Previous month前月 | September 2003 2003 年 9 月 | January 1 月 February 2 月 March 3 月 April 4 月 May 5 月 June 6 月 Recent changes 最近の更新

July 10, 2019 2019 年 7 月 10 日 (Deltik)

# via yoyo@home

n=8220L: c1037(2450667779......) = 45590288211884086268396615267733422521 * c999(5375416289......)

# ECM B1=11000000, sigma=0:17790716536559808641

July 7, 2019 2019 年 7 月 7 日 (Bo Chen, Wenjie Fang, Alfred Eichhorn, Danilo Nitsche and Kurt Beschorner)

n=1980M: c187(2627672954......) = 1894480662587906626213719003472037744324031299064496778010791034044578628744590947201792481 * p97(1387014925......)

Mon Jun 24 20:13:54 2019  Msieve v. 1.53 (SVN unknown)
Mon Jun 24 20:13:54 2019  random seeds: 0a05fc00 60c3c084
Mon Jun 24 20:13:54 2019  factoring 2627672954179104898972911476269358781573649409920273562959163933342905510751546657384479639647502176825955702336694052887643645043557694346564571446575234212208734259860344956682138751781 (187 digits)
Mon Jun 24 20:13:55 2019  searching for 15-digit factors
Mon Jun 24 20:13:56 2019  commencing number field sieve (187-digit input)
Mon Jun 24 20:13:56 2019  R0: -1259493548392042769882906818753681391
Mon Jun 24 20:13:56 2019  R1: 185455710657292401216649
Mon Jun 24 20:13:56 2019  A0: -28220253876416597806317500912112890394748960
Mon Jun 24 20:13:56 2019  A1: 8637713173670125297657030463351350252
Mon Jun 24 20:13:56 2019  A2: 258834671492054099476567919685
Mon Jun 24 20:13:56 2019  A3: -10077804233119133794991
Mon Jun 24 20:13:56 2019  A4: -126114556165846
Mon Jun 24 20:13:56 2019  A5: 1658160
Mon Jun 24 20:13:56 2019  skew 46187559.54, size 3.355e-018, alpha -6.593, combined = 3.728e-014 rroots = 5
Mon Jun 24 20:13:56 2019  
Mon Jun 24 20:13:56 2019  commencing relation filtering
Mon Jun 24 20:13:56 2019  setting target matrix density to 120.0
Mon Jun 24 20:13:56 2019  estimated available RAM is 65214.1 MB
Mon Jun 24 20:13:56 2019  commencing duplicate removal, pass 1
Mon Jun 24 21:57:37 2019  error -11 reading relation 344412467
...
Mon Jun 24 22:01:13 2019  found 27341587 hash collisions in 351677973 relations
Mon Jun 24 22:02:11 2019  commencing duplicate removal, pass 2
Mon Jun 24 22:08:59 2019  found 2009447 duplicates and 349668526 unique relations
Mon Jun 24 22:08:59 2019  memory use: 1321.5 MB
Mon Jun 24 22:08:59 2019  reading ideals above 173080576
Mon Jun 24 22:08:59 2019  commencing singleton removal, initial pass
Mon Jun 24 23:41:19 2019  memory use: 6024.0 MB
Mon Jun 24 23:41:21 2019  reading all ideals from disk
Mon Jun 24 23:41:32 2019  memory use: 6761.5 MB
Mon Jun 24 23:42:22 2019  commencing in-memory singleton removal
Mon Jun 24 23:43:11 2019  begin with 349668526 relations and 315452378 unique ideals
Mon Jun 24 23:54:03 2019  reduce to 213984831 relations and 164814038 ideals in 16 passes
Mon Jun 24 23:54:03 2019  max relations containing the same ideal: 33
Mon Jun 24 23:54:45 2019  reading ideals above 720000
Mon Jun 24 23:54:46 2019  commencing singleton removal, initial pass
Tue Jun 25 01:12:35 2019  memory use: 5512.0 MB
Tue Jun 25 01:12:36 2019  reading all ideals from disk
Tue Jun 25 01:12:53 2019  memory use: 9039.4 MB
Tue Jun 25 01:14:04 2019  keeping 183004578 ideals with weight <= 200, target excess is 1144768
Tue Jun 25 01:15:20 2019  commencing in-memory singleton removal
Tue Jun 25 01:16:10 2019  begin with 213984831 relations and 183004578 unique ideals
...
Tue Jun 25 03:43:35 2019  begin with 73514317 relations and 72281290 unique ideals
Tue Jun 25 03:45:18 2019  reduce to 73514211 relations and 72186280 ideals in 5 passes
Tue Jun 25 03:45:18 2019  max relations containing the same ideal: 104
Tue Jun 25 03:45:45 2019  relations with 0 large ideals: 3856
Tue Jun 25 03:45:45 2019  relations with 1 large ideals: 9461
Tue Jun 25 03:45:45 2019  relations with 2 large ideals: 153633
Tue Jun 25 03:45:45 2019  relations with 3 large ideals: 1182226
Tue Jun 25 03:45:46 2019  relations with 4 large ideals: 4951643
Tue Jun 25 03:45:46 2019  relations with 5 large ideals: 12417947
Tue Jun 25 03:45:46 2019  relations with 6 large ideals: 19413651
Tue Jun 25 03:45:46 2019  relations with 7+ large ideals: 35381794
Tue Jun 25 03:45:46 2019  commencing 2-way merge
Tue Jun 25 03:48:09 2019  reduce to 45391486 relation sets and 44063555 unique ideals
Tue Jun 25 03:48:09 2019  commencing full merge
Tue Jun 25 04:29:55 2019  memory use: 4885.3 MB
Tue Jun 25 04:30:25 2019  found 19994542 cycles, need 19897755
Tue Jun 25 04:30:27 2019  weight of 19897755 cycles is about 2387765118 (120.00/cycle)
Tue Jun 25 04:30:27 2019  distribution of cycle lengths:
Tue Jun 25 04:30:27 2019  1 relations: 1382675
Tue Jun 25 04:30:27 2019  2 relations: 1398846
Tue Jun 25 04:30:28 2019  3 relations: 1538431
Tue Jun 25 04:30:28 2019  4 relations: 1531652
Tue Jun 25 04:30:28 2019  5 relations: 1535979
Tue Jun 25 04:30:28 2019  6 relations: 1489299
Tue Jun 25 04:30:28 2019  7 relations: 1445157
Tue Jun 25 04:30:28 2019  8 relations: 1358167
Tue Jun 25 04:30:28 2019  9 relations: 1246894
Tue Jun 25 04:30:28 2019  10+ relations: 6970655
Tue Jun 25 04:30:28 2019  heaviest cycle: 28 relations
Tue Jun 25 04:32:06 2019  commencing cycle optimization
Tue Jun 25 04:33:46 2019  start with 161451779 relations
Tue Jun 25 04:51:32 2019  pruned 5813027 relations
Tue Jun 25 04:51:32 2019  memory use: 4664.3 MB
Tue Jun 25 04:51:32 2019  distribution of cycle lengths:
Tue Jun 25 04:51:32 2019  1 relations: 1382675
Tue Jun 25 04:51:32 2019  2 relations: 1437139
Tue Jun 25 04:51:32 2019  3 relations: 1599650
Tue Jun 25 04:51:32 2019  4 relations: 1585972
Tue Jun 25 04:51:32 2019  5 relations: 1599320
Tue Jun 25 04:51:32 2019  6 relations: 1543002
Tue Jun 25 04:51:32 2019  7 relations: 1498153
Tue Jun 25 04:51:32 2019  8 relations: 1399213
Tue Jun 25 04:51:33 2019  9 relations: 1281498
Tue Jun 25 04:51:33 2019  10+ relations: 6571133
Tue Jun 25 04:51:33 2019  heaviest cycle: 28 relations
Tue Jun 25 04:54:50 2019  RelProcTime: 31254
Tue Jun 25 04:54:50 2019  elapsed time 08:40:56
Tue Jun 25 04:56:52 2019  
Tue Jun 25 04:56:54 2019  commencing linear algebra
Tue Jun 25 04:56:59 2019  read 19897755 cycles
Tue Jun 25 04:58:53 2019  cycles contain 72572979 unique relations
Tue Jun 25 05:15:58 2019  read 72572979 relations
Tue Jun 25 05:22:08 2019  using 20 quadratic characters above 4294917295
Tue Jun 25 05:29:57 2019  building initial matrix
Tue Jun 25 06:15:00 2019  memory use: 10055.4 MB
Tue Jun 25 06:16:01 2019  read 19897755 cycles
Tue Jun 25 06:16:15 2019  matrix is 19897578 x 19897755 (9491.6 MB) with weight 2875500560 (144.51/col)
Tue Jun 25 06:16:15 2019  sparse part has weight 2249389320 (113.05/col)
Tue Jun 25 06:29:31 2019  filtering completed in 2 passes
Tue Jun 25 06:29:46 2019  matrix is 19895545 x 19895722 (9491.4 MB) with weight 2875410255 (144.52/col)
Tue Jun 25 06:29:46 2019  sparse part has weight 2249365281 (113.06/col)
Tue Jun 25 06:33:49 2019  matrix starts at (0, 0)
Tue Jun 25 06:34:02 2019  matrix is 19895545 x 19895722 (9491.4 MB) with weight 2875410255 (144.52/col)
Tue Jun 25 06:34:02 2019  sparse part has weight 2249365281 (113.06/col)
Tue Jun 25 06:34:02 2019  saving the first 48 matrix rows for later
Tue Jun 25 06:34:16 2019  matrix includes 64 packed rows
Tue Jun 25 06:34:25 2019  matrix is 19895497 x 19895722 (9244.3 MB) with weight 2458287744 (123.56/col)
Tue Jun 25 06:34:25 2019  sparse part has weight 2224377457 (111.80/col)
Tue Jun 25 06:34:25 2019  using block size 8192 and superblock size 1081344 for processor cache size 11264 kB
Tue Jun 25 06:38:32 2019  commencing Lanczos iteration (16 threads)
Tue Jun 25 06:38:32 2019  memory use: 7836.9 MB
Tue Jun 25 06:41:32 2019  linear algebra at 0.0%, ETA 625h44m
Tue Jun 25 06:42:27 2019  checkpointing every 40000 dimensions
Sun Jul 07 01:10:22 2019  lanczos halted after 314633 iterations (dim = 19895497)
Sun Jul 07 01:10:41 2019  recovered 31 nontrivial dependencies
Sun Jul 07 01:11:32 2019  BLanczosTime: 1023278
Sun Jul 07 01:11:32 2019  elapsed time 284:14:40
Sun Jul 07 01:29:08 2019  
Sun Jul 07 01:29:08 2019  Msieve v. 1.53 (SVN unknown)
Sun Jul 07 01:29:08 2019  random seeds: f9f63240 3f45538f
Sun Jul 07 01:29:08 2019  factoring 2627672954179104898972911476269358781573649409920273562959163933342905510751546657384479639647502176825955702336694052887643645043557694346564571446575234212208734259860344956682138751781 (187 digits)
Sun Jul 07 01:29:09 2019  searching for 15-digit factors
Sun Jul 07 01:29:09 2019  commencing number field sieve (187-digit input)
Sun Jul 07 01:29:09 2019  R0: -1259493548392042769882906818753681391
Sun Jul 07 01:29:09 2019  R1: 185455710657292401216649
Sun Jul 07 01:29:09 2019  A0: -28220253876416597806317500912112890394748960
Sun Jul 07 01:29:09 2019  A1: 8637713173670125297657030463351350252
Sun Jul 07 01:29:09 2019  A2: 258834671492054099476567919685
Sun Jul 07 01:29:09 2019  A3: -10077804233119133794991
Sun Jul 07 01:29:09 2019  A4: -126114556165846
Sun Jul 07 01:29:09 2019  A5: 1658160
Sun Jul 07 01:29:09 2019  skew 46187559.54, size 3.355e-018, alpha -6.593, combined = 3.728e-014 rroots = 5
Sun Jul 07 01:29:09 2019  
Sun Jul 07 01:29:09 2019  commencing square root phase
Sun Jul 07 01:29:09 2019  handling dependencies 1 to 64
Sun Jul 07 01:29:09 2019  reading relations for dependency 1
Sun Jul 07 01:29:12 2019  read 9950038 cycles
Sun Jul 07 01:29:54 2019  cycles contain 36290708 unique relations
Sun Jul 07 01:36:24 2019  read 36290708 relations
Sun Jul 07 01:43:05 2019  multiplying 36290708 relations
Sun Jul 07 02:40:22 2019  multiply complete, coefficients have about 2198.72 million bits
Sun Jul 07 02:40:44 2019  initial square root is modulo 85411
Sun Jul 07 03:48:43 2019  GCD is 1, no factor found
Sun Jul 07 03:48:43 2019  reading relations for dependency 2
Sun Jul 07 03:48:48 2019  read 9950613 cycles
Sun Jul 07 03:49:25 2019  cycles contain 36290022 unique relations
Sun Jul 07 03:55:54 2019  read 36290022 relations
Sun Jul 07 04:02:33 2019  multiplying 36290022 relations
Sun Jul 07 04:59:56 2019  multiply complete, coefficients have about 2198.66 million bits
Sun Jul 07 05:00:18 2019  initial square root is modulo 85411
Sun Jul 07 06:08:31 2019  sqrtTime: 16762
Sun Jul 07 06:08:31 2019  p91 factor: 1894480662587906626213719003472037744324031299064496778010791034044578628744590947201792481
Sun Jul 07 06:08:31 2019  p97 factor: 1387014925024169834410205963291731488397071251442605254923920978398579857926008183104258552015301
Sun Jul 07 06:08:31 2019  elapsed time 04:39:23 

# 1166 of 300000 Φn(10) factorization were finished. 300000 個中 1166 個の Φn(10) の素因数分解が終わりました。

July 3, 2019 2019 年 7 月 3 日 (Bo Chen)

n=2029: c1900(5540320650......) = 245013714487726159144720326081715348604363 * c1859(2261228789......)

# ECM B1=11000000, sigma=0:12332245062534318460

June 19, 2019 2019 年 6 月 19 日 (Makoto Kamada)

n=217618: x106693(1222495739......) is (probable) prime

$ ./pfgw64 -tc -q"11*(10^108809+1)/(10^53+1)/(10^2053+1)/899798636917"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing 11*(10^108809+1)/(10^53+1)/(10^2053+1)/899798636917 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 3
Running N+1 test using discriminant 11, base 2+sqrt(11)
Calling N+1 BLS with factored part 0.01% and helper 0.01% (0.03% proof)
11*(10^108809+1)/(10^53+1)/(10^2053+1)/899798636917 is Fermat and Lucas PRP! (1051.1399s+0.0710s)

# 1165 of 300000 Φn(10) factorization were finished. 300000 個中 1165 個の Φn(10) の素因数分解が終わりました。

June 16, 2019 2019 年 6 月 16 日 (Kurt Beschorner)

n=6140M: c1203(6546242832......) = 42633651269057784211262036586055241 * c1169(1535463803......)

# ECM B1=11e6, sigma=456257847

June 11, 2019 2019 年 6 月 11 日 (Alfred Reich)

n=3013: c2854(2480942912......) = 54801984828194245177182941528875876754999 * c2813(4527104119......)

n=3375: c1774(2006145981......) = 9928227087054120839404714671321001 * c1740(2020648766......)

n=3763: c3636(5978874642......) = 33819951029015563544261960393215363 * c3602(1767854317......)

n=4005: c2113(1001000999......) = 1867328658390232232662140183278161 * c2079(5360604280......)

n=4541: c4269(2209290639......) = 3490250651625330786758706967866961 * c4235(6329891058......)

n=3369: c2244(9009009009......) = 4087010404483958534982337738286521 * c2211(2204302929......)

n=7585: c5720(4371801522......) = 15547667944421212418551 * c5698(2811869624......)

n=7843: c6576(1151984189......) = 49572320430317139671633561 * c6550(2323845604......)

n=7921: c7805(5401329388......) = 15910331774974069031187991 * c7780(3394856540......)

n=8791: c8584(9000000000......) = 282714061924913089724670761 * c8558(3183428492......)

n=9019: c8662(1314520814......) = 264213269259212217832593757 * c8635(4975226331......)

n=10159: c10093(3777977366......) = 95389333937877911520788747 * c10067(3960586797......)

n=10313: c10308(5386683042......) = 170672934111852276268975918307 * c10279(3156143690......)

n=10391: c10363(8773347766......) = 306883126921945147411270787 * c10337(2858856351......)

n=10669: c10396(9000000000......) = 4639247039875777205953169 * c10372(1939969982......)

n=11741: c11428(3030562566......) = 606576554490357081230933 * c11404(4996174916......)

n=12217: c11538(1623606941......) = 871662968766609227785649 * c11514(1862654488......)

n=12349: c12064(9000000000......) = 166325386891989774440213720479 * c12035(5411080153......)

n=12623: c11635(1425966210......) = 53467624777878097151 * c11615(2666971306......)

n=12661: c11480(7827429629......) = 346233824890535041043 * c11460(2260735106......)

n=12931: c12659(2557943115......) = 483598068316607532069829149283 * c12629(5289398951......)

n=12937: c12127(2174927978......) = 993004496125209791 * c12109(2190249880......)

n=13031: c12767(1388713254......) = 70658782071874394947 * x12747(1965379551......)

n=13031: x12747(1965379551......) = 6046051685284819252690081 * c12722(3250682683......)

n=13087: c12482(1574547001......) = 1243998737228973830416633563041 * c12452(1265714308......)

n=13091: c11196(5739421732......) = 5739726926183934177157 * c11174(9999468279......)

n=13141: c12352(9000000000......) = 144557561067680353587131453 * c12326(6225893639......)

n=13157: c12851(9357101358......) = 72514570203784572839 * c12832(1290375345......)

n=13199: c12890(2133723034......) = 2492148959777359523 * c12871(8561779688......)

n=13241: c13217(3035626203......) = 14236935046241021556662557 * c13192(2132218903......)

n=13243: c11504(9772120857......) = 726095040868245313271 * c11484(1345845971......)

n=13333: c13058(5273610539......) = 126949541631721679803 * x13038(4154099708......)

n=13333: x13038(4154099708......) = 553459352474245080559 * c13017(7505699723......)

n=13387: c12160(9000000000......) = 29552324562848476098271 * c12138(3045445707......)

n=13399: c13382(2541253548......) = 8052095254014990733683817879 * c13354(3156015258......)

n=13429: c12359(1871508582......) = 18846461278703470205197 * c12336(9930291713......)

n=13501: c12885(1893799072......) = 160714645063057920859477 * c12862(1178361232......)

n=13511: c13184(1139091163......) = 4341433943193614265283 * c13162(2623767120......)

n=13543: c13048(9000000000......) = 4000432460985064713949027 * c13024(2249756766......)

n=13547: c11868(2568187452......) = 648990779943499443084372769 * c11841(3957201753......)

n=13667: c13416(9000000000......) = 126838187629968807864133 * c13393(7095654840......)

n=13693: c13693(1111111111......) = 23427251325041664183448403 * c13667(4742814663......)

n=13787: c12948(2671381759......) = 1757394197403238846159 * c12927(1520081131......)

n=13891: c13375(9816689670......) = 1735934170839135827817449 * c13351(5654989593......)

n=14039: c13792(1445416892......) = 241159746835622837 * c13774(5993607606......)

n=14113: c12792(5084549539......) = 551572326412773603521 * c12771(9218282528......)

n=14989: c13780(1040409165......) = 7215132725733758879 * c13761(1441982018......)

n=20771: c20739(6594078737......) = 13209599046683370077 * c20720(4991884094......)

n=22703: c22314(4719323479......) = 48604334541257921 * c22297(9709676151......)

n=25369: c24227(2608268086......) = 2306031807390797 * c24212(1131063360......)

n=25937: c25184(1479470552......) = 67459153246632997 * c25167(2193135373......)

n=26303: c25320(3807632972......) = 1539032801536874760803 * c25299(2474042767......)

n=27263: c26928(9000000000......) = 11704867833996086080907 * c26906(7689108606......)

n=29047: c28067(4208860278......) = 27159567941963 * c28054(1549678657......)

n=29893: c29537(1698739753......) = 968231101401787 * c29522(1754477574......)

n=30337: c28981(1858435761......) = 243831293831386307 * c28963(7621809866......)

n=30551: c30187(4909796134......) = 61316184812231 * c30173(8007341209......)

n=31067: c30331(1193816689......) = 18006395973615385159 * c30311(6629959104......)

n=31631: c30895(3113758831......) = 370382591170307 * c30880(8406871451......)

n=32899: c32536(9000000000......) = 2141521360072013 * c32521(4202619767......)

n=33499: c33114(3198388580......) = 40771498970999 * c33100(7844667626......)

n=34597: c33352(1418668113......) = 1200003528192719849 * c33334(1182219952......)

n=35627: c34040(1126113813......) = 16322228861194849 * c34023(6899264944......)

n=36367: c35426(1530040372......) = 90788272265723 * c35412(1685284161......)

n=36649: c36010(8269045438......) = 263138618719079 * c35996(3142467448......)

n=38509: c37989(3370675287......) = 314880082142862763 * c37972(1070463163......)

n=38537: c38016(9000000000......) = 435966028899427639 * c37999(2064381030......)

n=41567: c41160(9000000000......) = 285693503624738711 * c41143(3150229139......)

n=42221: c42205(6155075387......) = 33511744274510071 * c42189(1836692037......)

n=45043: c43553(5489259866......) = 1338140043394864999 * c43535(4102156492......)

n=45973: c44441(4101596253......) = 54011998949933 * c44427(7593861240......)

n=46591: c46575(2127184869......) = 1475602987115586361 * c46557(1441569912......)

n=47423: c46346(4210770508......) = 256737619986959 * c46332(1640106544......)

n=49219: c48544(9000000000......) = 46992462476599 * c48531(1915200763......)

n=49729: c49507(1000000000......) = 727210453002083 * c49492(1375117747......)

n=53983: c52483(1041993495......) = 9042134049258397 * c52467(1152375633......)

n=55037: c53813(2800108731......) = 41686833109486332585637 * c53790(6717009958......)

n=55631: c55623(2554076262......) = 21596992735099032799 * c55604(1182607362......)

n=56279: c55771(7995806643......) = 2745153945063077 * c55756(2912698815......)

n=59383: c57920(4450894024......) = 7486273213374289 * c57904(5945406877......)

n=60023: c59500(5146803110......) = 37020326909908603 * c59484(1390264090......)

n=63463: c63457(4376986331......) = 2708198951484745744759 * c63436(1616198222......)

n=65869: c65319(8918094389......) = 487554741591707 * c65305(1829147299......)

n=67271: c67264(9176070533......) = 189669409006547 * c67250(4837928573......)

n=68359: c67790(1467026620......) = 27163417749156427 * c67773(5400743874......)

n=70361: c69300(9000000000......) = 2240905166691307 * c69285(4016234213......)

n=70831: c70253(3251626556......) = 26688757861957 * c70240(1218350653......)

n=73201: c72071(5168987375......) = 46668431728573 * c72058(1107598259......)

n=74519: c72737(1606044752......) = 79530781841119307 * c72720(2019400181......)

n=74549: c73836(9000000000......) = 43389686411086843 * c73820(2074225638......)

n=76073: c75327(2196223402......) = 344393908113178307 * c75309(6377068092......)

n=81089: c80318(1676026103......) = 1934849442165547 * c80302(8662307603......)

n=81143: c79550(4637702696......) = 26744841685142557 * c79534(1734055019......)

n=81797: c81120(9000000000......) = 52665025770199 * c81107(1708914002......)

n=83141: c81900(9000000000......) = 735341472256519 * c81886(1223921176......)

n=84257: c83370(7629711452......) = 24315396499991 * c83357(3137810832......)

n=85693: c84329(4665643856......) = 1473341034627043 * c84314(3166710046......)

n=85849: c85557(1000000000......) = 34911060387701363 * c85540(2864421730......)

n=86267: c85650(5422001049......) = 40039612309873081 * c85634(1354159227......)

n=88147: c87472(1863858525......) = 72109553594958413 * c87455(2584759484......)

n=88447: c87815(1784314487......) = 198843921177511 * c87800(8973442473......)

n=88453: c87800(3528049619......) = 20585203726999 * c87787(1713876464......)

n=89893: c89264(1159475491......) = 41078745264043 * c89250(2822567935......)

n=91271: c90285(3108244151......) = 21220391585831 * c90272(1464744012......)

n=91787: c91152(7030084181......) = 488761392934968563 * c91135(1438346866......)

n=91831: c91000(9000000000......) = 40497515629867 * c90987(2222358547......)

n=91859: c90775(4024747834......) = 325281034444117 * c90761(1237314017......)

n=93091: c92199(6833449607......) = 385266633225671 * c92185(1773693597......)

n=94187: c93104(3219410270......) = 868391223454399373 * c93086(3707327046......)

n=96709: c95616(9000000000......) = 29961947963173 * c95603(3003810036......)

n=97057: c95620(9000000000......) = 379340889996613 * c95606(2372536216......)

n=97399: c96652(3509375945......) = 43094854494475503683 * c96632(8143375784......)

n=99101: c98089(4921082713......) = 159987961759326761 * c98072(3075908124......)

n=99811: c99000(9000000000......) = 100253214775048597 * c98983(8977268230......)

n=99941: c99077(2529582270......) = 379390235149356239 * c99059(6667494404......)

# 201079 of 300000 Φn(10) factorization were cracked. 300000 個中 201079 個の Φn(10) の素因数が見つかりました。

# 18758 of 25997 Rprime factorization were cracked. 25997 個中 18758 個の Rprime の素因数が見つかりました。

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | January 1 月 February 2 月 March 3 月 April 4 月 May 5 月 June 6 月 Recent changes 最近の更新