019311414693377626725783371249851671073 type: gnfs rlim: 2500000 alim: 2500000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 150000 Factor base limits: 2500000/2500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1250000, 2300001) Relations: rels:4823687, finalFF:592317 Initial matrix: 365969 x 592317 with sparse part having weight 46324999. Pruned matrix : 287703 x 289596 with weight 13988219. Polynomial selection time: 0.39 hours. Total sieving time: 14.23 hours. Total relation processing time: 0.23 hours. Matrix solve time: 1.39 hours. Time per square root: 0.18 hours. Prototype def-par.txt line would be: gnfs,104,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2500000,2500000,26,26,49,49,2.6,2.6,150000 total time: 16.43 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0
10129-7·1064-1 = 999999999999999999999999999999999999999999999999999999999999999929999999999999999999999999999999999999999999999999999999999999999<129> = 139 · 179 · 13099 · C121
C121 = P32 · P89
P32 = 84155191976690091375532717318429<32>
P89 = 36459701740409770008678743621002179900547434706089737737604298284369304773209328624822449<89>
(10109-6·1054-1)/3 = 3333333333333333333333333333333333333333333333333333331333333333333333333333333333333333333333333333333333333<109> = 83251691 · C101
C101 = P31 · P70
P31 = 9565193224123604325335978668643<31>
P70 = 4185929736346760083081744088349273869606358281355142376988028286103541<70>
By Kenichiro Yamaguchi / msieve.exe 0.88, GGNFS-0.77.0
(10137+54·1068-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111711111111111111111111111111111111111111111111111111111111111111111111<137> = 7 · 4515899 · 19200798853997587<17> · 454411363873976465587<21> · C92
C92 = P41 · P52
P41 = 14313185525372337396377829606606981536809<41>
P52 = 2814559590977327949542708606165688761376822478343587<52>
(10135+54·1067-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111171111111111111111111111111111111111111111111111111111111111111111111<135> = 3 · 2891733829<10> · 12657895752004974029092713409<29> · C97
C97 = P39 · P58
P39 = 728220199784734510278259473026131505653<39>
P58 = 1389484428551256313652850387809037007900312878781218672389<58>
10107-8·1053-1 = 99999999999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999999999<107> = 857 · 3152693 · C98
C98 = P39 · P59
P39 = 414356618114911461820039730429966789779<39>
P59 = 89322982506893702114203748740442802204720125497732825880281<59>
Number: 99199_53 N=37011568951493870587533907468807331625838897143391997801441742068877218868957831250504391348447899 ( 98 digits) SNFS difficulty: 108 digits. Divisors found: r1=414356618114911461820039730429966789779 (pp39) r2=89322982506893702114203748740442802204720125497732825880281 (pp59) Version: GGNFS-0.77.0 Total time: 1.24 hours. Scaled time: 0.63 units (timescale=0.505). Factorization parameters were as follows: n: 37011568951493870587533907468807331625838897143391997801441742068877218868957831250504391348447899 type: snfs m: 1000000000000000000000000000 c4: 1 c2: -8 c0: -10 skew: 1 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 370001) Relations: rels:1051910, finalFF:127238 Initial matrix: 79232 x 127238 with sparse part having weight 5240380. Pruned matrix : 66545 x 67005 with weight 1657725. Total sieving time: 1.17 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.03 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,108,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.24 hours. --------- CPU info (if available) ----------
10107-4·1053-1 = 99999999999999999999999999999999999999999999999999999599999999999999999999999999999999999999999999999999999<107> = 13 · 47 · 1637 · 3559 · C98
C98 = P36 · P62
P36 = 374546534899059572140342925545382219<36>
P62 = 75002603471220634662157651405579337049820078686199957972326517<62>
Number: 99599_53 N=28091965238553866048238832207139135124008256955603671242637769766991191519618434207496401434001223 ( 98 digits) SNFS difficulty: 108 digits. Divisors found: r1=374546534899059572140342925545382219 (pp36) r2=75002603471220634662157651405579337049820078686199957972326517 (pp62) Version: GGNFS-0.77.0 Total time: 0.92 hours. Scaled time: 0.61 units (timescale=0.666). Factorization parameters were as follows: n: 28091965238553866048238832207139135124008256955603671242637769766991191519618434207496401434001223 type: snfs m: 1000000000000000000000000000 c4: 1 c2: -4 c0: -10 skew: 1 Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 330001) Relations: rels:942406, finalFF:104654 Initial matrix: 79138 x 104654 with sparse part having weight 3826816. Pruned matrix : 66569 x 67028 with weight 1676911. Total sieving time: 0.86 hours. Total relation processing time: 0.03 hours. Matrix solve time: 0.02 hours. Time per square root: 0.01 hours. Prototype def-par.txt line would be: snfs,108,4,0,0,0,0,0,0,0,0,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 0.92 hours. --------- CPU info (if available) ----------
(10121+18·1060-1)/9 = 1111111111111111111111111111111111111111111111111111111111113111111111111111111111111111111111111111111111111111111111111<121> = 3 · C120
C120 = P45 · P76
P45 = 154447398234564225886342941831524047483429993<45>
P76 = 2398035671717026850696633658703135676844129777545406909287166321087776404709<76>
Number: 11311_60 N=370370370370370370370370370370370370370370370370370370370371037037037037037037037037037037037037037037037037037037037037 ( 120 digits) SNFS difficulty: 121 digits. Divisors found: r1=154447398234564225886342941831524047483429993 (pp45) r2=2398035671717026850696633658703135676844129777545406909287166321087776404709 (pp76) Version: GGNFS-0.77.0 Total time: 2.97 hours. Scaled time: 1.51 units (timescale=0.509). Factorization parameters were as follows: n: 370370370370370370370370370370370370370370370370370370370371037037037037037037037037037037037037037037037037037037037037 type: snfs m: 1000000000000000000000000000000 c4: 10 c2: 18 c0: -1 skew: 1 Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 650001) Relations: rels:1783391, finalFF:127446 Initial matrix: 112851 x 127446 with sparse part having weight 8948596. Pruned matrix : 106928 x 107556 with weight 6173871. Total sieving time: 2.66 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.23 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,121,4,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 2.97 hours. --------- CPU info (if available) ----------
By Patrick Keller / GMP-ECM
10175-9 = (9)1741<175> = 83 · 89 · 277590538396397099817467<24> · C148
C148 = P33 · C115
P33 = 896295447371381022541530417241001<33>
C115 = [5440966491433929111554214944089000588930816682352861497343960642779983221200574467638376340734669429663292048678679<115>]
10171-9 = (9)1701<171> = 307 · 1341257227<10> · 119089804935077063337409<24> · C137
C137 = P33 · P104
P33 = 345902145520852319930047561079359<33>
P104 = 58955144714945402926154900462795557653240056734408286929929832931465190563110621663093933530297499871449<104>
By Anton Korobeynikov / GGNFS-0.77.1 gnfs
(10137+18·1068-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111311111111111111111111111111111111111111111111111111111111111111111111<137> = 11884518378563<14> · 356467085933449629373<21> · C103
C103 = P31 · P73
P31 = 1751194939250977175066504995391<31>
P73 = 1497690153747151706489837868528375292873487187807515370827980740505032079<73>
Number: gnfs4 N=2622747417808029997982597206660787270843451021149865733158562304472604859115885720472920750426202147889 ( 103 digits) Divisors found: r1=1751194939250977175066504995391 (pp31) r2=1497690153747151706489837868528375292873487187807515370827980740505032079 (pp73) Version: GGNFS-0.77.1 Total time: 11.63 hours. Scaled time: 11.17 units (timescale=0.961). Factorization parameters were as follows: name: gnfs4 n: 2622747417808029997982597206660787270843451021149865733158562304472604859115885720472920750426202147889 skew: 6092.58 # norm 7.80e+013 c5: 84660 c4: 787939364 c3: -11889912774020 c2: -9464874867711633 c1: 223338456233986816640 c0: -2147230794979185261251 # alpha -5.54 Y1: 3944604389 Y0: -31493109234514470132 # Murphy_E 2.49e-009 # M 420237040652658581664185305147895703920967006947089344799308241117947841995169886666201930925408486959 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1150000, 1850001) Relations: rels:4287216, finalFF:401874 Initial matrix: 338718 x 401874 with sparse part having weight 27658829. Pruned matrix : 307831 x 309588 with weight 15423708. Polynomial selection time: 0.34 hours. Total sieving time: 9.38 hours. Total relation processing time: 0.19 hours. Matrix solve time: 1.55 hours. Time per square root: 0.17 hours. Prototype def-par.txt line would be: gnfs,102,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 11.63 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1, msieve 0.87
(82·10156-1)/9 = 9(1)156<157> = 3 · 9547 · 16312421962724562748109<23> · C131
C131 = P29 · P102
P29 = 23847359044211639844297349373<29>
P102 = 817757297067985689366455987350914026717127875676712752907056223542707404820179774687144818115652343103<102>
(88·10200-7)/9 = 9(7)200<201> = 157 · 857 · 252509 · 24774025606639<14> · C178
C178 = P35 · C143
P35 = 20683264482894007536309560322300919<35>
C143 = [56165180484430952300766307618116484534228422042636160492389602943693696922297926733979303491972770778598171625374154176211273951939843834033017<143>]
(7·10139+18·1069-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777779777777777777777777777777777777777777777777777777777777777777777777777<139> = 3 · 19 · 367726742400556949<18> · C120
C120 = P37 · P84
P37 = 1202799848920924442516240468089776659<37>
P84 = 308504920753738400372402167367864783908593178388449262790541100806255639227144081271<84>
(7·10143+18·1071-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777777977777777777777777777777777777777777777777777777777777777777777777777777<143> = 61 · 113409823 · 2069483871187<13> · C121
C121 = P29 · P37 · P57
P29 = 16193914714806288324400459669<29>
P37 = 1956838260564091438065319057901820337<37>
P57 = 171437647252353405893256996766843366184204177221854529669<57>
By Makoto Kamada / GMP-ECM 6.0
10141-7·1070-1 = 999999999999999999999999999999999999999999999999999999999999999999999929999999999999999999999999999999999999999999999999999999999999999999999<141> = C141
C141 = P28 · P114
P28 = 2144063848942308174619150267<28>
P114 = 466404020800645335317603705077097139450003543693708997687015676910602837533958429083018374604282996186473046432397<114>
By Patrick Keller / GMP-ECM
10187-9 = (9)1861<187> = 381467 · 252250919 · 573590921 · 2468421133<10> · 28220407597<11> · 7739992696481<13> · C132
C132 = P39 · P93
P39 = 623469605000773495978145688789573442397<39>
P93 = 538976246538898546343223750880120388579184821372415393352789944003119846089632154549645112111<93>
By Kenichiro Yamaguchi / GMP-ECM 6.0, msieve.exe 0.88
10129-4·1064-1 = 999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999<129> = 3023 · 34897 · 420865208494316969716449211<27> · C95
C95 = P40 · P55
P40 = 4985055090497999350576552074159016833437<40>
P55 = 4518151316303936463207381068077395206440013927504964047<55>
(65·10183+43)/9 = 7(2)1827<184> = 33 · 11 · 437510417 · 774019032473969309<18> · 88804488047812567397747<23> · 149183001001371826586906639<27> · C106
C106 = P35 · P72
P35 = 26872627742923218845406575311898441<35>
P72 = 201701891060888755969503529121721296716388675952111719429087853881588699<72>
(10127+54·1063-1)/9 = 1111111111111111111111111111111111111111111111111111111111111117111111111111111111111111111111111111111111111111111111111111111<127> = 23 · 4027 · 2092935527<10> · 2421442267<10> · 3072430481<10> · C93
C93 = P38 · P56
P38 = 31766801010355208922937360423462961519<38>
P56 = 24252834790713373814264960469183545088234106770269084641<56>
10109-7·1054-1 = 9999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999<109> = 15575939 · 49294699 · C95
C95 = P37 · P58
P37 = 3251950302580251089849442830097243673<37>
P58 = 4004991911122812313206006402584252891736108995278772639383<58>
(7·10127-54·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777777777777<127> = 13 · 227 · 4409 · 7841 · 10086053 · 161992514875309<15> · C95
C95 = P44 · P52
P44 = 33777481093212597155001234658360112711973319<44>
P52 = 1381437735765544838986084600457935398914885649243241<52>
(10141+27·1070-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111111111111111<141> = 32 · 997 · 48972441703330201283<20> · 1414209683803549939759<22> · C96
C96 = P40 · P56
P40 = 3128438403371047559055299994407289446267<40>
P56 = 57151370546958962245454619832401430780610984111509139293<56>
(10111+63·1055-1)/9 = 111111111111111111111111111111111111111111111111111111181111111111111111111111111111111111111111111111111111111<111> = 201781 · 1564964579<10> · C96
C96 = P40 · P57
P40 = 3193549642162468878804090924279436823327<40>
P57 = 110179053399658378748454506743056428416316517795865879207<57>
10147-4·1073-1 = 999999999999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999999999999<147> = 7 · 137 · 29063 · 3286768633530139<16> · 25663232614150611623750872789<29> · C96
C96 = P34 · P63
P34 = 2016779576750328637594482016979767<34>
P63 = 210912355506634775150586992064179278706741771958204658151188871<63>
By Patrick Keller / GMP-ECM
10163-9 = (9)1621<163> = 31 · 197 · 12803410721<11> · 46745703973<11> · 836469155018551<15> · C124
C124 = P38 · P87
P38 = 17629888376681459284632404389201355683<38>
P87 = 185526180890784762356394559001150584399176683003863408727544883590129373766517842415517<87>
By Sinkiti Sibata / GGNFS-0.77.1
10135-1067-1 = 999999999999999999999999999999999999999999999999999999999999999999989999999999999999999999999999999999999999999999999999999999999999999<135> = 23 · 59 · 39724027106266234183<20> · C113
C113 = P51 · P62
P51 = 457218875534555213276407439012533005109793918496731<51>
P62 = 40573524158501361881716107525796537655755812002892882570878359<62>
Number: 989_67 N=18550981092224103225449286918159060791181095591717298826560349761026563673147412500788109491518427188335540144429 ( 113 digits) SNFS difficulty: 138 digits. Divisors found: r1=457218875534555213276407439012533005109793918496731 (pp51) r2=40573524158501361881716107525796537655755812002892882570878359 (pp62) Version: GGNFS-0.77.1 Total time: 32.58 hours. Scaled time: 19.45 units (timescale=0.597). Factorization parameters were as follows: name: 989_67 n: 18550981092224103225449286918159060791181095591717298826560349761026563673147412500788109491518427188335540144429 m: 100000000000000000000000 c6: 1 c3: -10 c0: -1000 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 3700001) Relations: rels:1927342, finalFF:162460 Initial matrix: 141967 x 162460 with sparse part having weight 19810564. Pruned matrix : 139075 x 139848 with weight 15477523. Total sieving time: 31.26 hours. Total relation processing time: 0.39 hours. Matrix solve time: 0.81 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,138,6,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 32.58 hours. --------- CPU info (if available) ----------
By Greg Childers / GGNFS-0.77.1
(7·10185-43)/9 = (7)1843<185> = C185
C185 = P44 · P142
P44 = 32008449811803481359371419148663085311174753<44>
P142 = 2429913920701537195653257244794400362540496676122054998829229994157007730833989529140955460253780141382235381247584345406026287841009528979341<142>
Number: snfs N=77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 ( 185 digits) SNFS difficulty: 185 digits. Divisors found: r1=32008449811803481359371419148663085311174753 (pp44) r2=2429913920701537195653257244794400362540496676122054998829229994157007730833989529140955460253780141382235381247584345406026287841009528979341 (pp142) Version: GGNFS-0.77.1 Total time: 862.60 hours. Scaled time: 1079.97 units (timescale=1.252). Factorization parameters were as follows: type: snfs n: 77777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777773 c0: -43 c5: 7 m: 10000000000000000000000000000000000000 rlim: 11400000 alim: 11400000 lbpr: 28 lbpa: 28 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 skew: 2 qintsize: 100000 Factor base limits: 11400000/11400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [5700000, 37600001) Relations: rels:9000480, finalFF:1700123 Initial matrix: 1503341 x 1700123 with sparse part having weight 122334579. Pruned matrix : 1421372 x 1428952 with weight 89185282. Total sieving time: 834.48 hours. Total relation processing time: 1.26 hours. Matrix solve time: 26.55 hours. Time per square root: 0.31 hours. Prototype def-par.txt line would be: snfs,185,5,0,0,0,0,0,0,0,0,11400000,11400000,27,27,48,48,2.3,2.3,100000 total time: 862.60 hours. --------- CPU info (if available) ----------
This is the largest number factored by GGNFS in our tables so far. Congratulations!
snfs.poly, s185-snfs.txt and ggnfs.log are here.
By Makoto Kamada / GMP-ECM 6.0
(10119+36·1059-1)/9 = 11111111111111111111111111111111111111111111111111111111111511111111111111111111111111111111111111111111111111111111111<119> = 3 · 2571038642676773<16> · C103
C103 = P28 · P75
P28 = 6392934671445487795504864427<28>
P75 = 225334331615978731213092328166228105739496278081435429366665967539227226747<75>
By Anton Korobeynikov / GGNFS-0.77.1 gnfs
3·10158-1 = 2(9)158<159> = 13 · 8713 · 5289083 · 695325459814498871<18> · 8252373899553049676093269<25> · C104
C104 = P33 · P71
P33 = 998030902239641757418958240703001<33>
P71 = 87441739575224379973751656500118777910978931283986448286477478905281163<71>
Number: gnfs3 N=87269558241664976941171743523399152072997467689934505077780861824100836287818417973959067903524682870163 ( 104 digits) Divisors found: r1=998030902239641757418958240703001 (pp33) r2=87441739575224379973751656500118777910978931283986448286477478905281163 (pp71) Version: GGNFS-0.77.1 Total time: 13.78 hours. Scaled time: 13.27 units (timescale=0.963). Factorization parameters were as follows: name: gnfs3 n: 87269558241664976941171743523399152072997467689934505077780861824100836287818417973959067903524682870163 skew: 6512.84 # norm 4.05e+014 c5: 302400 c4: -4914503460 c3: -41246694932601 c2: 306157117792400579 c1: 673982797329851774347 c0: 338491588138380638238735 # alpha -6.32 Y1: 79812995999 Y0: -49210580446986211138 # Murphy_E 2.06e-009 # M 69312058514180179646214467393127058775464002600639748974267261638839037718877412175006338668858689723057 type: gnfs rlim: 2300000 alim: 2300000 lpbr: 26 lpba: 26 mfbr: 49 mfba: 49 rlambda: 2.6 alambda: 2.6 qintsize: 100000 Factor base limits: 2300000/2300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [1150000, 1950001) Relations: rels:4486619, finalFF:462109 Initial matrix: 340108 x 462109 with sparse part having weight 33404399. Pruned matrix : 292743 x 294507 with weight 13639379. Total sieving time: 12.03 hours. Total relation processing time: 0.22 hours. Matrix solve time: 1.34 hours. Time per square root: 0.19 hours. Prototype def-par.txt line would be: gnfs,103,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,2300000,2300000,26,26,49,49,2.6,2.6,100000 total time: 13.78 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(31·10154-13)/9 = 3(4)1533<155> = 3 · 19 · 1231 · 10318115811615833350849<23> · C128
C128 = P29 · C100
P29 = 26353110139075738702819279411<29>
C100 = [1805319198152637110552879462456190401094804437798669002243297474445781549021760213855360595907310511<100>]
10133-7·1066-1 = 9999999999999999999999999999999999999999999999999999999999999999992999999999999999999999999999999999999999999999999999999999999999999<133> = 12659 · 746602123 · 4410268848809<13> · C108
C108 = P28 · P29 · P52
P28 = 4106583907717825483024796569<28>
P29 = 16190892924788094823835303809<29>
P52 = 3608234986227038227691374458344815738114921516487663<52>
10129-4·1064-1 = 999999999999999999999999999999999999999999999999999999999999999959999999999999999999999999999999999999999999999999999999999999999<129> = 3023 · 34897 · C121
C121 = P27 · C95
P27 = 420865208494316969716449211<27>
C95 = [22523233218981174874274506992886756872444546385425391165534866945038536041035300538852472439539<95>]
By Anton Korobeynikov / GGNFS-0.77.1
(61·10152-7)/9 = 6(7)152<153> = 17 · C152
C152 = P34 · P51 · P67
P34 = 6644741020324683338660889762398797<34>
P51 = 653568484235930545992755143567549450586834986633949<51>
P67 = 9180561481379755130002771608227144700517890465258033493396385684777<67>
Number: snfs150 N=39869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281 ( 152 digits) SNFS difficulty: 156 digits. Divisors found: r1=6644741020324683338660889762398797 (pp34) r2=653568484235930545992755143567549450586834986633949 (pp51) r3=9180561481379755130002771608227144700517890465258033493396385684777 (pp67) Version: GGNFS-0.77.1 Total time: 136.49 hours. Scaled time: 140.45 units (timescale=1.029). Factorization parameters were as follows: n: 39869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281045751633986928104575163398692810457516339869281 m: 10000000000000000000000000000000 c5: 61 c4: 0 c3: 0 c2: 0 c1: 0 c0: -7000 type: snfs skew: 2.583 rlim: 1800000 alim: 1800000 lpbr: 27 lpba: 27 mfbr: 48 mfba: 48 rlambda: 2.3 alambda: 2.3 qintsize: 150000 Factor base limits: 1800000/1800000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [900000, 900000) Relations: rels:6238170, finalFF:314294 Initial matrix: 270363 x 314294 with sparse part having weight 43233532. Pruned matrix : 266257 x 267672 with weight 33089144. Total sieving time: 126.53 hours. Total relation processing time: 1.27 hours. Matrix solve time: 8.34 hours. Time per square root: 0.36 hours. Prototype def-par.txt line would be: snfs,156,5,0,0,0,0,0,0,0,0,1800000,1800000,27,27,48,48,2.3,2.3,100000 total time: 136.49 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(10169-7)/3 = (3)1681<169> = 17 · 4733 · 139352063 · 3260459089039<13> · 7029751437386928017<19> · C125
C125 = P28 · P97
P28 = 9100128847669309064234747801<28>
P97 = 1425324174076179638372477791453170504374600038221128051537168623484483012443920325912773835837559<97>
(7·10151+9·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777778777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 233 · C149
C149 = P35 · P115
P35 = 17776744783583137231207036896284381<35>
P115 = 1877791514243455325694289157533977185457209336693881585395281825669391492720990178722817995878367696091949710816349<115>
By Makoto Kamada / GMP-ECM 6.0
(10109+15·1054-1)/3 = 3333333333333333333333333333333333333333333333333333338333333333333333333333333333333333333333333333333333333<109> = 83 · 1956650355893<13> · C95
C95 = P33 · P63
P33 = 120040242980259947498096594325557<33>
P63 = 170986003217913056471372073467473368467588105527296203207890351<63>
(7·10129-45·1064-7)/9 = 777777777777777777777777777777777777777777777777777777777777777727777777777777777777777777777777777777777777777777777777777777777<129> = 109 · 428714851 · 83522064781<11> · C108
C108 = P31 · P77
P31 = 2163778354737156310257087803969<31>
P77 = 92097217750960062512364827641676003441792741509452024628218544383332251029827<77>
(7·10151-54·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777771777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 13 · 9439 · 100957 · C141
C141 = P32 · P110
P32 = 15259102837190352718081605163427<32>
P110 = 41145349481792644412746995441880726916474595572927980079494184481639138018783281866365289646038545354392770349<110>
(10129+15·1064-1)/3 = 333333333333333333333333333333333333333333333333333333333333333383333333333333333333333333333333333333333333333333333333333333333<129> = 59 · 269 · 15608700005794195613<20> · C106
C106 = P35 · P71
P35 = 64439934556318421081650526458241843<35>
P71 = 20881064229390047736452746078502197561074363845024365925108517058102397<71>
By Kenichiro Yamaguchi / msieve.exe 0.88
(5·10157+13)/9 = (5)1567<157> = 72 · 17 · 2047846013<10> · 41713718687146763<17> · 141858282562689602894713<24> · C105
C105 = P32 · P74
P32 = 12036989567907669947288733486631<32>
P74 = 45722893559072547537809074542875524349379052254666810881640758638573398197<74>
(10125+72·1062-1)/9 = 11111111111111111111111111111111111111111111111111111111111111911111111111111111111111111111111111111111111111111111111111111<125> = 2389 · 953987 · 18968627 · 2775561347959223<16> · C92
C92 = P43 · P50
P43 = 1098642162176654441519817522652222818107953<43>
P50 = 84286087540537874748782326125819061834261034092229<50>
10121-2·1060-1 = 9999999999999999999999999999999999999999999999999999999999997999999999999999999999999999999999999999999999999999999999999<121> = 7 · 79 · 55843 · 847537822828545129739<21> · C93
C93 = P45 · P49
P45 = 109571578298887190277624203489639735475924721<45>
P49 = 3486977310257406995437536241850930394553144208599<49>
(10109+45·1054-1)/9 = 1111111111111111111111111111111111111111111111111111116111111111111111111111111111111111111111111111111111111<109> = 3 · 122173 · 7602097963<10> · C91
C91 = P46 · P48
P46 = 3714221585498832116361811023568493971538656643<46>
P48 = 107364257803138898198010947424194796754007241841<48>
By Makoto Kamada / GMP-ECM 6.0
(10147+27·1073-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111111111111111111<147> = 3 · 157 · 716771303 · C135
C135 = P29 · P107
P29 = 21691265411054892111706285537<29>
P107 = 15172986999368462759054744321112348555870769036614137185871812364471938931188436774906570402036347642801831<107>
(10141+15·1070-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333333383333333333333333333333333333333333333333333333333333333333333333333333<141> = 4796218403<10> · C131
C131 = P31 · C101
P31 = 4871092716755507520521488122659<31>
C101 = [14267681242632902152177306366085252051103423473492844666433028856134586465350584189623177369224854829<101>]
10125-8·1062-1 = 99999999999999999999999999999999999999999999999999999999999999199999999999999999999999999999999999999999999999999999999999999<125> = 311 · 91807 · 283007 · C113
C113 = P27 · P86
P27 = 316851147327813119486859679<27>
P86 = 39058121600449204641292977018475065659076049457477469068459067018722999549731875886279<86>
10141-2·1070-1 = 999999999999999999999999999999999999999999999999999999999999999999999979999999999999999999999999999999999999999999999999999999999999999999999<141> = 151 · 29952681391<11> · C129
C129 = P26 · C103
P26 = 26707653448326308357669563<26>
C103 = [8278499244828320278031558513661543374807561301980190150664926388700788596726190851264578119573768011253<103>]
By Sinkiti Sibata / GGNFS-0.73.4
10133-1066-1 = 9999999999999999999999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999999999999999999999<133> = 353 · C131
C131 = P58 · P73
P58 = 5223404198864323076899326379413653580057029684034084525587<58>
P73 = 5423400299784617038126491337385214152139516430815776771963160171909199109<73>
Number: 989_66 N=28328611898016997167138810198300283286118980169971671388101983002830028328611898016997167138810198300283286118980169971671388101983 ( 131 digits) Divisors found: r1=5223404198864323076899326379413653580057029684034084525587 (pp58) r2=5423400299784617038126491337385214152139516430815776771963160171909199109 (pp73) Version: GGNFS-0.73.4 Total time: 18.21 hours. Scaled time: 9.89 units (timescale=0.543). Factorization parameters were as follows: name: 989_66 n: 28328611898016997167138810198300283286118980169971671388101983002830028328611898016997167138810198300283286118980169971671388101983 m: 10000000000000000000000 c6: 10 c3: -1 c0: -1 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2000001) Relations: rels:1764288, finalFF:144869 Initial matrix: 127751 x 144869 with sparse part having weight 12991195. Pruned matrix : 122853 x 123555 with weight 10354709. Total sieving time: 17.43 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.51 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,130,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 18.21 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / msieve 0.88
(10172+11)/3 = (3)1717<172> = 31 · 907 · 251233 · 101116567819<12> · 178602295411801363<18> · 1622460357508876958070948506561<31> · C104
C104 = P40 · P64
P40 = 2586488233117993908441106682617065590041<40>
P64 = 6226430181893202982281934771907993231632407455763205130902296461<64>
(7·10151-27·1075-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777777777774777777777777777777777777777777777777777777777777777777777777777777777777777<151> = 5774471 · 4252139951<10> · 72770519383<11> · 931222080104549<15> · 1712923197602588663<19> · C91
C91 = P41 · P51
P41 = 13280346127391248754798433150075484438963<41>
P51 = 205484823257492682748871731144092329617826431276519<51>
(10135+15·1067-1)/3 = 333333333333333333333333333333333333333333333333333333333333333333383333333333333333333333333333333333333333333333333333333333333333333<135> = 31181 · 419167597 · 435227946249541<15> · 16671540113588573<17> · C91
C91 = P42 · P49
P42 = 465914679394302097846559161854092817435803<42>
P49 = 7544007538059824250299138722700014889615618279911<49>
(7·10127-36·1063-7)/9 = 7777777777777777777777777777777777777777777777777777777777777773777777777777777777777777777777777777777777777777777777777777777<127> = 3 · 11 · 23 · 31 · 161078063 · 1243383577<10> · 460654904458129<15> · C91
C91 = P46(1032...) · P46(3471...)
P46(1032...) = 1032237469239738908657273231850085971819224797<46>
P46(3471...) = 3471004820115445227177637822551021743014176251<46>
(10119+6·1059-1)/3 = 33333333333333333333333333333333333333333333333333333333333533333333333333333333333333333333333333333333333333333333333<119> = 907 · 12829 · 609382978664414532703<21> · C91
C91 = P37 · P55
P37 = 1338207244643205259047230267905355153<37>
P55 = 3512893286112204438088350553359005582198666921508379429<55>
(10145+6·1072-1)/3 = 3333333333333333333333333333333333333333333333333333333333333333333333335333333333333333333333333333333333333333333333333333333333333333333333333<145> = 7691 · 32077 · 995550558377383<15> · 783312276099068845843358302247<30> · C92
C92 = P40 · P52
P40 = 3923748421801970470514859242241507158549<40>
P52 = 4415732765823410513207114380052039511120870153451231<52>
By Sinkiti Sibata / GGNFS-0.73.4
10131-1065-1 = 99999999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999999<131> = C131
C131 = P39 · P93
P39 = 134534758392309648280446413525895437621<39>
P93 = 743302334615975765465545033092533822909903868321676440025588043284561046359265067290782741219<93>
Number: 989_65 N=99999999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999999 ( 131 digits) Divisors found: r1=134534758392309648280446413525895437621 (pp39) r2=743302334615975765465545033092533822909903868321676440025588043284561046359265067290782741219 (pp93) Version: GGNFS-0.73.4 Total time: 13.08 hours. Scaled time: 8.07 units (timescale=0.617). Factorization parameters were as follows: name: 989_65 n: 99999999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999999 m: 10000000000000000000000 c6: 1 c3: -1 c0: -10 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1600001) Relations: rels:1701129, finalFF:148579 Initial matrix: 127745 x 148579 with sparse part having weight 12261893. Pruned matrix : 121364 x 122066 with weight 9215777. Total sieving time: 12.35 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.48 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,131,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 13.08 hours. --------- CPU info (if available) ----------
By Patrick De Geest / May 22, 2005
(34·1045804-43)/9 = 3(7)458033<45805> is PRP.
(34·1046566-43)/9 = 3(7)465653<46567> is PRP.
By Kenichiro Yamaguchi / GMP-ECM 6.0, msieve 0.88
(7·10137+9·1068-7)/9 = 77777777777777777777777777777777777777777777777777777777777777777777877777777777777777777777777777777777777777777777777777777777777777777<137> = 3 · 257 · 839959 · 2935903 · 36737394213807579031743754402451<32> · C91
C91 = P35 · P59
P35 = 55032065917158172553838143932297<32>
P59 = 20233788067753443747817691407810728247577074404819508559273<59>
10123-2·1061-1 = 999999999999999999999999999999999999999999999999999999999999979999999999999999999999999999999999999999999999999999999999999<123> = 11 · 586819 · 68326809933615200155550743<26> · C91
C91 = P35 · P56
P35 = 81621426753868787364476347607262473<35>
P56 = 27778437982184395248642414400527508129182616184176574449<56>
(10131+63·1065-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111811111111111111111111111111111111111111111111111111111111111111111<131> = 3 · 19853 · 1908201895425037<16> · 36579430582020612359<20> · C91
C91 = P46(1171...) · P46(2279...)
P46(1171...) = 1172738361630356443654057104426680574433499227<46>
P46(2279...) = 2279017699242323185600245820373498110108250569<46>
By Makoto Kamada / GMP-ECM 6.0
(10143+6·1071-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333333533333333333333333333333333333333333333333333333333333333333333333333333<143> = 1307 · 96323 · 19897892929<11> · C125
C125 = P27 · P98
P27 = 341424160049256917945809543<27>
P98 = 38973716178988479509060142999525143745864228500808442825066538660359033966971072926992308772002899<98>
10127-8·1063-1 = 9999999999999999999999999999999999999999999999999999999999999991999999999999999999999999999999999999999999999999999999999999999<127> = 17 · 4724051 · C120
C120 = P28 · P93
P28 = 1060225916314822690553170423<28>
P93 = 117445960798160808874889516667862686525004294847424941869359285457466958648247564886087157139<93>
(7·10141-9·1070-7)/9 = 777777777777777777777777777777777777777777777777777777777777777777777767777777777777777777777777777777777777777777777777777777777777777777777<141> = 839 · 1901 · 370761613 · C127
C127 = P32 · P96
P32 = 10906673881626821716046390518369<32>
P96 = 120593628423246371252111545845338510452567779658062356329882728463209420834756147487790254788719<96>
(10149+63·1074-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111111111811111111111111111111111111111111111111111111111111111111111111111111111111<149> = 3 · 1123 · C145
C145 = P32 · P113
P32 = 41264888808076764227428851569963<32>
P113 = 79923740376308506883185267562020504667215146030180684375172225112817305677000236160384114945090340989972859012813<113>
By Kenichiro Yamaguchi / msieve 0.88
(10137-6·1068-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333133333333333333333333333333333333333333333333333333333333333333333333<137> = 1905473 · 5965130489<10> · 5881154628993643849289708313077<31> · C90
C90 = P43 · P48
P43 = 2175523364041157722653608072755530132795577<43>
P48 = 229207934538263470873750184171371089427598545841<48>
By Sinkiti Sibata / GGNFS-0.73.4
10125-1062-1 = 99999999999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999999999<125> = 759210964394892258539<21> · C105
C105 = P38 · P67
P38 = 17917584972714049336810799980595241433<38>
P67 = 7351196906759077269924957981770147293433930420124404381630195708677<67>
Number: 989_62 N=131715695228008445392231138047810908816087190823041305076755114744831379949609678838856433996163348014141 ( 105 digits) Divisors found: r1=17917584972714049336810799980595241433 (pp38) r2=7351196906759077269924957981770147293433930420124404381630195708677 (pp67) Version: GGNFS-0.73.4 Total time: 6.50 hours. Scaled time: 4.00 units (timescale=0.616). Factorization parameters were as follows: name: 989_62 n: 131715695228008445392231138047810908816087190823041305076755114744831379949609678838856433996163348014141 m: 1000000000000000000000 c6: 1 c3: -1 c0: -10 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 900001) Relations: rels:2459798, finalFF:134776 Initial matrix: 112892 x 134776 with sparse part having weight 10784666. Pruned matrix : 108242 x 108870 with weight 7773720. Total sieving time: 6.00 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.29 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,104,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 6.50 hours. --------- CPU info (if available) ----------
10127-1063-1 = 9999999999999999999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999999999999999999<127> = 139 · 19963 · C121
C121 = P34 · P87
P34 = 3774747091927625657743729451228357<34>
P87 = 954710136764649859877801672538641593146625737922693616350593097127077693656695281647451<87>
Number: 989_63 N=3603789312386187828778203705632398354221496819475742353569931711435940662888213698940161601120346021434618072210567968007 ( 121 digits) Divisors found: r1=3774747091927625657743729451228357 (pp34) r2=954710136764649859877801672538641593146625737922693616350593097127077693656695281647451 (pp87) Version: GGNFS-0.73.4 Total time: 8.79 hours. Scaled time: 5.42 units (timescale=0.616). Factorization parameters were as follows: name: 989_63 n: 3603789312386187828778203705632398354221496819475742353569931711435940662888213698940161601120346021434618072210567968007 m: 1000000000000000000000 c6: 10 c3: -1 c0: -1 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1050001) Relations: rels:2676355, finalFF:145845 Initial matrix: 112898 x 145845 with sparse part having weight 13058059. Pruned matrix : 105901 x 106529 with weight 8608413. Total sieving time: 8.22 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.32 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,120,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 8.79 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0, msieve 0.88
(10129+27·1064-1)/9 = 111111111111111111111111111111111111111111111111111111111111111141111111111111111111111111111111111111111111111111111111111111111<129> = 3 · 229 · 7433 · 603336401309<12> · 2718920921881<13> · C98
C98 = P35 · P63
P35 = 16580155254405099839166050795269699<35>
P63 = 800003565624165775205426049303149164424460174761734294354699871<63>
(10117-6·1058-1)/3 = 333333333333333333333333333333333333333333333333333333333313333333333333333333333333333333333333333333333333333333333<117> = 19 · 469632938395837837<18> · C98
C98 = P35 · P64
P35 = 16199478652131001864659907838029411<35>
P64 = 2306033209146727920310901572944094980784333460255998161762128401<64>
(7·10123-18·1061-7)/9 = 777777777777777777777777777777777777777777777777777777777777757777777777777777777777777777777777777777777777777777777777777<123> = 3449 · 6871 · 50807861868243369889<20> · C96
C96 = P32 · P65
P32 = 17450328388215055377787221810943<32>
P65 = 37017566439168039104422333608344601468339846559874004893133421169<65>
(7·10111-9·1055-7)/9 = 777777777777777777777777777777777777777777777777777777767777777777777777777777777777777777777777777777777777777<111> = 13 · 127 · 75550068571<11> · C97
C97 = P28 · P34 · P37
P28 = 1398875449059404663561023079<28>
P34 = 4061919996384421056600492979688849<34>
P37 = 1097395515226090243736324440518517847<37>
(7·10117+9·1058-7)/9 = 777777777777777777777777777777777777777777777777777777777787777777777777777777777777777777777777777777777777777777777<117> = 13 · 157 · 127565493593678797<18> · C97
C97 = P28 · P69
P28 = 3816485329241408769238794343<28>
P69 = 782736732091222823624338574527061271248238692771398743903545134809307<69>
By Patrick De Geest / May 20, 2005
(34·1040958-43)/9 = 3(7)409573<40959> is PRP.
By Makoto Kamada / GMP-ECM 6.0, msieve 0.88
(10137+27·1068-1)/9 = 11111111111111111111111111111111111111111111111111111111111111111111411111111111111111111111111111111111111111111111111111111111111111111<137> = 191 · 1278881 · 273907878924084919<18> · C111
C111 = P28 · P41 · P42
P28 = 1950764269872405931083771119<28>
P41 = 93626848981719000033421645464358272323153<41>
P42 = 909251996533713121478823903598863077321777<42>
(10123+63·1061-1)/9 = 111111111111111111111111111111111111111111111111111111111111181111111111111111111111111111111111111111111111111111111111111<123> = 1283 · C119
C119 = P32 · P39 · P49
P32 = 22251536947947596565110423945527<32>
P39 = 543570858610855374065270283742491984643<39>
P49 = 7160026912993706324620835310861726463487851990697<49>
(10143+12·1071-1)/3 = 33333333333333333333333333333333333333333333333333333333333333333333333733333333333333333333333333333333333333333333333333333333333333333333333<143> = 229 · 233 · 359 · 29370583467427<14> · C122
C122 = P34 · P35 · P55
P34 = 1139955221500910670343004478795499<34>
P35 = 11417390360980963504449065910088531<35>
P55 = 4552245519445037846543613429395879202820145361399432757<55>
By Sinkiti Sibata / GGNFS-0.73.4
10115-1057-1 = 9999999999999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999999999999<115> = 312 · 2940707668138657<16> · C97
C97 = P31 · P66
P31 = 3973249710067366420956494214167<31>
P66 = 890592222105420775989886473748923695401195757525847169120130701561<66>
Number: 989_57 N=3538545288268614698164724762653861064869140149703171048609397054276917016824753945829919095214687 ( 97 digits) Divisors found: r1=3973249710067366420956494214167 (pp31) r2=890592222105420775989886473748923695401195757525847169120130701561 (pp66) Version: GGNFS-0.73.4 Total time: 3.92 hours. Scaled time: 2.13 units (timescale=0.543). Factorization parameters were as follows: name: 989_57 n: 3538545288268614698164724762653861064869140149703171048609397054276917016824753945829919095214687 m: 10000000000000000000 c6: 10 c3: -1 c0: -1 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 590001) Relations: rels:1128217, finalFF:95253 Initial matrix: 79021 x 95253 with sparse part having weight 5826853. Pruned matrix : 74261 x 74720 with weight 3748436. Total sieving time: 3.70 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.09 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,96,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 3.92 hours. --------- CPU info (if available) ----------
10121-1060-1 = 9999999999999999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999999999999999<121> = 164963 · 495988049 · C108
C108 = P36 · P72
P36 = 141711241752071084469553066263261787<36>
P72 = 862457966742904708912917315169458428756335831525053401912917042242675071<72>
Number: 989_60 N=122219989426103452602535350211203431411856197087333455416273423515647540294052498753470318553378812851811877 ( 108 digits) SNFS difficulty: 119 digits. Divisors found: r1=141711241752071084469553066263261787 (pp36) r2=862457966742904708912917315169458428756335831525053401912917042242675071 (pp72) Version: GGNFS-0.73.4 Total time: 5.28 hours. Scaled time: 2.87 units (timescale=0.543). Factorization parameters were as follows: name: 989_60 n: 122219989426103452602535350211203431411856197087333455416273423515647540294052498753470318553378812851811877 m: 100000000000000000000 c6: 10 c3: -1 c0: -1 skew: 2 type: snfsFactor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 750001) Relations: rels:2250818, finalFF:137962 Initial matrix: 112898 x 137962 with sparse part having weight 10253216. Pruned matrix : 106442 x 107070 with weight 6778600. Total sieving time: 4.80 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.26 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,120,6,0,0,0,0,0,0,0,0,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 5.28 hours. --------- CPU info (if available) ----------
By Patrick De Geest / May 16, 2005
(32·1045860-23)/9 = 3(5)458593<45861> is PRP.
By Patrick De Geest / May 17, 2005
(32·1047304-23)/9 = 3(5)473033<47305> is PRP.
By Patrick De Geest / May 18, 2005
(34·1031316-43)/9 = 3(7)313153<31317> is PRP.
By Makoto Kamada / GMP-ECM 6.0, msieve 0.88
(10135+63·1067-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111181111111111111111111111111111111111111111111111111111111111111111111<135> = 19 · 1657 · 773341 · 29598199 · 107136571621<12> · C106
C106 = P28 · P39(5110...) · P39(7197...)
P28 = 3912727852822340451436281167<28>
P39(5110...) = 511045478123870149675790965601129245891<39>
P39(7197...) = 719727543520242603176408824608075026399<39>
By Sinkiti Sibata / GGNFS-0.73.4
10109-1054-1 = 9999999999999999999999999999999999999999999999999999998999999999999999999999999999999999999999999999999999999<109> = 365839 · 13835897 · C97
C97 = P34 · P63
P34 = 5480292912533378123538546154177489<34>
P63 = 360494719038064366749818935134129293322105503442872232632531977<63>
Number: 989_54 N=1975616653750015604084879369528402561201311833248544779287388599540646061927954512193081926065753 ( 97 digits) Divisors found: r1=5480292912533378123538546154177489 (pp34) r2=360494719038064366749818935134129293322105503442872232632531977 (pp63) Version: GGNFS-0.73.4 Total time: 2.69 hours. Scaled time: 1.46 units (timescale=0.543). Factorization parameters were as follows: name: 989_54 n: 1975616653750015604084879369528402561201311833248544779287388599540646061927954512193081926065753 m: 1000000000000000000 c6: 10 c3: -1 c0: -1 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 470001) Relations: rels:1047679, finalFF:97055 Initial matrix: 79021 x 97055 with sparse part having weight 4481244. Pruned matrix : 71575 x 72034 with weight 2575777. Total sieving time: 2.52 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.06 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,96,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 2.69 hours. --------- CPU info (if available) ----------
10113-1056-1 = 99999999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999999<113> = 1087 · C110
C110 = P32 · P79
P32 = 50095838034814903462011545148739<32>
P79 = 1836406451235725389377129252823059601781791833991426950438618187866012010892843<79>
Number: 989_56 N=91996320147194112235510579576816927322907083716651333946550137994480220791168353265869365225390984360625574977 ( 110 digits) Divisors found: r1=50095838034814903462011545148739 (pp32) r2=1836406451235725389377129252823059601781791833991426950438618187866012010892843 (pp79) Version: GGNFS-0.73.4 Total time: 3.16 hours. Scaled time: 1.72 units (timescale=0.543). Factorization parameters were as follows: name: 989_56 n: 91996320147194112235510579576816927322907083716651333946550137994480220791168353265869365225390984360625574977 m: 10000000000000000000 c6: 1 c3: -1 c0: -10 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 550001) Relations: rels:1129676, finalFF:104514 Initial matrix: 79015 x 104514 with sparse part having weight 5751867. Pruned matrix : 71083 x 71542 with weight 3005597. Total sieving time: 2.98 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.07 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,109,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 3.16 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0
(10129+18·1064-1)/9 = 111111111111111111111111111111111111111111111111111111111111111131111111111111111111111111111111111111111111111111111111111111111<129> = 7 · 13 · 29 · 373 · 1441751 · 26296122219913865246456723<26> · C91
C91 = P35 · P56
P35 = 40321278194829645764324261000814467<35>
P56 = 73840224208972855385320950425785046549938136877650926043<56>
10119-7·1059-1 = 99999999999999999999999999999999999999999999999999999999999299999999999999999999999999999999999999999999999999999999999<119> = 17 · 22395757 · 41946286906913353<17> · C94
C94 = P30 · P65
P30 = 123658819313817785102748137207<30>
P65 = 50636853728000579351440494333921542032222013836569228421518693701<65>
By Makoto Kamada / GMP-ECM 6.0.1
(19·10158-1)/9 = 2(1)158<159> = 61 · 39367 · 646669 · 62551217 · C139
C139 = P30 · P109
P30 = 739943625517252740521418808909<30>
P109 = 2937193085089632089747224362641689745855264314033879001820429030148894557397526770204608930336708194542363229<109>
By Wataru Sakai / GMP-ECM 6.0.1
(88·10160-7)/9 = 9(7)160<161> = 29 · 57143981 · 29050268097803<14> · C139
C139 = P32 · P108
P32 = 12797616817258905881240792964979<32>
P108 = 158705663419689548640820546836243221591433224257818175759969269756200229961046043606579913489262225820108329<108>
By Sinkiti Sibata / GGNFS-0.73.4
10107-1053-1 = 99999999999999999999999999999999999999999999999999999899999999999999999999999999999999999999999999999999999<107> = 23 · 32839 · 173651 · C96
C96 = P31 · P66
P31 = 3062906343272328403335314588051<31>
P66 = 248926558232605450464903638036099864754505132117548139106701056967<66>
Number: 989_53 N=762438734219595875796566303007468513292333489327487627379490616809939370695960241751495888501317 ( 96 digits) Divisors found: r1=3062906343272328403335314588051 (pp31) r2=248926558232605450464903638036099864754505132117548139106701056967 (pp66) Version: GGNFS-0.73.4 Total time: 1.84 hours. Scaled time: 1.13 units (timescale=0.615). Factorization parameters were as follows: name: 989_53 n: 762438734219595875796566303007468513292333489327487627379490616809939370695960241751495888501317 m: 1000000000000000000 c6: 1 c3: -1 c0: -10 skew: 2 type: snfs Factor base limits: 450000/500000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [250000, 430001) Relations: rels:1008727, finalFF:95323 Initial matrix: 79015 x 95323 with sparse part having weight 4049786. Pruned matrix : 70714 x 71173 with weight 2329816. Total sieving time: 1.71 hours. Total relation processing time: 0.05 hours. Matrix solve time: 0.05 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,95,6,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,450000,500000,25,25,44,44,2.2,2.2,20000 total time: 1.84 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(7·10177-1)/3 = 2(3)177<178> = 23 · 439 · 15647 · 429183371 · C161
C161 = P34 · C127
P34 = 5483344576421766728040771930475897<34>
C127 = [6275739697976723819806501299282739999999585669035730393740043597615652824058877220711885165870344073033944621743703115150215001<127>]
By Makoto Kamada / GMP-ECM 6.0
(7·10111-36·1055-7)/9 = 777777777777777777777777777777777777777777777777777777737777777777777777777777777777777777777777777777777777777<111> = 11 · 2099 · 3853 · C103
C103 = P35 · P69
P35 = 70587955787369324756687672589930737<35>
P69 = 123857067384091409450902892016396794597666091563939709740652675549013<69>
By Makoto Kamada / GMP-ECM 6.0
(7·10139-36·1069-7)/9 = 7777777777777777777777777777777777777777777777777777777777777777777773777777777777777777777777777777777777777777777777777777777777777777777<139> = 3 · 11 · 15797 · 716351 · 32376096436055516917<20> · C108
C108 = P28 · P80
P28 = 6794849866364274109775968451<28>
P80 = 94675313249811029066676070602769416295992854464979734923966943315127403721715981<80>
577...77 was completed up to n=150 and extended to n=200.
All of the form D(R)w were completed up to n=150.
(52·10146-7)/9 = 5(7)146<147> = 53 · 126631 · 85962571 · 631459761977934293381057<24> · C109
C109 = P43 · P66
P43 = 2142037134762324256832499675129124614771559<43>
P66 = 740393939056520452153666798478006372560862505341587785632362025143<66>
Number: 57777_146 N=1585951311812019992698173565971738137344305296418861072834339379658536807340693798747632951224567781559307937 ( 109 digits) SNFS difficulty: 148 digits. Divisors found: r1=2142037134762324256832499675129124614771559 (pp43) r2=740393939056520452153666798478006372560862505341587785632362025143 (pp66) Version: GGNFS-0.77.1 Total time: 28.07 hours. Scaled time: 32.68 units (timescale=1.164). Factorization parameters were as follows: name: 57777_146 n: 1585951311812019992698173565971738137344305296418861072834339379658536807340693798747632951224567781559307937 c5: 65 c0: -28 m: 200000000000000000000000000000 type: snfs skew: 1.4 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 750000) Relations: rels:2957326, finalFF:286738 Initial matrix: 228454 x 286738 with sparse part having weight 36340510. Pruned matrix : 222150 x 223356 with weight 23019813. Total sieving time: 27.29 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.57 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 28.07 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM, with additional sieving on a Pentium 3, 1.13GHz, 384MB RAM elapsed time: ~16 hours
By Makoto Kamada / GMP-ECM 6.0, msieve 0.88
(10135+36·1067-1)/9 = 111111111111111111111111111111111111111111111111111111111111111111151111111111111111111111111111111111111111111111111111111111111111111<135> = 14353842947<11> · 344942893969<12> · 469059011115334766083<21> · C92
C92 = P30 · P31 · P32
P30 = 485402254974860231190594309593<30>
P31 = 4559922052235481146106878090947<31>
P32 = 21615008258480805582409040176189<32>
(10127-6·1063-1)/3 = 3333333333333333333333333333333333333333333333333333333333333331333333333333333333333333333333333333333333333333333333333333333<127> = 1065830357<10> · 525330712799<12> · C106
C106 = P30 · P77
P30 = 295205067133417907697592782329<30>
P77 = 20166663874414567956260843672924031494113314975273352729150161420189795249239<77>
10131-4·1065-1 = 99999999999999999999999999999999999999999999999999999999999999999599999999999999999999999999999999999999999999999999999999999999999<131> = 13 · 137 · 347 · 8623 · 67057 · 408048752821026243131<21> · C96
C96 = P29 · P34(3095...) · P34(4377...)
P29 = 50612544294970722084709792667<29>
P34(3095...) = 3095535203928056850631948075200751<34>
P34(4377...) = 4377217507217188817598381172409681<34>
By Kenichiro Yamaguchi / msieve 0.88
(79·10159-7)/9 = 8(7)159<160> = 219647 · 161560309967141<15> · 40311515332103879<17> · 33170288939488390924608107<26> · C99
C99 = P46 · P54
P46 = 1124420513417429289242292747120560652696703691<46>
P54 = 164519541196822535927565725573223849787831289674684237<54>
(4·10164+23)/9 = (4)1637<164> = 12479 · 58510372933963<14> · 178177201699221593983<21> · 18554403610873627860756559<26> · C101
C101 = P44 · P57
P44 = 78023895748638867893972217224252601733553999<44>
P57 = 235981559314942106709930447382847896871156692971850502237<57>
(61·10178-7)/9 = 6(7)178<179> = 61754210443<11> · 15334686750801126181407889841<29> · 416368707563384961553638170251815219317<39> · C102
C102 = P40 · P62
P40 = 4941723279443496262590899537580262103323<40>
P62 = 34784786187971092404010664188709643009421322440491551158637269<62>
The near-repdigit palindrome tables were exteded to n=75. Try ECM from B1=250000 for new composite numbers.
611...11 was completed up to n=150 and extended to n=200.
By Greg Childers / GGNFS
(55·10149-1)/9 = 6(1)149<150> = 204375181 · C142
C142 = P35 · P37 · P71
P35 = 32617952991429641135965899090570323<35>
P37 = 1209011118657770670098957198126634659<37>
P71 = 75823709606029146596551829374018149628109156534685111960594866822008283<71>
By Samuel Chong / GGNFS-0.77.1
(52·10131-7)/9 = 5(7)131<132> = 211 · 54639683519807<14> · C116
C116 = P57 · P59
P57 = 944476919452537970177605023209405979475809411678581549459<57>
P59 = 53061418313269019563666845242560398655598070802659505152439<59>
Number: 57777_131 N=50115284910298806953874346945427476595081698400244620408014580499203700690148084514657228802514340627765250612980501 ( 116 digits) SNFS difficulty: 133 digits. Divisors found: r1=944476919452537970177605023209405979475809411678581549459 (pp57) r2=53061418313269019563666845242560398655598070802659505152439 (pp59) Version: GGNFS-0.77.1 Total time: 9.27 hours. Scaled time: 6.31 units (timescale=0.680). Factorization parameters were as follows: name: 57777_131 n: 50115284910298806953874346945427476595081698400244620408014580499203700690148084514657228802514340627765250612980501 c5: 65 c0: -28 m: 200000000000000000000000000 type: snfs skew: 1.1 Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1150001) Relations: rels:1504252, finalFF:158368 Initial matrix: 128226 x 158368 with sparse part having weight 13273707. Pruned matrix : 124818 x 125523 with weight 8062338. Total sieving time: 8.61 hours. Total relation processing time: 0.19 hours. Matrix solve time: 0.42 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 9.27 hours. --------- CPU info (if available) ---------- Pentium 3, 1.13GHz, 384MB RAM elapsed time: 9h40m5.647s
(52·10139-7)/9 = 5(7)139<140> = 3 · 20472013 · C132
C132 = P62 · P71
P62 = 42597380129480189454183205055817960792689265979756762838996143<62>
P71 = 22084935811313758983846362561950714029638463802222315759047507219622601<71>
Number: 57777_139 N=940760405889702163595698149432557475381598246311159496589771570546543676933932157001818006820299462454388792116303328805978154627943 ( 132 digits) SNFS difficulty: 141 digits. Divisors found: r1=42597380129480189454183205055817960792689265979756762838996143 (pp62) r2=22084935811313758983846362561950714029638463802222315759047507219622601 (pp71) Version: GGNFS-0.77.1 Total time: 11.71 hours. Scaled time: 13.15 units (timescale=1.123). Factorization parameters were as follows: name: 57777_139 n: 940760405889702163595698149432557475381598246311159496589771570546543676933932157001818006820299462454388792116303328805978154627943 c5: 26 c0: -35 m: 10000000000000000000000000000 type: snfs skew: 1.4 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 1950001) Relations: rels:2625257, finalFF:236716 Initial matrix: 199720 x 236716 with sparse part having weight 24377805. Pruned matrix : 195540 x 196602 with weight 16293550. Total sieving time: 11.17 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.36 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.71 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 11h52m2.612s
(52·10140-7)/9 = 5(7)140<141> = 1128407803<10> · 6286275241<10> · 356947438147<12> · C111
C111 = P55 · P56
P55 = 8005661431852798492398553348750679851731090314728794817<55>
P56 = 28503610344096864232287570440735272746558672640479087001<56>
Number: 57777_140 N=228190254000296740441829643851437945353580086632686739688322525328377702414631941793451096883775271317220873817 ( 111 digits) SNFS difficulty: 141 digits. Divisors found: r1=8005661431852798492398553348750679851731090314728794817 (pp55) r2=28503610344096864232287570440735272746558672640479087001 (pp56) Version: GGNFS-0.77.1 Total time: 11.55 hours. Scaled time: 13.05 units (timescale=1.130). Factorization parameters were as follows: name: 57777_140 n: 228190254000296740441829643851437945353580086632686739688322525328377702414631941793451096883775271317220873817 c5: 52 c0: -7 m: 10000000000000000000000000000 type: snfs skew: 1.1 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2050001) Relations: rels:2637833, finalFF:228319 Initial matrix: 199575 x 228319 with sparse part having weight 24139006. Pruned matrix : 196175 x 197236 with weight 17722101. Total sieving time: 10.99 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.39 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.55 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 11h43m8.351s
By Greg Childers / GGNFS
(55·10139-1)/9 = 6(1)139<140> = 24989 · 904452920051343725417<21> · C115
C115 = P37 · P78
P37 = 7048576332043459686034179056281798469<37>
P78 = 383604709643511484174499986975400327782096562711344269205943421015193420529663<78>
(55·10141-1)/9 = 6(1)141<142> = 3 · 7 · 113 · 167 · 521 · 919 · 1153 · 7643 · C124
C124 = P40 · P85
P40 = 1063224368598284987796843292441249913461<40>
P85 = 3437436207871079451330246273373070936880340406511418451038814710218188646844721012341<85>
(55·10145-1)/9 = 6(1)145<146> = 1263421008787539977<19> · C128
C128 = P45 · P84
P45 = 277343005684286219921639772343812939311590129<45>
P84 = 174403368127873074137794625591828419060980197578983878843733669400918572111027490367<84>
(55·10146-1)/9 = 6(1)146<147> = 13 · 4231 · 38149 · 515677 · 3073451 · 44504087 · 142191139 · C110
C110 = P48 · P63
P48 = 160430483623312708652808712843032833312709853283<48>
P63 = 181003622742401746386197287400645598243147541866349542490921201<63>
(55·10147-1)/9 = 6(1)147<148> = 32 · 7 · 55881885721233228121<20> · C127
C127 = P46 · P81
P46 = 4783558566950474825453403327136033394311375903<46>
P81 = 362875362077730366860909913268426301262599501115793730321610717380439451207158719<81>
(55·10148-1)/9 = 6(1)148<149> = 67 · 163 · 881 · 4457 · 5637518522297<13> · C126
C126 = P42 · P84
P42 = 471984419510453202562367398692207239240387<42>
P84 = 535579056842431770089258156483401738781244298516350075847387460751798318862225567957<84>
By Makoto Kamada / GMP-ECM 6.0.1
(4·10191-1)/3 = 1(3)191<192> = 839 · 103889 · 4322027 · C177
C177 = P32 · P145
P32 = 84275789507095754940374201543437<32>
P145 = 4199686812232444925484275503934712548257754392261575231660315798832305122326220123349799000462460732715210574829434214399875137452189080153237277<145>
By Samuel Chong / GMP-ECM 6.0.1, GGNFS-0.77.1
(52·10137-7)/9 = 5(7)137<138> = 17 · 21092255101<11> · 943450400877509381<18> · C109
C109 = P38 · P72
P38 = 11305225507438309023348396485987063579<38>
P72 = 151074301334662844595155052208063015057511047784279541687960209500181219<72>
(52·10138-7)/9 = 5(7)138<139> = 218288467390546054036499<24> · C116
C116 = P49 · P67
P49 = 3707766113147792424168414786189831094066948320587<49>
P67 = 7138676662676860357688100331726205343705275172333728441608783388129<67>
Number: 57777_138 N=26468543422592237032800499658113774776809021791466376187166228978252480667269697972578061070633379423429500342111723 ( 116 digits) SNFS difficulty: 141 digits. Divisors found: r1=3707766113147792424168414786189831094066948320587 (pp49) r2=7138676662676860357688100331726205343705275172333728441608783388129 (pp67) Version: GGNFS-0.77.1 Total time: 17.37 hours. Scaled time: 12.06 units (timescale=0.694). Factorization parameters were as follows: name: 57777_138 n: 26468543422592237032800499658113774776809021791466376187166228978252480667269697972578061070633379423429500342111723 c5: 13 c0: -175 m: 10000000000000000000000000000 type: snfs skew: 2.3 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 1850001) Relations: rels:2581402, finalFF:231446 Initial matrix: 199775 x 231446 with sparse part having weight 22379568. Pruned matrix : 195713 x 196775 with weight 15567911. Total sieving time: 15.40 hours. Total relation processing time: 0.31 hours. Matrix solve time: 1.56 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 17.37 hours. --------- CPU info (if available) ---------- Pentium 3, 1.13GHz, 384MB RAM elapsed time: 17h56m8.516s
(52·10150-7)/9 = 5(7)150<151> = 790448010127<12> · 46547750638471<14> · C126
C126 = P50 · P77
P50 = 14447140431035784716254423776982787208056721192529<50>
P77 = 10869434012240476963127657425131912816905607200813492985282654831804960631289<77>
Number: 57777_150 N=157032239580714903240699884247830071933234269674773678732378732338478783113147823070543836892284406414837495035656608750439881 ( 126 digits) SNFS difficulty: 151 digits. Divisors found: r1=14447140431035784716254423776982787208056721192529 (pp50) r2=10869434012240476963127657425131912816905607200813492985282654831804960631289 (pp77) Version: GGNFS-0.77.1 Total time: 31.03 hours. Scaled time: 32.52 units (timescale=1.048). Factorization parameters were as follows: n: 157032239580714903240699884247830071933234269674773678732378732338478783113147823070543836892284406414837495035656608750439881 c5: 52 c0: -7 m: 1000000000000000000000000000000 type: snfs skew: 0.7 # q0: 2500000 # qintsize: 1000 # Total yield: 5503 # 0.01853 sec/rel Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 2200001) Relations: rels:5349672, finalFF:450022 Initial matrix: 352336 x 450022 with sparse part having weight 42771281. Pruned matrix : 334650 x 336475 with weight 22531080. Total sieving time: 28.99 hours. Total relation processing time: 0.26 hours. Matrix solve time: 1.67 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,151,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 31.03 hours. --------- CPU info (if available) ---------- Pentium M 1.8GHz, 1GB RAM elapsed time: 31h34m42.958s
By Makoto Kamada / GMP-ECM 6.0.1
(4·10167-1)/3 = 1(3)167<168> = 523 · 46351 · 46794112332871<14> · C147
C147 = P28 · P119
P28 = 7037112326377184306115422147<28>
P119 = 16702913918179728327824511113974503788140232679674188838654021662919963717661064391575048710589928706963848949872986733<119>
By Kenichiro Yamaguchi / GMP-ECM 6.0
10153-3 = (9)1527<153> = 35603 · 108127 · 68063329 · 248622154980379092461<21> · C116
C116 = P33 · P83
P33 = 300828367847782232594681513978143<33>
P83 = 51027871295477704495929106254743812373411107183903051725312804583423782028610309611<83>
10168-3 = (9)1677<168> = 757 · 24733 · 13293083 · 869228495029187<15> · 3574884941983036986718429117<28> · C112
C112 = P36 · P76
P36 = 975590727494159829512394250459329181<36>
P76 = 1325372390074496447669080069340310031238497245742542719972705527019954706661<76>
By Wataru Sakai / GMP-ECM 6.0.1
(82·10186-1)/9 = 9(1)186<187> = 3 · 23 · 109 · 41885551 · C176
C176 = P31 · P145
P31 = 3782940352046936522297900219363<31>
P145 = 7645431961886097621301055021955926549566391559295079055876348408384086304280369422950343845597001737875012334173792062028552841337720614470711907<145>
(7·10162-1)/3 = 2(3)162<163> = 1376191 · C157
C157 = P34 · C124
P34 = 1156149411505234849191678643368749<34>
C124 = [1466506895981493687124535379820325804475916309373929762311497311107375702506795513963671876299233601761427778500890258144887<124>]
(7·10159-1)/3 = 2(3)159<160> = C160
C160 = P39 · P121
P39 = 939923996442189977828139437596044327841<39>
P121 = 2482470223300491075379538268591617894446661442117222321902419566146158100189049423032307860998700605229094451674191535413<121>
299...99 was completed up to n=150 and extended to n=200.
By Makoto Kamada / GGNFS-0.77.1
3·10148-1 = 2(9)148<149> = 5698826293<10> · 120232877212186884433<21> · C119
C119 = P42 · P78
P42 = 123074961607917110161534951484159374642729<42>
P78 = 355748343355447265512908734948080985968709118990801171190063642693710339565499<78>
Number: 29999_148 N=43783713700551786177954883342796795283205701980740608710433617028315456678043343527412509722361129001794180676219606771 ( 119 digits) SNFS difficulty: 149 digits. Divisors found: r1=123074961607917110161534951484159374642729 (pp42) r2=355748343355447265512908734948080985968709118990801171190063642693710339565499 (pp78) Version: GGNFS-0.77.1 Total time: 28.55 hours. Scaled time: 24.64 units (timescale=0.863). Factorization parameters were as follows: n: 43783713700551786177954883342796795283205701980740608710433617028315456678043343527412509722361129001794180676219606771 m: 200000000000000000000000000000 c5: 375 c0: -4 skew: 1 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [750000, 4350001) Relations: rels:3148780, finalFF:271363 Initial matrix: 228284 x 271363 with sparse part having weight 34726747. Pruned matrix : 223682 x 224887 with weight 25281549. Total sieving time: 26.76 hours. Total relation processing time: 0.27 hours. Matrix solve time: 1.47 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,149,5,0,0,0,0,0,0,0,0,1500000,1500000,26,26,45,45,2.3,2.3,100000 total time: 28.55 hours. --------- CPU info (if available) ----------
277...77 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.73.4
(25·10147-7)/9 = 2(7)147<148> = 31 · 22109 · 103580095854959<15> · C128
C128 = P55 · P74
P55 = 2751810618542710121996968089888551762815334364740816177<55>
P74 = 14219091698232043915719736438626813732187064219321265541387930409256743941<74>
Number: n27706 N=39128247521227435265353456573888907827751990535360870671286516668490202254432730503995323584573273078838822955573714981839533557 ( 128 digits) Divisors found: r1=2751810618542710121996968089888551762815334364740816177 (pp55) r2=14219091698232043915719736438626813732187064219321265541387930409256743941 (pp74) Version: GGNFS-0.73.4 Total time: 30.72 hours. Scaled time: 18.92 units (timescale=0.616). Factorization parameters were as follows: name: n27706 n: 39128247521227435265353456573888907827751990535360870671286516668490202254432730503995323584573273078838822955573714981839533557 m: 1000000000000000000000000000000 c5: 1 c0: -280 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 3550001) Relations: rels:4030370, finalFF:263105 Initial matrix: 228662 x 263105 with sparse part having weight 24168959. Pruned matrix : 217595 x 218802 with weight 19174966. Total sieving time: 28.17 hours. Total relation processing time: 0.37 hours. Matrix solve time: 2.10 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,127,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 30.72 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / msieve 0.88
(28·10167-1)/9 = 3(1)167<168> = 2699 · 35083 · 201517 · 132211486382868061681<21> · 14957629796921962305112256643833653651<38> · C97
C97 = P30 · P68
P30 = 622034512368604087851615654481<30>
P68 = 13254329882974026588044639224501407408503731822345782359808742685209<68>
677...77 was completed up to n=150 and extended to n=200.
By Greg Childers / GGNFS-0.76.8-k1
(61·10148-7)/9 = 6(7)148<149> = 1997 · 16453 · 3314036973893<13> · C129
C129 = P56 · P74
P56 = 39556766964933754250647549669289784721840357249424572103<56>
P74 = 15735698461845030510207337801475420150967876650498795094830007914984412443<74>
(61·10150-7)/9 = 6(7)150<151> = 3 · 997 · 63977 · 3184380146921<13> · C131
C131 = P62 · P69
P62 = 52705315333721859997910195565558335105305316472767799040037089<62>
P69 = 211041428323402327456372224332812226010199161841267519831372350387919<69>
(55·10133-1)/9 = 6(1)133<134> = 5749 · 13685294789871563<17> · C114
C114 = P43 · P72
P43 = 1131296869784096283247765334501486096859511<43>
P72 = 686589455158687094791267450486102461797942803855076189650926989294180423<72>
(55·10136-1)/9 = 6(1)136<137> = 19 · 23 · 1693 · 2861 · 13687 · C124
C124 = P39 · P85
P39 = 261843409601513981211782601245126619001<39>
P85 = 8055898995214582804558865693555247165485273937332090847460906892450090075232635193853<85>
(55·10137-1)/9 = 6(1)137<138> = 929 · 58732529 · C128
C128 = P46 · P82
P46 = 7814972683649930290593499031402095773519221231<46>
P82 = 1433171951168716045597531334277145632341103315292260336529652959869791978931916441<82>
By Sinkiti Sibata / GGNFS-0.73.4
(25·10146-7)/9 = 2(7)146<147> = 2377 · C144
C144 = P37 · P53 · P54
P37 = 8450795732314633295173199044308639277<37>
P53 = 30148412808524377537673005305781804934422894403827519<53>
P54 = 458676257137456062720021669543991247516340584081102227<54>
Number: n27705 N=116860655354555228345720562800916187537979712990230449212359182910297760949843406721824895994016734445846772308699107184593091198055438694900201 ( 144 digits) Divisors found: r1=8450795732314633295173199044308639277 (pp37) r2=30148412808524377537673005305781804934422894403827519 (pp53) r3=458676257137456062720021669543991247516340584081102227 (pp54) Version: GGNFS-0.73.4 Total time: 50.16 hours. Scaled time: 27.24 units (timescale=0.543). Factorization parameters were as follows: name: n27705 n: 116860655354555228345720562800916187537979712990230449212359182910297760949843406721824895994016734445846772308699107184593091198055438694900201 m: 1000000000000000000000000000000 c5: 1 c0: -2800 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 5650001) Relations: rels:4765450, finalFF:262585 Initial matrix: 228601 x 262585 with sparse part having weight 26991262. Pruned matrix : 218687 x 219894 with weight 22006992. Total sieving time: 47.04 hours. Total relation processing time: 0.54 hours. Matrix solve time: 2.46 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,143,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 50.16 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / msieve 0.88
(46·10159-1)/9 = 5(1)159<160> = 2282407 · 139463558033<12> · 926170764043531128329<21> · 129327173826903637028311757<27> · C96
C96 = P31 · P65
P31 = 2670805623922589416948360839847<31>
P65 = 50192445248125384112666868131438356426058026140049819330826497291<65>
(73·10153-1)/9 = 8(1)153<154> = 17 · 10328453 · 18592921473246849727987<23> · 1354386586120344889166234909<28> · C97
C97 = P44 · P53
P44 = 30246149402982031141909663724477316618628087<44>
P53 = 60650694707134154017490513389643352218963482541379691<53>
(88·10163-7)/9 = 9(7)163<164> = 461 · 4423 · 94447 · 1091957 · 9195049 · 1323086437<10> · 6193872774611976852485677182185861<34> · C97
C97 = P33 · P65
P33 = 242974024998686048865020255112271<33>
P65 = 25395934581473779364283283533819700344211941954026497603842312407<65>
(22·10156-1)/3 = 7(3)156<157> = 7 · 9319 · 2917643 · 358602459219702957489569<24> · 13562495021508030059409119<26> · C97
C97 = P28 · P70
P28 = 3545332820588782959046434023<28>
P70 = 2234560188334127806879050185314250929870754206592228362033255506726919<70>
By Makoto Kamada / GGNFS-0.77.1
3·10145-1 = 2(9)145<146> = 113 · 1051 · 115336553 · C133
C133 = P61 · P72
P61 = 2287852509381529362215874023304871802874572090778188945277943<61>
P72 = 957293486672798203907184531262070219175708798167529171237812739812913587<72>
Number: 29999_145 N=2190146305698955006283428730916975933010651373564495194778811329963706280406966398789747297529353873537135219315908937985516356111541 ( 133 digits) SNFS difficulty: 145 digits. Divisors found: r1=2287852509381529362215874023304871802874572090778188945277943 (pp61) r2=957293486672798203907184531262070219175708798167529171237812739812913587 (pp72) Version: GGNFS-0.77.1 Total time: 11.34 hours. Scaled time: 9.78 units (timescale=0.863). Factorization parameters were as follows: n: 2190146305698955006283428730916975933010651373564495194778811329963706280406966398789747297529353873537135219315908937985516356111541 m: 100000000000000000000000000000 c5: 3 c0: -1 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2050001) Relations: rels:2661845, finalFF:244024 Initial matrix: 200019 x 244024 with sparse part having weight 23889291. Pruned matrix : 194962 x 196026 with weight 15324298. Total sieving time: 10.52 hours. Total relation processing time: 0.09 hours. Matrix solve time: 0.69 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 11.34 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0
(73·10171-1)/9 = 8(1)171<172> = 14843 · 149813177 · 77738401102687189<17> · 42317321988221629976776621<26> · C118
C118 = P29 · P89
P29 = 14875811353000112379997549951<29>
P89 = 74537394406427505919087578364112995875027572863907758882633116392560035073094927981031779<89>
(32·10178-23)/9 = 3(5)1773<179> = 35 · 7 · 821641 · 31761867398052964369111<23> · 13291104803552696136084852221<29> · C119
C119 = P32 · P88
P32 = 11282264483748814369977751773473<32>
P88 = 5341431528017299080534923970125816079214708214812902404850524164720746012160878241078591<88>
By Makoto Kamada / GGNFS-0.77.1
3·10143-1 = 2(9)143<144> = 7 · 368161095989<12> · 2773039137463081<16> · C116
C116 = P41 · P76
P41 = 24566776282235900088908433900766498349491<41>
P76 = 1708760320079077756989239124726576953642075628982585485036155402183550090703<76>
Number: 29999_143 N=41978732503344512516266857871436361444559312282084203360401368402577014076439517715668943400840554473654772843882173 ( 116 digits) SNFS difficulty: 144 digits. Divisors found: r1=24566776282235900088908433900766498349491 (pp41) r2=1708760320079077756989239124726576953642075628982585485036155402183550090703 (pp76) Version: GGNFS-0.77.1 Total time: 14.68 hours. Scaled time: 12.38 units (timescale=0.843). Factorization parameters were as follows: n: 41978732503344512516266857871436361444559312282084203360401368402577014076439517715668943400840554473654772843882173 m: 20000000000000000000000000000 c5: 375 c0: -4 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 2450001) Relations: rels:2787031, finalFF:239636 Initial matrix: 200116 x 239636 with sparse part having weight 26160216. Pruned matrix : 195686 x 196750 with weight 18077927. Total sieving time: 13.66 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.86 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 14.68 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.77.1
3·10140-1 = 2(9)140<141> = 13 · 1043951 · 26883947 · C126
C126 = P54 · P73
P54 = 182071650990950202615387530626934743348640561028796729<54>
P73 = 4516088321889703271038563016128691273952825632884219310105789502309547671<73>
Number: 29999_140 N=822251656787408030173975300632094304632704651079543601030488574266544755067737471493710369973212578847428430302736349394368159 ( 126 digits) SNFS difficulty: 140 digits. Divisors found: r1=182071650990950202615387530626934743348640561028796729 (pp54) r2=4516088321889703271038563016128691273952825632884219310105789502309547671 (pp73) Version: GGNFS-0.77.1 Total time: 8.19 hours. Scaled time: 7.05 units (timescale=0.861). Factorization parameters were as follows: n: 822251656787408030173975300632094304632704651079543601030488574266544755067737471493710369973212578847428430302736349394368159 m: 10000000000000000000000000000 c5: 3 c0: -1 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1525001) Relations: rels:1540372, finalFF:160700 Initial matrix: 142576 x 160700 with sparse part having weight 14747809. Pruned matrix : 139698 x 140474 with weight 11243084. Total sieving time: 7.79 hours. Total relation processing time: 0.06 hours. Matrix solve time: 0.31 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 8.19 hours. --------- CPU info (if available) ----------
3·10141-1 = 2(9)141<142> = 29 · C141
C141 = P44 · P97
P44 = 12049787588762983115267162180707134919286653<44>
P97 = 8585070491909711967989582026822386992430936673986287924871109410890430123873686351241585281361127<97>
Number: 29999_141 N=103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931 ( 141 digits) SNFS difficulty: 141 digits. Divisors found: r1=12049787588762983115267162180707134919286653 (pp44) r2=8585070491909711967989582026822386992430936673986287924871109410890430123873686351241585281361127 (pp97) Version: GGNFS-0.77.1 Total time: 7.74 hours. Scaled time: 6.68 units (timescale=0.863). Factorization parameters were as follows: n: 103448275862068965517241379310344827586206896551724137931034482758620689655172413793103448275862068965517241379310344827586206896551724137931 m: 10000000000000000000000000000 c5: 30 c0: -1 skew: 1 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 26/26 Sieved special-q in [650000, 1550001) Relations: rels:2504779, finalFF:234151 Initial matrix: 199881 x 234151 with sparse part having weight 18658294. Pruned matrix : 194780 x 195843 with weight 12309635. Total sieving time: 7.06 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.57 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,141,5,0,0,0,0,0,0,0,0,1300000,1300000,26,26,45,45,2.3,2.3,100000 total time: 7.74 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(25·10143-7)/9 = 2(7)143<144> = 269 · 15619 · 8702261389<10> · 26494042019513<14> · C114
C114 = P56 · P59
P56 = 25824875844163503674925619205426250071426104522020935509<56>
P59 = 11103845421346691564728067954556533513867575974333455355439<59>
Number: n27704 N=286755429399061696471460639223078189575624111306840613832214322008818237461666722859156621510625517018752891383451 ( 114 digits) Divisors found: r1=25824875844163503674925619205426250071426104522020935509 (pp56) r2=11103845421346691564728067954556533513867575974333455355439 (pp59) Version: GGNFS-0.73.4 Total time: 17.62 hours. Scaled time: 9.56 units (timescale=0.543). Factorization parameters were as follows: name: n27704 n: 286755429399061696471460639223078189575624111306840613832214322008818237461666722859156621510625517018752891383451 m: 100000000000000000000000000000 c5: 1 c0: -28 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 2250001) Relations: rels:3702191, finalFF:250920 Initial matrix: 200293 x 250920 with sparse part having weight 21672362. Pruned matrix : 184307 x 185372 with weight 15027965. Total sieving time: 15.96 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.37 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,113,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 17.62 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(82·10164+71)/9 = 9(1)1639<165> = 64013359857241<14> · C152
C152 = P28 · P124
P28 = 2231758898657450640408808421<28>
P124 = 6377543731740958019734298085528275459938169960851062818800769066233485293684464903301380676158605205475357394910403056818779<124>
By Greg Childers / GGNFS
(61·10128-7)/9 = 6(7)128<129> = 1699 · C126
C126 = P48 · P79
P48 = 299179457277806411535149639026739530226142089621<48>
P79 = 1333405298970436966592817949486129780817428261709500221189749560996988882681263<79>
(61·10135-7)/9 = 6(7)135<136> = 3 · 43 · 59 · 1733 · 5680019 · C122
C122 = P39 · P83
P39 = 927242136241245480295997360546143833229<39>
P83 = 97567256590986466635655125222676116463836822566445292809032469710621547360445738129<83>
(61·10141-7)/9 = 6(7)141<142> = 3 · 8039 · 98005469 · C130
C130 = P44 · P86
P44 = 35284402142806969715498174687344814027742337<44>
P86 = 81270132481699799349979447997812805006797467924789973909568486678150176330511109827377<86>
(61·10146-7)/9 = 6(7)146<147> = 839 · 14533 · 1254801168839263<16> · C125
C125 = P53 · P72
P53 = 97231305727999673497358739964456644950754724349302399<53>
P72 = 455605605406378802832016232428400788106276936808026383368031541901007483<72>
(61·10147-7)/9 = 6(7)147<148> = 32 · C147
C147 = P72 · P76
P72 = 243314281288135257360490531778906342516402685687071620697654477513996051<72>
P76 = 3095118033212665345739651874326610276263365883329349811954353524289238251603<76>
By Kenichiro Yamaguchi / msieve 0.88
(7·10161-61)/9 = (7)1601<161> = 1512 · 6577 · 3964174417114618793679334707731<31> · 7173503721551823549835691411587<31> · C92
C92 = P33 · P59
P33 = 323133745909992430959028592626241<33>
P59 = 56442650092286230129000235768266165698868545368696437618499<59>
(73·10161-1)/9 = 8(1)161<162> = 7 · 877 · 972781709963209<15> · 1220046924751153519859701<25> · 5029543735426300746878816161<28> · C92
C92 = P43 · P49
P43 = 6788653800472124624790258105180513809359727<43>
P49 = 3260457440326829073193239624460062903158668440263<49>
By Sinkiti Sibata / GGNFS-0.73.4
(25·10142-7)/9 = 2(7)142<143> = 3 · 47 · 47741 · C136
C136 = P47 · P89
P47 = 83078612664108749945837054662410421922035082521<47>
P89 = 49670397929469966933068581388369378907329876227440240194993096794487066477372383261120577<89>
Number: n27703 N=4126547750454584626737827497066065814904294876235672027860997866261195385945199544911109127066952692546822575563650521746667305126134617 ( 136 digits) Divisors found: r1=83078612664108749945837054662410421922035082521 (pp47) r2=49670397929469966933068581388369378907329876227440240194993096794487066477372383261120577 (pp89) Version: GGNFS-0.73.4 Total time: 35.61 hours. Scaled time: 19.34 units (timescale=0.543). Factorization parameters were as follows: name: n27703 n: 4126547750454584626737827497066065814904294876235672027860997866261195385945199544911109127066952692546822575563650521746667305126134617 m: 10000000000000000000000000000 c5: 2500 c0: -7 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4375001) Relations: rels:2160131, finalFF:161750 Initial matrix: 142755 x 161750 with sparse part having weight 16786636. Pruned matrix : 138638 x 139415 with weight 13874522. Total sieving time: 34.43 hours. Total relation processing time: 0.29 hours. Matrix solve time: 0.82 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,135,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 35.61 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0, msieve 0.88, ppmpqs 2.8
(4·10163-31)/9 = (4)1621<163> = 1059323 · 189991603442981<15> · 8300604922871598662344661<25> · C118
C118 = P27 · P91
P27 = 759138910824095899864888379<27>
P91 = 3504480728404675529010629607710020993463541912205492760437955535188195182976742386971405753<91>
(13·10188-1)/3 = 4(3)188<189> = 53 · 51647389 · 101642062747<12> · 673328548961<12> · 155598700269695647<18> · 195471647740010465717<21> · C119
C119 = P29 · P44 · P48
P29 = 28950078452696774598414917443<29>
P44 = 12481988221672124356074117630719709998986127<44>
P48 = 210462199983798268308526048348088572633976635873<48>
6·10152-1 = 5(9)152<153> = 389 · 601 · 3847686757744894459<19> · 170030504027123276489357<24> · C106
C106 = P25 · P39 · P43
P25 = 8502194575506696329598293<25>
P39 = 103242136299206509564777334525567603879<39>
P43 = 4469023146607202468521275116811326802475031<43>
By Makoto Kamada / GMP-ECM 6.0.1
(8·10184-53)/9 = (8)1833<184> = 32 · 7 · 6637 · 59377 · 90065296430573975747<20> · C154
C154 = P26 · C128
P26 = 67475797886411273729109827<26>
C128 = [58913028362753951237802316734583805710571858745928990357031746550974040556656806255122874946114335569783560475087229302800294761<128>]
By Sinkiti Sibata / GGNFS-0.73.4
(25·10141-7)/9 = 2(7)141<142> = 398213 · 13773715607714944279<20> · C117
C117 = P52 · P66
P52 = 2201814831235969887746249533312509356264909262669359<52>
P66 = 230011823477140953009371545025560138971128411621855473653863637989<66>
Number: n27702 N=506443444291598803979719463517532020736326178226757471336312807891128992503834726226169700627858542861777664978679051 ( 117 digits) Divisors found: r1=2201814831235969887746249533312509356264909262669359 (pp52) r2=230011823477140953009371545025560138971128411621855473653863637989 (pp66) Version: GGNFS-0.73.4 Total time: 39.25 hours. Scaled time: 21.31 units (timescale=0.543). Factorization parameters were as follows: name: n27702 n: 506443444291598803979719463517532020736326178226757471336312807891128992503834726226169700627858542861777664978679051 m: 10000000000000000000000000000 c5: 250 c0: -7 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4900001) Relations: rels:2285678, finalFF:159961 Initial matrix: 142732 x 159961 with sparse part having weight 17241365. Pruned matrix : 139370 x 140147 with weight 14548173. Total sieving time: 38.00 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.85 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,116,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 39.25 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(88·10155-7)/9 = 9(7)155<156> = 7888847 · 322753193880259636759364321<27> · 9124859475965494181045382373<28> · C95
C95 = P32 · P64
P32 = 16545236480822509710748985754287<32>
P64 = 2543647444791733457856112888295480288867780549462051467871775421<64>
By Kenichiro Yamaguchi / GMP-ECM 6.0, ppmpqs 2.8
(35·10154-53)/9 = 3(8)1533<155> = 3 · 13 · 17 · 563 · 24761111 · 4548431451857<13> · 14893398440137806047<20> · C110
C110 = P32 · P79
P32 = 17214358533922899372427063091071<32>
P79 = 3608171554412812193728736389472817370855429433262407847715505733800426715835393<79>
(46·10170-1)/9 = 5(1)170<171> = 7 · 73 · 76349759813<11> · 3387158310043<13> · 87543743019719681<17> · 12240347643661635866911<23> · C106
C106 = P25 · P81
P25 = 9992189901954093552456677<25>
P81 = 361219933610736588126096619555475779332066120910436695465380359870924931284347277<81>
(10177+11)/3 = (3)1767<177> = 19 · 29 · 355222570819<12> · 1351119268582407031<19> · 14217108229868388954408797<26> · C119
C119 = P32 · P33 · P55
P32 = 27051372809671613506948313356933<32>
P33 = 476408812438030990707723764865829<33>
P55 = 6879431335481059971914367036427443509354366156900980327<55>
By Makoto Kamada / GGNFS-0.77.1
3·10139-1 = 2(9)139<140> = 19 · 233 · 18257 · C132
C132 = P64 · P69
P64 = 3189010880100257960332198816490123216053698925938885318275266097<64>
P69 = 116392853688224551320628030044644926368910927741779050815872100922653<69>
Number: 29999_139 N=371178076777665532152626594025797297004534769172210654594932808045418438263540368999756371083005699600212754324567934180822790195341 ( 132 digits) SNFS difficulty: 140 digits. Divisors found: r1=3189010880100257960332198816490123216053698925938885318275266097 (pp64) r2=116392853688224551320628030044644926368910927741779050815872100922653 (pp69) Version: GGNFS-0.77.1 Total time: 11.04 hours. Scaled time: 9.52 units (timescale=0.862). Factorization parameters were as follows: n: 371178076777665532152626594025797297004534769172210654594932808045418438263540368999756371083005699600212754324567934180822790195341 m: 10000000000000000000000000000 c5: 3 c0: -10 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1975001) Relations: rels:1657585, finalFF:172572 Initial matrix: 142481 x 172572 with sparse part having weight 18283991. Pruned matrix : 139356 x 140132 with weight 12359123. Total sieving time: 10.62 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.32 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,140,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 11.04 hours. --------- CPU info (if available) ----------
By Patrick De Geest / May 4, 2005
(68·1038852+13)/9 = 7(5)388517<38853> is PRP.
By Makoto Kamada / GGNFS-0.77.1
3·10135-1 = 2(9)135<136> = 9661029311<10> · C126
C126 = P52 · P75
P52 = 2737810280944238993239874575304072948881248252017519<52>
P75 = 113421269769628317461074177992926273808105712904085317777627767022874178511<75>
Number: 29999_135 N=310525918453038424903294447731750598763916740589630118761162301166731239203048102624683155771868457795635395107228445505334209 ( 126 digits) SNFS difficulty: 135 digits. Divisors found: r1=2737810280944238993239874575304072948881248252017519 (pp52) r2=113421269769628317461074177992926273808105712904085317777627767022874178511 (pp75) Version: GGNFS-0.77.1 Total time: 5.63 hours. Scaled time: 3.29 units (timescale=0.584). Factorization parameters were as follows: n: 310525918453038424903294447731750598763916740589630118761162301166731239203048102624683155771868457795635395107228445505334209 m: 1000000000000000000000000000 c5: 3 c0: -1 skew: 1 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1075001) Relations: rels:1553686, finalFF:193866 Initial matrix: 142576 x 193866 with sparse part having weight 13850626. Pruned matrix : 134600 x 135376 with weight 6602345. Total sieving time: 5.23 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.30 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,135,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 5.63 hours. --------- CPU info (if available) ----------
By Kenichiro Yamaguchi / GMP-ECM 6.0
(88·10183-7)/9 = 9(7)183<184> = 3 · 183503 · 601033083309317<15> · 22129199748735379053863<23> · 19189956597427975255674659227<29> · C113
C113 = P28 · P86
P28 = 1270730953438201363275166399<28>
P86 = 54762598950965988848515339506179913283721234965633336664731752242184193263496274615291<86>
By Sinkiti Sibata / GGNFS-0.73.4
(25·10131-7)/9 = 2(7)131<132> = 20123 · 1784942883827<13> · C115
C115 = P40 · P76
P40 = 5620440393044654805093837199083265262653<40>
P76 = 1375973601794850427023889759894925438618607521206065043323850174167579307429<76>
Number: n27701 N=7733577611290918472440782987120369838557786923733541161750837329897230802105253894300787054055780538041283519149137 ( 115 digits) Divisors found: r1=5620440393044654805093837199083265262653 (pp40) r2=1375973601794850427023889759894925438618607521206065043323850174167579307429 (pp76) Version: GGNFS-0.73.4 Total time: 8.84 hours. Scaled time: 5.45 units (timescale=0.616). Factorization parameters were as follows: name: n27701 n: 7733577611290918472440782987120369838557786923733541161750837329897230802105253894300787054055780538041283519149137 m: 100000000000000000000000000 c5: 250 c0: -7 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1300001) Relations: rels:1612676, finalFF:163646 Initial matrix: 128185 x 163646 with sparse part having weight 13035967. Pruned matrix : 118601 x 119305 with weight 8429940. Total sieving time: 8.27 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.41 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,114,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 8.84 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(73·10161-1)/9 = 8(1)161<162> = 7 · 877 · 972781709963209<15> · 1220046924751153519859701<25> · C120
C120 = P28 · C92
P28 = 5029543735426300746878816161<28>
C92 = [22134116793552343675342673843009393829656491450068844376804403205454458501099521413777488201<92>]
By Makoto Kamada / GGNFS-0.77.1
3·10128-1 = 2(9)128<129> = 132 · 227 · 541 · 601 · C119
C119 = P39 · P81
P39 = 148983787999561869461523139665361324139<39>
P81 = 161435091255666683067612614137458155297916999164385294636452087869504653287195627<81>
By Sinkiti Sibata / GGNFS-0.73.4
(46·10149-1)/9 = 5(1)149<150> = 587 · 486601 · C142
C142 = P34 · P47 · P61
P34 = 8342641865522708899014226485600863<34>
P47 = 51968163685933066387208775472313394887953466513<47>
P61 = 4127273530729170266545241935010523904158538675510421597108387<61>
Number: m51107 N=1789386777707545513744133382153872984354357059145989494308727567945395639471291398099598810809802067670108792144813618626610459429478073730253 ( 142 digits) Divisors found: r1=8342641865522708899014226485600863 (pp34) r2=51968163685933066387208775472313394887953466513 (pp47) r3=4127273530729170266545241935010523904158538675510421597108387 (pp61) Version: GGNFS-0.73.4 Total time: 89.67 hours. Scaled time: 48.69 units (timescale=0.543). Factorization parameters were as follows: name: m51107 n: 1789386777707545513744133382153872984354357059145989494308727567945395639471291398099598810809802067670108792144813618626610459429478073730253 m: 200000000000000000000000000000 c5: 14375 c0: -1 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 9850001) Relations: rels:5840565, finalFF:261799 Initial matrix: 228638 x 261799 with sparse part having weight 29812632. Pruned matrix : 220044 x 221251 with weight 24781539. Total sieving time: 85.79 hours. Total relation processing time: 1.20 hours. Matrix solve time: 2.54 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,141,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 89.67 hours. --------- CPU info (if available) ----------
733...33 was completed up to n=150 and extended to n=200.
By Greg Childers / GMP-ECM, GGNFS-0.76.8-k1
(10185+71)/9 = (1)1849<185> = C185
C185 = P37 · P148
P37 = 3750806215629184966943224092904300819<37>
P148 = 2962326090004961791420165103734489031196192276354525085062870974884672443755506312844401933410221376627505125539122978817351962262478860535294623701<148>
(22·10139-1)/3 = 7(3)139<140> = 192 · C138
C138 = P69(3140...) · P69(6468...)
P69(3140...) = 314038477443046442551733476677859370607858130783308334488351431918869<69>
P69(6468...) = 646861585784499565295881774424410926848825366214375699657684081318937<69>
(22·10140-1)/3 = 7(3)140<141> = 1669 · 27463213453608587327<20> · C119
C119 = P45 · P74
P45 = 944411606723648947479019470110517525957661069<45>
P74 = 16940741717256927181957981545556074500046613736459008633035419078072903339<74>
(22·10141-1)/3 = 7(3)141<142> = 15259 · 30400241 · C131
C131 = P42 · P89
P42 = 598970322351384012711098120857710192945763<42>
P89 = 26393259145944264577988752957028793857588312421120685412128990991929712701926314756127989<89>
(22·10142-1)/3 = 7(3)142<143> = 13 · C142
C142 = P36 · P107
P36 = 254211979826452993813324401311695909<36>
P107 = 22190243138331605335251692327872521059915803469666365096017037185723692340237858677865600818853561102312949<107>
(22·10144-1)/3 = 7(3)144<145> = 7 · 23399 · 7422643235796591503<19> · C121
C121 = P50 · P72
P50 = 38698123073143645613540299595848405356653862670663<50>
P72 = 155868228742256024274902157080758160587103328441079134104916616726426429<72>
(22·10146-1)/3 = 7(3)146<147> = 20143 · 180021533 · 17134044047<11> · C125
C125 = P52 · P73
P52 = 3637128575589953181431758525878433917429048599312227<52>
P73 = 3245146329238009533862563963395689962721320618144524204131370489223398803<73>
(22·10147-1)/3 = 7(3)147<148> = 449 · 4091 · 11587 · 1995979 · C132
C132 = P43 · P89
P43 = 2283671532516725502513888786325831590068401<43>
P89 = 75590112688564545567397912036486104365492754460068786387536519107595680160542735152360319<89>
(22·10149-1)/3 = 7(3)149<150> = 79 · 7214100854046126551689948562629<31> · C118
C118 = P46 · P72
P46 = 2900844182741011038802964042831611668414074483<46>
P72 = 443575676695926042402194599149353537519016436690125303029441623515029861<72>
(55·10128-1)/9 = 6(1)128<129> = 13 · 173501 · C123
C123 = P36 · P88
P36 = 267350595898139762368454460164113817<36>
P88 = 1013429843029937198436746356859402707194204823053998286988325996171423062779493859595191<88>
77...779 was completed up to n=150 and extended to n=200.
All of the form (R)wD were completed up to n=150.
By Makoto Kamada / GGNFS-0.76.9
(7·10148+11)/9 = (7)1479<148> = 3 · 41 · 48708977 · 86351531742551<14> · C125
C125 = P36 · P89
P36 = 993415971661492272163599319581961343<36>
P89 = 15133529472233645401523975462432692831624602704430654462481118938232590314939464614371793<89>
GGNFS-0.77.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Kenichiro Yamaguchi / GMP-ECM 6.0
(4·10163+23)/9 = (4)1627<163> = 7 · 14653 · 24469 · 64811 · 81929 · 2036542457<10> · 1630218827711<13> · 1296468959746039<16> · C107
C107 = P27 · P81
P27 = 177398463287035313968056151<27>
P81 = 436756065516448467442281333737017520714758168538104180331337529631398901862774229<81>
By Kenichiro Yamaguchi / GMP-ECM 6.0
(4·10177-31)/9 = (4)1761<177> = 3 · 7 · 41 · 83 · 9555151 · 121825559 · 6993278185679143<16> · 1987450676488498295792213921<28> · C114
C114 = P31 · P84
P31 = 3407439607954442734346086267079<31>
P84 = 112811906700370798761209864336294709156790823811110626842278742489688809674782559879<84>
GGNFS-0.77.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GGNFS-0.76.8-k1, GGNFS-0.76.9
(7·10147+11)/9 = (7)1469<147> = 19 · 23 · 4157 · 147769 · 7547759 · C129
C129 = P51 · P79
P51 = 145432501641804194987359256941110878162433378597431<51>
P79 = 2639558158481247702152440926494078037274802115370002626946831690773701265296931<79>
By Wataru Sakai / GMP-ECM 6.0.1
(88·10163-7)/9 = 9(7)163<164> = 461 · 4423 · 94447 · 1091957 · 9195049 · 1323086437<10> · C131
C131 = P34 · C97
P34 = 6193872774611976852485677182185861<34>
C97 = [6170552443864005587034651815566131340863938024398971951303318466718882530081272506573784041246297<97>]
By Makoto Kamada / GMP-ECM 6.0.1
(7·10156-61)/9 = (7)1551<156> = 3 · 7547 · 138851716935889<15> · C138
C138 = P29 · P109
P29 = 31283986568802026181261922819<29>
P109 = 7908362731822548851724011300975381687743896892678084270755321904831025021858156202483075515131972758729597241<109>
(7·10161-61)/9 = (7)1601<161> = 1512 · 6577 · 3964174417114618793679334707731<31> · C123
C123 = P31 · C92
P31 = 7173503721551823549835691411587<31>
C92 = [18238524953407429520765065382411571274449875857508897325629149281010520127492754914054432259<92>]
GGNFS-0.76.9 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GGNFS-0.76.8-k1
(7·10143+11)/9 = (7)1429<143> = 13 · 41 · 390804571968647<15> · C126
C126 = P40 · P41 · P46
P40 = 2289766861024041353959094772163226139523<40>
P41 = 65105409509639567577345718954063213296449<41>
P46 = 2504726698746752032164781729306971836933716427<46>
By Kenichiro Yamaguchi / GMP-ECM 6.0
(13·10151-1)/3 = 4(3)151<152> = 59 · 1187 · 15161 · 69491 · 27183107227518783285462349<26> · C113
C113 = P37 · P76
P37 = 3047532030266442591249134337476328403<37>
P76 = 7089499574115637029455405848167313330867927262329381546899758780820389068633<76>
By Wataru Sakai / GMP-ECM 6.0.1
(82·10168-1)/9 = 9(1)168<169> = 3 · 181 · 20807 · 265313 · 2283581021<10> · 6627985703<10> · 40132505737964821<17> · C121
C121 = P33 · P88
P33 = 680903806222894612395599611481501<33>
P88 = 7348919491167645134446584244235930230519903434295845362863781933790491713303841455204189<88>
By Makoto Kamada / GGNFS-0.76.8-k1 gnfs
(73·10174-1)/9 = 8(1)174<175> = 915068910732463<15> · 161168447478302252881<21> · 15151901726368547274161<23> · 67649257454768559012132169<26> · C92
C92 = P42 · P50
P42 = 769513822589732601146115104987191749621389<42>
P50 = 69726830360915374327489509960239980109132783684837<50>
Note: The timings are not informative because this factoring was parallel-processed with timer-controlled TV-recording.
811...11 was completed up to n=150 and extended to n=200.
By Greg Childers / GGNFS
(73·10128-1)/9 = 8(1)128<129> = 3102850456730838869773<22> · C108
C108 = P44 · P64
P44 = 88145146788324786601066001277456606273526721<44>
P64 = 2965658229312711280672592315071466698732823072548484857611037667<64>
(73·10130-1)/9 = 8(1)130<131> = 3 · 19 · 59149 · C125
C125 = P57 · P68
P57 = 254598585705273884063831377723487427452507796108582701051<57>
P68 = 94493536155070554478692693417661100838095436702079866563460853379777<68>
(73·10137-1)/9 = 8(1)137<138> = 7 · 17 · 48378607 · 9012162445972683674297<22> · C107
C107 = P53 · P54
P53 = 48820731231368639010942884607337751657342879753076971<53>
P54 = 320218735873811343082387627756574642406159808074947141<54>
(73·10138-1)/9 = 8(1)138<139> = 23 · 5881 · C134
C134 = P38 · P97
P38 = 20550217848158827690765665105772045577<38>
P97 = 2917997430751884125589588635712543583560017000408897025617347496600801747875941371252636637049361<97>
(73·10139-1)/9 = 8(1)139<140> = 3 · 783566963 · 4777344126483896523285239<25> · C106
C106 = P47 · P60
P47 = 13185889960268919788213995928494146586472528377<47>
P60 = 547755826727374398278194612196230511365536575392794718931233<60>
(73·10146-1)/9 = 8(1)146<147> = 67 · 71 · 2969 · 48107663 · 6019613513<10> · 2755148784627079<16> · C107
C107 = P31 · P35 · P42
P31 = 7367709020992366316984705878919<31>
P35 = 21877749817345977056648669895466859<35>
P42 = 446553974601218471591705123088806201505727<42>
(73·10148-1)/9 = 8(1)148<149> = 3 · 19 · 10391 · 3481496035449266759787839<25> · C119
C119 = P40 · P80
P40 = 1721182176943702807399847567750693189969<40>
P80 = 22853641213202227068523577883264239564991985988203049530701824462013653201542583<80>
(22·10135-1)/3 = 7(3)135<136> = 648324739 · 1187092199<10> · C118
C118 = P34 · P37 · P49
P34 = 2097507349764705383454278985909679<34>
P37 = 1166071963098961649276137230569419913<37>
P49 = 3895789982810454067138603854806321286670842226039<49>
(22·10136-1)/3 = 7(3)136<137> = 13 · 79 · 167 · 655337 · C126
C126 = P50 · P77
P50 = 47468721932558577314905028553312308620270690913633<50>
P77 = 13744922134993975653810293171547896901397760690085432601593001292479063905497<77>
By Sinkiti Sibata / GGNFS-0.73.4
(46·10145-1)/9 = 5(1)145<146> = 3 · 17 · C145
C145 = P34 · P111
P34 = 1479948218790682322649519735552899<34>
P111 = 677171428373614413221442356947475909522212656512617893117661979283669967520494574265965024003099442977140355039<111>
Number: m51106 N=1002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061 ( 145 digits) Divisors found: r1=1479948218790682322649519735552899 (pp34) r2=677171428373614413221442356947475909522212656512617893117661979283669967520494574265965024003099442977140355039 (pp111) Version: GGNFS-0.73.4 Total time: 27.66 hours. Scaled time: 17.04 units (timescale=0.616). Factorization parameters were as follows: name: m51106 n: 1002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061002178649237472766884531590413943355119825708061 m: 200000000000000000000000000000 c5: 23 c0: -16 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 3250001) Relations: rels:4025816, finalFF:274381 Initial matrix: 228668 x 274381 with sparse part having weight 25118042. Pruned matrix : 213612 x 214819 with weight 18794437. Total sieving time: 25.37 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.90 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 27.66 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(46·10143-1)/9 = 5(1)143<144> = 19373 · 2493613047659664617<19> · C122
C122 = P59 · P63
P59 = 13548360899935912604568399686520512463150505140357917069291<59>
P63 = 780912950724134051340789057048770562094566671147930327961995681<63>
Number: m51105 N=10580090487844437790473423646353477188193058480378051097681099860126355753384119756693667560364711367352714302971119732171 ( 122 digits) Divisors found: r1=13548360899935912604568399686520512463150505140357917069291 (pp59) r2=780912950724134051340789057048770562094566671147930327961995681 (pp63) Version: GGNFS-0.73.4 Total time: 36.01 hours. Scaled time: 19.38 units (timescale=0.538). Factorization parameters were as follows: name: m51105 n: 10580090487844437790473423646353477188193058480378051097681099860126355753384119756693667560364711367352714302971119732171 m: 20000000000000000000000000000 c5: 2875 c0: -2 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 4150001) Relations: rels:4492398, finalFF:232248 Initial matrix: 200090 x 232248 with sparse part having weight 24250685. Pruned matrix : 191266 x 192330 with weight 19434837. Total sieving time: 33.84 hours. Total relation processing time: 0.41 hours. Matrix solve time: 1.65 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 36.01 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(46·10141-1)/9 = 5(1)141<142> = 6317 · C138
C138 = P51 · P88
P51 = 173054415449634714471316150850972053953492570241499<51>
P88 = 4675432168868227863991748073585033746958777046432179287350715754643327983229512268425017<88>
Number: m51104 N=809104180957908993368863560410180641303009515768736918016639403373612650167977063655391975797231456563417937487907410338944294936063180483 ( 138 digits) Divisors found: r1=173054415449634714471316150850972053953492570241499 (pp51) r2=4675432168868227863991748073585033746958777046432179287350715754643327983229512268425017 (pp88) Version: GGNFS-0.73.4 Total time: 14.07 hours. Scaled time: 8.65 units (timescale=0.615). Factorization parameters were as follows: name: m51104 n: 809104180957908993368863560410180641303009515768736918016639403373612650167977063655391975797231456563417937487907410338944294936063180483 m: 20000000000000000000000000000 c5: 115 c0: -8 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 1850001) Relations: rels:3441005, finalFF:234696 Initial matrix: 200271 x 234696 with sparse part having weight 18602285. Pruned matrix : 188551 x 189616 with weight 13678863. Total sieving time: 12.69 hours. Total relation processing time: 0.20 hours. Matrix solve time: 1.11 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 14.07 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.76.8-k1
(7·10142+11)/9 = (7)1419<142> = 3 · 107 · 2030643702079<13> · 164468036194289<15> · C113
C113 = P57(1971...) · P57(3680...)
P57(1971...) = 197112942253336427054440685707575978742217016020240134213<57>
P57(3680...) = 368061271611974101618532409545486155253780038347566783033<57>
By Makoto Kamada / GGNFS-0.76.8-k1
(7·10133+11)/9 = (7)1329<133> = 3 · 41 · 1363925384883079<16> · C116
C116 = P53 · P64
P53 = 13882697967978815356999998203685543888774336835187267<53>
P64 = 3339534477486766645869026862061043795964605721391888748132485061<64>
By Sinkiti Sibata / GGNFS-0.73.4
(46·10137-1)/9 = 5(1)137<138> = 183191 · 13214693 · C126
C126 = P35 · P91
P35 = 21500263345040140680177479810083291<35>
P91 = 9819973850221044705481189378115059795906122802237841682911183553041554013653510858508712967<91>
511...11 n=137 Number: m51103 N=211132023821160228058536474552039094905538977248437397207662404021149242900030462263599439295528564727772475393643745481734397 ( 126 digits) Divisors found: r1=21500263345040140680177479810083291 (pp35) r2=9819973850221044705481189378115059795906122802237841682911183553041554013653510858508712967 (pp91) Version: GGNFS-0.73.4 Total time: 21.70 hours. Scaled time: 11.80 units (timescale=0.544). Factorization parameters were as follows: name: m51103 n: 211132023821160228058536474552039094905538977248437397207662404021149242900030462263599439295528564727772475393643745481734397 m: 2000000000000000000000000000 c5: 575 c0: -4 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2725001) Relations: rels:1868022, finalFF:160057 Initial matrix: 142878 x 160057 with sparse part having weight 15419601. Pruned matrix : 138596 x 139374 with weight 12747139. Total sieving time: 20.71 hours. Total relation processing time: 0.18 hours. Matrix solve time: 0.75 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,125,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 21.70 hours. --------- CPU info (if available) ----------
GGNFS-0.76.8 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
877...77 was completed up to n=150 and extended to n=200.
(79·10141-7)/9 = 8(7)141<142> = 29 · 269 · 47701 · 53961707 · C126
C126 = P36 · P90
P36 = 962917808345966374140858316488668693<36>
P90 = 453974984128998297419281072430079299912697455912175968680541160315429146445373366309562627<90>
(79·10142-7)/9 = 8(7)142<143> = 3 · 23801 · 3180271 · 2274975393117379<16> · C117
C117 = P54 · P64
P54 = 103362200723771968050251614257971661003681520194908011<54>
P64 = 1643862705666786962264445083888886334183492795629961930240355741<64>
(79·10145-7)/9 = 8(7)145<146> = 3 · 251179 · 6376594151<10> · 11723589796112813807<20> · C112
C112 = P34 · P78
P34 = 9904980113260985473300257589561781<34>
P78 = 157317487391679322443617403504147918665067839425210802819376140882728056142213<78>
(79·10146-7)/9 = 8(7)146<147> = 6793 · 163151 · 5758775359<10> · 605663053578405079<18> · C111
C111 = P34 · P78
P34 = 1170644891328605627800277649237881<34>
P78 = 193975479227269007806352169051997628447094967379670003400328405055517730573479<78>
(79·10148-7)/9 = 8(7)148<149> = 32 · 457 · 428693 · C140
C140 = P40 · P101
P40 = 1045059974643046535475147584447096794057<40>
P101 = 47636326743318395474221969473962548013577751292838687898265343630915680195312801909981884477621407029<101>
(79·10149-7)/9 = 8(7)149<150> = 75963852469<11> · 1971858153910503758439816719274653<34> · C106
C106 = P38 · P68
P38 = 58898996531290189163443434051201583057<38>
P68 = 99493345362430927547883863895453784020973388737798576760582245792673<68>
77...771 was completed up to n=150 and extended to n=200.
By Makoto Kamada / GGNFS-0.76.7-k2
(7·10150-61)/9 = (7)1491<150> = 32 · 109 · 5281 · C144
C144 = P37 · P51 · P56
P37 = 7463196942681608557301731181831180779<37>
P51 = 644640595565538317718106739427119856160133212816087<51>
P56 = 31205259772146653085974584759316287155284468023469049707<56>
Number: 77771_150 N=150130992508055975439770673622106865857035960812293600715773098795265271705247221884963671195196477395023101835417869993380724540319812042860511 ( 144 digits) SNFS difficulty: 150 digits. Divisors found: r1=7463196942681608557301731181831180779 (pp37) r2=644640595565538317718106739427119856160133212816087 (pp51) r3=31205259772146653085974584759316287155284468023469049707 (pp56) Version: GGNFS-0.76.7-k2 Total time: 21.84 hours. Scaled time: 18.85 units (timescale=0.863). Factorization parameters were as follows: n: 150130992508055975439770673622106865857035960812293600715773098795265271705247221884963671195196477395023101835417869993380724540319812042860511 m: 1000000000000000000000000000000 c5: 7 c0: -61 skew: 3 type: snfs qintsize: 10000 Factor base limits: 2400000/2400000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [1200000, 1890001) Relations: rels:5015916, finalFF:402576 Initial matrix: 353056 x 402576 with sparse part having weight 31706905. Pruned matrix : 337705 x 339534 with weight 21302252. Total sieving time: 18.78 hours. Total relation processing time: 0.18 hours. Matrix solve time: 2.81 hours. Time per square root: 0.08 hours. Prototype def-par.txt line would be: snfs,150,5,0,0,0,0,0,0,0,0,2400000,2400000,27,27,48,48,2.3,2.3,100000 total time: 21.84 hours. --------- CPU info (if available) ----------
Note: (q0,qintsize)=(1200000,200000),(1400000,200000),(1600000,200000),(1800000,50000),(1850000,10000),(1860000,10000),(1870000,10000),(1880000,10000)
By Sinkiti Sibata / GGNFS-0.73.4
(46·10126-1)/9 = 5(1)126<127> = 79 · 109 · 9311 · C119
C119 = P59 · P61
P59 = 38700686317235083981280550246334580633322862704245433167369<59>
P61 = 1647201539488966597790916821849220994791584251588562540446139<61>
Number: m51101 N=63747830081029215479471494845276318149948613220627280615865125633828564310354098976951402461200337078015297065116838291 ( 119 digits) Divisors found: r1=38700686317235083981280550246334580633322862704245433167369 (pp59) r2=1647201539488966597790916821849220994791584251588562540446139 (pp61) Version: GGNFS-0.73.4 Total time: 3.94 hours. Scaled time: 2.42 units (timescale=0.616). Factorization parameters were as follows: name: m51101 n: 63747830081029215479471494845276318149948613220627280615865125633828564310354098976951402461200337078015297065116838291 m: 20000000000000000000000000 c5: 115 c0: -8 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:2323159, finalFF:199875 Initial matrix: 113163 x 199875 with sparse part having weight 15638741. Pruned matrix : 94081 x 94710 with weight 5837672. Total sieving time: 3.54 hours. Total relation processing time: 0.10 hours. Matrix solve time: 0.26 hours. Time per square root: 0.04 hours. Prototype def-par.txt line would be: snfs,118,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.94 hours. --------- CPU info (if available) ----------
(46·10127-1)/9 = 5(1)127<128> = 3 · 53 · 4549 · C122
C122 = P31 · P35 · P58
P31 = 2392363859435809818983340513613<31>
P35 = 15163438997833256916576351306410299<35>
P58 = 1947947821805882890665273105730403500850339306912125658683<58>
Number: m51102 N=70664657946955113655653272487990464572504166526489491934935055338876207655163842922296988502706533208779192760743754742021 ( 122 digits) Divisors found: r1=2392363859435809818983340513613 (pp31) r2=15163438997833256916576351306410299 (pp35) r3=1947947821805882890665273105730403500850339306912125658683 (pp58) Version: GGNFS-0.73.4 Total time: 5.98 hours. Scaled time: 3.25 units (timescale=0.543). Factorization parameters were as follows: name: m51102 n: 70664657946955113655653272487990464572504166526489491934935055338876207655163842922296988502706533208779192760743754742021 m: 20000000000000000000000000 c5: 575 c0: -4 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 900001) Relations: rels:2381822, finalFF:136518 Initial matrix: 113478 x 136518 with sparse part having weight 11344719. Pruned matrix : 109245 x 109876 with weight 8136832. Total sieving time: 5.45 hours. Total relation processing time: 0.12 hours. Matrix solve time: 0.35 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,121,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 5.98 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0.1
(82·10184-1)/9 = 9(1)184<185> = 4057 · 39916831 · 119210473 · 3069318619261829107267<22> · C145
C145 = P29 · P116
P29 = 25150149627114572596041352157<29>
P116 = 61138294792899960823206015137559502322128591324688472543688005401600350903991080982762707935114037382269465807876559<116>
By Makoto Kamada / GMP-ECM 6.0.1
(5·10181+13)/9 = (5)1807<181> = 7 · 323181862513<12> · C169
C169 = P28 · C141
P28 = 3395082287015165440917727243<28>
C141 = [723322826342414230897947270160507249423718392903192496421233613161383493553692173935273317744574018924734674001169408821616457989025007054089<141>
By Patrick De Geest / Apr 21, 2005
(65·1024214+43)/9 = 7(2)242137<24215> is PRP.
By Patrick De Geest / Apr 23, 2005
(68·1020924+13)/9 = 7(5)209237<20925> is PRP.
(68·1023786+13)/9 = 7(5)237857<23787> is PRP.
Reference: Plateau and Depression Primes (Patrick De Geest)
311...11 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.73.4, GMP-ECM 6.0
(28·10149-1)/9 = 3(1)149<150> = 83 · 18131 · C144
C144 = P69 · P76
P69 = 109712637690850034608956265910417297400012012734563892169318853345141<69>
P76 = 1884338906467129357869775163361615341452520042565997407540228991425036222227<76>
Number: l31109 N=206735791732000714419828856728183116522863464964226955438173926378578864203897013974675013181252578198366979214266659785318170444357172406649007 ( 144 digits) Divisors found: r1=109712637690850034608956265910417297400012012734563892169318853345141 (pp69) r2=1884338906467129357869775163361615341452520042565997407540228991425036222227 (pp76) Version: GGNFS-0.73.4 Total time: 44.12 hours. Scaled time: 23.96 units (timescale=0.543). Factorization parameters were as follows: name: l31109 n: 206735791732000714419828856728183116522863464964226955438173926378578864203897013974675013181252578198366979214266659785318170444357172406649007 m: 1000000000000000000000000000000 c5: 14 c0: -5 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 4950001) Relations: rels:4581716, finalFF:270544 Initial matrix: 228613 x 270544 with sparse part having weight 28241121. Pruned matrix : 216241 x 217448 with weight 22146395. Total sieving time: 41.21 hours. Total relation processing time: 0.46 hours. Matrix solve time: 2.34 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,143,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 44.12 hours. --------- CPU info (if available) ----------
(4·10151+23)/9 = (4)1507<151> = 7 · 149 · 1310797 · C142
C142 = P41 · P102
P41 = 16076983247191394230946741155197657291883<41>
P102 = 202205598358382954832611424841846506881013779686739839063387159950853143131222498975167645613503455179<102>
By Wataru Sakai / GMP-ECM 6.0
(34·10175-7)/9 = 3(7)175<176> = 37 · 3167 · C171
C171 = P37 · C135
P37 = 1869719183555597792745553130948933651<37>
C135 = [172428970884790267773572098773555067620313052257695903370786924123067941585320204628825035992757544753373779549183051477378222231412113<135>]
(7·10165-1)/3 = 2(3)165<166> = 181 · 353 · 163334060377<12> · 643117418899<12> · 368227680607454014054110338137<30> · C108
C108 = P32 · P77
P32 = 25264598480163879162818234792003<32>
P77 = 37370390923630229373194692343284566294654187441060291736869001049044612868377<77>
(7·10184-1)/3 = 2(3)184<185> = 1142348900243197417<19> · 142465396305197131512582268021051<33> · C135
C135 = P36 · P99
P36 = 203872695182143125479149343403594541<36>
P99 = 703249711284032436485688352801256355273488887076887804276466130553333373077465776912850441962670739<99>
By Makoto Kamada / GGNFS-0.76.7-k2
(7·10149-61)/9 = (7)1481<149> = 555630322675904218078384300423796723653<39> · C111
C111 = P49 · P62
P49 = 2485057664954412787686484369815388717811983973779<49>
P62 = 56329140041737536983140214897916095589552398254244315322881333<62>
By Sinkiti Sibata / GGNFS-0.73.4
(28·10148-1)/9 = 3(1)148<149> = 20297 · C145
C145 = P55 · P90
P55 = 5832655002086973292533748447156252349399054005111269643<55>
P90 = 262795171406053605652617712159477735923385859363447375812037122013872356413610009393027341<90>
Number: l31108 N=1532793571025822097409031438690994290343947928812687151357890876046268468793965172740361191856486727649953742479731542154560334586939503922309263 ( 145 digits) Divisors found: r1=5832655002086973292533748447156252349399054005111269643 (pp55) r2=262795171406053605652617712159477735923385859363447375812037122013872356413610009393027341 (pp90) Version: GGNFS-0.73.4 Total time: 36.05 hours. Scaled time: 22.21 units (timescale=0.616). Factorization parameters were as follows: name: l31108 n: 1532793571025822097409031438690994290343947928812687151357890876046268468793965172740361191856486727649953742479731542154560334586939503922309263 m: 200000000000000000000000000000 c5: 875 c0: -1 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 4050001) Relations: rels:4250124, finalFF:271379 Initial matrix: 227758 x 271379 with sparse part having weight 26310421. Pruned matrix : 213853 x 215055 with weight 20206296. Total sieving time: 33.60 hours. Total relation processing time: 0.45 hours. Matrix solve time: 1.91 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,144,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 36.05 hours. --------- CPU info (if available) ----------
By Wataru Sakai / GMP-ECM 6.0, ppsiqs
(34·10163-7)/9 = 3(7)163<164> = 37 · 2213 · 13873 · 2717573 · 629042127787814715016213<24> · 2387205364866130122216319301<28> · C97
C97 = P30 · P34(6100...) · P34(7595...)
P30 = 175892174951568063738151529719<30>
P34(6100...) = 6100305405436925626306059165406463<34>
P34(7595...) = 7595109746811155314245820393107493<34>
(34·10191-7)/9 = 3(7)191<192> = 21137359 · C185
C185 = P31 · C154
P31 = 2442524131464683253791492531113<31>
C154 = [7317231931100555660307974659781822643987331527345602639140892422425831313154900459927911307961271247457274314573737735938888598336999780999553083799310631<154>]
By Sinkiti Sibata / GGNFS-0.73.4
(28·10147-1)/9 = 3(1)147<148> = 3 · 17 · 53 · 5335755289<10> · C135
C135 = P51 · P85
P51 = 188537518563012513122387659479595807159890697208441<51>
P85 = 1144131086843924892396284393693892007671045374707891235617520596889136021659017349113<85>
Number: l31107 N=215711636024356171136259450317142057286458653634236814475120610444086131997493414577157552608859911099463301808885750966397137027462833 ( 135 digits) Divisors found: r1=188537518563012513122387659479595807159890697208441 (pp51) r2=1144131086843924892396284393693892007671045374707891235617520596889136021659017349113 (pp85) Version: GGNFS-0.73.4 Total time: 41.12 hours. Scaled time: 22.37 units (timescale=0.544). Factorization parameters were as follows: name: l31107 n: 215711636024356171136259450317142057286458653634236814475120610444086131997493414577157552608859911099463301808885750966397137027462833 m: 200000000000000000000000000000 c5: 175 c0: -2 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 4650001) Relations: rels:4478278, finalFF:257767 Initial matrix: 228603 x 257767 with sparse part having weight 25987572. Pruned matrix : 219977 x 221184 with weight 21557152. Total sieving time: 38.21 hours. Total relation processing time: 0.42 hours. Matrix solve time: 2.38 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,134,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 41.12 hours. --------- CPU info (if available) ----------
GGNFS-0.76.7 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 6.0.1
(4·10178-31)/9 = (4)1771<178> = 79 · C176
C176 = P25 · P152
P25 = 1454636961350671820684653<25>
P152 = 38675485314059212213362628822433187968055344928163547823737146849834297527351422527392394220459007586366380169257594860787275372503053906042049379898643<152>
By Greg Childers / GGNFS
(79·10130-7)/9 = 8(7)130<131> = 32 · 23 · 7753 · C125
C125 = P50 · P75
P50 = 87852156910981748963827411242902339451719662631441<50>
P75 = 622575496842196079944269287180775768915632176410247848675058282237098994007<75>
(79·10131-7)/9 = 8(7)131<132> = 2027 · 167099 · C124
C124 = P58 · P66
P58 = 6339489895631067272405153849976882861595921763081853789809<58>
P66 = 408792263733038105310352306120575926407165931446528708134291684761<66>
(79·10132-7)/9 = 8(7)132<133> = 61 · 21937 · 34664053 · C120
C120 = P38 · P82
P38 = 22402834500706174331519211189250744043<38>
P82 = 8446858148752724085126640445629105130388709245371288031651389021497634362927605859<82>
(79·10133-7)/9 = 8(7)133<134> = 3 · 19 · 131 · 367 · C128
C128 = P60 · P68
P60 = 324414619178906490467454202971739961429142350293303048478219<60>
P68 = 98735186210383949181018346423482341905135944398687224773201244497847<68>
(79·10136-7)/9 = 8(7)136<137> = 3 · C137
C137 = P68 · P70
P68 = 13849741415614216417922294395086652770736611282736181539471419078631<68>
P70 = 2112621339361060738459333079391665299342139635682486660691788348858189<70>
(79·10137-7)/9 = 8(7)137<138> = 5667367 · 1287080941<10> · C123
C123 = P50 · P73
P50 = 76572912595774863595940218511266290227184043721111<50>
P73 = 1571528345837140402179946004762496112746455103670922030804717525099701781<73>
(79·10140-7)/9 = 8(7)140<141> = 17 · 1789 · 7718740572611<13> · 2135420728795521859<19> · C106
C106 = P34 · P72
P34 = 9590367560093717159072778076164581<34>
P72 = 182582928677329712557337207442640767492104390908201256278464564458954441<72>
By Makoto Kamada / GMP-ECM 6.0.1
(37·10154-1)/9 = 4(1)154<155> = 7 · 137 · 19126002363405928121<20> · 127351652491941403353721613<27> · C107
C107 = P32 · P75
P32 = 63700761301826562377539323194671<32>
P75 = 276291290536828293934811713480966566248898664377085410565259790710409527563<75>
By Sinkiti Sibata / GGNFS-0.73.4
(28·10146-1)/9 = 3(1)146<147> = 557 · 13348403 · C137
C137 = P69(1359...) · P69(3077...)
P69(1359...) = 135946790369989487351394815094401985653072460527854961951072789406649<69>
P69(3077...) = 307795352666770994437375124491141669602934981887147533997871263854009<69>
Number: l31106 N=41843790285846501101189377416041612059016582423585120981205145481473934216655695457236195908689753427442044420073030917936580036069905841 ( 137 digits) Divisors found: r1=135946790369989487351394815094401985653072460527854961951072789406649 (pp69) r2=307795352666770994437375124491141669602934981887147533997871263854009 (pp69) Version: GGNFS-0.73.4 Total time: 25.20 hours. Scaled time: 15.52 units (timescale=0.616). Factorization parameters were as follows: name: l31106 n: 418437902858465011011893774160416120590165824235851209812051454814739342166556954572361959086897534274420444200730309179365800360699 05841 m: 200000000000000000000000000000 c5: 35 c0: -4 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 2950001) Relations: rels:3843113, finalFF:264358 Initial matrix: 228664 x 264358 with sparse part having weight 23304599. Pruned matrix : 216595 x 217802 with weight 18126045. Total sieving time: 22.98 hours. Total relation processing time: 0.29 hours. Matrix solve time: 1.83 hours. Time per square root: 0.09 hours. Prototype def-par.txt line would be: snfs,136,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 25.20 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(28·10136-1)/9 = 3(1)136<137> = 31 · 6469 · 16381 · 1749001 · C121
C121 = P54 · P68
P54 = 303639927086451348390224610638032524907346867513043503<54>
P68 = 17833119933549804907843420188189974329012488534323956272603491728943<68>
Number: l31105 N=5414847236347004877341791175323218589510267360231302329224151122257369650934310998732751101649300558564162598229443207329 ( 121 digits) Divisors found: r1=303639927086451348390224610638032524907346867513043503 (pp54) r2=17833119933549804907843420188189974329012488534323956272603491728943 (pp68) Version: GGNFS-0.73.4 Total time: 10.14 hours. Scaled time: 5.51 units (timescale=0.543). Factorization parameters were as follows: name: l31105 n: 5414847236347004877341791175323218589510267360231302329224151122257369650934310998732751101649300558564162598229443207329 m: 2000000000000000000000000000 c5: 35 c0: -4 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1375001) Relations: rels:1556395, finalFF:161582 Initial matrix: 142758 x 161582 with sparse part having weight 12305044. Pruned matrix : 136729 x 137506 with weight 9471960. Total sieving time: 9.43 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.54 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 10.14 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
(34·10196-43)/9 = 3(7)1953<197> = 3 · 3049 · 220117579995449<15> · 637323208774495304079671<24> · 6082933562488974875094137<25> · C130
C130 = P31 · P100
P31 = 2552276206541853986327759972399<31>
P100 = 1896280242201234033628722747372184139060402766323962383044455211111511783003523558746192840852368767<100>
By Makoto Kamada / GMP-ECM 6.0
(7·10139+11)/9 = (7)1389<139> = 3 · 1863853 · 258389253051832977220151<24> · C109
C109 = P33 · P76
P33 = 562114361412450130941091809433237<33>
P76 = 9576867771658749582260283393987354895106679752346141029415084756744510185063<76>
By Wataru Sakai / GMP-ECM 6.0
5·10196-1 = 4(9)196<197> = 19 · 16981 · 49811 · C187
C187 = P31 · P157
P31 = 1697118101741918215208512034099<31>
P157 = 1833225185034239750757162601262933487008785125955739998834505594511896594577580588571645784267706977995671427911855205353218635320637341730698774065206061769<157>
(2·10182-17)/3 = (6)1811<182> = 61 · 189223 · 11960953171<11> · 33408973239869<14> · C152
C152 = P37 · P115
P37 = 1613519292091473852501969490416428473<37>
P115 = 8957811125858026536655000383264832960261823118115916421556745877565487984735824857076696886049239183655344215790081<115>
(2·10177-17)/3 = (6)1761<177> = 677 · 25349 · 393013 · 79420666569772996063969<23> · C142
C142 = P34 · C108
P34 = 6533336840575541762728113725218487<34>
C108 = [190495072891962287155895804522715908321390448636872248627200727429938656098579795909141221381162892357002863<108>]
(2·10191-17)/3 = (6)1901<191> = 7 · 173 · 971 · 2927 · 14214359 · 100193434669659501271<21> · C155
C155 = P31 · C124
P31 = 1602281856559924955652817548643<31>
C124 = [8488230921265467134620967582971657412689920739807610533649781085284411817119276827063771116254725946997294828930840387898689<124>]
By Sinkiti Sibata / GGNFS-0.73.4
(28·10133-1)/9 = 3(1)133<134> = 23772479 · C127
C127 = P37P37 = 4661149798387950069326780910128942201<37>
P90 = 280768246138105278818027047217392733347706647719771405121039131873453130761157349833137409<90>
Number: l31103 N=1308702853880367761019417079350921336858100121199438691737244193637151224788593192620387260037588469890376645662873910251897209 ( 127 digits) Divisors found: r1=4661149798387950069326780910128942201 (pp37) r2=280768246138105278818027047217392733347706647719771405121039131873453130761157349833137409 (pp90) Version: GGNFS-0.73.4 Total time: 8.09 hours. Scaled time: 4.39 units (timescale=0.542). Factorization parameters were as follows: name: 31103 n: 1308702853880367761019417079350921336858100121199438691737244193637151224788593192620387260037588469890376645662873910251897209 m: 200000000000000000000000000 c5: 875 c0: -1 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1200001) Relations: rels:1516145, finalFF:148481 Initial matrix: 127585 x 148481 with sparse part having weight 10773433. Pruned matrix : 121754 x 122455 with weight 7880271. Total sieving time: 7.47 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.41 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,126,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 8.09 hours. --------- CPU info (if available) ----------
(28·10134-1)/9 = 3(1)134<135> = 19 · 53 · 277 · 701 · 5796859 · 3611192237<10> · C110
C110 = P55 · P56
P55 = 1358769123518944026535129296500716906585653961788989197<55>
P56 = 55937010190050826723396184986190224689858976124054556499<56>
Number: l31104 N=76005482308205602452735531931054395157508378353020693813520447912062177054280151775139858103097619455337141303 ( 110 digits) Divisors found: r1=1358769123518944026535129296500716906585653961788989197 (pp55) r2=55937010190050826723396184986190224689858976124054556499 (pp56) Version: GGNFS-0.73.4 Total time: 14.54 hours. Scaled time: 7.91 units (timescale=0.544). Factorization parameters were as follows: name: l31104 n: 76005482308205602452735531931054395157508378353020693813520447912062177054280151775139858103097619455337141303 m: 200000000000000000000000000 c5: 8750 c0: -1 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1850001) Relations: rels:1736491, finalFF:153310 Initial matrix: 127961 x 153310 with sparse part having weight 13633840. Pruned matrix : 121647 x 122350 with weight 10063904. Total sieving time: 13.84 hours. Total relation processing time: 0.15 hours. Matrix solve time: 0.50 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 14.54 hours. --------- CPU info (if available) ----------
By Patrick De Geest
(29·1021156+7)/9 = 3(2)211553<21157> is PRP.
(31·1024756-13)/9 = 3(4)247553<24757> is PRP.
Reference: Plateau and Depression Primes (Patrick De Geest)
By Makoto Kamada / GMP-ECM 6.0.1
(10172+11)/3 = (3)1717<172> = 31 · 907 · 251233 · 101116567819<12> · 178602295411801363<18> · C134
C134 = P31 · C104
P31 = 1622460357508876958070948506561<31>
C104 = [16104588399797500009149981596611946753705287292116799732924161456380112023893497026169596610428871144901<104>]
By Sinkiti Sibata / GGNFS-0.73.4
(28·10126-1)/9 = 3(1)126<127> = 3 · 29 · 165479 · 3403427 · 905725712473<12> · C101
C101 = P40 · P61
P40 = 7520548355520711934404450344729246962997<40>
P61 = 9321605873732438542588728464618640784227803490462063002278561<61>
Number: l31101 N=70103587724510699817871363877238170923755987842847642523003240015637461078495786280929900500253407317 ( 101 digits) Divisors found: r1=7520548355520711934404450344729246962997 (pp40) r2=9321605873732438542588728464618640784227803490462063002278561 (pp61) Version: GGNFS-0.73.4 Total time: 3.75 hours. Scaled time: 2.03 units (timescale=0.543). Factorization parameters were as follows: name: l31101 n: 70103587724510699817871363877238170923755987842847642523003240015637461078495786280929900500253407317 m: 20000000000000000000000000 c5: 35 c0: -4 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 700001) Relations: rels:2315399, finalFF:181600 Initial matrix: 113358 x 181600 with sparse part having weight 14114309. Pruned matrix : 97833 x 98463 with weight 6024959. Total sieving time: 3.40 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.19 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,100,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 3.75 hours. --------- CPU info (if available) ----------
(28·10128-1)/9 = 3(1)128<129> = 317 · 12990488583482872691<20> · C107
C107 = P48 · P60
P48 = 520969341590184715621338111312366954921214789141<48>
P60 = 145016896897054672966641097051971115808459317464238937158493<60>
Number: l31102 N=75549357295910273871878648645313913785344921136499489785972829004306804898336410837014524942825078692324513 ( 107 digits) Divisors found: r1=520969341590184715621338111312366954921214789141 (pp48) r2=145016896897054672966641097051971115808459317464238937158493 (pp60) Version: GGNFS-0.73.4 Total time: 4.86 hours. Scaled time: 2.64 units (timescale=0.544). Factorization parameters were as follows: name: l31102 n: 75549357295910273871878648645313913785344921136499489785972829004306804898336410837014524942825078692324513 m: 20000000000000000000000000 c5: 875 c0: -1 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:2372245, finalFF:186970 Initial matrix: 112732 x 186970 with sparse part having weight 14950859. Pruned matrix : 98898 x 99525 with weight 6537837. Total sieving time: 4.44 hours. Total relation processing time: 0.11 hours. Matrix solve time: 0.25 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,106,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 4.86 hours. --------- CPU info (if available) ----------
911...11 and 977...77 were completed up to n=150 and extended to n=200.
By Greg Childers / GGNFS
(82·10146-1)/9 = 9(1)146<147> = 29167 · C143
C143 = P48 · P96
P48 = 256855868535299489689781004902527366197548360027<48>
P96 = 121615824522535959031094007148706082221604936125410700136647160409446581665723413013949212463179<96>
(82·10147-1)/9 = 9(1)147<148> = 3 · 59 · 70327 · 12017093324521<14> · C128
C128 = P36 · P44 · P49
P36 = 952841560493798794357879160246751271<36>
P44 = 39809166132491420458669804566713138489528623<44>
P49 = 1605730950807989397645742729921932169993451827313<49>
(82·10148-1)/9 = 9(1)148<149> = 337 · 2889673489231<13> · C134
C134 = P55 · P80
P55 = 4586676192970857715862985285062833916550844750373262691<55>
P80 = 20398328771410687937802775211497323887334474824869923381694033796464039024158643<80>
(82·10150-1)/9 = 9(1)150<151> = 3 · 5412627352781014909039108501<28> · C123
C123 = P43 · P81
P43 = 2163609970502116918824304258607002124680559<43>
P81 = 259336106399642668538817434579928633470800806392064834521559081290061609041131543<81>
(88·10149-7)/9 = 9(7)149<150> = 1903912517104195651<19> · 502982737333598378936536819<27> · C106
C106 = P52 · P54
P52 = 6005269845616733863258911888263192979570858633129223<52>
P54 = 170022957535447400713949792582710386850995776902047071<54>
GGNFS-0.76.5 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GMP-ECM 6.0
(10151+11)/3 = (3)1507<151> = 7 · 7759 · 80330292660589163<17> · C129
C129 = P38 · P92
P38 = 10723801554098805745714107053103682459<38>
P92 = 71243760583205050198522427813757437211296665257075117339872264905009317727769788483445283497<92>
377...77 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.73.4
(34·10149-7)/9 = 3(7)149<150> = 19 · 35082079 · C141
C141 = P55 · P87
P55 = 3293647032815682486587148388647797262718965639969474373<55>
P87 = 172076050190444398601896668406033887471717160455402774934956173811507864767351555224049<87>
Number: k37710 N=566757772128399648717598547556788599098788898333890492062429964189765225141960399087879444655575883506576523582967843373037117323720778796277 ( 141 digits) Divisors found: r1=3293647032815682486587148388647797262718965639969474373 (pp55) r2=172076050190444398601896668406033887471717160455402774934956173811507864767351555224049 (pp87) Version: GGNFS-0.73.4 Total time: 94.02 hours. Scaled time: 50.96 units (timescale=0.542). Factorization parameters were as follows: name: k37710 n: 566757772128399648717598547556788599098788898333890492062429964189765225141960399087879444655575883506576523582967843373037117323720778796277 m: 200000000000000000000000000000 c5: 10625 c0: -7 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 10350001) Relations: rels:5993493, finalFF:256893 Initial matrix: 228178 x 256893 with sparse part having weight 29064147. Pruned matrix : 220882 x 222086 with weight 24663725. Total sieving time: 89.67 hours. Total relation processing time: 1.32 hours. Matrix solve time: 2.89 hours. Time per square root: 0.14 hours. Prototype def-par.txt line would be: snfs,140,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 94.02 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0
(7·10145+11)/9 = (7)1449<145> = 32 · 79 · 25710119 · C135
C135 = P31 · P105
P31 = 1146831769715189838505411535693<31>
P105 = 371007020455420003148942559342227316144526170370008369756227224703491540606184447145949297366752186877967<105>
GGNFS-0.76.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
GGNFS-0.76.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 6.0.1
(2·10158+61)/9 = (2)1579<158> = 313251391 · C149
C149 = P28 · C122
P28 = 4232920182402397664794465973<28>
C122 = [16759243026644441033078586970505600643506656647068226063208409915717978347580855310102681555294119635585623336699318238303<122>]
(7·10134+11)/9 = (7)1339<134> = 63928129007<11> · C124
C124 = P33 · P91
P33 = 147788080974267070211553962198353<33>
P91 = 8232355693924514800028449738780050176431729843501726515504191351449943108161816869648600749<91>
By Makoto Kamada / GMP-ECM 6.0.1, msieve-0.88
(2·10160+7)/9 = (2)1593<160> = 3 · 13 · 1250062086469161201059<22> · 48136003548959021271666142271<29> · C108
C108 = P29 · P31 · P50
P29 = 13371328080552857813032632937<29>
P31 = 1743770179496369829136972897781<31>
P50 = 40612289550914884483774941360738576512928880318129<50>
By Sinkiti Sibata / GMP-ECM 6.0, PPSIQS 1.1
(10152+17)/9 = (1)1513<152> = 13 · 1515011 · 7508749 · 33308141171<11> · C127
C127 = P37 · P42 · P49
P37 = 2534706018965507093982394669753900787<37>
P42 = 415362642537025995750962967685934604758743<42>
P49 = 2142522238665016186174368976894954380965988178469<49>
GGNFS-0.76.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GGNFS-0.73.4
(34·10147-7)/9 = 3(7)147<148> = 3 · C148
C148 = P72 · P76
P72 = 327012654675326019268275586583408201381345039453190255237772871926682059<72>
P76 = 3850796723782792933681729443926505056131156313920688857053701686018709270801<76>
Number: k37709 N=1259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 ( 148 digits) Divisors found: r1=327012654675326019268275586583408201381345039453190255237772871926682059 (pp72) r2=3850796723782792933681729443926505056131156313920688857053701686018709270801 (pp76) Version: GGNFS-0.73.4 Total time: 51.54 hours. Scaled time: 27.94 units (timescale=0.542). Factorization parameters were as follows: name: k37709 n: 1259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259259 m: 200000000000000000000000000000 c5: 425 c0: -28 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 5750001) Relations: rels:4868316, finalFF:263912 Initial matrix: 228399 x 263912 with sparse part having weight 27878886. Pruned matrix : 218281 x 219486 with weight 22642701. Total sieving time: 48.49 hours. Total relation processing time: 0.55 hours. Matrix solve time: 2.38 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,147,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 51.54 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0.1
2·10165-9 = 1(9)1641<166> = 11 · C165
C165 = P30 · C135
P30 = 457527644458064916785243595451<30>
C135 = [397392778382916963637700048853965083487465415508744847291870178477993817516199866163976430024051422843226002208841256962925794882719231<135>]
By Sinkiti Sibata / GMP-ECM 6.0
(10151+17)/9 = (1)1503<151> = 32 · 79 · 89 · 26083 · C141
C141 = P32 · P110
P32 = 29803870477128618189162380635843<32>
P110 = 22587474457446975266501410996265744822035298132651173697313604316355285782041523563816715393423509403721934063<110>
By Wataru Sakai / GMP-ECM 6.0
5·10164-1 = 4(9)164<165> = 121229 · 93065452014541<14> · 4609272099677821<16> · 6199401341721886342501<22> · C109
C109 = P38 · P71
P38 = 19306339505367483920172035659730245319<38>
P71 = 80332808754804132639262177760295673590550769997275924317754987315974609<71>
GGNFS-0.76.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Sinkiti Sibata / GGNFS-0.73.4
(34·10143-7)/9 = 3(7)143<144> = 59165702911074419059<20> · C124
C124 = P42 · P83
P42 = 159244166572815896051477353828629242312671<42>
P83 = 40096165961429717254582279191961125019784398834778977128112269744727054318776155093<83>
Number: k37708 N=6385080531293184725246874180881169179329606923405731904559778114020793658602082210074589331946277002118973392293088695083403 ( 124 digits) Divisors found: r1=159244166572815896051477353828629242312671 (pp42) r2=40096165961429717254582279191961125019784398834778977128112269744727054318776155093 (pp83) Version: GGNFS-0.73.4 Total time: 36.40 hours. Scaled time: 22.39 units (timescale=0.615). Factorization parameters were as follows: name: k37708 n: 6385080531293184725246874180881169179329606923405731904559778114020793658602082210074589331946277002118973392293088695083403 m: 20000000000000000000000000000 c5: 2125 c0: -14 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 4150001) Relations: rels:4521630, finalFF:232648 Initial matrix: 200370 x 232648 with sparse part having weight 24454403. Pruned matrix : 191671 x 192736 with weight 19606593. Total sieving time: 34.17 hours. Total relation processing time: 0.49 hours. Matrix solve time: 1.65 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 36.40 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.75.1-k1 snfs
(7·10147-61)/9 = (7)1461<147> = 3 · 29 · 251 · C143
C143 = P51 · P93
P51 = 164143469097741219899427439827718078536660912420547<51>
P93 = 216989614708270393854627090356885160514878009677626283888296245187620137076930355515057048989<93>
By Sinkiti Sibata / GGNFS-0.73.4
(34·10142-7)/9 = 3(7)142<143> = 29 · 37 · 229 · C138
C138 = P53 · P86
P53 = 14359847055306894628236115991384290464706818549676499<53>
P86 = 10706595347914863980197586178161311155206785845141994603940071533028476646490154744319<86>
Number: k37707 N=153745071679117756515738747330375097277672191088845207200876527785125887821265023493603526731067764044725345734229938416054964767508059181 ( 138 digits) Divisors found: r1=14359847055306894628236115991384290464706818549676499 (pp53) r2=10706595347914863980197586178161311155206785845141994603940071533028476646490154744319 (pp86) Version: GGNFS-0.73.4 Total time: 62.53 hours. Scaled time: 38.46 units (timescale=0.615). Factorization parameters were as follows: name: k37707 n: 153745071679117756515738747330375097277672191088845207200876527785125887821265023493603526731067764044725345734229938416054964767508059181 m: 10000000000000000000000000000 c5: 3400 c0: -7 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 7750001) Relations: rels:2672533, finalFF:161275 Initial matrix: 142538 x 161275 with sparse part having weight 18025470. Pruned matrix : 138998 x 139774 with weight 15129565. Total sieving time: 60.97 hours. Total relation processing time: 0.69 hours. Matrix solve time: 0.80 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,137,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 62.53 hours. --------- CPU info (if available) ----------
233...33 was completed up to n=150 and extended to n=200.
By Greg Childers / GGNFS-0.75.0
(7·10147-1)/3 = 2(3)147<148> = C148
C148 = P56 · P92
P56 = 28458944035129454224022728328272152725290672968984471787<56>
P92 = 81989455773660768996909420134706563661827379229969311238800763807353709534972150609953581759<92>
(7·10148-1)/3 = 2(3)148<149> = 29 · 31 · 809 · 45140445207748352001824727713<29> · C114
C114 = P54 · P60
P54 = 817644335758148384535575590255748135828921520452285417<54>
P60 = 869237194338519720111226834134978288535812860389358841778103<60>
(88·10127-7)/9 = 9(7)127<128> = 347 · 185420141 · 138469771313<12> · C107
C107 = P53 · P54
P53 = 13498947077865242226948015838028450436333381510368533<53>
P54 = 813015660697588603553863210468536387553856397688001219<54>
(88·10138-7)/9 = 9(7)138<139> = 3 · 46819 · C134
C134 = P45 · P89
P45 = 713738208355645453671851827758720998024100113<45>
P89 = 97534402591107911970674333743579554863915732839365926889674646506079851580268339208584697<89>
(88·10141-7)/9 = 9(7)141<142> = 3 · 191 · 845333 · C134
C134 = P61 · P73
P61 = 9483006193734226844470718303864368355471811701328266889128419<61>
P73 = 2128686389190388529781770732257922945533944952541681831622911093447807387<73>
(88·10143-7)/9 = 9(7)143<144> = 115571 · C139
C139 = P39 · P45 · P56
P39 = 289536592037739295831034563283067410861<39>
P45 = 598059070112031117900424085841160010378066699<45>
P56 = 48858907533586509207818886451482221647331921061978842533<56>
(88·10144-7)/9 = 9(7)144<145> = 32 · 73327 · 815776279 · 9503585541912882335101<22> · C109
C109 = P34 · P34 · P42
P34 = 2179008900312918804766239563872103<34>
P34 = 2978966730955436078511712112508319<34>
P42 = 294408617473694153979876024492032061789613<42>
(88·10150-7)/9 = 9(7)150<151> = 3 · C151
C151 = P57 · P94
P57 = 859443018051308055545312681587505059665585398355387847247<57>
P94 = 3792292439176792647055871559862976030480522056174542726734072952714772619976593056365557982997<94>
(82·10144-1)/9 = 9(1)144<145> = 32 · 279481 · C139
C139 = P64 · P75
P64 = 8185374386700748505668411747862045256926012159107274276211242807<64>
P75 = 442525189583899450729889623986038261955874618015309210081082001051365095537<75>
(82·10145-1)/9 = 9(1)145<146> = 7 · 13 · 8297 · 418207 · 1764817471<10> · C126
C126 = P33 · P93
P33 = 320578063016860293781306745156863<33>
P93 = 510016196052800016592470749099662333976337197334384214564140275903454870781381496333154078563<93>
By Wataru Sakai / GMP-ECM 6.0
(2·10192-17)/3 = (6)1911<192> = 29 · 33713 · 138027587 · 2706486997751734917867297649427<31> · C148
C148 = P25 · P123
P25 = 4414624011426525952276313<25>
P123 = 413473595475902297719640502558834922508384255226805169864486254907021551818285852797600411220905342323406422860021450618089<123>
5·10175-1 = 4(9)175<176> = 7 · 107183 · 2543334728950591<16> · 1003880437516672343<19> · C137
C137 = P34 · P103
P34 = 6033965706180633947575226973035593<34>
P103 = 4325713036344580776461295797750335517660863417205395531955960411517789548035861791579322805691565162231<103>
By Makoto Kamada / GGNFS-0.75.1-k1 snfs
(7·10146-61)/9 = (7)1451<146> = 23 · 113 · 199 · 5237 · 621489161 · 2280774894149<13> · C116
C116 = P41 · P75
P41 = 20325876030257371373563557228852351708731<41>
P75 = 996663022677478993746625094222711091564152493773448968407232296140884442737<75>
By Makoto Kamada / GMP-ECM 6.0
(19·10169-1)/9 = 2(1)169<170> = 34 · 7 · 31 · 491 · 462439477 · C154
C154 = P35 · P120
P35 = 16949051215800180229661817614330899<35>
P120 = 312093377566977513799943865389981923191207592549396338466569241130995579041731748939733425239643489999444690210752448451<120>
By Makoto Kamada / GGNFS-0.75.1-k1 snfs
(7·10139-61)/9 = (7)1381<139> = 3864257844679<13> · 749376390265801<15> · C112
C112 = P51 · P62
P51 = 170840785058749549104633136678380876513295663636919<51>
P62 = 15721640771017388913561704531861725729151017011018664159701971<62>
By Sinkiti Sibata / GGNFS-0.73.4
(34·10140-7)/9 = 3(7)140<141> = 13 · 97 · 562239135823966193<18> · C120
C120 = P35 · P48
P35 = 18962580531105013819925621310959029<35>
P39 = 216439675119138501398935998919981981627<39>
P48 = 129827273679564308618923921107307266973286728003<48>
Number: k37706 N=532844207219994142957032514026104279547614121128261663265980748126772647475705934663003458700217660541924962494434504549 ( 120 digits) Divisors found: r1=18962580531105013819925621310959029 (pp35) r2=216439675119138501398935998919981981627 (pp39) r3=129827273679564308618923921107307266973286728003 (pp48) Version: GGNFS-0.73.4 Total time: 19.92 hours. Scaled time: 12.25 units (timescale=0.615). Factorization parameters were as follows: name: k37706 n: 532844207219994142957032514026104279547614121128261663265980748126772647475705934663003458700217660541924962494434504549 m: 10000000000000000000000000000 c5: 34 c0: -7 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2500001) Relations: rels:1816338, finalFF:163959 Initial matrix: 142817 x 163959 with sparse part having weight 15584919. Pruned matrix : 137501 x 138279 with weight 12386412. Total sieving time: 19.07 hours. Total relation processing time: 0.16 hours. Matrix solve time: 0.63 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,119,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 19.92 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(34·10138-7)/9 = 3(7)138<139> = 3 · 3457 · 31039 · C131
C131 = P62 · P69
P62 = 34188634798268298978819751215034923852302976766581742398955861<62>
P69 = 343262446363562764106521714489463642426853332311728668507785751855153<69>
Number: k37705 N=11735674418684007440015807180268123303545917008877465756189988116597602067387608682652663405907458433947196398138168251430912401733 ( 131 digits) Divisors found: r1=34188634798268298978819751215034923852302976766581742398955861 (pp62) r2=343262446363562764106521714489463642426853332311728668507785751855153 (pp69) Version: GGNFS-0.73.4 Total time: 46.43 hours. Scaled time: 25.12 units (timescale=0.541). Factorization parameters were as follows: name: k37705 n: 11735674418684007440015807180268123303545917008877465756189988116597602067387608682652663405907458433947196398138168251430912401733 m: 1000000000000000000000000000 c5: 34000 c0: -7 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 4600001) Relations: rels:2216647, finalFF:160415 Initial matrix: 142643 x 160415 with sparse part having weight 16934844. Pruned matrix : 138753 x 139530 with weight 14166315. Total sieving time: 45.25 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.78 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,130,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 46.43 hours. --------- CPU info (if available) ----------
GMP-ECM 6.0.1 was released.
By Makoto Kamada / GMP-ECM 6.0
(7·10145-61)/9 = (7)1441<145> = 197 · 1531 · 18371 · C136
C136 = P32 · P105
P32 = 10838030787022134638885989676087<32>
P105 = 129518240582805888348222213788728966420173100527061566429014083712011605010261544397093371227658124585689<105>
44...443 was completed up to n=150 and extended to n=200.
By Makoto Kamada / GGNFS-0.75.1-k1 snfs
(4·10150-13)/9 = (4)1493<150> = 232 · 469613 · 1654160484615121055311223<25> · C118
C118 = P36 · P82
P36 = 160956564196782505393447069889174357<36>
P82 = 6719475336362747697669359403462336930338593725470007060387269579864469676910654269<82>
By Sinkiti Sibata / GGNFS-0.73.4
(34·10130-7)/9 = 3(7)130<131> = 37 · 134369 · C124
C124 = P62 · P63
P62 = 29282281975782325625025484705781263001526136553010439375569503<62>
P63 = 259496007332122832662642098333347804169554152578166104389773603<63>
Number: k37704 N=7598635258288898637490946728940611458156427606226294911929247229800184722823129003125877404914980546264547782755107361229309 ( 124 digits) Divisors found: r1=29282281975782325625025484705781263001526136553010439375569503 (pp62) r2=259496007332122832662642098333347804169554152578166104389773603 (pp63) Version: GGNFS-0.73.4 Total time: 6.20 hours. Scaled time: 3.37 units (timescale=0.543). Factorization parameters were as follows: name: k37704 n: 7598635258288898637490946728940611458156427606226294911929247229800184722823129003125877404914980546264547782755107361229309 m: 100000000000000000000000000 c5: 34 c0: -7 skew: 2 type: snfs Factor base limits: 800000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1000001) Relations: rels:1496884, finalFF:165078 Initial matrix: 128270 x 165078 with sparse part having weight 10911848. Pruned matrix : 116934 x 117639 with weight 6501377. Total sieving time: 5.75 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.32 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,123,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,800000,800000,25,25,44,44,2.2,2.2,50000 total time: 6.20 hours. --------- CPU info (if available) ----------
By Sinkiti Sibata / GGNFS-0.73.4
(34·10127-7)/9 = 3(7)127<128> = 37 · 15053 · 1472927723<10> · C113
C113 = P42 · P72
P42 = 155230062976281483061447737084209068757771<42>
P72 = 296656830115061332962965326191267436484994284706036003057773121981169529<72>
Number: k37702 N=46050058421105007914683780970706404687135353954431491157579311435258890966014672359617164000982269003881787159859 ( 113 digits) Divisors found: r1=155230062976281483061447737084209068757771 (pp42) r2=296656830115061332962965326191267436484994284706036003057773121981169529 (pp72) Version: GGNFS-0.73.4 Total time: 7.18 hours. Scaled time: 4.36 units (timescale=0.607). Factorization parameters were as follows: name: k37702 n: 46050058421105007914683780970706404687135353954431491157579311435258890966014672359617164000982269003881787159859 m: 10000000000000000000000000 c5: 3400 c0: -7 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 950001) Relations: rels:2520963, finalFF:150051 Initial matrix: 113138 x 150051 with sparse part having weight 12927902. Pruned matrix : 106100 x 106729 with weight 8134323. Total sieving time: 6.68 hours. Total relation processing time: 0.14 hours. Matrix solve time: 0.31 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,112,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 7.18 hours. --------- CPU info (if available) ----------
(34·10128-7)/9 = 3(7)128<129> = 13 · 23 · 130648656195487<15> · C112
C112 = P40 · P73
P40 = 1351638709342011447031387091550070455827<40>
P73 = 7154835468203482086508784589589905891464319218111039317813430171627140127<73>
Number: k37703 N=9670752577797000708465124794544037740395268848392403581965949987066731139637396267576393089685276368943292670029 ( 112 digits) Divisors found: r1=1351638709342011447031387091550070455827 (pp40) r2=7154835468203482086508784589589905891464319218111039317813430171627140127 (pp73) Version: GGNFS-0.73.4 Total time: 12.19 hours. Scaled time: 7.50 units (timescale=0.615). Factorization parameters were as follows: name: k37703 n: 9670752577797000708465124794544037740395268848392403581965949987066731139637396267576393089685276368943292670029 m: 10000000000000000000000000 c5: 34000 c0: -7 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1150001) Relations: rels:2732752, finalFF:150939 Initial matrix: 113243 x 150939 with sparse part having weight 14008634. Pruned matrix : 106122 x 106752 with weight 9017845. Total sieving time: 11.61 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.36 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 12.19 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.75.0-k1 snfs
(4·10149-13)/9 = (4)1483<149> = 7 · 43 · 372131 · C141
C141 = P36 · P45 · P60
P36 = 979514585338706397525235121746342051<36>
P45 = 853150389760184561740165197965302990373996309<45>
P60 = 474808664563906251379070302619525042466964764352969325785267<60>
By Makoto Kamada / GMP-ECM 6.0
(8·10168-71)/9 = (8)1671<168> = 7 · 83 · 173 · 180380873 · C155
C155 = P31 · C125
P31 = 1899953897191177928067350987423<31>
C125 = [25804276969237260916253285418344233476581942122469731457748077108761430322204665370889961476489935277885313096413193234028503<125>]
(8·10196-71)/9 = (8)1951<196> = 146173 · 887091481901<12> · C179
C179 = P30 · C150
P30 = 415328389201262395447146843143<30>
C150 = [165051809676489778799232533609995191951694867758348728757315986368857894589713570411597574902801792062426550640905856899068949991115036314093560068479<150>]
By Sinkiti Sibata / GGNFS-0.73.4
(34·10123-7)/9 = 3(7)123<124> = 33 · 43 · 2381 · 65654233 · C110
C110 = P51 · P59
P51 = 228073241366731703465850949866083124754565406552647<51>
P59 = 91265728672744333937608545918328332165031571507727702180547<59>
Number: k37701 N=20815270564089464749744358517848507682086141505941880045943121342362963563516692278527546421170723784054757909 ( 110 digits) Divisors found: r1=228073241366731703465850949866083124754565406552647 (pp51) r2=91265728672744333937608545918328332165031571507727702180547 (pp59) Version: GGNFS-0.73.4 Total time: 7.12 hours. Scaled time: 3.87 units (timescale=0.543). Factorization parameters were as follows: name: k37701 n: 20815270564089464749744358517848507682086141505941880045943121342362963563516692278527546421170723784054757909 m: 1000000000000000000000000 c5: 34000 c0: -7 skew: 2 type: snfs Factor base limits: 600000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 800001) Relations: rels:2370750, finalFF:164981 Initial matrix: 113243 x 164981 with sparse part having weight 13017125. Pruned matrix : 103068 x 103698 with weight 6770652. Total sieving time: 6.66 hours. Total relation processing time: 0.13 hours. Matrix solve time: 0.28 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,109,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,600000,800000,25,25,46,46,2.4,2.4,50000 total time: 7.12 hours. --------- CPU info (if available) ----------
By Greg Childers / GGNFS
(7·10134-1)/3 = 2(3)134<135> = 2687 · 26833 · 79997 · C122
C122 = P39 · P83
P39 = 771549077712514232402170980951694608989<39>
P83 = 52432749379921308888652713286289616095590543816434038850924585063069017189083721731<83>
(7·10140-1)/3 = 2(3)140<141> = 139790505520027121<18> · C122
C124 = P53 · P71
P53 = 17514404708105602775785958293570049261299584117978797<53>
P71 = 95302376184039582842790056551002438240365023859450505185427374272245209<71>
(7·10141-1)/3 = 2(3)141<142> = 64007627 · 70772707 · C126
C126 = P55 · P72
P55 = 1221723159478576199812390505264940726610470862664612767<55>
P72 = 421605671802088627262999790532109985612856263571920813026711010506814091<72>
(7·10146-1)/3 = 2(3)146<147> = 47 · 726659 · 52112059 · 3317865151<10> · 137793451812881<15> · C108
C108 = P44 · P64
P44 = 55035945498874811477334913528070841930020281<44>
P64 = 5210462746755513930039422413966535472645954889567861158427029229<64>
By Makoto Kamada / GMP-ECM 6.0
(71·10177-17)/9 = 7(8)1767<178> = 32 · 11 · 19 · 461 · 53003 · C168
C168 = P30 · P138
P30 = 293732138416785503474953843403<30>
P138 = 584351549121526817472239008645961640671838483416139585509952536730167633447579656425400241150635003290073163563155453362820726497771397923<138>
(32·10153-23)/9 = 3(5)1523<154> = 11 · 52639 · 41062810549<11> · C138
C138 = P29 · P109
P29 = 22164315884002962063948498389<29>
P109 = 6746898101033529172667760478686470738160556990038859898121845635069951614645073480019101582032109179189662437<109>
GGNFS-0.75.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
88...881 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.73.4
(8·10147-71)/9 = (8)1461<147> = 28879 · C143
C143 = P51 · P93
P51 = 294504784002895550590988602520201224751949031176319<51>
P93 = 104513639818877686348191140169016064234268586680938648198689183872661179840736203367068100481<93>
Number: j88106 N=30779766920214996671937701751753484846735998091654450946670206339862491391283939502368118317424041306447206928525533740395750853176664319709439 ( 143 digits) Divisors found: r1=294504784002895550590988602520201224751949031176319 (pp51) r2=104513639818877686348191140169016064234268586680938648198689183872661179840736203367068100481 (pp93) Version: GGNFS-0.73.4 Total time: 37.76 hours. Scaled time: 23.26 units (timescale=0.616). Factorization parameters were as follows: name: j88106 n: 30779766920214996671937701751753484846735998091654450946670206339862491391283939502368118317424041306447206928525533740395750853176664319709439 m: 200000000000000000000000000000 c5: 25 c0: -71 skew: 2 type: snfs Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 4250001) Relations: rels:4358154, finalFF:258915 Initial matrix: 228627 x 258915 with sparse part having weight 25726228. Pruned matrix : 219647 x 220854 with weight 21147722. Total sieving time: 35.09 hours. Total relation processing time: 0.46 hours. Matrix solve time: 2.11 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,142,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 37.76 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.75.0 snfs
(4·10147-13)/9 = (4)1463<147> = 59 · 283447 · C140
C140 = P43 · P97
P43 = 5501922485469216369471738261138543131046953<43>
P97 = 4830355981053067114086117821406228225197620096371111351794639417630449363038228404212209356373647<97>
By Wataru Sakai / GMP-ECM 6.0 B1=10000000, sigma=247942321
5·10200-1 = 4(9)200<201> = 31 · 109 · 27509 · C193
C193 = P29 · P165
P29 = 25738900941728998684305569489<29>
P165 = 208985912004232692112989418962913512143454946422920593821299571281505741429255867900662632079343171630051175697271076302567705286976144762874932292328157121848234881<165>
By Wataru Sakai / GMP-ECM 6.0 B1=10000000, sigma=360834158
(2·10151-17)/3 = (6)1501<151> = 32116457 · 1389926233443061817127901<25> · C120
C120 = P28 · P92
P28 = 2494684960932509871857956307<28>
P92 = 59865091562028169565031261511383796403314949997486501394077091779336886690231729006236862939<92>
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=3637654551
(64·10191-1)/9 = 7(1)191<192> = 32 · 177347 · C186
C186 = P35 · P151
P35 = 72046914050576330479643982087846133<35>
P151 = 6183804131927397511930508866128333307540132161954050966245127136138008723056339521492747866889224629953352821547764396211733654423079530924501517525329<151>
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1591699330
(19·10199-1)/9 = 2(1)199<200> = 3 · 7 · 31 · 661 · 16475500550693<14> · C181
C181 = P29 · P153
P29 = 12039737753351859168073867937<29>
P153 = 247327836283486034200948168590448445309507634613457627140571268083563989326717381589497786656561227759235505596834759223622464821469585496252648088182061<153>
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=702755417
(65·10159+43)/9 = 7(2)1587<160> = 3 · 11 · 59 · 71 · 2041783 · 44769887 · 3172010403949<13> · 8036583893106069853<19> · C110
C110 = P28 · P83
P28 = 1882939818768717369123334213<28>
P83 = 11907166867044885474419358746175080272831949023533081185481895879812180422202279491<83>
By Anton Korobeynikov / GGNFS-0.73.5 gnfs
(2·10153-17)/3 = (6)1521<153> = 19 · 2562406584306500032738099<25> · 21744462903561138061102444087<29> · C99
C99 = P36 · P64
P36 = 196879792980124329914606363973434593<36>
P64 = 3198580383567896453487106481733744552285092723209800248955519691<64>
(37·10175-1)/9 = 4(1)175<176> = 83 · 1728061 · 62255623 · 310249913 · 660582397 · 2077289197<10> · 1228781294399<13> · 2195051142251402339<19> · C103
C103 = P44 · P59
P44 = 47350084968354044128549604953354834484194723<44>
P59 = 84677464392407571600299536746474616562054270128237104881489<59>
(2·10159-17)/3 = (6)1581<159> = 151 · 193 · 33809 · 281842411799081556778189<24> · 1435923743441647564927829<25> · C103
C103 = P44 · P60
P44 = 14763994702977033624476169056596457639676577<44>
P60 = 113240181086868081035463303592256704928173109045882390874019<60>
By Makoto Kamada / GGNFS-0.75.0 snfs
(4·10146-13)/9 = (4)1453<146> = 107 · 27131640162086598233<20> · C125
C125 = P33 · P37 · P56
P33 = 184121370490036915586131035059509<33>
P37 = 1055603875077599414172552979920523717<37>
P56 = 78768482909143118022534192640998218827816175800212452401<56>
By Sinkiti Sibata / GGNFS-0.73.4
(8·10146-71)/9 = (8)1451<146> = 32 · 8071981 · 957192698577191959<18> · C121
C121 = P39 · P82
P39 = 244015058696722731017342474697235400573<39>
P82 = 5238522716535463823830498912093836594874424872235128509924294388313944637065183927<82>
Number: j88105 N=1278278428159516617589877135556811657384437306322571230959660199347283694792190788503310029082936224665104016453766190171 ( 121 digits) Divisors found: r1=244015058696722731017342474697235400573 (pp39) r2=5238522716535463823830498912093836594874424872235128509924294388313944637065183927 (pp82) Version: GGNFS-0.73.4 Total time: 43.01 hours. Scaled time: 26.50 units (timescale=0.616). Factorization parameters were as follows: name: j88105 n: 1278278428159516617589877135556811657384437306322571230959660199347283694792190788503310029082936224665104016453766190171 m: 100000000000000000000000000000 c5: 80 c0: -71 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 4950001) Relations: rels:4874901, finalFF:235426 Initial matrix: 199856 x 235426 with sparse part having weight 25338580. Pruned matrix : 190709 x 191772 with weight 20142242. Total sieving time: 40.38 hours. Total relation processing time: 0.84 hours. Matrix solve time: 1.69 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: snfs,120,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 43.01 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.74.1 snfs
(4·10144-13)/9 = (4)1433<144> = 911 · 359501 · 115444936721172868421531<24> · C113
C113 = P31 · P40 · P43
P31 = 1201061938005134735112420803261<31>
P40 = 9702710356322893635637713183602981332511<40>
P43 = 1008708407750564258969627143935650466905113<43>
GGNFS-0.75.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GGNFS-0.74.1 gnfs
(4·10141-13)/9 = (4)1403<141> = 19 · 11069 · 1094246828371<13> · 6290633795157765887<19> · C105
C105 = P45 · P60
P45 = 882988703243923229509415932407539393649751121<45>
P60 = 347688755777819104713795128071419010771590740035114488452689<60>
Note: snfs could be fast because 141/105=1.34 is much less than 1.5.
The following minor patch for factLat.pl of GGNFS-0.74.1 worked well on the previous result. It reduces sqrt loops for the last factor of three or more factors.
By Makoto Kamada / GGNFS-0.74.1 snfs
(4·10143-13)/9 = (4)1423<143> = 7 · 1977187 · C136
C136 = P34 · P49 · P53
P34 = 6670961413812920852216081065741859<34>
P49 = 8052514485941713395473217117583362772576332428849<49>
P53 = 59779427589342048190221936865693818327530153053391797<53>
By Sinkiti Sibata / GGNFS-0.73.4
(8·10143-71)/9 = (8)1421<143> = 3 · 13 · 223 · 175937 · 11183087 · 577824862557427<15> · C112
C112 = P56 · P57
P56 = 13809248179977295317907181032580714669908659084201317843<56>
P57 = 651017798512443364918142954111615946493835558472066351647<57>
Number: j88104 N=8990066349240784092196949538572678291852997278636043194250413507136260650825416650647123847946081685014453537421 ( 112 digits) Divisors found: r1=13809248179977295317907181032580714669908659084201317843 (pp56) r2=651017798512443364918142954111615946493835558472066351647 (pp57) Version: GGNFS-0.73.4 Total time: 27.43 hours. Scaled time: 14.87 units (timescale=0.542). Factorization parameters were as follows: name: j88104 n: 8990066349240784092196949538572678291852997278636043194250413507136260650825416650647123847946081685014453537421 m: 20000000000000000000000000000 c5: 250 c0: -71 skew: 2 type:snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 3250001) Relations: rels:4157343, finalFF:229300 Initial matrix: 199366 x 229300 with sparse part having weight 22516221. Pruned matrix : 190928 x 191988 with weight 18062251. Total sieving time: 25.22 hours. Total relation processing time: 0.61 hours. Matrix solve time: 1.51 hours. Time per square root: 0.10 hours. Prototype def-par.txt line would be: type:snfs ,111,5,maxs1,maxskew,goodScore,efrac,j0,j1,eStepSize,maxTime,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 27.43 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GGNFS-0.74.1 snfs
(4·10137-13)/9 = (4)1363<137> = 7 · 104331119 · C128
C128 = P62 · P67
P62 = 47500961308098563123953446535558058249062132442733463363231771<62>
P67 = 1281159430214433567066750950304294710660085837265621582153232025401<67>
By Makoto Kamada / GGNFS-0.74.1 snfs
(4·10136-13)/9 = (4)1353<136> = 3 · 17 · 23869 · C130
C130 = P40 · P90
P40 = 5569604794549986821668105615317242962351<40>
P90 = 655524158251049906507207657944232316625554679504454956873228577777853555023001632968730147<90>
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1023024392
(5·10185+31)/9 = (5)1849<185> = 7 · 839 · 2693 · 3685434983<10> · 4716143321955779050241<22> · C147
C147 = P30 · P117
P30 = 784273636611723619839629977117<30>
P117 = 257684191180800197130168874097180637870838363003197764017252719874203399490245209953298698586830223548082334195460481<117>
Implementations and Related links were updated.
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1320275836
(32·10178-23)/9 = 3(5)1773<179> = 35 · 7 · 821641 · 31761867398052964369111<23> · C147
C147 = P29 · C119
P29 = 13291104803552696136084852221<29>
C119 = [60263443220925733510339303130734397530483629006462893782178196085088379313216246787243364610748439124277888190622016543<119>]
(34·10153-43)/9 = 3(7)1523<154> = 7 · 11 · 29 · C151
C151 = P29 · P122
P29 = 18654458903298109028309897689<29>
P122 = 90691174909606288413043494285123665969423939843744607862478985935345942334804808180830023827233929506567312815377993457629<122>
GGNFS-0.74.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1871608025
(29·10182+7)/9 = 3(2)1813<183> = 19 · C182
C182 = P32 · C150
P32 = 78816798311170189259967749425793<32>
C150 = [215170683038033059308217327764204256619797115290314719459247954557090026283100034553365444015962463244812020203725360539039142912528169906670326462869<150>]
By Sinkiti Sibata / GGNFS-0.73.4
(8·10138-71)/9 = (8)1371<138> = 72 · 23 · 823 · C132
C132 = P63 · P70
P63 = 953126908649690815881932198872510676877162465427926423951261251<63>
P70 = 1005478979268033474209037726769876604944030148214639347290810254224411<70>
Number: j88103 N=958349071221987306906138932583616854916372663140660846373169867732254998958394353215602545806390247648181430812767461748994242598161 ( 132 digits) SNFS difficulty: 138 digits. Divisors found: r1=953126908649690815881932198872510676877162465427926423951261251 (pp63) r2=1005478979268033474209037726769876604944030148214639347290810254224411 (pp70) Version: GGNFS-0.73.4 Total time: 65.93 hours. Scaled time: 26.11 units (timescale=0.396). Factorization parameters were as follows: name: j88103 n: 958349071221987306906138932583616854916372663140660846373169867732254998958394353215602545806390247648181430812767461748994242598161 m: 1000000000000000000000000000 c5: 8000 c0: -71 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2725001) Relations: rels:1743544, finalFF:165724 Initial matrix: 142028 x 165724 with sparse part having weight 21244052. Pruned matrix : 136947 x 137721 with weight 16246194. Total sieving time: 61.92 hours. Total relation processing time: 0.46 hours. Matrix solve time: 3.42 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 65.93 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=638607885
(2·10176+43)/9 = (2)1757<176> = 3 · 48971055909467<14> · C162
C162 = P30 · C132
P30 = 228716882727738050432210325227<30>
C132 = [661345708821893374203289907537504451929814257329220639890816873822424081235838857218842383267701303693905313157390167847097369642601<132>]
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=2121005909
(2·10160+7)/9 = (2)1593<160> = 3 · 13 · 1250062086469161201059<22> · C137
C137 = P29 · C108
P29 = 48136003548959021271666142271<29>
C108 = [946937390184119123149230014216110746175388879386938474765261300359954677327523608896717756677011940160296813<108>]
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=1857358533
(5·10171-17)/3 = 1(6)1701<172> = 11 · 2287 · 1918849 · 67969339 · 1750787829386077<16> · C138
C138 = P31 · P108
P31 = 1289639832433732866367006317421<31>
P108 = 224974914700071946670803106645422496810079454083188654051428093378792437954679615961223611371107871758704779<108>
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=699392997
(16·10182-7)/9 = 1(7)182<183> = 3 · 227 · 30853 · 1396054142825212027<19> · C157
C157 = P32 · C126
P32 = 30844830282414589468929329921501<32>
C126 = [196493557424740682427240818584015055922748541801083874106162700859906957590919852245108331779080425865538457466900821724236507<126>]
By Sinkiti Sibata / GGNFS-0.73.4
(8·10133-71)/9 = (8)1321<133> = 2083 · 281540027927<12> · C119
C119 = P53 · P66
P53 = 44180697947286255158411062483799634703103896793670097<53>
P66 = 343072167102739027740217720669150545239984708581552287416209632653<66>
Number: j88102 N=15157167788887029278499434160650876598230979558105683916702038933061368520629865974352232379281951637248094608040877341 ( 119 digits) SNFS difficulty: 133 digits. Divisors found: r1=44180697947286255158411062483799634703103896793670097 (pp53) r2=343072167102739027740217720669150545239984708581552287416209632653 (pp66) Version: GGNFS-0.73.4 Total time: 36.87 hours. Scaled time: 14.60 units (timescale=0.396). Factorization parameters were as follows: name: j88102 n: 15157167788887029278499434160650876598230979558105683916702038933061368520629865974352232379281951637248094608040877341 m: 100000000000000000000000000 c5: 8000 c0: -71 skew: 2 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1675001) Relations: rels:1621596, finalFF:181659 Initial matrix: 142028 x 181659 with sparse part having weight 18291923. Pruned matrix : 131149 x 131923 with weight 11396562. Total sieving time: 34.06 hours. Total relation processing time: 0.40 hours. Matrix solve time: 2.30 hours. Time per square root: 0.11 hours. Prototype def-par.txt line would be: snfs,133,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 36.87 hours. --------- CPU info (if available) ----------
GGNFS-0.74.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 6.0 B1=4000000, sigma=3012996616
(4·10161-31)/9 = (4)1601<161> = 131 · 883 · 2208991 · C150
C150 = P27 · C123
P27 = 797310706397702315094462679<27>
C123 = [218154381678270038525449369005992663649547727274534303648935100262558948664172946382691774971574060972964083543032839108153<123>]
66...661 was completed up to n=150 and extended to n=200.
By Samuel Chong / GGNFS-0.73.5
(2·10144-17)/3 = (6)1431<144> = 109 · 50023 · 21751193 · 735932175501569<15> · C115
C115 = P46 · P69
P46 = 9010310688642326233265096984647407945862839721<46>
P69 = 847718907657335420285035802731421296973483966989310537574803153805439<69>
Number: 66661_144 N=7638210734629086471818368941391297821059070838809421324664386454024733507855954660821975509504077362672260075042519 ( 115 digits) SNFS difficulty: 145 digits. Divisors found: r1=9010310688642326233265096984647407945862839721 (pp46) r2=847718907657335420285035802731421296973483966989310537574803153805439 (pp69) Version: GGNFS-0.73.5 Total time: 11.52 hours. Scaled time: 13.63 units (timescale=1.183). Factorization parameters were as follows: name: 66661_144 n: 7638210734629086471818368941391297821059070838809421324664386454024733507855954660821975509504077362672260075042519 m: 100000000000000000000000000000 c5: 1 c0: -85 type: snfs skew: 3.3 # q0: 1500000 # qintsize: 1000 # Total yield: 2832 # 0.01042 sec/rel Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 2050001) Relations: rels:3384525, finalFF:231570 Initial matrix: 200443 x 231570 with sparse part having weight 23798999. Pruned matrix : 192012 x 193078 with weight 17523997. Total sieving time: 10.81 hours. Total relation processing time: 0.17 hours. Matrix solve time: 0.50 hours. Time per square root: 0.05 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 11.52 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 11h48m27.252s
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
6·10181-1 = 5(9)181<182> = 131 · 487 · 18181 · 674898763500069035186759<24> · 19628097687242489745811747<26> · 48674443951736616443332178819393<32> · C92
C92 = P36 · P57
P36 = 649358366409383652721618856006943917<36>
P57 = 123546641542522653581874320775628167353811065357396519639<57>
(2·10155+61)/9 = (2)1549<155> = 224291 · 25151270720546305374653<23> · 53930670335029865196595439<26> · C101
C101 = P38 · P64
P38 = 11470361757319810381042505340424311199<38>
P64 = 6367995878207355963094808493213892205598555681436964552563889443<64>
(61·10143-7)/9 = 6(7)143<144> = 51431 · 10622701 · 496487647973<12> · 56238928049817934793<20> · C101
C101 = P43 · P58
P43 = 4680975399001077044491138897340829801609143<43>
P58 = 9491733990131346309861366171831433389834016080784918094921<58>
By Wataru Sakai / GMP-ECM 6.0 B1=10000000, sigma=3237705988, ppsiqs
5·10163-1 = 4(9)163<164> = 7 · 113 · 4051162866465457<16> · 80377700901754687749486798145765159<35> · C111
C111 = P30 · P38 · P44
P30 = 922191787468962700083112302737<30>
P38 = 10600775268809505921573949265742014977<38>
P44 = 19857261721993282761679812592330289110528447<44>
By Sinkiti Sibata / GGNFS
(8·10131-71)/9 = (8)1301<131> = 3 · 13 · 43 · C128
C128 = P39 · P45 · P46
P39 = 205452220941053456381764541983761700591<39>
P45 = 198893883663448598360206316239185131829733873<45>
P46 = 1297125946323526646472484824054582043569965771<46>
By Makoto Kamada / GMP-ECM 5.0.3 B1=4000000, sigma=2600234418
(31·10198-13)/9 = 3(4)1973<199> = 13807 · 55176943 · 2464251682646479368817283<25> · C163
C163 = P37 · P126
P37 = 7668852788629687774894484829351720091<37>
P126 = 239247143552778489059012095627246918199057381789225651368653497083406463540165747563198598351478625341918482064501174891622731<126>
By Samuel Chong / GGNFS-0.73.5
(2·10147-17)/3 = (6)1461<147> = 113468360961238251999461<24> · C124
C124 = P57 · P68
P57 = 167551653305861484475167174818184917477461455719286923167<57>
P68 = 35065920334552258653933991509712710211702738896870600298642734067103<68>
Number: 66661_147 N=5875352926745858400364299835553161667388639882024982258932877646732775882448151073709335484737960632059069528172128983275201 ( 124 digits) SNFS difficulty: 147 digits. Divisors found: r1=167551653305861484475167174818184917477461455719286923167 (pp57) r2=35065920334552258653933991509712710211702738896870600298642734067103 (pp68) Version: GGNFS-0.73.5 Total time: 15.76 hours. Scaled time: 18.71 units (timescale=1.187). Factorization parameters were as follows: name: 66661_147 n: 5875352926745858400364299835553161667388639882024982258932877646732775882448151073709335484737960632059069528172128983275201 m: 100000000000000000000000000000 c5: 200 c0: -17 type: snfs skew: 0.9 # Total yield: 2752 # 0.01245 sec/rel # q0: 1500000 # qintsize: 1000 Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 2650001) Relations: rels:3584708, finalFF:261807 Initial matrix: 228567 x 261807 with sparse part having weight 27421568. Pruned matrix : 218660 x 219866 with weight 20601947. Total sieving time: 14.82 hours. Total relation processing time: 0.21 hours. Matrix solve time: 0.67 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,147,5,0,0,0,0,0,0,0,0,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 15.76 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 16h13m35.908s
By Wataru Sakai / GMP-ECM 6.0 B1=10000000, sigma=3353644342
5·10163-1 = 4(9)163<164> = 7 · 113 · 4051162866465457<16> · C146
C146 = P35 · C111
P35 = 80377700901754687749486798145765159<35>
C111 = [194123555905774073773335872686682485377707052288007418336823809554914419973347368013356801541069288909997017903<111>]
By Makoto Kamada / GMP-ECM 6.0 B1=30000000, sigma=424246314
2·10186-1 = 1(9)186<187> = C187
C187 = P42 · P145
P42 = 296901871784840474596451067124798270007983<42>
P145 = 6736232371917697306232661533335076985833929307159972549000421272481243378053186113524491727400346082186043249318474480674836559545201820196754353<145>
By Makoto Kamada / GMP-ECM 6.0 B1=38000000, sigma=3142880293
2·10165-1 = 1(9)165<166> = C166
C166 = P34 · P132
P34 = 7655941307665973375570133663486511<34>
P132 = 261235022530460006598408687183638970951651414830860078908511421097709137512874249975566177407311365807827101538554263013466888047409<132>
By Samuel Chong / GGNFS-0.73.5
(2·10145-17)/3 = (6)1441<145> = 15051374209<11> · 271049832816685802123<21> · C115
C115 = P52 · P63
P52 = 2897480993006825249677033828038227862600186433752149<52>
P63 = 563978889553907436123240447494023449044786385777188195106095827<63>
Number: 66661_145 N=1634118112939542341782232505884671006780046147979199384284867046315859403063925801261340213499693908724169961182223 ( 115 digits) SNFS difficulty: 145 digits. Divisors found: r1=2897480993006825249677033828038227862600186433752149 (pp52) r2=563978889553907436123240447494023449044786385777188195106095827 (pp63) Version: GGNFS-0.73.5 Total time: 16.19 hours. Scaled time: 19.21 units (timescale=1.186). Factorization parameters were as follows: name: 66661_145 n: 1634118112939542341782232505884671006780046147979199384284867046315859403063925801261340213499693908724169961182223 m: 100000000000000000000000000000 c5: 2 c0: -17 type: snfs skew: 1.6 Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 2750001) Relations: rels:3724848, finalFF:234368 Initial matrix: 200339 x 234368 with sparse part having weight 29371143. Pruned matrix : 192190 x 193255 with weight 22189332. Total sieving time: 15.33 hours. Total relation processing time: 0.22 hours. Matrix solve time: 0.58 hours. Time per square root: 0.06 hours. Prototype def-par.txt line would be: snfs,145,5,0,0,0,0,0,0,0,0,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 16.19 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 16h56m22.138s
411...11 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.73.4
(37·10143-1)/9 = 4(1)143<144> = 3 · 67 · 103 · 3414687691<10> · 292919872076554216571711<24> · C107
C107 = P41 · P67
P41 = 14417866945101946715981308346194094245927<41>
P67 = 1376971952834728027637351312304465040637121323011850730119186565731<67>
Number: i41107 N=19852998403108302046327483463154874767909149204413354266820803314730743743849556135295075794236187264527637 ( 107 digits) SNFS difficulty: 144 digits. Divisors found: r1=14417866945101946715981308346194094245927 (pp41) r2=1376971952834728027637351312304465040637121323011850730119186565731 (pp67) Version: GGNFS-0.73.4 Total time: 91.77 hours. Scaled time: 36.16 units (timescale=0.394). Factorization parameters were as follows: name: i41107 n: 19852998403108302046327483463154874767909149204413354266820803314730743743849556135295075794236187264527637 m: 10000000000000000000000000000 c5: 37000 c0: -1 skew: 2 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 4150001) Relations: rels:4066793, finalFF:227135 Initial matrix: 200586 x 227135 with sparse part having weight 32998299. Pruned matrix : 194544 x 195610 with weight 27098832. Total sieving time: 81.88 hours. Total relation processing time: 1.33 hours. Matrix solve time: 8.34 hours. Time per square root: 0.22 hours. Prototype def-par.txt line would be: snfs,144,5,0,0,0,0,0,0,0,0,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 91.77 hours. --------- CPU info (if available) ----------
By Makoto Kamada / GMP-ECM 5.0.3
(4·10166+41)/9 = (4)1659<166> = 3 · 1259 · 8881923858737<13> · 40401364458263<14> · C136
C136 = P26 · C110
P26 = 51065495646920997327834599<26>
C110 = [64215499797161706827556621033272257352479923928817161623830377582115563446339781572769051365696464966564169073<110>]
By Makoto Kamada / GMP-ECM 5.0.3
(13·10163-1)/3 = 4(3)163<164> = 149 · 50695738647454483125181<23> · C139
C139 = P28 · P111
P28 = 6140946447600956263768081909<28>
P111 = 934176770639037903207621033094633898962710110634372879809918378119997157771173772916438630980581332538652981473<111>
(13·10164-1)/3 = 4(3)164<165> = 17 · 23 · 121291 · 1720324112526590653<19> · C139
C139 = P29 · C111
P29 = 22830290549856975884476811953<29>
C111 = [232645709918092128212963626281842374753128885585849987283506411402099491993298681298998317099407771797991436077<111>]
By Makoto Kamada / GMP-ECM 5.0.3
(35·10188-53)/9 = 3(8)1873<189> = 28817 · 235468099 · 33289822364458007<17> · 60999723903947177<17> · C143
C143 = P41 · P102
P41 = 61191520856023770915728179511380334217869<41>
P102 = 461226334799672805678358305361391690435579575106981188991446293523131031705549655014689841009523462411<102>
GGNFS-0.73.5 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
10189-9 = (9)1881<189> = 680546965633716247679<21> · C169
C169 = P30 · C139
P30 = 210016417538123401200815971279<30>
C139 = [6996625878416692438029157723410875624263386189411081125190307294339622079250688809160942796831099033973415942935043602179220749546094656551<139>]
By Makoto Kamada / GMP-ECM 5.0.3
(14·10194-41)/9 = 1(5)1931<195> = C195
C195 = P28 · C168
P28 = 1084570892146078895828767943<28>
C168 = [143425899295298493547667776972810307359568695526747206375172911744562804904622830704851532009679085160647535787468722279278620890129250378743839728699888544866528719657<168>]
By Wataru Sakai / GMP-ECM 6.0
5·10180-1 = 4(9)180<181> = 10621939 · C174
C174 = P39 · C136
P39 = 371220517601500959349955067754789808321<39>
C136 = [1268043725350051353132819056594165736383974526766996545360477852847986781906687610303669898118623904197788874590155678924925008343938821<136>]
By Makoto Kamada / GMP-ECM 5.0.3
(8·10176-17)/9 = (8)1757<176> = 3 · 263 · C174
C174 = P29 · P145
P29 = 62589632906718238985476358569<29>
P145 = 1799981617941769004418310793330172383655105701996801534957053331851522121899102371490932002067738591466062173684026552295640677256094002499030307<145>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(5·10156+13)/9 = (5)1557<156> = 61 · 35883949 · 141949580829913622469021786349231378104071<42> · C106
C106 = P40 · P66
P40 = 3934205771949076809828640959362471057563<40>
P66 = 454471070720848004878519463239764380275824326613491273821448670481<66>
(5·10190-23)/9 = (5)1893<190> = 3 · 17 · 30130033 · 779004426475729<15> · 46962959609138895677063<23> · 61642877659009561805910411419732303873<38> · C106
C106 = P31 · P75
P31 = 1843474827245696381461512053473<31>
P75 = 869645414643685580255992403576319514939677727407195575193091526838078741677<75>
6·10164-1 = 5(9)164<165> = 87666097 · 3885289277<10> · 44109614707809518761<20> · 21319013138093007519677927<26> · C103
C103 = P48 · P55
P48 = 965994679187553790395623209731067844315549634341<48>
P55 = 1939193395768352506478443961407393057426627632037135873<55>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(16·10165-1)/3 = 5(3)165<166> = 1637 · 17117 · 149840881 · 570575225837<12> · 573820343507<12> · 291246838594215114094283<24> · C104
C104 = P36 · P68
P36 = 653619205274968524868616118427326053<36>
P68 = 20380611178573287976312015647987822383311736544689594437872385340837<68>
(22·10129-1)/3 = 7(3)129<130> = 73 · 4336235808554262751049831<25> · C104
C104 = P46 · P59
P46 = 1373200605971678641691817043208338426465703737<46>
P59 = 16870645045725472929771337510378875848143344845417196542243<59>
(88·10146-7)/9 = 9(7)146<147> = 21611 · 66529 · 1337765116021<13> · 11777955203653867647673<23> · C104
C104 = P47 · P58
P47 = 12675175613354229967042679468815077442250108201<47>
P58 = 3405262167951281370475643417365679548852242992304092731751<58>
(4·10174-7)/3 = 1(3)1731<175> = 4311403 · 28540933 · 196874317331<12> · 101522202450367<15> · 24950935249283898655923075518189<32> · C104
C104 = P31 · P73
P31 = 5433803562669447433754621741383<31>
P73 = 3998628817237532893833468093531381072846872384476726327356303764331799931<73>
2·10156-9 = 1(9)1551<157> = 7 · 172 · 4463 · 10284359 · 2849130261940733497<19> · 16898555617138742719<20> · C105
C105 = P45 · P60
P45 = 631855909108883008824359866689035739181056737<45>
P60 = 708027384596563532504630820087246335731726729305545444147311<60>
(65·10178+43)/9 = 7(2)1777<179> = 47 · 113 · 526853 · 117345719 · 331998677 · 125870285644374589<18> · 34925085627768598997827271895379<32> · C105
C105 = P52 · P54
P52 = 1361124300359348959136021102791572885773046603028627<52>
P54 = 110724314477726693312993373871940590187185882490090599<54>
(65·10186+43)/9 = 7(2)1857<187> = 3 · 89 · 4679 · 597347347464359<15> · 1063097615099489<16> · 48686557186389825347<20> · 14690759029212971209960298983<29> · C104
C104 = P34 · P35 · P36
P34 = 1124633931670423999054999206157751<34>
P35 = 32451381886148128381123221457383757<35>
P36 = 348745633990314969496632087311117327<36>
(82·10167+71)/9 = 9(1)1669<168> = 11 · 200825371 · 1571015867<10> · 3713253344557<13> · 42910403846071<14> · 2216613591002943259<19> · C105
C105 = P52 · P54
P52 = 1682819432281580871833056739932306964665025847853247<52>
P54 = 441707542869306545094246476909647448630652029924438387<54>
(89·10175+1)/9 = 9(8)1749<176> = 3 · 11 · 2377 · 83045563 · 21545311091948629<17> · 127739194355601203<18> · 141537670211263258844233207<27> · C104
C104 = P43 · P61
P43 = 5050043729825650103372047299253484119274219<43>
P61 = 7716916809971581744577104286439612898464992845500606623694673<61>
By Makoto Kamada / GMP-ECM 5.0.3
(2·10193+7)/9 = (2)1923<193> = 32 · 630546718286548631<18> · C174
C174 = P32 · C142
P32 = 50130048165294171737936457060407<32>
C142 = [7811412730645934022108042743488628291363712137770808704266782375432812085300436524323222547951684716165173360263400908685004188370503667406791<142>]
(71·10192-17)/9 = 7(8)1917<193> = 3 · 239 · 431 · 709 · 17863 · C181
C181 = P28 · P153
P28 = 7818138441482479473279933503<28>
P153 = 257819299158319774527379208460787909625521352652374818131852684022564137467590536682267201066985701426877107876857793199288896531178496788480608797398081<153>
By Makoto Kamada / GMP-ECM 5.0.3
(65·10155+43)/9 = 7(2)1547<156> = 11 · 172 · 73 · 593 · 821 · 156901 · 3000409 · 113165188094798731<18> · C117
C117 = P28 · P89
P28 = 1252506284919674597813442361<28>
P89 = 95798933501408006480896098368296296789086081254720058955016936449717404248170381274091483<89>
By Wataru Sakai / GMP-ECM 6.0
5·10160-1 = 4(9)160<161> = 19 · 436091 · 2329189 · C148
C148 = P31 · C118
P31 = 1033904918067164428884577564259<31>
C118 = [2505843522411995360881620202892235691372910031817756477061988171397055319833605473171594643548876245306856441524893681<118>]
5·10184-1 = 4(9)184<185> = 151 · 1811 · 26149492819353460891<20> · C160
C160 = P29 · P132
P29 = 19904026613441188764553765519<29>
P132 = 351293725658528142025984363908540515455299471247490008661682391281288234075835346606964794661872221262643846492958379267355968427671<132>
By Makoto Kamada / GMP-ECM 5.0.3
6·10164-1 = 5(9)164<165> = 87666097 · 3885289277<10> · 44109614707809518761<20> · C128
C128 = P26 · C103
P26 = 21319013138093007519677927<26>
C103 = [1873250502227872709541004285088419337811749274035337630228939600334926817394525071335252733658083814693<103>]
6·10181-1 = 5(9)181<182> = 131 · 487 · 18181 · 674898763500069035186759<24> · 48674443951736616443332178819393<32> · C118
C118 = P26 · C92
P26 = 19628097687242489745811747<26>
C92 = [80226045327418205244076379505715520076927907989546678856020648136216222939800049752462085963<92>]
By Sinkiti Sibata / GGNFS-0.73.2
(37·10141-1)/9 = 4(1)141<142> = 41 · 216233 · 1112567 · C129
C129 = P56 · P73
P56 = 80520929319029738083314522944251454230697132157081673439<56>
P73 = 5176287996651081326900655124980948714131602617681184562521461159655087999<73>
Number: i41106 N=416799519913283761111992759572925364202800687164723851504727045200610075040756960021756345510153638400207696886981642933725958561 ( 129 digits) SNFS difficulty: 142 digits. Divisors found: r1=80520929319029738083314522944251454230697132157081673439 (pp56) r2=5176287996651081326900655124980948714131602617681184562521461159655087999 (pp73) Version: GGNFS-0.73.2 Total time: 63.56 hours. Scaled time: 25.17 units (timescale=0.396). Factorization parameters were as follows: name: i41106 n: 416799519913283761111992759572925364202800687164723851504727045200610075040756960021756345510153638400207696886981642933725958561 m: 10000000000000000000000000000 c5: 370 c0: -1 skew: 4 qintsize: 400000 type: snfs Factor base limits: 1300000/1300000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [650000, 3050001) Relations: rels:4067830, finalFF:352010 Initial matrix: 200246 x 352010 with sparse part having weight 45151016. Pruned matrix : 169386 x 170451 with weight 22139672. Total sieving time: 56.87 hours. Total relation processing time: 0.57 hours. Matrix solve time: 5.92 hours. Time per square root: 0.20 hours. Prototype def-par.txt line would be: snfs,142,5,0,0,0,0,0,0,0,0,1300000,1300000,27,27,45,45,2.3,2.3,100000 total time: 63.56 hours. --------- CPU info (if available) ----------
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(4·10159-1)/3 = 1(3)159<160> = 13654124849<11> · 20681657381440225832119<23> · 1378158864711508887427489<25> · C103
C103 = P39 · P64
P39 = 920534390807374062804498487893860309959<39>
P64 = 3721775962844066011328396101615639616120103881060502639336722693<64>
By Makoto Kamada / GMP-ECM 5.0.3
(5·10157+31)/9 = (5)1569<157> = 3 · 71 · C155
C155 = P27 · P128
P27 = 806044437167993248314469871<27>
P128 = 32358539115110369057190134942109756781102364683868818614997860163981009807276444234313515961034697099525668878416848400086460133<128>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(25·10148-7)/9 = 2(7)148<149> = 3 · 2063 · 5087 · 4472453817889<13> · 814646496537188975783443<24> · C105
C105 = P44 · P61
P44 = 83573765379175276887059352875495061992721893<44>
P61 = 2897545406943469556039609839062818705364453173845610075942549<61>
(28·10143-1)/9 = 3(1)143<144> = 263 · 5456111 · 138052796555701<15> · 107253664497452549<18> · C104
C104 = P51 · P54
P51 = 116573850967584096912312262096761599241450013841771<51>
P54 = 125608226798127591346038863148280844795094728289902213<54>
(46·10135-1)/9 = 5(1)135<136> = 479 · 46154078138132146557551248199<29> · C105
C105 = P45 · P60
P45 = 800394453408549832239262068734721199293735929<45>
P60 = 288845534263833811587767580457198086177435867548252143643479<60>
(5·10172-41)/9 = (5)1711<172> = 7 · 13 · 954513207839060627<18> · 8236053748281096526631<22> · 3651013866892899909803503<25> · C106
C106 = P42 · P64
P42 = 416124302418408191713303582379082748228297<42>
P64 = 5111500712230303356383768828877368479955931032043267087034557583<64>
(5·10163-23)/9 = (5)1623<163> = 3 · 373 · 27693971 · 145541773288441003077647<24> · 159421612635339560825237<24> · C106
C106 = P53 · P54
P53 = 23614895381032335625778855960284172255052544499396189<53>
P54 = 327183421237265970964513549806824654637662445958875307<54>
By Makoto Kamada / GMP-ECM 5.0.3
(10193-7)/3 = (3)1921<193> = C193
C193 = P34 · P159
P34 = 9359125546226130317691742746322477<34>
P159 = 356158630084562717454079473284150163932602601557130675275039536816637254066334649526724690725716914178221930943836968641215915704974932383534004679032217016703<159>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs / Mar 5, 2005
(7·10141+11)/9 = (7)1409<141> = 12401 · 331568234726854059523323014000309<33> · C105
C105 = P39 · P66
P39 = 235821868941621471319883328334247434687<39>
P66 = 802124587662582464669201505848575481305773995283966819192698813513<66>
(2·10154+61)/9 = (2)1539<154> = 32 · 1092127 · 2117287 · 2236090637779<13> · 8378424748292198779218439<25> · C103
C103 = P51 · P53
P51 = 189741013588044854229215065788408599919554967046681<51>
P53 = 30038559961350341394432475821473119796198099348924729<53>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(2·10168-11)/9 = (2)1671<168> = 197 · 474369113 · 5575500037<10> · 1555302784493<13> · 4113790312911686726221727300257<31> · C104
C104 = P31 · P74
P31 = 1081715269133179811208872005879<31>
P74 = 61624154347874880308475566998218502389129151357945858275948542932460478007<74>
(4·10152+23)/9 = (4)1517<152> = 594453599347<12> · 18888841427341<14> · 192426221843740554519959<24> · C104
C104 = P40 · P64
P40 = 6545315710328438844985500344313439462073<40>
P64 = 3142674111334242877001354822741675047074385195768806298906117223<64>
(7·10140-61)/9 = (7)1391<140> = 22147 · 64906423 · 86221212023<11> · 24961758965431<14> · C104
C104 = P37 · P68
P37 = 2003302500130298868226356248917542599<37>
P68 = 12549230818382139308998785858920898115685359162580736027576781738793<68>
By Makoto Kamada / GMP-ECM 5.0.3
(4·10194-31)/9 = (4)1931<194> = 157 · 983 · 107612863 · 18342123221<11> · 6108145067228494618057<22> · C149
C149 = P29 · C121
P29 = 12278415751815556076259294677<29>
C121 = [1945354892719909032469519211430933960795133491235455463027180385182694763080674571701028274277355295183095114770189469413<121>]
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(29·10191+7)/9 = 3(2)1903<192> = 11 · 31 · 7621 · 1305526508941<13> · 64708099336789218589<20> · 1282613339103566661361<22> · 222898262021082856624877730161<30> · C103
C103 = P50 · P53
P50 = 64183256638154439897131828580656573780507460234143<50>
P53 = 79987224233686321759605424379032894033388154744897169<53>
By Makoto Kamada / GMP-ECM 5.0.3
(83·10196+61)/9 = 9(2)1959<197> = 3 · 43 · C195
C195 = P28 · C167
P28 = 9602680715082187094465082913<28>
C167 = [74448059731513037633347877449878484897152077682858910267765114335079739104079046595764642937173560405105673848075329403547794104913109914751267841907174119729688796277<167>]
(34·10166-43)/9 = 3(7)1653<167> = 33 · C166
C166 = P27 · C139
P27 = 334306839006823133579471153<27>
C139 = [4185307602109669599745978404228511467728247039894128424668313195039453889478502106172203101100408661479665808460232673514121448291349526983<139>]
By Samuel Chong / GGNFS-0.73.3
(2·10148-17)/3 = (6)1471<148> = 173 · 100069 · 29420669 · C134
C134 = P45 · P89
P45 = 606505167216585659807232036340968073826039581<45>
P89 = 21581221825799757062578254553555589239685833563763830207663661229240628501444961663754077<89>
Number: 66661_148 N=13089122552194909734385530955177641455836499718275535725865345380162780863225778207691058560283439590930333989570127607872101652121737 ( 134 digits) SNFS difficulty: 148 digits. Divisors found: r1=606505167216585659807232036340968073826039581 (pp45) r2=21581221825799757062578254553555589239685833563763830207663661229240628501444961663754077 (pp89) Version: GGNFS-0.73.3 Total time: 30.80 hours. Scaled time: 36.62 units (timescale=1.189). Factorization parameters were as follows: name: 66661_148 n: 13089122552194909734385530955177641455836499718275535725865345380162780863225778207691058560283439590930333989570127607872101652121737 m: 200000000000000000000000000000 c5: 125 c0: -34 type: snfs skew: 1.4 # q0: 1500000 # qintsize: 1000 # Total yield: 1846 # 0.01687 sec/rel Factor base limits: 1500000/1500000 Large primes per side: 3 Large prime bits: 27/27 Sieved special-q in [750000, 3950001) Relations: rels:3966611, finalFF:270251 Initial matrix: 228517 x 270251 with sparse part having weight 35573271. Pruned matrix : 217800 x 219006 with weight 27036465. Total sieving time: 29.56 hours. Total relation processing time: 0.32 hours. Matrix solve time: 0.84 hours. Time per square root: 0.07 hours. Prototype def-par.txt line would be: snfs,148,5,0,0,0,0,0,0,0,0,1500000,1500000,27,27,45,45,2.3,2.3,100000 total time: 30.80 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 31h35m51.988s
By Sinkiti Sibata / GGNFS-0.73.2
(37·10137-1)/9 = 4(1)137<138> = 3 · 193 · 1151 · 1843115454007<13> · C120
C120 = P47 · P73
P47 = 78443134034625863417461952013230604888676278743<47>
P73 = 4266756413961399494935602361549326896665705519953491093143609317691115459<73>
Number: i41105 N=334697745273473656234172944954937312635414788585941717038586445454314501758487923299089918671055241093868998816880388037 ( 120 digits) SNFS difficulty: 138 digits. Divisors found: r1=78443134034625863417461952013230604888676278743 (pp47) r2=4266756413961399494935602361549326896665705519953491093143609317691115459 (pp73) Version: GGNFS-0.73.2 Total time: 58.03 hours. Scaled time: 22.92 units (timescale=0.395). Factorization parameters were as follows: name: i41105 n: 334697745273473656234172944954937312635414788585941717038586445454314501758487923299089918671055241093868998816880388037 m: 1000000000000000000000000000 c5: 3700 c0: -1 skew: 4 qintsize: 400000 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2800001) Relations: rels:1800775, finalFF:200525 Initial matrix: 142468 x 200525 with sparse part having weight 25246743. Pruned matrix : 130388 x 131164 with weight 14949830. Total sieving time: 54.52 hours. Total relation processing time: 0.34 hours. Matrix solve time: 3.04 hours. Time per square root: 0.13 hours. Prototype def-par.txt line would be: snfs,138,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 58.03 hours. --------- CPU info (if available) ----------
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
8·10178-3 = 7(9)1777<179> = 677 · 1033 · 1171 · 27047072567<11> · 3180675130888637<16> · 17469811656235332389<20> · 769952797341217906532041<24> · C101
C101 = P32 · P70
P32 = 23644469941078472407922034471623<32>
P70 = 3570447205507941234905363531766364802864271229525213694347643675221219<70>
By Makoto Kamada / GMP-ECM 5.0.3
(8·10152-53)/9 = (8)1513<152> = C152
C152 = P26 · P127
P26 = 38892376128496536485732797<26>
P127 = 2285509339805026430325296479971396331731936411071089081476754338588167677785318036162039890493878106780399369948607227555403439<127>
By Makoto Kamada / GMP-ECM 5.0.3
(8·10152-53)/9 = (8)1513<152> = C152
C152 = P26 · P127
P26 = 38892376128496536485732797<26>
P127 = 2285509339805026430325296479971396331731936411071089081476754338588167677785318036162039890493878106780399369948607227555403439<127>
By Anton Korobeynikov / GGNFS-0.73.3 gnfs
(4·10180+23)/9 = (4)1797<180> = 3 · 59 · 317128349 · 971654996231<12> · 66018002849107<14> · 178139006085760561<18> · 11757062412922805745713059<26> · C101
C101 = P39 · P62
P39 = 977491832312192896389896625176726445871<39>
P62 = 60292555656044812428976587194559990987738290050680487578282923<62>
GGNFS-0.73.4 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(22·10143-1)/3 = 7(3)143<144> = 23 · 188659857316464681817<21> · C123
C123 = P30 · P93
P30 = 172484683401417441565290284783<30>
P93 = 979813801495399728191654444294208705433893862541038168397148891528336592638886524781276518661<93>
(68·10152+13)/9 = 7(5)1517<153> = 186672037698199043723<21> · C133
C133 = P29 · P105
P29 = 26034504780279352203944955623<29>
P105 = 155466855292057290989047224490539468202754163078568908699053835956577403593172767939906521016382646188633<105>
(2·10186+61)/9 = (2)1859<186> = 7 · 97 · C183
C183 = P34 · C150
P34 = 1522768497755412727974945663827369<34>
C150 = [214923462283699839843702008294895523156332677832059411850559696367167192950658565333786643831889962519418475780375580273998686701985097168868402036779<150>]
By Samuel Chong / GGNFS-0.73.1
(2·10137-17)/3 = (6)1361<137> = 7 · 89 · C135
C135 = P37 · P39 · P59
P37 = 2790158708822027143894388316567180773<37>
P39 = 845548195516519882155501365727563470489<39>
P59 = 45357950202530373433516787302445212738848573444678217182631<59>
Number: 66661_137 N=107009095773140716960941680042803638309256286784376672017121455323702514713750668806848582129481005885500267522739432851792402354200107 ( 135 digits) SNFS difficulty: 137 digits. Divisors found: r1=2790158708822027143894388316567180773 (pp37) r2=845548195516519882155501365727563470489 (pp39) r3=45357950202530373433516787302445212738848573444678217182631 (pp59) Version: GGNFS-0.73.1 Total time: 6.64 hours. Scaled time: 7.87 units (timescale=1.185). Factorization parameters were as follows: name: 66661_137 n: 107009095773140716960941680042803638309256286784376672017121455323702514713750668806848582129481005885500267522739432851792402354200107 m: 2000000000000000000000000000 c5: 25 c0: -68 type: snfs skew: 2.0 # q0: 800000 # qintsize: 1000 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1300001) Relations: rels:1516976, finalFF:167968 Initial matrix: 142335 x 167968 with sparse part having weight 13816937. Pruned matrix : 134421 x 135196 with weight 9382608. Total sieving time: 6.38 hours. Total relation processing time: 0.07 hours. Matrix solve time: 0.16 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 6.64 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 6h52m56.617s
By Sinkiti Sibata / GGNFS-0.73.2
(37·10136-1)/9 = 4(1)136<137> = 7 · 41 · 18461843479<11> · C124
C124 = P33 · P92
P33 = 738108094425458666282385243303173<33>
P92 = 10511925764047661443312345654252275100994886610773448303552464189397480680642603837380857859<92>
Number: i41104 N=7758937494443103028711726010086126583263172567187765980117490911823453324219377493657962029093220955789742257252441556686607 ( 124 digits) SNFS difficulty: 137 digits. Divisors found: r1=738108094425458666282385243303173 (pp33) r2=10511925764047661443312345654252275100994886610773448303552464189397480680642603837380857859 (pp92) Version: GGNFS-0.73.2 Total time: 45.77 hours. Scaled time: 18.03 units (timescale=0.394). Factorization parameters were as follows: name: i41104 n: 7758937494443103028711726010086126583263172567187765980117490911823453324219377493657962029093220955789742257252441556686607 m: 1000000000000000000000000000 c5: 370 c0: -1 skew: 4 qintsize: 400000 type: snfs Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 2400001) Relations: rels:1810731, finalFF:228551 Initial matrix: 142523 x 228551 with sparse part having weight 27242085. Pruned matrix : 125151 x 125927 with weight 13604858. Total sieving time: 42.69 hours. Total relation processing time: 0.35 hours. Matrix solve time: 2.60 hours. Time per square root: 0.12 hours. Prototype def-par.txt line would be: snfs,137,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 45.77 hours. --------- CPU info (if available) ----------
GGNFS-0.73.3 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Samuel Chong / GGNFS-0.73.1
(2·10136-17)/3 = (6)1351<136> = 29 · 191 · 33010453962249187<17> · C116
C116 = P42 · P75
P42 = 169448673720232790023749204075842661822773<42>
P75 = 215172965352362064915184211595709031155474345295418603608711193402582287849<75>
Number: 66661_136 N=36460773599407354488833071975225814911093052432403649301172042432306777015707398576606060026000241907358962909385277 ( 116 digits) SNFS difficulty: 136 digits. Divisors found: r1=169448673720232790023749204075842661822773 (pp42) r2=215172965352362064915184211595709031155474345295418603608711193402582287849 (pp75) Version: GGNFS-0.73.1 Total time: 7.94 hours. Scaled time: 9.00 units (timescale=1.134). Factorization parameters were as follows: name: 66661_136 n: 36460773599407354488833071975225814911093052432403649301172042432306777015707398576606060026000241907358962909385277 m: 1000000000000000000000000000 c5: 20 c0: -17 type: snfs skew: 1.0 Factor base limits: 1000000/800000 Large primes per side: 3 Large prime bits: 25/25 Sieved special-q in [400000, 1450001) Relations: rels:1581153, finalFF:178316 Initial matrix: 142472 x 178316 with sparse part having weight 16256973. Pruned matrix : 132149 x 132925 with weight 10288867. Total sieving time: 7.65 hours. Total relation processing time: 0.08 hours. Matrix solve time: 0.18 hours. Time per square root: 0.03 hours. Prototype def-par.txt line would be: snfs,136,5,0,0,0,0,0,0,0,0,1000000,800000,25,25,43,43,2.3,2.3,75000 total time: 7.94 hours. --------- CPU info (if available) ---------- Pentium M, 1.8GHz, 1GB RAM elapsed time: 8h05m13.363s
GMP-ECM 6.0 was released.
GMP-ECM 6.0 (Paul Zimmermann)
By Makoto Kamada / GMP-ECM 5.0.3
(4·10151+41)/9 = (4)1509<151> = 3 · 647 · 3307 · 41909850572501427030523<23> · C122
C122 = P28 · P94
P28 = 1790638555367242138702678043<28>
P94 = 9226430355560686703865008773021009552389780910556227550857201209691547642120188173464181230543<94>
By Anton Korobeynikov / GGNFS-0.72.10
(28·10152+17)/9 = 3(1)1513<153> = 71039561 · 490296406675674906761<21> · 404226582764410966202648197<27> · C98
C98 = P49 · P50
P49 = 2040030801919865262203902429295076497284734001259<49>
P50 = 10831658211138975612869131764159646070649020129711<50>
55...559 was completed up to n=150 and extended to n=200.
By Shusuke Kubota / GGNFS-0.73.2
(5·10150+31)/9 = (5)1499<150> = 43 · 1277030413888390436419<22> · C128
C128 = P46 · P82
P46 = 1646988018298854300956475789099961261859539807<46>
P82 = 6142813909616535237992153619118315647666868676494314023723182540171206084763362361<82>
By Makoto Kamada / GMP-ECM 5.0.3
10185-3 = (9)1847<185> = 19 · 834149 · 209205551 · 14115364562059472946776292563<29> · C142
C142 = P35 · P107
P35 = 26150471097842868319059494133157249<35>
P107 = 81706751742101878914198180697174396445076811730083317624603767885137213081489306839670834484075902356418751<107>
(13·10153-1)/3 = 4(3)153<154> = 7 · 661 · 797 · C148
C148 = P27 · C121
P27 = 460916575998112074071727299<27>
C121 = [2549423294440337571087290903497700361859461239948612878825560392658318637774911572584694853772175150748353008237496604193<121>]
(4·10152-31)/9 = (4)1511<152> = 41 · 79 · 4231 · C145
C145 = P26 · C120
P26 = 19037823664438599021743461<26>
C120 = [170351596736875709959179822326526166723291839274113159290765004032671542668674951513691570325256153664621191583653146709<120>]
By Makoto Kamada / GMP-ECM 5.0.3
(65·10166+43)/9 = 7(2)1657<167> = 12263 · C163
C163 = P33 · C130
P33 = 603213984515802900576681227024393<33>
C130 = [9763436759606743427904739583306785308462946373464374213867612168717174093348236091973396634356359866256404708584327307961415747853<130>]
By Anton Korobeynikov / GGNFS-0.72.10
(73·10122-1)/9 = 8(1)122<123> = 2495368867<10> · 30065207756281<14> · C101
C101 = P49 · P52
P49 = 8515739257988231976015260062769942210927451647629<49>
P52 = 1269576963874524821731547635872841891743206348166217<52>
By Makoto Kamada / GMP-ECM 5.0.3
(32·10154-23)/9 = 3(5)1533<155> = 3 · 7 · 34909868917519<14> · C140
C140 = P31 · P110
P31 = 1622587207668209092013526741137<31>
P110 = 29890412487234743874766292830358412417755037058791136179875515239879367876130272029590647129293894697311106531<110>
By Sinkiti Sibata / GGNFS-0.73.2
(37·10132-1)/9 = 4(1)132<133> = 739 · 1763873 · C124
C124 = P48 · P76
P48 = 575247215934346384059375386041973198796001903237<48>
P76 = 5482680499653833747224765932098332836815161177084479208221396832001847271049<76>
By Makoto Kamada / GMP-ECM 5.0.3
(82·10197+71)/9 = 9(1)1969<198> = 11 · 331 · 2683 · 9871 · 16187 · 243843471581<12> · 29341294224576721<17> · 161303420996123806388029<24> · C132
C132 = P28 · P104
P28 = 5309637040693250659918244159<28>
P104 = 95258483008369142446850518850579701637816207550391441086444595676108091657018037517629699957367017258759<104>
(28·10152+17)/9 = 3(1)1513<153> = 71039561 · 490296406675674906761<21> · C124
C124 = P27 · C98
P27 = 404226582764410966202648197<27>
C98 = [22096916386591737662333287324101820076097954480258847908134831981825364899733780002927248217306149<98>]
By Anton Korobeynikov / GGNFS-0.72.10
(43·10158-7)/9 = 4(7)158<159> = 3 · 53 · 73 · 409 · 193929779950721<15> · 514800888246709<15> · 45903697835835137570664907<26> · C98
C98 = P34 · P64
P34 = 8078666803071405646066229069554157<34>
P64 = 2718388303481846503431327155152590054302729684581350101070286589<64>
By Makoto Kamada / GMP-ECM 5.0.3
6·10184-1 = 5(9)184<185> = 57389 · 2377253 · 7655279 · 2288410247<10> · C158
C158 = P32 · P126
P32 = 82360343640220929920893969059811<32>
P126 = 304813453761071548648407916337418821605038270640791430280993090156171195734593548049006713443227437796116990523264844889914829<126>
By Shusuke Kubota / GGNFS-0.73.2
(5·10142+31)/9 = (5)1419<142> = 3 · 701 · 5651 · 282411001 · 2726417159<10> · C117
C117 = P40 · P77
P40 = 7187164483031483143803364360864418375443<40>
P77 = 84475625130174595517239465314830217917502076940758765221942231367641214832519<77>
By Anton Korobeynikov / GGNFS-0.72.10
(10157+53)/9 = (1)1567<157> = 7 · 9787 · 38119 · 161388311904564113419<21> · 721282616580305422424110621<27> · C100
C100 = P45 · P56
P45 = 353280588885973286042826193048528852252476239<45>
P56 = 10345965910970239067506056753085533319911044548970270807<56>
By Makoto Kamada / GMP-ECM 5.0.3
(71·10152-17)/9 = 7(8)1517<153> = 79 · 443 · 563 · 6997 · 66570799543<11> · C131
C131 = P26 · P106
P26 = 47307212265997876112975693<26>
P106 = 1816994544717289624399962542148395539814907049221027510874334313176363982280965307217935229762849872170239<106>
(14·10154-41)/9 = 1(5)1531<155> = 43 · 449 · 12334289053<11> · C140
C140 = P27 · P113
P27 = 840619760834431082676742801<27>
P113 = 77706439992072659966519815062943781869616696137044424309594314955129193160698458676543902372658988095941544888881<113>
By Shusuke Kubota / GGNFS-0.73.2
(5·10140+31)/9 = (5)1399<140> = 53 · 2137 · 32827889 · 51078802373<11> · C117
C117 = P41 · P76
P41 = 52275678956925204471710448946929880899239<41>
P76 = 5595820291060707512920125039330568876183647579785717492672785721520507127793<76>
By Anton Korobeynikov / GGNFS-0.72.10
(83·10153+61)/9 = 9(2)1529<154> = 11 · 740998469 · 8153059810229<13> · 190733995228429<15> · 646090443507451559500129<24> · C94
C94 = P31 · P63
P31 = 2763272355757974100871175642293<31>
P63 = 407530242891298855226504201320251858163206936899337770543504503<63>
(83·10162+61)/9 = 9(2)1619<163> = 233 · 14447 · 71339 · 2310868215763<13> · 9451661490563012491<19> · 11105577708380065389971<23> · C99
C99 = P36 · P63
P36 = 451222666118712635581168723036718821<36>
P63 = 350880772857503261950110874867430123815659258923643865756711687<63>
By Makoto Kamada / GMP-ECM 5.0.3
(68·10198+13)/9 = 7(5)1977<199> = 33 · 2837 · 7305413 · 124068676637<12> · 403212889427768888832067867<27> · C150
C150 = P28 · C123
P28 = 1562091434865214888463863633<28>
C123 = [172780816705596629436477571893915454694951908049723289731935734705261274963726310234006475949636958455314893409923089382873<123>]
By Anton Korobeynikov / GGNFS-0.72.10
(68·10183+13)/9 = 7(5)1827<184> = 3 · 11 · 29 · 1861 · 10540669 · 36676552603<11> · 2090474157349659887060834257843<31> · 54231147509766270340036258370353<32> · C98
C98 = P40 · P59
P40 = 5555774912817724145558535099715789839911<40>
P59 = 17422608166773415267391985263166795213311389379270222062927<59>
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.88
(82·10154+71)/9 = 9(1)1539<155> = 32 · 7 · 431 · 8285593 · 29773304387<11> · 1412394563423<13> · C121
C121 = P30 · P35 · P58
P30 = 319913847688368250779160545779<30>
P35 = 23820893541976526653587592873967891<35>
P58 = 1263734275947088488612677092121618969616342474433401194699<58>
By Shusuke Kubota / GGNFS-0.73.1
(5·10137+31)/9 = (5)1369<137> = 7 · 113 · 17183 · 1945651 · 26709401 · C116
C116 = P41 · P76
P41 = 23154301806734383296341589389093245102973<41>
P76 = 3396966323779455867228354754571225937833125650720258644280371421799441185761<76>
GGNFS-0.73.2 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Anton Korobeynikov / GGNFS-0.72.10
(85·10184+41)/9 = 9(4)1839<185> = 3 · 192 · 8461 · 2086853 · 1506956321569<13> · 95361398684566117184369<23> · 648846539694394447703609483<27> · C110
C110 = P44 · P67
P44 = 32490141366689953739155066500267821204953019<44>
P67 = 1630300026922735419902733895760673814744606631076784149578959462603<67>
By Makoto Kamada / GMP-ECM 5.0.3
(8·10185+1)/9 = (8)1849<185> = 23 · 1093975681<10> · C175
C175 = P26 · P149
P26 = 49390638186037955490316247<26>
P149 = 71526559569464294510030434316902551933845007342168093515556226834095677323993042306300543111907593517973753077768912773251986848810095585586490236649<149>
By Makoto Kamada / GMP-ECM 5.0.3
(35·10168-53)/9 = 3(8)1673<169> = 55865683 · 167058817 · C153
C153 = P26 · C127
P26 = 49490597625208871233348177<26>
C127 = [8419539181425468806006365315094861322014249606974102335052229082073286916817362732334516441385931952781233787411201237061255889<127>]
By Wataru Sakai / GMP-ECM 5.0.3
(16·10179-7)/9 = 1(7)179<180> = 3 · 1102457 · 8690677 · C166
C166 = P31 · P136
P31 = 2117649417153711077387449476553<31>
P136 = 2920699571820429920378233170826618531016227217128184725592402506959497217656733136932315759923412751361537251825331676503767453880465327<136>
By Makoto Kamada / GMP-ECM 5.0.3
(23·10158+1)/3 = 7(6)1577<159> = 13 · 29 · 41 · C155
C155 = P26 · P130
P26 = 37467652851985403770178639<26>
P130 = 1323807650605150843347199687137166672797456679819087454816234107073137850656838904044631614014592414575470218056763934202825313029<130>
By Wataru Sakai / GMP-ECM 5.0.3
(43·10168-7)/9 = 4(7)168<169> = C169
C169 = P33 · C136
P33 = 530723676086574731102103897057683<33>
C136 = [9002382959448748794439199014832033133711285895903932632389666139902386003239170475300347336941766288329532183182089193481662048433984619<136>]
By Makoto Kamada / GMP-ECM 5.0.3
(4·10177+23)/9 = (4)1767<177> = 32 · 88771 · 34257828589<11> · 382118227297<12> · 185328018246049181<18> · C132
C132 = P29 · P103
P29 = 74350271904345532210869653201<29>
P103 = 3084058668005186409866574388041834948237746363854798987149474877501583105706865140518254798826491068901<103>
By Makoto Kamada / GMP-ECM 5.0.3
(13·10162-1)/3 = 4(3)162<163> = 53 · 1117 · 92847256787<11> · 8690549268738917422491731741<28> · C119
C119 = P28 · P91
P28 = 9969666631528944004117489739<28>
P91 = 9099051340549248029695357455246032129583134320545719381404591735887747506233136663766725641<91>
GGNFS-0.73.1 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(4·10178+23)/9 = (4)1777<178> = 3739 · 31239146595462079<17> · C158
C158 = P29 · C130
P29 = 21547953973449457285963310887<29>
C130 = [1765862225333414457749816639811485744777556103517376591018192247443970393747414909079613967382475245265634776936367846801585036501<130>]
(32·10158-23)/9 = 3(5)1573<159> = 1877 · 1488623 · C150
C150 = P34 · P116
P34 = 3233286365462040512671208489747183<34>
P116 = 39356303462311549066470396000926839510781858373910786221493488078964099781152598769563785029139605452147096525074621<116>
(32·10185-23)/9 = 3(5)1843<186> = 11 · 443 · 2187455445180491<16> · 1554299145200897051908199<25> · C143
C143 = P31 · P112
P31 = 2879441576729208992654301213671<31>
P112 = 7452962948535702456086975198230385203765755186167636291848971097436522022996181586867205194569833350214915019099<112>
By Makoto Kamada / GMP-ECM 5.0.3
(10185-7)/3 = (3)1841<185> = 17 · 787 · 7757 · 3182479906939<13> · 379120658383121<15> · C150
C150 = P40 · P111
P40 = 1649233781119169276135278455500153757167<40>
P111 = 161412051765628893302994241785901816789592953507160916300463611882244680920661469088014100389835294747792392849<111>
By Wataru Sakai / GMP-ECM 5.0.3, ppsiqs
(16·10153-7)/9 = 1(7)153<154> = 768323 · 74731183 · 2155850687<10> · 32986872370178449<17> · C114
C114 = P28 · P35 · P52
P28 = 6350376299546839979016493183<28>
P35 = 11471425921016960668718274939103087<35>
P52 = 5976612482298304365679622466633346646476692651936811<52>
By Makoto Kamada / GMP-ECM 5.0.3
(29·10193+7)/9 = 3(2)1923<194> = 3 · 11 · 4129 · 4703 · 97388659 · C177
C177 = P33 · C145
P33 = 494792974762207270045816336475419<33>
C145 = [1043493567845447017697091172910167915131490348046321697230162242292562033009416812629700698256663007574518882187170285770269292193749469444023153<145>]
(2·10151+61)/9 = (2)1509<151> = 3 · 127 · 809 · 67302803024344470161908537027199<32> · C114
C114 = P29 · P35 · P51
P29 = 18828400455558140308291627961<29>
P35 = 44970281905286318082788507562183793<35>
P51 = 126514936021995337190637399618467901461008633405463<51>
By Makoto Kamada / GMP-ECM 5.0.3
(17·10189-71)/9 = 1(8)1881<190> = 3 · 11 · 23 · 619 · 739 · 5279210203<10> · 13409604493<11> · C161
C161 = P30 · C132
P30 = 107675266350465140830705193009<30>
C132 = [713721320572161835952425940821028245908329503806862456004886005577420054467244827323363096684513978748912648200246868295107834390009<132>]
(2·10155+7)/9 = (2)1543<155> = 173 · 367 · 518745754000861<15> · 458980603069217356377416219<27> · C109
C109 = P34 · P75
P34 = 2049297804196576789881393498465163<34>
P75 = 717333902558197028305889604248689788845164614947458292233987073609025368609<75>
By Makoto Kamada / GMP-ECM 5.0.3
(10173+71)/9 = (1)1729<173> = 232 · 107 · 424722629 · C159
C159 = P37 · C123
P37 = 3163656490366535907132680457817794161<37>
C123 = [146090951787874385048852754411379260684793096516574331136849357092615684281027226871732949756874538890825895635152205583817<123>]
By Anton Korobeynikov / GGNFS-0.72.10
(10152+11)/3 = (3)1517<152> = 37 · C150
C150 = P30 · P60 · P62
P30 = 122917288866251683548264058379<30>
P60 = 489542125229663448751539681471694777987494036118627801087829<60>
P62 = 14971798713649713122853648811967986927610226627138504771657811<62>
By Wataru Sakai / GMP-ECM 5.0.3
(16·10176-7)/9 = 1(7)176<177> = 32 · 59 · C174
C174 = P39 · C135
P39 = 615711081072019872468826193588606901197<39>
C135 = [543758404231006280078915314898360251643955593507494702574785941537600961230214196342616452411330988575208199411251642709824917020572311<135>]
By Makoto Kamada / GMP-ECM 5.0.3
8·10196-3 = 7(9)1957<197> = 348122208247015564853<21> · C177
C177 = P29 · P148
P29 = 53692831563308082356381236541<29>
P148 = 4279982069611398506676632939468982902225630222235664794737162519462768800768550113816887184754192015522529117655458693215971890631346572097500743389<148>
By Makoto Kamada / GMP-ECM 5.0.3
(25·10163-1)/3 = 8(3)163<164> = 43 · 587 · 641 · C157
C157 = P27 · P130
P27 = 650724316034659125499804667<27>
P130 = 7915113229016539673051590550957824017948819038855402536328969345759681074049901549340231062434536507734494336530607939026671435079<130>
By Wataru Sakai / GMP-ECM 5.0.3
(43·10192-7)/9 = 4(7)192<193> = 4451 · 5827 · 940903127 · 12835951153<11> · C167
C167 = P28 · C139
P28 = 2701303725402363678544195517<28>
C139 = [5646469006574256973282355219285673016714439033035136874206463329954028779275555920105596499863540512205308966627980373468257697311316283963<139>]
(43·10185-7)/9 = 4(7)185<186> = 3 · 29 · 47 · C183
C183 = P26 · C157
P26 = 58170373640018484872008409<26>
C157 = [2008662548458999269449272053889738154785837004738744490237883895960497711975400967535628915609095715969831195102711489927429245865192787596589288254649018977<157>]
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.88
5·10166-1 = 4(9)166<167> = 612 · 7951 · 18959 · 41274509 · 1036244557985917323855656628571<31> · C118
C118 = P29 · P35 · P54
P29 = 84427642127312153021137396271<29>
P35 = 31378746637656538548025658341102831<35>
P54 = 786699225732513079105689913385630462760166633060831769<54>
(65·10200+43)/9 = 7(2)1997<201> = 157 · 167 · 30905087 · C189
C189 = P30 · P160
P30 = 537321897022494689652786925171<30>
P160 = 1658785436556041315108865468395002717397504079125271304166624754627011835870853414945876768578266025626501944419670359005338932573955667354016456405963939900829<160>
(68·10172+13)/9 = 7(5)1717<173> = 83 · 649794149 · 1131828145807<13> · 13072193902494553480229<23> · C128
C128 = P29 · P100
P29 = 25729531661526218352445219561<29>
P100 = 3680032571158365020787271104558766598165473057546374710810244665930768419934289755166417671019144937<100>
By Makoto Kamada / GMP-ECM 5.0.3
6·10155-1 = 5(9)155<156> = 17 · C155
C155 = P27 · C128
P27 = 855694920236157839951575243<27>
C128 = [41246146041533380581382937109329549557946829659714681794095420363066533915011986623900432662432693705651217155512046742663409229<128>]
6·10175-1 = 5(9)175<176> = 59 · 33359 · 10379703007<11> · 7176556482829<13> · 2906450927886189094536119<25> · C123
C123 = P31 · P92
P31 = 6758107042624471507946638020763<31>
P92 = 20835173422357410987165752695962738961399561620993958049080814342037796143303160261337748469<92>
6·10197-1 = 5(9)197<198> = 1887671 · 21510659 · 29874643 · 51335819857675817<17> · C160
C160 = P33 · C128
P33 = 193601769040977856894563633949553<33>
C128 = [49766681564776680529172112494133309629596591893529357276525958753512660014711109005771121090421475985290545020879581630346816937<128>]
(2·10176+1)/3 = (6)1757<176> = C176
C176 = P27 · C149
P27 = 891423615315154872538304147<27>
C149 = [74786740581353412957536483508702404864499831989498538968548097789732163315742538650870690452878548195480134264825891327689726788458624388437703617161<149>]
By Sinkiti Sibata / GGNFS-0.72.9
(37·10124-1)/9 = 4(1)124<125> = 7 · 877 · 230779 · 106604753051<12> · C105
C105 = P38 · P68
P38 = 17383571383577989545387942783828220439<38>
P68 = 15658484268726682877196990025648524335745225639676192864870838320379<68>
(37·10128-1)/9 = 4(1)128<129> = 3 · 619 · 744451 · C120
C120 = P34 · P86
P34 = 5271269113264531468248187640349689<34>
P86 = 56415183423832560808836845498722439504063005615602679038744429991488753711827710351957<86>
By Wataru Sakai / GMP-ECM 5.0.3, ppsiqs
(43·10161-7)/9 = 4(7)161<162> = 3 · 602771321 · 788480541439<12> · C141
C141 = P27 · P30 · P32 · P53
P27 = 407584773129245134706303633<27>
P30 = 472843783453542643546827528967<30>
P32 = 27972100507499348996979084949571<32>
P53 = 62158484274045737573495275194467872857173684703223081<53>
(43·10158-7)/9 = 4(7)158<159> = 3 · 53 · 73 · 409 · 193929779950721<15> · 514800888246709<15> · C124
C124 = P26 · C98
P26 = 45903697835835137570664907<26>
C98 = [21960953345196390933481289905440520862730194252232844061681149657660218318068169706311462446300473<98>]
By Wataru Sakai / GMP-ECM 5.0.3
(43·10196-7)/9 = 4(7)196<197> = 7393 · 13757 · 71195263 · 1201434757<10> · C172
C172 = P30 · P143
P30 = 205475076796438054403559439583<30>
P143 = 26728282989179919138288092974997722466051480745835285993159902544918880427506555075521675042606752148965728979736958528648574392124680327324609<143>
177...77 was completed up to n=150 and extended to n=200.
By Sinkiti Sibata / GGNFS-0.72.9
(16·10149-7)/9 = 1(7)149<150> = 32 · C149
C149 = P58 · P91
P58 = 8331271277536038210494178215533813974344602897723796663191<58>
P91 = 2370957055859431096324827022708994139605247930430141211466281641437033824638927930573233983<91>
GGNFS-0.73.0 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(34·10175-43)/9 = 3(7)1743<176> = 32 · 11 · 19 · 6983 · 393604511 · 287314227735809018059906687<27> · C134
C134 = P29 · P105
P29 = 30853773554528131522663690129<29>
P105 = 824290097283090077355091112337068853180713342553113823808918109122258715218949863217375232765875421917267<105>
By Anton Korobeynikov / GGNFS-0.72.10
(5·10135+31)/9 = (5)1349<135> = 13 · C134
C134 = P49 · P85
P49 = 7506229420373857190782490344092813234857127660523<49>
P85 = 5693276922638245518225943946815552605697003214280678877538516178525359235141133263241<85>
By Makoto Kamada / GMP-ECM 5.0.3
(10199+11)/3 = (3)1987<199> = 7 · 1029562093533557<16> · C183
C183 = P40 · C143
P40 = 7868305851309131416846407876005292325051<40>
C143 = [58782347763931429749896469062559379704649727148076056803175125293902729160733807818718078017450414300841106319539509084237280064598955615474713<143>]
By Makoto Kamada / GMP-ECM 5.0.3
(29·10191+7)/9 = 3(2)1903<192> = 11 · 31 · 7621 · 1305526508941<13> · 64708099336789218589<20> · 1282613339103566661361<22> · C133
C133 = P30 · C103
P30 = 222898262021082856624877730161<30>
C103 = [5133840540764295292969509716240618314660951257381381577601383419479309668789454150628077053815197841167<103>]
477...77 was completed up to n=150 and extended to n=200.
By Samuel Chong / GGNFS-0.72.12
(43·10133-7)/9 = 4(7)133<134> = 3257 · 143290219 · 3972951337<10> · 504818355763<12> · C101
C101 = P47 · P55
P47 = 42088618029487333167527258553514982607056903959<47>
P55 = 1212770408204353499405114083016127321412374380653219111<55>
(43·10143-7)/9 = 4(7)143<144> = 3 · 281 · 3083 · 3088219 · 72603951983333<14> · C117
C117 = P45 · P73
P45 = 212650300655534998708898254198985609448332831<45>
P73 = 3855586884071676462041345746580913668255650174359358027339541789516852609<73>
(43·10147-7)/9 = 4(7)147<148> = 17 · 59 · 499 · 468030967 · 980862258117348766773789407897573<33> · C101
C101 = P38 · P63
P38 = 55744894740414569317018072247569265653<38>
P63 = 373023982938017802975340367328696911192371337787481586671396367<63>
(43·10150-7)/9 = 4(7)150<151> = 73 · 89 · 168498385758107711025047<24> · C124
C124 = P41 · P83
P41 = 46645077276435650380828547134249775525503<41>
P83 = 93564589785101963210478534845379046306531001484470742381291513942796408710018618601<83>
By Makoto Kamada / GMP-ECM 5.0.3
(14·10182-41)/9 = 1(5)1811<183> = 172 · 967 · 2341 · 509659 · 2646493 · C162
C162 = P27 · P136
P27 = 115557116007355063964093261<27>
P136 = 1525501552045539214499988771267300288449853635311853392119844387813629307247764608575870953524071455952121760501486395500295950991259271<136>
2·10188-9 = 1(9)1871<189> = 17 · 156083835959<12> · 116098705756986833<18> · C159
C159 = P28 · C132
P28 = 1528557664610115047105616481<28>
C132 = [424730979321609056444211982014719865751281575611959204819716385342249694232869193979489060533511688985047286901474261914078857029889<132>]
(19·10170-1)/9 = 2(1)170<171> = C171
C171 = P33 · P139
P33 = 120558470467949569214286965883841<33>
P139 = 1751109733656043126624126401132366088272468394797742343373508457364887662637296860240776768136294941520762853336527914226058508852018542471<139>
By Makoto Kamada / GMP-ECM 5.0.3
(10172+17)/9 = (1)1713<172> = 3 · 7 · C170
C170 = P32 · C138
P32 = 72168249258114728606726201031397<32>
C138 = [733148627740939799927300997517632842383966933831900770855308243545825232400868389092834346740014256341748837898283664204679161320979182849<138>]
By Makoto Kamada / GMP-ECM 5.0.3 P-1
(89·10184+1)/9 = 9(8)1839<185> = 3 · 72 · C183
C183 = P32 · C151
P32 = 72298914535541553904067220479461<32>
P32-1 = 22 · 3 · 5 · 292 · 149 · 349 · 1123 · 39827 · 121609 · 5065820159
C151 = [9304614518461221721104624962266784798483154187010164476340585209206066713053419278049718921187096589377538419636855579283100025304641980222987710282567<151>]
By Wataru Sakai / GMP-ECM 5.0.3
(7·10173-43)/9 = (7)1723<173> = 17 · 8184307467053<13> · 16357887524456411030777497<26> · C134
C134 = P34 · P101
P34 = 2876674335904060286376152236251167<34>
P101 = 11879735086232050497018635738925455600649219759170807513160086791501556907179113562626360343602337927<101>
88...883 was completed up to n=150 and extended to n=200. It's notable that three targets of 88...883 were factored by GNFS.
By Anton Korobeynikov / GGNFS-0.72.10
(8·10149-53)/9 = (8)1483<149> = 1861 · C146
C146 = P62 · P85
P62 = 13514951575044243763917103732007117716344962394343875524204173<62>
P85 = 3534163282009924428294369966296326454301697272182259268062475743144415077846772117811<85>
By Makoto Kamada / GMP-ECM 5.0.3
(13·10154-31)/9 = 1(4)1531<155> = 7 · 4277327 · 56317422617351689<17> · C130
C130 = P26 · P105
P26 = 32622211702208157863180453<26>
P105 = 262587577695556819741487450008028139058878353882584353207713758110345503623012337713377477276740961928757<105>
(13·10162-31)/9 = 1(4)1611<163> = 227 · 1693 · 335965306249<12> · C146
C146 = P33 · P113
P33 = 294877336581302342465190938507779<33>
P113 = 37938678604799148998026081131183309617722733798497720846130853021739224834483728343764666755746298527125621041661<113>
By Makoto Kamada / GMP-ECM 5.0.3 P-1
8·10159-3 = 7(9)1587<160> = 11 · 67 · 670577 · 975797 · 67063998714311628415937<23> · C123
C123 = P30 · P93
P30 = 322706369546904584701296076853<30>
P30-1 = 22 · 2221 · 4254353 · 23746937 · 359548818073
P93 = 766509222578042688995443012278330648313231897304264682097830867293327761168958384173515604309<93>
By Makoto Kamada / GMP-ECM 5.0.3 P-1
(68·10184+13)/9 = 7(5)1837<185> = 2660753 · 99179253296209943369893637461<29> · C150
C150 = P33 · P118
P33 = 232209217987810819436419432525691<33>
P33-1 = 2 · 5 · 151 · 1429 · 81689 · 1020109 · 2597377 · 497193143
P118 = 1232995673380948886102241534034673245610828485234115013876977711861928113619296597671288826683960085291996001217880819<118>
By Makoto Kamada / msieve 0.88
(10197+53)/9 = (1)1967<197> = 1088519 · 254073311 · 1522080869299970557247906893<28> · 4832806009084819245530257357<28> · 1429258979989971650163666625886221<34> · C94
C94 = P40 · P55
P40 = 1614256832869030008695065809671032655741<40>
P55 = 2367237196265758654740454422826494166411428372620211733<55>
By Sinkiti Sibata / GGNFS-0.72.9
(16·10147-7)/9 = 1(7)147<148> = 283536959 · 1245589644779<13> · C127
C127 = P38 · P90
P38 = 46199786118061337977242601922342473867<38>
P90 = 108956424241215220407779596980322531948095264902249838710400009229852455525088401495058471<90>
By Makoto Kamada / GMP-ECM 5.0.3
(10197+53)/9 = (1)1967<197> = 1088519 · 254073311 · 1522080869299970557247906893<28> · 4832806009084819245530257357<28> · C127
C127 = P34 · C94
P34 = 1429258979989971650163666625886221<34>
C94 = [3821328819093725957332023191193296084665353297971463326060351240095009562481475406968718009153<94>]
(13·10164-31)/9 = 1(4)1631<165> = 3 · 43 · 112428709734049<15> · C148
C148 = P38 · C111
P38 = 12667023571737990991217609155379403223<38>
C111 = [786247589989777914636073830302682947375520031653629043043502213698140564149219934257068310767319486956018538927<111>]
By Makoto Kamada / GMP-ECM 5.0.3 P-1
(65·10190+43)/9 = 7(2)1897<191> = 97 · 151 · 153349398479784413<18> · 183068228936534766174026813<27> · C144
C144 = P36 · P108
P36 = 977138077241719675590966177052673389<36>
P36-1 = 22 · 3 · 101 · 192631 · 141307 · 2434529 · 6439507 · 1889278099
P108 = 179750940567648382871445086126986304835862363811312057311549169881624147393957204136855273869585679296210001<108>
By Makoto Kamada / GMP-ECM 5.0.3 P-1
6·10160-1 = 5(9)160<161> = 191 · 65357 · 111773 · 1983601 · 1571356525369<13> · 1763243682029<13> · C118
C118 = P32 · P87
P32 = 32747621227427948676885297484609<32>
P32-1 = 26 · 3 · 7 · 1613 · 43321 · 91121 · 1732763 · 2208462383
P87 = 238928369616588467154945427484177889875796350816878145671110942435368430895342890353861<87>
6·10181-1 = 5(9)181<182> = 131 · 487 · 18181 · 674898763500069035186759<24> · C149
C149 = P32 · C118
P32 = 48674443951736616443332178819393<32>
P32-1 = 26 · 61 · 967 · 8069 · 306301 · 1876169 · 2780511079
C118 = [1574684654747708425371874188741858492781078184215992672500045325054890393019189687016950366783731182914747790329207361<118>]
By Samuel Chong / GGNFS-0.72.9
(43·10149-7)/9 = 4(7)149<150> = 3 · C150
C150 = P44 · P50 · P57
P44 = 28781518966446242044402583475723039664965761<44>
P50 = 20337467828878678302798658585506811206737030115647<50>
P57 = 272078423211186873245249543437364557806754348271844971077<57>
By Makoto Kamada / GMP-ECM 5.0.3
(2·10180+43)/9 = (2)1797<180> = 17 · 239 · 113177 · 15272032201952205157<20> · C152
C152 = P36 · C117
P36 = 136224300968205436467179879754395287<36>
C117 = [232290295750883296131439774105626527875056675632797772800763276168416357472031357205659940208252291417037581678720503<117>]
By Makoto Kamada / GMP-ECM 5.0.3
(10199+71)/9 = (1)1989<199> = 32 · 1282109 · C191
C191 = P29 · C163
P29 = 56401403743487581216991365601<29>
C163 = [1707261785010448898542931655293904776314770671755562750693160171208243512967130694350462705756368676588481618831929183853545308859467554174143920854544575560837699<163>]
(14·10163-41)/9 = 1(5)1621<164> = 114 · 10391 · 7547738429963131409<19> · C137
C137 = P29 · P108
P29 = 69820298945640076667172658783<29>
P108 = 194025537721179509372087750926446591187166239134891726117935940369908211980099654843266616376983843967687143<108>
By Samuel Chong / GGNFS-0.72.9
(43·10138-7)/9 = 4(7)138<139> = 257 · 20040169457433366814663969<26> · C111
C111 = P53 · P59
P53 = 49726326573820820572467761146706521474572032593985389<53>
P59 = 18655421048509753799813926188802693145082544420353554693621<59>
By Sinkiti Sibata / GGNFS-0.72.9
(16·10144-7)/9 = 1(7)144<145> = 29 · C143
C143 = P47 · P96
P47 = 88826476511401745641098801560339019716155471063<47>
P96 = 690139746615620477788896334722595723945334689159704478314949765744290585544493955049744254882851<96>
By Makoto Kamada / GMP-ECM 5.0.3
(25·10161-1)/3 = 8(3)161<162> = 71 · C161
C161 = P27 · C134
P27 = 627632323902741384517983871<27>
C134 = [18700581144218962984921571396639265987546275415461048368565867347813460055522674532728378543892597977753037715328106343929468412124413<134>]
GGNFS-0.72.12 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(67·10187+23)/9 = 7(4)1867<188> = 7 · 11 · 57163 · 47328769 · C174
C174 = P37 · P138
P37 = 2336361009002833103535009662012960771<37>
P138 = 152954196296857130558495664917723610900141913614243256861254531459176240208425498097499251915290350622402393342999130562368867729713108603<138>
By Makoto Kamada / GMP-ECM 5.0.3 P-1
(34·10173-43)/9 = 3(7)1723<174> = 11 · C173
C173 = P28 · C145
P28 = 4090017086037300067260361867<28>
P28-1 = 2 · 32 · 139 · 499 · 257987 · 7850789 · 1617432419
C145 = [8396892634184252103222222237534316190238257585872080056285708040687866008258364078713992722606690854088987379490701900885592654783285597751460629<145>]
By Makoto Kamada / GMP-ECM 5.0.3 P-1
(29·10163+7)/9 = 3(2)1623<164> = 3 · 11 · 1031 · 1747 · 2897711 · 103176192629<12> · C139
C139 = P31 · P108
P31 = 4953045325697020735289184994711<31>
P31-1 = 2 · 3 · 5 · 19 · 79 · 827 · 32363 · 34857313 · 117902269889
P108 = 366085990086691114623562916230607971883388444620724616146957772196406637330967584769117237827614155613949487<108>
By Makoto Kamada / GMP-ECM 5.0.3
(28·10186+17)/9 = 3(1)1853<187> = 43 · 672 · 8573 · C178
C178 = P29 · C149
P29 = 29011873842129769428295057949<29>
C149 = [64802066714608355666774319254759142911515243648266095705958921526222987458906950813766453246489961080980516645301030697272420784736056942199135607947<149>]
44...449 was completed up to n=150 and extended to n=200.
By Samuel Chong / GGNFS-0.72.9
(4·10149+41)/9 = (4)1489<149> = 25475808078876367198843<23> · C127
C127 = P39 · P88
P39 = 179155019772122797586660310862839810413<39>
P88 = 9737792861541557748144490005701401236652418920896976505090479375663606141723951579197311<88>
(43·10139-7)/9 = 4(7)139<140> = 47 · 163609657 · C130
C130 = P34 · P97
P34 = 4957949185354154301421469504628149<34>
P97 = 1253190467500426148074960752074505102159467237170751912757801495138944545044336766975343993879387<97>
By Wataru Sakai / PPSIQS
(10611+53)/9 = (1)6107<611> is prime.
By Shusuke Kubota / GMP-ECM 5.0.3 P-1
(16·10146-7)/9 = 1(7)146<147> = 3 · 983 · 2857 · 917775485652284293347968029<27> · C113
C113 = P36 · P77
P36 = 369244730960158548653039248728688993<36>
P36-1 = 25 · 3 · 7 · 31 · 79 · 4799 · 82531 · 562579 · 6205139 · 162275651
P77 = 62264671376284461785245998480661830923905752489668299002771833757103236928537<77>
By Shusuke Kubota / GMP-ECM 5.0.3 P-1, msieve
(4·10177-31)/9 = (4)1761<177> = 3 · 7 · 41 · 83 · 9555151 · 121825559 · 6993278185679143<16> · C141
C141 = P28 · C114
P28 = 1987450676488498295792213921<28>
P28-1 = 25 · 5 · 17 · 39199 · 318907 · 3503917 · 16681481
C114 = [384399759139704645983070502633996073558701483159339552891858391489346214011431425242009551648135865335534903923441<114>]
(4·10197+23)/9 = (4)1967<197> = 13 · 67061420451949139<17> · C179
C179 = P31 · C149
P31 = 3875850410397358728150007205989<31>
P31-1 = 22 · 3 · 13 · 191 · 5381 · 318023 · 2102311 · 36156847421
C149 = [13153289365373373652287163335689411355426642911508379876847678476391712809507266336843641776035125750635366578147500197759585122334964892650539919589<149>]
(5·10170-41)/9 = (5)1691<170> = 37 · 313 · 908057 · 3670254134669<13> · C146
C146 = P29 · C117
P29 = 24536274467882790513965408261<29>
P29-1 = 22 · 5 · 7 · 151 · 2333 · 1810607 · 11831969 · 23222431
C117 = [992467984470178341940502766726206764199893272446874595614385542559268311663027354996771104251058134036124229044011117<117>]
(5·10186+13)/9 = (5)1857<186> = 607 · 6829 · 182167813054452217<18> · 10476133674495648057887<23> · 190677856249892933027003657<27> · C114
C114 = P31 · P32 · P52
P31 = 4431326044520724742431755745191<31>
P31-1 = 2 · 5 · 65424197 · 3574127 · 41862809 · 45268589
P32 = 14966316781521514166267140832867<32>
P52 = 5553414831170960703298877172858931725679664347846709<52>
(2·10173+1)/3 = (6)1727<173> = 3229 · C170
C170 = P41 · C130
P41 = 12285208461573705537910016528766093075163<41>
P41-1 = 2 · 3 · 11 · 17 · 31 · 41 · 647 · 967 · 63761 · 18524851 · 15374759 · 758219951
C130 = [1680576033089870868963499694810832703706063596917344726240449356900159434785066948305141904898456764011525077492362488490487304421<130>]
(7·10152-43)/9 = (7)1513<152> = 19 · 17061399629<11> · 71406505488602029831<20> · 110256811046946871822049<24> · C98
C98 = P31 · P67
P31 = 3894586209452422308013106508109<31>
P31-1 = 22 · 32 · 72 · 1201 · 1433 · 2593051 · 3835343 · 128990663
P67 = 7824971152250281693613784856609289257806979006669111279779992882113<67>
(7·10141+11)/9 = (7)1409<141> = 12401 · C137
C137 = P33 · C105
P33 = 331568234726854059523323014000309<33>
P33-1 = 22 · 7 · 7699 · 9104153 · 346039 · 7253581 · 67307507
C105 = [189158519386617684939030736058485751071489885862088360390732938094472285653661252807576546000948860525431<105>]
10194-3 = (9)1937<194> = 97 · 2797 · 13068964567247<14> · 670549628153749<15> · C161
C161 = P29 · P133
P29 = 33277844999548027200089593129<29>
P29-1 = 23 · 3 · 131 · 848879 · 292601 · 361463 · 117892781
P133 = 1263887731759476343000875801231412637930730552439455420562992121150851058349170733639270998372943091867382096788885439846712019565259<133>
By Samuel Chong / GGNFS-0.72.9
(4·10148+41)/9 = (4)1479<148> = 3 · 1891303 · 897126031 · 331863141923<12> · C121
C121 = P61(1099...) · P61(2392...)
P61(1099...) = 1099590543316208962394851426591442294149735871304382663494779<61>
P61(2392...) = 2392718682737473835596935301350728473162211230084976697130243<61>
(43·10136-7)/9 = 4(7)136<137> = 19 · C136
C136 = P64 · P72
P64 = 2641221796064532986393024467312807061677478606471077274348016833<64>
P72 = 952066913421570125247269046297342615949509296486960375373088484000615851<72>
By Shusuke Kubota / GMP-ECM 5.0.3 P-1
(2·10187+43)/9 = (2)1867<187> = 7 · 239 · 2089 · 2719 · 3599899 · 1454013060523477510672955511551<31> · C140
C140 = P39 · P102
P39 = 171824658039399274668028577202502436917<39>
P39-1 = 22 · 3 · 17 · 31 · 269 · 653 · 5987 · 41149 · 7255247 · 7501667 · 11535851
P102 = 260015827991389744757924433573282122519980971253054147560706874791927196020033982048969907377988459733<102>
(2·10192+61)/9 = (2)1919<192> = 7 · 23 · 669530585551<12> · 20775274609098475159<20> · C158
C158 = P27 · P132
P27 = 667117672689848993338819147<27>
P27-1 = 2 · 3 · 241811 · 92767 · 6214433 · 797590771
P132 = 148744860985106215714069843997915995410053484442940674463915135405455635591942431327564169591019230640693829812880091453923361611543<132>
By Anton Korobeynikov / GGNFS-0.72.10 gnfs
(8·10139-53)/9 = (8)1383<139> = 35 · 29 · 12479 · 944197409 · 3960885278494758967<19> · C104
C104 = P31 · P74
P31 = 1603368278577343071227273704889<31>
P74 = 16856797356598288373663039532187939403739453640268875790575005173821365973<74>
By Anton Korobeynikov / GGNFS-0.72.10
(8·10142-53)/9 = (8)1413<142> = 3 · 7 · 47 · 109 · 12380995663<11> · C127
C127 = P53 · P75
P53 = 33888609240438223080463262859555599851225968700234303<53>
P75 = 196922123059548881537983688778111022921835799994407155301004448606279170909<75>
By Wataru Sakai / GMP-ECM 5.0.3
(7·10191-43)/9 = (7)1903<191> = 896542069 · 151215945352530419<18> · C165
C165 = P37 · C129
P37 = 1555638964216566815934684090827554843<37>
C129 = [368789422473978553513879442510661662693561154915114012018347239100356861441258362855348314765701232643294412697841740600275348601<129>]
(7·10194-43)/9 = (7)1933<194> = 73 · 109 · 3137 · 9001482062398106549<19> · 54197355242387283113232438971<29> · C139
C139 = P30 · C110
P30 = 494427323393845610326557724357<30>
C110 = [12918053425195422867659167365721895242221179503016675627829364459926836953922196214827503153705191131697829699<110>]
By Shusuke Kubota / GMP-ECM 5.0.3
(10180+11)/3 = (3)1797<180> = C180
C180 = P42 · C139
P42 = 272758247071676178699145697658054668532869<42>
C139 = [1222083427034706903773029817610399404719151533461635367757974162856636259210681170667958475510140547632037054709315922473113662735165663173<139>]
By Makoto Kamada / GMP-ECM 5.0.3
(13·10199-1)/3 = 4(3)199<200> = 467 · 3593 · 12351951019<11> · 358544381170561639<18> · 609809572708767925987<21> · C145
C145 = P27 · P119
P27 = 414006712790869543604715607<27>
P119 = 23097655390674302963205407801116223882216104693387423696032603692136922300690030400151134874018595384315258584663662047<119>
By Makoto Kamada / msieve 0.88
(71·10178-17)/9 = 7(8)1777<179> = 79 · 181 · 239 · 16543979 · 2640168793<10> · 1124266841391479029<19> · 156702928315222366369<21> · 34606454852969814749777<23> · C95
C95 = P28 · P68
P28 = 1999279693243405200196603009<28>
P68 = 43357419650292760648596259849079473200578810565197817444903313602277<68>
By Samuel Chong / GGNFS-0.72.9
(43·10135-7)/9 = 4(7)135<136> = 172223 · 1955141 · 2370475339<10> · C115
C115 = P53 · P63
P53 = 20113969400234884357299024463802236148461423164101423<53>
P63 = 297593530945123495538087166565574899848888831807708608696258087<63>
(4·10147+41)/9 = (4)1469<147> = 761 · 16103 · 20173 · 329701984581417769<18> · C118
C118 = P44 · P74
P44 = 68172780040916639898861957652287052127187331<44>
P74 = 79987657394499381786361261144859395653799469410136338617989988385127812049<74>
By Anton Korobeynikov / GGNFS-0.72.10
(8·10144-53)/9 = (8)1433<144> = 113 · 1547593 · C136
C136 = P32 · P104
P32 = 98874534329867327834323401408607<32>
P104 = 51407658864286153022047140162406394772762482795020679173817766612605389163380654148507305308453154776341<104>
By Samuel Chong / GGNFS-0.72.9
(43·10129-7)/9 = 4(7)129<130> = 29 · 1060367203986593857742968219<28> · C102
C102 = P46 · P57
P46 = 1466765255916531156716260278019503628162205803<46>
P57 = 105928066987343852954110690612414904138520291983964331709<57>
By Samuel Chong / GGNFS-0.72.9
(4·10145+41)/9 = (4)1449<145> = 32 · C144
C144 = P36 · P43 · P66
P36 = 311639646415583405868739933383622067<36>
P43 = 9342760942721157600138225249869234623600873<43>
P66 = 169608273370228887591346243959811817700474890645069576214606311371<66>
(43·10127-7)/9 = 4(7)127<128> = C128
C128 = P37 · P91
P37 = 8306621478319839729790549785398150959<37>
P91 = 5751770187491638722193994761888721121100099637551248660994153282018554687337524403351531103<91>
By Anton Korobeynikov / GGNFS-0.72.10 gnfs
(8·10143-53)/9 = (8)1423<143> = 3667227200797<13> · 31195217569669<14> · 18240780104079223<17> · C101
C101 = P33 · P69
P33 = 265630684668980903549375638658543<33>
P69 = 160361456385813263542897175749432102283006701269592744015233126854779<69>
By Makoto Kamada / GMP-ECM 5.0.3
(71·10159-17)/9 = 7(8)1587<160> = 32 · 11 · 19 · 1109 · 3623 · 5261 · C147
C147 = P27 · C120
P27 = 267040418211849516599855437<27>
C120 = [742988107331573169768454412702031408998872140733172977787877843873048826893893338050791024272278018376594598175484284973<120>]
By Makoto Kamada / GMP-ECM 5.0.3
(23·10188+1)/3 = 7(6)1877<189> = 13 · 41 · 929 · 1163 · 2371 · 357136939157939605250647<24> · 5115162052884287672659773391<28> · C126
C126 = P31 · P96
P31 = 1627282333650777527744192586493<31>
P96 = 188884060647485719196975720507829113063803609033016695447415075661997303958176318275182694166627<96>
10167-3 = (9)1667<167> = 19 · 29 · 359 · 16301 · 45083 · 18584261089<11> · C143
C143 = P29 · P115
P29 = 31526805695475073355593889809<29>
P115 = 1174090648077126681817106763823790572520076120924866337337210638180510291756960164289667261485502749802903120385251<115>
2·10168-9 = 1(9)1671<169> = 7 · 1087 · 8537489959<10> · C155
C155 = P42 · C113
P42 = 367694783292840547667053261930530350154041<42>
C113 = [83730702959555558644286753585554649649572317505120979221312693092511006979457450320140886370830911981249481160321<113>]
GMP-ECM 5.0.3 [powered by GMP 4.1.4] [ECM] Input number is 30787342679670983823378399252606347030336003272280923283699603056875939873788131116591431665613642499442541468928901377218374192317624510716557569767007161 (155 digits) Using B1=400000, B2=227535984, polynomial Dickson(3), sigma=4275561283 Step 1 took 13157ms Step 2 took 9203ms ********** Factor found in step 2: 367694783292840547667053261930530350154041 Found probable prime factor of 42 digits: 367694783292840547667053261930530350154041 Composite cofactor 83730702959555558644286753585554649649572317505120979221312693092511006979457450320140886370830911981249481160321 has 113 digits
By Anton Korobeynikov / GGNFS-0.72.10
3·10136-1 = 2(9)136<137> = C137
C137 = P51 · P86
P51 = 835817364193303896837129099287216945204282453961493<51>
P86 = 35893008790209509851297098644911189995904355230294598135551859369093208362424725320643<86>
By Samuel Chong / GGNFS-0.72.9
(4·10131+41)/9 = (4)1309<131> = 23 · 449 · C127
C127 = P29 · P47 · P52
P29 = 53667381384073793283527463319<29>
P47 = 40483367336257657911753042423647935633200963737<47>
P52 = 1980871349521560279686106487098060399587464329332729<52>
(4·10132+41)/9 = (4)1319<132> = 167 · C130
C130 = P35 · P96
P35 = 23876655883801063354500384007994971<35>
P96 = 111462174253422853466965191715102444621771723912623092912665150476232789003430624266887383441557<96>
(4·10133+41)/9 = (4)1329<133> = 3 · 21851 · 2063537653540355875807<22> · C107
C107 = P41 · P66
P41 = 39306070176518266024608023750632022063959<41>
P66 = 835897231887963071465720802479009217028217814846054798480268268041<66>
(4·10135+41)/9 = (4)1349<135> = 9433 · 1863395673462752669323399<25> · C107
C107 = P33 · P74
P33 = 367852319949684139889299350769339<33>
P74 = 68736761276947901997740759873990247166537768433177316434590190256258788573<74>
(4·10140+41)/9 = (4)1399<140> = 7 · 2837 · C136
C136 = P61 · P75
P61 = 6162810540980638514621676166635472399639312666501353120536783<61>
P75 = 363146020506074456705677461588186872536152653499208281130754447208548048917<75>
(4·10142+41)/9 = (4)1419<142> = 3 · 19 · 1289 · C137
C137 = P67 · P71
P67 = 1994570295386634497361837995800937052721393273499571296549230390121<67>
P71 = 30327761907815293578202913377387926789846433157975749988184323820533753<71>
GGNFS-0.72.10 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Anton Korobeynikov / GGNFS
(8·10146-53)/9 = (8)1453<146> = C146
C146 = P39 · P108
P39 = 728438180100029837765392310287425021889<39>
P108 = 122026674764195611505668346378276953546398986947584255245332154671358098505851142077656105459087163858440947<108>
By Makoto Kamada / GMP-ECM 5.0.3
(17·10179-71)/9 = 1(8)1781<180> = 7 · 11 · 103 · 239 · 9930637 · 14023579 · 1231364489<10> · C150
C150 = P27 · C123
P27 = 684907717263391040869653253<27>
C123 = [848449316084389817643011196778947409869968028866799271194363915265764135583327280771252139360363616774249883102288406904799<123>]
(2·10194+43)/9 = (2)1937<194> = 3 · 239 · 599 · 58569143780233<14> · C174
C174 = P34 · C141
P34 = 1849056226165216886834180725538741<34>
C141 = [477774003799284931757027533443930044058200204000675666012749694678436957568955126173252976787042882398355584631203659863078083498304434616973<141>]
GGNFS-0.72.9 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(71·10164-17)/9 = 7(8)1637<165> = 47 · 59 · 239 · 241 · 11813 · 4917763985780197<16> · 39021409509760665532289<23> · C115
C115 = P27 · P88
P27 = 695956539141741369581981293<27>
P88 = 3130675593833141774600796619014181735991086661666814604742592715409649688056950822198273<88>
8·10158-1 = 7(9)158<159> = 71 · 103 · 6027899447<10> · C146
C146 = P26 · P120
P26 = 58035363500147496453886153<26>
P120 = 312705633652646293774866013397432640235661424127059883472738163634561966283402883091409272622235204199970036039513345953<120>
By Makoto Kamada / GMP-ECM 5.0.3
(4·10173-7)/3 = 1(3)1721<174> = 11 · 83 · 571 · 5351 · 29706225733<11> · 230060480135911<15> · C139
C139 = P25 · P114
P25 = 8527870812856342419311011<25>
P114 = 820099955775031642309128668440320586564012084875853074714999001512657627818866217059893404648422426135592856334279<114>
(14·10198-41)/9 = 1(5)1971<199> = 3 · 17 · 492629 · 2105064979<10> · 4148518189<10> · 772452140518292796536508293<27> · C145
C145 = P26 · P120
P26 = 80363644691962579882145527<26>
P120 = 114210403360535334882307260798118852699240064132154723795457367288939258602287596404942450030093312247774208562043299309<120>
By Samuel Chong / GGNFS-0.72.8
(4·10143+41)/9 = (4)1429<143> = C143
C143 = P34 · P55 · P55
P34 = 6596586957239466658108736141770721<34>
P55 = 1786946597425066428213032096838458166359765677208308933<55>
P55 = 3770392963514180741913123765503790583403442156167510093<55>
By Makoto Kamada / GMP-ECM 5.0.3
(34·10177-43)/9 = 3(7)1763<178> = 7 · 11 · 312 · 15199 · 7742321 · 133296326656377371<18> · 274152178351674353<18> · 7858256848771812491<19> · C109
C109 = P30 · P79
P30 = 168343045860875408912212396297<30>
P79 = 8974387619178279288191663896913172212842581783726254737006634086586782651334671<79>
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.88
(68·10161+13)/9 = 7(5)1607<162> = 11 · 181 · 2543 · 780823 · 183398071 · 136054243153<12> · 353986204609<12> · C119
C119 = P31 · P33 · P56
P31 = 1309692916384669895558873970167<31>
P33 = 876825312821863264214520432712957<33>
P56 = 18841715277677933477095596572908638611643119231646275591<56>
By Wataru Sakai / GMP-ECM 5.0.3
(2·10168-11)/9 = (2)1671<168> = 197 · 474369113 · 5575500037<10> · 1555302784493<13> · C135
C135 = P31 · C104
P31 = 4113790312911686726221727300257<31>
C104 = [66659788705516088973181816475773572954522890085369141618393936749895295735858685972632285539213254203153<104>]
GGNFS-0.72.8 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Anton Korobeynikov / GGNFS-0.72.6 gnfs
(10169+53)/9 = (1)1687<169> = 7 · 423599701769<12> · 1052364121297714227371<22> · 18307918306050479551975785178628311<35> · C101
C101 = P47 · P54
P47 = 22547873392796789087451750509829821294031082489<47>
P54 = 862567753625550460258829549849468394702409355254235911<54>
77...773 was extended to n≤200.
By Makoto Kamada / GMP-ECM 5.0.3
(2·10174+61)/9 = (2)1739<174> = 7 · 31 · 2039 · 2287 · 1601389 · C159
C159 = P32 · C127
P32 = 14498457890212761006317487033463<32>
C127 = [9458574948280310973463215284122251208233920830270650166660489119419258545136573550367434249759799039387649912266029068268959087<127>]
77...773 (n≤150) was completed.
By Samuel Chong / GGNFS-0.72.7
(7·10137-43)/9 = (7)1363<137> = 47 · 281 · 467 · 3613 · 4051 · C123
C123 = P55 · P69
P55 = 1609462872902294386964594902687715462077410912121008809<55>
P69 = 535332123319974483803426098906768820815861665418741723695646159976551<69>
(7·10145-43)/9 = (7)1443<145> = 3 · 167 · C143
C143 = P55 · P88
P55 = 5020624016062962068352721050080953999149535961830826777<55>
P88 = 3092146811392682938559683116341471710370422700462198507599620512316487424365515253419649<88>
(7·10148-43)/9 = (7)1473<148> = 3 · 83777 · 251051931301951447<18> · C126
C126 = P50 · P77
P50 = 11169894074629301900764249623641107124742529008013<50>
P77 = 11035622856482334667063309860882406037457988069949400651599212226418347689453<77>
By Anton Korobeynikov
(13·10159-31)/9 = 1(4)1581<160> = 11 · 523 · 104233 · 42526728145464632871517871<26> · 2950533436935279361264099289<28> · C98
C98 = P28 · P32 · P39
P28 = 5098170267527104959656024477<28>
P32 = 13312271543407816990395472029731<32>
P39 = 282860442204366748889504755565276951753<39>
By Naoki Yamamoto / msieve 0.88
(64·10185-1)/9 = 7(1)185<186> = 3 · 547 · 42841 · 684026888510929<15> · 3049514405622067<16> · 45950494347653342479<20> · 7659796674997238876119920369348199<34> · C95
C95 = P47 · P48
P47 = 46357862561024071739812415542089054876850698721<47>
P48 = 297190270680794188309811459586789961263549679237<48>
By Makoto Kamada / GMP-ECM 5.0.3
(64·10185-1)/9 = 7(1)185<186> = 3 · 547 · 42841 · 684026888510929<15> · 3049514405622067<16> · 45950494347653342479<20> · C129
C129 = P34 · C95
P34 = 7659796674997238876119920369348199<34>
C95 = [13777105722693798770864401956219655870467401670901097010845482852304249130000832065658876155877<95>]
By Makoto Kamada / GMP-ECM 5.0.3
(13·10159-31)/9 = 1(4)1581<160> = 11 · 523 · 104233 · 42526728145464632871517871<26> · C125
C125 = P28 · C98
P28 = 2950533436935279361264099289<28>
C98 = [19197236694014951171359105693105241872827979534001463886927990754613313350758601169487751757779311<98>]
By Shusuke Kubota / GGNFS-0.72.7
(8·10135-53)/9 = (8)1343<135> = 233 · 313 · 12239 · 17453973181<11> · C116
C116 = P57 · P59
P57 = 955065740876947098942395080400811076577942460584696099041<57>
P59 = 59741168529733217947490811959269880754561650757713766107233<59>
(8·10136-53)/9 = (8)1353<136> = 3 · 7 · 19 · 311 · 10776518697322390931117703197455067<35> · C97
C97 = P39 · P59
P39 = 103229002732754319539664765982073337707<39>
P59 = 64392305423677554109391485779344223405171210988042850438963<59>
The factor tables of the form Generalized quasi-repdigit D(R)wE were completed up to n=100.
199...991, 22...229, 311...113, 322...223, 344...443, 355...553 were extended up to n=200.
By Makoto Kamada / GMP-ECM 5.0.3
(14·10177-41)/9 = 1(5)1761<178> = 32 · 11 · 571 · 30557 · 1135247 · C162
C162 = P26 · P137
P26 = 13524707579712638416918639<26>
P137 = 58652329050482204926580668886768307652706317108596492167614142279064516720797658449067595876337940743938315692091834512743153093843973499<137>
By Shusuke Kubota / GGNFS-0.72.6
(8·10132-53)/9 = (8)1313<132> = C132
C132 = P41 · P92
P41 = 17326641585537557981615870955796887963391<41>
P92 = 51301856998694947390609649390444756756272895777203065430121529570448470060695898268565572813<92>
By Shusuke Kubota / GMP-ECM 5.0.3
(8·10136-53)/9 = (8)1353<136> = 3 · 7 · 19 · 311 · C131
C131 = P35 · C97
P35 = 10776518697322390931117703197455067<35>
C97 = [6647153472549161024830592978826845047521541214126021582105697380961107002084469636825603489877841<97>]
22...229 (n≤150) was completed.
By Greg Childers / GGNFS
(2·10133+61)/9 = (2)1329<133> = 3 · 1540783 · C126
C126 = P38 · P88
P38 = 76659272568533364674950913368039637707<38>
P88 = 6271335854617121112605951447879714072977473642544163003059143418884633284895732088567003<88>
(2·10136+61)/9 = (2)1359<136> = 32 · 53 · 107 · 1373 · 71761 · C123
C123 = P53 · P71
P53 = 22514684190740234642656336175086571770563997955136439<53>
P71 = 19627295029227531976369129749063722951968705641486901545197279608510433<71>
(2·10140+61)/9 = (2)1399<140> = 130201 · C135
C135 = P60 · P76
P60 = 135306638863259648927407393290994462378562677732498038686453<60>
P76 = 1261403583657069692876519081007425430385283883303099046253218333817686677193<76>
(2·10142+61)/9 = (2)1419<142> = 3 · 29 · 4913093567<10> · 13187978173<11> · C120
C120 = P37 · P84
P37 = 2935068716673502232614591276072987471<37>
P84 = 134312584261722729526390267792196146454274361885870677445309049807702262927191754847<84>
(2·10143+61)/9 = (2)1429<143> = 17 · 1652363 · 42804926341<11> · C125
C125 = P38 · P87
P38 = 36257386863382384421250120847702233581<38>
P87 = 509733115104558949306643010103587728529373378279761392818565255240502217399235804927119<87>
(2·10145+61)/9 = (2)1449<145> = 33 · 59 · C142
C142 = P63 · P80
P63 = 137243634497943138465177504800034675803511872208203098687538687<63>
P80 = 10164347395048245953311552290425198910952701096601638084559651522542579075770819<80>
GGNFS-0.72.7 was released.
GGNFS - A Number Field Sieve implementation (Chris Monico)
By Makoto Kamada / GMP-ECM 5.0.3
(17·10152-71)/9 = 1(8)1511<153> = 169022969 · C145
C145 = P28 · P117
P28 = 1788032748531423785318259953<28>
P117 = 625007482986166255657032845722275457980936538354720291897060772159527714074714556065604804588909744502123848038423433<117>
By Shusuke Kubota / GGNFS-0.72.6
(8·10129-53)/9 = (8)1283<129> = 23 · C128
C128 = P53 · P76
P53 = 34262114255019213954132320634252430467001059678740491<53>
P76 = 1127990605235561490186653399925956982872495997102126478481856600490755451631<76>
(8·10130-53)/9 = (8)1293<130> = 32 · 7 · 27127 · 251197 · C119
C119 = P36 · P83
P36 = 366375558614016565239659633233608049<36>
P83 = 56515063342351620321680905137873953283066073678824245424934368291457909101738191911<83>
By Makoto Kamada / GMP-ECM 5.0.3
(86·10179+31)/9 = 9(5)1789<180> = 112 · 29 · 1009 · C174
C174 = P33 · C142
P33 = 172481378433347117244207890024597<33>
C142 = [1564729221160690840180675501546388919552358971159291504060163973112140540486495852585796073536816273513606954473923841756335893925588760663087<142>]
By Wataru Sakai / GMP-ECM
(10196+53)/9 = (1)1957<196> = 19 · 739 · 1297 · 175039 · 259878475236857<15> · C169
C169 = P31 · C138
P31 = 1510283330627080248420932638301<31>
C138 = [888087817500543690374777485610139659656184329191590913987962706355569305479165393738154255599358025085365797320711586900377767369297044527<138>]
By Makoto Kamada / GMP-ECM 5.0.3
(86·10184+31)/9 = 9(5)1839<185> = 3 · 349 · C182
C182 = P32 · C151
P32 = 13883077929495122457509792250269<32>
C151 = [6573906133418714339480290893664669869576775592414257752835237999479298025025877557123206364149349159826894633396867531495820388385976492872001927909413<151>]
(23·10193+1)/3 = 7(6)1927<194> = 7 · 11 · 41 · 72889 · 11668771 · 87497009 · C171
C171 = P28 · P143
P28 = 3939095869415760815044194829<28>
P143 = 82842869296193650103979158437198673702821280659729131952979685502146705704683395176226706165293079964337321582336015988808237078409686543887009<143>
By Wataru Sakai / GMP-ECM
(10176+53)/9 = (1)1757<176> = 204814037198857354479454794029<30> · C146
C146 = P26 · P121
P26 = 24142468161424690153625023<26>
P121 = 2247067430163467830308878741940021808586686417331588986682295929189429043464451190381727259216909017141517291749620120351<121>
By Makoto Kamada / GMP-ECM 5.0.3
(68·10185+13)/9 = 7(5)1847<186> = 11 · 124717 · 2084901173<10> · 18342459200341409709194854867<29> · C143
C143 = P27 · P116
P27 = 689454221445704916540092861<27>
P116 = 20888131458295448968395603432501681827159928420078510181041084760728724191669856758775941465903753101472892751997161<116>
By Makoto Kamada / GMP-ECM 5.0.3
(35·10166-53)/9 = 3(8)1653<167> = 3 · 13 · 1487 · 3733 · 1378751729<10> · 560590050564953<15> · 1195756684702150733<19> · C117
C117 = P28 · P90
P28 = 1241974992267077749180834709<28>
P90 = 156496577856073603189539481957862509719637814574141652989364822636149186671602061556864263<90>
By Makoto Kamada / GMP-ECM 5.0.3
(82·10188+71)/9 = 9(1)1879<189> = 733 · 309031 · 28981573 · 8432740458677<13> · C161
C161 = P26 · P135
P26 = 26087852303659289678828477<26>
P135 = 630864815448734189879614352954600419962079505614736280404510478322215130619438440194482117436402006235050929487403726948241835389154409<135>
By Wataru Sakai / GMP-ECM
(10200+71)/9 = (1)1999<200> = 19 · 43 · 1861 · 4339 · 218924581 · C181
C181 = P30 · C152
P30 = 641765730765796490791870295201<30>
C152 = [11987492841028974444069975881322827688459566087864658033800299423923567334917633398263313181119727174257429479650354010252402175687768873513840520705293<152>]
(10176+53)/9 = (1)1757<176> = C176
C176 = P30 · C146
P30 = 204814037198857354479454794029<30>
C146 = [54249753889295920530701764617164228789325814935554640509723433375942762183391062434130725726967549293659942514710592465325140013355967420185143073<146>]
By Makoto Kamada / GMP-ECM 5.0.3, msieve 0.87
(22·10145-1)/3 = 7(3)145<146> = 73 · 103 · 5737 · 11247967 · 3362902086834474880808338021<28> · C104
C104 = P28 · P38 · P39
P28 = 1740190116186785418319832711<28>
P38 = 42822575997301455957613933690163977513<38>
P39 = 603113081943477257247405841987601503511<39>
By Makoto Kamada / GMP-ECM 5.0.3
(19·10164-1)/9 = 2(1)164<165> = 107 · 229 · 889687 · 125707493 · 845802201983<12> · C134
C134 = P29 · P106
P29 = 22592882399170460816494928669<29>
P106 = 4031372864845724550299872900385168375806246814478667447835285938844407419313727510462772661729749756710041<106>
By Sinkiti Sibata / GGNFS-0.70.1
(16·10143-7)/9 = 1(7)143<144> = 3 · 23 · 31 · 15307751399<11> · 6860117275771810733<19> · C111
C111 = P36 · P38 · P39
P36 = 133025645920229975435839929179483713<36>
P38 = 37737763412425626580053076175847020239<38>
P39 = 157656620943088215530674206168564009047<39>