Previous month前月 | September 2003 2003 年 9 月 | July 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新

January 13, 2019 2019 年 1 月 13 日 (Alfred Reich)

n=81421: c81421(1111111111......) = 1146121188298815962197 * c81399(9694534246......)

# ECM B1=11000, sigma=4864732123615816

n=133277: c133277(1111111111......) = 74933078522375156813 * c133257(1482804567......)

# ECM B1=11000, sigma=8789456095379722

n=133319: c133319(1111111111......) = 26854222911044351112613 * c133296(4137565681......)

# ECM B1=11000, sigma=7407008886822868

n=134951: c134951(1111111111......) = 23508729233971243708427 * c134928(4726376743......)

# ECM B1=11000, sigma=4576938745968329

# 140984 of 200000 Φn(10) factorization were cracked. 200000 個中 140984 個の Φn(10) の素因数が見つかりました。

# 14097 of 17984 Rprime factorization were cracked. 17984 個中 14097 個の Rprime の素因数が見つかりました。

January 13, 2019 2019 年 1 月 13 日 (solo)

# via yoyo@home

n=2580L: c316(3347739496......) = 40577891868500992650677399803808454657267203875748156761 * c260(8250156285......)

# ECM B1=260000000, sigma=0:2155320441625669934

January 13, 2019 2019 年 1 月 13 日 (Makoto Kamada)

n=118966: c55951(1601788553......) = 4121447425730807 * c55935(3886470912......)

n=118982: c57992(3511240359......) = 179542772575257305099 * c57972(1955656754......)

n=118984: c58497(9024795467......) = 13269509248192772153 * c58478(6801152400......)

n=118994: c59487(7661256115......) = 8099183774243167 * c59471(9459294082......)

n=118996: c58508(1440957244......) = 108681728374861 * c58494(1325850505......)

n=119002: c52272(9090909090......) = 10985256098051 * c52259(8275554989......)

n=119012: c59482(1203805490......) = 6853145481618889 * c59466(1756573669......)

n=119014: c51001(1099999890......) = 34612202707622681 * c50984(3178069593......)

n=119036: c59501(1444444901......) = 18226417713709 * c59487(7925007117......)

n=119038: c58345(1099999999......) = 9005928968282905409 * c58326(1221417583......)

n=119044: c59520(9900990099......) = 84441764586841129309 * c59501(1172522879......)

n=119054: c51833(9544941934......) = 794433867468281 * 13041693055495807 * c51802(9212586229......)

n=119072: c58560(9999999999......) = 918879994518721 * c58546(1088281392......)

n=119084: c51013(7322921845......) = 1258208097585112549 * c50995(5820119787......)

n=119104: c59512(1812221806......) = 63671409909953 * c59498(2846209639......)

# P-1 B1=1e6

# 140980 of 200000 Φn(10) factorization were cracked. 200000 個中 140980 個の Φn(10) の素因数が見つかりました。

January 13, 2019 2019 年 1 月 13 日 (Alfred Reich)

n=132929: c132929(1111111111......) = 395079758290154069467 * c132908(2812371648......)

# ECM B1=11000, sigma=5203823154737830

# 140975 of 200000 Φn(10) factorization were cracked. 200000 個中 140975 個の Φn(10) の素因数が見つかりました。

# 14093 of 17984 Rprime factorization were cracked. 17984 個中 14093 個の Rprime の素因数が見つかりました。

January 12, 2019 2019 年 1 月 12 日 (Alfred Reich)

n=49807: c49807(1111111111......) = 11217522486074282408089 * c49784(9905138255......)

# ECM B1=11000, sigma=7707061624597747

n=55837: c55837(1111111111......) = 5466648257955950322347 * c55815(2032527169......)

# ECM B1=11000, sigma=2270557489419958

n=59209: c59209(1111111111......) = 9329532594433909212958116893 * c59181(1190961176......)

# ECM B1=11000, sigma=1972047889076272

n=66617: c66617(1111111111......) = 29568901929089137114883 * c66594(3757701634......)

# ECM B1=11000, sigma=4876770862915359

n=66697: c66697(1111111111......) = 278361837330994846907 * c66676(3991607189......)

# ECM B1=11000, sigma=893549295221855

n=78487: c78487(1111111111......) = 3308966728444965184039 * c78465(3357879369......)

# ECM B1=11000, sigma=8177745231771750

n=89237: c89217(4952466867......) = 161289990655892814923 * c89197(3070535776......)

# ECM B1=11000, sigma=1814930616575467

n=90007: c90007(1111111111......) = 83778970434243805489 * c89987(1326241066......)

# ECM B1=11000, sigma=3421246240453900

n=94007: c94007(1111111111......) = 60733213169733630049 * c93987(1829495021......)

# ECM B1=11000, sigma=3147416593767344

n=94169: c94150(1335542631......) = 5348034072430599877 * c94131(2497259018......)

# ECM B1=11000, sigma=6853965127623178

n=96211: c96211(1111111111......) = 259746348017563605439 * c96190(4277677509......)

# ECM B1=11000, sigma=7429921803625012

n=98729: c98729(1111111111......) = 16226751579045432825947 * c98706(6847403226......)

# ECM B1=11000, sigma=7600515000164118

n=107837: c107837(1111111111......) = 594479699134652912099883071 * c107810(1869048030......)

# ECM B1=11000, sigma=8448475818063232

n=123493: c123493(1111111111......) = 306916137481607051609918536723 * c123463(3620243367......)

# ECM B1=11000, sigma=5729040981084081

# 140974 of 200000 Φn(10) factorization were cracked. 200000 個中 140974 個の Φn(10) の素因数が見つかりました。

# 14092 of 17984 Rprime factorization were cracked. 17984 個中 14092 個の Rprime の素因数が見つかりました。

January 4, 2019 2019 年 1 月 4 日 (Alfred Reich)

n=175663: c175663(1111111111......) = 6654973184266421813 * c175644(1669595173......)

# ECM B1=11000, sigma=1431346150449446

n=176887: c176887(1111111111......) = 126037654612427707 * c176869(8815707611......)

# ECM B1=11000, sigma=2877481825678934

# 140962 of 200000 Φn(10) factorization were cracked. 200000 個中 140962 個の Φn(10) の素因数が見つかりました。

# 14080 of 17984 Rprime factorization were cracked. 17984 個中 14080 個の Rprime の素因数が見つかりました。

January 3, 2019 2019 年 1 月 3 日 (Alfred Reich)

n=175411: c175411(1111111111......) = 50162892419865774253 * c175391(2215006068......)

# ECM B1=11000, sigma=2550898954899158

n=175963: c175963(1111111111......) = 333272070090427763 * c175945(3333946078......)

# ECM B1=11000, sigma=4577198215850889

n=176489: c176489(1111111111......) = 106789788045396173 * c176472(1040465695......)

# ECM B1=11000, sigma=7889187089091415

# 140960 of 200000 Φn(10) factorization were cracked. 200000 個中 140960 個の Φn(10) の素因数が見つかりました。

# 14078 of 17984 Rprime factorization were cracked. 17984 個中 14078 個の Rprime の素因数が見つかりました。

January 12, 2019 2019 年 1 月 12 日 (Makoto Kamada)

n=118912: c59348(1322564524......) = 12319261641730049 * c59332(1073574507......)

n=118924: c54865(1009999999......) = 136638090157084093241 * c54844(7391789499......)

n=118928: c59456(9999999900......) = 258035446869089 * c59442(3875436503......)

n=118936: c59464(9999000099......) = 381707983472017094561 * c59444(2619541778......)

n=118942: c59465(1273855654......) = 59784849208105961 * c59448(2130733239......)

n=118948: c58761(1009999999......) = 45854580756460409 * c58744(2202615274......)

n=118952: c59461(2762803230......) = 90268460828633 * c59447(3060651754......)

# P-1 B1=1e6

# 140957 of 200000 Φn(10) factorization were cracked. 200000 個中 140957 個の Φn(10) の素因数が見つかりました。

January 12, 2019 2019 年 1 月 12 日 (Alfred Reich)

n=28349: c28349(1111111111......) = 1072156788943550080601 * c28328(1036332673......)

# ECM B1=11000, sigma=2381665934884824

n=34781: c34781(1111111111......) = 2332245771736694394580213 * c34756(4764125310......)

# ECM B1=11000, sigma=6494776452244850

n=56501: c56501(1111111111......) = 14051215501999518999511 * c56478(7907580030......)

# ECM B1=11000, sigma=5090664579862407

n=65701: c65701(1111111111......) = 162397583206227736201 * c65680(6841919006......)

# ECM B1=11000, sigma=3183348841138170

n=76579: c76579(1111111111......) = 19137572400718344223026241 * c76553(5805914605......)

# ECM B1=11000, sigma=6548938638629556

n=80147: c80147(1111111111......) = 10352640635466935832121 * c80125(1073263479......)

# ECM B1=11000, sigma=333975774432681

n=81163: c81163(1111111111......) = 3456716944368726571957 * c81141(3214353761......)

# ECM B1=11000, sigma=932367377937342

n=83071: c83071(1111111111......) = 45578329684846278479 * c83051(2437805682......)

# ECM B1=11000, sigma=640108608302107

n=89237: c89237(1111111111......) = 22435508219647698347 * c89217(4952466867......)

# ECM B1=11000, sigma=1814930616575467

n=89477: c89477(1111111111......) = 6495335324425609307 * c89458(1710629329......)

# ECM B1=11000, sigma=1814930616575467

n=89563: c89563(1111111111......) = 53506671882752956489 * c89543(2076584231......)

# ECM B1=11000, sigma=3430489724530839

n=92387: c92387(1111111111......) = 8293620425031222895527449 * c92362(1339717824......)

# ECM B1=11000, sigma=1740925657287884

n=94169: c94169(1111111111......) = 8319548058714125813 * c94150(1335542631......)

# ECM B1=11000, sigma=6853965127623178

n=105107: c105107(1111111111......) = 98052808580495776041639557 * c105081(1133176221......)

# ECM B1=11000, sigma=1524038346512951

n=164051: c164051(1111111111......) = 81119161211877722723 * c164031(1369727071......)

# ECM B1=11000, sigma=1537683371696342

n=164449: c164449(1111111111......) = 1058528261888500693 * c164431(1049675432......)

# ECM B1=11000, sigma=3725344950267140

# 140953 of 200000 Φn(10) factorization were cracked. 200000 個中 140953 個の Φn(10) の素因数が見つかりました。

# 14075 of 17984 Rprime factorization were cracked. 17984 個中 14075 個の Rprime の素因数が見つかりました。

January 11, 2019 2019 年 1 月 11 日 (Alfred Reich)

n=44201: c44201(1111111111......) = 441105641285152382361227 * c44177(2518922922......)

# ECM B1=11000, sigma=7969708568707791

n=49727: c49727(1111111111......) = 1343508776632691048129 * c49705(8270218478......)

# ECM B1=11000, sigma=5735356538559289

n=57529: c57529(1111111111......) = 102216008830882119418991 * c57506(1087022594......)

# ECM B1=11000, sigma=405607512326411

n=96493: c96493(1111111111......) = 9605251838597330039 * c96474(1156774574......)

# ECM B1=11000, sigma=4624961561814925

n=98869: c98869(1111111111......) = 58119849971974787449 * c98849(1911758395......)

# ECM B1=11000, sigma=4899077757831504

# 140937 of 200000 Φn(10) factorization were cracked. 200000 個中 140937 個の Φn(10) の素因数が見つかりました。

# 14059 of 17984 Rprime factorization were cracked. 17984 個中 14059 個の Rprime の素因数が見つかりました。

January 11, 2019 2019 年 1 月 11 日 (Makoto Kamada)

n=118834: c59400(1364158548......) = 189793627806909767 * c59382(7187588773......)

n=118838: c59412(4499899809......) = 1980081235198357 * c59397(2272583432......)

n=118844: c51827(2268630653......) = 964943099122283337466686541 * c51800(2351051223......)

n=118852: c57961(1009999999......) = 1869740565257561 * c57945(5401818940......)

n=118856: c58385(1000099999......) = 4099556882436793 * c58369(2439531951......)

n=118864: c50688(9999999900......) = 86867238945633761 * c50672(1151181967......)

n=118868: c59418(3575136130......) = 24683187730723201 * c59402(1448409407......)

n=118876: c58678(6916234434......) = 41448535939540868499701 * c58656(1668631780......)

n=118886: c59423(8427225571......) = 568498106595812693 * c59406(1482366515......)

# P-1 B1=1e6

# 140932 of 200000 Φn(10) factorization were cracked. 200000 個中 140932 個の Φn(10) の素因数が見つかりました。

January 2, 2019 2019 年 1 月 2 日 (Alfred Eichhorn)

# via Kurt Beschorner

n=85229: c85229(1111111111......) = 168663925267282807631 * c85208(6587722355......)

# ECM B1=11e3, sigma=7899039265179683671

n=85297: c85297(1111111111......) = 421924698407540082163 * c85276(2633434627......)

# ECM B1=11e3, sigma=14753187368402742930

# 140929 of 200000 Φn(10) factorization were cracked. 200000 個中 140929 個の Φn(10) の素因数が見つかりました。

# 14054 of 17984 Rprime factorization were cracked. 17984 個中 14054 個の Rprime の素因数が見つかりました。

January 10, 2019 2019 年 1 月 10 日 (Alfred Reich)

n=63589: c63589(1111111111......) = 8349553560795506609551 * c63567(1330743138......)

# ECM B1=11000, sigma=1155390326173300

n=71363: c71363(1111111111......) = 96437694091850759306249 * c71340(1152154374......)

# ECM B1=11000, sigma=4262445841234790

n=98927: c98927(1111111111......) = 17628646662216372670123 * c98904(6302872434......)

# ECM B1=11000, sigma=573668454903307

n=98947: c98947(1111111111......) = 2153483727956880382027 * c98925(5159598360......)

# ECM B1=11000, sigma=6798895436782090

n=120823: c120823(1111111111......) = 3216939362683876990453 * c120801(3453938622......)

# ECM B1=11000, sigma=3729162615101315

n=165719: c165719(1111111111......) = 230591403096352361243 * c165698(4818527907......)

# ECM B1=11000, sigma=1451479863992268

n=171091: c171091(1111111111......) = 173456763887530103957 * c171070(6405694919......)

# ECM B1=11000, sigma=6029923745001917

n=171877: c171877(1111111111......) = 793710341704475606519 * c171856(1399894965......)

# ECM B1=11000, sigma=5676048429967156

# 140927 of 200000 Φn(10) factorization were cracked. 200000 個中 140927 個の Φn(10) の素因数が見つかりました。

# 14052 of 17984 Rprime factorization were cracked. 17984 個中 14052 個の Rprime の素因数が見つかりました。

January 10, 2019 2019 年 1 月 10 日 (Makoto Kamada)

n=118778: c53972(2126027143......) = 15726586533936739561 * c53953(1351868149......)

n=118786: c59387(1093310437......) = 991369765349533 * c59372(1102828103......)

n=118798: c59388(1401152649......) = 2109468250915813 * 1367493604264543487 * 4853529364400229150208561 * c59330(1000758975......)

n=118808: c59400(9999000099......) = 1338347408767657 * c59385(7471154376......)

# P-1 B1=1e6

# 140919 of 200000 Φn(10) factorization were cracked. 200000 個中 140919 個の Φn(10) の素因数が見つかりました。

January 9, 2019 2019 年 1 月 9 日 (Alfred Reich)

n=70627: c70627(1111111111......) = 1018169653287058532147717 * c70603(1091282879......)

# ECM B1=11000, sigma=7064823955042121

n=75611: c75611(1111111111......) = 482548344672114780991 * c75590(2302590244......)

# ECM B1=11000, sigma=5664805996210549

n=91097: c91097(1111111111......) = 283167665779323015827 * c91076(3923862945......)

# ECM B1=11000, sigma=8856299014694471

n=93637: c93637(1111111111......) = 328312172708602276387 * c93616(3384312868......)

# ECM B1=11000, sigma=7405046769348191

n=94793: c94793(1111111111......) = 183028084154439866761 * c94772(6070713771......)

# ECM B1=11000, sigma=6300195395995358

n=95231: c95231(1111111111......) = 124613430768440145437 * c95210(8916463532......)

# ECM B1=11000, sigma=1526227210560449

n=104549: c104549(1111111111......) = 349299156281522773679 * c104528(3180972788......)

# ECM B1=11000, sigma=8833183889143043

n=104789: c104789(1111111111......) = 1296820704383510587973 * c104767(8567962458......)

# ECM B1=11000, sigma=5175290821258918

n=119551: c119551(1111111111......) = 165267907162506970711 * c119530(6723090587......)

# ECM B1=11000, sigma=1526900443762727

n=119687: c119687(1111111111......) = 92319233468176127053 * c119667(1203553224......)

# ECM B1=11000, sigma=898189500667397

n=125627: c125627(1111111111......) = 64691838209098268111 * c125607(1717544503......)

# ECM B1=11000, sigma=7911129605468459

n=127163: c127163(1111111111......) = 961496013107459184071 * c127142(1155606571......)

# ECM B1=11000, sigma=8187391772897736

n=166679: c166679(1111111111......) = 50243113617069731203 * c166659(2211469455......)

# ECM B1=11000, sigma=2827033860509040

n=169607: c169607(1111111111......) = 16804891448101552879 * c169587(6611831528......)

# ECM B1=11000, sigma=2604965470174692

n=183091: c183091(1111111111......) = 1001682815355094337359 * c183070(1109244457......)

# ECM B1=11000, sigma=6838968730427571

# 140918 of 200000 Φn(10) factorization were cracked. 200000 個中 140918 個の Φn(10) の素因数が見つかりました。

# 14044 of 17984 Rprime factorization were cracked. 17984 個中 14044 個の Rprime の素因数が見つかりました。

January 9, 2019 2019 年 1 月 9 日 (Makoto Kamada)

n=118748: c50881(1009999999......) = 55858206367529075571142201 * c50855(1808149716......)

n=118754: c59365(1790633876......) = 872992189293465109529 * c59344(2051145357......)

n=118756: c53949(8557849316......) = 2213224954898657452721 * c53928(3866687521......)

n=118766: c57954(1403319514......) = 70114601103499 * c57940(2001465446......)

# P-1 B1=1e6

# 140903 of 200000 Φn(10) factorization were cracked. 200000 個中 140903 個の Φn(10) の素因数が見つかりました。

January 8, 2019 2019 年 1 月 8 日 (Alfred Reich)

n=52387: c52387(1111111111......) = 13983561113768151492551 * c52364(7945837988......)

# ECM B1=11000, sigma=5149044301587545

n=52517: c52517(1111111111......) = 1586229175440417103715351 * c52492(7004732533......)

# ECM B1=11000, sigma=699838755841591

n=54623: c54623(1111111111......) = 289161619433661528418933 * c54599(3842526242......)

# ECM B1=11000, sigma=4329249268884601

n=54727: c54727(1111111111......) = 81545377658593487999 * c54707(1362567864......)

# ECM B1=11000, sigma=8017000847086449

n=85661: c85661(1111111111......) = 328246179289444613 * c85643(3384993280......)

# ECM B1=11000, sigma=6303624827454388

n=86143: c86143(1111111111......) = 282683972490750557 * c86125(3930576966......)

# ECM B1=11000, sigma=6523905408697690

n=86287: c86287(1111111111......) = 18543620384059093 * c86270(5991878004......)

# ECM B1=11000, sigma=5190248105193753

n=86353: c86353(1111111111......) = 5669157483763387 * c86337(1959922817......)

# ECM B1=11000, sigma=4586794217360168

n=86837: c86837(1111111111......) = 682769188284188399 * c86819(1627359772......)

# ECM B1=11000, sigma=618580495627569

n=87323: c87323(1111111111......) = 33909262597306826117 * p87303(3276718589......)

# ECM B1=11000, sigma=6293861343017782

makoto@betelgeuse /cygdrive/c/factor2/repunit
$ ./pfgw64 -tc -q"(10^87323-1)/305183363375761435053"
PFGW Version 3.8.3.64BIT.20161203.Win_Dev [GWNUM 28.6]

Primality testing (10^87323-1)/305183363375761435053 [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 2
Running N-1 test using base 3
Running N-1 test using base 5
Running N-1 test using base 11
Running N+1 test using discriminant 23, base 1+sqrt(23)
Calling N-1 BLS with factored part 0.01% and helper 0.00% (0.05% proof)
(10^87323-1)/305183363375761435053 is Fermat and Lucas PRP! (1340.9344s+0.0603s)

n=87337: c87337(1111111111......) = 49175117572266667 * c87320(2259498636......)

# ECM B1=11000, sigma=3967945764935107

n=88261: c88261(1111111111......) = 465000760233640204361 * c88240(2389482353......)

# ECM B1=11000, sigma=7604398687605284

n=91141: c91141(1111111111......) = 125670382933660158066667 * c91117(8841471515......)

# ECM B1=11000, sigma=7632911515385686

n=91691: c91691(1111111111......) = 298191682136293033733 * c91670(3726164000......)

# ECM B1=11000, sigma=1207617299812300

n=95369: c95369(1111111111......) = 5082922826853566159 * c95350(2185968878......)

# ECM B1=11000, sigma=5145251229156340

n=95527: c95527(1111111111......) = 621715607851833148284373 * c95503(1787169402......)

# ECM B1=11000, sigma=4012521973717051

n=98101: c98101(1111111111......) = 797206746804765535079 * c98080(1393755278......)

# ECM B1=11000, sigma=3438135398393622

n=98299: c98299(1111111111......) = 87243614936686963603 * c98279(1273572985......)

# ECM B1=11000, sigma=8294010701886539

n=106441: c106441(1111111111......) = 232779069496267756271 * c106420(4773243202......)

# ECM B1=11000, sigma=5692445011526062

n=107761: c107761(1111111111......) = 23936079854392135586161 * c107738(4641992832......)

# ECM B1=11000, sigma=1702433198223208

n=109103: c109103(1111111111......) = 124426120701269501083 * c109082(8929886304......)

# ECM B1=11000, sigma=5669375591896332

n=111893: c111893(1111111111......) = 10601559168718909632374477 * c111868(1048063868......)

# ECM B1=11000, sigma=8276419206844494

n=112799: c112799(1111111111......) = 559572385537740209 * c112781(1985643215......)

# ECM B1=11000, sigma=589423419367214

n=113117: c113117(1111111111......) = 21314812371193858972369 * c113094(5212858981......)

# ECM B1=11000, sigma=5166084940556887

n=113417: c113417(1111111111......) = 1633605217803587290733 * c113395(6801588896......)

# ECM B1=11000, sigma=5697501618919278

n=115361: c115361(1111111111......) = 385453206110201542123 * c115340(2882609596......)

# ECM B1=11000, sigma=7431953755568008

n=117371: c117371(1111111111......) = 610064935001757380808319453 * c117344(1821299745......)

# ECM B1=11000, sigma=2014514492038256

n=118061: c118061(1111111111......) = 806357119339797057437693 * c118037(1377939233......)

# ECM B1=11000, sigma=2570585005240565

n=118429: c118429(1111111111......) = 2473887968989978671959 * c118407(4491355813......)

# ECM B1=11000, sigma=7140822733094935

n=120689: c120689(1111111111......) = 235705855364244567373 * c120668(4713973309......)

# ECM B1=11000, sigma=7406983390887223

n=121997: c121997(1111111111......) = 219461854499881367489 * c121976(5062889464......)

# ECM B1=11000, sigma=3709391010416330

n=122363: c122363(1111111111......) = 1398102431854805557 * c122344(7947279725......)

# ECM B1=11000, sigma=3724015538648020

n=122527: c122527(1111111111......) = 1170754185560841315843203 * c122502(9490558520......)

# ECM B1=11000, sigma=6885495372348995

n=122651: c122651(1111111111......) = 90094177973059403059249 * c122628(1233277372......)

# ECM B1=11000, sigma=5912619303472135

n=124577: c124577(1111111111......) = 212200558393880020787 * c124556(5236136603......)

# ECM B1=11000, sigma=1476638502424277

n=124679: c124679(1111111111......) = 1043747401216156032311827 * c124655(1064540242......)

# ECM B1=11000, sigma=6786534388603707

n=124987: c124987(1111111111......) = 193670569273973003831 * c124966(5737119043......)

# ECM B1=11000, sigma=2635345106944266

n=125003: c125003(1111111111......) = 115912561314342511241 * c124982(9585769639......)

# ECM B1=11000, sigma=1439550272066503

n=126349: c126349(1111111111......) = 3952138768953880484443 * c126327(2811417250......)

# ECM B1=11000, sigma=6044812717413835

n=126851: c126851(1111111111......) = 45044155652319927253 * c126831(2466715370......)

# ECM B1=11000, sigma=5117474532618814

n=129803: c129803(1111111111......) = 7290107500414131587 * c129784(1524135427......)

# ECM B1=11000, sigma=1503401989191199

n=130927: c130927(1111111111......) = 166367054828927696124143111 * c130900(6678672723......)

# ECM B1=11000, sigma=564603278080206

n=131303: c131303(1111111111......) = 4112122508936939071 * c131284(2702037958......)

# ECM B1=11000, sigma=4067406560613501

n=133877: c133877(1111111111......) = 2381311487754505910083 * c133855(4665962923......)

# ECM B1=11000, sigma=604936664697146

n=135209: c135209(1111111111......) = 27409819275368495663325041 * c135183(4053697326......)

# ECM B1=11000, sigma=1989661940234905

n=136309: c136309(1111111111......) = 35886741387965301887563 * c136286(3096160498......)

# ECM B1=11000, sigma=5371323459725645

n=136399: c136399(1111111111......) = 7113392137285081493 * c136380(1561998958......)

# ECM B1=11000, sigma=3486278554983372

n=136709: c136709(1111111111......) = 77707023467559005732917 * c136686(1429872180......)

# ECM B1=11000, sigma=1163630005734694

n=162007: c162007(1111111111......) = 5760834815778283511 * c161988(1928732808......)

# ECM B1=11000, sigma=7338673156203690

n=162649: c162649(1111111111......) = 78306014752040205985003 * c162626(1418934566......)

# ECM B1=11000, sigma=5352342832430038

n=162937: c162937(1111111111......) = 348632158082301557 * c162919(3187058581......)

# ECM B1=11000, sigma=2054206985229012

n=162947: c162947(1111111111......) = 157801677486643439 * c162929(7041186943......)

# ECM B1=11000, sigma=7076169699448375

n=163199: c163199(1111111111......) = 6315344571425878937551 * c163177(1759383195......)

# ECM B1=11000, sigma=1521021494982727

n=166417: c166417(1111111111......) = 492284757580057210369 * c166396(2257049591......)

# ECM B1=11000, sigma=604630168537204

n=166843: c166843(1111111111......) = 91382953160245499213 * c166823(1215884443......)

# ECM B1=11000, sigma=4554950962084274

n=167077: c167077(1111111111......) = 1904494490792119843 * c167058(5834152403......)

# ECM B1=11000, sigma=1771872302975636

n=169837: c169837(1111111111......) = 4411506713652494801 * c169818(2518665805......)

# ECM B1=11000, sigma=2878033600485226

n=170293: c170293(1111111111......) = 8672953101387222084391 * c170271(1281122010......)

# ECM B1=11000, sigma=5417589206964091

n=172219: c172219(1111111111......) = 35464819794212639213 * c172199(3132995226......)

# ECM B1=11000, sigma=4888091126338772

n=173573: c173573(1111111111......) = 5684111374653082210370959 * c173548(1954766607......)

# ECM B1=11000, sigma=7936086785228477

n=183389: c183389(1111111111......) = 8387416794188711787467 * c183367(1324735777......)

# ECM B1=11000, sigma=5165953849912167

n=183487: c183487(1111111111......) = 6335394557705643049 * c183468(1753815174......)

# ECM B1=11000, sigma=7725988971593026

n=184859: c184859(1111111111......) = 26734884886738612440037843 * c184833(4156034768......)

# ECM B1=11000, sigma=1824226929193390

n=185299: c185299(1111111111......) = 103190988734093183383147 * c185276(1076752073......)

# ECM B1=11000, sigma=6003285043693538

n=185309: c185309(1111111111......) = 1361134750452945401 * c185290(8163123531......)

# ECM B1=11000, sigma=6894426484772857

n=185699: c185699(1111111111......) = 1038485177144328648437 * c185678(1069934492......)

# ECM B1=11000, sigma=6270139131530891

n=185923: c185923(1111111111......) = 3210352257048477952639 * c185901(3461025526......)

# ECM B1=11000, sigma=5925272784631972

# 140902 of 200000 Φn(10) factorization were cracked. 200000 個中 140902 個の Φn(10) の素因数が見つかりました。

# 121 of 17984 Rprime factorization were finished. 17984 個中 121 個の Rprime の素因数分解が終わりました。

# 14029 of 17984 Rprime factorization were cracked. 17984 個中 14029 個の Rprime の素因数が見つかりました。

January 8, 2019 2019 年 1 月 8 日 (Makoto Kamada)

n=118676: c59330(1283519033......) = 50968973778604867429 * c59310(2518235975......)

n=118682: c59340(9090909090......) = 1156485766729252489529 * c59319(7860804994......)

n=118718: c59358(9090909090......) = 253786922225339 * c59344(3582103053......)

n=118726: c54203(1276173195......) = 538185163259911218277 * c54182(2371253023......)

n=118732: c59364(9900990099......) = 10980529368089 * c59351(9016860450......)

n=118738: c59355(1115761837......) = 1806487997278651 * c59339(6176414343......)

n=118742: c54782(4619418560......) = 254087355350778216706063 * c54759(1818043465......)

# P-1 B1=1e6

# 140835 of 200000 Φn(10) factorization were cracked. 200000 個中 140835 個の Φn(10) の素因数が見つかりました。

January 7, 2019 2019 年 1 月 7 日 (Makoto Kamada)

n=118648: c59301(6174514957......) = 38780359714901417 * c59285(1592175782......)

n=118654: c57841(1099999999......) = 4864439145469168512881 * c57819(2261308995......)

n=118672: c59317(2151720026......) = 235779911811166193 * c59299(9125968408......)

# P-1 B1=1e6

# 140832 of 200000 Φn(10) factorization were cracked. 200000 個中 140832 個の Φn(10) の素因数が見つかりました。

January 5, 2019 2019 年 1 月 5 日 (Alfred Reich)

n=138863: c138863(1111111111......) = 102370240069677439733 * c138843(1085384883......)

# ECM B1=11000, sigma=6602859287860857

n=139619: c139619(1111111111......) = 13098659640429887294707 * c139596(8482632128......)

# ECM B1=11000, sigma=5632653253757476

n=140249: c140249(1111111111......) = 22368940309991650581705693479 * c140220(4967204953......)

# ECM B1=11000, sigma=8223263564930466

n=140891: c140891(1111111111......) = 1396746165964492510283 * c140869(7954996678......)

# ECM B1=11000, sigma=649282040182695

n=140893: c140893(1111111111......) = 37439365798987351577578507 * c140867(2967761572......)

# ECM B1=11000, sigma=3709778423104531

n=142183: c142183(1111111111......) = 2861926309929711348637 * c142161(3882388960......)

# ECM B1=11000, sigma=6785822500150729

n=142939: c142939(1111111111......) = 3697315509270094853 * c142920(3005183377......)

# ECM B1=11000, sigma=3451883567925988

n=143243: c143243(1111111111......) = 720902806166247635867 * c143222(1541277272......)

# ECM B1=11000, sigma=633175531876156

n=144563: c144563(1111111111......) = 10578581179086342167951 * c144541(1050340392......)

# ECM B1=11000, sigma=8743333332708894

n=144847: c144847(1111111111......) = 71889146697698712329 * c144827(1545589511......)

# ECM B1=11000, sigma=5932419133471045

n=145637: c145637(1111111111......) = 5597972676485928200677489 * c145612(1984845541......)

# ECM B1=11000, sigma=2949832505281842

n=146683: c146683(1111111111......) = 205301215757336571889 * c146662(5412101954......)

# ECM B1=11000, sigma=2105759998268662

n=147377: c147377(1111111111......) = 9882104025638779489 * c147358(1124366944......)

# ECM B1=11000, sigma=6037327936184507

n=148361: c148361(1111111111......) = 10327227079150778551 * c148342(1075904599......)

# ECM B1=11000, sigma=4509169183193642

n=152599: c152599(1111111111......) = 16097751559938033551 * c152579(6902275184......)

# ECM B1=11000, sigma=7988469771892530

n=153113: c153113(1111111111......) = 98013165973619207923559 * c153090(1133634548......)

# ECM B1=11000, sigma=8744860745867673

n=153409: c153409(1111111111......) = 14236442862931836394711 * c153386(7804696171......)

# ECM B1=11000, sigma=7715445483823434

n=153529: c153529(1111111111......) = 2990334836952566071 * c153510(3715674570......)

# ECM B1=11000, sigma=8847587300862497

n=154061: c154061(1111111111......) = 26299673698640548289 * c154041(4224809493......)

# ECM B1=11000, sigma=7375767447222906

n=154373: c154373(1111111111......) = 94977366579531786101243 * c154350(1169869360......)

# ECM B1=11000, sigma=6201671494798343

n=154487: c154487(1111111111......) = 13208169999858066151 * c154467(8412301712......)

# ECM B1=11000, sigma=6493889742390799

n=154571: c154571(1111111111......) = 1531422311151511643 * c154552(7255419377......)

# ECM B1=11000, sigma=7395027579276536

n=154769: c154769(1111111111......) = 451703876538132689 * c154751(2459821951......)

# ECM B1=11000, sigma=7051271007182192

n=155083: c155083(1111111111......) = 788775203216116403638271 * c155059(1408653703......)

# ECM B1=11000, sigma=2107348686762933

n=155509: c155509(1111111111......) = 85406669438245589965759 * c155486(1300965274......)

# ECM B1=11000, sigma=1528743772011839

n=155719: c155719(1111111111......) = 127366803263087533 * c155701(8723710438......)

# ECM B1=11000, sigma=4790843802810024

n=155797: c155797(1111111111......) = 2254017861149287867 * c155778(4929468972......)

# ECM B1=11000, sigma=2655693909519534

n=157019: c157019(1111111111......) = 73038815920939903249 * c156999(1521261122......)

# ECM B1=11000, sigma=4044073133492149

n=157109: c157109(1111111111......) = 29568539679034999883 * c157089(3757747670......)

# ECM B1=11000, sigma=1468667643347774

n=157321: c157321(1111111111......) = 429094439481461003 * c157303(2589432555......)

# ECM B1=11000, sigma=1977235966932579

n=157363: c157363(1111111111......) = 5590761031879867997 * c157344(1987405837......)

# ECM B1=11000, sigma=3164827527711476

n=167747: c167747(1111111111......) = 21418752566364763114511 * c167724(5187562196......)

# ECM B1=11000, sigma=2646993680036054

n=168743: c168743(1111111111......) = 3644254478312541773 * c168724(3048939413......)

# ECM B1=11000, sigma=575771295897431

n=169943: c169943(1111111111......) = 447091421999137879 * c169925(2485198902......)

# ECM B1=11000, sigma=2360606702546464

n=170557: c170557(1111111111......) = 555769727834693921 * c170539(1999229276......)

# ECM B1=11000, sigma=1712832819761457

n=171811: c171811(1111111111......) = 156256701711784517329 * c171790(7110806121......)

# ECM B1=11000, sigma=5474490100465953

n=172259: c172259(1111111111......) = 5345742311945418437 * c172240(2078497327......)

# ECM B1=11000, sigma=6818855599620563

n=172427: c172427(1111111111......) = 69604384227212771639 * c172407(1596323454......)

# ECM B1=11000, sigma=6534459839684176

n=173087: c173087(1111111111......) = 270202320957680109071 * c173066(4112144955......)

# ECM B1=11000, sigma=7100377903342443

n=173177: c173177(1111111111......) = 493960347378207571913431 * c173153(2249393330......)

# ECM B1=11000, sigma=8244194758079242

n=179801: c179801(1111111111......) = 305156369808280904107 * c179780(3641120491......)

# ECM B1=11000, sigma=2019027852045687

n=179903: c179903(1111111111......) = 369016015494779281591201 * c179879(3011010537......)

# ECM B1=11000, sigma=5717238293145782

n=180317: c180317(1111111111......) = 509714689514219831 * c180299(2179868726......)

# ECM B1=11000, sigma=5657365445772474

n=180749: c180749(1111111111......) = 8437886971582555851493 * c180727(1316812034......)

# ECM B1=11000, sigma=4047875062386529

n=181981: c181981(1111111111......) = 22432039230461026043 * c181961(4953232738......)

# ECM B1=11000, sigma=3511257816501282

n=182123: c182123(1111111111......) = 188844520464292958809 * c182102(5883734981......)

# ECM B1=11000, sigma=6830364482860138

n=184993: c184993(1111111111......) = 78356264188862920133 * c184973(1418024611......)

# ECM B1=11000, sigma=2002851538870272

n=185021: c185021(1111111111......) = 274961805147626227 * c185003(4040965291......)

# ECM B1=11000, sigma=7628325098190321

n=185821: c185821(1111111111......) = 129421505736476717 * c185803(8585212363......)

# ECM B1=11000, sigma=2861607120563987

n=186437: c186437(1111111111......) = 315713560894775787929 * c186416(3519364540......)

# ECM B1=11000, sigma=8739143800214646

# 140831 of 200000 Φn(10) factorization were cracked. 200000 個中 140831 個の Φn(10) の素因数が見つかりました。

# 13962 of 17984 Rprime factorization were cracked. 17984 個中 13962 個の Rprime の素因数が見つかりました。

January 5, 2019 2019 年 1 月 5 日 (bbmz)

# via yoyo@home

n=1355: c1033(2029159479......) = 64798931224892046095300386296961245938921 * c992(3131470597......)

# ECM B1=11000000, sigma=0:12395092201359388656

January 6, 2019 2019 年 1 月 6 日 (Makoto Kamada)

n=118568: c59248(3079592120......) = 11578391664881 * c59235(2659775389......)

n=118574: c58601(1099999999......) = 394623535830899 * 783639512381393929 * c58568(3557077896......)

n=118616: c59295(3916975458......) = 2746521878443897 * c59280(1426158476......)

n=118628: c57961(1009999999......) = 464815536610289 * c57946(2172904992......)

# P-1 B1=1e6

# 140781 of 200000 Φn(10) factorization were cracked. 200000 個中 140781 個の Φn(10) の素因数が見つかりました。

January 5, 2019 2019 年 1 月 5 日 (Makoto Kamada)

n=118534: c52975(1461748701......) = 853276979960125969 * 1062716427241536653 * 19600292497742434621573 * c52916(8224371914......)

n=118544: c57115(2811887563......) = 4502093457126854537761 * c57093(6245733436......)

n=118545: c54137(1021469082......) = 128375278982862871 * c54119(7956898639......)

n=118546: c59250(3969675623......) = 21649491896285263 * 2517742931731870933 * c59215(7282758804......)

# P-1 B1=1e6

January 4, 2019 2019 年 1 月 4 日 (Alfred Reich)

n=157721: c157721(1111111111......) = 3223713541575785387 * c157702(3446680658......)

# ECM B1=11000, sigma=5191141697791630

n=158863: c158863(1111111111......) = 941907819551764889 * c158845(1179638907......)

# ECM B1=11000, sigma=8536654207462671

n=159491: c159491(1111111111......) = 65349939574226910599 * c159471(1700248107......)

# ECM B1=11000, sigma=2604549258356459

n=159631: c159631(1111111111......) = 18822554960925004210879 * c159608(5903083366......)

# ECM B1=11000, sigma=984353950509773

n=159739: c159739(1111111111......) = 3357514642647811397 * c159720(3309326181......)

# ECM B1=11000, sigma=8538229768485780

n=159931: c159931(1111111111......) = 148527516540755034911 * c159910(7480843529......)

# ECM B1=11000, sigma=3672141189232378

n=160159: c160159(1111111111......) = 546784552007181148919 * c160138(2032082119......)

# ECM B1=11000, sigma=619019489485051

n=160343: c160343(1111111111......) = 123128661610716387889 * c160322(9023984315......)

# ECM B1=11000, sigma=6010550253208408

n=165469: c165469(1111111111......) = 23878081024380956089 * c165449(4653268032......)

# ECM B1=11000, sigma=4871935395177857

n=165611: c165611(1111111111......) = 377178756095275949747 * c165590(2945847540......)

# ECM B1=11000, sigma=7689900212787668

n=168887: c168887(1111111111......) = 7036267212015362401 * c168868(1579120118......)

# ECM B1=11000, sigma=3517750349430783

n=169243: c169243(1111111111......) = 12274610904151750027 * c169223(9052108614......)

# ECM B1=11000, sigma=7979852345866634

n=170843: c170843(1111111111......) = 8136272720416052161191289 * c170818(1365626681......)

# ECM B1=11000, sigma=2886066847946903

n=173357: c173357(1111111111......) = 30758664123039531043 * c173337(3612351650......)

# ECM B1=11000, sigma=6571032977298818

n=173483: c173483(1111111111......) = 18405101126860882350089 * c173460(6036973681......)

# ECM B1=11000, sigma=2558965194932458

n=182639: c182639(1111111111......) = 19874777761102549008439 * c182616(5590558669......)

# ECM B1=11000, sigma=3972551713869273

n=182657: c182657(1111111111......) = 110695158448010321 * c182640(1003757640......)

# ECM B1=11000, sigma=7398339863904980

n=187987: c187987(1111111111......) = 1468373391560366215453 * c187965(7566952094......)

# ECM B1=11000, sigma=4620676179568354

n=189859: c189859(1111111111......) = 2291486505706987550081 * c189837(4848866045......)

# ECM B1=11000, sigma=4003102695946318

n=192463: c192463(1111111111......) = 140472783005947632067 * c192442(7909796384......)

# ECM B1=11000, sigma=2002880556370204

n=193201: c193201(1111111111......) = 829821710655538629911 * c193180(1338975706......)

# ECM B1=11000, sigma=4903211122403897

n=193603: c193603(1111111111......) = 1288726774123278532067 * c193581(8621774090......)

# ECM B1=11000, sigma=3721390366124916

n=194167: c194167(1111111111......) = 221394293030847049 * c194149(5018698069......)

# ECM B1=11000, sigma=7357774520536814

n=194707: c194707(1111111111......) = 92593290160631967006361 * c194684(1199990959......)

# ECM B1=11000, sigma=7348836175928351

n=194867: c194867(1111111111......) = 97002324538200689438401 * c194844(1145447922......)

# ECM B1=11000, sigma=1795548486219121

n=195389: c195389(1111111111......) = 166220126315334683 * c195371(6684576264......)

# ECM B1=11000, sigma=400323457832845

n=197773: c197773(1111111111......) = 103621991094843653 * c197756(1072273461......)

# ECM B1=11000, sigma=8777815778517987

n=197807: c197807(1111111111......) = 9862575123019727627 * c197788(1126593305......)

# ECM B1=11000, sigma=5122173211483787

# 140779 of 200000 Φn(10) factorization were cracked. 200000 個中 140779 個の Φn(10) の素因数が見つかりました。

# 13912 of 17984 Rprime factorization were cracked. 17984 個中 13912 個の Rprime の素因数が見つかりました。

January 3, 2019 2019 年 1 月 3 日 (Alfred Reich)

n=174169: c174169(1111111111......) = 1276093935251337281 * c174150(8707126336......)

# ECM B1=11000, sigma=1745860220170212

n=175961: c175961(1111111111......) = 100850680899991650599 * c175941(1101738829......)

# ECM B1=11000, sigma=5487363254791227

# 140751 of 200000 Φn(10) factorization were cracked. 200000 個中 140751 個の Φn(10) の素因数が見つかりました。

# 13884 of 17984 Rprime factorization were cracked. 17984 個中 13884 個の Rprime の素因数が見つかりました。

January 2, 2019 2019 年 1 月 2 日 (Alfred Reich)

n=186761: c186761(1111111111......) = 12399041693081880203 * c186741(8961266028......)

# ECM B1=11000, sigma=3703569027334928

n=190607: c190607(1111111111......) = 167765642445441766147 * c190586(6622995596......)

# ECM B1=11000, sigma=3113817445132063

n=190823: c190823(1111111111......) = 21551533539272132323 * c190803(5155601150......)

# ECM B1=11000, sigma=7678509843885928

n=190889: c190889(1111111111......) = 102444320602655326187 * c190869(1084600009......)

# ECM B1=11000, sigma=2823325098612783

# 140749 of 200000 Φn(10) factorization were cracked. 200000 個中 140749 個の Φn(10) の素因数が見つかりました。

# 13882 of 17984 Rprime factorization were cracked. 17984 個中 13882 個の Rprime の素因数が見つかりました。

January 4, 2019 2019 年 1 月 4 日 (Makoto Kamada)

n=118468: c50761(1009999999......) = 115934228438908584041 * c50740(8711836129......)

n=118478: c59238(9090909090......) = 7204960153380449 * c59223(1261757025......)

n=118484: c56081(1535920286......) = 19148565592529 * c56067(8021072278......)

n=118486: c59237(1278758151......) = 198590830020001 * c59222(6439160115......)

n=118492: c53832(9224872422......) = 518476843065721 * c53818(1779225542......)

n=118504: c59248(9999000099......) = 27801590097919836001 * c59229(3596556910......)

n=118508: c52416(9900990099......) = 9552954385202749 * c52401(1036432259......)

n=118516: c59250(1113884930......) = 12518201538121 * c59236(8898122685......)

# P-1 B1=1e6

# 140745 of 200000 Φn(10) factorization were cracked. 200000 個中 140745 個の Φn(10) の素因数が見つかりました。

January 1, 2019 2019 年 1 月 1 日 (Alfred Reich)

n=198997: c198997(1111111111......) = 222199527490429818569 * c198976(5000510683......)

# ECM B1=11000, sigma=3151496820413888

# 140741 of 200000 Φn(10) factorization were cracked. 200000 個中 140741 個の Φn(10) の素因数が見つかりました。

# 13878 of 17984 Rprime factorization were cracked. 17984 個中 13878 個の Rprime の素因数が見つかりました。

January 3, 2019 2019 年 1 月 3 日 (Makoto Kamada)

n=118394: c59188(5738805488......) = 1298027055727573 * c59173(4421175555......)

n=118402: c58033(1099999999......) = 18220560068933 * c58019(6037136047......)

n=118406: c58304(1646652134......) = 70318025669165731 * c58287(2341721228......)

n=118418: c59187(2539195008......) = 350829935966533 * c59172(7237680563......)

n=118438: c59218(9090909090......) = 16462037418623 * c59205(5522347483......)

n=118442: c59211(1003203542......) = 15411754512805730011 * c59191(6509340266......)

n=118444: c59205(7432884811......) = 47967378276941 * c59192(1549570787......)

n=118448: c53761(1000000009......) = 159613597605617 * c53746(6265130446......)

# P-1 B1=1e6

# 140740 of 200000 Φn(10) factorization were cracked. 200000 個中 140740 個の Φn(10) の素因数が見つかりました。

January 2, 2019 2019 年 1 月 2 日 (Makoto Kamada)

n=118322: c58213(1099999999......) = 46586703347521 * c58199(2361188753......)

n=118324: c59160(9900990099......) = 432451872737741 * 42713718988955801 * c59129(5360106983......)

n=118335: c51744(9999999999......) = 107012684819774791 * c51727(9344686582......)

n=118336: c57779(1475437257......) = 706552819958883137 * c57761(2088219331......)

n=118352: c54529(1000000009......) = 1360813542794369 * c54513(7348545399......)

# P-1 B1=1e6

# 140737 of 200000 Φn(10) factorization were cracked. 200000 個中 140737 個の Φn(10) の素因数が見つかりました。

January 1, 2019 2019 年 1 月 1 日 (Alfred Reich)

n=186671: c186671(1111111111......) = 20808287841860729681 * c186651(5339752696......)

# ECM B1=11000, sigma=2915034668849495

n=186743: c186743(1111111111......) = 349069243090028569 * c186725(3183067924......)

# ECM B1=11000, sigma=5199766582367924

n=187069: c187069(1111111111......) = 353441892851839733 * c187051(3143688208......)

# ECM B1=11000, sigma=5119158677267710

n=190339: c190339(1111111111......) = 21137619873020819479 * c190319(5256557350......)

# ECM B1=11000, sigma=3719014330159004

n=191599: c191599(1111111111......) = 223154101981520467123 * c191578(4979120263......)

# ECM B1=11000, sigma=6598478618042233

n=191621: c191621(1111111111......) = 1031167975646247662693 * c191600(1077526782......)

# ECM B1=11000, sigma=1454009029752379

n=191801: c191801(1111111111......) = 57655814339105160089 * c191781(1927144944......)

# ECM B1=11000, sigma=982295159605263

# 140733 of 200000 Φn(10) factorization were cracked. 200000 個中 140733 個の Φn(10) の素因数が見つかりました。

# 13877 of 17984 Rprime factorization were cracked. 17984 個中 13877 個の Rprime の素因数が見つかりました。

January 2, 2019 2019 年 1 月 2 日 (Makoto Kamada)

n=118316: c53755(1707289449......) = 11071802381861981 * c53739(1542015826......)

# P-1 B1=1e6

January 1, 2019 2019 年 1 月 1 日 (Alfred Reich)

n=196201: c196201(1111111111......) = 3386938382001575095559 * c196179(3280576691......)

# ECM B1=11000, sigma=588051655449378

n=196277: c196277(1111111111......) = 1368096154615043921 * c196258(8121586391......)

# ECM B1=11000, sigma=4040143065222965

n=199153: c199153(1111111111......) = 53601307987751747071 * c199133(2072917905......)

# ECM B1=11000, sigma=4901297810679017

# 140726 of 200000 Φn(10) factorization were cracked. 200000 個中 140726 個の Φn(10) の素因数が見つかりました。

# 13870 of 17984 Rprime factorization were cracked. 17984 個中 13870 個の Rprime の素因数が見つかりました。

December 31, 2018 2018 年 12 月 31 日 (Alfred Reich)

n=191467: c191467(1111111111......) = 16988877668735714570201 * c191444(6540226686......)

# ECM B1=11000, sigma=1691672765009906

# 140723 of 200000 Φn(10) factorization were cracked. 200000 個中 140723 個の Φn(10) の素因数が見つかりました。

# 13867 of 17984 Rprime factorization were cracked. 17984 個中 13867 個の Rprime の素因数が見つかりました。

December 30, 2018 2018 年 12 月 30 日 (Alfred Reich)

n=117598: c54227(5183924502......) = 5504190417028764449 * c54208(9418141651......)

# ECM B1=11000, sigma=16563902355951665421

January 1, 2019 2019 年 1 月 1 日 (Makoto Kamada)

n=118276: c59127(2075648335......) = 45966087166429 * c59113(4515608056......)

# P-1 B1=1e6

plain text versionプレーンテキスト版
Previous month前月 | September 2003 2003 年 9 月 | July 7 月 August 8 月 September 9 月 October 10 月 November 11 月 December 12 月 Recent changes 最近の更新