# via Kurt Beschorner
n=14423: c14423(1111111111......) = 58848461806657937705279656579609 * c14391(1888088621......)
# ECM B1=3e6, sigma=8749628913907129
# 20113 of 25997 Rprime factorizations were cracked. 25997 個中 20113 個の Rprime の素因数が見つかりました。
n=1767: c1020(5535637302......) = 473173868996738254219823034728848586921173 * c979(1169894972......)
# ECM B1=20e6, sigma=3:3091771627
n=1805: c1290(4184828054......) = 250722594237790504417966333821727933829306951 * c1246(1669106873......)
# ECM B1=20e6, sigma=3:1090306176
n=10029: c6649(7534760393......) = 1318226832454578142811919289 * c6622(5715829937......)
# ECM B1=1e6, sigma=6555139459415289
n=10039: c10028(2469553505......) = 51862704467076299211942531333521 * x9996(4761713704......)
# ECM B1=1e6, sigma=8818260527267191
n=10039: x9996(4761713704......) = 419994847161234661215971116174117 * c9964(1133755267......)
# ECM B1=1e6, sigma=4880169735249008
n=664: c295(3082036244......) = 1562991265125451104418437309740711629072891358581803270840637578907766549785968712630129249 * p205(1971883217......)
# snfs
n=785: c529(6684179698......) = 189851818311923625620843142554739715438256763542951 * c479(3520735149......)
# ECM B1=26e7, sigma=1156993855260035
n=1773: c1173(2816464620......) = 198921028618536231202088585479994892998936557 * c1129(1415870730......)
# ECM B1=20e6, sigma=3:1983275677
n=1815: c834(6719778705......) = 419823029870495755682192171518286548438201 * c793(1600621744......)
# ECM B1=30e6, sigma=3:2227611172
n=5608: c2788(9954807817......) = 1405963188112846152968991141884229858562777 * c2746(7080418535......)
# ECM B1=1e6, sigma=7628637002786974
n=7250: c2753(5951294635......) = 628589002887238236168874184839054919064001 * c2711(9467704029......)
# ECM B1=1e6, sigma=6496284170981008
n=10766: c4575(1408718832......) = 17389139753916192903768529053807373 * c4540(8101141587......)
# ECM B1=1e6, sigma=8289677374114743
n=11648: c4577(8063354594......) = 77376942309914204739808700943361 * c4546(1042087520......)
# ECM B1=1e6, sigma=3731333862198610
n=100671: c64153(1109999999......) = 685038726211152037 * x64135(1620346350......)
# P-1 B1=35e6
n=100671: x64135(1620346350......) = 91409754190037219375630209 * c64109(1772618649......)
# P-1 B1=35e6
n=1472: c645(4565408279......) = 186078920500246031127942289886722997738325697 * c601(2453479559......)
n=849: c463(5705682439......) = 6665745840890644685531091049825511205035173717 * p417(8559705958......)
# ECM B1=3e6, sigma=3327356337
n=4858: c2069(5814858635......) = 3880271832350785813127370764867714215517 * c2030(1498569916......)
# ECM B1=6e6, sigma=3:2553502215
n=10300M: c2041(1010050200......) = 13189157147838102082482650675858339733901 * c2000(7658186110......)
# ECM B1=6e6, sigma=3:111371351
n=20024: c9996(7557703342......) = 82832803766514021925833504161 * c9967(9124046269......)
# ECM B1=1e6, sigma=104852919414352
n=33555: c17879(1141340054......) = 2764081801698243073951 * c17857(4129183348......)
# P-1 B1=300e6
n=100665: c53634(3308759622......) = 1592554594537771821133947534057751 * c53601(2077642822......)
# P-1 B1=300e6
# via yoyo@home
n=1800: c395(1432241739......) = 676486289910305243115743976857467256769005018068801 * c344(2117177777......)
# ECM B1=850000000, sigma=0:10291666828356324878