Previous month前月 | September 2003 2003 年 9 月 | November 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 Recent changes 最近の更新

May 19, 2019 2019 年 5 月 19 日 (Kurt Beschorner)

n=6140L: c1196(5745251207......) = 13250162724903585950689727396593851617218121 * c1153(4335985396......)

# ECM B1=11e6, sigma=1403731729

May 17, 2019 2019 年 5 月 17 日 (Makoto Kamada)

n=202173: x134758(8951445383......) is (probable) prime

$ ./pfgw64 -tc -q"(10^202173-1)/(10^67391-1)/1117138023153389393496399"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^202173-1)/(10^67391-1)/1117138023153389393496399 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N-1 test using base 7
Running N+1 test using discriminant 17, base 1+sqrt(17)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.04% proof)
(10^202173-1)/(10^67391-1)/1117138023153389393496399 is Fermat and Lucas PRP! (2201.5909s+0.0707s)

# 1163 of 300000 Φn(10) factorization were finished. 300000 個中 1163 個の Φn(10) の素因数分解が終わりました。

May 14, 2019 2019 年 5 月 14 日 (Kurt Beschorner)

n=8220L: c1074(1494365910......) = 6097790664173896352923803646734195061 * c1037(2450667779......)

# ECM B1=11e6, sigma=2907575830

May 3, 2019 2019 年 5 月 3 日 (Makoto Kamada)

n=277314: x92430(3302215685......) is (probable) prime

$ ./pfgw64 -tc -q"11*(10^138657+1)/1001/(10^46219+1)/3327769"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing 11*(10^138657+1)/1001/(10^46219+1)/3327769 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N+1 test using discriminant 11, base 2+sqrt(11)
Calling N+1 BLS with factored part 0.01% and helper 0.01% (0.04% proof)
11*(10^138657+1)/1001/(10^46219+1)/3327769 is Fermat and Lucas PRP! (740.6582s+0.0852s)

# 1162 of 300000 Φn(10) factorization were finished. 300000 個中 1162 個の Φn(10) の素因数分解が終わりました。

May 1, 2019 2019 年 5 月 1 日 ([HWU] regazz)

# via yoyo@home

n=973: c824(3083142372......) = 3715631189441610182664346038535448639 * p787(8297762117......)

# ECM B1=43000000, sigma=0:1221013246906637789

# 1161 of 300000 Φn(10) factorization were finished. 300000 個中 1161 個の Φn(10) の素因数分解が終わりました。

April 28, 2019 2019 年 4 月 28 日 (Alfred Reich)

n=8413: c8174(3957321107......) = 243904395884094668914288576880306533 * c8139(1622488636......)

n=8737: c8671(1511692665......) = 7770910590299873304488185798093 * c8640(1945322428......)

n=9377: c9377(1111111111......) = 4321331760187959083703542399831 * c9346(2571223809......)

n=10159: c10119(1112158968......) = 29437946832889335998236951 * c10093(3777977366......)

n=10259: c10237(1473439870......) = 115361122055246822564853304133 * c10208(1277241278......)

n=11783: c11772(2292492104......) = 2080263724013311300835809 * c11748(1102019940......)

n=12559: c11872(3903570988......) = 4778840951127934697851667 * c11847(8168447177......)

n=12581: c12008(3576680046......) = 2445512734451107507 * c11990(1462548117......)

n=12773: c12474(3063526302......) = 60296045245324124413 * c12454(5080808020......)

n=12779: c11773(4289629990......) = 1506749748512063329 * c11755(2846942563......)

n=12833: c12469(4553946223......) = 36807212618820443 * c12453(1237242893......)

n=12937: c12144(5699591251......) = 262058850066411227 * c12127(2174927978......)

n=12989: c12528(5627157709......) = 9210876865683601877 * c12509(6109252996......)

n=12997: c12612(9342472384......) = 121574395299121946569 * c12592(7684572365......)

n=13031: c12784(7621504372......) = 548817716613458573 * c12767(1388713254......)

n=13061: c12672(9000000000......) = 118691142954131999 * x12655(7582705647......)

n=13061: x12655(7582705647......) = 96509307226360422893 * c12635(7856968271......)

n=13069: c11191(1187330511......) = 1349265660312356203397 * c11169(8799827541......)

n=13087: c12496(9000000000......) = 571592971890013 * c12482(1574547001......)

n=13091: c11215(2550191928......) = 4443290713184542649 * c11196(5739421732......)

n=13123: c11909(5184567914......) = 2179097622352481546717 * c11888(2379227007......)

n=13133: c12520(1912909884......) = 47776729087159013 * x12503(4003852755......)

n=13133: x12503(4003852755......) = 13172152262570076133 * c12484(3039634431......)

n=13157: c12866(5525844614......) = 590550898465907 * c12851(9357101358......)

n=13193: c12930(8641433080......) = 23451325309248391 * c12914(3684837836......)

n=13319: c12600(9000000000......) = 422428981799832803 * c12583(2130535637......)

n=13351: c12151(4391003561......) = 28026698468489907161 * x12132(1566721662......)

n=13351: x12132(1566721662......) = 37458859374925798681 * c12112(4182512998......)

n=13529: c13265(5580425373......) = 429432715502639 * c13251(1299487713......)

n=13579: c13147(1326323431......) = 614169584243455267 * c13129(2159539425......)

n=13631: c13264(1859991269......) = 1614347848993133609 * c13246(1152162633......)

n=13813: c13056(3944367338......) = 4652075018214523 * c13040(8478726854......)

n=13861: c13602(1369169102......) = 604265682843150439 * c13584(2265839583......)

n=13961: c13309(4343297148......) = 6319773321791603 * c13293(6872552110......)

n=13987: c13690(1124260846......) = 7027411937378329548173 * c13668(1599822034......)

n=14113: c12811(3459797702......) = 6804531405856774613 * c12792(5084549539......)

n=14141: c13867(1532183799......) = 630709273731769591 * c13849(2429302791......)

n=14309: c13915(2096577686......) = 266233227045535723 * c13897(7874966282......)

n=14809: c14481(7504758810......) = 296283969375966883 * c14464(2532961478......)

n=14989: c13800(1242212902......) = 119396574302447885587 * c13780(1040409165......)

n=15083: c15083(1111111111......) = 321103436853409015750259267 * c15056(3460290310......)

n=15103: c13720(9000000000......) = 348543597237844273079 * c13700(2582173384......)

n=15191: c13791(6405899910......) = 632037145610952071 * c13774(1013532187......)

n=15347: c15061(8868641982......) = 127902710469044323 * c15044(6933896826......)

n=15371: c14523(6967498995......) = 2577406350840940453 * c14505(2703298605......)

n=15487: c14552(1713446637......) = 935239162645494923 * x14534(1832094619......)

n=15487: x14534(1832094619......) = 1743582023637651243986923 * c14510(1050764801......)

n=15577: c15120(9000000000......) = 2095166797252861973 * c15102(4295600718......)

n=15599: c14748(1362234396......) = 46838916594062591 * c14731(2908338824......)

n=15751: c14858(2110203608......) = 10266197079830917 * c14842(2055487140......)

n=15793: c14848(9000000000......) = 59033421771015516270079 * c14826(1524560110......)

n=15829: c14376(1421419208......) = 5583006188505416507 * c14357(2545974623......)

n=15889: c15883(2497479418......) = 28340715892715335093 * c15863(8812337092......)

n=15893: c15164(1214053542......) = 1921837468520299583102077 * c15139(6317149927......)

n=16003: c14738(8770062960......) = 10094343528191431738711 * c14716(8688096393......)

n=16313: c14807(1226259645......) = 153614332714379275399 * c14786(7982716347......)

n=16459: c16181(1412966589......) = 55718955151289934443239 * c16158(2535881345......)

n=16589: c16213(1004633594......) = 72492481855619932507 * c16193(1385845220......)

n=16637: c16350(7088073682......) = 130558135696811058722557 * c16327(5429055527......)

n=16859: c16096(1403289762......) = 52864341802012711 * c16079(2654510989......)

n=16663: c15759(8413065819......) = 654967470549079 * c15745(1284501322......)

n=17173: c15840(9000000000......) = 29518631350664587 * c15824(3048921846......)

n=17219: c16892(2613316298......) = 39930944006701407721 * c16872(6544589323......)

n=17251: c15893(1170859258......) = 95645401884063781012147 * c15870(1224166802......)

n=17309: c16359(1357923835......) = 197047365083113277 * c16341(6891357491......)

n=17399: c17123(1114731859......) = 218558481769387 * c17108(5100382517......)

n=17407: c15897(4648557555......) = 1019667083181292963 * c15879(4558897342......)

n=17447: c17111(3404126643......) = 1014502546032788717 * c17093(3355463874......)

n=17527: c16461(9752783037......) = 16660688003072805521 * c16442(5853769685......)

n=17821: c17489(6120203332......) = 75317223441990240773 * c17469(8125901424......)

n=17999: c17516(2500069446......) = 297922411607347 * c17501(8391679675......)

n=18023: c17688(9000000000......) = 84123467203295920963 * c17669(1069856046......)

n=18037: c16925(3234552364......) = 15855860455739606866919 * c16903(2039972774......)

n=18313: c18283(2414840537......) = 324093184007522256791 * c18262(7451068571......)

n=18451: c18402(4226367724......) = 274059920186681161003 * c18382(1542132728......)

n=18467: c18096(9000000000......) = 3345874935375758991967277 * c18072(2689879380......)

n=18659: c18192(9069457299......) = 43214964502300050068131639 * c18167(2098684426......)

n=18737: c18240(9000000000......) = 39236107553573615831 * c18221(2293805517......)

n=18871: c18577(1860018288......) = 31798634204579653 * c18560(5849365340......)

n=18943: c17905(1684544668......) = 42760228212482479 * c17888(3939512811......)

n=19027: c18609(4084732418......) = 1412889413746642940399 * c18588(2891048923......)

n=19043: c18762(8439538676......) = 69735797571237214643 * c18743(1210216125......)

n=19127: c18449(2188550564......) = 22666057907036191 * c18432(9655629460......)

n=19247: c18216(9000000000......) = 208381320522103013 * c18199(4319005166......)

n=19487: c17958(3391884559......) = 40817005297404744721 * c17938(8309978976......)

n=19639: c19120(9000000000......) = 13474722076382161157 * c19101(6679173009......)

n=19781: c19489(2613679454......) = 30349984016803562399443 * c19466(8611798455......)

# 201054 of 300000 Φn(10) factorization were cracked. 300000 個中 201054 個の Φn(10) の素因数が見つかりました。

# 18757 of 25997 Rprime factorization were cracked. 25997 個中 18757 個の Rprime の素因数が見つかりました。

April 27, 2019 2019 年 4 月 27 日 (Kurt Beschorner)

n=255255: x92160(9009100001......) = 62731945294208191 * x92144(1436126356......)

# 201040 of 300000 Φn(10) factorization were cracked. 300000 個中 201040 個の Φn(10) の素因数が見つかりました。

April 25, 2019 2019 年 4 月 25 日 (Alfred Reich)

n=6499: c6310(1666220225......) = 4165975905806403445675813 * c6285(3999591603......)

n=6859: c6466(2551155230......) = 67060198998473064997241 * c6443(3804276260......)

n=7103: c7103(1111111111......) = 42802214480689253068237806547 * c7074(2595919684......)

n=7295: c5821(1247852037......) = 41232217477282447750778881 * c5795(3026400504......)

n=7979: c7784(2713743858......) = 216251636371721529162346249283 * c7755(1254900958......)

n=6838: c3080(2347961252......) = 11752801686094820502490861046771611 * c3046(1997788540......)

n=7118: c3489(3993799416......) = 93606245741965473665134054924388953019 * c3451(4266595017......)

n=8972: c4468(2513140441......) = 1331980990053596471625571221796349 * c4435(1886769000......)

n=9634: c4790(1210389805......) = 3455074226735489730084375527 * c4762(3503223739......)

n=13708: c6446(1244280911......) = 17303517253012077157833541 * c6420(7190913229......)

n=15614: c7555(7827677243......) = 6725377118748704696140853 * c7531(1163901608......)

n=16868: c8387(5931150012......) = 4483650775938337151558860669 * c8360(1322839424......)

n=18310: c7302(3817568627......) = 32971761628244713811 * c7283(1157829742......)

n=18956: c8094(5791434120......) = 69055974232189896169 * c8074(8386579416......)

n=52522: c26260(9090909090......) = 4366565567916070973 * c26242(2081935779......)

n=73426: c36712(9090909090......) = 713449936634564276647 * c36692(1274218221......)

n=88034: c44016(9090909090......) = 2511441699319222379 * c43998(3619796984......)

# 201039 of 300000 Φn(10) factorization were cracked. 300000 個中 201039 個の Φn(10) の素因数が見つかりました。

# 18755 of 25997 Rprime factorization were cracked. 25997 個中 18755 個の Rprime の素因数が見つかりました。

April 23, 2019 2019 年 4 月 23 日 (Alfred Reich)

n=17878: c7633(5963208059......) = 799561367576758181921 * c7612(7458099279......)

n=18160: c7233(1000000009......) = 81895661771812674241 * c7213(1221065912......)

n=18458: c8343(2967171770......) = 521288766830443861149539 * c8319(5691992536......)

n=19232: c9570(5563162400......) = 285094911781370037857 * c9550(1951336965......)

n=19576: c9739(2434105066......) = 850018252663503356742769 * c9715(2863591526......)

n=19894: c8219(8363798885......) = 3197022798810501273105238852303 * c8189(2616121126......)

# 201035 of 300000 Φn(10) factorization were cracked. 300000 個中 201035 個の Φn(10) の素因数が見つかりました。

April 21, 2019 2019 年 4 月 21 日 (Alfred Reich)

n=15118: c7558(9090909090......) = 1239291237280253299562812409579 * c7528(7335571185......)

n=18554: c9276(9090909090......) = 558660194389136210574365412179 * c9247(1627269882......)

# 201034 of 300000 Φn(10) factorization were cracked. 300000 個中 201034 個の Φn(10) の素因数が見つかりました。

April 21, 2019 2019 年 4 月 21 日 (Makoto Kamada)

n=212014: x91960(9090909091......) is (probable) prime

$ ./pfgw64 -tc -q"(10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1)"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 3
Running N-1 test using base 7
Running N+1 test using discriminant 23, base 1+sqrt(23)
Calling N-1 BLS with factored part 0.08% and helper 0.01% (0.25% proof)
(10^11+1)*(10^23+1)*(10^419+1)*(10^106007+1)/11/(10^253+1)/(10^4609+1)/(10^9637+1) is Fermat and Lucas PRP! (1052.5051s+0.1145s)

# 1160 of 300000 Φn(10) factorization were finished. 300000 個中 1160 個の Φn(10) の素因数分解が終わりました。

# 201032 of 300000 Φn(10) factorization were cracked. 300000 個中 201032 個の Φn(10) の素因数が見つかりました。

April 20, 2019 2019 年 4 月 20 日 (Alfred Reich)

n=30152: c15072(9999000099......) = 159141989042800124633 * c15052(6283068447......)

n=81688: c40840(9999000099......) = 377897220200968844448473 * c40817(2645957568......)

n=106138: c53068(9090909090......) = 31936532170031364877 * c53049(2846554861......)

n=142712: c71352(9999000099......) = 42297232876849 * c71339(2363984454......)

n=143368: c71680(9999000099......) = 4913006957313673 * c71665(2035209839......)

n=192034: c96016(9090909090......) = 6111767335518367 * c96001(1487443580......)

n=192674: c96336(9090909090......) = 8901357223738205851 * c96318(1021294715......)

n=203026: x101512(9090909090......) = 107438599467583 * x101498(8461492551......)

n=207362: x103680(9090909090......) = 47546101202099 * x103667(1912019884......)

n=208786: x104392(9090909090......) = 12842462979979 * x104379(7078789407......)

n=210776: x105384(9999000099......) = 10227766287841 * x105371(9776328299......)

n=215854: x107926(9090909090......) = 163968874414649 * x107912(5544289502......)

n=217006: x108502(9090909090......) = 246626030418373 * x108488(3686110941......)

n=219838: x109918(9090909090......) = 50891178411677 * x109905(1786342815......)

n=223208: x111600(9999000099......) = 19676505938633 * x111587(5081694957......)

n=225374: x112686(9090909090......) = 1436712118662251 * x112671(6327578763......)

n=227074: x113536(9090909090......) = 152634344676423721 * x113519(5956004928......)

n=227134: x113566(9090909090......) = 95453305851979 * x113552(9523933204......)

n=227674: x113836(9090909090......) = 139845281222480437 * x113819(6500690628......)

n=230306: x115152(9090909090......) = 92992442176397 * x115138(9775965528......)

n=231542: x115770(9090909090......) = 260326629968201 * x115756(3492116458......)

n=231592: x115792(9999000099......) = 226594620513817 * x115778(4412726161......)

n=232054: x116026(9090909090......) = 1115216117200681 * x116011(8151701675......)

n=234706: x117352(9090909090......) = 26547827314823 * x117339(3424351448......)

n=235442: x117720(9090909090......) = 125174609886691 * x117706(7262582323......)

n=235496: x117744(9999000099......) = 232157338119097 * x117730(4306992913......)

n=235546: x117772(9090909090......) = 1654543974411171409 * x117754(5494510409......)

n=237368: x118680(9999000099......) = 17589222783761 * x118667(5684731055......)

n=238198: x119098(9090909090......) = 523170259365009423019 * x119078(1737657851......)

n=239494: x119746(9090909090......) = 13959279724183 * x119733(6512448543......)

n=240826: x120412(9090909090......) = 220094589037887131 * x120395(4130455514......)

n=241096: x120544(9999000099......) = 20176839878137 * x120531(4955681940......)

n=241354: x120676(9090909090......) = 23885744629171 * x120663(3805997774......)

n=242552: x121272(9999000099......) = 35737195958727257 * x121256(2797925195......)

n=242702: x121350(9090909090......) = 12267356814371 * x121337(7410650255......)

n=243928: x121960(9999000099......) = 1023920605390961 * x121945(9765405684......)

n=246382: x123190(9090909090......) = 1751685275326455481 * x123172(5189807335......)

n=247634: x123816(9090909090......) = 30593485183927859 * x123800(2971517967......)

n=252682: x126340(9090909090......) = 3018208063486919531 * x126322(3012022001......)

n=252698: x126348(9090909090......) = 251947081612409 * x126334(3608261319......)

n=252866: x126432(9090909090......) = 198109827664367 * x126418(4588822875......)

n=254102: x127050(9090909090......) = 61952018191896127 * x127034(1467411289......)

n=254266: x127132(9090909090......) = 1818501312241379 * x127117(4999121545......)

n=254326: x127162(9090909090......) = 17561551096841 * x127149(5176598035......)

n=254906: x127452(9090909090......) = 569152962330727 * x127438(1597269924......)

n=255082: x127540(9090909090......) = 49081328306687 * x127527(1852213337......)

n=255406: x127702(9090909090......) = 303806600885143 * x127688(2992334289......)

n=259528: x129760(9999000099......) = 63071065521601 * x129747(1585354554......)

n=260402: x130200(9090909090......) = 12504814178783 * x130187(7269927374......)

n=262426: x131212(9090909090......) = 47897985909647 * x131199(1897973144......)

n=266078: x133038(9090909090......) = 44577275519329237 * x133022(2039359513......)

n=269278: x134638(9090909090......) = 22874771338453 * x134625(3974207635......)

n=272746: x136372(9090909090......) = 3407047885424093565451 * x136351(2668265723......)

n=274826: x137412(9090909090......) = 211567097399263 * x137398(4296938986......)

n=274952: x137472(9999000099......) = 27905935120537 * x137459(3583108774......)

n=277034: x138516(9090909090......) = 22996841393567 * x138503(3953112053......)

n=277048: x138520(9999000099......) = 2733934418453789249 * x138502(3657366479......)

n=278986: x139492(9090909090......) = 60972419872517 * x139479(1490987090......)

n=280898: x140448(9090909090......) = 27124618179917 * x140435(3351534399......)

n=282232: x141112(9999000099......) = 22102373653889 * x141099(4523948538......)

n=282362: x141180(9090909090......) = 26949279559687 * x141167(3373340304......)

n=282742: x141370(9090909090......) = 117563233064487121 * x141353(7732782481......)

n=283982: x141990(9090909090......) = 15767877624131 * x141977(5765461470......)

n=289078: x144538(9090909090......) = 1193967027101291 * x144523(7614036974......)

n=291064: x145528(9999000099......) = 958624287972289 * x145514(1043057246......)

n=293162: x146580(9090909090......) = 382896133649849 * x146566(2374249383......)

n=294394: x147196(9090909090......) = 239270937048487 * x147182(3799420524......)

n=299518: x149758(9090909090......) = 172045378097051 * x149744(5284018200......)

n=299734: x149866(9090909090......) = 8724395224455023 * x149851(1042010231......)

# 201031 of 300000 Φn(10) factorization were cracked. 300000 個中 201031 個の Φn(10) の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | November 11 月 December 12 月 January 1 月 February 2 月 March 3 月 April 4 月 Recent changes 最近の更新