n=3993: c2405(5836426332......) = 317212554879625666555681413967780157769991 * c2364(1839910256......)
# ECM B1=3e6, sigma=3:392698896
n=4646: c2201(1099999999......) = 1143810372347099732382133626245176404841223 * c2158(9616978710......)
# ECM B1=3e6, sigma=3:3576190896
n=6095: c4557(6729799498......) = 62613791831395206213853824854817521 * c4523(1074811044......)
# ECM B1=1e6, sigma=0:138738400773068
n=6110: c2208(9091000000......) = 4230133760814934394873981127361372051 * c2172(2149104617......)
# ECM B1=1e6
n=7404: c2453(4130869390......) = 2836616111253687843065217734069859469 * c2417(1456266631......)
# ECM B1=1e6, sigma=3:2256334323
n=14170: c5116(2350683664......) = 50004564468803129271253981321 * c5087(4700938183......)
# P-1 B1=475e6
n=14195: c10625(1111099999......) = 144445281460599056707371630074427705074521 * c10583(7692186195......)
# P-1 B1=26e6
n=14375: c10918(1732425994......) = 5632055950225869423751 * c10896(3076009915......)
# P-1 B1=26e6
n=20125: c13181(4312832038......) = 12817731806036622636291751 * c13156(3364738865......)
# P-1 B1=26e6
n=33535: c25331(1803489138......) = 285117646147236600957489361 * c25304(6325420973......)
# P-1 B1=26e6
n=33537: c19129(7113063850......) = 2262534033569840726347 * c19108(3143848333......)
# P-1 B1=26e6
n=100601: c97099(4473094337......) = 41620636947190397 * c97083(1074729909......)
# P-1 B1=26e6
n=100603: c97848(9000000000......) = 3508093235456662597 * c97830(2565496238......)
# P-1 B1=26e6
n=100607: c90690(2612711757......) = 1460739899696923 * c90675(1788622161......)
# P-1 B1=26e6
n=100615: c80455(6284439941......) = 5821803684571125746332841 * c80431(1079466138......)
# P-1 B1=26e6
n=100631: c99544(2084747337......) = 41387250260362933 * c99527(5037172859......)
# P-1 B1=26e6
n=172351: c172333(2763756966......) = 5195290925545045307 * c172314(5319734748......)
# gr-mfaktc
# via Kurt Beschorner
n=6727: c5574(2064647840......) = 1047877990715454452835324744683683 * c5541(1970313203......)
# ECM B1=1e6, sigma=0:2274522631687552841
n=6998: c3436(6059991797......) = 4825222440522736932802753826870909063213 * c3397(1255898950......)
# ECM B1=1e6, sigma=1:3357214821
n=7322: c3124(9971602324......) = 1098219798184752353515357893709903 * c3091(9079787434......)
# ECM B1=1e6, sigma=0:2491697219115282787
n=7475: c5245(3675580544......) = 15505472455016759587508459597470951 * c5211(2370505352......)
# ECM B1=1e6, sigma=0:18431048725826748845
n=8550: c2142(3780273794......) = 50792678843997103125564228953098051 * c2107(7442556447......)
# ECM B1=1e6, sigma=1:3948794741
n=8989: c8740(6660681131......) = 102580747840939619646439725223666751 * c8705(6493110326......)
# ECM B1=1e6, sigma=0:15569226960371882803
n=9298: c4640(1359068360......) = 1563165388202378790609422243615950333 * c4603(8694335036......)
# ECM B1=1e6, sigma=0:8200969374073451735
n=10698: c3533(2001678159......) = 60422310915370446522185091859841143 * c3498(3312812980......)
# ECM B1=1e6, sigma=0:9025799004291895975
n=11740M: c2333(4667164215......) = 26079940960803251242773920141621 * c2302(1789560882......)
# ECM B1=1e6, sigma=0:2491697219115282787
n=12226: c6055(1514206454......) = 89608107762061515506843876482939463 * c6020(1689809652......)
# ECM B1=1e6, sigma=1:779994301
n=12566: c6073(1313383621......) = 31603495155368462761237537133957 * c6041(4155817623......)
# ECM B1=1e6, sigma=1:655833659
n=12736: c6299(2387190110......) = 22097757830929209295739749880257 * c6268(1080286121......)
# ECM B1=1e6, sigma=0:7381242002067033701
n=12812: c6399(2664787174......) = 21077242196429525361186824449 * c6371(1264295940......)
# ECM B1=1e6, sigma=0:5240098279965081931
n=13102: c6510(4513168459......) = 11234156335481531452871344377931 * c6479(4017363052......)
# ECM B1=1e6, sigma=0:15001379438198087481
n=13996: c6987(1072519602......) = 204890785219035979427957584202935049 * c6951(5234591695......)
# ECM B1=1e6, sigma=0:5002578937860814667
n=14682: c4872(8539751468......) = 308423623644519438261578158376407 * c4840(2768838316......)
# ECM B1=1e6, sigma=0:18220973016383062643
n=14938: c5714(1950399937......) = 50507197481999694181649427499207 * c5682(3861627718......)
# ECM B1=1e6, sigma=0:14388761652548964991
n=15034: c7508(3549274949......) = 4195633154739939146871605469049729 * c7474(8459450143......)
# ECM B1=1e6, sigma=0:7381242002067033701
n=15036: c4184(1145518682......) = 19960909424761606195431498285633121 * c4149(5738810083......)
# ECM B1=1e6, sigma=0:9025799004291895975
n=15576: c4594(2457573732......) = 1021215882940763716023660860358793 * c4561(2406517342......)
# ECM B1=1e6, sigma=1:3357214821
n=15680: c5336(2877063281......) = 237640398462598725110168022608455681 * c5301(1210679370......)
# ECM B1=1e6, sigma=1:3357214821
n=16642: c8113(1099999999......) = 510275338872837943503226436340757 * c8080(2155698926......)
# ECM B1=1e6, sigma=1:655833659
n=16762: c7600(5015575211......) = 892945963278215927708265523253 * c7570(5616885475......)
# ECM B1=1e6, sigma=0:15715615220306035161
n=16836: c5267(1630328933......) = 1708559249210108153689680151069 * c5236(9542126995......)
# ECM B1=1e6, sigma=0:5002578937860814667
n=16882: c8012(4767999568......) = 74070097854246176082005476567 * c7983(6437144956......)
# ECM B1=1e6, sigma=0:8200969374073451735
n=17470: c6922(2859972704......) = 51142479417505833766068185041 * c6893(5592166702......)
# ECM B1=1e6, sigma=0:5240098279965081931
n=19496: c9721(3130714080......) = 4484551381589952548623003000369 * c9690(6981108731......)
# ECM B1=1e6, sigma=0:8200969374073451735
n=19634: c9807(1718958630......) = 62996090673261196878035187361 * c9778(2728675084......)
# ECM B1=1e6, sigma=1:779994301
n=19770: c5257(5183535478......) = 3712624882400509567017878191602121 * c5224(1396191547......)
# ECM B1=1e6, sigma=0:5002578937860814667
# via yoyo@home
n=2420M: c383(1737659923......) = 44505227443958852066177332104248534163442141717888361 * c330(3904395109......)
# ECM B1=535737247-850000000
# via Kurt Beschorner
n=5448: c1756(6261074342......) = 51278642145604467093822938103548209 * c1722(1220990665......)
# ECM B1=1e6
n=9608: c4749(2095517973......) = 8707877193463091134765720576950241 * c4715(2406462478......)
# ECM B1=1e6
n=10528: c4379(2722980648......) = 1140860950517154006542133524802017 * c4346(2386776974......)
# ECM B1=1e6
n=11428: c5702(4514462363......) = 213464738891827136781453788693029 * c5670(2114851561......)
# ECM B1=1e6
n=11874: c3923(4659573886......) = 4474652592213101963261049956287 * c3893(1041326402......)
# ECM B1=1e6
n=12894: c3621(5999190081......) = 3364181690127541423617629098854302497117 * c3582(1783253888......)
# ECM B1=1e6
n=13048: c5547(4147538187......) = 7156481208941164087579325103329 * c5516(5795499305......)
# ECM B1=1e6
n=13430: c4909(2458504069......) = 697310374083635934181072120743731 * c4876(3525695530......)
# ECM B1=1e6
n=13670: c5443(1869598825......) = 45877095104379039785304744963120481 * c5408(4075233668......)
# ECM B1=1e6
n=14150: c5624(9232599634......) = 1329358319189638483639181035972001 * c5591(6945155043......)
# ECM B1=1e6
n=14228: c7106(2017044994......) = 916860194915205211551756819707549 * c7073(2199948264......)
# ECM B1=1e6
n=14610: c3873(3372260753......) = 4431413788420445723452726601182681 * c3839(7609898137......)
# ECM B1=1e6
n=15756: c4757(6974432889......) = 1045538729636300313001097608801 * c4727(6670659529......)
# ECM B1=1e6
n=15808: c6898(2777857258......) = 104413314723119774544094458576769 * c6866(2660443512......)
# ECM B1=1e6
n=16014: c4967(2173290297......) = 31547981662215854119939823173543597 * c4932(6888841006......)
# ECM B1=1e6
n=16052: c7966(3084447777......) = 4658319375280038836593342482714709 * c7932(6621374638......)
# ECM B1=1e6
n=16456: c7005(1230665090......) = 641359059804856802486136586885249 * c6972(1918839489......)
# ECM B1=1e6
n=17238: c4959(7233133879......) = 9720515831946074230321672288201 * c4928(7441100867......)
# ECM B1=1e6
n=17472: c4608(9999999999......) = 1798709127344704286700852409729 * c4578(5559542589......)
# ECM B1=1e6
n=17546: c8417(3846439903......) = 18868093412308627087881461714317 * c8386(2038594901......)
# ECM B1=1e6
n=18920: c6660(1802605942......) = 142880673582937612166323754051041 * c6628(1261616352......)
# ECM B1=1e6
n=19544: c8252(2041413226......) = 47939256572463779828811661121 * c8223(4258333092......)
# ECM B1=1e6
n=19636: c9799(3774609940......) = 198103141961222669858001101319081529 * c9764(1905376110......)
# ECM B1=1e6
n=19646: c8280(9090909091......) = 237519600329120397627415243893025961 * c8245(3827435326......)
# ECM B1=1e6
n=19668: c5863(2016392101......) = 9261343726322928500159380669 * c5835(2177213330......)
# ECM B1=1e6
n=19738: c9630(1257830070......) = 161071998002651899743307439651 * c9600(7809116953......)
# ECM B1=1e6
n=19902: c6321(1674646820......) = 4888214799925202813776931453797 * c6290(3425886317......)
# ECM B1=1e6
# via Wilfrid Keller
n=65536: c32757(2645761938......) = 1117030621680408054480405874459772649473 * c32718(2368567063......)
# ECM B1=11000000, sigma=8785798547043211
# This is a prime factor of the generalized Fermat number F_15(10).
# http://www.prothsearch.com/GFN10.html
# via Kurt Beschorner
n=4016: c1986(6931836081......) = 112307930407718559571758910725882966689 * c1948(6172169726......)
# ECM B1=3e6
n=5208: c1429(3690121883......) = 182066509594642808999128205413986012487177 * c1388(2026798828......)
# ECM B1=3e6
n=5863: c4765(1566203602......) = 7818544465087625000498070685898788129 * c4728(2003190759......)
# ECM B1=1e6
n=5958: c1968(9941345611......) = 63830192035862979527206502002215961 * c1934(1557467601......)
# ECM B1=1e6
n=6438: c1960(2559820103......) = 1923513602081405979027442765270321 * c1927(1330804263......)
# ECM B1=1e6
n=6954: c2150(1845017037......) = 6119309542892638024782453879771234478819 * c2110(3015073881......)
# ECM B1=3e6
n=9924: c3305(1009998990......) = 13993067676745836500583168665329 * p3273(7217852534......)
# ECM B1=1e6
$ ./pfgw64 -tc -q"(10^3308-10^1654+1)/138545363067460527192273952955422429" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^3308-10^1654+1)/138545363067460527192273952955422429 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N-1 test using base 13 Running N+1 test using discriminant 29, base 4+sqrt(29) Calling N-1 BLS with factored part 0.31% and helper 0.18% (1.14% proof) (10^3308-10^1654+1)/138545363067460527192273952955422429 is Fermat and Lucas PRP! (0.5038s+0.0003s)
n=10122: c2831(9526847758......) = 56318968260288413993111664013 * c2803(1691587763......)
# ECM B1=1e6
n=11222: c5342(8917056861......) = 101525808624828813955100986283569 * c5310(8783044412......)
# ECM B1=1e6
n=11336: c5162(5235501542......) = 48543089529707007606940079456713 * c5131(1078526643......)
# ECM B1=3e6
n=11494: c4883(1530330281......) = 45527012989769020736163797329894099247 * c4845(3361367638......)
# ECM B1=1e6
n=11650: c4598(4194731153......) = 7407396523803245840396003274358451 * c4564(5662895377......)
# ECM B1=1e6
n=11728: c5856(9999999900......) = 7494260664694500139703858016593 * c5826(1334354427......)
# ECM B1=1e6
n=11748: c3493(1649848047......) = 91989151900159169448979045154989 * c3461(1793524576......)
# ECM B1=1e6
n=13104: c3427(1376658878......) = 880655645796768439492733079697 * c3397(1563220408......)
# ECM B1=1e6
n=13934: c6966(9090909090......) = 205513835321465414030896669223853997 * c6931(4423502231......)
# ECM B1=3e6
n=14062: c6852(2975904610......) = 46074847886707782459951938818441 * c6820(6458848475......)
# ECM B1=1e6
n=14188: c7073(1017024830......) = 555797467940454639105794726350386569 * c7037(1829847901......)
# ECM B1=1e6
n=14754: c4836(3655293469......) = 5533722289095384677947125556459 * c4805(6605487733......)
# ECM B1=1e6
n=14822: c7343(3099766109......) = 12885303139791837181140400104263 * c7312(2405660213......)
# ECM B1=1e6
n=15078: c4237(4835208376......) = 8940875609688780733739035058641 * c4206(5407980814......)
# ECM B1=1e6
n=15378: c4635(8453556532......) = 347244936369913663790395948338580801 * c4600(2434465026......)
# ECM B1=1e6
n=15672: c5178(8585672897......) = 2172163531093464286375305939361 * c5148(3952590481......)
# ECM B1=3e6
n=15988: c6811(6578339058......) = 270610104811353384383257216874309 * c6779(2430928831......)
# ECM B1=3e6
n=16674: c4747(1010665396......) = 17215617442390236245549872720450293691 * c4709(5870631128......)
# ECM B1=3e6
n=16910: c6310(1783045372......) = 16892696391545847655248155508864691 * c6276(1055512590......)
# ECM B1=1e6
n=16986: c5292(1897148822......) = 1071926280952327242714105033769 * c5262(1769850088......)
# ECM B1=3e6
n=17702: c8572(6447942093......) = 2448553878357819744731652063583 * c8542(2633367454......)
# ECM B1=1e6
n=18416: c9153(1981528675......) = 328292252056973513701559791141457 * c9120(6035867930......)
# ECM B1=1e6
n=18556: c9262(9113653401......) = 11310808142943366831346758833140729 * c9228(8057473247......)
# ECM B1=1e6
n=18628: c9304(1299665421......) = 3342695072935155510074562097481 * c9273(3888076515......)
# ECM B1=1e6
n=19348: c8256(3748123039......) = 14317257982594134178011397216081 * c8225(2617905638......)
# ECM B1=1e6
n=1515: c784(2430222420......) = 177186747784485365721785152780571372881201 * c743(1371559922......)
# ECM B1=43e6, sigma=3:2470984999
n=4954: c2441(1660977058......) = 33171702358997510112359311069243384093 * c2403(5007210784......)
# ECM B1=3e6, sigma=3:2533550017
n=5162: c2455(5761149420......) = 17821515535893080292044375734574549971 * c2418(3232693318......)
# ECM B1=3e6, sigma=3:161741031
n=5336: c2448(8268566280......) = 33958082351539364799574631597444432756808529 * c2405(2434933219......)
# ECM B1=3e6, sigma=3:3253116463
n=14145: c7012(4049412494......) = 7888109751073943149402226551 * c6984(5133565102......)
# P-1 B1=200e6
n=33526: c16752(1473297528......) = 578367809593219644206504259419 * c16722(2547336666......)
# P-1 B1=55e6
n=33528: c10062(1648723766......) = 14915519317285509793729 * c10040(1105374698......)
# P-1 B1=55e6
n=100580L: c19505(2796100000......) = 5390464273856107327441481 * c19480(5187122774......)
# P-1 B1=55e6
n=100587: c67043(1702576099......) = 111324946991076079 * c67026(1529375171......)
# P-1 B1=26e6
n=100590: c22906(1064167910......) = 14911854297232761331 * c22886(7136388870......)
# P-1 B1=55e6
n=100595: c69595(1118355636......) = 376464670048512505862711 * c69571(2970678858......)
# P-1 B1=26e6
# via Kurt Beschorner
n=2234: c1015(1536789484......) = 1445186809706740542550789335667900069209733 * p973(1063384660......)
# ECM B1=1e6
n=3278: c1459(8399560307......) = 2157697221847899424424458252991851 * c1426(3892835483......)
# ECM B1=3e6
n=3962: c1679(2178056184......) = 3983899972382950675490061976611893 * c1645(5467145760......)
# ECM B1=3e6
n=5426: c2643(2049247740......) = 2109798893991278941664139480607 * c2612(9713000353......)
# ECM B1=3e6
n=6136: c2785(1000099999......) = 662599496748626238734309791458355897 * c2749(1509358224......)
# ECM B1=1e6
n=6170: c2399(1355054091......) = 977551585141899205184634315312811 * c2366(1386171442......)
# ECM B1=3e6
n=6772: c3384(9900990099......) = 186763741814089255834917574142376769 * c3349(5301344898......)
# ECM B1=3e6
n=7492: c3727(1413492884......) = 138394395399915400069845901461229 * c3695(1021351247......)
# ECM B1=3e6
n=7862: c3885(1504639070......) = 44693791374140318283734999777207216623 * c3847(3366550529......)
# ECM B1=1e6
n=8388: c2742(6095253936......) = 134688426473691429084817972025926249 * c2707(4525447431......)
# ECM B1=3e6
n=9096: c3025(1000099999......) = 1529712162385306709282432672390233 * c2991(6537831263......)
# ECM B1=1e6
n=9134: c4556(8647808741......) = 25854551191035295754193658612317653 * c4522(3344791668......)
# ECM B1=3e6
n=10212: c3108(3698158276......) = 18991721501941386445681615468491929029 * c3071(1947247528......)
# ECM B1=3e6
n=10370: c3817(9836666978......) = 7628614856290469023577714786281 * c3787(1289443387......)
# ECM B1=1e6
n=10832: c5408(9999999900......) = 7841177492454314988778424265889 * c5378(1275318650......)
# ECM B1=3e6
n=11060M: c1856(3566535791......) = 37719150517049197803985020844031720302235341 * c1812(9455504013......)
# ECM B1=3e6
n=11240: c4443(5137614098......) = 7708819233454301917322106725844119281 * c4406(6664592777......)
# ECM B1=1e6
n=13340L: c2451(6179141036......) = 1598271964841370741795383513073187001581 * c2412(3866138662......)
# ECM B1=3e6
n=14346: c4708(8005775977......) = 5236932463474286267607873472687 * c4678(1528714764......)
# ECM B1=3e6
n=14802: c4888(7591735367......) = 1554378630311446714614875023012561 * c4855(4884096589......)
# ECM B1=3e6
n=16596: c5511(2420406811......) = 2068548304517379029499883521178878109 * c5475(1170099246......)
# ECM B1=3e6
n=16858: c8410(5202050006......) = 2059242764914935150535059457966741837 * c8374(2526195597......)
# ECM B1=3e6
n=17680: c6115(4530956348......) = 8009782669511468438840517543521 * c6084(5656778136......)
# ECM B1=1e6
n=18184: c9061(3333351370......) = 310654630797806515830381131044662827041 * c9023(1073008750......)
# ECM B1=3e6
n=18664: c9299(8657169263......) = 3838314599403480974995790999177 * c9269(2255461098......)
# ECM B1=1e6
n=19706: c9629(1099999999......) = 1200366132434749096552768256047 * c9598(9163870674......)
# ECM B1=3e6
# 1286 of 300000 Φn(10) factorizations were finished. 300000 個中 1286 個の Φn(10) の素因数分解が終わりました。
# 213416 of 300000 Φn(10) factorizations were cracked. 300000 個中 213416 個の Φn(10) の素因数が見つかりました。
# 130 of 25997 Rprime factorizations were finished. 25997 個中 130 個の Rprime の素因数分解が終わりました。
# 20085 of 25997 Rprime factorizations were cracked. 25997 個中 20085 個の Rprime の素因数が見つかりました。
# via Kurt Beschorner
n=3028: c1493(5702780114......) = 350811664667433614608602654291207889 * c1458(1625595921......)
# ECM B1=3e6
n=4174: c2064(5826788376......) = 108918422903303886126910580318696251 * c2029(5349681184......)
# ECM B1=3e6
n=4972: c2208(3969406518......) = 577837704901733035210523216577847049549 * c2169(6869414171......)
# ECM B1=3e6
n=5398: c2698(9090909090......) = 3279708514581454577251383230741819 * c2665(2771864954......)
# ECM B1=3e6
n=5478: c1566(3306727606......) = 68607233373205142171625494377086752971 * c1528(4819794421......)
# ECM B1=3e6
n=5496: c1788(3031648595......) = 16720796591104964964012274961761 * c1757(1813100577......)
# ECM B1=3e6
n=6738: c2235(2051073712......) = 51245455168258282841893513998267997 * c2200(4002449984......)
# ECM B1=3e6
n=11180L: c1950(2017447970......) = 28211252517426651484369691411498741 * c1915(7151217299......)
# ECM B1=1e6
n=11390: c4196(5299876253......) = 241089081105899896676693655121 * c4167(2198306214......)
# ECM B1=1e6
n=12718: c6337(3816009818......) = 1622472125404964255486174113693 * c6307(2351972498......)
# ECM B1=1e6
n=12898: c6444(7047762687......) = 196349392321387598699516016347797 * c6412(3589398777......)
# ECM B1=3e6
n=14354: c7146(5579905307......) = 811272527195511473736461822117911962841 * c7107(6877966552......)
# ECM B1=1e6
n=14754: c4870(1576530302......) = 4313006097050418055872643089194023 * c4836(3655293469......)
# ECM B1=1e6
n=15382: c7686(5909711428......) = 3175391604742537135819667361565371653 * c7650(1861096886......)
# ECM B1=1e6
n=16118: c8026(5435402175......) = 129949302924329134475319109727 * c7997(4182709759......)
# ECM B1=1e6
n=17812: c8641(1009999999......) = 175676229085567924131541957505849 * c8608(5749212658......)
# ECM B1=3e6
# via Kurt Beschorner
n=16487: c16487(1111111111......) = 85855843852342041551190326949071 * c16455(1294158977......)
# ECM B1=1e6, sigma=3540680568445972
n=17011: c17011(1111111111......) = 371269994862869743297843049482351 * c16978(2992730698......)
# ECM B1=1e6, sigma=3467295196514019
n=25771: c25771(1111111111......) = 1618919654638410532966695689809 * c25740(6863287550......)
# ECM B1=1e6, sigma=0:8929280927174938
n=26107: c26107(1111111111......) = 749172713584380613761044507 * c26080(1483117432......)
# ECM B1=1e6, sigma=7689781701333303
n=1505: c945(6223710974......) = 62115703652442437970564849055491434518411781791 * c899(1001954515......)
# ECM B1=43e6, sigma=3:3612922203
n=1507: c1343(1206932669......) = 205639315737380899003691742110287041179812977689 * c1295(5869172755......)
# ECM B1=43e6, sigma=3:3793980079
n=1533: c848(1954727074......) = 213522434186075863894759359560240658151 * c809(9154668371......)
# P-1 B1=5e9
n=2459: c2400(5652559723......) = 646583676742128689455152852799720600889 * c2361(8742193666......)
# ECM B1=3e6, sigma=3:2720534563
# via Kurt Beschorner
n=18660L: c2463(7714422472......) = 280810859436055742441906429115682141 * c2428(2747195207......)
# ECM B1=1e6
n=16494: c5456(1409289493......) = 96430542755514493448598981025129 * c5424(1461455523......)
# ECM B1=3e6
n=19554: c6476(7011653342......) = 23151524580580099975005537223 * c6448(3028592487......)
# ECM B1=1e6
n=17982: c5825(1224915551......) = 134863768349399846909652035340487213 * c5789(9082614007......)
# ECM B1=3e6
n=11572: c5225(1107354125......) = 240366513598327598232574876974329 * c5192(4606940081......)
# ECM B1=1e6
n=19850: c7889(1195956042......) = 719094391284743442614635765229882651 * c7853(1663141942......)
# ECM B1=1e6
n=13736: c6368(3084719749......) = 81636676076256779577902555701248518369 * c6330(3778595476......)
# ECM B1=3e6
n=13940L: c2531(3151418229......) = 63590216313243802118407932917711441 * c2496(4955822471......)
# ECM B1=1e6
n=16020L: c2104(9382968970......) = 46051351274930993358718249052727481 * c2070(2037501335......)
# ECM B1=1e6
n=16646: c6686(1126150672......) = 882603787036186239195049938701028731 * c6650(1275941355......)
# ECM B1=3e6
n=8432: c3816(2520626534......) = 4160555408329388877269057170438527953 * c3779(6058389533......)
# ECM B1=3e6
n=9492: c2681(7325062077......) = 165957148309580907134016699617855329 * c2646(4413827395......)
# ECM B1=1e6
n=18484: c9232(1073407719......) = 26786665988236101934497919349 * c9203(4007246439......)
# ECM B1=1e6
n=11244: c3720(7603846104......) = 1037919397567674352091169149521 * c3690(7326046822......)
# ECM B1=1e6
n=7836: c2566(8512852219......) = 32023331502072669887932498701092929 * c2532(2658328106......)
# ECM B1=1e6
n=5050: c1934(5169130785......) = 2858645341697598342769128549063601 * c1901(1808244873......)
# ECM B1=1e6
n=14622: c4838(1022674687......) = 126702984205340775076852610183187601 * p4802(8071433312......)
# ECM B1=3e6
$ ./pfgw64 -tc -q"(10^4874-10^2437+1)/1238937325340127610488425471233981493598328763421614271059727825618837103" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^4874-10^2437+1)/1238937325340127610488425471233981493598328763421614271059727825618837103 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N+1 test using discriminant 7, base 6+sqrt(7) Calling N-1 BLS with factored part 0.20% and helper 0.03% (0.64% proof) (10^4874-10^2437+1)/1238937325340127610488425471233981493598328763421614271059727825618837103 is Fermat and Lucas PRP! (0.7634s+0.0269s)
n=4758: c1440(9100000000......) = 597843259303729297849229332466764327 * c1405(1522138095......)
# ECM B1=1e6
n=18238: c8254(2409181924......) = 93318215426166207055121421888263 * c8222(2581684522......)
# ECM B1=3e6
n=15212: c7575(3315207720......) = 613215826748498466338715936749 * c7545(5406265748......)
# ECM B1=1e6
n=11126: c5549(2869595114......) = 653130462612717769801874495375011 * c5516(4393601705......)
# ECM B1=3e6
# via Kurt Beschorner
n=4398: c1455(1247177094......) = 2250655759461579907658456158341378523393459 * c1412(5541394276......)
# ECM B1=1e6
n=5876: c2635(1182876272......) = 122881028931838072024623429521 * c2605(9626191142......)
# ECM B1=1e6
n=9486: c2871(4292400930......) = 60517505137742238213182649655345933 * c2836(7092825325......)
# ECM B1=1e6
n=11022: c3304(1240262015......) = 13492101419840095990357182938407 * c3272(9192504388......)
# ECM B1=1e6
n=11112: c3692(2249994375......) = 1119796977199941669609379841122801 * c3659(2009287773......)
# ECM B1=1e6
n=11736: c3835(9636905442......) = 470600578956966664935199936226689 * c3803(2047788692......)
# ECM B1=1e6
n=12576: c4145(2526892012......) = 6062905159404990134935177885249 * c4114(4167790764......)
# ECM B1=1e6
n=13638: c4501(2743034729......) = 1595592606471382368015524884129 * c4471(1719132263......)
# ECM B1=1e6
n=18020L: c3322(2955551749......) = 1162109319238402957122414931013024101 * c3286(2543264820......)
# ECM B1=1e6
n=10022: c5002(1706349318......) = 250943251882275453879549409410077912971 * c4963(6799741797......)
# ECM B1=3e6
n=18582: c5823(1098046910......) = 2254438383557621906725366187851 * c5792(4870600669......)
# ECM B1=1e6
n=19398: c6233(2764410805......) = 53368281288604331981616356387059 * c6201(5179876020......)
# ECM B1=1e6
n=19820M: c3931(1870023402......) = 485934143371278336976535377992521 * c3898(3848306253......)
# ECM B1=1e6
n=18286: c8859(1217934169......) = 72525096985342433957750796787969 * c8827(1679327874......)
# P-1 B1=1e8
n=18334: c8960(3426224301......) = 20598739132682122829209932331 * c8932(1663317487......)
# P-1 B1=1e8
n=19456: c9212(5139538469......) = 3041954552273693420412238735872001 * c9179(1689551366......)
# P-1 B1=1e8
n=18976: c9448(4047221336......) = 1458761088353707777088761432321 * c9418(2774423700......)
# P-1 B1=1e8
n=18982: c9482(9686946006......) = 154958614462087209921940257943 * c9453(6251311707......)
# P-1 B1=1e8
n=1513: c1363(4061339734......) = 4073058989811163061967384961255100449 * c1326(9971227386......)
# ECM B1=11e6, sigma=3:1710696692
n=2996: c1273(1009999999......) = 10070868837525352428796400989776525941 * x1236(1002892616......)
# ECM B1=11e6, sigma=3:1184495260
n=2996: x1236(1002892616......) = 2569164908474306407837982546400715548833401 * c1193(3903574322......)
# ECM B1=11e6, sigma=3:2623389524
n=5522: c2438(2710261695......) = 228175830687389378268569034706114933 * c2403(1187795257......)
# ECM B1=3e6, sigma=3:310935704
n=10384: c4641(1000000009......) = 99627958818782147774783267894286635387087681 * c4597(1003734315......)
# ECM B1=1e6, sigma=0:1429027484175333
n=10490: c4166(1347817173......) = 3404715218879286112653170559931 * c4135(3958678146......)
# P-1 B1=1e9
n=14133: c8040(7048505411......) = 3390061178096991195841 * c8019(2079167614......)
# P-1 B1=180e6
n=14137: c13846(2351124900......) = 84758687585502487473359 * c13823(2773904324......)
# P-1 B1=150e6
n=14363: c14031(1109955856......) = 13765349940537143422113359 * c14005(8063404574......)
# P-1 B1=26e6
n=20113: c20087(3979713420......) = 196700194240250118970483 * c20064(2023238175......)
# P-1 B1=26e6
n=33515: c26776(7173034193......) = 5949278585630719634724161 * x26752(1205698151......)
# P-1 B1=26e6
n=33515: x26752(1205698151......) = 1714004804552864730734075201 * c26724(7034391901......)
# P-1 B1=26e6
n=100535: c80413(5094463905......) = 2526448671711960287521 * c80392(2016452565......)
# P-1 B1=26e6
n=100538: c47297(1099999999......) = 240472609350127589116607 * c47273(4574325545......)
# P-1 B1=55e6
n=100543: c97029(1023500854......) = 6298531939174331317 * c97010(1624983192......)
# P-1 B1=26e6
n=100546: c50272(9090909090......) = 6482347212241646693060952407 * c50245(1402410082......)
# P-1 B1=55e6
n=100558: c49777(1099999999......) = 1367806470521025574997 * c49755(8042073375......)
# P-1 B1=55e6
n=100562: c39097(6950743739......) = 460020248685831655897866108011 * c39068(1510964736......)
# P-1 B1=55e6
n=100563: c67035(2239637494......) = 95363442016382434729 * c67015(2348528373......)
# P-1 B1=26e6
n=100570: c39424(9091000000......) = 20354394369217378890302717166091 * c39393(4466357404......)
# P-1 B1=55e6
n=100574: c50260(1636469877......) = 841314902037959111785409 * c50236(1945133591......)
# P-1 B1=55e6
n=172127: c172113(3956104227......) = 1219673247598548763 * c172095(3243577110......)
# gr-mfaktc
# via Kurt Beschorner
n=3320: c1281(1676912197......) = 209855077384496402528794210924081 * c1248(7990810697......)
# ECM B1=1e6
n=4264: c1885(4636716352......) = 7830904558151282394453258027420068448313 * c1845(5921048224......)
# ECM B1=1e6
n=4634: c1951(3528093691......) = 133497367767000665131131678430301773 * c1916(2642818918......)
# ECM B1=3e6
n=5310: c1364(4273625525......) = 38072168879843482870802927929991371 * c1330(1122506453......)
# ECM B1=1e6
n=5854: c2884(2557884369......) = 23382325431546395261196228437659 * c2853(1093939256......)
# ECM B1=1e6
n=5904: c1889(1139627394......) = 1869537495549965870641867493011201 * c1855(6095771800......)
# ECM B1=1e6
n=8166: c2707(4843566583......) = 123422355630783710434507634464892127931 * c2669(3924383519......)
# ECM B1=1e6
n=8174: c3938(1365606052......) = 426606414881654882020447697779817923778449 * c3896(3201091229......)
# ECM B1=1e6
n=8370: c2120(3285444197......) = 712453221758660496775090393681 * c2090(4611452509......)
# ECM B1=1e6
n=8492: c3835(1043292507......) = 3719668025351558497787621075044901 * c3801(2804800052......)
# ECM B1=1e6
n=10350: c2626(1525517945......) = 777528354247066024351829083575001 * c2593(1962009407......)
# ECM B1=1e6
n=11626: c5787(6421508431......) = 3662442622632712655098853009 * c5760(1753340350......)
# ECM B1=1e6
n=13042: c6494(3500733375......) = 6618448990102777708230288089 * c6466(5289356132......)
# ECM B1=1e6
n=14248: c6529(1000099999......) = 110038620618729917903338883737 * c6499(9088627196......)
# ECM B1=1e6
n=14370: c3749(8034718450......) = 11616138821969139121723043000521 * c3718(6916858152......)
# ECM B1=1e6
n=14380M: c2863(1372215686......) = 154471537280653399451928917390806964581 * c2824(8883291452......)
# ECM B1=1e6
n=14910: c3361(1098890000......) = 680200055480364010929968817691 * c3331(1615539415......)
# ECM B1=1e6
n=15144: c5002(5268784940......) = 123493751144798553672423177510553 * c4970(4266438497......)
# ECM B1=1e6
n=15432: c5107(3818950095......) = 126772018625252090476333716073 * c5078(3012455064......)
# ECM B1=1e6
n=15516: c5112(2214164736......) = 15662937123666521974558553298049 * c5081(1413633163......)
# ECM B1=1e6
n=15680: c5364(6518123212......) = 22655473916191773174317040641 * c5336(2877063281......)
# ECM B1=1e6
n=15848: c6769(1000099999......) = 115806814146026246525146363409 * c6739(8635933967......)
# ECM B1=1e6
n=16134: c5317(9722553800......) = 2595661175357965328882122630414123129 * c5281(3745694504......)
# ECM B1=1e6
n=17368: c7955(3112118143......) = 402732350235867873516535246754642790481 * c7916(7727509701......)
# ECM B1=1e6
n=17420M: c3169(2796097203......) = 67737935728841701410303869871661 * p3137(4127815785......)
# ECM B1=1e6
$ ./pfgw64 -tc -q"((10^871+1)*((10^1742+10^871)*(10^871+10^436+3)+10^436+2)-1)/24225887295451271139593466940975365564882861763174939416814215108126431780711701/((10^67+1)*((10^134+10^67)*(10^67+10^34+3)+10^34+2)-1)" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing ((10^871+1)*((10^1742+10^871)*(10^871+10^436+3)+10^436+2)-1)/24225887295451271139593466940975365564882861763174939416814215108126431780711701/((10^67+1)*((10^134+10^67)*(10^67+10^34+3)+10^34+2)-1) [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2 Running N-1 test using base 17 Running N-1 test using base 19 Running N+1 test using discriminant 29, base 16+sqrt(29) Calling N-1 BLS with factored part 0.23% and helper 0.11% (0.82% proof) ((10^871+1)*((10^1742+10^871)*(10^871+10^436+3)+10^436+2)-1)/24225887295451271139593466940975365564882861763174939416814215108126431780711701/((10^67+1)*((10^134+10^67)*(10^67+10^34+3)+10^34+2)-1) is Fermat and Lucas PRP! (0.4966s+0.0005s)
n=17736: c5895(4541570320......) = 129544664562140547265456563409 * c5866(3505794959......)
# ECM B1=1e6
n=17750: c6990(2014077880......) = 12904244867890415385714718903195001 * c6956(1560787090......)
# ECM B1=1e6
n=17938: c8913(4005189504......) = 1381988647388392386045478881481 * c8883(2898134881......)
# ECM B1=1e6
n=18070: c6570(2058342947......) = 1755924560430390901867470711752521 * c6537(1172227437......)
# ECM B1=1e6
n=18490: c7212(1383877030......) = 773592060142970046680286931091441 * c7179(1788897665......)
# ECM B1=1e6
n=18996: c6262(5945098255......) = 119605123684705889520287885416681 * c6230(4970604997......)
# ECM B1=1e6
n=19628: c8361(6914770872......) = 10769352505741295714306444836409 * c8330(6420786086......)
# ECM B1=1e6
n=19672: c9764(6425021251......) = 36529171118425857022042396289 * c9736(1758874087......)
# ECM B1=1e6
n=19782: c5591(6380156071......) = 741143489923205859402689063047489 * c5558(8608530140......)
# ECM B1=1e6
n=14698: c7344(6184712627......) = 2347654209857259248783821628575634401 * c7308(2634422310......)
# P-1 B1=1e8
n=14818: c7123(6938680835......) = 1637485139034609598162047343 * c7096(4237400798......)
# P-1 B1=1e8
n=14908: c7427(1088255693......) = 37253476624085787593410949116909 * c7395(2921219150......)
# P-1 B1=1e8
n=15352: c7178(2912059298......) = 1757324406290874041814576343116300807569 * c7139(1657098307......)
# P-1 B1=1e8
n=15452: c7715(4176249840......) = 1126613563272465257067147493643221 * c7682(3706905346......)
# P-1 B1=1e8
n=15524: c7760(9900990099......) = 314332212901582730925189258815801 * c7728(3149849010......)
# P-1 B1=1e8
n=16388: c7637(7254376276......) = 1239052552006641587808012658390968721 * c7601(5854776913......)
# P-1 B1=1e8
n=16576: c6892(1357209155......) = 483653178803446515441471666245761 * c6859(2806161966......)
# P-1 B1=1e8
n=16682: c7885(1099999999......) = 140317884197941008513757925312934823 * c7849(7839342834......)
# P-1 B1=1e8
n=17854: c8709(1258466533......) = 10644741565602130380564188903557 * c8678(1182242448......)
# P-1 B1=1e8
n=17950: c7101(1494552112......) = 6547524750392708564395830928001 * c7070(2282621555......)
# P-1 B1=1e8
n=18370: c6623(1069230309......) = 28437868215125373269850499008161 * c6591(3759882074......)
# P-1 B1=1e8
n=19118: c8544(1690897832......) = 3120623069126251566095923748891 * c8513(5418462258......)
# P-1 B1=1e8
n=19270: c7333(2504227825......) = 290694874772740871608588982542835202641 * c7294(8614626684......)
# P-1 B1=1e8
n=19280: c7676(2593293768......) = 246916406995489455549633165127046148961 * c7638(1050271952......)
# P-1 B1=1e8
n=19884: c6612(6836839190......) = 750773332364679943571213455473980401 * c6576(9106395893......)
# P-1 B1=1e8
# via factordb.com
n=5842 p2714(2606283565......) is proven
n=9930 p2558(1317124600......) is proven
# via yoyo@home
n=565: c399(5468945355......) = 28530703974361421653060495976660829753238063969572240893311 * p341(1916863096......)
# ECM B1=850000000, sigma=0:15932297432089603866
# 1284 of 300000 Φn(10) factorizations were finished. 300000 個中 1284 個の Φn(10) の素因数分解が終わりました。